Topological Interaction by Entangled DNA Loops
NASA Astrophysics Data System (ADS)
Feng, Lang; Sha, Ruojie; Seeman, Nadrian. C.; Chaikin, Paul. M.
2012-11-01
We have discovered a new type of interaction between micro- or nanoscale particles that results from the entanglement of strands attached to their surfaces. Self-complementary DNA single strands on a particle can hybridize to form loops. A similar proximal particle can have its loops catenate with those of the first. Unlike conventional thermodynamic interparticle interactions, the catenation interaction is strongly history and protocol dependent, allowing for nonequilibrium particle assembly. The interactions can be controlled by an interesting combination of forces, temperature, light sensitive cross-linking and enzymatic unwinding of the topological links. This novel topological interaction may lead to new materials and phenomena such as particles strung on necklaces, confined motions on designed contours and surfaces, and colloidal Olympic gels.
Ptáčková, Renata; Ječmen, Tomáš; Novák, Petr; Hudeček, Jiří; Stiborová, Marie; Šulc, Miroslav
2014-01-01
Protein–protein interaction was investigated using a protein nanoprobe capable of photo-initiated cross-linking in combination with high-resolution and tandem mass spectrometry. This emerging experimental approach introduces photo-analogs of amino acids within a protein sequence during its recombinant expression, preserves native protein structure and is suitable for mapping the contact between two proteins. The contact surface regions involved in the well-characterized interaction between two molecules of human 14-3-3ζ regulatory protein were used as a model. The employed photo-initiated cross-linking techniques extend the number of residues shown to be within interaction distance in the contact surface of the 14-3-3ζ dimer (Gln8–Met78). The results of this study are in agreement with our previously published data from molecular dynamic calculations based on high-resolution chemical cross-linking data and Hydrogen/Deuterium exchange mass spectrometry. The observed contact is also in accord with the 14-3-3ζ X-ray crystal structure (PDB 3dhr). The results of the present work are relevant to the structural biology of transient interaction in the 14-3-3ζ protein, and demonstrate the ability of the chosen methodology (the combination of photo-initiated cross-linking protein nanoprobes and mass spectrometry analysis) to map the protein-protein interface or regions with a flexible structure. PMID:24865487
Three-dimensional Architecture of Hair-bundle Linkages Revealed by Electron-microscopic Tomography
Auer, Manfred; Koster, Abrahram J.; Ziese, Ulrike; Bajaj, Chandrajit; Volkmann, Niels; Wang, Da Neng
2008-01-01
The senses of hearing and balance rest upon mechanoelectrical transduction by the hair bundles of hair cells in the inner ear. Located at the apical cellular surface, each hair bundle comprises several tens of stereocilia and a single kinocilium that are interconnected by extracellular proteinaceous links. Using electron-microscopic tomography of bullfrog saccular sensory epithelia, we examined the three-dimensional structures of basal links, kinociliary links, and tip links. We observed significant differences in the appearances and dimensions of these three structures and found two distinct populations of tip links suggestive of the involvement of different proteins, splice variants, or protein–protein interactions. We noted auxiliary links connecting the upper portions of tip links to the taller stereocilia. Tip links and auxiliary links show a tendency to adopt a globular conformation when disconnected from the membrane surface. PMID:18421501
Atomic force microscopy evaluation of aqueous interfaces of immobilized hyaluronan.
Morra, Marco; Cassinelli, Clara; Pavesio, Alessandra; Renier, Davide
2003-03-15
Hyaluronan (HA) was immobilized on aminated glass surfaces in three different ways: by simple ionic interaction and by covalent linking at low density and at full density. In agreement with previous reports, in vitro experiments show that the outcome of fibroblast adhesion tests is markedly affected by the details of the coupling procedure, suggesting that different interfacial forces are operating at the aqueous/HA interface in the three cases investigated. The interfacial properties of the HA-coated surfaces were probed by force-distance curves obtained with the atomic force microscope (AFM). This approach readily shows significant differences among the tested samples, which are directly related to the coupling strategy and to results of cell adhesion tests. In particular, the range of interaction between the tip and the surface is much lower when HA is covalently linked than when it is ionically coupled, suggesting a more compact surface structure in the former case. Increasing HA surface density minimizes the interaction force between the surface and the AFM tip, likely reflecting more complete shielding by the HA chains of the underlying substrate. In summary, these measurements clearly show the different nature of the aqueous interfaces tested, and underline the role of this analytical approach in the development and control of finely tuned biomaterial surfaces.
Tuning cell adhesive properties via layer-by-layer assembly of chitosan and alginate
Silva, Joana M.; García, José R.; Reis, Rui L.; García, Andrés J.; Mano, João F.
2017-01-01
Understanding the mechanisms controlling cell-multilayer film interactions is crucial to the successful engineering of these coatings for biotechnological and biomedical applications. Herein, we present a strategy to tune the cell adhesive properties of multilayers based on marine polysaccharides with and without cross-linking and/or coating with extracellular matrix proteins. Chemical cross-linking of multilayers improved mechanical properties of the coatings but also elicited changes in surface chemistry that alter the adhesion of human umbilical vein endothelial cells. We evaluated a strategy to decouple the mechanical and chemical properties of these films, enabling the transition from cell-adhesive to cell-resistant multilayers. Addition of chitosan/alginate multilayers on top of cross-linked films decreased endothelial cell adhesion, spreading, and proliferation to similar levels as uncross-linked films. Our findings highlight the key role of surface chemistry in cell-multilayer film interactions, and these engineered nanocoatings represent a tunable model of cell adhesive and non-adhesive multilayered films. PMID:28126597
How Interactive Is the Interactive Whiteboard?
ERIC Educational Resources Information Center
Quashie, Valerie
2009-01-01
An interactive whiteboard (IWB) is simply a surface onto which a computer screen can be displayed, via a projector. It is touch-sensitive and lets one use a pen like a mouse, controlling the computer from the board itself. Everything that can be displayed on a computer can be displayed onto the whiteboard and, if the computer is linked to speakers…
Subramanian, Lalita; Polans, Arthur S.; Walker, Teresa M.; van Ginkel, Paul R.; Bhattacharya, Saswati; Dellaria, Julia M.; Crabb, John W.; Cox, Jos; Durussel, Isabelle; Palczewski, Krzysztof
2005-01-01
Apoptosis-linked gene-2 (ALG-2) encodes a 22 kDa Ca2+-binding protein of the penta EF-hand family that is required for programmed cell death in response to various apoptotic agents. Here, we demonstrate that ALG-2 mRNA and protein are down-regulated in human uveal melanoma cells compared to their progenitor cells, normal melanocytes. The down regulation of ALG-2 may provide melanoma cells with a selective advantage. ALG-2 and its putative target molecule, Alix/AIP1, are localized primarily in the cytoplasm of melanocytes and melanoma cells independent of the intracellular Ca2+ concentration or the activation of apoptosis. Cross-linking and analytical centrifugation studies support a single-species dimer conformation of ALG-2, also independent of Ca2+ concentration. However, binding of Ca2+ to both EF-1 and EF-3 is necessary for ALG-2 interaction with Alix/AIP1 as demonstrated using surface plasmon resonance spectroscopy. Mutations in EF-5 result in reduced target interaction without alteration in Ca2+ affinity. The addition of N-terminal ALG-2 peptides, residues 1–22 or residues 7–17, does not alter the interaction of ALG-2 or an N-terminal deletion mutant of ALG-2 with Alix/AIP1, as might be expected from a model derived from the crystal structure of ALG-2. Fluorescence studies of ALG-2 demonstrate that an increase in surface hydrophobicity is primarily due to Ca2+ binding to EF-3, while Ca2+ binding to EF-1 has little effect on surface exposure of hydrophobic residues. Together, these data indicate that gross surface hydrophobicity changes are insufficient for target recognition. PMID:15366927
Hammond, Stephanie; Wagenknecht-Wiesner, Alice; Veatch, Sarah L; Holowka, David; Baird, Barbara
2009-10-01
In mast cells, antigen-mediated cross-linking of IgE bound to its high-affinity surface receptor, FcepsilonRI, initiates a signaling cascade that culminates in degranulation and release of allergic mediators. Antigen-patterned surfaces, in which the antigen is deposited in micron-sized features on a silicon substrate, were used to examine the spatial relationship between clustered IgE-FcepsilonRI complexes and Lyn, the signal-initiating tyrosine kinase. RBL mast cells expressing wild-type Lyn-EGFP showed co-redistribution of this protein with clustered IgE receptors on antigen-patterned surfaces, whereas Lyn-EGFP containing an inhibitory point mutation in its SH2 domain did not significantly accumulate with the patterned antigen, and Lyn-EGFP with an inhibitory point mutation in its SH3 domain exhibited reduced interactions. Our results using antigen-patterned surfaces and quantitative cross-correlation image analysis reveal that both the SH2 and SH3 domains contribute to interactions between Lyn kinase and cross-linked IgE receptors in stimulated mast cells.
Interactions between groundwater and surface water: The state of the science
Sophocleous, M.
2002-01-01
The interactions between groundwater and surface water are complex. To understand these interactions in relation to climate, landform, geology, and biotic factors, a sound hydrogeoecological framework is needed. All these aspects are synthesized and exemplified in this overview. In addition, the mechanisms of interactions between groundwater and surface water (GW-SW) as they affect recharge-discharge processes are comprehensively outlined, and the ecological significance and the human impacts of such interactions are emphasized. Surface-water and groundwater ecosystems are viewed as linked components of a hydrologic continuum leading to related sustainability issues. This overview concludes with a discussion of research needs and challenges facting this evolving field. The biogeochemical processes within the upper few centimeters of sediments beneath nearly all surface-water bodies (hyporheic zone) have a profound effect on the chemistry of the water interchange, and here is where most of the recent research has been focusing. However, to advance conceptual and other modeling of GW-SW systems, a broader perspective of such interactions across and between surface-water bodies is needed, including multidimensional analyses, interface hydraulic characterization and spatial variability, site-to-region regionalization approaches, as well as cross-disciplinary collaborations.
Clustering of adhesion receptors following exposure of insect blood cells to foreign surfaces.
Nardi, James B; Zhuang, Shufei; Pilas, Barbara; Bee, Charles Mark; Kanost, Michael R
2005-05-01
Cell-mediated immune responses of insects involve interactions of two main classes of blood cells (hemocytes) known as granular cells and plasmatocytes. In response to a foreign surface, these hemocytes suddenly transform from circulating, non-adherent cells to cells that interact and adhere to each other and the foreign surface. This report presents evidence that during this adhesive transformation the extracellular matrix (ECM) proteins lacunin and a ligand for peanut agglutinin (PNA) lectin are released by granular cells and bind to surfaces of both granular cells and plasmatocytes. ECM protein co-localizes on cell surfaces with the adhesive receptors integrin and neuroglian, a member of the immunoglobulin superfamily. The ECM protein(s) secreted by granular cells are hypothesized to interact with adhesion receptors such as neuroglian and integrin by cross linking and clustering them on hemocyte surfaces. This clustering of receptors is known to enhance the adhesiveness (avidity) of interacting mammalian immune cells. The formation of ring-shaped clusters of these adhesion receptors on surfaces of insect immune cells represents an evolutionary antecedent of the mammalian immunological synapse.
Femtosecond UV-laser pulses to unveil protein-protein interactions in living cells.
Itri, Francesco; Monti, Daria M; Della Ventura, Bartolomeo; Vinciguerra, Roberto; Chino, Marco; Gesuele, Felice; Lombardi, Angelina; Velotta, Raffaele; Altucci, Carlo; Birolo, Leila; Piccoli, Renata; Arciello, Angela
2016-02-01
A hallmark to decipher bioprocesses is to characterize protein-protein interactions in living cells. To do this, the development of innovative methodologies, which do not alter proteins and their natural environment, is particularly needed. Here, we report a method (LUCK, Laser UV Cross-linKing) to in vivo cross-link proteins by UV-laser irradiation of living cells. Upon irradiation of HeLa cells under controlled conditions, cross-linked products of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) were detected, whose yield was found to be a linear function of the total irradiation energy. We demonstrated that stable dimers of GAPDH were formed through intersubunit cross-linking, as also observed when the pure protein was irradiated by UV-laser in vitro. We proposed a defined patch of aromatic residues located at the enzyme subunit interface as the cross-linking sites involved in dimer formation. Hence, by this technique, UV-laser is able to photofix protein surfaces that come in direct contact. Due to the ultra-short time scale of UV-laser-induced cross-linking, this technique could be extended to weld even transient protein interactions in their native context.
Ground water and surface water: the linkage tightens, but challenges remain
Winter, Thomas C.
2001-01-01
Hydrologists have recognized for more than a century that groundwater and surface water are closely linked, but for most of that timestudies of their interaction were carried out largely by single disci-plines. This is slowly changing, however, as the need for integratedstudies involving many disciplines is becoming more evident.
Itri, Francesco; Monti, Daria Maria; Chino, Marco; Vinciguerra, Roberto; Altucci, Carlo; Lombardi, Angela; Piccoli, Renata; Birolo, Leila; Arciello, Angela
2017-10-07
The identification of protein-protein interaction networks in living cells is becoming increasingly fundamental to elucidate main biological processes and to understand disease molecular bases on a system-wide level. We recently described a method (LUCK, Laser UV Cross-linKing) to cross-link interacting protein surfaces in living cells by UV laser irradiation. By using this innovative methodology, that does not require any protein modification or cell engineering, here we demonstrate that, upon UV laser irradiation of HeLa cells, a direct interaction between GAPDH and alpha-enolase was "frozen" by a cross-linking event. We validated the occurrence of this direct interaction by co-immunoprecipitation and Immuno-FRET analyses. This represents a proof of principle of the LUCK capability to reveal direct protein interactions in their physiological environment. Copyright © 2017 Elsevier Inc. All rights reserved.
Non-interacting surface solvation and dynamics in protein-protein interactions.
Visscher, Koen M; Kastritis, Panagiotis L; Bonvin, Alexandre M J J
2015-03-01
Protein-protein interactions control a plethora of cellular processes, including cell proliferation, differentiation, apoptosis, and signal transduction. Understanding how and why proteins interact will inevitably lead to novel structure-based drug design methods, as well as design of de novo binders with preferred interaction properties. At a structural and molecular level, interface and rim regions are not enough to fully account for the energetics of protein-protein binding, even for simple lock-and-key rigid binders. As we have recently shown, properties of the global surface might also play a role in protein-protein interactions. Here, we report on molecular dynamics simulations performed to understand solvent effects on protein-protein surfaces. We compare properties of the interface, rim, and non-interacting surface regions for five different complexes and their free components. Interface and rim residues become, as expected, less mobile upon complexation. However, non-interacting surface appears more flexible in the complex. Fluctuations of polar residues are always lower compared with charged ones, independent of the protein state. Further, stable water molecules are often observed around polar residues, in contrast to charged ones. Our analysis reveals that (a) upon complexation, the non-interacting surface can have a direct entropic compensation for the lower interface and rim entropy and (b) the mobility of the first hydration layer, which is linked to the stability of the protein-protein complex, is influenced by the local chemical properties of the surface. These findings corroborate previous hypotheses on the role of the hydration layer in shielding protein-protein complexes from unintended protein-protein interactions. © 2014 Wiley Periodicals, Inc.
Pal Sharma, C; Goldmann, Wolfgang H
2004-01-01
Actin-binding protein (ABP-280; filamin) is a phosphoprotein present in the periphery of the cytoplasm where it can cross-link actin filaments, associate with lipid membranes, and bind to membrane surface receptors. Given its function and localization in the cell, we decided to investigate the possibility of whether it serves as substrate for p56lck, a lymphocyte-specific member of the src family of protein tyrosine kinases associated with cell surface glycoproteins. The interaction of p56lck with membrane glycoproteins is important for cell development and functional activation. Here, we show that purified p56lck interacts and catalyzes in vitro kinase reactions. Tyrosine phosphorylation by p56lck is restricted to a single peptide of labeled ABP-280 shown by protease digest. The addition of phorbol ester to cells results in the inhibition of phosphorylation of ABP-280 by p56lck. These results show a decrease in phosphorylation suggesting conformationally induced regulation. Dynamic light scattering confirmed increased actin filament cross-linking due to phosphorylation of ABP-280 by p56lck.
[Studies on interaction of acid-treated nanotube titanic acid and amino acids].
Zhang, Huqin; Chen, Xuemei; Jin, Zhensheng; Liao, Guangxi; Wu, Xiaoming; Du, Jianqiang; Cao, Xiang
2010-06-01
Nanotube titanic acid (NTA) has distinct optical and electrical character, and has photocatalysis character. In accordance with these qualities, NTA was treated with acid so as to enhance its surface activity. Surface structures and surface groups of acid-treated NTA were characterized and analyzed by Transmission Electron Microscope (TEM) and Fourier Transform Infrared Spectrometry (FT-IR). The interaction between acid-treated NTA and amino acids was investigated. Analysis results showed that the lengths of acid-treated NTA became obviously shorter. The diameters of nanotube bundles did not change obviously with acid-treating. Meanwhile, the surface of acid-treated NTA was cross-linked with carboxyl or esterfunction. In addition, acid-treated NTA can catch amino acid residues easily, and then form close combination.
Controlling Hydrogel Mechanics via Bio-Inspired Polymer-Nanoparticle Bond Dynamics.
Li, Qiaochu; Barrett, Devin G; Messersmith, Phillip B; Holten-Andersen, Niels
2016-01-26
Interactions between polymer molecules and inorganic nanoparticles can play a dominant role in nanocomposite material mechanics, yet control of such interfacial interaction dynamics remains a significant challenge particularly in water. This study presents insights on how to engineer hydrogel material mechanics via nanoparticle interface-controlled cross-link dynamics. Inspired by the adhesive chemistry in mussel threads, we have incorporated iron oxide nanoparticles (Fe3O4 NPs) into a catechol-modified polymer network to obtain hydrogels cross-linked via reversible metal-coordination bonds at Fe3O4 NP surfaces. Unique material mechanics result from the supra-molecular cross-link structure dynamics in the gels; in contrast to the previously reported fluid-like dynamics of transient catechol-Fe(3+) cross-links, the catechol-Fe3O4 NP structures provide solid-like yet reversible hydrogel mechanics. The structurally controlled hierarchical mechanics presented here suggest how to develop hydrogels with remote-controlled self-healing dynamics.
Zhao, Chunsheng; Gao, Qiuxia; Roberts, Arthur G; Shaffer, Scott A; Doneanu, Catalin E; Xue, Song; Goodlett, David R; Nelson, Sidney D; Atkins, William M
2012-11-27
Cytochrome b(5) (cyt b(5)) is one of the key components in the microsomal cytochrome P450 monooxygenase system. Consensus has not been reached about the underlying mechanism of cyt b(5) modulation of CYP catalysis. Both cyt b(5) and apo b(5) are reported to stimulate the activity of several P450 isoforms. In this study, the surface interactions of both holo and apo b(5) with CYP3A4 were investigated and compared for the first time. Chemical cross-linking coupled with mass spectrometric analysis was used to identify the potential electrostatic interactions between the protein surfaces. Subsequently, the models of interaction of holo/apo b(5) with CYP3A4 were built using the identified interacting sites as constraints. Both cyt b(5) and apo b(5) were predicted to bind to the same groove on CYP3A4 with close contacts to the B-B' loop of CYP3A4, a substrate recognition site. Mutagenesis studies further confirmed that the interacting sites on CYP3A4 (Lys96, Lys127, and Lys421) are functionally important. Mutation of these residues reduced or abolished cyt b(5) binding affinity. The critical role of Arg446 on CYP3A4 in binding to cyt b(5) and/or cytochrome P450 reductase was also discovered. The results indicated that electrostatic interactions on the interface of the two proteins are functionally important. The results indicate that apo b(5) can dock with CYP3A4 in a manner analogous to that of holo b(5), so electron transfer from cyt b(5) is not required for its effects.
ERAP1 reduces accumulation of aberrant and disulfide-linked forms of HLA-B27 on the cell surface.
Tran, Tri M; Hong, Sohee; Edwan, Jehad H; Colbert, Robert A
2016-06-01
Endoplasmic reticulum (ER) aminopeptidase 1 (ERAP1) variants contribute to the risk of ankylosing spondylitis in HLA-B27 positive individuals, implying a disease-related interaction between these gene products. The aim of this study was to determine whether reduced ERAP1 expression would alter the cell surface expression of HLA-B27 and the formation of aberrant disulfide-linked forms that have been implicated in the pathogenesis of spondyloarthritis. ERAP1 expression was knocked down in monocytic U937 cells expressing HLA-B27 and endogenous HLA class I. The effect of ERAP1 knockdown on the accumulation HLA-B alleles (B18, B51, and B27) was assessed using immunoprecipitation, isoelectric focusing, and immunoblotting, as well as flow cytometry with antibodies specific for different forms of HLA-B27. Cell surface expression of aberrant disulfide-linked HLA-B27 dimers was assessed by immunoprecipitation and electrophoresis on non-reducing polyacrylamide gels. ERAP1 knockdown increased the accumulation of HLA-B27 on the cell surface including disulfide-linked dimers, but had no effect on levels of HLA-B18 or -B51. Antibodies with unique specificity for HLA-B27 confirmed increased cell surface expression of complexes shown previously to contain long peptides. IFN-γ treatment resulted in striking increases in the expression of disulfide-linked HLA-B27 heavy chains, even in cells with normal ERAP1 expression. Our results suggest that normal levels of ERAP1 reduce the accumulation of aberrant and disulfide-linked forms of HLA-B27 in monocytes, and thus help to maintain the integrity of cell surface HLA-B27 complexes. Published by Elsevier Ltd.
ERAP1 Reduces Accumulation of Aberrant and Disulfide-Linked Forms of HLA-B27 on the Cell Surface
Tran, Tri; Hong, Sohee; Edwan, Jehad; Colbert, Robert A.
2016-01-01
Objective Endoplasmic reticulum (ER) aminopeptidase 1 (ERAP1) variants contribute to the risk of ankylosing spondylitis in HLA-B27 positive individuals, implying a disease-related interaction between these gene products. The aim of this study was to determine whether reduced ERAP1 expression would alter the cell surface expression of HLA-B27 and the formation of aberrant disulfide-linked forms that have been implicated in the pathogenesis of spondyloarthritis. Methods ERAP1 expression was knocked down in monocytic U937 cells expressing HLA-B27 and endogenous HLA class I. The effect of ERAP1 knockdown on the accumulation HLA-B alleles (B18, B51, and B27) was assessed using immunoprecipitation, isoelectric focusing, and immunoblotting, as well as flow cytometry with antibodies specific for different forms of HLA-B27. Cell surface expression of aberrant disulfide-linked HLA-B27 dimers was assessed by immunoprecipitation and electrophoresis on non-reducing polyacrylamide gels. Results ERAP1 knockdown increased the accumulation of HLA-B27 on the cell surface including disulfide-linked dimers, but had no effect on levels of HLA-B18 or -B51. Antibodies with unique specificity for HLA-B27 confirmed increased cell surface expression of complexes shown previously to contain long peptides. IFN-γ treatment resulted in striking increases in the expression of disulfide-linked HLA-B27 heavy chains, even in cells with normal ERAP1 expression. Conclusions Our results suggest that normal levels of ERAP1 reduce the accumulation of aberrant and disulfide-linked forms of HLA-B27 in monocytes, and thus help to maintain the integrity of cell surface HLA-B27 complexes. PMID:27107845
NASA Astrophysics Data System (ADS)
You, Tingting; Lang, Xiufeng; Huang, Anping; Yin, Penggang
2018-01-01
A computational study on aromatic dithiol derivatives (HS-Ar-X-Ar-SH, X = O, S, Se, NH, CH2, Ndbnd N, CHdbnd CH, Ctbnd C) interacting with gold cluster(s) was presented to investigate the chemical enhancement mechanism related to surface-enhanced Raman spectroscopy (SERS) for molecular junctions. Density functional theory (DFT) were performed on derivatives molecules as well as their single-end-linked (SEL) or double-end-linked (DEL) complexes for geometric, spectra, electronic and excitation properties, leading to discussions on dominant factor during SERS process. The resulted enhancement factors of SEL and DEL complexes exhibited specific dependency on linking atom or functional group between two phenyls, which was in accordance with the variation of polarizabilities and molecule-cluster transition energy.
Formation of Heterogeneous Toroidal-Spiral Particles -- by Drop Sedimentation and Interaction
NASA Astrophysics Data System (ADS)
Liu, Ying; Nitsche, Ludwig; Gemeinhart, Richard; Sharma, Vishal; Szymusiak, Magdalena; Shen, Hao
2013-03-01
We describe self-assembly of polymeric particles, whereby competitive kinetics of viscous sedimentation, diffusion, and cross-linking yield a controllable toroidal-spiral (TS) structure. Precursor polymeric droplets are splashed through the surface of a less dense, miscible solution, after which viscous forces entrain the surrounding bulk solution into the sedimenting polymer drop to form TS channels. The intricate structure forms because low interfacial tension between the two miscible solutions is dominated by viscous forces. The biocompatible polymer, poly(ethylene glycol) diacrylate (PEG-DA), is used to demonstrate the solidification of the TS shapes at various configurational stages by UV-triggered cross-linking. The dimensions of the channels are controlled by Weber number during impact on the surface, and Reynolds number and viscosity ratio during subsequent sedimentation. Within the critical separation distance, interaction of multiple drops generates similar structure with more flexibility. Furthermore, the understanding of multiple drop interaction is essential for mass production of TS particles by using parallel and sequential arrays of drops. This work was supported by NSF CBET Grant CBET-1039531.
Using Amphiphilic Copolymers and Nanoparticles to Organize Charged Biopolymers
NASA Astrophysics Data System (ADS)
Park, Jung Hyun; McConnell, Marla; Sun, Yujie; Goldman, Yale; Composto, Russell
2009-03-01
Nanoparticles (NPs) on amphiphilic random copolymers control filamentous actin (F-actin) attachment. 3-aminopropyltriethoxysilane (APTES) coated silica NPs are selectively bonded to acrylic acid groups on the surface of a poly(styrene-r-acrylic acid) (PS-r-PAA) film. By changing the concentration of NPs in the medium, the surface density of positively charged anchors is tuned. Using total internal reflection fluorescence (TIRF) microscopy, immobilization of F-actin is observed via electrostatic interaction with NPs at high NP coverages. Below a critical coverage, F-actin is weakly attached and undergoes thermal fluctuations near the surface. Another method to tune F-actin attachment is to use APTES to cross-link and create positive charge in PAA films. Here, the surface coverage of F-actin decreases as APTES concentration increases. This observation is attributed to an increase in surface roughness and hydrophobicity that reduces the effective surface sites that attract F-actin. In addition, in-situ G-actin polymerization to F-actin is observed on both the NP and cross-linked PAA templates.
Lössl, Philip; Kölbel, Knut; Tänzler, Dirk; Nannemann, David; Ihling, Christian H.; Keller, Manuel V.; Schneider, Marian; Zaucke, Frank; Meiler, Jens; Sinz, Andrea
2014-01-01
We describe the detailed structural investigation of nidogen-1/laminin γ1 complexes using full-length nidogen-1 and a number of laminin γ1 variants. The interactions of nidogen-1 with laminin variants γ1 LEb2–4, γ1 LEb2–4 N836D, γ1 short arm, and γ1 short arm N836D were investigated by applying a combination of (photo-)chemical cross-linking, high-resolution mass spectrometry, and computational modeling. In addition, surface plasmon resonance and ELISA studies were used to determine kinetic constants of the nidogen-1/laminin γ1 interaction. Two complementary cross-linking strategies were pursued to analyze solution structures of laminin γ1 variants and nidogen-1. The majority of distance information was obtained with the homobifunctional amine-reactive cross-linker bis(sulfosuccinimidyl)glutarate. In a second approach, UV-induced cross-linking was performed after incorporation of the diazirine-containing unnatural amino acids photo-leucine and photo-methionine into laminin γ1 LEb2–4, laminin γ1 short arm, and nidogen-1. Our results indicate that Asn-836 within laminin γ1 LEb3 domain is not essential for complex formation. Cross-links between laminin γ1 short arm and nidogen-1 were found in all protein regions, evidencing several additional contact regions apart from the known interaction site. Computational modeling based on the cross-linking constraints indicates the existence of a conformational ensemble of both the individual proteins and the nidogen-1/laminin γ1 complex. This finding implies different modes of interaction resulting in several distinct protein-protein interfaces. PMID:25387007
Structural model of the p14/SF3b155 · branch duplex complex.
Schellenberg, Matthew J; Dul, Erin L; MacMillan, Andrew M
2011-01-01
Human p14 (SF3b14), a component of the spliceosomal U2 snRNP, interacts directly with the pre-mRNA branch adenosine within the context of the bulged duplex formed between the pre-mRNA branch region and U2 snRNA. This association occurs early in spliceosome assembly and persists within the fully assembled spliceosome. Analysis of the crystal structure of a complex containing p14 and a peptide derived from p14-associated SF3b155 combined with the results of cross-linking studies has suggested that the branch nucleotide interacts with a pocket on a non-canonical RNA binding surface formed by the complex. Here we report a structural model of the p14 · bulged duplex interaction based on a combination of X-ray crystallography of an adenine p14/SF3b155 peptide complex, biochemical comparison of a panel of disulfide cross-linked protein-RNA complexes, and small-angle X-ray scattering (SAXS). These studies reveal specific recognition of the branch adenosine within the p14 pocket and establish the orientation of the bulged duplex RNA bound on the protein surface. The intimate association of one surface of the bulged duplex with the p14/SF3b155 peptide complex described by this model buries the branch nucleotide at the interface and suggests that p14 · duplex interaction must be disrupted before the first step of splicing.
Structural model of the p14/SF3b155·branch duplex complex
Schellenberg, Matthew J.; Dul, Erin L.; MacMillan, Andrew M.
2011-01-01
Human p14 (SF3b14), a component of the spliceosomal U2 snRNP, interacts directly with the pre-mRNA branch adenosine within the context of the bulged duplex formed between the pre-mRNA branch region and U2 snRNA. This association occurs early in spliceosome assembly and persists within the fully assembled spliceosome. Analysis of the crystal structure of a complex containing p14 and a peptide derived from p14-associated SF3b155 combined with the results of cross-linking studies has suggested that the branch nucleotide interacts with a pocket on a non-canonical RNA binding surface formed by the complex. Here we report a structural model of the p14•bulged duplex interaction based on a combination of X-ray crystallography of an adenine p14/SF3b155 peptide complex, biochemical comparison of a panel of disulfide cross-linked protein–RNA complexes, and small-angle X-ray scattering (SAXS). These studies reveal specific recognition of the branch adenosine within the p14 pocket and establish the orientation of the bulged duplex RNA bound on the protein surface. The intimate association of one surface of the bulged duplex with the p14/SF3b155 peptide complex described by this model buries the branch nucleotide at the interface and suggests that p14•duplex interaction must be disrupted before the first step of splicing. PMID:21062891
Self-assembled organic radicals on Au(111) surfaces: a combined ToF-SIMS, STM, and ESR study.
Mannini, Matteo; Sorace, Lorenzo; Gorini, Lapo; Piras, Federica M; Caneschi, Andrea; Magnani, Agnese; Menichetti, Stefano; Gatteschi, Dante
2007-02-27
Electron spin resonance (ESR), time-of-flight secondary ion mass spectrometry (ToF-SIMS), and scanning tunneling microscopy (STM) have been used in parallel to characterize the deposition on gold surface of a series of nitronyl nitroxide radicals. These compounds have been specifically synthesized with methyl-thio linking groups suitable to interact with the gold surface to form self-assembled monolayers (SAMs), which can be considered relevant in the research for molecular-based spintronics devices, as suggested in recent papers. The degree of the expected ordering on the surface of these SAMs has been tuned by varying the chemical structure of synthesized radicals. ToF-SIMS has been used to support the evidence of the occurrence of the deposition process. STM has shown the different qualities of the obtained SAMs, with the degree of local order increasing as the degree of freedom of the molecules on the surface is decreased. Finally, ESR has confirmed that the deposition process does not affect the paramagnetic characteristics of radicals and that it affords a complete single-layered coverage of the surface. Further, the absence of angular dependence in the spectra indicates that the small regions of local ordering do not give rise to a long-range order and suggests a quite large mobility of the radical on the surface, probably due to the weak interaction with gold provided by the methyl-thio linking group.
Interdependency of Subsurface Carbon Distribution and Graphene–Catalyst Interaction
2014-01-01
The dynamics of the graphene–catalyst interaction during chemical vapor deposition are investigated using in situ, time- and depth-resolved X-ray photoelectron spectroscopy, and complementary grand canonical Monte Carlo simulations coupled to a tight-binding model. We thereby reveal the interdependency of the distribution of carbon close to the catalyst surface and the strength of the graphene–catalyst interaction. The strong interaction of epitaxial graphene with Ni(111) causes a depletion of dissolved carbon close to the catalyst surface, which prevents additional layer formation leading to a self-limiting graphene growth behavior for low exposure pressures (10–6–10–3 mbar). A further hydrocarbon pressure increase (to ∼10–1 mbar) leads to weakening of the graphene–Ni(111) interaction accompanied by additional graphene layer formation, mediated by an increased concentration of near-surface dissolved carbon. We show that growth of more weakly adhered, rotated graphene on Ni(111) is linked to an initially higher level of near-surface carbon compared to the case of epitaxial graphene growth. The key implications of these results for graphene growth control and their relevance to carbon nanotube growth are highlighted in the context of existing literature. PMID:25188018
Mummadisetti, Manjula P.; Frankel, Laurie K.; Bellamy, Henry D.; ...
2014-10-27
We used protein cross-linking and radiolytic footprinting coupled with high-resolution mass spectrometry to examine the structure of PsbP and PsbQ when they are bound to Photosystem II, in this paper. In its bound state, the N-terminal 15-amino-acid residue domain of PsbP, which is unresolved in current crystal structures, interacts with domains in the C terminus of the protein. These interactions may serve to stabilize the structure of the N terminus and may facilitate PsbP binding and function. These interactions place strong structural constraints on the organization of PsbP when associated with the Photosystem II complex. Additionally, amino acid residues inmore » the structurally unresolved loop 3A domain of PsbP ( 90K– 107V), 93Y and 96K, are in close proximity (≤11.4 Å) to the N-terminal 1E residue of PsbQ. Our findings are the first, to our knowledge, to identify a putative region of interaction between these two components. Cross-linked domains within PsbQ were also identified, indicating that two PsbQ molecules can interact in higher plants in a manner similar to that observed by Liu et al. [(2014) Proc Natl Acad Sci 111(12):4638–4643] in cyanobacterial Photosystem II. Furthermore, this interaction is consistent with either intra-Photosystem II dimer or inter-Photosystem II dimer models in higher plants. Finally, OH• produced by synchrotron radiolysis of water was used to oxidatively modify surface residues on PsbP and PsbQ. Finally, domains on the surface of both protein subunits were resistant to modification, indicating that they were shielded from water and appear to define buried regions that are in contact with other Photosystem II components.« less
Rigid body formulation in a finite element context with contact interaction
NASA Astrophysics Data System (ADS)
Refachinho de Campos, Paulo R.; Gay Neto, Alfredo
2018-03-01
The present work proposes a formulation to employ rigid bodies together with flexible bodies in the context of a nonlinear finite element solver, with contact interactions. Inertial contributions due to distribution of mass of a rigid body are fully developed, considering a general pole position associated with a single node, representing a rigid body element. Additionally, a mechanical constraint is proposed to connect a rigid region composed by several nodes, which is useful for linking rigid/flexible bodies in a finite element environment. Rodrigues rotation parameters are used to describe finite rotations, by an updated Lagrangian description. In addition, the contact formulation entitled master-surface to master-surface is employed in conjunction with the rigid body element and flexible bodies, aiming to consider their interaction in a rigid-flexible multibody environment. New surface parameterizations are presented to establish contact pairs, permitting pointwise interaction in a frictional scenario. Numerical examples are provided to show robustness and applicability of the methods.
An internal thioester in a pathogen surface protein mediates covalent host binding
Walden, Miriam; Edwards, John M; Dziewulska, Aleksandra M; Bergmann, Rene; Saalbach, Gerhard; Kan, Su-Yin; Miller, Ona K; Weckener, Miriam; Jackson, Rosemary J; Shirran, Sally L; Botting, Catherine H; Florence, Gordon J; Rohde, Manfred; Banfield, Mark J; Schwarz-Linek, Ulrich
2015-01-01
To cause disease and persist in a host, pathogenic and commensal microbes must adhere to tissues. Colonization and infection depend on specific molecular interactions at the host-microbe interface that involve microbial surface proteins, or adhesins. To date, adhesins are only known to bind to host receptors non-covalently. Here we show that the streptococcal surface protein SfbI mediates covalent interaction with the host protein fibrinogen using an unusual internal thioester bond as a ‘chemical harpoon’. This cross-linking reaction allows bacterial attachment to fibrin and SfbI binding to human cells in a model of inflammation. Thioester-containing domains are unexpectedly prevalent in Gram-positive bacteria, including many clinically relevant pathogens. Our findings support bacterial-encoded covalent binding as a new molecular principle in host-microbe interactions. This represents an as yet unexploited target to treat bacterial infection and may also offer novel opportunities for engineering beneficial interactions. DOI: http://dx.doi.org/10.7554/eLife.06638.001 PMID:26032562
Guillemot, F; Porté, M C; Labrugère, C; Baquey, Ch
2002-11-01
Because of the Ti(3+) defects responsibility for dissociative adsorption of water onto TiO(2) surfaces and due to the hydroxyls influence on the biological behavior of titanium, controlling the Ti(3+) surface defects density by means of low-temperature vacuum annealing is proposed to improve the bone/implant interactions. Experiments have been carried out on Ti-6Al-4V alloys exhibiting a porous surface generated primarily by chemical treatment. XPS investigations have shown that low-temperature vacuum annealing can create a controlled number of Ti(3+) defects (up to 21% Ti(3+)/Ti(4+) at 573 K). High Ti(3+) defect concentration is linked to surface porosity. Such surfaces, exhibiting high hydrophilicity and microporosity, would confer to titanium biomaterials a great ability to interact with surrounding proteins and cells and hence would favor the bone anchorage of as-treated implants.
Leishmania cell surface prohibitin: role in host-parasite interaction.
Jain, Rohit; Ghoshal, Angana; Mandal, Chitra; Shaha, Chandrima
2010-04-01
Proteins selectively upregulated in infective parasitic forms could be critical for disease pathogenesis. A mammalian prohibitin orthologue is upregulated in infective metacyclic promastigotes of Leishmania donovani, a parasite that causes visceral leishmaniasis. Leishmania donovani prohibitin shares 41% similarity with mammalian prohibitin and 95-100% within the genus. Prohibitin is concentrated at the surface of the flagellar and the aflagellar pole, the aflagellar pole being a region through which host-parasite interactions occur. Prohibitin is attached to the membrane through a GPI anchor. Overexpression of wild-type prohibitin increases protein surface density resulting in parasites with higher infectivity. However, parasites overexpressing a mutant prohibitin with an amino acid substitution at the GPI anchor site to prevent surface expression through GPI-link show lesser surface expression and lower infective abilities. Furthermore, the presence of anti-prohibitin antibodies during macrophage-Leishmania interaction in vitro reduces infection. The cognate binding partner for Leishmania prohibitin on the host cell appears to be macrophage surface HSP70, siRNA mediated downregulation of which abrogates the capability of the macrophage to bind to parasites. Leishmania prohibitin is able to generate a strong humoral response in visceral leishmaniasis patients. The above observations suggest that prohibitin plays an important role in events leading to Leishmania-host interaction.
GPS-Squitter capacity analysis
NASA Astrophysics Data System (ADS)
Orlando, Vincent A.; Harman, William H.
1994-05-01
GPS-Squitter is a system concept that merges the capabilities of Automatic Dependent Surveillance (ADS) and the Mode S beacon radar. The result is an integrated concept for seamless surveillance and data link that permits equipped aircraft to participate in ADS and/or beacon ground environments. This concept offers many possibilities for transition from a beacon to an ADS-based environment. This report provides the details of the techniques used to estimate GPS-Squitter surveillance and data link capacity. Surveillance capacity of airborne aircraft is calculated for the omni and six-sector ground stations. Next, the capacity of GPS-Squitter for surface traffic is estimated. The interaction between airborne and surface operations is addressed to show the independence of these systems. Air ground data link capacity for GPS-Squitter is estimated, together with an estimate of the use of the Mode S link to support other ground surveillance and data link activities as well as TCAS operation. The analysis indicates the low transponder occupancy resulting from the total effect of these activities. Low occupancy is a key requirement in avoiding interference with the operation of the current ATCRBS and future Mode S interrogators.
Probing the surface of a sweet protein: NMR study of MNEI with a paramagnetic probe
Niccolai, Neri; Spadaccini, Roberta; Scarselli, Maria; Bernini, Andrea; Crescenzi, Orlando; Spiga, Ottavia; Ciutti, Arianna; Di Maro, Daniela; Bracci, Luisa; Dalvit, Claudio; Temussi, Piero A.
2001-01-01
The design of safe sweeteners is very important for people who are affected by diabetes, hyperlipemia, and caries and other diseases that are linked to the consumption of sugars. Sweet proteins, which are found in several tropical plants, are many times sweeter than sucrose on a molar basis. A good understanding of their structure–function relationship can complement traditional SAR studies on small molecular weight sweeteners and thus help in the design of safe sweeteners. However, there is virtually no sequence homology and very little structural similarity among known sweet proteins. Studies on mutants of monellin, the best characterized of sweet proteins, proved not decisive in the localization of the main interaction points of monellin with its receptor. Accordingly, we resorted to an unbiased approach to restrict the search of likely areas of interaction on the surface of a typical sweet protein. It has been recently shown that an accurate survey of the surface of proteins by appropriate paramagnetic probes may locate interaction points on protein surface. Here we report the survey of the surface of MNEI, a single chain monellin, by means of a paramagnetic probe, and a direct assessment of bound water based on an application of ePHOGSY, an NMR experiment that is ideally suited to detect interactions of small ligands to a protein. Detailed surface mapping reveals the presence, on the surface of MNEI, of interaction points that include residues previously predicted by ELISA tests and by mutagenesis. PMID:11468346
Hydrological modeling of upper Indus Basin and assessment of deltaic ecology
USDA-ARS?s Scientific Manuscript database
Managing water resources is mostly required at watershed scale where the complex hydrology processes and interactions linking land surface, climatic factors and human activities can be studied. Geographical Information System based watershed model; Soil and Water Assessment Tool (SWAT) is applied f...
Chemistry and temperature-assisted dehydrogenation of C60H30 molecules on TiO2(110) surfaces
NASA Astrophysics Data System (ADS)
Sánchez-Sánchez, Carlos; Martínez, José Ignacio; Lanzilotto, Valeria; Biddau, Giulio; Gómez-Lor, Berta; Pérez, Rubén; Floreano, Luca; López, María Francisca; Martín-Gago, José Ángel
2013-10-01
The thermal induced on-surface chemistry of large polycyclic aromatic hydrocarbons (PAHs) deposited on dielectric substrates is very rich and complex. We evidence temperature-assisted (cyclo)dehydrogenation reactions for C60H30 molecules and the subsequent bottom-up formation of assembled nanostructures, such as nanodomes, on the TiO2(110) surface. To this aim we have deposited, under ultra-high vacuum, a submonolayer coverage of C60H30 and studied, by a combination of experimental techniques (STM, XPS and NEXAFS) and theoretical methods, the different chemical on-surface interaction stages induced by the increasing temperature. We show that room temperature adsorbed molecules exhibit a weak interaction and freely diffuse on the surface, as previously reported for other aromatics. Nevertheless, a slight annealing induces a transition from this (meta)stable configuration into chemisorbed molecules. This adsorbate-surface interaction deforms the C60H30 molecular structure and quenches surface diffusion. Higher annealing temperatures lead to partial dehydrogenation, in which the molecule loses some of the hydrogen atoms and LUMO levels spread in the gap inducing a net total energy gain. Further annealing, up to around 750 K, leads to complete dehydrogenation. At these temperatures the fully dehydrogenated molecules link between them in a bottom-up coupling, forming nanodomes or fullerene-like monodisperse species readily on the dielectric surface. This work opens the door to the use of on-surface chemistry to generate new bottom-up tailored structures directly on high-K dielectric surfaces.The thermal induced on-surface chemistry of large polycyclic aromatic hydrocarbons (PAHs) deposited on dielectric substrates is very rich and complex. We evidence temperature-assisted (cyclo)dehydrogenation reactions for C60H30 molecules and the subsequent bottom-up formation of assembled nanostructures, such as nanodomes, on the TiO2(110) surface. To this aim we have deposited, under ultra-high vacuum, a submonolayer coverage of C60H30 and studied, by a combination of experimental techniques (STM, XPS and NEXAFS) and theoretical methods, the different chemical on-surface interaction stages induced by the increasing temperature. We show that room temperature adsorbed molecules exhibit a weak interaction and freely diffuse on the surface, as previously reported for other aromatics. Nevertheless, a slight annealing induces a transition from this (meta)stable configuration into chemisorbed molecules. This adsorbate-surface interaction deforms the C60H30 molecular structure and quenches surface diffusion. Higher annealing temperatures lead to partial dehydrogenation, in which the molecule loses some of the hydrogen atoms and LUMO levels spread in the gap inducing a net total energy gain. Further annealing, up to around 750 K, leads to complete dehydrogenation. At these temperatures the fully dehydrogenated molecules link between them in a bottom-up coupling, forming nanodomes or fullerene-like monodisperse species readily on the dielectric surface. This work opens the door to the use of on-surface chemistry to generate new bottom-up tailored structures directly on high-K dielectric surfaces. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr03706a
ALS-linked mutant SOD1 proteins promote Aβ aggregates in ALS through direct interaction with Aβ.
Jang, Ja-Young; Cho, Hyungmin; Park, Hye-Yoon; Rhim, Hyangshuk; Kang, Seongman
2017-11-04
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by progressive degeneration of motor neurons. Aggregation of ALS-linked mutant Cu/Zn superoxide dismutase (SOD1) is a hallmark of a subset of familial ALS (fALS). Recently, intracellular amyloid-β (Aβ) is detected in motor neurons of both sporadic and familial ALS. We have previously shown that intracellular Aβ specifically interacts with G93A, an ALS-linked SOD1 mutant. However, little is known about the pathological and biological effect of this interaction in neurons. In this study, we have demonstrated that the Aβ-binding region is exposed on the SOD1 surface through the conformational changes due to misfolding of SOD1. Interestingly, we found that the intracellular aggregation of Aβ is enhanced through the direct interaction of Aβ with the Aβ-binding region exposed to misfolded SOD1. Ultimately, increased Aβ aggregation by this interaction promotes neuronal cell death. Consistent with this result, Aβ aggregates was three-fold higher in the brains of G93A transgenic mice than those of non Tg. Our study provides the first direct evidence that Aβ, an AD-linked factor, is associated to the pathogenesis of ALS and provides molecular clues to understand common aggregation mechanisms in the pathogenesis of neurodegenerative diseases. Furthermore, it will provide new insights into the development of therapeutic approaches for ALS. Copyright © 2017 Elsevier Inc. All rights reserved.
Novel graphene-oxide-coated SPR interfaces for biosensing applications
NASA Astrophysics Data System (ADS)
Volkov, V. S.; Stebunov, Yu. V.; Yakubovsky, D. I.; Fedyanin, D. Yu.; Arsenin, A. V.
2017-09-01
Carbon allotropes-based nanomaterials possess unique physical and chemical properties including high surface area, the possibility of pi-stacking interaction with a wide range of biological objects, rich availability of oxygen-containing functional groups in graphene-oxide (GO), and excellent optical properties, which make them an ideal candidate for use as a universal immobilization platform in SPR biosensing. Here, we propose a new surface plasmon resonance (SPR) biosensing interface for sensitive and selective detection of small molecules. This interface is based on the GO linking layers deposited on the gold/copper surface of SPR sensor chips. To estimate the binding capacity of GO layers, modification of carboxyl groups to N-Hydroxysuccinimide esters was performed in the flow cell of SPR instrument. For comparison, the same procedure was applied to commercial sensor chips based on linking layers of carboxymethylated dextran.
NASA Astrophysics Data System (ADS)
Kamakoti, Vikramshankar; Shanmugam, Nandhinee Radha; Tanak, Ambalika Sanjeev; Jagannath, Badrinath; Prasad, Shalini
2018-04-01
Molybdenum (Mo) has been investigated for implementation as an electrode material for affinity based biosensing towards devloping flexibe electronic biosensors. Treatment of the native oxide of molybdenum was investigated through two surface treatment strategies namely thiol and carbodiimide crosslinking methods. The binding interaction between cross-linker molecules and Mo electrode surface has been characterized using Fourier Transform Infrared Spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and optical microscopy. The efficacy of treatment of Mo with its native oxide using carbodiimide cross linking methodology was established. The carbodiimide cross-linking chemistry was found to possess better surface coverage and binding affinity with Molybdenum electrode surface when compared to thiol cross-linking chemistry.Electrochemical characterization of Mo electrode using Electrochemical Impedance Spectroscopy (EIS) and Cyclic Voltametry (CV) techniques was performed to evaluate the effect of ionic properties of solution buffer on the Mo electrode's performance. Affinity based biosensing of C-Reactive Protein (CRP) has been demonstrated on a flexible nanoporous polymeric substrate with detection threshold of 100 pg/ml in synthetic urine buffer medium. The biosensor has been evaluated to be developed as a dipstick based point of care device for detection of biomarkers in urine.
NASA Astrophysics Data System (ADS)
Drobny, Jon; Curreli, Davide; Ruzic, David; Lasa, Ane; Green, David; Canik, John; Younkin, Tim; Blondel, Sophie; Wirth, Brian
2017-10-01
Surface roughness greatly impacts material erosion, and thus plays an important role in Plasma-Surface Interactions. Developing strategies for efficiently introducing rough surfaces into ion-solid interaction codes will be an important step towards whole-device modeling of plasma devices and future fusion reactors such as ITER. Fractal TRIDYN (F-TRIDYN) is an upgraded version of the Monte Carlo, BCA program TRIDYN developed for this purpose that includes an explicit fractal model of surface roughness and extended input and output options for file-based code coupling. Code coupling with both plasma and material codes has been achieved and allows for multi-scale, whole-device modeling of plasma experiments. These code coupling results will be presented. F-TRIDYN has been further upgraded with an alternative, statistical model of surface roughness. The statistical model is significantly faster than and compares favorably to the fractal model. Additionally, the statistical model compares well to alternative computational surface roughness models and experiments. Theoretical links between the fractal and statistical models are made, and further connections to experimental measurements of surface roughness are explored. This work was supported by the PSI-SciDAC Project funded by the U.S. Department of Energy through contract DOE-DE-SC0008658.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shenkarev, Zakhar O.; Panteleev, Pavel V.; Balandin, Sergey V.
Highlights: Black-Right-Pointing-Pointer Aurelin was overexpressed in Escherichia coli, and its spatial structure was studied by NMR. Black-Right-Pointing-Pointer Aurelin compact structure encloses helical regions cross-linked by three disulfide bonds. Black-Right-Pointing-Pointer Aurelin shows structural homology to the BgK and ShK toxins of sea anemones. Black-Right-Pointing-Pointer Aurelin binds to the anionic lipid vesicles, but does not interact with zwitterionic ones. Black-Right-Pointing-Pointer Aurelin binds to DPC micelle surface with moderate affinity via two helical regions. -- Abstract: Aurelin is a 40-residue cationic antimicrobial peptide isolated from the mezoglea of a scyphoid jellyfish Aurelia aurita. Aurelin and its {sup 15}N-labeled analogue were overexpressed in Escherichiamore » coli and purified. Antimicrobial activity of the recombinant peptide was examined, and its spatial structure was studied by NMR spectroscopy. Aurelin represents a compact globule, enclosing one 3{sub 10}-helix and two {alpha}-helical regions cross-linked by three disulfide bonds. The peptide binds to anionic lipid (POPC/DOPG, 3:1) vesicles even at physiological salt concentration, it does not interact with zwitterionic (POPC) vesicles and interacts with the DPC micelle surface with moderate affinity via two {alpha}-helical regions. Although aurelin shows structural homology to the BgK and ShK toxins of sea anemones, its surface does not possess the 'functional dyad' required for the high-affinity interaction with the K{sup +}-channels. The obtained data permit to correlate the modest antibacterial properties and membrane activity of aurelin.« less
A novel bio-orthogonal cross-linker for improved protein/protein interaction analysis.
Nury, Catherine; Redeker, Virginie; Dautrey, Sébastien; Romieu, Anthony; van der Rest, Guillaume; Renard, Pierre-Yves; Melki, Ronald; Chamot-Rooke, Julia
2015-02-03
The variety of protein cross-linkers developed in recent years illustrates the current requirement for efficient reagents optimized for mass spectrometry (MS) analysis. To date, the most widely used strategy relies on commercial cross-linkers that bear an isotopically labeled tag and N-hydroxysuccinimid-ester (NHS-ester) moieties. Moreover, an enrichment step using liquid chromatography is usually performed after enzymatic digestion of the cross-linked proteins. Unfortunately, this approach suffers from several limitations. First, it requires large amounts of proteins. Second, NHS-ester cross-linkers are poorly efficient because of their fast hydrolysis in water. Finally, data analysis is complicated because of uneven fragmentation of complex isotopic cross-linked peptide mixtures. We therefore synthesized a new type of trifunctional cross-linker to overrule these limitations. This reagent, named NNP9, comprises a rigid core and bears two activated carbamate moieties and an azido group. NNP9 was used to establish intra- and intermolecular cross-links within creatine kinase, then to map the interaction surfaces between α-Synuclein (α-Syn), the aggregation of which leads to Parkinson's disease, and the molecular chaperone Hsc70. We show that NNP9 cross-linking efficiency is significantly higher than that of NHS-ester commercial cross-linkers. The number of cross-linked peptides identified was increased, and a high quality of MS/MS spectra leading to high sequence coverage was observed. Our data demonstrate the potential of NNP9 for an efficient and straightforward characterization of protein-protein interfaces and illustrate the power of using different cross-linkers to map thoroughly the surface interfaces within protein complexes.
Tan, Dan; Li, Qiang; Zhang, Mei-Jun; Liu, Chao; Ma, Chengying; Zhang, Pan; Ding, Yue-He; Fan, Sheng-Bo; Tao, Li; Yang, Bing; Li, Xiangke; Ma, Shoucai; Liu, Junjie; Feng, Boya; Liu, Xiaohui; Wang, Hong-Wei; He, Si-Min; Gao, Ning; Ye, Keqiong; Dong, Meng-Qiu; Lei, Xiaoguang
2016-01-01
To improve chemical cross-linking of proteins coupled with mass spectrometry (CXMS), we developed a lysine-targeted enrichable cross-linker containing a biotin tag for affinity purification, a chemical cleavage site to separate cross-linked peptides away from biotin after enrichment, and a spacer arm that can be labeled with stable isotopes for quantitation. By locating the flexible proteins on the surface of 70S ribosome, we show that this trifunctional cross-linker is effective at attaining structural information not easily attainable by crystallography and electron microscopy. From a crude Rrp46 immunoprecipitate, it helped identify two direct binding partners of Rrp46 and 15 protein-protein interactions (PPIs) among the co-immunoprecipitated exosome subunits. Applying it to E. coli and C. elegans lysates, we identified 3130 and 893 inter-linked lysine pairs, representing 677 and 121 PPIs. Using a quantitative CXMS workflow we demonstrate that it can reveal changes in the reactivity of lysine residues due to protein-nucleic acid interaction. DOI: http://dx.doi.org/10.7554/eLife.12509.001 PMID:26952210
Coverage Dependent Assembly of Anthraquinone on Au(111)
NASA Astrophysics Data System (ADS)
Conrad, Brad; Deloach, Andrew; Einstein, Theodore; Dougherty, Daniel
A study of adsorbate-adsorbate and surface state mediated interactions of anthraquinone (AnQ) on Au(111) is presented. We utilize scanning tunneling microscopy (STM) to characterize the coverage dependence of AnQ structure formation. Ordered structures are observed up to a single monolayer (ML) and are found to be strongly dependent on molecular surface density. While the complete ML forms a well-ordered close-packed layer, for a narrow range of sub-ML coverages irregular close-packed islands are observed to coexist with a disordered pore network linking neighboring islands. This network displays a characteristic pore size and at lower coverages, the soliton walls of the herringbone reconstruction are shown to promote formation of distinct pore nanostructures. We will discuss these nanostructure formations in the context of surface mediated and more direct adsorbate interactions.
NASA Astrophysics Data System (ADS)
Ozmaian, Masoumeh; Jasnow, David; Eskandari Nasrabad, Afshin; Zilman, Anton; Coalson, Rob D.
2018-01-01
The effect of cohesive contacts or, equivalently, dynamical cross-linking on the equilibrium morphology of a polymer brush infiltrated by nanoparticles that are attracted to the polymer strands is studied for plane-grafted brushes using coarse-grained molecular dynamics and approximate statistical mechanical models. In particular, the Alexander-de Gennes (AdG) and Strong Stretching Theory (SST) mean-field theory (MFT) models are considered. It is found that for values of the MFT cross-link strength interaction parameter beyond a certain threshold, both AdG and SST models predict that the polymer brush will be in a compact state of nearly uniform density packed next to the grafting surface over a wide range of solution phase nanoparticle concentrations. Coarse grained molecular dynamics simulations confirm this prediction, for both small nanoparticles (nanoparticle volume = monomer volume) and large nanoparticles (nanoparticle volume = 27 × monomer volume). Simulation results for these cross-linked systems are compared with analogous results for systems with no cross-linking. At the same solution phase nanoparticle concentration, strong cross-linking results in additional compression of the brush relative to the non-crosslinked analog and, at all but the lowest concentrations, to a lesser degree of infiltration by nanoparticles. For large nanoparticles, the monomer density profiles show clear oscillations moving outwards from the grafting surface, corresponding to a degree of layering of the absorbed nanoparticles in the brush as they pack against the grafting surface.
DNA Detection by Flow Cytometry using PNA-Modified Metal-Organic Framework Particles.
Mejia-Ariza, Raquel; Rosselli, Jessica; Breukers, Christian; Manicardi, Alex; Terstappen, Leon W M M; Corradini, Roberto; Huskens, Jurriaan
2017-03-23
A DNA-sensing platform is developed by exploiting the easy surface functionalization of metal-organic framework (MOF) particles and their highly parallelized fluorescence detection by flow cytometry. Two strategies were employed to functionalize the surface of MIL-88A, using either covalent or non-covalent interactions, resulting in alkyne-modified and biotin-modified MIL-88A, respectively. Covalent surface coupling of an azide-dye and the alkyne-MIL-88A was achieved by means of a click reaction. Non-covalent streptavidin-biotin interactions were employed to link biotin-PNA to biotin-MIL-88A particles mediated by streptavidin. Characterization by confocal imaging and flow cytometry demonstrated that DNA can be bound selectively to the MOF surface. Flow cytometry provided quantitative data of the interaction with DNA. Making use of the large numbers of particles that can be simultaneously processed by flow cytometry, this MOF platform was able to discriminate between fully complementary, single-base mismatched, and randomized DNA targets. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
Gregoire, S.; Xiao, J.; Silva, B. B.; Gonzalez, I.; Agidi, P. S.; Klein, M. I.; Ambatipudi, K. S.; Rosalen, P. L.; Bauserman, R.; Waugh, R. E.; Koo, H.
2011-01-01
Candida albicans and mutans streptococci are frequently detected in dental plaque biofilms from toddlers afflicted with early childhood caries. Glucosyltransferases (Gtfs) secreted by Streptococcus mutans bind to saliva-coated apatite (sHA) and to bacterial surfaces, synthesizing exopolymers in situ, which promote cell clustering and adherence to tooth enamel. We investigated the potential role Gtfs may play in mediating the interactions between C. albicans SC5314 and S. mutans UA159, both with each other and with the sHA surface. GtfB adhered effectively to the C. albicans yeast cell surface in an enzymatically active form, as determined by scintillation spectroscopy and fluorescence imaging. The glucans formed on the yeast cell surface were more susceptible to dextranase than those synthesized in solution or on sHA and bacterial cell surfaces (P < 0.05), indicating an elevated α-1,6-linked glucose content. Fluorescence imaging revealed that larger numbers of S. mutans cells bound to C. albicans cells with glucans present on their surface than to yeast cells without surface glucans (uncoated). The glucans formed in situ also enhanced C. albicans interactions with sHA, as determined by a novel single-cell micromechanical method. Furthermore, the presence of glucan-coated yeast cells significantly increased the accumulation of S. mutans on the sHA surface (versus S. mutans incubated alone or mixed with uncoated C. albicans; P < 0.05). These data reveal a novel cross-kingdom interaction that is mediated by bacterial GtfB, which readily attaches to the yeast cell surface. Surface-bound GtfB promotes the formation of a glucan-rich matrix in situ and may enhance the accumulation of S. mutans on the tooth enamel surface, thereby modulating the development of virulent biofilms. PMID:21803906
Zhuang, Shufei; Kelo, Lisha; Nardi, James B; Kanost, Michael R
2007-01-01
Neuroglian, a member of the L1 family of cell adhesion molecules (L1-CAMs), is expressed on surfaces of granular cells and a subset of large plasmatocytes of Manduca sexta that act as foci for hemocyte aggregation during the innate immune response. Neuroglian expressed on surfaces of transfected Sf9 cells induced their homophilic aggregation, with the aggregation being abolished in the presence of recombinant immunoglobulin (Ig) domains of neuroglian. Neuroglian and its Ig domains also can interact with hemocyte-specific integrin (HS integrin) as demonstrated with an enzyme-linked immunoassay and a surface plasmon resonance (SPR) assay. Neuroglian double-stranded (ds) RNA not only depresses expression of neuroglian in hemocytes but also depresses the cell-mediated encapsulation response of these hemocytes to foreign surfaces. After injection of a monoclonal antibody (MAb 3B11) into M. sexta larvae that recognizes the Ig domains of neuroglian, the cell-mediated encapsulation response of hemocytes was likewise inhibited. The Ig domains of neuroglian are involved in both homophilic and heterophilic interactions, and subsets of these six different Ig domains may affect different functions of neuroglian.
Structure and signalling functions of C3 receptors on human B cells.
Frade, R
1990-03-01
CR1 (C3b receptor) and CR2 (C3d/EBV receptor) are two C3 receptors expressed on B lymphocytes. CR1 and CR2 have structural similarities and their cross-linking at the B cell surface by antibodies or specific ligands in multimeric forms induce B cell activation. However, activation of human B cells through cell surface interactions or by intracellular protein kinase C activators leads to phosphorylation of CR2 but not CR1. CR2 is phosphorylated on serine and tyrosine residues. Analysis of post-membrane events associated with CR2 revealed intracellular interactions of CR2 with p53, a plasma membrane anti-oncogene-encoded phosphoprotein, and with p120, a nuclear phosphoribonucleoprotein. These intracellular interactions probably represent important steps in the signalling functions of CR2.
NASA Astrophysics Data System (ADS)
Blank, K.; Mai, T.; Gilbert, I.; Schiffmann, S.; Rankl, J.; Zivin, R.; Tackney, C.; Nicolaus, T.; Spinnler, K.; Oesterhelt, F.; Benoit, M.; Clausen-Schaumann, H.; Gaub, H. E.
2003-09-01
A parallel assay for the quantification of single-molecule binding forces was developed based on differential unbinding force measurements where ligand-receptor interactions are compared with the unzipping forces of DNA hybrids. Using the DNA zippers as molecular force sensors, the efficient discrimination between specific and nonspecific interactions was demonstrated for small molecules binding to specific receptors, as well as for protein-protein interactions on protein arrays. Finally, an antibody sandwich assay with different capture antibodies on one chip surface and with the detection antibodies linked to a congruent surface via the DNA zippers was used to capture and quantify a recombinant hepatitis C antigen from solution. In this case, the DNA zippers enable not only discrimination between specific and nonspecific binding, but also allow for the local application of detection antibodies, thereby eliminating false-positive results caused by cross-reactive antibodies and nonspecific binding.
Pereira, Caroline S; Silveira, Rodrigo L; Dupree, Paul; Skaf, Munir S
2017-04-10
Lignocellulosic biomass is mainly constituted by cellulose, hemicellulose, and lignin and represents an important resource for the sustainable production of biofuels and green chemistry materials. Xylans, a common hemicellulose, interact with cellulose and often exhibit various side chain substitutions including acetate, (4-O-methyl) glucuronic acid, and arabinose. Recent studies have shown that the distribution of xylan substitutions is not random, but follows patterns that are dependent on the plant taxonomic family and cell wall type. Here, we use molecular dynamics simulations to investigate the role of substitutions on xylan interactions with the hydrophilic cellulose face, using the recently discovered xylan decoration pattern of the conifer gymnosperms as a model. The results show that α-1,2-linked substitutions stabilize the binding of single xylan chains independently of the nature of the substitution and that Ca 2+ ions can mediate cross-links between glucuronic acid substitutions of two neighboring xylan chains, thus stabilizing binding. At high temperature, xylans move from the hydrophilic to the hydrophobic cellulose surface and are also stabilized by Ca 2+ cross-links. Our results help to explain the role of substitutions on xylan-cellulose interactions, and improve our understanding of the plant cell wall architecture and the fundamentals of biomass pretreatments.
Because arsenic in ground water and surface water poses a risk to ecosystem and human health, more detailed information is needed on the factors that govern arsenic fate and transport in the environment. Arsenic mobility in natural systems is often linked to iron and sulfur cycl...
We examined whether contaminants present in surface waters could be prioritized for further assessment by linking the presence of specific chemicals to gene expression changes in exposed fish. Fathead minnows were deployed in cages for 2, 4, or 8 days at three locations near two ...
Role of curli expression by Escherichia coli O157:H7 on the cell’s ability to attach to spinach
USDA-ARS?s Scientific Manuscript database
Introduction: Shiga-toxigenic Escherichia coli O157:H7 (STEC) outbreaks have been linked to consumption of fresh produce. Mechanisms of bacterial interaction with plant surfaces should be investigated to develop mitigation strategies. Cellular appendages, such as curli fibers have been suggested t...
The top ten clues to understand the origin of chronic lymphocytic leukemia (CLL).
García-Muñoz, Ricardo; Feliu, Jesús; Llorente, Luis
2015-01-01
The fundamental task of the immune system is to protect the individual from infectious organisms without serious injury to self. The essence of acquired immunity is molecular self/non self discrimination. Chronic lymphocytic leukemia is characterized by a global failure of immune system that begins with the failure of immunological tolerance mechanisms (autoimmunity) and finish with the incapacity to response to non-self antigens (immunodeficiency). Immunological tolerance mechanisms are involved in chronic lymphocytic leukemia (CLL) development. During B cell development some self-reactive B cells acquire a special BCR that recognize their own BCR. This self-autoantibody-self BCR interaction promotes survival, differentiation and proliferation of self-reactive B cells. Continuous self-autoantibody-self BCR interaction cross-linking induces an increased rate of surface BCR elimination, CD5+ expression, receptor editing and anergy. Unfortunately, some times this mechanisms increase genomic instability and promote additional genetic damage that immortalize self-reactive B cells and convert them into CLL like clones with the capability of clonal evolution and transformed CLL B cells. This review summarizes the immunological effects of continuous self-autoantibody-self BCR interaction cross-linking in the surface of self-reactive B cells and their role in CLL development. Copyright © 2014 Elsevier Ltd. All rights reserved.
Enzyme-Linked Immunofiltration Assay To Estimate Attachment of Thiobacilli to Pyrite
Dziurla, Marie-Antoinette; Achouak, Wafa; Lam, Bach-Tuyet; Heulin, Thierry; Berthelin, Jacques
1998-01-01
An enzyme-linked immunofiltration assay (ELIFA) has been developed in order to estimate directly and specifically Thiobacillus ferrooxidans attachment on sulfide minerals. This method derives from the enzyme-linked immunosorbent assay but is performed on filtration membranes which allow the retention of mineral particles for a subsequent immunoenzymatic reaction in microtiter plates. The polyclonal antiserum used in this study was raised against T. ferrooxidans DSM 583 and recognized cell surface antigens present on bacteria belonging to the genus Thiobacillus. This antiserum and the ELIFA allowed the direct quantification of attached bacteria with high sensitivity (104 bacteria were detected per well of the microtiter plate). The mean value of bacterial attachment has been estimated to be about 105 bacteria mg−1 of pyrite at a particle size of 56 to 65 μm. The geometric coverage ratio of pyrite by T. ferrooxidans ranged from 0.25 to 2.25%. This suggests an attachment of T. ferrooxidans on the pyrite surface to well-defined limited sites with specific electrochemical or surface properties. ELIFA was shown to be compatible with the measurement of variable levels of adhesion. Therefore, this method may be used to establish adhesion isotherms of T. ferrooxidans on various sulfide minerals exhibiting different physicochemical properties in order to understand the mechanisms of bacterial interaction with mineral surfaces. PMID:9687454
Surface Map Traffic Intent Displays and Net-Centric Data-link Communications for NextGen
NASA Technical Reports Server (NTRS)
Shelton, Kevin J.; Prinzel, Lawrence J., III; Jones, Denise R.; Allamandola, Angela S.; Arthur, Jarvis J., III; Bailey, Randall E.
2009-01-01
By 2025, U.S. air traffic is predicted to increase three fold and may strain the current air traffic management system, which may not be able to accommodate this growth. In response to this challenge, a revolutionary new concept has been proposed for U.S. aviation operations, termed the Next Generation Air Transportation System or "NextGen". Many key capabilities are being identified to enable NextGen, including the use of data-link communications. Because NextGen represents a radically different approach to air traffic management and requires a dramatic shift in the tasks, roles, and responsibilities for the flight deck, there are numerous research issues and challenges that must be overcome to ensure a safe, sustainable air transportation system. Flight deck display and crew-vehicle interaction concepts are being developed that proactively investigate and overcome potential technology and safety barriers that might otherwise constrain the full realization of NextGen. The paper describes simulation research, conducted at National Aeronautics and Space Administration (NASA) Langley Research Center, examining data-link communications and traffic intent data during envisioned four-dimensional trajectory (4DT)-based and equivalent visual (EV) surface operations. Overall, the results suggest that controller pilot data-link communications (CPDLC) with the use of mandatory pilot read-back of all clearances significantly enhanced situation awareness for 4DT and EV surface operations. The depiction of graphical traffic state and intent information on the surface map display further enhanced off-nominal detection and pilot qualitative reports of safety and awareness.
Electrostatics effects in granular materials
NASA Astrophysics Data System (ADS)
Sarkar, Saurabh; Chaudhuri, Bodhisattwa
2013-06-01
This purpose of this study is to investigate the role of physiochemical properties and operational conditions in determining the electrostatic interactions between two species on a surface under typical industrial conditions. The variables considered for the study were particle type, particle size and shape, loading mass, surface type, angle of inclination of chute, nature and concentration of additive. Triboelectrification of simple and binary mixtures in a simple hopper and chute geometry was observed to be strongly linked to work function and moisture content of the powdered material.
NASA Astrophysics Data System (ADS)
Shen, Lu; Decker, Caitlin; Maynard, Heather; Levine, Alex
Cells interact with a number of extracellular proteins including growth factors, which are essential for e.g., wound healing and development. Some of these growth factors must form dimers on the cell surface to initiate their signaling pathway. This suggests one can more efficiently induce signaling via polymer-linked proteins. Motivated by experiments on a family of fibroblast growth factors linked by polymers of varying molecular weight we investigate theoretically the effect of the length of the linking polymer on the binding kinetics of the dimers to a receptor-covered surface. We show, through a first-passage time calculation, how the number of bound dimers in chemical equilibrium depends on the linker molecular weight. We discuss more broadly the implications for a variety of signaling molecules. This work was supported by the NSF-DMR-1309188. HDM thanks the NIH NIBIB (R01EB013674) for support of the cell assay data.
Bacterial interactions and transport in geological formation of alumino-silica clays.
Vu, Kien; Yang, Guang; Wang, Boya; Tawfiq, Kamal; Chen, Gang
2015-01-01
Bacterial transport in the subsurface is controlled by their interactions with the surrounding environment, which are determined by the surface properties of the geological formation and bacterial surfaces. In this research, surface thermodynamic properties of Escherichia coli and the geological formation of alumino-silica clays were characterized based on contact angle measurements, which were utilized to quantify the distance-dependent interactions between E. coli and the geological formation according to the traditional and extended Derjaguin, Landau, Verwey and Overbeek (DLVO) theory. E. coli attachment to alumino-silica clays was evaluated in laboratory columns under saturated and steady-state flow conditions. E. coli deposition coefficient and desorption coefficient were simulated using convection-dispersion transport models against E. coli breakthrough curves, which were then linked to interactions between E. coli and the geological formation. It was discovered that E. coli deposition was controlled by the long-ranged electrostatic interaction and E. coli desorption was attributed to the short-ranged Lifshitz-van der Waals and Lewis acid-base interactions. E. coli transport in three layers of different alumino-silica clays was further examined and the breakthrough curve was simulated using E. coli deposition coefficient and desorption coefficient obtained from their individual column experiments. The well-fitted simulation confirmed that E. coli transport observations were interaction-dependent phenomena between E. coli and the geological formation. Published by Elsevier B.V.
Tan, Ming Yueh; Crouse, Karen A; Ravoof, Thahira B S A; Jotani, Mukesh M; Tiekink, Edward R T
2018-01-01
Two independent mol-ecules ( A and B ) comprise the asymmetric unit of the title compound, C 18 H 21 N 3 O 3 . The urea moiety is disubstituted with one amine being linked to a phenyl ring, which is twisted out of the plane of the CN 2 O urea core [dihedral angles = 25.57 (11) ( A ) and 29.13 (10)° ( B )]. The second amine is connected to an imine ( E conformation), which is linked in turn to an ethane bridge that links a disubstituted benzene ring. Intra-molecular amine-N-H⋯N(imine) and hydroxyl-O-H⋯O(meth-oxy) hydrogen bonds close S (5) loops in each case. The mol-ecules have twisted conformations with the dihedral angles between the outer rings being 38.64 (81) ( A ) and 48.55 (7)° ( B ). In the crystal, amide-N-H⋯O(amide) hydrogen bonds link the mol-ecules A and B via an eight-membered {⋯HNCO} 2 synthon. Further associations between mol-ecules, leading to supra-molecular layers in the ac plane, are hydrogen bonds of the type hydroxyl-O-H⋯N(imine) and phenyl-amine-N-H⋯O(meth-oxy). Connections between layers, leading to a three-dimensional architecture, comprise benzene-C-H⋯O(hy-droxy) inter-actions. A detailed analysis of the calculated Hirshfeld surfaces shows mol-ecules A and B participate in very similar inter-molecular inter-actions and that any variations relate to conformational differences between the mol-ecules.
Dynamic Forces Between Two Deformable Oil Droplets in Water
NASA Astrophysics Data System (ADS)
Dagastine, Raymond R.; Manica, Rogério; Carnie, Steven L.; Chan, D. Y. C.; Stevens, Geoffrey W.; Grieser, Franz
2006-07-01
The understanding of static interactions in colloidal suspensions is well established, whereas dynamic interactions more relevant to biological and other suspended soft-matter systems are less well understood. We present the direct force measurement and quantitative theoretical description for dynamic forces for liquid droplets in another immiscible fluid. Analysis of this system demonstrates the strong link between interfacial deformation, static surface forces, and hydrodynamic drainage, which govern dynamic droplet-droplet interactions over the length scale of nanometers and over the time scales of Brownian collisions. The results and analysis have direct bearing on the control and manipulation of suspended droplets in soft-matter systems ranging from the emulsions in shampoo to cellular interactions.
NASA Astrophysics Data System (ADS)
Aminzadeh, Milad; Breitenstein, Daniel; Or, Dani
2017-12-01
The intermittent nature of turbulent airflow interacting with the surface is readily observable in fluctuations of the surface temperature resulting from the thermal imprints of eddies sweeping the surface. Rapid infrared thermography has recently been used to quantify characteristics of the near-surface turbulent airflow interacting with the evaporating surfaces. We aim to extend this technique by using single-point rapid infrared measurements to quantify properties of a turbulent flow, including surface exchange processes, with a view towards the development of an infrared surface anemometer. The parameters for the surface-eddy renewal (α and β ) are inferred from infrared measurements of a single-point on the surface of a heat plate placed in a wind tunnel with prescribed wind speeds and constant mean temperatures of the surface. Thermally-deduced parameters are in agreement with values obtained from standard three-dimensional ultrasonic anemometer measurements close to the plate surface (e.g., α = 3 and β = 1/26 (ms)^{-1} for the infrared, and α = 3 and β = 1/19 (ms)^{-1} for the sonic-anemometer measurements). The infrared-based turbulence parameters provide new insights into the role of surface temperature and buoyancy on the inherent characteristics of interacting eddies. The link between the eddy-spectrum shape parameter α and the infrared window size representing the infrared field of view is investigated. The results resemble the effect of the sampling height above the ground in sonic anemometer measurements, which enables the detection of larger eddies with higher values of α . The physical basis and tests of the proposed method support the potential for remote quantification of the near-surface momentum field, as well as scalar-flux measurements in the immediate vicinity of the surface.
Structural Insights into Cargo Recognition by the Yeast PTS1 Receptor*
Hagen, Stefanie; Drepper, Friedel; Fischer, Sven; Fodor, Krisztian; Passon, Daniel; Platta, Harald W.; Zenn, Michael; Schliebs, Wolfgang; Girzalsky, Wolfgang; Wilmanns, Matthias; Warscheid, Bettina; Erdmann, Ralf
2015-01-01
The peroxisomal matrix protein import is facilitated by cycling import receptors that shuttle between the cytosol and the peroxisomal membrane. The import receptor Pex5p mediates the import of proteins harboring a peroxisomal targeting signal of type I (PTS1). Purified recombinant Pex5p forms a dimeric complex with the PTS1-protein Pcs60p in vitro with a KD of 0.19 μm. To analyze the structural basis for receptor-cargo recognition, the PTS1 and adjacent amino acids of Pcs60p were systematically scanned for Pex5p binding by an in vitro site-directed photo-cross-linking approach. The cross-linked binding regions of the receptor were subsequently identified by high resolution mass spectrometry. Most cross-links were found with TPR6, TPR7, as well as the 7C-loop of Pex5p. Surface plasmon resonance analysis revealed a bivalent interaction mode for Pex5p and Pcs60p. Interestingly, Pcs60p lacking its C-terminal tripeptide sequence was efficiently cross-linked to the same regions of Pex5p. The KD value of the interaction of truncated Pcs60p and Pex5p was in the range of 7.7 μm. Isothermal titration calorimetry and surface plasmon resonance measurements revealed a monovalent binding mode for the interaction of Pex5p and Pcs60p lacking the PTS1. Our data indicate that Pcs60p contains a second contact site for its receptor Pex5p, beyond the C-terminal tripeptide. The physiological relevance of the ancillary binding region was supported by in vivo import studies. The bivalent binding mode might be explained by a two-step concept as follows: first, cargo recognition and initial tethering by the PTS1-receptor Pex5p; second, lock-in of receptor and cargo. PMID:26359497
Chang, Xiu-bao; Mengos, April; Hou, Yue-xian; Cui, Liying; Jensen, Timothy J.; Aleksandrov, Andrei; Riordan, John R.; Gentzsch, Martina
2009-01-01
Summary The epithelial chloride channel CFTR is a glycoprotein that is modified by two N-linked oligosaccharides. The most common mutant CFTR protein in patients with cystic fibrosis, ΔF508, is misfolded and retained by ER quality control. As oligosaccharide moieties of glycoproteins are known to mediate interactions with ER lectin chaperones, we investigated the role of N-linked glycosylation in the processing of wild-type and ΔF508 CFTR. We found that N-glycosylation and ER lectin interactions are not major determinants of trafficking of wild-type and ΔF508 from the ER to the plasma membrane. Unglycosylated CFTR, generated by removal of glycosylation sites or treatment of cells with the N-glycosylation inhibitor tunicamycin, did not bind calnexin, but did traffic to the cell surface and exhibited chloride channel activity. Most importantly, unglycosylated Δ F508 CFTR still could not escape quality control in the early secretory pathway and remained associated with the ER. However, the absence of N-linked oligosaccharides did reduce the stability of wild-type CFTR, causing significantly more-rapid turnover in post-ER compartments. Surprisingly, the individual N-linked carbohydrates do not play equivalent roles and modulate the fate of the wild-type protein in different ways in its early biosynthetic pathway. PMID:18682497
Chang, Xiu-Bao; Mengos, April; Hou, Yue-Xian; Cui, Liying; Jensen, Timothy J; Aleksandrov, Andrei; Riordan, John R; Gentzsch, Martina
2008-09-01
The epithelial chloride channel CFTR is a glycoprotein that is modified by two N-linked oligosaccharides. The most common mutant CFTR protein in patients with cystic fibrosis, DeltaF508, is misfolded and retained by ER quality control. As oligosaccharide moieties of glycoproteins are known to mediate interactions with ER lectin chaperones, we investigated the role of N-linked glycosylation in the processing of wild-type and DeltaF508 CFTR. We found that N-glycosylation and ER lectin interactions are not major determinants of trafficking of wild-type and DeltaF508 from the ER to the plasma membrane. Unglycosylated CFTR, generated by removal of glycosylation sites or treatment of cells with the N-glycosylation inhibitor tunicamycin, did not bind calnexin, but did traffic to the cell surface and exhibited chloride channel activity. Most importantly, unglycosylated DeltaF508 CFTR still could not escape quality control in the early secretory pathway and remained associated with the ER. However, the absence of N-linked oligosaccharides did reduce the stability of wild-type CFTR, causing significantly more-rapid turnover in post-ER compartments. Surprisingly, the individual N-linked carbohydrates do not play equivalent roles and modulate the fate of the wild-type protein in different ways in its early biosynthetic pathway.
Fort, Joana; de la Ballina, Laura R; Burghardt, Hans E; Ferrer-Costa, Carles; Turnay, Javier; Ferrer-Orta, Cristina; Usón, Isabel; Zorzano, Antonio; Fernández-Recio, Juan; Orozco, Modesto; Lizarbe, María Antonia; Fita, Ignacio; Palacín, Manuel
2007-10-26
4F2hc (CD98hc) is a multifunctional type II membrane glycoprotein involved in amino acid transport and cell fusion, adhesion, and transformation. The structure of the ectodomain of human 4F2hc has been solved using monoclinic (Protein Data Bank code 2DH2) and orthorhombic (Protein Data Bank code 2DH3) crystal forms at 2.1 and 2.8 A, respectively. It is composed of a (betaalpha)(8) barrel and an antiparallel beta(8) sandwich related to bacterial alpha-glycosidases, although lacking key catalytic residues and consequently catalytic activity. 2DH3 is a dimer with Zn(2+) coordination at the interface. Human 4F2hc expressed in several cell types resulted in cell surface and Cys(109) disulfide bridge-linked homodimers with major architectural features of the crystal dimer, as demonstrated by cross-linking experiments. 4F2hc has no significant hydrophobic patches at the surface. Monomer and homodimer have a polarized charged surface. The N terminus of the solved structure, including the position of Cys(109) residue located four residues apart from the transmembrane domain, is adjacent to the positive face of the ectodomain. This location of the N terminus and the Cys(109)-intervening disulfide bridge imposes space restrictions sufficient to support a model for electrostatic interaction of the 4F2hc ectodomain with membrane phospholipids. These results provide the first crystal structure of heteromeric amino acid transporters and suggest a dynamic interaction of the 4F2hc ectodomain with the plasma membrane.
The creation of a biomimetic interface between boron-doped diamond and immobilized proteins.
Hoffmann, René; Kriele, Armin; Obloh, Harald; Tokuda, Norio; Smirnov, Waldemar; Yang, Nianjun; Nebel, Christoph E
2011-10-01
Immobilization of proteins on a solid electrode is to date done by chemical cross-linking or by addition of an adjustable intermediate. In this paper we introduce a concept where a solid with variable surface properties is optimized to mediate binding of the electron-transfer protein Cytochrome c (Cyt c) by mimicking the natural binding environment. It is shown that, as a carbon-based material, boron-doped diamond can be adjusted by simple electrochemical surface treatments to the specific biochemical requirements of Cyt c. The structure and functionality of passively adsorbed Cyt c on variously terminated diamond surfaces were characterized in detail using a combination of electrochemical techniques and atomic force microscopy with single-molecule resolution. Partially oxidized diamond allowed stable immobilization of Cyt c together with high electron transfer activity, driven by a combination of electrostatic and hydrophobic interactions. This surface mimics the natural binding partner, where coarse orientation is governed by electrostatic interaction of the protein's dipole and hydrophobic interactions assist in formation of the electron transfer complex. The optimized surface mediated electron transfer kinetics around 100 times faster than those reported for other solids and even faster kinetics than on self-assembled monolayers of alkanethiols. Copyright © 2011 Elsevier Ltd. All rights reserved.
2016-01-01
Surfactant micelles are dynamic entities with a rapid exchange of monomers. By “clicking” tripropargylammonium-containing surfactants with diazide cross-linkers, we obtained surface-cross-linked micelles (SCMs) that could be multifunctionalized for different applications. They triggered membrane fusion through tunable electrostatic interactions with lipid bilayers. Antenna chromophores could be installed on them to create artificial light-harvesting complexes with efficient energy migration among tens to hundreds of chromophores. When cleavable cross-linkers were used, the SCMs could break apart in response to redox or pH signals, ejecting entrapped contents quickly as a result of built-in electrostatic stress. They served as caged surfactants whose surface activity was turned on by environmental stimuli. They crossed cell membranes readily. Encapsulated fluorophores showed enhanced photophysical properties including improved quantum yields and greatly expanded Stokes shifts. Catalytic groups could be installed on the surface or in the interior, covalently attached or physically entrapped. As enzyme mimics, the SCMs enabled rational engineering of the microenvironment around the catalysts to afford activity and selectivity not possible with conventional catalysts. PMID:27181610
The hybrid energy spectrum of Telescope Array's Middle Drum Detector and surface array
NASA Astrophysics Data System (ADS)
Abbasi, R. U.; Abe, M.; Abu-Zayyad, T.; Allen, M. G.; Anderson, R.; Azuma, R.; Barcikowski, E.; Belz, J. W.; Bergman, D. R.; Blake, S. A.; Cady, R.; Chae, M. J.; Cheon, B. G.; Chiba, J.; Chikawa, M.; Cho, W. R.; Fujii, T.; Fukushima, M.; Goto, T.; Hanlon, W.; Hayashi, Y.; Hayashida, N.; Hibino, K.; Honda, K.; Ikeda, D.; Inoue, N.; Ishii, T.; Ishimori, R.; Ito, H.; Ivanov, D.; Jui, C. C. H.; Kadota, K.; Kakimoto, F.; Kalashev, O.; Kasahara, K.; Kawai, H.; Kawakami, S.; Kawana, S.; Kawata, K.; Kido, E.; Kim, H. B.; Kim, J. H.; Kim, J. H.; Kitamura, S.; Kitamura, Y.; Kuzmin, V.; Kwon, Y. J.; Lan, J.; Lim, S. I.; Lundquist, J. P.; Machida, K.; Martens, K.; Matsuda, T.; Matsuyama, T.; Matthews, J. N.; Minamino, M.; Mukai, K.; Myers, I.; Nagasawa, K.; Nagataki, S.; Nakamura, T.; Nonaka, T.; Nozato, A.; Ogio, S.; Ogura, J.; Ohnishi, M.; Ohoka, H.; Oki, K.; Okuda, T.; Ono, M.; Oshima, A.; Ozawa, S.; Park, I. H.; Pshirkov, M. S.; Rodriguez, D. C.; Rubtsov, G.; Ryu, D.; Sagawa, H.; Sakurai, N.; Sampson, A. L.; Scott, L. M.; Shah, P. D.; Shibata, F.; Shibata, T.; Shimodaira, H.; Shin, B. K.; Shin, H. S.; Smith, J. D.; Sokolsky, P.; Springer, R. W.; Stokes, B. T.; Stratton, S. R.; Stroman, T. A.; Suzawa, T.; Takamura, M.; Takeda, M.; Takeishi, R.; Taketa, A.; Takita, M.; Tameda, Y.; Tanaka, H.; Tanaka, K.; Tanaka, M.; Thomas, S. B.; Thomson, G. B.; Tinyakov, P.; Tkachev, I.; Tokuno, H.; Tomida, T.; Troitsky, S.; Tsunesada, Y.; Tsutsumi, K.; Uchihori, Y.; Udo, S.; Urban, F.; Vasiloff, G.; Wong, T.; Yamane, R.; Yamaoka, H.; Yamazaki, K.; Yang, J.; Yashiro, K.; Yoneda, Y.; Yoshida, S.; Yoshii, H.; Zollinger, R.; Zundel, Z.
2015-08-01
The Telescope Array experiment studies ultra high energy cosmic rays using a hybrid detector. Fluorescence telescopes measure the longitudinal development of the extensive air shower generated when a primary cosmic ray particle interacts with the atmosphere. Meanwhile, scintillator detectors measure the lateral distribution of secondary shower particles that hit the ground. The Middle Drum (MD) fluorescence telescope station consists of 14 telescopes from the High Resolution Fly's Eye (HiRes) experiment, providing a direct link back to the HiRes measurements. Using the scintillator detector data in conjunction with the telescope data improves the geometrical reconstruction of the showers significantly, and hence, provides a more accurate reconstruction of the energy of the primary particle. The Middle Drum hybrid spectrum is presented and compared to that measured by the Middle Drum station in monocular mode. Further, the hybrid data establishes a link between the Middle Drum data and the surface array. A comparison between the Middle Drum hybrid energy spectrum and scintillator Surface Detector (SD) spectrum is also shown.
Kearney, Bradley M; Johnson, Christian W; Roberts, Daniel M; Swartz, Paul; Mattos, Carla
2014-02-06
Ras GTPase mediates several cellular signal transduction pathways and is found mutated in a large number of cancers. It is active in the GTP-bound state, where it interacts with effector proteins, and at rest in the GDP-bound state. The catalytic domain is tethered to the membrane, with which it interacts in a nucleotide-dependent manner. Here we present the program Detection of Related Solvent Positions (DRoP) for crystallographic water analysis on protein surfaces and use it to study Ras. DRoP reads and superimposes multiple Protein Data Bank coordinates, transfers symmetry-related water molecules to the position closest to the protein surface, and ranks the waters according to how well conserved and tightly clustered they are in the set of structures. Coloring according to this rank allows visualization of the results. The effector-binding region of Ras is hydrated with highly conserved water molecules at the interface between the P-loop, switch I, and switch II, as well as at the Raf-RBD binding pocket. Furthermore, we discovered a new conserved water-mediated H-bonding network present in Ras-GTP, but not in Ras-GDP, that links the nucleotide sensor residues R161 and R164 on helix 5 to the active site. The double mutant RasN85A/N86A, where the final link between helix 5 and the nucleotide is not possible, is a severely impaired enzyme, while the single mutant RasN86A, with partial connection to the active site, has a wild-type hydrolysis rate. DRoP was instrumental in determining the water-mediated connectivity networks that link two lobes of the catalytic domain in Ras. Copyright © 2013 Elsevier Ltd. All rights reserved.
Kaipa, Balasankara Reddy; Shao, Huanjie; Schäfer, Gritt; Trinkewitz, Tatjana; Groth, Verena; Liu, Jianqi; Beck, Lothar; Bogdan, Sven; Abmayr, Susan M; Önel, Susanne-Filiz
2013-01-01
The formation of the larval body wall musculature of Drosophila depends on the asymmetric fusion of two myoblast types, founder cells (FCs) and fusion-competent myoblasts (FCMs). Recent studies have established an essential function of Arp2/3-based actin polymerization during myoblast fusion, formation of a dense actin focus at the site of fusion in FCMs, and a thin sheath of actin in FCs and/or growing muscles. The formation of these actin structures depends on recognition and adhesion of myoblasts that is mediated by cell surface receptors of the immunoglobulin superfamily. However, the connection of the cell surface receptors with Arp2/3-based actin polymerization is poorly understood. To date only the SH2-SH3 adaptor protein Crk has been suggested to link cell adhesion with Arp2/3-based actin polymerization in FCMs. Here, we propose that the SH2-SH3 adaptor protein Dock, like Crk, links cell adhesion with actin polymerization. We show that Dock is expressed in FCs and FCMs and colocalizes with the cell adhesion proteins Sns and Duf at cell-cell contact points. Biochemical data in this study indicate that different domains of Dock are involved in binding the cell adhesion molecules Duf, Rst, Sns and Hbs. We emphasize the importance of these interactions by quantifying the enhanced myoblast fusion defects in duf dock, sns dock and hbs dock double mutants. Additionally, we show that Dock interacts biochemically and genetically with Drosophila Scar, Vrp1 and WASp. Based on these data, we propose that Dock links cell adhesion in FCs and FCMs with either Scar- or Vrp1-WASp-dependent Arp2/3 activation.
Associations of multi-decadal sea-surface temperature variability with US drought
McCabe, G.J.; Betancourt, J.L.; Gray, S.T.; Palecki, M.A.; Hidalgo, H.G.
2008-01-01
Recent research suggests a link between drought occurrence in the conterminous United States (US) and sea surface temperature (SST) variability in both the tropical Pacific and North Atlantic Oceans on decadal to multidecadal (D2M) time scales. Results show that the Atlantic Multidecadal Oscillation (AMO) is the most consistent indicator of D2M drought variability in the conterminous US during the 20th century, but during the 19th century the tropical Pacific is a more consistent indicator of D2 M drought. The interaction between El Nin??o-Southern Oscillation (ENSO) and the AMO explain a large part of the D2M drought variability in the conterminous US. More modeling studies are needed to reveal possible mechanisms linking low-frequency ENSO variability and the AMO with drought in the conterminous US. ?? 2007 Elsevier Ltd and INQUA.
Josephson junctions of candidate topological crystalline insulator Pb1-xSnxTe
NASA Astrophysics Data System (ADS)
Snyder, Rodney; Trimble, Christie; Taylor, Patrick; Williams, James
Incorporating superconducting ordering through proximity effects in topological states of matter offers potential routes to novel excitations with properties beyond that of simple electrons. Topological crystalline insulators TCI offer alternative routes to topological states of matter with surface states of distinct character to those in more common 3d topological insulators. We report on the fabrication Josephson junctions using MBE-grown candidate TCI material Pb-doped SnTe as weak links and characterize the departures from conventional junctions using combined DC and RF techniques. Opportunities to create junction weak links from materials possessing electronic interactions will be discussed.
Sand, Sverre L; Nissen-Meyer, Jon; Sand, Olav; Haug, Trude M
2013-02-01
Lactobacillus plantarum C11 releases plantaricin A (PlnA), a cationic peptide pheromone that has a membrane-permeabilizing, antimicrobial effect. We have previously shown that PlnA may also permeabilize eukaryotic cells, with a potency that differs between cell types. It is generally assumed that cationic antimicrobial peptides exert their effects through electrostatic attraction to negatively charged phospholipids in the membrane. The aim of the present study was to investigate if removal of the negative charge linked to glycosylated proteins at the cell surface reduces the permeabilizing potency of PlnA. The effects of PlnA were tested on clonal rat anterior pituitary cells (GH(4) cells) using patch clamp and microfluorometric techniques. In physiological extracellular solution, GH(4) cells are highly sensitive to PlnA, but the sensitivity was dramatically reduced in solutions that partly neutralize the negative surface charge of the cells, in agreement with the notion that electrostatic interactions are probably important for the PlnA effects. Trypsination of cells prior to PlnA exposure also rendered the cells less sensitive to the peptide, suggesting that negative charges linked to membrane proteins are involved in the permeabilizing action. Finally, pre-exposure of cells to a mixture of enzymes that split carbohydrate residues from the backbone of glycosylated proteins also impeded the PlnA-induced membrane permeabilization. We conclude that electrostatic attraction between PlnA and glycosylated membrane proteins is probably an essential first step before PlnA can interact with membrane phospholipids. Deviating glycosylation patterns may contribute to the variation in PlnA sensitivity of different cell types, including cancerous cells and their normal counterparts. Copyright © 2012 Elsevier B.V. All rights reserved.
Beer, Meike V; Rech, Claudia; Diederichs, Sylvia; Hahn, Kathrin; Bruellhoff, Kristina; Möller, Martin; Elling, Lothar; Groll, Jürgen
2012-04-01
Precise determination of biomolecular interactions in high throughput crucially depends on a surface coating technique that allows immobilization of a variety of interaction partners in a non-interacting environment. We present a one-step hydrogel coating system based on isocyanate functional six-arm poly(ethylene oxide)-based star polymers for commercially available 96-well microtiter plates that combines a straightforward and robust coating application with versatile bio-functionalization. This system generates resistance to unspecific protein adsorption and cell adhesion, as demonstrated with fluorescently labeled bovine serum albumin and primary human dermal fibroblasts (HDF), and high specificity for the assessment of biomolecular recognition processes when ligands are immobilized on this surface. One particular advantage is the wide range of biomolecules that can be immobilized and convert the per se inert coating into a specifically interacting surface. We here demonstrate the immobilization and quantification of a broad range of biochemically important ligands, such as peptide sequences GRGDS and GRGDSK-biotin, the broadly applicable coupler molecule biocytin, the protein fibronectin, and the carbohydrates N-acetylglucosamine and N-acetyllactosamine. A simplified protocol for an enzyme-linked immunosorbent assay was established for the detection and quantification of ligands on the coating surface. Cell adhesion on the peptide and protein-modified surfaces was assessed using HDF. All coatings were applied using a one-step preparation technique, including bioactivation, which makes the system suitable for high-throughput screening in a format that is compatible with the most routinely used testing systems.
Analysis of cholera toxin-ganglioside interactions by flow cytometry.
Lauer, Sabine; Goldstein, Byron; Nolan, Rhiannon L; Nolan, John P
2002-02-12
Cholera toxin entry into mammalian cells is mediated by binding of the pentameric B subunit (CTB) to ganglioside GM(1) in the cell membrane. We used flow cytometry to quantitatively measure in real time the interactions of fluorescently labeled pentameric cholera toxin B-subunit (FITC-CTB) with its ganglioside receptor on microsphere-supported phospholipid membranes. A model that describes the multiple steps of this mode of recognition was developed to guide our flow cytometric experiments and extract relevant equilibrium and kinetic rate constants. In contrast to previous studies, our approach takes into account receptor cross-linking, an important feature for multivalent interactions. From equilibrium measurements, we determined an equilibrium binding constant for a single subunit of FITC-CTB binding monovalently to GM(1) presented in bilayers of approximately 8 x 10(7) M(-1) while that for binding to soluble GM(1)-pentasaccharide was found to be approximately 4 x 10(6) M(-1). From kinetic measurements, we determined the rate constant for dissociation of a single site of FITC-CTB from microsphere-supported bilayers to be (3.21 +/- 0.03) x 10(-3) s(-1), and the rate of association of a site on FITC-CTB in solution to a GM(1) in the bilayer to be (2.8 +/- 0.4) x 10(4) M(-1) s(-1). These values yield a lower estimate for the equilibrium binding constant of approximately 1 x 10(7) M(-1). We determined the equilibrium surface cross-linking constant [(1.1 +/- 0.1) x 10(-12) cm(2)] and from this value and the value for the rate constant for dissociation derived a value of approximately 3.5 x 10(-15) cm(2) s(-1) for the forward rate constant for cross-linking. We also compared the interaction of the receptor binding B-subunit with that of the whole toxin (A- and B-subunits). Our results show that the whole toxin binds with approximately 100-fold higher avidity than the pentameric B-subunit alone which is most likely due to the additional interaction of the A(2)-subunit with the membrane surface. Interaction of cholera toxin B-subunit and whole cholera toxin with gangliosides other than GM(1) revealed specific binding only to GD1(b) and asialo-GM(1). These interactions, however, are marked by low avidity and require high receptor concentrations to be observed.
Satellite Imagery Products - Office of Satellite and Product Operations
» Disclaimer » Web Linking Policy » Use of Data and Products » FAQs: Imagery Contact Us Services Argos DCS : Page | VIS | IR | Water Vapor Sample GOES Watervapor composite Detailed Product List Composite Imagery Surface Data GIS Data Available Through Interactive Internet Mapping GIS Fire and Smoke Detection Web Page
Tan, Ming Yueh; Crouse, Karen A; Ravoof, Thahira B S A; Jotani, Mukesh M; Tiekink, Edward R T
2017-07-01
The title Zn II complex, [Zn(C 18 H 18 N 3 S) 2 ], (I), features two independent but chemically equivalent mol-ecules in the asymmetric unit. In each, the thio-semicarbazonate monoanion coordinates the Zn II atom via the thiol-ate-S and imine-N atoms, with the resulting N 2 S 2 donor set defining a distorted tetra-hedral geometry. The five-membered ZnSCN 2 chelate rings adopt distinct conformations in each independent mol-ecule, i.e. one ring is almost planar while the other is twisted about the Zn-S bond. In the crystal, the two mol-ecules comprising the asymmetric unit are linked by amine-N-H⋯N(imine) and amine-N-H⋯S(thiol-ate) hydrogen bonds via an eight-membered heterosynthon, {⋯HNCN⋯HNCS}. The dimeric aggregates are further consolidated by benzene-C-H⋯S(thiol-ate) inter-actions and are linked into a zigzag supra-molecular chain along the c axis via amine-N-H⋯S(thiol-ate) hydrogen bonds. The chains are connected into a three-dimensional architecture via phenyl-C-H⋯π(phen-yl) and π-π inter-actions, the latter occurring between chelate and phenyl rings [inter-centroid separation = 3.6873 (11) Å]. The analysis of the Hirshfeld surfaces calculated for (I) emphasizes the different inter-actions formed by the independent mol-ecules in the crystal and the impact of the π-π inter-actions between chelate and phenyl rings.
NASA Astrophysics Data System (ADS)
Kohlhepp, Bernd; Lehmann, Robert; Seeber, Paul; Küsel, Kirsten; Trumbore, Susan E.; Totsche, Kai U.
2017-12-01
The quality of near-surface groundwater reservoirs is controlled, but also threatened, by manifold surface-subsurface interactions. Vulnerability studies typically evaluate the variable interplay of surface factors (land management, infiltration patterns) and subsurface factors (hydrostratigraphy, flow properties) in a thorough way, but disregard the resulting groundwater quality. Conversely, hydrogeochemical case studies that address the chemical evolution of groundwater often lack a comprehensive analysis of the structural buildup. In this study, we aim to reconstruct the actual spatial groundwater quality pattern from a synoptic analysis of the hydrostratigraphy, lithostratigraphy, pedology and land use in the Hainich Critical Zone Exploratory (Hainich CZE). This CZE represents a widely distributed yet scarcely described setting of thin-bedded mixed carbonate-siliciclastic strata in hillslope terrains. At the eastern Hainich low-mountain hillslope, bedrock is mainly formed by alternated marine sedimentary rocks of the Upper Muschelkalk (Middle Triassic) that partly host productive groundwater resources. Spatial patterns of the groundwater quality of a 5.4 km long well transect are derived by principal component analysis and hierarchical cluster analysis. Aquifer stratigraphy and geostructural links were deduced from lithological drill core analysis, mineralogical analysis, geophysical borehole logs and mapping data. Maps of preferential recharge zones and recharge potential were deduced from digital (soil) mapping, soil survey data and field measurements of soil hydraulic conductivities (Ks). By attributing spatially variable surface and subsurface conditions, we were able to reconstruct groundwater quality clusters that reflect the type of land management in their preferential recharge areas, aquifer hydraulic conditions and cross-formational exchange via caprock sinkholes or ascending flow. Generally, the aquifer configuration (spatial arrangement of strata, valley incision/outcrops) and related geostructural links (enhanced recharge areas, karst phenomena) control the role of surface factors (input quality and locations) vs. subsurface factors (water-rock interaction, cross-formational flow) for groundwater quality in the multi-layered aquifer system. Our investigation reveals general properties of alternating sequences in hillslope terrains that are prone to forming multi-layered aquifer systems. This synoptic analysis is fundamental and indispensable for a mechanistic understanding of ecological functioning, sustainable resource management and protection.
NASA Technical Reports Server (NTRS)
Prinzel, Lawrence J., III; Shelton, Kevin J.; Jones, Denise R.; Allamandola, Angela S.; Arthur, Jarvis, J., III; Bailey, Randall E.
2010-01-01
By 2025, U.S. air traffic is predicted to increase 3-fold and may strain the current air traffic management system, which may not be able to accommodate this growth. In response to this challenge, a revolutionary new concept has been proposed for U.S. aviation operations, termed the Next Generation Air Transportation System or NextGen. Many key capabilities are being identified to enable NextGen, including the use of data-link communications. Because NextGen represents a radically different approach to air traffic management and requires a dramatic shift in the tasks, roles, and responsibilities for the flight deck, there are numerous research issues and challenges that must be overcome to ensure a safe, sustainable air transportation system. Flight deck display and crew-vehicle interaction concepts are being developed that proactively investigate and overcome potential technology and safety barriers that might otherwise constrain the full realization of NextGen. The paper describes simulation research examining data-link communications during 4DT and equivalent visual surface operations.
Carvalho, Fernanda Caroline; Soares, Sandro Gomes; Tamarozzi, Mirela Barros; Rego, Eduardo Magalhães; Roque-Barreira, Maria-Cristina
2011-01-01
ArtinM, a d-mannose-binding lectin from Artocarpus heterophyllus (jackfruit), interacts with N-glycosylated receptors on the surface of several cells of hematopoietic origin, triggering cell migration, degranulation, and cytokine release. Because malignant transformation is often associated with altered expression of cell surface glycans, we evaluated the interaction of ArtinM with human myelocytic leukemia cells and investigated cellular responses to lectin binding. The intensity of ArtinM binding varied across 3 leukemia cell lines: NB4>K562>U937. The binding, which was directly related to cell growth suppression, was inhibited in the presence of Manα1-3(Manα1-6)Manβ1, and was reverted in underglycosylated NB4 cells. ArtinM interaction with NB4 cells induced cell death (IC50 = 10 µg/mL), as indicated by cell surface exposure of phosphatidylserine and disruption of mitochondrial membrane potential unassociated with caspase activation or DNA fragmentation. Moreover, ArtinM treatment of NB4 cells strongly induced reactive oxygen species generation and autophagy, as indicated by the detection of acidic vesicular organelles in the treated cells. NB4 cell death was attributed to ArtinM recognition of the trimannosyl core of N-glycans containing a ß1,6-GlcNAc branch linked to α1,6-mannose. This modification correlated with higher levels of N-acetylglucosaminyltransferase V transcripts in NB4 cells than in K562 or U937 cells. Our results provide new insights into the potential of N-glycans containing a β1,6-GlcNAc branch linked to α1,6-mannose as a novel target for anti-leukemia treatment. PMID:22132163
NASA Astrophysics Data System (ADS)
Pandey, Binod Prasad
Nanoporous gold (NPG) is a versatile material of high surface area to volume ratio that can be readily modified with self-assembled monolayers of alkanethiols to which biomolecules can be linked. NPG presents new opportunities for the development of immunoassays, and for the development of carbohydrate based assays. This thesis explores the use of NPG as a support for self-assembled monolayers, their linkage to antibody-enzyme conjugates for immunoassay development, and for the study and application of carbohydrate-protein interactions. Direct kinetic electrochemical immunoassays were developed on NPG for prostate specific antigen (PSA) and carcinoembryonic antigen (CEA). The decrease in enzymatic conversion of p-aminophenylphosphate to p-aminophenol, by alkaline phosphatase conjugated to an antibody, due to steric hindrance caused by the presence of antigen on antibody, was observed as a drop in peak current in square-wave voltammetry. Detection limit of these assays was 0.075 ng mL -1 and 0.015 ng mL-1 for PSA and CEA, respectively. Similarly, the linear range of determination of these biomarkers extended up to 30 ng mL-1 and 10 ng mL-1 for PSA and CEA, respectively. Minimal interference was observed using newborn calf serum as a substitute for the human serum matrix. A rapid and sensitive enzyme linked lectinsorbant assay was also developed for the study of glycoprotein-lectin interactions on the NPG surface. Self-assembled monolayers of alkanethiols on NPG were characterized by cyclic voltammetry and electrochemical impedance spectroscopy. Similarly, the applicability of this surface for the formation of carbohydrate monolayers and its application for lectin carbohydrate interactions was also studied. Pure and mixed SAMs of 8-mercaptooctyl β-D-mannopyranoside (αMan-C8-SH) and α-D-Gal-(1→4)-β-D-Gal-(1α)-D-Glc-1-O-mercaptooctane (Gb3-C8-SH) with alkanethiols having varying tail groups were prepared. Binding affinity and binding kinetics of concanavalin A to mannoside and soybean agglutinin to galactose in these SAMs were found to be different on NPG than on flat polycrystalline gold, and was also sensitive to the chemical composition of the modified surfaces.
Schroën, Karin; Ferrando, Montse; de Lamo-Castellví, Silvia; Sahin, Sami; Güell, Carme
2016-01-01
In microfluidics and other microstructured devices, wettability changes, as a result of component interactions with the solid wall, can have dramatic effects. In emulsion separation and emulsification applications, the desired behavior can even be completely lost. Wettability changes also occur in one phase systems, but the effect is much more far-reaching when using two-phase systems. For microfluidic emulsification devices, this can be elegantly demonstrated and quantified for EDGE (Edge-base Droplet GEneration) devices that have a specific behavior that allows us to distinguish between surfactant and liquid interactions with the solid surface. Based on these findings, design rules can be defined for emulsification with any micro-structured emulsification device, such as direct and premix membrane emulsification. In general, it can be concluded that mostly surface interactions increase the contact angle toward 90°, either through the surfactant, or the oil that is used. This leads to poor process stability, and very limited pressure ranges at which small droplets can be made in microfluidic systems, and cross-flow membrane emulsification. In a limited number of cases, surface interactions can also lead to lower contact angles, thereby increasing the operational stability. This paper concludes with a guideline that can be used to come to the appropriate combination of membrane construction material (or any micro-structured device), surfactants and liquids, in combination with process conditions. PMID:27187484
Ybe, Joel A; Mishra, Sanjay; Helms, Stephen; Nix, Jay
2007-03-16
Huntingtin interacting protein 1 (HIP1) is a member of a family of proteins whose interaction with Huntingtin is critical to prevent cells from initiating apoptosis. HIP1, and related protein HIP12/1R, can also bind to clathrin and membrane phospholipids, and HIP12/1R links the CCV to the actin cytoskeleton. HIP1 and HIP12/1R interact with the clathrin light chain EED regulatory site and stimulate clathrin lattice assembly. Here, we report the X-ray structure of the coiled-coil domain of HIP1 (residues 482-586) that includes residues crucial for binding clathrin light chain. The dimeric HIP1 crystal structure is partially splayed open. The comparison of the HIP1 model with coiled-coil predictions revealed the heptad repeat in the dimeric trunk (S2 path) is offset relative to the register of the heptad repeat from the N-terminal portion (S1 path) of the molecule. Furthermore, surface analysis showed there is a third hydrophobic path (S3) running parallel with S1 and S2. We present structural evidence supporting a role for the S3 path as an interaction surface for clathrin light chain. Finally, comparative analysis suggests the mode of binding between sla2p and clathrin light chain may be different in yeast.
NASA Astrophysics Data System (ADS)
Dogrul, E. C.; Brush, C. F.; Kadir, T. N.
2006-12-01
The Integrated Water Flow Model (IWFM) is a comprehensive input-driven application for simulating groundwater flow, surface water flow and land-surface hydrologic processes, and interactions between these processes, developed by the California Department of Water Resources (DWR). IWFM couples a 3-D finite element groundwater flow process and 1-D land surface, lake, stream flow and vertical unsaturated-zone flow processes which are solved simultaneously at each time step. The groundwater flow system is simulated as a multilayer aquifer system with a mixture of confined and unconfined aquifers separated by semiconfining layers. The groundwater flow process can simulate changing aquifer conditions (confined to unconfined and vice versa), subsidence, tile drains, injection wells and pumping wells. The land surface process calculates elemental water budgets for agricultural, urban, riparian and native vegetation classes. Crop water demands are dynamically calculated using distributed soil properties, land use and crop data, and precipitation and evapotranspiration rates. The crop mix can also be automatically modified as a function of pumping lift using logit functions. Surface water diversions and groundwater pumping can each be specified, or can be automatically adjusted at run time to balance water supply with water demand. The land-surface process also routes runoff to streams and deep percolation to the unsaturated zone. Surface water networks are specified as a series of stream nodes (coincident with groundwater nodes) with specified bed elevation, conductance and stage-flow relationships. Stream nodes are linked to form stream reaches. Stream inflows at the model boundary, surface water diversion locations, and one or more surface water deliveries per location are specified. IWFM routes stream flows through the network, calculating groundwater-surface water interactions, accumulating inflows from runoff, and allocating available stream flows to meet specified or calculated deliveries. IWFM utilizes a very straight-forward input file structure, allowing rapid development of complex simulations. A key feature of IWFM is a new algorithm for computation of groundwater flow across element faces. Enhancements to version 3.0 include automatic time-tracking of input and output data sets, linkage with the HEC-DSS database, and dynamic crop allocation using logit functions. Utilities linking IWFM to the PEST automated calibration suite are also available. All source code, executables and documentation are available for download from the DWR web site. IWFM is currently being used to develop hydrologic simulations of California's Central Valley (C2VSIM); the west side of California's San Joaquin Valley (WESTSIM); Butte County, CA; Solano County, CA; Merced County, CA; and the Oregon side of the Walla Walla River Basin.
NASA Astrophysics Data System (ADS)
Bertin, M.; Doronin, M.; Michaut, X.; Philippe, L.; Markovits, A.; Fillion, J.-H.; Pauzat, F.; Ellinger, Y.; Guillemin, J.-C.
2017-12-01
Context. Almost 20% of the 200 different species detected in the interstellar and circumstellar media present a carbon atom linked to nitrogen by a triple bond. Of these 37 molecules, 30 are nitrile R-CN compounds, the remaining 7 belonging to the isonitrile R-NC family. How these species behave in their interactions with the grain surfaces is still an open question. Aims: In a previous work, we have investigated whether the difference between nitrile and isonitrile functional groups may induce differences in the adsorption energies of the related isomers at the surfaces of interstellar grains of various nature and morphologies. This study is a follow up of this work, where we focus on the adsorption on carbonaceous aromatic surfaces. Methods: The question is addressed by means of a concerted experimental and theoretical approach of the adsorption energies of CH3CN and CH3NC on the surface of graphite (with and without surface defects). The experimental determination of the molecule and surface interaction energies is carried out using temperature-programmed desorption in an ultra-high vacuum between 70 and 160 K. Theoretically, the question is addressed using first-principle periodic density functional theory to represent the organised solid support. Results: The adsorption energy of each compound is found to be very sensitive to the structural defects of the aromatic carbonaceous surface: these defects, expected to be present in a large numbers and great diversity on a realistic surface, significantly increase the average adsorption energies to more than 50% as compared to adsorption on perfect graphene planes. The most stable isomer (CH3CN) interacts more efficiently with the carbonaceous solid support than the higher energy isomer (CH3NC), however.
Ermakov, Yuri A; Kamaraju, Kishore; Dunina-Barkovskaya, Antonina; Vishnyakova, Khava S; Yegorov, Yegor E; Anishkin, Andriy; Sukharev, Sergei
2017-10-10
Beryllium has multiple industrial applications, but its manufacture is associated with a serious occupational risk of developing chronic inflammation in the lungs known as berylliosis, or chronic beryllium disease. Although the Be 2+ -induced abnormal immune responses have recently been linked to a specific MHC-II allele, the nature of long-lasting granulomas is not fully understood. Here we show that Be 2+ binds with a micromolar affinity to phosphatidylserine (PS), the major surface marker of apoptotic cells. Isothermal titration calorimetry indicates that, like that of Ca 2+ , binding of Be 2+ to PS liposomes is largely entropically driven, likely by massive desolvation. Be 2+ exerts a compacting effect on PS monolayers, suggesting cross-linking through coordination by both phosphates and carboxyls in multiple configurations, which were visualized in molecular dynamics simulations. Electrostatic modification of PS membranes by Be 2+ includes complete neutralization of surface charges at ∼30 μM, accompanied by an increase in the boundary dipole potential. The data suggest that Be 2+ can displace Ca 2+ from the surface of PS, and being coordinated in a tight shell of four oxygens, it can mask headgroups from Ca 2+ -mediated recognition by PS receptors. Indeed, 48 μM Be 2+ added to IC-21 cultured macrophages specifically suppresses binding and engulfment of PS-coated silica beads or aged erythrocytes. We propose that Be 2+ adsorption at the surface of apoptotic cells may potentially prevent normal phagocytosis, thus causing accumulation of secondary necrotic foci and the resulting chronic inflammation.
NASA Astrophysics Data System (ADS)
Downs, Emily Elizabeth
Protein-nanostructure conjugates, particularly particles, are a subject of significant interest due to changes in their fundamental behavior compared to bulk surfaces. As the size scale of nano-structured materials and proteins are on the same order of magnitude, nanomaterial properties can heavily influence how proteins adsorb and conform to the surface. Previous work has demonstrated the ability of nanoscale surfaces to modulate protein activity, conformation, and retention by modifying the particle surface curvature, morphology, and surface charge. This work has improved our understanding of the protein material interactions, but a complete understanding is still lacking. The goal of this thesis is to investigate two missing areas of understanding using two distinct systems. The first system utilizes a particle with controlled surface energy to observe the impact of surface energy on protein-particle interactions, while the second system uses a modified Listeria-specific protein to determine how protein structure and flexibility affects protein adsorption and activity on particles. Spherical, amorphous, and uniformly doped Zn-silica particles with tailored surface energies were synthesized to understand the impact of surface energy on protein adsorption behavior. Particle surface energy increased with a decrease in particle size and greater dopant concentrations. Protein adsorption and structural loss increased with both particle size and particle surface energy. Higher surface energies promoted protein-particle association and increased protein unfolding. Particle curvature and protein steric hindrance effects limited adsorption and structural loss on smaller particles. Protein surface charge heterogeneity was also found to be linked to both protein adsorption and unfolding behavior on larger particles. Greater surface charge heterogeneity led to higher adsorption concentrations and multilayer formation. These multilayers transitioned from protein-particle interactions to protein-protein interactions and were thicker with greater surface energy, which resulted in the recovery of secondary structure in the outermost layer. To help understand the impact of protein structure on nano-bio conjugate interactions, a listeria specific protein was used. This system was chosen as it has applications in the food industry in preventing bacterial contamination. The insertion of an amino acid linker between the enzymatic and binding domain of the protein improved the flexibility between domains, leading to increased adsorption, and improved activity in both cell-wall and plating assays. Additionally, linker modified protein incorporated into the silica-polymer nanocomposite showed significant activity in a real-world example of contaminated lettuce. This thesis study has isolated the impact of surface energy and protein flexibility on protein adsorption and structure. Particle surface energy affects adsorbed protein concentration and conformation. Coupled with protein surface charge, surface energy was also found to dictate multilayer thickness. The conformational flexibility of the protein was shown to help in controlling not only protein adsorption concentration but also in retaining protein activity after immobilization. Also, a controllable synthesis method for particles with adjustable surface energy, an ideal platform for studying protein-particle interactions, has been established.
Effects of Global Warming on Vibrio Ecology.
Vezzulli, Luigi; Pezzati, Elisabetta; Brettar, Ingrid; Höfle, Manfred; Pruzzo, Carla
2015-06-01
Vibrio-related infections are increasing worldwide both in humans and aquatic animals. Rise in global sea surface temperature (SST), which is approximately 1 °C higher now than 140 years ago and is one of the primary physical impacts of global warming, has been linked to such increases. In this chapter, major known effects of increasing SST on the biology and ecology of vibrios are described. They include the effects on bacterial growth rate, both in the field and in laboratory, culturability, expression of pathogenicity traits, and interactions with aquatic organisms and abiotic surfaces. Special emphasis is given to the effect of ocean warming on Vibrio interactions with zooplankters, which represent one of the most important aquatic reservoirs for these bacteria. The reported findings highlight the biocomplexity of the interactions between vibrios and their natural environment in a climate change scenario, posing the need for interdisciplinary studies to properly understand the connection between ocean warming and persistence and spread of vibrios in sea waters and the epidemiology of the diseases they cause.
Saito, Masakazu; Watanabe-Nakayama, Takahiro; Machida, Shinichi; Osada, Toshiya; Afrin, Rehana; Ikai, Atsushi
2015-01-01
As major components of red blood cell (RBC) cytoskeleton, spectrin and F-actin form a network that covers the entire cytoplasmic surface of the plasma membrane. The cross-linked two layered structure, called the membrane skeleton, keeps the structural integrity of RBC under drastically changing mechanical environment during circulation. We performed force spectroscopy experiments on the atomic force microscope (AFM) as a means to clarify the mechanical characteristics of spectrin-ankyrin interaction, a key factor in the force balance of the RBC cytoskeletal structure. An AFM tip was functionalized with ANK1-62k and used to probe spectrin crosslinked to mica surface. A force spectroscopy study gave a mean unbinding force of ~30 pN under our experimental conditions. Two energy barriers were identified in the unbinding process. The result was related to the well-known flexibility of spectrin tetramer and participation of ankyrin 1-spectrin interaction in the overall balance of membrane skeleton dynamics. Copyright © 2015 Elsevier B.V. All rights reserved.
Atlas of the Earth's radiation budget as measured by Nimbus-7: May 1979 to May 1980
NASA Technical Reports Server (NTRS)
Kyle, H. Lee; Hucek, Richard R.; Vallette, Brenda J.
1991-01-01
This atlas describes the seasonal changes in the Earth's radiation budget for the 13-month period, May 1979 to May 1980. It helps to illustrate the strong feedback mechanisms by which the Earth's climate interacts with the top-of-the-atmosphere insolation to modify the energy that various regions absorb from the Sun. Cloud type and cloud amount, which are linked to the surface temperature and the regional climate, are key elements in this interaction. Annual, seasonal, and monthly maps of the albedo, outgoing longwave and net radiation, noontime cloud cover, and mean diurnal surface temperatures are presented. Annual and seasonal net cloud forcing maps are also given. All of the quantities were derived from Nimbus-7 satellite measurements except for the temperatures, which were used in the cloud detection algorithm and came originally from the Air Force 3-dimensional nephanalysis dataset. The seasonal changes are described. The interaction of clouds and the radiation budget is briefly discussed.
In situ trans ligands of CD22 identified by glycan-protein photocross-linking-enabled proteomics.
Ramya, T N C; Weerapana, Eranthie; Liao, Lujian; Zeng, Ying; Tateno, Hiroaki; Liao, Liang; Yates, John R; Cravatt, Benjamin F; Paulson, James C
2010-06-01
CD22, a regulator of B-cell signaling, is a siglec that recognizes the sequence NeuAcalpha2-6Gal on glycoprotein glycans as ligands. CD22 interactions with glycoproteins on the same cell (in cis) and apposing cells (in trans) modulate its activity in B-cell receptor signaling. Although CD22 predominantly recognizes neighboring CD22 molecules as cis ligands on B-cells, little is known about the trans ligands on apposing cells. We conducted a proteomics scale study to identify candidate trans ligands of CD22 on B-cells by UV photocross-linking CD22-Fc chimera bound to B-cell glycoproteins engineered to carry sialic acids with a 9-aryl azide moiety. Using mass spectrometry-based quantitative proteomics to analyze the cross-linked products, 27 glycoproteins were identified as candidate trans ligands. Next, CD22 expressed on the surface of one cell was photocross-linked to glycoproteins on apposing B-cells followed by immunochemical analysis of the products with antibodies to the candidate ligands. Of the many candidate ligands, only the B-cell receptor IgM was found to be a major in situ trans ligand of CD22 that is selectively redistributed to the site of cell contact upon interaction with CD22 on the apposing cell.
Shu, X Z; Zhu, K J
2002-02-21
By adopting a novel chitosan cross-linked method, i.e. chitosan/gelatin droplet coagulated at low temperature and then cross-linked by anions (sulfate, citrate and tripolyphosphate (TPP)), the chitosan beads were prepared. Scanning electron microscopy (SEM) observation showed that sulfate/chitosan and citrate/chitosan beads usually had a spherical shape, smooth surface morphology and integral inside structure. Cross-sectional analysis indicated that the cross-linking process of sulfate and citrate to chitosan was much faster than that of TPP due to their smaller molecular size. But, once completely cross-linked, TPP/chitosan beads possessed much better mechanical strength and the force to break the beads was approximately ten times higher than that of sulfate/chitosan or citrate/chitosan beads. Release media pH and ionic strength seriously influenced the controlled drug release properties of the beads, which related to the strength of electrostatic interaction between anions and chitosan. Sulfate and citrate cross-linked chitosan beads swelled and even dissociated in simulated gastric fluid (SGF) and hence, model drug (riboflavin) released completely in 5 h; while in simulated intestinal fluid (SIF), beads remained in a shrinkage state and drug released slowly (release % usually <70% in 24 h). However, swelling and drug release of TPP/chitosan bead was usually insensitive to media pH. Chitosan beads, cross-linked by a combination of TPP and citrate (or sulfate) together, not only had a good shape, but also improved pH-responsive drug release properties. Salt weakened the interaction of citrate, especially sulfate with chitosan and accelerated beads swelling and hence drug release rate, but it was insensitive to that of TPP/chitosan. These results indicate that ionically cross-linked chitosan beads may be useful in stomach specific drug delivery.
Multi-property modeling of ocean basin carbon fluxes
NASA Technical Reports Server (NTRS)
Volk, Tyler
1988-01-01
The objectives of this project were to elucidate the causal mechanisms in some of the most important features of the global ocean/atomsphere carbon system. These included the interaction of physical and biological processes in the seasonal cycle of surface water pCo2, and links between productivity, surface chlorophyll, and the carbon cycle that would aid global modeling efforts. In addition, several other areas of critical scientific interest involving links between the marine biosphere and the global carbon cycle were successfully pursued; specifically, a possible relation between phytoplankton emitted DMS and climate, and a relation between the location of calcium carbonate burial in the ocean and metamorphic source fluxes of CO2 to the atmosphere. Six published papers covering the following topics are summarized: (1) Mass extinctions, atmospheric sulphur and climatic warming at the K/T boundary; (2) Sensitivity of climate and atmospheric CO2 to deep-ocean and shallow-ocean carbonate burial; (3) Controls on CO2 sources and sinks in the earthscale surface ocean; (4) pre-anthropogenic, earthscale patterns of delta pCO2 between ocean and atmosphere; (5) Effect on atmospheric CO2 from seasonal variations in the high latitude ocean; and (6) Limitations or relating ocean surface chlorophyll to productivity.
NASA Astrophysics Data System (ADS)
Stylianou, A.; Yova, D.; Alexandratou, E.; Petri, A.
2013-02-01
Collagen is the major fibrous protein in the extracellular matrix and consists a significant component of skin, bone, cartilage and tendon. Due to its unique properties, it has been widely used as scaffold or culture substrate for tissue regeneration or/and cell-substrate interaction studies. The ultraviolet light-collagen interaction investigations are crucial for the improvement of many applications such as that of the UV irradiation in the field of biomaterials, as sterilizing and photo-cross-linking method. The aim of this paper was to investigate the mechanisms of UV-collagen interactions by developing a collagen-based, well characterized, surface with controlled topography of collagen thin films in the nanoscale range. The methodology was to quantify the collagen surface modification induced on ultraviolet radiation and correlate it with changes induced in cells. Surface nanoscale characterization was performed by Atomic Force Microscopy (AFM) which is a powerful tool and offers quantitative and qualitative information with a non-destructive manner. In order to investigate cells behavior, the irradiated films were used for in vitro cultivation of human skin fibroblasts and the cells morphology, migration and alignment were assessed with fluorescence microscopy imaging and image processing methods. The clarification of the effects of UV light on collagen thin films and the way of cells behavior to the different modifications that UV induced to the collagen-based surfaces will contribute to the better understanding of cell-matrix interactions in the nanoscale and will assist the appropriate use of UV light for developing biomaterials.
Dynamic molecular oxygen production in cometary comae.
Yao, Yunxi; Giapis, Konstantinos P
2017-05-08
Abundant molecular oxygen was discovered in the coma of comet 67P/Churyumov-Gerasimenko. Its origin was ascribed to primordial gaseous O 2 incorporated into the nucleus during the comet's formation. This thesis was put forward after discounting several O 2 production mechanisms in comets, including photolysis and radiolysis of water, solar wind-surface interactions and gas-phase collisions. Here we report an original Eley-Rideal reaction mechanism, which permits direct O 2 formation in single collisions of energetic water ions with oxidized cometary surface analogues. The reaction proceeds by H 2 O + abstracting a surface O-atom, then forming an excited precursor state, which dissociates to produce O 2 - . Subsequent photo-detachment leads to molecular O 2 , whose presence in the coma may thus be linked directly to water molecules and their interaction with the solar wind. This abiotic O 2 production mechanism is consistent with reported trends in the 67P coma and raises awareness of the role of energetic negative ions in comets.
Dynamic molecular oxygen production in cometary comae
NASA Astrophysics Data System (ADS)
Yao, Yunxi; Giapis, Konstantinos P.
2017-05-01
Abundant molecular oxygen was discovered in the coma of comet 67P/Churyumov-Gerasimenko. Its origin was ascribed to primordial gaseous O2 incorporated into the nucleus during the comet's formation. This thesis was put forward after discounting several O2 production mechanisms in comets, including photolysis and radiolysis of water, solar wind-surface interactions and gas-phase collisions. Here we report an original Eley-Rideal reaction mechanism, which permits direct O2 formation in single collisions of energetic water ions with oxidized cometary surface analogues. The reaction proceeds by H2O+ abstracting a surface O-atom, then forming an excited precursor state, which dissociates to produce O2-. Subsequent photo-detachment leads to molecular O2, whose presence in the coma may thus be linked directly to water molecules and their interaction with the solar wind. This abiotic O2 production mechanism is consistent with reported trends in the 67P coma and raises awareness of the role of energetic negative ions in comets.
A model of ion transport processes along and across the neuronal membrane.
Xiang, Z X; Liu, G Z; Tang, C X; Yan, L X
2017-01-01
In this study, we provide a foundational model of ion transport processes in the intracellular and extracellular compartments of neurons at the nanoscale. There are two different kinds of ionic transport processes: (i) ionic transport across the neuronal membrane (trans-membrane), and (ii) ionic transport along both the intracellular and extracellular surfaces of the membrane. Brownian dynamics simulations are used to give a description of ionic trans-membrane transport. Electro-diffusion is used to model ion transport along the membrane surface, and the two transport processes can be linked analytically. In our model, we found that the interactions between ions and ion channels result in high-frequency ionic oscillations during trans-membrane transport. In ion transport along the membrane, high-frequency ionic oscillations may be evoked on both the intracellular and extracellular surfaces of the plasma membrane. The electric field caused by Coulomb interactions between the ions is found to be the most likely origin of those ionic oscillations.
Kwon, Yo Han; Park, Jung Jin; Housel, Lisa M; Minnici, Krysten; Zhang, Guoyan; Lee, Sujin R; Lee, Seung Woo; Chen, Zhongming; Noda, Suguru; Takeuchi, Esther S; Takeuchi, Kenneth J; Marschilok, Amy C; Reichmanis, Elsa
2018-04-24
A carbon nanotube (CNT) web electrode comprising magnetite spheres and few-walled carbon nanotubes (FWNTs) linked by the carboxylated conjugated polymer, poly[3-(potassium-4-butanoate) thiophene] (PPBT), was designed to demonstrate benefits derived from the rational consideration of electron/ion transport coupled with the surface chemistry of the electrode materials components. To maximize transport properties, the approach introduces monodispersed spherical Fe 3 O 4 (sFe 3 O 4 ) for uniform Li + diffusion and a FWNT web electrode frame that affords characteristics of long-ranged electronic pathways and porous networks. The sFe 3 O 4 particles were used as a model high-capacity energy active material, owing to their well-defined chemistry with surface hydroxyl (-OH) functionalities that provide for facile detection of molecular interactions. PPBT, having a π-conjugated backbone and alkyl side chains substituted with carboxylate moieties, interacted with the FWNT π-electron-rich and hydroxylated sFe 3 O 4 surfaces, which enabled the formation of effective electrical bridges between the respective components, contributing to efficient electron transport and electrode stability. To further induce interactions between PPBT and the metal hydroxide surface, polyethylene glycol was coated onto the sFe 3 O 4 particles, allowing for facile materials dispersion and connectivity. Additionally, the introduction of carbon particles into the web electrode minimized sFe 3 O 4 aggregation and afforded more porous FWNT networks. As a consequence, the design of composite electrodes with rigorous consideration of specific molecular interactions induced by the surface chemistries favorably influenced electrochemical kinetics and electrode resistance, which afforded high-performance electrodes for battery applications.
Near-surface turbulence as a missing link in modeling evapotranspiration-soil moisture relationships
NASA Astrophysics Data System (ADS)
Haghighi, Erfan; Kirchner, James W.
2017-07-01
Despite many efforts to develop evapotranspiration (ET) models with improved parametrizations of resistance terms for water vapor transfer into the atmosphere, estimates of ET and its partitioning remain prone to bias. Much of this bias could arise from inadequate representations of physical interactions near nonuniform surfaces from which localized heat and water vapor fluxes emanate. This study aims to provide a mechanistic bridge from land-surface characteristics to vertical transport predictions, and proposes a new physically based ET model that builds on a recently developed bluff-rough bare soil evaporation model incorporating coupled soil moisture-atmospheric controls. The newly developed ET model explicitly accounts for (1) near-surface turbulent interactions affecting soil drying and (2) soil-moisture-dependent stomatal responses to atmospheric evaporative demand that influence leaf (and canopy) transpiration. Model estimates of ET and its partitioning were in good agreement with available field-scale data, and highlight hidden processes not accounted for by commonly used ET schemes. One such process, nonlinear vegetation-induced turbulence (as a function of vegetation stature and cover fraction) significantly influences ET-soil moisture relationships. Our results are particularly important for water resources and land use planning of semiarid sparsely vegetated ecosystems where soil surface interactions are known to play a critical role in land-climate interactions. This study potentially facilitates a mathematically tractable description of the strength (i.e., the slope) of the ET-soil moisture relationship, which is a core component of models that seek to predict land-atmosphere coupling and its feedback to the climate system in a changing climate.
NASA Astrophysics Data System (ADS)
Garg, Sanjay
An experimental research program providing basic knowledge and establishing a database on the fluctuating pressure loads produced on aerodynamic surfaces beneath three-dimensional shock wave/boundary layer interactions is described. Such loads constitute a fundamental problem of critical concern to future supersonic and hypersonic flight vehicles. A turbulent boundary layer on a flat plate is subjected to interactions with swept planar shock waves generated by sharp fins. Fin angles from 10 ^circ to 20^circ at freestream Mach numbers of 3 and 4 produce a variety of interaction strengths from weak to very strong. Miniature pressure transducers flush-mounted in the flat plate have been used to measure interaction-induced wall pressure fluctuations. The distributions of properties of the pressure fluctuations, such as their rms level, amplitude distribution and power spectra, are also determined. Measurements have been made for the first time in the aft regions of these interactions, revealing fluctuating pressure levels as high as 155 dB, which places them in the category of significant aeroacoustic load generators. The fluctuations near the foot of the fin are dominated by low frequency (0-5 kHz) components, and are caused by a previously unrecognized random motion of the primary attachment line. This phenomenon is probably intimately linked to the unsteadiness of the separation shock at the start of the interaction. The characteristics of the pressure fluctuations are explained in light of the features of the interaction flowfield. In particular, physical mechanisms responsible for the generation of high levels of surface pressure fluctuations are proposed based on the results of the study. The unsteadiness of the flowfield of the surface is also examined via a novel, non-intrusive optical technique. Results show that the entire shock structure generated by the interaction undergoes relatively low-frequency oscillations.
Lee, Eunhee; Stafford, Walter F
2015-01-01
Scaffold proteins bind to and functionally link protein members of signaling pathways. Interaction of the scaffold proteins, myosin phosphatase target subunit (MYPT1) and myosin phosphatase-RhoA interacting protein (MRIP), causes co-localization of myosin phosphatase and RhoA to actomyosin. To examine biophysical properties of interaction of MYPT1 with MRIP, we employed analytical ultracentrifugation and surface plasmon resonance. In regard to MRIP, its residues 724-837 are sufficient for the MYPT1/MRIP interaction. Moreover, MRIP binds to MYPT1 as either a monomer or a dimer. With respect to MYPT1, its leucine repeat region, LR (residues 991-1030) is sufficient to account for the MYPT1/MRIP interaction. Furthermore, point mutations that replace glutamic acids 998-1000 within LR reduced the binding affinity toward MRIP. This suggests that the glutamic acids of MYPT1 play an important role in the interaction.
NASA Astrophysics Data System (ADS)
Goodwell, Allison E.; Kumar, Praveen
2017-07-01
In an ecohydrologic system, components of atmospheric, vegetation, and root-soil subsystems participate in forcing and feedback interactions at varying time scales and intensities. The structure of this network of complex interactions varies in terms of connectivity, strength, and time scale due to perturbations or changing conditions such as rainfall, drought, or land use. However, characterization of these interactions is difficult due to multivariate and weak dependencies in the presence of noise, nonlinearities, and limited data. We introduce a framework for Temporal Information Partitioning Networks (TIPNets), in which time-series variables are viewed as nodes, and lagged multivariate mutual information measures are links. These links are partitioned into synergistic, unique, and redundant information components, where synergy is information provided only jointly, unique information is only provided by a single source, and redundancy is overlapping information. We construct TIPNets from 1 min weather station data over several hour time windows. From a comparison of dry, wet, and rainy conditions, we find that information strengths increase when solar radiation and surface moisture are present, and surface moisture and wind variability are redundant and synergistic influences, respectively. Over a growing season, network trends reveal patterns that vary with vegetation and rainfall patterns. The framework presented here enables us to interpret process connectivity in a multivariate context, which can lead to better inference of behavioral shifts due to perturbations in ecohydrologic systems. This work contributes to more holistic characterizations of system behavior, and can benefit a wide variety of studies of complex systems.
Selvakumar, Dakshnamurthy; Drescher, Marian J.; Drescher, Dennis G.
2013-01-01
Previously, we obtained evidence for a photoreceptor/olfactory type of CNGA3 transcript in a purified teleost vestibular hair cell preparation with immunolocalization of CNGA3 protein to stereocilia of teleost vestibular and mammalian cochlear hair cells. The carboxyl terminus of highly Ca2+-permeable CNGA3 expressed in the mammalian organ of Corti and saccular hair cells was found to interact with an intracellular domain of microfibril interface-located protein 1 (EMILIN 1), a member of the elastin superfamily, also immunolocalizd to hair cell stereocilia (Selvakumar, D., Drescher, M. J., Dowdall, J. R., Khan, K. M., Hatfield, J. S., Ramakrishnan, N. A., and Drescher, D. G. (2012) Biochem. J. 443, 463–476). Here, we provide evidence for organ of Corti proteins, of Ca2+-dependent binding of the amino terminus of CNGA3 specifically to the carboxyl terminus of stereocilia tip-link protein CDH23 +68 (cadherin 23 with expressed exon 68) by yeast two-hybrid mating and co-transformation protocols, pulldown assays, and surface plasmon resonance analysis. Myosin VIIa, required for adaptation of hair cell mechanotransduction (MET) channel(s), competed with CDH23 +68, with direct Ca2+-dependent binding to the amino terminus of CNGA3. Based upon the premise that hair cell stereocilia tip-link proteins are closely coupled with MET, these results are consistent with the possibility that CNGA3 participates in hair-cell MET. Together with the demonstration of protein-protein interaction between HCN1 and tip-link protein protocadherin 15 CD3 (Ramakrishnan, N. A., Drescher, M. J., Barretto, R. L., Beisel, K. W., Hatfield, J. S., and Drescher, D. G. (2009) J. Biol. Chem. 284, 3227–3238; Ramakrishnan, N. A., Drescher, M. J., Khan, K. M., Hatfield, J. S., and Drescher, D. G. (2012) J. Biol. Chem. 287, 37628–37646), a protein-protein interaction for CNGA3 and a second tip-link protein, CDH23 +68, further suggests possible association of two different channels with a single stereocilia tip link. PMID:23329832
Selvakumar, Dakshnamurthy; Drescher, Marian J; Drescher, Dennis G
2013-03-08
Previously, we obtained evidence for a photoreceptor/olfactory type of CNGA3 transcript in a purified teleost vestibular hair cell preparation with immunolocalization of CNGA3 protein to stereocilia of teleost vestibular and mammalian cochlear hair cells. The carboxyl terminus of highly Ca(2+)-permeable CNGA3 expressed in the mammalian organ of Corti and saccular hair cells was found to interact with an intracellular domain of microfibril interface-located protein 1 (EMILIN 1), a member of the elastin superfamily, also immunolocalizd to hair cell stereocilia (Selvakumar, D., Drescher, M. J., Dowdall, J. R., Khan, K. M., Hatfield, J. S., Ramakrishnan, N. A., and Drescher, D. G. (2012) Biochem. J. 443, 463-476). Here, we provide evidence for organ of Corti proteins, of Ca(2+)-dependent binding of the amino terminus of CNGA3 specifically to the carboxyl terminus of stereocilia tip-link protein CDH23 +68 (cadherin 23 with expressed exon 68) by yeast two-hybrid mating and co-transformation protocols, pulldown assays, and surface plasmon resonance analysis. Myosin VIIa, required for adaptation of hair cell mechanotransduction (MET) channel(s), competed with CDH23 +68, with direct Ca(2+)-dependent binding to the amino terminus of CNGA3. Based upon the premise that hair cell stereocilia tip-link proteins are closely coupled with MET, these results are consistent with the possibility that CNGA3 participates in hair-cell MET. Together with the demonstration of protein-protein interaction between HCN1 and tip-link protein protocadherin 15 CD3 (Ramakrishnan, N. A., Drescher, M. J., Barretto, R. L., Beisel, K. W., Hatfield, J. S., and Drescher, D. G. (2009) J. Biol. Chem. 284, 3227-3238; Ramakrishnan, N. A., Drescher, M. J., Khan, K. M., Hatfield, J. S., and Drescher, D. G. (2012) J. Biol. Chem. 287, 37628-37646), a protein-protein interaction for CNGA3 and a second tip-link protein, CDH23 +68, further suggests possible association of two different channels with a single stereocilia tip link.
Positive selection in octopus haemocyanin indicates functional links to temperature adaptation.
Oellermann, Michael; Strugnell, Jan M; Lieb, Bernhard; Mark, Felix C
2015-07-05
Octopods have successfully colonised the world's oceans from the tropics to the poles. Yet, successful persistence in these habitats has required adaptations of their advanced physiological apparatus to compensate impaired oxygen supply. Their oxygen transporter haemocyanin plays a major role in cold tolerance and accordingly has undergone functional modifications to sustain oxygen release at sub-zero temperatures. However, it remains unknown how molecular properties evolved to explain the observed functional adaptations. We thus aimed to assess whether natural selection affected molecular and structural properties of haemocyanin that explains temperature adaptation in octopods. Analysis of 239 partial sequences of the haemocyanin functional units (FU) f and g of 28 octopod species of polar, temperate, subtropical and tropical origin revealed natural selection was acting primarily on charge properties of surface residues. Polar octopods contained haemocyanins with higher net surface charge due to decreased glutamic acid content and higher numbers of basic amino acids. Within the analysed partial sequences, positive selection was present at site 2545, positioned between the active copper binding centre and the FU g surface. At this site, methionine was the dominant amino acid in polar octopods and leucine was dominant in tropical octopods. Sites directly involved in oxygen binding or quaternary interactions were highly conserved within the analysed sequence. This study has provided the first insight into molecular and structural mechanisms that have enabled octopods to sustain oxygen supply from polar to tropical conditions. Our findings imply modulation of oxygen binding via charge-charge interaction at the protein surface, which stabilize quaternary interactions among functional units to reduce detrimental effects of high pH on venous oxygen release. Of the observed partial haemocyanin sequence, residue 2545 formed a close link between the FU g surface and the active centre, suggesting a role as allosteric binding site. The prevalence of methionine at this site in polar octopods, implies regulation of oxygen affinity via increased sensitivity to allosteric metal binding. High sequence conservation of sites directly involved in oxygen binding indicates that functional modifications of octopod haemocyanin rather occur via more subtle mechanisms, as observed in this study.
Surface interaction of polyimide with oxygen ECR plasma
NASA Astrophysics Data System (ADS)
Naddaf, M.; Balasubramanian, C.; Alegaonkar, P. S.; Bhoraskar, V. N.; Mandle, A. B.; Ganeshan, V.; Bhoraskar, S. V.
2004-07-01
Polyimide (Kapton-H), was subjected to atomic oxygen from an electron cyclotron resonance plasma. An optical emission spectrometer was used to characterize the atomic oxygen produced in the reactor chamber. The energy of the ions was measured using a retarding field analyzer, placed near the substrate. The density of atomic oxygen in the plasma was estimated using a nickel catalytic probe. The surface wettability of the polyimide samples monitored by contact angle measurements showed considerable improvement when treated with plasma. X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopic studies showed that the atomic oxygen in the plasma is the main specie affecting the surface chemistry and adhesion properties of polyimide. The improvement in the surface wettability is attributed to the high degree of cross-linking and large concentration of polar groups generated in the surface region of polyimide, after plasma treatment. The changes in the surface region of polyimide were observed by atomic force microscopic analysis.
NASA Astrophysics Data System (ADS)
Wei, Jing; Liang, Yan; Zhang, Xinyi; Simon, George P.; Zhao, Dongyuan; Zhang, Jin; Jiang, Sanping; Wang, Huanting
2015-03-01
The synthesis of mesoporous carbon nanospheres (MCNs), especially with diameters below 200 nm remains a great challenge due to weak interactions between the carbon precursors and soft templates, as well as the uncontrollable cross-linking rate of carbon precursors. Herein, we demonstrate a simple acid-assisted, hydrothermal synthesis approach to synthesizing such uniform MCNs with well controlled diameters ranging from 20 to 150 nm under highly acidic conditions (2 M HCl). Both the carbon precursor and the template are partly protonated under such conditions and show additional Coulombic interactions with chloride ions (acts as mediators). This kind of enhanced interaction is similar to that of the ``I+X-S+'' mechanism in the synthesis of mesoporous metal oxide, which can effectively retard the cross-linking rate of resol molecules and avoid macroscopic phase separation during the hydrothermal synthesis. Due to their uniform spherical morphology, small diameter, and high surface areas, MCNs can be modified with Fe and N species via impregnation of cheap precursors (ferric nitrate and dicyandiamide), which are further converted into nonprecious electrocatalysts for oxygen reduction reactions. The resulting Fe-N/MCNs exhibit high catalytic activities, long-term stability and improved methanol tolerance under alkaline conditions, which can be potentially used in direct methanol fuel cells and metal-air batteries.The synthesis of mesoporous carbon nanospheres (MCNs), especially with diameters below 200 nm remains a great challenge due to weak interactions between the carbon precursors and soft templates, as well as the uncontrollable cross-linking rate of carbon precursors. Herein, we demonstrate a simple acid-assisted, hydrothermal synthesis approach to synthesizing such uniform MCNs with well controlled diameters ranging from 20 to 150 nm under highly acidic conditions (2 M HCl). Both the carbon precursor and the template are partly protonated under such conditions and show additional Coulombic interactions with chloride ions (acts as mediators). This kind of enhanced interaction is similar to that of the ``I+X-S+'' mechanism in the synthesis of mesoporous metal oxide, which can effectively retard the cross-linking rate of resol molecules and avoid macroscopic phase separation during the hydrothermal synthesis. Due to their uniform spherical morphology, small diameter, and high surface areas, MCNs can be modified with Fe and N species via impregnation of cheap precursors (ferric nitrate and dicyandiamide), which are further converted into nonprecious electrocatalysts for oxygen reduction reactions. The resulting Fe-N/MCNs exhibit high catalytic activities, long-term stability and improved methanol tolerance under alkaline conditions, which can be potentially used in direct methanol fuel cells and metal-air batteries. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr00331h
Trevino, R. Sean; Lauckner, Jane E.; Sourigues, Yannick; Pearce, Margaret M.; Bousset, Luc; Melki, Ronald; Kopito, Ron R.
2012-01-01
The pathogenesis of most neurodegenerative diseases, including transmissible diseases like prion encephalopathy, inherited disorders like Huntington disease, and sporadic diseases like Alzheimer and Parkinson diseases, is intimately linked to the formation of fibrillar protein aggregates. It is becoming increasingly appreciated that prion-like intercellular transmission of protein aggregates can contribute to the stereotypical spread of disease pathology within the brain, but the mechanisms underlying the binding and uptake of protein aggregates by mammalian cells are largely uninvestigated. We have investigated the properties of polyglutamine (polyQ) aggregates that endow them with the ability to bind to mammalian cells in culture and the properties of the cell surface that facilitate such uptake. Binding and internalization of polyQ aggregates are common features of mammalian cells and depend upon both trypsin-sensitive and trypsin-resistant saturable sites on the cell surface, suggesting the involvement of cell surface proteins in this process. polyQ aggregate binding depends upon the presence of a fibrillar amyloid-like structure and does not depend upon electrostatic interaction of fibrils with the cell surface. Sequences in the huntingtin protein that flank the amyloid-forming polyQ tract also influence the extent to which aggregates are able to bind to cell surfaces. PMID:22753412
NASA Astrophysics Data System (ADS)
Koch, J. C.; Carey, M.; O'Donnell, J.; Sjoberg, Y.; Zimmerman, C. E.
2016-12-01
The arctic-boreal transition zone of Alaska is experiencing rapid change related to unprecedented warming and subsequent loss of permafrost. These changes in turn may affect groundwater-surface water (GW-SW) interactions, biogeochemical cycling, and ecosystem processes. While recent field and modeling studies have improved our understanding of hydrology in watersheds underlain by thawing permafrost, little is known about how these hydrologic shifts will impact bottom-up controls on stream food webs. To address this uncertainty, we are using an integrative experimental design to link GW-SW interactions to stream biogeochemistry and biota in 10 first-order streams in northwest Alaska. These study streams drain watersheds that span several gradients, including elevation, aspect, and vegetation (tundra vs. forest). We have developed a robust, multi-disciplinary data set to characterize GW-SW interactions and to mechanistically link GW-SW dynamics to water quality and the stream ecosystem. Data includes soil hydrology and chemistry; stream discharge, temperature, and inflow rates; water chemistry (including water isotopes, major ions, carbon concentration and isotopes, nutrients and chlorophyll-a), and invertebrate and fish communities. Stream recession curves indicate a decreasing rate later in the summer in some streams, consistent with seasonal thaw in lower elevation and south-facing catchments. Base cation and water isotope chemistry display similar impacts of seasonal thaw and also suggest the dominance of groundwater in many streams. Coupled with estimates of GW-SW exchange at point, reach, and catchment scales, these results will be used to predict how hydrology and water quality are likely to impact fish habitat and growth given continued warming at the arctic-boreal transition.
Continent-Ocean Interactions Within East Asian Marginal Seas
NASA Astrophysics Data System (ADS)
Clift, Peter; Kuhnt, Wolfgang; Wang, Pinxian; Hayes, Dennis
The study of the complex interactions between continents and oceans has become a leading area for 21st century earth cience. In this volume, continent—ocean interactions in tectonics, arc-continent collision, sedimentology, and climatic volution within the East Asian Marginal Seas take precedence. Links between oceanic and continental climate, the sedimentology of coastal and shelf areas, and the links between deformation of continental and oceanic lithosphere are also discussed. As an introduction to the science presented throughout the volume, Wang discusses many of the possible interactions between the tectonic evolution of Asia and both regional and global climate. He speculates that uplift of central Asia in the Pliocene may have triggered the formation of many of the major rivers that drain north through Siberia into the Arctic Ocean. He also argues that it is the delivery of this fresh water that allows the formation of sea ice in that area and triggered the start of Northern Hemispheric glaciation. This may be one of the most dramatic ways in which Asia has shaped the Earth's climate and represents an alternative to the other competing models that have previously emphasized the role of oceanic gateway closure in Central America. Moreover, his proposal for major uplift of at least part of Tibet and Mongolia as late as the Pliocene, based on the history of drainage evolution in Siberia, supports recent data from the southern Tarim Basin and from the Qilian Shan and Qaidam and Jiuxi Basins in northeast Tibet that indicate surface uplift at that time. Constraining the timing and patterns of Tibetan surface uplift is crucial to testing competing models for strain accommodation in Asia following India—Asia collision.
T-Cell Artificial Focal Triggering Tools: Linking Surface Interactions with Cell Response
Carpentier, Benoît; Pierobon, Paolo; Hivroz, Claire; Henry, Nelly
2009-01-01
T-cell activation is a key event in the immune system, involving the interaction of several receptor ligand pairs in a complex intercellular contact that forms between T-cell and antigen-presenting cells. Molecular components implicated in contact formation have been identified, but the mechanism of activation and the link between molecular interactions and cell response remain poorly understood due to the complexity and dynamics exhibited by whole cell-cell conjugates. Here we demonstrate that simplified model colloids grafted so as to target appropriate cell receptors can be efficiently used to explore the relationship of receptor engagement to the T-cell response. Using immortalized Jurkat T cells, we monitored both binding and activation events, as seen by changes in the intracellular calcium concentration. Our experimental strategy used flow cytometry analysis to follow the short time scale cell response in populations of thousands of cells. We targeted both T-cell receptor CD3 (TCR/CD3) and leukocyte-function-associated antigen (LFA-1) alone or in combination. We showed that specific engagement of TCR/CD3 with a single particle induced a transient calcium signal, confirming previous results and validating our approach. By decreasing anti-CD3 particle density, we showed that contact nucleation was the most crucial and determining step in the cell-particle interaction under dynamic conditions, due to shear stress produced by hydrodynamic flow. Introduction of LFA-1 adhesion molecule ligands at the surface of the particle overcame this limitation and elucidated the low TCR/CD3 ligand density regime. Despite their simplicity, model colloids induced relevant biological responses which consistently echoed whole cell behavior. We thus concluded that this biophysical approach provides useful tools for investigating initial events in T-cell activation, and should enable the design of intelligent artificial systems for adoptive immunotherapy. PMID:19274104
Cross-linking reveals laminin coiled-coil architecture
Armony, Gad; Jacob, Etai; Moran, Toot; Levin, Yishai; Mehlman, Tevie; Levy, Yaakov; Fass, Deborah
2016-01-01
Laminin, an ∼800-kDa heterotrimeric protein, is a major functional component of the extracellular matrix, contributing to tissue development and maintenance. The unique architecture of laminin is not currently amenable to determination at high resolution, as its flexible and narrow segments complicate both crystallization and single-particle reconstruction by electron microscopy. Therefore, we used cross-linking and MS, evaluated using computational methods, to address key questions regarding laminin quaternary structure. This approach was particularly well suited to the ∼750-Å coiled coil that mediates trimer assembly, and our results support revision of the subunit order typically presented in laminin schematics. Furthermore, information on the subunit register in the coiled coil and cross-links to downstream domains provide insights into the self-assembly required for interaction with other extracellular matrix and cell surface proteins. PMID:27815530
Aerosols implicated as a prime driver of twentieth-century North Atlantic climate variability.
Booth, Ben B B; Dunstone, Nick J; Halloran, Paul R; Andrews, Timothy; Bellouin, Nicolas
2012-04-04
Systematic climate shifts have been linked to multidecadal variability in observed sea surface temperatures in the North Atlantic Ocean. These links are extensive, influencing a range of climate processes such as hurricane activity and African Sahel and Amazonian droughts. The variability is distinct from historical global-mean temperature changes and is commonly attributed to natural ocean oscillations. A number of studies have provided evidence that aerosols can influence long-term changes in sea surface temperatures, but climate models have so far failed to reproduce these interactions and the role of aerosols in decadal variability remains unclear. Here we use a state-of-the-art Earth system climate model to show that aerosol emissions and periods of volcanic activity explain 76 per cent of the simulated multidecadal variance in detrended 1860-2005 North Atlantic sea surface temperatures. After 1950, simulated variability is within observational estimates; our estimates for 1910-1940 capture twice the warming of previous generation models but do not explain the entire observed trend. Other processes, such as ocean circulation, may also have contributed to variability in the early twentieth century. Mechanistically, we find that inclusion of aerosol-cloud microphysical effects, which were included in few previous multimodel ensembles, dominates the magnitude (80 per cent) and the spatial pattern of the total surface aerosol forcing in the North Atlantic. Our findings suggest that anthropogenic aerosol emissions influenced a range of societally important historical climate events such as peaks in hurricane activity and Sahel drought. Decadal-scale model predictions of regional Atlantic climate will probably be improved by incorporating aerosol-cloud microphysical interactions and estimates of future concentrations of aerosols, emissions of which are directly addressable by policy actions.
Surface salt bridges modulate DNA wrapping by the type II DNA-binding protein TF1.
Grove, Anne
2003-07-29
The histone-like protein HU is involved in compaction of the bacterial genome. Up to 37 bp of DNA may be wrapped about some HU homologues in a process that has been proposed to depend on a linked disruption of surface salt bridges that liberates cationic side chains for interaction with the DNA. Despite significant sequence conservation between HU homologues, binding sites from 9 to 37 bp have been reported. TF1, an HU homologue that is encoded by Bacillus subtilis bacteriophage SPO1, has nM affinity for 37 bp preferred sites in DNA with 5-hydroxymethyluracil (hmU) in place of thymine. On the basis of electrophoretic mobility shift assays, we show that TF1-DNA complex formation is associated with a net release of only approximately 0.5 cations. The structure of TF1 suggests that Asp13 can form a dehydrated surface salt bridge with Lys23; substitution of Asp13 with Ala increases the net release of cations to approximately 1. These data are consistent with complex formation linked to disruption of surface salt bridges. Substitution of Glu90 with Ala, which would expose Lys87 predicted to contact DNA immediately distal to a proline-mediated DNA kink, causes an increase in affinity and an abrogation of the preference for hmU-containing DNA. We propose that hmU preference is due to finely tuned interactions at the sites of kinking that expose a differential flexibility of hmU- and T-containing DNA. Our data further suggest that the difference in binding site size for HU homologues is based on a differential ability to stabilize the DNA kinks.
Tan, Yaw Sing; Spring, David R; Abell, Chris; Verma, Chandra S
2015-07-14
A computational ligand-mapping approach to detect protein surface pockets that interact with hydrophobic moieties is presented. In this method, we incorporated benzene molecules into explicit solvent molecular dynamics simulations of various protein targets. The benzene molecules successfully identified the binding locations of hydrophobic hot-spot residues and all-hydrocarbon cross-links from known peptidic ligands. They also unveiled cryptic binding sites that are occluded by side chains and the protein backbone. Our results demonstrate that ligand-mapping molecular dynamics simulations hold immense promise to guide the rational design of peptidic modulators of protein-protein interactions, including that of stapled peptides, which show promise as an exciting new class of cell-penetrating therapeutic molecules.
Ybe, Joel A.; Mishra, Sanjay; Helms, Stephen; Nix, Jay
2007-01-01
Summary Huntingtin interacting protein 1 (HIP1) is a member of a family of proteins whose interaction with Huntingtin is critical to prevent cells from initiating apoptosis. HIP1, and related protein HIP12/1R, can also bind to clathrin and membrane phospholipids and HIP12/1R links the CCV to the actin cytoskeleton. HIP1 and HIP12/1R interact with the clathrin light chain EED regulatory site and stimulate clathrin lattice assembly. Here we report the X-ray structure of the coiled-coil domain of HIP1 from 482–586 that includes residues crucial for binding clathrin light chain. The dimeric HIP1 crystal structure is partially splayed open. The comparison of the HIP1 model with coiled-coil predictions revealed the heptad repeat in the dimeric trunk (S2 path) is offset relative to the register of the heptad repeat from the N-terminal portion (S1 path) of the molecule. Furthermore, surface analysis showed there is a third hydrophobic path (S3) running parallel to S1 and S2. We present structural evidence supporting a role for S3 path as an interaction surface for clathrin light chain. Finally, comparative analysis suggests the mode of binding between sla2p and clathrin light chain may be different in yeast. PMID:17257618
A simulation-optimization model for effective water resources management in the coastal zone
NASA Astrophysics Data System (ADS)
Spanoudaki, Katerina; Kampanis, Nikolaos
2015-04-01
Coastal areas are the most densely-populated areas in the world. Consequently water demand is high, posing great pressure on fresh water resources. Climatic change and its direct impacts on meteorological variables (e.g. precipitation) and indirect impact on sea level rise, as well as anthropogenic pressures (e.g. groundwater abstraction), are strong drivers causing groundwater salinisation and subsequently affecting coastal wetlands salinity with adverse effects on the corresponding ecosystems. Coastal zones are a difficult hydrologic environment to represent with a mathematical model due to the large number of contributing hydrologic processes and variable-density flow conditions. Simulation of sea level rise and tidal effects on aquifer salinisation and accurate prediction of interactions between coastal waters, groundwater and neighbouring wetlands requires the use of integrated surface water-groundwater mathematical models. In the past few decades several computer codes have been developed to simulate coupled surface and groundwater flow. However, most integrated surface water-groundwater models are based on the assumption of constant fluid density and therefore their applicability to coastal regions is questionable. Thus, most of the existing codes are not well-suited to represent surface water-groundwater interactions in coastal areas. To this end, the 3D integrated surface water-groundwater model IRENE (Spanoudaki et al., 2009; Spanoudaki, 2010) has been modified in order to simulate surface water-groundwater flow and salinity interactions in the coastal zone. IRENE, in its original form, couples the 3D shallow water equations to the equations describing 3D saturated groundwater flow of constant density. A semi-implicit finite difference scheme is used to solve the surface water flow equations, while a fully implicit finite difference scheme is used for the groundwater equations. Pollution interactions are simulated by coupling the advection-diffusion equation describing the fate and transport of contaminants introduced in a 3D turbulent flow field to the partial differential equation describing the fate and transport of contaminants in 3D transient groundwater flow systems. The model has been further developed to include the effects of density variations on surface water and groundwater flow, while the already built-in solute transport capabilities are used to simulate salinity interactions. The refined model is based on the finite volume method using a cell-centred structured grid, providing thus flexibility and accuracy in simulating irregular boundary geometries. For addressing water resources management problems, simulation models are usually externally coupled with optimisation-based management models. However this usually requires a very large number of iterations between the optimisation and simulation models in order to obtain the optimal management solution. As an alternative approach, for improved computational efficiency, an Artificial Neural Network (ANN) is trained as an approximate simulator of IRENE. The trained ANN is then linked to a Genetic Algorithm (GA) based optimisation model for managing salinisation problems in the coastal zone. The linked simulation-optimisation model is applied to a hypothetical study area for performance evaluation. Acknowledgement The work presented in this paper has been funded by the Greek State Scholarships Foundation (IKY), Fellowships of Excellence for Postdoctoral Studies (Siemens Program), 'A simulation-optimization model for assessing the best practices for the protection of surface water and groundwater in the coastal zone', (2013 - 2015). References Spanoudaki, K., Stamou, A.I. and Nanou-Giannarou, A. (2009). Development and verification of a 3-D integrated surface water-groundwater model. Journal of Hydrology, 375 (3-4), 410-427. Spanoudaki, K. (2010). Integrated numerical modelling of surface water groundwater systems (in Greek). Ph.D. Thesis, National Technical University of Athens, Greece.
Structural characterization and Hirshfeld surface analysis of racemic baclofen
NASA Astrophysics Data System (ADS)
Maniukiewicz, Waldemar; Oracz, Monika; Sieroń, Lesław
2016-11-01
The crystal structure of baclofen, (R,S) [4-amino-3-(4-chlorophenyl)butanoic acid], (C10H12ClNO2, Mr = 213.66) has been determined by single crystal X-ray diffraction analysis. The title compound crystallizes in the orthorhombic space group Pbca (No. 61) with a = 9.2704(5), b = 7.0397(4), c = 30.4015(15) Å, V = 1984.0(2) Å3 and Z = 8. The molecules exist as zwitterions, adopting a gauche conformation with respect to the Cαsbnd Cβ bond, and held in a cross-linked chain arrangement by strong Nsbnd H⋯O hydrogen bonds and Csbnd Cl⋯π interactions. The electrostatic molecular potential as well as the intermolecular interactions of the title compound were analyzed by the Hirshfeld surfaces. The FT-IR spectrum is also reported. The DTA, TG and DTG results indicate that baclofen is stable up to 205 °C.
Hydrophobic-Interaction-Induced Stiffening of α -Synuclein Fibril Networks
NASA Astrophysics Data System (ADS)
Semerdzhiev, Slav A.; Lindhoud, Saskia; Stefanovic, Anja; Subramaniam, Vinod; van der Schoot, Paul; Claessens, Mireille M. A. E.
2018-05-01
In water, networks of semiflexible fibrils of the protein α -synuclein stiffen significantly with increasing temperature. We make plausible that this reversible stiffening is a result of hydrophobic contacts between the fibrils that become more prominent with increasing temperature. The good agreement of our experimentally observed temperature dependence of the storage modulus of the network with a scaling theory linking network elasticity with reversible cross-linking enables us to quantify the endothermic binding enthalpy and estimate the effective size of hydrophobic patches on the fibril surface. Our findings may not only shed light on the role of amyloid deposits in disease conditions, but can also inspire new approaches for the design of thermoresponsive materials.
Hydrophobic-Interaction-Induced Stiffening of α-Synuclein Fibril Networks.
Semerdzhiev, Slav A; Lindhoud, Saskia; Stefanovic, Anja; Subramaniam, Vinod; van der Schoot, Paul; Claessens, Mireille M A E
2018-05-18
In water, networks of semiflexible fibrils of the protein α-synuclein stiffen significantly with increasing temperature. We make plausible that this reversible stiffening is a result of hydrophobic contacts between the fibrils that become more prominent with increasing temperature. The good agreement of our experimentally observed temperature dependence of the storage modulus of the network with a scaling theory linking network elasticity with reversible cross-linking enables us to quantify the endothermic binding enthalpy and estimate the effective size of hydrophobic patches on the fibril surface. Our findings may not only shed light on the role of amyloid deposits in disease conditions, but can also inspire new approaches for the design of thermoresponsive materials.
Villalva, Denise Gradella; Giansanti, Luisa; Mauceri, Alessandro; Ceccacci, Francesca; Mancini, Giovanna
2017-11-01
The presence of carbohydrate-binding proteins (i.e. lectins) on the surface of various bacterial strains and their overexpression in some tumor tissues makes the use of glycosylated liposomes a promising approach for the specific drug delivery in antibacterial and anti-cancer therapies. However, the functionalization of liposome surface with sugar moieties by glycosylated amphiphiles does not ensure the binding of sugar-coated vesicles with lectins. In fact, the composition and properties of lipid bilayer play a pivotal role in the exposure of sugar residues and in the interaction with lectins. The influence of the length of the hydrophilic spacer that links the sugar to liposome surface and of the presence of saturated or unsaturated phospholipids in the lipid bilayer on the ability of glucosylated liposomes to interact with a model lectin, Concanavalin A, was investigated. Our results demonstrate that both the chain length and the prensece of unsaturation, parameters that strongly affect the fluidity of the lipid bilayer, affect agglutination. In particular, agglutination is favored when liposomes are in the gel phase within a defined range of temperature. Moreover, the obtained results confirm that the length of the PEG spacer, that influences both lipid organization and the exposure of sugar moieties to the bulk, plays a crucial role in liposome/lectin interaction. Copyright © 2017 Elsevier B.V. All rights reserved.
Band Formation and Ocean-Surface Interaction on Europa and Ganymede
NASA Astrophysics Data System (ADS)
Howell, Samuel M.; Pappalardo, Robert T.
2018-05-01
Geologic activity in the outer H2O ice shells of Europa and Ganymede, Galilean moons of Jupiter, may facilitate material exchange between global water oceans and the icy surface, fundamentally affecting potential habitability and the future search for life. Spacecraft imagery reveals surfaces rich with tectonic bands, predominantly attributed to the extension of brittle ice overlaying a convecting ice layer. However, the details of band-forming processes and links to potential ocean-surface exchange have remained elusive. We simulate ice shell faulting and convection with two-dimensional numerical models and track the movement of "fossil" ocean material frozen into the base of the ice shell and deformed through geologic time. We find that distinct band types form within a spectrum of extensional terrains correlated to lithosphere strength, governed by lithosphere thickness and cohesion. Furthermore, we find that smooth bands formed in weak lithosphere promote exposure of fossil ocean material at the surface.
Zhuang, Chen; Shi, Chengmei; Tao, Furong; Cui, Yuezhi
2017-12-01
The functionalized cellulose ester MCN was firstly synthesized and used to cross-link gelatin by amidation between -NH 2 in gelatin and active ester groups in MCN to form a composite polymer network Gel-MCN, which was confirmed by Van Slyke method, FTIR, XRD and TGA-DTG spectra. The model drug omeprazole was loaded in Gel-MCN composites mainly by electrostatic interaction and hydrogen bonds, which were certified by FTIR, XRD and TGA-DSC. Thermal stability, anti-biodegradability, mechanical property and surface hydrophobicity of the composites with different cross-linking extents and drug loading were systematically investigated. SEM images demonstrated the honeycomb structural cells of cross-linked gelatin networks and this ensured drug entrapment. The drug release mechanism was dominated by a combined effect of diffusion and degradation, and the release rate decreased with cross-linking degree increased. The developed drug delivery system had profound significance in improving pesticide effect and bioavailability of drugs. Copyright © 2017. Published by Elsevier B.V.
Castillo, Virginia; Ventura, Salvador
2009-01-01
Protein aggregation underlies a wide range of human disorders. The polypeptides involved in these pathologies might be intrinsically unstructured or display a defined 3D-structure. Little is known about how globular proteins aggregate into toxic assemblies under physiological conditions, where they display an initially folded conformation. Protein aggregation is, however, always initiated by the establishment of anomalous protein-protein interactions. Therefore, in the present work, we have explored the extent to which protein interaction surfaces and aggregation-prone regions overlap in globular proteins associated with conformational diseases. Computational analysis of the native complexes formed by these proteins shows that aggregation-prone regions do frequently overlap with protein interfaces. The spatial coincidence of interaction sites and aggregating regions suggests that the formation of functional complexes and the aggregation of their individual subunits might compete in the cell. Accordingly, single mutations affecting complex interface or stability usually result in the formation of toxic aggregates. It is suggested that the stabilization of existing interfaces in multimeric proteins or the formation of new complexes in monomeric polypeptides might become effective strategies to prevent disease-linked aggregation of globular proteins. PMID:19696882
Interaction of glycophorin A with lectins as measured by surface plasmon resonance (SPR).
Krotkiewska, Bozena; Pasek, Marta; Krotkiewski, Hubert
2002-01-01
Glycophorin A (GPA), the major sialoglycoprotein of the human erythrocyte membrane, was isolated from erythrocytes of healthy individuals of blood groups A, B and O using phenol-water extraction of erythrocyte membranes. Interaction of individual GPA samples with three lectins (Psathyrella velutina lectin, PVL; Triticum vulgaris lectin, WGA and Sambucus nigra I agglutinin SNA-I) was analyzed using a BIAcore biosensor equipped with a surface plasmon resonance (SPR) detector. The experiments showed no substantial differences in the interaction between native and desialylated GPA samples originating from erythrocytes of either blood group and each of the lectins. Desialylated samples reacted weaker than the native ones with all three lectins. PVL reacted about 50-fold more strongly than WGA which, similar to PVL, recognizes GlcNAc and Neu5Ac residues. SNA-I lectin, recognizing alpha2-6 linked Neu5Ac residues, showed relatively weak reaction with native and only residual reaction with desialylated GPA samples. The data obtained show that SPR is a valuable method to determine interaction of glycoproteins with lectins, which potentially can be used to detect differences in the carbohydrate moiety of individual glycoprotein samples.
Rungnim, Chompoonut; Rungrotmongkol, Thanyada; Kungwan, Nawee; Hannongbua, Supot
2016-09-01
Epidermal growth factor (EGF) was used as the targeting ligand to enhance the specificity of a cancer drug delivery system (DDS) via its specific interaction with the EGF receptor (EGFR) that is overexpressed on the surface of some cancer cells. To investigate the intermolecular interaction and binding affinity between the EGF-conjugated DDS and the EGFR, 50 ns molecular dynamics simulations were performed on the complex of tethered EGFR and EGF linked to single-wall carbon nanotube (SWCNT) through a biopolymer chitosan wrapping the tube outer surface (EGFR·EGF-CS-SWCNT-Drug complex), and compared to the EGFR·EGF complex and free EGFR. The binding pattern of the EGF-CS-SWCNT-Drug complex to the EGFR was broadly comparable to that for EGF, but the binding affinity of the EGF-CS-SWCNT-Drug complex was predicted to be somewhat better than that for EGF alone. Additionally, the chitosan chain could prevent undesired interactions of SWCNT at the binding pocket region. Therefore, EGF connected to SWCNT via a chitosan linker is a seemingly good formulation for developing a smart DDS served as part of an alternative cancer therapy.
Oligosaccharide ligands for NKR-P1 protein activate NK cells and cytotoxicity
NASA Astrophysics Data System (ADS)
Bezouška, Karel; Yuen, Chun-Ting; O'Brien, Jacqui; Childs, Robert A.; Chai, Wengang; Lawson, Alexander M.; Drbal, Karel; Fišerová, Anna; Posíšil, Miloslav; Feizi, Ten
1994-11-01
A diversity of high-affinity Oligosaccharide ligands are identified for NKR-P1, a membrane protein on natural killer (NK) cells which contains an extracellular Ca2+-dependent lectin domain. Interactions of such oligosaccharides on the target cell surface with NKR-P1 on the killer cell surface are crucial both for target cell recognition and for delivery of stimulatory or inhibitory signals linked to the NK cytolytic machinery. NK-resistant tumour cells are rendered susceptible by preincubation with liposomes expressing NKR-P1 ligands, suggesting that purging of tumour or virally infected cells in vivo may be a therapeutic possibility.
Zapata, Jonathan; Moretto, Edoardo; Hannan, Saad; Murru, Luca; Longatti, Anna; Mazza, Davide; Benedetti, Lorena; Fossati, Matteo; Heise, Christopher; Ponzoni, Luisa; Valnegri, Pamela; Braida, Daniela; Sala, Mariaelvina; Francolini, Maura; Hildebrand, Jeffrey; Kalscheuer, Vera; Fanelli, Francesca; Sala, Carlo; Bettler, Bernhard; Bassani, Silvia; Smart, Trevor G.; Passafaro, Maria
2017-01-01
Shrm4, a protein expressed only in polarized tissues, is encoded by the KIAA1202 gene, whose mutations have been linked to epilepsy and intellectual disability. However, a physiological role for Shrm4 in the brain is yet to be established. Here, we report that Shrm4 is localized to synapses where it regulates dendritic spine morphology and interacts with the C terminus of GABAB receptors (GABABRs) to control their cell surface expression and intracellular trafficking via a dynein-dependent mechanism. Knockdown of Shrm4 in rat severely impairs GABABR activity causing increased anxiety-like behaviour and susceptibility to seizures. Moreover, Shrm4 influences hippocampal excitability by modulating tonic inhibition in dentate gyrus granule cells, in a process involving crosstalk between GABABRs and extrasynaptic δ-subunit-containing GABAARs. Our data highlights a role for Shrm4 in synaptogenesis and in maintaining GABABR-mediated inhibition, perturbation of which may be responsible for the involvement of Shrm4 in cognitive disorders and epilepsy. PMID:28262662
Complex magnetic structure of clusters and chains of Ni and Fe on Pt(111)
Bezerra-Neto, Manoel M.; Ribeiro, Marcelo S.; Sanyal, Biplab; Bergman, Anders; Muniz, Roberto B.; Eriksson, Olle; Klautau, Angela B.
2013-01-01
We present an approach to control the magnetic structure of adatoms adsorbed on a substrate having a high magnetic susceptibility. Using finite Ni-Pt and Fe-Pt nanowires and nanostructures on Pt(111) surfaces, our ab initio results show that it is possible to tune the exchange interaction and magnetic configuration of magnetic adatoms (Fe or Ni) by introducing different numbers of Pt atoms to link them, or by including edge effects. The exchange interaction between Ni (or Fe) adatoms on Pt(111) can be considerably increased by introducing Pt chains to link them. The magnetic ordering can be regulated allowing for ferromagnetic or antiferromagnetic configurations. Noncollinear magnetic alignments can also be stabilized by changing the number of Pt-mediated atoms. An Fe-Pt triangularly-shaped nanostructure adsorbed on Pt(111) shows the most complex magnetic structure of the systems considered here: a spin-spiral type of magnetic order that changes its propagation direction at the triangle vertices. PMID:24165828
Li, Yixuan; Pan, Tiezheng; Ma, Benhua; Liu, Junqiu; Sun, Junqi
2017-04-26
Antifouling polymeric films can prevent undesirable adhesion of bacteria but are prone to accidental scratches, leading to a loss of their antifouling functions. To solve this problem, we report the fabrication of healable antifouling polymeric films by layer-by-layer assembly of partially hydrolyzed poly(2-ethyl-2-oxazoline) (PEtOx-EI-7%) and poly(acrylic acid) (PAA) based on hydrogen-bonding interaction as the driving force. The thermally cross-linked (PAA/PEtOx-EI-7%)*100 films show strong resistance to adhesion of both Gram-negative Escherichia coli and Gram-positive Bacillus subtilis bacteria due to the high surface and bulk concentration of the antifouling polymer PEtOx-EI-7%. Meanwhile, the dynamic nature of the hydrogen-bonding interactions and the high mobility of the polymers in the presence of water enable repeated healing of cuts of several tens of micrometers wide in cross-linked (PAA/PEtOx-EI-7%)*100 films to fully restore their antifouling function.
Controlled method of reducing electrophoretic mobility of macromolecules, particles, or cells
NASA Technical Reports Server (NTRS)
Vanalstine, James M. (Inventor)
1992-01-01
A method of reducing electrophoretic mobility of macromolecules, particles, cells, and other substances is provided which comprises interacting in a conventional electrophoretic separating procedure, the substances with a polymer-linked affinity compound comprised of a hydrophilic neutral polymer such as polyethylene glycol bound to a second component such as a hydrophobic compound, an immunocompound such as an antibody or antibody active fragment, or a ligand such as a hormone, drug, antigen, or a hapten. The reduction of electrophoretic mobility achieved is directly proportional to the concentration of the polymer-linked affinity compound employed, and such reduction can comprise up to 100 percent for particular particles and cells. The present invention is advantageous in that electrophoretic separation can now be achieved for substances whose native surface charge structure had prevented them from being separated by normal electrophoretic means. Depending on the affinity component utilized, separation can be achieved on the basis of the specific/irreversible, specific/reversible, semi-specific/reversible, relatively nonspecific/reversible, or relatively nonspecific/irreversible ligand-substance interactions.
Microphysics, Radiation and Surface Processes in the Goddard Cumulus Ensemble (GCE) Model
NASA Technical Reports Server (NTRS)
Tao, Wei-Kuo; Simpson, J.; Baker, D.; Braun, S.; Chou, M.-D.; Ferrier, B.; Johnson, D.; Khain, A.; Lang, S.; Lynn, B.
2001-01-01
The response of cloud systems to their environment is an important link in a chain of processes responsible for monsoons, frontal depression, El Nino Southern Oscillation (ENSO) episodes and other climate variations (e.g., 30-60 day intra-seasonal oscillations). Numerical models of cloud properties provide essential insights into the interactions of clouds with each other, with their surroundings, and with land and ocean surfaces. Significant advances are currently being made in the modeling of rainfall and rain-related cloud processes, ranging in scales from the very small up to the simulation of an extensive population of raining cumulus clouds in a tropical- or midlatitude-storm environment. The Goddard Cumulus Ensemble (GCE) model is a multi-dimensional nonhydrostatic dynamic/microphysical cloud resolving model. It has been used to simulate many different mesoscale convective systems that occurred in various geographic locations. In this paper, recent GCE model improvements (microphysics, radiation and surface processes) will be described as well as their impact on the development of precipitation events from various geographic locations. The performance of these new physical processes will be examined by comparing the model results with observations. In addition, the explicit interactive processes between cloud, radiation and surface processes will be discussed.
The Tandem CARDs of NOD2: Intramolecular Interactions and Recognition of RIP2
Fridh, Veronica; Rittinger, Katrin
2012-01-01
Caspase recruitment domains (CARDs) are homotypic protein interaction modules that link the stimulus-dependent assembly of large signaling platforms such as inflammasomes to the activation of downstream effectors that often include caspases and kinases and thereby play an important role in the regulation of inflammatory and apoptotic signaling pathways. NOD2 belongs to the NOD-like (NLR) family of intracellular pattern recognition receptors (PRR) and induces activation of the NF-κB pathway in response to the recognition of bacterial components. This process requires the specific recognition of the CARD of the protein kinase RIP2 by the tandem CARDs of NOD2. Here we demonstrate that the tandem CARDs of NOD2 are engaged in an intramolecular interaction that is important for the structural stability of this region. Using a combination of ITC and pull-down experiments we identify distinct surface areas that are involved in the intramolecular tandem CARD interaction and the interaction with the downstream effector RIP2. Our findings indicate that while CARDa of NOD2 might be the primary binding partner of RIP2 the two CARDs of NOD2 do not act independently of one another but may cooperate to from a binding surface that is distinct from that of single CARDs. PMID:22470564
NASA Astrophysics Data System (ADS)
Mudunkotuwa, Imali Ama
Nanoscience and nanotechnology offer potential routes towards addressing critical issues such as clean and sustainable energy, environmental protection and human health. Specifically, metal and metal oxide nanomaterials are found in a wide range of applications and therefore hold a greater potential of possible release into the environment or for the human to be exposed. Understanding the aqueous phase behavior of metal and metal oxide nanomaterials is a key factor in the safe design of these materials because their interactions with living systems are always mediated through the aqueous phase. Broadly the transformations in the aqueous phase can be classified as dissolution, aggregation and adsorption which are dependent and linked processes to one another. The complexity of these processes at the liquid-solid interface has therefore been one of the grand challenges that has persisted since the beginning of nanotechnology. Although classical models provide guidance for understanding dissolution and aggregation of nanoparticles in water, there are many uncertainties associated with the recent findings. This is often due to a lack of fundamental knowledge of the surface structure and surface energetics for very small particles. Therefore currently the environmental health and safety studies related to nanomaterials are more focused on understanding the surface chemistry that governs the overall processes in the liquid-solid interfacial region at the molecular level. The metal based nanomaterials focused on in this dissertation include TiO2, ZnO, Cu and CuO. These are among the most heavily used in a number of applications ranging from uses in the construction industry to cosmetic formulation. Therefore they are produced in large scale and have been detected in the environment. There is debate within the scientific community related to their safety as a result of the lack of understanding on the surface interactions that arise from the detailed nature of the surfaces. Specifically, the interactions of these metal and metal oxide nanoparticles with environmental and biological ligands in the solutions have demonstrated dramatic alterations in their aqueous phase behavior in terms of dissolution and aggregation. Dissolution and aggregation are among the determining factors of nanoparticle uptake and toxicity. Furthermore, solution conditions such as ionic strength and pH can act as controlling parameters for surface ligand adsorption while adsorbed ligands themselves undergo surface induced structural and conformational changes. Because, nanomaterials in both the environment and in biological systems are subjected to a wide range of matrix conditions they are in fact dynamic and not static entities. Thus monitoring and tracking these nanomaterials in real systems can be extremely challenging which requires a thorough understanding of the surface chemistry governing their transformations. The work presented in this dissertation attempts to bridge the gap between the dynamic processing of these nanomaterials, the details of the molecular level processes that occur at the liquid-solid interfacial region and potential environmental and biological interactions. Extensive nanomaterial characterization is an integral part of these investigations and all the materials presented here are thoroughly analyzed for particle size, shape, surface area, bulk and surface compositions. Detailed spectroscopic analysis was used to acquire molecular information of the processes in the liquid-solid interfacial region and the outcomes are linked with the macroscopic analysis with the aid of dynamic and static light scattering techniques. Furthermore, emphasis is given to the size dependent behavior and theoretical modeling is adapted giving careful consideration to the details of the physicochemical characterization and molecular information unique to the nanomaterials.
NASA Astrophysics Data System (ADS)
Sanchez-Mejia, Zulia M.
Uncertainty of predicted change in precipitation frequency and intensity motivates the scientific community to better understand, quantify, and model the possible outcome of dryland ecosystems. In pulse dependent ecosystems (i.e. monsoon driven) soil moisture is tightly linked to atmospheric processes. Here, I analyze three overarching questions; Q1) How does soil moisture presence or absence in a shallow or deep layer influence the surface energy budget and planetary boundary layer characteristics?, Q2) What is the role of vegetation on ecosystem albedo in the presence or absence of deep soil moisture?, Q3) Can we develop empirical relationships between soil moisture and the planetary boundary layer height to help evaluate the role of future precipitation changes in land surface atmosphere interactions? . To address these questions I use a conceptual framework based on the presence or absence of soil moisture in a shallow or deep layer. I define these layers by using root profiles and establish soil moisture thresholds for each layer using four years of observations from the Santa Rita Creosote Ameriflux site. Soil moisture drydown curves were used to establish the shallow layer threshold in the shallow layer, while NEE (Net Ecosystem Exchange of carbon dioxide) was used to define the deep soil moisture threshold. Four cases were generated using these thresholds: Case 1, dry shallow layer and dry deep layer; Case 2, wet shallow layer and dry deep layer; Case 3, wet shallow layer and wet deep layer, and Case 4 dry shallow and wet deep layer. Using this framework, I related data from the Ameriflux site SRC (Santa Rita Creosote) from 2008 to 2012 and from atmospheric soundings from the nearby Tucson Airport; conducted field campaigns during 2011 and 2012 to measure albedo from individual bare and canopy patches that were then evaluated in a grid to estimate the influence of deep moisture on albedo via vegetation cover change; and evaluated the potential of using a two-layer bucket model and empirical relationships to evaluate the link between deep soil moisture and the planetary boundary layer height under changing precipitation regime. My results indicate that (1) the presence or absence of water in two layers plays a role in surface energy dynamics, (2) soil moisture presence in the deep layer is linked with decreased ecosystem albedo and planetary boundary layer height, (3) deep moisture sustains vegetation greenness and decreases albedo, and (4) empirical relationships are useful in modeling planetary boundary layer height from dryland ecosystems. Based on these results we argue that deep soil moisture plays an important role in land surface-atmosphere interactions.
Toward Linking Aboveground Vegetation Properties and Soil Microbial Communities Using Remote Sensing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamada, Yuki; Gilbert, Jack A.; Larsen, Peter E.
2014-04-01
Despite their vital role in terrestrial ecosystem function, the distributions and dynamics of soil microbial communities (SMCs) are poorly understood. Vegetation and soil properties are the primary factors that influence SMCs. This paper discusses the potential effectiveness of remote sensing science and technologies for mapping SMC biogeography by characterizing surface biophysical properties (e.g., plant traits and community composition) strongly correlated with SMCs. Using remotely sensed biophysical properties to predict SMC distributions is extremely challenging because of the intricate interactions between biotic and abiotic factors and between above- and belowground ecosystems. However, the integration of biophysical and soil remote sensing withmore » geospatial information about the e nvironment holds great promise for mapping SMC biogeography. Additional research needs invol ve microbial taxonomic definition, soil environmental complexity, and scaling strategies. The collaborative effort of experts from diverse disciplines is essential to linking terrestrial surface biosphere observations with subsurface microbial community distributions using remote sensing.« less
Toward Linking Aboveground Vegetation Properties and Soil Microbial Communities Using Remote Sensing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamada, Yuki; Gilbert, Jack A.; Larsen, Peter E.
2014-04-01
Despite their vital role in terrestrial ecosystem function, the distributions and dynamics of soil microbial communities (SMCs) are poorly understood. Vegetation and soil properties are the primary factors that influence SMCs. This paper discusses the potential effectiveness of remote sensing science and technologies for mapping SMC biogeography by characterizing surface biophysical properties (e.g., plant traits and community composition) strongly correlated with SMCs. Using remotely sensed biophysical properties to predict SMC distributions is extremely challenging because of the intricate interactions between biotic and abiotic factors and between above- and below-ground ecosystems. However, the integration of biophysical and soil remote sensing withmore » geospatial information about the environment holds great promise for mapping SMC biogeography. Additional research needs involve microbial taxonomic definition, soil environmental complexity, and scaling strategies. The collaborative effort of experts from diverse disciplines is essential to linking terrestrial surface biosphere observations with subsurface microbial community distributions using remote sensing.« less
Tan, Ming Yueh; Crouse, Karen A; Ravoof, Thahira B S A; Jotani, Mukesh M; Tiekink, Edward R T
2017-11-01
The title compound, C 23 H 21 N 3 O 2 , is constructed about an almost planar disubstituted amino-urea residue (r.m.s. deviation = 0.0201 Å), which features an intra-molecular amine-N-H⋯N(imine) hydrogen bond. In the 'all- trans ' chain connecting this to the terminal meth-oxy-benzene residue, the conformation about each of the imine and ethyl-ene double bonds is E . In the crystal, amide-N-H⋯O(carbon-yl) hydrogen bonds connect centrosymmetrically related mol-ecules into dimeric aggregates, which also incorporate ethyl-ene-C-H⋯O(amide) inter-actions. The dimers are linked by amine-phenyl-C-H⋯π(imine-phen-yl) and meth-oxy-benzene-C-H⋯π(amine-phen-yl) inter-actions to generate a three-dimensional network. The importance of C-H⋯π inter-actions in the mol-ecular packing is reflected in the relatively high contributions made by C⋯H/H⋯C contacts to the Hirshfeld surface, i.e . 31.6%.
Molecular Dynamics of "Fuzzy" Transcriptional Activator-Coactivator Interactions
Scholes, Natalie S.; Weinzierl, Robert O. J.
2016-01-01
Transcriptional activation domains (ADs) are generally thought to be intrinsically unstructured, but capable of adopting limited secondary structure upon interaction with a coactivator surface. The indeterminate nature of this interface made it hitherto difficult to study structure/function relationships of such contacts. Here we used atomistic accelerated molecular dynamics (aMD) simulations to study the conformational changes of the GCN4 AD and variants thereof, either free in solution, or bound to the GAL11 coactivator surface. We show that the AD-coactivator interactions are highly dynamic while obeying distinct rules. The data provide insights into the constant and variable aspects of orientation of ADs relative to the coactivator, changes in secondary structure and energetic contributions stabilizing the various conformers at different time points. We also demonstrate that a prediction of α-helical propensity correlates directly with the experimentally measured transactivation potential of a large set of mutagenized ADs. The link between α-helical propensity and the stimulatory activity of ADs has fundamental practical and theoretical implications concerning the recruitment of ADs to coactivators. PMID:27175900
Surface interactions of Fusarium graminearum on barley.
Imboden, Lori; Afton, Drew; Trail, Frances
2018-06-01
The filamentous fungus Fusarium graminearum, a devastating pathogen of barley (Hordeum vulgare L.), produces mycotoxins that pose a health hazard. To investigate the surface interactions of F. graminearum on barley, we focused on barley florets, as the most important infection site leading to grain contamination. The fungus interacted with silica-accumulating cells (trichomes and silica/cork cell pairs) on the host surface. We identified variation in trichome-type cells between two-row and six-row barley, and in the role of specific epidermal cells in the ingress of F. graminearum into barley florets. Prickle-type trichomes functioned to trap conidia and were sites of fungal penetration. Infections of more mature florets supported the spread of hyphae into the vascular bundles, whereas younger florets did not show this spread. These differences related directly to the timing and location of increases in silica content during maturation. Focal accumulation of cellulose in infected paleae of two-row and six-row barley indicated that the response is in part linked to trichome type. Overall, silica-accumulating epidermal cells had an expanded role in barley, serving to trap conidia, provide sites for fungal ingress and initiate resistance responses, suggesting a role for silica in pathogen establishment. © 2017 BSPP AND JOHN WILEY & SONS LTD.
FTIR spectroscopy and thermodynamics of hydrogen adsorbed in a cross-linked polymer.
Spoto, Giuseppe; Vitillo, Jenny G; Cocina, Donato; Damin, Alessandro; Bonino, Francesca; Zecchina, Adriano
2007-09-28
The adsorption of H(2) in a cross-linked poly(styrene-co-divinylbenzene) (St-DVB) microporous polymer (BET surface area 920 m(2) g(-1)) is studied by volumetric and gravimetric methods, FTIR spectroscopy at variable temperature (300-14 K) and ab initio calculations. At 77 K the polymer reversibly stores up to 1.3 mass% H(2) at a pressure of 1 bar and 1.8 mass% at 10 bar. The adsorption process involves the specific interaction of H(2) with the structural phenyl rings through weak dispersive forces. The interacting molecules become IR active and give rise to vibrational and rotational-vibrational manifestations which are affected by the temperature, the contact time and the H(2) equilibrium pressure. The spectra of the H(2)/St-DVB system reported here represent the first IR evidence of the adsorption of hydrogen on unsaturated molecules. The adsorption enthalpy is evaluated by the VTIR (variable temperature IR spectroscopy) method (C. Otero Areán et al., Phys. Chem. Chem. Phys., 2007, DOI: 10.1039/b615535a) and compared with the results of ab initio calculations for the H(2)/benzene interaction and with literature data.
Rhodamine/Nanodiamond as a System Model for Drug Carrier.
Reina, G; Orlanducci, S; Cairone, C; Tamburri, E; Lenti, S; Cianchetta, I; Rossi, M; Terranova, M L
2015-02-01
In this paper we present some strategies that are being developed in our labs towards enabling nanodiamond-based applications for drug delivery. Rhodamine B (RhB) has been choosen as model molecule to study the loading of nanodiamonds with active moieties and the conditions for their controlled release. In order to test the chemical/physical interactions between functionalized detonation nanodiamond (DND) and complex molecules, we prepared and tested different RhB@DND systems, with RhB adsorbed or linked by ionic bonding to the DND surface. The chemical state of the DND surfaces before conjugation with the RhB molecules, and the chemical features of the DND-RhB interactions have been deeply analysed by coupling DND with Au nanoparticles and taking advantage of surface enhanced Raman spectroscopy SERS. The effects due to temperature and pH variations on the process of RhB release from the DND carrier have been also investigated. The amounts of released molecules are consistent with those required for effective drug action in conventional therapeutic applications, and this makes the DND promising nanostructured cargos for drug delivery applications.
Kawasaki-Nishi, Shoko; Nishi, Tsuyoshi; Forgac, Michael
2003-10-24
Proton translocation by the vacuolar (H+)-ATPase (or V-ATPase) has been shown by mutagenesis to be dependent upon charged residues present within transmembrane segments of subunit a as well as the three proteolipid subunits (c, c', and c"). Interaction between R735 in TM7 of subunit a and the glutamic acid residue in the middle of TM4 of subunits c and c' or TM2 of subunit c" has been proposed to be essential for proton release to the luminal compartment. In order to determine whether the helical face of TM7 of subunit a containing R735 is capable of interacting with the helical face of TM4 of subunit c' containing the essential glutamic acid residue (Glu-145), cysteine-mediated cross-linking between these subunits in yeast has been performed. Cys-less forms of subunits a and c' as well as forms containing unique cysteine residues were constructed, introduced together into a strain disrupted in both endogenous subunits, and tested for growth at neutral pH, for assembly competence and for cross-linking in the presence of cupric-phenanthroline by SDS-PAGE and Western blot analysis. Four different cysteine mutants of subunit a were each tested pairwise with ten different unique cysteine mutants of subunit c'. Strong cross-linking was observed for the pairs aS728C/c'I142C, aA731C/c'E145C, aA738C/c'F143C, aA738C/c'L147C, and aL739C/c'L147C. Partial cross-linking was observed for an additional 13 of 40 pairs analyzed. When arrayed on a helical wheel diagram, the results suggest that the helical face of TM7 of subunit a containing Arg-735 interacts with the helical face of TM4 of subunit c' centered on Val-146 and bounded by Glu-145 and Leu-147. The results are consistent with a possible rotational flexibility of one or both of these transmembrane segments as well as some flexibility of movement perpendicular to the membrane.
Abdullah, Hasan; Zhang, Zhenbo; Yee, Kirby; Haroon, Nigil
2015-01-01
Ankylosing spondylitis (AS) is a chronic, inflammatory arthritis of the spine and peripheral joints linked to the antigen presenting molecule HLA-B27. The risk of AS is increased in patients possessing endoplasmic reticulum aminopeptidase-1 (ERAP1) polymorphisms rs30187 and rs27044 encoding amino acid changes K528R and Q730E, respectively. Dysfunction of ERAP1 is hypothesized to cause changes in expression of HLA-B27 classical (pHLA) and non-classical (FHC) conformers on antigen presenting cells (APCs), which interact with the natural killer (NK) cell receptor KIR3DL1. Dysregulation of this pathway may be pathogenic in AS. APC cell lines expressing HLA-B27 were found to inhibit cytokine production in KIR3DL1+ NK cells due to decreased APC-NK cell adhesion, and possibly activation of receptor down-regulation. Blocking pHLA and FHC reveals that both conformers inhibit cytokine production through KIR3DL1. KIR3DL1 affinity and HLA-B27 surface expression studies suggest that ERAP1 R528 and E730 expression protects from AS by generating sub-optimal pHLA, causing reduced KIR3DL1 affinity and weaker cytokine inhibition. Secondarily we observed that KIR3DL1 binding to C1R-B27 APCs is enhanced by blocking pHLA, but not FHC, raising the possibility that antibody mediated HLA-B27 cross-linking may be important in enhancing KIR3DL1+ NK cell function. This study establishes the role of both FHC and pHLA in modulating NK cell cytokine secretion and adhesion functions by interacting with KIR3DL1. This interaction varies depending on the AS association status of the ERAP1 variant expressed in APCs. Additionally antibody cross-linking of HLA-B27 enhances KIR3DL1 binding and as such could be an important pathogenic mechanism in AS.
Koukaras, Emmanuel N; Papadimitriou, Sofia A; Bikiaris, Dimitrios N; Froudakis, George E
2012-10-01
This work reports details pertaining to the formation of chitosan nanoparticles that we prepare by the ionic gelation method. The molecular interactions of the ionic cross-linking of chitosan with tripolyphosphate have been investigated and elucidated by means of all-electron density functional theory. Solvent effects have been taken into account using implicit models. We have identified primary-interaction ionic cross-linking configurations that we define as H-link, T-link, and M-link, and we have quantified the corresponding interaction energies. H-links, which display high interaction energies and are also spatially broadly accessible, are the most probable cross-linking configurations. At close range, proton transfer has been identified, with maximum interaction energies ranging from 12.3 up to 68.3 kcal/mol depending on the protonation of the tripolyphosphate polyanion and the relative coordination of chitosan with tripolyphosphate. On the basis of our results for the linking types (interaction energies and torsion bias), we propose a simple mechanism for their impact on the chitosan/TPP nanoparticle formation process. We introduce the β ratio, which is derived from the commonly used α ratio but is more fundamental since it additionally takes into account structural details of the oligomers.
Surface science in hernioplasty: The role of plasma treatments
NASA Astrophysics Data System (ADS)
Nisticò, Roberto; Magnacca, Giuliana; Martorana, Selanna
2017-10-01
The aim of this review is to clarify the importance of surface modifications induced in biomaterials for hernia-repair application. Starting from the pioneering experiences involving proto-materials as ancient prosthesis, a historical excursus between the biomaterials used in hernioplasty was realized. Subsequently, after the revolutionary discovery of stereoregular polymerization followed by the PP application in the biomedical field performed by the surgeon F. Usher, a comparative study on different hernia-repair meshes available was realized in order to better understand all the outstanding problems and possible future developments. Furthermore, since many unsolved problems on prosthetic devices implantation are linked to phenomena occurring at the interface between the biomaterials surface and the body fluids, the importance of surface science in hernioplasty was highlighted and case studies of new surface-modified generations of prosthesis presented. The results discussed in the following evidence how the surface study are becoming increasingly important for a proper knowledge of issues related to the interaction between the living matter and the artificial prostheses.
of Communication Fermilab news Search Useful links Symmetry magazine Interactions Interact Recent Search Useful links Symmetry magazine Interactions Interact Office of Science / U.S. Department of Energy
A General Method for Targeted Quantitative Cross-Linking Mass Spectrometry.
Chavez, Juan D; Eng, Jimmy K; Schweppe, Devin K; Cilia, Michelle; Rivera, Keith; Zhong, Xuefei; Wu, Xia; Allen, Terrence; Khurgel, Moshe; Kumar, Akhilesh; Lampropoulos, Athanasios; Larsson, Mårten; Maity, Shuvadeep; Morozov, Yaroslav; Pathmasiri, Wimal; Perez-Neut, Mathew; Pineyro-Ruiz, Coriness; Polina, Elizabeth; Post, Stephanie; Rider, Mark; Tokmina-Roszyk, Dorota; Tyson, Katherine; Vieira Parrine Sant'Ana, Debora; Bruce, James E
2016-01-01
Chemical cross-linking mass spectrometry (XL-MS) provides protein structural information by identifying covalently linked proximal amino acid residues on protein surfaces. The information gained by this technique is complementary to other structural biology methods such as x-ray crystallography, NMR and cryo-electron microscopy[1]. The extension of traditional quantitative proteomics methods with chemical cross-linking can provide information on the structural dynamics of protein structures and protein complexes. The identification and quantitation of cross-linked peptides remains challenging for the general community, requiring specialized expertise ultimately limiting more widespread adoption of the technique. We describe a general method for targeted quantitative mass spectrometric analysis of cross-linked peptide pairs. We report the adaptation of the widely used, open source software package Skyline, for the analysis of quantitative XL-MS data as a means for data analysis and sharing of methods. We demonstrate the utility and robustness of the method with a cross-laboratory study and present data that is supported by and validates previously published data on quantified cross-linked peptide pairs. This advance provides an easy to use resource so that any lab with access to a LC-MS system capable of performing targeted quantitative analysis can quickly and accurately measure dynamic changes in protein structure and protein interactions.
Protein crystals as scanned probes for recognition atomic force microscopy.
Wickremasinghe, Nissanka S; Hafner, Jason H
2005-12-01
Lysozyme crystal growth has been localized at the tip of a conventional silicon nitride cantilever through seeded nucleation. After cross-linking with glutaraldehyde, lysozyme protein crystal tips image gold nanoparticles and grating standards with a resolution comparable to that of conventional tips. Force spectra between the lysozyme crystal tips and surfaces covered with antilysozyme reveal an adhesion force that drops significantly upon blocking with free lysozyme, thus confirming that lysozyme crystal tips can detect molecular recognition interactions.
Ellison, Christopher G.; Zhang, Wei; Krause, Neal; Marcum, John P.
2009-01-01
This study examines the effects of negative interaction in church on psychological distress. After outlining a series of theoretical arguments linking negative interaction with health and well-being, relevant hypotheses are tested using longitudinal data from two surveys of the 1997–1999 Presbyterian Panel, a nationwide panel of members and elders (lay leaders) in congregations of the Presbyterian Church (USA). Findings confirm that negative interaction appears to foster or exacerbate distress over the study period. In addition, specific dimensions of social negativity have distinctive effects; the impact of criticisms on distress surface only in cross-sectional models, while the effects of excessive demands emerge only in the longitudinal models. No subgroup variations in these effects are detected. Implications of these findings are discussed with regard to (a) research on religion and health and (b) congregational life, and a number of promising directions for future research are elaborated. PMID:20694051
Structural insight into TPX2-stimulated microtubule assembly
2017-01-01
During mitosis and meiosis, microtubule (MT) assembly is locally upregulated by the chromatin-dependent Ran-GTP pathway. One of its key targets is the MT-associated spindle assembly factor TPX2. The molecular mechanism of how TPX2 stimulates MT assembly remains unknown because structural information about the interaction of TPX2 with MTs is lacking. Here, we determine the cryo-electron microscopy structure of a central region of TPX2 bound to the MT surface. TPX2 uses two flexibly linked elements (’ridge’ and ‘wedge’) in a novel interaction mode to simultaneously bind across longitudinal and lateral tubulin interfaces. These MT-interacting elements overlap with the binding site of importins on TPX2. Fluorescence microscopy-based in vitro reconstitution assays reveal that this interaction mode is critical for MT binding and facilitates MT nucleation. Together, our results suggest a molecular mechanism of how the Ran-GTP gradient can regulate TPX2-dependent MT formation. PMID:29120325
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rantalainen, Kimmo I.; Christensen, Peter A.; Hafren, Anders
The viral genome-linked protein (VPg) of Potato virus A (PVA) is a multifunctional protein that belongs to a class of intrinsically disordered proteins. Typically, this type of protein gains a more stable structure upon interactions or posttranslational modifications. In a membrane lipid strip overlay binding assay, PVA VPg was found to bind phosphatidylserine (PS), but not phosphatidylcholine (PC). According to circular dichroism spectroscopy, the secondary structure of PVA VPg was stabilized upon interactions with PS and phosphatidylglycerol (PG), but not with PC vesicles. It is possible that this stabilization favored the formation of alpha-helical structures. Limited tryptic digestion showed thatmore » the interaction with anionic vesicles protected certain, otherwise accessible, trypsin cleavage sites. An electron microscopy study revealed that interaction with VPg substantially increased the vesicle diameter and caused the formation of pore or plaque-like electron dense spots on the vesicle surface, which gradually led to disruption of the vesicles.« less
Wu, Chenggang; Al Mamun, Abu Amar Mohamed; Luong, Truc Thanh; Hu, Bo; Gu, Jianhua; Lee, Ju Huck; D'Amore, Melissa; Das, Asis; Ton-That, Hung
2018-04-24
Fusobacterium nucleatum is a key member of the human oral biofilm. It is also implicated in preterm birth and colorectal cancer. To facilitate basic studies of fusobacterial virulence, we describe here a versatile transposon mutagenesis procedure and a pilot screen for mutants defective in biofilm formation. Out of 10 independent biofilm-defective mutants isolated, the affected genes included the homologs of the Escherichia coli cell division proteins FtsX and EnvC, the electron transport protein RnfA, and four proteins with unknown functions. Next, a facile new gene deletion method demonstrated that nonpolar, in-frame deletion of ftsX or envC produces viable bacteria that are highly filamentous due to defective cell division. Transmission electron and cryo-electron microscopy revealed that the Δ ftsX and Δ envC mutant cells remain joined with apparent constriction, and scanning electron microscopy (EM) uncovered a smooth cell surface without the microfolds present in wild-type cells. FtsX and EnvC proteins interact with each other as well as a common set of interacting partners, many with unknown function. Last, biofilm development is altered when cell division is blocked by MinC overproduction; however, unlike the phenotypes of Δ ftsX and Δ envC mutants, a weakly adherent biofilm is formed, and the wild-type rugged cell surface is maintained. Therefore, FtsX and EnvC may perform novel functions in Fusobacterium cell biology. This is the first report of an unbiased approach to uncover genetic determinants of fusobacterial biofilm development. It points to an intriguing link among cytokinesis, cell surface dynamics, and biofilm formation, whose molecular underpinnings remain to be elucidated. IMPORTANCE Little is known about the virulence mechanisms and associated factors in F. nucleatum , due mainly to the lack of convenient genetic tools for this organism. We employed two efficient genetic strategies to identify F. nucleatum biofilm-defective mutants, revealing FtsX and EnvC among seven biofilm-associated factors. Electron microscopy established cell division defects of the Δ ftsX and Δ envC mutants, accompanied with a smooth cell surface, unlike the microfold, rugged appearance of wild-type bacteria. Proteomic studies demonstrated that FtsX and EnvC interact with each other as well as a set of common and unique interacting proteins, many with unknown functions. Importantly, blocking cell division by MinC overproduction led to formation of a weakly adherent biofilm, without alteration of the wild-type cell surface. Thus, this work links cell division and surface dynamics to biofilm development and lays a foundation for future genetic and biochemical investigations of basic cellular processes in this clinically significant pathogen. Copyright © 2018 Wu et al.
Gevorkyan-Airapetov, Lada; Zohary, Keren; Popov-Celeketic, Dusan; Mapa, Koyeli; Hell, Kai; Neupert, Walter; Azem, Abdussalam; Mokranjac, Dejana
2009-02-20
The TIM23 complex is the major translocase of the mitochondrial inner membrane responsible for the import of essentially all matrix proteins and a number of inner membrane proteins. Tim23 and Tim50, two essential proteins of the complex, expose conserved domains into the intermembrane space that interact with each other. Here, we describe in vitro reconstitution of this interaction using recombinantly expressed and purified intermembrane space domains of Tim50 and Tim23. We established two independent methods, chemical cross-linking and surface plasmon resonance, to track their interaction. In addition, we identified mutations in Tim23 that abolish its interaction with Tim50 in vitro. These mutations also destabilized the interaction between the two proteins in vivo, leading to defective import of preproteins via the TIM23 complex and to cell death at higher temperatures. This is the first study to describe the reconstitution of the Tim50-Tim23 interaction in vitro and to identify specific residues of Tim23 that are vital for the interaction with Tim50.
Land-atmosphere-ocean interactions in the southeastern Atlantic: interannual variability
NASA Astrophysics Data System (ADS)
Sun, Xiaoming; Vizy, Edward K.; Cook, Kerry H.
2018-02-01
Land-atmosphere-ocean interactions in the southeastern South Atlantic and their connections to interannual variability are examined using a regional climate model coupled with an intermediate-level ocean model. In austral summer, zonal displacements of the South Atlantic subtropical high (SASH) can induce variations of mixed-layer currents in the Benguela upwelling region through surface wind stress curl anomalies near the Namibian coast, and an eastward shifted SASH is related to the first Pacific-South American mode. When the SASH is meridionally displaced, mixed layer vertically-integrated Ekman transport anomalies are mainly a response to the change of alongshore surface wind stress. The latitudinal shift of the SASH tends to dampen the anomalous alongshore wind by modulating the land-sea thermal contrast, while opposed by oceanic diffusion. Although the position of the SASH is closely linked to the phase of El Niño-Southern Oscillation (ENSO) and the southern annular mode (SAM) in austral summer, an overall relationship between Benguela upwelling strength and ENSO or SAM is absent. During austral winter, variations of the mixed layer Ekman transport in the Benguela upwelling region are connected to the strength of the SASH through its impact on both coastal wind stress curl and alongshore surface wind stress. Compared with austral summer, low-level cloud cover change plays a more important role. Although wintertime sea surface temperature fluctuations in the equatorial Atlantic are strong and may act to influence variability over the northern Benguela area, the surface heat budget analysis suggests that local air-sea interactions dominate.
Nitrile versus isonitrile adsorption at interstellar grains surfaces. I. Hydroxylated surfaces
NASA Astrophysics Data System (ADS)
Bertin, M.; Doronin, M.; Fillion, J.-H.; Michaut, X.; Philippe, L.; Lattelais, M.; Markovits, A.; Pauzat, F.; Ellinger, Y.; Guillemin, J.-C.
2017-02-01
Context. Almost 20% of the 200 different species detected in the interstellar and circumstellar media present a carbon atom linked to nitrogen by a triple bond. Among these 37 molecules, 30 are nitrile R-CN compounds, the remaining seven belonging to the isonitrile R-NC family. How these species behave in presence of the grain surfaces is still an open question. Aims: In this contribution we investigate whether the difference between nitrile and isonitrile functional groups may induce differences in the adsorption energies of the related isomers at the surfaces of interstellar grains of different nature and morphologies. Methods: The question was addressed by means of a concerted experimental and theoretical study of the adsorption energies of CH3CN and CH3NC on the surface water ice and silica. The experimental determination of the molecule - surface interaction energies was carried out using temperature programmed desorption (TPD) under an ultra-high vacuum (UHV) between 70 and 160 K. Theoretically, the question was addressed using first principle periodic density functional theory (DFT) to represent the organized solid support. Results: The most stable isomer (CH3CN) interacts more efficiently with the solid support than the higher energy isomer (CH3NC) for water ice and silica. Comparing with the HCN and HNC pair of isomers, the simulations show an opposite behaviour, in which isonitrile HNC are more strongly adsorbed than nitrile HCN provided that hydrogen bonds are compatible with the nature of the model surface. Conclusions: The present study confirms that the strength of the molecule surface interaction between isomers is not related to their intrinsic stability but instead to their respective ability to generate different types of hydrogen bonds. Coupling TPD to first principle simulations is a powerful method for investigating the possible role of interstellar surfaces in the release of organic species from grains, depending on the environment.
NASA Astrophysics Data System (ADS)
Martin, Elizabeth J.
Although the electrochemical behavior of metals used in orthopedic implants has been studied extensively, the material interactions with proteins during corrosion processes remains poorly understood. Some studies suggest that metal-protein interactions accelerate corrosion, while others suggest that proteins protect the material from degradation. Corrosion of implant materials is a major concern due to the metal ion release that can sometimes cause adverse local tissue reactions and ultimately, failure of the implant. The initial purpose of this research was therefore to study the corrosion behavior of CoCrMo, an alloy commonly used in hip replacements, with a quartz crystal microbalance (QCM) in physiologically relevant media. The QCM enables in situ characterization of surface changes accompanying corrosion and is sensitive to viscoelastic effects at its surface. Results of QCM studies in proteinaceous media showed film deposition on the alloy surface under electrochemical conditions that otherwise produced mass loss if proteins were not present in the electrolyte. Additional studies on pure Co, Cr, and Mo demonstrated that the protein films also form on Mo surfaces after a release of molybdate ions, suggesting that these ions are essential for film formation. The electrochemically generated protein films are reminiscent of carbonaceous films that form on implant surfaces in vivo, therefore a second goal of the research was to delineate mechanisms that cause the films to form. In the second stage of this research, electrochemical QCM tests were conducted on models of the CoCrMo system consisting of Cr electrodes in proteinaceous or polymeric media containing dissolved molybdate ions. Studies indicated that films can be generated through electrochemical processes so long as both amine functional groups and molybdate ions are present in the electrolyte solution. These results suggest that the films form due to an ionic cross-linking reaction between the positively charged amine groups in the proteins and the negatively charged molybdate ions. Results also indicated that film generation is controlled by the potential at the electrode surface. Numerical analysis on the model systems suggest that a drop in the local pH at the corroding electrode surface may influence film generation, but a critical concentration of molybdate-amine cross-links must be exceeded for gels to form. A final goal of this research was to develop a technique to characterize the viscoelastic properties of polymer films in liquid media using the QCM as a high-frequency rheometer. The work showed that by measuring frequency and dissipation shifts at multiple harmonics of the QCM resonant frequency, the viscoelastic phase angle, density-modulus product, and areal mass of a film submersed in liquid can be quantified in situ. The method was successfully applied to characterize the electrochemically generated protein films. Results implied that the films are composed of a weakly cross-linked network with properties similar to concentrated albumin solutions containing 40 wt% protein. The analysis technique can be extended to characterize any polymer film in a liquid environment, with applications including adsorption, self-assembly, or cell-substrate interactions.
NASA Technical Reports Server (NTRS)
Santanello, Joseph A.; Peters-Lidard, Christa D.; Kennedy, Aaron D.; Kumar, Sujay; Dong, Xiquan
2011-01-01
Land-atmosphere (L-A) interactions play a critical role in determining the diurnal evolution of land surface and planetary boundary layer (PBL) temperature and moisture states and fluxes. In turn, these interactions regulate the strength of the connection between surface moisture and precipitation in a coupled system. To address deficiencies in numerical weather prediction and climate models due to improper treatment of L-A interactions, recent studies have focused on development of diagnostics to quantify the strength and accuracy of the land-PBL coupling at the process-level. In this study, a diagnosis of the nature and impacts of local land-atmosphere coupling (LoCo) during dry and wet extreme conditions is presented using a combination of models and observations during the summers of2006-7 in the U.S. Southern Great Plains. Specifically, the Weather Research and Forecasting (WRF) model has been coupled to NASA's Land Information System (LIS), which provides a flexible and high resolution representation and initialization of land surface physics and states. A range of diagnostics exploring the links and feedbacks between soil moisture and precipitation are examined for the dry/wet regimes of this region, along with the behavior and accuracy of different land-PBL scheme couplings under these conditions. Results demonstrate how LoCo diagnostics can be applied to coupled model components in the context of their integrated impacts on the process-chain connecting the land surface to the PBL and support of hydrological anomalies.
Xu, Tao; Waehler, Tobias; Vecchietti, Julia; Bonivardi, Adrian; Bauer, Tanja; Schwegler, Johannes; Schulz, Peter S; Wasserscheid, Peter; Libuda, Joerg
2017-12-06
Hybrid materials consisting of ionic liquid (ILs) films on supported oxides hold a great potential for applications in electronic and energy materials. In this work, we have performed surface science model studies scrutinizing the interaction of ester-functionalized ILs with atomically defined Co 3 O 4 (111) and CoO(100) surfaces. Both supports are prepared under ultra-high vacuum (UHV) conditions in form of thin films on Ir(100) single crystals. Subsequently, thin films of three ILs, 3-butyl-1-methyl imidazolium bis(trifluoromethyl-sulfonyl) imide ([BMIM][NTf 2 ]), 3-(4-methoxyl-4-oxobutyl)-1-methylimidazolium bis(trifluoromethyl-sulfonyl) imide ([MBMIM][NTf 2 ]), and 3-(4-isopropoxy-4-oxobutyl)-1-methylimidazolium bis(trifluoromethyl-sulfonyl) imide ([IPBMIM][NTf 2 ]), were deposited on these surfaces by physical vapor deposition (PVD). Time-resolved and temperature-programmed infrared reflection absorption spectroscopy (TR-IRAS, TP-IRAS) were applied to monitor in situ the adsorption, film growth, and thermally induced desorption. By TP-IRAS, we determined the multilayer desorption temperature of [BMIM][NTf 2 ] (360±5 K), [MBMIM][NTf 2 ] (380 K) and [IPBMIM][NTf 2 ] (380 K). Upon deposition below the multilayer desorption temperature, all three ILs physisorb on both cobalt oxide surfaces. However, strong orientation effects are observed in the first monolayer, where the [NTf 2 ] - ion interacts with the surface through the SO 2 groups and the CF 3 groups point towards the vacuum. For the two functionalized ILs, the [MBMIM] + and [IPBMIM] + interact with the surface Co 2+ ions of both surfaces via the CO group of their ester function. A very different behavior is found, if the ILs are deposited above the multilayer desorption temperature (400 K). While for [BMIM][NTf 2 ] and [MBMIM][NTf 2 ] a molecularly adsorbed monolayer film is formed, [IPBMIM][NTf 2 ] undergoes a chemical transformation on the CoO(100) surface. Here, the ester group is cleaved and the cation is chemically linked to the surface by formation of a surface carboxylate. The IL-derived species in the monolayer desorb at temperatures around 500 to 550 K. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Structural and Functional Assessment of APOBEC3G Macromolecular Complexes
Polevoda, Bogdan; McDougall, William M.; Bennett, Ryan P.; Salter, Jason D.; Smith, Harold C.
2016-01-01
There are eleven members in the human APOBEC family of proteins that are evolutionarily related through their zinc-dependent cytidine deaminase domains. The human APOBEC gene clusters arose on chromosome 6 and 22 through gene duplication and divergence to where current day APOBEC proteins are functionally diverse and broadly expressed in tissues. APOBEC serve enzymatic and non enzymatic functions in cells. In both cases, formation of higher-order structures driven by APOBEC protein-protein interactions and binding to RNA and/or single stranded DNA are integral to their function. In some circumstances, these interactions are regulatory and modulate APOBEC activities. We are just beginning to understand how macromolecular interactions drive processes such as APOBEC subcellular compartmentalization, formation of holoenzyme complexes, gene targeting, foreign DNA restriction, anti-retroviral activity, formation of ribonucleoprotein particles and APOBEC degradation. Protein-protein and protein-nucleic acid cross-linking methods coupled with mass spectrometry, electrophoretic mobility shift assays, glycerol gradient sedimentation, fluorescence anisotropy and APOBEC deaminase assays are enabling mapping of interacting surfaces that are essential for these functions. The goal of this methods review is through example of our research on APOBEC3G, describe the application of cross-linking methods to characterize and quantify macromolecular interactions and their functional implications. Given the homology in structure and function, it is proposed that these methods will be generally applicable to the discovery process for other APOBEC and RNA and DNA editing and modifying proteins. PMID:26988126
Reduced arctic tundra productivity linked with landform and climate change interactions
Lara, Mark J.; Nitze, Ingmar; Grosse, Guido; Martin, Philip; McGuire, A. David
2018-01-01
Arctic tundra ecosystems have experienced unprecedented change associated with climate warming over recent decades. Across the Pan-Arctic, vegetation productivity and surface greenness have trended positively over the period of satellite observation. However, since 2011 these trends have slowed considerably, showing signs of browning in many regions. It is unclear what factors are driving this change and which regions/landforms will be most sensitive to future browning. Here we provide evidence linking decadal patterns in arctic greening and browning with regional climate change and local permafrost-driven landscape heterogeneity. We analyzed the spatial variability of decadal-scale trends in surface greenness across the Arctic Coastal Plain of northern Alaska (~60,000 km²) using the Landsat archive (1999–2014), in combination with novel 30 m classifications of polygonal tundra and regional watersheds, finding landscape heterogeneity and regional climate change to be the most important factors controlling historical greenness trends. Browning was linked to increased temperature and precipitation, with the exception of young landforms (developed following lake drainage), which will likely continue to green. Spatiotemporal model forecasting suggests carbon uptake potential to be reduced in response to warmer and/or wetter climatic conditions, potentially increasing the net loss of carbon to the atmosphere, at a greater degree than previously expected.
Reduced arctic tundra productivity linked with landform and climate change interactions.
Lara, Mark J; Nitze, Ingmar; Grosse, Guido; Martin, Philip; McGuire, A David
2018-02-05
Arctic tundra ecosystems have experienced unprecedented change associated with climate warming over recent decades. Across the Pan-Arctic, vegetation productivity and surface greenness have trended positively over the period of satellite observation. However, since 2011 these trends have slowed considerably, showing signs of browning in many regions. It is unclear what factors are driving this change and which regions/landforms will be most sensitive to future browning. Here we provide evidence linking decadal patterns in arctic greening and browning with regional climate change and local permafrost-driven landscape heterogeneity. We analyzed the spatial variability of decadal-scale trends in surface greenness across the Arctic Coastal Plain of northern Alaska (~60,000 km²) using the Landsat archive (1999-2014), in combination with novel 30 m classifications of polygonal tundra and regional watersheds, finding landscape heterogeneity and regional climate change to be the most important factors controlling historical greenness trends. Browning was linked to increased temperature and precipitation, with the exception of young landforms (developed following lake drainage), which will likely continue to green. Spatiotemporal model forecasting suggests carbon uptake potential to be reduced in response to warmer and/or wetter climatic conditions, potentially increasing the net loss of carbon to the atmosphere, at a greater degree than previously expected.
Xu, Gang; Meng, Xiao; Xu, Lin-Jie; Guo, Li; Wu, Jian-Ping; Yang, Li-Rong
2015-04-01
Surface residues have a significant impact on the enantioselectivity of lipases. But the molecular basis of this has never been explained. In this work, transition state complexes of Rhizomucor miehei lipase (RmL) and (R)- or (S)-n-butyl 2-phenxypropinate were studied using molecular dynamics. According to comparison between B-factor of the two simulated complexes, the β 1-β 2 loop and α 2 helix were considered the enantioselectivity-determining domains of RmL. Interaction analysis of these domains suggested an Asp(61)-Arg(86) electrostatic interaction linking the loop and helix strongly impacting enantioselectivity of RmL. Modification of Arg(86) by 1, 2-cyclohexanedione weakening this interaction decreased the E ratio from 6 to 1, modification by 1-iodo-2, 3-butanedione covalently bonding Asp(61) and Arg(86) strengthening the interaction increased the E ratio to 45. Dynamics simulation and energy calculation of the modified lipases also displayed corresponding decreases or increases of enantioselectivity.
Slotman, Johan A.; da Silva Almeida, Ana C.; Hassink, Gerco C.; van de Ven, Robert H. A.; van Kerkhof, Peter; Kuiken, Hendrik J.; Strous, Ger J.
2012-01-01
Growth hormone receptor (GHR) endocytosis is a highly regulated process that depends on the binding and activity of the multimeric ubiquitin ligase, SCFβTrCP (Skp Cullin F-box). Despite a specific interaction between β-transducin repeat-containing protein (βTrCP) and the GHR, and a strict requirement for ubiquitination activity, the receptor is not an obligatory target for SCFβTrCP-directed Lys48 polyubiquitination. We now show that also Lys63-linked ubiquitin chain formation is required for GHR endocytosis. We identified both the ubiquitin-conjugating enzyme Ubc13 and the ubiquitin ligase COOH terminus of Hsp70 interacting protein (CHIP) as being connected to this process. Ubc13 activity and its interaction with CHIP precede endocytosis of GHR. In addition to βTrCP, CHIP interacts specifically with the cytosolic tails of the dimeric GHR, identifying both Ubc13 and CHIP as novel factors in the regulation of cell surface availability of GHR. PMID:22433856
Lei, Y; Yu, H; Dong, Y; Yang, J; Ye, W; Wang, Y; Chen, W; Jia, Z; Xu, Z; Li, Z; Zhang, F
2015-01-01
DENV envelope glycoprotein (E) is responsible for interacting with host cell receptors and is the main target for the development of a dengue vaccine based on an induction of neutralizing antibodies. It is well known that DENV E glycoprotein has two potential N-linked glycosylation sites at Asn67 and Asn153. The N-glycans of E glycoprotein have been shown to influence the proper folding of the protein, its cellular localization, its interactions with receptors and its immunogenicity. However, the precise structures of the N-glycans that are attached to E glycoprotein remain elusive, although the crystal structure of DENV E has been determined. This study characterized the structures of envelope protein N-linked glycans on mature DENV-2 particles derived from insect cells via an integrated method that used both lectin microarray and MALDI-TOF-MS. By combining these methods, a high heterogeneity of DENV N-glycans was found. Five types of N-glycan were identified on DENV-2, including mannose, GalNAc, GlcNAc, fucose and sialic acid; high mannose-type N-linked oligosaccharides and the galactosylation of N-glycans were the major structures that were found. Furthermore, a complex between a glycan on DENV and the carbohydrate recognition domain (CRD) of DC-SIGN was mimicked with computational docking experiments. For the first time, this study provides a comprehensive understanding of the N-linked glycan profile of whole DENV-2 particles derived from insect cells.
NASA Astrophysics Data System (ADS)
Iyer, Ganesh Hariharan
The first part of this research involved a study of the nature and extent of nonbonded interactions at crystal and oligomer interfaces. A survey was compiled of several characteristics of intersubunit contacts in 58 different oligomeric proteins, and of the intermolecular contacts in 223 protein crystal structures. Routines written in "S" language were utilized for the generation of the observed and expected contacts. The information in the Protein Data Bank (PDB) was extracted using the database management system, Protein Knowledge Base (PKB). Potentials of mean force for atom-atom contacts and residue-residue contacts were derived by comparison of the number of observed interactions with the number expected by mass action. Preference association matrices and log-linear analyses were applied to determine the different factors that could contribute to the overall interactions at the interfaces of oligomers and crystals. Surface patches at oligomer and crystal interfaces were also studied to further investigate the origin of the differences in their stabilities. Total number of atoms in contact and the secondary structure elements involved are similar in the two types of interfaces. Crystal contacts result from more numerous interactions by polar residues, compared with a tendency toward nonpolar amino acid prominent in oligomer interfaces. Contact potentials indicate that hydrophobic interactions at oligomer interfaces favor aromatic amino acids and methionine over aliphatic amino acids; and that crystal contacts form in such a way as to avoid inclusion of hydrophobic interactions. The second part involved the development of a new class of biomaterials from two-dimensional arrays of ordered proteins. Point mutations were planned to introduce cysteine residues at appropriate locations to enable cross-linking at the molecular interface within given crystallographic planes. Crystallization and subsequent cross-linking of the modified protein would lead to the formation of arrays on subsequent dissociation of the crystal. Novel protein architectures can be generated from these cross-linked nanostructures. Experiments with model protein, maltose-binding protein (MBP) were performed to develop purification, cross-linking and crystallization techniques. The long-term goal of this project is to apply the experience gained with MBP to the fabrication of nanomaterials from other, application-specific proteins for ultrafiltration and microelectronic devices.
NASA Astrophysics Data System (ADS)
Khetan, Abhishek; Pitsch, Heinz; Viswanathan, Venkatasubramanian
2017-09-01
Polarization-induced renormalization of the frontier energy levels of interacting molecules and surfaces can cause significant shifts in the excitation and transport behavior of electrons. This phenomenon is crucial in determining the oxidative stability of nonaqueous electrolytes in high-energy density electrochemical systems such as the Li-O2 battery. On the basis of partially self-consistent first-principles Sc G W0 calculations, we systematically study how the electronic energy levels of four commonly used solvent molecules, namely, dimethylsulfoxide (DMSO), dimethoxyethane (DME), tetrahydrofuran (THF), and acetonitrile (ACN), renormalize when physisorbed on the different stable surfaces of Li2O2 , the main discharge product. Using band level alignment arguments, we propose that the difference between the solvent's highest occupied molecular orbital (HOMO) level and the surface's valence-band maximum (VBM) is a refined metric of oxidative stability. This metric and a previously used descriptor, solvent's gas phase HOMO level, agree quite well for physisorbed cases on pristine surfaces where ACN is oxidatively most stable followed by DME, THF, and DMSO. However, this effect is intrinsically linked to the surface chemistry of the solvent's interaction with the surface states and defects, and depends strongly on their nature. We conclusively show that the propensity of solvent molecules to oxidize will be significantly higher on Li2O2 surfaces with defects as compared to pristine surfaces. This suggests that the oxidative stability of a solvent is dynamic and is a strong function of surface electronic properties. Thus, while gas phase HOMO levels could be used for preliminary solvent candidate screening, a more refined picture of solvent stability requires mapping out the solvent stability as a function of the state of the surface under operating conditions.
Program For A Pushbutton Display
NASA Technical Reports Server (NTRS)
Busquets, Anthony M.; Luck, William S., Jr.
1989-01-01
Programmable Display Pushbutton (PDP) is pushbutton device available from Micro Switch having programmable 16X35 matrix of light-emitting diodes on pushbutton surface. Any desired legends display on PDP's, producing user-friendly applications reducing need for dedicated manual controls. Interacts with operator, calls for correct response before transmitting next message. Both simple manual control and sophisticated programmable link between operator and host system. Programmable Display Pushbutton Legend Editor (PDPE) computer program used to create light-emitting-diode (LED) displays for pushbuttons. Written in FORTRAN.
NASA Astrophysics Data System (ADS)
Maiti, Amitesh; McGrother, Simon
2004-01-01
Dissipative particle dynamics (DPD) is a mesoscale modeling method for simulating equilibrium and dynamical properties of polymers in solution. The basic idea has been around for several decades in the form of bead-spring models. A few years ago, Groot and Warren [J. Chem. Phys. 107, 4423 (1997)] established an important link between DPD and the Flory-Huggins χ-parameter theory for polymer solutions. We revisit the Groot-Warren theory and investigate the DPD interaction parameters as a function of bead size. In particular, we show a consistent scheme of computing the interfacial tension in a segregated binary mixture. Results for three systems chosen for illustration are in excellent agreement with experimental results. This opens the door for determining DPD interactions using interfacial tension as a fitting parameter.
Zanini, Michele; Marschelke, Claudia; Anachkov, Svetoslav E.; Marini, Emanuele; Synytska, Alla; Isa, Lucio
2017-01-01
Surface heterogeneities, including roughness, significantly affect the adsorption, motion and interactions of particles at fluid interfaces. However, a systematic experimental study, linking surface roughness to particle wettability at a microscopic level, is currently missing. Here we synthesize a library of all-silica microparticles with uniform surface chemistry, but tuneable surface roughness and study their spontaneous adsorption at oil–water interfaces. We demonstrate that surface roughness strongly pins the particles' contact lines and arrests their adsorption in long-lived metastable positions, and we directly measure the roughness-induced interface deformations around isolated particles. Pinning imparts tremendous contact angle hysteresis, which can practically invert the particle wettability for sufficient roughness, irrespective of their chemical nature. As a unique consequence, the same rough particles stabilize both water-in-oil and oil-in-water emulsions depending on the phase they are initially dispersed in. These results both shed light on fundamental phenomena concerning particle adsorption at fluid interfaces and indicate future design rules for particle-based emulsifiers. PMID:28589932
NASA Astrophysics Data System (ADS)
Zanini, Michele; Marschelke, Claudia; Anachkov, Svetoslav E.; Marini, Emanuele; Synytska, Alla; Isa, Lucio
2017-06-01
Surface heterogeneities, including roughness, significantly affect the adsorption, motion and interactions of particles at fluid interfaces. However, a systematic experimental study, linking surface roughness to particle wettability at a microscopic level, is currently missing. Here we synthesize a library of all-silica microparticles with uniform surface chemistry, but tuneable surface roughness and study their spontaneous adsorption at oil-water interfaces. We demonstrate that surface roughness strongly pins the particles' contact lines and arrests their adsorption in long-lived metastable positions, and we directly measure the roughness-induced interface deformations around isolated particles. Pinning imparts tremendous contact angle hysteresis, which can practically invert the particle wettability for sufficient roughness, irrespective of their chemical nature. As a unique consequence, the same rough particles stabilize both water-in-oil and oil-in-water emulsions depending on the phase they are initially dispersed in. These results both shed light on fundamental phenomena concerning particle adsorption at fluid interfaces and indicate future design rules for particle-based emulsifiers.
NASA Astrophysics Data System (ADS)
Ezawa, Motohiko
2017-07-01
We propose a type of Hopf semimetal indexed by a pair of numbers (p ,q ) , where the Hopf number is given by p q . The Fermi surface is given by a preimage of the Hopf map, which consists of loops nontrivially linked for a nonzero Hopf number. The Fermi surface forms a torus link, whose examples are a Hopf link indexed by (1 ,1 ) , Solomon's knot (2 ,1 ) , a double Hopf link (2 ,2 ) , and a double trefoil knot (3 ,2 ) . We may choose p or q to be a half integer, where the Fermi surface is a torus knot, such as a trefoil knot (3 /2 ,1 ) . It is even possible to make the Hopf number an arbitrary rational number, where a semimetal whose Fermi surface forms open strings is generated.
Rodrigues, M L; Rozental, S; Couceiro, J N; Angluster, J; Alviano, C S; Travassos, L R
1997-01-01
Sialic acids from sialoglycoconjugates present at the cell surface of Cryptococcus neoformans yeast forms were analyzed by high-performance thin-layer chromatography, binding of influenza A and C virus strains, enzymatic treatment, and flow cytofluorimetry with fluorescein isothiocyanate-labeled lectins. C. neoformans yeast forms grown in a chemically defined medium contain N-acetylneuraminic acid and its 9-O-acetylated derivative. A density of 3 x 10(6) residues of sialic acid per cell was found in C. neoformans. Sialic acids in cryptococcal cells are glycosidically linked to galactopyranosyl units as inferred from the increased reactivity of neuraminidase-treated yeasts with peanut agglutinin. N-Acetylneuraminic acids are alpha-2,6 and alpha-2,3 linked, as indicated by using virus strains M1/5 and M1/5 HS8, respectively, as agglutination probes. The alpha-2,6 linkage markedly predominated. These findings were essentially confirmed by the interaction of cryptococcal cells with the lectins Sambucus nigra agglutinin and Maackia amurensis agglutinin. We also investigated whether the sialyl residues present in C. neoformans are involved in the fungal interaction with a cationic solid-phase substrate and with mouse resident macrophages. Adhesion of yeast cells to poly-L-lysine was mediated, in part, by sialic acid residues, since the number of adherent cells was markedly reduced after treatment with bacterial neuraminidase. The enzymatic removal of sialic acids also made C. neoformans yeast cells more susceptible to endocytosis by macrophages. The results show that sialic acids are components of the cryptococcal cell surface that contribute to its negative charge and protect yeast forms against phagocytosis. PMID:9393779
An atomistic model for cross-linked HNBR elastomers used in seals
NASA Astrophysics Data System (ADS)
Molinari, Nicola; Sutton, Adrian; Stevens, John; Mostofi, Arash
2015-03-01
Hydrogenated nitrile butadiene rubber (HNBR) is one of the most common elastomeric materials used for seals in the oil and gas industry. These seals sometimes suffer ``explosive decompression,'' a costly problem in which gases permeate a seal at the elevated temperatures and pressures pertaining in oil and gas wells, leading to rupture when the seal is brought back to the surface. The experimental evidence that HNBR and its unsaturated parent NBR have markedly different swelling properties suggests that cross-linking may occur during hydrogenation of NBR to produce HNBR. We have developed a code compatible with the LAMMPS molecular dynamics package to generate fully atomistic HNBR configurations by hydrogenating initial NBR structures. This can be done with any desired degree of cross-linking. The code uses a model of atomic interactions based on the OPLS-AA force-field. We present calculations of the dependence of a number of bulk properties on the degree of cross-linking. Using our atomistic representations of HNBR and NBR, we hope to develop a better molecular understanding of the mechanisms that result in explosive decompression.
Convective aggregation in idealised models and realistic equatorial cases
NASA Astrophysics Data System (ADS)
Holloway, Chris
2015-04-01
Idealised explicit convection simulations of the Met Office Unified Model are shown to exhibit spontaneous self-aggregation in radiative-convective equilibrium, as seen previously in other models in several recent studies. This self-aggregation is linked to feedbacks between radiation, surface fluxes, and convection, and the organization is intimately related to the evolution of the column water vapour (CWV) field. To investigate the relevance of this behaviour to the real world, these idealized simulations are compared with five 15-day cases of real organized convection in the tropics, including multiple simulations of each case testing sensitivities of the convective organization and mean states to interactive radiation, interactive surface fluxes, and evaporation of rain. Despite similar large-scale forcing via lateral boundary conditions, systematic differences in mean CWV, CWV distribution shape, and the length scale of CWV features are found between the different sensitivity runs, showing that there are at least some similarities in sensitivities to these feedbacks in both idealized and realistic simulations.
Convective aggregation in idealised models and realistic equatorial cases
NASA Astrophysics Data System (ADS)
Holloway, C. E.
2014-12-01
Idealised explicit convection simulations of the Met Office Unified Model are shown to exhibit spontaneous self-aggregation in radiative-convective equilibrium, as seen previously in other models in several recent studies. This self-aggregation is linked to feedbacks between radiation, surface fluxes, and convection, and the organization is intimately related to the evolution of the column water vapor (CWV) field. To investigate the relevance of this behavior to the real world, these idealized simulations are compared with five 15-day cases of real organized convection in the tropics, including multiple simulations of each case testing sensitivities of the convective organization and mean states to interactive radiation, interactive surface fluxes, and evaporation of rain. Despite similar large-scale forcing via lateral boundary conditions, systematic differences in mean CWV, CWV distribution shape, and the length scale of CWV features are found between the different sensitivity runs, showing that there are at least some similarities in sensitivities to these feedbacks in both idealized and realistic simulations.
Influence of reactive fillers on concrete corrosion resistance
NASA Astrophysics Data System (ADS)
Rakhimbayev, Sh M.; Tolypina, N. M.; Khakhaleva, E. N.
2018-03-01
Contact surfaces represent the weakest link in a conglomerate structure of materials. They ensure the diffusion of aggressive agents inside the material. To reduce the conductivity of contact surfaces it is advisable to use reactive fillers, which interact with cement matrix via certain mechanisms, which in turn, reduces the permeability of the contact layer and fosters durability of products. The interaction of reactive fillers with calcium hydroxide of a concrete liquid phase in a contact area leads to the formation of hydrated calcium silicates of a tobermorite group. Such compounds, being settled in pores and capillaries of a product, colmatage and clog them to some extent thus leading to diffusion delay (inhibition) with regard to aggressive components of external media inside porous material, which in turn inhibits the corrosion rate. The authors studied and compared the corrosion of cement concrete with a standard filler (quartz sand) and a reactive filler (perlite and urtit). The experiments confirmed the positive influence of active fillers on concrete corrosion resistance.
Gelation And Mechanical Response of Patchy Rods
NASA Astrophysics Data System (ADS)
Kazem, Navid; Majidi, Carmel; Maloney, Craig
We perform Brownian Dynamics simulations to study the gelation of suspensions of attractive, rod-like particles. We show that details of the particle-particle interactions can dramatically affect the dynamics of gelation and the structure and mechanics of the networks that form. If the attraction between the rods is perfectly smooth along their length, they will collapse into compact bundles. If the attraction is sufficiently corrugated or patchy, over time, a rigid space spanning network forms. We study the structure and mechanical properties of the networks that form as a function of the fraction of the surface that is allowed to bind. Surprisingly, the structural and mechanical properties are non-monotonic in the surface coverage. At low coverage, there are not a sufficient number of cross-linking sites to form networks. At high coverage, rods bundle and form disconnected clusters. At intermediate coverage, robust networks form. The elastic modulus and yield stress are both non-monotonic in the surface coverage. The stiffest and strongest networks show an essentially homogeneous deformation under strain with rods re-orienting along the extensional axis. Weaker, clumpy networks at high surface coverage exhibit relatively little re-orienting with strong non-affine deformation. These results suggest design strategies for tailoring surface interactions between rods to yield rigid networks with optimal properties. National Science Foundation and the Air Force Office of Scientific Research.
A closer look at the complex hydrophilic/hydrophobic interactions forces at the human hair surface
NASA Astrophysics Data System (ADS)
Baghdadli, N.; Luengo, G. S.; Recherche, L.
2008-03-01
The complex chemical structure of the hair surface is far from being completely understood. Current understanding is based on Rivett's model1 that was proposed to explain the macroscopic hydrophobic nature of the surface of natural hair. In this model covalently-linked fatty acids are chemically grafted to the amorphous protein (keratin) through a thio-ester linkage2,3. Nevertheless, experience like wetting and electrical properties of human hair surface4 shows that the complexity of the hair surface is not fully understand based on this model in literature. Recent studies in our laboratory show for the first time microscopic evidence of the heterogeneous physico-chemical character of the hair surface. By using Chemical Force Microscopy, the presence of hydrophobic and ionic species are detected and localized, before and after a cosmetic treatment (bleaching). Based on force curve analysis the mapping of the local distribution of hydrophilic and hydrophobic groups of hair surface is obtained. A discussion on a more plausible hair model and its implications will be presented based on these new results.
Protein-Glycan Quinary Interactions in Crowding Environment Unveiled by NMR Spectroscopy.
Diniz, Ana; Dias, Jorge S; Jiménez-Barbero, Jesús; Marcelo, Filipa; Cabrita, Eurico J
2017-09-21
Protein-glycan interactions as modulators for quinary structures in crowding environments were explored. The interaction between human galectin 3 (Gal-3) and distinct macromolecular crowders, such as bovine and human serum albumin (BSA and HSA), Ficoll 70 and PEG3350, was scrutinized. The molecular recognition event of the specific ligand, lactose, by Gal-3 in crowding conditions was evaluated. Gal-3 interactions were monitored by NMR analysing chemical shift perturbation (CSP) and line broadening of 1 H 15 N-HSQC signals. The intensity of the Gal-3 1 H 15 N-HSQC signals decreased in the presence of all crowders, due to the increase in the solution viscosity and to the formation of large protein complexes. When glycosylated containing samples of BSA and HSA were used, signal broadening was more severe than that observed in the presence of the more viscous solutions of PEG3350 and Ficoll 70. However, for the samples containing glycoproteins, the signal intensity of 1 H 15 N-HSQC recovered upon addition of lactose. We show that serum proteins interact with Gal-3, through their α2,3-linked sialylgalactose moieties exposed at their surfaces, competing with lactose for the same binding site. The quinary interaction between Gal-3 and serum glycoproteins, could help to co-localize Gal-3 at the cell surface, and may play a role in adhesion and signalling functions of this protein. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Ishikawa, Kenji; Hori, Masaru
2014-08-01
Mechanisms of plasma-surface interaction are required to understand in order to control the reactions precisely. Recent progress in atmospheric pressure plasma provides to apply as a tool of sterilization of contaminated foodstuffs. To use the plasma with safety and optimization, the real time in situ detection of free radicals - in particular dangling bonds by using the electron-spin-resonance (ESR) technique has been developed because the free radical plays important roles for dominantly biological reactions. First, the kinetic analysis of free radicals on biological specimens such as fungal spores of Penicillium digitatum interacted with atomic oxygen generated plasma electric discharge. We have obtained information that the in situ real time ESR signal from the spores was observed and assignable to semiquinone radical with a g-value of around 2.004 and a line width of approximately 5G. The decay of the signal was correlated with a link to the inactivation of the fungal spore. Second, we have studied to detect chemical modification of edible meat after the irradiation. Using matrix-assisted laser desorption/ionization time-of-flight mass spectroscopy (MALDI-TOF-MS) and ESR, signals give qualification results for chemical changes on edible liver meat. The in situ real-time measurements have proven to be a useful method to elucidate plasma-induced surface reactions on biological specimens.
Defining the role of syndecan-4 in mechanotransduction using surface-modification approaches
Bellin, Robert M.; Kubicek, James D.; Frigault, Matthew J.; Kamien, Andrew J.; Steward, Robert L.; Barnes, Hillary M.; DiGiacomo, Michael B.; Duncan, Luke J.; Edgerly, Christina K.; Morse, Elizabeth M.; Park, Chan Young; Fredberg, Jeffrey J.; Cheng, Chao-Min; LeDuc, Philip R.
2009-01-01
The ability of cells to respond to external mechanical stimulation is a complex and robust process involving a diversity of molecular interactions. Although mechanotransduction has been heavily studied, many questions remain regarding the link between physical stimulation and biochemical response. Of significant interest has been the contribution of the transmembrane proteins involved, and integrins in particular, because of their connectivity to both the extracellular matrix and the cytoskeleton. Here, we demonstrate the existence of a mechanically based initiation molecule, syndecan-4. We first demonstrate the ability of syndecan-4 molecules to support cell attachment and spreading without the direct extracellular binding of integrins. We also examine the distribution of focal adhesion-associated proteins through controlling surface interactions of beads with molecular specificity in binding to living cells. Furthermore, after adhering cells to elastomeric membranes via syndecan-4-specific attachments we mechanically strained the cells via our mechanical stimulation and polymer surface chemical modification approach. We found ERK phosphorylation similar to that shown for mechanotransductive response for integrin-based cell attachments through our elastomeric membrane-based approach and optical magnetic twisting cytometry for syndecan-4. Finally, through the use of cytoskeletal disruption agents, this mechanical signaling was shown to be actin cytoskeleton dependent. We believe that these results will be of interest to a wide range of fields, including mechanotransduction, syndecan biology, and cell–material interactions. PMID:20080785
Vegetation controls on the biophysical surface properties at global scale
NASA Astrophysics Data System (ADS)
Forzieri, Giovanni; Cescatti, Alessandro
2016-04-01
Leaf area index (LAI) plays an important role in determining resistances to heat, moisture and momentum exchanges between the land surface and atmosphere. Exploring how variations in LAI may induce changes in the surface energy balance is a key to understanding vegetation-climate interactions and for predicting biophysical climate impacts associated to changes in land cover. To this end, we analyzed remote sensing-observed dynamics in LAI, surface energy fluxes and climate drivers at global scale. We investigated the link between interannual variability of LAI and the components of the surface energy budget under diverse climate gradients. Results show that a 25% increase in annual LAI may induce up to 2% increase in available surface energy, as consequence of higher short wave absorption due to reduced albedos, up to 20% increase and 10% decrease in latent and sensible heat, respectively, leading to a decrease of the Bowen ratio in densely vegetated canopies. Opposite patterns are found for a reduction in LAI of similar magnitude. Such changes are strongly modulated by concurrent year-to-year variations and climatological means of air temperature, precipitation and snow cover as well as by land cover-specific physiological processes. Boreal and semi-arid regions appear to be mostly exposed to large changes in biophysical surface processes induced by interannual fluctuations in LAI. The combination of the emergent patters translates into variations in the long-wave outgoing radiation that reflect the surface warming/cooling associated to LAI changes. These findings provide a deeper understanding of the vegetation control on biophysical surface properties and define a set of observational-based diagnostics of LAI-dependent land surface-atmosphere interactions.
Gilet, Tristan; Bourouiba, Lydia
2014-12-01
Plant diseases are a major cause of losses of crops worldwide. Although rainfalls and foliar disease outbreaks are correlated, the detailed mechanism explaining their link remains poorly understood. The common assumption from phytopathology for such link is that a splash is generated upon impact of raindrops on contaminated liquid films coating sick leaves. We examine this assumption using direct high-speed visualizations of the interactions of raindrops and leaves over a range of plants. We show that films are seldom found on the surface of common leaves. We quantify the leaf-surface's wetting properties, showing that sessile droplets instead of films are predominant on the surfaces of leaves. We find that the presence of sessile drops rather than that of films has important implications when coupled with the compliance of a leaf: it leads to a new physical picture consisting of two dominant rain-induced mechanisms of ejection of pathogens. The first involves a direct interaction between the fluids of the raindrop and the sessile drops via an off-centered splash. The second involves the indirect action of the raindrop that leads to the inertial detachment of the sessile drop via the leaf's motion imparted by the impact of the raindrop. Both mechanisms are distinct from the commonly assumed scenario of splash-on-film in terms of outcome: they result in different fragmentation processes induced by surface tension, and, thus, different size-distributions of droplets ejected. This is the first time that modern direct high-speed visualizations of impacts on leaves are used to examine rain-induced ejection of pathogens at the level of a leaf and identify the inertial detachment and off-center splash ejections as alternatives to the classically assumed splash-on-film ejections of foliar pathogens. © The Author 2014. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.
Controlled method of reducing electrophoretic mobility of various substances
NASA Technical Reports Server (NTRS)
Vanalstine, James M. (Inventor)
1989-01-01
A method of reducing electrophoretic mobility of macromolecules, particles, cells, and the like is provided. The method comprises interacting the particles or cells with a polymer-linked affinity compound composed of: a hydrophilic neutral polymer such as polyethylene glycol, and an affinity component consisting of a hydrophobic compound such as a fatty acid ester, an immunocompound such as an antibody or active fragment thereof or simular macromolecule, or other ligands. The reduction of electrophoretic mobility achieved is directly proportional to the concentration of the polymer-linked affinity compound employed, and the mobility reduction obtainable is up to 100 percent for particular particles and cells. The present invention is advantageous in that analytical electrophoretic separation can not be achieved for macromolecules, particles, and cells whose native surface charge structure had prevented them from being separated by normal electrophoretic means. Depending on the affinity component utilized, separation can be achieved on the basis of specific/irreversible, specific/reversible, semi-specific/reversible, relatively nonspecific/reversible, or relatively nonspecific/irreversible ligand-substance interactions. The present method is also advantageous in that it can be used in a variety of standard laboratory electrophoresis equipment.
Single Molecule Junctions: A Laboratory for Chemistry, Mechanics and Bond Rupture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hybertsen M. S.
Simultaneous measurement [1] of junction conductance and sustained force in single molecule junctions bridging metal electrodes provides a powerful tool in the quantitative study of the character of molecule-metal bonds. In this talk I will discuss three topics. First, I will describe chemical trends in link bond strength based on experiments and Density Functional Theory based calculations. Second, I will focus on the specific case of pyridine-linked junctions. Bond rupture from the high conductance junction structure shows a requires a force that exceeds the rupture force of gold point contacts and clearly indicates the role of additional forces, beyond themore » specific N-Au donor acceptor bond. DFT-D2 calculations with empirical addition of dispersion interactions illustrates the interplay between the donor-acceptor bonding and the non-specific van der Waals interactions between the pyridine rings and Au asperities. Third, I will describe recent efforts to characterize the diversity of junction structures realized in break-junction experiments with suitable models for the potential surfaces that are observed. [1] Venkataraman Group, Columbia University.« less
Multiscale mechanical effects of native collagen cross-linking in tendon.
Eekhoff, Jeremy D; Fang, Fei; Lake, Spencer P
2018-06-06
The hierarchical structure of tendon allows for attenuation of mechanical strain down decreasing length scales. While reorganization of collagen fibers accounts for microscale strain attenuation, cross-linking between collagen molecules contributes to deformation mechanisms at the fibrillar and molecular scales. Divalent and trivalent enzymatic cross-links form during the development of collagen fibrils through the enzymatic activity of lysyl oxidase (LOX). By establishing connections between telopeptidyl and triple-helical domains of adjacent molecules within collagen fibrils, these cross-links stiffen the fibrils by resisting intermolecular sliding. Ultimately, greater enzymatic cross-linking leads to less compliant and stronger tendon as a result of stiffer fibrils. In contrast, nonenzymatic cross-links such as glucosepane and pentosidine are not produced during development but slowly accumulate through glycation of collagen. Therefore, these cross-links are only expected to be present in significant quantities in advanced age, where there has been sufficient time for glycation to occur, and in diabetes, where the presence of more free sugar in the extracellular matrix increases the rate of glycation. Unlike enzymatic cross-links, current evidence suggests that nonenzymatic cross-links are at least partially isolated to the surface of collagen fibers. As a result, glycation has been proposed to primarily impact tendon mechanics by altering molecular interactions at the fiber interface, thereby diminishing sliding between fibers. Thus, increased nonenzymatic cross-linking decreases microscale strain attenuation and the viscous response of tendon. In conclusion, enzymatic and nonenzymatic collagen cross-links have demonstrable and distinct effects on the mechanical properties of tendon across different length scales.
Kieslich, Chris A; Morikis, Dimitrios
2012-01-01
The interaction between complement fragment C3d and complement receptor 2 (CR2) is a key aspect of complement immune system activation, and is a component in a link between innate and adaptive immunities. The complement immune system is an ancient mechanism for defense, and can be found in species that have been on Earth for the last 600 million years. However, the link between the complement system and adaptive immunity, which is formed through the association of the B-cell co-receptor complex, including the C3d-CR2 interaction, is a much more recent adaptation. Human C3d and CR2 have net charges of -1 and +7 respectively, and are believed to have evolved favoring the role of electrostatics in their functions. To investigate the role of electrostatics in the function and evolution of human C3d and CR2, we have applied electrostatic similarity methods to identify regions of evolutionarily conserved electrostatic potential based on 24 homologues of complement C3d and 4 homologues of CR2. We also examine the effects of structural perturbation, as introduced through molecular dynamics and mutations, on spatial distributions of electrostatic potential to identify perturbation resistant regions, generated by so-called electrostatic "hot-spots". Distributions of electrostatic similarity based on families of perturbed structures illustrate the presence of electrostatic "hot-spots" at the two functional sites of C3d, while the surface of CR2 lacks electrostatic "hot-spots" despite its excessively positive nature. We propose that the electrostatic "hot-spots" of C3d have evolved to optimize its dual-functionality (covalently attaching to pathogen surfaces and interaction with CR2), which are both necessary for the formation B-cell co-receptor complexes. Comparison of the perturbation resistance of the electrostatic character of the homologues of C3d suggests that there was an emergence of a new role of electrostatics, and a transition in the function of C3d, after the divergence of jawless fish.
Kieslich, Chris A.; Morikis, Dimitrios
2012-01-01
The interaction between complement fragment C3d and complement receptor 2 (CR2) is a key aspect of complement immune system activation, and is a component in a link between innate and adaptive immunities. The complement immune system is an ancient mechanism for defense, and can be found in species that have been on Earth for the last 600 million years. However, the link between the complement system and adaptive immunity, which is formed through the association of the B-cell co-receptor complex, including the C3d-CR2 interaction, is a much more recent adaptation. Human C3d and CR2 have net charges of −1 and +7 respectively, and are believed to have evolved favoring the role of electrostatics in their functions. To investigate the role of electrostatics in the function and evolution of human C3d and CR2, we have applied electrostatic similarity methods to identify regions of evolutionarily conserved electrostatic potential based on 24 homologues of complement C3d and 4 homologues of CR2. We also examine the effects of structural perturbation, as introduced through molecular dynamics and mutations, on spatial distributions of electrostatic potential to identify perturbation resistant regions, generated by so-called electrostatic “hot-spots”. Distributions of electrostatic similarity based on families of perturbed structures illustrate the presence of electrostatic “hot-spots” at the two functional sites of C3d, while the surface of CR2 lacks electrostatic “hot-spots” despite its excessively positive nature. We propose that the electrostatic “hot-spots” of C3d have evolved to optimize its dual-functionality (covalently attaching to pathogen surfaces and interaction with CR2), which are both necessary for the formation B-cell co-receptor complexes. Comparison of the perturbation resistance of the electrostatic character of the homologues of C3d suggests that there was an emergence of a new role of electrostatics, and a transition in the function of C3d, after the divergence of jawless fish. PMID:23300422
Colloid Surface Chemistry Critically Affects Multiple Particle Tracking Measurements of Biomaterials
Valentine, M. T.; Perlman, Z. E.; Gardel, M. L.; Shin, J. H.; Matsudaira, P.; Mitchison, T. J.; Weitz, D. A.
2004-01-01
Characterization of the properties of complex biomaterials using microrheological techniques has the promise of providing fundamental insights into their biomechanical functions; however, precise interpretations of such measurements are hindered by inadequate characterization of the interactions between tracers and the networks they probe. We here show that colloid surface chemistry can profoundly affect multiple particle tracking measurements of networks of fibrin, entangled F-actin solutions, and networks of cross-linked F-actin. We present a simple protocol to render the surface of colloidal probe particles protein-resistant by grafting short amine-terminated methoxy-poly(ethylene glycol) to the surface of carboxylated microspheres. We demonstrate that these poly(ethylene glycol)-coated tracers adsorb significantly less protein than particles coated with bovine serum albumin or unmodified probe particles. We establish that varying particle surface chemistry selectively tunes the sensitivity of the particles to different physical properties of their microenvironments. Specifically, particles that are weakly bound to a heterogeneous network are sensitive to changes in network stiffness, whereas protein-resistant tracers measure changes in the viscosity of the fluid and in the network microstructure. We demonstrate experimentally that two-particle microrheology analysis significantly reduces differences arising from tracer surface chemistry, indicating that modifications of network properties near the particle do not introduce large-scale heterogeneities. Our results establish that controlling colloid-protein interactions is crucial to the successful application of multiple particle tracking techniques to reconstituted protein networks, cytoplasm, and cells. PMID:15189896
Review: Post-translational cross-talk between brassinosteroid and sucrose signaling.
Kühn, Christina
2016-07-01
A direct link has been elucidated between brassinosteroid function and perception, and sucrose partitioning and transport. Sucrose regulation and brassinosteroid signaling cross-talk at various levels, including the well-described regulation of transcriptional gene expression: BZR-like transcription factors link the signaling pathways. Since brassinosteroid responses depend on light quality and quantity, a light-dependent alternative pathway was postulated. Here, the focus is on post-translational events. Recent identification of sucrose transporter-interacting partners raises the question whether brassinosteroid and sugars jointly affect plant innate immunity and plant symbiotic interactions. Membrane permeability and sensitivity depends on the number of cell surface receptors and transporters. More than one endocytic route has been assigned to specific components, including brassinosteroid-receptors. The number of such proteins at the plasma membrane relies on endocytic recycling, internalization and/or degradation. Therefore, vesicular membrane trafficking is gaining considerable attention with regard to plant immunity. The organization of pattern recognition receptors (PRRs), other receptors or transporters in membrane microdomains participate in endocytosis and the formation of specific intracellular compartments, potentially impacting biotic interactions. This minireview focuses on post-translational events affecting the subcellular compartmentation of membrane proteins involved in signaling, transport, and defense, and on the cross-talk between brassinosteroid signals and sugar availability. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Wei, Jing; Liang, Yan; Zhang, Xinyi; Simon, George P; Zhao, Dongyuan; Zhang, Jin; Jiang, Sanping; Wang, Huanting
2015-04-14
The synthesis of mesoporous carbon nanospheres (MCNs), especially with diameters below 200 nm remains a great challenge due to weak interactions between the carbon precursors and soft templates, as well as the uncontrollable cross-linking rate of carbon precursors. Herein, we demonstrate a simple acid-assisted, hydrothermal synthesis approach to synthesizing such uniform MCNs with well controlled diameters ranging from 20 to 150 nm under highly acidic conditions (2 M HCl). Both the carbon precursor and the template are partly protonated under such conditions and show additional Coulombic interactions with chloride ions (acts as mediators). This kind of enhanced interaction is similar to that of the "I(+)X(-)S(+)" mechanism in the synthesis of mesoporous metal oxide, which can effectively retard the cross-linking rate of resol molecules and avoid macroscopic phase separation during the hydrothermal synthesis. Due to their uniform spherical morphology, small diameter, and high surface areas, MCNs can be modified with Fe and N species via impregnation of cheap precursors (ferric nitrate and dicyandiamide), which are further converted into nonprecious electrocatalysts for oxygen reduction reactions. The resulting Fe-N/MCNs exhibit high catalytic activities, long-term stability and improved methanol tolerance under alkaline conditions, which can be potentially used in direct methanol fuel cells and metal-air batteries.
Emergent properties of climate-vegetation feedbacks in the North American Monsoon Macrosystem
NASA Astrophysics Data System (ADS)
Mathias, A.; Niu, G.; Zeng, X.
2012-12-01
The ability of ecosystems to adapt naturally to climate change and associated disturbances (e.g. wildfires, spread of invasive species) is greatly affected by the stability of feedback interactions between climate and vegetation. In order to study climate-vegetation interactions, such as CO2 and H2O exchange in the North American Monsoon System (NAMS), we plan to couple a community land surface model (NoahMP or CLM) used in regional climate models (WRF) with an individual based, spatially explicit vegetation model (ECOTONE). Individual based modeling makes it possible to link individual plant traits with properties of plant communities. Community properties, such as species composition and species distribution arise from dynamic interactions of individual plants with each other, and with their environment. Plants interact with each other through intra- and interspecific competition for resources (H2O, nitrogen), and the outcome of these interactions depends on the properties of the plant community and the environment itself. In turn, the environment is affected by the resulting change in community structure, which may have an impact on the drivers of climate change. First, we performed sensitivity tests of ECOTONE to assess its ability to reproduce vegetation distribution in the NAMS. We compared the land surface model and ECOTONE with regard to their capability to accurately simulate soil moisture, CO2 flux and above ground biomass. For evaluating the models we used the eddy-correlation sensible and latent heat fluxes, CO2 flux and observations of other climate and environmental variables (e.g. soil temperature and moisture) from the Santa Rita experimental range. The model intercomparison helped us understand the advantages and disadvantages of each model, providing us guidance for coupling the community land surface model (NoahMP or CLM) with ECOTONE.
A Refined Model for the TSG-6 Link Module in Complex with Hyaluronan
Higman, Victoria A.; Briggs, David C.; Mahoney, David J.; Blundell, Charles D.; Sattelle, Benedict M.; Dyer, Douglas P.; Green, Dixy E.; DeAngelis, Paul L.; Almond, Andrew; Milner, Caroline M.; Day, Anthony J.
2014-01-01
Tumor necrosis factor-stimulated gene-6 (TSG-6) is an inflammation-associated hyaluronan (HA)-binding protein that contributes to remodeling of HA-rich extracellular matrices during inflammatory processes and ovulation. The HA-binding domain of TSG-6 consists solely of a Link module, making it a prototypical member of the superfamily of proteins that interacts with this high molecular weight polysaccharide composed of repeating disaccharides of d-glucuronic acid and N-acetyl-d-glucosamine (GlcNAc). Previously we modeled a complex of the TSG-6 Link module in association with an HA octasaccharide based on the structure of the domain in its HA-bound conformation. Here we have generated a refined model for a HA/Link module complex using novel restraints identified from NMR spectroscopy of the protein in the presence of 10 distinct HA oligosaccharides (from 4- to 8-mers); the model was then tested using unique sugar reagents, i.e. chondroitin/HA hybrid oligomers and an octasaccharide in which a single sugar ring was 13C-labeled. The HA chain was found to make more extensive contacts with the TSG-6 surface than thought previously, such that a d-glucuronic acid ring makes stacking and ionic interactions with a histidine and lysine, respectively. Importantly, this causes the HA to bend around two faces of the Link module (resembling the way that HA binds to CD44), potentially providing a mechanism for how TSG-6 can reorganize HA during inflammation. However, the HA-binding site defined here may not play a role in TSG-6-mediated transfer of heavy chains from inter-α-inhibitor onto HA, a process known to be essential for ovulation. PMID:24403066
Large heat capacity change in a protein-monovalent cation interaction.
Guinto, E R; Di Cera, E
1996-07-09
Current views about protein-ligand interactions state that electrostatic forces drive the binding of charged species and that burial of hydrophobic and polar surfaces controls the heat capacity change associated with the reaction. For the interaction of a protein with a monovalent cation the electrostatic components are expected to be significant due to the ionic nature of the ligand, whereas the heat capacity change is expected to be small due to the size of the surface area involved in the recognition event. The physiologically important interaction of Na+ with thrombin was studied over the temperature range from 5 to 45 degrees C and the ionic strength range from 50 to 800 mM. These measurements reveal an unanticipated result that bears quite generally on studies of molecular recognition and protein folding. Binding of Na+ to thrombin is characterized by a modest dependence on ionic strength but a large and negative heat capacity change of -1.1 +/- 0.1 kcal mol-1 K-1. The small electrostatic coupling can be explained in terms of a minimal perturbation of the ionic atmosphere of the protein upon Na+ binding. The large heat capacity change, however, is difficult to reconcile with current views on the origin of this effect from surface area changes or large folding transitions coupled to binding. It is proposed that this change is linked to burial of a large cluster of water molecules in the Na+ binding pocket upon Na+ binding. Due to their reduced mobility and highly ordered structure, water molecules sequestered in the interior of a protein must have a lower heat capacity compared to those on the surface of a protein or in the bulk solvent. Hence, a binding or folding event where water molecules are buried may result in significant heat capacity changes independent of changes in exposed hydrophobic surface or coupled conformational transitions.
The Influence of Ice-Ocean Interactions on Europa's Overturning Circulation
NASA Astrophysics Data System (ADS)
Zhu, P.; Manucharyan, G. E.; Thompson, A. F.; Goodman, J. C.; Vance, S.
2016-12-01
Jupiter's moon Europa appears to have a global liquid ocean, which is located beneath an ice shell that covers the moon's entire surface. Linking ocean dynamics and ice-ocean interactions is crucial to understanding observed surface features on Europa as well as other satellite measurements. Ocean properties and circulation may also provide clues as to whether the moon has the potential to support extraterrestrial life through chemical transport governed by ice-ocean interactions. Previous studies have identified a Hadley cell-like overturning circulation extending from the equator to mid latitudes. However, these model simulations do not consider ice-ocean interactions. In this study, our goal is to investigate how the ocean circulation may be affected by ice. We study two ice-related processes by building idealized models. One process is horizontal convection driven by an equator-to-pole buoyancy difference due to latitudinal ice transport at the ocean surface, which is found to be much weaker than the convective overturning circulation. The second process we consider is the freshwater layer formed by ice melting at the equator. A strong buoyancy contrast between the freshwater layer and the underlying water suppresses convection and turbulent mixing, which may modify the surface heat flux from the ocean to the bottom of the ice. We find that the salinity of the ocean below the freshwater layer tends to be homogeneous both vertically and horizontally with the presence of an overturning circulation. Critical values of circulation strength constrain the freshwater layer depth, and this relationship is sensitive to the average salinity of the ocean. Further coupling of temperature and salinity of the ice and the ocean that includes mutual influences between the surface heat flux and the freshwater layer may provide additional insights into the ice-ocean feedback, and its influence on the latitudinal difference of heat transport.
SH2 dependent autophosphorylation within the Tec family kinase Itk
Joseph, Raji E.; Severin, Andrew; Min, Lie; Fulton, D. Bruce; Andreotti, Amy H.
2009-01-01
The Tec family kinase, Itk, undergoes an in cis autophosphorylation on Y180 within its SH3 domain. Autophosphorylation of the Itk SH3 domain by the Itk kinase domain is strictly dependent on the presence of the intervening SH2 domain. A direct docking interaction between the Itk kinase and SH2 domains brings the Itk SH3 domain into the active site where Y180 is then phosphorylated. We now identify the residues on the surface of the Itk SH2 domain responsible for substrate docking and show that this SH2 surface mediates autophosphorylation in the full length Itk molecule. The canonical phospholigand binding site on the SH2 domain is not involved in substrate docking, instead the docking site consists of side chains from three loop regions (AB, EF and BG) and part of the βD strand. These results are extended into Btk, a Tec family kinase linked to the B cell deficiency X-linked agammaglobulinemia (XLA). Our results suggest that some XLA causing mutations might impair Btk phosphorylation. PMID:19523959
Ladépêche, Laurent; Planagumà, Jesús; Thakur, Shreyasi; Suárez, Irina; Hara, Makoto; Borbely, Joseph Steven; Sandoval, Angel; Laparra-Cuervo, Lara; Dalmau, Josep; Lakadamyali, Melike
2018-06-26
Anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis is a severe neuropsychiatric disorder mediated by autoantibodies against the GluN1 subunit of the NMDAR. Patients' antibodies cause cross-linking and internalization of NMDAR, but the synaptic events leading to depletion of NMDAR are poorly understood. Using super-resolution microscopy, we studied the effects of the autoantibodies on the nanoscale distribution of NMDAR in cultured neurons. Our findings show that, under control conditions, NMDARs form nanosized objects and patients' antibodies increase the clustering of synaptic and extrasynaptic receptors inside the nano-objects. This clustering is subunit specific and predominantly affects GluN2B-NMDARs. Following internalization, the remaining surface NMDARs return to control clustering levels but are preferentially retained at the synapse. Monte Carlo simulations using a model in which antibodies induce NMDAR cross-linking and disruption of interactions with other proteins recapitulated these results. Finally, activation of EphB2 receptor partially antagonized the antibody-mediated disorganization of the nanoscale surface distribution of NMDARs. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Diagnosing oceanic nutrient deficiency
2016-01-01
The supply of a range of nutrient elements to surface waters is an important driver of oceanic production and the subsequent linked cycling of the nutrients and carbon. Relative deficiencies of different nutrients with respect to biological requirements, within both surface and internal water masses, can be both a key indicator and driver of the potential for these nutrients to become limiting for the production of new organic material in the upper ocean. The availability of high-quality, full-depth and global-scale datasets on the concentrations of a wide range of both macro- and micro-nutrients produced through the international GEOTRACES programme provides the potential for estimation of multi-element deficiencies at unprecedented scales. Resultant coherent large-scale patterns in diagnosed deficiency can be linked to the interacting physical–chemical–biological processes which drive upper ocean nutrient biogeochemistry. Calculations of ranked deficiencies across multiple elements further highlight important remaining uncertainties in the stoichiometric plasticity of nutrient ratios within oceanic microbial systems and caveats with regards to linkages to upper ocean nutrient limitation. This article is part of the themed issue ‘Biological and climatic impacts of ocean trace element chemistry’. PMID:29035255
Diagnosing oceanic nutrient deficiency
NASA Astrophysics Data System (ADS)
Moore, C. Mark
2016-11-01
The supply of a range of nutrient elements to surface waters is an important driver of oceanic production and the subsequent linked cycling of the nutrients and carbon. Relative deficiencies of different nutrients with respect to biological requirements, within both surface and internal water masses, can be both a key indicator and driver of the potential for these nutrients to become limiting for the production of new organic material in the upper ocean. The availability of high-quality, full-depth and global-scale datasets on the concentrations of a wide range of both macro- and micro-nutrients produced through the international GEOTRACES programme provides the potential for estimation of multi-element deficiencies at unprecedented scales. Resultant coherent large-scale patterns in diagnosed deficiency can be linked to the interacting physical-chemical-biological processes which drive upper ocean nutrient biogeochemistry. Calculations of ranked deficiencies across multiple elements further highlight important remaining uncertainties in the stoichiometric plasticity of nutrient ratios within oceanic microbial systems and caveats with regards to linkages to upper ocean nutrient limitation. This article is part of the themed issue 'Biological and climatic impacts of ocean trace element chemistry'.
SH2-dependent autophosphorylation within the Tec family kinase Itk.
Joseph, Raji E; Severin, Andrew; Min, Lie; Fulton, D Bruce; Andreotti, Amy H
2009-08-07
The Tec family kinase, Itk (interleukin-2 tyrosine kinase), undergoes an in cis autophosphorylation on Y180 within its Src homology 3 (SH3) domain. Autophosphorylation of the Itk SH3 domain by the Itk kinase domain is strictly dependent on the presence of the intervening Src homology 2 (SH2) domain. A direct docking interaction between the Itk kinase and SH2 domains brings the Itk SH3 domain into the active site where Y180 is then phosphorylated. We now identify the residues on the surface of the Itk SH2 domain responsible for substrate docking and show that this SH2 surface mediates autophosphorylation in the full-length Itk molecule. The canonical phospholigand binding site on the SH2 domain is not involved in substrate docking, instead the docking site consists of side chains from three loop regions (AB, EF and BG) and part of the betaD strand. These results are extended into Btk (Bruton's tyrosine kinase), a Tec family kinase linked to the B-cell deficiency X-linked agammaglobulinemia (XLA). Our results suggest that some XLA-causing mutations might impair Btk phosphorylation.
Zheng, Heping; Mandal, Arabinda; Shumilin, Igor A.; Chordia, Mahendra D.; Panneerdoss, Subbarayalu; Herr, John C.; Minor, Wladek
2016-01-01
Sperm Lysozyme-Like Protein 1 (SLLP1) is one of the lysozyme-like proteins predominantly expressed in mammalian testes that lacks bacteriolytic activity, localizes in the sperm acrosome, and exhibits high affinity for an oolemmal receptor, SAS1B. The crystal structure of mouse SLLP1 (mSLLP1) was determined at 2.15Å resolution. mSLLP1 monomer adopts a structural fold similar to that of chicken/mouse lysozymes retaining all four canonical disulfide bonds. mSLLP1 is distinct from c-lysozyme by substituting two essential catalytic residues (E35T/D52N), exhibiting different surface charge distribution, and by forming helical filaments approximately 75Å in diameter with a 25Å central pore comprised of six monomers per helix turn repeating every 33Å. Cross-species alignment of all reported SLLP1 sequences revealed a set of invariant surface regions comprising a characteristic fingerprint uniquely identifying SLLP1 from other c-lysozyme family members. The fingerprint surface regions reside around the lips of the putative glycan binding groove including three polar residues (Y33/E46/H113). A flexible salt bridge (E46-R61) was observed covering the glycan binding groove. The conservation of these regions may be linked to their involvement in oolemmal protein binding. Interaction between SLLP1 monomer and its oolemmal receptor SAS1B was modeled using protein-protein docking algorithms, utilizing the SLLP1 fingerprint regions along with the SAS1B conserved surface regions. This computational model revealed complementarity between the conserved SLLP1/SAS1B interacting surfaces supporting the experimentally-observed SLLP1/SAS1B interaction involved in fertilization. PMID:26198801
Diagnosing the Nature of Land-Atmosphere Coupling: A Case Study of Dry/Wet Extremes
NASA Technical Reports Server (NTRS)
Santanello, Joseph A., Jr.; Peters-Lidard, Christa; Kennedy, Aaron D.
2012-01-01
Land-atmosphere (L-A) interactions play a critical role in determining the diurnal evolution of land surface and planetary boundary layer (PBL) temperature and moisture states and fluxes. In turn, these interactions regulate the strength of the connection between surface moisture and precipitation in a coupled system. To address deficiencies in numerical weather prediction and climate models due to improper treatment of L-A interactions, recent studies have focused on development of diagnostics to quantify the strength and accuracy of the land-PBL coupling at the process-level. In this study, a diagnosis of the nature and impacts oflocalland-atmosphere coupling (LoCo) during dry and wet extreme conditions is presented using a combination of models and observations during the summers of2006-7 in the U.S. Southern Great Plains. Specifically, the Weather Research and Forecasting (WRF) model has been coupled to NASA's Land Information System (LIS), which provides a flexible and high-resolution representation and initialization of land surface physics and states. A range of diagnostics exploring the links and feedbacks between soil moisture and precipitation are examined for the dry/wet regimes of this region, along with the behavior and accuracy of different land-PBL scheme couplings under these conditions. In addition, we examine the impact of improved specification ofland surface states, anomalies, and fluxes that are obtained through the use of a hew optimization and uncertainty module in LIS, on the L-A coupling in WRF forecasts. Results demonstrate how LoCo diagnostics can be applied to coupled model components in the context of their integrated impacts on the process-chain connecting the land surface to the PBL and support of hydrological anomalies.
Zheng, H; Mandal, A; Shumilin, I A; Chordia, M D; Panneerdoss, S; Herr, J C; Minor, W
2015-07-01
Sperm lysozyme-like protein 1 (SLLP1) is one of the lysozyme-like proteins predominantly expressed in mammalian testes that lacks bacteriolytic activity, localizes in the sperm acrosome, and exhibits high affinity for an oolemmal receptor, SAS1B. The crystal structure of mouse SLLP1 (mSLLP1) was determined at 2.15 Å resolution. mSLLP1 monomer adopts a structural fold similar to that of chicken/mouse lysozymes retaining all four canonical disulfide bonds. mSLLP1 is distinct from c-lysozyme by substituting two essential catalytic residues (E35T/D52N), exhibiting different surface charge distribution, and by forming helical filaments approximately 75 Å in diameter with a 25 Å central pore comprised of six monomers per helix turn repeating every 33 Å. Cross-species alignment of all reported SLLP1 sequences revealed a set of invariant surface regions comprising a characteristic fingerprint uniquely identifying SLLP1 from other c-lysozyme family members. The fingerprint surface regions reside around the lips of the putative glycan-binding groove including three polar residues (Y33/E46/H113). A flexible salt bridge (E46-R61) was observed covering the glycan-binding groove. The conservation of these regions may be linked to their involvement in oolemmal protein binding. Interaction between SLLP1 monomer and its oolemmal receptor SAS1B was modeled using protein-protein docking algorithms, utilizing the SLLP1 fingerprint regions along with the SAS1B conserved surface regions. This computational model revealed complementarity between the conserved SLLP1/SAS1B interacting surfaces supporting the experimentally observed SLLP1/SAS1B interaction involved in fertilization. © 2015 American Society of Andrology and European Academy of Andrology.
Introduction of a specific binding domain on myoglobin surface by new chemical modification.
Hayashi, T; Ando, T; Matsuda, T; Yonemura, H; Yamada, S; Hisaeda, Y
2000-11-01
A new myoglobin, reconstituted with a modified zinc protoporphyrin, having a total of four ammonium groups at the terminal of the two propionate side chains was constructed to introduce a substrate binding site. The protein with a positively charged patch on the surface formed a stable complex with negatively charged substrates, such as hexacyanoferrate(III) and anthraquinonesulfonate via an electrostatic interaction. The complexation was monitored by fluorescence quenching due to singlet electron transfer from the photoexcited reconstituted zinc myoglobin to the substrates. The binding properties were evaluated by Stern-Volmer plots from the fluorescence quenching of the zinc myoglobin by a quencher. Particularly, anthraquinone-2,7-disulfonic acid showed a high affinity with a binding constant of 1.5 x 10(5) M(-1) in 10 mM phosphate buffer, pH 7.0. In contrast, the plots upon the addition of anthraquinone-2-sulfonic acid at different ionic strengths indicated that the complex was formed not only by an electrostatic interaction but also by a hydrophobic contact. The findings from the fluorescence studies conclude that the present system is a useful model for discussion of electron transfer via non-covalently linked donor-acceptor pairing on the protein surface.
Du, Yan; Liu, Hua; He, Yiqing; Liu, Yiwen; Yang, Cuixia; Zhou, Muqing; Wang, Wenjuan; Cui, Lian; Hu, Jiajie; Gao, Feng
2013-01-01
Hyaluronan (HA), a simple disaccharide unit, can polymerize and is considered a primary component of the extracellular matrix, which has a wide range of biological functions. In recent years, HA was found on the surface of tumor cells. According to previous reports, differing HA content on the cell surface of tumor cells is closely related to lymph node metastases, but the mechanisms mediating this process remained unclear. This research intended to study the surface content of HA on tumor cells and analyze cell adhesive changes caused by the interaction between HA and its lymphatic endothelial receptor (LYVE-1). We screened and observed high HA content on HS-578T breast cells and low HA content on MCF-7 breast cells through particle exclusion, immunofluorescence and flow cytometry experiments. The expression of LYVE-1, the lymph-vessel specific HA receptor, was consistent with our previous report and enhanced the adhesion of HA(high)-HS-578T cells to COS-7(LYVE-1(+)) through HA in cell static adhesion and dynamic parallel plate flow chamber experiments. MCF-7 breast cells contain little HA on the surface; however, our results showed little adhesion difference between MCF-7 cells and COS-7(LYVE-1(+)) and COS-7(LYVE-1(-)) cells. Similar results were observed concerning the adhesion of HS-578T cells or MCF-7 cells to SVEC4-10 cells. Furthermore, we observed for the first time that the cell surface HA content of high transfer tumor cells was rich, and we visualized the cross-linking of HA cable structures, which may activate LYVE-1 on lymphatic endothelial cells, promoting tumor adhesion. In summary, high-low cell surface HA content of tumor cells through the interaction with LYVE-1 leads to adhesion differences.
Chavez, Juan D; Cilia, Michelle; Weisbrod, Chad R; Ju, Ho-Jong; Eng, Jimmy K; Gray, Stewart M; Bruce, James E
2012-05-04
Protein interactions are critical determinants of insect transmission for viruses in the family Luteoviridae. Two luteovirid structural proteins, the capsid protein (CP) and the readthrough protein (RTP), contain multiple functional domains that regulate virus transmission. There is no structural information available for these economically important viruses. We used Protein Interaction Reporter (PIR) technology, a strategy that uses chemical cross-linking and high resolution mass spectrometry, to discover topological features of the Potato leafroll virus (PLRV) CP and RTP that are required for the diverse biological functions of PLRV virions. Four cross-linked sites were repeatedly detected, one linking CP monomers, two within the RTP, and one linking the RTP and CP. Virus mutants with triple amino acid deletions immediately adjacent to or encompassing the cross-linked sites were defective in virion stability, RTP incorporation into the capsid, and aphid transmission. Plants infected with a new, infectious PLRV mutant lacking 26 amino acids encompassing a cross-linked site in the RTP exhibited a delay in the appearance of systemic infection symptoms. PIR technology provided the first structural insights into luteoviruses which are crucially lacking and are involved in vector-virus and plant-virus interactions. These are the first cross-linking measurements on any infectious, insect-transmitted virus.
Chavez, Juan D.; Cilia, Michelle; Weisbrod, Chad R.; Ju, Ho-Jong; Eng, Jimmy K.; Gray, Stewart M.; Bruce, James E.
2012-01-01
Protein interactions are critical determinants of insect-transmission for viruses in the family Luteoviridae. Two luteovirid structural proteins, the capsid protein (CP) and the readthrough protein (RTP), contain multiple functional domains that regulate virus transmission. There is no structural information available for these economically important viruses. We used Protein Interaction Reporter (PIR) technology, a strategy that uses chemical cross-linking and high resolution mass spectrometry, to discover topological features of the Potato leafroll virus (PLRV) CP and RTP that are required for the diverse biological functions of PLRV virions. Four cross-linked sites were repeatedly detected, one linking CP monomers, two within the RTP, and one linking the RTP and CP. Virus mutants with triple amino acid deletions immediately adjacent to or encompassing the cross-linked sites were defective in virion stability, RTP incorporation into the capsid, and aphid transmission. Plants infected with a new, infectious PLRV mutant lacking 26 amino acids encompassing a cross-linked site in the RTP exhibited a delay in the appearance of systemic infection symptoms. PIR technology provided the first structural insights into luteoviruses which are crucially lacking and that are involved in vector-virus and plant-virus interactions. These are the first cross-linking measurements on any infectious, insect-transmitted virus. PMID:22390342
Near-atomic cryo-EM structure of PRC1 bound to the microtubule.
Kellogg, Elizabeth H; Howes, Stuart; Ti, Shih-Chieh; Ramírez-Aportela, Erney; Kapoor, Tarun M; Chacón, Pablo; Nogales, Eva
2016-08-23
Proteins that associate with microtubules (MTs) are crucial to generate MT arrays and establish different cellular architectures. One example is PRC1 (protein regulator of cytokinesis 1), which cross-links antiparallel MTs and is essential for the completion of mitosis and cytokinesis. Here we describe a 4-Å-resolution cryo-EM structure of monomeric PRC1 bound to MTs. Residues in the spectrin domain of PRC1 contacting the MT are highly conserved and interact with the same pocket recognized by kinesin. We additionally found that PRC1 promotes MT assembly even in the presence of the MT stabilizer taxol. Interestingly, the angle of the spectrin domain on the MT surface corresponds to the previously observed cross-bridge angle between MTs cross-linked by full-length, dimeric PRC1. This finding, together with molecular dynamic simulations describing the intrinsic flexibility of PRC1, suggests that the MT-spectrin domain interface determines the geometry of the MT arrays cross-linked by PRC1.
Near-atomic cryo-EM structure of PRC1 bound to the microtubule
Kellogg, Elizabeth H.; Howes, Stuart; Ti, Shih-Chieh; Ramírez-Aportela, Erney; Kapoor, Tarun M.; Chacón, Pablo; Nogales, Eva
2016-01-01
Proteins that associate with microtubules (MTs) are crucial to generate MT arrays and establish different cellular architectures. One example is PRC1 (protein regulator of cytokinesis 1), which cross-links antiparallel MTs and is essential for the completion of mitosis and cytokinesis. Here we describe a 4-Å–resolution cryo-EM structure of monomeric PRC1 bound to MTs. Residues in the spectrin domain of PRC1 contacting the MT are highly conserved and interact with the same pocket recognized by kinesin. We additionally found that PRC1 promotes MT assembly even in the presence of the MT stabilizer taxol. Interestingly, the angle of the spectrin domain on the MT surface corresponds to the previously observed cross-bridge angle between MTs cross-linked by full-length, dimeric PRC1. This finding, together with molecular dynamic simulations describing the intrinsic flexibility of PRC1, suggests that the MT–spectrin domain interface determines the geometry of the MT arrays cross-linked by PRC1. PMID:27493215
NASA Astrophysics Data System (ADS)
Jiang, Haihong
2005-11-01
The copper ethanolamine (CuEA) complex was used as a wood surface modifier and a coupling agent for wood-PVC composites. Mechanical properties of composites, such as unnotched impact strength, flexural strength and flexural toughness, were significantly increased, and fungal decay weight loss was dramatically decreased by wood surface copper amine treatments. It is evident that copper amine was a very effective coupling agent and decay inhibitor for PVC/wood flour composites, especially in high wood flour loading level. A DSC study showed that the heat capacity differences (DeltaCp) of composites before and after PVC glass transition were reduced by adding wood particles. A DMA study revealed that the movements of PVC chain segments during glass transition were limited and obstructed by the presence of wood molecule chains. This restriction effect became stronger by increasing wood flour content and by using Cu-treated wood flour. Wood flour particles acted as "physical cross-linking points" inside the PVC matrix, resulting in the absence of the rubbery plateau of PVC and higher E', E'' above Tg, and smaller tan delta peaks. Enhanced mechanical performances were attributed to the improved wetting condition between PVC melts and wood surfaces, and the formation of a stronger interphase strengthened by chemical interactions between Cu-treated wood flour and the PVC matrix. Contact angles of PVC solution drops on Cu-treated wood surfaces were decreased dramatically compared to those on the untreated surfaces. Acid-base (polar), gammaAB, electron-acceptor (acid) (gamma +), electron-donor (base) (gamma-) surface energy components and the total surface energies increased after wood surface Cu-treatments, indicating a strong tendency toward acid-base or polar interactions. Improved interphase and interfacial adhesion were further confirmed by measuring interfacial shear strength between wood and the PVC matrix.
O Antigen Modulates Insect Vector Acquisition of the Bacterial Plant Pathogen Xylella fastidiosa
Rapicavoli, Jeannette N.; Kinsinger, Nichola; Perring, Thomas M.; Backus, Elaine A.; Shugart, Holly J.; Walker, Sharon
2015-01-01
Hemipteran insect vectors transmit the majority of plant pathogens. Acquisition of pathogenic bacteria by these piercing/sucking insects requires intimate associations between the bacterial cells and insect surfaces. Lipopolysaccharide (LPS) is the predominant macromolecule displayed on the cell surface of Gram-negative bacteria and thus mediates bacterial interactions with the environment and potential hosts. We hypothesized that bacterial cell surface properties mediated by LPS would be important in modulating vector-pathogen interactions required for acquisition of the bacterial plant pathogen Xylella fastidiosa, the causative agent of Pierce's disease of grapevines. Utilizing a mutant that produces truncated O antigen (the terminal portion of the LPS molecule), we present results that link this LPS structural alteration to a significant decrease in the attachment of X. fastidiosa to blue-green sharpshooter foreguts. Scanning electron microscopy confirmed that this defect in initial attachment compromised subsequent biofilm formation within vector foreguts, thus impairing pathogen acquisition. We also establish a relationship between O antigen truncation and significant changes in the physiochemical properties of the cell, which in turn affect the dynamics of X. fastidiosa adhesion to the vector foregut. Lastly, we couple measurements of the physiochemical properties of the cell with hydrodynamic fluid shear rates to produce a Comsol model that predicts primary areas of bacterial colonization within blue-green sharpshooter foreguts, and we present experimental data that support the model. These results demonstrate that, in addition to reported protein adhesin-ligand interactions, O antigen is crucial for vector-pathogen interactions, specifically in the acquisition of this destructive agricultural pathogen. PMID:26386068
O antigen modulates insect vector acquisition of the bacterial plant pathogen Xylella fastidiosa.
Rapicavoli, Jeannette N; Kinsinger, Nichola; Perring, Thomas M; Backus, Elaine A; Shugart, Holly J; Walker, Sharon; Roper, M Caroline
2015-12-01
Hemipteran insect vectors transmit the majority of plant pathogens. Acquisition of pathogenic bacteria by these piercing/sucking insects requires intimate associations between the bacterial cells and insect surfaces. Lipopolysaccharide (LPS) is the predominant macromolecule displayed on the cell surface of Gram-negative bacteria and thus mediates bacterial interactions with the environment and potential hosts. We hypothesized that bacterial cell surface properties mediated by LPS would be important in modulating vector-pathogen interactions required for acquisition of the bacterial plant pathogen Xylella fastidiosa, the causative agent of Pierce's disease of grapevines. Utilizing a mutant that produces truncated O antigen (the terminal portion of the LPS molecule), we present results that link this LPS structural alteration to a significant decrease in the attachment of X. fastidiosa to blue-green sharpshooter foreguts. Scanning electron microscopy confirmed that this defect in initial attachment compromised subsequent biofilm formation within vector foreguts, thus impairing pathogen acquisition. We also establish a relationship between O antigen truncation and significant changes in the physiochemical properties of the cell, which in turn affect the dynamics of X. fastidiosa adhesion to the vector foregut. Lastly, we couple measurements of the physiochemical properties of the cell with hydrodynamic fluid shear rates to produce a Comsol model that predicts primary areas of bacterial colonization within blue-green sharpshooter foreguts, and we present experimental data that support the model. These results demonstrate that, in addition to reported protein adhesin-ligand interactions, O antigen is crucial for vector-pathogen interactions, specifically in the acquisition of this destructive agricultural pathogen. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
A Possible Protogalaxy Near M81
NASA Astrophysics Data System (ADS)
Henkel, C.; Stickel, M.; Salzer, J. J.; Hopp, U.; Brouillet, N.; Baudry, A.
1993-06-01
CCD images covering the region of a molecular complex east of M 81 show no optical counterpart. This excludes the presence of unembedded massive (>10 M_sun_) stars and an association with a low surface brightness (<=27.0^m^/arcsec^2^ in B for B - R = 1.5^m^) galaxy. The complex is thus quite different from any of the presumably young active dwarfs observed in the vicinity of interacting systems. It is likely the first known `protogalaxy', representing the missing link between tidal HI arms and active star forming regions well displaced from the centers of the associated interacting galaxies. An irregular shaped object of unknown nature (size: 20"; B - R = 1.3^m^) is detected 50" NW of the molecular complex.
Influence of the protonation state on the binding mode of methyl orange with cucurbiturils
NASA Astrophysics Data System (ADS)
He, Suhang; Sun, Xuzhuo; Zhang, Haibo
2016-03-01
Binding modes of methyl orange (MO) with cucurbiturils (CBs) have been investigated by Single Crystal X-ray Diffraction and NMR Spectroscopy. Detailed study of intermolecular interactions was supported by the Hirshfeld surface analysis. Protonation state of the anionic part of methyl orange has greatly influenced the binding mode of the complex. Stabilized by hydrogen bonding at the portal, hydrophobic and dispersion interactions in the cavity, the protonated methyl orange was deeply inserted into the cavity. On the contrary, the anionic methyl orange has been pushed towards the outside of the cavity by the electrostatic repulsion between the azo group and the portal oxygen. A ;water bridge; was found in MO@CB8 linking both host and guest via hydrogen bonds.
On the Use of Surface Porosity to Reduce Unsteady Lift
NASA Technical Reports Server (NTRS)
Tinetti, Ana F.; Kelly, Jeffrey J.; Bauer, Steven X. S.; Thomas, Russell H.
2001-01-01
An innovative application of existing technology is proposed for attenuating the effects of transient phenomena, such as rotor-stator and rotor-strut interactions, linked to noise and fatigue failure in turbomachinery environments. A computational study was designed to assess the potential of passive porosity technology as a mechanism for alleviating interaction effects by reducing the unsteady lift developed on a stator airfoil subject to wake impingement. The study involved a typical high bypass fan Stator airfoil (solid baseline and several porous configurations), immersed in a free field and exposed to the effects of a transversely moving wake. It was found that, for the airfoil under consideration, the magnitude of the unsteady lift could be reduced more than 18% without incurring significant performance losses.
Light triggers habitat choice of eyeless subterranean but not of eyed surface amphipods.
Fišer, Žiga; Novak, Luka; Luštrik, Roman; Fišer, Cene
2016-02-01
Boundaries of species distributions are the result of colonization-extinction processes. Survival on the boundary depends on how well individuals discriminate optimal from suboptimal habitat patches. Such behaviour is called habitat choice and was only rarely applied to macroecology, although it links species ecological niche and species distribution. Surface and subterranean aquatic species are spatially strongly segregated, even in the absence of physical barriers. We explored whether a behavioural response to light functions as a habitat choice mechanism that could explain species turnover between surface and subterranean aquatic ecosystems. In a controlled laboratory experiment, we studied the behavioural response to light of ten pairs of surface and subterranean amphipods that permanently co-occur in springs. Surface species showed a weak photophobic, photoneutral, and in one case, photophilic response, whereas all subterranean species showed a strong photophobic response. Eyeless subterranean but not eyed surface amphipods appear to orient themselves with light cues. On a local scale, this difference possibly diminishes harmful interactions between the co-occurring amphipods, whereas on a regional scale, photophobia could explain limited dispersal and a high degree of endemism observed among subterranean species.
NASA Astrophysics Data System (ADS)
Tang, Zhenghua; Lim, Chang-Keun; Palafox-Hernandez, J. Pablo; Drew, Kurt L. M.; Li, Yue; Swihart, Mark T.; Prasad, Paras N.; Walsh, Tiffany R.; Knecht, Marc R.
2015-08-01
Bio-molecular non-covalent interactions provide a powerful platform for material-specific self-organization in aqueous media. Here, we introduce a strategy that integrates a synthetic optically-responsive motif with a materials-binding peptide to enable remote actuation. Specifically, we linked a photoswitchable azobenzene moiety to either terminus of a Au-binding peptide. We employed these hybrid molecules as capping agents for synthesis of Au nanoparticles. Integrated experiments and molecular simulations showed that the hybrid molecules maintained both of their functions, i.e. binding to Au and optically-triggered reconfiguration. The azobenzene unit was optically switched reversibly between trans and cis states while adsorbed on the particle surface. Upon switching, the conformation of the peptide component of the molecule also changed. This highlights the interplay between the surface adsorption and conformational switching that will be pivotal to the creation of actuatable nanoparticle bio-interfaces, and paves the way toward multifunctional peptide hybrids that can produce stimuli responsive nanoassemblies.Bio-molecular non-covalent interactions provide a powerful platform for material-specific self-organization in aqueous media. Here, we introduce a strategy that integrates a synthetic optically-responsive motif with a materials-binding peptide to enable remote actuation. Specifically, we linked a photoswitchable azobenzene moiety to either terminus of a Au-binding peptide. We employed these hybrid molecules as capping agents for synthesis of Au nanoparticles. Integrated experiments and molecular simulations showed that the hybrid molecules maintained both of their functions, i.e. binding to Au and optically-triggered reconfiguration. The azobenzene unit was optically switched reversibly between trans and cis states while adsorbed on the particle surface. Upon switching, the conformation of the peptide component of the molecule also changed. This highlights the interplay between the surface adsorption and conformational switching that will be pivotal to the creation of actuatable nanoparticle bio-interfaces, and paves the way toward multifunctional peptide hybrids that can produce stimuli responsive nanoassemblies. Electronic supplementary information (ESI) available: Additional modeling analysis, QCM analysis, UV-vis and CD spectroscopy data. See DOI: 10.1039/C5NR02311D
Localization/delocalization of charges in bay-linked perylene bisimides.
Jiang, Wei; Xiao, Chengyi; Hao, Linxiao; Wang, Zhaohui; Ceymann, Harald; Lambert, Christoph; Di Motta, Simone; Negri, Fabrizia
2012-05-29
The copper-mediated Ullmann coupling of 1,7-dibromoperylene bisimides afforded structurally perfect singly-linked perylene bisimide (PBI) arrays, whilst the homo-coupling of 1,12-dibromoperylene bisimides gave doubly-linked and triply-linked diperylene bisimides. The interactions of three bay-linked diperylene bisimides that differed in their linkage (singly, doubly, and triply) were investigated in their neutral and reduced forms (mono-anion to tetra-anion). UV/Vis absorption and fluorescence spectroscopy revealed different degrees of interaction, which was explained by exciton coupling and conjugation effects. The electrochemical properties and spectroelectrochemistry also showed quite-different degrees of PBI interactions in the reduced mixed-valence species, which was apparent by the observation of CT bands. The interpretation of the experimental findings was supported by spin-restricted and -unrestricted DFT and time-dependent TD-DFT calculations with the long-range-corrected CAM-B3LYP functional. Accordingly, the degree of interaction in both the neutral and reduced forms of the bay-linked PBIs was qualitatively in the order doubly linked
Bai, Long; Liu, Yanlian; Du, Zhibin; Weng, Zeming; Yao, Wei; Zhang, Xiangyu; Huang, Xiaobo; Yao, Xiaohong; Crawford, Ross; Hang, Ruiqiang; Huang, Di; Tang, Bin; Xiao, Yin
2018-06-15
Coating materials applied for intraosseous implants must be optimized to stimulate osseointegration. Osseointegration is a temporal and spatial physiological process that not only requires interactions between osteogenesis and angiogenesis but also necessitates a favorable immune microenvironment. It is now well-documented that hierarchical nano-micro surface structures promote the long-term stability of implants, the interactions between nano-micro structure and the immune response are largely unknown. Here, we report the effects of microporous titanium (Ti) surfaces coated with nano-hydroxyapatite (HA) produced by micro-arc oxidation and steam-hydrothermal treatment (SHT) on multiple cell behavior and osseointegration. By altering the processing time of SHT it was possible to shift HA structures from nano-particles to nano-rods on the microporous Ti surfaces. Ti surfaces coated with HA nano-particles were found to modulate the inflammatory response resulting in an osteoimmune microenvironment more favorable for osteo-/angio-genesis, most likely via the activation of certain key signaling pathways (TGF-β, OPG/RANKL, and VEGF). By contrast, Ti surfaces coated with nano-rod shaped HA particles had a negative impact on osteo-/angio-genesis and osteoimmunomodulation. In vivo results further demonstrated that Ti implant surfaces decorated with HA nano-particles can stimulate new bone formation and osseointegration with enhanced interaction between osteocytes and implant surfaces. This study demonstrated that Ti implants with micro-surfaces coated with nano-particle shaped HA have a positive impact on osseointegration. Osteo-/angio-genesis are of importance during osteointegration of the implants. Recent advances unravel that immune response of macrophages and its manipulated osteoimmunomodulation also exerts a pivotal role to determine the fate of the implant. Surface nano-micro modification has evidenced to be efficient to influence osteogenesis, however, little is known links nano-microstructured surface to immune response, as well the osteoimmunomodulation. This study demonstrates that the nano-particles decorated micro-surface, compared with the nano-rods decorated micro-surface enables osteogenesis and angiogenesis concurrently that has not been investigated previously. This study also unravels that the immune response of macrophages can be manipulated by the nano-micro surface, especially the nano-dimension matters, leading to a differential effect on osteointegration. The additional knowledge obtained from this study may provide foundation and reference for future design of the coating materials for implantable materials. Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Structure and membrane interactions of the homodimeric antibiotic peptide homotarsinin
NASA Astrophysics Data System (ADS)
Verly, Rodrigo M.; Resende, Jarbas M.; Junior, Eduardo F. C.; de Magalhães, Mariana T. Q.; Guimarães, Carlos F. C. R.; Munhoz, Victor H. O.; Bemquerer, Marcelo Porto; Almeida, Fábio C. L.; Santoro, Marcelo M.; Piló-Veloso, Dorila; Bechinger, Burkhard
2017-01-01
Antimicrobial peptides (AMPs) from amphibian skin are valuable template structures to find new treatments against bacterial infections. This work describes for the first time the structure and membrane interactions of a homodimeric AMP. Homotarsinin, which was found in Phyllomedusa tarsius anurans, consists of two identical cystine-linked polypeptide chains each of 24 amino acid residues. The high-resolution structures of the monomeric and dimeric peptides were determined in aqueous buffers. The dimer exhibits a tightly packed coiled coil three-dimensional structure, keeping the hydrophobic residues screened from the aqueous environment. An overall cationic surface of the dimer assures enhanced interactions with negatively charged membranes. An extensive set of biophysical data allowed us to establish structure-function correlations with antimicrobial assays against Gram-positive and Gram-negative bacteria. Although both peptides present considerable antimicrobial activity, the dimer is significantly more effective in both antibacterial and membrane biophysical assays.
Structure and membrane interactions of the homodimeric antibiotic peptide homotarsinin
Verly, Rodrigo M.; Resende, Jarbas M.; Junior, Eduardo F. C.; de Magalhães, Mariana T. Q.; Guimarães, Carlos F. C. R.; Munhoz, Victor H. O.; Bemquerer, Marcelo Porto; Almeida, Fábio C. L.; Santoro, Marcelo M.; Piló-Veloso, Dorila; Bechinger, Burkhard
2017-01-01
Antimicrobial peptides (AMPs) from amphibian skin are valuable template structures to find new treatments against bacterial infections. This work describes for the first time the structure and membrane interactions of a homodimeric AMP. Homotarsinin, which was found in Phyllomedusa tarsius anurans, consists of two identical cystine-linked polypeptide chains each of 24 amino acid residues. The high-resolution structures of the monomeric and dimeric peptides were determined in aqueous buffers. The dimer exhibits a tightly packed coiled coil three-dimensional structure, keeping the hydrophobic residues screened from the aqueous environment. An overall cationic surface of the dimer assures enhanced interactions with negatively charged membranes. An extensive set of biophysical data allowed us to establish structure-function correlations with antimicrobial assays against Gram-positive and Gram-negative bacteria. Although both peptides present considerable antimicrobial activity, the dimer is significantly more effective in both antibacterial and membrane biophysical assays. PMID:28102305
Structure and membrane interactions of the homodimeric antibiotic peptide homotarsinin.
Verly, Rodrigo M; Resende, Jarbas M; Junior, Eduardo F C; de Magalhães, Mariana T Q; Guimarães, Carlos F C R; Munhoz, Victor H O; Bemquerer, Marcelo Porto; Almeida, Fábio C L; Santoro, Marcelo M; Piló-Veloso, Dorila; Bechinger, Burkhard
2017-01-19
Antimicrobial peptides (AMPs) from amphibian skin are valuable template structures to find new treatments against bacterial infections. This work describes for the first time the structure and membrane interactions of a homodimeric AMP. Homotarsinin, which was found in Phyllomedusa tarsius anurans, consists of two identical cystine-linked polypeptide chains each of 24 amino acid residues. The high-resolution structures of the monomeric and dimeric peptides were determined in aqueous buffers. The dimer exhibits a tightly packed coiled coil three-dimensional structure, keeping the hydrophobic residues screened from the aqueous environment. An overall cationic surface of the dimer assures enhanced interactions with negatively charged membranes. An extensive set of biophysical data allowed us to establish structure-function correlations with antimicrobial assays against Gram-positive and Gram-negative bacteria. Although both peptides present considerable antimicrobial activity, the dimer is significantly more effective in both antibacterial and membrane biophysical assays.
DNA packaging in viral capsids with peptide arms.
Cao, Qianqian; Bachmann, Michael
2017-01-18
Strong chain rigidity and electrostatic self-repulsion of packed double-stranded DNA in viruses require a molecular motor to pull the DNA into the capsid. However, what is the role of electrostatic interactions between different charged components in the packaging process? Though various theories and computer simulation models were developed for the understanding of viral assembly and packaging dynamics of the genome, long-range electrostatic interactions and capsid structure have typically been neglected or oversimplified. By means of molecular dynamics simulations, we explore the effects of electrostatic interactions on the packaging dynamics of DNA based on a coarse-grained DNA and capsid model by explicitly including peptide arms (PAs), linked to the inner surface of the capsid, and counterions. Our results indicate that the electrostatic interactions between PAs, DNA, and counterions have a significant influence on the packaging dynamics. We also find that the packed DNA conformations are largely affected by the structure of the PA layer, but the packaging rate is insensitive to the layer structure.
Dimeric MHC-peptides inserted into an immunoglobulin scaffold as new immunotherapeutic agents
Goldberg, Burt; Bona, Constantin
2011-01-01
Abstract The interactions of the T cell receptor (TCR) with cognate MHC-peptide and co-stimulatory molecules expressed at surface of antigen presenting cells (APC) leads to activation or tolerance of T cells. The development of molecular biological tools allowed for the preparation of soluble MHC-peptide molecules as surrogate for the APC. A decade ago a monomeric class II MHC molecule in which the peptide was covalently linked to β-chain of class II molecule was generated. This type of molecule had a low-binding affinity and did not cause the multimerization of TCR. The requirement of multimerization of TCR led to development of a new class of reagents, chimeric peptides covalently linked to MHC that was dimerized via Fc fragment of an immunoglobulin and linked to 3′ end of the β-chain of MHC class II molecule. These soluble dimerized MHC-peptide chimeric molecules display high affinity for the TCR and caused multimerization of TCR without processing by an APC. Because dimeric molecules are devoid of co-stimulatory molecules interacting with CD28, a second signal, they induce anergy rather the activation of T cells. In this review, we compare the human and murine dimerized MHC class II-peptides and their effect on CD4+ T cells, particularly the generation of T regulatory cells, which make these chimeric molecules an appealing approach for the treatment of autoimmune diseases. PMID:21435177
Effect of surface modification on protein retention and cell proliferation under strain.
Dunkers, J P; Lee, H-J; Matos, M A; Pakstis, L M; Taboas, J M; Hudson, S D; Cicerone, M T
2011-07-01
When culturing cells on flexible surfaces, it is important to consider extracellular matrix treatments that will remain on the surface under mechanical strain. Here we investigate differences in laminin deposited on oxidized polydimethylsiloxane (PDMS) with plasma treatment (plasma-only) vs. plasma and aminopropyltrimethoxysilane treatment (silane-linked). We use specular X-ray reflectivity (SXR), transmission electron microscopy (TEM), and immunofluorescence to probe the quantity and uniformity of laminin. The surface coverage of laminin is approximately 45% for the plasma-only and 50% for the silane-linked treatment as determined by SXR. TEM and immunofluorescence reveal additional islands of laminin aggregates on the plasma-only PDMS compared with the relatively smooth and uniform silane-linked laminin surface. We also examine laminin retention under strain and vascular smooth muscle cell viability and proliferation under static and strain conditions. Equibiaxial stretching of the PDMS surfaces shows greatly improved retention of the silane-linked laminin over plasma-only. There are significantly more cells on the silane-linked surface after 4 days of equibiaxial strain. Published by Elsevier Ltd.
Dhanka, Mukesh; Shetty, Chaitra; Srivastava, Rohit
2018-04-15
Methotrexate (MTX) loaded alginate microparticles were produced by simple water-in-oil (W/O) emulsion solvent diffusion method with homogenization and then subsequently cross-linked by Ca 2+ . The mean sizes of developed microparticles (bare non-crosslinked, crosslinked, drug-loaded non-crosslinked, and drug-loaded cross-linked) were found to be <11μm. The morphology of bare non-crosslinked and crosslinked microparticles were observed to be spherical with smooth surface morphology. However, MTX loaded non-crosslinked and crosslinked microparticles were found to have an irregular shape with rough surface morphology. The encapsulation efficiency (% EE) and loading capacity (% LC) of MTX loaded non-crosslinked microparticles were estimated to be 92.19±1.85 and 9.35±0.22, respectively. However, in case of cross-linked microparticles, the % EE and % LC values slightly decreased, i.e., 83.26±1.69% and 8.44±0.21%, respectively. Crosslinked microparticles were found to release MTX at a slower rate as compared to non-crosslinked microparticles. The physicochemical characterizations of microparticles by Fourier Transform Infrared Spectroscopy and High-Resolution X-Ray Diffraction have shown that drug encapsulated in the microparticles without chemical interactions has lost its crystalline nature. The biocompatibility and hemocompatibility studies of the microparticles have demonstrated that microparticles are biocompatible and were non-hemolytic at low concentrations. Copyright © 2017 Elsevier B.V. All rights reserved.
Shahgholian, Narges; Rajabzadeh, Ghadir; Malaekeh-Nikouei, Bizhan
2017-11-01
One of the most interesting functions of albumin is the ability to interact with bioactive compounds. This study describes preparation of protein-based nanoparticles (NPs) for the preparation of solid dispersion of curcumin (CN). Fabrication of hydrosol system of dispersed CN in bovine serum albumin (BSA) was approached, followed by cross-linking with glutaraldehyde (Gta). Response surface methodology (RSM) was used to investigate the influence of input factors (pH, CN content and organic phase ratio (r)), on the particle size and CN entrapment efficiency (EE). Particle size, EE and CN loading efficiency (LE) at optimum condition (pH 7, r 10% and 3.4mg of CN content), were found to be in the range of 153-184.4nm, 72.54%, and 14.508μg/mg, respectively. In the optimum formulation, genipin (Gnp) was used at three different levels (0.1-0.2 and 0.3% w/w of BSA), as a safe, natural cross-linker instead of toxic Gta, to address the limitation of oral delivery purpose. AFM and SEM analysis revealed the spherical and smooth surface of Nps. Ninhydrin (NHD) assay and FT-IR analysis confirmed the cross-linking between BSA and Gnp. In vitro release studies ensure the efficiency of the formulation for sustained release of soluble CN. Copyright © 2017 Elsevier B.V. All rights reserved.
Tremmel, Daniel M; Resad, Sedat; Little, Christopher J; Wesley, Cedric S
2013-01-01
The Notch gene encodes an evolutionarily conserved cell surface receptor that generates regulatory signals based on interactions between neighboring cells. In Drosophila embryos it is normally expressed at a low level due to strong negative regulation. When this negative regulation is abrogated neurogenesis in the ventral region is suppressed, the development of lateral epidermis is severely disrupted, and the dorsal aminoserosa is expanded. Of these phenotypes only the anti-neurogenic phenotype could be linked to excess canonical Notch signaling. The other phenotypes were linked to high levels of Notch protein expression at the surface of cells in the lateral regions indicating that a non-canonical Notch signaling activity normally functions in these regions. Results of our studies reported here provide evidence. They show that Notch activities are inextricably linked to that of Pkc98E, the homolog of mammalian PKCδ. Notch and Pkc98E up-regulate the levels of the phosphorylated form of IκBCactus, a negative regulator of Toll signaling, and Mothers against dpp (MAD), an effector of Dpp signaling. Our data suggest that in the lateral regions of the Drosophila embryos Notch activity, in conjunction with Pkc98E activity, is used to form the slopes of the opposing gradients of Toll and Dpp signaling that specify cell fates along the dorso-ventral axis.
Tremmel, Daniel M.; Resad, Sedat; Little, Christopher J.; Wesley, Cedric S.
2013-01-01
The Notch gene encodes an evolutionarily conserved cell surface receptor that generates regulatory signals based on interactions between neighboring cells. In Drosophila embryos it is normally expressed at a low level due to strong negative regulation. When this negative regulation is abrogated neurogenesis in the ventral region is suppressed, the development of lateral epidermis is severely disrupted, and the dorsal aminoserosa is expanded. Of these phenotypes only the anti-neurogenic phenotype could be linked to excess canonical Notch signaling. The other phenotypes were linked to high levels of Notch protein expression at the surface of cells in the lateral regions indicating that a non-canonical Notch signaling activity normally functions in these regions. Results of our studies reported here provide evidence. They show that Notch activities are inextricably linked to that of Pkc98E, the homolog of mammalian PKCδ. Notch and Pkc98E up-regulate the levels of the phosphorylated form of IκBCactus, a negative regulator of Toll signaling, and Mothers against dpp (MAD), an effector of Dpp signaling. Our data suggest that in the lateral regions of the Drosophila embryos Notch activity, in conjunction with Pkc98E activity, is used to form the slopes of the opposing gradients of Toll and Dpp signaling that specify cell fates along the dorso-ventral axis. PMID:23861806
NASA Astrophysics Data System (ADS)
Yi, Zao; Luo, Jiangshan; Tan, Xiulan; Yi, Yong; Yao, Weitang; Kang, Xiaoli; Ye, Xin; Zhu, Wenkun; Duan, Tao; Yi, Yougen; Tang, Yongjian
2015-11-01
Mesoporous gold sponges were prepared using 4-dimethylaminopyridine (DMAP)-stabilized Au seeds. This is a general process, which involves a simple template-free method, room temperature reduction of HAuCl4·4H2O with hydroxylamine. The formation process of mesoporous gold sponges could be accounted for the electrostatic interaction (the small Au nanoparticles (~3 nm) and the positively charged DMAP-stabilized Au seeds) and Ostwald ripening process. The mesoporous gold sponges had appeared to undergo electrostatic adsorption initially, sequentially linear aggregation, welding and Ostwald ripening, then, they randomly cross link into self-supporting, three-dimensional networks with time. The mesoporous gold sponges exhibit higher surface area than the literature. In addition, application of the spongelike networks as an active material for surface-enhanced Raman scattering has been investigated by employing 4-aminothiophenol (4-ATP) molecules as a probe.
Yi, Zao; Luo, Jiangshan; Tan, Xiulan; Yi, Yong; Yao, Weitang; Kang, Xiaoli; Ye, Xin; Zhu, Wenkun; Duan, Tao; Yi, Yougen; Tang, Yongjian
2015-01-01
Mesoporous gold sponges were prepared using 4-dimethylaminopyridine (DMAP)-stabilized Au seeds. This is a general process, which involves a simple template-free method, room temperature reduction of HAuCl4·4H2O with hydroxylamine. The formation process of mesoporous gold sponges could be accounted for the electrostatic interaction (the small Au nanoparticles (~3 nm) and the positively charged DMAP-stabilized Au seeds) and Ostwald ripening process. The mesoporous gold sponges had appeared to undergo electrostatic adsorption initially, sequentially linear aggregation, welding and Ostwald ripening, then, they randomly cross link into self-supporting, three-dimensional networks with time. The mesoporous gold sponges exhibit higher surface area than the literature. In addition, application of the spongelike networks as an active material for surface-enhanced Raman scattering has been investigated by employing 4-aminothiophenol (4-ATP) molecules as a probe. PMID:26538365
Evidence From Hydrogen Isotopes in Meteorites for a Martian Permafrost
NASA Technical Reports Server (NTRS)
Usui, T.; Alexander, C. M. O'D.; Wang, J.; Simon, J. I.; Jones, J. H.
2014-01-01
Fluvial landforms on Mars suggest that it was once warm enough to maintain persistent liquid water on its surface. The transition to the present cold and dry Mars is closely linked to the history of surface water, yet the evolution of surficial water is poorly constrained. We have investigated the evolution of surface water/ ice and its interaction with the atmosphere by measurements of hydrogen isotope ratios (D/H: deuterium/ hydrogen) of martian meteorites. Hydrogen is a major component of water (H2O) and its isotopes fractionate significantly during hydrological cycling between the atmosphere, surface waters, ground ice, and polar cap ice. Based on in situ ion microprobe analyses of three geochemically different shergottites, we reported that there is a water/ice reservoir with an intermediate D/H ratio (delta D = 1,000?2500 %) on Mars. Here we present the possibility that this water/ice reservoir represents a ground-ice/permafrost that has existed relatively intact over geologic time.
Electrostatic interactions lead to the formation of asymmetric collagen-phosphophoryn aggregates.
Dahl, Thomas; Veis, Arthur
2003-01-01
In bone and dentin the formation and mineralization of the extra cellular matrix structure is a complex process highly dependent on intermolecular interactions. In dentin, the phosphophoryns (PP) and type I collagen (COL1) are the major constituents implicated in mineralization. Thus, as a first step in understanding the tissue organization, we have initiated a study of their interaction as a function of pH, ionic strength, and relative concentrations or mixing ratios. Complex formation has been analyzed by dynamic light scattering to detect aggregate formation and by rotary shadowing electron microscopy (EM) to determine aggregate shape. The EM data showed that at the pH values studied, the PP-COL1 interaction leads to the formation of large fibrillar aggregates in which the PP are present along the fibril surfaces. The quantitative phase distribution data showed a 1/1 molar equivalence at the maximum aggregation point, not at electrostatic PP-COL1 equivalence. As the ionic strength was raised, the PP-COL1 aggregates became smaller but the binding and asymmetric fibrillar aggregation persisted. In EM, the PP appear as dense spheres. Along the surfaces of the collagen aggregates, the PP are larger and more open or extended, suggesting that COL1-bound PP may undergo a conformational change, opening up so that a single PP molecule might interact with and electrostatically link several COL1 molecules. This might have important implications for dentin structure, stability, and mineralization.
Role of plant-rock interactions in the N cycle of oligotrophic environments
NASA Astrophysics Data System (ADS)
Gaddis, E. E.; Zaharescu, D. G.; Dontsova, K.; Chorover, J.; Galey, M.; Huxman, T. E.
2013-12-01
The vital role of nitrogen--an abundant, but inaccessible building block for growth--in plants is well known. At the same time, plants and microorganisms are driving forces for accumulation of available N in the soils as they form. A deep understanding of N cycle initiation, progression, and link to ecological systems and their development is therefore necessary. A mesocosm experiment was set up with the goal of exploring the role of interactions between four rock types and biota on N fate in oligotrophic environments. Basalt, rhyolite, granite, and schist were used with 6 treatments: abiotic control; microbes only; grass and microbes; pine and microbes; grass, microbes, and mycorrhizal fungi; and pine, microbes, and mycorrhizal fungi. Pinus ponderosa and Buchloe dactyloides were seeded on the different rock media and maintained with purified air and water but no nutrient additions for 8 month. Throughout the experiment leachate solution was collected and its chemical composition characterized, including organic and inorganic C and N. In addition, plant roots were scanned and their images analyzed to quantify their morphological features. Root parameters included measurements of length, surface area, diameter, volume, the number of tips, forks and links, altitude, and overall plant biomass. Over the 8 month period, there was sustained vegetation growth on all rocks without N addition. A high C:N ratio was seen across all substrates, indicating N deficiency. A strong relationship was observed between total N removal in soil leachate and a number of plant parameters, including plant biomass, total surface area of the roots, sum of the root tips, and total root volume. These relationships were the strongest in basalt, where the pines had higher root surface area than grasses and this was accompanied by higher total N in leachate. There was also a positive correlation between total N removal and the total biomass, total N and the sum of the root tips, and total N and the sum of the root volume. This work shows the strong root-rock interactions effect on N that is characteristic of oligotrophic environments. Significant differences in total N between rock types
Structural interactions in ionic liquids linked to higher-order Poisson-Boltzmann equations
NASA Astrophysics Data System (ADS)
Blossey, R.; Maggs, A. C.; Podgornik, R.
2017-06-01
We present a derivation of generalized Poisson-Boltzmann equations starting from classical theories of binary fluid mixtures, employing an approach based on the Legendre transform as recently applied to the case of local descriptions of the fluid free energy. Under specific symmetry assumptions, and in the linearized regime, the Poisson-Boltzmann equation reduces to a phenomenological equation introduced by Bazant et al. [Phys. Rev. Lett. 106, 046102 (2011)], 10.1103/PhysRevLett.106.046102, whereby the structuring near the surface is determined by bulk coefficients.
Nagao, Ryo; Suzuki, Takehiro; Okumura, Akinori; Kihira, Tomohiro; Toda, Ayaka; Dohmae, Naoshi; Nakazato, Katsuyoshi; Tomo, Tatsuya
2017-09-01
Psb31, a novel extrinsic protein found in diatom photosystem II (PSII), directly binds to PSII core subunits, independent of the other extrinsic proteins, and functions to maintain optimum oxygen evolution. However, how Psb31 electrostatically interacts with PSII intrinsic proteins remains to be clarified. In this study, we examined electrostatic interaction of Psb31 with PSII complexes isolated from the diatom Chaetoceros gracilis. Positive or negative charges of isolated Psb31 proteins were modified with N-succinimidyl propionate (NSP) or glycine methyl ester (GME), respectively, resulting in formation of uncharged groups. NSP-modified Psb31 did not bind to PSII with a concomitant increase in NSP concentration, whereas GME-modified Psb31 clearly bound to PSII with retention of oxygen-evolving activity, indicating that positive charges of Lys residues and the N-terminus on the surface of Psb31 are involved in electrostatic interactions with PSII intrinsic proteins. Mass spectrometry analysis of NSP-modified Psb31 and sequence comparisons of Psb31 from C. gracilis with other chromophyte algae led to identification of three Lys residues as possible binding sites to PSII. Based on these findings, together with our previous cross-linking study in diatom PSII and a red algal PSII structure, we discuss binding properties of Psb31 with PSII core proteins. Copyright © 2017 Elsevier B.V. All rights reserved.
Rooj, Arun K.; Liu, Zhiyong; McNicholas, Carmel M.
2015-01-01
Major plasma membrane components of the tumor cell, ion channels, and integrins play crucial roles in metastasis. Glioma cells express an amiloride-sensitive nonselective cation channel composed of acid-sensing ion channel (ASIC)-1 and epithelial Na+ channel (ENaC) α- and γ-subunits. Inhibition of this channel is associated with reduced cell migration and proliferation. Using the ASIC-1 subunit as a reporter for the channel complex, we found a physical and functional interaction between this channel and integrin-β1. Short hairpin RNA knockdown of integrin-β1 attenuated the amiloride-sensitive current, which was due to loss of surface expression of ASIC-1. In contrast, upregulation of membrane expression of integrin-β1 increased the surface expression of ASIC-1. The link between the amiloride-sensitive channel and integrin-β1 was mediated by α-actinin. Downregulation of α-actinin-1 or -4 attenuated the amiloride-sensitive current. Mutation of the putative binding site for α-actinin on the COOH terminus of ASIC-1 reduced the membrane localization of ASIC-1 and also resulted in attenuation of the amiloride-sensitive current. Our data suggest a novel interaction between the amiloride-sensitive glioma cation channel and integrin-β1, mediated by α-actinin. This interaction may form a mechanism by which channel activity can regulate glioma cell proliferation and migration. PMID:26108662
NASA Astrophysics Data System (ADS)
Molli, G.; Cortecci, G.; Vaselli, L.; Ottria, G.; Cortopassi, A.; Dinelli, E.; Mussi, M.; Barbieri, M.
2010-09-01
We studied the geometry, intensity of deformation and fluid-rock interaction of a high angle normal fault within Carrara marble in the Alpi Apuane NW Tuscany, Italy. The fault is comprised of a core bounded by two major, non-parallel slip surfaces. The fault core, marked by crush breccia and cataclasites, asymmetrically grades to the host protolith through a damage zone, which is well developed only in the footwall block. On the contrary, the transition from the fault core to the hangingwall protolith is sharply defined by the upper main slip surface. Faulting was associated with fluid-rock interaction, as evidenced by kinematically related veins observable in the damage zone and fluid channelling within the fault core, where an orange-brownish cataclasite matrix can be observed. A chemical and isotopic study of veins and different structural elements of the fault zone (protolith, damage zone and fault core), including a mathematical model, was performed to document type, role, and activity of fluid-rock interactions during deformation. The results of our studies suggested that deformation pattern was mainly controlled by processes associated with a linking-damage zone at a fault tip, development of a fault core, localization and channelling of fluids within the fault zone. Syn-kinematic microstructural modification of calcite microfabric possibly played a role in confining fluid percolation.
Electrokinetic mechanism of wettability alternation at oil-water-rock interface
NASA Astrophysics Data System (ADS)
Tian, Huanhuan; Wang, Moran
2017-12-01
Design of ions for injection water may change the wettability of oil-brine-rock (OBR) system, which has very important applications in enhanced oil recovery. Though ion-tuned wettability has been verified by various experiments, the mechanism is still not clear. In this review paper, we first present a comprehensive summarization of possible wettability alteration mechanisms, including fines migration or dissolution, multicomponent ion-exchange (MIE), electrical double layer (EDL) interaction between rock and oil, and repulsive hydration force. To clarify the key mechanism, we introduce a complete frame of theories to calculate attribution of EDL repulsion to wettability alteration by assuming constant binding forces (no MIE) and rigid smooth surface (no fines migration or dissolution). The frame consists of three parts: the classical Gouy-Chapman model coupled with interface charging mechanisms to describe EDL in oil-brine-rock systems, three methods with different boundary assumptions to evaluate EDL interaction energy, and the modified Young-Dupré equation to link EDL interaction energy with contact angle. The quantitative analysis for two typical oil-brine-rock systems provides two physical maps that show how the EDL interaction influences contact angle at different ionic composition. The result indicates that the contribution of EDL interaction to ion-tuned wettability for the studied system is not quite significant. The classical and advanced experimental work using microfabrication is reviewed briefly on the contribution of EDL repulsion to wettability alteration and compared with the theoretical results. It is indicated that the roughness of real rock surface may enhance EDL interaction. Finally we discuss some pending questions, perspectives and promising applications based on the mechanism.
Topological Interaction by Entanglement of DNA
NASA Astrophysics Data System (ADS)
Feng, Lang; Sha, Ruojie; Seeman, Nadrian; Chaikin, Paul
2012-02-01
We find and study a new type of interaction between colloids, Topological Interaction by Entanglement of DNA (TIED), due to concatenation of loops formed by palindromic DNA. Consider a particle coated with palindromic DNA of sequence ``P1.'' Below the DNA hybridization temperature (Tm), loops of the self-complementary DNA form on the particle surface. Direct hybridization with similar particle covered with a different sequence P2 do not occur. However when particles are held together at T > Tm, then cooled to T < Tm, some of the loops entangle and link, similar to a Olympic Gel. We quantitatively observe and measure this topological interaction between colloids in a ˜5^o C temperature window, ˜6^o C lower than direct binding of complementary DNA with similar strength and introduce the concept of entanglement binding free energy. To prove our interaction to be topological, we unknot the purely entangled binding sites between colloids by adding Topoisomerase I which unconcatenates our loops. This research suggests novel history dependent ways of binding particles and serves as a new design tool in colloidal self-assembly.
NASA Astrophysics Data System (ADS)
Silva, Simone dos Santos
In the last decades, tissue engineering has emerged as a potential therapeutical tool aimed at developing substitutes that are able to restore proper function of the damaged organs/tissues. Nature-inspired routes involving natural origin polymer-based systems represent an attractive alternative to produce novel materials by mimicking the tissue environment required for tissue regeneration. Moreover, further modifications of these systems allow the adjustment of their properties in accordance with the requirements for successful biomedical applications. The main goal of the present thesis is to develop and modify natural origin polymer-based systems using simple methodologies such as sol-gel, surface modification by means of plasma treatment and blending of chitosan with proteins (soy protein isolate and silk fibroin). A sol-gel method was used to improve the bulk properties of chitosan by the incorporation of an inorganic component at the sub-nanometric level. Chitosan/siloxane hybrid materials were synthesised, where essentially urea bridges covalently bond the chitosan to the polysiloxane network. These bifunctional materials exhibit interesting photoluminescence features and a bioactive behaviour. In most situations in the biomedical field, the surface of a biomaterial is in direct contact with living tissues. Therefore, the surface characteristics play a fundamental role on the implant biocompatibility. In this thesis, nitrogen and argon plasma treatment was applied on chitosan membranes in order to improve their surface properties. The applied modifications promoted differences on surface chemistry, wettability and roughness, which reflected in a significant improvement of fibroblast adhesion and proliferation onto chitosan membranes. Besides the surface modification, blending of chitosan with proteins such as soy protein isolate and silk fibroin was also used to modify the bulk properties of chitosan. In situ cross-linking with glutaraldehyde solutions was used to enhance the interaction between the components of the blend. Hence, membranes with different morphologies, water absorption and degradability were obtained. The biological assays suggested that the cross-linking with lower glutaraldehyde concentration promotes better cell adhesion on the membranes. The morphological characterization showed that both surface roughness surface and surface energy were dependent on soy protein content. Structural investigations by FTIR and NMR indicated that the blends are not completely miscible due to a weak polysaccharide-protein interaction. In another related work, novel hydrogels were produced combining Bombyx mori silk fibroin and chitosan. In this case, these systems were cross-linked with genipin. These hydrogels were freeze dried to obtain cross-linked chitosan/silk sponges. Rheological and mechanical properties, structural aspects and morphological features of the porous structures were evaluated. The results revealed stable and ordered structures, similar porosities, and swelling capability that depended on the pH. The cytotoxicity assay indicated that cellular viability was about 100% in all sponges and for all time points studied (1, 3, 7 and 14 days), demonstrating the extremely low cytotoxicity levels of the materials. Cell studies using chondrocytes-like cells seeded onto sponges, including cell viability (MTS assay), proliferation (DNA test), morphology (SEM analysis) and matrix production (GAGs quantification), showed a significant high adhesion, proliferation and matrix production with the time of culture. The findings in this work suggested that the properties of the sponges can be manipulated by either change chitosan/silk fibroin ratio or through genipin cross-linking. Parallel to this study, the possibility of obtaining modified silk nanometric nets using electrospinning processing from regenerated silk fibroin/formic acid with addition of genipin was explored. Modified silk nanofibers with diameters ranging from 140 nm to 590 nm were developed. The changes on the secondary structure of nanofibers, induced by the reaction of silk fibroin with genipin, promoted a higher integrity of these modified nanofibers in water. In summary, the findings from these works demonstrated the potential and versatility of the proposed strategies in obtaining different structures (e.g. membranes, hydrogels) using mixtures of chitosan with proteins or with inorganic agents for improving the performance of natural origin polymer-based materials to be used in biomedical applications.
NASA Astrophysics Data System (ADS)
Wang, Zhong; Kang, Haijiao; Zhang, Wei; Zhang, Shifeng; Li, Jianzhang
2017-04-01
In this study, a novel and economic surface modification technique for montmorillonite (MMT) nanosheets, a biocompatible coupling cross-linking agent, was developed on an attempt at improving the interfacial adhesion with soy protein isolate (SPI) matrix. Inspired by natural polyphenol, the "green dip-coating" method using tannic acid (TA) to surface-modify MMT (TA@MMT). SPI nanocomposite films modified with MMT or TA@MMT, as well as the control ones, were prepared via the casting method. The TA layer was successfully coated on the MMT surface through the (FeIII) ions coordination chemistry and the synthetic samples were characterized by the Fourier transform infrared (FT-IR) spectroscopy, X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), thermogravimetric analysis (TGA), atomic force microscopy (AFM), and transmission electron microscopy (TEM). The compatibility and interfacial interactions between modified MMT and SPI matrix were greatly enhanced by the TA-FeIII coating on the MMT surface. The mechanical properties, water resistance, and thermal stability of the resultant biofilm were increased accordingly. Compared with that of the unmodified SPI film, the tensile strength of the nanocomposite films modified by the green dip-coating was increased by 113.3%. These SPI-based nanocomposite films showed the favorable potential in terms of food packing applications due to their efficient barriers to water vapor and UV and/or visible light.
Fanning, Saranna; Hall, Lindsay J.; Cronin, Michelle; Zomer, Aldert; MacSharry, John; Goulding, David; O'Connell Motherway, Mary; Shanahan, Fergus; Nally, Kenneth; Dougan, Gordon; van Sinderen, Douwe
2012-01-01
Bifidobacteria comprise a significant proportion of the human gut microbiota. Several bifidobacterial strains are currently used as therapeutic interventions, claiming various health benefits by acting as probiotics. However, the precise mechanisms by which they maintain habitation within their host and consequently provide these benefits are not fully understood. Here we show that Bifidobacterium breve UCC2003 produces a cell surface-associated exopolysaccharide (EPS), the biosynthesis of which is directed by either half of a bidirectional gene cluster, thus leading to production of one of two possible EPSs. Alternate transcription of the two opposing halves of this cluster appears to be the result of promoter reorientation. Surface EPS provided stress tolerance and promoted in vivo persistence, but not initial colonization. Marked differences were observed in host immune response: strains producing surface EPS (EPS+) failed to elicit a strong immune response compared with EPS-deficient variants. Specifically, EPS production was shown to be linked to the evasion of adaptive B-cell responses. Furthermore, presence of EPS+ B. breve reduced colonization levels of the gut pathogen Citrobacter rodentium. Our data thus assigns a pivotal and beneficial role for EPS in modulating various aspects of bifidobacterial–host interaction, including the ability of commensal bacteria to remain immunologically silent and in turn provide pathogen protection. This finding enforces the probiotic concept and provides mechanistic insights into health-promoting benefits for both animal and human hosts. PMID:22308390
Sinz, Andrea
2014-12-01
During the last 15 years, chemical cross-linking combined with mass spectrometry (MS) and computational modeling has advanced from investigating 3D-structures of isolated proteins to deciphering protein interaction networks. In this article, the author discusses the advent, the development and the current status of the chemical cross-linking/MS strategy in the context of recent technological developments. A direct way to probe in vivo protein-protein interactions is by site-specific incorporation of genetically encoded photo-reactive amino acids or by non-directed incorporation of photo-reactive amino acids. As the chemical cross-linking/MS approach allows the capture of transient and weak interactions, it has the potential to become a routine technique for unraveling protein interaction networks in their natural cellular environment.
NASA Astrophysics Data System (ADS)
Nawaz, Ali; Cruz-Cruz, Isidro; Rego, Jessica S.; Koehler, Marlus; Gopinathan, Sreelekha P.; Kumar, Anil; Hümmelgen, Ivo A.
2017-08-01
We investigate the molecular interaction of poly(3-hexylthiophene-2,5-diyl) (P3HT) molecules with polar functional groups of the dielectric surface, and its dependence on the regioregularity of P3HT. With this aim, we consider thickness-dependent molecular order of 100% regioregular defect-free P3HT (DF-P3HT) and 93% regioregular P3HT (LT-P3HT), deposited on top of cross-linked poly(vinyl alcohol) (cr-PVA) substrates. Intimate contact of P3HT molecules and cr-PVA surface defects affects the molecular order of P3HT differently, depending on the regioregularity. Consequently, these molecular order changes on the charge transport properties of organic field-effect transistors (OFETs) are investigated using four thicknesses (20, 40, 80 and 120 nm) of P3HT. As compared to other thicknesses, μ sat for 20 nm DF-P3HT OFETs shows further improvement, while the opposite occurs for 20 nm LT-P3HT OFETs. Depending on the regioregularity (and thus the chain orientation), P3HT molecules exhibit a difference in dipole moments. Consequently, the interaction of edge-on or face-on P3HT molecules with cr-PVA surface dipoles has different contributions towards the electrostatic energetic disorder at cr-PVA/P3HT interface. This subtle difference of behavior helps one to understand the huge spread of characteristics of P3HT based transistors found in literature.
Frandsen, Kristian E H; Poulsen, Jens Christian Navarro; Tovborg, Morten; Johansen, Katja S; Lo Leggio, Leila
2017-01-01
Lytic polysaccharide monooxygenases (LPMOs) are a class of copper-dependent enzymes discovered within the last ten years. They oxidatively cleave polysaccharides (chitin, lignocellulose, hemicellulose and starch-derived), presumably making recalcitrant substrates accessible to glycoside hydrolases. Recently, the first crystal structure of an LPMO-substrate complex was reported, giving insights into the interaction of LPMOs with β-linked substrates (Frandsen et al., 2016). The LPMOs acting on α-linked glycosidic bonds (family AA13) display binding surfaces that are quite different from those of LPMOs that act on β-linked glycosidic bonds (families AA9-AA11), as revealed from the first determined structure (Lo Leggio et al., 2015), and thus presumably the AA13s interact with their substrate in a distinct fashion. Here, several new structures of the same AA13 enzyme, Aspergillus oryzae AA13, are presented. Crystals obtained in the presence of high zinc-ion concentrations were used, as they can be obtained more reproducibly than those used to refine the deposited copper-containing structure. One structure with an ordered zinc-bound active site was solved at 1.65 Å resolution, and three structures from crystals soaked with maltooligosaccharides in solutions devoid of zinc ions were solved at resolutions of up to 1.10 Å. Despite similar unit-cell parameters, small rearrangements in the crystal packing occur when the crystals are depleted of zinc ions, resulting in a more occluded substrate-binding surface. In two of the three structures maltooligosaccharide ligands are bound, but not at the active site. Two of the structures presented show a His-ligand conformation that is incompatible with metal-ion binding. In one of these structures this conformation is the principal one (80% occupancy), giving a rare atomic resolution view of a substantially misfolded enzyme that is presumably rendered inactive.
NASA Astrophysics Data System (ADS)
Gazel, E.; Madrigal, P.; Flores, K. E.; Bizimis, M.; Jicha, B. R.
2016-12-01
Global tomography and numerical models suggest that mantle plume occurrences are closely linked to the margins of the large low shear velocity provinces (LLSVPs). In these locations the ascent of material from the core-mantle boundary connects the deep Earth with surface processes through mantle plume activity, forming large igneous provinces (LIPs) and some of the modern hotspot volcanoes. Petrological and geodynamic evidence suggest a link between the formation of oceanic plateaus and the interactions of mantle plumes and mid-ocean ridges (MOR). Therefore, it is possible to trace the potential interactions between MORs and deep mantle plume upwellings by referencing the tectonic and magmatic evolution of the Pacific Plate in time to the current location of the LLSVP, considering the long-lived ( 500 Ma) existence of these thermochemical anomalies. We identified episodic upwellings of the Pacific LLSVP during the Mesozoic separated by 10 to 20 Ma, by reconstructing the kinematic evolution of the Pacific Plate in the last 170 Ma. The fact that the bulk emplacement of LIPs ( 120-80 Ma) in the Pacific coincides with the timing of the Cretaceous Normal Superchron, that can be related to fluctuations of mantle-core heat fluxes further supports the hypothesis of deep mantle origin for LIPs. The potential cyclicity of LIP emplacement could be tied to core heat fluctuations interacting with the lower mantle, the rheology contrast of material crossing the transition zone (either upwelling hot material or downgoing dense slabs as mantle avalanches), the rate of entrainment of recycled materials, or a combination of the processes mentioned. Recognizing patterns and possible cycles is crucial to the link between deep processes and life as these pulses impacted the marine biota resulting in episodes of anoxia and mass extinctions shortly after their eruption.
Fast simulation tool for ultraviolet radiation at the earth's surface
NASA Astrophysics Data System (ADS)
Engelsen, Ola; Kylling, Arve
2005-04-01
FastRT is a fast, yet accurate, UV simulation tool that computes downward surface UV doses, UV indices, and irradiances in the spectral range 290 to 400 nm with a resolution as small as 0.05 nm. It computes a full UV spectrum within a few milliseconds on a standard PC, and enables the user to convolve the spectrum with user-defined and built-in spectral response functions including the International Commission on Illumination (CIE) erythemal response function used for UV index calculations. The program accounts for the main radiative input parameters, i.e., instrumental characteristics, solar zenith angle, ozone column, aerosol loading, clouds, surface albedo, and surface altitude. FastRT is based on look-up tables of carefully selected entries of atmospheric transmittances and spherical albedos, and exploits the smoothness of these quantities with respect to atmospheric, surface, geometrical, and spectral parameters. An interactive site, http://nadir.nilu.no/~olaeng/fastrt/fastrt.html, enables the public to run the FastRT program with most input options. This page also contains updated information about FastRT and links to freely downloadable source codes and binaries.
Coupled basin-scale water resource models for arid and semiarid regions
NASA Astrophysics Data System (ADS)
Winter, C.; Springer, E.; Costigan, K.; Fasel, P.; Mniewski, S.; Zyvoloski, G.
2003-04-01
Managers of semi-arid and arid water resources must allocate increasingly variable surface sources and limited groundwater resources to growing demands. This challenge is leading to a new generation of detailed computational models that link multiple interacting sources and demands. We will discuss a new computational model of arid region hydrology that we are parameterizing for the upper Rio Grande Basin of the United States. The model consists of linked components for the atmosphere (the Regional Atmospheric Modeling System, RAMS), surface hydrology (the Los Alamos Distributed Hydrologic System, LADHS), and groundwater (the Finite Element Heat and Mass code, FEHM), and the couplings between them. The model runs under the Parallel Application WorkSpace software developed at Los Alamos for applications running on large distributed memory computers. RAMS simulates regional meteorology coupled to global climate data on the one hand and land surface hydrology on the other. LADHS generates runoff by infiltration or saturation excess mechanisms, as well as interception, evapotranspiration, and snow accumulation and melt. FEHM simulates variably saturated flow and heat transport in three dimensions. A key issue is to increase the components’ spatial and temporal resolution to account for changes in topography and other rapidly changing variables that affect results such as soil moisture distribution or groundwater recharge. Thus, RAMS’ smallest grid is 5 km on a side, LADHS uses 100 m spacing, while FEHM concentrates processing on key volumes by means of an unstructured grid. Couplings within our model are based on new scaling methods that link groundwater-groundwater systems and streams to aquifers and we are developing evapotranspiration methods based on detailed calculations of latent heat and vegetative cover. Simulations of precipitation and soil moisture for the 1992-93 El Nino year will be used to demonstrate the approach and suggest further needs.
Dependence of nanomechanical modification of polymers on plasma-induced cross-linking
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tajima, S.; Komvopoulos, K.
2007-01-01
The nanomechanical properties of low-density polyethylene (LDPE) modified by inductively coupled, radio-frequency Ar plasma were investigated by surface force microscopy. The polymer surface was modified under plasma conditions of different ion energy fluences and radiation intensities obtained by varying the sample distance from the plasma power source. Nanoindentation results of the surface stiffness versus maximum penetration depth did not reveal discernible differences between untreated and plasma-treated LDPE, presumably due to the small thickness of the modified surface layer that resulted in a substrate effect. On the contrary, nanoscratching experiments demonstrated a significant increase in the surface shear resistance of plasma-modifiedmore » LDPE due to chain cross-linking. These experiments revealed an enhancement of cross-linking with increasing ion energy fluence and radiation intensity, and a tip size effect on the friction force and dominant friction mechanisms (adhesion, plowing, and microcutting). In addition, LDPE samples with a LiF crystal shield were exposed to identical plasma conditions to determine the role of vacuum ultraviolet (VUV) and ultraviolet (UV) radiation in the cross-linking process. The cross-linked layer of plasma-treated LDPE exhibited much higher shear strength than that of VUV/UV-treated LDPE. Plasma-induced surface modification of the nanomechanical properties of LDPE is interpreted in the context of molecular models of the untreated and cross-linked polymer surfaces derived from experimental findings.« less
Bulk crystalline optomechanics
NASA Astrophysics Data System (ADS)
Renninger, W. H.; Kharel, P.; Behunin, R. O.; Rakich, P. T.
2018-06-01
Control of long-lived, high-frequency phonons using light offers a path towards creating robust quantum links, and could lead to tools for precision metrology with applications to quantum information processing. Optomechanical systems based on bulk acoustic-wave resonators are well suited for this goal in light of their high quality factors, and because they do not suffer from surface interactions as much as their microscale counterparts. However, so far these phonons have been accessible only electromechanically, using piezoelectric interactions. Here, we demonstrate customizable optomechanical coupling to macroscopic phonon modes of a bulk acoustic-wave resonator at cryogenic temperatures. These phonon modes, which are formed by shaping the surfaces of a crystal into a plano-convex phononic resonator, yield appreciable optomechanical coupling rates, providing access to high acoustic quality factors (4.2 × 107) at high phonon frequencies (13 GHz). This simple approach, which uses bulk properties rather than nanostructural control, is appealing for the ability to engineer optomechanical systems at high frequencies that are robust against thermal decoherence. Moreover, we show that this optomechanical system yields a unique form of dispersive symmetry-breaking that enables phonon heating or cooling without an optical cavity.
Decoupling Polymer Properties to Elucidate Mechanisms Governing Cell Behavior
Wang, Xintong; Boire, Timothy C.; Bronikowski, Christine; Zachman, Angela L.; Crowder, Spencer W.
2012-01-01
Determining how a biomaterial interacts with cells (“structure-function relationship”) reflects its eventual clinical applicability. Therefore, a fundamental understanding of how individual material properties modulate cell-biomaterial interactions is pivotal to improving the efficacy and safety of clinically translatable biomaterial systems. However, due to the coupled nature of material properties, their individual effects on cellular responses are difficult to understand. Structure-function relationships can be more clearly understood by the effective decoupling of each individual parameter. In this article, we discuss three basic decoupling strategies: (1) surface modification, (2) cross-linking, and (3) combinatorial approaches (i.e., copolymerization and polymer blending). Relevant examples of coupled material properties are briefly reviewed in each section to highlight the need for improved decoupling methods. This follows with examples of more effective decoupling techniques, mainly from the perspective of three primary classes of synthetic materials: polyesters, polyethylene glycol, and polyacrylamide. Recent strides in decoupling methodologies, especially surface-patterning and combinatorial techniques, offer much promise in further understanding the structure-function relationships that largely govern the success of future advancements in biomaterials, tissue engineering, and drug delivery. PMID:22536977
Costa, Maurilia P; Andrade, Cesar A S; Montenegro, Rosana A; Melo, Fabio L; Oliveira, Maria D L
2014-11-01
In this work, a genosensor for the electrochemical detection of genomic DNA from Mycobacterium tuberculosis was developed. The biosensor is based on self-assembled monolayers of mercaptobenzoic acid (MBA) and magnetite nanoparticles (Fe3O4Nps) on bare gold electrode for immobilization of DNA probe. The aim of this work was the development of a platform based on cysteine-coated magnetic Fe3O4Nps linked via the carboxylate group from MBA to the work electrode surface and subsequently to the DNA probe. The probe-genome interaction was evaluated using a [Fe(CN)6](4-)/[Fe(CN)6](3-) redox pair. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were used to evaluate the bioelectrochemical behavior of the sensor. Atomic force microscopy images showed Fe3O4Nps immobilized across the electrode surface. The interaction of the sensor with different genome DNA concentrations resulted in changes in the charge transfer resistance, indicating a possible use for tuberculosis detection at low concentrations (detection limit of 6ngμL(-1)). Copyright © 2014 Elsevier Inc. All rights reserved.
Smith, A.M.; Robinson, T. M.; Salt, M. D.; Hamilton, K. S.; Silvia, B. E.; Blasiak, R.
2009-01-01
The cross-linking interactions that provide cohesive strength to molluscan adhesive gels were investigated. Metal-based interactions have been shown to play an important role in the glue of the slug Arion subfuscus (Draparnaud), but other types of interactions may also contribute to the glue's strength and their role has not been investigated. This study shows that treatments that normally disrupt hydrophobic or electrostatic interactions have little to no effect on the slug glue. High salt concentrations and non-ionic detergent do not affect the solubility of the proteins in the glue or the ability of the glue proteins to stiffen gels. In contrast, metal chelation markedly disrupts the gel. Experiments with gel filtration chromatography identify a 40 kDa protein that is a central component of the cross-links in the glue. This 40 kDa protein forms robust macromolecular aggregations that are stable even in the presence of high concentrations of salt, non-ionic detergent, urea or metal chelators. Metal chelation during glue secretion, however, may block some of these cross-links. Such robust, non-specific interactions in an aqueous environment are highly unusual for hydrogels and reflect an intriguing cross-linking mechanism. PMID:18952190
Smith, A M; Robinson, T M; Salt, M D; Hamilton, K S; Silvia, B E; Blasiak, R
2009-02-01
The cross-linking interactions that provide cohesive strength to molluscan adhesive gels were investigated. Metal-based interactions have been shown to play an important role in the glue of the slug Arion subfuscus (Draparnaud), but other types of interactions may also contribute to the glue's strength and their role has not been investigated. This study shows that treatments that normally disrupt hydrophobic or electrostatic interactions have little to no effect on the slug glue. High salt concentrations and non-ionic detergent do not affect the solubility of the proteins in the glue or the ability of the glue proteins to stiffen gels. In contrast, metal chelation markedly disrupts the gel. Experiments with gel filtration chromatography identify a 40 kDa protein that is a central component of the cross-links in the glue. This 40 kDa protein forms robust macromolecular aggregations that are stable even in the presence of high concentrations of salt, non-ionic detergent, urea or metal chelators. Metal chelation during glue secretion, however, may block some of these cross-links. Such robust, non-specific interactions in an aqueous environment are highly unusual for hydrogels and reflect an intriguing cross-linking mechanism.
Liu, Han-Yuan; Chen, Wei-Liang; Ober, Christopher K; Daniel, Susan
2018-01-23
Reconstituted supported lipid bilayers (SLB) are widely used as in vitro cell-surface models because they are compatible with a variety of surface-based analytical techniques. However, one of the challenges of using SLBs as a model of the cell surface is the limited complexity in membrane composition, including the incorporation of transmembrane proteins and lipid diversity that may impact the activity of those proteins. Additionally, it is challenging to preserve the transmembrane protein native orientation, function, and mobility in SLBs. Here, we leverage the interaction between cell plasma membrane vesicles and polyelectrolyte brushes to create planar bilayers from cell plasma membrane vesicles that have budded from the cell surface. This approach promotes the direct incorporation of membrane proteins and other species into the planar bilayer without using detergent or reconstitution and preserves membrane constituents. Furthermore, the structure of the polyelectrolyte brush serves as a cushion between the planar bilayer and rigid supporting surface, limiting the interaction of the cytosolic domains of membrane proteins with this surface. Single particle tracking was used to analyze the motion of GPI-linked yellow fluorescent proteins (GPI-YFP) and neon-green fused transmembrane P2X2 receptors (P2X2-neon) and shows that this platform retains over 75% mobility of multipass transmembrane proteins in its native membrane environment. An enzyme accessibility assay confirmed that the protein orientation is preserved and results in the extracellular domain facing toward the bulk phase and the cytosolic side facing the support. Because the platform presented here retains the complexity of the cell plasma membrane and preserves protein orientation and mobility, it is a better representative mimic of native cell surfaces, which may find many applications in biological assays aimed at understanding cell membrane phenomena.
Automatic detection of sweep-meshable volumes
Tautges,; Timothy J. , White; David, R [Pittsburgh, PA
2006-05-23
A method of and software for automatically determining whether a mesh can be generated by sweeping for a representation of a geometric solid comprising: classifying surface mesh schemes for surfaces of the representation locally using surface vertex types; grouping mappable and submappable surfaces of the representation into chains; computing volume edge types for the representation; recursively traversing surfaces of the representation and grouping the surfaces into source, target, and linking surface lists; and checking traversal direction when traversing onto linking surfaces.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Erickson, Mark R.; Poole, Henry J.; Custer, III, Arthur W.
A sputtering apparatus that includes at least a target presented as an inner surface of a confinement structure, the inner surface of the confinement structure is preferably an internal wall of a circular tube. A cathode is disposed adjacent the internal wall of the circular tube. The cathode preferably provides a hollow core, within which a magnetron is disposed. Preferably, an actuator is attached to the magnetron, wherein a position of the magnetron within the hollow core is altered upon activation of the actuator. Additionally, a carriage supporting the cathode and communicating with the target is preferably provided, and amore » cable bundle interacting with the cathode and linked to a cable bundle take up mechanism provided power and coolant to the cathode, magnetron, actuator and an anode of the sputtering apparatus.« less
Natural killer cells: In health and disease.
Mandal, Arundhati; Viswanathan, Chandra
2015-06-01
Natural killer (NK) cells constitute our bodies' frontline defense system, guarding against tumors and launching attacks against infections. The activities of NK cells are regulated by the interaction of various receptors expressed on their surfaces with cell surface ligands. While the role of NK cells in controlling tumor activity is relatively clear, the fact that they are also linked to various other disease conditions is now being highlighted. Here, we present an overview of the role of NK cells during normal body state as well as under diseased state. We discuss the possible utilization of these powerful cells as immunotherapeutic agents in combating diseases such as asthma, autoimmune diseases, and HIV-AIDS. This review also outlines current challenges in NK cell therapy. Copyright © 2015. Published by Elsevier B.V.
Paganini, Iván E; Pastorino, Claudio; Urrutia, Ignacio
2015-06-28
We study a system of few colloids confined in a small spherical cavity with event driven molecular dynamics simulations in the canonical ensemble. The colloidal particles interact through a short range square-well potential that takes into account the basic elements of attraction and excluded-volume repulsion of the interaction among colloids. We analyze the structural and thermodynamic properties of this few-body confined system in the framework of inhomogeneous fluids theory. Pair correlation function and density profile are used to determine the structure and the spatial characteristics of the system. Pressure on the walls, internal energy, and surface quantities such as surface tension and adsorption are also analyzed for a wide range of densities and temperatures. We have characterized systems from 2 to 6 confined particles, identifying distinctive qualitative behavior over the thermodynamic plane T - ρ, in a few-particle equivalent to phase diagrams of macroscopic systems. Applying the extended law of corresponding states, the square well interaction is mapped to the Asakura-Oosawa model for colloid-polymer mixtures. We link explicitly the temperature of the confined square-well fluid to the equivalent packing fraction of polymers in the Asakura-Oosawa model. Using this approach, we study the confined system of few colloids in a colloid-polymer mixture.
Directional emission from dye-functionalized plasmonic DNA superlattice microcavities
Park, Daniel J.; Ku, Jessie C.; Sun, Lin; Lethiec, Clotilde M.; Stern, Nathaniel P.; Schatz, George C.; Mirkin, Chad A.
2017-01-01
Three-dimensional plasmonic superlattice microcavities, made from programmable atom equivalents comprising gold nanoparticles functionalized with DNA, are used as a testbed to study directional light emission. DNA-guided nanoparticle colloidal crystallization allows for the formation of micrometer-scale single-crystal body-centered cubic gold nanoparticle superlattices, with dye molecules coupled to the DNA strands that link the particles together, in the form of a rhombic dodecahedron. Encapsulation in silica allows one to create robust architectures with the plasmonically active particles and dye molecules fixed in space. At the micrometer scale, the anisotropic rhombic dodecahedron crystal habit couples with photonic modes to give directional light emission. At the nanoscale, the interaction between the dye dipoles and surface plasmons can be finely tuned by coupling the dye molecules to specific sites of the DNA particle-linker strands, thereby modulating dye–nanoparticle distance (three different positions are studied). The ability to control dye position with subnanometer precision allows one to systematically tune plasmon–excition interaction strength and decay lifetime, the results of which have been supported by electrodynamics calculations that span length scales from nanometers to micrometers. The unique ability to control surface plasmon/exciton interactions within such superlattice microcavities will catalyze studies involving quantum optics, plasmon laser physics, strong coupling, and nonlinear phenomena. PMID:28053232
Epididymosomes: transfer of fertility-modulating proteins to the sperm surface
Martin-DeLeon, Patricia A
2015-01-01
A variety of glycosylphosphatidylinositol (GPI)-linked proteins are acquired on spermatozoa from epididymal luminal fluids (ELF) during sperm maturation. These proteins serve roles in immunoprotection and in key steps of fertilization such as capacitation, acrosomal exocytosis and sperm-egg interactions. Their acquisition on sperm cells is mediated both by membrane vesicles (epididymosomes, EP) which were first reported to dock on the sperm surface, and by lipid carriers which facilitate the transfer of proteins associated with the membrane-free fraction of ELF. While the nonvesicular fraction is more efficient, both pathways are dependent on hydrophobic interactions between the GPI-anchor and the external lipid layer of the sperm surface. More recently proteomic and hypothesis-driven studies have shown that EP from several mammals carry transmembrane (TM) proteins, including plasma membrane Ca2+-ATPase 4 (PMCA4). Synthesized in the testis, PMCA4 is an essential protein and the major Ca2+ efflux pump in murine spermatozoa. Delivery of PMCA4 to spermatozoa from bovine and mouse EP during epididymal maturation and in vitro suggests that the docking of EP on the sperm surface precedes fusion, and experimental evidence supports a fusogenic mechanism for TM proteins. Fusion is facilitated by CD9, which generates fusion–competent sites on membranes. On the basis of knowledge of PMCA4's interacting partners a number of TM and membrane-associated proteins have been identified or are predicted to be present, in the epididymosomal cargo deliverable to spermatozoa. These Ca2+-dependent proteins, undetected in proteomic studies, play essential roles in sperm motility and fertility, and their detection highlights the usefulness of the hypothesis-driven approach. PMID:26112481
Epididymosomes: transfer of fertility-modulating proteins to the sperm surface.
Martin-DeLeon, Patricia A
2015-01-01
A variety of glycosylphosphatidylinositol (GPI)-linked proteins are acquired on spermatozoa from epididymal luminal fluids (ELF) during sperm maturation. These proteins serve roles in immunoprotection and in key steps of fertilization such as capacitation, acrosomal exocytosis and sperm-egg interactions. Their acquisition on sperm cells is mediated both by membrane vesicles (epididymosomes, EP) which were first reported to dock on the sperm surface, and by lipid carriers which facilitate the transfer of proteins associated with the membrane-free fraction of ELF. While the nonvesicular fraction is more efficient, both pathways are dependent on hydrophobic interactions between the GPI-anchor and the external lipid layer of the sperm surface. More recently proteomic and hypothesis-driven studies have shown that EP from several mammals carry transmembrane (TM) proteins, including plasma membrane Ca 2 + -ATPase 4 (PMCA4). Synthesized in the testis, PMCA4 is an essential protein and the major Ca 2 + efflux pump in murine spermatozoa. Delivery of PMCA4 to spermatozoa from bovine and mouse EP during epididymal maturation and in vitro suggests that the docking of EP on the sperm surface precedes fusion, and experimental evidence supports a fusogenic mechanism for TM proteins. Fusion is facilitated by CD9, which generates fusion-competent sites on membranes. On the basis of knowledge of PMCA4's interacting partners a number of TM and membrane-associated proteins have been identified or are predicted to be present, in the epididymosomal cargo deliverable to spermatozoa. These Ca 2 + -dependent proteins, undetected in proteomic studies, play essential roles in sperm motility and fertility, and their detection highlights the usefulness of the hypothesis-driven approach.
NASA Technical Reports Server (NTRS)
Mehta, M.; Sengupta, A.; Renno, N. O.; Norman, J. W.; Gulick, D. S.
2011-01-01
Numerical and experimental investigations of both far-field and near-field supersonic steady jet interactions with a flat surface at various atmospheric pressures are presented in this paper. These studies were done in assessing the landing hazards of both the NASA Mars Science Laboratory and Phoenix Mars spacecrafts. Temporal and spatial ground pressure measurements in conjunction with numerical solutions at altitudes of approx.35 nozzle exit diameters and jet expansion ratios (e) between 0.02 and 100 are used. Data from steady nitrogen jets are compared to both pulsed jets and rocket exhaust plumes at Mach approx.5. Due to engine cycling, overpressures and the plate shock dynamics are different between pulsed and steady supersonic impinging jets. In contrast to highly over-expanded (e <1) and underexpanded exhaust plumes, results show that there is a relative ground pressure load maximum for moderately underexpanded (e approx.2-5) jets which demonstrate a long collimated plume shock structure. For plumes with e much >5 (lunar atmospheric regime), the ground pressure is minimal due to the development of a highly expansive shock structure. We show this is dependent on the stability of the plate shock, the length of the supersonic core and plume decay due to shear layer instability which are all a function of the jet expansion ratio. Asymmetry and large gradients in the spatial ground pressure profile and large transient overpressures are predominantly linked to the dynamics of the plate shock. More importantly, this study shows that thruster plumes exhausting into martian environments possess the largest surface pressure loads and can occur at high spacecraft altitudes in contrast to the jet interactions at terrestrial and lunar atmospheres. Theoretical and analytical results also show that subscale supersonic cold gas jets adequately simulate the flow field and loads due to rocket plume impingement provided important scaling parameters are in agreement. These studies indicate the critical importance of testing and modeling plume-surface interactions for descent and ascent of spacecraft and launch vehicles.
DeBlasio, Stacy L; Chavez, Juan D; Alexander, Mariko M; Ramsey, John; Eng, Jimmy K; Mahoney, Jaclyn; Gray, Stewart M; Bruce, James E; Cilia, Michelle
2016-02-15
Demonstrating direct interactions between host and virus proteins during infection is a major goal and challenge for the field of virology. Most protein interactions are not binary or easily amenable to structural determination. Using infectious preparations of a polerovirus (Potato leafroll virus [PLRV]) and protein interaction reporter (PIR), a revolutionary technology that couples a mass spectrometric-cleavable chemical cross-linker with high-resolution mass spectrometry, we provide the first report of a host-pathogen protein interaction network that includes data-derived, topological features for every cross-linked site that was identified. We show that PLRV virions have hot spots of protein interaction and multifunctional surface topologies, revealing how these plant viruses maximize their use of binding interfaces. Modeling data, guided by cross-linking constraints, suggest asymmetric packing of the major capsid protein in the virion, which supports previous epitope mapping studies. Protein interaction topologies are conserved with other species in the Luteoviridae and with unrelated viruses in the Herpesviridae and Adenoviridae. Functional analysis of three PLRV-interacting host proteins in planta using a reverse-genetics approach revealed a complex, molecular tug-of-war between host and virus. Structural mimicry and diversifying selection-hallmarks of host-pathogen interactions-were identified within host and viral binding interfaces predicted by our models. These results illuminate the functional diversity of the PLRV-host protein interaction network and demonstrate the usefulness of PIR technology for precision mapping of functional host-pathogen protein interaction topologies. The exterior shape of a plant virus and its interacting host and insect vector proteins determine whether a virus will be transmitted by an insect or infect a specific host. Gaining this information is difficult and requires years of experimentation. We used protein interaction reporter (PIR) technology to illustrate how viruses exploit host proteins during plant infection. PIR technology enabled our team to precisely describe the sites of functional virus-virus, virus-host, and host-host protein interactions using a mass spectrometry analysis that takes just a few hours. Applications of PIR technology in host-pathogen interactions will enable researchers studying recalcitrant pathogens, such as animal pathogens where host proteins are incorporated directly into the infectious agents, to investigate how proteins interact during infection and transmission as well as develop new tools for interdiction and therapy. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Avila-Salas, Fabian; Marican, Adolfo; Villaseñor, Jorge; Arenas-Salinas, Mauricio; Argandoña, Yerko; Caballero, Julio; Durán-Lara, Esteban F
2018-01-04
This study describes the in-silico design, synthesis, and evaluation of a cross-linked PVA hydrogel (CLPH) for the absorption of organophosphorus pesticide dimethoate from aqueous solutions. The crosslinking effectiveness of 14 dicarboxilic acids was evaluated through in-silico studies using semiempirical quantum mechanical calculations. According to the theoretical studies, the nanopore of PVA cross-linked with malic acid (CLPH-MA) showed the best interaction energy with dimethoate. Later, using all-atom molecular dynamics simulations, three hydrogels with different proportions of PVA:MA (10:2, 10:4, and 10:6) were used to evaluate their interactions with dimethoate. These results showed that the suitable crosslinking degree for improving the affinity for the pesticide was with 20% ( W %) of the cross-linker. In the experimental absorption study, the synthesized CLPH-MA20 recovered 100% of dimethoate from aqueous solutions. Therefore, the theoretical data were correlated with the experimental studies. Surface morphology of CLPH-MA20 by Scanning Electron Microscopy (SEM) was analyzed. In conclusion, the ability of CLPH-MA20 to remove dimethoate could be used as a technological alternative for the treatment of contaminated water.
Avila-Salas, Fabian; Marican, Adolfo; Villaseñor, Jorge; Argandoña, Yerko
2018-01-01
This study describes the in-silico design, synthesis, and evaluation of a cross-linked PVA hydrogel (CLPH) for the absorption of organophosphorus pesticide dimethoate from aqueous solutions. The crosslinking effectiveness of 14 dicarboxilic acids was evaluated through in-silico studies using semiempirical quantum mechanical calculations. According to the theoretical studies, the nanopore of PVA cross-linked with malic acid (CLPH-MA) showed the best interaction energy with dimethoate. Later, using all-atom molecular dynamics simulations, three hydrogels with different proportions of PVA:MA (10:2, 10:4, and 10:6) were used to evaluate their interactions with dimethoate. These results showed that the suitable crosslinking degree for improving the affinity for the pesticide was with 20% (W%) of the cross-linker. In the experimental absorption study, the synthesized CLPH-MA20 recovered 100% of dimethoate from aqueous solutions. Therefore, the theoretical data were correlated with the experimental studies. Surface morphology of CLPH-MA20 by Scanning Electron Microscopy (SEM) was analyzed. In conclusion, the ability of CLPH-MA20 to remove dimethoate could be used as a technological alternative for the treatment of contaminated water. PMID:29300312
Chemical trends in ocean islands explained by plume–slab interaction
NASA Astrophysics Data System (ADS)
Dannberg, Juliane; Gassmöller, Rene
2018-04-01
Earth's surface shows many features, of which the genesis can be understood only through their connection with processes in Earth's deep interior. Recent studies indicate that spatial geochemical patterns at oceanic islands correspond to structures in the lowermost mantle inferred from seismic tomographic models. This suggests that hot, buoyant upwellings can carry chemical heterogeneities from the deep lower mantle toward the surface, providing a window to the composition of the lowermost mantle. The exact nature of this link between surface and deep Earth remains debated and poorly understood. Using computational models, we show that subducted slabs interacting with dense thermochemical piles can trigger the ascent of hot plumes that inherit chemical gradients present in the lowermost mantle. We identify two key factors controlling this process: (i) If slabs induce strong lower-mantle flow toward the edges of these piles where plumes rise, the pile-facing side of the plume preferentially samples material originating from the pile, and bilaterally asymmetric chemical zoning develops. (ii) The composition of the melt produced reflects this bilateral zoning if the overlying plate moves roughly perpendicular to the chemical gradient in the plume conduit. Our results explain some of the observed geochemical trends of oceanic islands and provide insights into how these trends may originate.
Are litter decomposition and fire linked through plant species traits?
Cornelissen, Johannes H C; Grootemaat, Saskia; Verheijen, Lieneke M; Cornwell, William K; van Bodegom, Peter M; van der Wal, René; Aerts, Rien
2017-11-01
Contents 653 I. 654 II. 657 III. 659 IV. 661 V. 662 VI. 663 VII. 665 665 References 665 SUMMARY: Biological decomposition and wildfire are connected carbon release pathways for dead plant material: slower litter decomposition leads to fuel accumulation. Are decomposition and surface fires also connected through plant community composition, via the species' traits? Our central concept involves two axes of trait variation related to decomposition and fire. The 'plant economics spectrum' (PES) links biochemistry traits to the litter decomposability of different fine organs. The 'size and shape spectrum' (SSS) includes litter particle size and shape and their consequent effect on fuel bed structure, ventilation and flammability. Our literature synthesis revealed that PES-driven decomposability is largely decoupled from predominantly SSS-driven surface litter flammability across species; this finding needs empirical testing in various environmental settings. Under certain conditions, carbon release will be dominated by decomposition, while under other conditions litter fuel will accumulate and fire may dominate carbon release. Ecosystem-level feedbacks between decomposition and fire, for example via litter amounts, litter decomposition stage, community-level biotic interactions and altered environment, will influence the trait-driven effects on decomposition and fire. Yet, our conceptual framework, explicitly comparing the effects of two plant trait spectra on litter decomposition vs fire, provides a promising new research direction for better understanding and predicting Earth surface carbon dynamics. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.
NASA Astrophysics Data System (ADS)
Li, Dawei; Zhao, Meixun; Tian, Jun
2017-09-01
Variability of the East Asian winter monsoon (EAWM), stronger during glacials and weaker during interglacials, has been tightly linked to the wax and wane of the Northern Hemisphere ice sheets (NHIS) via the Siberian High over the last 2.8 million years (Myr). However, the long eccentricity cycle (ca. 400 kyr) in the EAWM record from the late Pliocene to early-Pleistocene (2.8-1.2 Ma) could not be linked to NHIS changes, which lacked the long eccentricity cycle in the Pleistocene. Here, we present the first low latitude EAWM record of the last 2.8 Myr using surface and subsurface temperature difference from the northern South China Sea to evaluate interactions between tropical ocean and EAWM changes. The results show that the EAWM variability displayed significant 400 kyr cycle between 2.8 Ma and 1.2 Ma, with weak (strong) EAWM during high (low) earth orbital eccentricity state. A super El Niño-Southern Oscillation (ENSO) proxy record, calculated using west-east equatorial Pacific sea surface temperature differences, revealed 400 kyr cycles throughout the last 2.8 Myr with warm phase during high eccentricity state. Thus, we propose that super ENSO mean state strongly modulated the EAWM strength through remote forcing to generate the 400 kyr cycle between 2.8 Ma and 1.2 Ma, while low NHIS volume was not sufficient to dominate the EAWM variation as it did over the last 0.9 Myr with 100 kyr cycles in dominance.
Network organization of the human autophagy system.
Behrends, Christian; Sowa, Mathew E; Gygi, Steven P; Harper, J Wade
2010-07-01
Autophagy, the process by which proteins and organelles are sequestered in autophagosomal vesicles and delivered to the lysosome/vacuole for degradation, provides a primary route for turnover of stable and defective cellular proteins. Defects in this system are linked with numerous human diseases. Although conserved protein kinase, lipid kinase and ubiquitin-like protein conjugation subnetworks controlling autophagosome formation and cargo recruitment have been defined, our understanding of the global organization of this system is limited. Here we report a proteomic analysis of the autophagy interaction network in human cells under conditions of ongoing (basal) autophagy, revealing a network of 751 interactions among 409 candidate interacting proteins with extensive connectivity among subnetworks. Many new autophagy interaction network components have roles in vesicle trafficking, protein or lipid phosphorylation and protein ubiquitination, and affect autophagosome number or flux when depleted by RNA interference. The six ATG8 orthologues in humans (MAP1LC3/GABARAP proteins) interact with a cohort of 67 proteins, with extensive binding partner overlap between family members, and frequent involvement of a conserved surface on ATG8 proteins known to interact with LC3-interacting regions in partner proteins. These studies provide a global view of the mammalian autophagy interaction landscape and a resource for mechanistic analysis of this critical protein homeostasis pathway.
NASA Astrophysics Data System (ADS)
Harrison, Paul M.; Ellwi, Samir
2009-02-01
Within the vast range of laser materials processing applications, every type of successful commercial laser has been driven by a major industrial process. For high average power, high peak power, nanosecond pulse duration Nd:YAG DPSS lasers, the enabling process is high speed surface engineering. This includes applications such as thin film patterning and selective coating removal in markets such as the flat panel displays (FPD), solar and automotive industries. Applications such as these tend to require working spots that have uniform intensity distribution using specific shapes and dimensions, so a range of innovative beam delivery systems have been developed that convert the gaussian beam shape produced by the laser into a range of rectangular and/or shaped spots, as required by demands of each project. In this paper the authors will discuss the key parameters of this type of laser and examine why they are important for high speed surface engineering projects, and how they affect the underlying laser-material interaction and the removal mechanism. Several case studies will be considered in the FPD and solar markets, exploring the close link between the application, the key laser characteristics and the beam delivery system that link these together.
of Communication Fermilab news Search Useful links Symmetry magazine Interactions Interact News Fermilab's new chief strategic partnerships officer September 11, 2017 Alison Markovitz will lead externally « 1 ... 10 11 12 13 14 ... 74 » Go Fermilab news Search Useful links Symmetry magazine Interactions
DeBlasio, Stacy L.; Chavez, Juan D.; Alexander, Mariko M.; Ramsey, John; Eng, Jimmy K.; Mahoney, Jaclyn; Gray, Stewart M.; Bruce, James E.
2015-01-01
ABSTRACT Demonstrating direct interactions between host and virus proteins during infection is a major goal and challenge for the field of virology. Most protein interactions are not binary or easily amenable to structural determination. Using infectious preparations of a polerovirus (Potato leafroll virus [PLRV]) and protein interaction reporter (PIR), a revolutionary technology that couples a mass spectrometric-cleavable chemical cross-linker with high-resolution mass spectrometry, we provide the first report of a host-pathogen protein interaction network that includes data-derived, topological features for every cross-linked site that was identified. We show that PLRV virions have hot spots of protein interaction and multifunctional surface topologies, revealing how these plant viruses maximize their use of binding interfaces. Modeling data, guided by cross-linking constraints, suggest asymmetric packing of the major capsid protein in the virion, which supports previous epitope mapping studies. Protein interaction topologies are conserved with other species in the Luteoviridae and with unrelated viruses in the Herpesviridae and Adenoviridae. Functional analysis of three PLRV-interacting host proteins in planta using a reverse-genetics approach revealed a complex, molecular tug-of-war between host and virus. Structural mimicry and diversifying selection—hallmarks of host-pathogen interactions—were identified within host and viral binding interfaces predicted by our models. These results illuminate the functional diversity of the PLRV-host protein interaction network and demonstrate the usefulness of PIR technology for precision mapping of functional host-pathogen protein interaction topologies. IMPORTANCE The exterior shape of a plant virus and its interacting host and insect vector proteins determine whether a virus will be transmitted by an insect or infect a specific host. Gaining this information is difficult and requires years of experimentation. We used protein interaction reporter (PIR) technology to illustrate how viruses exploit host proteins during plant infection. PIR technology enabled our team to precisely describe the sites of functional virus-virus, virus-host, and host-host protein interactions using a mass spectrometry analysis that takes just a few hours. Applications of PIR technology in host-pathogen interactions will enable researchers studying recalcitrant pathogens, such as animal pathogens where host proteins are incorporated directly into the infectious agents, to investigate how proteins interact during infection and transmission as well as develop new tools for interdiction and therapy. PMID:26656710
Growth methods for controlled large-area fabrication of high-quality graphene analogs
Najmaei, Sina; Liu, Zheng; Ajayan, Pulickel M.; Lou, Jun
2017-02-28
In some embodiments, the present disclosure pertains to methods of growing chalcogen-linked metallic films on a surface in a chamber. In some embodiments, the method comprises placing a metal source and a chalcogen source in the chamber, and gradually heating the chamber, where the heating leads to the chemical vapor deposition of the chalcogen source and the metal source onto the surface, and facilitates the growth of the chalcogen-linked metallic film from the chalcogen source and the metal source on the surface. In some embodiments, the chalcogen source comprises sulfur, and the metal source comprises molybdenum trioxide. In some embodiments, the growth of the chalcogen-linked metallic film occurs by formation of nucleation sites on the surface, where the nucleation sites merge to form the chalcogen-linked metallic film. In some embodiments, the formed chalcogen-linked metallic film includes MoS.sub.2.
The Formation Mechanism of Hydrogels.
Lu, Liyan; Yuan, Shiliang; Wang, Jing; Shen, Yun; Deng, Shuwen; Xie, Luyang; Yang, Qixiang
2017-06-12
Hydrogels are degradable polymeric networks, in which cross-links play a vital role in structure formation and degradation. Cross-linking is a stabilization process in polymer chemistry that leads to the multi-dimensional extension of polymeric chains, resulting in network structures. By cross-linking, hydrogels are formed into stable structures that differ from their raw materials. Generally, hydrogels can be prepared from either synthetic or natural polymers. Based on the types of cross-link junctions, hydrogels can be categorized into two groups: the chemically cross-linked and the physically cross-linked. Chemically cross-linked gels have permanent junctions, in which covalent bonds are present between different polymer chains, thus leading to excellent mechanical strength. Although chemical cross-linking is a highly resourceful method for the formation of hydrogels, the cross-linkers used in hydrogel preparation should be extracted from the hydrogels before use, due to their reported toxicity, while, in physically cross-linked gels, dissolution is prevented by physical interactions, such as ionic interactions, hydrogen bonds or hydrophobic interactions. Physically cross-linked methods for the preparation of hydrogels are the alternate solution for cross-linker toxicity. Both methods will be discussed in this essay. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
NASA Astrophysics Data System (ADS)
Douglas, Jack
2014-03-01
One of the things that puzzled me when I was a PhD student working under Karl Freed was the curious unity between the theoretical descriptions of excluded volume interactions in polymers, the hydrodynamic properties of polymers in solution, and the critical properties of fluid mixtures, gases and diverse other materials (magnets, superfluids,etc.) when these problems were formally expressed in terms of Wiener path integration and the interactions treated through a combination of epsilon expansion and renormalization group (RG) theory. It seemed that only the interaction labels changed from one problem to the other. What do these problems have in common? Essential clues to these interrelations became apparent when Karl Freed, myself and Shi-Qing Wang together began to study polymers interacting with hyper-surfaces of continuously variable dimension where the Feynman perturbation expansions could be performed through infinite order so that we could really understand what the RG theory was doing. It is evidently simply a particular method for resuming perturbation theory, and former ambiguities no longer existed. An integral equation extension of this type of exact calculation to ``surfaces'' of arbitrary fixed shape finally revealed the central mathematical object that links these diverse physical models- the capacity of polymer chains, whose value vanishes at the critical dimension of 4 and whose magnitude is linked to the friction coefficient of polymer chains, the virial coefficient of polymers and the 4-point function of the phi-4 field theory,...Once this central object was recognized, it then became possible solve diverse problems in material science through the calculation of capacity, and related ``virials'' properties, through Monte Carlo sampling of random walk paths. The essential ideas of this computational method are discussed and some applications given to non-trivial problems: nanotubes treated as either rigid rods or ensembles worm-like chains having finite cross-section, DNA, nanoparticles with grafted chain layers and knotted polymers. The path-integration method, which grew up from research in Karl Freed's group, is evidently a powerful tool for computing basic transport properties of complex-shaped objects and should find increasing application in polymer science, nanotechnological applications and biology.
The strength of friendship ties in proximity sensor data.
Sekara, Vedran; Lehmann, Sune
2014-01-01
Understanding how people interact and socialize is important in many contexts from disease control to urban planning. Datasets that capture this specific aspect of human life have increased in size and availability over the last few years. We have yet to understand, however, to what extent such electronic datasets may serve as a valid proxy for real life social interactions. For an observational dataset, gathered using mobile phones, we analyze the problem of identifying transient and non-important links, as well as how to highlight important social interactions. Applying the Bluetooth signal strength parameter to distinguish between observations, we demonstrate that weak links, compared to strong links, have a lower probability of being observed at later times, while such links-on average-also have lower link-weights and probability of sharing an online friendship. Further, the role of link-strength is investigated in relation to social network properties.
Homogenized description and retrieval method of nonlinear metasurfaces
NASA Astrophysics Data System (ADS)
Liu, Xiaojun; Larouche, Stéphane; Smith, David R.
2018-03-01
A patterned, plasmonic metasurface can strongly scatter incident light, functioning as an extremely low-profile lens, filter, reflector or other optical device. When the metasurface is patterned uniformly, its linear optical properties can be expressed using effective surface electric and magnetic polarizabilities obtained through a homogenization procedure. The homogenized description of a nonlinear metasurface, however, presents challenges both because of the inherent anisotropy of the medium as well as the much larger set of potential wave interactions available, making it challenging to assign effective nonlinear parameters to the otherwise inhomogeneous layer of metamaterial elements. Here we show that a homogenization procedure can be developed to describe nonlinear metasurfaces, which derive their nonlinear response from the enhanced local fields arising within the structured plasmonic elements. With the proposed homogenization procedure, we are able to assign effective nonlinear surface polarization densities to a nonlinear metasurface, and link these densities to the effective nonlinear surface susceptibilities and averaged macroscopic pumping fields across the metasurface. These effective nonlinear surface polarization densities are further linked to macroscopic nonlinear fields through the generalized sheet transition conditions (GSTCs). By inverting the GSTCs, the effective nonlinear surface susceptibilities of the metasurfaces can be solved for, leading to a generalized retrieval method for nonlinear metasurfaces. The application of the homogenization procedure and the GSTCs are demonstrated by retrieving the nonlinear susceptibilities of a SiO2 nonlinear slab. As an example, we investigate a nonlinear metasurface which presents nonlinear magnetoelectric coupling in near infrared regime. The method is expected to apply to any patterned metasurface whose thickness is much smaller than the wavelengths of operation, with inclusions of arbitrary geometry and material composition, across the electromagnetic spectrum.
NASA Technical Reports Server (NTRS)
1979-01-01
A preliminary engineering model of ionospheric interactions with the pilot beam was established and used to demonstrate that the dual frequency baseline pilot beam system might not be viable in the presence of an unstable transmission path. Alternate approaches to remove this difficulty are described. Although ionospheric fluctuations will not significantly degrade beam pointing or raise the sidelobe levels, they will reduce transmission efficiency by upwards of 25%. Mitigating strategies to substantially reduce this effect are proposed. Based on the Klystron noise spectrum, the pilot beam transmitter power was determined as a function of frequency offset from the power beam carrier frequency. The RFI from the pilot beam, on the ground and at geosynchronous orbit is shown. Noise levels on the earth's surface due to the SPS are presented as a function of frequency and the number of SPS systems. Analysis of the communication subsystem indicates that a standard telemetry line of 1.544 MB/s would satisfy both voice and data link requirements. Additional links would be required for TV and radio transmissions.
SST Variation Due to Interactive Convective-Radiative Processes
NASA Technical Reports Server (NTRS)
Tao, W.-K.; Shie, C.-L.; Johnson, D.; Simpson, J.; Li, X.; Sui, C.-H.
2000-01-01
The recent linking of Cloud-Resolving Models (CRMs) to Ocean-Mixed Layer (OML) models has provided a powerful new means of quantifying the role of cloud systems in ocean-atmosphere coupling. This is due to the fact that the CRM can better resolve clouds and cloud systems and allow for explicit cloud-radiation interaction. For example, Anderson (1997) applied an atmospheric forcing associated with a CRM simulated squall line to a 3-D OML model (one way or passive interaction). His results suggested that the spatial variability resulting from the squall forcing can last at least 24 hours when forced with otherwise spatially uniform fluxes. In addition, the sea surface salinity (SSS) variability continuously decreased following the forcing, while some of the SST variability remained when a diurnal mixed layer capped off the surface structure. The forcing used in the OML model, however, focused on shorter time (8 h) and smaller spatial scales (100-120 km). In this study, the 3-D Goddard Cumulus Ensemble Model (GCE; 512 x 512 x 23 cu km, 2-km horizontal resolution) is used to simulate convective active episodes occurring in the Western Pacific warm pool and Eastern Atlantic regions. The model is integrated for seven days, and the simulated results are coupled to an OML model to better understand the impact of precipitation and changes in the planetary boundary layer upon SST variation. We will specifically examine and compare the results of linking the OML model with various spatially-averaged outputs from GCE simulations (i.e., 2 km vs. 10-50 km horizontal resolutions), in order to help understand the SST sensitivity to multi-scale influences. This will allow us to assess the importance of explicitly simulated deep and shallow clouds, as well as the subgrid-scale effects (in coarse-model runs) upon SST variation. Results using both 1-D and 2-D OML models will be evaluated to assess the effects of horizontal advection.
An electrochemiluminescence sensor based on a Ru(bpy)3(2+)-silica-chitosan/nanogold composite film.
Cai, Zhi-min; Wu, Yan-fang; Huang, Yun-he; Li, Qiu-ping; Chen, Xiao-mei; Chen, Xi
2012-05-30
Chitosan, a cationic polysaccharide containing amino and hydroxyl groups, was used to fabricate an electrochemiluminescence (ECL) sensor. In the sensor construction, a glassy carbon electrode (GCE) was first coated by a chitosan film which embedded gold nanoparticles, and then the film was modified by introducing carboxyl groups on the surface, which were used to immobilize tris(2,2'-bipyridyl)ruthenium(II) doped amino-functional silica nanoparticles (NH(2)-RuSiNPs) through amido links. The successful modification was confirmed by scanning electronic microscopy and cyclic voltammetry. A binding model between the chitosan/nanogold composite film and NH(2)-RuSiNPs was also proposed, in which the amido link was the dominant bonding, accompanied with hydrogen bond interaction. ECL studies revealed that the sensor had very good response to different concentrations of 2-(dibutylamino) ethanol. This sensor was also applied in methamphetamine determination. Copyright © 2012 Elsevier B.V. All rights reserved.
Assessment of ligand binding at a site relevant to SOD1 oxidation and aggregation.
Manjula, Ramu; Wright, Gareth S A; Strange, Richard W; Padmanabhan, Balasundaram
2018-05-01
Cu/Zn superoxide dismutase-1 (SOD1) mutations are causative for a subset of amyotrophic lateral sclerosis (ALS) cases. These mutations lead to structural instability, aggregation and ultimately motor neuron death. We have determined crystal structures of SOD1 in complex with a naphthalene-catechol-linked compound which binds with low micro-molar affinity to a site important for oxidative damage-induced aggregation. SOD1 Trp32 oxidation is indeed significantly inhibited by ligand binding. Our work shows how compound linking can be applied successfully to ligand interactions on the SOD1 surface to generate relatively good binding strength. The ligand, positioned in a region important for SOD1 fibrillation, offers the possibility that it, or a similar compound, could prevent the abnormal self-association that drives SOD1 toxicity in ALS. © 2018 Federation of European Biochemical Societies.
Teleconnection Paths via Climate Network Direct Link Detection.
Zhou, Dong; Gozolchiani, Avi; Ashkenazy, Yosef; Havlin, Shlomo
2015-12-31
Teleconnections describe remote connections (typically thousands of kilometers) of the climate system. These are of great importance in climate dynamics as they reflect the transportation of energy and climate change on global scales (like the El Niño phenomenon). Yet, the path of influence propagation between such remote regions, and weighting associated with different paths, are only partially known. Here we propose a systematic climate network approach to find and quantify the optimal paths between remotely distant interacting locations. Specifically, we separate the correlations between two grid points into direct and indirect components, where the optimal path is found based on a minimal total cost function of the direct links. We demonstrate our method using near surface air temperature reanalysis data, on identifying cross-latitude teleconnections and their corresponding optimal paths. The proposed method may be used to quantify and improve our understanding regarding the emergence of climate patterns on global scales.
Drepper, F; Mathis, P
1997-02-11
The photosynthetic reaction center (RC) and its secondary electron donor the water-soluble cytochrome (cyt) c2 from the purple bacterium Rhodobacter sphaeroides have been used in cross-linked and non-cross-linked complexes, oriented in compressed gels or partially dried multilayers, to study the respective orientation of the primary donor P (BChl dimer) and of cyt c2. Three methods were used: (i) Polarized optical absorption spectra at 295 and 10 K were measured and the linear dichroism of the two individual transitions (Qx, Qy), which are nearly degenerate within the alpha-band of reduced cyt c2, was determined. Attribution of the polarization directions to the molecular axes within the heme plane yielded the average cyt orientation in the complexes. (ii) Time-resolved flash absorption measurements using polarized light allowed determination of the orientation of cyt c2 in complexes which differ in their kinetics of electron transfer. (iii) EPR spectroscopy of ferricyt c2 in cross-linked RC-cyt c2 complexes was used to determine the angle between the heme and the membrane plane. The results suggest the following structural properties for the docking of cyt c2 to the RC: (i) In cross-linked complexes, the two cytochromes displaying half-lives of 0.7 and 60 micros for electron transfer to P+ are similarly oriented (difference < 10 degrees). (ii) For cross-linked cyt c2 the heme plane is parallel to the symmetry axis of the RC (0 degrees +/- 10 degrees). Moreover, the Qy transition, which is assumed to be polarized within the ring III-ring I direction of the heme plane, makes an angle of 56 degrees +/- 1 degree with the symmetry axis. (iii) The dichroism spectrum for the fast phase (0.7 micros) for the non-cross-linked cyt c2-RC complex suggests an orientation similar to that of cross-linked cyt c2, but the heme plane is tilted about 20 degrees closer to the membrane. An alternative model is that two or more bound states of cyt c2 with heme plane tilt angles between 0 degrees and 30 degrees allow the fast electron transfer. Zero-length cross-linking of cyt c2 may take place in one of these bound states. These orientations of cyt c2 are compared to different structural models of RC-cyt c2 complexes proposed previously. The relation of the two kinetic phases observed in cross-linked cyt c2 complexes to biphasic kinetics of the mobile reaction partners is discussed with respect to the dynamic electrostatic interactions during the formation of a docking complex and its dissociation. A mechanism is proposed in which a pre-orientation of cyt c2 relative to the membrane plane occurs by interaction of its strong electrostatic dipole with the negative surface charges of the RC. The optimal matching of the oppositely charged surfaces of the two proteins necessitates further rotation of the cyt around its dipole axis.
Arefi, Hadi H; Nolan, Michael; Fagas, Giorgos
2014-11-11
Surface modification of silicon with organic monolayers tethered to the surface by different linkers is an important process in realizing future miniaturized electronic and sensor devices. Understanding the roles played by the nature of the linking group and the chain length on the adsorption structures and stabilities of these assemblies is vital to advance this technology. This paper presents a density functional theory (DFT) study of the hydrogen passivated Si(111) surface modified with alkyl chains of the general formula H:Si-(CH2)n-CH2 and H:Si-X-(CH2)n-CH3, where X = NH, O, S and n = (0, 1, 3, 5, 7, 9, 11), at half coverage. For (X)-hexane and (X)-dodecane functionalization, we also examined various coverages up to full monolayer grafting in order to validate the result of half covered surface and the linker effect on the coverage. We find that it is necessary to take into account the van der Waals interaction between the alkyl chains. The strongest binding is for the oxygen linker, followed by S, N, and C, irrespective of chain length. The result revealed that the sequence of the stability is independent of coverage; however, linkers other than carbon can shift the optimum coverage considerably and allow further packing density. For all linkers apart from sulfur, structural properties, in particular, surface-linker-chain angles, saturate to a single value once n > 3. For sulfur, we identify three regimes, namely, n = 0-3, n = 5-7, and n = 9-11, each with its own characteristic adsorption structures. Where possible, our computational results are shown to be consistent with the available experimental data and show how the fundamental structural properties of modified Si surfaces can be controlled by the choice of linking group and chain length.
Zarkoob, Hadi; Taube, Joseph H.; Singh, Sheila K.; Mani, Sendurai A.; Kohandel, Mohammad
2013-01-01
In this manuscript, we use genetic data to provide a three-faceted analysis on the links between molecular subclasses of glioblastoma, epithelial-to-mesenchymal transition (EMT) and CD133 cell surface protein. The contribution of this paper is three-fold: First, we use a newly identified signature for epithelial-to-mesenchymal transition in human mammary epithelial cells, and demonstrate that genes in this signature have significant overlap with genes differentially expressed in all known GBM subtypes. However, the overlap between genes up regulated in the mesenchymal subtype of GBM and in the EMT signature was more significant than other GBM subtypes. Second, we provide evidence that there is a negative correlation between the genetic signature of EMT and that of CD133 cell surface protein, a putative marker for neural stem cells. Third, we study the correlation between GBM molecular subtypes and the genetic signature of CD133 cell surface protein. We demonstrate that the mesenchymal and neural subtypes of GBM have the strongest correlations with the CD133 genetic signature. While the mesenchymal subtype of GBM displays similarity with the signatures of both EMT and CD133, it also exhibits some differences with each of these signatures that are partly due to the fact that the signatures of EMT and CD133 are inversely related to each other. Taken together these data shed light on the role of the mesenchymal transition and neural stem cells, and their mutual interaction, in molecular subtypes of glioblastoma multiforme. PMID:23734191
Time domain characteristics of hoof-ground interaction at the onset of stance phase.
Burn, J F
2006-11-01
Little is known about the interaction of the hoof with the ground at the onset of stance phase although is it widely believed that high power collisions are involved in the aetiopathology of several conditions causing lameness. To answer 3 questions regarding the fundamental nature of hoof-ground collision: (1) is the collision process deterministic for ground surfaces that present a consistent mechanical interface (2) do collision forces act on the hoof in a small or large range of directions and (3) Is the hoof decelerated to near-zero velocity by the initial deceleration peak following ground contact? Hoof acceleration during the onset of stance phase was recorded using biaxial accelerometry for horses trotting on a tarmac surface and on a sand surface. Characteristics of the collision process were identified both from vector plots and time series representations of hoof acceleration, velocity and displacement. The response of the hoof to collision with smooth tarmac was predominantly deterministic and consistent with the response of a spring-damper system following shock excitation. The response to collision with sand was predominantly random. The deceleration peak following ground contact did not decelerate the hoof to near-zero velocity on tarmac but appeared to on sand. On both surfaces, collision forces acted on the hoof in a wide range of directions. The study suggests the presence of stiff, viscoelastic structures within the foot that may act as shock absorbers isolating the limb from large collision forces. The study indicates objectives for future in vivo and in vitro research into the shock absorbing mechanism within the equine foot; and the effects of shoe type and track surface properties on the collision forces experienced during locomotion. Studies of this nature should help to establish a link between musculoskeletal injury, hoof function and hoof-ground interaction if, indeed, one exists.
Vizentin-Bugoni, Jeferson; Maruyama, Pietro Kiyoshi; Sazima, Marlies
2014-04-07
Understanding the relative importance of multiple processes on structuring species interactions within communities is one of the major challenges in ecology. Here, we evaluated the relative importance of species abundance and forbidden links in structuring a hummingbird-plant interaction network from the Atlantic rainforest in Brazil. Our results show that models incorporating phenological overlapping and morphological matches were more accurate in predicting the observed interactions than models considering species abundance. This means that forbidden links, by imposing constraints on species interactions, play a greater role than species abundance in structuring the ecological network. We also show that using the frequency of interaction as a proxy for species abundance and network metrics to describe the detailed network structure might lead to biased conclusions regarding mechanisms generating network structure. Together, our findings suggest that species abundance can be a less important driver of species interactions in communities than previously thought.
Vizentin-Bugoni, Jeferson; Maruyama, Pietro Kiyoshi; Sazima, Marlies
2014-01-01
Understanding the relative importance of multiple processes on structuring species interactions within communities is one of the major challenges in ecology. Here, we evaluated the relative importance of species abundance and forbidden links in structuring a hummingbird–plant interaction network from the Atlantic rainforest in Brazil. Our results show that models incorporating phenological overlapping and morphological matches were more accurate in predicting the observed interactions than models considering species abundance. This means that forbidden links, by imposing constraints on species interactions, play a greater role than species abundance in structuring the ecological network. We also show that using the frequency of interaction as a proxy for species abundance and network metrics to describe the detailed network structure might lead to biased conclusions regarding mechanisms generating network structure. Together, our findings suggest that species abundance can be a less important driver of species interactions in communities than previously thought. PMID:24552835
Wang, Weina; Xu, Yisheng; Backes, Sebastian; Li, Ang; Micciulla, Samantha; Kayitmazer, A Basak; Li, Li; Guo, Xuhong; von Klitzing, Regine
2016-04-12
Biomimetic multilayers based on layer-by-layer (LbL) assembly were prepared as functional films with compact structure by incorporating the mussel-inspired catechol cross-linking. Dopamine-modified poly(acrylic acid) (PAADopa) was synthesized as a polyanion to offer electrostatic interaction with the prelayer polyethylenimine (PEI) and consecutively cross-linked by zinc to generate compact multilayers with tunable physicochemical properties. In situ layer-by-layer growth and cross-linking were monitored by a quartz crystal microbalance with dissipation (QCM-D) to reveal the kinetics of the process and the influence of Dopa chemistry. Addition of Dopa enhanced the mass adsorption and led to the formation of a more compact structure. An increase of ionic strength induced an increase in mass adsorption in the Dopa-cross-linked multilayers. This is a universal approach for coating of various surfaces such as Au, SiO2, Ti, and Al2O3. Roughness observed by AFM in both wet and dry conditions was compared to confirm the compact morphology of Dopa-cross-linked multilayers. Because of the pH sensitivity of Dopa moiety, metal-chelated Dopa groups can be turned into softer structure at higher pH as revealed by reduction of Young's modulus determined by MFP-3D AFM. A deeper insight into the growth and mechanical properties of Dopa-cross-linked polyelectrolyte multilayers was addressed in the present study. This allows a better control of these systems for bioapplications.
Coated particles for lithium battery cathodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Mohit; Eitouni, Hany Basam; Pratt, Russell Clayton
Particles of cathodic materials are coated with polymer to prevent direct contact between the particles and the surrounding electrolyte. The polymers are held in place either by a) growing the polymers from initiators covalently bound to the particle, b) attachment of the already-formed polymers by covalently linking to functional groups attached to the particle, or c) electrostatic interactions resulting from incorporation of cationic or anionic groups in the polymer chain. Carbon or ceramic coatings may first be formed on the surfaces of the particles before the particles are coated with polymer. The polymer coating is both electronically and ionically conductive.
NASA Astrophysics Data System (ADS)
Wang, Niejun; Zhou, Lilin; Guo, Jun; Ye, Qiquan; Lin, Jin-Ming; Yuan, Jinying
2014-06-01
Graft through strategy was utilized to coat magnetic Fe3O4 nanoparticles with poly(glycidyl methacrylate) using ordinary radical polymerization and then β-cyclodextrin was linked onto the surface of nanoparticles. With these nanoparticles modified with cyclodextrin groups, adsorption of two model environmental pollutants, bisphenol A and copper ions, was studied. Host-guest interactions between cyclodextrin and aromatic molecules had a great contribution to the adsorption of bisphenol A, while multiple hydroxyls of cyclodextrin also helped the adsorption of copper ions. These magnetic nanoparticles could be applied in the elimination, enrichment and detection of some environmental pollutants.
Opioid receptor trafficking and interaction in nociceptors
Zhang, X; Bao, L; Li, S
2015-01-01
Opiate analgesics such as morphine are often used for pain therapy. However, antinociceptive tolerance and dependence may develop with long-term use of these drugs. It was found that μ-opioid receptors can interact with δ-opioid receptors, and morphine antinociceptive tolerance can be reduced by blocking δ-opioid receptors. Recent studies have shown that μ- and δ-opioid receptors are co-expressed in a considerable number of small neurons in the dorsal root ganglion. The interaction of μ-opioid receptors with δ-opioid receptors in the nociceptive afferents is facilitated by the stimulus-induced cell-surface expression of δ-opioid receptors, and contributes to morphine tolerance. Further analysis of the molecular, cellular and neural circuit mechanisms that regulate the trafficking and interaction of opioid receptors and related signalling molecules in the pain pathway would help to elucidate the mechanism of opiate analgesia and improve pain therapy. LINKED ARTICLES This article is part of a themed section on Opioids: New Pathways to Functional Selectivity. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2015.172.issue-2 PMID:24611685
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cashman, Derek J.; Zhu, Tuo; Simmerman, Richard F.
2014-08-01
The stromal domain (PsaC, PsaD, and PsaE) of photosystem I (PSI) reduces transiently bound ferredoxin (Fd) or flavodoxin. Experimental structures exist for all of these protein partners individually, but no experimental structure of the PSI/Fd or PSI/flavodoxin complexes is presently available. Molecular models of Fd docked onto the stromal domain of the cyanobacterial PSI site are constructed here utilizing X-ray and NMR structures of PSI and Fd, respectively. Moreover, predictions of potential protein-protein interaction regions are based on experimental site-directed mutagenesis and cross-linking studies to guide rigid body docking calculations of Fd into PSI, complemented by energy landscape theory tomore » bring together regions of high energetic frustration on each of the interacting proteins. Results identify two regions of high localized frustration on the surface of Fd that contain negatively charged Asp and Glu residues. Our study predicts that these regions interact predominantly with regions of high localized frustration on the PsaC, PsaD, and PsaE chains of PSI, which include several residues predicted by previous experimental studies.« less
E. coli interactions, adhesion and transport in alumino-silica clays.
Wei, Houzhen; Yang, Guang; Wang, Boya; Li, Runwei; Chen, Gang; Li, Zhenze
2017-06-01
Bacterial adhesion and transport in the geological formation are controlled by their mutual complex interactions, which have been quantified by the traditional and extended Derjaguin-Landau-Verwey-Overbeek (DLVO) theory as well as direct atomic force microscopy (AFM) measurements. In this research, the DLVO forces calculated based on the independently determined bacterial and porous media surface thermodynamic properties were compared with those of AFM measurements. Although differences in the order of several magnitudes existed, forces obtained from both ways could explain the observations of E. coli attachment to alumino-silica clays evaluated in laboratory columns under saturated and steady-state flow conditions. E. coli deposition in alumino-silica clays was simulated using a two-site convection-dispersion transport model against E. coli transport breakthrough curves, which was then linked to the interactions forces. By exploring the differences of the two force measurements, it was concluded that the thermodynamic calculations could complement the direct force measurements in describing bacterial interactions with the surrounding environment and the subsequent transport in the porous media. Published by Elsevier B.V.
Barnacle cement: a polymerization model based on evolutionary concepts
Dickinson, Gary H.; Vega, Irving E.; Wahl, Kathryn J.; Orihuela, Beatriz; Beyley, Veronica; Rodriguez, Eva N.; Everett, Richard K.; Bonaventura, Joseph; Rittschof, Daniel
2009-01-01
Summary Enzymes and biochemical mechanisms essential to survival are under extreme selective pressure and are highly conserved through evolutionary time. We applied this evolutionary concept to barnacle cement polymerization, a process critical to barnacle fitness that involves aggregation and cross-linking of proteins. The biochemical mechanisms of cement polymerization remain largely unknown. We hypothesized that this process is biochemically similar to blood clotting, a critical physiological response that is also based on aggregation and cross-linking of proteins. Like key elements of vertebrate and invertebrate blood clotting, barnacle cement polymerization was shown to involve proteolytic activation of enzymes and structural precursors, transglutaminase cross-linking and assembly of fibrous proteins. Proteolytic activation of structural proteins maximizes the potential for bonding interactions with other proteins and with the surface. Transglutaminase cross-linking reinforces cement integrity. Remarkably, epitopes and sequences homologous to bovine trypsin and human transglutaminase were identified in barnacle cement with tandem mass spectrometry and/or western blotting. Akin to blood clotting, the peptides generated during proteolytic activation functioned as signal molecules, linking a molecular level event (protein aggregation) to a behavioral response (barnacle larval settlement). Our results draw attention to a highly conserved protein polymerization mechanism and shed light on a long-standing biochemical puzzle. We suggest that barnacle cement polymerization is a specialized form of wound healing. The polymerization mechanism common between barnacle cement and blood may be a theme for many marine animal glues. PMID:19837892
Molecular basis for the unique deubiquitinating activity of the NF-kappaB inhibitor A20.
Lin, Su-Chang; Chung, Jee Y; Lamothe, Betty; Rajashankar, Kanagalaghatta; Lu, Miao; Lo, Yu-Chih; Lam, Amy Y; Darnay, Bryant G; Wu, Hao
2008-02-15
Nuclear factor kappaB (NF-kappaB) activation in tumor necrosis factor, interleukin-1, and Toll-like receptor pathways requires Lys63-linked nondegradative polyubiquitination. A20 is a specific feedback inhibitor of NF-kappaB activation in these pathways that possesses dual ubiquitin-editing functions. While the N-terminal domain of A20 is a deubiquitinating enzyme (DUB) for Lys63-linked polyubiquitinated signaling mediators such as TRAF6 and RIP, its C-terminal domain is a ubiquitin ligase (E3) for Lys48-linked degradative polyubiquitination of the same substrates. To elucidate the molecular basis for the DUB activity of A20, we determined its crystal structure and performed a series of biochemical and cell biological studies. The structure reveals the potential catalytic mechanism of A20, which may be significantly different from papain-like cysteine proteases. Ubiquitin can be docked onto a conserved A20 surface; this interaction exhibits charge complementarity and no steric clash. Surprisingly, A20 does not have specificity for Lys63-linked polyubiquitin chains. Instead, it effectively removes Lys63-linked polyubiquitin chains from TRAF6 without dissembling the chains themselves. Our studies suggest that A20 does not act as a general DUB but has the specificity for particular polyubiquitinated substrates to assure its fidelity in regulating NF-kappaB activation in the tumor necrosis factor, interleukin-1, and Toll-like receptor pathways.
Wada, Akira; Mie, Masayasu; Aizawa, Masuo; Lahoud, Pedro; Cass, Anthony E G; Kobatake, Eiry
2003-12-31
The chemically and genetically remodeling of proteins with ligand binding specificities can be utilized to synthesize various protein-based microsensors for detecting single biomolecules. Here, we describe the construction and characterization of fluorophore-labeled glutamine binding proteins (QBP) and derivatives coupled to the independently designed hydrophobic polypeptide (E12) that can adhere onto solid surfaces via hydrophobic interactions. The single cysteine mutant (N160C QBP) modified with the three environmentally sensitive fluorescent dyes (IAANS, acrylodan, and IANBD ester) showed increased changes in fluorescence intensity induced by glutamine binding. The use of these conjugates as reagentless fluorescence sensors enables us to determine the glutamine concentrations (0.1-50 microM) in homogeneous solution. The fusion of N160C QBP with E12, (Gly4-Ser)n spacers (GSn), and IANBD resulted in the novel fluorescence sensing elements having an adhering capability to hydrophobic surfaces of unmodified microplates. In ELISA and fluorescence experiments for the microplates treated with a series of the conjugates, IANBD-labeled N160C QBP-GS1-E12 displayed the best reproducibility in adhesion onto the hydrophobic surfaces and the precise correlation between fluorescence changes and glutamine concentrations. The performance of the biosensor-attached microplate for glutamine titrations demonstrated that the hydrophobic interaction of E12 with solid surfaces is useful for effective immobilization of proteins that need specific conformational movements in recognizing particular biomolecules. Therefore, the technique using E12 as a surface-linking domain for protein adhesion onto unmodified substrates could be applied effectively to prepare microplates/arrays for a wide variety of high-throughput assays on chemical and biological samples.
Gulf of Mexico Imagery - Satellite Products and Services Division/Office of
Satellite and Product Operations Skip Navigation Link NESDIS banner image and link to NESDIS Home Page Default Office of Satellite and Product Operations banner image and link to OSPO DOC / NOAA Bleaching -- Ocean Color -- Sea/Lake Ice -- Sea Surface Height -- Sea Surface Temperatures -- Tropical
Southwest U.S. Imagery (GOES-WEST) - Satellite Services Division / Office
of Satellite Data Processing and Distribution Skip Navigation Link NESDIS banner image and link Information Service Home Page Default Office of Satellite and Product Operations banner image and link to OSPO Color -- Sea/Lake Ice -- Sea Surface Height -- Sea Surface Temperatures -- Tropical Systems Product List
Tropical Pacific Imagery - Satellite Products and Services Division/Office
of Satellite and Product Operations Skip Navigation Link NESDIS banner image and link to NESDIS Home Page Default Office of Satellite and Product Operations banner image and link to OSPO DOC / NOAA Bleaching -- Ocean Color -- Sea/Lake Ice -- Sea Surface Height -- Sea Surface Temperatures -- Tropical
Tropical Atlantic Imagery - Satellite Products and Services Division/Office
of Satellite and Product Operations Skip Navigation Link NESDIS banner image and link to NESDIS Home Page Default Office of Satellite and Product Operations banner image and link to OSPO DOC / NOAA Bleaching -- Ocean Color -- Sea/Lake Ice -- Sea Surface Height -- Sea Surface Temperatures -- Tropical
Jiang, Liuwei; Marcus, R Kenneth
2016-02-01
Capillary-channeled polymer (C-CP) fiber stationary phases are finding utility in the realms of protein analytics as well as downstream processing. We have recently described the modification of poly(ethylene terephthalate) (PET) C-CP fibers to affect amine-rich phases for the weak anion-exchange (WAX) separation of proteins. Polyethylenimine (PEI) is covalently coupled to the PET surface, with subsequent cross-linking imparted by treatment with 1,4-butanediol diglycidyl ether (BUDGE). These modifications yield vastly improved dynamic binding capacities over the unmodified fibers. We have also previously employed native (unmodified) nylon 6 C-CP fibers as weak anion/cation-exchange (mixed-mode) and hydrophobic interaction chromatography (HIC) phases for protein separations. Polyamide, nylon 6, consists of amide groups along the polymer backbone, with primary amines and carboxylic acid end groups. The analytical separation characteristics of these three amine-based C-CP fiber phases are compared here. Each of the C-CP fiber columns in this study was shown to be able to separate a bovine serum albumin/hemoglobin/lysozyme mixture at high mobile phase linear velocity (∼70 mm s(-1)) but with different elution characteristics. These differences reflect the types of protein-surface interactions that are occurring, based on the active group composition of the fiber surfaces. This study provides important fundamental understanding for the development of surface-modified C-CP fiber columns for protein separation.
Javierre, Biola M; Burren, Oliver S; Wilder, Steven P; Kreuzhuber, Roman; Hill, Steven M; Sewitz, Sven; Cairns, Jonathan; Wingett, Steven W; Várnai, Csilla; Thiecke, Michiel J; Burden, Frances; Farrow, Samantha; Cutler, Antony J; Rehnström, Karola; Downes, Kate; Grassi, Luigi; Kostadima, Myrto; Freire-Pritchett, Paula; Wang, Fan; Stunnenberg, Hendrik G; Todd, John A; Zerbino, Daniel R; Stegle, Oliver; Ouwehand, Willem H; Frontini, Mattia; Wallace, Chris; Spivakov, Mikhail; Fraser, Peter
2016-11-17
Long-range interactions between regulatory elements and gene promoters play key roles in transcriptional regulation. The vast majority of interactions are uncharted, constituting a major missing link in understanding genome control. Here, we use promoter capture Hi-C to identify interacting regions of 31,253 promoters in 17 human primary hematopoietic cell types. We show that promoter interactions are highly cell type specific and enriched for links between active promoters and epigenetically marked enhancers. Promoter interactomes reflect lineage relationships of the hematopoietic tree, consistent with dynamic remodeling of nuclear architecture during differentiation. Interacting regions are enriched in genetic variants linked with altered expression of genes they contact, highlighting their functional role. We exploit this rich resource to connect non-coding disease variants to putative target promoters, prioritizing thousands of disease-candidate genes and implicating disease pathways. Our results demonstrate the power of primary cell promoter interactomes to reveal insights into genomic regulatory mechanisms underlying common diseases. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Higashi, Julie Miyo
Infections involving Staphylococcus epidermidis remain a life threatening complication associated with the use of polymer based cardiovascular devices. One of the critical steps in infection pathogenesis is the adhesion of the bacteria to the device surface. Currently, mechanisms of S. epidermidis adhesion are incompletely understood, but are thought to involve interactions between bacteria, device surface, and host blood elements in the form of adsorbed plasma proteins and surface adherent platelets. Our central hypothesis is that elements participating in thrombosis also promote S. epidermidis adhesion by specifically binding to the bacterial surface. The adhesion kinetics of S. epidermidis RP62A to host modified model biomaterial surface octadecyltrichlorosilane (OTS) under hydrodynamic shear conditions were characterized. Steady state adhesion to adsorbed proteins and surface adherent platelets was achieved at 90-120 minutes and 60-90 minutes, respectively. A dose response curve of S. epidermidis adhesion in the concentration range of 10sp7{-}10sp9 bac/mL resembled a multilayer adsorption isotherm. Increasing shear stress was found to LTA, and other LTA blocking agents significantly decreased S. epidermidis adhesion to the fibrin-platelet clots, suggesting that this interaction between S. epidermidis and fibrin-platelet clots is specific. Studies evaluated the adhesion of S. epidermidis to polymer immobilized heparin report conflicting results. Paulsson et al., showed that coagulase negative staphylococci adhered in comparable numbers to both immobilized heparin and nonheparinized surfaces, while exhibiting significantly greater adhesion to both surfaces than S. aureus. Preadsorption of the surfaces with specific heparin binding plasma proteins vitronectin, fibronectin, laminin, and collagen significantly increased adhesion. It was postulated that immobilized heparin contained binding sites for the plasma proteins, exposing bacteria binding domains of the protein. Aggregation of heparin coated (adsorbed) polystyrene beads by the same S. epidermidis strains did not correlate with the adherence assays on the immobilized heparin surfaces and staphylococcal binding was dependent on media ionic strength and pH, suggesting that the conformation of the heparin polysaccharide chains was crucial to the interaction (132). Another study by Arciola et al., showed that heparin modified PMMA intraocular lenses sustained significantly less adherent bacteria than unmodified PMMA lenses, and that the chromatogram of structural fatty acids of only the S. epidermidis adherent to heparin modified PMMA changed (133). Because neither of these investigators thoroughly characterized their heparin modified surfaces, the difference in their results could easily be explained by the notorious heterogeneity of the heparin molecular weight, bioactivity, or surface coverage on these polymers.
The influence of interactions between accommodation and convergence on the lag of accommodation.
Schor, C
1999-03-01
Several models of myopia predict that growth of axial length is stimulated by blur. Accommodative lag has been suggested as an important source of blur in the development of myopia and this study has modeled how cross-link interactions between accommodation and convergence might interact with uncorrected distance heterophoria and refractive error to influence accommodative lag. Accommodative lag was simulated with two models of interactions between accommodation and convergence (one with and one without adaptable tonic elements). Simulations of both models indicate that both uncorrected hyperopia and esophoria increase the lag of accommodative and uncorrected myopia and exophoria decrease the lag or introduce a lead of accommodation in response to the near (40 cm) stimulus. These effects were increased when gain of either cross-link, accommodative convergence (AC/A) or convergence accommodation (CA/C), was increased within a moderate range of values while the other was fixed at a normal value (clamped condition). These effects were exaggerated when both the AC/A and CA/C ratios were increased (covaried condition) and affects of cross-link gain were negated when an increase of one cross-link (e.g. AC/A) was accompanied by a reduction of the other cross-link (e.g. CA/C) (reciprocal condition). The inclusion of tonic adaptation in the model reduced steady state errors of accommodation for all conditions except when the AC/A ratio was very high (2 MA/D). Combinations of cross-link interactions between accommodation and convergence that resemble either clamped or reciprocal patterns occur naturally in clinical populations. Simulations suggest that these two patterns of abnormal cross-link interactions could affect the progression of myopia differently. Adaptable tonic accommodation and tonic vergence could potentially reduce the progression of myopia by reducing the lag of accommodation.
Henderson, Thomas A; Nilles, Matthew L
2017-01-01
Cross-linking of proteins is effective in determining protein-protein interactions. The use of photo-cross-linkers was developed to study protein interactions in several manners. One method involved the incorporation of photo-activatable cross-linking groups into chemically synthesized peptides. A second approach relies on incorporation of photo-activatable cross-linking groups into proteins using tRNAs with chemically bound photo-activatable amino acids with suppressor tRNAs translational systems to incorporate the tags into specific sites. A third system was made possible by the development of photoreactive amino acids that use the normal cellular tRNAs and aminoacyl tRNA synthetases. In this method, the third system is used to demonstrate its utility for the study of T3S system interactions. This method describes how two photo-activatable amino acids, photo-methionine and photo-leucine, that use the normal cellular machinery are incorporated into Yersinia pestis and used to study interactions in the T3S system. To demonstrate the system, the method was used to cross-link the T3S regulatory proteins LcrG and LcrV.
Insights into MHC class I peptide loading from the structure of the tapasin/ERp57 heterodimer
Dong, Gang; Wearsch, Pamela A.; Peaper, David R.; Cresswell, Peter; Reinisch, Karin M.
2009-01-01
SUMMARY Tapasin is a glycoprotein critical for loading Major Histocompatibility Complex (MHC) class I molecules with high affinity peptides. It functions within the multimeric peptide-loading complex (PLC) as a disulfide-linked, stable heterodimer with the thiol oxidoreductase ERp57, and this covalent interaction is required to support optimal PLC activity. Here we present the 2.6 Å resolution structure of the tapasin/ERp57 core of the PLC. The structure reveals the basis for the stable dimerization of tapasin and ERp57 and provides the first example of a protein disulfide isomerase family member interacting with a substrate. Mutational analysis identified a conserved surface on tapasin that interacts with MHC class I molecules and is critical for the peptide loading and editing function of the tapasin-ERp57 heterodimer. By combining the tapasin/ERp57 structure with those of other defined PLC components we present a molecular model that illuminates the processes involved in MHC class I peptide loading. PMID:19119025
NASA Astrophysics Data System (ADS)
Zannotti, Marco; Giovannetti, Rita; D'Amato, Chiara Anna; Rommozzi, Elena
2016-01-01
UV-vis and fluorescence investigations about the non-covalent interaction, in ethanolic solutions, of multi-wall carbon nanotube (MWCNT) with Coproporphyrin-I, and its Cu(II) and Zn(II) complexes (MCPIs) have been reported. Evidence of binding between MWCNTs and porphyrins was discovered from spectral adsorption decrease with respect to free porphyrins and by the exhibition of photoluminescence quenching with respect to free porphyrins demonstrating that MWCNT@MCPIs are potential donor-acceptor complexes. Equilibrium and kinetic aspects in the interactions with monolayer transparent TiO2 thin films with the obtained MWCNT@MCPIs are clarified showing their effective adsorption by porphyrin links on the TiO2 monolayer support, with respect to not only MWCNTs, according to the Langmuir model and with pseudo-first-order kinetics. Morphological description of the adsorption of MWCNT@MCPIs on TiO2 with scanning electron microscopy has been reported. The obtained experimental evidences describe therefore MWCNT@MCPIs as potential sensitizers in the DSSC (Dye-Sensitized Solar Cell) applications.
Risk evaluation of uranium mining: A geochemical inverse modelling approach
NASA Astrophysics Data System (ADS)
Rillard, J.; Zuddas, P.; Scislewski, A.
2011-12-01
It is well known that uranium extraction operations can increase risks linked to radiation exposure. The toxicity of uranium and associated heavy metals is the main environmental concern regarding exploitation and processing of U-ore. In areas where U mining is planned, a careful assessment of toxic and radioactive element concentrations is recommended before the start of mining activities. A background evaluation of harmful elements is important in order to prevent and/or quantify future water contamination resulting from possible migration of toxic metals coming from ore and waste water interaction. Controlled leaching experiments were carried out to investigate processes of ore and waste (leached ore) degradation, using samples from the uranium exploitation site located in Caetité-Bahia, Brazil. In experiments in which the reaction of waste with water was tested, we found that the water had low pH and high levels of sulphates and aluminium. On the other hand, in experiments in which ore was tested, the water had a chemical composition comparable to natural water found in the region of Caetité. On the basis of our experiments, we suggest that waste resulting from sulphuric acid treatment can induce acidification and salinization of surface and ground water. For this reason proper storage of waste is imperative. As a tool to evaluate the risks, a geochemical inverse modelling approach was developed to estimate the water-mineral interaction involving the presence of toxic elements. We used a method earlier described by Scislewski and Zuddas 2010 (Geochim. Cosmochim. Acta 74, 6996-7007) in which the reactive surface area of mineral dissolution can be estimated. We found that the reactive surface area of rock parent minerals is not constant during time but varies according to several orders of magnitude in only two months of interaction. We propose that parent mineral heterogeneity and particularly, neogenic phase formation may explain the observed variation of the reactive mineral surface area. The formation of coatings on dissolving mineral surfaces significantly reduces the amount of surface available to react with fluids. Our results show that negatively charged ion complexes, responsible for U transport, decreases when alkalinity and rock buffer capacity is similarly lower. Carbonate ion pairs however, may increase U mobility when radionuclide concentration is high and rock buffer capacity is low. The present work helps to orient future monitoring of this site in Brazil as well as of other sites where uranium is linked to igneous rock formations, without the presence of sulphides. Monitoring SO4 migration (in acidic leaching uranium sites) seems to be an efficient and simple way to track different hazards, especially in tropical conditions, where the succession of dry and wet periods increases the weathering action of the residual H2SO4. Nevertheless, models of risk evaluation should take into account reactive surface areas and neogenic minerals since they determine the U ion complex formation, which in turn, controls uranium mobility in natural systems. Keywords: uranium mining, reactive mineral surface area, uranium complexes, inverse modelling approach, risk evaluation
Bullied no more:when and how DNA shoves proteins around
Pettitt, B. Montgomery; Sumners, De Witt L.; Harris, Sarah A.; Zechiedrich, Lynn
2016-01-01
The predominant protein-centric perspective in protein–DNA-binding studies assumes that the protein drives the interaction. Research focuses on protein structural motifs, electrostatic surfaces and contact potentials, while DNA is often ignored as a passive polymer to be manipulated. Recent studies of DNA topology, the supercoiling, knotting, and linking of the helices, have shown that DNA has the capability to be an active participant in its transactions. DNA topology-induced structural and geometric changes can drive, or at least strongly influence, the interactions between protein and DNA. Deformations of the B-form structure arise from both the considerable elastic energy arising from supercoiling and from the electrostatic energy. Here, we discuss how these energies are harnessed for topology-driven, sequence-specific deformations that can allow DNA to direct its own metabolism. PMID:22850561
Protein secretion and surface display in Gram-positive bacteria
Schneewind, Olaf; Missiakas, Dominique M.
2012-01-01
The cell wall peptidoglycan of Gram-positive bacteria functions as a surface organelle for the transport and assembly of proteins that interact with the environment, in particular, the tissues of an infected host. Signal peptide-bearing precursor proteins are secreted across the plasma membrane of Gram-positive bacteria. Some precursors carry C-terminal sorting signals with unique sequence motifs that are cleaved by sortase enzymes and linked to the cell wall peptidoglycan of vegetative forms or spores. The sorting signals of pilin precursors are cleaved by pilus-specific sortases, which generate covalent bonds between proteins leading to the assembly of fimbrial structures. Other precursors harbour surface (S)-layer homology domains (SLH), which fold into a three-pronged spindle structure and bind secondary cell wall polysaccharides, thereby associating with the surface of specific Gram-positive microbes. Type VII secretion is a non-canonical secretion pathway for WXG100 family proteins in mycobacteria. Gram-positive bacteria also secrete WXG100 proteins and carry unique genes that either contribute to discrete steps in secretion or represent distinctive substrates for protein transport reactions. PMID:22411983
Shukla, Manoj K; Poda, Aimee
2016-06-01
This manuscript reports results of an integrated theoretical and experimental investigation of adsorption of two emerging contaminants (DNAN and FOX-7) and legacy compound TNT on cellulose surface. Cellulose was modeled as trimeric form of the linear chain of 1 → 4 linked of β-D-glucopyranos in (4)C1 chair conformation. Geometries of modeled cellulose, munitions compounds and their complexes were optimized at the M06-2X functional level of Density Functional Theory using the 6-31G(d,p) basis set in gas phase and in water solution. The effect of water solution was modeled using the CPCM approach. Nature of potential energy surfaces was ascertained through harmonic vibrational frequency analysis. Interaction energies were corrected for basis set superposition error and the 6-311G(d,p) basis set was used. Molecular electrostatic potential mapping was performed to understand the reactivity of the investigated systems. It was predicted that adsorbates will be weakly adsorbed on the cellulose surface in water solution than in the gas phase.
NASA Astrophysics Data System (ADS)
Debiossac, M.; Zugarramurdi, A.; Khemliche, H.; Roncin, P.; Borisov, A. G.; Momeni, A.; Atkinson, P.; Eddrief, M.; Finocchi, F.; Etgens, V. H.
2014-10-01
A grazing incidence fast atom diffraction (GIFAD or FAD) setup, installed on a molecular beam epitaxy chamber, has been used to characterize the β2(2×4) reconstruction of a GaAs(001) surface at 530∘C under an As4 overpressure. Using a 400-eV 4He beam, high-resolution diffraction patterns with up to eighty well-resolved diffraction orders are observed simultaneously, providing a detailed fingerprint of the surface structure. Experimental diffraction data are in good agreement with results from quantum scattering calculations based on an ab initio projectile-surface interaction potential. Along with exact calculations, we show that a straightforward semiclassical analysis allows the features of the diffraction chart to be linked to the main characteristics of the surface reconstruction topography. Our results demonstrate that GIFAD is a technique suitable for measuring in situ the subtle details of complex surface reconstructions. We have performed measurements at very small incidence angles, where the kinetic energy of the projectile motion perpendicular to the surface can be reduced to less than 1 meV. This allowed the depth of the attractive van der Waals potential well to be estimated as -8.7 meV in very good agreement with results reported in literature.
Goldstein, Harland L.; Breit, George N.; Reynolds, Richard L.
2017-01-01
Saline-surface crusts and their compositions at ephemeral, dry, and drying lakes are important products of arid-land processes. Detailed understanding is lacking, however, about interactions among locally variable hydrogeologic conditions, compositional control of groundwater on vadose zone and surface salts, and dust composition. Chemical and physical data from groundwater, sediments, and salts reveal compositional controls on saline-surface crusts across a wet playa, Mojave Desert, with bearing on similar settings elsewhere. The compositions of chemically and isotopically distinctive shallow (<3 m) water masses are recorded in the composition of associated salts. In areas with deeper and more saline groundwater, however, not all ions are transported through the vadose zone. Retention of arsenic and other elements in the vadose zone diminishes the concentrations of potentially toxic elements in surface salts, but creates a reservoir of these elements that may be brought to the surface during wetter conditions or by human disturbance. Selective wind-erosion loss of sulfate salts was identified by the compositional contrast between surface salt crusts and underlying groundwater. At the sub-basin scale, compositional links exist among groundwater, salt crusts, and dust from wet playas. Across the study basin, however, lateral variations in groundwater and solid-salt compositions are produced by hydrogeologic heterogeneity.
Wang, Wei; Lan, Ping
2014-01-01
A novel method of constructing a glycosylated surface on poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-4HB)] membrane surface for the selective adsorption of low-density lipoprotein (LDL) was developed, which involved the photoinduced graft polymerization of acrylic acid followed by the chemical binding of carboxyl groups with glucosamine in the presence of 1-ethyl-3-(dimethyl-aminopropyl) carbodiimide hydrochloride and N-hydroxy-succinimide. The chemical structures of the fabricated membranes were characterized by attenuated total reflectance Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. Zeta potential and water contact angle measurements were performed to investigate the surface charge and wettability of the membranes, respectively. An enzyme linked immunosorbent assay was used to measure the LDL adsorption on the plain and modified membrane surfaces. It was found that the surface glycosylation of P(3HB-co-4HB) membrane greatly enhanced the affinity interactions with LDL and the absorbed LDL could be easily desorbed with eluents, indicating a specific and reversible binding of LDL to the surface. Furthermore, the hemocompatibility of glycosylated membrane was improved as examined by platelet adhesion. The results suggest that the glycosylated P(3HB-co-4HB) membrane is promising for application in LDL apheresis therapy.
NASA Technical Reports Server (NTRS)
Meeson, Blanche W.
2000-01-01
The research carried out in the Earth Sciences in NASA and at NASA's Goddard Space Flight Center will be the focus of the presentations. In addition, one research project that links sea surface temperature to epidemics in Africa will be highlighted. At GSFC research interests span the full breath of disciplines in Earth Science. Branches and research groups focus on areas as diverse as planetary geomagnetics and atmospheric chemistry. These organizations focus on atmospheric sciences (atmospheric chemistry, climate and radiation, regional processes, atmospheric modeling), hydrological sciences (snow, ice, oceans, and seasonal-to-interannual prediction), terrestrial physics (geology, terrestrial biology, land-atmosphere interactions, geophysics), climate modeling (global warming, greenhouse gases, climate change), on sensor development especially using lidar and microwave technologies, and on information technologies, that enable support of scientific and technical research.
Touring the saturnian system: the atmospheres of titan and saturn
NASA Astrophysics Data System (ADS)
Owen, Tobias; Gautier, Daniel
2002-07-01
This report follows the presentation originally given in the ESA Phase A Study for the Cassini Huygens Mission. The combination of the Huygens atmospheric probe into Titan's atmosphere with the Cassini orbiter allows for both in-situ and remote-sensing observations of Titan. This not only provides a rich harvest of data about Saturn's famous satellite but will permit a useful calibration of the remote-sensing instruments which will also be used on Saturn itself. Composition, thermal structure, dynamics, aeronomy, magnetosphere interactions and origins will all be investigated for the two atmospheres, and the spacecraft will also deliver information on the interiors of both Titan and Saturn. As the surface of Titan is intimately linked with the atmosphere, we also discuss some of the surface studies that will be carried out by both probe and orbiter.
Nanoscale Assembly of Actuating Cilia-Mimetic
NASA Astrophysics Data System (ADS)
Baird, Lance; Breidenich, Jennifer; Land, Bruce; Hayes, Allen; Benkoski, Jason; Keng, Pei; Pyun, Jeffrey
2009-03-01
The cilium is among the smallest mechanical actuators found in nature. We have taken inspiration from this design to create magnetic nanochains, measuring approximately 1-5 μm long and 25 nm in diameter. Fabricated from the self-assembly of cobalt nanoparticles, these flexible filaments actuate in an oscillating magnetic field. The cobalt nanoparticles were functionalized with a polystyrene/benzaldehyde surface coating, thus allowing the particles to form imine bonds with one another in the presence of a diamine terminated polyethylene glycol. These imine bonds effectively cross-linked the particles and held the nanochains together in the absence of a magnetic field. Using design of experiments (DOE) to efficiently screen the effects of cobalt nanoparticle concentration, crosslinker concentration, and surface chemistry, we determined that the morphology of the final structures could be explained primarily by physical interactions (i.e. magnetic forces) rather than chemistry.
Soetaert, Karline; Mohn, Christian; Rengstorf, Anna; Grehan, Anthony; van Oevelen, Dick
2016-10-11
Cold-water corals (CWCs) form large mounds on the seafloor that are hotspots of biodiversity in the deep sea, but it remains enigmatic how CWCs can thrive in this food-limited environment. Here, we infer from model simulations that the interaction between tidal currents and CWC-formed mounds induces downwelling events of surface water that brings organic matter to 600-m deep CWCs. This positive feedback between CWC growth on carbonate mounds and enhanced food supply is essential for their sustenance in the deep sea and represents an example of ecosystem engineering of unparalleled magnitude. This 'topographically-enhanced carbon pump' leaks organic matter that settles at greater depths. The ubiquitous presence of biogenic and geological topographies along ocean margins suggests that carbon sequestration through this pump is of global importance. These results indicate that enhanced stratification and lower surface productivity, both expected consequences of climate change, may negatively impact the energy balance of CWCs.
Roughness-dependent tribology effects on discontinuous shear thickening
Hsu, Chiao-Peng; Ramakrishna, Shivaprakash N.; Zanini, Michele; Spencer, Nicholas D.
2018-01-01
Surface roughness affects many properties of colloids, from depletion and capillary interactions to their dispersibility and use as emulsion stabilizers. It also impacts particle–particle frictional contacts, which have recently emerged as being responsible for the discontinuous shear thickening (DST) of dense suspensions. Tribological properties of these contacts have been rarely experimentally accessed, especially for nonspherical particles. Here, we systematically tackle the effect of nanoscale surface roughness by producing a library of all-silica, raspberry-like colloids and linking their rheology to their tribology. Rougher surfaces lead to a significant anticipation of DST onset, in terms of both shear rate and solid loading. Strikingly, they also eliminate continuous thickening. DST is here due to the interlocking of asperities, which we have identified as “stick–slip” frictional contacts by measuring the sliding of the same particles via lateral force microscopy (LFM). Direct measurements of particle–particle friction therefore highlight the value of an engineering-tribology approach to tuning the thickening of suspensions. PMID:29717043
Spectroscopic diagnostics of organic chemistry in the protostellar environment
NASA Technical Reports Server (NTRS)
Charnley, S. B.; Ehrenfreund, P.; Kuan, Y. J.
2001-01-01
A combination of astronomical observations, laboratory studies, and theoretical modelling is necessary to determine the organic chemistry of dense molecular clouds. We present spectroscopic evidence for the composition and evolution of organic molecules in protostellar environments. The principal reaction pathways to complex molecule formation by catalysis on dust grains and by reactions in the interstellar gas are described. Protostellar cores, where warming of dust has induced evaporation of icy grain mantles, are excellent sites in which to study the interaction between gas phase and grain-surface chemistries. We investigate the link between organics that are observed as direct products of grain surface reactions and those which are formed by secondary gas phase reactions of evaporated surface products. Theory predicts observable correlations between specific interstellar molecules, and also which new organics are viable for detection. We discuss recent infrared observations obtained with the Infrared Space Observatory, laboratory studies of organic molecules, theories of molecule formation, and summarise recent radioastronomical searches for various complex molecules such as ethers, azaheterocyclic compounds, and amino acids.
NASA Astrophysics Data System (ADS)
Soetaert, Karline; Mohn, Christian; Rengstorf, Anna; Grehan, Anthony; van Oevelen, Dick
2016-10-01
Cold-water corals (CWCs) form large mounds on the seafloor that are hotspots of biodiversity in the deep sea, but it remains enigmatic how CWCs can thrive in this food-limited environment. Here, we infer from model simulations that the interaction between tidal currents and CWC-formed mounds induces downwelling events of surface water that brings organic matter to 600-m deep CWCs. This positive feedback between CWC growth on carbonate mounds and enhanced food supply is essential for their sustenance in the deep sea and represents an example of ecosystem engineering of unparalleled magnitude. This ’topographically-enhanced carbon pump’ leaks organic matter that settles at greater depths. The ubiquitous presence of biogenic and geological topographies along ocean margins suggests that carbon sequestration through this pump is of global importance. These results indicate that enhanced stratification and lower surface productivity, both expected consequences of climate change, may negatively impact the energy balance of CWCs.
Roughness-dependent tribology effects on discontinuous shear thickening.
Hsu, Chiao-Peng; Ramakrishna, Shivaprakash N; Zanini, Michele; Spencer, Nicholas D; Isa, Lucio
2018-05-15
Surface roughness affects many properties of colloids, from depletion and capillary interactions to their dispersibility and use as emulsion stabilizers. It also impacts particle-particle frictional contacts, which have recently emerged as being responsible for the discontinuous shear thickening (DST) of dense suspensions. Tribological properties of these contacts have been rarely experimentally accessed, especially for nonspherical particles. Here, we systematically tackle the effect of nanoscale surface roughness by producing a library of all-silica, raspberry-like colloids and linking their rheology to their tribology. Rougher surfaces lead to a significant anticipation of DST onset, in terms of both shear rate and solid loading. Strikingly, they also eliminate continuous thickening. DST is here due to the interlocking of asperities, which we have identified as "stick-slip" frictional contacts by measuring the sliding of the same particles via lateral force microscopy (LFM). Direct measurements of particle-particle friction therefore highlight the value of an engineering-tribology approach to tuning the thickening of suspensions. Copyright © 2018 the Author(s). Published by PNAS.
Ubiquitin Utilizes an Acidic Surface Patch to Alter Chromatin Structure
Debelouchina, Galia T.; Gerecht, Karola; Muir, Tom W.
2016-01-01
Ubiquitylation of histone H2B, associated with gene activation, leads to chromatin decompaction through an unknown mechanism. We used a hydrogen-deuterium exchange strategy coupled with nuclear magnetic resonance spectroscopy to map the ubiquitin surface responsible for its structural effects on chromatin. Our studies revealed that a previously uncharacterized acidic patch on ubiquitin comprising residues Glu16 and Glu18 is essential for decompaction. These residues mediate promiscuous electrostatic interactions with the basic histone proteins, potentially positioning the ubiquitin moiety as a dynamic “wedge” that prevents the intimate association of neighboring nucleosomes. Using two independent cross-linking strategies and an oligomerization assay, we also showed that ubiquitin-ubiquitin contacts occur in the chromatin environment and are important for the solubilization of the chromatin polymers. Our work highlights a novel, chromatin-related aspect of the “ubiquitin code”, and sheds light on how the information rich ubiquitin modification can orchestrate different biochemical outcomes using different surface features. PMID:27870837
Yang, Yi; Song, Haiping; He, Dan; Zhang, Shuai; Dai, Shizhong; Xie, Xiao; Lin, Shixian; Hao, Ziyang; Zheng, Huangtao; Chen, Peng R
2017-10-01
Although protein-protein interactions (PPIs) have crucial roles in virtually all cellular processes, the identification of more transient interactions in their biological context remains challenging. Conventional photo-cross-linking strategies can be used to identify transient interactions, but these approaches often suffer from high background due to the cross-linked bait proteins. To solve the problem, we have developed membrane-permeable releasable photo-cross-linkers that allow for prey-bait separation after protein complex isolation and can be installed in proteins of interest (POIs) as unnatural amino acids. Here we describe the procedures for using two releasable photo-cross-linkers, DiZSeK and DiZHSeC, in both living Escherichia coli and mammalian cells. A cleavage after protein photo-cross-linking (CAPP ) strategy based on the photo-cross-linker DiZSeK is described, in which the prey protein pool is released from a POI after affinity purification. Prey proteins are analyzed using mass spectrometry or 2D gel electrophoresis for global comparison of interactomes from different experimental conditions. An in situ cleavage and mass spectrometry (MS)-label transfer after protein photo-cross-linking (IMAPP) strategy based on the photo-cross-linker DiZHSeC is also described. This strategy can be used for the identification of cross-linking sites to allow detailed characterization of PPI interfaces. The procedures for photo-cross-linker incorporation, photo-cross-linking of interaction partners and affinity purification of cross-linked complexes are similar for the two photo-cross-linkers. The final section of the protocol describes prey-bait separation (for CAPP) and MS-label transfer and identification (for IMAPP). After plasmid construction, the CAPP and IMAPP strategies can be completed within 6 and 7 d, respectively.
Birditt, Kira S; Tighe, Lauren A; Nevitt, Michael R; Zarit, Steven H
2017-12-12
According to the strength and vulnerability integration (SAVI) model, older people are better able to avoid negative social interactions than younger people, but when they do experience negative interactions, they are equally or more emotionally and physiologically reactive than younger people. Less is known about the links between daily negative and positive social encounters and the sympathetic adrenal medullary system (a key stress pathway) and whether there are age differences in these links. This study considers whether negative and positive social interactions are associated with diurnal alpha-amylase (a measure of the sympathetic adrenal medullary system) and whether there are differences in these links by age. Participants were from the Daily Health, Stress, and Relationship Study, which includes a random sample of 89 individuals (aged 40-95) who completed 14 days of daily diary interviews and provided saliva samples four times a day (wake, 30 min after wake, lunch, and bedtime) for four of those days that were assayed for alpha-amylase. Days in which people reported more negative interactions were associated with flatter morning declines in alpha-amylase, indicating greater stress. Links between positive interactions and diurnal alpha-amylase varied by age group. Findings are consistent with the SAVI model indicating that older adults respond differently to social stimuli than younger people. © The Author(s) 2017. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Surface control of epitaxial manganite films via oxygen pressure
Tselev, Alexander; Vasudevan, Rama K.; Gianfrancesco, Anthony G.; ...
2015-03-11
The trend to reduce device dimensions demands increasing attention to atomic-scale details of structure of thin films as well as to pathways to control it. We found that this is of special importance in the systems with multiple competing interactions. We have used in situ scanning tunneling microscopy to image surfaces of La 5/8Ca 3/8MnO 3 films grown by pulsed laser deposition. The atomically resolved imaging was combined with in situ angle-resolved X-ray photoelectron spectroscopy. We find a strong effect of the background oxygen pressure during deposition on structural and chemical features of the film surface. Deposition at 50 mTorrmore » of O 2 leads to mixed-terminated film surfaces, with B-site (MnO 2) termination being structurally imperfect at the atomic scale. Moreover, a relatively small reduction of the oxygen pressure to 20 mTorr results in a dramatic change of the surface structure leading to a nearly perfectly ordered B-site terminated surface with only a small fraction of A-site (La,Ca)O termination. This is accompanied, however, by surface roughening at a mesoscopic length scale. The results suggest that oxygen has a strong link to the adatom mobility during growth. The effect of the oxygen pressure on dopant surface segregation is also pronounced: Ca surface segregation is decreased with oxygen pressure reduction.« less
Chiral surface and edge plasmons in ferromagnetic conductors
NASA Astrophysics Data System (ADS)
Zhang, Steven S.-L.; Vignale, Giovanni
2018-06-01
The recently introduced concept of "surface Berry plasmons" is studied in the concrete instance of a ferromagnetic conductor in which the Berry curvature, generated by spin-orbit (SO) interaction, has opposite signs for carrier with spins parallel or antiparallel to the magnetization. By using collisionless hydrodynamic equations with appropriate boundary conditions, we study both the surface plasmons of a three-dimensional ferromagnetic conductor and the edge plasmons of a two-dimensional one. The anomalous velocity and the broken inversion symmetry at the surface or the edge of the conductor create a "handedness" whereby the plasmon frequency depends not only on the angle between the wave vector and the magnetization, but also on the direction of propagation along a given line. In particular, we find that the frequency of the edge plasmon depends on the direction of propagation along the edge. These Berry curvature effects are compared and contrasted with similar effects on plasmon dispersions induced by an external magnetic field in the absence of Berry curvature. We argue that Berry curvature effects may be used to control the direction of propagation of the surface plasmons via coupling with the magnetization of ferromagnetic conductors, and thus create a link between plasmonics and spintronics.
Wright, Aidan G C; Stepp, Stephanie D; Scott, Lori N; Hallquist, Michael N; Beeney, Joseph E; Lazarus, Sophie A; Pilkonis, Paul A
2017-10-01
Narcissism has significant interpersonal costs, yet little research has examined behavioral and affective patterns characteristic of narcissism in naturalistic settings. Here we studied the effect of narcissistic features on the dynamic processes of interpersonal behavior and affect in daily life. We used interpersonal theory to generate transactional models of social interaction (i.e., linkages among perceptions of others' behavior, affect, and one's own behavior) predicted to be characteristic of narcissism. Psychiatric outpatients (N = 102) completed clinical interviews and a 21-day ecological momentary assessment protocol using smartphones. After social interactions (N = 5,781), participants reported on perceptions of their interaction partner's behavior (scored along the dimensions of dominant-submissive and affiliative-quarrelsome), their own affect, and their own behavior. Multilevel structural equation modeling was used to examine dynamic links among behavior and affect across interactions, and the role of narcissism in moderating these links. Results showed that perceptions of others' dominance did not predict dominant behavior, but did predict quarrelsome behavior, and this link was potentiated by narcissism. Furthermore, the link between others' dominance and one's own quarrelsome behavior was mediated by negative affect. Moderated mediation was also found: Narcissism amplified the link between ratings of others' dominance and one's own quarrelsomeness and negative affect. Narcissism did not moderate the link between other dominance and own dominance, nor the link between other affiliation and own affiliation. These results suggest that narcissism is associated with specific interpersonal and affective processes, such that sensitivity to others' dominance triggers antagonistic behavior in daily life. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Revisiting classical silicate dissolution rate laws under hydrothermal conditions
NASA Astrophysics Data System (ADS)
Pollet-Villard, Marion; Daval, Damien; Saldi, Giuseppe; Knauss, Kevin; Wild, Bastien; Fritz, Bertrand
2015-04-01
In the context of geothermal energy, the relative intensities of primary mineral leaching and secondary mineral precipitation can affect porosity and permeability of the reservoir, thereby influencing its hydraulic performance and the efficiency of the geothermal power station. That is why the prediction of reaction kinetics of fluid/rock interactions represents a critical issue in this context. Moreover, in several geothermal systems such as the one of Soultz-sous-Forêts (Alsace, France), the circulation of aqueous fluids induces only modest modifications of their chemical composition. Therefore, fluid-rock interactions take place at close-to-equilibrium conditions, where the rate-affinity relations are poorly known and intensively debated [1]. To describe more precisely the dissolution processes, our strategy consists in investigating the dissolution of the main cleavages of K-spar minerals (one of the prevalent primary minerals in the reservoir of Soultz-sous-Forêts geothermal system) over a wide range of Gibbs free energy (ΔG) conditions. The aims are to decipher the impact of crystallographic orientation and microstructural surface modifications on the dissolution kinetics and to propose a relation between K-spar dissolution rate and ΔG. Our experimental work relies on a coupled approach which combines classical experiments of K-spar dissolution monitored by aqueous chemical analyses (ICP-AES) and innovative techniques of nm- to μm-scale characterization of solid surface (SEM, AFM, VSI) [2]. Our results confirm that K-spar dissolution is an anisotropic process: we measure a tenfold factor between the slowest and the fastest-dissolving surfaces. Moreover, the formation of etch pits on surfaces during their alteration has been evidenced on all of the different faces that have been studied. This complex evolution of the surface topography casts doubt of the relevance of a surface model based on shrinking particles and represents a possible cause of an apparent modification of silicate dissolution rate over time. In addition, we evidenced that the relation between K-spar dissolution rate and ΔG depends on the crystallographic orientation of the altered surface, and differs from the transition state theory currently implemented into geochemical codes. Importantly, this theoretical curve overestimates the dissolution rates measured in close-to-equilibrium conditions. Taken together, the new findings show promise as a means for improving the accuracy of geochemical simulations. [1] Schott, J., Pokrovsky, O. S., and Oelkers, E. H., 2009. The Link Between Mineral Dissolution/Precipitation Kinetics and Solution Chemistry. Rev Mineral Geochem 70, 207-258. [2] Daval, D., Hellmann, R., Saldi, G. D., Wirth, R., and Knauss, K. G., 2013. Linking nm-scale measurements of the anisotropy of silicate surface reactivity to macroscopic dissolution rate laws: New insights based on diopside. Geochim Cosmochim Acta 107, 121-134.
Validation of SMAP Radar Vegetation Data Cubes from Agricultural Field Measurements
NASA Astrophysics Data System (ADS)
Tsang, L.; Xu, X.; Liao, T.; Kim, S.; Njoku, E. G.
2012-12-01
The NASA Soil Moisture Active/Passive (SMAP) Mission will be launched in October 2014. The objective of the SMAP mission is to provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. In the active algorithm, the retrieval is performed based on the backscattering data cube, which are characterized by two surface parameters, which are soil moisture and soil surface rms height, and one vegetation parameter, the vegetation water content. We have developed a physical-based forward scattering model to generate the data cube for agricultural fields. To represent the agricultural crops, we include a layer of cylinders and disks on top of the rough surface. The scattering cross section of the vegetation layer and its interaction with the underground soil surface were calculated by the distorted Born approximation, which give explicitly three scattering mechanisms. A) The direct volume scattering B) The double bounce effect as, and C) The double bouncing effects. The direct volume scattering is calculated by using the Body of Revolution code. The double bounce effects, exhibited by the interaction of rough surface with the vegetation layer is considered by modifying the rough surface reflectivity using the coherent wave as computed by Numerical solution of Maxwell equations of 3 Dimensional simulations (NMM3D) of bare soil scattering. The rough surface scattering of the soil was calculated by NMM3D. We have compared the physical scattering models with field measurements. In the field campaign, the measurements were made on soil moisture, rough surface rms heights and vegetation water content as well as geometric parameters of vegetation. The three main crops lands are grassland, cornfield and soybean fields. The corresponding data cubes are validated using SGP99, SMEX02 and SMEX 08 field experiments.
NASA Astrophysics Data System (ADS)
Mozley, P.; Yoon, H.; Williams, R. T.; Goodwin, L. B.
2015-12-01
The spatial distribution of pore-filling authigenic minerals (cements) is highly variable and controlled in large part by the mineralogy of the cements and host sediment grains. Two end-member distributions of cements that commonly occur in sedimentary material are: (1) concretionary, in which precipitation occurred in specific zones throughout the sediment, with intervening areas largely uncemented; and (2) grain-rimming, in which precipitation occurred on grain-surfaces relatively uniformly throughout the rock. Concretions form in rocks in which sediment grains have a different composition from the cement, whereas rim cements form in those that have the same composition. Both the mechanical attributes and permeability of a given volume of rock are affected to a much greater extent by grain rimming cements, which have a significant impact on properties at even low abundances. Concretionary cements have little impact on bulk properties until relatively large volumes have precipitated (~80% cemented) and concretions begin to link up. Precipitation of cement in fault zones also impacts both mechanical and hydrologic properties. Cementation will stiffen and strengthen unlithified sediment, thereby controlling the locus of fracturing in protolith or damage zones. Where fracture networks form in fault damage zones, they are initially high permeability elements. However, progressive cementation greatly diminishes fracture permeability, resulting in cyclical permeability variation linked to fault slip. To quantitatively describe the interactions of groundwater flow, permeability, and patterns and abundance of cements, we use pore-scale modeling of coupled fluid flow, reactive transport, and heterogeneous mineral-surface reactions. By exploring the effects of varying distributions of porosity and mineralogy, which impact patterns of cementation, we provide mechanistic explanations of the interactions of coupled processes under various flow and chemistry conditions.
Wang, Chao; Wang, Gang; Zhang, Chi; Zhu, Pinkuan; Dai, Huiling; Yu, Nan; He, Zuhua; Xu, Ling; Wang, Ertao
2017-04-03
Conserved pathogen-associated molecular patterns (PAMPs), such as chitin, are perceived by pattern recognition receptors (PRRs) located at the host cell surface and trigger rapid activation of mitogen-activated protein kinase (MAPK) cascades, which are required for plant resistance to pathogens. However, the direct links from PAMP perception to MAPK activation in plants remain largely unknown. In this study, we found that the PRR-associated receptor-like cytoplasmic kinase Oryza sativa RLCK185 transmits immune signaling from the PAMP receptor OsCERK1 to an MAPK signaling cascade through interaction with an MAPK kinase kinase, OsMAPKKKε, which is the initial kinase of the MAPK cascade. OsRLCK185 interacts with and phosphorylates the C-terminal regulatory domain of OsMAPKKKε. Coexpression of phosphomimetic OsRLCK185 and OsMAPKKKε activates MAPK3/6 phosphorylation in Nicotiana benthamiana leaves. Moreover, OsMAPKKKε interacts with and phosphorylates OsMKK4, a key MAPK kinase that transduces the chitin signal. Overexpression of OsMAPKKKε increases chitin-induced MAPK3/6 activation, whereas OsMAPKKKε knockdown compromises chitin-induced MAPK3/6 activation and resistance to rice blast fungus. Taken together, our results suggest the existence of a phospho-signaling pathway from cell surface chitin perception to intracellular activation of an MAPK cascade in rice. Copyright © 2017 The Author. Published by Elsevier Inc. All rights reserved.
Santos, Elton J. G.; Scullion, Declan; Chu, Ximo S.; ...
2017-08-23
Hybrid van der Waals (vdW) heterostructures composed of two-dimensional (2D) layered materials and self-assembled organic molecules are promising systems for electronic and optoelectronic applications with enhanced properties and performance. Control of molecular assembly is therefore paramount to fundamentally understand the nucleation, ordering, alignment, and electronic interaction of organic molecules with 2D materials. Here, we report the formation and detailed study of highly ordered, crystalline monolayers of C 60 molecules self-assembled on the surface of WSe 2 in well-ordered arrays with large grain sizes (~5 μm). Using high-resolution scanning tunneling microscopy (STM), we observe a periodic 2 × 2 superstructure inmore » the C 60 monolayer and identify four distinct molecular appearances. Using vdW-corrected ab initio density functional theory (DFT) simulations, we determine that the interplay between vdW and Coulomb interactions as well as adsorbate–adsorbate and adsorbate–substrate interactions results in specific rotational arrangements of the molecules forming the superstructure. The orbital ordering through the relative positions of bonds in adjacent molecules creates a charge redistribution that links the molecule units in a long-range network. Furthermore, this rotational superstructure extends throughout the self-assembled monolayer and opens a pathway towards engineering aligned hybrid organic/inorganic vdW heterostructures with 2D layered materials in a precise and controlled way.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Santos, Elton J. G.; Scullion, Declan; Chu, Ximo S.
Hybrid van der Waals (vdW) heterostructures composed of two-dimensional (2D) layered materials and self-assembled organic molecules are promising systems for electronic and optoelectronic applications with enhanced properties and performance. Control of molecular assembly is therefore paramount to fundamentally understand the nucleation, ordering, alignment, and electronic interaction of organic molecules with 2D materials. Here, we report the formation and detailed study of highly ordered, crystalline monolayers of C 60 molecules self-assembled on the surface of WSe 2 in well-ordered arrays with large grain sizes (~5 μm). Using high-resolution scanning tunneling microscopy (STM), we observe a periodic 2 × 2 superstructure inmore » the C 60 monolayer and identify four distinct molecular appearances. Using vdW-corrected ab initio density functional theory (DFT) simulations, we determine that the interplay between vdW and Coulomb interactions as well as adsorbate–adsorbate and adsorbate–substrate interactions results in specific rotational arrangements of the molecules forming the superstructure. The orbital ordering through the relative positions of bonds in adjacent molecules creates a charge redistribution that links the molecule units in a long-range network. Furthermore, this rotational superstructure extends throughout the self-assembled monolayer and opens a pathway towards engineering aligned hybrid organic/inorganic vdW heterostructures with 2D layered materials in a precise and controlled way.« less
NASA Astrophysics Data System (ADS)
Sivanathan, P. C.; Shuhaimi, Ahmad; Hamza, Hebal; Kowsz, Stacy J.; Abdul Khudus, Muhammad I. M.; Li, Hongjian; Allif, Kamarul
2018-07-01
The InGaN/GaN multi-quantum wells, growth on bulk GaN substrate were studied for blue light emission. Growth temperature plays a key role determining the peak wavelength of a quantum well. The study was carried out by growing quantum wells, MQWs on the whole sapphire at 716 °C and observed peak wavelength at 463 nm. While the bulk GaN substrate with sapphire corral grown at 703 °C and observed a blueshift at 433 nm peak wavelength. These results contradict that of typical observation of wavelength emission inversely proportional to the growth temperature. On the other hand, the growth of GaN-sapphire and GaN-silicon at similar conditions emits 435 nm and 450 nm respectively. The heat interaction of bulk GaN substrates surrounded by the sapphire corral exhibits different growth conditions in multi-quantum wells when compared to that of a whole sapphire substrate (absence of bulk GaN). The predicated surface temperature of bulk GaN substrate is 10 °C-15 °C of more than the corral sapphire. This observation may link to the difference in the thermal distribution of the growth surface corresponding to the different thermal conductivity ratio. The photoluminescence and computational techniques were used to understand in-depth of the heat interaction.
ERIC Educational Resources Information Center
Bogdan, Ryan; Agrawal, Arpana; Gaffrey, Michael S.; Tillman, Rebecca; Luby, Joan L.
2014-01-01
Background: Scientific enthusiasm about gene × environment interactions, spurred by the 5-HTTLPR (serotonin transporter-linked polymorphic region) × SLEs (stressful life events) interaction predicting depression, have recently been tempered by sober realizations of small effects and meta-analyses reaching opposing conclusions. These mixed findings…
The Formation and Stability of DC-SIGN Microdomains Require its Extracellular Moiety
Liu, Ping; Wang, Xiang; Itano, Michelle S.; Neumann, Aaron K.; Jacobson, Ken; Thompson, Nancy L.
2012-01-01
DC-SIGN (Dendritic cell-specific ICAM-3-grabbing non-integrin) is a Ca2+-dependent transmembrane lectin that binds a large variety of pathogens and facilitates their uptake for subsequent antigen presentation. This receptor is present in cell surface microdomains, but factors involved in microdomain formation and their exceptional stability are not clear. To determine which domain/motif of DC-SIGN facilitates its presence in microdomains, we studied mutations at key locations including truncation of the cytoplasmic tail, and ectodomain mutations that resulted in removal of the N-linked glycosylation site, the tandem repeats and the carbohydrate recognition domain (CRD) as well as modification of the calcium sites in the CRD required for carbohydrate binding. Confocal imaging and FRAP measurements showed that the cytoplasmic domain and N-linked glycosylation site do not affect the ability of DC-SIGN to form stable microdomains. However, truncation of the CRD results in complete loss of visible microdomains and subsequent lateral diffusion of the mutants. Apart from cell adhesions, membrane domains are thought to be localized primarily via the cytoskeleton. By contrast, we propose that interactions between the CRD of DC-SIGN and the extracellular matrix and/or cis interactions with transmembrane scaffolding protein(s) play an essential role in organizing these microdomains. PMID:22292921
Rho proteins of plants--functional cycle and regulation of cytoskeletal dynamics.
Mucha, Elena; Fricke, Inka; Schaefer, Antje; Wittinghofer, Alfred; Berken, Antje
2011-11-01
Rho-related ROP proteins are molecular switches that essentially regulate a wide variety of processes. Of central interest is their influence on the plant cytoskeleton by which they affect vital processes like cell division, growth, morphogenesis, and pathogen defense. ROPs switch between GTP- and GDP-bound conformations by strictly regulated nucleotide exchange and GTP-hydrolysis, and only the active GTP-form interacts with downstream effectors to ultimately provoke a biological response. However, the mode of action of the engaged regulators and effectors as well as their upstream and downstream interaction partners have long been largely unknown. As opposed to analogous systems in animals and fungi, plants use specific GTPase activating proteins (RopGAPs) with a unique domain composition and novel guanine nucleotide exchange factors (RopGEFs) with a probable link to cell surface receptors. Moreover, plants comprise novel effector molecules and adapters connecting ROPs to mostly unknown downstream targets on the route to the cytoskeleton. This review aims to summarize recent knowledge on the molecular mechanisms and reaction cascades involved in ROP dependent cytoskeletal rearrangements, addressing the structure and function of the unusual RopGAPs, RopGEFs and effectors, and the upstream and downstream pathways linking ROPs to cell receptor-like kinases, actin filaments, and microtubules. Copyright © 2010 Elsevier GmbH. All rights reserved.
Interaction of Arrestin with Enolase1 in Photoreceptors
Bolch, Susan; Dugger, Donald R.; Li, Jian; Esquenazi, Isi; Arendt, Anatol; Benzenhafer, Del; McDowell, J. Hugh
2011-01-01
Purpose. Arrestin is in disequilibrium in photoreceptors, translocating between inner and outer segments in response to light. The purpose of this project was to identify the cellular component with which arrestin associates in the dark-adapted retina. Methods. Retinas were cross-linked with 2.5 mM dithiobis(succinimidylpropionate) (DSP), and arrestin-containing complexes purified by anion-exchange chromatography. Tandem mass spectrometric analysis was used to identify the protein components in the complex. Enolase localization in photoreceptors was assessed by immunohistochemistry. Confirmation of interacting components was performed using immunoprecipitation and surface plasmon resonance (SPR). Enolase activity was also assessed in the presence of arrestin1. Results. In retinas treated with DSP, arrestin cross-linked in a 125-kDa complex. The principal components of this complex were arrestin1 and enolase1. Both arrestin1 and -4 were pulled down with enolase1 when enolase1 was immunoprecipitated. In the dark-adapted retina, enolase1 co-localized with arrestin1 in the inner segments and outer nuclear layer, but remained in the inner segments when arrestin1 translocated in response to light adaptation. SPR of purified arrestin1 and enolase1 demonstrated direct binding between arrestin1 and enolase1. Arrestin1 modulated the catalytic activity of enolase1, slowing it by as much as 24%. Conclusions. The results show that in the dark-adapted retina, arrestin1 and -4 interact with enolase1. The SPR data show that the interaction between arrestin1 and enolase1 was direct, not requiring a third element to form the complex. Arrestin1 slowed the catalytic activity of enolase1, suggesting that light-driven translocation of arrestin1 may modulate the metabolic activity of photoreceptors. PMID:21051714
Interaction of arrestin with enolase1 in photoreceptors.
Smith, W Clay; Bolch, Susan; Dugger, Donald R; Li, Jian; Esquenazi, Isi; Arendt, Anatol; Benzenhafer, Del; McDowell, J Hugh
2011-03-01
Arrestin is in disequilibrium in photoreceptors, translocating between inner and outer segments in response to light. The purpose of this project was to identify the cellular component with which arrestin associates in the dark-adapted retina. Retinas were cross-linked with 2.5 mM dithiobis(succinimidylpropionate) (DSP), and arrestin-containing complexes purified by anion-exchange chromatography. Tandem mass spectrometric analysis was used to identify the protein components in the complex. Enolase localization in photoreceptors was assessed by immunohistochemistry. Confirmation of interacting components was performed using immunoprecipitation and surface plasmon resonance (SPR). Enolase activity was also assessed in the presence of arrestin1. In retinas treated with DSP, arrestin cross-linked in a 125-kDa complex. The principal components of this complex were arrestin1 and enolase1. Both arrestin1 and -4 were pulled down with enolase1 when enolase1 was immunoprecipitated. In the dark-adapted retina, enolase1 co-localized with arrestin1 in the inner segments and outer nuclear layer, but remained in the inner segments when arrestin1 translocated in response to light adaptation. SPR of purified arrestin1 and enolase1 demonstrated direct binding between arrestin1 and enolase1. Arrestin1 modulated the catalytic activity of enolase1, slowing it by as much as 24%. The results show that in the dark-adapted retina, arrestin1 and -4 interact with enolase1. The SPR data show that the interaction between arrestin1 and enolase1 was direct, not requiring a third element to form the complex. Arrestin1 slowed the catalytic activity of enolase1, suggesting that light-driven translocation of arrestin1 may modulate the metabolic activity of photoreceptors.
Polar Crater Deposits as a Probe for Ancient Climate Change on Mars
NASA Astrophysics Data System (ADS)
Armstrong, John
2006-10-01
Dynamical studies of the Martian orbit suggest a planet that has undergone extreme orbital change. How has this affected the planet's climate? Is there a record of this orbit-induced climate change written in the geology that is expressed on the surface? If so, such a record would provide insight into Mars' climate history, and shed light on the types of habitats for life that may have existed in the past. We are exploring how the current seasonal polar caps interact with polar craters in an effort to identify modification that can be linked to the proximity of the polar cap. Ice deposits within the craters are evident in both thermal spectra and imagery from Mars orbiters. We have linked these ice deposits to morphological deposits that can be identified in other craters that are further from the pole. These deposits may act as a probe of the variations suggested by orbital calculations, as well as provide an indicator of the extent of the sub-surface ice table. We will present preliminary results from a sample of northern craters, and explain how this can be extended to southern craters, and possibly mid-latitude craters, in an effort to understand more fully the martian climate through time.
NASA Technical Reports Server (NTRS)
Shelton, Kevin J.; Prinzel, Lawrence J., III; Arthur, Jarvis J., III; Jones, Deise R.; Allamandola, Angela S.; Bailey, Randall E.
2009-01-01
By 2025, U.S. air traffic is predicted to increase 3-fold and may strain the current air traffic management system, which may not be able to accommodate this growth. In response to this challenge, a consortium of industry, academia and government agencies have proposed a revolutionary new concept for U.S. aviation operations, termed the Next Generation Air Transportation System or "NextGen". Many key capabilities are being identified to enable NextGen, including the concept of "net-centric" operations whereby each aircraft and air services provider shares information to allow real-time adaptability to ever-changing factors such as weather, traffic, flight trajectories, and security. Data-link is likely to be the primary source of communication in NextGen. Because NextGen represents a radically different approach to air traffic management and requires a dramatic shift in the tasks, roles, and responsibilities for the flight deck, there are numerous research issues and challenges that must be overcome to ensure a safe, sustainable air transportation system. Flight deck display and crew-vehicle interaction concepts are being developed that proactively investigate and overcome potential technology and safety barriers that might otherwise constrain the full realization of NextGen.
NASA Astrophysics Data System (ADS)
Woods, J.; Laattoe, T.
2016-12-01
Complex hydrological environments present management challenges where surface water-groundwater interactions involve interlinked processes at multiple scales. One example is Australia's River Murray, which flows through a semi-arid landscape with highly saline groundwater. In this region, the floodplain ecology depends on freshwater provided from the main river channel, anabranches, and floodwaters. However, in the past century access to freshwater has been further limited due to river regulation, land clearance, and irrigation. A programme to improve ecosystem health at Pike Floodplain, South Australia, is evaluating management options such as environmental watering and groundwater pumping. Due to the complicated interdependencies between processes moving water and salt within the floodplain, a series of inter-linked models were developed to assist with management decisions. The models differ by hydrological domain, scale, and dimensionality. Together they simulate surface water, the unsaturated zone, and groundwater on regional, floodplain, and local scales. Outputs from regional models provide boundary conditions for floodplain models, which in turn provide inputs for the local scale models. The results are interpreted based on (i) ecohydrological requirements for key species of tree and fish, and (ii) impacts on river salinity for downstream users. When combined, the models provide an integrated and interdiscplinary understanding of the hydrology and management of saline floodplains.
Thermal etching of silver: Influence of rolling defects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ollivier, M., E-mail: o.maelig@imperial.ac.uk
2016-08-15
Silver is well known to be thermally etched in an oxygen-rich atmosphere and has been extensively studied in the laboratory to understand thermal etching and to limit its effect when this material is used as a catalyst. Yet, in many industrial applications the surface of rolled silver sheets is used without particular surface preparation. Here, it is shown by combining FIB-tomography, FIB-SIMS and analytical SEM that the kinetics of thermal etch pitting are significantly faster on rolled Ag surfaces than on polished surfaces. This occurs due to range of interacting phenomena including (i) the reaction of subsurface carbon-contamination with dissolvedmore » oxygen to form pores that grow to intersect the surface, (ii) surface reconstruction around corrosion pits and surface scratches, and (iii) sublimation at low pressure and high temperature. A method to identify subsurface pores is developed to show that the pores have (111) and (100) internal facets and may be filled with a gas coming from the chemical reaction of oxygen and carbon contamination. - Highlights: Thermal etching of industrial silver sheets vs. polished silver sheets Effect of annealing atmosphere on the thermal etching of silver: surface and subsurface characterization Link between etch pitting and defects induced by rolling. FIB-tomography coupled with EBSD for determining crystal planes of the facets of subsurface pores. FIB-SIMS characterization to probe the gas confined inside subsurface pores.« less
Yan, J H; Zhang, X B; Zhao, J; Liu, G F; Cai, H G; Pan, Q M
2015-08-04
The highly agile and efficient water-surface locomotion of the water strider has stimulated substantial interest in biomimetic research. In this paper, we propose a new miniature surface tension-driven robot inspired by the water strider. A key feature of this robot is that its actuating leg possesses an ellipse-like spatial trajectory similar to that of a water strider by using a cam-link mechanism. Simplified models are presented to discuss the leg-water interactions as well as critical conditions for a leg penetrating the water surface, and simulations are performed on the robot's dynamic properties. The final fabricated robot weighs about 3.9 g, and can freely and stably walk on water at different gaits. The maximum forward and turning speeds of the robot are measured as 16 cm s(-1) and 23°/s, respectively. Furthermore, a similarity analysis with Bond number and Weber number demonstrates that the locomotion of this robot is quite analogous to that of a real water strider: the surface tension force dominates the lifting force and plays a major role in the propulsion force. This miniature surface tension-driven robot might have potential applications in many areas such as water quality monitoring and aquatic search and rescue.
NASA Astrophysics Data System (ADS)
Ma, Jin; Kong, Xiang-Zhao; Saar, Martin O.
2017-04-01
Fluid-rock interactions play an important role in the engineering processes such as chemical stimulation of enhanced geothermal systems and carbon capture, utilization, and storage. However, these interactions highly depend on the accessible reactive surface area of the minerals that are generally poorly constrained for natural geologic samples. In particular, quantifying surface area of each reacting mineral within whole rock samples is challenging due to the heterogeneous distribution of minerals and pore space. In this study, detailed laboratory analyses were performed on sandstone samples from deep geothermal sites in Lithuania. We measure specific surface area of whole rock samples using a gas adsorption method (so-called B.E.T.) with N2 at a temperature of 77.3K. We also quantify their porosity and pore size distribution by a Helium gas pycnometer and a Hg porosimetry, respectively. Rock compositions are determined by a combination of X-ray fluorescence (XRF) and quantitative scanning electron microscopy (SEM) - Energy-dispersive X-ray spectroscopy (EDS), which are later geometrically mapped on images of two-dimensional SEM- Backscattered electrons (BSE) with a resolution of 1.2 μm and three-dimensional micro-CT with a resolution of 10.3 μm to produce a digital mineral map for further constraining the accessibility of reactive minerals. Moreover, we attempt to link the whole rock porosity, pore size distribution, and B.E.T. specific surface area with the digital mineral maps. We anticipate these necessary analyses to provide in-depth understanding of fluid sample chemistry from later hydrothermal reactive flow-through experiments on whole rock samples at elevated pressure and temperature.
Comparison of Static Balance and the Role of Vision in Elite Athletes
Hammami, Raouf; Behm, David G; Chtara, Mokhtar; Ben Othman, Aymen; Chaouachi, Anis
2014-01-01
When prescribing balance exercises to athletes in different sports, it may be important to recognize performance variations. Indeed, how athletes from different sports perform on balance tests is not well understood. The goal of the present study was to compare static balance and the role of vision among elite sprinters, jumpers and rugby players. The modified clinical test of sensory interaction on balance (mCTSIB) was used to assess the velocity of the center-of-pressure (CoP) on a force platform during a 30 s bipedal quiet standing posture in 4 conditions: firm surface with opened and closed eyes, foam surface with opened and closed eyes. Three-factor ANOVA indicated a significant main effect for groups (F=21.69, df=2, p<0.001, η2 = 0.34). Significant main effect of vision (F=43.20, df=1, p<0.001, η2 = 0.34) and surface (F=193.41, df=1, p<0.001, η2 = 0.70) as well as an interaction between vision (eyes open, eyes closed) and surface (firm and foam) (F=21.79, df=1, p=0.001) were reported in all groups. The subsequent Bonferroni-Dunn post hoc test indicated that rugby players displayed better static balance than sprinters and jumpers (p=0.001). The comparison of sprinters and jumpers did not reveal significant differences (p>0.05). The nature of the sport practiced and the absence of visual control are linked to modify static balance in elite athletes. Coaches and strength and conditioning professionals are recommended to use a variety of exercises to improve balance, including both exercises with opened and closed eyes on progressively challenging surfaces in order to make decisions about tasks and sensory availability during assessment and training. PMID:25114729
NASA Astrophysics Data System (ADS)
Chen, I.-Ting; Chang, Li-Chiu; Chang, Fi-John
2018-01-01
In this study, we propose a soft-computing methodology to visibly explore the spatio-temporal groundwater variations of the Kuoping River basin in southern Taiwan. The self-organizing map (SOM) is implemented to investigate the interactive mechanism between surface water and groundwater over the river basin based on large high-dimensional data sets coupled with their occurrence times. We find that extracting the occurrence time from each 30-day moving average data set in the clustered neurons of the SOM is a crucial step to learn the spatio-temporal interaction between surface water and groundwater. We design 2-D Topological Bubble Map to summarize all the groundwater values of four aquifers in a neuron, which can visibly explore the major features of the groundwater in the vertical direction. The constructed SOM topological maps nicely display that: (1) the groundwater movement, in general, extends from the eastern area to the western, where groundwater in the eastern area can be easily recharged from precipitation in wet seasons and discharged into streams during dry seasons due to the high permeability in this area; (2) the water movements in the four aquifers of the study area are quite different, and the seasonal variations of groundwater in the second and third aquifers are larger than those of the others; and (3) the spatial distribution and seasonal variations of groundwater and surface water are comprehensively linked together over the constructed maps to present groundwater characteristics and the interrelation between groundwater and surface water. The proposed modeling methodology not only can classify the large complex high-dimensional data sets into visible topological maps to effectively facilitate the quantitative status of regional groundwater resources but can also provide useful elaboration for future groundwater management.
NASA Technical Reports Server (NTRS)
Santanello, Joseph A. Jr.; Peters-Lidard, Christa D.; Kennedy, Aaron; Kumar, Sujay V.
2012-01-01
Land-atmosphere (L-A) interactions play a critical role in determining the diurnal evolution of land surface and planetary boundary layer (PBL) temperature and moisture states and fluxes. In turn, these interactions regulate the strength of the connection between surface moisture and precipitation in a coupled system. To address model deficiencies, recent studies have focused on development of diagnostics to quantify the strength and accuracy of the land- PBL coupling at the process-level. In this paper, a diagnosis of the nature and impacts of local land-atmosphere coupling (LoCo) during dry and wet extreme conditions is presented using a combination of models and observations during the summers of 2006 and 2007 in the U.S. Southern Great Plains. A range of diagnostics exploring the links and feedbacks between soil moisture and precipitation are applied to the dry/wet regimes exhibited in this region, and in the process a thorough evaluation of nine different land-PBL scheme couplings is conducted under the umbrella of a high-resolution regional modeling testbed. Results show that the sign and magnitude of errors in land surface energy balance components are sensitive to the choice of land surface model, regime type, and running mode. In addition, LoCo diagnostics show that the sensitivity of L-A coupling is stronger towards the land during dry conditions, while the PBL scheme coupling becomes more important during the wet regime. Results also demonstrate how LoCo diagnostics can be applied to any modeling system (e.g. reanalysis products) in the context of their integrated impacts on the process-chain connecting the land surface to the PBL and in support of hydrological anomalies.
Lopes, Pietro P.; Strmcnik, Dusan; Tripkovic, Dusan; ...
2016-03-07
The development of alternative energy systems for clean production, storage and conversion of energy is strongly dependent on our ability to understand, at atomic-molecular-levels, functional links between activity and stability of electrochemical interfaces. Whereas structure-activity relationships are rapidly evolving, the corresponding structure-stability relationships are still missing. Primarily, this is because there is no adequate experimental approach capable of monitoring in situ stability of well-defined single crystals. Here, by blending the power of Inductively Coupled Plasma-Mass Spectrometer (ICP-MS) connected to a stationary probe to measure in situ and real time dissolution rates of surface atoms (at above 0.4 pg cm-2s-1 levels)more » and a rotating disk electrode method for monitoring simultaneously the kinetic rates of electrochemical reactions in a single unite, it was possible to establish almost “atom-by-atom” the structure-stability-activity relationships for platinum single crystals in both acidic and alkaline environments. Furthermore, we found that the degree of stability is strongly dependent on the coordination of surface atoms (less coordinated yields less stable), the nature of covalent (adsorption of hydroxyl, oxygen atoms and halides species), and non-covalent interactions (interactions between hydrated Li cations and surface oxide), the thermodynamic driving force for Pt complexation (Pt ion speciation in solution) and the nature of the electrochemical reaction (the oxygen reduction/evolution and CO oxidation reactions). Consequently, these findings are opening new opportunities for elucidating key fundamental descriptors that govern both activity and stability trends, that ultimately, will assist to develop real energy conversion and storage systems.« less
NASA Technical Reports Server (NTRS)
Santanello, Joseph A., Jr.; Peters-Lidard, Christa D.; Kennedy, Aaron; Kumar, Sujay V.
2012-01-01
Land-atmosphere (L-A) interactions play a critical role in determining the diurnal evolution of land surface and planetary boundary layer (PBL) temperature and moisture states and fluxes. In turn, these interactions regulate the strength of the connection between surface moisture and precipitation in a coupled system. To address model deficiencies, recent studies have focused on development of diagnostics to quantify the strength and accuracy of the land-PBL coupling at the process level. In this paper, a diagnosis of the nature and impacts of local land-atmosphere coupling (LoCo) during dry and wet extreme conditions is presented using a combination of models and observations during the summers of 2006 and 2007 in the U.S. southern Great Plains. A range of diagnostics exploring the links and feedbacks between soil moisture and precipitation is applied to the dry/wet regimes exhibited in this region, and in the process, a thorough evaluation of nine different land-PBL scheme couplings is conducted under the umbrella of a high-resolution regional modeling test bed. Results show that the sign and magnitude of errors in land surface energy balance components are sensitive to the choice of land surface model, regime type, and running mode. In addition, LoCo diagnostics show that the sensitivity of L-A coupling is stronger toward the land during dry conditions, while the PBL scheme coupling becomes more important during the wet regime. Results also demonstrate how LoCo diagnostics can be applied to any modeling system (e.g., reanalysis products) in the context of their integrated impacts on the process chain connecting the land surface to the PBL and in support of hydrological anomalies.
Atomic force microscopy investigation of chemically stabilized pericardium tissue.
Jastrzebska, M; Barwinski, B; Mróz, I; Turek, A; Zalewska-Rejdak, J; Cwalina, B
2005-04-01
Native and chemically stabilized porcine pericardium tissue was imaged by the contact mode atomic force microscopy (AFM), in air. Chemically stabilized pericardium is used as a tissue-derived biomaterial in various fields of the reconstructive and replacement surgery. Collagen type I is the main component of the fibrous layer of the pericardium tissue. In this study, the surface topography of collagen fibrils in their native state in tissue and after chemical stabilization with different cross-linking reagents: glutaraldehyde (GA), dimethyl suberimidate (DMS) and tannic acid (TA) was investigated. It has been found that chemical stabilization causes considerable changes in the surface topography of collagen fibrils as well as in the spatial organization of the fibrils within the tissue. The observed changes in the D-spacing pattern of the collagen fibril correspond to the formation of intrafibrilar cross-links, whereas formation of interfibrilar cross-links is mainly responsible for the observed tangled spatial arrangement of fibrils and crimp structure of the tissue surface. The crimp structure was distinctly seen for the GA cross-linked tissue. Surface heterogeneity of the cross-linking process was observed for the DMS-stabilized tissue. SDS-PAGE electrophoresis was performed in order to evaluate the stabilization effect of the tissues treated with the cross-linking reagents. It has been found that stabilization with DMS, GA or TA enhances significantly the tissue resistance to SDS/NaCl extraction. The relation between the tissue stability and changes in the topography of the tissue surface was interpreted in terms of different nature of cross-links formed by DMS, GA and TA with collagen.
Liu, Szu-Heng; Cheng, Huei-Hsuan; Huang, San-Yuan; Yiu, Pei-Chun; Chang, Yen-Chung
2006-06-01
Agarose beads carrying a cleavable, fluorescent, and photoreactive cross-linking reagent on the surface were synthesized and used to selectively pull out the proteins lining the surface of supramolecules. A quantitative comparison of the abundances of various proteins in the sample pulled out by the beads from supramolecules with their original abundances could provide information on the spatial arrangement of these proteins in the supramolecule. The usefulness of these synthetic beads was successfully verified by trials using a synthetic protein complex consisting of three layers of different proteins on glass coverslips. By using these beads, we determined the interior or superficial locations of five major and 19 minor constituent proteins in the postsynaptic density (PSD), a large protein complex and the landmark structure of asymmetric synapses in the mammalian central nervous system. The results indicate that alpha,beta-tubulins, dynein heavy chain, microtubule-associated protein 2, spectrin, neurofilament H and M subunits, an hsp70 protein, alpha-internexin, dynamin, and PSD-95 protein reside in the interior of the PSD. Dynein intermediate chain, alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate receptors, kainate receptors, N-cadherin, beta-catenin, N-ethylmaleimide-sensitive factor, an hsc70 protein, and actin reside on the surface of the PSD. The results further suggest that the N-methyl-d-aspartate receptors and the alpha-subunits of calcium/calmodulin-dependent protein kinase II are likely to reside on the surface of the PSD although with unique local protein organizations. Based on our results and the known interactions between various PSD proteins from data mining, a model for the molecular organization of the PSD is proposed.
Interactions of Salmonella with animals and plants.
Wiedemann, Agnès; Virlogeux-Payant, Isabelle; Chaussé, Anne-Marie; Schikora, Adam; Velge, Philippe
2014-01-01
Salmonella enterica species are Gram-negative bacteria, which are responsible for a wide range of food- and water-borne diseases in both humans and animals, thereby posing a major threat to public health. Recently, there has been an increasing number of reports, linking Salmonella contaminated raw vegetables and fruits with food poisoning. Many studies have shown that an essential feature of the pathogenicity of Salmonella is its capacity to cross a number of barriers requiring invasion of a large variety of cells and that the extent of internalization may be influenced by numerous factors. However, it is poorly understood how Salmonella successfully infects hosts as diversified as animals or plants. The aim of this review is to describe the different stages required for Salmonella interaction with its hosts: (i) attachment to host surfaces; (ii) entry processes; (iii) multiplication; (iv) suppression of host defense mechanisms; and to point out similarities and differences between animal and plant infections.
Microbial mutualism at a distance: The role of geometry in diffusive exchanges
NASA Astrophysics Data System (ADS)
Peaudecerf, François J.; Bunbury, Freddy; Bhardwaj, Vaibhav; Bees, Martin A.; Smith, Alison G.; Goldstein, Raymond E.; Croze, Ottavio A.
2018-02-01
The exchange of diffusive metabolites is known to control the spatial patterns formed by microbial populations, as revealed by recent studies in the laboratory. However, the matrices used, such as agarose pads, lack the structured geometry of many natural microbial habitats, including in the soil or on the surfaces of plants or animals. Here we address the important question of how such geometry may control diffusive exchanges and microbial interaction. We model mathematically mutualistic interactions within a minimal unit of structure: two growing reservoirs linked by a diffusive channel through which metabolites are exchanged. The model is applied to study a synthetic mutualism, experimentally parametrized on a model algal-bacterial co-culture. Analytical and numerical solutions of the model predict conditions for the successful establishment of remote mutualisms, and how this depends, often counterintuitively, on diffusion geometry. We connect our findings to understanding complex behavior in synthetic and naturally occurring microbial communities.
GPU-enabled molecular dynamics simulations of ankyrin kinase complex
NASA Astrophysics Data System (ADS)
Gautam, Vertika; Chong, Wei Lim; Wisitponchai, Tanchanok; Nimmanpipug, Piyarat; Zain, Sharifuddin M.; Rahman, Noorsaadah Abd.; Tayapiwatana, Chatchai; Lee, Vannajan Sanghiran
2014-10-01
The ankyrin repeat (AR) protein can be used as a versatile scaffold for protein-protein interactions. It has been found that the heterotrimeric complex between integrin-linked kinase (ILK), PINCH, and parvin is an essential signaling platform, serving as a convergence point for integrin and growth-factor signaling and regulating cell adhesion, spreading, and migration. Using ILK-AR with high affinity for the PINCH1 as our model system, we explored a structure-based computational protocol to probe and characterize binding affinity hot spots at protein-protein interfaces. In this study, the long time scale dynamics simulations with GPU accelerated molecular dynamics (MD) simulations in AMBER12 have been performed to locate the hot spots of protein-protein interaction by the analysis of the Molecular Mechanics-Poisson-Boltzmann Surface Area/Generalized Born Solvent Area (MM-PBSA/GBSA) of the MD trajectories. Our calculations suggest good binding affinity of the complex and also the residues critical in the binding.
Protein bio-corona: critical issue in immune nanotoxicology.
Neagu, Monica; Piperigkou, Zoi; Karamanou, Konstantina; Engin, Ayse Basak; Docea, Anca Oana; Constantin, Carolina; Negrei, Carolina; Nikitovic, Dragana; Tsatsakis, Aristidis
2017-03-01
With the expansion of the nanomedicine field, the knowledge focusing on the behavior of nanoparticles in the biological milieu has rapidly escalated. Upon introduction to a complex biological system, nanomaterials dynamically interact with all the encountered biomolecules and form the protein "bio-corona." The decoration with these surface biomolecules endows nanoparticles with new properties. The present review will address updates of the protein bio-corona characteristics as influenced by nanoparticle's physicochemical properties and by the particularities of the encountered biological milieu. Undeniably, bio-corona generation influences the efficacy of the nanodrug and guides the actions of innate and adaptive immunity. Exploiting the dynamic process of protein bio-corona development in combination with the new engineered horizons of drugs linked to nanoparticles could lead to innovative functional nanotherapies. Therefore, bio-medical nanotechnologies should focus on the interactions of nanoparticles with the immune system for both safety and efficacy reasons.
NASA Astrophysics Data System (ADS)
Kim, Minsu; Or, Dani
2017-12-01
Biological soil crusts (biocrusts) are self-organised thin assemblies of microbes, lichens, and mosses that are ubiquitous in arid regions and serve as important ecological and biogeochemical hotspots. Biocrust ecological function is intricately shaped by strong gradients of water, light, oxygen, and dynamics in the abundance and spatial organisation of the microbial community within a few millimetres of the soil surface. We report a mechanistic model that links the biophysical and chemical processes that shape the functioning of biocrust representative microbial communities that interact trophically and respond dynamically to cycles of hydration, light, and temperature. The model captures key features of carbon and nitrogen cycling within biocrusts, such as microbial activity and distribution (during early stages of biocrust establishment) under diurnal cycles and the associated dynamics of biogeochemical fluxes at different hydration conditions. The study offers new insights into the highly dynamic and localised processes performed by microbial communities within thin desert biocrusts.
Proximate Population Factors and Deforestation in Tropical Agricultural Frontiers
Carr, David L.
2009-01-01
Forest conversion for agriculture expansion is the most salient signature of human occupation of the earth’s land surface. Although population growth and deforestation are significantly associated at the global and regional scales, evidence for population links to deforestation at micro-scales—where people are actually clearing0020forests—is scant. Much of the planet’s forest elimination is proceeding along tropical agricultural frontiers. This article examines the evolution of thought on population–environment theories relevant to deforestation in tropical agricultural frontiers. Four primary ways by which population dynamics interact with frontier forest conversion are examined: population density, fertility, and household demographic composition, and in-migration. PMID:19672475
Syed, Sabrina; Halim, Siti Nadiah Abdul; Jotani, Mukesh M; Tiekink, Edward R T
2016-01-01
The title 2:1 co-crystal, 2C7H5NO4·C14H14N4O2, in which the complete di-amide mol-ecule is generated by crystallographic inversion symmetry, features a three-mol-ecule aggregate sustained by hydroxyl-O-H⋯N(pyrid-yl) hydrogen bonds. The p-nitro-benzoic acid mol-ecule is non-planar, exhibiting twists of both the carb-oxy-lic acid and nitro groups, which form dihedral angles of 10.16 (9) and 4.24 (4)°, respectively, with the benzene ring. The di-amide mol-ecule has a conformation approximating to a Z shape, with the pyridyl rings lying to either side of the central, almost planar di-amide residue (r.m.s. deviation of the eight atoms being 0.025 Å), and forming dihedral angles of 77.22 (6)° with it. In the crystal, three-mol-ecule aggregates are linked into a linear supra-molecular ladder sustained by amide-N-H⋯O(nitro) hydrogen bonds and orientated along [10-4]. The ladders are connected into a double layer via pyridyl- and benzene-C-H⋯O(amide) inter-actions, which, in turn, are connected into a three-dimensional architecture via π-π stacking inter-actions between pyridyl and benzene rings [inter-centroid distance = 3.6947 (8) Å]. An evaluation of the Hirshfeld surfaces confirm the importance of inter-molecular inter-actions involving oxygen atoms as well as the π-π inter-actions.
Characterization of rat leydig cell gonadotropin receptor structure by affinity cross-linking
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Q.Y.; Hwang, J.; Menon, K.M.J.
1986-05-01
The gonadotropin receptor from rat leydig cell has been characterized with respect to binding kinetics and physiological regulation. The present study was intended to examine the structure of the receptor. Leydig cell suspension was prepared by either collagenase digestion or by mechanical disruption of the testis. The cells were incubated with /sup 125/I-hCG and the unreacted hCG was removed by centrifugation. The /sup 125/I-hCG was then covalently linked to the cell surface receptor using cleavable (dithiobis (succinimidyl propionate)) and non-cleavable (disuccinimidyl suberate) cross-linking reagents. The extracted cross-linked membrane proteins were resolved on SDS-polyacrylamide gels under reducing and non-reducing conditions andmore » subjected to autoradiographic analysis. Under non-reducing conditions, two labeled species with M/sub r/ = 87,000 and 120,000 were detected. However, only one labeled band was detected under reducing conditions with M/sub r/ = 64,000. The binding of /sup 125/I-hCG to the receptor was inhibited by hCG and LH, but not by a number of peptides and proteins. The data suggest that hCG receptor in leydig cell is an oligomeric complex consisting of four subunits, ..cap alpha cap alpha beta gamma... The ..beta.. and ..gamma.. subunits are each linked to an ..cap alpha.. subunit through disulfide linkage and the hormone binds to each ..cap alpha.. subunit. The two dimers formed (..cap alpha beta cap alpha gamma..) are associated by noncovalent interactions.« less
Towards an avatar for deciphering the modes of three-phase interactions in lava lakes
NASA Astrophysics Data System (ADS)
Suckale, J.; Qin, Z.; Culha, C.; Lev, E.
2016-12-01
An avatar is the virtual representation of a character, system or idea. Here, we present progress towards building a numerical avatar for lava lakes that allows us to constrain the modes of multiphase interactions between crystals, gas, and magmatic fluid in the interior of lava lakes. We focus on lava lakes, because they expose the free surface of magma to direct observations. They hence offer a unique window into different regimes of the three-phase flow dynamics of crystals, gases, and melts in magmatic convection more generally. The multiphase interactions between crystals, gases and melt give rise to nonlinear and unstable behavior in magmatic systems and are hence key for understanding the behavior of the bulk magma, but are notoriously difficult to capture in numerical models. Our avatar approach solves the full set of governing equations entailing the momentum, mass, and energy balance for each of the three phases at the scale of individual crystals or bubble interfaces. It hence obviates the need for simplifying assumptions regarding the individual behavior of the three phases or their mutual coupling to achieve a minimally preconditioned virtual representation of a lava lake. To identify the multi-phase regime at depth, we compute the observational signatures of different multiphase regimes, both in terms of surface velocity and temperature distribution, and compare the computed synthetic data to observational surface data for lava lakes. We focus specifically on the lava lake dynamics at Mount Erebus, Antarctica, and Kīlauea, Hawai'i. These two lava lakes are particularly well observed, which presents a compelling opportunity for closely linking modeling and observations. The also exhibit notably different circulation patterns. We hypothesize that Erebus and Kīlauea highlight different mechanisms through which multiphase interactions alter magmatic convection and eruptive behavior in basaltic systems. We suggest that volumetric flow effects like bubble dynamics and spatially heterogeneous crystal retention may dominate the behavior at Erebus and that surface effects resulting primarily from the formation of a cool skin on top of the lake govern the dynamics observed at Kīlauea.
What determines transitions between energy- and moisture-limited evaporative regimes?
NASA Astrophysics Data System (ADS)
Haghighi, E.; Gianotti, D.; Akbar, R.; Salvucci, G.; Entekhabi, D.
2017-12-01
The relationship between evaporative fraction (EF) and soil moisture (SM) has traditionally been used in atmospheric and land-surface modeling communities to determine the strength of land-atmosphere coupling in the context of the dominant evaporative regime (energy- or moisture-limited). However, recent field observations reveal that EF-SM relationship is not unique and could vary substantially with surface and/or meteorological conditions. This implies that conventional EF-SM relationships (exclusive of surface and meteorological conditions) are embedded in more complex dependencies and that in fact it is a multi-dimensional function. To fill the fundamental knowledge gaps on the important role of varying surface and meteorological conditions not accounted for by the traditional evaporative regime conceptualization, we propose a generalized EF framework using a mechanistic pore-scale model for evaporation and energy partitioning over drying soil surfaces. Nonlinear interactions among the components of the surface energy balance are reflected in a critical SM that marks the onset of transition between energy- and moisture-limited evaporative regimes. The new generalized EF framework enables physically based estimates of the critical SM, and provides new insights into the origin of land surface EF partitioning linked to meteorological input data and the evolution of land surface temperature during surface drying that affect the relative efficiency of surface energy balance components. Our results offer new opportunities to advance predictive capabilities quantifying land-atmosphere coupling for a wide range of present and projected meteorological input data.
NASA Astrophysics Data System (ADS)
Hiemstra, Tjisse; Antelo, Juan; van Rotterdam, A. M. D.(Debby); van Riemsdijk, Willem H.
2010-01-01
Information on the particle size and reactive surface area of natural samples and its interaction with natural organic matter (NOM) is essential for the understanding bioavailability, toxicity, and transport of elements in the natural environment. In part I of this series ( Hiemstra et al., 2010), a method is presented that allows the determination of the effective reactive surface area ( A, m 2/g soil) of the oxide particles of natural samples which uses a native probe ion (phosphate) and a model oxide (goethite) as proxy. In soils, the natural oxide particles are generally embedded in a matrix of natural organic matter (NOM) and this will affect the ion binding properties of the oxide fraction. A remarkably high variation in the natural phosphate loading of the oxide surfaces ( Γ, μmol/m 2) is observed in our soils and the present paper shows that it is due to surface complexation of NOM, acting as a competitor via site competition and electrostatic interaction. The competitive interaction of NOM can be described with the charge distribution (CD) model by defining a ≡NOM surface species. The interfacial charge distribution of this ≡NOM surface species can be rationalized based on calculations done with an evolved surface complexation model, known as the ligand and charge distribution (LCD) model. An adequate choice is the presence of a charge of -1 v.u. at the 1-plane and -0.5 v.u. at the 2-plane of the electrical double layer used (Extended Stern layer model). The effective interfacial NOM adsorption can be quantified by comparing the experimental phosphate concentration, measured under standardized field conditions (e.g. 0.01 M CaCl 2), with a prediction that uses the experimentally derived surface area ( A) and the reversibly bound phosphate loading ( Γ, μmol/m 2) of the sample (part I) as input in the CD model. Ignoring the competitive action of adsorbed NOM leads to a severe under-prediction of the phosphate concentration by a factor ˜10 to 1000. The calculated effective loading of NOM is low at a high phosphate loading ( Γ) and vice versa, showing the mutual competition of both constituents. Both constituents in combination usually dominate the surface loading of natural oxide fraction of samples and form the backbone in modeling the fate of other (minor) ions in the natural environment. Empirically, the effective NOM adsorption is found to correlate well to the organic carbon content (OC) of the samples. The effective NOM adsorption can also be linked to DOC. For this, a Non-Ideal Competitive adsorption (NICA) model is used. DOC is found to be a major explaining factor for the interfacial loading of NOM as well as phosphate. The empirical NOM-OC relation or the parameterized NICA model can be used as an alternative for estimating the effective NOM adsorption to be implemented in the CD model for calculation of the surface complexation of field samples. The biogeochemical impact of the NOM-PO 4 interaction is discussed.
NASA Astrophysics Data System (ADS)
Badrinezhad, Lida; Bilkan, Çigdem; Azizian-Kalandaragh, Yashar; Nematollahzadeh, Ali; Orak, Ikram; Altindal, Şemsettin
2018-01-01
Cross-linked polyvinyl alcohol (PVA) graphene oxide (GO) nanocomposites were prepared by simple solution-mixing route and characterized by Raman, UV-visible and fourier transform infrared (FT-IR) spectroscopy analysis, X-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques. The XRD pattern and SEM analysis showed significant changes in the nanocomposite structures, and the FT-IR spectroscopy results confirmed the chemical interaction between the GO filler and the PVA matrix. After these morphological characterizations, PVA-GO-based diodes were fabricated and their electrical properties were characterized using current-voltage (I-V) and impedance-voltage-frequency (Z-V-f) measurements at room temperature. Semilogarithmic I-V characteristics of diode showed a good rectifier behavior. The values of C and G/ω increased with decreasing frequency due to the surface/interface states (Nss) which depend on the relaxation time and the frequency of the signal. The voltage, dependent profiles of Nss and series resistance (Rs) were obtained from the methods of high-low frequency capacitance and Nicollian and Brews, respectively. The obtained values of Nss and Rs were attributed to the use of cross-linked PVA-GO interlayer at the Au/n-Si interface.
Intimate association of Thy-1 and the T-cell antigen receptor with the CD45 tyrosine phosphatase
DOE Office of Scientific and Technical Information (OSTI.GOV)
Volarevic, S.; Burns, C.M.; Sussman, J.J.
1990-09-01
Immunoprecipitation of Thy-1 from Triton X-100 detergent lysates of surface-iodinated and chemically cross-linked T cells precipitated at least first major and discrete bands. Four of these bands were identified as Thy-1, CD45 (a trasmembrane tyrosine phosphatase), a major histocompatibility complex-encoded class I molecule, and {beta}{sub 2}-microglobulin. Similar analyses revealed that CD45 was coprecipitated from lysates of cross-linker-treated cells by antibodies to the T-cell antigen receptor (TCR). The same pattern of coprecipitated bands was observed when digitonin was used to lyse untreated cells. Immunoprecipitation of Thy-1 or the TCR from lysates of cross-linked T cells precipitated CD45 tyrosine phosphatase activity. Calculationsmore » based upon the amounts of coprecipitated enzymatic activity or TCR {zeta} chain indicate that a substantial fraction of Thy-1 and TCR complexes can be cross-linked to CD45. These data support a model in which the dependence of Thy-1 signaling on TCR coexpression is due to their common interaction with a tyrosine phosphatase and provide a possible structural basis for the influence of CD45 on TCR-mediated signaling.« less
Linking metabolite production to taxonomic identity in environmental samples by (MA)LDI-FISH
Kaltenpoth, Martin; Strupat, Kerstin; Svatoš, Aleš
2016-01-01
One of the greatest challenges in microbial ecology remains to link the metabolic activity of individual cells to their taxonomic identity and localization within environmental samples. Here we combined mass-spectrometric imaging (MSI) through (matrix-assisted) laser desorption ionization time-of-flight MSI ([MA]LDI-TOF/MSI) with fluorescence in situ hybridization (FISH) to monitor antibiotic production in the defensive symbiosis between beewolf wasps and ‘Streptomyces philanthi' bacteria. Our results reveal similar distributions of the different symbiont-produced antibiotics across the surface of beewolf cocoons, which colocalize with the producing cell populations. Whereas FISH achieves single-cell resolution, MSI is currently limited to a step size of 20–50 μm in the combined approach because of the destructive effects of high laser intensities that are associated with tighter laser beam focus at higher lateral resolution. However, on the basis of the applicability of (MA)LDI-MSI to a broad range of small molecules, its combination with FISH provides a powerful tool for studying microbial interactions in situ, and further modifications of this technique could allow for linking metabolic profiling to gene expression. PMID:26172211
Pili and flagella biology, structure, and biotechnological applications.
Van Gerven, Nani; Waksman, Gabriel; Remaut, Han
2011-01-01
Bacteria and Archaea expose on their outer surfaces a variety of thread-like proteinaceous organelles with which they interact with their environments. These structures are repetitive assemblies of covalently or non-covalently linked protein subunits, organized into filamentous polymers known as pili ("hair"), flagella ("whips") or injectisomes ("needles"). They serve different roles in cell motility, adhesion and host invasion, protein and DNA secretion and uptake, conductance, or cellular encapsulation. Here we describe the functional, morphological and genetic diversity of these bacterial filamentous protein structures. The organized, multi-copy build-up and/or the natural function of pili and flagella have lead to their biotechnological application as display and secretion tools, as therapeutic targets or as molecular motors. We review the documented and potential technological exploitation of bacterial surface filaments in light of their structural and functional traits. Copyright © 2011 Elsevier Inc. All rights reserved.
Muttach, Fabian; Mäsing, Florian; Studer, Armido; Rentmeister, Andrea
2017-05-02
Elucidation of biomolecular interactions is of utmost importance in biochemistry. Photo-cross-linking offers the possibility to precisely determine RNA-protein interactions. However, despite the inherent specificity of enzymes, approaches for site-specific introduction of photo-cross-linking moieties into nucleic acids are scarce. Methyltransferases in combination with synthetic analogues of their natural cosubstrate S-adenosyl-l-methionine (AdoMet) allow for the post-synthetic site-specific modification of biomolecules. We report on three novel AdoMet analogues bearing the most widespread photo-cross-linking moieties (aryl azide, diazirine, and benzophenone). We show that these photo-cross-linkers can be enzymatically transferred to the methyltransferase target, that is, the mRNA cap, with high efficiency. Photo-cross-linking of the resulting modified mRNAs with the cap interacting protein eIF4E was successful with aryl azide and diazirine but not benzophenone, reflecting the affinity of the modified 5' caps. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Khare, Ketan S; Khare, Rajesh
2013-06-20
We have used atomistic molecular simulations to study the effect of nanofiller dispersion on the glass transition behavior of cross-linked epoxy-carbon nanotube (CNT) nanocomposites. Specific chemical interactions at the interface of CNTs and cross-linked epoxy create an interphase region, whose impact on the properties of their nanocomposites increases with an increasing extent of dispersion. To investigate this aspect, we have compared the volumetric, structural, and dynamical properties of three systems: neat cross-linked epoxy, cross-linked epoxy nanocomposite containing dispersed CNTs, and cross-linked epoxy nanocomposite containing aggregated CNTs. We find that the nanocomposite containing dispersed CNTs shows a depression in the glass transition temperature (Tg) by ~66 K as compared to the neat cross-linked epoxy, whereas such a large depression is absent in the nanocomposite containing aggregated CNTs. Our results suggest that the poor interfacial interactions between the CNTs and the cross-linked epoxy matrix lead to a more compressible interphase region between the CNTs and the bulk matrix. An analysis of the resulting dynamic heterogeneity shows that the probability of percolation of immobile domains becomes unity near the Tg calculated from volumetric properties. Our observations also lend support to the conceptual analogy between polymer nanocomposites and the nanoconfinement of polymer thin films.
Extenstional terrain formation in icy satellites: Implications for ocean-surface interaction
NASA Astrophysics Data System (ADS)
Howell, Samuel M.; Pappalardo, Robert T.
2017-10-01
Europa and Ganymede, Galilean satellites of Jupiter, exhibit geologic activity in their outer H2O ice shells that might convey material from water oceans within the satellites to their surfaces. Imagery from the Voyager and Galileo spacecraft reveal surfaces rich with tectonic deformation, including dilational bands on Europa and groove lanes on Ganymede. These features are generally attributed to the extension of a brittle ice lithosphere overlaying a possibly convecting ice asthenosphere. To explore band formation and interaction with interior oceans, we employ fully visco-elasto-plastic 2-D models of faulting and convection with complex, realistic pure ice rheologies. In these models, material entering from below is tracked and considered to be “fossilized ocean,” ocean material that has frozen into the ice shell and evolves through geologic time. We track the volume fraction of fossil ocean material in the ice shell as a function of depth, and the exposure of both fresh ice and fossil ocean material at the ice shell surface. To explore the range in extensional terrains, we vary ice shell thickness, fault localization, melting-temperature ice viscosity, and the presence of pre-existing weaknesses. Mechanisms which act to weaken the ice shell and thin the lithosphere (e.g. vigorous convection, thinner shells, pre-existing weaknesses) tend to plastically yield to form smooth bands at high strains, and are more likely to incorporate fossil ocean material in the ice shell and expose it at the surface. In contrast, lithosphere strengthened by rapid fault annealing or increased viscosity, for example, exhibits large-scale tectonic rifting at low strains superimposed over pre-existing terrains, and inhibits the incorporation and delivery of fossil ocean material to the surface. Thus, our results identify a spectrum of extensional terrain formation mechanisms as linked to lithospheric strength, rather than specific mechanisms that are unique to each type of band, and discuss where in this spectrum ocean material incorporated at the bottom of the ice shell may be exposed on the satellite surface.
Extensional terrain formation on Europa and Ganymede: Implications for ocean-surface interaction
NASA Astrophysics Data System (ADS)
Howell, S. M.; Pappalardo, R. T.
2017-12-01
Europa and Ganymede, Galilean satellites of Jupiter, exhibit geologic activity in their outer H2O ice shells that might convey material from water oceans within the satellites to their surfaces. Imagery from the Voyager and Galileo spacecraft reveal surfaces rich with tectonic deformation, including dilational bands on Europa and groove lanes on Ganymede. These features are generally attributed to the extension of a brittle ice lithosphere overlaying a possibly convecting ice asthenosphere. To explore band formation and interaction with interior oceans, we employ fully visco-elasto-plastic 2-D models of faulting and convection with complex, realistic pure ice rheologies. In these models, material entering from below is tracked and considered to be "fossilized ocean," ocean material that has frozen into the ice shell and evolves through geologic time. We track the volume fraction of fossil ocean material in the ice shell as a function of depth, and the exposure of both fresh ice and fossil ocean material at the ice shell surface. We vary ice shell thickness, fault localization, melting-temperature ice viscosity, and the presence of pre-existing weaknesses. Mechanisms which act to weaken the ice shell and thin the lithosphere (e.g. vigorous convection, thinner shells, pre-existing weaknesses) tend to plastically yield to form smooth bands at high strains, and are more likely to incorporate fossil ocean material in the ice shell and expose it at the surface. In contrast, lithosphere strengthened by rapid fault annealing or increased viscosity, for example, exhibits large-scale tectonic rifting at low strains superimposed over pre-existing terrains, and inhibits the incorporation and delivery of fossil ocean material to the surface. Thus, our results identify a spectrum of extensional terrain formation mechanisms as linked to lithospheric strength, rather than any specific mechanism being unique to each type of band, and where in this spectrum ocean material incorporated at the bottom of the ice shell may be exposed on the satellite surface.
Neutrophil elastase and proteinase 3 trafficking routes in myelomonocytic cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaellquist, Linda; Rosen, Hanna; Nordenfelt, Pontus
2010-11-15
Neutrophil elastase (NE) and proteinase 3 (PR3) differ in intracellular localization, which may reflect different trafficking mechanisms of the precursor forms when synthesized at immature stages of neutrophils. To shed further light on these mechanisms, we compared the trafficking of precursor NE (proNE) and precursor PR3 (proPR3). Like proNE [1], proPR3 interacted with CD63 upon heterologous co-expression in COS cells but endogenous interaction was not detected although cell surface proNE/proPR3/CD63 were co-endocytosed in myelomonocytic cells. Cell surface proNE/proPR3 turned over more rapidly than cell surface CD63 consistent with processing/degradation of the pro-proteases but recycling of CD63. Colocalization of proNE/proPR3/CD63 withmore » clathrin and Rab 7 suggested trafficking through coated vesicles and late endosomes. Partial caveolar trafficking of proNE/CD63 but not proPR3 was suggested by colocalization with caveolin-1. Blocking the C-terminus of proNE/proPR3 by creating a fusion with FK506 binding protein inhibited endosomal re-uptake of proNE but not proPR3 indicating 'pro{sub C}'-peptide-dependent structural/conformational requirements for proNE but not for proPR3 endocytosis. The NE aminoacid residue Y199 of a proposed NE sorting motif that interacts with AP-3 [2] was not required for proNE processing, sorting or endocytosis in rat basophilic leukemia (RBL) cells expressing heterologous Y199-deleted proNE; this suggests operation of another AP-3-link for proNE targeting. Our results show intracellular multi-step trafficking to be different between proNE and proPR3 consistent with their differential subcellular NE/PR3 localization in neutrophils.« less
Transcriptional responses of Escherichia coli K-12 and O157:H7 associated with lettuce leaves.
Fink, Ryan C; Black, Elaine P; Hou, Zhe; Sugawara, Masayuki; Sadowsky, Michael J; Diez-Gonzalez, Francisco
2012-03-01
An increasing number of outbreaks of gastroenteritis recently caused by Escherichia coli O157:H7 have been linked to the consumption of leafy green vegetables. Although it is known that E. coli survives and grows in the phyllosphere of lettuce plants, the molecular mechanisms by which this bacterium associates with plants are largely unknown. The goal of this study was to identify E. coli genes relevant to its interaction, survival, or attachment to lettuce leaf surfaces, comparing E. coli K-12, a model system, and E. coli O157:H7, a pathogen associated with a large number of outbreaks. Using microarrays, we found that upon interaction with intact leaves, 10.1% and 8.7% of the 3,798 shared genes were differentially expressed in K-12 and O157:H7, respectively, whereas 3.1% changed transcript levels in both. The largest group of genes downregulated consisted of those involved in energy metabolism, including tnaA (33-fold change), encoding a tryptophanase that converts tryptophan into indole. Genes involved in biofilm modulation (bhsA and ybiM) and curli production (csgA and csgB) were significantly upregulated in E. coli K-12 and O157:H7. Both csgA and bhsA (ycfR) mutants were impaired in the long-term colonization of the leaf surface, but only csgA mutants had diminished ability in short-term attachment experiments. Our data suggested that the interaction of E. coli K-12 and O157:H7 with undamaged lettuce leaves likely is initiated via attachment to the leaf surface using curli fibers, a downward shift in their metabolism, and the suppression of biofilm formation.
NASA Astrophysics Data System (ADS)
Guan, X. J.; Spence, C.; Westbrook, C. J.
2010-01-01
The companion paper (Guan et al., 2010) demonstrated variable interactions and correlations between shallow soil moisture and ground thaw in soil filled areas along a wetness spectrum in a subarctic Canadian Precambrian Shield landscape. From wetter to drier, these included a wetland, peatland and soil filled valley. Herein, water and energy fluxes were examined for these same subarctic study sites to discern the key controlling processes on the found patterns. Results showed the key control in variable soil moisture and frost table interactions among the sites was the presence of surface water. At the peatland and wetland sites, accumulated water in depressions and flow paths maintained soil moisture for a longer duration than at the hummock tops. These wet areas were often locations of deepest thaw depth due to the transfer of latent heat accompanying lateral surface runoff. Although the peatland and wetland sites had large inundation extent, modified Péclet numbers indicated the relative influence of external and internal hydrological processes at each site were different. Continuous inflow from an upstream lake into the wetland site caused advective and conductive thermal energies to be of equal importance to conductive ground thaw. The absence of continuous surface flow at the peatland and valley sites led to dominance of conductive thermal energy over advective energy for ground thaw. The results suggest that the modified Péclet number could be a very useful parameter to differentiate landscape components in modeling frost table heterogeneity. The calculated water and energy fluxes, and the modified Péclet number provide quantitative explanations for the shallow soil moisture-ground thaw patterns by linking them with hydrological processes and hillslope storage capacity.
NASA Astrophysics Data System (ADS)
Guan, X. J.; Spence, C.; Westbrook, C. J.
2010-07-01
The companion paper (Guan et al., 2010) demonstrated variable interactions and correlations between shallow soil moisture and ground thaw in soil filled areas along a wetness spectrum in a subarctic Canadian Precambrian Shield landscape. From wetter to drier, these included a wetland, peatland and soil filled valley. Herein, water and energy fluxes were examined for these same subarctic study sites to discern the key controlling processes on the found patterns. Results showed the presence of surface water was the key control in variable soil moisture and frost table interactions among sites. At the peatland and wetland sites, accumulated water in depressions and flow paths maintained soil moisture for a longer duration than at the hummock tops. These wet areas were often locations of deepest thaw depth due to the transfer of latent heat accompanying lateral surface runoff. Although the peatland and wetland sites had large inundation extent, modified Péclet numbers indicated the relative influence of external and internal hydrological and energy processes at each site were different. Continuous inflow from an upstream lake into the wetland site caused advective and conductive thermal energies to be of equal importance to ground thaw. The absence of continuous surface flow at the peatland and valley sites led to dominance of conductive thermal energy over advective energy for ground thaw. The results suggest that the modified Péclet number could be a very useful parameter to differentiate landscape components in modeling frost table heterogeneity. The calculated water and energy fluxes, and the modified Péclet number provide quantitative explanations for the shallow soil moisture-ground thaw patterns by linking them with hydrological processes and hillslope storage capacity.
Transcriptional Responses of Escherichia coli K-12 and O157:H7 Associated with Lettuce Leaves
Fink, Ryan C.; Black, Elaine P.; Hou, Zhe; Sugawara, Masayuki; Sadowsky, Michael J.
2012-01-01
An increasing number of outbreaks of gastroenteritis recently caused by Escherichia coli O157:H7 have been linked to the consumption of leafy green vegetables. Although it is known that E. coli survives and grows in the phyllosphere of lettuce plants, the molecular mechanisms by which this bacterium associates with plants are largely unknown. The goal of this study was to identify E. coli genes relevant to its interaction, survival, or attachment to lettuce leaf surfaces, comparing E. coli K-12, a model system, and E. coli O157:H7, a pathogen associated with a large number of outbreaks. Using microarrays, we found that upon interaction with intact leaves, 10.1% and 8.7% of the 3,798 shared genes were differentially expressed in K-12 and O157:H7, respectively, whereas 3.1% changed transcript levels in both. The largest group of genes downregulated consisted of those involved in energy metabolism, including tnaA (33-fold change), encoding a tryptophanase that converts tryptophan into indole. Genes involved in biofilm modulation (bhsA and ybiM) and curli production (csgA and csgB) were significantly upregulated in E. coli K-12 and O157:H7. Both csgA and bhsA (ycfR) mutants were impaired in the long-term colonization of the leaf surface, but only csgA mutants had diminished ability in short-term attachment experiments. Our data suggested that the interaction of E. coli K-12 and O157:H7 with undamaged lettuce leaves likely is initiated via attachment to the leaf surface using curli fibers, a downward shift in their metabolism, and the suppression of biofilm formation. PMID:22247152
Towards force spectroscopy of single tip-link bonds
NASA Astrophysics Data System (ADS)
Koussa, Mounir A.; Sotomayor, Marcos; Wong, Wesley P.; Corey, David P.
2015-12-01
Inner-ear mechanotransduction relies on tip links, fine protein filaments made of cadherin-23 and protocadherin-15 that convey tension to mechanosensitive channels at the tips of hair-cell stereocilia. The tip-link cadherins are thought to form a heterotetrameric complex, with two cadherin-23 molecules forming the upper part of the filament and two protocadherin-15 molecules forming the lower end. The interaction between cadherin-23 and protocadherin-15 is mediated by their N-terminal tips. Missense mutations that modify the interaction interface impair binding and lead to deafness. Molecular dynamics simulations predict that the tip-link bond is mechanically strong enough to withstand forces in hair cells, but its experimentally determined strength is unknown. We have developed molecular tools to facilitate single-molecule force spectroscopy on the tip link bond. Self-assembling DNA nanoswitches are functionalized with the interacting tips of cadherin-23 and protocadherin-15 using the enzyme sortase under conditions that preserve protein function. These tip link nanoswitches are designed to provide a signature force-extension profile. This molecular signature should allow us to identify single-molecule rupture events in pulling experiments.
Trajectory of the arctic as an integrated system
Hinzman, Larry; Deal, Clara; McGuire, Anthony David; Mernild, Sebastian H.; Polyakov, Igor V.; Walsh, John E.
2013-01-01
Although much remains to be learned about the Arctic and its component processes, many of the most urgent scientific, engineering, and social questions can only be approached through a broader system perspective. Here, we address interactions between components of the Arctic System and assess feedbacks and the extent to which feedbacks (1) are now underway in the Arctic; and (2) will shape the future trajectory of the Arctic system. We examine interdependent connections among atmospheric processes, oceanic processes, sea-ice dynamics, marine and terrestrial ecosystems, land surface stocks of carbon and water, glaciers and ice caps, and the Greenland ice sheet. Our emphasis on the interactions between components, both historical and anticipated, is targeted on the feedbacks, pathways, and processes that link these different components of the Arctic system. We present evidence that the physical components of the Arctic climate system are currently in extreme states, and that there is no indication that the system will deviate from this anomalous trajectory in the foreseeable future. The feedback for which the evidence of ongoing changes is most compelling is the surface albedo-temperature feedback, which is amplifying temperature changes over land (primarily in spring) and ocean (primarily in autumn-winter). Other feedbacks likely to emerge are those in which key processes include surface fluxes of trace gases, changes in the distribution of vegetation, changes in surface soil moisture, changes in atmospheric water vapor arising from higher temperatures and greater areas of open ocean, impacts of Arctic freshwater fluxes on the meridional overturning circulation of the ocean, and changes in Arctic clouds resulting from changes in water vapor content.
Trajectory of the Arctic as an integrated system.
Hinzman, Larry D; Deal, Clara J; McGuire, A David; Mernild, Sebastian H; Polyakov, Igor V; Walsh, John E
2013-12-01
Although much remains to be learned about the Arctic and its component processes, many of the most urgent scientific, engineering, and social questions can only be approached through a broader system perspective. Here, we address interactions between components of the Arctic system and assess feedbacks and the extent to which feedbacks (1) are now underway in the Arctic and (2) will shape the future trajectory of the Arctic system. We examine interdependent connections among atmospheric processes, oceanic processes, sea-ice dynamics, marine and terrestrial ecosystems, land surface stocks of carbon and water, glaciers and ice caps, and the Greenland ice sheet. Our emphasis on the interactions between components, both historical and anticipated, is targeted on the feedbacks, pathways, and processes that link these different components of the Arctic system. We present evidence that the physical components of the Arctic climate system are currently in extreme states, and that there is no indication that the system will deviate from this anomalous trajectory in the foreseeable future. The feedback for which the evidence of ongoing changes is most compelling is the surface albedo-temperature feedback, which is amplifying temperature changes over land (primarily in spring) and ocean (primarily in autumn-winter). Other feedbacks likely to emerge are those in which key processes include surface fluxes of trace gases, changes in the distribution of vegetation, changes in surface soil moisture, changes in atmospheric water vapor arising from higher temperatures and greater areas of open ocean, impacts of Arctic freshwater fluxes on the meridional overturning circulation of the ocean, and changes in Arctic clouds resulting from changes in water vapor content.
NASA Technical Reports Server (NTRS)
Santanello, Joseph A., Jr.; Peters-Lidard, Christa D.; Kumar, Sujay V.; Dong, Xiquan; Kennedy, Aaron D.
2011-01-01
Land-atmosphere interactions play a critical role in determining the. diurnal evolution of both planetary boundary layer (PBL) and land surface temperature and moisture states. The degree of coupling between the land surface and PBL in numerical weather prediction and climate models remains largely unexplored and undiagnosed due to the complex interactions and feedbacks present across a range of scales. Further, uncoupled systems or experiments (e.g., the Project for Intercomparison of Land Parameterization Schemes, PILPS) may lead to inaccurate water and energy cycle process understanding by neglecting feedback processes such as PBL-top entrainment. In this study, a framework for diagnosing local land-atmosphere coupling (LoCo) is presented using a coupled mesoscale model with a suite of PBL and land surface model (LSM) options along with observations during the summers of 200617 in the U.S. Southern Great Plains. Specifically, the Weather Research and Forecasting (WRF) model has been coupled to NASA's Land Information System (LIS), which provides a flexible and high-resolution representation and initialization of land surface physics and states. A range of diagnostics exploring the links and feedbacks between soil moisture and precipitation are examined for the dry/wet extremes of this region, along with the sensitivity of PBL-LSM coupling to perturbations in soil moisture. As such, this methodology provides a potential pathway to study factors controlling local land-atmosphere coupling (LoCo) using the LIS-WRF system, which is serving as a testbed for LoCo experiments to evaluate coupling diagnostics within the community.
Bruylants, Gilles; Wintjens, René; Looze, Yvan; Redfield, Christina; Bartik, Kristin
2007-12-01
Protonation/deprotonation equilibria are frequently linked to binding processes involving proteins. The presence of these thermodynamically linked equilibria affects the observable thermodynamic parameters of the interaction (K(obs), DeltaH(obs)(0) ). In order to try and elucidate the energetic factors that govern these binding processes, a complete thermodynamic characterisation of each intrinsic equilibrium linked to the complexation event is needed and should furthermore be correlated to structural information. We present here a detailed study, using NMR and ITC, of the interaction between alpha-chymotrypsin and one of its competitive inhibitors, proflavin. By performing proflavin titrations of the enzyme, at different pH values, we were able to highlight by NMR the effect of the complexation of the inhibitor on the ionisable residues of the catalytic triad of the enzyme. Using ITC we determined the intrinsic thermodynamic parameters of the different equilibria linked to the binding process. The possible driving forces of the interaction between alpha-chymotrypsin and proflavin are discussed in the light of the experimental data and on the basis of a model of the complex. This study emphasises the complementarities between ITC and NMR for the study of binding processes involving protonation/deprotonation equilibria.
NASA Astrophysics Data System (ADS)
Park, C.; Lee, J.; Koo, M.
2011-12-01
Climate is the most critical driving force of the hydrologic system of the Earth. Since the industrial revolution, the impacts of anthropogenic activities to the Earth environment have been expanded and accelerated. Especially, the global emission of carbon dioxide into the atmosphere is known to have significantly increased temperature and affected the hydrologic system. Many hydrologists have contributed to the studies regarding the climate change on the hydrologic system since the Intergovernmental Panel on Climate Change (IPCC) was created in 1988. Among many components in the hydrologic system groundwater and its response to the climate change and anthropogenic activities are not fully understood due to the complexity of subsurface conditions between the surface and the groundwater table. A new spatio-temporal hydrologic model has been developed to estimate the impacts of climate change and land use dynamics on the groundwater. The model consists of two sub-models: a surface model and a subsurface model. The surface model involves three surface processes: interception, runoff, and evapotranspiration, and the subsurface model does also three subsurface processes: soil moisture balance, recharge, and groundwater flow. The surface model requires various input data including land use, soil types, vegetation types, topographical elevations, and meteorological data. The surface model simulates daily hydrological processes for rainfall interception, surface runoff varied by land use change and crop growth, and evapotranspiration controlled by soil moisture balance. The daily soil moisture balance is a key element to link two sub-models as it calculates infiltration and groundwater recharge by considering a time delay routing through a vadose zone down to the groundwater table. MODFLOW is adopted to simulate groundwater flow and interaction with surface water components as well. The model is technically flexible to add new model or modify existing model as it is developed with an object-oriented language - Python. The model also can easily be localized by simple modification of soil and crop properties. The actual application of the model after calibration was successful and results showed reliable water balance and interaction between the surface and subsurface hydrologic systems.
NASA Astrophysics Data System (ADS)
Randerson, J. T.; Chen, Y.; Rogers, B. M.; Morton, D. C.; van der Werf, G.; Mahowald, N. M.
2010-12-01
Tropical forests influence regional and global climate by means of several pathways, including by modifying surface energy exchange and by forming clouds. High levels of precipitation, leaching, and soil weathering limit nutrient availability in these ecosystems. Phosphorus (P) is a key element limiting net primary production, and in some areas, including forests recovering from prior disturbance, nitrogen (N) also may limit some components of production. Here we quantified atmospheric P and N inputs to these forests from fires using satellite-derived estimates of emissions and atmospheric models. In Africa and South America, cross-biome transport of fire-emitted aerosols and reactive N gases from savannas and areas near the deforestation frontier increased deposition of P and N in interior forests. Equatorward atmospheric transport during the dry (fire) season in one hemisphere was linked with surface winds moving toward the inter-tropical convergence zone (ITCZ) in the other hemisphere. Deposition levels were higher in tropical forests in Africa than in South America because of large savanna areas with high levels of fire emissions in both southern and northern Africa. We conclude by describing a potential feedback loop by which equatorward transport of fire emissions, dust, and spores sustains the productivity of tropical forests. We specifically assessed evidence that savanna-to-forest atmospheric transport of nutrients increases forest productivity, height, and rates of evapotranspiration (ET). In parallel, we examined the degree to which increases in ET and surface roughness in tropical forests have the potential to strengthen several components of the Hadley circulation, including deep convection, equatorward return flow (near the surface), and the intensity of seasonal drought in the subtropics (thereby increasing fires). These interactions are important for understanding biogeochemical - climate interactions on millennial timescales and for quantifying how contemporary changes in fire activity and land use are changing the global carbon cycle.
Linking hyporheic flow and nitrogen cycling near the Willamette River - A large river in Oregon, USA
Hinkle, S.R.; Duff, J.H.; Triska, F.J.; Laenen, A.; Gates, E.B.; Bencala, K.E.; Wentz, D.A.; Silva, S.R.
2001-01-01
Several approaches were used to characterize ground water/surface water interactions near the Willamette River - A large (ninth order) river in Oregon, USA. A series of potentiometric surface maps demonstrated the presence of highly dynamic hydraulic gradients between rivers and the adjacent aquifer. Hyporheic zone gradients extended on the order of hundreds of meters. River gains and losses at the river stretch scale (tens of kilometers) were consistent with fluxes implied by the potentiometric surface maps, and apparently reflect regional ground water/surface water interactions. Gains and losses of up to 5-10% of streamflow were observed at this scale. On the river reach scale (1-2 km), gains and losses on the order of 5% of streamflow were interpreted as representing primarily local hyporheic exchange. Isotopic and chemical data collected from shallow hyporheic zone wells demonstrated interaction between regional ground water and river water. The origin of sampled hyporheic zone water ranged from a mixture dominated by regional ground water to water containing 100% river water. The common assumption that ground and river water mix primarily in the river channel is not applicable in this system. Isotopic and chemical data also indicated that significant (nearly complete) vegetative nitrate uptake and/or nitrate reduction occurred in water from 4 of 12 hyporheic zone sites. In these cases, it was primarily nitrate transported to the hyporheic zone in regional ground water that was removed from solution. Isotopes of water and nitrate indicated that hyporheic zone water sampled at two sites was composed of water originating as river water and demonstrated that significant vegetative nitrate uptake and nitrate reduction occurred along these hyporheic zone flowpaths. Thus, the hyporheic zone may, in some instances, serve to remove nitrate from river water. Additional investigations with chemical tools and microbial enzyme assays were conducted at one hyporheic site. A strong vertical redox gradient was observed, with nitrate-limited denitrification potential in deeper sediment and both nitrification and denitrification potential in shallower sediment. Since nitrogen cycling is strongly affected by redox conditions, nitrogen cycling in the hyporheic zone of this large-river system likely is affected by dynamics of ground water/surface water interactions that control fluxes of nitrogen and other redox species to hyporheic zone sediment.
Convective aggregation in realistic convective-scale simulations
NASA Astrophysics Data System (ADS)
Holloway, Christopher E.
2017-06-01
To investigate the real-world relevance of idealized-model convective self-aggregation, five 15 day cases of real organized convection in the tropics are simulated. These include multiple simulations of each case to test sensitivities of the convective organization and mean states to interactive radiation, interactive surface fluxes, and evaporation of rain. These simulations are compared to self-aggregation seen in the same model configured to run in idealized radiative-convective equilibrium. Analysis of the budget of the spatial variance of column-integrated frozen moist static energy shows that control runs have significant positive contributions to organization from radiation and negative contributions from surface fluxes and transport, similar to idealized runs once they become aggregated. Despite identical lateral boundary conditions for all experiments in each case, systematic differences in mean column water vapor (CWV), CWV distribution shape, and CWV autocorrelation length scale are found between the different sensitivity runs, particularly for those without interactive radiation, showing that there are at least some similarities in sensitivities to these feedbacks in both idealized and realistic simulations (although the organization of precipitation shows less sensitivity to interactive radiation). The magnitudes and signs of these systematic differences are consistent with a rough equilibrium between (1) equalization due to advection from the lateral boundaries and (2) disaggregation due to the absence of interactive radiation, implying disaggregation rates comparable to those in idealized runs with aggregated initial conditions and noninteractive radiation. This points to a plausible similarity in the way that radiation feedbacks maintain aggregated convection in both idealized simulations and the real world.
NASA Technical Reports Server (NTRS)
Wallett, Thomas M.
2009-01-01
This paper surveys and describes some of the existing media access control and data link layer technologies for possible application in lunar surface communications and the advanced wideband Direct Sequence Code Division Multiple Access (DSCDMA) conceptual systems utilizing phased-array technology that will evolve in the next decade. Time Domain Multiple Access (TDMA) and Code Division Multiple Access (CDMA) are standard Media Access Control (MAC) techniques that can be incorporated into lunar surface communications architectures. Another novel hybrid technique that is recently being developed for use with smart antenna technology combines the advantages of CDMA with those of TDMA. The relatively new and sundry wireless LAN data link layer protocols that are continually under development offer distinct advantages for lunar surface applications over the legacy protocols which are not wireless. Also several communication transport and routing protocols can be chosen with characteristics commensurate with smart antenna systems to provide spacecraft communications for links exhibiting high capacity on the surface of the Moon. The proper choices depend on the specific communication requirements.
Atmospheric Models For Over-Ocean Propagation Loss
2015-08-24
Radiosonde balloons are launched daily at selected loca- tions, and measure temperature, dew point temperature, and air pressure as they ascend. Radiosondes...different times of year and locations. The result was used to estimate high-reliability SHF/EHF air -to-surface radio link performance in a maritime...environment. I. INTRODUCTION Air -to-surface radio links differ from typical satellite com- munications links in that the path elevation angles are lower
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sjoewall, Christopher; Wetteroe, Jonas; Bengtsson, Torbjoern
2007-01-05
C-reactive protein (CRP) interacts with phosphorylcholine (PC), Fc{gamma} receptors, complement factor C1q and cell nuclear constituents, yet its biological roles are insufficiently understood. The aim was to characterize CRP-induced complement activation by ellipsometry. PC conjugated with keyhole limpet hemocyanin (PC-KLH) was immobilized to cross-linked fibrinogen. A low-CRP serum with different amounts of added CRP was exposed to the PC-surfaces. The total serum protein deposition was quantified and deposition of IgG, C1q, C3c, C4, factor H, and CRP detected with polyclonal antibodies. The binding of serum CRP to PC-KLH dose-dependently triggered activation of the classical pathway. Unexpectedly, the activation was efficientlymore » down-regulated at CRP levels >150 mg/L. Using radial immunodiffusion, CRP-C1q interaction was observed in serum samples with high CRP concentrations. We propose that the underlying mechanism depends on fluid-phase interaction between C1q and CRP. This might constitute another level of complement regulation, which has implications for systemic lupus erythematosus where CRP is often low despite flare-ups.« less
Hanoulle, Xavier; Badillo, Aurélie; Wieruszeski, Jean-Michel; Verdegem, Dries; Landrieu, Isabelle; Bartenschlager, Ralf; Penin, François; Lippens, Guy
2009-05-15
We report here a biochemical and structural characterization of domain 2 of the nonstructural 5A protein (NS5A) from the JFH1 Hepatitis C virus strain and its interactions with cyclophilins A and B (CypA and CypB). Gel filtration chromatography, circular dichroism spectroscopy, and finally NMR spectroscopy all indicate the natively unfolded nature of this NS5A-D2 domain. Because mutations in this domain have been linked to cyclosporin A resistance, we used NMR spectroscopy to investigate potential interactions between NS5A-D2 and cellular CypA and CypB. We observed a direct molecular interaction between NS5A-D2 and both cyclophilins. The interaction surface on the cyclophilins corresponds to their active site, whereas on NS5A-D2, it proved to be distributed over the many proline residues of the domain. NMR heteronuclear exchange spectroscopy yielded direct evidence that many proline residues in NS5A-D2 form a valid substrate for the enzymatic peptidyl-prolyl cis/trans isomerase (PPIase) activity of CypA and CypB.
Dynamic remodeling of microbial biofilms by functionally distinct exopolysaccharides.
Chew, Su Chuen; Kundukad, Binu; Seviour, Thomas; van der Maarel, Johan R C; Yang, Liang; Rice, Scott A; Doyle, Patrick; Kjelleberg, Staffan
2014-08-05
Biofilms are densely populated communities of microbial cells protected and held together by a matrix of extracellular polymeric substances. The structure and rheological properties of the matrix at the microscale influence the retention and transport of molecules and cells in the biofilm, thereby dictating population and community behavior. Despite its importance, quantitative descriptions of the matrix microstructure and microrheology are limited. Here, particle-tracking microrheology in combination with genetic approaches was used to spatially and temporally study the rheological contributions of the major exopolysaccharides Pel and Psl in Pseudomonas aeruginosa biofilms. Psl increased the elasticity and effective cross-linking within the matrix, which strengthened its scaffold and appeared to facilitate the formation of microcolonies. Conversely, Pel reduced effective cross-linking within the matrix. Without Psl, the matrix becomes more viscous, which facilitates biofilm spreading. The wild-type biofilm decreased in effective cross-linking over time, which would be advantageous for the spreading and colonization of new surfaces. This suggests that there are regulatory mechanisms to control production of the exopolysaccharides that serve to remodel the matrix of developing biofilms. The exopolysaccharides were also found to have profound effects on the spatial organization and integration of P. aeruginosa in a mixed-species biofilm model of P. aeruginosa-Staphylococcus aureus. Pel was required for close association of the two species in mixed-species microcolonies. In contrast, Psl was important for P. aeruginosa to form single-species biofilms on top of S. aureus biofilms. Our results demonstrate that Pel and Psl have distinct physical properties and functional roles during biofilm formation. Importance: Most bacteria grow as biofilms in the environment or in association with eukaryotic hosts. Removal of biofilms that form on surfaces is a challenge in clinical and industrial settings. One of the defining features of a biofilm is its extracellular matrix. The matrix has a heterogeneous structure and is formed from a secretion of various biopolymers, including proteins, extracellular DNA, and polysaccharides. It is generally known to interact with biofilm cells, thus affecting cell physiology and cell-cell communication. Despite the fact that the matrix may comprise up to 90% of the biofilm dry weight, how the matrix properties affect biofilm structure, maturation, and interspecies interactions remain largely unexplored. This study reveals that bacteria can use specific extracellular polymers to modulate the physical properties of their microenvironment. This in turn impacts biofilm structure, differentiation, and interspecies interactions. Copyright © 2014 Chew et al.
Mena–GRASP65 interaction couples actin polymerization to Golgi ribbon linking
Tang, Danming; Zhang, Xiaoyan; Huang, Shijiao; Yuan, Hebao; Li, Jie; Wang, Yanzhuang
2016-01-01
In mammalian cells, the Golgi reassembly stacking protein 65 (GRASP65) has been implicated in both Golgi stacking and ribbon linking by forming trans-oligomers through the N-terminal GRASP domain. Because the GRASP domain is globular and relatively small, but the gaps between stacks are large and heterogeneous, it remains puzzling how GRASP65 physically links Golgi stacks into a ribbon. To explore the possibility that other proteins may help GRASP65 in ribbon linking, we used biochemical methods and identified the actin elongation factor Mena as a novel GRASP65-binding protein. Mena is recruited onto the Golgi membranes through interaction with GRASP65. Depleting Mena or disrupting actin polymerization resulted in Golgi fragmentation. In cells, Mena and actin were required for Golgi ribbon formation after nocodazole washout; in vitro, Mena and microfilaments enhanced GRASP65 oligomerization and Golgi membrane fusion. Thus Mena interacts with GRASP65 to promote local actin polymerization, which facilitates Golgi ribbon linking. PMID:26538023
Ionic cross-linked polyether and silica gel mixed matrix membranes for CO 2 separation from flue gas
Sekizkardes, Ali K.; Zhou, Xu; Nulwala, Hunaid B.; ...
2017-09-22
Mixed matrix membranes (MMMs) were prepared by incorporating 10 wt%, 20 wt% and 30 wt% silica gel filler particles into novel ionic cross-linked polyether (IXPE) polymers. Porous silica gel has the advantage of high surface area that can increase the free volume and permeability in a polymer film while also being commercially available and low cost. The MMMs featured high chemical and thermal stability as well as a modest improvement in storage modulus. These features are due to the excellent interfacial interaction between silica gel filler particles and the polymer matrix. Increasing the loading of silica gel particles in MMMsmore » resulted in higher permeability up to 120 Barrer for CO 2, which is about 40% higher than the neat polymer matrix. Finally, most importantly, the MMMs maintained a very high CO 2/N 2 selectivity performance of around 41 for all particle loadings that were tested.« less
Vandergriff, D.H.
1999-08-31
A hinge assembly is disclosed having a first leaf, a second leaf and linking member. The first leaf has a contact surface. The second leaf has a first contact surface and a second contact surface. The linking member pivotally connects to the first leaf and to the second leaf. The hinge assembly is capable of moving from a closed position to an open position. In the closed position, the contact surface of the first leaf merges with the first contact surface of the second leaf. In the open position, the contact surface of the first leaf merges with the second contact surface of the second leaf. The hinge assembly can include a seal on the contact surface of the first leaf. 8 figs.
Vandergriff, David Houston
1999-01-01
A hinge assembly having a first leaf, a second leaf and linking member. The first leaf has a contact surface. The second leaf has a first contact surface and a second contact surface. The linking member pivotally connects to the first leaf and to the second leaf. The hinge assembly is capable of moving from a closed position to an open position. In the closed position, the contact surface of the first leaf merges with the first contact surface of the second leaf. In the open position, the contact surface of the first leaf merges with the second contact surface of the second leaf. The hinge assembly can include a seal on the contact surface of the first leaf.
Microstructure and rheology of thermoreversible nanoparticle gels.
Ramakrishnan, S; Zukoski, C F
2006-08-29
Naïve mode coupling theory is applied to particles interacting with short-range Yukawa attractions. Model results for the location of the gel line and the modulus of the resulting gels are reduced to algebraic equations capturing the effects of the range and strength of attraction. This model is then applied to thermo reversible gels composed of octadecyl silica particles suspended in decalin. The application of the model to the experimental system requires linking the experimental variable controlling strength of attraction, temperature, to the model strength of attraction. With this link, the model predicts temperature and volume fraction dependencies of gelation and modulus with five parameters: particle size, particle volume fraction, overlap volume of surface hairs, and theta temperature. In comparing model predictions with experimental results, we first observe that in these thermal gels there is no evidence of clustering as has been reported in depletion gels. One consequence of this observation is that there are no additional adjustable parameters required to make quantitative comparisons between experimental results and model predictions. Our results indicate that the naïve mode coupling approach taken here in conjunction with a model linking temperature to strength of attraction provides a robust approach for making quantitative predictions of gel mechanical properties. Extension of model predictions to additional experimental systems requires linking experimental variables to the Yukawa strength and range of attraction.
Bonduelle, Colin V; Lau, Woon M; Gillies, Elizabeth R
2011-05-01
The functionalization of surfaces with poly(ethylene oxide) (PEO) is an effective means of imparting resistance to the adsorption of proteins and the attachment and growth of cells, properties that are critical for many biomedical applications. In this work, a new hyperthermal hydrogen induced cross-linking (HHIC) method was explored as a simple one-step approach for attaching PEO to surfaces through the selective cleavage of C-H bonds and subsequent cross-linking of the resulting carbon radicals. In order to study the effects of the process on the polymer, PEO-coated silicon wafers were prepared and the effects of different treatment times were investigated. Subsequently, using an optimized treatment time and a modified butyl polymer with increased affinity for PEO, the technique was applied to butyl rubber surfaces. All of the treated surfaces exhibited significantly reduced protein adsorption and cell growth relative to control surfaces and compared favorably with surfaces that were functionalized with PEO using conventional chemical methods. Thus HHIC is a simple and effective means of attaching PEO to non-functional polymer surfaces.
Gao, Jing; White, Evan M; Liu, Qiaohong; Locklin, Jason
2017-03-01
Poly quaternary "-oniums" derived from polyethylenimine (PEI), poly(vinyl-N-alkylpyridinium), or chitosan belong to a class of cationic polymers that are efficient antimicrobial agents. When dissolved in solution, the positively charged polycations are able to displace the divalent cations of the cellular phospholipid bilayer and disrupt the ionic cross-links and structural integrity of the membrane. However, when immobilized to a surface where confinement limits diffusion, poly -oniums still show excellent antimicrobial activity, which implies a different biocidal mode of action. Recently, a proposed mechanism, named phospholipid sponge effect, suggested that surface-bound polycationic networks are capable of recruiting negatively charged phospholipids out of the bacterial cell membrane and sequestering them within the polymer matrix.1 However, there has been insufficient evidence to support this hypothesis. In this study, a surface-bound N,N-dodecyl methyl-co-N,N-methylbenzophenone methyl quaternary PEI (DMBQPEI) was prepared to verify the phospholipid sponge effect. By tuning the irradiation time, the cross-linking densities of surface-bound DMBQPEI films were mediated. The modulus of films was measured by PeakForce Quantitative Nanomechanical Mapping (QNM) to indicate the cross-linking density variation with increasing irradiation time. A negative correlation between the film cross-linking density and the absorption of a negatively charged phospholipid (DPhPG) was observed, but no such correlations were observed with a neutral phospholipid (DPhPC), which strongly supported the action of anionic phospholipid suction proposed in the lipid sponge effect. Moreover, the killing efficiency toward S. aureus and E. coli was inversely affected by the cross-linking density of the films, providing evidence for the phospholipid sponge effect. The relationship between killing efficiency and film cross-linking density is discussed.
Publications - DGGS Annual Reports | Alaska Division of Geological &
Publications Geologic Materials Center General Information Inventory Monthly Report Hours and Location Policy : Report = Report Disk = CD/DVD Map = Maps Geospatial Data = Geospatial Data Outside Link = Outside Link Interactive = Interactive Beginning in 2000, the DGGS Annual Report series was reactivated to produce reports
Quantifying the atomic-level mechanics of single long physisorbed molecular chains.
Kawai, Shigeki; Koch, Matthias; Gnecco, Enrico; Sadeghi, Ali; Pawlak, Rémy; Glatzel, Thilo; Schwarz, Jutta; Goedecker, Stefan; Hecht, Stefan; Baratoff, Alexis; Grill, Leonhard; Meyer, Ernst
2014-03-18
Individual in situ polymerized fluorene chains 10-100 nm long linked by C-C bonds are pulled vertically from an Au(111) substrate by the tip of a low-temperature atomic force microscope. The conformation of the selected chains is imaged before and after manipulation using scanning tunneling microscopy. The measured force gradient shows strong and periodic variations that correspond to the step-by-step detachment of individual fluorene repeat units. These variations persist at constant intensity until the entire polymer is completely removed from the surface. Calculations based on an extended Frenkel-Kontorova model reproduce the periodicity and magnitude of these features and allow us to relate them to the detachment force and desorption energy of the repeat units. The adsorbed part of the polymer slides easily along the surface during the pulling process, leading to only small oscillations as a result of the high stiffness of the fluorenes and of their length mismatch with respect to the substrate surface structure. A significant lateral force also is caused by the sequential detachment of individual units. The gained insight into the molecule-surface interactions during sliding and pulling should aid the design of mechanoresponsive nanosystems and devices.
Comparison of Plasma Polymerization under Collisional and Collision-Less Pressure Regimes.
Saboohi, Solmaz; Jasieniak, Marek; Coad, Bryan R; Griesser, Hans J; Short, Robert D; Michelmore, Andrew
2015-12-10
While plasma polymerization is used extensively to fabricate functionalized surfaces, the processes leading to plasma polymer growth are not yet completely understood. Thus, reproducing processes in different reactors has remained problematic, which hinders industrial uptake and research progress. Here we examine the crucial role pressure plays in the physical and chemical processes in the plasma phase, in interactions at surfaces in contact with the plasma phase, and how this affects the chemistry of the resulting plasma polymer films using ethanol as the gas precursor. Visual inspection of the plasma reveals a change from intense homogeneous plasma at low pressure to lower intensity bulk plasma at high pressure, but with increased intensity near the walls of the chamber. It is demonstrated that this occurs at the transition from a collision-less to a collisional plasma sheath, which in turn increases ion and energy flux to surfaces at constant RF power. Surface analysis of the resulting plasma polymer films show that increasing the pressure results in increased incorporation of oxygen and lower cross-linking, parameters which are critical to film performance. These results and insights help to explain the considerable differences in plasma polymer properties observed by different research groups using nominally similar processes.
Processes Affecting the Annual Surface Energy Budget at High-Latitude Terrestrial Sites
NASA Astrophysics Data System (ADS)
Persson, P. O. G.; Stone, R. S.; Grachev, A.; Matrosova, L.
2012-04-01
Instrumentation at four Study of Environmental Arctic Change (SEARCH) sites (Barrow, Eureka, Alert, and Tiksi) have been enhanced in the past 6 years, including during the 2007-2008 IPY. Data from these sites are used to investigate the annual cycle of the surface energy budget (SEB), its coupling to atmospheric processes, and for Alert, its interannual variability. The comprehensive data sets are useful for showing interactions between the atmosphere, surface, and soil at high temporal resolution throughout the annual cycle. Processes that govern the SEB variability at each site are identified, and their impacts on the SEB are quantified. For example, mesoscale modulation of the SEB caused by forcing from the local terrain (downslope wind events) and coastlines (sea and land breezes) are significant at Alert and Eureka, with these processes affecting both radiative, turbulent, and ground heat flux terms in the SEB. Sub-seasonal and interannual variations in atmospheric processes and SEB impact soil thermal structures, such as the depth and timing of the summer active layer. These analyses provide an improved understanding of the processes producing changes in surface and soil temperature, linking them through the SEB as affected by atmospheric processes.
α-synuclein assemblies sequester neuronal α3-Na+/K+-ATPase and impair Na+ gradient
Shrivastava, Amulya Nidhi; Redeker, Virginie; Fritz, Nicolas; Pieri, Laura; Almeida, Leandro G; Spolidoro, Maria; Liebmann, Thomas; Bousset, Luc; Renner, Marianne; Léna, Clément; Aperia, Anita; Melki, Ronald; Triller, Antoine
2015-01-01
Extracellular α-synuclein (α-syn) assemblies can be up-taken by neurons; however, their interaction with the plasma membrane and proteins has not been studied specifically. Here we demonstrate that α-syn assemblies form clusters within the plasma membrane of neurons. Using a proteomic-based approach, we identify the α3-subunit of Na+/K+-ATPase (NKA) as a cell surface partner of α-syn assemblies. The interaction strength depended on the state of α-syn, fibrils being the strongest, oligomers weak, and monomers none. Mutations within the neuron-specific α3-subunit are linked to rapid-onset dystonia Parkinsonism (RDP) and alternating hemiplegia of childhood (AHC). We show that freely diffusing α3-NKA are trapped within α-syn clusters resulting in α3-NKA redistribution and formation of larger nanoclusters. This creates regions within the plasma membrane with reduced local densities of α3-NKA, thereby decreasing the efficiency of Na+ extrusion following stimulus. Thus, interactions of α3-NKA with extracellular α-syn assemblies reduce its pumping activity as its mutations in RDP/AHC. PMID:26323479
Hsiao, Shih-Chia; Francis, Matthew B.; Bertozzi, Carolyn; Mathies, Richard; Chandra, Ravi; Douglas, Erik; Twite, Amy; Toriello, Nicholas; Onoe, Hiroaki
2016-05-03
The present invention provides conjugates of DNA and cells by linking the DNA to a native functional group on the cell surface. The cells can be without cell walls or can have cell walls. The modified cells can be linked to a substrate surface and used in assay or bioreactors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hsiao, Shih-Chia; Francis, Matthew B.; Bertozzi, Carolyn
The present invention provides conjugates of DNA and cells by linking the DNA to a native functional group on the cell surface. The cells can be without cell walls or can have cell walls. The modified cells can be linked to a substrate surface and used in assay or bioreactors.
NASA Astrophysics Data System (ADS)
Baker, Philip; Minzlaff, Ulrike; Schoenle, Alexandra; Schwabe, Enrico; Hohlfeld, Manon; Jeuck, Alexandra; Brenke, Nils; Prausse, Dennis; Rothenbeck, Marcel; Brix, Saskia; Frutos, Inmaculada; Jörger, Katharina M.; Neusser, Timea P.; Koppelmann, Rolf; Devey, Colin; Brandt, Angelika; Arndt, Hartmut
2018-02-01
Deep-sea ecosystems, limited by their inability to use primary production as a source of carbon, rely on other sources to maintain life. Sedimentation of organic carbon into the deep sea has been previously studied, however, the high biomass of sedimented Sargassum algae discovered during the VEMA Transit expedition in 2014/2015 to the southern North Atlantic, and its potential as a regular carbon input, has been an underestimated phenomenon. To determine the potential for this carbon flux, a literature survey of previous studies that estimated the abundance of surface water Sargassum was conducted. We compared these estimates with quantitative analyses of sedimented Sargassum appearing on photos taken with an autonomous underwater vehicle (AUV) directly above the abyssal sediment during the expedition. Organismal communities associated to Sargassum fluitans from surface waters were investigated and Sargassum samples collected from surface waters and the deep sea were biochemically analyzed (fatty acids, stable isotopes, C:N ratios) to determine degradation potential and the trophic significance within deep-sea communities. The estimated Sargassum biomass (fresh weight) in the deep sea (0.07-3.75 g/m2) was several times higher than that estimated from surface waters in the North Atlantic (0.024-0.84 g/m2). Biochemical analysis showed degradation of Sargassum occurring during sedimentation or in the deep sea, however, fatty acid and stable isotope analysis did not indicate direct trophic interactions between the algae and benthic organisms. Thus, it is assumed that components of the deep-sea microbial food web form an important link between the macroalgae and larger benthic organisms. Evaluation of the epifauna showed a diverse nano- micro-, meio, and macrofauna on surface Sargassum and maybe transported across the Atlantic, but we had no evidence for a vertical exchange of fauna components. The large-scale sedimentation of Sargassum forms an important trophic link between surface and benthic production and has to be further considered in the future as a regular carbon input to the deep-sea floor in the North Atlantic.
Jacob, Sony; Cherian, Prasad K; Ghumman, Waqas S; Das, Mithilesh K
2010-09-01
Patients implanted with left ventricular assist devices (LVAD) may have implantable cardioverter defibrillators (ICD) implanted for sudden cardiac death prevention. This opens the possibility of device-device communication interactions and thus interferences. We present a case of such interaction that led to ICD communication failure following the activation of an LVAD. In this paper, we describe a practical solution to circumvent the communication interference and review the communication links of ICDs and possible mechanisms of ICD-LVAD interactions.
The role of Southern Ocean mixing and upwelling in glacial-interglacial atmospheric CO2 change
NASA Astrophysics Data System (ADS)
Watson, Andrew J.; Naveira Garabato, Alberto C.
2006-02-01
Decreased ventilation of the Southern Ocean in glacial time is implicated in most explanations of lower glacial atmospheric CO2. Today, the deep (>2000 m) ocean south of the Polar Front is rapidly ventilated from below, with the interaction of deep currents with topography driving high mixing rates well up into the water column. We show from a buoyancy budget that mixing rates are high in all the deep waters of the Southern Ocean. Between the surface and ~2000 m depth, water is upwelled by a residual meridional overturning that is directly linked to buoyancy fluxes through the ocean surface. Combined with the rapid deep mixing, this upwelling serves to return deep water to the surface on a short time scale. We propose two new mechanisms by which, in glacial time, the deep Southern Ocean may have been more isolated from the surface. Firstly, the deep ocean appears to have been more stratified because of denser bottom water resulting from intense sea ice formation near Antarctica. The greater stratification would have slowed the deep mixing. Secondly, subzero atmospheric temperatures may have meant that the present-day buoyancy flux from the atmosphere to the ocean surface was reduced or reversed. This in turn would have reduced or eliminated the upwelling (contrary to a common assumption, upwelling is not solely a function of the wind stress but is coupled to the air-sea buoyancy flux too). The observed very close link between Antarctic temperatures and atmospheric CO2 could then be explained as a natural consequence of the connection between the air-sea buoyancy flux and upwelling in the Southern Ocean, if slower ventilation of the Southern Ocean led to lower atmospheric CO2. Here we use a box model, similar to those of previous authors, to show that weaker mixing and reduced upwelling in the Southern Ocean can explain the low glacial atmospheric CO2 in such a formulation.
NASA Astrophysics Data System (ADS)
Koslow, J. Anthony; Davison, Peter; Lara-Lopez, Ana; Ohman, Mark D.
2014-10-01
We use zooplankton and ichthyoplankton data from the ~ 60-year CalCOFI time series to examine relationships of mesopelagic (i.e. midwater) fishes in the California Current System with midwater predators, potential competitors (epipelagic planktivorous fishes) and zooplankton prey, within the context of local and basin-scale oceanography. Equilibrium-based near-steady state models and the “wasp-waist” paradigm for eastern boundary currents predict tightly-coupled trophic interactions, with negative correlations between the abundance of planktivorous competitors and between dominant planktivores and their prey. Testing these hypotheses with the CalCOFI time series, we found them to be generally invalid. Potential competitors within the mesopelagic community (planktivorous vertical migrators (VMs) and non-migrators (NMs)) were highly positively correlated, as were these groups with the mesopelagic piscivores (e.g. dragonfishes) that prey on them. In addition, the abundance of VMs was mostly positively correlated with that of epipelagic planktivores, such as anchovy, mackerels and hake. The VMs and epipelagic planktivores were negatively correlated with key potential planktonic prey groups, indicating a lack of bottom-up forcing. However, neither do these negative correlations appear to signify top-down forcing, since they seem to be mediated through correlations with key environmental drivers, such as the Pacific Decadal Oscillation (PDO), sea surface temperature, and the relative strength of the California Current. We suggest that the web of correlations linking key meso- and epipelagic planktivores, their predators and prey is mediated through common links with basin-scale oceanographic drivers, such as the PDO and ENSO cycles. Thus, the abundance of mesopelagic fishes in the California Current is closely tied to variation in the oxygen minimum zone, whose dynamics have been linked to the PDO. The PDO and other drivers are also linked to the transport of the California Current System, which influences the abundance of many dominant taxa off southern California that have broad biogeographic distributions linked to water masses that extend to the north (Transition Zone/sub-Arctic faunas) or the south (tropical/subtropical faunas).
Plasmonic coloring of noble metals rendered by picosecond laser exposure
NASA Astrophysics Data System (ADS)
Guay, J.-M.; CalaLesina, A.; Gordon, P. G.; Baxter, J.; Barry, S. T.; Ramunno, L.; Berini, P.; Weck, A.
2017-02-01
We show the angle-independent coloring of metals in air arising from nanoparticle distributions on metal surfaces created via picosecond laser processing. Each of the colors is linked to a unique total accumulated fluence, rendering the process compatible with industry. We report the coating of the colored metal surfaces using atomic layer deposition which is shown to preserve colors and provide mechanical and chemical protection Laser bursts are composed of closely time-spaced pulses separated by 12.8 ns. The coloring of silver using burst versus non-burst is shown to increase the Chroma, or color saturation, by 50% and broaden the color Lightness range by up to 60%. The increase in Chroma and Lightness are accompanied by the creation of 3 kinds of different laser-induced periodic surface structures (LIPSS). One of these structures is measured to be 10 times the wavelength of light and are not yet explained by conventional theories. Two temperature model simulations of laser bursts interacting with the metal surface show a significant increase in the electron-phonon coupling responsible for the well-defined LIPSS observed on the surface of silver. Finite-difference time-domain simulations of nanoparticles distributed on the high-spatial frequency LIPSS (HSFL) explain the increase in color saturation (i.e. Chroma of the colors) by the enhanced absorption and enriched plasmon resonances.
Büttner, Henning; Mack, Dietrich; Rohde, Holger
2015-01-01
Staphylococcus epidermidis is a usually harmless commensal bacterium highly abundant on the human skin. Under defined predisposing conditions, most importantly implantation of a medical device, S. epidermidis, however, can switch from a colonizing to an invasive life style. The emergence of S. epidermidis as an opportunistic pathogen is closely linked to the biofilm forming capability of the species. During the past decades, tremendous advance regarding our understanding of molecular mechanisms contributing to surface colonization has been made, and detailed information is available for several factors active during the primary attachment, accumulative or dispersal phase of biofilm formation. A picture evolved in which distinct factors, though appearing to be redundantly organized, take over specific and exclusive functions during biofilm development. In this review, these mechanisms are described in molecular detail, with a highlight on recent insights into multi-functional S. epidermidis cell surface proteins contributing to surface adherence and intercellular adhesion. The integration of distinct biofilm-promoting factors into regulatory networks is summarized, with an emphasis on mechanism that could allow S. epidermidis to flexibly adapt to changing environmental conditions present during colonizing or invasive life-styles. PMID:25741476
Structural Aspects of N-Glycosylations and the C-terminal Region in Human Glypican-1*
Awad, Wael; Adamczyk, Barbara; Örnros, Jessica; Karlsson, Niclas G.; Mani, Katrin; Logan, Derek T.
2015-01-01
Glypicans are multifunctional cell surface proteoglycans involved in several important cellular signaling pathways. Glypican-1 (Gpc1) is the predominant heparan sulfate proteoglycan in the developing and adult human brain. The two N-linked glycans and the C-terminal domain that attach the core protein to the cell membrane are not resolved in the Gpc1 crystal structure. Therefore, we have studied Gpc1 using crystallography, small angle x-ray scattering, and chromatographic approaches to elucidate the composition, structure, and function of the N-glycans and the C terminus and also the topology of Gpc1 with respect to the membrane. The C terminus is shown to be highly flexible in solution, but it orients the core protein transverse to the membrane, directing a surface evolutionarily conserved in Gpc1 orthologs toward the membrane, where it may interact with signaling molecules and/or membrane receptors on the cell surface, or even the enzymes involved in heparan sulfate substitution in the Golgi apparatus. Furthermore, the N-glycans are shown to extend the protein stability and lifetime by protection against proteolysis and aggregation. PMID:26203194
Bioorthogonal layer-by-layer encapsulation of pancreatic islets via hyperbranched polymers
Gattás-Asfura, Kerim M.; Stabler, Cherie L.
2013-01-01
The encapsulation of viable tissues via layer-by-layer polymer assembly provides a versatile platform for cell surface engineering, with nanoscale control over capsule properties. Herein, we report the development of a hyperbranched polymer-based, ultrathin capsule architecture expressing bioorthogonal functionality and tailored physiochemical properties. Random carbodiimide-based condensation of 3,5-dicarboxyphenyl glycineamide on alginate yielded a highly branched polysaccharide with multiple, spatially restricted, and readily functionalizable terminal carboxylate moieties. Poly(ethylene glycol) (PEG) was utilized to link azido end groups to the structured alginate. Together with phosphine functionalized poly(amido amine) (PAMAM) dendrimer, nanoscale layer-by-layer coatings, covalently stabilized via Staudinger ligation, were assembled onto solid surfaces and pancreatic islets. The effects of electrostatic and/or bioorthogonal covalent interlayer interactions on the resulting coating efficiency and stability, as well as pancreatic islet viability and function, were studied. These hyperbranched polymers provide a flexible platform for the formation of covalently stabilized ultrathin coatings on viable cells and tissues. In addition, the hyperbranched nature of the polymers presents a highly functionalized surface capable of bioorthogonal conjugation of additional bioactive or labeling motifs. PMID:24063764
Cingulin Contains Globular and Coiled-Coil Domains and Interacts with Zo-1, Zo-2, Zo-3, and Myosin
Cordenonsi, Michelangelo; D'Atri, Fabio; Hammar, Eva; Parry, David A.D.; Kendrick-Jones, John; Shore, David; Citi, Sandra
1999-01-01
We characterized the sequence and protein interactions of cingulin, an M r 140–160-kD phosphoprotein localized on the cytoplasmic surface of epithelial tight junctions (TJ). The derived amino acid sequence of a full-length Xenopus laevis cingulin cDNA shows globular head (residues 1–439) and tail (1,326–1,368) domains and a central α-helical rod domain (440–1,325). Sequence analysis, electron microscopy, and pull-down assays indicate that the cingulin rod is responsible for the formation of coiled-coil parallel dimers, which can further aggregate through intermolecular interactions. Pull-down assays from epithelial, insect cell, and reticulocyte lysates show that an NH2-terminal fragment of cingulin (1–378) interacts in vitro with ZO-1 (K d ∼5 nM), ZO-2, ZO-3, myosin, and AF-6, but not with symplekin, and a COOH-terminal fragment (377–1,368) interacts with myosin and ZO-3. ZO-1 and ZO-2 immunoprecipitates contain cingulin, suggesting in vivo interactions. Full-length cingulin, but not NH2-terminal and COOH-terminal fragments, colocalizes with endogenous cingulin in transfected MDCK cells, indicating that sequences within both head and rod domains are required for TJ localization. We propose that cingulin is a functionally important component of TJ, linking the submembrane plaque domain of TJ to the actomyosin cytoskeleton. PMID:10613913
Pickering Emulsion Gels Prepared by Hydrogen-Bonded Zein/Tannic Acid Complex Colloidal Particles.
Zou, Yuan; Guo, Jian; Yin, Shou-Wei; Wang, Jin-Mei; Yang, Xiao-Quan
2015-08-26
Food-grade colloidal particles and complexes, which are formed via modulation of the noncovalent interactions between macromolecules and natural small molecules, can be developed as novel functional ingredients in a safe and sustainable way. For this study was prepared a novel zein/tannic acid (TA) complex colloidal particle (ZTP) based on the hydrogen-bonding interaction between zein and TA in aqueous ethanol solution by using a simple antisolvent approach. Pickering emulsion gels with high oil volume fraction (φ(oil) > 50%) were successfully fabricated via one-step homogenization. Circular dichroism (CD) and small-angle X-ray scattering (SAXS) measurements, which were used to characterize the structure of zein/TA complexes in ethanol solution, clearly showed that TA binding generated a conformational change of zein without altering their supramolecular structure at pH 5.0 and intermediate TA concentrations. Consequently, the resultant ZTP had tuned near neutral wettability (θ(ow) ∼ 86°) and enhanced interfacial reactivity, but without significantly decreased surface charge. These allowed the ZTP to stabilize the oil droplets and further triggered cross-linking to form a continuous network among and around the oil droplets and protein particles, leading to the formation of stable Pickering emulsion gels. Layer-by-layer (LbL) interfacial architecture on the oil-water surface of the droplets was observed, which implied a possibility to fabricate hierarchical interface microstructure via modulation of the noncovalent interaction between hydrophobic protein and natural polyphenol.
Gram Positive Bacterial Superantigen Outside-In Signaling Causes Toxic Shock Syndrome
Brosnahan, Amanda J.; Schlievert, Patrick M.
2011-01-01
Staphylococcus aureus and Streptococcus pyogenes (group A streptococci) are gram-positive pathogens capable of producing a variety of bacterial exotoxins known as superantigens. Superantigens interact with antigen-presenting cells (APCs) and T cells to induce T cell proliferation and massive cytokine production, which leads to fever, rash, capillary leak, and subsequent hypotension, the major symptoms of toxic shock syndrome. Both S. aureus and group A streptococci colonize mucosal surfaces, including the anterior nares and vagina for S. aureus, and the oropharynx and less commonly the vagina for group A streptococci. However, due to their abilities to secrete a variety of virulence factors, the organisms can also cause illnesses from the mucosa. This review provides an updated discussion of the biochemical and structural features of one group of secreted virulence factors, the staphylococcal and group A streptococcal superantigens, and their abilities to cause toxic shock syndrome from a mucosal surface. The main focus of this review, however, is the abilities of superantigens to induce cytokines and chemokines from epithelial cells, which has been linked to a dodecapeptide region that is relatively conserved among all superantigens and is distinct from the binding sites required for interactions with APCs and T cells. This phenomenon, termed outside-in signaling, acts to recruit adaptive immune cells to the submucosa, where the superantigens can then interact with those cells to initiate the final cytokine cascades that lead to toxic shock syndrome. PMID:21535475
Gram-positive bacterial superantigen outside-in signaling causes toxic shock syndrome.
Brosnahan, Amanda J; Schlievert, Patrick M
2011-12-01
Staphylococcus aureus and Streptococcus pyogenes (group A streptococci) are Gram-positive pathogens capable of producing a variety of bacterial exotoxins known as superantigens. Superantigens interact with antigen-presenting cells (APCs) and T cells to induce T cell proliferation and massive cytokine production, which leads to fever, rash, capillary leak and subsequent hypotension, the major symptoms of toxic shock syndrome. Both S. aureus and group A streptococci colonize mucosal surfaces, including the anterior nares and vagina for S. aureus, and the oropharynx and less commonly the vagina for group A streptococci. However, due to their abilities to secrete a variety of virulence factors, the organisms can also cause illnesses from the mucosa. This review provides an updated discussion of the biochemical and structural features of one group of secreted virulence factors, the staphylococcal and group A streptococcal superantigens, and their abilities to cause toxic shock syndrome from a mucosal surface. The main focus of this review, however, is the abilities of superantigens to induce cytokines and chemokines from epithelial cells, which has been linked to a dodecapeptide region that is relatively conserved among all superantigens and is distinct from the binding sites required for interactions with APCs and T cells. This phenomenon, termed outside-in signaling, acts to recruit adaptive immune cells to the submucosa, where the superantigens can then interact with those cells to initiate the final cytokine cascades that lead to toxic shock syndrome. © 2011 The Authors Journal compilation © 2011 FEBS.
Peng, Wentao; Lin, Zhijie; Li, Weirong; Lu, Jing; Shen, Yuequan; Wang, Chunguang
2013-01-01
The FIGL-1 (fidgetin like-1) protein is a homolog of fidgetin, a protein whose mutation leads to multiple developmental defects. The FIGL-1 protein contains an AAA (ATPase associated with various activities) domain and belongs to the AAA superfamily. However, the biological functions and developmental implications of this protein remain unknown. Here, we show that the AAA domain of the Caenorhabditis elegans FIGL-1 protein (CeFIGL-1-AAA), in clear contrast to homologous AAA domains, has an unusually high ATPase activity and forms a hexamer in solution. By determining the crystal structure of CeFIGL-1-AAA, we found that the loop linking helices α9 and α10 folds into the short helix α9a, which has an acidic surface and interacts with a positively charged surface of the neighboring subunit. Disruption of this charge interaction by mutagenesis diminishes both the ATPase activity and oligomerization capacity of the protein. Interestingly, the acidic residues in helix α9a of CeFIGL-1-AAA are not conserved in other homologous AAA domains that have relatively low ATPase activities. These results demonstrate that the sequence of CeFIGL-1-AAA has adapted to establish an intersubunit charge interaction, which contributes to its strong oligomerization and ATPase activity. These unique properties of CeFIGL-1-AAA distinguish it from other homologous proteins, suggesting that CeFIGL-1 may have a distinct biological function. PMID:23979136
Peng, Wentao; Lin, Zhijie; Li, Weirong; Lu, Jing; Shen, Yuequan; Wang, Chunguang
2013-10-11
The FIGL-1 (fidgetin like-1) protein is a homolog of fidgetin, a protein whose mutation leads to multiple developmental defects. The FIGL-1 protein contains an AAA (ATPase associated with various activities) domain and belongs to the AAA superfamily. However, the biological functions and developmental implications of this protein remain unknown. Here, we show that the AAA domain of the Caenorhabditis elegans FIGL-1 protein (CeFIGL-1-AAA), in clear contrast to homologous AAA domains, has an unusually high ATPase activity and forms a hexamer in solution. By determining the crystal structure of CeFIGL-1-AAA, we found that the loop linking helices α9 and α10 folds into the short helix α9a, which has an acidic surface and interacts with a positively charged surface of the neighboring subunit. Disruption of this charge interaction by mutagenesis diminishes both the ATPase activity and oligomerization capacity of the protein. Interestingly, the acidic residues in helix α9a of CeFIGL-1-AAA are not conserved in other homologous AAA domains that have relatively low ATPase activities. These results demonstrate that the sequence of CeFIGL-1-AAA has adapted to establish an intersubunit charge interaction, which contributes to its strong oligomerization and ATPase activity. These unique properties of CeFIGL-1-AAA distinguish it from other homologous proteins, suggesting that CeFIGL-1 may have a distinct biological function.
Cam, Judy A; Zerbinatti, Celina V; Li, Yonghe; Bu, Guojun
2005-04-15
The low density lipoprotein receptor-related protein (LRP) is a approximately 600-kDa multifunctional endocytic receptor that is highly expressed in the brain. LRP and its ligands apolipoprotein E, alpha2-macroglobulin, and beta-amyloid precursor protein (APP), are genetically linked to Alzheimer disease and are found in characteristic plaque deposits in brains of patients with Alzheimer disease. To identify which extracellular domains of LRP interact with APP, we used minireceptors of each of the individual LRP ligand binding domains and assessed their ability to bind and degrade a soluble APP fragment. LRP minireceptors containing ligand binding domains II and IV, but not I or III, interacted with APP. To test whether APP trafficking is directly related to the rapid endocytosis of LRP, we generated stable Chinese hamster ovary cell lines expressing either a wild-type LRP minireceptor or its endocytosis mutants. Chinese hamster ovary cells stably expressing wild-type LRP minireceptor had less cell surface APP than pcDNA3 vector-transfected cells, whereas those stably expressing endocytosis-defective LRP minireceptors accumulated APP at the cell surface. We also found that the steady-state levels of the amyloid beta-peptides (Abeta) is dictated by the relative expression levels of APP and LRP, probably reflecting the dual roles of LRP in both Abeta production and clearance. Together, these data establish a relationship between LRP rapid endocytosis and APP trafficking and proteolytic processing to generate Abeta.
Surface vimentin is critical for the cell entry of SARS-CoV.
Yu, Yvonne Ting-Chun; Chien, Ssu-Chia; Chen, I-Yin; Lai, Chia-Tsen; Tsay, Yeou-Guang; Chang, Shin C; Chang, Ming-Fu
2016-01-22
Severe acute respiratory syndrome coronavirus (SARS-CoV) caused a global panic due to its high morbidity and mortality during 2002 and 2003. Soon after the deadly disease outbreak, the angiotensin-converting enzyme 2 (ACE2) was identified as a functional cellular receptor in vitro and in vivo for SARS-CoV spike protein. However, ACE2 solely is not sufficient to allow host cells to become susceptible to SARS-CoV infection, and other host factors may be involved in SARS-CoV spike protein-ACE2 complex. A host intracellular filamentous cytoskeletal protein vimentin was identified by immunoprecipitation and LC-MS/MS analysis following chemical cross-linking on Vero E6 cells that were pre-incubated with the SARS-CoV spike protein. Moreover, flow cytometry data demonstrated an increase of the cell surface vimentin level by 16.5 % after SARS-CoV permissive Vero E6 cells were treated with SARS-CoV virus-like particles (VLPs). A direct interaction between SARS-CoV spike protein and host surface vimentin was further confirmed by far-Western blotting. In addition, antibody neutralization assay and shRNA knockdown experiments indicated a vital role of vimentin in cell binding and uptake of SARS-CoV VLPs and the viral spike protein. A direct interaction between vimentin and SARS-CoV spike protein during viral entry was observed. Vimentin is a putative anti-viral drug target for preventing/reducing the susceptibility to SARS-CoV infection.
Space Weathering Rates in Lunar and Itokawa Samples
NASA Technical Reports Server (NTRS)
Keller, L. P.; Berger, E. L.
2017-01-01
Space weathering alters the chemistry, microstructure, and spectral proper-ties of grains on the surfaces of airless bodies by two major processes: micrometeorite impacts and solar wind interactions. Investigating the nature of space weathering processes both in returned samples and in remote sensing observations provides information fundamental to understanding the evolution of airless body regoliths, improving our ability to determine the surface composition of asteroids, and linking meteorites to specific asteroidal parent bodies. Despite decades of research into space weathering processes and their effects, we still know very little about weathering rates. For example, what is the timescale to alter the reflectance spectrum of an ordinary chondrite meteorite to resemble the overall spectral shape and slope from an S-type asteroid? One approach to answering this question has been to determine ages of asteroid families by dynamical modeling and determine the spectral proper-ties of the daughter fragments. However, large differences exist between inferred space weathering rates and timescales derived from laboratory experiments, analysis of asteroid family spectra and the space weathering styles; estimated timescales range from 5000 years up to 108 years. Vernazza et al. concluded that solar wind interactions dominate asteroid space weathering on rapid timescales of 10(exp 4)-10(exp 6) years. Shestopalov et al. suggested that impact-gardening of regolith particles and asteroid resurfacing counteract the rapid progress of solar wind optical maturation of asteroid surfaces and proposed a space weathering timescale of 10(exp 5)-10(exp 6) years.
NASA Technical Reports Server (NTRS)
Rembaum, Alan (Inventor); Gupta, Amitava (Inventor); Volksen, Willi (Inventor)
1981-01-01
Microspheres are produced by cobalt gamma radiation initiated polymerization of a dilute aqueous vinyl pyridine solution. Addition of cross-linking agent provides higher surface area beads. Addition of monomers such as hydroxyethylmethacrylate acrylamide or methacrylamide increases hydrophilic properties and surface area of the beads. High surface area catalytic supports are formed in the presence of controlled pore glass substrate.
Exploring Classroom Interaction with Dynamic Social Network Analysis
ERIC Educational Resources Information Center
Bokhove, Christian
2018-01-01
This article reports on an exploratory project in which technology and dynamic social network analysis (SNA) are used for modelling classroom interaction. SNA focuses on the links between social actors, draws on graphic imagery to reveal and display the patterning of those links, and develops mathematical and computational models to describe and…
Introduction: Links between Social Interaction and Executive Function
ERIC Educational Resources Information Center
Lewis, Charlie; Carpendale, Jeremy I. M.
2009-01-01
The term executive function is used increasingly within developmental psychology and is often taken to refer to unfolding brain processes. We trace the origins of research on executive function to show that the link with social interaction has a long history. We suggest that a recent frenzy of research exploring methods for studying individual…
Linking Classrooms of the Future through Interactive Telecommunications Network.
ERIC Educational Resources Information Center
Cisco, Ponney G.
This document describes an interactive television (ITV) distance education network designed to service rural schools. Phase one of the network involved the installation of over 14 miles of fiber optic cable linking two high schools, a career center, and the University of Rio Grande; phase two will bring seven high schools in economically depressed…
The Science of Human Interaction and Teaching
ERIC Educational Resources Information Center
Yano, Kazuo
2013-01-01
There is a missing link between our understanding of teaching as high-level social phenomenon and teaching as a physiological phenomenon of brain activity. We suggest that the science of human interaction is the missing link. Using over one-million days of human-behavior data, we have discovered that "collective activenes" (CA), which indicates…
AquaDiva: Understanding the Link between the Surface and Subsurface Biogeosphere
NASA Astrophysics Data System (ADS)
Trumbore, S.; Küsel, K.; Totsche, K. U.; Schwab, V.; Herrmann, M.; Nowak, M. E.; Gleixner, G.
2017-12-01
In the collaborative research project AquaDiva, we combine hydrogeochemical, metagemonic and biogeochemical tools to understand how the complex interactions between geologic setting and surface land use influence the function and biodiversity of the subsurface, especially ground water ecosystems. At the Hainich Critical Zone Exploratory in central Germany, we investigate soil and seepage waters in recharge areas and aquifers in a fractured limestone setting characterized by a dynamic water infiltration regime. Within the Exploratory, we have so far identified three distinct biogeochemical zones in which land use and lithologic differences combine to give rise to surprisingly different biotic communities and hydrogeochemical properties with different degrees of connection to the surface. Here we will focus on how we have combined carbon isotopic, organic biomarkers such as phospholipid fatty acids, and `omics' approaches to determine (i) how deep soil-borne microorganisms can be traced into the subsurface, and (ii) which energy sources sustain microbial life in oligotrophic limestone aquifers. With increasing travel distance to the surface, there is a decline in the abundance of microbes, with less than 5% of the taxa identified overlapping with those identified in the soils. Dissolved organic matter also is altered as it passes through soils, demonstrating an overall increase in molecular weight and a change in molecular makeup as well as radiocarbon content. Using the radiocarbon signature (corrected for the influence of carbonate dissolution), as a way to identify if organic C is being supplied recently by plants, atmosphere sources of energy for communities within the aquifer differ for the identified biogeochemical zones and include (i) dominance of inputs of fresh organic carbon from the surface feeding heterotrophy in oxygenic environments; (ii) CO2 fixation linked to nitrogen and sulfur cycling in anoxic environments and (iii) rock-derived organic matter that enters the food web and supplies up to a quarter of the carbon recycled by heterotrophic groundwater microbial communities. The degree of importance of these metabolisms, and therefore their connection to the surface is different in the three zones, with the importance of internal cycling and rock-derived organic matter as a C source surprisingly higher in anoxic aquifers. The second major goal of AquaDiva is to determine the impact of individual precipitation events on the groundwater. Initial results show dramatic effects of singular precipitation events, particularly of events during snowmelt season when the major recharge takes place. Observed large fluctuations in the water table have been linked to changes in the vertical distribution of oxygen and events of carbonate dissolution/precipitation can be identified based on variations of CO2 and O2. Ongoing research in AquaDiva seeks to better quantify the rates of groundwater movement and mixing as a way of further understanding how the emergent subsurface properties can be better linked to processes of transport and transformation within the Critical Zone.
NASA Astrophysics Data System (ADS)
Probert, Samantha; Kettridge, Nicholas; Devito, Kevin; Hurley, Alexander
2017-04-01
Riparian wetlands represent an important ecotone at the interface of peatlands and forests within the Western Boreal Plain of Canada. Water storage and negative feedbacks to evaporation in these systems is crucial for the conservation and redistribution of water during dry periods and providing ecosystem resilience to disturbance. Litter cover can alter the relative importance of the physical processes that drive soil evaporation. Negative feedbacks to drying are created as the hydrophysical properties of the litter and soil override atmospheric controls on evaporation in dry conditions, subsequently dampening the effects of external forcings on the wetland moisture balance. In this study, water repellency in leaf litter has been shown to significantly correlate with surface-atmosphere interactions, whereby severely hydrophobic leaf litter is linked to the highest surface resistances to evaporation, and therefore lowest instantaneous evaporation. Decreasing moisture is associated with increasing hydrophobicity, which may reduce the evaporative flux further as the dry hydrophobic litter creates a hydrological disconnect between soil moisture and the atmosphere. In contrast, hydrophilic litter layers exhibited higher litter moistures, which is associated with reduced resistances to evaporation and enhanced evaporative fluxes. Water repellency of the litter layer has a greater control on evaporation than the presence or absence of litter itself. Litter removal had no significant effect on instantaneous evaporation or surface resistance to evaporation except under the highest evaporation conditions, where litter layers produced higher resistance values than bare peat soils. However, litter removal modified the dominant physical controls on evaporation: moisture loss in plots with leaf litter was driven by leaf and soil hydrophysical properties. Contrastingly, bare peat soils following litter removal exhibited cooler, wetter surfaces and were more strongly correlated to atmospheric controls. The interaction between evaporation, hydrophobicity and moisture of the soil surface, or litter, presents a potentially significant negative feedback to drying across wetland-forestland interfaces.
Thomas, V; Kumari, T V; Jayabalan, M
2001-01-01
The effect of physical cross-linking in candidate cycloaliphatic and hydrophobic poly(urethane urea) (4,4'-methylenebis(cyclohexylisocyanate), H(12)MDI/hydroxy-terminated polybutadiene, HTPBD/hexamethylenediamine, HDA) and poly(ether urethane urea)s (H(12)MDI/HTPBD-PTMG/HDA) on the in vitro calcification and blood-material interaction was studied. All the candidate poly(urethane urea)s and poly(ether urethane urea)s elicit acceptable hemolytic activity, cytocompatibility, calcification, and blood compatibility in vitro. The studies on blood-material interaction reveal that the present poly(urethane urea)s are superior to polystyrene microtiter plates which were used for the studies on blood-material interaction. The present investigation reveals the influence of physical cross-link density on biological interaction differently with poly(urethane urea) and poly(ether urethane urea)s. The higher the physical cross-link density in the poly(urethane urea)s, the higher the calcification and consumption of WBC in whole blood. On the other hand, the higher the physical cross-link density in the poly(ether urethane urea)s, the lesser the calcification and consumption of WBC in whole blood. However a reverse of the above trend has been observed with the platelet consumption in the poly(urethane urea)s and poly(ether urethane urea)s.
Richards, Mark J; Hsia, Chih-Yun; Singh, Rohit R; Haider, Huma; Kumpf, Julia; Kawate, Toshimitsu; Daniel, Susan
2016-03-29
Membrane protein interactions with lipids are crucial for their native biological behavior, yet traditional characterization methods are often carried out on purified protein in the absence of lipids. We present a simple method to transfer membrane proteins expressed in mammalian cells to an assay-friendly, cushioned, supported lipid bilayer platform using cell blebs as an intermediate. Cell blebs, expressing either GPI-linked yellow fluorescent proteins or neon-green fused transmembrane P2X2 receptors, were induced to rupture on glass surfaces using PEGylated lipid vesicles, which resulted in planar supported membranes with over 50% mobility for multipass transmembrane proteins and over 90% for GPI-linked proteins. Fluorescent proteins were tracked, and their diffusion in supported bilayers characterized, using single molecule tracking and moment scaling spectrum (MSS) analysis. Diffusion was characterized for individual proteins as either free or confined, revealing details of the local lipid membrane heterogeneity surrounding the protein. A particularly useful result of our bilayer formation process is the protein orientation in the supported planar bilayer. For both the GPI-linked and transmembrane proteins used here, an enzymatic assay revealed that protein orientation in the planar bilayer results in the extracellular domains facing toward the bulk, and that the dominant mode of bleb rupture is via the "parachute" mechanism. Mobility, orientation, and preservation of the native lipid environment of the proteins using cell blebs offers advantages over proteoliposome reconstitution or disrupted cell membrane preparations, which necessarily result in significant scrambling of protein orientation and typically immobilized membrane proteins in SLBs. The bleb-based bilayer platform presented here is an important step toward integrating membrane proteomic studies on chip, especially for future studies aimed at understanding fundamental effects of lipid interactions on protein activity and the roles of membrane proteins in disease pathways.
NASA Astrophysics Data System (ADS)
Morón, S.; Gallagher, S. J.; Moresi, L. N.; Salles, T.; Rey, P. F.; Payenberg, T.
2016-12-01
The effect of plate-mantle dynamics on surface topography has increasingly being recognized. This concept is particularly useful for the understanding of the links between plate-mantle dynamics, continental break up and the creation of sedimentary basins and their associated drainage systems. To unravel these links back in time we present an approach that uses numerical models and the geological record. The sedimentary basins of the North West Shelf (NWS) of Australia contain an exceptional record of the Permian to early Cretaceous polyphased rifting of Australia from Greater India, which is in turn associated with the breakup of Gondwana. This record and the relative tectonic quiescence of the Australian Continent since the Late Cretaceous make the NWS a great natural laboratory for investigating the interaction between mantle dynamics, plate tectonics and drainage patterns. Furthermore, as a result of the extensive petroleum exploration and production in the area a uniquely large dataset containing seismic, lithologic, biostratigraphic and detrital zircon information is already available. This study will first focus on augmenting zircon datasets to refine the current conceptual models of paleodrainage systems associated with the NWS. Current conceptual models of drainage patterns suggest the previous existance of large transcontinental rivers that transported sediments from Antarctica and India, rather than from more proximal Australian sources. From a mass-balance point of view this model seems reasonable, as large transcontinental rivers would be required to transport the significant volume of sediments that are deposited in the thick (15km) sedimentary sequences of the NWS. Coupling of geodynamic (Underworld) and landscape-dynamics (Badlands) models will allow us to numerically test the likelihood of this conceptual model and also to present and integrated approach to investigate the link between deep Earth processes and surficial processes.
Foster, D Brian; Huang, Renjian; Hatch, Victoria; Craig, Roger; Graceffa, Philip; Lehman, William; Wang, C-L Albert
2004-12-17
Smooth muscle caldesmon binds actin and inhibits actomyosin ATPase activity. Phosphorylation of caldesmon by extracellular signal-regulated kinase (ERK) reverses this inhibitory effect and weakens actin binding. To better understand this function, we have examined the phosphorylation-dependent contact sites of caldesmon on actin by low dose electron microscopy and three-dimensional reconstruction of actin filaments decorated with a C-terminal fragment, hH32K, of human caldesmon containing the principal actin-binding domains. Helical reconstruction of negatively stained filaments demonstrated that hH32K is located on the inner portion of actin subdomain 1, traversing its upper surface toward the C-terminal segment of actin, and forms a bridge to the neighboring actin monomer of the adjacent long pitch helical strand by connecting to its subdomain 3. Such lateral binding was supported by cross-linking experiments using a mutant isoform, which was capable of cross-linking actin subunits. Upon ERK phosphorylation, however, the mutant no longer cross-linked actin to polymers. Three-dimensional reconstruction of ERK-phosphorylated hH32K indeed indicated loss of the interstrand connectivity. These results, together with fluorescence quenching data, are consistent with a phosphorylation-dependent conformational change that moves the C-terminal end segment of caldesmon near the phosphorylation site but not the upstream region around Cys(595), away from F-actin, thus neutralizing its inhibitory effect on actomyosin interactions. The binding pattern of hH32K suggests a mechanism by which unphosphorylated, but not ERK-phosphorylated, caldesmon could stabilize actin filaments and resist F-actin severing or depolymerization in both smooth muscle and nonmuscle cells.
Lai, Shenzhi; Ouyang, Xiaoli; Cai, Changqun; Xu, Wensheng; Chen, Chunyan; Chen, Xiaoming
2017-05-01
The surface imprinting technique has been developed to overcome the mass-transfer difficulty, but the utilization ratio of template molecules in the imprinting procedure still remains a challengeable task to be improved. In this work, specifically designed surface-imprinted microspheres were prepared by a template-oriented method for enantioseparation of amlodipine besylate. Submicron mesoporous silica microspheres were surface-modified with double bonds, followed by polymerizing methacrylic acid to generate carboxyl modified mesoporous silica microspheres (PMAA@SiO 2 ). Afterwards, PMAA@SiO 2 was densely adsorbed with (S)-amlodipine molecules to immobilize template molecules through multiple hydrogen bonding interactions. Then surface molecular imprinting was carried out by cross-linking the carboxyl group of PMAA@SiO 2 with ethylene glycol diglycidyl ether. The surface-imprinted microspheres showed fast binding kinetics of only 20 min for equilibrium adsorption, and the saturation adsorption capacity reached 137 mg/g. The imprinted materials displayed appreciable chiral separation ability when used as column chromatography for enantioseparation of amlodipine from amlodipine besylate, and the enantiomeric excess of (S)-amlodipine reached 13.8% with only 2.3 cm column length by no extra chiral additives. Besides, the imprinted materials exhibited excellent reusability, and this allows the potential application for amplification production of amlodipine enantiomer. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Harbers, Gregory M.; Emoto, Kazunori; Greef, Charles; Metzger, Steven W.; Woodward, Heather N.; Mascali, James J.; Grainger, David W.; Lochhead, Michael J.
2008-01-01
This paper describes a new bioassay surface chemistry that effectively inhibits non-specific biomolecular and cell binding interactions, while providing a capacity for specific immobilization of desired biomolecules. Poly(ethylene glycol) (PEG) as the primary component in nonfouling film chemistry is well-established, but the multicomponent formulation described here is unique in that it (1) is applied in a single, reproducible, solution-based coating step; (2) can be applied to diverse substrate materials without the use of special primers; and (3) is readily functionalized to provide specific attachment chemistries. Surface analysis data are presented, detailing surface roughness, polymer film thickness, and film chemistry. Protein non-specific binding assays demonstrate significant inhibition of serum, fibrinogen, and lysozyme adsorption to coated glass, indium tin oxide, and tissue culture polystyrene dishes. Inhibition of S. aureus and K. pneumoniae microbial adhesion in a microfluidic flow cell, and inhibition of fibroblast cell adhesion from serum-based cell culture is shown. Effective functionalization of the coating is demonstrated by directing fibroblast adhesion to polymer surfaces activated with an RGD peptide. Batch-to-batch reproducibility data are included. The in situ cross-linked PEG-based coating chemistry is unique in its formulation, and its surface properties are attractive for a broad range of in vitro bioassay applications. PMID:18815622
NASA Astrophysics Data System (ADS)
Aksoy, Erman; Yıldırım, Şahin
2017-10-01
The existence or endurance of the city is determined by social, economic, cultural, and technological factors. Therefore, transportation connections become physical signifiers of the relation between two spaces. Nevertheless, the potential for change in transportation is more dynamic when compared to other factors. Change in the infrastructure and systems of transportation become evident at the urban scale more rapidly. In addition to leading to the formation of new cities or to socio-cultural and economic development in the already-existent cities, this dynamic structure may also cause the decrease in economic power, and even the desertion of settlements. Furthermore, it functions as a leading, even determining, parameter in the formation of space, thereby in economic and social development. The fact that, throughout history, centres of communication and commerce were established at intersection, stopping and lodging points of transportation links and/or their development into residential areas attests to this interaction. In the commercial centres and life of the city, the effects of regional transportation networks and technologies surface relatively. By means of the analytical method, this study focuses on how, within the history of settlements, population increases due to the choice of location based on transportation and strategic significance, and how urban functions vary accordingly. As such, the interaction between urban development and transportation links for the Ancient City of Tios will be analysed, and the signifiers for urban development will be designated.
NASA Astrophysics Data System (ADS)
Stewart, R. D.; Rupp, D. E.; Abou Najm, M. R.; Selker, J. S.
2017-12-01
Shrink-swell soils, often classified as Vertisols or vertic intergrades, are found on every continent except Antarctica and within many agricultural and urban regions. These soils are characterized by cyclical shrinking and swelling, in which bulk density and porosity distributions vary as functions of time and soil moisture. Crack networks that form in these soils act as dominant environmental controls on the movement of water, contaminants, and gases, making it important to develop fundamental understanding and tractable models of their hydrologic characteristics and behaviors. In this study, which took place primarily in the Secano Interior region of South-Central Chile, we quantified soil-water interactions across scales using a diverse and innovative dataset. These measurements were then utilized to develop a set of parsimonious multi-domain models for describing hydraulic properties and hydrological processes in shrink-swell soils. In a series of examples, we show how this model can predict porosity distributions, crack widths, saturated hydraulic conductivities, and surface runoff (i.e., overland flow) thresholds, by capturing the dominant mechanisms by which water moves through and interacts with clayey soils. Altogether, these models successfully link small-scale shrinkage/swelling behaviors with large-scale thresholds, and can be applied to describe important processes such as infiltration, overland flow development, and the preferential flow and transport of fluids and gases.
Rudasill, Kathleen Moritz; Niehaus, Kate; Buhs, Eric; White, Jamie M
2013-12-01
Children's interactions with peers in early childhood have been consistently linked to their academic and social outcomes. Although both child and classroom characteristics have been implicated as contributors to children's success, there has been scant research linking child temperament, teacher-child relationship quality, and peer interactions in the same study. The purpose of this study is to examine children's early temperament, rated at preschool age, as a predictor of interactions with peers (i.e., aggression, relational aggression, victimization, and prosociality) in third grade while considering teacher-child relationship quality in kindergarten through second grades as a moderator and mediator of this association. The sample (N=1364) was drawn from the NICHD Study of Early Child Care and Youth Development. Results from structural equation models indicated that teacher-child conflict in early elementary grades mediated links between children's temperament and later peer interactions. Findings underscore the importance of considering children's temperament traits and teacher-child relationship quality when examining the mechanisms of the development of peer interactions. © 2013.
Dynamics of an Active-Site Flap Contributes to Catalysis in a JAMM Family Metallo Deubiquitinase.
Bueno, Amy N; Shrestha, Rashmi K; Ronau, Judith A; Babar, Aditya; Sheedlo, Michael J; Fuchs, Julian E; Paul, Lake N; Das, Chittaranjan
2015-10-06
The endosome-associated deubiquitinase (DUB) AMSH is a member of the JAMM family of zinc-dependent metallo isopeptidases with high selectivity for Lys63-linked polyubiquitin chains, which play a key role in endosomal-lysosomal sorting of activated cell surface receptors. The catalytic domain of the enzyme features a flexible flap near the active site that opens and closes during its catalytic cycle. Structural analysis of its homologues, AMSH-LP (AMSH-like protein) and the fission yeast counterpart, Sst2, suggests that a conserved Phe residue in the flap may be critical for substrate binding and/or catalysis. To gain insight into the contribution of this flap in substrate recognition and catalysis, we generated mutants of Sst2 and characterized them using a combination of enzyme kinetics, X-ray crystallography, molecular dynamics simulations, and isothermal titration calorimetry (ITC). Our analysis shows that the Phe residue in the flap contributes key interactions during the rate-limiting step but not to substrate binding, since mutants of Phe403 exhibit a defect only in kcat but not in KM. Moreover, ITC studies show Phe403 mutants have similar KD for ubiquitin compared to the wild-type enzyme. The X-ray structures of both Phe403Ala and the Phe403Trp, in both the free and ubiquitin bound form, reveal no appreciable structural change that might impair substrate or alter product binding. We observed that the side chain of the Trp residue is oriented identically with respect to the isopeptide moiety of the substrate as the Phe residue in the wild-type enzyme, so the loss of activity seen in this mutant cannot be explained by the absence of a group with the ability to provide van der Waals interactions that facilitate the hyrdolysis of the Lys63-linked diubiquitin. Molecular dynamics simulations indicate that the flap in the Trp mutant is quite flexible, allowing almost free rotation of the indole side chain. Therefore, it is possible that these different dynamic properties of the flap in the Trp mutant, compared to the wild-type enzyme, manifest as a defect in interactions that facilitate the rate-limiting step. Consistent with this notion, the Trp mutant was able to cleave Lys48-linked and Lys11-linked diubiquitin better than the wild-type enzyme, indicating altered mobility and hence reduced selectivity.
Acidic pH increases airway surface liquid viscosity in cystic fibrosis
Tang, Xiao Xiao; Ostedgaard, Lynda S.; Hoegger, Mark J.; Moninger, Thomas O.; Karp, Philip H.; McMenimen, James D.; Choudhury, Biswa; Varki, Ajit; Stoltz, David A.; Welsh, Michael J.
2016-01-01
Cystic fibrosis (CF) disrupts respiratory host defenses, allowing bacterial infection, inflammation, and mucus accumulation to progressively destroy the lungs. Our previous studies revealed that mucus with abnormal behavior impaired mucociliary transport in newborn CF piglets prior to the onset of secondary manifestations. To further investigate mucus abnormalities, here we studied airway surface liquid (ASL) collected from newborn piglets and ASL on cultured airway epithelia. Fluorescence recovery after photobleaching revealed that the viscosity of CF ASL was increased relative to that of non-CF ASL. CF ASL had a reduced pH, which was necessary and sufficient for genotype-dependent viscosity differences. The increased viscosity of CF ASL was not explained by pH-independent changes in HCO3– concentration, altered glycosylation, additional pH-induced disulfide bond formation, increased percentage of nonvolatile material, or increased sulfation. Treating acidic ASL with hypertonic saline or heparin largely reversed the increased viscosity, suggesting that acidic pH influences mucin electrostatic interactions. These findings link loss of cystic fibrosis transmembrane conductance regulator–dependent alkalinization to abnormal CF ASL. In addition, we found that increasing Ca2+ concentrations elevated ASL viscosity, in part, independently of pH. The results suggest that increasing pH, reducing Ca2+ concentration, and/or altering electrostatic interactions in ASL might benefit early CF. PMID:26808501
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ishige, Ryohei; Williams, Gregory A.; Higaki, Yuji
A molded film of single-component polymer-grafted nanoparticles (SPNP), consisting of a spherical silica core and densely grafted polymer chains bearing hydrogen-bonding side groups capable of physical crosslinking, was investigated byin situultra-small-angle X-ray scattering (USAXS) measurement during a uniaxial stretching process. Static USAXS revealed that the molded SPNP formed a highly oriented twinned face-centered cubic (f.c.c.) lattice structure with the [11-1] plane aligned nearly parallel to the film surface in the initial state. Structural analysis ofin situUSAXS using a model of uniaxial deformation induced by rearrangement of the nanoparticles revealed that the f.c.c. lattice was distorted in the stretching direction inmore » proportion to the macroscopic strain until the strain reached 35%, and subsequently changed into other f.c.c. lattices with different orientations. The lattice distortion and structural transition behavior corresponded well to the elastic and plastic deformation regimes, respectively, observed in the stress–strain curve. The attractive interaction of the hydrogen bond is considered to form only at the top surface of the shell and then plays an effective role in cross-linking between nanoparticles. The rearrangement mechanism of the nanoparticles is well accounted for by a strong repulsive interaction between the densely grafted polymer shells of neighboring particles.« less
NASA Astrophysics Data System (ADS)
Sutton, T.; Cook, A.; Frank, T. M.; Boswell, K. M.; Vecchione, M.; Judkins, H.; Romero, I.
2016-02-01
Toothed whales, smaller cetaceans, seabirds, and epipelagic gamefishes rely on deep-pelagic (meso- and bathypelagic) nekton as primary or secondary prey. This trophic interaction is mediated by downward and upward vertical movements (e.g., sperm whale diving and lanternfishes migration, respectively). This interaction also links particle-feeding lower trophic levels with top predators in a manner that spans the gamut of depth domains. This is particularly important with respect to a whole-water column disturbance such as the Deepwater Horizon oil spill (DWHOS). Here we present highly resolved vertical distribution and migration data collected during a large-scale, NOAA-supported, deep-pelagic (0-1500 m) survey in 2011, along with data collected during ongoing GoMRI-supported DEEPEND consortium surveys. The deep-pelagic nekton community of the Gulf of Mexico is a complex mixture of migrating, non-migrating, and partially migrating assemblages that connect surface waters with depths in excess of 1000 m. Major patterns of vertical distribution for 400+ species of fishes, cephalopods, and macrocrustaceans, the primary prey of many important species of oceanic vertebrates living near-surface, will be summarized and quantified with the goal of highlighting potential vectors of anthropogenic contamination transfer in the deep-pelagial, the Gulf's largest ecosystem.
Surface water and groundwater interactions in coastal wetlands
NASA Astrophysics Data System (ADS)
Li, Ling; Xin, Pei; Shen, Chengji
2014-05-01
Salt marshes are an important wetland system in the upper intertidal zone, interfacing the land and coastal water. Dominated by salt-tolerant plants, these wetlands provide essential eco-environmental services for maintaining coastal biodiversity. They also act as sediment traps and help stabilize the coastline. While they play an active role in moderating greenhouse gas emissions, these wetlands have become increasingly vulnerable to the impact of global climate change. Salt marshes are a complex hydrological system characterized by strong, dynamic interactions between surface water and groundwater, which underpin the wetland's eco-functionality. Bordered with coastal water, the marsh system undergoes cycles of inundation and exposure driven by the tide. This leads to dynamic, complex pore-water flow and solute transport in the marsh soil. Pore-water circulations occur at different spatial and temporal scales with strong link to the marsh topography. These circulations control solute transport between the marsh soil and the tidal creek, and ultimately affect the overall nutrient exchange between the marsh and coastal water. The pore-water flows also dictate the soil aeration conditions, which in turn affect marsh plant growth. This talk presents results and findings from recent numerical and experimental studies, focusing on the pore-water flow behaviour in the marsh soil under the influence of tides and density-gradients.
Liu, Zehua; Balasubramanian, Vimalkumar; Bhat, Chinmay; Vahermo, Mikko; Mäkilä, Ermei; Kemell, Marianna; Fontana, Flavia; Janoniene, Agne; Petrikaite, Vilma; Salonen, Jarno; Yli-Kauhaluoma, Jari; Hirvonen, Jouni; Zhang, Hongbo; Santos, Hélder A
2017-02-01
One of the most challenging obstacles in nanoparticle's surface modification is to achieve the concept that one ligand can accomplish multiple purposes. Upon such consideration, 3-aminopropoxy-linked quercetin (AmQu), a derivative of a natural flavonoid inspired by the structure of dopamine, is designed and subsequently used to modify the surface of thermally hydrocarbonized porous silicon (PSi) nanoparticles. This nanosystem inherits several advanced properties in a single carrier, including promoted anticancer efficiency, multiple drug resistance (MDR) reversing, stimuli-responsive drug release, drug release monitoring, and enhanced particle-cell interactions. The anticancer drug doxorubicin (DOX) is efficiently loaded into this nanosystem and released in a pH-dependent manner. AmQu also effectively quenches the fluorescence of the loaded DOX, thereby allowing the use of the nanosystem for monitoring the intracellular drug release. Furthermore, a synergistic effect with the presence of AmQu is observed in both normal MCF-7 and DOX-resistant MCF-7 breast cancer cells. Due to the similar structure as dopamine, AmQu may facilitate both the interaction and internalization of PSi into the cells. Overall, this PSi-based platform exhibits remarkable superiority in both multifunctionality and anticancer efficiency, making this nanovector a promising system for anti-MDR cancer treatment. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Inter-relationships between corrosion and mineral-scale deposition in aqueous systems.
Hodgkiess, T
2004-01-01
The processes of corrosion and scale deposition in natural and process waters are often linked and this paper considers a number of instances of interactions between the two phenomena. In some circumstances a scale layer (e.g. calcium carbonate) can be advantageously utilised as a corrosion-protection coating on components and this feature has been exploited for many decades in the conditioning of water to induce spontaneous precipitation of a scale layer upon the surfaces of engineering equipment. The electrochemical mechanisms associated with some corrosion and corrosion-control processes can promote alkaline-scale deposition directly upon component surfaces. This is a feature that can be exploited in the operation of cathodic protection (CP) of structures and components submerged in certain types of water (e.g. seawater). Similar phenomena can occur during bi-metallic corrosion and a case study, involving carbon steel/stainless steel couples in seawater, is presented. Additional complexities pertain during cyclic loading of submerged reinforced concrete members in which scale deposition may reduce the severity of fatigue stresses but can be associated with severe corrosion damage to embedded reinforcing steel. Also considered are scale-control/corrosion interactions in thermal desalination plant and an indirect consequence of the scale-control strategy on vapourside corrosion is discussed.
Liu, Zhongshan; Wang, Hongwei; Ou, Junjie; Chen, Lianfang; Ye, Mingliang
2018-05-11
Subject to synthetic conditions, covalent organic frameworks (COFs) are usually in powder form. Herein, taking an azine-linked COF as an example, detailed characterizations indicated that accessible aldehyde groups and hydrazine groups (CNNH 2 , 88 μmol g -1 ) concurrently existed on its surface. Intrigued by such feature, we have developed an approach based on ring-opening polymerization to shape COF powder into monoliths. The crystallinity and micropore of COF in monoliths were well remained, meanwhile, the ring-opening polymerization remarkably generated macropores ranging from 0.43 to 3.51 μm, indicating a hierarchically porous structure. The BET surface area of resultant monoliths with different COF mass fractions of 16%, 28% and 43% ranged from 105 to 281 m 2 g -1 . Due to the π-π interaction and hydrogen bond interaction, COF-based monoliths exhibited strong retention and rapid adsorption for bisphenol A (BPA) in aqueous medium. When 29 mL BPA solution (22.8 mg L -1 ) passed through COF-based monolith (28%), the adsorption capacity was up to 61.3 mg g -1 . Furthermore, the COF-based monolith demonstrated excellent cycle use for catalyzing Suzuki-Miyaura coupling reaction after being coordinated with palladium acetate. Copyright © 2018 Elsevier B.V. All rights reserved.
Barraud, A; Perrot, H; Billard, V; Martelet, C; Therasse, J
1993-01-01
Nowadays, immunosensors play a leading part in the field of bioanalytical chemistry research. As with any biosensor, they need appropriate transducers and a suitable technique to immobilize the active biocomponents. In this study, two transduction modes were chosen: mass effects (quartz microbalance measurements) and geometric and dielectric effects (capacitance measurements). The Langmuir-Blodgett (LB) method appears to be quite suitable for generating biospecific surfaces. This work has focused on the detection of staphylococcal enterotoxin B, the corresponding antibody being immobilized at the surface of fatty acids by a variant of the LB method. The composition of the film and the nature of antibody-fatty acid interactions were studied by means of the two transducers mentioned above. FTIR (Fourier transform infra-red) spectroscopy and protein diagnostic assay. Influence of several parameters (pH, ionic strength, transfer pressure, antibody concentration in the subphase) was investigated. The immobilization rate reached its maximum when experimental conditions allowed optimal electrostatic interactions. In this case, the quartz crystal microbalance response, in air, reached 55 Hz per monolayer of immobilized immunoglobulin G and the equivalent capacitance variation, measured in liquid media, was around 300 pF cm-2. Activity of the biospecific LB films, when binding enterotoxin, was checked by the classical ELISA (enzyme immuno-linked assay) technique.
Estrela, Sylvie; Brown, Sam P.
2013-01-01
Microbes are predominantly found in surface-attached and spatially structured polymicrobial communities. Within these communities, microbial cells excrete a wide range of metabolites, setting the stage for interspecific metabolic interactions. The links, however, between metabolic and ecological interactions (functional relationships), and species spatial organization (structural relationships) are still poorly understood. Here, we use an individual-based modelling framework to simulate the growth of a two-species surface-attached community where food (resource) is traded for detoxification (service) and investigate how metabolic constraints of individual species shape the emergent structural and functional relationships of the community. We show that strong metabolic interdependence drives the emergence of mutualism, robust interspecific mixing, and increased community productivity. Specifically, we observed a striking and highly stable emergent lineage branching pattern, generating a persistent lineage mixing that was absent when the metabolic exchange was removed. These emergent community properties are driven by demographic feedbacks, such that aid from neighbouring cells directly enhances focal cell growth, which in turn feeds back to neighbour fecundity. In contrast, weak metabolic interdependence drives conflict (exploitation or competition), and in turn greater interspecific segregation. Together, these results support the idea that species structural and functional relationships represent the net balance of metabolic interdependencies. PMID:24385891
NASA Astrophysics Data System (ADS)
Mahmoudi, Ghodrat; Chowdhury, Habibar; Ghosh, Barindra K.; Lofland, Samuel E.; Maniukiewicz, Waldemar
2018-05-01
One-pot reactions of pre-assigned molar ratios of appropriate metal (II) salts and HL1 (2-acetylpyridine nicotinoylhydrazone) or HL2 (2-acetylpyridine isonicotinoylhydrazone) in MeOH solutions at room temperature afford 1D coordination polymeric chain [Cu(μ-L1) (Cl)]n (1) and a mononuclear complex [Ni(L2)2] (2). The compounds (1) and (2) were characterized using elemental analyses, spectral and other physicochemical methods. Single crystal X-ray diffraction measurements for (1) and (2) have been made to define the molecular aggregates and crystalline architectures. In (1), each copper (II) center adopts a distorted square pyramidal geometry with a CuN3OCl chromophore linked through μ-L1 to form the 1D polymeric chain. While in (2) each Ni(II) cation is six-coordinate with octahedral structure having NiN4O2 chromophore containing two L2 units each functioning as a classical tridentate (N,N,O) chelator. Different weak non-covalent interactions promote dimensionalities in the compounds. A Hirshfeld surface analysis was employed to gain additional insight into interactions responsible for packing of (1) and (2). Magnetic susceptibility measurement of (1) in the 4-300 K range reveals simple paramagnetism.
Dry intrusions: Lagrangian climatology and impact on the boundary layer
NASA Astrophysics Data System (ADS)
Raveh-Rubin, Shira; Wernli, Heini
2017-04-01
Dry air intrusions (DIs) are large-scale descending airstreams. A DI is typically referred to as a coherent airstream in the cold sector of an extratropical cyclone. Emerging evidence suggests that DIs are linked to severe surface wind gusts. However, there is yet no strict Lagrangian definition of DIs, and so their climatological frequency, dynamical characteristics as well as their seasonal and spatial distributions are unknown. Furthermore, the dynamical interaction between DIs and the planetary boundary layer is not fully understood. Here, we suggest a Lagrangian definition for DI air parcels, namely a minimum pressure increase along a trajectory of 400 hPa in 48 hours. Based on this criterion, the open questions are addressed by: (i) a novel global Lagrangian climatology for the ECMWF ERA-Interim reanalysis dataset for the years 1979-2014; (ii) a case study illustrating the interaction between DIs and the boundary layer. We find that DIs occur predominantly in winter. DIs coherently descend from the upper troposphere (their stratospheric origin is small), to the mid- and low levels, where they mix with their environment and diverge. Different physical characteristics typify DIs in the different regions and seasons. Finally, we demonstrate the different mechanisms by which DIs can destabilize the boundary layer and facilitate the formation of strong surface winds.
Sharma, Anshul; Kaushal, Ankur; Kulshrestha, Saurabh
2017-07-01
Accurate and on time diagnosis of plant viruses is an essential prerequisite for efficient control in field conditions. A number of diagnostic methods have been reported with the required level of sensitivity. Here, we propose a label free immunosensor for efficient and sensitive detection of capsicum chlorosis virus (CaCV) in bell pepper. Antigen was immobilized over the surface of gold nanoparticle/multi-walled carbon nanotube (Nano-Au/C-MWCNT) screen printed electrodes using 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC)/N-hydroxysuccinimide (NHS) cross linking chemistry followed by interaction with groundnut bud necrosis virus (GBNV)/CaCV specific polyclonal antibody. The electrochemical response was measured by cyclic voltammetry (CV), differential pulse voltammetry (DPV) using the redox indicator. Electrode surface characterization was done by performing scanning electron microscopy (SEM). Electrochemical studies showed positive results at different antigenic dilutions ranging from 10 -2 - 8x10 -5 . The sensitivity of the immunosensor developed has been compared with direct antigen coated enzyme-linked immunosorbent assay (DAC-ELISA) and the results showed that the immunosensor developed was 800-1000 times more sensitive, when compared to DAC-ELISA for CaCV detection. The immunosensor we have developed is economical and sensitive and could be used for immediate determination of the presence of virus in extracts from bell pepper leaves.
Erales, Jenny; Beltrandi, Matilde; Roche, Jennifer; Maté, Maria; Longhi, Sonia
2015-08-01
The Hendra virus is a member of the Henipavirus genus within the Paramyxoviridae family. The nucleoprotein, which consists of a structured core and of a C-terminal intrinsically disordered domain (N(TAIL)), encapsidates the viral genome within a helical nucleocapsid. N(TAIL) partly protrudes from the surface of the nucleocapsid being thus capable of interacting with the C-terminal X domain (XD) of the viral phosphoprotein. Interaction with XD implies a molecular recognition element (MoRE) that is located within N(TAIL) residues 470-490, and that undergoes α-helical folding. The MoRE has been proposed to be embedded in the hydrophobic groove delimited by helices α2 and α3 of XD, although experimental data could not discriminate between a parallel and an antiparallel orientation of the MoRE. Previous studies also showed that if the binding interface is enriched in hydrophobic residues, charged residues located close to the interface might play a role in complex formation. Here, we targeted for site directed mutagenesis two acidic and two basic residues within XD and N(TAIL). ITC studies showed that electrostatics plays a crucial role in complex formation and pointed a parallel orientation of the MoRE as more likely. Further support for a parallel orientation was afforded by SAXS studies that made use of two chimeric constructs in which XD and the MoRE were covalently linked to each other. Altogether, these studies unveiled the multiparametric nature of the interactions established within this complex and contribute to shed light onto the molecular features of protein interfaces involving intrinsically disordered regions. Copyright © 2015 Elsevier B.V. All rights reserved.
Zhuo, You; Yang, Jeong-Yeh; Moremen, Kelley W; Prestegard, James H
2016-09-16
Human carcinoembryonic antigen-related cell adhesion molecule 1 (C?/Au: EACAM1) is a cell-surface signaling molecule involved in cell adhesion, proliferation, and immune response. It is also implicated in cancer angiogenesis, progression, and metastasis. This diverse set of effects likely arises as a result of the numerous homophilic and heterophilic interactions that CEACAM1 can have with itself and other molecules. Its N-terminal Ig variable (IgV) domain has been suggested to be a principal player in these interactions. Previous crystal structures of the β-sandwich-like IgV domain have been produced using Escherichia coli-expressed material, which lacks native glycosylation. These have led to distinctly different proposals for dimer interfaces, one involving interactions of ABED β-strands and the other involving GFCC'C″ β-strands, with the former burying one prominent glycosylation site. These structures raise questions as to which form may exist in solution and what the effect of glycosylation may have on this form. Here, we use NMR cross-correlation measurements to examine the effect of glycosylation on CEACAM1-IgV dimerization and use residual dipolar coupling (RDC) measurements to characterize the solution structure of the non-glycosylated form. Our findings demonstrate that even addition of a single N-linked GlcNAc at potential glycosylation sites inhibits dimer formation. Surprisingly, RDC data collected on E. coli expressed material in solution indicate that a dimer using the non-glycosylated GFCC'C″ interface is preferred even in the absence of glycosylation. The results open new questions about what other factors may facilitate dimerization of CEACAM1 in vivo, and what roles glycosylation may play in heterophylic interactions. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Zhuo, You; Yang, Jeong-Yeh; Moremen, Kelley W.; Prestegard, James H.
2016-01-01
Human carcinoembryonic antigen-related cell adhesion molecule 1 (C?/Au: EACAM1) is a cell-surface signaling molecule involved in cell adhesion, proliferation, and immune response. It is also implicated in cancer angiogenesis, progression, and metastasis. This diverse set of effects likely arises as a result of the numerous homophilic and heterophilic interactions that CEACAM1 can have with itself and other molecules. Its N-terminal Ig variable (IgV) domain has been suggested to be a principal player in these interactions. Previous crystal structures of the β-sandwich-like IgV domain have been produced using Escherichia coli-expressed material, which lacks native glycosylation. These have led to distinctly different proposals for dimer interfaces, one involving interactions of ABED β-strands and the other involving GFCC′C″ β-strands, with the former burying one prominent glycosylation site. These structures raise questions as to which form may exist in solution and what the effect of glycosylation may have on this form. Here, we use NMR cross-correlation measurements to examine the effect of glycosylation on CEACAM1-IgV dimerization and use residual dipolar coupling (RDC) measurements to characterize the solution structure of the non-glycosylated form. Our findings demonstrate that even addition of a single N-linked GlcNAc at potential glycosylation sites inhibits dimer formation. Surprisingly, RDC data collected on E. coli expressed material in solution indicate that a dimer using the non-glycosylated GFCC′C″ interface is preferred even in the absence of glycosylation. The results open new questions about what other factors may facilitate dimerization of CEACAM1 in vivo, and what roles glycosylation may play in heterophylic interactions. PMID:27471271
Induction of Caveolae in the Apical Plasma Membrane of Madin-Darby Canine Kidney Cells
Verkade, Paul; Harder, Thomas; Lafont, Frank; Simons, Kai
2000-01-01
In this paper, we have analyzed the behavior of antibody cross-linked raft-associated proteins on the surface of MDCK cells. We observed that cross-linking of membrane proteins gave different results depending on whether cross-linking occurred on the apical or basolateral plasma membrane. Whereas antibody cross-linking induced the formation of large clusters on the basolateral membrane, resembling those observed on the surface of fibroblasts (Harder, T., P. Scheiffele, P. Verkade, and K. Simons. 1998. J. Cell Biol. 929–942), only small (∼100 nm) clusters formed on the apical plasma membrane. Cross-linked apical raft proteins e.g., GPI-anchored placental alkaline phosphatase (PLAP), influenza hemagglutinin, and gp114 coclustered and were internalized slowly (∼10% after 60 min). Endocytosis occurred through surface invaginations that corresponded in size to caveolae and were labeled with caveolin-1 antibodies. Upon cholesterol depletion the internalization of PLAP was completely inhibited. In contrast, when a non-raft protein, the mutant LDL receptor LDLR-CT22, was cross-linked, it was excluded from the clusters of raft proteins and was rapidly internalized via clathrin-coated pits. Since caveolae are normally present on the basolateral membrane but lacking from the apical side, our data demonstrate that antibody cross-linking induced the formation of caveolae, which slowly internalized cross-linked clusters of raft-associated proteins. PMID:10684254
NASA Astrophysics Data System (ADS)
Spanoudaki, Katerina; Bockelmann-Evans, Bettina; Schaefer, Florian; Kampanis, Nikolaos; Nanou-Giannarou, Aikaterini; Stamou, Anastasios; Falconer, Roger
2015-04-01
Surface water and groundwater are integral components of the hydrologic continuum and the interaction between them affects both their quantity and quality. However, surface water and groundwater are often considered as two separate systems and are analysed independently. This separation is partly due to the different time scales, which apply in surface water and groundwater flows and partly due to the difficulties in measuring and modelling their interactions (Winter et al., 1998). Coastal areas in particular are a difficult hydrologic environment to represent with a mathematical model due to the large number of contributing hydrologic processes. Accurate prediction of interactions between coastal waters, groundwater and neighbouring wetlands, for example, requires the use of integrated surface water-groundwater models. In the past few decades a large number of mathematical models and field methods have been developed in order to quantify the interaction between groundwater and hydraulically connected surface water bodies. Field studies may provide the best data (Hughes, 1995) but are usually expensive and involve too many parameters. In addition, the interpretation of field measurements and linking with modelling tools often proves to be difficult. In contrast, experimental studies are less expensive and provide controlled data. However, experimental studies of surface water-groundwater interaction are less frequently encountered in the literature than filed studies (e.g. Ebrahimi et al., 2007; Kuan et al., 2012; Sparks et al., 2013). To this end, an experimental model has been constructed at the Hyder Hydraulics Laboratory at Cardiff University to enable measurements to be made of groundwater transport through a sand embankment between a tidal water body such as an estuary and a non-tidal water body such as a wetland. The transport behaviour of a conservative tracer was studied for a constant water level on the wetland side of the embankment, while running a continuous tide on the coastal side. The integrated surface water-groundwater numerical model IRENE (Spanoudaki et al., 2009, Spanoudaki, 2010) was also used in the study, with the numerical model predictions being compared with experimental results, which provide a valuable database for model calibration and validation. IRENE couples the 3D, non-steady state Navier-Stokes equations, after Reynolds averaging and with the assumption of hydrostatic pressure distribution, to the equations describing 3D saturated groundwater flow of constant density. The model uses the finite volume method with a cell-centered structured grid providing thus flexibility and accuracy in simulating irregular boundary geometries. A semi-implicit finite difference scheme is used to solve the surface water flow equations, while a fully implicit finite difference scheme is used for the groundwater equations. Pollution interactions are simulated by coupling the advection-diffusion equation describing the fate and transport of contaminants introduced in a 3D turbulent flow field to the partial differential equation describing the fate and transport of contaminants in 3D transient groundwater flow systems. References Ebrahimi, K., Falconer, R.A. and Lin B. (2007). Flow and solute fluxes in integrated wetland and coastal systems. Environmental Modelling and Software, 22 (9), 1337-1348. Hughes, S.A. (1995). Physical Modelling and Laboratory Techniques in Coastal Engineering. World Scientific Publishing Co. Pte. Ltd., Singapore. Kuan, W.K., Jin, G., Xin, P., Robinson, C. Gibbes, B. and Li. L. (2012). Tidal influence on seawater intrusion in unconfined coastal aquifers. Water Resources Research, 48 (2), doi:10.1029/2011WR010678. Spanoudaki, K., Stamou, A.I. and Nanou-Giannarou, A. (2009). Development and verification of a 3-D integrated surface water-groundwater model. Journal of Hydrology, 375 (3-4), 410-427. Spanoudaki, K. (2010). Integrated numerical modelling of surface water groundwater systems (in Greek). Ph.D. Thesis, National Technical University of Athens, Greece. Sparks, T. D., Bockelmann-Evans, B. N. and Falconer, R. A. (2013). Laboratory Validation of an Integrated Surface Water- Groundwater Model. Journal of Water Resource and Protection, 5, 377-394. Winter, T.C., Harvey, J.W., Franke, O.L. and Alley, W.M., 1998. Groundwater and surface water - A single resource. USGS, Circular 1139.
NASA Astrophysics Data System (ADS)
Somova, Lydia; Pisman, Tamara; Mikheeva, Galina; Pechurkin, Nickolay
The life of organisms in an ecosystem depends not only on abiotic factors, but also on the interaction of organisms in which they come with each other. The study of mechanisms of the bioregulation based on ecological - biochemical interactions of ecosystem links is necessary to know the ecosystem development, its stability, survival of ecosystem organisms. It is of high importance as for the creation of artificial ecosystems, and also for the study of natural ecosystems under anthropogenic pressure on them. To create well-functioning ecosystems is necessary to study and consider the basic types of relationships between organisms. The basic types of interactions between organisms have been studied with simple terrestrial and water ecosystems. 1. The interaction of microbiocenoses and plants were studied in experiments with agrocenoses. Microbiocenosis proposed for increase of productivity of plants and for obtaining ecologically pure production of plants has been created taking into account mutual relationships between species of microorganisms. 2. The experimental model of the atmosphere closed «autotroph - heterotroph» system in which heterotrophic link was the mixed population of yeasts (Candida utilis and Candida guilliermondii) was studied. The algae Chlorella vulgaris was used as an autotroph link. It was shown, that the competition result for heterotrophic link depended on strategy of populations of yeast in relation to a substrate and oxygen utilization. 3. As a result of experimental and theoretical modelling of a competition of algae Chlorella vulgaris and Scenedesmus quadricauda at continuous cultivation, the impossibility of their coexistence in the conditions of limitation on nitrogen was shown. 4. Pray-predator interactions between algae (Chlorella vulgaris, Scenedesmus quadricauda) and invertebrates (Paramecium caudatum, Brachionus plicatilis) were studied in experimental closed ecosystem. This work was partly supported by the Russian Foundation for Basic Research, project No.13-06-00060
Impact of observational incompleteness on the structural properties of protein interaction networks
NASA Astrophysics Data System (ADS)
Kuhnt, Mathias; Glauche, Ingmar; Greiner, Martin
2007-01-01
The observed structure of protein interaction networks is corrupted by many false positive/negative links. This observational incompleteness is abstracted as random link removal and a specific, experimentally motivated (spoke) link rearrangement. Their impact on the structural properties of gene-duplication-and-mutation network models is studied. For the degree distribution a curve collapse is found, showing no sensitive dependence on the link removal/rearrangement strengths and disallowing a quantitative extraction of model parameters. The spoke link rearrangement process moves other structural observables, like degree correlations, cluster coefficient and motif frequencies, closer to their counterparts extracted from the yeast data. This underlines the importance to take a precise modeling of the observational incompleteness into account when network structure models are to be quantitatively compared to data.
Residential Mobility, Self-Concept, and Positive Affect in Social Interactions
Oishi, Shigehiro; Lun, Janetta; Sherman, Gary D.
2008-01-01
The present research examined (a) the link between personal history of residential mobility and the self-concept and (b) the implications of such a link for positive affect in social interactions. Study 1 showed that the personal self was more central to the self-definition of frequent movers than to that of nonmovers, whereas the collective self was more central to the self-definition of nonmovers than to that of frequent movers. Results from a laboratory and a 2-week event sampling study (Studies 2 and 3) demonstrated that frequent movers felt happier when an interaction partner accurately perceived their personal selves, whereas nonmovers felt happier when a partner accurately perceived their collective selves. These findings present the first direct evidence on how personal history of residential mobility is linked to important individual differences in the self and positive affect in social interactions. PMID:17605594
Residential mobility, self-concept, and positive affect in social interactions.
Oishi, Shigehiro; Lun, Janetta; Sherman, Gary D
2007-07-01
The present research examined (a) the link between personal history of residential mobility and the self-concept and (b) the implications of such a link for positive affect in social interactions. Study 1 showed that the personal self was more central to the self-definition of frequent movers than to that of nonmovers, whereas the collective self was more central to the self-definition of nonmovers than to that of frequent movers. Results from a laboratory and a 2-week event sampling study (Studies 2 and 3) demonstrated that frequent movers felt happier when an interaction partner accurately perceived their personal selves, whereas nonmovers felt happier when a partner accurately perceived their collective selves. These findings present the first direct evidence on how personal history of residential mobility is linked to important individual differences in the self and positive affect in social interactions. Copyright 2007 APA, all rights reserved.
Mapping HA-tagged protein at the surface of living cells by atomic force microscopy.
Formosa, C; Lachaize, V; Galés, C; Rols, M P; Martin-Yken, H; François, J M; Duval, R E; Dague, E
2015-01-01
Single-molecule force spectroscopy using atomic force microscopy (AFM) is more and more used to detect and map receptors, enzymes, adhesins, or any other molecules at the surface of living cells. To be specific, this technique requires antibodies or ligands covalently attached to the AFM tip that can specifically interact with the protein of interest. Unfortunately, specific antibodies are usually lacking (low affinity and specificity) or are expensive to produce (monoclonal antibodies). An alternative strategy is to tag the protein of interest with a peptide that can be recognized with high specificity and affinity with commercially available antibodies. In this context, we chose to work with the human influenza hemagglutinin (HA) tag (YPYDVPDYA) and labeled two proteins: covalently linked cell wall protein 12 (Ccw12) involved in cell wall remodeling in the yeast Saccharomyces cerevisiae and the β2-adrenergic receptor (β2-AR), a G protein-coupled receptor (GPCR) in higher eukaryotes. We first described the interaction between HA antibodies, immobilized on AFM tips, and HA epitopes, immobilized on epoxy glass slides. Using our system, we then investigated the distribution of Ccw12 proteins over the cell surface of the yeast S. cerevisiae. We were able to find the tagged protein on the surface of mating yeasts, at the tip of the mating projections. Finally, we could unfold multimers of β2-AR from the membrane of living transfected chinese hamster ovary cells. This result is in agreement with GPCR oligomerization in living cell membranes and opens the door to the study of the influence of GPCR ligands on the oligomerization process. Copyright © 2014 John Wiley & Sons, Ltd.
2011-01-01
Background Baculovirus, which has a width of 40 nm and a length of 250-300 nm, can display functional peptides, receptors and antigens on its surface by their fusion with a baculovirus envelop protein, GP64. In addition, some transmembrane proteins can be displayed without GP64 fusion, using the native transmembrane domains of the baculovirus. We used this functionality to display human prorenin receptor fused with GFPuv (GFPuv-hPRR) on the surface of silkworm Bombyx mori nucleopolyhedrovirus (BmNPV) and then tested whether these baculovirus particles could be used to detect protein-protein interactions. Results BmNPV displaying GFPuv-hPRR (BmNPV-GFPuv-hPRR) was purified from hemolymph by using Sephacryl S-1000 column chromatography in the presence of 0.01% Triton X-100. Its recovery was 86% and the final baculovirus particles number was 4.98 × 108 pfu. Based on the results of enzyme-linked immunosorbent assay (ELISA), 3.1% of the total proteins in BmNPV-GFPuv-hPRR were GFPuv-hPRR. This value was similar to that calculated from the result of western blot by a densitometry (2.7%). To determine whether BmNPV-GFPuv-hPRR particles were bound to human prorenin, ELISA results were compared with those from ELISAs using protease negative BmNPV displaying β1,3-N-acetylglucosaminyltransferase 2 fused with the gene encoding GFPuv (GGT2) (BmNPV-CP--GGT2) particles, which do not display hPRR on their surfaces. Conclusion The display of on the surface of the BmNPV particles will be useful for the detection of protein-protein interactions and the screening of inhibitors and drugs in their roles as nanobioparticles. PMID:21635720
Energy transfer networks: Quasicontinuum photoluminescence linked to high densities of defects
Laurence, Ted A.; Ly, Sonny; Bude, Jeff D.; ...
2017-11-06
In a series of studies related to laser-induced damage of optical materials and deposition of plastics, we discovered a broadly emitting photoluminescence with fast lifetimes that we termed quasicontinuum photoluminescence (QC-PL). Here in this paper, we suggest that a high density of optically active defects leads to QC-PL, where interactions between defects affect the temporal and spectral characteristics of both excitation and emission. We develop a model that predicts the temporal characteristics of QC-PL, based on energy transfer interactions between high densities of defects. Our model does not explain all spectral broadening and redshifts found in QC-PL, since we domore » not model spectral changes in defects due to proximity to other defects. However, we do provide an example of a well-defined system that exhibits the QC-PL characteristics of a distribution in shortened lifetimes and broadened, redshifted energy levels: an organic chromophore (fluorescein) that has been dried rapidly on a fused silica surface. Recently, we showed that regions of fused silica exposed to up to 1 billion high-fluence laser shots at 351 rm nm at subdamage fluences exhibit significant transmission losses at the surface. Here, we find that these laser-exposed regions also exhibit QC-PL. Increases in the density of induced defects on these laser-exposed surfaces, as measured by the local transmission loss, lead to decreases in the observed lifetime and redshifts in the spectrum of the QC-PL, consistent with our explanation for QC-PL. In conclusion, we have found QC-PL in an increasing variety of situations and materials, and we believe it is a phenomenon commonly found on surfaces and nanostructured materials.« less
Energy transfer networks: Quasicontinuum photoluminescence linked to high densities of defects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laurence, Ted A.; Ly, Sonny; Bude, Jeff D.
In a series of studies related to laser-induced damage of optical materials and deposition of plastics, we discovered a broadly emitting photoluminescence with fast lifetimes that we termed quasicontinuum photoluminescence (QC-PL). Here in this paper, we suggest that a high density of optically active defects leads to QC-PL, where interactions between defects affect the temporal and spectral characteristics of both excitation and emission. We develop a model that predicts the temporal characteristics of QC-PL, based on energy transfer interactions between high densities of defects. Our model does not explain all spectral broadening and redshifts found in QC-PL, since we domore » not model spectral changes in defects due to proximity to other defects. However, we do provide an example of a well-defined system that exhibits the QC-PL characteristics of a distribution in shortened lifetimes and broadened, redshifted energy levels: an organic chromophore (fluorescein) that has been dried rapidly on a fused silica surface. Recently, we showed that regions of fused silica exposed to up to 1 billion high-fluence laser shots at 351 rm nm at subdamage fluences exhibit significant transmission losses at the surface. Here, we find that these laser-exposed regions also exhibit QC-PL. Increases in the density of induced defects on these laser-exposed surfaces, as measured by the local transmission loss, lead to decreases in the observed lifetime and redshifts in the spectrum of the QC-PL, consistent with our explanation for QC-PL. In conclusion, we have found QC-PL in an increasing variety of situations and materials, and we believe it is a phenomenon commonly found on surfaces and nanostructured materials.« less
Energy transfer networks: Quasicontinuum photoluminescence linked to high densities of defects
NASA Astrophysics Data System (ADS)
Laurence, Ted A.; Ly, Sonny; Bude, Jeff D.; Baxamusa, Salmaan H.; Lepró, Xavier; Ehrmann, Paul
2017-11-01
In a series of studies related to laser-induced damage of optical materials and deposition of plastics, we discovered a broadly emitting photoluminescence with fast lifetimes that we termed quasicontinuum photoluminescence (QC-PL). Here, we suggest that a high density of optically active defects leads to QC-PL, where interactions between defects affect the temporal and spectral characteristics of both excitation and emission. We develop a model that predicts the temporal characteristics of QC-PL, based on energy transfer interactions between high densities of defects. Our model does not explain all spectral broadening and redshifts found in QC-PL, since we do not model spectral changes in defects due to proximity to other defects. However, we do provide an example of a well-defined system that exhibits the QC-PL characteristics of a distribution in shortened lifetimes and broadened, redshifted energy levels: an organic chromophore (fluorescein) that has been dried rapidly on a fused silica surface. Recently, we showed that regions of fused silica exposed to up to 1 billion high-fluence laser shots at 351 rm nm at subdamage fluences exhibit significant transmission losses at the surface. Here, we find that these laser-exposed regions also exhibit QC-PL. Increases in the density of induced defects on these laser-exposed surfaces, as measured by the local transmission loss, lead to decreases in the observed lifetime and redshifts in the spectrum of the QC-PL, consistent with our explanation for QC-PL. We have found QC-PL in an increasing variety of situations and materials, and we believe it is a phenomenon commonly found on surfaces and nanostructured materials.
NASA Astrophysics Data System (ADS)
Tessema, Tsemre Dingel Mesfin
The use of porous sorbents for physisorptive capture of CO2 from gas mixtures has been deemed attractive due to the low energy penalty associated with recycling of such materials. Porous organic polymers (POPs) have emerged as promising candidates with potential in the treatment of pre- and post- fuel combustion processes to separate CO2 from gas mixtures. Concurrently, significant advances have been made in establishing calculation methods that evaluate the practicality of porous sorbents for targeted gas separation applications. However, these methods rely on single gas adsorption isotherms without accounting for the dynamic gas mixtures encountered in real-life applications. To this end, the design and application of a dynamic gas mixture breakthrough apparatus to assess the CO2 separation performance of a new class of heteroatom (N and O) doped porous carbons derived from a Pyrazole precursor from flue gas mixtures is presented. Here in, two new benzimidazole linked polymers (BILPs) have been designed and synthesized. These polymers display high surface while their imidazole functionality and microporous nature resulted in high CO2 uptakes and isosteric heat of adsorption (Qst). BILP-30 displayed very good selectivity for CO2 in flue gas while BILP-31 was superior in CO2 separation from landfill gas mixtures at 298 K and 1 bar. Additionally, a new POP incorporating a highly conjugated pyrene core into a polymer framework linked by azo-bonds is presented. Azo-Py displays a nanofibrous morphology induced by the pi-pi stacking of the electron rich pyrene core. Due to its high surface area and microporous nature, Azo-Py displays impressive CO2 uptakes at 298 K and 1 bar. Evaluation of the S value for CO2 separation of Azo-Py revealed competitive values for flue gas and landfill gas at 298 K and 1 bar. Finally, a highly cross-linked benzimidazole linked polymer, BILP-4, was successfully incorporated into MatrimidRTM polymer to form a series of new mixed matrix membranes. The surface functionality of BILP-4 was exploited to enhance the interaction with MatrimidRTM polymer matrix to produce robust MMMs which displayed significantly improved CO2 gas permeabilities and ideal selectivities for CO 2/N2.
ERIC Educational Resources Information Center
Kokkinos, Constantinos M.; Voulgaridou, Ioanna; Mandrali, Marianna; Parousidou, Chrysoula
2016-01-01
The aim of this study was to investigate possible interactive links between theory of mind (ToM), moral disengagement and relational aggression, using a moderated mediation analysis, with gender as a moderator, in a sample of 120 Greek preadolescents. Results indicated that relational aggression was significantly positively associated with moral…
Examining the Characteristics of Student Postings That Are Liked and Linked in a CSCL Environment
ERIC Educational Resources Information Center
Makos, Alexandra; Lee, Kyungmee; Zingaro, Daniel
2015-01-01
This case study is the first iteration of a large-scale design-based research project to improve Pepper, an interactive discussion-based learning environment. In this phase, we designed and implemented two social features to scaffold positive learner interactivity behaviors: a "Like" button and linking tool. A mixed-methods approach was…
ERIC Educational Resources Information Center
Finzel, Kara; Beld, Joris; Burkart, Michael D.; Charkoudian, Louise K.
2017-01-01
Over the past decade, mechanistic cross-linking probes have been used to study protein-protein interactions in natural product biosynthetic pathways. This approach is highly interdisciplinary, combining elements of protein biochemistry, organic chemistry, and computational docking. Herein, we described the development of an experiment to engage…
NASA Astrophysics Data System (ADS)
Ridley, Moira K.; Hiemstra, Tjisse; van Riemsdijk, Willem H.; Machesky, Michael L.
2009-04-01
Acid-base reactivity and ion-interaction between mineral surfaces and aqueous solutions is most frequently investigated at the macroscopic scale as a function of pH. Experimental data are then rationalized by a variety of surface complexation models. These models are thermodynamically based which in principle does not require a molecular picture. The models are typically calibrated to relatively simple solid-electrolyte solution pairs and may provide poor descriptions of complex multi-component mineral-aqueous solutions, including those found in natural environments. Surface complexation models may be improved by incorporating molecular-scale surface structural information to constrain the modeling efforts. Here, we apply a concise, molecularly-constrained surface complexation model to a diverse suite of surface titration data for rutile and thereby begin to address the complexity of multi-component systems. Primary surface charging curves in NaCl, KCl, and RbCl electrolyte media were fit simultaneously using a charge distribution (CD) and multisite complexation (MUSIC) model [Hiemstra T. and Van Riemsdijk W. H. (1996) A surface structural approach to ion adsorption: the charge distribution (CD) model. J. Colloid Interf. Sci. 179, 488-508], coupled with a Basic Stern layer description of the electric double layer. In addition, data for the specific interaction of Ca 2+ and Sr 2+ with rutile, in NaCl and RbCl media, were modeled. In recent developments, spectroscopy, quantum calculations, and molecular simulations have shown that electrolyte and divalent cations are principally adsorbed in various inner-sphere configurations on the rutile 1 1 0 surface [Zhang Z., Fenter P., Cheng L., Sturchio N. C., Bedzyk M. J., Předota M., Bandura A., Kubicki J., Lvov S. N., Cummings P. T., Chialvo A. A., Ridley M. K., Bénézeth P., Anovitz L., Palmer D. A., Machesky M. L. and Wesolowski D. J. (2004) Ion adsorption at the rutile-water interface: linking molecular and macroscopic properties. Langmuir20, 4954-4969]. Our CD modeling results are consistent with these adsorbed configurations provided adsorbed cation charge is allowed to be distributed between the surface (0-plane) and Stern plane (1-plane). Additionally, a complete description of our titration data required inclusion of outer-sphere binding, principally for Cl - which was common to all solutions, but also for Rb + and K +. These outer-sphere species were treated as point charges positioned at the Stern layer, and hence determined the Stern layer capacitance value. The modeling results demonstrate that a multi-component suite of experimental data can be successfully rationalized within a CD and MUSIC model using a Stern-based description of the EDL. Furthermore, the fitted CD values of the various inner-sphere complexes of the mono- and divalent ions can be linked to the microscopic structure of the surface complexes and other data found by spectroscopy as well as molecular dynamics (MD). For the Na + ion, the fitted CD value points to the presence of bidenate inner-sphere complexation as suggested by a recent MD study. Moreover, its MD dominance quantitatively agrees with the CD model prediction. For Rb +, the presence of a tetradentate complex, as found by spectroscopy, agreed well with the fitted CD and its predicted presence was quantitatively in very good agreement with the amount found by spectroscopy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ridley, Mora K.; Hiemstra, T; Van Riemsdijk, Willem H.
Acid base reactivity and ion-interaction between mineral surfaces and aqueous solutions is most frequently investigated at the macroscopic scale as a function of pH. Experimental data are then rationalized by a variety of surface complexation models. These models are thermodynamically based which in principle does not require a molecular picture. The models are typically calibrated to relatively simple solid-electrolyte solution pairs and may provide poor descriptions of complex multicomponent mineral aqueous solutions, including those found in natural environments. Surface complexation models may be improved by incorporating molecular-scale surface structural information to constrain the modeling efforts. Here, we apply a concise,more » molecularly-constrained surface complexation model to a diverse suite of surface titration data for rutile and thereby begin to address the complexity of multi-component systems. Primary surface charging curves in NaCl, KCl, and RbCl electrolyte media were fit simultaneously using a charge distribution (CD) and multisite complexation (MUSIC) model [Hiemstra T. and Van Riemsdijk W. H. (1996) A surface structural approach to ion adsorption: the charge distribution (CD) model. J. Colloid Interf. Sci. 179, 488 508], coupled with a Basic Stern layer description of the electric double layer. In addition, data for the specific interaction of Ca2+ and Sr2+ with rutile, in NaCl and RbCl media, were modeled. In recent developments, spectroscopy, quantum calculations, and molecular simulations have shown that electrolyte and divalent cations are principally adsorbed in various inner-sphere configurations on the rutile 110 surface [Zhang Z., Fenter P., Cheng L., Sturchio N. C., Bedzyk M. J., Pr edota M., Bandura A., Kubicki J., Lvov S. N., Cummings P. T., Chialvo A. A., Ridley M. K., Be ne zeth P., Anovitz L., Palmer D. A., Machesky M. L. and Wesolowski D. J. (2004) Ion adsorption at the rutile water interface: linking molecular and macroscopic properties. Langmuir 20, 4954 4969]. Our CD modeling results are consistent with these adsorbed configurations provided adsorbed cation charge is allowed to be distributed between the surface (0-plane) and Stern plane (1-plane). Additionally, a complete description of our titration data required inclusion of outer-sphere binding, principally for Cl which was common to all solutions, but also for Rb+ and K+. These outer-sphere species were treated as point charges positioned at the Stern layer, and hence determined the Stern layer capacitance value. The modeling results demonstrate that a multi-component suite of experimental data can be successfully rationalized within a CD and MUSIC model using a Stern-based description of the EDL. Furthermore, the fitted CD values of the various inner-sphere complexes of the mono- and divalent ions can be linked to the microscopic structure of the surface complexes and other data found by spectroscopy as well as molecular dynamics (MD). For the Na+ ion, the fitted CD value points to the presence of bidenate inner-sphere complexation as suggested by a recent MD study. Moreover, its MD dominance quantitatively agrees with the CD model prediction. For Rb+, the presence of a tetradentate complex, as found by spectroscopy, agreed well with the fitted CD and its predicted presence was quantitatively in very good agreement with the amount found by spectroscopy.« less
NASA Astrophysics Data System (ADS)
Shafigulin, R. V.; Konstantinov, A. V.; Bulanova, A. V.; Il'in, M. M.; Davankov, V. A.
2016-11-01
Study of the main physicochemical features of the sorption of phenylamide adamantane derivatives on hyper-cross-linked polystyrene from water-acetonitrile solutions shows that both hydrophobic and electronic interactions make a large contribution to retention, especially for a chlorine-containing derivative in which there are π- p and π- d interactions between the outer-shell electrons of the chlorine atom in addition to π- π interactions between aromatic fragments of the sorbate and sorbent.
Photochromic cross-link polymer for color changing and sensing surface
NASA Astrophysics Data System (ADS)
Fu, Richard; Shi, Jianmin; Forsythe, Eric; Srour, Merric
2016-12-01
Photochromic cross-link polymers were developed using patented ultraviolet (UV) photoinitiator and commercial photochromic dyes. The photochromic dyes have been characterized by measuring absorbance before and after UV activation using UV-visible (Vis) spectrometry with varying activation intensities and wavelengths. Photochromic cross-link polymers were characterized by a dynamic xenon and UV light activation and fading system. The curing processes on cloth were established and tested to obtain effective photochromic responses. Both PulseForge photonic curing and PulseForge plus heat surface curing processes had much better photochromic responses (18% to 19%, 16% to 25%, respectively) than the xenon lamp treatment (8%). The newly developed photochromic cross-link polymer showed remarkable coloration contrasts and fast and comparable coloration and fading rates. Those intelligent, controlled color changing and sensing capabilities will be used on flexible and "drapeable" surfaces, which will incorporate ultra-low power sensors, sensor indicators, and identifiers.
Cross-Linking Studies of Lysozyme Nucleation
NASA Technical Reports Server (NTRS)
Forsythe, Elizabeth; Pusey, Marc
2000-01-01
Tetragonal chicken egg white crystals consist of 4(sub 3) helices running in alternating directions, the helix rows having a two fold symmetry with each other. The unit cell consists of one complete tetrameric turn from each of two adjacent helices (an octamer). PBC analysis indicates that the helix intermolecular bonds are the strongest in the crystal, therefore likely formed first. AFM analysis of the (110) surface shows only complete helices, no half steps or bisected helices being found, while AFM line scans to measure the growth step increments show that they are multiples of the 4(sub 3) helix tetramer dimensions. This supports our thesis that the growth units are in fact multiples of the four molecule 4(sub 3) helix unit, the "average" growth unit size for the (110) face being an octamer (two turns about the helix) and the (101) growth unit averaging about the size of a hexamer. In an effort to better understand the species involved in the crystal nucleation and growth process, we have initiated an experimental program to study the species formed in solution compared to what is found in the crystal through covalent cross-linking studies. These experiments use the heterobifunctional cross-linking agent aminoethyl-4-azidonitroanaline (AEANA). An aliphatic amine at one end is covalently attached to the protein by a carbodiimide-mediated reaction, and a photo reactive group at the other can be used to initiate crosslinking. Modifications to the parent structure can be used to alter the distance between the two reactive groups and thus the cross-linking agents "reach". In practice, the cross-linking agent is first coupled to the asp101 side chain through the amine group. Asp101 lies within the active site cleft, and previous work with fluorescent probes had shown that derivatives at this site still crystallize in the tetragonal space group. This was also found to be the case with the AEANA derivative, which gave red tetragonal crystals. The protein now has a reactive group that can be photoactivated at a specific point in the nucleation or crystal growth process to "capture" protein molecules bound within reach of the crosslinking agent. If those bound protein molecules have a defined geometric relationship with the capturing molecule, such as would be found in a crystal, then the photoreacted cross-linking site should be consistent. Random protein interactions, typical of an amorphous precipitate or interaction, would show a random cross-linking reaction. The results of these and other experiments will be presented.
Publishing high-quality climate data on the semantic web
NASA Astrophysics Data System (ADS)
Woolf, Andrew; Haller, Armin; Lefort, Laurent; Taylor, Kerry
2013-04-01
The effort over more than a decade to establish the semantic web [Berners-Lee et. al., 2001] has received a major boost in recent years through the Open Government movement. Governments around the world are seeking technical solutions to enable more open and transparent access to Public Sector Information (PSI) they hold. Existing technical protocols and data standards tend to be domain specific, and so limit the ability to publish and integrate data across domains (health, environment, statistics, education, etc.). The web provides a domain-neutral platform for information publishing, and has proven itself beyond expectations for publishing and linking human-readable electronic documents. Extending the web pattern to data (often called Web 3.0) offers enormous potential. The semantic web applies the basic web principles to data [Berners-Lee, 2006]: using URIs as identifiers (for data objects and real-world 'things', instead of documents) making the URIs actionable by providing useful information via HTTP using a common exchange standard (serialised RDF for data instead of HTML for documents) establishing typed links between information objects to enable linking and integration Leading examples of 'linked data' for publishing PSI may be found in both the UK (http://data.gov.uk/linked-data) and US (http://www.data.gov/page/semantic-web). The Bureau of Meteorology (BoM) is Australia's national meteorological agency, and has a new mandate to establish a national environmental information infrastructure (under the National Plan for Environmental Information, NPEI [BoM, 2012a]). While the initial approach is based on the existing best practice Spatial Data Infrastructure (SDI) architecture, linked-data is being explored as a technological alternative that shows great promise for the future. We report here the first trial of government linked-data in Australia under data.gov.au. In this initial pilot study, we have taken BoM's new high-quality reference surface temperature dataset, Australian Climate Observations Reference Network - Surface Air Temperature (ACORN-SAT) [BoM, 2012b]. This dataset contains daily homogenised surface temperature observations for 112 locations around Australia, dating back to 1910. An ontology for the dataset was developed [Lefort et. al., 2012], based on the existing Semantic Sensor Network ontology [Compton et. al., 2012] and the W3C RDF Data Cube vocabulary [W3C, 2012]. Additional vocabularies were developed, e.g. for BoM weather stations and rainfall districts. The dataset was converted to RDF and loaded into an RDF triplestore. The Linked-Data API (http://code.google.com/p/linked-data-api) was used to configure specific URI query patterns (e.g. for observation timeseries slices by station), and a SPARQL endpoint was provided for direct querying. In addition, some demonstration 'mash-ups' were developed, providing an interactive browser-based interface to the temperature timeseries. References [Berners-Lee et. al., 2001] Tim Berners-Lee, James Hendler and Ora Lassila (2001), "The Semantic Web", Scientific American, May 2001. [Berners-Lee, 2006] Tim Berners-Lee (2006), "Linked Data - Design Issues", W3C [http://www.w3.org/DesignIssues/LinkedData.html] [BoM, 2012a] Bureau of Meteorology (2012), "Environmental information" [http://www.bom.gov.au/environment/] [BoM, 2012b] Bureau of Meteorology (2012), "Australian Climate Observations Reference Network - Surface Air Temperature" [http://www.bom.gov.au/climate/change/acorn-sat/] [Compton et. al., 2012] Michael Compton, Payam Barnaghi, Luis Bermudez, Raul Garcia-Castro, Oscar Corcho, Simon Cox, John Graybeal, Manfred Hauswirth, Cory Henson, Arthur Herzog, Vincent Huang, Krzysztof Janowicz, W. David Kelsey, Danh Le Phuoc, Laurent Lefort, Myriam Leggieri, Holger Neuhaus, Andriy Nikolov, Kevin Page, Alexandre Passant, Amit Sheth, Kerry Taylor (2012), "The SSN Ontology of the W3C Semantic Sensor Network Incubator Group", J. Web Semantics, 17 (2012) [http://dx.doi.org/10.1016/j.websem.2012.05.003] [Lefort et. al., 2012] Laurent Lefort, Josh Bobruk, Armin Haller, Kerry Taylor and Andrew Woolf (2012), "A Linked Sensor Data Cube for a 100 Year Homogenised daily temperature dataset", Proc. Semantic Sensor Networks 2012 [http://ceur-ws.org/Vol-904/paper10.pdf] [W3C, 2012] W3C (2012), "The RDF Data Cube Vocabulary", [http://www.w3.org/TR/vocab-data-cube/
Tropical West Pacific Imagery - Satellite Products and Services
Division/Office of Satellite and Product Operations Skip Navigation Link NESDIS banner image Information Service Home Page Default Office of Satellite and Product Operations banner image and link to OSPO MIRS MSPPS Ocean -- Coral Bleaching -- Ocean Color -- Sea/Lake Ice -- Sea Surface Height -- Sea Surface
Scheimpflug imaged corneal changes on anterior and posterior surfaces after collagen cross-linking
Hassan, Ziad; Modis, Laszlo; Szalai, Eszter; Berta, Andras; Nemeth, Gabor
2014-01-01
AIM To compare the anterior and posterior corneal parameters before and after collagen cross-linking therapy for keratoconus. METHODS Collagen cross-linking was performed in 31 eyes of 31 keratoconus patients (mean age 30.6±8.9y). Prior to treatment and an average 7mo after therapy, Scheimpflug analysis was performed using Pentacam HR. In addition to corneal thickness assessments, corneal radius, elevation, and aberrometric measurements were performed both on anterior and posterior corneal surfaces. Data obtained before and after surgery were statistically analyzed. RESULTS In terms of horizontal and vertical corneal radius, and central corneal thickness no deviations were observed an average 7mo after operation. Corneal higher order aberration showed no difference neither on anterior nor on posterior corneal surfaces. During follow-up period, no significant deviation was detected regarding elevation values obtained by measurement in mm units between the 3.0-8.0 mm-zones. CONCLUSION Corneal stabilization could be observed in terms of anterior and posterior corneal surfaces, elevation and higher order aberration values 7mo after collagen cross-linking therapy for keratoconus. PMID:24790876
Formaldehyde cross-linking and structural proteomics: Bridging the gap.
Srinivasa, Savita; Ding, Xuan; Kast, Juergen
2015-11-01
Proteins are dynamic entities constantly moving and altering their structures based on their functions and interactions inside and outside the cell. Formaldehyde cross-linking combined with mass spectrometry can accurately capture interactions of these rapidly changing biomolecules while maintaining their physiological surroundings. Even with its numerous established uses in biology and compatibility with mass spectrometry, formaldehyde has not yet been applied in structural proteomics. However, formaldehyde cross-linking is moving toward analyzing tertiary structure, which conventional cross-linkers have already accomplished. The purpose of this review is to describe the potential of formaldehyde cross-linking in structural proteomics by highlighting its applications, characteristics and current status in the field. Copyright © 2015 Elsevier Inc. All rights reserved.
Marican, Adolfo; Avila-Salas, Fabián; Valdés, Oscar; Wehinger, Sergio; Villaseñor, Jorge; Fuentealba, Natalia; Arenas-Salinas, Mauricio; Argandoña, Yerko; Carrasco-Sánchez, Verónica; Durán-Lara, Esteban F
2018-03-07
This study describes the in-silico rational design, synthesis and evaluation of cross-linked polyvinyl alcohol hydrogels containing γ-cyclodextrin (γ-CDHSAs) as platforms for the sustained release of prednisone (PDN). Through in-silico studies using semi-empirical quantum mechanical calculations, the effectiveness of 20 dicarboxylic acids to generate a specific cross-linked hydrogel capable of supporting different amounts of γ-cyclodextrin (γ-CD) was evaluated. According to the interaction energies calculated with the in-silico studies, the hydrogel made from PVA cross-linked with succinic acids (SA) was shown to be the best candidate for containing γ-CD. Later, molecular dynamics simulation studies were performed in order to evaluate the intermolecular interactions between PDN and three cross-linked hydrogel formulations with different proportions of γ-CD (2.44%, 4.76% and 9.1%). These three cross-linked hydrogels were synthesized and characterized. The loading and the subsequent release of PDN from the hydrogels were investigated. The in-silico and experimental results showed that the interaction between PDN and γ-CDHSA was mainly produced with the γ-CDs linked to the hydrogels. Thus, the unique structures and properties of γ-CDHSA demonstrated an interesting multiphasic profile that could be utilized as a promising drug carrier for controlled, sustained and localized release of PDN.
Marican, Adolfo; Valdés, Oscar; Wehinger, Sergio; Villaseñor, Jorge; Fuentealba, Natalia; Argandoña, Yerko; Carrasco-Sánchez, Verónica
2018-01-01
This study describes the in-silico rational design, synthesis and evaluation of cross-linked polyvinyl alcohol hydrogels containing γ-cyclodextrin (γ-CDHSAs) as platforms for the sustained release of prednisone (PDN). Through in-silico studies using semi-empirical quantum mechanical calculations, the effectiveness of 20 dicarboxylic acids to generate a specific cross-linked hydrogel capable of supporting different amounts of γ-cyclodextrin (γ-CD) was evaluated. According to the interaction energies calculated with the in-silico studies, the hydrogel made from PVA cross-linked with succinic acids (SA) was shown to be the best candidate for containing γ-CD. Later, molecular dynamics simulation studies were performed in order to evaluate the intermolecular interactions between PDN and three cross-linked hydrogel formulations with different proportions of γ-CD (2.44%, 4.76% and 9.1%). These three cross-linked hydrogels were synthesized and characterized. The loading and the subsequent release of PDN from the hydrogels were investigated. The in-silico and experimental results showed that the interaction between PDN and γ-CDHSA was mainly produced with the γ-CDs linked to the hydrogels. Thus, the unique structures and properties of γ-CDHSA demonstrated an interesting multiphasic profile that could be utilized as a promising drug carrier for controlled, sustained and localized release of PDN. PMID:29518980
Shepherd, Jason [Albuquerque, NM; Mitchell, Scott A [Albuquerque, NM; Jankovich, Steven R [Anaheim, CA; Benzley, Steven E [Provo, UT
2007-05-15
The present invention provides a meshing method, called grafting, that lifts the prior art constraint on abutting surfaces, including surfaces that are linking, source/target, or other types of surfaces of the trunk volume. The grafting method locally modifies the structured mesh of the linking surfaces allowing the mesh to conform to additional surface features. Thus, the grafting method can provide a transition between multiple sweep directions extending sweeping algorithms to 23/4-D solids. The method is also suitable for use with non-sweepable volumes; the method provides a transition between meshes generated by methods other than sweeping as well.
Weak Vertical Surface Movement Caused by the Ascent of the Emeishan Mantle Anomaly
NASA Astrophysics Data System (ADS)
Zhu, Jiang; Zhang, Zhaochong; Reichow, Marc K.; Li, Hongbo; Cai, Wenchang; Pan, Ronghao
2018-02-01
Prevailing mantle plume models reveal that the roles of plume-lithosphere interactions in shaping surface topography are complex and controversial, and also difficult to test. The exposed and complete strata in the Emeishan large igneous province (LIP) recorded abundant paleoenvironmental information associated with preeruptions and syneruptions, attracting numerous workers to this province to test these models. Despite intensified research these models are still strongly debated. This study represents an extensive field investigation combining new and previously published data from the Emeishan LIP to further seek information on plume-induced topographic variations. Our results indicate that there are inconspicuous vertical motions of the surface topography during the ascent of mantle plume, and a significant surface subsidence occurred at the early stage of the volcanism that has a significantly positive correlation with the thickness of local lavas, and the topographic uplift emerged in the late stage of the volcanism. Our studies provide key geological and geochemical evidence that the ascent of the Emeishan plume is unable to drive a significant surface uplift, owing to the plume containing numerous entrained bodies of dense recycled oceanic crust (10-20%) that can significantly reduce plume buoyancy. The significant surface subsidence maybe linked to a significant loss of thermal buoyancy due to the release of heat, which, accompanied by rapid loading of numerous dense erupted lava and a strong lithospheric flexure, also lead to a later synchronous and significant surface subsidence in the Emeishan LIP.
NASA Astrophysics Data System (ADS)
Yoo, Jung-Keun; Jeon, Jaebeom; Kang, Kisuk; Jung, Yeon Sik
2017-03-01
Recently, investigation of Si-based anode materials for rechargeable battery applications garnered much interest due to its exceptionally high capacity. High-capacity Si anode ( 4,200 mAhg-1) is highly desirable for the replacement of conventional graphite anode (< 400 mAhg-1) for large-scale energy-storage applications such as in electric vehicles (EVs) and energy storage systems (ESSs) for renewable energy sources. However, Si-based anodes suffer from poor cycling stability due to their large volumetric changes during repeated Li insertion. Therefore, development of highly efficient binder materials that can suppress the volume change of Si is one of the most essential parts of improving the performance of batteries. We herein demonstrate highly cross-linked polymeric binder (glyoxalated polyacrylamide) with an enhanced mechanical property by applying wet-strengthening chemistry used in paper industry. We found that the degree of cross-linking can be systematically adjusted by controlling the acidity of the slurry and has a profound effect on the cell performance using Si anode. The enhanced cycle performance of Si nanoparticles obtained by treating the binder at pH 4 can be explained by its strong interaction between the binder and Si surface and current collector, and also rigidity of binder by cross-linking.
Thermoresponsive microgels containing trehalose as soft matrices for 3D cell culture.
Burek, Małgorzata; Waśkiewicz, Sylwia; Lalik, Anna; Student, Sebastian; Bieg, Tadeusz; Wandzik, Ilona
2017-01-31
A series of thermoresponsive glycomicrogels with trehalose in the cross-links or with trehalose in the cross-links and as pending moieties was synthesized. These materials were obtained by surfactant-free precipitation copolymerization of N-isopropylacrylamide and various amounts of trehalose monomers. The resultant particles showed a spherical shape and a submicrometer hydrodynamic size with a narrow size distribution. At 25 °C, glycomicrogels in solutions with physiological ionic strength formed stable colloids, which further gelled upon heating to physiological temperature forming a macroscopic hydrogel with an interconnected porous structure. These extremely soft matrices with dynamic storage modulus in the range of 9-70 Pa were examined in 3D culture systems for HeLa cell culture in comparison to traditional 2D mode. They showed relatively low syneresis over time, especially when glycomicrogels with a high content of hydrophilic trehalose were used as building blocks. An incorporated pending trehalose composed of two α,α'-1,1'-linked d-glucose moieties was used with the intention of providing multivalent interactions with glucose transporters (GLUTs) expressed on the cell surface. A better cell viability was observed when a soft hydrogel with the highest content of trehalose and the lowest syneresis was used as a matrix compared to a 2D control assay.
Adsorption and bioactivity studies of albumin onto hydroxyapatite surface.
Mavropoulos, Elena; Costa, Andréa M; Costa, Lilian T; Achete, Carlos A; Mello, Alexandre; Granjeiro, José M; Rossi, Alexandre M
2011-03-01
Bovine serum albumin (BSA) may have an inhibitory or promoter effect on hydroxyapatite (HA) nucleation when apatite is precipitated in a medium containing the protein. In this study we evaluated the influence of BSA on the precipitation of calcium phosphate phases (CP) from simulated body fluid (SBF) when the protein was previously bounded to HA surface. The kinetics of BSA immobilization onto hydroxyapatite surface was performed in different buffers and protein concentrations in order to adjust experimental conditions in which BSA was tightly linked to HA surface for long periods in SBF solution. It was shown that for BSA concentration higher than 0.1mg/mL the adsorption to HA surface followed Langmuir-Freundlich mechanisms, which confirmed the existence of cooperative protein-protein interactions on HA surface. Fourier Transformed Infrared Attenuated Total Reflectance Microscopy (FTIRM-ATR) evidenced changes in BSA conformational state in favor of less-ordered structure. Analyses from high resolution grazing incident X-ray diffraction using synchrotron radiation (GIXRD), Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM) showed that a poorly crystalline calcium phosphate was precipitated on the surface of HA discs coated with BSA, after the immersion in SBF for 4 days. The new bioactive layer had morphological characteristics similar to the one formed on the HA surface without protein. It was identified as a carbonated apatite with preferential crystal growth along apatite 002 direction. The GIXRD results also revealed that BSA layer bound to the surface inhibited the HA dissolution leading to a reduction on the formation of new calcium phosphate phase. 2010 Elsevier B.V. All rights reserved.
Specificity of marine microbial surface interactions.
Imam, S H; Bard, R F; Tosteson, T R
1984-01-01
The macromolecular surface components involved in intraspecific cell surface interactions of the green microalga Chlorella vulgaris and closely associated bacteria were investigated. The specific surface attachment between this alga and its associated bacteria is mediated by lectin-like macromolecules associated with the surfaces of these cells. The binding activity of these surface polymers was inhibited by specific simple sugars; this suggests the involvement of specific receptor-ligand binding sites on the interactive surfaces. Epifluorescent microscopic evaluation of bacteria-alga interactions in the presence and absence of the macromolecules that mediate these interactions showed that the glycoproteins active in these processes were specific to the microbial sources from which they were obtained. The demonstration and definition of the specificity of these interactions in mixed microbial populations may play an important role in our understanding of the dynamics of marine microbial populations in the sea. PMID:6508293
Regulating DNA Self-assembly by DNA-Surface Interactions.
Liu, Longfei; Li, Yulin; Wang, Yong; Zheng, Jianwei; Mao, Chengde
2017-12-14
DNA self-assembly provides a powerful approach for preparation of nanostructures. It is often studied in bulk solution and involves only DNA-DNA interactions. When confined to surfaces, DNA-surface interactions become an additional, important factor to DNA self-assembly. However, the way in which DNA-surface interactions influence DNA self-assembly is not well studied. In this study, we showed that weak DNA-DNA interactions could be stabilized by DNA-surface interactions to allow large DNA nanostructures to form. In addition, the assembly can be conducted isothermally at room temperature in as little as 5 seconds. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Relay Support for the Mars Science Laboratory Mission
NASA Technical Reports Server (NTRS)
Edwards, Charles D. Jr,; Bell, David J.; Gladden, Roy E.; Ilott, Peter A.; Jedrey, Thomas C.; Johnston, M. Daniel; Maxwell, Jennifer L.; Mendoza, Ricardo; McSmith, Gaylon W.; Potts, Christopher L.;
2013-01-01
The Mars Science Laboratory (MSL) mission landed the Curiosity Rover on the surface of Mars on August 6, 2012, beginning a one-Martian-year primary science mission. An international network of Mars relay orbiters, including NASA's 2001 Mars Odyssey Orbiter (ODY) and Mars Reconnaissance Orbiter (MRO), and ESA's Mars Express Orbiter (MEX), were positioned to provide critical event coverage of MSL's Entry, Descent, and Landing (EDL). The EDL communication plan took advantage of unique and complementary capabilities of each orbiter to provide robust information capture during this critical event while also providing low-latency information during the landing. Once on the surface, ODY and MRO have provided effectively all of Curiosity's data return from the Martian surface. The link from Curiosity to MRO incorporates a number of new features enabled by the Electra and Electra-Lite software-defined radios on MRO and Curiosity, respectively. Specifically, the Curiosity-MRO link has for the first time on Mars relay links utilized frequency-agile operations, data rates up to 2.048 Mb/s, suppressed carrier modulation, and a new Adaptive Data Rate algorithm in which the return link data rate is optimally varied throughout the relay pass based on the actual observed link channel characteristics. In addition to the baseline surface relay support by ODY and MRO, the MEX relay service has been verified in several successful surface relay passes, and MEX now stands ready to provide backup relay support should NASA's orbiters become unavailable for some period of time.
Particle-Surface Interaction Model and Method of Determining Particle-Surface Interactions
NASA Technical Reports Server (NTRS)
Hughes, David W. (Inventor)
2012-01-01
A method and model of predicting particle-surface interactions with a surface, such as the surface of a spacecraft. The method includes the steps of: determining a trajectory path of a plurality of moving particles; predicting whether any of the moving particles will intersect a surface; predicting whether any of the particles will be captured by the surface and/or; predicting a reflected trajectory and velocity of particles reflected from the surface.
Pandey, Satya Deo; Pal, Shilpa; Kumar N, Ganesh; Bansal, Ankita; Mallick, Sathi; Ghosh, Anindya S
2018-05-07
During the peptidoglycan (PG) maturation of mycobacteria, the glycan strands are interlinked by both 3-3 (between two meso-DAP) and 4-3 cross-links (between D-ala and meso-DAP), though there is a predominance (60-80%) of 3-3 cross-links. The DD-CPases act on pentapeptides to generate tetrapeptides that are used by LD-transpeptidases as substrates to form 3-3 cross-links. Therefore, DD-CPases play a crucial role in mycobacterial PG cross-link formation. However, the physiology of DD-CPases in mycobacteria is relatively unexplored. Here, we deleted two DD-CPase genes, msmeg_2433 , and msmeg_2432 , both individually and in combination, from Mycobacterium smegmatis mc 2 155. Though the single DD-CPase deletions had no significant impact on the mycobacterial physiology, many interesting functional alterations were observed in the double deletion mutant, viz. , a predominance in PG cross-link formation was shifted from 3-3 cross-links to 4-3, cell surface glycopeptidolipid (GPL) expression was reduced and susceptibility towards β-lactams and anti-tubercular agents was enhanced. Moreover, the existence of the double mutant within murine macrophages was better as compared to the parent. Interestingly, the complementation with any one of the DD-CPase genes could restore the wild-type phenotype. In a nutshell, we infer that the altered ratio of 4-3: 3-3 PG cross-links might have influenced the expression of surface GPLs, colony morphology, biofilm formation,, drug susceptibility and subsistence of the cells within macrophages. Importance The glycan strands in mycobacterial peptidoglycan (PG) are interlinked by both 3-3 and 4-3 cross-links. The DD-CPases generate tetrapeptides by acting on the pentapeptides, and LD-transpeptidases use tetrapeptides as substrates to form 3-3 cross-links. Here, we showed that simultaneous deletions of two DD-CPases alter the nature of PG cross-linking from 3-3 cross-links to 4-3 cross-links. The deletions subsequently decrease the expression of Glycopeptidolipids (a significant surface lipid present in many non-tuberculous mycobacteria including Mycobacterium smegmatis ) and affect other physiological parameters like cell morphology, growth rate, biofilm formation, antibiotic susceptibility and existence within murine macrophages. Thus, unraveling the physiology of DD-CPases might help us design anti-mycobacterial therapeutics in future. Copyright © 2018 American Society for Microbiology.
ERIC Educational Resources Information Center
Sato, Masatoshi
2017-01-01
This classroom-based study explored links among second language (L2) learners' interaction mindsets, interactional behaviors, and L2 development in the context of peer interaction. While peer interaction research has revealed that certain interactional behaviors (e.g., receiving corrective feedback and engaging in collaborative interaction) assist…
Klockenbusch, Cordula; Kast, Juergen
2010-01-01
Formaldehyde cross-linking of protein complexes combined with immunoprecipitation and mass spectrometry analysis is a promising technique for analysing protein-protein interactions, including those of transient nature. Here we used integrin β1 as a model to describe the application of formaldehyde cross-linking in detail, particularly focusing on the optimal parameters for cross-linking, the detection of formaldehyde cross-linked complexes, the utility of antibodies, and the identification of binding partners. Integrin β1 was found in a high molecular weight complex after formaldehyde cross-linking. Eight different anti-integrin β1 antibodies were used for pull-down experiments and no loss in precipitation efficiency after cross-linking was observed. However, two of the antibodies could not precipitate the complex, probably due to hidden epitopes. Formaldehyde cross-linked complexes, precipitated from Jurkat cells or human platelets and analyzed by mass spectrometry, were found to be composed of integrin β1, α4 and α6 or β1, α6, α2, and α5, respectively. PMID:20634879
21 CFR 177.1211 - Cross-linked polyacrylate copolymers.
Code of Federal Regulations, 2011 CFR
2011-04-01
... polyacrylate copolymers consist of: (1) The grafted copolymer of cross-linked sodium polyacrylate identified as... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Cross-linked polyacrylate copolymers. 177.1211... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1211 Cross-linked polyacrylate...