Science.gov

Sample records for links renal reabsorption

  1. Increased renal tubular sodium reabsorption during exercise-induced hypervolemia in humans

    NASA Technical Reports Server (NTRS)

    Nagashima, K.; Wu, J.; Kavouras, S. A.; Mack, G. W.

    2001-01-01

    We tested the hypothesis that renal tubular Na(+) reabsorption increased during the first 24 h of exercise-induced plasma volume expansion. Renal function was assessed 1 day after no-exercise control (C) or intermittent cycle ergometer exercise (Ex, 85% of peak O(2) uptake) for 2 h before and 3 h after saline loading (12.5 ml/kg over 30 min) in seven subjects. Ex reduced renal blood flow (p-aminohippurate clearance) compared with C (0.83 +/- 0.12 vs. 1.49 +/- 0.24 l/min, P < 0.05) but did not influence glomerular filtration rates (97 +/- 10 ml/min, inulin clearance). Fractional tubular reabsorption of Na(+) in the proximal tubules was higher in Ex than in C (P < 0.05). Saline loading decreased fractional tubular reabsorption of Na(+) from 99.1 +/- 0.1 to 98.7 +/- 0.1% (P < 0.05) in C but not in Ex (99.3 +/- 0.1 to 99.4 +/- 0.1%). Saline loading reduced plasma renin activity and plasma arginine vasopressin levels in C and Ex, although the magnitude of decrease was greater in C (P < 0.05). These results indicate that, during the acute phase of exercise-induced plasma volume expansion, increased tubular Na(+) reabsorption is directed primarily to the proximal tubules and is associated with a decrease in renal blood flow. In addition, saline infusion caused a smaller reduction in fluid-regulating hormones in Ex. The attenuated volume-regulatory response acts to preserve distal tubular Na(+) reabsorption during saline infusion 24 h after exercise.

  2. The relationship between peritubular capillary protein concentration and fluid reabsorption by the renal proximal tubule

    PubMed Central

    Brenner, Barry M.; Falchuk, Kenneth H.; Keimowitz, Robert I.; Berliner, Robert W.

    1969-01-01

    The relationship between peritubular capillary protein concentration and rate of sodium reabsorption by the rat proximal tubule was examined using free-flow recollection micropuncture techniques. Tubule fluid-to-plasma inulin ratios were measured before, during, and at successive intervals after brief (15-25 sec) intra-aortic injections (at the level of the renal artery) of colloid-free, isoncotic, and hyperoncotic solutions. Arterial hematocrit and protein concentrations were measured simultaneously in these rats. In other rats, total protein concentration of peritubular capillary blood plasma was determined before, during, and after these same infusions with a newly described submicroliter fiber-optic colorimeter. In the 15-25 sec interval necessary to infuse 2 ml of these test solutions, fractional and absolute sodium reabsorption varied directly with peritubular capillary colloid osmotic pressure, declining during infusion of colloid-free solutions, increasing during hyperoncotic infusions, and remaining unchanged during isoncotic infusions. In the subsequent 20-min interval after intra-aortic injection of these test solutions, capillary protein concentration remained at (isoncotic infusions) or returned to (colloid-free and hyperoncotic fluids) control values. Whereas reabsorption after colloid-free solutions returned to base line levels in parallel with the return in capillary protein concentration, after colloid infusions (which resulted in continued expansion of extracellular fluid volume), a progressive decline in reabsorption was observed. These results afford strong evidence that peritubular capillary colloid osmotic pressure is one important determinant of proximal sodium reabsorption. Nevertheless it is apparent that mechanisms other than or in addition to this must be invoked to explain the delayed inhibition of reabsorption that accompanies expansion of extracellular fluid volume by colloid solutions. PMID:5796362

  3. A Model of Peritubular Capillary Control of Isotonic Fluid Reabsorption by the Renal Proximal Tubule

    PubMed Central

    Deen, W. M.; Robertson, C. R.; Brenner, B. M.

    1973-01-01

    A mathematical model of peritubular transcapillary fluid exchange has been developed to investigate the role of the peritubular environment in the regulation of net isotonic fluid transport across the mammalian renal proximal tubule. The model, derived from conservation of mass and the Starling transcapillary driving forces, has been used to examine the quantitative effects on proximal reabsorption of changes in efferent arteriolar protein concentration and plasma flow rate. Under normal physiological conditions, relatively small perturbations in protein concentration are predicted to influence reabsorption more than even large variations in plasma flow, a prediction in close accord with recent experimental observations in the rat and dog. Changes either in protein concentration or plasma flow have their most pronounced effects when the opposing transcapillary hydrostatic and osmotic pressure differences are closest to equilibrium. Comparison of these theoretical results with variations in reabsorption observed in micropuncture studies makes it possible to place upper and lower bounds on the difference between interstitial oncotic and hydrostatic pressures in the renal cortex of the rat. PMID:4696761

  4. Aromatase Deficient Female Mice Demonstrate Altered Expression of Molecules Critical for Renal Calcium Reabsorption

    NASA Astrophysics Data System (ADS)

    Öz, Orhan K.; Hajibeigi, Asghar; Cummins, Carolyn; van Abel, Monique; Bindels, René J.; Kuro-o, Makoto; Pak, Charles Y. C.; Zerwekh, Joseph E.

    2007-04-01

    The incidence of kidney stones increases in women after the menopause, suggesting a role for estrogen deficiency. In order to determine if estrogen may be exerting an effect on renal calcium reabsorption, we measured urinary calcium excretion in the aromatase-deficient female mouse (ArKO) before and following estrogen therapy. ArKO mice had hypercalciuria that corrected during estrogen administration. To evaluate the mechanism by which estrogen deficiency leads to hypercalciuria, we examined the expression of several proteins involved in distal tubule renal calcium reabsorption, both at the message and protein levels. Messenger RNA levels of TRPV5, TRPV6, calbindin-D28K, the Na+/Ca++ exchanger (NCX1), and the plasma membrane calcium ATPase (PMCA1b) were significantly decreased in kidneys of ArKO mice. On the other hand, klotho mRNA levels were elevated in kidneys of ArKO mice. ArKO renal protein extracts had lower levels of calbindin-D28K but higher levels of the klotho protein. Immunochemistry demonstrated increased klotho expression in ArKO kidneys. Estradiol therapy normalized the expression of TRPV5, calbindin-D28K, PMCA1b and klotho. Taken together, these results demonstrate that estrogen deficiency produced by aromatase inactivation is sufficient to produce a renal leak of calcium and consequent hypercalciuria. This may represent one mechanism leading to the increased incidence of kidney stones following the menopause in women.

  5. Basal renal O2 consumption and the efficiency of O2 utilization for Na+ reabsorption.

    PubMed

    Evans, Roger G; Harrop, Gerard K; Ngo, Jennifer P; Ow, Connie P C; O'Connor, Paul M

    2014-03-01

    We examined how the presence of a fixed level of basal renal O2 consumption (Vo2(basal); O2 used for processes independent of Na(+) transport) confounds the utility of the ratio of Na(+) reabsorption (TNa(+)) to total renal Vo2 (Vo2(total)) as an index of the efficiency of O2 utilization for TNa(+). We performed a systematic review and additional experiments in anesthetized rabbits to obtain the best possible estimate of the fractional contribution of Vo2(basal) to Vo2(total) under physiological conditions (basal percent renal Vo2). Estimates of basal percent renal Vo2 from 24 studies varied from 0% to 81.5%. Basal percent renal Vo2 varied with the fractional excretion of Na(+) (FENa(+)) in the 14 studies in which FENa(+) was measured under control conditions. Linear regression analysis predicted a basal percent renal Vo2 of 12.7-16.5% when FENa(+) = 1% (r(2) = 0.48, P = 0.001). Experimentally induced changes in TNa(+) altered TNa(+)/Vo2(total) in a manner consistent with theoretical predictions. We conclude that, because Vo2(basal) represents a significant proportion of Vo2(total), TNa(+)/Vo2(total) can change markedly when TNa(+) itself changes. Therefore, caution should be taken when TNa(+)/Vo2(total) is interpreted as a measure of the efficiency of O2 utilization for TNa(+), particularly under experimental conditions where TNa(+) or Vo2(total) changes.

  6. The subtype of alpha-adrenoceptor involved in the neural control of renal tubular sodium reabsorption in the rabbit.

    PubMed Central

    Hesse, I F; Johns, E J

    1984-01-01

    A study was undertaken in pentobarbitone anaesthetized rabbits, undergoing a saline diuresis, to determine the subtype of alpha-adrenoceptor mediating renal tubular sodium reabsorption. Stimulation of the renal nerves at low rates, to cause an 11% fall in renal blood flow, did not change glomerular filtration rate but significantly reduced urine flow rate, and absolute and fractional sodium excretions by approximately 40%. These responses were reproducible in different groups of animals and with time. Renal nerve stimulation during an intra-renal arterial infusion of prazosin, to block alpha 1-adrenoceptors, had no effect on the renal haemodynamic response but completely abolished the reductions in urine flow rate, and absolute and fractional sodium excretion. During intra-renal arterial infusion of yohimbine, to block renal alpha 2-adrenoceptors, stimulation of the renal nerves to cause similar renal haemodynamic changes resulted in significantly larger reductions in urine flow rate, and absolute and fractional sodium excretion of about 52-58%. These results indicate that in the rabbit alpha 1-adrenoceptors are present on the renal tubules, which mediate the increase in sodium reabsorption caused by renal nerve stimulation. They further suggest the presence of presynaptic alpha 2-adrenoceptors on those nerves innervating the renal tubules. PMID:6086915

  7. Interleukin-1 decreases renal sodium reabsorption: possible mechanism of endotoxin-induced natriuresis

    SciTech Connect

    Caverzasio, J.; Rizzoli, R.; Dayer, J.M.; Bonjour, J.P.

    1987-05-01

    Administration of pyrogen or endotoxins such as Escherichia coli lipopolysaccharide can elicit a marked increase in urinary sodium excretion. This response occurs without any elevation in the filtered load of sodium and it does not appear to be prostaglandin mediated. The various effects produced by endotoxins appear to have interleukin-1 as a common mediator. In the present work, the authors have studied whether human recombinant interleukin-1..beta.. (hrIL-1) could affect the renal handling of sodium and thus, could be implicated in natriuretic response to pyrogens or endotoxins. They observed that hrIL-1 intravenously injected into conscious rats provokes a marked increase in sodium excretion. This natriuretic response was not associated with any increase in glomerular filtration rate (clearance of (/sup 3/H)inulin), nor was it accompanied by significant changes in the urinary excretion of potassium, calcium, or inorganic phosphate. The only concomitant alteration was a decrease in urinary pH. Pretreatment with indomethacin abolished the effect of hrIL-1 on urinary pH but did not modify the natriuretic response. In conclusion, hrIL-1 elicits a selective decrease in tubular sodium reabsorption, which does not appear to involve a change in prostaglandin synthesis. This observation strongly suggests that interleukin-1 could be a key mediator in endotoxin-induced natriuresis.

  8. Topographically-patterned porous membranes in a microfluidic device as an in vitro model of renal reabsorptive barriers

    PubMed Central

    Frohlich, Else M.; Alonso, José Luis; Borenstein, Jeffrey T.; Zhang, Xin; Arnaout, M. Amin

    2015-01-01

    Models of reabsorptive barriers require both a means to provide realistic physiologic cues to and quantify transport across a layer of cells forming the barrier. Here we have topographically-patterned porous membranes with several user-defined pattern types. To demonstrate the utility of the patterned membranes, we selected one type of pattern and applied it to a membrane to serve as a cell culture support in a microfluidic model of a renal reabsorptive barrier. The topographic cues in the model resemble physiological cues found in vivo while the porous structure allows quantification of transport across the cell layer. Sub-micron surface topography generated via hot-embossing onto a track-etched polycarbonate membrane, fully replicated topographical features and preserved porous architecture. Pore size and shape were analyzed with SEM and image analysis to determine the effect of hot embossing on pore morphology. The membrane was assembled into a bilayer microfluidic device and a human kidney proximal tubule epithelial cell line (HK-2) and primary renal proximal tubule epithelial cells (RPTEC) were cultured to confluency on the membrane. Immunofluorescent staining of both cell types revealed protein expression indicative of the formation of a reabsorptive barrier responsive to mechanical stimulation: ZO-1 (tight junction), paxillin (focal adhesions) and acetylated α-tubulin (primary cilia). HK-2 and RPTEC aligned in the direction of ridge/groove topography of the membrane in the device, evidence that the device has mechanical control over cell response. This topographically-patterned porous membrane provides an in vitro platform on which to model reabsorptive barriers with meaningful applications for understanding biological transport phenomenon, underlying disease mechanisms, and drug toxicity. PMID:23636129

  9. Teaching the Renal Tubular Reabsorption of Glucose Using Two Classic Papers by Shannon et al.

    ERIC Educational Resources Information Center

    Braga, Valdir A.

    2011-01-01

    Most of the transport along the nephron uses membrane proteins and exhibits the three characteristics of mediated transport: saturation, specificity, and competition. Glucose reabsorption in the nephron is an excellent example of the consequences of saturation. Two classic papers by James A. Shannon and colleagues clearly show the ability of the…

  10. AKAP220 manages apical actin networks that coordinate aquaporin-2 location and renal water reabsorption.

    PubMed

    Whiting, Jennifer L; Ogier, Leah; Forbush, Katherine A; Bucko, Paula; Gopalan, Janani; Seternes, Ole-Morten; Langeberg, Lorene K; Scott, John D

    2016-07-26

    Filtration through the kidney eliminates toxins, manages electrolyte balance, and controls water homeostasis. Reabsorption of water from the luminal fluid of the nephron occurs through aquaporin-2 (AQP2) water pores in principal cells that line the kidney-collecting duct. This vital process is impeded by formation of an "actin barrier" that obstructs the passive transit of AQP2 to the plasma membrane. Bidirectional control of AQP2 trafficking is managed by hormones and signaling enzymes. We have discovered that vasopressin-independent facets of this homeostatic mechanism are under the control of A-Kinase Anchoring Protein 220 (AKAP220; product of the Akap11 gene). CRISPR/Cas9 gene editing and imaging approaches show that loss of AKAP220 disrupts apical actin networks in organoid cultures. Similar defects are evident in tissue sections from AKAP220-KO mice. Biochemical analysis of AKAP220-null kidney extracts detected reduced levels of active RhoA GTPase, a well-known modulator of the actin cytoskeleton. Fluorescent imaging of kidney sections from these genetically modified mice revealed that RhoA and AQP2 accumulate at the apical surface of the collecting duct. Consequently, these animals are unable to appropriately dilute urine in response to overhydration. We propose that membrane-proximal signaling complexes constrained by AKAP220 impact the actin barrier dynamics and AQP2 trafficking to ensure water homeostasis. PMID:27402760

  11. Testosterone increases: sodium reabsorption, blood pressure, and renal pathology in female spontaneously hypertensive rats on a high sodium diet.

    PubMed

    Liu, Bei; Ely, Daniel

    2011-01-01

    Estrogen (E) and testosterone (T) are important in the sexually dimorphic pattern of blood pressure (BP) development. The goal was to examine the effects of endogenous E and exogenous T in the development of hypertension in female spontaneously hypertensive rats (SHR) on a high sodium diet. Female SHR (N = 27, 5-week) were divided into four groups: (1) control (n = 8), (2) ovariectomized (OVX, n = 26), (3) testosterone implants with intact ovaries (T, n = 6), and (4) ovariectomized + testosterone implants (OVX+T, n = 7). T was given immediately after OVX and replaced every two weeks and they were fed a 3% NaCl diet. BP was measured weekly and plasma norepinephrine (NE) analyzed by HPLC. OVX+T females exhibited the greatest elevation in BP (190 ± 4.0 mmHg) compared to controls at 15 weeks of age (140 ± 3.4 mmHg, P < .001) and a pattern of hypertension development similar to that of male SHR. Females with T treatment showed evidence of glomerulosclerosis. In conclusion, T accelerated the development of hypertension similar to the BP pattern observed in males; the presence of ovaries attenuated the T induced increase in BP; T increased renal sodium reabsorption, and T increased glomerulosclerosis.

  12. Ways of calcium reabsorption in the kidney.

    PubMed

    Moor, Matthias B; Bonny, Olivier

    2016-06-01

    The role of the kidney in calcium homeostasis has been reshaped from a classic view in which the kidney was regulated by systemic calcitropic hormones such as vitamin D3 or parathyroid hormone to an organ actively taking part in the regulation of calcium handling. With the identification of the intrinsic renal calcium-sensing receptor feedback system, the regulation of paracellular calcium transport involving claudins, and new paracrine regulators such as klotho, the kidney has emerged as a crucial modulator not only of calciuria but also of calcium homeostasis. This review summarizes recent molecular and endocrine contributors to renal calcium handling and highlights the tight link between calcium and sodium reabsorption in the kidney.

  13. TRPV5-mediated Ca2+ Reabsorption and Hypercalciuria

    NASA Astrophysics Data System (ADS)

    Renkema, Kirsten Y.; Hoenderop, Joost G. J.; Bindels, René J. M.

    2007-04-01

    The concerted action of the intestine, kidney and bone results in the maintenance of a normal Ca2+ balance, a mechanism that is tightly controlled by the calciotropic hormones vitamin D, parathyroid hormone and calcitonin. Disturbances in the Ca2+ balance have been linked to diverse pathophysiological disorders like urolithiasis, hypertension, electroencephalogram abnormalities and rickets. Importantly, the final amount of Ca2+ that is released from the body is determined in the distal part of the nephron, where active Ca2+ reabsorption occurs. Here, Transient Receptor Potential Vanilloid member 5 (TRPV5), a highly Ca2+-selective channel, has been recognized as the gatekeeper of active Ca2+ reabsorption. The in vivo relevance of TRPV5 has been further investigated by the characterization of TRPV5 knockout (TRPV5-/-) mice, which exhibit severe disturbances in renal Ca2+ handling, such as profound hypercalciuria, intestinal Ca2+ hyperabsorption and reduced bone thickness. Hypercalciuria increases the risk of kidney stone formation in these mice. This review highlights our current knowledge about TRPV5-mediated Ca2+ reabsorption and emphasizes the physiological relevance and the clinical implications related to the TRPV5-/- mice model.

  14. Renal cell carcinoma: links and risks

    PubMed Central

    Kabaria, Reena; Klaassen, Zachary; Terris, Martha K

    2016-01-01

    This review provides an overview of the incidence of renal cell carcinoma (RCC) and a summary of the most commonly associated risk factors. A literature review was performed with a focus on recent studies with a high level of evidence (large prospective cohort studies and meta-analyses). The incidence rate of RCC varies globally, with the rate rising rapidly in more developed regions, demonstrating the effects of increased use of diagnostic imaging and prevalence of modifiable risk factors. Based on the current evidence, cigarette smoking, obesity, and hypertension are the most well-established risk factors for sporadic RCC worldwide. Acquired cystic kidney disease is also a significant risk factor, specifically in dialysis patients. There is increasing evidence for an inverse association between RCC risk and moderate alcohol consumption. Certain analgesics and occupational exposure have been linked to an increased risk of RCC, although data are limited. Diets rich in fruits and vegetables may provide a protective effect. PMID:27022296

  15. Renal cell carcinoma: links and risks.

    PubMed

    Kabaria, Reena; Klaassen, Zachary; Terris, Martha K

    2016-01-01

    This review provides an overview of the incidence of renal cell carcinoma (RCC) and a summary of the most commonly associated risk factors. A literature review was performed with a focus on recent studies with a high level of evidence (large prospective cohort studies and meta-analyses). The incidence rate of RCC varies globally, with the rate rising rapidly in more developed regions, demonstrating the effects of increased use of diagnostic imaging and prevalence of modifiable risk factors. Based on the current evidence, cigarette smoking, obesity, and hypertension are the most well-established risk factors for sporadic RCC worldwide. Acquired cystic kidney disease is also a significant risk factor, specifically in dialysis patients. There is increasing evidence for an inverse association between RCC risk and moderate alcohol consumption. Certain analgesics and occupational exposure have been linked to an increased risk of RCC, although data are limited. Diets rich in fruits and vegetables may provide a protective effect. PMID:27022296

  16. Neurogenic regulation of proximal bicarbonate and chloride reabsorption.

    PubMed

    Cogan, M G

    1986-01-01

    Although a change in renal nerve activity is known to alter proximal reabsorption, it is unclear whether reabsorption of NaHCO3 or NaCl or both are affected. Sprague-Dawley rats (n = 10) were studied using free-flow micropuncture techniques during euvolemia and following acute ipsilateral denervation. Glomerular filtration rate and single nephron glomerular filtration rate were stable. Absolute proximal bicarbonate reabsorption fell following denervation (933 +/- 40 to 817 +/- 30 pmol/min) with a parallel reduction in chloride reabsorption (1,643 +/- 116 to 1,341 +/- 129 peq/min). Urinary sodium, potassium, bicarbonate, and chloride excretion all increased significantly. To further assess the physiological significance of neurogenic modulation of proximal transport, other rats (n = 6) were subjected to acute unilateral nephrectomy (AUN). There is evidence that AUN induces a contralateral natriuresis (renorenal reflex) at least partially by causing inhibition of efferent renal nerve traffic. AUN caused significant changes in proximal NaHCO3 and NaCl reabsorption as well as in whole kidney electrolyte excretion in the same pattern as had denervation. Prior denervation of the remaining kidney prevented the proximal and whole kidney response to AUN (n = 6). In conclusion, depression of renal nerve activity inhibits both NaHCO3 and NaCl reabsorption in the rat superficial proximal convoluted tubule. The data are consistent with the hypothesis that changes in renal nerve activity modify whole kidney electrolyte excretion under physiological conditions at least partially by regulating proximal transport.

  17. Genetic link between renal birth defects and congenital heart disease

    PubMed Central

    San Agustin, Jovenal T.; Klena, Nikolai; Granath, Kristi; Panigrahy, Ashok; Stewart, Eileen; Devine, William; Strittmatter, Lara; Jonassen, Julie A.; Liu, Xiaoqin; Lo, Cecilia W.; Pazour, Gregory J.

    2016-01-01

    Structural birth defects in the kidney and urinary tract are observed in 0.5% of live births and are a major cause of end-stage renal disease, but their genetic aetiology is not well understood. Here we analyse 135 lines of mice identified in large-scale mouse mutagenesis screen and show that 29% of mutations causing congenital heart disease (CHD) also cause renal anomalies. The renal anomalies included duplex and multiplex kidneys, renal agenesis, hydronephrosis and cystic kidney disease. To assess the clinical relevance of these findings, we examined patients with CHD and observed a 30% co-occurrence of renal anomalies of a similar spectrum. Together, these findings demonstrate a common shared genetic aetiology for CHD and renal anomalies, indicating that CHD patients are at increased risk for complications from renal anomalies. This collection of mutant mouse models provides a resource for further studies to elucidate the developmental link between renal anomalies and CHD. PMID:27002738

  18. Genetic link between renal birth defects and congenital heart disease.

    PubMed

    San Agustin, Jovenal T; Klena, Nikolai; Granath, Kristi; Panigrahy, Ashok; Stewart, Eileen; Devine, William; Strittmatter, Lara; Jonassen, Julie A; Liu, Xiaoqin; Lo, Cecilia W; Pazour, Gregory J

    2016-01-01

    Structural birth defects in the kidney and urinary tract are observed in 0.5% of live births and are a major cause of end-stage renal disease, but their genetic aetiology is not well understood. Here we analyse 135 lines of mice identified in large-scale mouse mutagenesis screen and show that 29% of mutations causing congenital heart disease (CHD) also cause renal anomalies. The renal anomalies included duplex and multiplex kidneys, renal agenesis, hydronephrosis and cystic kidney disease. To assess the clinical relevance of these findings, we examined patients with CHD and observed a 30% co-occurrence of renal anomalies of a similar spectrum. Together, these findings demonstrate a common shared genetic aetiology for CHD and renal anomalies, indicating that CHD patients are at increased risk for complications from renal anomalies. This collection of mutant mouse models provides a resource for further studies to elucidate the developmental link between renal anomalies and CHD. PMID:27002738

  19. Lack of association of variants of the renal salt reabsorption-related genes SLC12A3 and ClC-Kb and hypertension in Mongolian and Han populations in Inner Mongolia.

    PubMed

    Chang, P Y; Zhang, X G; Su, X L

    2011-01-01

    Abnormalities in renal sodium chloride and water reabsorption play important roles in the development of hypertension. Mutations in the genes involved in renal sodium chloride reabsorption can affect blood pressure. Recently, the R904Q variant of the sodium/chloride transporters, member 3 (SLC12A3) gene and the T481S variant of the chloride channel Kb (ClC-Kb) gene were found to be implicated in essential hypertension. We investigated a possible role of the SLC12A3 and ClC-Kb genes in the prevalence of essential hypertension in the Mongolian and Han ethnic groups. The study population comprised 308 unrelated Mongolians with essential hypertension, 271 Mongolian normotensives, 285 unrelated Han with essential hypertension, and 194 Han normotensives living in Inner Mongolia. The presence of the SLC12A3 R904Q and ClC-Kb-T481S polymorphisms was determined using TaqMan PCR. The risk factors for hypertension were age, body mass index, alcohol consumption, total plasma cholesterol, and low-density lipoprotein cholesterol. The genotype and allele frequencies of SLC12A3 R904Q and ClC-Kb-T481S were not significantly different between hypertensive patients and controls in the Mongolian (SLC12A3 R904Q, P = 0.471 and P = 0.494, ClC-Kb-T481S, P = 0.960 and P = 0.960, respectively) and Han (SLC12A3 R904Q, P = 0.765 and P = 0.777, ClC-Kb-T481S, P = 0.100 and P = 0.103, respectively) populations. There was no significant association between the SLC12A3 R904Q variant and the ClC-Kb-T481S variant and essential hypertension in either ethnic group. PMID:21644212

  20. Accelerated reabsorption in the proximal tubule produced by volume depletion.

    PubMed

    Weiner, M W; Weinman, E J; Kashgarian, M; Hayslett, J P

    1971-07-01

    The renal response to chronic depletion of extracellular volume was examined using the techniques of micropuncture. Depletion of salt and water was produced by administration of furosemide to rats maintained on a sodium-free diet. There was a marked fall in body weight, plasma volume, and glomerular filtration rate. The intrinsic reabsorptive capacity of the proximal tubule, measured by the split-droplet technique, was greatly enhanced. The acceleration of proximal fluid reabsorption could not be accounted for by changes in filtration rate, tubular geometry, or aldosterone secretion. The half-time of droplet reabsorption in the distal tubule was not altered by sodium depletion. An increase in the reabsorption of fluid in the proximal tubule, as demonstrated directly in the present experiments, provides an explanation for a variety of clinical phenomena associated with volume depletion.

  1. The glycocalyx--linking albuminuria with renal and cardiovascular disease.

    PubMed

    Rabelink, Ton J; de Zeeuw, Dick

    2015-11-01

    Albuminuria is commonly used as a marker of kidney disease progression, but some evidence suggests that albuminuria also contributes to disease progression by inducing renal injury in specific disease conditions. Studies have confirmed that in patients with cardiovascular risk factors, such as diabetes and hypertension, endothelial damage drives progression of kidney disease and cardiovascular disease. A key mechanism that contributes to this process is the loss of the glycocalyx--a polysaccharide gel that lines the luminal endothelial surface and that normally acts as a barrier against albumin filtration. Degradation of the glycocalyx in response to endothelial activation can lead to albuminuria and subsequent renal and vascular inflammation, thus providing a pathophysiological framework for the clinical association of albuminuria with renal and cardiovascular disease progression. In this Review, we examine the likely mechanisms by which glycocalyx dysfunction contributes to kidney injury and explains the link between cardiovascular disease and albuminuria. Evidence suggests that glycocalyx dysfunction is reversible, suggesting that these mechanisms could be considered as therapeutic targets to prevent the progression of renal and cardiovascular disease. This possibility enables the use of existing drugs in new ways, provides an opportunity to develop novel therapies, and indicates that albuminuria should be reconsidered as an end point in clinical trials.

  2. Effect of carbonic anhydrase inhibition on superficial and deep nephron bicarbonate reabsorption in the rat.

    PubMed Central

    DuBose, T D; Lucci, M S

    1983-01-01

    The nephron segment responsible for the acetazolamide-insensitive fraction of renal bicarbonate reabsorption has not been clearly delineated. This study compares superficial and deep nephron bicarbonate reabsorption before and after acetazolamide at two dose levels (20 and 50 mg/kg per h) in mutant Munich-Wistar rats employing both cortical and papillary micropuncture and microcalorimetry. Systemic acid-base balance and right whole kidney glomerular filtration rate were similar in all groups examined. The effects of the two doses of acetazolamide were indistinguishable and resulted in a significant increase in whole kidney bicarbonate excretion that compared favorably with the fraction delivered out of the left papillary tip. Acetazolamide inhibited superficial proximal bicarbonate reabsorption by 80.0%, whereas reabsorption up to the deep loop of Henle was decreased by only 52% (P less than 0.001). Bicarbonate reabsorption that was insensitive to acetazolamide occurred in the superficial and deep loop of Henle and between the distal tubule and base collecting duct. Because water reabsorption in these segments could serve to generate transepithelial bicarbonate concentration gradients favorable for reabsorption, we attempted to minimize water abstraction by combined administration of mannitol and acetazolamide. During this condition a significant increase in bicarbonate delivery up to the deep loop of Henle was noted (52 vs. 65%), whereas superficial nephron reabsorption was not altered. Furthermore, an outwardly directed bicarbonate concentration gradient from the deep loop of Henle to vasa recta was demonstrated during acetazolamide (delta tCO2 = 20.9 +/- 3.3 mM), but was abolished during combined mannitol and acetazolamide administration (delta tCO2 = 3.5 +/- 0.9 mM). It is concluded that carbonic anhydrase inhibition results in a disparate effect on nephron bicarbonate reabsorption when juxtamedullary and superficial nephron segments are compared. Our findings

  3. Disordered regulation of renal 25-hydroxyvitamin D-1alpha-hydroxylase gene expression by phosphorus in X-linked hypophosphatemic (hyp) mice.

    PubMed

    Azam, Nasreen; Zhang, Martin Y H; Wang, Xuemei; Tenenhouse, Harriet S; Portale, Anthony A

    2003-08-01

    X-linked hypophosphatemic (Hyp) mice exhibit hypophosphatemia, impaired renal phosphate reabsorption, defective skeletal mineralization, and disordered regulation of vitamin D metabolism: In Hyp mice, restriction of dietary phosphorus induces a decrease in serum concentration of 1,25-dihydroxyvitamin D and renal activity of 25-hydroxyvitamin D-1alpha-hydroxylase (1alpha-hydroxylase), and induces an increase in renal activity of 25-hydroxyvitamin D-24-hydroxylase (24-hydroxylase). In contrast, in wild-type mice, phosphorus restriction stimulates renal 1alpha-hydroxylase gene expression and suppresses that of 24-hydroxylase. To determine the molecular basis for the disordered regulation of vitamin D metabolism in Hyp mice, we determined renal mitochondrial 1alpha-hydroxylase activity and the renal abundance of p450c1alpha and p450c24 mRNA in wild-type and Hyp mice fed either control, low-, or high-phosphorus diets for 5 d. In wild-type mice, phosphorus restriction increased 1alpha-hydroxylase activity and p450c1alpha mRNA expression by 6-fold and 3-fold, respectively, whereas in the Hyp strain the same diet induced changes of similar magnitude but opposite in direction. Phosphorus supplementation was without effect in wild-type mice, whereas in Hyp mice the same diet induced 3-fold and 2-fold increases, respectively, in enzyme activity and p450c1alpha mRNA abundance. In wild-type mice, both renal 1alpha-hydroxylase activity and p450c1alpha mRNA abundance varied inversely and significantly with serum phosphorus concentrations, whereas in Hyp mice the relationship between both renal parameters and serum phosphorus concentration was direct. In Hyp mice, phosphorus restriction induced a significant increase in renal p450c24 mRNA abundance, in contrast to the lack of effect observed in wild-type mice. The present findings demonstrate that regulation of both the p450c1alpha and p45024 genes by phosphorus is disordered in Hyp mice at the level of renal 1alpha

  4. Adenosine, type 1 receptors: role in proximal tubule Na+ reabsorption

    PubMed Central

    Welch, William J

    2015-01-01

    Adenosine type 1 receptor (A1-AR) antagonists induce diuresis and natriuresis in experimental animals and humans. Much of this effect is due to inhibition of A1-ARs in the proximal tubule, which is responsible for 60–70% of the reabsorption of filtered Na+ and fluid. Intratubular application of receptor antagonists indicates that A1-AR mediates a portion of Na+ uptake in PT and PT cells, via multiple transport systems, including Na+/H+ exchanger-3 (NHE3), Na+/PO4− co-transporter and Na+-dependent glucose transporter, SGLT. Renal microperfusion and recollection studies have shown that fluid reabsorption is reduced by A1-AR antagonists and is lower in A1-AR KO mice., compared to WT mice. Absolute proximal reabsorption (APR) measured by free-flow micropuncture is equivocal, with studies that show either lower APR or similar APR in A1-AR KO mice, compared to WT mice. Inhibition of A1-ARs lowers elevated blood pressure in models of salt-sensitive hypertension, partially due to their effects in the proximal tubule. PMID:25345761

  5. Tubular reabsorption of calcium in normal and hypercalciuric subjects

    PubMed Central

    Peacock, M.; Nordin, B. E. C.

    1968-01-01

    Tubular reabsorption and excretion of calcium were studied at different levels of filtered calcium by means of calcium infusion in normal and hypercalciuric subjects and in patients with idiopathic nephrolithiasis. Calcium reabsorption and excretion rose linearly with filtered load and in no case was a maximum tubular reabsorptive capacity for calcium reached. No decrease in tubular reabsorption of calcium was found in hypercalciuric as compared with normocalciuric subjects, and no difference in tubular reabsorption was found between patients with idiopathic nephrolithiasis and normal subjects. Calcium excretion and reabsorption calculated from the endogenous creatinine clearance during calcium infusion were virtually identical with the corresponding values calculated from the inulin clearance. PMID:5699075

  6. Single-nephron filtration rate and proximal reabsorption in aging rats.

    PubMed

    Corman, B; Roinel, N

    1991-01-01

    Age-related changes in the function of individual nephrons were investigated by micropuncture experiments measuring single-nephron filtration rates (SNGFR) and proximal reabsorptions in 10-, 20-, and 30-mo-old rats. The animals were female WAG/Rij rats with low incidence of chronic progressive nephropathy, no loss of nephrons, and renal hypertrophy of both kidneys in the oldest animals. Mean SNGFR values per gram kidney weight were 41.4 +/- 1.1, 37.1 +/- 1.5, and 32.2 +/- 1.1 nl.min-1.g kidney wt-1 (n = 41) in the 10-, 20-, and 30-mo-old animals, respectively. This age-related decrease in filtration was no longer apparent when SNGFR values were expressed per nephron (means 24.3 +/- 0.7, 23.7 +/- 0.9, and 24.4 +/- 0.9 nl/min. Individual filtered loads of sodium, potassium, calcium, and magnesium and their absolute reabsorption by the proximal tubule were not different in the three age groups; however, absolute and fractional reabsorptions of phosphate decreased significantly in the 30-mo-old rats. These results indicate that, with the exception of phosphate, individual filtrations and proximal reabsorptions are well maintained in aging rats free of disease. This may be related to the observed renal hypertrophy. PMID:1992782

  7. Some aspects of proximal tubular sodium chloride reabsorption in Necturus kidney.

    PubMed

    Whittembury, G; Diezi, F; Diezi, J; Spring, K; Giebisch, G

    1975-05-01

    Some aspects of proximal tubular sodium chloride reabsorption in Necturus kidney. Renal tubular reabsorption of fluid and sodium was measured by clearance methods in the doubly perfused Necturus kidney in which the bicarbonate concentration was varied between 0 and 60 mEq/liter. The effects of Damox (2.2 times 10-3M), ocubain (10-5M) and ethacrynic acid (10-4M) and of acidosis were also investigated. In addition to clearance experiments, stationary microperfusion experiments were carried out on promimal tubules to measure volume flow and steady-state sodium and chloride concentration differences across the tubular epithelium. In some experiments, the transepithelial electrical potential difference was also measured using an axial electrode system. The following results were obtained: 1) Bicarbonate is not essential to the operation of renal tubular fluid and sodium transport. 2) Total renal and proximal tubular fluid and sodium transport are partially inhibited by Diamox, ouabian and ethacrynic acid. 3) The proximal tubule maintains a significant transepithelial sodium and chloride concentration difference and a significant electrical potential difference (lumen-negative) in the presence of a poorly permeant nonelectrolyte. The direction and magnitude of the electrical polarization fully accounts for the observed chloride concentration difference. The data support the thesis that sodium chloride transport accross the proximal tubular epithelium takes place by active sodium transport and electically coupled passive chloride reabsorption. Important species differences with respect to mammalian transport mechanisms are discussed.

  8. Renal

    MedlinePlus

    ... term "renal" refers to the kidney. For example, renal failure means kidney failure. Related topics: Kidney disease Kidney disease - diet Kidney failure Kidney function tests Renal scan Kidney transplant

  9. The effect of pseudopregnancy on glomerular filtration rate and salt and water reabsorption in the rat.

    PubMed

    Atherton, J C; Bu'lock, D; Pirie, S C

    1982-03-01

    1. Glomerular filtration rate (G.F.R.) and salt and water reabsorption were measured in age-matched virgin rats and rats at different stages of pseudopregnancy and post-pseudopregnancy. 2. Tubular reabsorption and G.F.R. were significantly higher in later pseudopregnancy. Values at mid-pseudopregnancy were intermediate between virgin controls and late-pseudopregnancy. In post-pseudopregnancy G.F.R. and reabsorption had returned to values not different from the virgins. 3. Expansion of extracellular fluid volume (e.c.f.v.) and elongation of proximal tubules were observed during pseudopregnancy. In post-pseudopregnancy increased tubular length was still apparent but e.c.f.v. was not. 4. The remarkable similarity in the changes in e.c.f.v. and renal functions and structure during pseudopregnancy to those in early pregnancy suggests that the feto-placental unit is not necessary for the pregnancy changes. 5. The differences between the time course of change in plasma progesterone and the time courses of changes in e.c.f.v., renal functions and tubular morphology in late pseudopregnancy suggest that progesterone is not directly involved.

  10. Renal transepithelial transport of nucleosides.

    PubMed

    Nelson, J A; Vidale, E; Enigbokan, M

    1988-01-01

    Previous work from this and other laboratories has suggested that the mammalian kidney has unique mechanisms for handling purine nucleosides. For example, in humans and in mice, adenosine undergoes net renal reabsorption whereas deoxyadenosine is secreted [Kuttesch and Nelson: Cancer Chemother. Pharmacol. 8, 221 (1982)]. The relationships between these renal transport systems and classical renal organic cation and anion, carbohydrate, and cell membrane nucleoside transport carriers are not established. To investigate possible relationships between such carriers, we have tested effects of selected classical transport inhibitors on the renal clearances of adenosine, deoxyadenosine, 5'-deoxy-5-fluorouridine (5'-dFUR), and 5-fluorouracil in mice. The secretion of deoxyadenosine and 5'-dFUR, but not the reabsorption of adenosine or 5-fluorouracil, was prevented by the classical nucleoside transport inhibitors, dipyridamole and nitrobenzylthioinosine. Cimetidine, an inhibitor of the organic cation secretory system, also inhibited the secretion of 5'-dFUR, although it did not inhibit deoxyadenosine secretion in earlier studies [Nelson et al.: Biochem. Pharmacol. 32, 2323 (1983)]. The specific inhibitor of glucose renal reabsorption, phloridzin, failed to inhibit the reabsorption of adenosine or the secretion of deoxyadenosine. Failure of the nucleoside transport inhibitors and phloridzin to prevent adenosine reabsorption suggests that adenosine reabsorption may occur via a unique process. On the other hand, inhibition of the net secretion of deoxyadenosine and 5'-dFUR by dipyridamole and nitrobenzylthioinosine implies a role for the carrier that is sensitive to these compounds in the renal secretion (active transport) of these nucleosides.

  11. Factors affecting proximal tubular reabsorption during development

    SciTech Connect

    Kaskel, F.J.; Kumar, A.M.; Lockhart, E.A.; Evan, A.; Spitzer, A.

    1987-01-01

    Studies performed in several animal species have demonstrated that glomerulotubular balance is maintained throughout development despite the many changes that occur in the factors known to control it. In an attempt to understand the nature of this phenomenon the authors quantified the magnitude and described the profile of these changes in guinea pigs. The changes in physical forces were assessed from measurements of hydrostatic and oncotic pressures, whereas those in the permeability characteristics of the proximal tubule epithelium were estimated from permanence to radioactivity-labelled macromolecules of graded radii, histologic measurements of the intercellular channels, and measurements of end-proximal ratio of tubular fluid-to-plasma osmolality (TF/P/sub osm/). Between 1 and 50 days of age the net pressure for reabsorption increased from 15.0 to 30.9 mmHg with the major change occurring during the first 2-3 wk of postnatal life. The urinary recovery of (/sup 3/H)inulin, (/sup 14/C)sucrose, and (/sup 14/C)creatinine, injected in the early segment of proximal tubules did not vary with age. The urinary recovery of (/sup 14/C)mannitol increased from 92% at birth to 100% at 49 days of age. The length of the zonulae occludens and the width of the intercellular channels did not change during this period. The findings support the hypothesis that during early postnatal life glomerulotubular balance is made possible by a high permeability of the proximal tubule, which compensates for the low net reabsorptive pressure. As the animal matures and the proximal tubule epithelium becomes tighter, for glomerulotubular balance to be maintained, an increase in the number of intercellular channels and in the active transport of sodium need to be postulated.

  12. Acute inhibition of NCC does not activate distal electrogenic Na+ reabsorption or kaliuresis

    PubMed Central

    Craigie, Eilidh; Homer, Natalie Z. M.; Mullins, John J.; Bailey, Matthew A.

    2014-01-01

    Na+ reabsorption from the distal renal tubule involves electroneutral and electrogenic pathways, with the latter promoting K+ excretion. The relative activities of these two pathways are tightly controlled, participating in the minute-to-minute regulation of systemic K+ balance. The pathways are interdependent: the activity of the NaCl cotransporter (NCC) in the distal convoluted tubule influences the activity of the epithelial Na+ channel (ENaC) downstream. This effect might be mediated by changes in distal Na+ delivery per se or by molecular and structural adaptations in the connecting tubule and collecting ducts. We hypothesized that acute inhibition of NCC activity would cause an immediate increase in Na+ flux through ENaC, with a concomitant increase in renal K+ excretion. We tested this using renal clearance methodology in anesthetized mice, by the administration of hydrochlorothiazide (HCTZ) and/or benzamil (BZM) to exert specific blockade of NCC and ENaC, respectively. Bolus HCTZ elicited a natriuresis that was sustained for up to 110 min; urinary K+ excretion was not affected. Furthermore, the magnitude of the natriuresis was no greater during concomitant BZM administration. This suggests that ENaC-mediated Na+ reabsorption was not normally limited by Na+ delivery, accounting for the absence of thiazide-induced kaliuresis. After dietary Na+ restriction, HCTZ elicited a kaliuresis, but the natiuretic effect of HCTZ was not enhanced by BZM. Our findings support a model in which inhibition of NCC activity does not increase Na+ reabsorption through ENaC solely by increasing distal Na+ delivery but rather by inducing a molecular and structural adaptation in downstream nephron segments. PMID:24402096

  13. Radiation Emission and Re-Absorption Mechanisms in Dense Mediums

    NASA Astrophysics Data System (ADS)

    Mahdavi, M.; Ghazizadeh, S. F.

    2012-09-01

    In this paper, the Bremsstrahlung emission and re-absorption mechanisms are studied mainly through Inverse Bremsstrahlung and Compton Scattering. The Radiation Specific Power is calculated numerically assuming the suitable forms of Energy Distribution Function in plasma conditions. The calculation of Spectral Emission shows that, the Bremsstrahlung emission is strongly forward and backward peak relative to electron direction in overdense and high temperature plasma. Finally, some of the conditions for dominant of the re-absorption mechanism are explained.

  14. [Role of V1- and V2-receptors in mechanism of physiological paradox--an increase of reabsorption of the solute free water and simultaneous rise of diuresis].

    PubMed

    Kanashkina, T A; Kuznetsova, A A; Shakhmatova, E I; Natochin, Iu V

    2006-10-01

    In experiments on non-anesthetized rats with administration into stomach of water (5 ml/100 g body mass) direct correlation has been found between an increase of diuresis and excretion of solute free water (r = 0.98, p < 0.01), while after injection to these animals of 5 x 10(-11) M arginine-vasotocin - between an increase of diuresis and simultaneous rise reabsorption of solute free water (r = 0.8, p < 0.01). The rise of diuresis after the vasotocin injection is due to inhibition of sodium re- absorption, with the solute excretion fraction increasing from 2.6 +/- 0.2 % to 11.9 +/- 1.2, p < 0.001. A similar physiological paradox - an increase of diuresis with the simultaneous increase of reabsorption of solute free water - has been revealed at night hours in children with tendency for nocturnal enuresis (r = 0.64, p < 0.01). Mechanism responsible for this phenomenon consists in a rise of diuresis due to a decrease of sodium ion reabsorption in the ascending Henle loop limb. A problem is discussed of the homeostatic significance of a decrease of sodium reabsorption combined with an increase of solute-free water reabsorption; it is suggested that this phenomenon is based on a redistribution of reabsorption inside the nephron - a decrease of ion and water reabsorption in the initial parts of the nephron distal segment and an increase of solute free water reabsorption with the antidiuretic hormone-stimulated high osmotic permeability of terminal parts of renal tubules. An intraperitoneal injection of V1-anatagonist (OPC-21268) decreased the natriuretic component of response to arginine-vasotocin, while injection of V2-antagonist (OPC-31260) eliminated the antidiuretic component.

  15. Fluid reabsorption in Henle's loop and urinary excretion of sodium and water in normal rats and rats with chronic hypertension

    PubMed Central

    Stumpe, Klaus O.; Lowitz, Hans D.; Ochwadt, Bruno

    1970-01-01

    The function of the short loops of Henle was investigated by micropuncture technique in normal rats, in rats with spontaneous hypertension, and in the untouched kidney of rats with experimental renal hypertension. All animals received a standard infusion of 1.2 ml of isotonic saline per hr. With increasing arterial blood pressure (range from 90 to 220 mm Hg), a continuous decrease in transit time of Lissamine green through Henle's loop from 32 to 10 sec was observed. Fractional water reabsorption along the loop declined progressively from 26 to 10%, and fractional sodium reabsorption decreased from 40 to 36% of the filtered load. The fluid volume in Henle's loop calculated from transit time and mean flow rate also decreased with increasing blood pressure. There was no change in superficial single nephron filtration rate but there was a slight increase in total glomerular filtration rate (GFR). Sodium and water reabsorption in the proximal tubule remained unchanged. Urine flow rate, sodium excretion, osmolar clearance, and negative free water clearance increased with increasing blood pressure. The osmolal urine to plasma (U/P) ratio declined but did not fall below a value of 1.5. It is concluded that the increase in sodium and water excretion with chronic elevation of arterial blood pressure is caused by a decrease of sodium and water reabsorption along the loop of Henle, presumably as a consequence of increased medullary blood pressure. PMID:5422022

  16. Animal Models to Study Links between Cardiovascular Disease and Renal Failure and Their Relevance to Human Pathology

    PubMed Central

    Hewitson, Tim D.; Holt, Stephen G.; Smith, Edward R.

    2015-01-01

    The close association between cardiovascular pathology and renal dysfunction is well documented and significant. Patients with conventional risk factors for cardiovascular disease like diabetes and hypertension also suffer renal dysfunction. This is unsurprising if the kidney is simply regarded as a “modified blood vessel” and thus, traditional risk factors will affect both systems. Consistent with this, it is relatively easy to comprehend how patients with either sudden or gradual cardiac and or vascular compromise have changes in both renal hemodynamic and regulatory systems. However, patients with pure or primary renal dysfunction also have metabolic changes (e.g., oxidant stress, inflammation, nitric oxide, or endocrine changes) that affect the cardiovascular system. Thus, cardiovascular and renal systems are intimately, bidirectionally and inextricably linked. Whilst we understand several of these links, some of the mechanisms for these connections remain incompletely explained. Animal models of cardiovascular and renal disease allow us to explore such mechanisms, and more importantly, potential therapeutic strategies. In this article, we review various experimental models used, and examine critically how representative they are of the human condition. PMID:26441970

  17. Renal clearance of uric acid is linked to insulin resistance and lower excretion of sodium in gout patients.

    PubMed

    Perez-Ruiz, Fernando; Aniel-Quiroga, Maria Angeles; Herrero-Beites, Ana María; Chinchilla, Sandra Pamela; Erauskin, Gorka Garcia; Merriman, Toni

    2015-09-01

    Inefficient renal excretion of uric acid is the main pathophysiological mechanism for hyperuricemia in gout patients. Polymorphisms of renal tubular transporters linked with sodium and monosaccharide transport have yet to be demonstrated. We intended to evaluate the impact of insulin resistance, evaluated with the homeostasis model assessment (HOMA), through a transversal study of non-diabetic patients with gout, with normal renal function, not treated with any medication but colchicine as prophylaxis. One hundred and thirty-three patients were evaluated. Clearance of uric acid was inversely correlated with insulin resistance and directly correlated with fractional excretion of sodium. In multivariate analysis, hypertension and hyperlipidemia, in addition to insulin resistance and fractional excretion of sodium, were associated with renal clearance of uric acid. HOMA cutoff for efficient versus inefficient renal handling of uric acid was 2.72, close to that observed in studies of reference population. The impact of insulin resistance and renal handling of sodium on renal clearance of uric acid may help to explain why hyperuricemia is more commonly associated with diabetes and hypertension. PMID:25763991

  18. Inflammation and hypoxia linked to renal injury by CCAAT/enhancer-binding protein δ.

    PubMed

    Yamaguchi, Junna; Tanaka, Tetsuhiro; Eto, Nobuaki; Nangaku, Masaomi

    2015-08-01

    Tubulointerstitial hypoxia plays a critical role in the pathogenesis of kidney injury, and hypoxia-inducible factor (HIF)-1 is a master regulator of cellular adaptation to hypoxia. Aside from oxygen molecules, factors that modify HIF-1 expression and functional operation remain obscure. Therefore, we sought to identify novel HIF-1-regulating genes in kidney. A short-hairpin RNA library consisting of 150 hypoxia-inducible genes was derived from a microarray analysis of the rat renal artery stenosis model screened for the effect on HIF-1 response. We report that CCAAT/enhancer-binding protein δ (CEBPD), a transcription factor and inflammatory response gene, is a novel HIF-1 regulator in kidney. CEBPD was induced in the nuclei of tubular epithelial cells in both acute and chronic hypoxic kidneys. In turn, CEBPD induction augmented HIF-1α expression and its transcriptional activity. Mechanistically, CEBPD directly bound to the HIF-1α promoter and enhanced its transcription. Notably, CEBPD was rapidly induced by inflammatory cytokines, such as IL-1β in a nuclear factor-κB-dependent manner, which not only increased HIF-1α expression during hypoxia, but was also indispensable for the non-hypoxic induction of HIF-1α. Thus our study provides novel insight into HIF-1 regulation in tubular epithelial cells and offers a potential hypoxia and inflammation link relevant in both acute and chronic kidney diseases. PMID:25692954

  19. Renal Integrin-Linked Kinase Depletion Induces Kidney cGMP-Axis Upregulation: Consequences on Basal and Acutely Damaged Renal Function

    PubMed Central

    Cano-Peñalver, José Luis; Griera, Mercedes; García-Jerez, Andrea; Hatem-Vaquero, Marco; Ruiz-Torres, María Piedad; Rodríguez-Puyol, Diego; de Frutos, Sergio; Rodríguez-Puyol, Manuel

    2015-01-01

    Soluble guanylyl cyclase (sGC) is activated by nitric oxide (NO) and produces cGMP, which activates cGMP-dependent protein kinases (PKG) and is hydrolyzed by specific phosphodiesterases (PDE). The vasodilatory and cytoprotective capacity of cGMP-axis activation results in a therapeutic strategy for several pathologies. Integrin-linked kinase (ILK), a major scaffold protein between the extracellular matrix and intracellular signaling pathways, may modulate the expression and functionality of the cGMP-axis–related proteins. We introduce ILK as a novel modulator in renal homeostasis as well as a potential target for cisplatin (CIS)-induced acute kidney injury (AKI) improvement. We used an adult mice model of depletion of ILK (cKD-ILK), which showed basal increase of sGC and PKG expressions and activities in renal cortex when compared with wildtype (WT) littermates. Twenty-four h activation of sGC activation with NO enhanced the filtration rate in cKD-ILK. During AKI, cKD-ILK maintained the cGMP-axis upregulation with consequent filtration rates enhancement and ameliorated CIS-dependent tubular epithelial-to-mesenchymal transition and inflammation and markers. To emphasize the role of cGMP-axis upregulation due to ILK depletion, we modulated the cGMP axis under AKI in vivo and in renal cultured cells. A suboptimal dose of the PDE inhibitor ZAP enhanced the beneficial effects of the ILK depletion in AKI mice. On the other hand, CIS increased contractility-related events in cultured glomerular mesangial cells and necrosis rates in cultured tubular cells; ILK depletion protected the cells while sGC blockade with ODQ fully recovered the damage. PMID:26562149

  20. Ethnic differences in proximal and distal tubular sodium reabsorption are heritable in black and white populations

    PubMed Central

    Bochud, Murielle; Staessen, Jan A.; Maillard, Marc; Mazeko, Muzi J.; Kuznetsova, Tatiana; Woodiwiss, Angela; Richart, Tom; Norton, Gavin; Thijs, Lutgarde; Elston, Robert; Burnier, Michel

    2013-01-01

    Background Segmental handling of sodium along the proximal and distal nephron might be heritable and different between black and white participants. Methods We randomly recruited 95 nuclear families of black South African ancestry and 103 nuclear families of white Belgian ancestry. We measured the (FENa) and estimated the fractional renal sodium reabsorption in the proximal (RNaprox) and distal (RNadist) tubules from the clearances of endogenous lithium and creatinine. In multivariable analyses, we studied the relation of RNaprox and RNadist with FENa and estimated the heritability (h2) of RNaprox and RNadist. Results Independent of urinary sodium excretion, South Africans (n =240) had higher RNaprox (unadjusted median, 93.9% vs. 81.0%; P < 0.001) than Belgians (n =737), but lower RNadist (91.2% vs. 95.1%; P < 0.001). The slope of RNaprox on FENa was steeper in Belgians than in South Africans (−5.40 ±0.58 vs. −0.78 ±0.58 units; P < 0.001), whereas the opposite was true for the slope of RNadist on FENa (−3.84 ± 0.19 vs. −13.71 ± 1.30 units; P < 0.001). h2 of RNaprox and RNadist was high and significant (P < 0.001) in both countries. h2 was higher in South Africans than in Belgians for RNaprox (0.82 vs. 0.56; P < 0.001), but was similar for RNadist (0.68 vs. 0.50; P = 0.17). Of the filtered sodium load, black participants reabsorb more than white participants in the proximal nephron and less postproximally. Conclusion Segmental sodium reabsorption along the nephron is highly heritable, but the capacity for regulation in the proximal and postproximal tubules differs between whites and blacks. PMID:19262228

  1. PGC1α-dependent NAD biosynthesis links oxidative metabolism to renal protection

    PubMed Central

    Tran, Mei T.; Zsengeller, Zsuzsanna K.; Berg, Anders H.; Khankin, Eliyahu V.; Bhasin, Manoj K.; Kim, Wondong; Clish, Clary B.; Stillman, Isaac E.; Karumanchi, S. Ananth; Rhee, Eugene P.; Parikh, Samir M.

    2016-01-01

    The energetic burden of continuously concentrating solutes against gradients along the tubule may render the kidney especially vulnerable to ischemia. Indeed, acute kidney injury (AKI) affects 3% of all hospitalized patients.1,2 Here we show that the mitochondrial biogenesis regulator, PGC1α,3,4 is a pivotal determinant of renal recovery from injury by regulating NAD biosynthesis. Following renal ischemia, PGC1α−/− mice developed local deficiency of the NAD precursor niacinamide (Nam), marked fat accumulation, and failure to re-establish normal function. Remarkably, exogenous Nam improved local NAD levels, fat accumulation, and renal function in post-ischemic PGC1α−/− mice. Inducible tubular transgenic mice (iNephPGC1α) recapitulated the effects of Nam supplementation, including more local NAD and less fat accumulation with better renal function after ischemia. PGC1α coordinately upregulated the enzymes that synthesize NAD de novo from amino acids whereas PGC1α deficiency or AKI attenuated the de novo pathway. Nam enhanced NAD via the enzyme NAMPT and augmented production of the fat breakdown product beta-hydroxybutyrate (β-OHB), leading to increased prostaglandin PGE2, a secreted autocoid that maintains renal function.5 Nam treatment reversed established ischemic AKI and also prevented AKI in an unrelated toxic model. Inhibition of β-OHB signaling or prostaglandins similarly abolished PGC1α-dependent renoprotection. Given the importance of mitochondrial health in aging and the function of metabolically active organs, the results implicate Nam and NAD as key effectors for achieving PGC1α-dependent stress resistance. PMID:26982719

  2. PGC1α drives NAD biosynthesis linking oxidative metabolism to renal protection.

    PubMed

    Tran, Mei T; Zsengeller, Zsuzsanna K; Berg, Anders H; Khankin, Eliyahu V; Bhasin, Manoj K; Kim, Wondong; Clish, Clary B; Stillman, Isaac E; Karumanchi, S Ananth; Rhee, Eugene P; Parikh, Samir M

    2016-03-24

    The energetic burden of continuously concentrating solutes against gradients along the tubule may render the kidney especially vulnerable to ischaemia. Acute kidney injury (AKI) affects 3% of all hospitalized patients. Here we show that the mitochondrial biogenesis regulator, PGC1α, is a pivotal determinant of renal recovery from injury by regulating nicotinamide adenine dinucleotide (NAD) biosynthesis. Following renal ischaemia, Pgc1α(-/-) (also known as Ppargc1a(-/-)) mice develop local deficiency of the NAD precursor niacinamide (NAM, also known as nicotinamide), marked fat accumulation, and failure to re-establish normal function. Notably, exogenous NAM improves local NAD levels, fat accumulation, and renal function in post-ischaemic Pgc1α(-/-) mice. Inducible tubular transgenic mice (iNephPGC1α) recapitulate the effects of NAM supplementation, including more local NAD and less fat accumulation with better renal function after ischaemia. PGC1α coordinately upregulates the enzymes that synthesize NAD de novo from amino acids whereas PGC1α deficiency or AKI attenuates the de novo pathway. NAM enhances NAD via the enzyme NAMPT and augments production of the fat breakdown product β-hydroxybutyrate, leading to increased production of prostaglandin PGE2 (ref. 5), a secreted autacoid that maintains renal function. NAM treatment reverses established ischaemic AKI and also prevented AKI in an unrelated toxic model. Inhibition of β-hydroxybutyrate signalling or prostaglandin production similarly abolishes PGC1α-dependent renoprotection. Given the importance of mitochondrial health in ageing and the function of metabolically active organs, the results implicate NAM and NAD as key effectors for achieving PGC1α-dependent stress resistance.

  3. PGC1α drives NAD biosynthesis linking oxidative metabolism to renal protection.

    PubMed

    Tran, Mei T; Zsengeller, Zsuzsanna K; Berg, Anders H; Khankin, Eliyahu V; Bhasin, Manoj K; Kim, Wondong; Clish, Clary B; Stillman, Isaac E; Karumanchi, S Ananth; Rhee, Eugene P; Parikh, Samir M

    2016-03-24

    The energetic burden of continuously concentrating solutes against gradients along the tubule may render the kidney especially vulnerable to ischaemia. Acute kidney injury (AKI) affects 3% of all hospitalized patients. Here we show that the mitochondrial biogenesis regulator, PGC1α, is a pivotal determinant of renal recovery from injury by regulating nicotinamide adenine dinucleotide (NAD) biosynthesis. Following renal ischaemia, Pgc1α(-/-) (also known as Ppargc1a(-/-)) mice develop local deficiency of the NAD precursor niacinamide (NAM, also known as nicotinamide), marked fat accumulation, and failure to re-establish normal function. Notably, exogenous NAM improves local NAD levels, fat accumulation, and renal function in post-ischaemic Pgc1α(-/-) mice. Inducible tubular transgenic mice (iNephPGC1α) recapitulate the effects of NAM supplementation, including more local NAD and less fat accumulation with better renal function after ischaemia. PGC1α coordinately upregulates the enzymes that synthesize NAD de novo from amino acids whereas PGC1α deficiency or AKI attenuates the de novo pathway. NAM enhances NAD via the enzyme NAMPT and augments production of the fat breakdown product β-hydroxybutyrate, leading to increased production of prostaglandin PGE2 (ref. 5), a secreted autacoid that maintains renal function. NAM treatment reverses established ischaemic AKI and also prevented AKI in an unrelated toxic model. Inhibition of β-hydroxybutyrate signalling or prostaglandin production similarly abolishes PGC1α-dependent renoprotection. Given the importance of mitochondrial health in ageing and the function of metabolically active organs, the results implicate NAM and NAD as key effectors for achieving PGC1α-dependent stress resistance. PMID:26982719

  4. Transient receptor potential vanilloid 1 activation by dietary capsaicin promotes urinary sodium excretion by inhibiting epithelial sodium channel α subunit-mediated sodium reabsorption.

    PubMed

    Li, Li; Wang, Fei; Wei, Xing; Liang, Yi; Cui, Yuanting; Gao, Feng; Zhong, Jian; Pu, Yunfei; Zhao, Yu; Yan, Zhencheng; Arendshorst, William J; Nilius, Bernd; Chen, Jing; Liu, Daoyan; Zhu, Zhiming

    2014-08-01

    High salt (HS) intake contributes to the development of hypertension. Epithelial sodium channels play crucial roles in regulating renal sodium reabsorption and blood pressure. The renal transient receptor potential vanilloid 1 (TRPV1) cation channel can be activated by its agonist capsaicin. However, it is unknown whether dietary factors can act on urinary sodium excretion and renal epithelial sodium channel (ENaC) function. Here, we report that TRPV1 activation by dietary capsaicin increased urinary sodium excretion through reducing sodium reabsorption in wild-type (WT) mice on a HS diet but not in TRPV1(-/-) mice. The effect of capsaicin on urinary sodium excretion was involved in inhibiting αENaC and its related with-no-lysine kinase 1/serum- and glucocorticoid-inducible protein kinase 1 pathway in renal cortical collecting ducts of WT mice. Dietary capsaicin further reduced the increased αENaC activity in WT mice attributed to the HS diet. In contrast, this capsaicin effect was absent in TRPV1(-/-) mice. Immunoprecipitation study indicated αENaC specifically coexpressed and functionally interact with TRPV1 in renal cortical collecting ducts of WT mice. Additionally, ENaC activity and expression were suppressed by capsaicin-mediated TRPV1 activation in cultured M1-cortical collecting duct cells. Long-term dietary capsaicin prevented the development of high blood pressure in WT mice on a HS diet. It concludes that TRPV1 activation in the cortical collecting ducts by capsaicin increases urinary sodium excretion and avoids HS diet-induced hypertension through antagonizing αENaC-mediated urinary sodium reabsorption. Dietary capsaicin may represent a promising lifestyle intervention in populations exposed to a high dietary salt intake.

  5. Reabsorption kinetics of albumin from pleural space of dogs

    SciTech Connect

    Miniati, M.; Parker, J.C.; Pistolesi, M.; Cartledge, J.T.; Martin, D.J.; Giuntini, C.; Taylor, A.E.

    1988-08-01

    The reabsorption of albumin from the pleural space was measured in eight dogs receiving 0.5 ml intrapleural injection of /sup 131/I-labeled albumin and a simultaneous intravenous injection of /sup 125/I-labeled albumin. Plasma curves for both tracers were obtained over 24 h. The /sup 125/I-albumin curve served as input function of albumin for interstitial spaces, including pleura, whereas the /sup 131/I-albumin curve represented the output function from pleural space. The frequency function of albumin transit times from pleural space to plasma was obtained by deconvolution of input-output plasma curves. Plasma recovery of /sup 131/I-albumin was complete by 24 h, and the mean transit time from pleura to plasma averaged 7.95 +/- 1.57 (SD) h. Albumin reabsorption occurred mainly via lymphatics as indicated by experiments in 16 additional dogs in which their right lymph ducts or thoracic ducts were ligated before intrapleural injection. A pleural lymph flow of 0.020 +/- 0.003 (SD) ml.kg-1.h-1 was estimated, which is balanced by a comparable filtration of fluid into the pleural space. This suggests that, under physiological conditions, the subpleural lymphatics represent an important control mechanism of pleural liquid pressure.

  6. Increased Milk Protein Concentration in a Rehydration Drink Enhances Fluid Retention Caused by Water Reabsorption in Rats.

    PubMed

    Ito, Kentaro; Saito, Yuri; Ashida, Kinya; Yamaji, Taketo; Itoh, Hiroyuki; Oda, Munehiro

    2015-01-01

    A fluid-retention effect is required for beverages that are designed to prevent dehydration. That is, fluid absorbed from the intestines should not be excreted quickly; long-term retention is desirable. Here, we focused on the effect of milk protein on fluid retention, and propose a new effective oral rehydration method that can be used daily for preventing dehydration. We first evaluated the effects of different concentrations of milk protein on fluid retention by measuring the urinary volumes of rats fed fluid containing milk protein at concentrations of 1, 5, and 10%. We next compared the fluid-retention effect of milk protein-enriched drink (MPD) with those of distilled water (DW) and a sports drink (SD) by the same method. Third, to investigate the mechanism of fluid retention, we measured plasma insulin changes in rats after ingesting these three drinks. We found that the addition of milk protein at 5 or 10% reduced urinary volume in a dose-dependent manner. Ingestion of the MPD containing 4.6% milk protein resulted in lower urinary volumes than DW and SD. MPD also showed a higher water reabsorption rate in the kidneys and higher concentrations of plasma insulin than DW and SD. These results suggest that increasing milk protein concentration in a beverage enhances fluid retention, which may allow the possibility to develop rehydration beverages that are more effective than SDs. In addition, insulin-modifying renal water reabsorption may contribute to the fluid-retention effect of MPD.

  7. Increased Milk Protein Concentration in a Rehydration Drink Enhances Fluid Retention Caused by Water Reabsorption in Rats.

    PubMed

    Ito, Kentaro; Saito, Yuri; Ashida, Kinya; Yamaji, Taketo; Itoh, Hiroyuki; Oda, Munehiro

    2015-01-01

    A fluid-retention effect is required for beverages that are designed to prevent dehydration. That is, fluid absorbed from the intestines should not be excreted quickly; long-term retention is desirable. Here, we focused on the effect of milk protein on fluid retention, and propose a new effective oral rehydration method that can be used daily for preventing dehydration. We first evaluated the effects of different concentrations of milk protein on fluid retention by measuring the urinary volumes of rats fed fluid containing milk protein at concentrations of 1, 5, and 10%. We next compared the fluid-retention effect of milk protein-enriched drink (MPD) with those of distilled water (DW) and a sports drink (SD) by the same method. Third, to investigate the mechanism of fluid retention, we measured plasma insulin changes in rats after ingesting these three drinks. We found that the addition of milk protein at 5 or 10% reduced urinary volume in a dose-dependent manner. Ingestion of the MPD containing 4.6% milk protein resulted in lower urinary volumes than DW and SD. MPD also showed a higher water reabsorption rate in the kidneys and higher concentrations of plasma insulin than DW and SD. These results suggest that increasing milk protein concentration in a beverage enhances fluid retention, which may allow the possibility to develop rehydration beverages that are more effective than SDs. In addition, insulin-modifying renal water reabsorption may contribute to the fluid-retention effect of MPD. PMID:26235579

  8. [Renal response to exercise in healthy and diseased patients].

    PubMed

    Poortmans, J R

    1995-01-01

    Exercise induces profound changes in the renal hemodynamics and protein excretion. Strenuous exercise provokes a major fall of the renal plasma flow and a reduction of the glomerular filtration rate. Despite these changes, the filtration fraction doubles at maximal exercise preserving the transfer of metabolites or substances through the glomerulus. A higher production of vasopressin and aldosterone enhances the tubular processes of water and electrolyte reabsorption, stabilising therefore the homeostasis during exercise. Urea, uric acid and lactate reabsorption are also increased. Postexercise proteinuria is directly related to the intensity of exercise rather than to its duration. This transient state may be explained by an increased glomerular membrane permeability and a partial inhibition of tubular reabsorption of plasma proteins. Postexercise proteinuria appears to be age-dependent. Exercise has an additional effect on protein excretion in patients with nephropathies (diabetes, renal diseases, kidney transplants). PMID:7630470

  9. Role of the renal sympathetic nerves in renal sodium/potassium handling and renal damage in spontaneously hypertensive rats

    PubMed Central

    Li, Jianling; He, Qiaoling; Wu, Weifeng; Li, Qingjie; Huang, Rongjie; Pan, Xiaofeng; Lai, Wenying

    2016-01-01

    Renal sympathetic nerve activity has an important role in renal disease-associated hypertension and in the modulation of fluid homeostasis. In the present study, changes in renal function and renal sodium/potassium handling were investigated in groups of 12-week-old male, spontaneously hypertensive rats with renal denervation (RDNX group) or sham denervation (sham group). The RDNX group excreted significantly more sodium than the sham group during the 2-week observation period (P<0.05). Following bilateral renal denervation, the fractional lithium excretion was elevated in the RDNX group compared with the sham group, but no significant effect was observed of renal denervation on the fractional distal reabsorption rate of sodium or the fractional excretion of potassium. Furthermore, the glomerular injury score and the wall-to-lumen ratio of the interlobular artery were significantly lower in the RDNX group than in the sham group (P<0.05). In conclusion, the present study indicates an involvement of the renal sympathetic nerves in the regulation of renal tubular sodium reabsorption in spontaneously hypertensive rats and in the renal damage associated with hypertension. PMID:27698757

  10. Role of the renal sympathetic nerves in renal sodium/potassium handling and renal damage in spontaneously hypertensive rats

    PubMed Central

    Li, Jianling; He, Qiaoling; Wu, Weifeng; Li, Qingjie; Huang, Rongjie; Pan, Xiaofeng; Lai, Wenying

    2016-01-01

    Renal sympathetic nerve activity has an important role in renal disease-associated hypertension and in the modulation of fluid homeostasis. In the present study, changes in renal function and renal sodium/potassium handling were investigated in groups of 12-week-old male, spontaneously hypertensive rats with renal denervation (RDNX group) or sham denervation (sham group). The RDNX group excreted significantly more sodium than the sham group during the 2-week observation period (P<0.05). Following bilateral renal denervation, the fractional lithium excretion was elevated in the RDNX group compared with the sham group, but no significant effect was observed of renal denervation on the fractional distal reabsorption rate of sodium or the fractional excretion of potassium. Furthermore, the glomerular injury score and the wall-to-lumen ratio of the interlobular artery were significantly lower in the RDNX group than in the sham group (P<0.05). In conclusion, the present study indicates an involvement of the renal sympathetic nerves in the regulation of renal tubular sodium reabsorption in spontaneously hypertensive rats and in the renal damage associated with hypertension.

  11. Accelerated ageing and renal dysfunction links lower socioeconomic status and dietary phosphate intake

    PubMed Central

    McClelland, Ruth; Christensen, Kelly; Mohammed, Suhaib; McGuinness, Dagmara; Cooney, Josephine; Bakshi, Andisheh; Demou, Evangelia; MacDonald, Ewan; Caslake, Muriel; Stenvinkel, Peter; Shiels, Paul G.

    2016-01-01

    Background We have sought to explore the impact of dietary Pi intake on human age related health in the pSoBid cohort (n=666) to explain the disparity between health and deprivation status in this cohort. As hyperphosphataemia is a driver of accelerated ageing in rodent models of progeria we tested whether variation in Pi levels in man associate with measures of biological ageing and health. Results We observed significant relationships between serum Pi levels and markers of biological age (telomere length (p=0.040) and DNA methylation content (p=0.028), gender and chronological age (p=0.032). When analyses were adjusted for socio-economic status and nutritional factors, associations were observed between accelerated biological ageing (telomere length, genomic methylation content) and dietary derived Pi levels among the most deprived males, directly related to the frequency of red meat consumption. Conclusions Accelerated ageing is associated with high serum Pi levels and frequency of red meat consumption. Our data provide evidence for a mechanistic link between high intake of Pi and age-related morbidities tied to socio-economic status. PMID:27132985

  12. Methylene blue solder re-absorption in microvascular anastomoses

    NASA Astrophysics Data System (ADS)

    Birch, Jeremy F.; Hepplewhite, J.; Frier, Malcolm; Bell, Peter R. F.

    2003-06-01

    Soldered vascular anastomoses have been reported using several chromophores but little is known of the optimal conditions for microvascular anastomosis. There are some indications of the optimal protein contents of a solder, and the effects of methylene blue on anastomotic strength. The effects of varying laser power density in vivo have also been described, showing a high rate of thrombosis with laser power over 22.9Wcm-2. However no evidence exists to describe how long the solder remains at the site of the anastomosis. Oz et al reported that the fibrin used in their study had been almost completely removed by 90 days but without objective evidence of solder removal. In order to address the issue of solder re-absorption from the site of an anastomosis we used radio-labelled albumin (I-125) incorporated into methylene blue based solder. This was investigated in both the situation of the patent and thrombosed anastomosis with anastomoses formed at high and low power. Iodine-125 (half life: 60.2 days) was covalently bonded to porcine albumin and mixed with the solder solution. Radio-iodine has been used over many years to determine protein turnover using either I-125 or I-131. Iodine-125 labelled human albumin is regularly used as a radiopharmaceutical tool for the determination of plasma volume. Radio-iodine has the advantages of not affecting protein metabolism and the label is rapidly excreted after metabolic breakdown. Labelling with chromium (Cr-51) causes protein denaturation and is lost from the protein with time. Labelled albumin has been reported in human studies over a 21-day period, with similar results reported by Matthews. Most significantly McFarlane reported a different rate of catabolism of I-131 and I-125 over a 22-day period. The conclusion from this is that the rate of iodine clearance is a good indicator of protein catabolism. In parallel with the surgery a series of blank standards were prepared with a known mass of solder to correct for isotope

  13. Apolipoprotein M modulates erythrocyte efflux and tubular reabsorption of sphingosine-1-phosphate

    PubMed Central

    Sutter, Iryna; Park, Rebekka; Othman, Alaa; Rohrer, Lucia; Hornemann, Thorsten; Stoffel, Markus; Devuyst, Olivier; von Eckardstein, Arnold

    2014-01-01

    Sphingosine-1-phosphate (S1P) mediates several cytoprotective functions of HDL. apoM acts as a S1P binding protein in HDL. Erythrocytes are the major source of S1P in plasma. After glomerular filtration, apoM is endocytosed in the proximal renal tubules. Human or murine HDL elicited time- and dose-dependent S1P efflux from erythrocytes. Compared with HDL of wild-type (wt) mice, S1P efflux was enhanced in the presence of HDL from apoM transgenic mice, but not diminished in the presence of HDL from apoM knockout (Apom−/−) mice. Artificially reconstituted and apoM-free HDL also effectively induced S1P efflux from erythrocytes. S1P and apoM were not measurable in the urine of wt mice. Apom−/− mice excreted significant amounts of S1P. apoM was detected in the urine of mice with defective tubular endocytosis because of knockout of the LDL receptor-related protein, chloride-proton exchanger ClC-5 (Clcn5−/−), or the cysteine transporter cystinosin. Urinary levels of S1P were significantly elevated in Clcn5−/− mice. In contrast to Apom−/− mice, these mice showed normal plasma concentrations for apoM and S1P. In conclusion, HDL facilitates S1P efflux from erythrocytes by both apoM-dependent and apoM-independent mechanisms. Moreover, apoM facilitates tubular reabsorption of S1P from the urine, however, with no impact on S1P plasma concentrations. PMID:24950692

  14. Observations on the mechanism and location of ascites reabsorption in man

    SciTech Connect

    Rector, W.G. Jr.; Ibarra, F.

    1987-04-01

    Animal data indicate that ascites is reabsorbed by a lymphatic mechanism and that these vessels are subdiaphragmatic in location. We evaluated the relative role of lymphatics in ascites reabsorption in man by comparing the ascites clearance and plasma appearance rates of intraperitoneally injected radiolabeled albumin to those of intraperitoneally injected labeled autologous red blood cells, which require, owing to their large size, lymphatic removal, in patients with cirrhosis and ascites. To evaluate the location of reabsorption, we repeated these measurements after replacing ascites in the subdiaphragmatic region with 500-1000 ml of intraperitoneally injected air, reasoning that this maneuver should slow or eliminate ascites reabsorption occurring at this site. We found that the transfer rates of albumin and red cells out of ascites were similar and that creation of pneumoperitoneum did not influence these rates. These data confirm that ascites protein reabsorption occurs via a lymphatic mechanism in man. They suggest, however, that these vessels may not be subdiaphragmatic in location.

  15. ADH-PGE2 interactions in cortical collecting tubule. II. inhibition of Ca and P reabsorption.

    PubMed

    Holt, W F; Lechene, C

    1981-10-01

    In the absence of ADH, microperfused cortical collecting tubules of rabbits reabsorb calcium and phosphorus. Antidiuretic hormone (ADH) (200 microunits/ml Pitressin or synthetic arginine vasopressin) inhibits the reabsorption and may promote the secretion of calcium and phosphorus. At 5 min after incubation with ADH, there was a transitory increase in the potential difference and the reabsorption of sodium. The fluxes of calcium and phosphorus, however, showed no significant change from the control values. At 30-50 min after treatment with ADH, the reabsorption of calcium and phosphorus was inhibited and in some tubules calcium and phosphorus were secreted. The removal of vasopressin from the bath or the addition of 10(-5) M meclofenamate in vitro prevented ADH from inhibiting the reabsorption of calcium and phosphorus. Treatment of tubules with 10(-5) M prostaglandin E2 (PGE2) subsequent to incubation in a medium containing ADH and meclofenamate inhibited the reabsorption or even promoted the secretin of calcium and phosphorus, as did the prolonged incubation with ADH alone. We conclude that cortical collecting tubules reabsorb calcium and phosphorus in the absence of vasopressin and that ADH inhibits calcium and phosphorus reabsorption. Endogenous synthesis of PGE2 may mediate the inhibitory action of ADH, since meclofenamate (an inhibitor of the synthesis of prostaglandins) opposes and exogenous PGE2 mimics ADH. PMID:6947697

  16. A light in the shadow: the use of Lucifer Yellow technique to demonstrate nectar reabsorption

    PubMed Central

    2013-01-01

    Background Nectar reabsorption is a widely known phenomenon, related to the strategy of resource-recovery and also to maintain the nectar homeostasis at the nectary. The method currently performed to demonstrate nectar being reabsorbed involves the use of radioactive tracers applied to the nectary. Although this method works perfectly, it is complex and requires specific supplies and equipment. Therefore, here we propose an efficient method to obtain a visual demonstration of nectar reabsorption, adapting the use of Lucifer Yellow CH (LYCH), a fluorescent membrane-impermeable dye that can enter the vacuole by endocytosis. Results We applied a LYCH solution to the floral nectary (FN) of Cucurbita pepo L., which is a species known for its ability of nectar reabsorption, and to the extrafloral nectary (EFN) of Passiflora edulis Sims which does not reabsorb the secreted nectar. In all tests performed, we observed that LYCH stained the nectary tissues differentially according to the reabsorption ability of the nectary. The treated FN of C. pepo presented a concentrated fluorescence at the epidermis that decreased at the deeper nectary parenchyma, until reaching the vascular bundles, indicating nectar reabsorption in the flowers of the species. In contrast, treated EFN of P. edulis presented fluorescence only at the cuticle surface, indicating that nectar is not reabsorbed by that particular tissue. Conclusion LYCH is an efficient marker to demonstrate nectar reabsorption. PMID:23783170

  17. Fibroblast growth factor 23 regulates renal 1,25-dihydroxyvitamin D and phosphate metabolism via the MAP kinase signaling pathway in Hyp mice.

    PubMed

    Ranch, Daniel; Zhang, Martin Yh; Portale, Anthony A; Perwad, Farzana

    2011-08-01

    In X-linked hypophosphatemia (XLH) and in its murine homologue, the Hyp mouse, increased circulating concentrations of fibroblast growth factor 23 (FGF-23) are critical to the pathogenesis of disordered metabolism of phosphate (P(i)) and 1,25-dihydroxyvitamin D [1,25(OH)(2)D]. In this study, we hypothesized that in Hyp mice, FGF-23-mediated suppression of renal 1,25(OH)(2)D production and P(i) reabsorption depends on activation of mitogen-activated protein kinase (MAPK) signaling. Wild-type and Hyp mice were administered either vehicle or the MEK inhibitor PD0325901 (12.5 mg/kg) orally daily for 4 days. At baseline, the renal abundance of early growth response 1 (egr1) mRNA was approximately 2-fold greater in Hyp mice than in wild-type mice. Treatment with PD0325901 greatly suppressed egr1 mRNA abundance in both wild-type and Hyp mice. In Hyp mice, PD0325901 induced an 8-fold increase in renal 1α-hydroxylase mRNA expression and a 4-fold increase in serum 1,25(OH)(2)D concentrations compared with vehicle-treated Hyp mice. Serum P(i) levels in Hyp mice increased significantly after treatment with PD0325901, and the increase was associated with increased renal Npt2a mRNA abundance and brush-border membrane Npt2a protein expression. These findings provide evidence that in Hyp mice, MAPK signaling is constitutively activated in the kidney and support the hypothesis that the FGF-23-mediated suppression of renal 1,25(OH)(2)D production and P(i) reabsorption depends on activation of MAPK signaling via MEK/ERK1/2. These findings demonstrate the physiologic importance of MAPK signaling in the actions of FGF-23 in regulating renal 1,25(OH)(2)D and P(i) metabolism.

  18. Fibroblast Growth Factor 23 Regulates Renal 1,25-Dihydroxyvitamin D and Phosphate Metabolism via the MAP Kinase Signaling Pathway in Hyp Mice

    PubMed Central

    Ranch, Daniel; Zhang, Martin YH; Portale, Anthony A; Perwad, Farzana

    2015-01-01

    In X-linked hypophosphatemia (XLH) and in its murine homologue, the Hyp mouse, increased circulating concentrations of fibroblast growth factor 23 (FGF-23) are critical to the pathogenesis of disordered metabolism of phosphate (Pi) and 1,25-dihydroxyvitamin D [1,25(OH)2D]. In this study, we hypothesized that in Hyp mice, FGF-23-mediated suppression of renal 1,25(OH)2D production and Pi reabsorption depends on activation of mitogen-activated protein kinase (MAPK) signaling. Wild-type and Hyp mice were administered either vehicle or the MEK inhibitor PD0325901 (12.5 mg/kg) orally daily for 4 days. At baseline, the renal abundance of early growth response 1 (egr1) mRNA was approximately 2-fold greater in Hyp mice than in wild-type mice. Treatment with PD0325901 greatly suppressed egr1 mRNA abundance in both wild-type and Hyp mice. In Hyp mice, PD0325901 induced an 8-fold increase in renal 1α-hydroxylase mRNA expression and a 4-fold increase in serum 1,25(OH)2D concentrations compared with vehicle-treated Hyp mice. Serum Pi levels in Hyp mice increased significantly after treatment with PD0325901, and the increase was associated with increased renal Npt2a mRNA abundance and brush-border membrane Npt2a protein expression. These findings provide evidence that in Hyp mice, MAPK signaling is constitutively activated in the kidney and support the hypothesis that the FGF-23-mediated suppression of renal 1,25(OH)2D production and Pi reabsorption depends on activation of MAPK signaling via MEK/ERK1/2. These findings demonstrate the physiologic importance of MAPK signaling in the actions of FGF-23 in regulating renal 1,25(OH)2D and Pi metabolism. PMID:21472778

  19. Absence of a losartan interaction with renal lithium excretion in the rat.

    PubMed Central

    Barthelmebs, M.; Alt-Tebacher, M.; Madonna, O.; Grima, M.; Imbs, J. L.

    1995-01-01

    1. The interaction of losartan, a non-peptide specific AT1 receptor antagonist with the renal handling of lithium was analysed in conscious normotensive Wistar rats and compared with the known increase in renal tubular lithium reabsorption induced by the non-steroidal anti-inflammatory drug, indomethacin. 2. The rats were treated for five days with losartan (10 mg kg-1 day-1, orally), indomethacin (2.5 mg kg-1 day-1, intramuscularly) or their solvents. Lithium chloride (16.7 mg kg-1, i.p.) was given as a single dose on the fifth day; renal functions were then measured. 3. Indomethacin, in the absence of any effect on creatinine clearance, increased renal fractional lithium reabsorption and led to an increase in plasma lithium levels. 4. Losartan did not modify renal lithium handling and its plasma level. No change was observed in renal lithium clearance, the quantity of filtered lithium or the fractional reabsorption of the metal. As expected, losartan had no effect on systolic blood pressure in normotensive rats. 5. In conclusion, our results indicate that losartan, when given orally in the rat at a dose of 10 mg kg-1 day-1 over five days, does not modify renal lithium handling. They suggest that blockade of the angiotensin II receptors does not interfere with renal lithium reabsorption, which occurs mainly at a proximal tubular site. PMID:8564244

  20. Significance of enzyme linked immunosorbent assay (ELISA) for antibodies to double stranded and single stranded DNA in patients with lupus nephritis: correlation with severity of renal histology.

    PubMed

    Okamura, M; Kanayama, Y; Amastu, K; Negoro, N; Kohda, S; Takeda, T; Inoue, T

    1993-01-01

    The correlation between renal histology and class specific (IgG and IgM) antibodies to double stranded DNA (dsDNA) and single stranded DNA (ssDNA) was studied by enzyme linked immunosorbent assay (ELISA) in 40 untreated patients with systemic lupus erythematosus (SLE). The levels of IgG antibodies to dsDNA were significantly higher in patients with World Health Organisation class IV nephritis than in those with class I, class II, or class III nephritis. IgG antibodies to ssDNA were higher in patients with class IV than in those with class II nephritis. IgG antibodies to dsDNA showed a close correlation with the histological activity score and the amount of electron dense deposit. IgG antibodies to ssDNA showed only a weak correlation with the renal histological activity score. IgM antibodies to dsDNA and IgM antibodies to ssDNA were not correlated with renal histological features. Patients with moderate to severe nephritis had a lower ratio of IgM antibodies to dsDNA to IgG antibodies to dsDNA than those with mild nephritis. These results indicate that the measurement of IgG antibodies to dsDNA is predictive in evaluating renal histological activity in patients with SLE.

  1. Acute effects of ethanol on renal folate clearance in rats

    SciTech Connect

    Eisenga, B.H.; McMartin, K.E.

    1986-03-05

    Studies of the renal clearance of folic acid in primates demonstrate net reabsorption of folate by a saturable system. The acute administration of ethanol to rats causes a significant increase in urinary folate excretion. The mechanism for this effect is unknown and thus the effect of acute administration of ethanol on the renal absorption and urinary clearance of folate was studied in rats. Folic acid was administered to male Sprague-Dawley rats via continuous intravenous infusion in doses ranging from 3-75 micromoles/kg and renal clearance relative to inulin was determined. The effects of various dose levels of ethanol on these parameters were then determined. At a dose of 15 micromoles/kg, the renal clearance of folate relative to that of inulin was about 0.65 mg/min. At a plasma ethanol level about 100 mg/dl, the renal clearance of folate was not markedly altered. These results suggests that there is net reabsorption of folate in the rat kidney and that moderate doses of ethanol have little effect on renal effect on renal folate reabsorption.

  2. An in vivo microperfusion study of distal tubule bicarbonate reabsorption in normal and ammonium chloride rats.

    PubMed Central

    Levine, D Z

    1985-01-01

    For many years it has been thought that distal nephron hydrogen ion secretion can be importantly modulated by factors such as sodium delivery, sodium avidity, and potassium stores. Free flow micropuncture studies have also indicated that the rate of bicarbonate delivery may also alter the rate of bicarbonate reabsorption. The present studies were undertaken to examine possible luminal influences on total CO2 reabsorption in microperfused distal tubules in the rat in vivo. Tubules from normal and acidotic rats were perfused with five solutions in a manner that induced changes in bicarbonate load, sodium and potassium fluxes (JNa, JK), and luminal sulfate concentration. in each collected perfusate, simultaneous analyses were undertaken to determine water reabsorption, Na, and K concentrations using graphite furnace atomic absorption spectroscopy and total CO2 by microcalorimetry. Using factorial analysis of covariance to account for confounding effects on total CO2 flux (JtCO2) such as water reabsorption, distal tubules of acidotic rats reabsorbed CO2 in the range of 50-112 pmol X min-1 X mm-1 X These JtCO2 values were not significantly correlated with HCO3 load, JNa, or JK despite changes in the latter from net reabsorption to net secretion. Distal tubules of rats with normal acid-base status had JtCO2 values which were neither significantly different from zero nor correlated with changes in JK and JNa. Further, doubling the load from 250-500 pmol/min (by doubling the perfusion rate of 25-mM HCO3 solutions) did not stimulate JtCO2 in these normal animals. Accordingly, these acute in vivo microperfusion studies indicate for the first time that neither load nor potassium or sodium fluxes are important modulators of distal tubule bicarbonate reabsorption. PMID:2982915

  3. Red shift in the photoluminescence of colloidal carbon quantum dots induced by photon reabsorption

    SciTech Connect

    Zhang, Wenxia; Dai, Dejian; Chen, Xifang; Guo, Xiaoxiao; Fan, Jiyang

    2014-03-03

    We synthesize the colloidal carbon/graphene quantum dots 1–9 nm in diameter and study their photoluminescence properties. Surprisingly, the luminescence properties of a fixed collection of colloidal carbon quantum dots can be systematically changed as the concentration varies. A model based on photon reabsorption is proposed which explains well the experiment. Infrared spectral study indicates that the surfaces of the carbon quantum dots are substantially terminated by oxygen atoms, which causes their ultra-high hydrophilicity. Our result clarifies the mystery of distinct emission colors in carbon quantum dots and indicates that photon reabsorption can strongly affect the luminescence properties of colloidal nanocrystals.

  4. Renal response to environmental toxins.

    PubMed

    Finn, W F

    1977-10-01

    Several characteristics of normal renal function increase the risk to the kidney of damage by environmental toxins. Due to the magnitude of renal blood flow the total amount of noxious substance delivered may be disproportionately high. Furthermore, the capacity to concentrate substances within the kidney by processes of filtration, reabsorption and secretion has the potential to increase the toxicity of agents which would otherwise not lead to tissue injury. Unfortunately, there are few tests of renal function which are able to detect early functional abnormalities and which, at the same time, are suited for screening purposes by virtue of their simplicity, cost and safety. Furthermore, interpretation of the tests is complicated by adaptive changes in renal function which occur with aging and in response to other disease processes. Environmental agents produce a wide spectrum of renal dysfunction. Acute renal damage follows exposure to glycols, organic solvents, heavy metals, diagnostic and therapeutic agents and a variety of miscellaneous substances. Chronic renal disease may take the form of isolated tubular defects as seen with cadmium, interstitial nephritis due to the ingestion of lead, or vascular damage induced by external radiation. Some forms of glomerulonephritis may also be related to environmental toxins as are certain tumors of the urinary tract. In a somewhat different fashion, patients whose renal function is limited by the presence of pre-existing disease may manifest toxicity from substances ordinarily excreted in the urine. Particular problems exist with the patients on dialysis, as they are at considerable risk to alterations in the environment.

  5. Role of MHC-Linked Genes in Autoantigen Selection and Renal Disease in a Murine Model of Systemic Lupus Erythematosus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We previously described a renal protective effect of factor B deficiency in MRL/lpr mice. Factor B is in the MHC cluster; thus, the deficient mice were H2b, the haplotype on which the knockout was derived, whereas the wild-type littermates were H2k, the H2 of MRL/lpr mice. To determine which protect...

  6. In vivo microperfusion of the ductuli efferentes testis of the rat: flow dependence of fluid reabsorption.

    PubMed

    Clulow, J; Hansen, L A; Jones, R C

    1996-07-01

    Individual ducts from the initial zone of the efferent ducts of the rat were microperfused in vivo using a double cannulation procedure, which allowed the recovery of perfused fluids for analysis and determination of the rate of fluid reabsorption from the perfused duct. The ducts were perfused at rates from 0.025 to 0.4 microliters min-1 with either Krebs-Ringer bicarbonate (KRB) solution or the native rete testis fluid (nRTF) that perfuses the ducts in situ. Reabsorption of KRB solution increased linearly with a perfusion rate of between 0.025 and 0.1 microliter min-1 (from 17.4 +/- 1.5 to 34.3 +/- 3.2 nl (10 mm duct)-1 min-1), then increased no further. Reabsorption of nRTF increased linearly between 0.025 and 0.2 microliters min-1 (from 17.7 +/- 1.5 to 61.4 +/- 13.5 nl (10 mm duct)-1 min-1) and then declined. The reabsorption rate from nRTF perfusates was significantly higher than from KRB perfusates. As a proportion of the luminal perfusate, reabsorption declined from 73.0 +/- 6.0 to 7.4 +/- 3.0% (10 mm duct)-1 for KRB solution and from 73.1 +/- 6.0 to 4.1 +/- 1.3% (10 mm duct)-1 for nRTF. There was no significant change in the concentration of either Na+ or Cl- in KRB solution or nRTF during perfusion through the efferent ducts, indicating that the reabsorption of these ions was isomolar. However, the reabsorption of K+ from nRTF occurred at a greater rate than that of water, and the initial [K+] declined from 17.2 +/- 0.4 mM in nRTF perfusates to 5.7 +/- 0.5 mM in collectates (perfusion rate, 0.1 microliter min-1) to achieve equilibrium with blood plasma (4.7 +/- 0.4 mM). The osmotic pressure of both KRB and nRTF perfusates equilibrated with blood plasma, indicating a high permeability of the epithelium to water. The results of this study provide further evidence that fluid reabsorption in the efferent ducts is isosmotic, or close to isosmotic, and have shown that, as in the homologous proximal kidney tubule, reabsorption is dependent on luminal flow rate

  7. Relation between BK-α/β4-mediated potassium secretion and ENaC-mediated sodium reabsorption.

    PubMed

    Wen, Donghai; Cornelius, Ryan J; Rivero-Hernandez, Dianelys; Yuan, Yang; Li, Huaqing; Weinstein, Alan M; Sansom, Steven C

    2014-07-01

    The large-conductance, calcium-activated BK-α/β4 potassium channel, localized to the intercalated cells of the distal nephron, mediates potassium secretion during high-potassium, alkaline diets. Here we determine whether BK-α/β4-mediated potassium transport is dependent on epithelial sodium channel (ENaC)-mediated sodium reabsorption. We maximized sodium-potassium exchange in the distal nephron by feeding mice a low-sodium, high-potassium diet. Wild-type and BK-β4 knockout mice were maintained on a low-sodium, high-potassium, alkaline diet or a low-sodium, high-potassium, acidic diet for 7-10 days. Wild-type mice maintained potassium homeostasis on the alkaline, but not acid, diet. BK-β4 knockout mice could not maintain potassium homeostasis on either diet. During the last 12 h of diet, wild-type mice on either a regular, alkaline, or an acid diet, or knockout mice on an alkaline diet, were administered amiloride (an ENaC inhibitor). Amiloride enhanced sodium excretion in all wild-type and knockout groups to similar values; however, amiloride diminished potassium excretion by 59% in wild-type but only by 33% in knockout mice on an alkaline diet. Similarly, amiloride decreased the trans-tubular potassium gradient by 68% in wild-type but only by 42% in knockout mice on an alkaline diet. Amiloride treatment equally enhanced sodium excretion and diminished potassium secretion in knockout mice on an alkaline diet and wild-type mice on an acid diet. Thus, the enhanced effect of amiloride on potassium secretion in wild-type compared to knockout mice on the alkaline diet clarify a BK- α/β4-mediated potassium secretory pathway in intercalated cells driven by ENaC-mediated sodium reabsorption linked to bicarbonate secretion.

  8. Functional correlates of compensatory renal hypertrophy

    PubMed Central

    Hayslett, John P.; Kashgarian, Michael; Epstein, Franklin H.

    1968-01-01

    The functional correlates of compensatory renal hypertrophy were studied by micropuncture techniques in rats after the removal of one kidney. The glomerular filtration rate increased to roughly the same extent in the whole kidney and in individual surface nephrons, resulting in a greater amount of sodium delivered to the tubules for reabsorption. The fraction of the glomerular filtrate absorbed [determined from the tubular fluid-to-plasma ratio (TF/P) for inulin] remained unchanged in both proximal and distal portions of the nephron. The way in which the tubules adjusted to nephrectomy, however, differed in proximal and distal convolutions. After nephrectomy, the reabsorptive half-time, indicated by the rate of shrinkage of a droplet of saline in a tubule blocked with oil, was unchanged in the proximal tubule but significantly shortened in the distal convoluted tubule. Nevertheless, steady-state concentrations of sodium in an isolated raffinose droplet in the distal as well as the proximal tubule were the same in hypertrophied kidneys as in control animals. Possible reasons for this paradox are discussed. Transit time through the proximal tubules was unchanged by compensatory hypertrophy, but transit time to the distal tubules was prolonged. Changes in renal structure resulting from compensatory hypertrophy were also found to differ in the proximal and the distal protions of the nephron. Although tubular volume increased in both protions, the volume increase was twice as great in the proximal tubule as in the distal. In order, therefore, for net reabsorption to increase in the distal tubule, where the changes in tubular volume are not so marked, an increase in reabsorptive capacity per unit length of tubule is required. This increase is reflected in the shortening of reabsorptive half-time in the oil-blocked distal tubule that was actually observed. PMID:5641618

  9. Activation of purinergic receptors (P2) in the renal medulla promotes endothelin-dependent natriuresis in male rats.

    PubMed

    Gohar, Eman Y; Speed, Joshua S; Kasztan, Malgorzata; Jin, Chunhua; Pollock, David M

    2016-08-01

    Renal endothelin-1 (ET-1) and purinergic signaling systems regulate Na(+) reabsorption in the renal medulla. A link between the renal ET-1 and purinergic systems was demonstrated in vitro, however, the in vivo interaction between these systems has not been defined. To test whether renal medullary activation of purinergic (P2) receptors promotes ET-dependent natriuresis, we determined the effect of increased medullary NaCl loading on Na(+) excretion and inner medullary ET-1 mRNA expression in anesthetized adult male Sprague-Dawley rats in the presence and absence of purinergic receptor antagonism. Isosmotic saline (NaCl; 284 mosmol/kgH2O) was infused into the medullary interstitium (500 μl/h) during a 30-min baseline urine collection period, followed by isosmotic or hyperosmotic saline (1,800 mosmol/kgH2O) for two further 30-min urine collection periods. Na(+) excretion was significantly increased during intramedullary infusion of hyperosmotic saline. Compared with isosmotic saline, hyperosmotic saline infused into the renal medulla caused significant increases in inner medullary ET-1 mRNA expression. Renal intramedullary infusion of the P2 receptor antagonist suramin inhibited the increase in Na(+) excretion and inner medullary ET-1 mRNA expression induced by NaCl loading in the renal medulla. Activation of medullary P2Y2/4 receptors by infusion of UTP increased urinary Na(+) excretion. Combined ETA and ETB receptor blockade abolished the natriuretic response to intramedullary infusion of UTP. These data demonstrate that activation of medullary P2 receptors promotes ET-dependent natriuresis in male rats, suggesting that the renal ET-1 and purinergic signaling systems interact to efficiently facilitate excretion of a NaCl load.

  10. Renal arteriography

    MedlinePlus

    Renal angiogram; Angiography - kidney; Renal angiography; Renal artery stenosis - arteriography ... Renal arteriography is often needed to help decide on the best treatment after other tests are done ...

  11. Role of claudins in renal calcium handling.

    PubMed

    Negri, Armando Luis

    2015-01-01

    Paracellular channels occurring in tight junctions play a major role in transepithelial ionic flows. This pathway includes a high number of proteins, such as claudins. Within renal epithelium, claudins result in an ionic selectivity in tight junctions. Ascending thick limb of loop of Henle (ATLH) is the most important segment for calcium reabsorption in renal tubules. Its cells create a water-proof barrier, actively transport sodium and chlorine through a transcellular pathway, and provide a paracellular pathway for selective calcium reabsorption. Several studies have led to a model of paracellular channel consisting of various claudins, particularly claudin-16 and 19. Claudin-16 mediates cationic paracellular permeability in ATLH, whereas claudin-19 increases cationic selectivity of claudin-16 by blocking anionic permeability. Recent studies have shown that claudin-14 promoting activity is only located in ATLH. When co-expressed with claudin-16, claudin-14 inhibits the permeability of claudin-16 and reduces paracellular permeability to calcium. Calcium reabsorption process in ATLH is closely regulated by calcium sensor receptor (CaSR), which monitors circulating Ca levels and adjusts renal excretion rate accordingly. Two microRNA, miR-9 and miR-374, are directly regulated by CaSR. Thus, miR-9 and miR-374 suppress mRNA translation for claudin-14 and induce claudin-14 decline.

  12. Morphological and functional characteristics of the kidney of cartilaginous fishes: with special reference to urea reabsorption.

    PubMed

    Hyodo, Susumu; Kakumura, Keigo; Takagi, Wataru; Hasegawa, Kumi; Yamaguchi, Yoko

    2014-12-15

    For adaptation to high-salinity marine environments, cartilaginous fishes (sharks, skates, rays, and chimaeras) adopt a unique urea-based osmoregulation strategy. Their kidneys reabsorb nearly all filtered urea from the primary urine, and this is an essential component of urea retention in their body fluid. Anatomical investigations have revealed the extraordinarily elaborate nephron system in the kidney of cartilaginous fishes, e.g., the four-loop configuration of each nephron, the occurrence of distinct sinus and bundle zones, and the sac-like peritubular sheath in the bundle zone, in which the nephron segments are arranged in a countercurrent fashion. These anatomical and morphological characteristics have been considered to be important for urea reabsorption; however, a mechanism for urea reabsorption is still largely unknown. This review focuses on recent progress in the identification and mapping of various pumps, channels, and transporters on the nephron segments in the kidney of cartilaginous fishes. The molecules include urea transporters, Na(+)/K(+)-ATPase, Na(+)-K(+)-Cl(-) cotransporters, and aquaporins, which most probably all contribute to the urea reabsorption process. Although research is still in progress, a possible model for urea reabsorption in the kidney of cartilaginous fishes is discussed based on the anatomical features of nephron segments and vascular systems and on the results of molecular mapping. The molecular anatomical approach thus provides a powerful tool for understanding the physiological processes that take place in the highly elaborate kidney of cartilaginous fishes.

  13. Population pharmacokinetics of nefopam in elderly, with or without renal impairment, and its link to treatment response

    PubMed Central

    Djerada, Zoubir; Fournet-Fayard, Aurélie; Gozalo, Claire; Lelarge, Chantal; Lamiable, Denis; Millart, Hervé; Malinovsky, Jean-Marc

    2014-01-01

    Aims Nefopam is a nonmorphinic central analgesic, for which no recommendation exists concerning adaptation of regimen in aged patients with or without renal impairment. The objective was to describe the pharmacology of nefopam in aged patients to obtain guidelines for practical use. Methods Elderly patients (n = 48), 65–99 years old, with severe or moderate renal impairment or with normal renal function, were recruited. Nefopam (20 mg) was administered as a 30 min infusion postoperatively. Simultaneously, a 1 min intravenous infusion of iohexol was performed, in order to calculate the glomerular filtration rate. Blood samples were drawn to determine nefopam, desmethyl-nefopam and iohexol plasma concentrations. Nefopam and desmethyl-nefopam concentrations were analysed using a nonlinear mixed-effects modelling approach with Monolix version 4.1.3. The association between pharmacokinetic parameters and treatment response was assessed using logistic regression. Results A two-compartment open model was selected to describe the pharmacokinetics of nefopam. The typical population estimates (between-subject variability) for clearance, volume of distribution, intercompartmental clearance and peripheral volume were, respectively, 17.3 l h−1 (53.2%), 114 l (121%), 80.7 l h−1 (79%) and 208 l (63.6%). Morphine requirement was related to exposure of nefopam. Tachycardia and postoperative nausea and vomiting were best associated with maximal concentration and the rate of increase in nefopam plasma concentration. Conclusions We identified the nefopam pharmacokinetic predictors for morphine requirement and side-effects, such as tachycardia and postoperative nausea and vomiting. In order to maintain morphine sparing and decrease side-effects following a single dose of nefopam (20 mg), simulations suggest an infusion time of >45 min in elderly patients with or without renal impairment. PMID:24252055

  14. Renal Control of Calcium, Phosphate, and Magnesium Homeostasis

    PubMed Central

    Chonchol, Michel; Levi, Moshe

    2015-01-01

    Calcium, phosphate, and magnesium are multivalent cations that are important for many biologic and cellular functions. The kidneys play a central role in the homeostasis of these ions. Gastrointestinal absorption is balanced by renal excretion. When body stores of these ions decline significantly, gastrointestinal absorption, bone resorption, and renal tubular reabsorption increase to normalize their levels. Renal regulation of these ions occurs through glomerular filtration and tubular reabsorption and/or secretion and is therefore an important determinant of plasma ion concentration. Under physiologic conditions, the whole body balance of calcium, phosphate, and magnesium is maintained by fine adjustments of urinary excretion to equal the net intake. This review discusses how calcium, phosphate, and magnesium are handled by the kidneys. PMID:25287933

  15. Renal control of calcium, phosphate, and magnesium homeostasis.

    PubMed

    Blaine, Judith; Chonchol, Michel; Levi, Moshe

    2015-07-01

    Calcium, phosphate, and magnesium are multivalent cations that are important for many biologic and cellular functions. The kidneys play a central role in the homeostasis of these ions. Gastrointestinal absorption is balanced by renal excretion. When body stores of these ions decline significantly, gastrointestinal absorption, bone resorption, and renal tubular reabsorption increase to normalize their levels. Renal regulation of these ions occurs through glomerular filtration and tubular reabsorption and/or secretion and is therefore an important determinant of plasma ion concentration. Under physiologic conditions, the whole body balance of calcium, phosphate, and magnesium is maintained by fine adjustments of urinary excretion to equal the net intake. This review discusses how calcium, phosphate, and magnesium are handled by the kidneys.

  16. Angiotensin II and renal tubular ion transport.

    PubMed

    Valles, Patricia; Wysocki, Jan; Batlle, Daniel

    2005-08-29

    Angiotensin II, a potent vasoconstrictor, also participates in the regulation of renal sodium and water excretion, not only via a myriad of effects on renal hemodynamics, glomerular filtration rate, and regulation of aldosterone secretion, but also via direct effects on renal tubule transport. In addition, angiotensin II stimulates H+ secretion and HCO3- reabsorption in both proximal and distal tubules and regulates H+-ATPase activity in intercalated cells of the collecting tubule. Different results regarding the effect of angiotensin II on bicarbonate reabsorption and proton secretion have been reported at the functional level, depending on the angiotensin II concentration and tubule segment studied. It is likely that interstitial angiotensin II is more important in regulating hemodynamic and transport functions than circulating angiotensin II. In proximal tubules, stimulation of bicarbonate reabsorption, Na+/H+-exchange, and Na+/HCO3- cotransport has been found using low concentrations (<10(-9) M), while inhibition of bicarbonate reabsorption has been documented using concentrations higher than 10(-8) M. Evidence for the regulation of H+-ATPase activity in vivo and in vitro by trafficking/exocytosis has been provided. An additional level of H+-ATPase regulation via protein synthesis may be important as well. Recently, we have shown that both aldosterone and angiotensin II provide such a mechanism of regulation in vivo at the level of the medullary collecting tubule. Interestingly, in this part of the nephron, the effects of aldosterone and angiotensin II are not sodium dependent, whereas in the cortical collecting duct, both aldosterone and angiotensin II, by contrast, affect H+ secretion by sodium-dependent mechanisms.

  17. Role of N-linked oligosaccharides in the transport activity of the Na+/H+ antiporter in rat renal brush-border membrane

    SciTech Connect

    Yusufi, A.N.; Szczepanska-Konkel, M.; Dousa, T.P.

    1988-09-25

    The role of N-linked oligosaccharide side chains in the biogenesis and function of Na+-coupled transporters in renal luminal brush-border membrane (BBM) is not known. We examined the question of how in vivo inhibition by alkaloid swainsonine of alpha-mannosidase, a key enzyme in processing of glycoproteins in the Golgi apparatus, affects Na+/H+ antiport and Na+/Pi symport as well as activities of other transporters and enzymes in rat renal BBM. Administration of swainsonine to thyroparathyroidectomized rats, control or treated with 3,5,3'-triiodothyronine, markedly decreased the rate of Na+/H+ antiport, but had no effect on the rate of Na+/Pi symport across renal BBM vesicles (BBMV). Moreover, administration of swainsonine did not change activities of Na+ gradient, ((extravesicular Na+) greater than (intravesicular Na+))-dependent transport of D-glucose, L-proline, or the amiloride-insensitive 22Na+ uptake by BBMV; the activities of the BBM enzymes alkaline phosphatase, gamma-glutamyltransferase, or leucine aminopeptidase in BBMV were also not changed. The in vitro enzymatic deglycosylation of BBM by incubating freshly isolated BBMV with bacterial endoglycosidase F also resulted in a decreased rate of Na+/H+ antiport, but not Na+-coupled symports of Pi, L-proline, and D-glucose, or the activities of the BBM enzymes were not significantly affected. Similar incubation with endoglycosidase H was without effect on any of these parameters. Both the modification of BBMV glycoproteins by administration fo swainsonine in vivo as well as the in vitro incubation of BBMV with endoglycosidase F resulted in a decrease of the apparent Vmax of Na+/H+ antiport, but did not change the apparent Km of this antiporter for extravesicular Na+ and did not increase H+ conductance of BBM.

  18. Abnormal regulation of renal vitamin D catabolism by dietary phosphate in murine X-linked hypophosphatemic rickets.

    PubMed Central

    Tenenhouse, H S; Jones, G

    1990-01-01

    Hyp mice exhibit increased renal catabolism of vitamin D metabolites by the C-24 oxidation pathway (1988. J. Clin. Invest. 81:461-465). To examine the regulatory influence of dietary phosphate on the renal vitamin D catabolic pathway in Hyp mice, we measured C-24 oxidation of 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) in renal mitochondria isolated from Hyp mice and normal littermates fed diets containing 0.03% (low-Pi), 1% (control-Pi), and 1.6% (high-Pi) phosphate. In normal mice the low-Pi diet led to a rise in serum 1,25(OH)2D (22.2 +/- 1.8 to 48.1 +/- 6.8 pg/ml, P less than 0.05) and no change in C-24 oxidation products (0.053 +/- 0.006 to 0.066 +/- 0.008 pmol/mg protein per min) when compared with the control diet. In Hyp mice the low-Pi diet elicited a fall in serum 1,25(OH)2D (21.9 +/- 1.2 to 8.0 +/- 0.2 pg/ml, P less than 0.05) and a dramatic increase in C-24 oxidation products (0.120 +/- 0.017 to 0.526 +/- 0.053 pmol/mg protein per min, P less than 0.05) when compared with the control diet. The high-Pi diet did not significantly alter serum levels of 1,25(OH)2D or C-24 oxidation products in normal mice. Hyp mice on the high-Pi diet experienced a rise in serum 1,25(OH)2D (21.9 +/- 1.2 to 40.4 +/- 7.3, P less than 0.05) and a fall in C-24 oxidation products (0.120 +/- 0.017 to 0.043 +/- 0.007 pmol/mg protein per min, P less than 0.05). The present results demonstrate that the defect in C-24 oxidation of 1,25(OH)2D3 in Hyp mice is exacerbated by phosphate depletion and corrected by phosphate supplementation. The data suggest that the disorder in vitamin D metabolism in the mutant strain is secondary to the perturbation in phosphate homeostasis. Images PMID:2332500

  19. Nonsaturable amino acid reabsorption in kidneys of normal and mercury-poisoned rabbits

    SciTech Connect

    Foulkes, E.C.; Blanck, S. )

    1988-11-01

    At high plasma concentrations, a high-capacity, low-affinity or nonsaturable flux (J{sub hc}) accounts for a residual fractional reabsorption of cycloleucine, aspartate, and AIB of approximately 50% of the filtered load in rabbits; J{sub hc} in micromoles per milliliter glomerular filtrate is reduced in Hg-poisoned animals. The nonsaturable flux of cycloleucine is characterized by a transepithelial transit time (TET) of approximately 2 min in control animals; it was consistently much longer in Hg-poisoned animals. The clearance ratio of creatinine/inulin averaged 1.0, and no J{sub hc} could be demonstrated for glucose. We conclude that J{sub hc} is a high-capacity, low-affinity amino acid flux which passes through an intracellular solute pool, and which is sensitive to Hg at both the brush border and the basolateral cell membrane. If calculation of the saturation constants of aspartate reabsorption is restricted to experiments in which U/P <1.0, i.e. where J{sub hc} is unlikely too contribute greatly to reabsorption, values some 20% lower than those previously reported are obtained; the Hg inhibition still is apparently uncompetitive in nature.

  20. Renal response to environmental toxics

    PubMed Central

    Finn, William F.

    1977-01-01

    Several characteristics of normal renal function increase the risk to the kidney of damage by environmental toxins. Due to the magnitude of renal blood flow the total amount of noxious substance delivered may be disproportionately high. Furthermore, the capacity to concentrate substances within the kidney by processes of filtration, reabsorption and secretion has the potential to increase the toxicity of agents which would otherwise not lead to tissue injury. Unfortunately, there are few tests of renal function which are able to detect early functional abnormalities and which, at the same time, are suited for screening purposes by virtue of their simplicity, cost and safety. Furthermore, interpretation of the tests is complicated by adaptive changes in renal function which occur with aging and in response to other disease processes. Environmental agents produce a wide spectrum of renal dysfunction. Acute renal damage follows exposure to glycols, organic solvents, heavy metals, diagnostic and therapeutic agents and a variety of miscellaneous substances. Chronic renal disease may take the form of isolated tubular defects as seen with cadmium, interstitial nephritis due to the ingestion of lead, or vascular damage induced by external radiation. Some forms of glomerulonephritis may also be related to environmental toxins as are certain tumors of the urinary tract. In a somewhat different fashion, patients whose renal function is limited by the presence of pre-existing disease may manifest toxicity from substances ordinarily excreted in the urine. Particular problems exist with the patients on dialysis, as they are at considerable risk to alterations in the environment. PMID:598348

  1. Activation of the epithelial Na+ channel in the collecting duct by vasopressin contributes to water reabsorption.

    PubMed

    Bugaj, Vladislav; Pochynyuk, Oleh; Stockand, James D

    2009-11-01

    We used patch-clamp electrophysiology on isolated, split-open murine collecting ducts (CD) to test the hypothesis that regulation of epithelial sodium channel (ENaC) activity is a physiologically important effect of vasopressin. Surprisingly, this has not been tested directly before. We ask whether vasopressin affects ENaC activity distinguishing between acute and chronic effects, as well as, parsing the cellular signaling pathway and molecular mechanism of regulation. In addition, we quantified possible synergistic regulation of ENaC by vasopressin and aldosterone associating this with a requirement for distal nephron Na+ reabsorption during water conservation vs. maintenance of Na+ balance. We find that vasopressin significantly increases ENaC activity within 2-3 min by increasing open probability (P(o)). This activation was dependent on adenylyl cyclase (AC) and PKA. Water restriction (18-24 h) and pretreatment of isolated CD with vasopressin (approximately 30 min) resulted in a similar increase in P(o). In addition, this also increased the number (N) of active ENaC in the apical membrane. Similar to P(o), increases in N were sensitive to inhibitors of AC. Stressing animals with water and salt restriction separately and jointly revealed an important effect of vasopressin: conservation of water and Na+ each independently increased ENaC activity and jointly had a synergistic effect on channel activity. These results demonstrate a quantitatively important action of vasopressin on ENaC suggesting that distal nephron Na+ reabsorption mediated by this channel contributes to maintenance of water reabsorption. In addition, our results support that the combined actions of vasopressin and aldosterone are required to achieve maximally activated ENaC. PMID:19692483

  2. Activation of the epithelial Na+ channel in the collecting duct by vasopressin contributes to water reabsorption.

    PubMed

    Bugaj, Vladislav; Pochynyuk, Oleh; Stockand, James D

    2009-11-01

    We used patch-clamp electrophysiology on isolated, split-open murine collecting ducts (CD) to test the hypothesis that regulation of epithelial sodium channel (ENaC) activity is a physiologically important effect of vasopressin. Surprisingly, this has not been tested directly before. We ask whether vasopressin affects ENaC activity distinguishing between acute and chronic effects, as well as, parsing the cellular signaling pathway and molecular mechanism of regulation. In addition, we quantified possible synergistic regulation of ENaC by vasopressin and aldosterone associating this with a requirement for distal nephron Na+ reabsorption during water conservation vs. maintenance of Na+ balance. We find that vasopressin significantly increases ENaC activity within 2-3 min by increasing open probability (P(o)). This activation was dependent on adenylyl cyclase (AC) and PKA. Water restriction (18-24 h) and pretreatment of isolated CD with vasopressin (approximately 30 min) resulted in a similar increase in P(o). In addition, this also increased the number (N) of active ENaC in the apical membrane. Similar to P(o), increases in N were sensitive to inhibitors of AC. Stressing animals with water and salt restriction separately and jointly revealed an important effect of vasopressin: conservation of water and Na+ each independently increased ENaC activity and jointly had a synergistic effect on channel activity. These results demonstrate a quantitatively important action of vasopressin on ENaC suggesting that distal nephron Na+ reabsorption mediated by this channel contributes to maintenance of water reabsorption. In addition, our results support that the combined actions of vasopressin and aldosterone are required to achieve maximally activated ENaC.

  3. Effect of Peritubular Protein Concentration on Reabsorption of Sodium and Water in Isolated Perfused Proximal Tubules

    PubMed Central

    Imai, Masashi; Kokko, Juha P.

    1972-01-01

    Micropuncture studies have indicated that variation in peritubular oncotic pressure influences net transport of fluid out of the proximal tubule. The present in vitro studies on isolated perfused rabbit proximal convoluted tubules were designed to examine whether protein concentration gradient must act across the peritubular capillary membrane to influence reabsorption, or whether it can exert a direct effect across the tubular basement membrane 71 proximal tubules were perfused with ultrafiltrate made isosmolal to bathing fluids, the latter having identical electrolyte composition as the perfusing ultrafiltrate, but adjusted to three oncotic pressures: hypooncotic, protein 0.0 g/100 ml; control isooncotic serum, protein 6.4 g/100 ml; and hyperoncotic, protein 12.5 g/100 ml. Net volume flux (nl/mm per min), net Na flux (nEq/mm per min), unidirectional Na flux from bath to lumen (nEq/mm per min), and passive permeability coefficient (× 10-5 cm/sec) for Na (PNa), urea (Purea), and sucrose (Psucrose) were determined using isotopic techniques. When the bath was hypooncotic, there was (as compared with isooncotic serum) a significant decrease in net volume (38%) and net sodium (40%) flux, but no change in PNa, Purea, or transtubular potential; however, Psucrose increased significantly (78%). In experiments in which hyperoncotic bath was used, there was (compared with isooncotic serum) an increase in net volume (28%) and net sodium (30%) flux, but transtubular potential difference did not change significantly. These data demonstrated that changes in the ambient protein concentration gradient exert direct effects upon proximal tubular reabsorption. Because penetration of sucrose (an index of intercellular movement) but not urea (an index of transcellular movement) varied with changes in tubular reabsorption, it is suggested that oncotic pressure acts by altering the rate of back-leak of reabsorbate through extracellular pathways between tubular cells. It is concluded

  4. Ramipril-induced decrease in renal lithium excretion in the rat.

    PubMed Central

    Barthelmebs, M.; Grima, M.; Imbs, J. L.

    1995-01-01

    1. The interaction of ramipril, an inhibitor of angiotensin I converting enzyme, with renal lithium handling was analysed in conscious normotensive Wistar rats and compared with the known increase in renal tubular lithium reabsorption induced by the non-steroidal anti-inflammatory drug, indomethacin. 2. The rats were treated for five days with ramipril (1 mg kg-1 day-1 orally), indomethacin (2.5 mg kg-1 day-1 intramuscularly) or their solvents. Lithium chloride (16.7 mg kg-1 intraperitonealy) was given as a single dose on the fifth day and renal functions were measured. 3. Ramipril induced a decrease in renal lithium clearance which was correlated with the decrease in the quantity of filtered lithium and the increase in the tubular fractional reabsorption of the metal. Ramipril also reduced the systolic blood pressure of the rats by about 15 mmHg. 4. In the absence of any effect on creatinine clearance or systolic blood pressure, indomethacin increased renal fractional lithium reabsorption and led to an increase in plasma lithium levels, as previously reported by our group. 5. In conclusions, our results indicate that ramipril decreases renal lithium excretion in Wistar rats, when given orally at a dose of 1 mg kg-1 day-1 over five days. PMID:8564243

  5. Reactive Oxygen Species Modulation of Na/K-ATPase Regulates Fibrosis and Renal Proximal Tubular Sodium Handling

    PubMed Central

    Liu, Jiang; Kennedy, David J.; Yan, Yanling; Shapiro, Joseph I.

    2012-01-01

    The Na/K-ATPase is the primary force regulating renal sodium handling and plays a key role in both ion homeostasis and blood pressure regulation. Recently, cardiotonic steroids (CTS)-mediated Na/K-ATPase signaling has been shown to regulate fibrosis, renal proximal tubule (RPT) sodium reabsorption, and experimental Dahl salt-sensitive hypertension in response to a high-salt diet. Reactive oxygen species (ROS) are an important modulator of nephron ion transport. As there is limited knowledge regarding the role of ROS-mediated fibrosis and RPT sodium reabsorption through the Na/K-ATPase, the focus of this review is to examine the possible role of ROS in the regulation of Na/K-ATPase activity, its signaling, fibrosis, and RPT sodium reabsorption. PMID:22518311

  6. Renal effects of methoxyverapamil in anesthetized rats.

    PubMed

    Brown, B; Churchill, P

    1983-05-01

    The purpose of these experiments was to determine the renal effects of methoxyverapamil (D-600). Three groups of rats were anesthetized with sodium pentobarbital and given 0, 0.85 or 1.69 nmol/min of methoxyverapamil i.v. Increases in urine flow and Na, K and Ca excretory rates occurred, in an apparently dose-dependent manner. Plasma Na and arterial renin concentration decreased at both doses and, at the higher dose, mean arterial blood pressure and effective renal plasma flow decreased while plasma K increased. Plasma Ca, glomerular filtration rate, filtration fraction and total renal plasma flow were not affected. The findings that methoxyverapamil increased urine flow and electrolyte excretion without changing glomerular filtration rate are consistent with the hypothesis that methoxyverapamil acts directly on tubular reabsorptive mechanisms. These effects, and the effect on plasma renin concentration, could contribute to the beneficial effects of this and other Ca entry antagonists in the treatment of hypertension.

  7. Renal handling of cadmium in perfused rat kidney and effects on renal function and tissue composition.

    PubMed

    Diamond, G L; Cohen, J J; Weinstein, S L

    1986-11-01

    Isolated rat kidneys perfused with a Krebs-Ringer bicarbonate (KRB) solution containing 1 microM CdCl2 plus 6% substrate-free albumin (SFA) and a mixture of substrates accumulated substantially less cadmium in tissue than kidneys perfused with 1 microM CdCl2 in a protein-free KRB solution containing the same substrates: 11 vs. 205 nmol Cd/g dry wt. Decreasing the glomerular filtration rate (GFR) by occluding the ureters of kidneys perfused in the absence of albumin did not change the rate of net tissue uptake of cadmium (Cd), suggesting that the kidney can extract Cd from the peritubular capillary fluid and that net uptake of Cd is not dependent on the reabsorption of filtered Cd. The tissue accumulation of large quantities of Cd (1.8 mumol Cd/g dry wt), which established levels of non-metallothionein-bound Cd exceeding 1 mumol Cd/g dry wt, caused no changes in either GFR, perfusion flow rate, fractional reabsorption of Na+, fractional reabsorption of K+, fractional reabsorption of glucose, or free-water clearance. However, discrete changes in renal tissue K+ content were observed. Exposure to 1 microM CdCl2 resulted in a net loss of renal tissue K+ in rat kidneys perfused with substrate-enriched KRB containing 6% albumin. Exposure to 0.8 microM or 7 microM CdCl2 completely prevented K+ loss from kidneys perfused with a substrate-enriched, protein-free KRB solution. PMID:3777178

  8. The discovery of the synovial lymphatic stomata and lymphatic reabsorption in knee effusion.

    PubMed

    Ping, Zepeng; Jiang, Tingting; Wang, Chong; Chen, Zhongyi; Chen, Zhongliang; Wang, Jiaxiong; Wang, Li; Wang, Beibei; Xu, Dandan; Liu, Changming; Li, Zhongjie; Li, Ji-Cheng

    2015-06-01

    To illustrate the mechanism of lymphatic reabsorption in knee joint effusion. The current investigation employed transmission electron microscopy (TEM) and scanning electron microscopy (SEM) techniques to reveal the ultrastructure of the knee synovial membrane in New Zealand rabbits and human. Ultrastructural changes of the synovial lymphatic stomata were observed by using trypan blue absorption and sodium hydroxide (NaOH) digestion methods, and the animal models of synovitis. New Zealand rabbits and human synovial membranes were composed of two types of synovial cells: type A and type B. No lymphatic stomata were found among type A synovial cells, whereas lymphatic stomata with the diameters ranging 0.74-3.26 µm were found in type B synovial cells, and some stomata were closed. After the NaOH digestion, a number of sieve pores, similar to lymphatic stomata in size and shape, were observed in the dense fibrous connective tissue underneath the type B synovial cells. After injecting trypan blue into the rabbit knee joint cavity, absorption of trypan blue through the lymphatic stomata was observed, suggesting the absorption function of the synovial lymphatic stomata. In the rabbit knee joint synovitis models, the synovial lymphatic stomata diameter enlarged. Some macrophages migrated from the lymphatic stomata, indicating that the synovial lymphatic stomata were involved in the joint effusion absorption and inflammatory response. Our study is the first to report the existence of synovial lymphatic stomata in the New Zealand rabbits and human knee joints. Lymphatic stomata may have an important role in the reabsorption of joint effusion.

  9. The small molecule probe PT-Yellow labels the renal proximal tubules in zebrafish.

    PubMed

    Sander, Veronika; Patke, Shantanu; Sahu, Srikanta; Teoh, Chai Lean; Peng, Zhenzhen; Chang, Young-Tae; Davidson, Alan J

    2015-01-01

    We report the development of a small fluorescent molecule, BDNCA3-D2, herein referred to as PT-Yellow. Soaking zebrafish embryos in PT-Yellow or intraperitoneal injection into adults results in non-toxic in vivo fluorescent labeling of the renal proximal tubules, the major site of blood filtrate reabsorption and a common target of injury in acute kidney injury. We demonstrate the applicability of this new compound as a rapid and simple readout for zebrafish kidney filtration and proximal tubule reabsorption function.

  10. Reduced renal calcium excretion in the absence of sclerostin expression: evidence for a novel calcium-regulating bone kidney axis.

    PubMed

    Kumar, Rajiv; Vallon, Volker

    2014-10-01

    The kidneys contribute to calcium homeostasis by adjusting the reabsorption and excretion of filtered calcium through processes that are regulated by parathyroid hormone (PTH) and 1α,25-dihydroxyvitamin D3 (1α,25[OH]2D3). Most of the filtered calcium is reabsorbed in the proximal tubule, primarily by paracellular mechanisms that are not sensitive to calcium-regulating hormones in physiologically relevant ways. In the distal tubule, however, calcium is reabsorbed by channels and transporters, the activity or expression of which is highly regulated and increased by PTH and 1α,25(OH)2D3. Recent research suggests that other, heretofore unrecognized factors, such as the osteocyte-specific protein sclerostin, also regulate renal calcium excretion. Clues in this regard have come from the study of humans and mice with inactivating mutations of the sclerostin gene that both have increased skeletal density, which would necessitate an increase in intestinal absorption and/or renal reabsorption of calcium. Deletion of the sclerostin gene in mice significantly diminishes urinary calcium excretion and increases fractional renal calcium reabsorption. This is associated with increased circulating 1α,25(OH)2D3 levels, whereas sclerostin directly suppresses 1α-hydroxylase in immortalized proximal tubular cells. Thus, evidence is accumulating that sclerostin directly or indirectly reduces renal calcium reabsorption, suggesting the presence of a novel calcium-excreting bone-kidney axis.

  11. Kidney-specific WNK1 regulates sodium reabsorption and potassium secretion in mouse cortical collecting duct.

    PubMed

    Cheng, Chih-Jen; Baum, Michel; Huang, Chou-Long

    2013-02-15

    Kidney-specific with-no-lysine kinase 1 (KS-WNK1) is a kinase-deficient variant of WNK1 that is expressed exclusively in the kidney. It is abundantly expressed in the distal convoluted tubule (DCT) and to a lesser extent in the cortical thick ascending limb (cTAL), connecting tubule, and cortical collecting duct (CCD). KS-WNK1 inhibits Na(+)-K(+)-2Cl(-)- and sodium chloride cotransporter-mediated Na(+) reabsorption in cTAL and DCT, respectively. Here, we investigated the role of KS-WNK1 in regulating Na(+) and K(+) transport in CCD using in vitro microperfusion of tubules isolated from KS-WNK1 knockout mice and control wild-type littermates. Because baseline K(+) secretion and Na(+) reabsorption were negligible in mouse CCD, we studied tubules isolated from mice fed a high-K(+) diet for 2 wk. Compared with that in wild-type tubules, K(+) secretion was reduced in KS-WNK1 knockout CCD perfused at a low luminal fluid rate of ~1.5 nl/min. Na(+) reabsorption and the lumen-negative transepithelial potential difference were also lower in the KS-WNK1 knockout CCD compared with control CCD. Increasing the perfusion rate to ~5.5 nl/min stimulated K(+) secretion in the wild-type as well as knockout CCD. The magnitudes of flow-stimulated increase in K(+) secretion were similar in wild-type and knockout CCD. Maxi-K(+) channel inhibitor iberiotoxin had no effect on K(+) secretion when tubules were perfused at ~1.5 nl/min, but completely abrogated the flow-dependent increase in K(+) secretion at ~5.5 nl/min. These findings support the notion that KS-WNK1 stimulates ROMK-mediated K(+) secretion, but not flow-dependent K(+) secretion mediated by maxi-K(+) channels in CCD. In addition, KS-WNK1 plays a role in regulating Na(+) transport in the CCD. PMID:23195681

  12. Kidney-specific WNK1 regulates sodium reabsorption and potassium secretion in mouse cortical collecting duct.

    PubMed

    Cheng, Chih-Jen; Baum, Michel; Huang, Chou-Long

    2013-02-15

    Kidney-specific with-no-lysine kinase 1 (KS-WNK1) is a kinase-deficient variant of WNK1 that is expressed exclusively in the kidney. It is abundantly expressed in the distal convoluted tubule (DCT) and to a lesser extent in the cortical thick ascending limb (cTAL), connecting tubule, and cortical collecting duct (CCD). KS-WNK1 inhibits Na(+)-K(+)-2Cl(-)- and sodium chloride cotransporter-mediated Na(+) reabsorption in cTAL and DCT, respectively. Here, we investigated the role of KS-WNK1 in regulating Na(+) and K(+) transport in CCD using in vitro microperfusion of tubules isolated from KS-WNK1 knockout mice and control wild-type littermates. Because baseline K(+) secretion and Na(+) reabsorption were negligible in mouse CCD, we studied tubules isolated from mice fed a high-K(+) diet for 2 wk. Compared with that in wild-type tubules, K(+) secretion was reduced in KS-WNK1 knockout CCD perfused at a low luminal fluid rate of ~1.5 nl/min. Na(+) reabsorption and the lumen-negative transepithelial potential difference were also lower in the KS-WNK1 knockout CCD compared with control CCD. Increasing the perfusion rate to ~5.5 nl/min stimulated K(+) secretion in the wild-type as well as knockout CCD. The magnitudes of flow-stimulated increase in K(+) secretion were similar in wild-type and knockout CCD. Maxi-K(+) channel inhibitor iberiotoxin had no effect on K(+) secretion when tubules were perfused at ~1.5 nl/min, but completely abrogated the flow-dependent increase in K(+) secretion at ~5.5 nl/min. These findings support the notion that KS-WNK1 stimulates ROMK-mediated K(+) secretion, but not flow-dependent K(+) secretion mediated by maxi-K(+) channels in CCD. In addition, KS-WNK1 plays a role in regulating Na(+) transport in the CCD.

  13. Urinary Charcot-Leyden crystals in the hypereosinophilic syndrome with acute renal failure.

    PubMed

    Hirszel, P; Cashell, A W; Whelan, T V; Dolan, R; Yoshihashi, A

    1988-10-01

    A 48-year-old man with idiopathic hypereosinophilic syndrome (IHS) developed blast crisis along with a fulminant autoimmune hemolytic anemia. Hemoglobinuria and anuric acute renal failure (ARF) ensued. Urinalysis revealed countless Charcot-Leyden crysals (CLC). This is the only known report of Charcot-Leyden crystalluria. The CLC protein (lysophospholipase) should normally undergo glomerular filtration and catabolism by the tubules during reabsorption. Its abundant presence in the urine of our patient may reflect impairment of tubular reabsorption, saturation of the tubular reabsorptive process by excessive CLC load through residual functioning glomeruli, or a combination thereof. The extreme degree of hypereosinophilia suggests a massive load of CLC protein and acute tubular necrosis implies impaired tubular function, so both mechanisms should have been operative. At the autopsy, no eosinophilic infiltrates were present in the kidneys, which points against a local spillage of CLC protein into the tubules.

  14. Inhibition of renal Na{sup +}/H{sup +} exchange in cadmium-intoxicated rats

    SciTech Connect

    Ahn, Do Whan; Chung, Jin Mo; Kim, Jee Yeun; Kim, Kyoung Ryong; Park, Yang Saeng . E-mail: yspark@ns.kosinmed.or.kr

    2005-04-01

    Chronic exposure to cadmium (Cd) results in bicarbonaturia, leading to metabolic acidosis. To elucidate the mechanism(s) by which renal bicarbonate reabsorption is inhibited, we investigated changes in renal transporters and enzymes associated with bicarbonate reabsorption in Cd-intoxicated rats. Cd intoxication was induced by subcutaneous injections of CdCl{sub 2} (2 mg Cd/kg per day) for 3 weeks. Cd intoxication resulted in a significant reduction in V{sub max} of Na{sup +}/H{sup +} antiport with no changes in K{sub Na} in the renal cortical brush-border membrane vesicles (BBMV). Western blotting of BBM proteins and indirect immunohistochemistry in renal tissue sections, using an antibody against Na{sup +}/H{sup +} exchange-3 (NHE3), showed a diminished expression of NHE3 protein in the BBM. Reverse transcription-polymerase chain reaction (RT-PCR) analysis revealed that NHE3 mRNA expression was reduced in the renal cortex. The activity of carbonic anhydrase IV (CA IV) in BBM was not changed. The protein abundance of Na{sup +}-HCO{sub 3}{sup -} cotransporter-1 (NBC1) in whole kidney membrane fractions was slightly attenuated, whereas that of the Na{sup +}-K{sup +}-ATPase {alpha}-subunit was markedly elevated in Cd-intoxicated animals. These results indicate that Cd intoxication impairs NHE3 expression in the proximal tubule, thereby reducing the capacity for bicarbonate reabsorption, leading to bicarbonaturia in an intact animal.

  15. Core/shell quantum dot based luminescent solar concentrators with reduced reabsorption and enhanced efficiency.

    PubMed

    Coropceanu, Igor; Bawendi, Moungi G

    2014-07-01

    CdSe/CdS core/shell quantum dots (QDs) have been optimized toward luminescent solar concentration (LSC) applications. Systematically increasing the shell thickness continuously reduced reabsorption up to a factor of 45 for the thickest QDs studied (with ca. 14 monolayers of CdS) compared to the initial CdSe cores. Moreover, an improved synthetic method was developed that retains a high-fluorescence quantum yield, even for particles with the thickest shell volume, for which a quantum yield of 86% was measured in solution. These high quantum yield thick shell quantum dots were embedded in a polymer matrix, yielding highly transparent composites to serve as prototype LSCs, which exhibited an optical efficiency as high as 48%. A Monte Carlo simulation was developed to model LSC performance and to identify the major loss channels for LSCs incorporating the materials developed. The results of the simulation are in excellent agreement with the experimental data. PMID:24902615

  16. Tuning luminescence and reducing reabsorption of CdSe quantum disks for luminescent solar concentrators

    NASA Astrophysics Data System (ADS)

    Lin, Huichuan; Xie, Peng; Liu, Yong; Zhou, Xiang; Li, Baojun

    2015-08-01

    Cadmium selenide (CdSe) quantum disks (QDs) have been synthesized for application in luminescent solar concentrators (LSCs). Luminescence tuning and reabsorption reduction of the QDs were achieved by controlling their size using a hot injection method. The overlap of the absorption and photoluminescence spectra of the as-prepared CdSe QDs was negligible. The as-prepared CdSe QDs were incorporated into polymethylmethacrylate without aggregation and luminescence quenching. The obtained highly transparent composites with non-affecting light-emitting properties were used as LSCs. The placement of a CdSe QDs doped LSC prototype (10 × 1 × 0.1 cm) on a Si-cell resulted in a 201% increase in the electrical power output of the Si-cell compared with that of the bare Si-cell.

  17. The effect of nifedipine on graft function in renal allograft recipients treated with cyclosporin A.

    PubMed

    Propper, D J; Whiting, P H; Power, D A; Edward, N; Catto, G R

    1989-08-01

    The effect of the calcium channel antagonist nifedipine on renal allograft function was assessed in two groups of renal transplant recipients at least one year after transplantation. Group 1 comprised 10 patients receiving low-dose prednisolone and cyclosporin A, and Group 2 comprised 9 patients receiving low-dose prednisolone and azathioprine. Before commencing nifedipine, creatinine and sodium clearance rates and the fractional excretion of sodium were similar in both two groups. Lithium clearance rates and the fractional excretion of lithium were, however, significantly lower (p less than 0.01) in Group 1 than in Group 2. The absolute reabsorption of sodium from the distal nephron (p less than 0.01), the absolute reabsorption of water from the distal nephron segment (p less than 0.01) and the fractional reabsorption of sodium from the distal tubule relative to the delivery of sodium from the proximal tubule (p less than 0.05) were also lower in Group 1. After seven days of nifedipine treatment (10 mg/8 h) there was a significant fall in sodium clearance (p less than 0.01) and fractional sodium excretion (p less than 0.05), and an increase in the fractional distal reabsorption of sodium relative to the delivery of sodium from the proximal tubule (p less than 0.01), and the fractional distal reabsorption of water relative to the delivery of water from the proximal tubule (p less than 0.02), in Group 1 but not Group 2. The only alterations observed in Group 2 were an increase in fractional lithium excretion (p less than 0.05), and a significant fall in the absolute proximal tubular reabsorption of iso-osmotic fluids (p less than 0.01).(ABSTRACT TRUNCATED AT 250 WORDS)

  18. The Effects of Angiotensin II on Renal Water and Electrolyte Excretion in Normal and Caval Dogs*

    PubMed Central

    Porush, Jerome G.; Kaloyanides, George J.; Cacciaguida, Roy J.; Rosen, Stanley M.

    1967-01-01

    The effects of intravenous administration of angiotensin II on renal water and electrolyte excretion were examined during hydropenia, water diuresis, and hypotonic saline diuresis in anesthetized normal dogs and dogs with thoracic inferior vena cava constriction and ascites (caval dogs). The effects of unilateral renal artery infusion of a subpressor dose were also examined. During hydropenia angiotensin produced a decrease in tubular sodium reabsorption, with a considerably greater natriuresis in caval dogs, and associated with a decrease in free water reabsorption (TcH2O). Water and hypotonic saline diuresis resulted in an augmented angiotensin natriuresis, with a greater effect still observed in caval dogs. In these experiments free water excretion (CH2O) was limited to 8-10% of the glomerular filtration rate (GFR), although distal sodium load increased in every instance. In the renal artery infusion experiments a significant ipsilateral decrease in tubular sodium reabsorption was induced, particularly in caval dogs. These findings indicate that angiotensin has a direct effect on renal sodium reabsorption unrelated to a systemic circulatory alteration. The attenuation or prevention of the falls in GFR and effective renal plasma flow (ERPF) usually induced by angiotensin may partially account for the greater natriuretic response in caval dogs and the augmentation during water or hypotonic saline diuresis. However, a correlation between renal hemodynamics and the degree of natriuresis induced was not always present and, furthermore, GFR and ERPF decreased significantly during the intrarenal artery infusion experiments. Therefore, the present experiments indicate that another mechanism is operative in the control of the angiotensin natriuresis and suggest that alterations in intrarenal hemodynamics may play a role. The decrease in TcH2O and the apparent limitation of CH2O associated with an increase in distal sodium load localize the site of action of angiotensin

  19. Evidence for epidermal growth factor receptor as negative-feedback control in aldosterone-induced Na+ reabsorption.

    PubMed

    Grossmann, Claudia; Freudinger, Ruth; Mildenberger, Sigrid; Krug, Alexander W; Gekle, Michael

    2004-06-01

    Aldosterone enhances Na(+) reabsorption via epithelial Na(+) channels (ENaC). Aldosterone also stimulates the protein kinase ERK1/2- and the epidermal growth factor (EGF) receptor (EGFR)-signaling pathway. Yet EGF and ERK1/2 are known inhibitors of ENaC-mediated Na(+) reabsorption. In the present study, using the well-established Madin-Darby canine kidney C7 cell line, we tested the hypothesis that EGFR represents a negative-feedback control for chronic aldosterone-induced Na(+) reabsorption [amiloride-inhibitable short-circuit current (I(sc))]. Mineralocorticoid receptor expression was confirmed by RT-PCR and Western blot analysis. Aldosterone enhanced ERK1/2 phosphorylation in an EGFR-dependent way. Furthermore, aldosterone stimulated EGFR expression. Aldosterone (10 nmol/l) induced a small transient increase in I(sc) under control conditions. Inhibition of ERK1/2 phosphorylation with U-0126 (10 micromol/l) stimulated I(sc), indicating constitutive ENaC inhibition. Aldosterone exerted a significantly larger effect in the presence of U-0126 than without U-0126. EGF (10 microg/l) inhibited I(sc), whereas inhibition of EGFR kinase by tyrphostin AG-1478 (100 nmol/l) enhanced I(sc). Aldosterone was more effective in the presence of AG-1478 than without AG-1478. In summary, we propose that the EGFR-signaling cascade can serve as a negative-feedback control to limit the effect of aldosterone-induced Na(+) reabsorption. PMID:14749256

  20. Demonstration of independent roles of proximal tubular reabsorption and intratubular load in the phenomenon of glomerulotubular balance during aortic constriction in the rat

    PubMed Central

    Buentig, Wolf E.; Earley, Laurence E.

    1971-01-01

    The mechanism of glomerulotubular balance was investigated by microperfusion of the rat proximal tubule at two different rates before and after contriction of the aorta sufficient to produce a 50% reduction in whole kidney filtration rate and plasma flow. At a perfusion rate of 28 nl/min the absolute rate of proximal tubular reabsorption averaged 4.80±0.28 nl/mm·min in the absence of aortic constriction. Reducing the perfusion rate by one-half resulted in only a 22% decrease in the absolute rate of reabsorption, and imbalance between load and reabsorption resulted as fractional reabsorption of the perfused volume increased from 0.56 to 0.83 at 3 mm length of perfused tubule. These observations support other studies indicating that changing the load presented to the individual proximal tubule does not change reabsorptive rate sufficiently to result in glomerulotubular balance. Aortic constriction decreased the absolute rate of proximal tubular reabsorption approximately 50%, resulting in imbalance between load and reabsorption at the higher perfusion rate (fractional reabsorption of the perfused volume fell to 0.23 at 3 mm). Thus, the decrease in proximal tubular reabsorption necessary for glomerulotubular balance will occur independent of a change in the load presented for reabsorption. Balance between load and reabsorption was produced artificially by combining aortic constriction and a reduction in perfusion rate proportional to the reduction in whole kidney filtration rate. Mathematical analysis of the data suggests that the absolute rate of reabsorption along the accessible length of the proximal tubule is constant and is not proportional to the volume of fluid reaching a given site. Thus, there appears to be no contribution to glomerulotubular balance of any intra- or extratubular mechanism directly coupling load and the rate of proximal tubular reabsorption. It is concluded that glomerulotubular balance during aortic constriction is a consequence of

  1. Renal neurohormonal regulation in heart failure decompensation.

    PubMed

    Jönsson, Sofia; Agic, Mediha Becirovic; Narfström, Fredrik; Melville, Jacqueline M; Hultström, Michael

    2014-09-01

    Decompensation in heart failure occurs when the heart fails to balance venous return with cardiac output, leading to fluid congestion and contributing to mortality. Decompensated heart failure can cause acute kidney injury (AKI), which further increases mortality. Heart failure activates signaling systems that are deleterious to kidneys such as renal sympathetic nerve activity (RSNA), renin-angiotensin-aldosterone system, and vasopressin secretion. All three reduce renal blood flow (RBF) and increase tubular sodium reabsorption, which may increase renal oxygen consumption causing AKI through renal tissue hypoxia. Vasopressin contributes to venous congestion through aquaporin-mediated water retention. Additional water retention may be mediated through vasopressin-induced medullary urea transport and hyaluronan but needs further study. In addition, there are several systems that could protect the kidneys and reduce fluid retention such as natriuretic peptides, prostaglandins, and nitric oxide. However, the effect of natriuretic peptides and nitric oxide are blunted in decompensation, partly due to oxidative stress. This review considers how neurohormonal signaling in heart failure drives fluid retention by the kidneys and thus exacerbates decompensation. It further identifies areas where there is limited data, such as signaling systems 20-HETE, purines, endothelin, the role of renal water retention mechanisms for congestion, and renal hypoxia in AKI during heart failure.

  2. Prostaglandin E2 increases proximal tubule fluid reabsorption, and modulates cultured proximal tubule cell responses via EP1 and EP4 receptors.

    PubMed

    Nasrallah, Rania; Hassouneh, Ramzi; Zimpelmann, Joseph; Karam, Andrew J; Thibodeau, Jean-Francois; Burger, Dylan; Burns, Kevin D; Kennedy, Chris Rj; Hébert, Richard L

    2015-09-01

    Renal prostaglandin (PG) E2 regulates salt and water transport, and affects disease processes via EP1-4 receptors, but its role in the proximal tubule (PT) is unknown. Our study investigates the effects of PGE2 on mouse PT fluid reabsorption, and its role in growth, sodium transporter expression, fibrosis, and oxidative stress in a mouse PT cell line (MCT). To determine which PGE2 EP receptors are expressed in MCT, qPCR for EP1-4 was performed on cells stimulated for 24 h with PGE2 or transforming growth factor beta (TGFβ), a known mediator of PT injury in kidney disease. EP1 and EP4 were detected in MCT, but EP2 and EP3 are not expressed. EP1 was increased by PGE2 and TGFβ, but EP4 was unchanged. To confirm the involvement of EP1 and EP4, sulprostone (SLP, EP1/3 agonist), ONO8711 (EP1 antagonist), and EP1 and EP4 siRNA were used. We first show that PGE2, SLP, and TGFβ reduced H(3)-thymidine and H(3)-leucine incorporation. The effects on cell-cycle regulators were examined by western blot. PGE2 increased p27 via EP1 and EP4, but TGFβ increased p21; PGE2-induced p27 was attenuated by TGFβ. PGE2 and SLP reduced cyclinE, while TGFβ increased cyclinD1, an effect attenuated by PGE2 administration. Na-K-ATPase α1 (NaK) was increased by PGE2 via EP1 and EP4. TGFβ had no effect on NaK. Additionally, PGE2 and TGFβ increased fibronectin levels, reaching 12-fold upon co-stimulation. EP1 siRNA abrogated PGE2-fibronectin. PGE2 also increased ROS generation, and ONO-8711 blocked PGE2-ROS. Finally, PGE2 significantly increased fluid reabsorption by 31 and 46% in isolated perfused mouse PT from C57BL/6 and FVB mice, respectively, and this was attenuated in FVB-EP1 null mice. Altogether PGE2 acting on EP1 and EP4 receptors may prove to be important mediators of PT injury, and salt and water transport.

  3. Renal (tissue) kallikrein-kinin system in the kidney and novel potential drugs for salt-sensitive hypertension.

    PubMed

    Katori, Makoto; Majima, Masataka

    2014-01-01

    A large variety of antihypertensive drugs, such as angiotensin converting enzyme inhibitors, diuretics, and others, are prescribed to hypertensive patients, with good control of the condition. In addition, all individuals are generally believed to be salt sensitive and, thus, severe restriction of salt intake is recommended to all. Nevertheless, the physiological defense mechanisms in the kidney against excess salt intake have not been well clarified. The present review article demonstrated that the renal (tissue) kallikrein-kinin system (KKS) is ideally situated within the nephrons of the kidney, where it functions to inhibit the reabsorption of NaCl through the activation of bradykinin (BK)-B2 receptors localized along the epithelial cells of the collecting ducts (CD). Kinins generated in the CD are immediately inactivated by two kidney-specific kinin-inactivating enzymes (kininases), carboxypeptidase Y-like exopeptidase (CPY), and neutral endopeptidase (NEP). Our work demonstrated that ebelactone B and poststatin are selective inhibitors of these kininases. The reduced secretion of the urinary kallikrein is linked to the development of salt-sensitive hypertension, whereas potassium ions and ATP-sensitive potassium channel blockers ameliorate salt-sensitive hypertension by accelerating the release of renal kallikrein. On the other hand, ebelactone B and poststatin prolong the life of kinins in the CD after excess salt intake, thereby leading to the augmentation of natriuresis and diuresis, and the ensuing suppression of salt-sensitive hypertension. In conclusion, accelerators of the renal kallikrein release and selective renal kininase inhibitors are both novel types of antihypertensive agents that may be useful for treatment of salt-sensitive hypertension. PMID:25130040

  4. Renal effects of continuous negative pressure breathing

    NASA Technical Reports Server (NTRS)

    Kinney, M. J.; Discala, V. A.

    1975-01-01

    Continuous negative pressure breathing (CNPB) was utilized to simulate the thoracic vascular distension of zero g or space, in 11 anesthetized rats. The animals underwent renal clearance and micropuncture renal nephron studies before, during, and after CNPB. Rats were pretreated with a high salt diet and I-M desoxycorticosterone (DOCA) in excess. None of these rats diuresed with CNPB. In contrast 5 of the 7 remaining rats increased the fraction of the filtered sodium excreted (C sub Na/GFR, p .05) and their urinary flow rate (V, p .05). Potassium excretion increased (U sub k V, p .05). End proximal tubular fluid specimen's TF/P inulin ratios were unchanged. Whole kidney and single nephron glomerular filtration rates fell 10%. CNPB, a mechanism for atrial distension, appears to cause, in rats, a decrease in distal tubular sodium, water and potassium reabsorption. Exogenous mineral-corticoid prevents the diuresis, saluresis, and kaluresis.

  5. Sodium-Glucose Cotransporter Inhibitors: Effects on Renal and Intestinal Glucose Transport: From Bench to Bedside.

    PubMed

    Mudaliar, Sunder; Polidori, David; Zambrowicz, Brian; Henry, Robert R

    2015-12-01

    Type 2 diabetes is a chronic disease with disabling micro- and macrovascular complications that lead to excessive morbidity and premature mortality. It affects hundreds of millions of people and imposes an undue economic burden on populations across the world. Although insulin resistance and insulin secretory defects play a major role in the pathogenesis of hyperglycemia, several other metabolic defects contribute to the initiation/worsening of the diabetic state. Prominent among these is increased renal glucose reabsorption, which is maladaptive in patients with diabetes. Instead of an increase in renal glucose excretion, which could ameliorate hyperglycemia, there is an increase in renal glucose reabsorption, which helps sustain hyperglycemia in patients with diabetes. The sodium-glucose cotransporter (SGLT) 2 inhibitors are novel antidiabetes agents that inhibit renal glucose reabsorption and promote glucosuria, thereby leading to reductions in plasma glucose concentrations. In this article, we review the long journey from the discovery of the glucosuric agent phlorizin in the bark of the apple tree through the animal and human studies that led to the development of the current generation of SGLT2 inhibitors. PMID:26604280

  6. Challenges and intriguing problems in comparative renal physiology.

    PubMed

    Dantzler, William H

    2005-02-01

    The comparative approach has proved important many times in understanding renal function and continues to offer possible approaches to unsolved problems today, in three general areas. (1) Quantification of glomerular ultrafiltration. In contrast to the complex capillary network in the mammalian glomerulus, the glomerulus of the superficial loopless (reptilian-type) avian nephrons consists of a single capillary loop. This structure, in an avian species where it can be approached directly, should for the first time permit accurate determinations of the pressure profiles and the capillary area involved in glomerular ultrafiltration in an animal with high arterial pressure. (2) Fluid reabsorption by proximal renal tubules. In some reptilian proximal renal tubules, isolated and perfused in vitro, isosmotic fluid reabsorption can occur at control rates when lithium replaces sodium or when some other substance replaces sodium or chloride or both in the perfusate and bathing medium simultaneously. Reabsorption at the control rates, regardless of the composition of the perfusate and bathing medium, can be at least partially inhibited by cold and cyanide, but not by blockers of Na(+)-K(+)-ATPase. It is also independent of the buffer system used, but it is reduced about 20% by removal of colloid from the peritubular fluid. During the substitutions, the surface area of the proximal tubule cells increases dramatically and might permit some insignificant force to be more effective in the reabsorptive process. Understanding the process involved in this, apparently unique coupling of solute and fluid transport, certainly would be very valuable in understanding coupled transport of solutes and water across epithelia in general. (3) Urate secretion by proximal renal tubules. Urate is the major excretory end product of nitrogen metabolism in birds, most reptiles, and a few amphibians. It undergoes net secretion by the renal tubules. It has been possible to learn much about the

  7. Pharmacokinetic and pharmacodynamic modeling of the effect of an sodium-glucose cotransporter inhibitor, phlorizin, on renal glucose transport in rats.

    PubMed

    Yamaguchi, Koji; Kato, Motohiro; Suzuki, Masayuki; Asanuma, Kimie; Aso, Yoshinori; Ikeda, Sachiya; Ishigai, Masaki

    2011-10-01

    A pharmacokinetic and pharmacodynamic (PK-PD) model for the inhibitory effect of sodium-glucose cotransporter (SGLT) inhibitors on renal glucose reabsorption was developed to predict in vivo efficacy. First, using the relationship between renal glucose clearance and plasma glucose level in rats and both the glucose affinity and transport capacity obtained from in vitro vesicle experiments, a pharmacodynamic model analysis was performed based on a nonlinear parallel tube model to express the renal glucose transport mediated by SGLT1 and SGLT2. This model suitably expressed the relationship between plasma glucose level and renal glucose excretion. A PK-PD model was developed next to analyze the inhibitory effect of phlorizin on renal glucose reabsorption. The PK-PD model analysis was performed using averaged concentrations of both the drug and glucose in plasma and the corresponding renal glucose clearance. The model suitably expressed the concentration-dependent inhibitory effect of phlorizin on renal glucose reabsorption. The in vivo inhibition constants of phlorizin for SGLT in rats were estimated to be 67 nM for SGLT1 and 252 nM for SGLT2, which are similar to the in vitro data reported previously. This suggests that the in vivo efficacy of SGLT inhibitors could be predicted from an in vitro study based on the present PK-PD model. The present model is based on physiological and biochemical parameters and, therefore, would be helpful in understanding individual differences in the efficacy of an SGLT inhibitor.

  8. The role of plasma volume, plasma renin and the sympathetic nervous system in the posture-induced decline in renal lithium clearance in man.

    PubMed

    Smith, D F; Shimizu, M

    1978-01-01

    Excretion of lithium in urine was studied in 2 healthy males while recumbent and while upright, either walking or standing quietly. An oral dose of 24.3 mmol of Lit was taken as three lithium carbonate tablets 13 h before clearance tests. Renal lithium clearance decreased and lithium fractional reabsorption increased while upright. Standing immersed to the neck in water, which prevents the fall in plasma volume upon changing posture from recumbent to upright, prevented the fall in renal lithium clearance as well as the rise in lithium fractional reabsorption while upright. Oral doses of guanethidine (total dose of 200 mg) or oxprenolol (total dose of 140 mg) taken to prevent high levels of sympathetic nervous system activity and plasma renin, respectively, failed to prevent the fall in renal lithium clearance or the rise in lithium fractional reabsorption upon changing posture from recumbent to upright. The findings indicate that the fall in renal lithium clearance and the rise in lithium fractional reabsorption upon changing posture from recumbent to upright is related to the fall in plasma volume but not to high levels of sympathetic nervous system activity or plasma renin activity. PMID:692834

  9. The role of plasma volume, plasma renin and the sympathetic nervous system in the posture-induced decline in renal lithium clearance in man.

    PubMed

    Smith, D F; Shimizu, M

    1978-01-01

    Excretion of lithium in urine was studied in 2 healthy males while recumbent and while upright, either walking or standing quietly. An oral dose of 24.3 mmol of Lit was taken as three lithium carbonate tablets 13 h before clearance tests. Renal lithium clearance decreased and lithium fractional reabsorption increased while upright. Standing immersed to the neck in water, which prevents the fall in plasma volume upon changing posture from recumbent to upright, prevented the fall in renal lithium clearance as well as the rise in lithium fractional reabsorption while upright. Oral doses of guanethidine (total dose of 200 mg) or oxprenolol (total dose of 140 mg) taken to prevent high levels of sympathetic nervous system activity and plasma renin, respectively, failed to prevent the fall in renal lithium clearance or the rise in lithium fractional reabsorption upon changing posture from recumbent to upright. The findings indicate that the fall in renal lithium clearance and the rise in lithium fractional reabsorption upon changing posture from recumbent to upright is related to the fall in plasma volume but not to high levels of sympathetic nervous system activity or plasma renin activity.

  10. Influence of reabsorption and reemission on stimulated Raman scattering of polymethine dyes in multiple scattering media

    SciTech Connect

    Yashchuk, V P; Komyshan, A O; Smaliuk, A P; Prygodiuk, O A; Ishchenko, A A; Olkhovyk, L A

    2013-12-31

    It is shown that reabsorption of the luminescence radiation in the range of its overlapping with the absorption spectrum and the following reemission to a long-wavelength range may noticeably affect the process of stimulated Raman scattering (SRS) in polymethine dyes in multiple scattering media (MSM). This is related to the fact that SRS in such media occurs jointly with the random lasing (RL), which favors SRS and makes up with it a united nonlinear process. Reemission into the long-wavelength spectrum range amplified in MSM causes the RL spectrum to shift to longer wavelengths and initiates the long-wavelength band of RL, in which a main part of the lasing energy is concentrated. This weakens or completely stops the SRS if the band is beyond the range of possible spectral localisation of Stokes lines. This process depends on the efficiency of light scattering, dye concentration, temperature and pump intensity; hence, there exist optimal values of these parameters for obtaining SRS in MSM. (nonlinear optical phenomena)

  11. Increasing or stabilizing renal epoxyeicosatrienoic acid production attenuates abnormal renal function and hypertension in obese rats.

    PubMed

    Huang, Hui; Morisseau, Christophe; Wang, JingFeng; Yang, Tianxin; Falck, John R; Hammock, Bruce D; Wang, Mong-Heng

    2007-07-01

    Since epoxyeicosatrienoic acids (EETs) affect sodium reabsorption in renal tubules and dilate the renal vasculature, we have examined their effects on renal hemodynamics and sodium balance in male rats fed a high-fat (HF) diet by fenofibrate, a peroxisome proliferator-activated receptor-alpha (PPAR-alpha) agonist and an inducer of cytochrome P-450 (CYP) epoxygenases; by N-methanesulfonyl-6-(2-proparyloxyphenyl)hexanamide (MSPPOH), a selective EET biosynthesis inhibitor; and by 12-(3-adamantane-1-yl-ureido)dodecanoic acid (AUDA), a selective inhibitor of soluble epoxide hydrolase. In rats treated with fenofibrate (30 mg.kg(-1).day(-1) ig) or AUDA (50 mg/l in drinking water) for 2 wk, mean arterial pressure, renal vascular resistance, and glomerular filtration rate were lower but renal blood flow was higher than in vehicle-treated control rats. In addition, fenofibrate and AUDA decreased cumulative sodium balance in the HF rats. Treatment with MSPPOH (20 mg.kg(-1).day(-1) iv) + fenofibrate for 2 wk reversed renal hemodynamics and sodium balance to the levels in control HF rats. Moreover, fenofibrate caused a threefold increase in renal cortical CYP epoxygenase activity, whereas the fenofibrate-induced elevation of this activity was attenuated by MSPPOH. Western blot analysis showed that fenofibrate induced the expression of CYP epoxygenases in renal cortex and microvessels and that the induction effect of fenofibrate was blocked by MSPPOH. These results demonstrate that the fenofibrate-induced increase of CYP epoxygenase expression and the AUDA-induced stabilization of EET production in the kidneys cause renal vascular dilation and reduce sodium retention, contributing to the improvement of abnormal renal hemodynamics and hypertension in HF rats.

  12. Renal reflexes in the regulation of blood pressure and sodium excretion.

    PubMed

    Stella, A; Golin, R; Genovesi, S; Zanchetti, A

    1987-08-01

    The rich innervation of the kidney is distributed to all structures of renal parenchyma thus providing important anatomical support to the functional evidence that the renal nerves can control kidney functions and send signals on the kidney environment to the central nervous system. Efferent renal nerve fibres are known to influence renal haemodynamics by modifying arteriolar vascular tone, renin release by a direct action on juxtaglomerular cells, and the excretion of sodium and water by changing tubular reabsorption of sodium and water at the different tubular levels. Mechano- and chemo-receptors have been shown in the kidney. Afferent fibres connected with renal receptors convey signals to the central nervous system both at spinal and supraspinal levels. The central areas receiving inputs from the kidney are those involved in the control of cardiovascular homeostasis and fluid balance. Activation of renal receptors by the electrical stimulation of renal afferent fibres were found to elicit both excitatory and inhibitory sympathetic responses. Although the existence of excitatory renorenal reflexes has been suggested, electrophysiological and functional data demonstrate that neural renorenal reflexes exert a tonic inhibitory influence on the tubular sodium and water reabsorption and on the secretion of renin from the juxtaglomerular cells.

  13. Control of BK virus antibodies in contacts of patients under chronic hemodialysis or after renal transplantation (by an enzyme linked immunosorbent assay).

    PubMed

    Burguiere, A M; Fortier, B; Bricout, F; Huraux, J M

    1980-10-01

    Elisa technique for IgG humoral BK virus antibodies titration is not time consuming, not expensive and brings results in accordance with those obtained by HI. It was observed among adults attending patients in chronic hemodialysis and renal transplantation centers an antibody level similar to observed titers in control subjects.

  14. Renal Function Assessment During Peptide Receptor Radionuclide Therapy.

    PubMed

    Erbas, Belkis; Tuncel, Murat

    2016-09-01

    Theranostics labeled with Y-90 or Lu-177 are highly efficient therapeutic approaches for the systemic treatment of various cancers including neuroendocrine tumors and prostate cancer. Peptide receptor radionuclide therapy (PRRT) has been used for many years for metastatic or inoperable neuroendocrine tumors. However, renal and hematopoietic toxicities are the major limitations for this therapeutic approach. Kidneys have been considered as the "critical organ" because of the predominant glomerular filtration, tubular reabsorption by the proximal tubules, and interstitial retention of the tracers. Severe nephrotoxity, which has been classified as grade 4-5 based on the "Common Terminology Criteria on Adverse Events," was reported in the range from 0%-14%. There are several risk factors for renal toxicity; patient-related risk factors include older age, preexisting renal disease, hypertension, diabetes mellitus, previous nephrotoxic chemotherapy, metastatic lesions close to renal parenchyma, and single kidney. There are also treatment-related issues, such as choice of radionuclide, cumulative radiation dose to kidneys, renal radiation dose per cycle, activity administered, number of cycles, and time interval between cycles. In the literature, nephrotoxicity caused by PRRT was documented using different criteria and renal function tests, from serum creatinine level to more accurate and sophisticated methods. Generally, serum creatinine level was used as a measure of kidney function. Glomerular filtration rate (GFR) estimation based on serum creatinine was preferred by several authors. Most commonly used formulas for estimation of GFR are "Modifications of Diet in Renal Disease" (MDRD) equation and "Cockcroft-Gault" formulas. However, more precise methods than creatinine or creatinine clearance are recommended to assess renal function, such as GFR measurements using Tc-99m-diethylenetriaminepentaacetic acid (DTPA), Cr-51-ethylenediaminetetraacetic acid (EDTA), or

  15. Photoluminescence and light reabsorption in SiC quantum dots embedded in binary-polyelectrolyte solid matrix

    NASA Astrophysics Data System (ADS)

    Zhang, Nan; Dai, Dejian; Zhang, Wenxia; Fan, Jiyang

    2012-11-01

    We report photoluminescence (PL) and light reabsorption in the SiC quantum dots (QDs) embedded in the binary poly(allylamine hydrochloride)-sodium poly(styrene sulfonate) polyelectrolytes solid matrix. The emission maximum wavelength can be tuned over a wide blue-violet spectral region indicating a PL origin of quantum confinement. The emission maximum exhibits a red shift with increasing concentration of the QDs in the polyelectrolytes matrix. The analysis shows that this shift stems from reabsorption of PL of smaller SiC QDs by larger ones in the matrix. We find that deposition of Ag nanoparticles on the surface of the solid matrix can dramatically reduce light reabsorption owing to surface plasmon-induced concentration of incident light. Additionally, the PL intensity was enhanced by a factor of 1.4. Our results open the possibility of the SiC QDs-based solid blue-UV light emitters for applications in full-solid-state lighting and display.

  16. Renal perfusion scintiscan

    MedlinePlus

    Renal perfusion scintigraphy; Radionuclide renal perfusion scan; Perfusion scintiscan - renal; Scintiscan - renal perfusion ... supply the kidneys. This is a condition called renal artery stenosis. Significant renal artery stenosis may be ...

  17. Iron loss and reabsorption in Ancylostoma duodenale infection and bilharzial colonic polyposis.

    PubMed

    Farid, Z; Bassily, S; Lehman, J S; Kent, D C; Haxton, J; Patwardhan, V N; Hassan, A

    1970-01-01

    Individuals infected with Ancylostoma duodenale may lose up to 6 mg of iron daily and those infected with bilharzial colonic polyposis may lose an average of 3 mg daily; patients suffering with both infections may lose up to 9 mg of iron daily. 1 study has shown that some iron loss to the upper gastrointestinal tract was reabsorbed. A study was undertaken to ascertain whether any iron lost in the lower gastrointestinal tract is reabsorbed and to measure the amount of iron reabsorbed in patients with A. duodenale. 7 Egyptian farmers with A. duodenale and 8 with bilharzial intestinal polyposis but without hookworm infection were given thorough physical and laboratory examinations. Hookworm and Schistosoma mansoni egg counts were performed. All patients were given oral ferrous sulfate before starting the experiment to raise their hemoglobin levels to over 10 gm %. The mean daily blood loss in the 7 patients with heavy hookworm infections was 64.8 ml and the mean iron loss was 18.7; but a mean of 7.7 of this iron was reabsorbed. In the 8 patients with bilharzial polyposis, blood loss averaged 13.1 ml and iron loss, 4.3 mg. In 4 patients, the amount of iron reabsorbed was not significant, in the remaining 4, it reached only 2 mg. The reabsorption of 40% of the iron initially lost in the upper gastrointestinal tract may explain the remarkable tolerance of Egyptian farmers to prolonged hookworm infections. The general iron deficiency anemia prevalent among patients with bilharzial polyposis is due in part to the loss of iron which is not reabsorbed.

  18. Renal biomarkers in domestic species.

    PubMed

    Hokamp, Jessica A; Nabity, Mary B

    2016-03-01

    Current conventional tests of kidney damage and function in blood (serum creatinine and urea nitrogen) and urine (urine protein creatinine ratio and urine specific gravity) are widely used for diagnosis and monitoring of kidney disease. However, they all have important limitations, and additional markers of glomerular filtration rate and glomerular and tubular damage are desirable, particularly for earlier detection of renal disease when therapy is most effective. Additionally, urinary markers of kidney damage and function may help localize damage to the affected portion of the kidney. In general, the presence of high- and intermediate-molecular weight proteins in the urine are indicative of glomerular damage, while low-molecular weight proteins and enzymes in the urine suggest tubular damage due to decreased reabsorption of proteins, direct tubular damage, or both. This review aims to discuss many of these new blood and urinary biomarkers in domestic veterinary species, focusing primarily on dogs and cats, how they may be used for diagnosis of renal disease, and their limitations. Additionally, a brief discussion of serum creatinine is presented, highlighting its limitations and important considerations for its improved interpretation in domestic species based on past literature and recent studies. PMID:26918420

  19. Renal distal tubular handling of sodium in central fluid volume homoeostasis in preascitic cirrhosis

    PubMed Central

    Sansoe, G; Ferrari, A; Baraldi, E; Castellana, C; De Santis, M C; Manenti, F

    1999-01-01

    BACKGROUND/AIMS—Patients with preascitic liver cirrhosis have an increased central plasma volume, and, for any given plasma aldosterone concentration, they excrete less sodium than healthy controls. A detailed study of the distribution of sodium reabsorption along the segments of the renal tubule, especially the distal one, is still lacking in preascitic cirrhosis.
METHODS—Twelve patients with Child-Pugh class A cirrhosis and nine control subjects (both groups on a normosodic diet) were submitted to the following investigations: (a) plasma levels of active renin and aldosterone; (b) four hour renal clearance of lithium (an index of fluid delivery to the loop of Henle), creatinine, sodium, and potassium; (c) dopaminergic activity, as measured by incremental aldosterone response to intravenous metoclopramide.
RESULTS—Metoclopramide induced higher incremental aldosterone responses, indicating increased dopaminergic activity in patients than controls, which is evidence of an increased central plasma volume (+30 min: 160.2 (68.8) v 83.6 (35.2) pg/ml, p<0.01; +60 min: 140.5 (80.3) v 36.8 (36.1) pg/ml, p<0.01). Patients had increased distal fractional sodium reabsorption compared with controls (26.9 (6.7)% v 12.5 (3.4)% of the filtered sodium load, p<0.05). In the patient group there was an inverse correlation between: (a) absolute distal sodium reabsorption and active renin (r −0.59, p<0.05); (b) fractional distal sodium reabsorption and sodium excretion (r −0.66, p<0.03).
CONCLUSIONS—These data suggest that in preascitic cirrhosis the distal fractional tubular reabsorption of sodium is increased and critical in regulating both central fluid volume and sodium excretion.


Keywords: kidney; sodium handling; lithium clearance; liver cirrhosis; dopamine; central fluid volume PMID:10517915

  20. A Renal Olfactory Receptor Aids in Kidney Glucose Handling

    PubMed Central

    Shepard, Blythe D.; Cheval, Lydie; Peterlin, Zita; Firestein, Stuart; Koepsell, Hermann; Doucet, Alain; Pluznick, Jennifer L.

    2016-01-01

    Olfactory receptors (ORs) are G protein-coupled receptors which serve important sensory functions beyond their role as odorant detectors in the olfactory epithelium. Here we describe a novel role for one of these ORs, Olfr1393, as a regulator of renal glucose handling. Olfr1393 is specifically expressed in the kidney proximal tubule, which is the site of renal glucose reabsorption. Olfr1393 knockout mice exhibit urinary glucose wasting and improved glucose tolerance, despite euglycemia and normal insulin levels. Consistent with this phenotype, Olfr1393 knockout mice have a significant decrease in luminal expression of Sglt1, a key renal glucose transporter, uncovering a novel regulatory pathway involving Olfr1393 and Sglt1. In addition, by utilizing a large scale screen of over 1400 chemicals we reveal the ligand profile of Olfr1393 for the first time, offering new insight into potential pathways of physiological regulation for this novel signaling pathway. PMID:27739476

  1. Molecular bases of circadian rhythmicity in renal physiology and pathology

    PubMed Central

    Bonny, Olivier; Vinciguerra, Manlio; Gumz, Michelle L.; Mazzoccoli, Gianluigi

    2013-01-01

    The physiological processes that maintain body homeostasis oscillate during the day. Diurnal changes characterize kidney functions, comprising regulation of hydro-electrolytic and acid-base balance, reabsorption of small solutes and hormone production. Renal physiology is characterized by 24-h periodicity and contributes to circadian variability of blood pressure levels, related as well to nychthemeral changes of sodium sensitivity, physical activity, vascular tone, autonomic function and neurotransmitter release from sympathetic innervations. The circadian rhythmicity of body physiology is driven by central and peripheral biological clockworks and entrained by the geophysical light/dark cycle. Chronodisruption, defined as the mismatch between environmental–social cues and physiological–behavioral patterns, causes internal desynchronization of periodic functions, leading to pathophysiological mechanisms underlying degenerative, immune related, metabolic and neoplastic diseases. In this review we will address the genetic, molecular and anatomical elements that hardwire circadian rhythmicity in renal physiology and subtend disarray of time–dependent changes in renal pathology. PMID:23901050

  2. Metabolic Programming during Lactation Stimulates Renal Na+ Transport in the Adult Offspring Due to an Early Impact on Local Angiotensin II Pathways

    PubMed Central

    Luzardo, Ricardo; Silva, Paulo A.; Einicker-Lamas, Marcelo; Ortiz-Costa, Susana; da Graça Tavares do Carmo, Maria; Vieira-Filho, Leucio D.; Paixão, Ana D. O.; Lara, Lucienne S.; Vieyra, Adalberto

    2011-01-01

    Background Several studies have correlated perinatal malnutrition with diseases in adulthood, giving support to the programming hypothesis. In this study, the effects of maternal undernutrition during lactation on renal Na+-transporters and on the local angiotensin II (Ang II) signaling cascade in rats were investigated. Methodology/Principal Findings Female rats received a hypoproteic diet (8% protein) throughout lactation. Control and programmed offspring consumed a diet containing 20% protein after weaning. Programming caused a decrease in the number of nephrons (35%), in the area of the Bowman's capsule (30%) and the capillary tuft (30%), and increased collagen deposition in the cortex and medulla (by 175% and 700%, respectively). In programmed rats the expression of (Na++K+)ATPase in proximal tubules increased by 40%, but its activity was doubled owing to a threefold increase in affinity for K+. Programming doubled the ouabain-insensitive Na+-ATPase activity with loss of its physiological response to Ang II, increased the expression of AT1 and decreased the expression of AT2 receptors), and caused a pronounced inhibition (90%) of protein kinase C activity with decrease in the expression of the α (24%) and ε (13%) isoforms. Activity and expression of cyclic AMP-dependent protein kinase decreased in the same proportion as the AT2 receptors (30%). In vivo studies at 60 days revealed an increased glomerular filtration rate (GFR) (70%), increased Na+ excretion (80%) and intense proteinuria (increase of 400% in protein excretion). Programmed rats, which had normal arterial pressure at 60 days, became hypertensive by 150 days. Conclusions/Significance Maternal protein restriction during lactation results in alterations in GFR, renal Na+ handling and in components of the Ang II-linked regulatory pathway of renal Na+ reabsorption. At the molecular level, they provide a framework for understanding how metabolic programming of renal mechanisms contributes to the onset

  3. Effects of thyroid status on renal calcium and magnesium handling.

    PubMed Central

    McCaffrey, C; Quamme, G A

    1984-01-01

    Renal calcium and magnesium handling was studied in rats with chronic thyroid hormone deficiency or excess, hyperthyroidism. Mean kidney weight of the thyroid deficient rats was 42% of age matched, euthyroid and hyperthyroid animals and glomerular filtration rate was 71% of normal. Fractional sodium excretion was consistently elevated in thyroid deficient rats (0.26%) as compared to euthyroid (0.07%) and hyperthyroid animals (0.07%). Urinary calcium excretion (0.39%) was also elevated and parallel to sodium excretion in thyroid deficiency. Despite this renal leak of sodium and calcium, thyroid deficient animals conserved magnesium much more efficiently than either euthyroid or hyperthyroid rats (5.7% vs 17.4% respectively). Plasma magnesium concentration was elevated by acute MgCl2 infusions to determine the reabsorptive capacity of magnesium. Thyroid deficient rats reabsorbed 15-30% more of the filtered magnesium at any given plasma concentration. Although these effects on electrolyte reabsorption are modest compared to the hemodynamic alterations, the data suggest that thyroid hormone has a direct effect on the tubule which if chronically absent results in subtle sodium and calcium wasting and renal retention of magnesium. Administration of thyroid hormone to euthyroid or thyroid deficient rats twenty-four hours prior to experimentation had no effect on calcium and magnesium handling. PMID:6713257

  4. Renal effects of continuous negative pressure breathing

    NASA Technical Reports Server (NTRS)

    Kinney, M. J.

    1975-01-01

    Continuous negative pressure breathing (CNPB) was utilized to simulate the thoracic vascular distension of zero G in 11 anesthetized rats. The animals underwent renal clearance and micropuncture renal nephron studies before, during, and after CNPB. Four rats were pretreated with a high salt diet and I-M desoxycorticosterone (DOCA) in excess. None of these rats diuresed with CNPB. In contrast, five of the seven remaining rats increased the fraction of the filtered sodium excreted and their urinary flow rate. Potassium excretion increased. End proximal tubular fluid specimen's TF/P inulin ratios were unchanged. Whole kidney and single nephron glomerular filtration rates fell 10%. CNPB, a mechanism for atrial distension, appears to cause in the rat a decrease in distal tubular sodium and water reabsorption. Exogenous mineral-corticoid prevents the diuresis, saluresis, and kaluresis. The adequacy of other nonatrial volume control mechanisms in regulating renal salt and water conservation in opposition to the studied atrial-renal (Henry-Gauer) reflex of thoracic vascular distension is confirmed.

  5. Renal plasticity in response to feeding in the Burmese python, Python molurus bivittatus.

    PubMed

    Esbaugh, A J; Secor, S M; Grosell, M

    2015-10-01

    Burmese pythons are sit-and-wait predators that are well adapted to go long periods without food, yet subsequently consume and digest single meals that can exceed their body weight. These large feeding events result in a dramatic alkaline tide that is compensated by a hypoventilatory response that normalizes plasma pH; however, little is known regarding how plasma HCO3(-) is lowered in the days post-feeding. The current study demonstrated that Burmese pythons contain the cellular machinery for renal acid-base compensation and actively remodel the kidney to limit HCO3(-) reabsorption in the post-feeding period. After being fed a 25% body weight meal plasma total CO2 was elevated by 1.5-fold after 1 day, but returned to control concentrations by 4 days post-feeding (d pf). Gene expression analysis was used to verify the presence of carbonic anhydrase (CA) II, IV and XIII, Na(+) H(+) exchanger 3 (NHE3), the Na(+) HCO3(-) co-transporter (NBC) and V-type ATPase. CA IV expression was significantly down-regulated at 3 dpf versus fasted controls. This was supported by activity analysis that showed a significant decrease in the amount of GPI-linked CA activity in isolated kidney membranes at 3 dpf versus fasted controls. In addition, V-type ATPase activity was significantly up-regulated at 3 dpf; no change in gene expression was observed. Both CA II and NHE3 expression was up-regulated at 3 dpf, which may be related to post-prandial ion balance. These results suggest that Burmese pythons actively remodel their kidney after feeding, which would in part benefit renal HCO3(-) clearance.

  6. The potential role of regucalcin in kidney cell regulation: Involvement in renal failure (Review).

    PubMed

    Yamaguchi, Masayoshi

    2015-11-01

    The kidneys play a physiologic role in the regulation of urine formation and nutrient reabsorption in the proximal tubule epithelial cells. Kidney development has been shown to be regulated through calcium (Ca2+) signaling processes that are present through numerous steps of tubulogenesis and nephron induction during embryonic development of the kidneys. Ca2+-binding proteins, such as calbindin-D28k and regucalcin are important proteins that are commonly used as biomarkers in pronephric tubules, and the ureteric bud and metanephric mesenchyme. Previous research on regucalcin focused on Ca2+ sensors that are involved in renal organogenesis and the link between Ca2+-dependent signals and polycystins. Moreover, regucalcin has been highlighted to play a multifunctional role in kidney cell regulation. The regucalcin gene, which is localized on the X chromosome, is regulated through various transcription factors. Regucalcin has been found to regulate intracellular Ca2+ homeostasis in kidney proximal tubule epithelial cells. Regucalcin has been demonstrated to regulate the activity of various enzymes that are involved in intracellular signaling pathways. It has been noted that regucalcin suppresses DNA synthesis and regulates the gene expression of various proteins related to mineral transport, transcription factors, cell proliferation and apoptosis. The overexpression of regucalcin has been shown to exert suppressive effects on cell proliferation and apoptotic cell death, which are stimulated by various stimulatory factors. Moreover, regucalcin gene expression was found to to be involved in various pathophysiological states, including renal failure. This review discusses recent findings concerning the potential role of regucalcin as a regulatory protein in the kidney proximal tubule epithelial cells.

  7. Renal plasticity in response to feeding in the Burmese python, Python molurus bivittatus.

    PubMed

    Esbaugh, A J; Secor, S M; Grosell, M

    2015-10-01

    Burmese pythons are sit-and-wait predators that are well adapted to go long periods without food, yet subsequently consume and digest single meals that can exceed their body weight. These large feeding events result in a dramatic alkaline tide that is compensated by a hypoventilatory response that normalizes plasma pH; however, little is known regarding how plasma HCO3(-) is lowered in the days post-feeding. The current study demonstrated that Burmese pythons contain the cellular machinery for renal acid-base compensation and actively remodel the kidney to limit HCO3(-) reabsorption in the post-feeding period. After being fed a 25% body weight meal plasma total CO2 was elevated by 1.5-fold after 1 day, but returned to control concentrations by 4 days post-feeding (d pf). Gene expression analysis was used to verify the presence of carbonic anhydrase (CA) II, IV and XIII, Na(+) H(+) exchanger 3 (NHE3), the Na(+) HCO3(-) co-transporter (NBC) and V-type ATPase. CA IV expression was significantly down-regulated at 3 dpf versus fasted controls. This was supported by activity analysis that showed a significant decrease in the amount of GPI-linked CA activity in isolated kidney membranes at 3 dpf versus fasted controls. In addition, V-type ATPase activity was significantly up-regulated at 3 dpf; no change in gene expression was observed. Both CA II and NHE3 expression was up-regulated at 3 dpf, which may be related to post-prandial ion balance. These results suggest that Burmese pythons actively remodel their kidney after feeding, which would in part benefit renal HCO3(-) clearance. PMID:26123779

  8. Exploring the elusive link between subclinical fibrosis and clinical events in end-stage renal disease: does cardiac magnetic resonance imaging hold the key?

    PubMed

    Shroff, Gautam R; Raggi, Paolo

    2016-10-01

    Extensive myocardial fibrosis is known to occur in patients undergoing dialysis due to a variety of mechanisms not necessarily restricted to coronary artery disease. Fibrosis may predispose to reentry arrhythmias and long-term myocardial dysfunction, and sudden death and congestive heart failure are the most frequent causes of death in patients undergoing renal replacement therapy. Despite the high accuracy of magnetic resonance for imaging of myocardial fibrosis, its use has been restricted by the risk of inducing nephrogenic systemic sclerosis with the injection of gadolinium. The development of new sequences that allow the detection and quantifying of the severity of extracellular myocardial fibrosis offers a chance to study the pathogenesis of this condition and identify potential interventions to retard or reverse it. Whether these will lead to an improved outcome needs to be prospectively tested. PMID:27633865

  9. Exploring the elusive link between subclinical fibrosis and clinical events in end-stage renal disease: does cardiac magnetic resonance imaging hold the key?

    PubMed

    Shroff, Gautam R; Raggi, Paolo

    2016-10-01

    Extensive myocardial fibrosis is known to occur in patients undergoing dialysis due to a variety of mechanisms not necessarily restricted to coronary artery disease. Fibrosis may predispose to reentry arrhythmias and long-term myocardial dysfunction, and sudden death and congestive heart failure are the most frequent causes of death in patients undergoing renal replacement therapy. Despite the high accuracy of magnetic resonance for imaging of myocardial fibrosis, its use has been restricted by the risk of inducing nephrogenic systemic sclerosis with the injection of gadolinium. The development of new sequences that allow the detection and quantifying of the severity of extracellular myocardial fibrosis offers a chance to study the pathogenesis of this condition and identify potential interventions to retard or reverse it. Whether these will lead to an improved outcome needs to be prospectively tested.

  10. Roles of Akt and SGK1 in the Regulation of Renal Tubular Transport.

    PubMed

    Satoh, Nobuhiko; Nakamura, Motonobu; Suzuki, Masashi; Suzuki, Atsushi; Seki, George; Horita, Shoko

    2015-01-01

    A serine/threonine kinase Akt is a key mediator in various signaling pathways including regulation of renal tubular transport. In proximal tubules, Akt mediates insulin signaling via insulin receptor substrate 2 (IRS2) and stimulates sodium-bicarbonate cotransporter (NBCe1), resulting in increased sodium reabsorption. In insulin resistance, the IRS2 in kidney cortex is exceptionally preserved and may mediate the stimulatory effect of insulin on NBCe1 to cause hypertension in diabetes via sodium retention. Likewise, in distal convoluted tubules and cortical collecting ducts, insulin-induced Akt phosphorylation mediates several hormonal signals to enhance sodium-chloride cotransporter (NCC) and epithelial sodium channel (ENaC) activities, resulting in increased sodium reabsorption. Serum- and glucocorticoid-inducible kinase 1 (SGK1) mediates aldosterone signaling. Insulin can stimulate SGK1 to exert various effects on renal transporters. In renal cortical collecting ducts, SGK1 regulates the expression level of ENaC through inhibition of its degradation. In addition, SGK1 and Akt cooperatively regulate potassium secretion by renal outer medullary potassium channel (ROMK). Moreover, sodium-proton exchanger 3 (NHE3) in proximal tubules is possibly activated by SGK1. This review focuses on recent advances in understanding of the roles of Akt and SGK1 in the regulation of renal tubular transport. PMID:26491696

  11. Mechanism of increased renal clearnace of amylase/creatinine in acute pancreatitis.

    PubMed

    Johnson, S G; Ellis, C J; Levitt, M D

    1976-11-25

    We investigated three possible causes of the increased ratio of amylase/creatinine clearance observed in acute pancreatitis. The presence of rapidly cleared isoamylase was excluded by studies of serum and urine, which demonstrated no anomalous isoamylases. In pancreatitis, the ratios (+/-1 S.E.M.) of both pancreatic isoamylase (9.2+/-0.6 per cent) and salivary isoamylase (8.6+/-1.6 per cent) were significantly (P less than 0.01) elevated over respective control values (2.4+/-0.2 and 1.8+/-0.2 per cent). Increased glomerular permeability to amylase was excluded by the demonstration of normal renal clearance of dextrans. We tested tubular reabsorption of protein by measuring the renal clearance of beta2-microglobulin, which is relatively freely filtered at the glomerulus and then avidly reabsorbed by the normal tubule. During acute pancreatitis the ratio of the renal clearance of beta2-microglobulin to that of creatinine was 1.22+/-0.52 per cent, an 80-fold increase over normal (0.015+/-0.002 per cent), with a rapid return toward normal during convalescence. Presumably, this reversible renal tubular defect also reduces amylase reabsorption and accounts for the elevated renal clearance of amylase/creatinine observed in acute pancreatitis.

  12. Roles of Akt and SGK1 in the Regulation of Renal Tubular Transport

    PubMed Central

    Satoh, Nobuhiko; Nakamura, Motonobu; Suzuki, Masashi; Suzuki, Atsushi; Seki, George; Horita, Shoko

    2015-01-01

    A serine/threonine kinase Akt is a key mediator in various signaling pathways including regulation of renal tubular transport. In proximal tubules, Akt mediates insulin signaling via insulin receptor substrate 2 (IRS2) and stimulates sodium-bicarbonate cotransporter (NBCe1), resulting in increased sodium reabsorption. In insulin resistance, the IRS2 in kidney cortex is exceptionally preserved and may mediate the stimulatory effect of insulin on NBCe1 to cause hypertension in diabetes via sodium retention. Likewise, in distal convoluted tubules and cortical collecting ducts, insulin-induced Akt phosphorylation mediates several hormonal signals to enhance sodium-chloride cotransporter (NCC) and epithelial sodium channel (ENaC) activities, resulting in increased sodium reabsorption. Serum- and glucocorticoid-inducible kinase 1 (SGK1) mediates aldosterone signaling. Insulin can stimulate SGK1 to exert various effects on renal transporters. In renal cortical collecting ducts, SGK1 regulates the expression level of ENaC through inhibition of its degradation. In addition, SGK1 and Akt cooperatively regulate potassium secretion by renal outer medullary potassium channel (ROMK). Moreover, sodium-proton exchanger 3 (NHE3) in proximal tubules is possibly activated by SGK1. This review focuses on recent advances in understanding of the roles of Akt and SGK1 in the regulation of renal tubular transport. PMID:26491696

  13. Determinants of renal tissue hypoxia in a rat model of polycystic kidney disease.

    PubMed

    Ow, Connie P C; Abdelkader, Amany; Hilliard, Lucinda M; Phillips, Jacqueline K; Evans, Roger G

    2014-11-15

    Renal tissue oxygen tension (PO2) and its determinants have not been quantified in polycystic kidney disease (PKD). Therefore, we measured kidney tissue PO2 in the Lewis rat model of PKD (LPK) and in Lewis control rats. We also determined the relative contributions of altered renal oxygen delivery and consumption to renal tissue hypoxia in LPK rats. PO2 of the superficial cortex of 11- to 13-wk-old LPK rats, measured by Clark electrode with the rat under anesthesia, was higher within the cysts (32.8 ± 4.0 mmHg) than the superficial cortical parenchyma (18.3 ± 3.5 mmHg). PO2 in the superficial cortical parenchyma of Lewis rats was 2.5-fold greater (46.0 ± 3.1 mmHg) than in LPK rats. At each depth below the cortical surface, tissue PO2 in LPK rats was approximately half that in Lewis rats. Renal blood flow was 60% less in LPK than in Lewis rats, and arterial hemoglobin concentration was 57% less, so renal oxygen delivery was 78% less. Renal venous PO2 was 38% less in LPK than Lewis rats. Sodium reabsorption was 98% less in LPK than Lewis rats, but renal oxygen consumption did not significantly differ between the two groups. Thus, in this model of PKD, kidney tissue is severely hypoxic, at least partly because of deficient renal oxygen delivery. Nevertheless, the observation of similar renal oxygen consumption, despite markedly less sodium reabsorption, in the kidneys of LPK compared with Lewis rats, indicates the presence of inappropriately high oxygen consumption in the polycystic kidney.

  14. Signaling Mechanisms that Link Salt Retention to Hypertension: Endogenous Ouabain, the Na+ Pump, the Na+/Ca2+ Exchanger and TRPC Proteins

    PubMed Central

    Blaustein, Mordecai P.; Hamlyn, John M.

    2010-01-01

    Salt retention as a result of chronic, excessive dietary salt intake, is widely accepted as one of the most common causes of hypertension. In a small minority of cases, enhanced Na+ reabsorption by the kidney can be traced to specific genetic defects of salt transport, or pathological conditions of the kidney, adrenal cortex, or pituitary. Far more frequently, however, the salt retention may be the result of minor renal injury or small genetic variation in renal salt transport mechanisms. How the salt retention actually leads to the increase in peripheral vascular resistance (the hallmark of hypertension) and the elevation of blood pressure remain an enigma. Here we review the evidence that endogenous ouabain (an adrenocortical hormone), arterial smooth muscle α2 Na+ pumps, type-1 Na/Ca exchangers, and receptor- and store-operated Ca2+ channels play key roles in the pathway that links salt to hypertension. We discuss cardenolide structure-function relationships in an effort to understand why prolonged administration of ouabain, but not digoxin, induces hypertension, and why digoxin is actually anti-hypertensive. Finally, we summarize recent observations which indicate that ouabain upregulates arterial myocyte Ca2+ signaling mechanisms that promote vasoconstriction, while simultaneously downregulating endothelial vasodilator mechanisms. In sum, the reports reviewed here provide novel insight into the molecular mechanisms by which salt retention leads to hypertension. PMID:20211726

  15. Contemporary Renal Cell Cancer Epidemiology

    PubMed Central

    Chow, Wong-Ho; Devesa, Susan S.

    2010-01-01

    We analyzed renal cell cancer incidence patterns in the United States and reviewed recent epidemiologic evidence with regard to environmental and host genetic determinants of renal cell cancer risk. Renal cell cancer incidence rates continued to rise among all racial/ethnic groups in the United States, across all age groups, and for all tumor sizes, with the most rapid increases for localized stage disease and small tumors. Recent cohort studies confirmed the association of smoking, excess body weight, and hypertension with an elevated risk of renal cell cancer, and suggested that these factors can be modified to reduce the risk. There is increasing evidence for an inverse association between renal cell cancer risk and physical activity and moderate intake of alcohol. Occupational exposure to TCE has been positively associated with renal cell cancer risk in several recent studies, but its link with somatic mutations of the VHL gene has not been confirmed. Studies of genetic polymorphisms in relation to renal cell cancer risk have produced mixed results, but genome-wide association studies with larger sample size and a more comprehensive approach are underway. Few epidemiologic studies have evaluated risk factors by subtypes of renal cell cancer defined by somatic mutations and other tumor markers. PMID:18836333

  16. The calcium-activated chloride channel Anoctamin 1 contributes to the regulation of renal function.

    PubMed

    Faria, Diana; Rock, Jason R; Romao, Ana M; Schweda, Frank; Bandulik, Sascha; Witzgall, Ralph; Schlatter, Eberhard; Heitzmann, Dirk; Pavenstädt, Hermann; Herrmann, Edwin; Kunzelmann, Karl; Schreiber, Rainer

    2014-06-01

    The role of calcium-activated chloride channels for renal function is unknown. By immunohistochemistry we demonstrate dominant expression of the recently identified calcium-activated chloride channels, Anoctamin 1 (Ano1, TMEM16A) in human and mouse proximal tubular epithelial (PTE) cells, with some expression in podocytes and other tubular segments. Ano1-null mice had proteinuria and numerous large reabsorption vesicles in PTE cells. Selective knockout of Ano1 in podocytes (Ano1-/-/Nphs2-Cre) did not impair renal function, whereas tubular knockout in Ano1-/-/Ksp-Cre mice increased urine protein excretion and decreased urine electrolyte concentrations. Purinergic stimulation activated calcium-dependent chloride currents in isolated proximal tubule epithelial cells from wild-type but not from Ano1-/-/Ksp-Cre mice. Ano1 currents were activated by acidic pH, suggesting parallel stimulation of Ano1 chloride secretion with activation of the proton-ATPase. Lack of calcium-dependent chloride secretion in cells from Ano1-/-/Ksp-Cre mice was paralleled by attenuated proton secretion and reduced endosomal acidification, which compromised proximal tubular albumin uptake. Tubular knockout of Ano1 enhanced serum renin and aldosterone concentrations, probably leading to enhanced compensatory distal tubular reabsorption, thus maintaining normal blood pressure levels. Thus, Ano1 has a role in proximal tubular proton secretion and protein reabsorption. The results correspond to regulation of the proton-ATPase by the Ano1-homolog Ist2 in yeast.

  17. Measurement of the helium 23S metastable atom density by observation of the change in the 23S-23P emission line shape due to radiation reabsorption

    NASA Astrophysics Data System (ADS)

    Shikama, T.; Ogane, S.; Iida, Y.; Hasuo, M.

    2016-01-01

    In helium discharge plasmas, the relative emission intensities of the fine-structure transitions belonging to the HeI 23S-23P transition can be affected by radiation reabsorption. Since the magnitude of the reabsorption depends on the density and temperature of the 23S metastable atoms, their density can be determined by measuring the 23S-23P emission line shape using a high wavelength-resolution spectrometer. In this study, the applicable conditions of the method in terms of the opacity and line broadening are revealed, and possible causes of errors in the measurement, i.e. spatial distributions of the density and temperature and the effects of external magnetic and electric fields, are investigated. The effect of reabsorption under an external magnetic field is experimentally confirmed using a glow discharge plasma installed in a superconducting magnet.

  18. Comparative inhibition by hard and soft metal ions of steroid-binding capacity of renal mineralocorticoid receptor cross-linked to the 90-kDa heat-shock protein heterocomplex.

    PubMed Central

    Galigniana, M D; Piwien-Pilipuk, G

    1999-01-01

    We analysed the inhibitory effects in vitro and in vivo of several metal ions on aldosterone binding to the rat kidney mineralocorticoid receptor with the purpose of assessing possible toxic effects of those ions on sodium retention, as well as to obtain information on receptor structural requirements for ligand binding. For the assays in vitro, the inhibitory effects of 20 metal ions were analysed on steroid-binding capacity for renal receptor cross-linked to 90-kDa heat-shock protein (hsp90) by pretreatment with dimethyl pimelimidate. Cross-linking prevented the artifactual dissociation of hsp90 (and, consequently, the loss of steroid binding) from the mineralocorticoid receptor due to the presence of high concentrations of salt in the incubation medium. Cross-linked heterocomplex showed no difference in ligand specificity and affinity with respect to native receptor, but increased stability upon thermal- or ionic-strength-induced destabilization was observed. Treatments in vitro with metal ions in the range 10(-8)-10(-1) M resulted in a differential inhibitory effect for each particular ion on aldosterone binding. Using the negative logarithm of metal concentration for 50% inhibition, the ions could be correlated with their Klopman hardness constants. The analysis of this relationship led us to postulate three types of reaction: with thiol, imidazole and carboxyl groups. The essential role played by these residues in steroid binding was confirmed by chemical modification of cysteines with dithionitrobenzoic acid, histidines with diethyl pyrocarbonate and acidic amino acids with Woodward's reagent (N-ethyl-5-phenylisoxazolium-3'-sulphonate). Importantly, the toxic effects of some metal ions were also observed by treatments in vivo of adrenalectomized rats on both steroid-binding capacity and aldosterone-dependent sodium-retaining properties. We suggest that those amino acid residues are involved in the activation process of the mineralocorticoid receptor upon

  19. Mechanotransduction in the renal tubule

    PubMed Central

    Duan, Yi; Satlin, Lisa M.; Wang, Tong; Weinstein, Alan M.

    2010-01-01

    The role of mechanical forces in the regulation of glomerulotubular balance in the proximal tubule (PT) and Ca2+ signaling in the distal nephron was first recognized a decade ago, when it was proposed that the microvilli in the PT and the primary cilium in the cortical collecting duct (CCD) acted as sensors of local tubular flow. In this review, we present a summary of the theoretical models and experiments that have been conducted to elucidate the structure and function of these unique apical structures in the modulation of Na+, HCO3−, and water reabsorption in the PT and Ca2+ signaling in the CCD. We also contrast the mechanotransduction mechanisms in renal epithelium with those in other cells in which fluid shear stresses have been recognized to play a key role in initiating intracellular signaling, most notably endothelial cells, hair cells in the inner ear, and bone cells. In each case, small hydrodynamic forces need to be greatly amplified before they can be sensed by the cell's intracellular cytoskeleton to enable the cell to regulate its membrane transporters or stretch-activated ion channels in maintaining homeostasis in response to changing flow conditions. PMID:20810611

  20. Epithelial-mesenchymal transition-associated microRNA/mRNA signature is linked to metastasis and prognosis in clear-cell renal cell carcinoma

    PubMed Central

    Mlcochova, Hana; Machackova, Tana; Rabien, Anja; Radova, Lenka; Fabian, Pavel; Iliev, Robert; Slaba, Katerina; Poprach, Alexandr; Kilic, Ergin; Stanik, Michal; Redova-Lojova, Martina; Svoboda, Marek; Dolezel, Jan; Vyzula, Rostislav; Jung, Klaus; Slaby, Ondrej

    2016-01-01

    Clear-cell renal cell carcinomas (ccRCCs) are genetically heterogeneous tumors presenting diverse clinical courses. Epithelial-mesenchymal transition (EMT) is a crucial process involved in initiation of metastatic cascade. The aim of our study was to identify an integrated miRNA/mRNA signature associated with metastasis and prognosis in ccRCC through targeted approach based on analysis of miRNAs/mRNAs associated with EMT. A cohort of 230 ccRCC was included in our study and further divided into discovery, training and validation cohorts. EMT markers were evaluated in ccRCC tumor samples, which were grouped accordingly to EMT status. By use of large-scale miRNA/mRNA expression profiling, we identified miRNA/mRNA with significantly different expression in EMT-positive tumors and selected 41 miRNAs/mRNAs for training phase of the study to evaluate their diagnostic and prognostic potential. Fifteen miRNAs/mRNAs were analyzed in the validation phase, where all evaluated miRNA/mRNA candidates were confirmed to be significantly deregulated in tumor tissue. Some of them significantly differed in metastatic tumors, correlated with clinical stage, with Fuhrman grade and with overall survival. Further, we established an EMT-based stage-independent prognostic scoring system enabling identification of ccRCC patients at high-risk of cancer-related death. Finally, we confirmed involvement of miR-429 in EMT regulation in RCC cells in vitro. PMID:27549611

  1. Regulation of the collagen cross-linking enzymes LOXL2 and PLOD2 by tumor-suppressive microRNA-26a/b in renal cell carcinoma.

    PubMed

    Kurozumi, Akira; Kato, Mayuko; Goto, Yusuke; Matsushita, Ryosuke; Nishikawa, Rika; Okato, Atsushi; Fukumoto, Ichiro; Ichikawa, Tomohiko; Seki, Naohiko

    2016-05-01

    Our recent studies of microRNA (miRNA) expression signatures in human cancers revealed that microRNA-26a (miRNA-26a) and microRNA-26b (miRNA-26b) were significantly reduced in cancer tissues. To date, few reports have provided functional analyses of miR-26a or miR-26b in renal cell carcinoma (RCC). The aim of the present study was to investigate the functional significance of miR-26a and miR-26b in RCC and to identify novel miR-26a/b-mediated cancer pathways and target genes involved in RCC oncogenesis and metastasis. Downregulation of miR-26a or miR-26b was confirmed in RCC clinical specimens. Restoration of miR-26a or miR-26b in RCC cell lines (786-O and A498) revealed that these miRNAs significantly inhibited cancer cell migration and invasion. Our in silico analysis and luciferase reporter assays showed that lysyl oxidase-like 2 (LOXL2) and procollagen-lysine, 2-oxoglutarate 5-dioxygenase 2 (PLOD2) were directly regulated by these miRNAs. Moreover, downregulating the PLOD2 gene significantly inhibited cell migration and invasion in RCC cells. Thus, our data showed that two genes promoting metastasis, LOXL2 and PLOD2, were epigenetically regulated by tumor-suppressive microRNAs, miR-26a and miR-26b, providing important insights into the molecular mechanisms of RCC metastasis.

  2. Regulation of the collagen cross-linking enzymes LOXL2 and PLOD2 by tumor-suppressive microRNA-26a/b in renal cell carcinoma

    PubMed Central

    KUROZUMI, AKIRA; KATO, MAYUKO; GOTO, YUSUKE; MATSUSHITA, RYOSUKE; NISHIKAWA, RIKA; OKATO, ATSUSHI; FUKUMOTO, ICHIRO; ICHIKAWA, TOMOHIKO; SEKI, NAOHIKO

    2016-01-01

    Our recent studies of microRNA (miRNA) expression signatures in human cancers revealed that microRNA-26a (miRNA-26a) and microRNA-26b (miRNA-26b) were significantly reduced in cancer tissues. To date, few reports have provided functional analyses of miR-26a or miR-26b in renal cell carcinoma (RCC). The aim of the present study was to investigate the functional significance of miR-26a and miR-26b in RCC and to identify novel miR-26a/b-mediated cancer pathways and target genes involved in RCC oncogenesis and metastasis. Downregulation of miR-26a or miR-26b was confirmed in RCC clinical specimens. Restoration of miR-26a or miR-26b in RCC cell lines (786-O and A498) revealed that these miRNAs significantly inhibited cancer cell migration and invasion. Our in silico analysis and luciferase reporter assays showed that lysyl oxidase-like 2 (LOXL2) and procollagen-lysine, 2-oxoglutarate 5-dioxygenase 2 (PLOD2) were directly regulated by these miRNAs. Moreover, downregulating the PLOD2 gene significantly inhibited cell migration and invasion in RCC cells. Thus, our data showed that two genes promoting metastasis, LOXL2 and PLOD2, were epigenetically regulated by tumor-suppressive microRNAs, miR-26a and miR-26b, providing important insights into the molecular mechanisms of RCC metastasis. PMID:26983694

  3. Epithelial-mesenchymal transition-associated microRNA/mRNA signature is linked to metastasis and prognosis in clear-cell renal cell carcinoma.

    PubMed

    Mlcochova, Hana; Machackova, Tana; Rabien, Anja; Radova, Lenka; Fabian, Pavel; Iliev, Robert; Slaba, Katerina; Poprach, Alexandr; Kilic, Ergin; Stanik, Michal; Redova-Lojova, Martina; Svoboda, Marek; Dolezel, Jan; Vyzula, Rostislav; Jung, Klaus; Slaby, Ondrej

    2016-01-01

    Clear-cell renal cell carcinomas (ccRCCs) are genetically heterogeneous tumors presenting diverse clinical courses. Epithelial-mesenchymal transition (EMT) is a crucial process involved in initiation of metastatic cascade. The aim of our study was to identify an integrated miRNA/mRNA signature associated with metastasis and prognosis in ccRCC through targeted approach based on analysis of miRNAs/mRNAs associated with EMT. A cohort of 230 ccRCC was included in our study and further divided into discovery, training and validation cohorts. EMT markers were evaluated in ccRCC tumor samples, which were grouped accordingly to EMT status. By use of large-scale miRNA/mRNA expression profiling, we identified miRNA/mRNA with significantly different expression in EMT-positive tumors and selected 41 miRNAs/mRNAs for training phase of the study to evaluate their diagnostic and prognostic potential. Fifteen miRNAs/mRNAs were analyzed in the validation phase, where all evaluated miRNA/mRNA candidates were confirmed to be significantly deregulated in tumor tissue. Some of them significantly differed in metastatic tumors, correlated with clinical stage, with Fuhrman grade and with overall survival. Further, we established an EMT-based stage-independent prognostic scoring system enabling identification of ccRCC patients at high-risk of cancer-related death. Finally, we confirmed involvement of miR-429 in EMT regulation in RCC cells in vitro. PMID:27549611

  4. Renal threshold phosphate concentration (TmPO4/GFR).

    PubMed Central

    Kruse, K; Kracht, U; Göpfert, G

    1982-01-01

    The ratio of maximum rate of renal tubular reabsorption of phosphate to glomerular filtration rate (TmPO4/GFR) was determined in 546 schoolchildren, aged between 6 and 17.9 years, using the nomogram of Walton and Bijvoet.1 TmPO4/GFR correlated with chronological age in girls and boys and in each remained significantly higher than in adults. TmPO4/GFR in the children correlated neither with fasting serum immunoreactive calcitonin and parathyroid hormone levels nor with the urinary cyclic AMP excretion. The study showed a parallel decrease in TmPO4/GFR, excretion of total hydroxyproline and serum alkaline phosphatase activities after puberty, with a significant relationship of both these indices of bone turnover to TmPO4/GFR values. This indicates that the high renal phosphate threshold of children may be an important factor for bone mineralisation by providing high extracellular inorganic phosphate concentrations during normal growth. PMID:6280622

  5. Atheroembolic renal disease

    MedlinePlus

    Renal disease - atheroembolic; Cholesterol embolization syndrome; Atheroemboli - renal; Atherosclerotic disease - renal ... disorder of the arteries. It occurs when fat, cholesterol, and other substances build up in the walls ...

  6. Roles of estrogen and progesterone in modulating renal nerve function in the rat kidney

    PubMed Central

    Graceli, J.B.; Cicilini, M.A.; Bissoli, N.S.; Abreu, G.R.; Moysés, M.R.

    2013-01-01

    The maintenance of extracellular Na+ and Cl- concentrations in mammals depends, at least in part, on renal function. It has been shown that neural and endocrine mechanisms regulate extracellular fluid volume and transport of electrolytes along nephrons. Studies of sex hormones and renal nerves suggested that sex hormones modulate renal function, although this relationship is not well understood in the kidney. To better understand the role of these hormones on the effects that renal nerves have on Na+ and Cl- reabsorption, we studied the effects of renal denervation and oophorectomy in female rats. Oophorectomized (OVX) rats received 17β-estradiol benzoate (OVE, 2.0 mg·kg-1·day-1, sc) and progesterone (OVP, 1.7 mg·kg-1·day-1, sc). We assessed Na+ and Cl- fractional excretion (FENa+ and FECl-, respectively) and renal and plasma catecholamine release concentrations. FENa+, FECl-, water intake, urinary flow, and renal and plasma catecholamine release levels increased in OVX vs control rats. These effects were reversed by 17β-estradiol benzoate but not by progesterone. Renal denervation did not alter FENa+, FECl-, water intake, or urinary flow values vs controls. However, the renal catecholamine release level was decreased in the OVP (236.6±36.1 ng/g) and denervated rat groups (D: 102.1±15.7; ODE: 108.7±23.2; ODP: 101.1±22.1 ng/g). Furthermore, combining OVX + D (OD: 111.9±25.4) decreased renal catecholamine release levels compared to either treatment alone. OVE normalized and OVP reduced renal catecholamine release levels, and the effects on plasma catecholamine release levels were reversed by ODE and ODP replacement in OD. These data suggest that progesterone may influence catecholamine release levels by renal innervation and that there are complex interactions among renal nerves, estrogen, and progesterone in the modulation of renal function. PMID:23828583

  7. Carbonic anhydrases in chick extra-embryonic structures: a role for CA in bicarbonate reabsorption through the chorioallantoic membrane.

    PubMed

    Gabrielli, M Gabriella

    2004-06-01

    The villus cavity cells, a specific cell type of the chick chorioallantoic membrane, express both cytosolic carbonic anhydrase in their cytoplasm and HCO3(-)/Cl(-) anion exchangers at their basolateral membranes. By immunohistochemical analysis, we show here that villus cavity cells specifically react with antibodies directed against the membrane-associated form of carbonic anhydrase, CAIV. Staining is restricted to the apical cell membranes, characteristically invaginated toward the shell membrane, as well as to endothelia of blood vessels present in the mesodermal layer. The occurrence of a membrane-associated CA form at the apical pole of villus cavity cells, when definitively confirmed, would be fairly consistent with the role proposed for these cells in bicarbonate reabsorption from the eggshell so to prevent metabolic acidosis in the embryo during development.

  8. [Reabsorption of yellow fluorescent protein in the Rana temporaria kidney by receptor-mediated endocytosis].

    PubMed

    Seliverstova, E V; Prutskova, N P

    2014-01-01

    The absorption of yellow fluorescent protein (YFP) and the expression of the endocytic receptors, megalin and cubilin, were investigated in the renal proximal tubules (PT) in frogs Rana temporaria after parenteral YFP injections. The methods of confocal microscopy and immunohistochemistry were used. The dynamics of YFP absorption was analyzed 2 h after injection. The logarithmic time dependence of the accumulation of YFP-containing endocytic vesicles in PT cells and the completion of absorption process 90-120 min after injection were shown. Unlike substantial megalin and cubilin expression 15-30 min after YFP introduction, immunolabeled endocytic receptors were not detected in PT cells after 2 h. The re-injection of YFP led to the appearance of apical endocytic vesicles containing megalin or cubilin colocalized with YFP. At the same time, the decrease of YFP uptake associated with reduction in the number of receptor-containing vesicles was demonstrated, suggesting a failure of megalin and cubilin expression. The decrease of absorption capacity of PT cells after YFP re-injection was similar to that found previously under conditions of the competitive absorption of green fluorescent protein (GFP) and YFP injected in different sequences. The data are the further demonstration of the proposed mechanism limiting the tubular protein absorption in the frog kidney and suggest the involvement of megalin and cubilin in uptake and vesicular transport of YFP.

  9. Nephron filtration rate and proximal tubular fluid reabsorption in the Akita mouse model of type I diabetes mellitus

    PubMed Central

    Schnermann, Jurgen

    2013-01-01

    An increase of glomerular filtration rate (hyperfiltration) is an early functional change associated with type I or type II diabetes mellitus in patients and animal models. The causes underlying glomerular hyperfiltration are not entirely clear. There is evidence from studies in the streptozotocin model of diabetes in rats that an increase of proximal tubular reabsorption results in the withdrawal of a vasoconstrictor input exerted by the tubuloglomerular feedback (TGF) mechanism. In the present study, we have used micropuncture to assess single nephron function in wild type (WT) mice and in two strains of type I diabetic Ins2+/- mice in either a C57Bl/6 (Akita) or an A1AR-/- background (Akita/A1AR-/-) in which TGF is non-functional. Kidney glomerular filtration rate (GFR) of anesthetized mice was increased by 25% in Akita mice and by 52% in Akita/A1AR-/-, but did not differ between genotypes when corrected for kidney weight. Single nephron GFR (SNGFR) measured by end-proximal fluid collections averaged 11.8 ± 1 nl/min (n=17), 13.05 ± 1.1 nl/min (n=23; p=0.27), and 15.4 ± 0.84 nl/min (n=26; p=0.009 compared to WT; p=0.09 compared to Akita) in WT, Akita, and Akita/A1AR-/- mice respectively. Proximal tubular fluid reabsorption was not different between WT and diabetic mice and correlated with SNGFR in all genotypes. We conclude that glomerular hyperfiltration is a primary event in the Akita model of type I diabetes, perhaps driven by an increased filtering surface area, and that it is ameliorated by TGF to the extent that this regulatory system is functional. PMID:24358878

  10. Fluid reabsorption in proximal convoluted tubules of mice with gene deletions of claudin-2 and/or aquaporin1

    PubMed Central

    Huang, Yuning; Mizel, Diane

    2013-01-01

    Deletions of claudin-2 (Cldn2) and aquaporin1 (AQP1) reduce proximal fluid reabsorption (PFR) by about 30% and 50%, respectively. Experiments were done to replicate these observations and to determine in AQP1/claudin-2 double knockout mice (DKO) if the effects of deletions of these established water pores are additive. PFR was determined in inactin/ketamine-anesthetized mice by free-flow micropuncture using single-nephron I125-iothalamate (io) clearance. Animal means of PFR [% of glomerular filtration rate (GFR)] derived from TF/Piothalamate ratios in 12 mice in each of four groups [wild type (WT), Cldn2−/−, AQP1−/−, and DKO) were 45.8 ± 0.85 (51 tubules), 35.4 ± 1 (54 tubules; P < 0.01 vs. WT), 36.8 ± 1 (63 tubules; P < 0.05 vs. WT), and 33.9 ± 1.4 (69 tubules; P < 0.01 vs. WT). Kidney and single-nephron GFRs (SNGFR) were significantly reduced in all mutant strains. The direct relationship between PFR and SNGFR was maintained in mutant mice, but the slope of this relationship was reduced in the absence of Cldn2 and/or AQP1. Transtubular osmotic pressure differences were not different between WT and Cldn2−/− mice, but markedly increased in DKO. In conclusion, the deletion of Cldn2, AQP1, or of both Cldn2 and AQP1 reduces PFR by 22.7%, 19.6%, and 26%, respectively. Our data are consistent with an up to 25% paracellular contribution to PFR. The reduced osmotic water permeability caused by absence of AQP1 augments luminal hypotonicity. Aided by a fall in filtered load, the capacity of non-AQP1-dependent transcellular reabsorption is sufficient to maintain PFR without AQP1 and claudin-2 at 75% of control. PMID:24049145

  11. Pressure natriuresis and the renal control of arterial blood pressure

    PubMed Central

    Ivy, Jessica R; Bailey, Matthew A

    2014-01-01

    The regulation of extracellular fluid volume by renal sodium excretion lies at the centre of blood pressure homeostasis. Renal perfusion pressure can directly regulate sodium reabsorption in the proximal tubule. This acute pressure natriuresis response is a uniquely powerful means of stabilizing long-term blood pressure around a set point. By logical extension, deviation from the set point can only be sustained if the pressure natriuresis mechanism is impaired, suggesting that hypertension is caused or sustained by a defect in the relationship between renal perfusion pressure and sodium excretion. Here we describe the role of pressure natriuresis in blood pressure control and outline the cascade of biophysical and paracrine events in the renal medulla that integrate the vascular and tubular response to altered perfusion pressure. Pressure natriuresis is impaired in hypertension and mechanistic insight into dysfunction comes from genetic analysis of blood pressure disorders. Transplantation studies in rats show that blood pressure is determined by the genotype of the kidney and Mendelian hypertension indicates that the distal nephron influences the overall natriuretic efficiency. These approaches and the outcomes of genome-wide-association studies broaden our view of blood pressure control, suggesting that renal sympathetic nerve activity and local inflammation can impair pressure natriuresis to cause hypertension. Understanding how these systems interact is necessary to tackle the global burden of hypertension. PMID:25107929

  12. Inhibition of urea tubular reabsorption by PGE1 infusion in man.

    PubMed

    Conte, G; Cianciaruso, B; De Nicola, L; Sepe, V; Romano, G; Domenico, R; Caglioti, A; Fuiano, G; Dal Canton, A

    1992-01-01

    We have shown that the inhibition of prostaglandin (PG) synthesis in man decreases the fractional clearance of urea (FCurea). To understand the mechanism(s) by which PG affect the renal handling of urea, 6 normal volunteers were randomly studied in maximal antidiuresis (by water deprivation and by administering 1-desamino-8-D-arginine vasopressin) before and during PGE1 infusion, in two separate occasions: (A) after 7 days of normal protein (1 g/kg b.w./day) and water intake (10 ml/kg b.w./day), and (B) after 7 days of low protein intake (0.5 g/kg b.w./day) and high water intake (80 ml/kg b.w./day) to lower the corticomedullary osmotic gradient. During infusion of PGE1 at rates of 0.01, 0.05 and 0.1 micrograms/min/kg, randomly administered, the urinary fluid losses were replaced by infusing equal volumes of hypotonic NaCl (80 mmol/l). To evaluate the time effects of this protocol, control studies were performed in an other 8 subjects receiving vehicle infusion without PGE1. In study A, FCurea rose by 23% (p less than 0.01) at the lowest PGE1 infusion rate (0.01 micrograms/min/kg), in the absence of any simultaneous change in water and salt output, Uosm, PAH and inulin clearance. Higher PGE1 infusion rates (0.05 and 0.1 micrograms/min/kg) were associated with a progressive increase of FCurea (50%, p less than 0.001 and 91%, p less than 0.001, respectively), fractional clearance of water and salt output, inulin and PAH clearance and reduced Uosm from 1,005 (22 SEM; basal value) to 772 (38 SEM; minimum value) mosm/kg (p less than 0.001).(ABSTRACT TRUNCATED AT 250 WORDS)

  13. Renal organogenesis

    PubMed Central

    2011-01-01

    The increasing prevalence of chronic kidney disease in the absence of new treatment modalities has become a strong driver for innovation in nephrology. An increasing understanding of stem cell biology has kindled the prospects of regenerative options for kidney disease. However, the kidney itself is not a regenerative organ, as all the nephrons are formed during embryonic development. Here, we will investigate advances in the molecular genetics of renal organogenesis, including what this can tell us about lineage relationships, and discuss how this may serve to inform us about both the normal processes of renal repair and options for regenerative therapies. PMID:22198432

  14. [Renal disease].

    PubMed

    Espinosa-Cuevas, María de Los Ángeles

    2016-09-01

    Chronic renal failure in its various stages, requires certain nutritional restrictions associated with the accumulation of minerals and waste products that cannot be easily eliminated by the kidneys. Some of these restrictions modify the intake of proteins, sodium, and phosphorus. Milk and dairy products are sources of these nutrients. This article aims to inform the reader about the benefits including milk and dairy products relying on a scientific and critical view according to the clinical conditions and the stage of renal disease in which the patient is. PMID:27603894

  15. [Renal disease].

    PubMed

    Espinosa-Cuevas, María de Los Ángeles

    2016-09-01

    Chronic renal failure in its various stages, requires certain nutritional restrictions associated with the accumulation of minerals and waste products that cannot be easily eliminated by the kidneys. Some of these restrictions modify the intake of proteins, sodium, and phosphorus. Milk and dairy products are sources of these nutrients. This article aims to inform the reader about the benefits including milk and dairy products relying on a scientific and critical view according to the clinical conditions and the stage of renal disease in which the patient is.

  16. Clinical evaluation of amylase-creatinine clearance ratio and amylase isoenzyme clearance in chronic renal failure.

    PubMed

    Maeda, M; Otsuki, M; Okano, K; Yamasaki, T; Baba, S

    1981-01-01

    Amylase-creatinine clearance ratio (ACCR) and amylase isoenzyme clearance were determined simultaneously in patients with chronic renal failure. ACCR in patients with compensated renal failure (3.5 +/- 0.4%) was not significantly different from normals (2.6 +/- 0.2%), while that in patients with non-compensated renal failure (6.7 +/- 0.4%) was significantly higher than that in normals. Clearance ratio of pancreatic isoamylase (Amylase-1) relative to creatinine clearance (CAmy . 1/Ccr) in patients with both compensated (5.9 +/- 1.0%) and non-compensated (6.8 +/- 0.4%) renal failure was as high as that in patients with acute pancreatitis (6.6 +/- 0.5%). On the other hand, clearance ratio of salivary isoamylase (Amylase-3) relative to creatinine clearance (CAmy . 3/CCr) in patients with compensated renal failure (1.5 +/- 0.3%) was almost the same as that in normals (2.1 +/- 0.1%), while that in patients with non-compensated renal failure was 5.9 +/- 0.7%, which was significantly higher than that in normals. The present study revealed that elevated ACCR in patients with severely impaired renal function was due to the increase of the clearance ratio for both pancreatic and salivary amylase. These facts suggested that glomerular permeability and tubular reabsorption for pancreatic and salivary amylase might play an important role on ACCR in patients with severely impaired renal function.

  17. Downregulation of renal type IIa sodium-dependent phosphate cotransporter during lipopolysaccharide-induced acute inflammation.

    PubMed

    Ikeda, Shoko; Yamamoto, Hironori; Masuda, Masashi; Takei, Yuichiro; Nakahashi, Otoki; Kozai, Mina; Tanaka, Sarasa; Nakao, Mari; Taketani, Yutaka; Segawa, Hiroko; Iwano, Masayuki; Miyamoto, Ken-ichi; Takeda, Eiji

    2014-04-01

    The type IIa sodium-dependent phosphate cotransporter (Npt2a) plays a critical role in reabsorption of inorganic phosphate (Pi) by renal proximal tubular cells. Pi abnormalities during early stages of sepsis have been reported, but the mechanisms regulating Pi homeostasis during acute inflammation are poorly understood. We examined the regulation of Pi metabolism and renal Npt2a expression during lipopolysaccharide (LPS)-induced inflammation in mice. Dose-response and time-course studies with LPS showed significant increases of plasma Pi and intact parathyroid hormone (iPTH) levels and renal Pi excretion, while renal calcium excretion was significantly decreased. There was no difference in plasma 1,25-dihydroxyvitamin D levels, but the induction of plasma intact fibroblast growth factor 23 levels peaked 3 h after LPS treatment. Western blotting, immunostaining, and quantitative real-time PCR showed that LPS administration significantly decreased Npt2a protein expression in the brush border membrane (BBM) 3 h after injection, but there was no change in renal Npt2a mRNA levels. Moreover, tumor necrosis factor-α injection also increased plasma iPTH and decreased renal BBM Npt2a expression. Importantly, we revealed that parathyroidectomized rats had impaired renal Pi excretion and BBM Npt2a expression in response to LPS. These results suggest that the downregulation of Npt2a expression in renal BBM through induction of plasma iPTH levels alter Pi homeostasis during LPS-induced acute inflammation. PMID:24500689

  18. Clinical evaluation of amylase-creatinine clearance ratio and amylase isoenzyme clearance in chronic renal failure.

    PubMed

    Maeda, M; Otsuki, M; Okano, K; Yamasaki, T; Baba, S

    1981-01-01

    Amylase-creatinine clearance ratio (ACCR) and amylase isoenzyme clearance were determined simultaneously in patients with chronic renal failure. ACCR in patients with compensated renal failure (3.5 +/- 0.4%) was not significantly different from normals (2.6 +/- 0.2%), while that in patients with non-compensated renal failure (6.7 +/- 0.4%) was significantly higher than that in normals. Clearance ratio of pancreatic isoamylase (Amylase-1) relative to creatinine clearance (CAmy . 1/Ccr) in patients with both compensated (5.9 +/- 1.0%) and non-compensated (6.8 +/- 0.4%) renal failure was as high as that in patients with acute pancreatitis (6.6 +/- 0.5%). On the other hand, clearance ratio of salivary isoamylase (Amylase-3) relative to creatinine clearance (CAmy . 3/CCr) in patients with compensated renal failure (1.5 +/- 0.3%) was almost the same as that in normals (2.1 +/- 0.1%), while that in patients with non-compensated renal failure was 5.9 +/- 0.7%, which was significantly higher than that in normals. The present study revealed that elevated ACCR in patients with severely impaired renal function was due to the increase of the clearance ratio for both pancreatic and salivary amylase. These facts suggested that glomerular permeability and tubular reabsorption for pancreatic and salivary amylase might play an important role on ACCR in patients with severely impaired renal function. PMID:6167484

  19. Renal Autoregulation in Health and Disease

    PubMed Central

    Carlström, Mattias; Wilcox, Christopher S.; Arendshorst, William J.

    2015-01-01

    Intrarenal autoregulatory mechanisms maintain renal blood flow (RBF) and glomerular filtration rate (GFR) independent of renal perfusion pressure (RPP) over a defined range (80–180 mmHg). Such autoregulation is mediated largely by the myogenic and the macula densa-tubuloglomerular feedback (MD-TGF) responses that regulate preglomerular vasomotor tone primarily of the afferent arteriole. Differences in response times allow separation of these mechanisms in the time and frequency domains. Mechanotransduction initiating the myogenic response requires a sensing mechanism activated by stretch of vascular smooth muscle cells (VSMCs) and coupled to intracellular signaling pathways eliciting plasma membrane depolarization and a rise in cytosolic free calcium concentration ([Ca2+]i). Proposed mechanosensors include epithelial sodium channels (ENaC), integrins, and/or transient receptor potential (TRP) channels. Increased [Ca2+]i occurs predominantly by Ca2+ influx through L-type voltage-operated Ca2+ channels (VOCC). Increased [Ca2+]i activates inositol trisphosphate receptors (IP3R) and ryanodine receptors (RyR) to mobilize Ca2+ from sarcoplasmic reticular stores. Myogenic vasoconstriction is sustained by increased Ca2+ sensitivity, mediated by protein kinase C and Rho/Rho-kinase that favors a positive balance between myosin light-chain kinase and phosphatase. Increased RPP activates MD-TGF by transducing a signal of epithelial MD salt reabsorption to adjust afferent arteriolar vasoconstriction. A combination of vascular and tubular mechanisms, novel to the kidney, provides for high autoregulatory efficiency that maintains RBF and GFR, stabilizes sodium excretion, and buffers transmission of RPP to sensitive glomerular capillaries, thereby protecting against hypertensive barotrauma. A unique aspect of the myogenic response in the renal vasculature is modulation of its strength and speed by the MD-TGF and by a connecting tubule glomerular feedback (CT-GF) mechanism

  20. Renal autoregulation in health and disease.

    PubMed

    Carlström, Mattias; Wilcox, Christopher S; Arendshorst, William J

    2015-04-01

    Intrarenal autoregulatory mechanisms maintain renal blood flow (RBF) and glomerular filtration rate (GFR) independent of renal perfusion pressure (RPP) over a defined range (80-180 mmHg). Such autoregulation is mediated largely by the myogenic and the macula densa-tubuloglomerular feedback (MD-TGF) responses that regulate preglomerular vasomotor tone primarily of the afferent arteriole. Differences in response times allow separation of these mechanisms in the time and frequency domains. Mechanotransduction initiating the myogenic response requires a sensing mechanism activated by stretch of vascular smooth muscle cells (VSMCs) and coupled to intracellular signaling pathways eliciting plasma membrane depolarization and a rise in cytosolic free calcium concentration ([Ca(2+)]i). Proposed mechanosensors include epithelial sodium channels (ENaC), integrins, and/or transient receptor potential (TRP) channels. Increased [Ca(2+)]i occurs predominantly by Ca(2+) influx through L-type voltage-operated Ca(2+) channels (VOCC). Increased [Ca(2+)]i activates inositol trisphosphate receptors (IP3R) and ryanodine receptors (RyR) to mobilize Ca(2+) from sarcoplasmic reticular stores. Myogenic vasoconstriction is sustained by increased Ca(2+) sensitivity, mediated by protein kinase C and Rho/Rho-kinase that favors a positive balance between myosin light-chain kinase and phosphatase. Increased RPP activates MD-TGF by transducing a signal of epithelial MD salt reabsorption to adjust afferent arteriolar vasoconstriction. A combination of vascular and tubular mechanisms, novel to the kidney, provides for high autoregulatory efficiency that maintains RBF and GFR, stabilizes sodium excretion, and buffers transmission of RPP to sensitive glomerular capillaries, thereby protecting against hypertensive barotrauma. A unique aspect of the myogenic response in the renal vasculature is modulation of its strength and speed by the MD-TGF and by a connecting tubule glomerular feedback (CT

  1. Mathematical Modeling of Renal Tubular Glucose Absorption after Glucose Load

    PubMed Central

    De Gaetano, Andrea; Panunzi, Simona; Eliopoulos, Dimitris; Hardy, Thomas; Mingrone, Geltrude

    2014-01-01

    A partial differential Progressive Tubular Reabsorption (PTR) model, describing renal tubular glucose reabsorption and urinary glucose excretion following a glucose load perturbation, is proposed and fitted to experimental data from five subjects. For each subject the Glomerular Filtration Rate was estimated and both blood and urine glucose were sampled following an Intra-Venous glucose bolus. The PTR model was compared with a model representing the conventional Renal Threshold Hypothesis (RTH). A delay bladder compartment was introduced in both formulations. For the RTH model, the average threshold for glycosuria varied between 9.90±4.50 mmol/L and 10.63±3.64 mmol/L (mean ± Standard Deviation) under different hypotheses; the corresponding average maximal transport rates varied between 0.48±0.45 mmol/min (86.29±81.22 mg/min) and 0.50±0.42 mmol/min (90.62±76.15 mg/min). For the PTR Model, the average maximal transports rates varied between 0.61±0.52 mmol/min (109.57±93.77 mg/min) and 0.83±0.95 mmol/min (150.13±171.85 mg/min). The time spent by glucose inside the tubules before entering the bladder compartment varied between 1.66±0.73 min and 2.45±1.01 min. The PTR model proved much better than RTH at fitting observations, by correctly reproducing the delay of variations of glycosuria with respect to the driving glycemia, and by predicting non-zero urinary glucose elimination at low glycemias. This model is useful when studying both transients and steady-state glucose elimination as well as in assessing drug-related changes in renal glucose excretion. PMID:24489817

  2. Effects of positive acceleration /+Gz/ on renal function and plasma renin in normal man

    NASA Technical Reports Server (NTRS)

    Epstein, M.; Shubrooks, S. J., Jr.; Fishman, L. M.; Duncan, D. C.

    1974-01-01

    The effects of positive radial centrifugation (+Gz) on plasma resin activity (PRA) and renal function were assessed in 15 normal male subjects under carefully controlled conditions of Na, K, and water intake. Twenty minutes of +2.0 Gz resulted in significant decreases in the mean rate of sodium excretion and creatine clearance and in a doubling of PRA in seven sodium-depleted subjects (10 meq Na intake). In eight sodium-replete subjects (200 mq Na intake), 30 min of +2.0 Gz was also associated with a decrease in the mean rate of sodium excretion. As a consequence of a concurrent decrease in creatine clearance, the fractional excretion of sodium during centrifugation did not differ from control, suggesting that the changes in Na excretion were mediated primarily by renal hemodynamic factors, although enhanced renal tubular sodium reabsorption may also have played a role.

  3. In Vivo Maturation of Functional Renal Organoids Formed from Embryonic Cell Suspensions

    PubMed Central

    Benedetti, Valentina; Rizzo, Paola; Abbate, Mauro; Corna, Daniela; Azzollini, Nadia; Conti, Sara; Unbekandt, Mathieu; Davies, Jamie A.; Morigi, Marina; Benigni, Ariela; Remuzzi, Giuseppe

    2012-01-01

    The shortage of transplantable organs provides an impetus to develop tissue-engineered alternatives. Producing tissues similar to immature kidneys from simple suspensions of fully dissociated embryonic renal cells is possible in vitro, but glomeruli do not form in the avascular environment. Here, we constructed renal organoids from single-cell suspensions derived from E11.5 kidneys and then implanted these organoids below the kidney capsule of a living rat host. This implantation resulted in further maturation of kidney tissue, formation of vascularized glomeruli with fully differentiated capillary walls, including the slit diaphragm, and appearance of erythropoietin-producing cells. The implanted tissue exhibited physiologic functions, including tubular reabsorption of macromolecules, that gained access to the tubular lumen on glomerular filtration. The ability to generate vascularized nephrons from single-cell suspensions marks a significant step to the long-term goal of replacing renal function by a tissue-engineered kidney. PMID:23085631

  4. In vivo maturation of functional renal organoids formed from embryonic cell suspensions.

    PubMed

    Xinaris, Christodoulos; Benedetti, Valentina; Rizzo, Paola; Abbate, Mauro; Corna, Daniela; Azzollini, Nadia; Conti, Sara; Unbekandt, Mathieu; Davies, Jamie A; Morigi, Marina; Benigni, Ariela; Remuzzi, Giuseppe

    2012-11-01

    The shortage of transplantable organs provides an impetus to develop tissue-engineered alternatives. Producing tissues similar to immature kidneys from simple suspensions of fully dissociated embryonic renal cells is possible in vitro, but glomeruli do not form in the avascular environment. Here, we constructed renal organoids from single-cell suspensions derived from E11.5 kidneys and then implanted these organoids below the kidney capsule of a living rat host. This implantation resulted in further maturation of kidney tissue, formation of vascularized glomeruli with fully differentiated capillary walls, including the slit diaphragm, and appearance of erythropoietin-producing cells. The implanted tissue exhibited physiologic functions, including tubular reabsorption of macromolecules, that gained access to the tubular lumen on glomerular filtration. The ability to generate vascularized nephrons from single-cell suspensions marks a significant step to the long-term goal of replacing renal function by a tissue-engineered kidney.

  5. A computational model of cerebrospinal fluid production and reabsorption driven by Starling forces.

    PubMed

    Buishas, Joel; Gould, Ian G; Linninger, Andreas A

    2014-10-01

    Experimental evidence has cast doubt on the classical model of river-like cerebrospinal fluid (CSF) flow from the choroid plexus to the arachnoid granulations. We propose a novel model of water transport through the parenchyma from the microcirculation as driven by Starling forces. This model investigates the effect of osmotic pressure on water transport between the cerebral vasculature, the extracellular space (ECS), the perivascular space (PVS), and the CSF. A rigorous literature search was conducted focusing on experiments which alter the osmolarity of blood or ventricles and measure the rate of CSF production. Investigations into the effect of osmotic pressure on the volume of ventricles and the flux of ions in the blood, choroid plexus epithelium, and CSF are reviewed. Increasing the osmolarity of the serum via a bolus injection completely inhibits nascent fluid flow production in the ventricles. A continuous injection of a hyperosmolar solution into the ventricles can increase the volume of the ventricle by up to 125%. CSF production is altered by 0.231 μL per mOsm in the ventricle and by 0.835 μL per mOsm in the serum. Water flux from the ECS to the CSF is identified as a key feature of intracranial dynamics. A complete mathematical model with all equations and scenarios is fully described, as well as a guide to constructing a computational model of intracranial water balance dynamics. The model proposed in this article predicts the effects the osmolarity of ECS, blood, and CSF on water flux in the brain, establishing a link between osmotic imbalances and pathological conditions such as hydrocephalus and edema. PMID:25358881

  6. Coordinated Control of ENaC and Na+,K+-ATPase in Renal Collecting Duct.

    PubMed

    Feraille, Eric; Dizin, Eva

    2016-09-01

    Tubular reabsorption of filtered sodium is tightly controlled to maintain body volume homeostasis. The rate of sodium transport by collecting duct (CD) cells varies widely in response to dietary sodium intake, GFR, circulating hormones, neural signals, and local regulatory factors. Reabsorption of filtered sodium by CD cells occurs via a two-step process. First, luminal sodium crosses the apical plasma membrane along its electrochemical gradient through epithelial sodium channels (ENaC). Intracellular sodium is then actively extruded into the interstitial space by the Na(+),K(+)-ATPase located along the basolateral membrane. Mismatch between sodium entry and exit induces variations in sodium intracellular concentration and cell volume that must be maintained within narrow ranges for control of vital cell functions. Therefore, renal epithelial cells display highly coordinated apical and basolateral sodium transport rates. We review evidence from experiments conducted in vivo and in cultured cells that indicates aldosterone and vasopressin, the two major hormones regulating sodium reabsorption by CD, generate a coordinated stimulation of apical ENaC and basolateral Na(+),K(+)-ATPase. Moreover, we discuss evidence suggesting that variations in sodium entry per se induce a coordinated change in Na(+),K(+)-ATPase activity through the signaling of protein kinases such as protein kinase A and p38 mitogen-activated protein kinase. PMID:27188842

  7. Dopamine and angiotensin type 2 receptors cooperatively inhibit sodium transport in human renal proximal tubule cells.

    PubMed

    Gildea, John J; Wang, Xiaoli; Shah, Neema; Tran, Hanh; Spinosa, Michael; Van Sciver, Robert; Sasaki, Midori; Yatabe, Junichi; Carey, Robert M; Jose, Pedro A; Felder, Robin A

    2012-08-01

    Little is known regarding how the kidney shifts from a sodium and water reclaiming state (antinatriuresis) to a state where sodium and water are eliminated (natriuresis). In human renal proximal tubule cells, sodium reabsorption is decreased by the dopamine D(1)-like receptors (D(1)R/D(5)R) and the angiotensin type 2 receptor (AT(2)R), whereas the angiotensin type 1 receptor increases sodium reabsorption. Aberrant control of these opposing systems is thought to lead to sodium retention and, subsequently, hypertension. We show that D(1)R/D(5)R stimulation increased plasma membrane AT(2)R 4-fold via a D(1)R-mediated, cAMP-coupled, and protein phosphatase 2A-dependent specific signaling pathway. D(1)R/D(5)R stimulation also reduced the ability of angiotensin II to stimulate phospho-extracellular signal-regulated kinase, an effect that was partially reversed by an AT(2)R antagonist. Fenoldopam did not increase AT(2)R recruitment in renal proximal tubule cells with D(1)Rs uncoupled from adenylyl cyclase, suggesting a role of cAMP in mediating these events. D(1)Rs and AT(2)Rs heterodimerized and cooperatively increased cAMP and cGMP production, protein phosphatase 2A activation, sodium-potassium-ATPase internalization, and sodium transport inhibition. These studies shed new light on the regulation of renal sodium transport by the dopaminergic and angiotensin systems and potential new therapeutic targets for selectively treating hypertension.

  8. OBESITY-INDUCED HYPERTENSION: INTERACTION OF NEUROHUMORAL AND RENAL MECHANISMS

    PubMed Central

    Hall, John E.; do Carmo, Jussara M.; da Silva, Alexandre A.; Wang, Zhen; Hall, Michael E.

    2015-01-01

    Excess weight gain, especially when associated with increased visceral adiposity, is a major cause of hypertension, accounting for 65–75% of the risk for human primary (essential) hypertension. Increased renal tubular sodium reabsorption impairs pressure natriuresis and plays an important role in initiating obesity hypertension. The mediators of abnormal kidney function and increased blood pressure during development of obesity hypertension include 1) physical compression of the kidneys by fat in and around the kidneys, 2) activation of the renin-angiotensin-aldosterone system (RAAS), and 3) increased sympathetic nervous system (SNS) activity. Activation of the RAAS system is likely due, in part, to renal compression as well as SNS activation. However, obesity also causes mineralocorticoid receptor activation independent of aldosterone or angiotensin II. The mechanisms for SNS activation in obesity have not been fully elucidated but appear to require leptin and activation of the brain melanocortin system. With prolonged obesity and development of target organ injury, especially renal injury, obesity-associated hypertension becomes more difficult to control, often requiring multiple antihypertensive drugs and treatment of other risk factors, including dyslipidemia, insulin resistance and diabetes, and inflammation. Unless effective anti-obesity drugs are developed, the impact of obesity on hypertension and related cardiovascular, renal and metabolic disorders is likely to become even more important in the future as the prevalence of obesity continues to increase. PMID:25767285

  9. Drosophila provides rapid modeling of renal development, function, and disease.

    PubMed

    Dow, Julian A T; Romero, Michael F

    2010-12-01

    The evolution of specialized excretory cells is a cornerstone of the metazoan radiation, and the basic tasks performed by Drosophila and human renal systems are similar. The development of the Drosophila renal (Malpighian) tubule is a classic example of branched tubular morphogenesis, allowing study of mesenchymal-to-epithelial transitions, stem cell-mediated regeneration, and the evolution of a glomerular kidney. Tubule function employs conserved transport proteins, such as the Na(+), K(+)-ATPase and V-ATPase, aquaporins, inward rectifier K(+) channels, and organic solute transporters, regulated by cAMP, cGMP, nitric oxide, and calcium. In addition to generation and selective reabsorption of primary urine, the tubule plays roles in metabolism and excretion of xenobiotics, and in innate immunity. The gene expression resource FlyAtlas.org shows that the tubule is an ideal tissue for the modeling of renal diseases, such as nephrolithiasis and Bartter syndrome, or for inborn errors of metabolism. Studies are assisted by uniquely powerful genetic and transgenic resources, the widespread availability of mutant stocks, and low-cost, rapid deployment of new transgenics to allow manipulation of renal function in an organotypic context.

  10. Obesity-induced hypertension: interaction of neurohumoral and renal mechanisms.

    PubMed

    Hall, John E; do Carmo, Jussara M; da Silva, Alexandre A; Wang, Zhen; Hall, Michael E

    2015-03-13

    Excess weight gain, especially when associated with increased visceral adiposity, is a major cause of hypertension, accounting for 65% to 75% of the risk for human primary (essential) hypertension. Increased renal tubular sodium reabsorption impairs pressure natriuresis and plays an important role in initiating obesity hypertension. The mediators of abnormal kidney function and increased blood pressure during development of obesity hypertension include (1) physical compression of the kidneys by fat in and around the kidneys, (2) activation of the renin-angiotensin-aldosterone system, and (3) increased sympathetic nervous system activity. Activation of the renin-angiotensin-aldosterone system is likely due, in part, to renal compression, as well as sympathetic nervous system activation. However, obesity also causes mineralocorticoid receptor activation independent of aldosterone or angiotensin II. The mechanisms for sympathetic nervous system activation in obesity have not been fully elucidated but may require leptin and activation of the brain melanocortin system. With prolonged obesity and development of target organ injury, especially renal injury, obesity-associated hypertension becomes more difficult to control, often requiring multiple antihypertensive drugs and treatment of other risk factors, including dyslipidemia, insulin resistance and diabetes mellitus, and inflammation. Unless effective antiobesity drugs are developed, the effect of obesity on hypertension and related cardiovascular, renal and metabolic disorders is likely to become even more important in the future as the prevalence of obesity continues to increase.

  11. Renal denervation for resistant hypertension.

    PubMed

    Almeida, Manuel de Sousa; Gonçalves, Pedro de Araújo; Oliveira, Eduardo Infante de; Carvalho, Henrique Cyrne de

    2015-02-01

    There is a marked contrast between the high prevalence of hypertension and the low rates of adequate control. A subset of patients with suboptimal blood pressure control have drug-resistant hypertension, in the pathophysiology of which chronic sympathetic hyperactivation is significantly involved. Sympathetic renal denervation has recently emerged as a device-based treatment for resistant hypertension. In this review, the pathophysiological mechanisms linking the sympathetic nervous system and cardiovascular disease are reviewed, focusing on resistant hypertension and the role of sympathetic renal denervation. An update on experimental and clinical results is provided, along with potential future indications for this device-based technique in other cardiovascular diseases.

  12. An experimental renal acidification defect in patients with hereditary fructose intolerance

    PubMed Central

    Morris, R. Curtis

    1968-01-01

    In adult patients with hereditary fructose intolerance (HFI) fructose induces a renal acidification defect characterized by (a) a 20-30% reduction in tubular reabsorption of bicarbonate (T HCO3-) at plasma bicarbonate concentrations ranging from 21-31 mEq/liter, (b) a maximal tubular reabsorption of bicarbonate (Tm HCO3-) of approximately 1.9 mEq/100 ml of glomerular filtrate, (c) disappearance of bicarbonaturia at plasma bicarbonate concentrations less than 15 mEq/liter, and (d) during moderately severe degrees of acidosis, a sustained capacity to maintain urinary pH at normal minima and to excrete acid at normal rates. In physiologic distinction from this defect, the renal acidification defect of patients with classic renal tubular acidosis is characterized by (a) just less than complete tubular reabsorption of bicarbonate at plasma bicarbonate concentrations of 26 mEq/liter or less, (b) a normal Tm HCO3- of approximately 2.8 mEq/100 ml of glomerular filtrate, and (c) during acidosis of an even severe degree, a quantitatively trivial bicarbonaturia, as well as (d) a urinary pH of greater than 6. That the fructose-induced renal acidification defect involves a reduced H+ secretory capacity of the proximal nephron is supported by the magnitude of the reduction in T HCO3- (20-30%) and the simultaneous occurrence and the persistence throughout administration of fructose of impaired tubular reabsorption of phosphate, alpha amino nitrogen and uric acid. A reduced H+ secretory capacity of the proximal nephron also appears operative in two unrelated children with hyperchloremic acidosis, Fanconi's syndrome, and cystinosis. In both, T HCO3- was reduced 20-30% at plasma bicarbonate concentrations ranging from 20-30 mEq/liter. The bicarbonaturia disappeared at plasma bicarbonate concentrations ranging from 15-18 mEq/liter, and during moderate degrees of acidosis, urinary pH decreased to less than 6, and the excretion rate of acid was normal. PMID:5658593

  13. Mini-review: regulation of the renal NaCl cotransporter by hormones.

    PubMed

    Rojas-Vega, Lorena; Gamba, Gerardo

    2016-01-01

    The renal thiazide-sensitive NaCl cotransporter, NCC, is the major pathway for salt reabsorption in the distal convoluted tubule. The activity of this cotransporter is critical for regulation of several physiological variables such as blood pressure, serum potassium, acid base metabolism, and urinary calcium excretion. Therefore, it is not surprising that numerous hormone-signaling pathways regulate NCC activity to maintain homeostasis. In this review, we will provide an overview of the most recent evidence on NCC modulation by aldosterone, angiotensin II, vasopressin, glucocorticoids, insulin, norepinephrine, estradiol, progesterone, prolactin, and parathyroid hormone.

  14. Lithospermic acid B isolated from Salvia miltiorrhiza ameliorates ischemia/reperfusion-induced renal injury in rats.

    PubMed

    Kang, Dae Gill; Oh, Hyuncheol; Sohn, Eun Jin; Hur, Tae Young; Lee, Kang Chang; Kim, Kwang Jin; Kim, Tai Yo; Lee, Ho Sub

    2004-08-27

    The present study was designed to examine whether lithospermic acid B (LSB) isolated from Salvia miltiorrhiza has an ameliorative effect on renal functional parameters in association with the expression of aquaporin 2 (AQP 2) and Na,K-ATPase in the ischemia-reperfusion induced acute renal failure (ARF) rats. LSB showed strong antioxidant activity against production of reactive oxygen species (ROS), ROS-induced hemolysis, and production of lipid peroxide in a dose-dependent manner. Polyuria caused by down-regulation of renal AQP 2 in the ischemia-reperfusion induced ARF rats was partially restored by administration of LSB (40 mg/kg, i.p.), restoring expression of AQP 2, in renal inner and outer medulla. The expression of Na,K-ATPase alpha1 subunit in outer medulla of the ARF rats was also restored in the ARF rats by administration of LSB, while beta1 subunit level was not altered. The renal functional parameters including creatinine clearance, urinary sodium excretion, urinary osmolality, and solute-free reabsorption were also partially restored in ischemia-ARF rats by administration of LSB. Histological study also showed that renal damages in the ARF rats were abrogated by administration of LSB. Taken together, these data indicate that LSB ameliorates renal defects in rats with ischemia-reperfusion induced ARF, most likely via scavenging of ROS.

  15. The effect of maleate induced proximal tubular dysfunction on the renal handling of Tc-99m DMSA in the rat

    SciTech Connect

    Provoost, A.P.; Van Aken, M.

    1984-01-01

    In the healthy kidney Tc-99m DMSA accumulates in the proximal tubular cells. Consequently, impairment of the reabsorptive function of these cells may alter the renal handling of this static renal imaging agent. The authors investigated in rats the effects of a sodiummaleate (Ma) (2mmol/kg iv) induced proximal tubular dysfunction on the renal accumulation and excretion of Tc-99m DMSA. Such a treatment results in a moderate fall of the glomerular filtration rate, glycosuria, aminoaciduria and a tubular proteinuria. In 7 adult male Wistar rats, Tc-99m DMSA scans were taken before Ma, on the day of treatment, and 1 week thereafter. The accumulation of Tc-99m DMSA in kidneys (Ki) and bladder (Bl) was determined at 1, 2, 4, and 24 hours after i.v. injection. The results, expressed as a percentage of the injected dose, are presented. The findings show that a reversible Ma induced impairment of the proximal reabsorptive capacity severely alters the renal tubular handling of Tc-99m DMSA. In contrast to the control situation, only a small fraction of the DMSA is retained in the kidney and the majority is transported directly to the urinary bladder. When similar alterations are observed in clinical Tc-99m DMSA scans, this may be an indication of an impairment of the proximal tubular function.

  16. A Novel Member of the Trehalose Transporter Family Functions as an H+-Dependent Trehalose Transporter in the Reabsorption of Trehalose in Malpighian Tubules

    PubMed Central

    Kikuta, Shingo; Hagiwara-Komoda, Yuka; Noda, Hiroaki; Kikawada, Takahiro

    2012-01-01

    In insects, Malpighian tubules are functionally analogous to mammalian kidneys in that they not only are essential to excrete waste molecules into the lumen but also are responsible for the reabsorption of indispensable molecules, such as sugars, from the lumen to the principal cells. Among sugars, the disaccharide trehalose is highly important to insects because it is the main hemolymph sugar to serve as a source of energy and carbon. The trehalose transporter TRET1 participates in the transfer of newly synthesized trehalose from the fat body across the cellular membrane into the hemolymph. Although transport proteins must play a pivotal role in the reabsorption of trehalose in Malpighian tubules, the molecular context underlying this process remains obscure. Previously, we identified a Tret1 homolog (Nlst8) that is expressed principally in the Malpighian tubules of the brown planthopper (BPH). Here, we used the Xenopus oocyte expression system to show that NlST8 exerts trehalose transport activity that is elevated under low pH conditions. These functional assays indicate that Nlst8 encodes a proton-dependent trehalose transporter (H-TRET1). To examine the involvement of Nlst8 in trehalose reabsorption, we analyzed the sugar composition of honeydew by using BPH with RNAi gene silencing. Trehalose was detected in the honeydew as waste excreted from Nlst8-dsRNA-injected BPH under hyperglycemic conditions. However, trehalose was not expelled from GFP-dsRNA-injected BPH even under hyperglycemic conditions. We conclude that NlST8 could participate in trehalose reabsorption driven by a H+ gradient from the lumen to the principal cells of the Malpighian tubules. PMID:22934042

  17. Renal cell carcinoma

    MedlinePlus

    Renal cancer; Kidney cancer; Hypernephroma; Adenocarcinoma of renal cells; Cancer - kidney ... ed. Philadelphia, PA: Elsevier; 2016:chap 57. National Cancer Institute: PDQ renal cell cancer treatment. Bethesda, MD: National Cancer Institute. ...

  18. Renal involvement in Fabry disease.

    PubMed

    Abensur, Hugo; Reis, Marlene Antônia Dos

    2016-06-01

    Every cell in the human body has globotriaosylceramide accumulation (Gb3) in Fabry disease due to the mutation in gene of the enzyme α-galactosidase A. It is a disease linked to sex. The main clinical features are: cutaneous angiokeratomas; acroparestesias and early strokes; decreased sweating and heat intolerance; ocular changes; myocardial hypertrophy, arrhythmias; gastrointestinal disorders and renal involvement. Renal involvement occurs due to Gb3 accumulation in all types of renal cells. Therefore, patients may present glomerular and tubular function disorders. Podocytes are particularly affected, with pedicels effacement and development of proteinuria. The diagnosis is made by detection of reduced plasma or leukocyte α-galactosidase activity and genetic study for detecting the α-galactosidase gene mutation. Treatment with enzyme replacement contributes to delay the progression of kidney disease, especially if initiated early. PMID:27438980

  19. Systemic and renal-specific sympathoinhibition in obesity hypertension.

    PubMed

    Lohmeier, Thomas E; Iliescu, Radu; Liu, Boshen; Henegar, Jeffrey R; Maric-Bilkan, Christine; Irwin, Eric D

    2012-02-01

    Chronic pressure-mediated baroreflex activation suppresses renal sympathetic nerve activity. Recent observations indicate that chronic electric activation of the carotid baroreflex produces sustained reductions in global sympathetic activity and arterial pressure. Thus, we investigated the effects of global and renal specific suppression of sympathetic activity in dogs with sympathetically mediated, obesity-induced hypertension by comparing the cardiovascular, renal, and neurohormonal responses to chronic baroreflex activation and bilateral surgical renal denervation. After control measurements, the diet was supplemented with beef fat, whereas sodium intake was held constant. After 4 weeks on the high-fat diet, when body weight had increased ≈50%, fat intake was reduced to a level that maintained this body weight. This weight increase was associated with an increase in mean arterial pressure from 100±2 to 117±3 mm Hg and heart rate from 86±3 to 130±4 bpm. The hypertension was associated with a marked increase in cumulative sodium balance despite an approximately 35% increase in glomerular filtration rate. The importance of increased tubular reabsorption to sodium retention was further reflected by ≈35% decrease in fractional sodium excretion. Subsequently, both chronic baroreflex activation (7 days) and renal denervation decreased plasma renin activity and abolished the hypertension. However, baroreflex activation also suppressed systemic sympathetic activity and tachycardia and reduced glomerular hyperfiltration while increasing fractional sodium excretion. In contrast, glomerular filtration rate increased further after renal denervation. Thus, by improving autonomic control of cardiac function and diminishing glomerular hyperfiltration, suppression of global sympathetic activity by baroreflex activation may have beneficial effects in obesity beyond simply attenuating hypertension.

  20. Temporal changes in floral nectar production, reabsorption, and composition associated with dichogamy in annual caraway (Carum carvi; Apiaceae).

    PubMed

    Langenberger, Michael W; Davis, Arthur R

    2002-10-01

    The dynamics of nectar production were studied in perfect florets of two varieties (Karzo, Moran) of annual caraway (Carum carvi L., Apiaceae). Florets were protandrous and strongly dichogamous, lasting 7-15 d but producing nectar from the stylopodia for 4-12 d, in an interrupted fashion. Nectar secretion began during a floret's phase of stamen elongation and anther dehiscence. After reabsorption of uncollected nectar, at which point nectary surfaces were completely dry, the two styles elongated and a second bout of secretion commenced during the female phase, up to 5 d later, when a floret became receptive to pollination. During the male and female phases, respectively, 0.392 ± 0.064 μL and 1.083 ± 0.261 μL of nectar of similar solute concentration (844 mg/mL) was produced per ten florets. On a daily basis, florets yielded 1.5-fold more nectar in the female than during the male phase. First-time nectar removal throughout the female phase did not match the sum of nectar quantities from male and female phases combined, suggesting that under natural conditions, any uncollected male-phase nectar, once reabsorbed, is not made available to visitors of the same florets when in the female phase. Nectar-sugar composition differed between bouts of secretion; it was hexose-rich (59.6% fructose, 26.9% glucose, 13.6% sucrose) initially, but hexose-dominant (70.2, 26.8, 3.1) during the female phase. A 5.7-fold difference in mean nectar production per floret occurred among plants.

  1. Parathyroid hormone decreases HCO3 reabsorption in the rat proximal tubule by stimulating phosphatidylinositol metabolism and inhibiting base exit.

    PubMed Central

    Pastoriza-Munoz, E; Harrington, R M; Graber, M L

    1992-01-01

    The mechanism of inhibition of HCO3 transport by parathyroid hormone (PTH) in the proximal tubule is not clearly defined. Previous studies in vitro have suggested that this effect is mediated via cAMP generation, which acts to inhibit Na/H exchange, resulting in cell acidification. To examine this question in vivo, intracellular pH (pHi) was measured in the superficial proximal tubule of the rat using the pH-sensitive fluoroprobes 4-methylumbelliferone (4MU) and 2',7'-bis(carboxyethyl)-(5, and 6)-carboxyfluorescein (BCECF). PTH was found to alkalinize the cell. This alkalinization suggested inhibition of basolateral base exit, which was confirmed by in situ microperfusion studies: lowering HCO3 in peritubular capillaries acidified the cell, an effect blunted by PTH. Removal of luminal Na promoted basolateral base entry, alkalinizing the cell. This response was also blunted by PTH. Readdition of luminal Na stimulated the luminal Na/H exchanger, causing an alkalinization overshoot that was partially inhibited by PTH. cAMP inhibited luminal H secretion but did not alkalinize the cell. Stimulation of phosphatidylinositol-bis-phosphate turnover by PTH was suggested by the effect to the hormone to increase cell Ca. Blocking the PTH-induced rise in cell Ca blunted the effect of the hormone to alkalinize the cell, as did inhibition of phosphatidylinositol breakdown. Furthermore, stimulation of protein kinase C by a phorbol ester and a diacylglycerol applied basolaterally alkalinized the cell and inhibited luminal H secretion. The findings indicate that both arms of the phosphatidylinositol-bis-phosphate cascade play a role in mediating the effect of PTH on the cell pH. The results are consistent with the view that PTH inhibits base exit in the proximal tubule by activation of the phosphatidylinositol cascade. The resulting alkalinization may contribute, with cAMP, to inhibit apical Na/H exchange and the PTH-induced depression of proximal HCO3 reabsorption. PMID:1314850

  2. Renal failure associated with laxative abuse.

    PubMed

    Copeland, P M

    1994-01-01

    Eating disorder patients often abuse laxatives in an attempt to purge excess food. Laxative abuse can cause hypokalemia and volume depletion. Hypokalemia, in turn, can lead to rhabdomyolysis. Laxative-induced hypokalemia and volume depletion have been previously reported to cause renal insufficiency, but not severe enough to require hemodialysis. A 27-year-old woman with a long history of laxative abuse presented with severe renal failure associated with hypokalemia and volume depletion. She required acute hemodialysis for worsening acidosis (pH 7.05) despite assisted ventilation. A prior episode of hypokalemic rhabdomyolysis at age 23 had resulted in only mild renal insufficiency. Her later episode of severe renal failure was linked to profound volume depletion (blood urea nitrogen 135 mg/dl). This patient calls attention to a potentially life-threatening complication of laxative abuse and indicates that volume depletion can exacerbate laxative-associated renal failure. PMID:7531354

  3. Familial renal glycosuria: a genetic reappraisal of hexose transport by kidney and intestine

    PubMed Central

    Elsas, Louis J.; Rosenberg, Leon E.

    1969-01-01

    Renal glucose titration studies were carried out in 10 members of two pedigrees with familial renal glycosuria to test the accepted hypothesis of autosomal dominant inheritance and to investigate the genetic significance of “type A” and “type B” renal glycosuria. In one family, a brother and sister each had a moderately reduced threshold and tubular maximum for glucose (type A), but both of their parents reabsorbed glucose normally. In the second family, two brothers had severe type A renal glycosuria, their mother and one brother had a mild type A defect, and another brother demonstrated a reduced threshold, an exaggerated splay, and a normal tubular maximum, indicative of type B glycosuria. Hexose transport by intestinal mucosa was also investigated in controls and in the three brothers with the most severe renal glycosuria. D-glucose-14C and 3-O-methylglucose-14C were accumulated by jejunal mucosa from controls by processes which were saturable and concentrative. No differences in hexose transport were observed in the patients with renal glycosuria. We conclude that familial renal glycosuria can be inherited as an autosomal recessive trait; that mild and severe type A renal glycosuria and type B renal glycosuria can occur in the same pedigree; and that defective reabsorption of glucose by the kidney need not be accompanied by abnormalities in intestinal glucose transport. These findings indicate that glucose transport in the gut and kidney are not mediated by identical mechanisms, and that several different mutations are responsible for the phenotypic variability in familial renal glycosuria. PMID:5822589

  4. Clinical applications of renal telemedicine.

    PubMed

    Mitchell, J G; Disney, A P

    1997-01-01

    In 1994, a telemedicine network was established linking the renal unit at The Queen Elizabeth Hospital to three satellite dialysis centres in South Australia. In the first two and a half years of operation, the telemedicine equipment was used on over 6000 occasions. Interviews were conducted with 18 medical, nursing and allied health staff and dialysis patients. The main finding was that the full range of staff, from surgeons and nephrologists to allied health staff and nurses, were able use the technology successfully for clinical purposes. A second finding was that the technology enabled staff to perform a wide range of clinical procedures, from routine outpatient consultations and monitoring infections to making decisions about retrieval or confirming decisions to operate. A third finding was that telemedicine enabled the renal unit to provide improved services in which teams of staff at the different sites cooperated in ways that were not possible before the telemedicine links became available.

  5. Resistance of the rat to development of lead-induced renal functional deficits

    SciTech Connect

    O'Flaherty, E.J.; Adams, W.D.; Hammond, P.B.; Taylor, E.

    1986-01-01

    Lead nephropathy, characterized functionally by depression of effective renal plasma flow (ERPF), glomerular filtration rate (GFR), and maximum glucose reabsorption rate, is associated with prolonged occupational exposure to lead. Production of comparable lead-related renal functional deficits in rats has been difficult to achieve. The authors have examined in rats some of the factors that might be expected to influence the development of lead-induced renal functional damage, using GFR (as inulin clearance). ERPF (as para-aminohippurate clearance), and maximum glucose readsorption rates as indices of renal functional competence. Although lead produces a significant weight loss, this can be accounted for by reduced food intake and is not associated with reduction in renal function. Even exposure to large amounts of lead in conjunction with other factors; such as controlled diet (NIH-07 and AIN-76) and early age of initial exposure, that might have been expected to increase the rats' susceptibility has not resulted in the development of renal functional deficits. It is unlikely that the rat can be successfully explored as an animal model of human lead nephropathy with accompanying functional deficits.

  6. Renal implications of the renin-angiotensin-aldosterone system blockade in heart failure.

    PubMed

    Ruilope, L M; Barrios, V; Volpe, M

    2000-11-01

    The renin-angiotensin-aldosterone system actively participates in the derangement of renal function since the early stages of heart failure (HF). A diminished capacity to excrete sodium secondary to increased proximal tubular re-absorption and loss of the renal functional reserve are the two most relevant initial alterations of renal function in which angiotensin II has been proven to act directly. Meanwhile, the octapeptide contributes to maintain glomerular filtration rate (GFR) within normal limits through efferent arteriole vasoconstriction. Administration of angiotensin converting enzyme inhibitors (ACEi) or angiotensin receptor antagonists (ARA) may thus be accompanied by a functional fall in that parameter. Advanced age, higher initial serum creatinine, history of hypertension, diabetes and atrial fibrillation predict the onset of GFR impairment associated with blockade of the renin-angiotensin system. Concomitant administration of betablockers may help to protect renal function, and preliminary data indicate that the combination of ACEi and ARA is not accompanied by a higher renal risk. The good prognostic effects of aldosterone antagonists in HF does not seem to be related to intrarenal effects of these compounds with the exception of preventing potassium loss and hypokalemia. The systematic therapeutic use of drug(s) provided with beneficial renal effects, to treat arterial hypertension or myocardial ischemia, may contribute to delay of, or prevent the development of HF.

  7. Matrix extracellular phosphoglycoprotein (MEPE) is a new bone renal hormone and vascularization modulator.

    PubMed

    David, Valentin; Martin, Aline; Hedge, Anne-Marie; Rowe, Peter S N

    2009-09-01

    Increased matrix extracellular phosphoglycoprotein (MEPE) expression occurs in several phosphate and bone-mineral metabolic disorders. To resolve whether MEPE plays a role, we created a murine model overexpressing MEPE protein (MEPE tgn) in bone. MEPE tgn mice displayed a growth and mineralization defect with altered bone-renal vascularization that persisted to adulthood. The growth mineralization defect was due to a decrease in bone remodeling, and MEPE tgn mice were resistant to diet-induced renal calcification. MEPE protein-derived urinary ASARM peptides and reduced urinary Ca X PO4 product mediated the suppressed renal calcification. Osteoblastic cells displayed reduced activity but normal differentiation. Osteoclastic precursors were unable to differentiate in the presence of osteoblasts. In the kidney, NPT2a up-regulation induced an increase in phosphate renal reabsorption, leading to hyperphosphatemia. We conclude MEPE and MEPE-phosphate-regulating gene with homologies to endopeptidases on the X chromosome (MEPE-PHEX) interactions are components to an age-diet-dependent pathway that regulates bone turnover and mineralization and suppresses renal calcification. This novel pathway also modulates bone-renal vascularization and bone turnover.

  8. Renal actinomycosis with concomitant renal vein thrombosis.

    PubMed

    Chang, Dong-Suk; Jang, Won Ik; Jung, Ji Yoon; Chung, Sarah; Choi, Dae Eun; Na, Ki-Ryang; Lee, Kang Wook; Shin, Yong-Tai

    2012-02-01

    Renal actinomycosis is a rare infection caused by fungi of the genus Actinomyces. A 74-year-old male was admitted to our hospital because of gross hematuria with urinary symptoms and intermittent chills. Computed tomography of the abdomen showed thrombosis in the left renal vein and diffuse, heterogeneous enlargement of the left kidney. After nephrectomy, sulfur granules with chronic suppurative inflammation were seen microscopically, and the histopathological diagnosis was renal actinomycosis. Our case is the first report of renal actinomycosis with renal vein thrombosis.

  9. ANP-induced signaling cascade and its implications in renal pathophysiology

    PubMed Central

    Wu, Qingyu

    2015-01-01

    The balance between vasoconstrictor/sodium-retaining and vasodilator/natriuretic systems is essential for maintaining body fluid and electrolyte homeostasis. Natriuretic peptides, such as atrial natriuretic peptide (ANP), belong to the vasodilator/natriuretic system. ANP is produced by the conversion of pro-ANP into ANP, which is achieved by a proteolytical cleavage executed by corin. In the kidney, ANP binds to the natriuretic peptide receptor-A (NPR-A) and enhances its guanylyl cyclase activity, thereby increasing intracellular cyclic guanosine monophosphate production to promote natriuretic and renoprotective responses. In the glomerulus, ANP increases glomerular permeability and filtration rate and antagonizes the deleterious effects of the renin-angiotensin-aldosterone system activation. Along the nephron, natriuretic and diuretic actions of ANP are mediated by inhibiting the basolaterally expressed Na+-K+-ATPase, reducing apical sodium, potassium, and protein organic cation transporter in the proximal tubule, and decreasing Na+-K+-2Cl− cotransporter activity and renal concentration efficiency in the thick ascending limb. In the medullary collecting duct, ANP reduces sodium reabsorption by inhibiting the cyclic nucleotide-gated cation channels, the epithelial sodium channel, and the heteromeric channel transient receptor potential-vanilloid 4 and -polycystin 2 and diminishes vasopressin-induced water reabsorption. Long-term ANP treatment may lead to NPR-A desensitization and ANP resistance, resulting in augmented sodium and water reabsorption. In mice, corin deficiency impairs sodium excretion and causes salt-sensitive hypertension. Characteristics of ANP resistance and corin deficiency are also encountered in patients with edema-associated diseases, highlighting the importance of ANP signaling in salt-water balance and renal pathophysiology. PMID:25651559

  10. Renal melatonin excretion in sheep is enhanced by water diuresis.

    PubMed

    Valtonen, M; Laitinen, J T; Eriksson, L

    1993-09-01

    Diurnal variation in blood melatonin levels and renal melatonin excretion was monitored in five ewes by blood sampling and quantitative urine collection at 2-h intervals. A typical secretory pattern of melatonin was seen both in blood and urine levels and in the renal excretion of melatonin. Serum melatonin levels increased from daytime values of approximately 200 pmol/l to a mean of 800 pmol/l during darkness. Urine flow rate and urine osmolality did not show any clear diurnal rhythm. To examine whether urine flow rate affects renal melatonin excretion at night, urine was collected in three consecutive 30-min fractions, and blood was sampled in the middle of each urine collection period when the sheep were in normal water balance or after hydration. Hydration increased urine flow rate over sixfold and decreased urine osmolality well below plasma osmolality. Glomerular filtration rate, measured as creatinine clearance, did not change. Serum melatonin concentrations did not differ between hydrated and non-hydrated sheep. However, urinary melatonin excretion was 1.1 +/- 0.3 (S.E.M.) pmol/min at midnight in normal water balance, and significantly higher (2.6 +/- 0.4 pmol/min) in the hydrated state. In this study, the validity of urinary melatonin determinations as an indicator of pineal function was confirmed in normal water balance. In addition, our results suggest that a high tubular fluid load during diuresis increases urinary melatonin excretion because of decreased tubular reabsorption.(ABSTRACT TRUNCATED AT 250 WORDS)

  11. SLC5 Sodium-Anion Cotransporters and Renal Urate Transport

    NASA Astrophysics Data System (ADS)

    Mount, David B.; Kwon, Charles Y.; Plata, Consuelo; Romero, Michael F.; Zandi-Nejad, Kambiz

    2007-04-01

    Renal urate transport plays a key role in determining the concentration of circulating uric acid. The reabsorption of filtered urate by the renal proximal tubule appears to require apical sodium-dependent anion transport and the apical URAT1 urate-anion exchanger, in that sodium-dependent transport of lactate, ketoacids, nicotinate, and pyrazinoate (PZA) increases the intracellular concentration of substrates for the subsequent exchange with luminal urate. We have identified SLC5A8 and SLC5A12 as candidates for the sodium-anion cotransporter that collaborates with URAT1. Both transporters function as sodium-dependent nicotinate/monocarboxylate/PZA transporters. Localization studies reveal serial co-expression of these transporters with URAT1, with Slc5a12 in the early proximal tubule and Slc5a8 in S2 and S3 segments. Renal urate excretion is conceivably affected by changes in the activity of SLC5A8, SLC5A12, and/or URAT1, with implications for the pathogenesis of hyperuricemia, nephrolithiasis, and related disorders.

  12. Amylase to creatine clearance ratio in renal diseases.

    PubMed

    Andriulli, A; Bergia, R; Masoero, G; Baiardi, P; Pellegrino, S; Tondolo, M

    1979-07-01

    In order to assess to what extent glomerular or tubular function is involved in the renal handling of amylase and the lysozyme to creatine clearance ratios (CAm/CCr and CLys/CCr) were evaluated in 22 healthy volunteers and in 71 patients with different renal diseases. In normal controls, the mean CAm/CCr was 2.55 +/-1.54 SD, with an upper normal limit of 5.56. A normal ratio was found in patients with glomerulonephritis, with or without a nephrotic syndrome, and in patients with pyelonephritis. A significantly elevated ratio (P less than 0.001) was instead found in patients with uremia and in patients with uremia and in patients with either chronic or acute tubular damage. The CLus/CCr ratio was elevated in all the groups, except in patients with glomerulonephritis and minimal proteinuria. These results show that in humans, as in animals, the amylase filtered load undergoes partial tubular reabsorption. In renal diseases, an increase of the CAm/CCr is caused by either a marked reduction of functioning nephrons or a severe tubular damage, while the glomerular permeability does not seem to be involved. Some other mechanism is probably involved in the elevation of the CAm/CCr during acute pancreatitis.

  13. [Various effects of prostaglandin E2 on reabsorption of water and urea in the amphibia osmosis-regulating epithelium].

    PubMed

    Parnova, R G; Bakhteeva, V T; Lavrova, E A

    2001-12-01

    Principal similarities between molecular pathways providing the enhancement of water and urea reabsorption under the action of argininvasotocin (AVT) in amphibian urinary bladder suggest that prostaglandin E2 (PGE2) could be a negative regulator of urea transport. To analyse this hypothesis, the role of PGE2 in regulation of urea transport was studied in isolated frog (Rana temporaria L.) urinary bladder. The urea permeability (Pu) was determined from the rate of efflux of (14) Curea from mucosal to serosal solution in isoosmotic conditions. The water permeability was measured in separate experiments in presence of an osmotic gradient. In contrast to water permeability, we were unable to demonstrate any inhibitory effect of 10-1000 nM PGE2 on AVT-stimulated urea transport using a variety of protocols. It was found that basolateral PGE2 exposure (10 nM-1 microM) caused an increase in Pu with no effect on osmotic water flow. The PGE2 effect was markedly inhibited by phloretin, a specific inhibitor of urea transporter. Sulprostone, an EP1/EP3 prostaglandin E2 receptor agonist, had no effect on Pu suggesting the contribution of EP2/EP4 receptor subtypes. In presence of osmotic water flow, the AVT-induced urea transport was significantly higher. This water flow-dependent urea permeability was inhibited by PGE2 although the inhibitory effect was less pronounced in comparison to the action of PGE2 on osmotic water flow. On the basis of these results we can make a conclusion that PGE2 has different role in regulation of water and urea transport in the frog urinary bladder. PGE2 could be considered as a stimulator of urea transport and an inhibitor of osmotic water flow activated by the AVT. The ability of PGE2 to regulate various types of cAMP-dependent transport by different mechanisms seems to be based on the presence of multiple basolateral PGE2 receptor subtypes in amphibian osmosis-regulatory epithelium.

  14. Functions of the Renal Nerves.

    ERIC Educational Resources Information Center

    Koepke, John P.; DiBona, Gerald F.

    1985-01-01

    Discusses renal neuroanatomy, renal vasculature, renal tubules, renin secretion, renorenal reflexes, and hypertension as related to renal nerve functions. Indicates that high intensitites of renal nerve stimulation have produced alterations in several renal functions. (A chart with various stimulations and resultant renal functions and 10-item,…

  15. Receptor-Mediated Endocytosis of Lysozyme in Renal Proximal Tubules of the Frog Rana Temporaria

    PubMed Central

    Seliverstova, E.V.

    2015-01-01

    The mechanism of protein reabsorption in the kidney of lower vertebrates remains insufficiently investigated in spite of raising interest to the amphibian and fish kidneys as a useful model for physiological and pathophysiological examinations. In the present study, we examined the renal tubular uptake and the internalization rote of lysozyme after its intravenous injection in the wintering frog Rana temporaria using immunohisto- and immunocytochemistry and specific markers for some endocytic compartments. The distinct expression of megalin and cubilin in the proximal tubule cells of lysozyme-injected frogs was revealed whereas kidney tissue of control animals showed no positive immunoreactivity. Lysozyme was detected in the apical endocytic compartment of the tubular cells and colocalized with clathrin 10 min after injection. After 20 min, lysozyme was located in the subapical compartment negative to clathrin (endo-somes), and intracellular trafficking of lysozyme was coincided with the distribution of megalin and cubilin. However, internalized protein was retained in the endosomes and did not reach lysosomes within 30 min after treatment that may indicate the inhibition of intra-cellular trafficking in hibernating frogs. For the first time, we provided the evidence that lysozyme is filtered through the glomeruli and absorbed by receptor-mediated clathrin-dependent endocytosis in the frog proximal tubule cells. Thus, the protein uptake in the amphibian mesonephros is mediated by megalin and cubilin that confirms a critical role of endocytic receptors in the renal reabsorption of proteins in amphibians as in mammals. PMID:26150156

  16. SGLT2 Inhibitors: Glucotoxicity and Tumorigenesis Downstream the Renal Proximal Tubule?

    PubMed

    Bertinat, Romina; Nualart, Francisco; Yáñez, Alejandro J

    2016-08-01

    At present, diabetes mellitus is the main cause of end-stage renal disease. Effective glycaemic management is the most powerful tool to delay the establishment of diabetic complications, such as diabetic kidney disease. Together with reducing blood glucose levels, new anti-diabetic agents are expected not only to control the progression but also to restore known defects of the diabetic kidney. Sodium-glucose co-transporter 2 (SGLT2) inhibitors are promising anti-diabetic agents that reduce hyperglycaemia by impairing glucose reabsorption in proximal tubule of the kidney and increasing glucosuria. SGLT2 inhibitors have shown to reduce glucotoxicity in isolated proximal tubule cells and also to attenuate expression of markers of overall kidney damage in experimental animal models of diabetes, but the actual renoprotective effect for downstream nephron segments is still unknown and deserves further attention. Here, we briefly discuss possible undesired effects of enhanced glucosuria and albuminuria in nephron segments beyond the proximal tubule after SGLT2 inhibitor treatment, offering new lines of research to further understand the renoprotective action of these anti-diabetic agents. Strategies blocking glucose reabsorption by renal proximal tubule epithelial cells (RPTEC) may be protective for RPTEC, but downstream nephron segments will still be exposed to high glucose and albumin levels through the luminal face. The actual effect of constant enhanced glucosuria over distal nephron segments remains to be established. J. Cell. Physiol. 231: 1635-1637, 2016. © 2015 Wiley Periodicals, Inc. PMID:26661279

  17. Renal sodium retention in cirrhotic rats depends on glucocorticoid-mediated activation of mineralocorticoid receptor due to decreased renal 11beta-HSD-2 activity.

    PubMed

    Thiesson, Helle C; Jensen, Boye L; Bistrup, Claus; Ottosen, Peter D; McNeilly, Alison D; Andrew, Ruth; Seckl, Jonathan; Skøtt, Ole

    2007-01-01

    Downregulation of the renal glucocorticoid-metabolizing enzyme 11beta-hydroxysteroid dehydrogenase type 2 (11beta-HSD-2) during liver cirrhosis may allow activation of the mineralocorticoid receptor (MR) by glucocorticoids and contribute to sodium retention. We tested this hypothesis in male Wistar rats with decompensated liver cirrhosis and ascites 7 wk after bile duct ligation (BDL). Renal 11beta-HSD-2 mRNA, protein, and activity were significantly decreased in decompensated rats. The urinary Na(+)/K(+) ratio was reduced by 40%. Renal epithelial sodium channel (ENaC) mRNA and immunostaining were only slightly affected. Complete metabolic studies, including fecal excretion, showed that the BDL rats had avid renal sodium retention. Treatment of the BDL rats with dexamethasone suppressed endogenous glucocorticoid production, normalized total sodium balance and renal sodium excretion, and reduced ascites formation to the same degree as direct inhibition of MR with K-canrenoate. Total potassium balance was negative in the BDL rats, whereas renal potassium excretion was unchanged. In the distal colon, expression of ENaC was increased in BDL rats. Fecal potassium excretion was increased in cirrhotic rats, and this was corrected by treatment with K-canrenoate but not dexamethasone. We conclude that development of sodium retention and decompensation in cirrhotic rats is associated with downregulation of renal 11beta-HSD-2 activity and inappropriate activation of renal sodium reabsorption by endogenous glucocorticoids. In addition, the overall potassium loss in the BDL model is due to increased fecal potassium excretion, which is associated with upregulation of ENaC in distal colon. PMID:16917017

  18. Impairment of renal sodium excretion in tropical residents - phenomenological analysis

    NASA Astrophysics Data System (ADS)

    Arthur, S. K.; Aryee, P. A.; Amuasi, J.; Hesse, I. F. A.; Affram, R. K.

    There is evidence of impaired renal sodium excretion in salt-sensitive African Blacks. A decreased rate of renal sodium chloride (NaCl) excretion, low plasma renin activity and a tendency to elevated blood pressure are the hallmarks of salt sensitivity. Recent evidence indicates that increased proximal and distal tubular fluid reabsorption in some tropical residents may explain the impaired sodium excretion in these people. In this study of a cohort population, we speculated that subjects selected from that population might be salt-sensitive. We therefore measured the sodium balance in 10 normotensive male subjects over 10 consecutive days, after they had ingested a normal or a high amount of sodium, as NaCl (salt) in their diet. We quantified their renal sodium excretion rate by phenomenological analysis of their sodium balance data. We also measured plasma renin activity for 7 consecutive days in a separate group of 6 male and 4 female subjects in order to assess the state of their renin/angiotensin system. We selected all our subjects from a cohort population of 269 subjects randomly selected from a community known to have a high prevalence of primary hypertension. Our data on two separate groups of subjects from the same cohort population revealed delayed renal sodium excretion with t1/2 of about 5 days, compared to published data for normal individuals with t1/2 of less than 24 h. Also, plasma renin activity levels were low. Hence, our subjects are salt-sensitive. Quantification of their renal impairment is important for various reasons: it heightens one's appreciation of the problem of salt retention in African Blacks who are salt-sensitive and it also underlines the importance of the need for further research into the benefits of dietary salt restriction for reducing cardiovascular mortality in African populations, as has been done in some Western countries.

  19. Role of the Collecting Duct Renin Angiotensin System in Regulation of Blood Pressure and Renal Function.

    PubMed

    Ramkumar, Nirupama; Kohan, Donald E

    2016-04-01

    Recent evidence suggests that the renal tubular renin angiotensin system regulates urinary Na(+) and water excretion and blood pressure. Three key components of the tubular renin angiotensin system, namely renin, prorenin receptor, and angiotensin-II type 1 receptor, are localized to the collecting duct. This system may modulate collecting duct Na(+) and water reabsorption via angiotensin-II-dependent and angiotensin-II-independent pathways. Further, the system may be of greatest relevance in hypertensive states and particularly those characterized by high circulating angiotensin-II. In this review, we summarize the current knowledge on the synthesis, regulation, and function of collecting duct-derived renin angiotensin system components and examine recent developments with regard to regulation of blood pressure and renal fluid and Na(+) excretion.

  20. A novel description of FDG excretion in the renal system: application to metformin-treated models

    NASA Astrophysics Data System (ADS)

    Garbarino, S.; Caviglia, G.; Sambuceti, G.; Benvenuto, F.; Piana, M.

    2014-05-01

    This paper introduces a novel compartmental model describing the excretion of 18F-fluoro-deoxyglucose (FDG) in the renal system and a numerical method based on the maximum likelihood for its reduction. This approach accounts for variations in FDG concentration due to water re-absorption in renal tubules and the increase of the bladder’s volume during the FDG excretion process. From the computational viewpoint, the reconstruction of the tracer kinetic parameters is obtained by solving the maximum likelihood problem iteratively, using a non-stationary, steepest descent approach that explicitly accounts for the Poisson nature of nuclear medicine data. The reliability of the method is validated against two sets of synthetic data realized according to realistic conditions. Finally we applied this model to describe FDG excretion in the case of animal models treated with metformin. In particular we show that our approach allows the quantitative estimation of the reduction of FDG de-phosphorylation induced by metformin.

  1. Influence of volume expansion on NaC1 reabsorption in the diluting segments of the nephron: a study using clearance methods.

    PubMed

    Danovitch, G M; Bricker, N S

    1976-09-01

    Whether volume expansion influences NaC1 reabsorption by the diluting segment of the nephron remains a matter of controversy. In the present studies this question has been examined in normal unanesthetized dogs, undergoing maximal water diuresis. Free water clearance (CH2O/GFR) has been used as the index of NaC1 reabsorption in the diluting segment. Three expressions have been employed for "distal delivery" of NaC1: a) V/GFR, designated as the "volume term"; b) (CNa/GFR + CH2O/GFR), the "sodium term;" and c) (CC1/GFR + CH2O/GFR), the "chloride term". The validity of these terms is discussed. Three techniques were used to increase distal delivery: 1) the administration of acetazolamide to dogs in which extracellular fluid (ECF) volume was not expanded (grop 1); 2) "moderate" volume expansion (group 2); and 3) "marked" volume expansion (group 3). CH2O/GFR increased progressively with rising values for "distal delivery" regardless of which term was used to calculate the latter. With all three delivery terms, differences in distal NaC1 reabsorption emerged between the two volume-expanded groups, though only with the "chloride" term did substantial differences also emerge between the nonexpanded group 1 dogs and both volume-expanded groups. In group 1, values for CH2O/GFR increased in close to a linear fashion up to distal delivery values equal to 24% of the volume of glomerular filtrate. However, at high rates of distal delivery the rate of rise of CH2O/GFR was less in group 2 than in group 1 and the depression of values was even greater in group 3. Within the limits of the techniques used, the data suggest that volume expansion inhibits fractional NaC1 reabsorption in the diluting segment of the nephron in a dose-related fashion. The "chloride" term was found to be superior to the "volume" and "sodium" terms in revealing these changes.

  2. Mineralocorticoid-induced sodium appetite and renal salt retention: evidence for common signaling and effector mechanisms.

    PubMed

    Fu, Yiling; Vallon, Volker

    2014-01-01

    An increase in renal sodium chloride (salt) retention and an increase in sodium appetite are the body's responses to salt restriction or depletion in order to restore salt balance. Renal salt retention and increased sodium appetite can also be maladaptive and sustain the pathophysiology in conditions like salt-sensitive hypertension and chronic heart failure. Here we review the central role of the mineralocorticoid aldosterone in both the increase in renal salt reabsorption and sodium appetite. We discuss the working hypothesis that aldosterone activates similar signaling and effector mechanisms in the kidney and brain, including the mineralocorticoid receptor, the serum- and glucocorticoid-induced kinase SGK1, the ubiquitin ligase NEDD4-2, and the epithelial sodium channel ENaC. The latter also mediates the gustatory salt sensing in the tongue, which is required for the manifestation of increased salt intake. Effects of aldosterone on both the brain and kidney synergize with the effects of angiotensin II. Thus, mineralocorticoids appear to induce similar molecular pathways in the kidney, brain, and possibly tongue, which could provide opportunities for more effective therapeutic interventions. Inhibition of renal salt reabsorption is compensated by stimulation of salt appetite and vice versa; targeting both mechanisms should be more effective. Inhibiting the arousal to consume salty food may improve a patient's compliance to reducing salt intake. While a better understanding of the molecular mechanisms is needed and will provide new therapeutic options, current pharmacological interventions that target both salt retention and sodium appetite include mineralocorticoid receptor antagonists and potentially inhibitors of angiotensin II and ENaC.

  3. Mineralocorticoid-induced sodium appetite and renal salt retention: evidence for common signaling and effector mechanisms.

    PubMed

    Fu, Yiling; Vallon, Volker

    2014-01-01

    An increase in renal sodium chloride (salt) retention and an increase in sodium appetite are the body's responses to salt restriction or depletion in order to restore salt balance. Renal salt retention and increased sodium appetite can also be maladaptive and sustain the pathophysiology in conditions like salt-sensitive hypertension and chronic heart failure. Here we review the central role of the mineralocorticoid aldosterone in both the increase in renal salt reabsorption and sodium appetite. We discuss the working hypothesis that aldosterone activates similar signaling and effector mechanisms in the kidney and brain, including the mineralocorticoid receptor, the serum- and glucocorticoid-induced kinase SGK1, the ubiquitin ligase NEDD4-2, and the epithelial sodium channel ENaC. The latter also mediates the gustatory salt sensing in the tongue, which is required for the manifestation of increased salt intake. Effects of aldosterone on both the brain and kidney synergize with the effects of angiotensin II. Thus, mineralocorticoids appear to induce similar molecular pathways in the kidney, brain, and possibly tongue, which could provide opportunities for more effective therapeutic interventions. Inhibition of renal salt reabsorption is compensated by stimulation of salt appetite and vice versa; targeting both mechanisms should be more effective. Inhibiting the arousal to consume salty food may improve a patient's compliance to reducing salt intake. While a better understanding of the molecular mechanisms is needed and will provide new therapeutic options, current pharmacological interventions that target both salt retention and sodium appetite include mineralocorticoid receptor antagonists and potentially inhibitors of angiotensin II and ENaC. PMID:25376899

  4. Effect of hydration state on renal responses to head-out water immersion in conscious dogs.

    PubMed

    Sondeen, J L; Hong, S K; Claybaugh, J R; Krasney, J A

    1990-09-01

    Renal responses to head-out water immersion (WI) (37 degrees C, WI 100 min) were studied in conscious, instrumented dogs during volume repletion (R), when all blood and urine losses were replaced with 0.9% NaCl, or without volume repletion (NR), to determine the influence of hydration state. The lithium clearance method was used to estimate the locus of the renal tubular fractional sodium excretion (FENa) responses. WI in the R condition increased urine flow (V) from 0.9 (+/- 0.1 SE) to 4.2 (+/- 0.6) ml/min and FENa from 0.7 (+/- 0.1) to 3.2 (+/- 0.8)%. Fractional proximal sodium reabsorption (FPRNa) decreased from 0.82 (+/- 0.03) to 0.69 (+/- 0.1)% and fractional distal sodium reabsorption decreased from 0.96 (+/- 0.01) to 0.88 (+/- 0.04)%. By comparison, WI in the NR condition elicited smaller increments in V and FENa, no change in FPRNa and a significant decrease of FDRNa from 0.97 (+/- 0.01) to 0.93 (+/- 0.01). Although there were quantitative differences in the renal responses in the R and NR conditions, there were similar increments in both arterial and atrial pressures as well as plasma atrial natriuretic peptide concentration; plasma arginine vasopressin was unaltered in either situation, and plasma renin activity was depressed in both conditions. Since plasma protein concentration was significantly lower during the R condition, the differing renal responses are probably related to differing levels of volume expansion in the R vs. NR condition.

  5. Micropuncture study of the renal responses of the urodele amphibian Necturus maculosus to injections of arginine vasotocin and an anti-aldosterone compound.

    PubMed

    Garland, H O; Henderson, I W; Brown, J A

    1975-08-01

    1. Necturus maculosus kidney function has been examined using standard clearance techniques and renal tubular micropuncture methodology. 2. Throughout, cyanocobalamin (vitamin B12) has been used to monitor glomerular filtration rate (GFR) and tubular water movements. It was established that this substance was handled by the Necturus kidney in a similar manner to inulin. It can be readily analysed, together with renal electrolytes, by electron microprobe techniques. 3. Profiles of transtubular gradients (TF:P ratios) along the nephron were established for osmolarity, sodium, potassium, calcium and cobalt (of cyanocobalamin). 4. Ureteral urine is always hyposmotic with respect to plasma and the site of dilution of the plasma ultrafiltrate is within the distal segment. 5. Up to 30% of the filtrate is isosmotically reabsorbed along the proximal tubule; the tubular fluid:plasma ratio for osmolarity and sodium is around 1, and the TF:P for cobalt of cyanocobalamin is about 1.4 by the end of this segment. 6. The renal effects of the neurohypophysial hormone arginine vasotocin (AVT) and an aldosterone antagonist (SC14266; Soldactone) have been examined. 7. AVT was consistently antidiuretic causing both a decreased GFR and an enhanced distal tubular reabsorption of water. 8. SC14266 also increased distal tubular reabsorption of water. Such an effect differs from that found in higher vertebrates, and may indicate a "glucocorticoid-type" of renal action for aldosterone in amphibians.

  6. The endocannabinoid system in renal cells: regulation of Na+ transport by CB1 receptors through distinct cell signalling pathways

    PubMed Central

    Sampaio, L S; Taveira Da Silva, R; Lima, D; Sampaio, C L C; Iannotti, F A; Mazzarella, E; Di Marzo, V; Vieyra, A; Reis, R A M; Einicker-Lamas, M

    2015-01-01

    Background and Purpose The function of the endocannabinoid system (ECS) in renal tissue is not completely understood. Kidney function is closely related to ion reabsorption in the proximal tubule, the nephron segment responsible for the re-absorption of 70–80% of the filtrate. We studied the effect of compounds modulating the activity of cannabinoid (CB) receptors on the active re-absorption of Na+ in LLC-PK1 cells. Experimental Approach Changes in Na+/K+-ATPase activity were assessed after treatment with WIN55,212-2 (WIN), a non-selective lipid agonist, and haemopressin (HP), an inverse peptide agonist at CB1 receptors. Pharmacological tools were used to investigate the signalling pathways involved in the modulation of Na+ transport. Key Results In addition to CB1 and CB2 receptors and TRPV1 channels, the mRNAs encoding for enzymes of the ECS were also expressed in LLC-PK1. WIN (10−7 M) and HP (10−6 M) altered Na+ re-absorption in LLC-PK1 in a dual manner. They both acutely (after 1 min) increased Na+/K+-ATPase activity in a TRPV1 antagonist-sensitive way. WIN's stimulating effect persisted for 30 min, and this effect was partially blocked by a CB1 antagonist or a PKC inhibitor. In contrast, HP inhibited Na+/K+-ATPase after 30 min incubation, and this effect was attenuated by a CB1 antagonist or a PKA inhibitor. Conclusion and Implications The ECS is expressed in LLC-PK1 cells. Both CB1 receptors and TRPV1 channels regulate Na+/K+-ATPase activity in these cells, and are modulated by lipid and peptide CB1 receptor ligands, which act via different signalling pathways. PMID:25537261

  7. Renal infarction after aerobics.

    PubMed

    Montgomery, J H; Moinuddin, M; Buchignani, J S; Rockett, J F; Callison, M K

    1984-11-01

    Renal infarction is most frequently due to emboli from the heart or aorta. Other causes include atheromatous disease, renal artery aneurysm, vasculitis, hypotension, hypercoagulable states, aortic dissection, and major trauma. Most renal infarctions are segmental. The extent of disease is dependent upon the size and number of renal vessels involved, coexistent renal disease, and collateral circulation. Flank pain, fever, leukocytosis, hematuria, renal failure, or hypertension may suggest the diagnosis, but these findings are nonspecific and diagnosis will depend not only on history and physical examination, but also on the appropriate imaging tests. The type of treatment is dictated by the etiology of the infarction.

  8. Accurate determination of renal function in patients with intestinal urinary diversions

    SciTech Connect

    McDougal, W.S.; Koch, M.O.

    1986-06-01

    The regular determination of renal function is a critical part of the management of patients who have had the urinary tract reconstructed with intestinal segments. These intestinal segments reabsorb urinary solutes and, thereby, complicate the determination of renal function by conventional methods. Urinary clearances of urea, creatinine and inulin were performed in patients with intestinal segments in the urinary tract and controls under varying diuretic conditions. Patients with intestinal diversions also underwent radioisotopic determination of renal function. The urinary clearances of urea, creatinine and inulin are highly dependent on the rate of urine flow in patients with intestinal segments in the urinary tract. Diuresis maximizes the urinary clearances of these solutes by minimizing intestinal reabsorption. Creatinine clearance prediction from the serum creatinine underestimates true glomerular filtration rate. Radioisotopic determination of renal function correlates poorly with true glomerular filtration rate. Only creatinine clearance measured under diuretic conditions correlates well with true renal function. Urine concentrating ability cannot be assessed accurately in patients with intestinal segments in the urinary tract, since osmolality rapidly equilibrates across the segments.

  9. Melamine Impairs Renal and Vascular Function in Rats

    PubMed Central

    Tian, Xiao Yu; Wong, Wing Tak; Lau, Chi Wai; Wang, Yi-Xiang; Cheang, Wai San; Liu, Jian; Lu, Ye; Huang, Huihui; Xia, Yin; Chen, Zhen Yu; Mok, Chuen-Shing; Lau, Chau-Ming; Huang, Yu

    2016-01-01

    Melamine incident, linked to nephrotoxicity and kidney stone in infants previously exposed to melamine-contaminated milk products, was unprecedentedly grave in China in 2008 as little was known about the mechanistic process leading to renal dysfunction in affected children. This study investigates whether neonatal ingestion of melamine leads to renal and vascular dysfunction in adulthood; and whether ingestion of melamine in pregnant rats leads to renal dysfunction in their offspring. A combination of approaches employed includes functional studies in rat renal arteries, renal blood flow measurement by functional magnetic resonance imaging, assay for pro-inflammatory and fibrotic biomarkers, immunohistochemistry, and detection of plasma and renal melamine. We provide mechanistic evidence showing for the first time that melamine reduces renal blood flow and impairs renal and vascular function associated with overexpression of inflammatory markers, transforming growth factor-β1, bone morphogenic protein 4 and cyclooxygenase-2 in kidney and renal vasculature. Melamine also induces renal inflammation and fibrosis. More importantly, melamine causes nephropathies in offsprings from pregnant rat exposed to melamine during pregnancy, as well as in neonatal rat exposed to melamine afterbirth, thus supporting the clinical observations of kidney stone and acute renal failure in infants consuming melamine-contaminated milk products. PMID:27324576

  10. Molecular interaction between arsenic hydrate microcrystals and the cell-surface endopeptidase CD10 (neprilysin) - a possible link to the development of renal and cutaneous malignancies upon occupational exposure to arsenic compounds?

    PubMed

    Gunia, Sven

    2010-07-01

    Arsenic poisoning has become a worldwide public health concern since arsenic is recognized as a human carcinogen although the detailed mechanisms of carcinogenesis related to arsenic exposure are not completely understood at present. In particular, the skin and the kidneys are prone to neoplastic transformation upon occupational exposure of the human body to inorganic arsenic compounds. The cell-surface endopeptidase CD10 is variably expressed in cutaneous and renal malignancies, and due to this expression profile, might theoretically be implicated in arsenic-induced skin and renal neoplasias. From the functional point of view, CD10 conveys important anti-tumorigenic effects brought about by the inactivation of neuropeptide growth factors implicated in cancer progression. Placing the focus on the structural composition of arsenic hydrate microcrystals encountered in the cellular microenvironment, the present hypothesis suggests so far neglected molecular interactions between arsenic microcrystals and membrane-bound CD10 to be implicated in arsenic-induced carcinogenesis.

  11. Renal vein thrombosis

    MedlinePlus

    ... the kidneys. Possible Complications Complications may include: Acute renal failure (especially if thrombosis occurs in a dehydrated child) ... Saunders; 2012:chap 34. Read More Acute kidney failure Arteriogram Blood ... embolus Renal Tumor Update Date 5/19/2015 Updated by: ...

  12. Renal papillary necrosis

    MedlinePlus

    ... your provider. Alternative Names Necrosis - renal papillae; Renal medullary necrosis Images Kidney anatomy Kidney - blood and urine flow References Ruggenenti P, Cravedi P, Remuzzi G. Microvascular and macrovascular diseases of the kidney. In: Taal MW, Chertow GM, ...

  13. Renal arteries (image)

    MedlinePlus

    A renal angiogram is a test used to examine the blood vessels of the kidneys. The test is performed ... main vessel of the pelvis, up to the renal artery that leads into the kidney. Contrast medium ...

  14. Kidney (Renal) Failure

    MedlinePlus

    ... renal function using ureteral stenting, nephrostomy, surgery or dialysis. What is kidney (renal) failure? How is kidney ... as a urinary stent or kidney stone removal. Dialysis , including hemodialysis and peritoneal dialysis: These procedures remove ...

  15. Renal Denervation

    PubMed Central

    Pan, Tao; Guo, Jin-he; Teng, Gao-jun

    2015-01-01

    Abstract Type 2 diabetes mellitus (T2DM) is a group of metabolic diseases of multiple etiologies. Although great progress has been made, researchers are still working on the pathogenesis of T2DM and how to best use the treatments available. Aside from several novel pharmacological approaches, catheter-based sympathetic renal denervation (RDN) has gained a significant role in resistant hypertension, as well as improvements in glycemic control in T2DM. In this article, we will summarize herein the role sympathetic activation plays in the progression of T2DM and review the recent clinical RDN experience in glucose metabolism. We performed systematic review in online databases, including PubMed, EmBase, and Web of Science, from inception until 2015. Studies were included if a statistical relationship was investigated between RDN and T2DM. The quality of each included study was assessed by Newcastle–Ottawa scale score. To synthesize these studies, a random-effects model or a fixed-effects model was applied as appropriate. Then, we calculated heterogeneity, performed sensitivity analysis, tested publication bias, and did meta-regression analysis. Finally, we identified 4 eligible articles. In most studies, RDN achieved via novel catheter-based approach using radiofrequency energy has gained a significant role in resistant hypertension, as well as improvements in glycemic control in T2DM. But the DREAMS-Study showed that RDN did not change median insulin sensitivity nor systemic sympathetic activity. Firstly, the current published studies lacked a proper control group, along with the sample capacity was small. Also, data obtained in the subgroups of diabetic patients were not separately analyzed and the follow-up period was very short. In addition, a reduction in blood pressure accounts for the improvements in glucose metabolism and insulin resistance cannot be excluded. If the favorable result of better glucose metabolism is confirmed in large-scale, randomized studies

  16. Cardio-renal syndrome

    PubMed Central

    Gnanaraj, Joseph; Radhakrishnan, Jai

    2016-01-01

    Cardio-renal syndrome is a commonly encountered problem in clinical practice. Its pathogenesis is not fully understood. The purpose of this article is to highlight the interaction between the cardiovascular system and the renal system and how their interaction results in the complex syndrome of cardio-renal dysfunction. Additionally, we outline the available therapeutic strategies to manage this complex syndrome. PMID:27635229

  17. Cardio-renal syndrome

    PubMed Central

    Gnanaraj, Joseph; Radhakrishnan, Jai

    2016-01-01

    Cardio-renal syndrome is a commonly encountered problem in clinical practice. Its pathogenesis is not fully understood. The purpose of this article is to highlight the interaction between the cardiovascular system and the renal system and how their interaction results in the complex syndrome of cardio-renal dysfunction. Additionally, we outline the available therapeutic strategies to manage this complex syndrome.

  18. [Idiopathic renal arteriovenous fistula].

    PubMed

    Bennani, S; Ait Bolbarod, A; el Mrini, M; Kadiri, R; Benjelloun, S

    1996-06-01

    The authors report a case of idiopathic renal arteriovenous fistula. The diagnosis was established angiographically in a 24 year old man presenting gross hematuria. Embolization of the fistula was performed. Efficiency of this treatment was appreciated clinically and by duplex renal ultrasonography. The characteristics of renal arteriovenous fistulas are reviewed. PMID:8763700

  19. [Capacities of examination of renal function at excretory urography].

    PubMed

    Bosin, V Iu; Zyrianov, V Iu

    2004-01-01

    The study was undertaken to enhance the diagnostic capacities of excretory urography in evaluating renal function, by determining the renal clearance of a contrast medium. The main task of the study was to develop bloodless and rather reliable ways of estimating the volume of the body's distributed contrast medium and its urinary concentration in the patient at urography. Excretory urography was performed in 248 patients aged 12 to 75 years. The specific gravity of excreted urine was determined with a standard laboratory urometer to 0.001 g/cm3. Absoption spectrophotometry was used to determine the serum concentration of contrast medium in 67 patients. The values of concentrations were plotted in the semilogarithmic ordinate system, followed by extrapolation of the initial segment of the plot to the so-called zero point determining the value of the concentration of contrast medium at the moment of its complete distribution in the intercellular space. The derived value was compared with the medium's dose coming into the body, which made it possible to determine the degree of dilution of the substance, i.e. the volume of its distribution in the organism. There was a linear relationship between the concentrations of renally eliminated contrast medium and the specific gravity of excreted urine. The numerical value of the constant reflecting this relationship is equal to 6. There was evidence for that such studies could be made by routine urometry. A high correlation was found between the body mass and the volume of distribution of contrast medium in the intercellular space. The discovery of the above regularities permitted the procedure for measuring the values of two most important physiological renal process (glomerular filtration and trabecular water reabsorption) to be simplified and widely available. The paper outlines the great promises for using excretory urography as a scanning functional test during a primary study and a follow-up of the patient's status.

  20. Introduction to the 2006 UK Renal Registry report (chapter 2).

    PubMed

    Ansell, David; Will, Es; Tomson, Charlie

    2007-08-01

    The UK Renal Registry is part of the UK Renal Association and provides independent audit and analysis of renal replacement therapy in the UK. The Registry is funded directly by participating renal units through an annual fee per patient registered. The Registry is now collecting data on incidence and prevalence from 100% of UK renal units, with the five remaining non-linked sites in England providing summary data. Maintaining and enhancing Registry functionality will be an important touchstone for the Connecting for Health initiative. Collaboration with other formal agencies also promises an exciting prospect for future development. After a long proving period, the means, methods and roles have come together to complete an effective adjunct to clinical activity, planning, research and the performance of the renal community.

  1. Renal infarction resulting from traumatic renal artery dissection.

    PubMed

    Kang, Kyung Pyo; Lee, Sik; Kim, Won; Jin, Gong Yong; Na, Ki Ryang; Yun, Il Yong; Park, Sung Kwang

    2008-06-01

    Renal artery dissection may be caused by iatrogenic injury, trauma, underlying arterial diseases such as fibromuscular disease, atherosclerotic disease, or connective tissue disease. Radiological imaging may be helpful in detecting renal artery pathology, such as renal artery dissection. For patients with acute, isolated renal artery dissection, surgical treatment, endovascular management, or medical treatment have been considered effective measures to preserve renal function. We report a case of renal infarction that came about as a consequence of renal artery dissection.

  2. Postpartum renal vein thrombosis.

    PubMed

    Rubens, D; Sterns, R H; Segal, A J

    1985-01-01

    Renal vein thrombosis in adults is usually a complication of the nephrotic syndrome. Rarely, it has been reported in nonnephrotic women postpartum. The thrombosis may be a complication of the hypercoagulable state associated with both the nephrotic syndrome and pregnancy. Two postpartum patients with renal vein thrombosis and no prior history of renal disease are reported here. Neither patient had heavy proteinuria. In both cases, pyelonephritis was suspected clinically and the diagnosis of renal vein thrombosis was first suggested and confirmed by radiologic examination. Renal vein thrombosis should be considered in women presenting postpartum with flank pain.

  3. Alteration of renal function of rats following spaceflight.

    PubMed

    Wade, C E; Morey-Holton, E

    1998-10-01

    Following spaceflight, changes in renal function of humans have been suggested. To assess the effects of readaptation on renal function, urine was collected from male rats ( approximately 245 g) over a 2-wk period following a 14-day spaceflight. Rats were assigned to three groups: flight animals (n = 6), flight controls (n = 6) housed in the flight cages on the ground, and vivarium controls (n = 5) housed in standard shoe box cages. Animals were placed into individual metabolic cages for urine collection. Urine output was significantly increased for 3 days following flight. Excretion rates of Na+ and K+ were increased, resulting in an increased osmotic excretion rate. Creatinine excretion rate increased over the first two postflight days. Glomerular filtration rate increased immediately following spaceflight without changes in plasma creatinine, Na+, K+, or osmolality. Increased excretion of solute was thus the result of increased delivery and a decreased percent reabsorption of the filtered load. Osmolal clearance was increased immediately postflight while free water clearance was decreased. In growing rats, the diuresis after short-duration spaceflight is the result of an increase in solute excretion with an accompanying reduction in free water clearance.

  4. Alteration of renal function of rats following spaceflight

    NASA Technical Reports Server (NTRS)

    Wade, C. E.; Morey-Holton, E.

    1998-01-01

    Following spaceflight, changes in renal function of humans have been suggested. To assess the effects of readaptation on renal function, urine was collected from male rats ( approximately 245 g) over a 2-wk period following a 14-day spaceflight. Rats were assigned to three groups: flight animals (n = 6), flight controls (n = 6) housed in the flight cages on the ground, and vivarium controls (n = 5) housed in standard shoe box cages. Animals were placed into individual metabolic cages for urine collection. Urine output was significantly increased for 3 days following flight. Excretion rates of Na+ and K+ were increased, resulting in an increased osmotic excretion rate. Creatinine excretion rate increased over the first two postflight days. Glomerular filtration rate increased immediately following spaceflight without changes in plasma creatinine, Na+, K+, or osmolality. Increased excretion of solute was thus the result of increased delivery and a decreased percent reabsorption of the filtered load. Osmolal clearance was increased immediately postflight while free water clearance was decreased. In growing rats, the diuresis after short-duration spaceflight is the result of an increase in solute excretion with an accompanying reduction in free water clearance.

  5. Proximal renal tubular acidosis: a not so rare disorder of multiple etiologies

    PubMed Central

    Haque, Syed K.; Ariceta, Gema; Batlle, Daniel

    2012-01-01

    Proximal renal tubular acidosis (RTA) (Type II RTA) is characterized by a defect in the ability to reabsorb HCO3 in the proximal tubule. This is usually manifested as bicarbonate wastage in the urine reflecting that the defect in proximal tubular transport is severe enough that the capacity for bicarbonate reabsorption in the thick ascending limb of Henle's loop and more distal nephron segments is overwhelmed. More subtle defects in proximal bicarbonate transport likely go clinically unrecognized owing to compensatory reabsorption of bicarbonate distally. Inherited proximal RTA is more commonly autosomal recessive and has been associated with mutations in the basolateral sodium-bicarbonate cotransporter (NBCe1). Mutations in this transporter lead to reduced activity and/or trafficking, thus disrupting the normal bicarbonate reabsorption process of the proximal tubules. As an isolated defect for bicarbonate transport, proximal RTA is rare and is more often associated with the Fanconi syndrome characterized by urinary wastage of solutes like phosphate, uric acid, glucose, amino acids, low-molecular-weight proteins as well as bicarbonate. A vast array of rare tubular disorders may cause proximal RTA but most commonly it is induced by drugs. With the exception of carbonic anhydrase inhibitors which cause isolated proximal RTA, drug-induced proximal RTA is associated with Fanconi syndrome. Drugs that have been recently recognized to cause severe proximal RTA with Fanconi syndrome include ifosfamide, valproic acid and various antiretrovirals such as Tenofovir particularly when given to human immunodeficiency virus patients receiving concomitantly protease inhibitors such as ritonavir or reverse transcriptase inhibitors such as didanosine. PMID:23235953

  6. The link in Linking

    PubMed Central

    Caldwell, Jane C; Chiale, Pablo A; Gonzalez, Mario D; Baranchuk, Adrian

    2013-01-01

    We present 2 cases of the slow-fast form of AVNRT with initially narrow QRS complexes followed by sudden unexpected transition to persistently wide QRS complexes due to aberrant intraventricular conduction. Introduction of a properly timed extrastimulus in one case and critical oscillations in cycle length due to short-long coupling in the second case set the stage for the initial bundle branch block. However, persistence of the aberrancy pattern once the initial event abated was maintained by the "linking" phenomenon. Delayed, retrograde concealed activation from the contralateral bundle branch perpetuated the initial bundle branch block. PMID:23840106

  7. Recurrent renal giant leiomyosarcoma.

    PubMed

    Öziş, Salih Erpulat; Gülpınar, Kamil; Şahlı, Zafer; Konak, Baha Burak; Keskin, Mete; Özdemir, Süleyman; Ataoğlu, Ömür

    2016-01-01

    Primary renal leiomyosarcomas are rare, aggressive tumors. They constitute 1-2% of adult malignant renal tumors. Although leiomyosarcomas are the most common histological type (50-60%) of renal sarcomas, information on renal leiomyosarcoma is limited. Local or systemic recurrences are common. The radiological appearance of renal leiomyosarcomas is not specific, therefore renal leiomyosarcoma cannot be distinguished from renal cell carcinoma by imaging methods in all patients. A 74-year-old female patient presented to our clinic complaining of a palpable mass on the right side of her abdomen in November 2012. The abdominal magnetic resonance imaging revealed a mass, 25 × 24 × 23 cm in size. Her past medical history revealed that she has undergone right radical nephrectomy in 2007, due to a 11 × 12 × 13 cm renal mass that was then reported as renal cell carcinoma on abdominal magnetic resonance imaging, but the pathological diagnosis was low-grade renal leiomyosarcoma. The most recent follow-up of the patient was in 2011, with no signs of local recurrence or distant metastases within this four-year period. The patient underwent laparotomy on November 2012, and a 35 cm retroperitoneal mass was excised. The pathological examination of the mass was reported as high-grade leiomyosarcoma. The formation of this giant retroperitoneal mass in 1 year can be explained by the transformation of the lesion's pathology from low-grade to a high-grade tumor. PMID:27436926

  8. Effects of acute sodium fluoride exposure on kidney function, water homeostasis, and renal handling of calcium and inorganic phosphate.

    PubMed

    Santoyo-Sanchez, Mitzi Paola; del Carmen Silva-Lucero, Maria; Arreola-Mendoza, Laura; Barbier, Olivier Christophe

    2013-06-01

    Fluoride compounds are abundant and widely distributed in the environment at a variety of concentrations. Further, fluoride induces toxic effects in target organs such as the liver and kidney. In this study, we performed an early analysis of renal function using a clearance technique in Wistar rats acutely exposed to fluoride at a plasma concentration of 0.625 μg/ml. Our results revealed that fluoride, at a concentration close to the concentration present in the serum after environmental exposure, induced a significant tubular dysfunction, resulting in diluted urine, impaired protein reabsorption, and increased calcium and phosphate urinary excretion. Our work demonstrates that even acute exposures to low concentrations of NaF may induce renal damage and confirms that, after exposure, the kidney participates directly in the calcium and phosphate deficiencies observed in fluoride-exposed populations.

  9. Localization of corin and atrial natriuretic peptide expression in human renal segments.

    PubMed

    Dong, Liang; Wang, Hao; Dong, Ningzheng; Zhang, Ce; Xue, Boxin; Wu, Qingyu

    2016-09-01

    Atrial natriuretic peptide (ANP)-mediated natriuretic response is a well-established cardiac endocrine function. Corin is a transmembrane protease that activates ANP in the heart. Corin expression has been detected in non-cardiac tissues including the kidney. Here we examined corin, pro-ANP/ANP and natriuretic peptide receptor-A (NPR-A) expression in human renal segments. By immunostaining and in situ hybridization, we found similar corin, pro-ANP/ANP and NPR-A protein and mRNA expression in human renal segments. The expression was most abundant in the proximal convoluted tubules and the medullary connecting ducts. In the proximal tubules, corin protein was present in the apical membrane region underneath the brush border where the ANP-degrading protease neprilysin was abundant. These results suggest that corin-mediated pro-ANP activation may occur in renal segments and that locally produced ANP may act in an autocrine manner to regulate sodium and water reabsorption in situ Our results also point to the proximal convoluted tubules as a major site for local ANP action. Such a renal corin/ANP autocrine mechanism may differ from the cardiac corin/ANP endocrine mechanism in regulating sodium homoeostasis under physiological and pathological conditions. PMID:27343265

  10. Renal function and blood pressure: molecular insights into the biology of endothelin-1.

    PubMed

    Vignon-Zellweger, Nicolas; Heiden, Susi; Emoto, Noriaki

    2011-01-01

    The therapeutic implications of the actions of endothelin (ET)-1 upon renal and cardiovascular function are evident. Among other diseases, ET-1 is recognized to be involved in hypertension and renal failure and, in a rush to develop novel treatments, has been extensively studied. However, given the broad localization of the two receptors (ET(A) and ET(B)) and the diverse effects resulting from their activation, analysis of the role of ET-1 in kidney-regulated blood pressure remains complicated. Moreover, the actions of ET-1 depend upon the cell type and physiological situation. To add to the complexity, both receptors often activate opposing signaling pathways within a single cell. Thus, until recently, reliable insights into the respective involvement of both receptors in the physiology and pathology of the kidney were eagerly awaited. These have been obtained using mice that are genetically modified for different members of the ET system. In this article, the molecular biology of ET-1 and its receptors in the control of renal vasculature tonicity, glomerular function, and management of water and salt reabsorption is discussed. The role of renal ET-1 in the context of blood pressure regulation will be discussed, and the potential of utilizing ET receptor antagonism in the treatment and prevention of glomerular and proteinuric diseases is also outlined. PMID:21893986

  11. Heterozygous disruption of renal outer medullary potassium channel in rats is associated with reduced blood pressure.

    PubMed

    Zhou, Xiaoyan; Zhang, Zuo; Shin, Myung Kyun; Horwitz, Sarah Beth; Levorse, John M; Zhu, Lei; Sharif-Rodriguez, Wanda; Streltsov, Denis Y; Dajee, Maya; Hernandez, Melba; Pan, Yi; Urosevic-Price, Olga; Wang, Li; Forrest, Gail; Szeto, Daphne; Zhu, Yonghua; Cui, Yan; Michael, Bindhu; Balogh, Leslie Ann; Welling, Paul A; Wade, James B; Roy, Sophie; Sullivan, Kathleen A

    2013-08-01

    The renal outer medullary potassium channel (ROMK, KCNJ1) mediates potassium recycling and facilitates sodium reabsorption through the Na(+)/K(+)/2Cl(-) cotransporter in the loop of Henle and potassium secretion at the cortical collecting duct. Human genetic studies indicate that ROMK homozygous loss-of-function mutations cause type II Bartter syndrome, featuring polyuria, renal salt wasting, and hypotension; humans heterozygous for ROMK mutations identified in the Framingham Heart Study have reduced blood pressure. ROMK null mice recapitulate many of the features of type II Bartter syndrome. We have generated an ROMK knockout rat model in Dahl salt-sensitive background by using zinc finger nuclease technology and investigated the effects of knocking out ROMK on systemic and renal hemodynamics and kidney histology in the Dahl salt-sensitive rats. The ROMK(-/-) pups recapitulated features identified in the ROMK null mice. The ROMK(+/-) rats, when challenged with a 4% salt diet, exhibited a reduced blood pressure compared with their ROMK(+/+) littermates. More importantly, when challenged with an 8% salt diet, the Dahl salt-sensitive rats with 50% less ROMK expression showed increased protection from salt-induced blood pressure elevation and signs of protection from renal injury. Our findings in ROMK knockout Dahl salt-sensitive rats, together with the previous reports in humans and mice, underscore a critical role of ROMK in blood pressure regulation. PMID:23753405

  12. Renal handling of technetium-99m DMSA: Evidence for glomerular filtration and peritubular uptake

    SciTech Connect

    de Lange, M.J.; Piers, D.A.; Kosterink, J.G.; van Luijk, W.H.; Meijer, S.; de Zeeuw, D.; van der Hem, G.K.

    1989-07-01

    The finding of an enhanced excretion of (/sup 99m/Tc)dimercaptosuccinic acid (DMSA) in patients with tubular reabsorption disorders prompted us to investigate the role of filtration in the renal handling of (/sup 99m/Tc)DMSA. Our studies in human serum indicated that binding to serum proteins was approximately 90%. Chromatography of human urine and studies in rats showed that the complex was excreted unaltered into the urine. Renal extraction of (/sup 99m/Tc)DMSA in a human volunteer was 5.8%. Continuous infusion of (/sup 99m/Tc)DMSA in 13 individuals with normal renal function gave the following results (mean +/- s.d.): plasma clearance of (/sup 99m/Tc)DMSA 34 +/- 4 ml/min, urinary clearance of (/sup 99m/Tc)DMSA 12 +/- 3 ml/min. The calculated filtered load of (/sup 99m/Tc)DMSA closely resembled the urinary clearance, whereas the plasma clearance was about three times faster. This indicates that peritubular uptake accounts for approximately 65% and filtration for approximately 35% of the renal handling of (/sup 99m/Tc)DMSA.

  13. Glucocorticoids and renal Na+ transport: implications for hypertension and salt sensitivity

    PubMed Central

    Hunter, Robert W; Ivy, Jessica R; Bailey, Matthew A

    2014-01-01

    The clinical manifestations of glucocorticoid excess include central obesity, hyperglycaemia, dyslipidaemia, electrolyte abnormalities and hypertension. A century on from Cushing's original case study, these cardinal features are prevalent in industrialized nations. Hypertension is the major modifiable risk factor for cardiovascular and renal disease and reflects underlying abnormalities of Na+ homeostasis. Aldosterone is a master regulator of renal Na+ transport but here we argue that glucocorticoids are also influential, particularly during moderate excess. The hypothalamic–pituitary–adrenal axis can affect renal Na+ homeostasis on multiple levels, systemically by increasing mineralocorticoid synthesis and locally by actions on both the mineralocorticoid and glucocorticoid receptors, both of which are expressed in the kidney. The kidney also expresses both of the 11β-hydroxysteroid dehydrogenase (11βHSD) enzymes. The intrarenal generation of active glucocorticoid by 11βHSD1 stimulates Na+ reabsorption; failure to downregulate the enzyme during adaption to high dietary salt causes salt-sensitive hypertension. The deactivation of glucocorticoid by 11βHSD2 underpins the regulatory dominance for Na+ transport of mineralocorticoids and defines the ‘aldosterone-sensitive distal nephron’. In summary, glucocorticoids can stimulate renal transport processes conventionally attributed to the renin–angiotensin–aldosterone system. Importantly, Na+ and volume homeostasis do not exert negative feedback on the hypothalamic–pituitary–adrenal axis. These actions are therefore clinically relevant and may contribute to the pathogenesis of hypertension in conditions associated with elevated glucocorticoid levels, such as the metabolic syndrome and chronic stress. PMID:24535442

  14. Heterozygous disruption of renal outer medullary potassium channel in rats is associated with reduced blood pressure.

    PubMed

    Zhou, Xiaoyan; Zhang, Zuo; Shin, Myung Kyun; Horwitz, Sarah Beth; Levorse, John M; Zhu, Lei; Sharif-Rodriguez, Wanda; Streltsov, Denis Y; Dajee, Maya; Hernandez, Melba; Pan, Yi; Urosevic-Price, Olga; Wang, Li; Forrest, Gail; Szeto, Daphne; Zhu, Yonghua; Cui, Yan; Michael, Bindhu; Balogh, Leslie Ann; Welling, Paul A; Wade, James B; Roy, Sophie; Sullivan, Kathleen A

    2013-08-01

    The renal outer medullary potassium channel (ROMK, KCNJ1) mediates potassium recycling and facilitates sodium reabsorption through the Na(+)/K(+)/2Cl(-) cotransporter in the loop of Henle and potassium secretion at the cortical collecting duct. Human genetic studies indicate that ROMK homozygous loss-of-function mutations cause type II Bartter syndrome, featuring polyuria, renal salt wasting, and hypotension; humans heterozygous for ROMK mutations identified in the Framingham Heart Study have reduced blood pressure. ROMK null mice recapitulate many of the features of type II Bartter syndrome. We have generated an ROMK knockout rat model in Dahl salt-sensitive background by using zinc finger nuclease technology and investigated the effects of knocking out ROMK on systemic and renal hemodynamics and kidney histology in the Dahl salt-sensitive rats. The ROMK(-/-) pups recapitulated features identified in the ROMK null mice. The ROMK(+/-) rats, when challenged with a 4% salt diet, exhibited a reduced blood pressure compared with their ROMK(+/+) littermates. More importantly, when challenged with an 8% salt diet, the Dahl salt-sensitive rats with 50% less ROMK expression showed increased protection from salt-induced blood pressure elevation and signs of protection from renal injury. Our findings in ROMK knockout Dahl salt-sensitive rats, together with the previous reports in humans and mice, underscore a critical role of ROMK in blood pressure regulation.

  15. Adaptive transport of folic acid across renal epithelia in folate-deficient rats.

    PubMed

    Wani, Nissar Ahmad; Kaur, Jyotdeep

    2012-11-01

    Folate (vitamin B(9)) is an essential vitamin for a wide spectrum of biochemical reactions; however, unlike bacteria and plants, mammals are devoid of folate biosynthesis and thus must obtain this cofactor from exogenous sources. The activities of folate transporters on the kidneys play an important role in conserving folate excretion and reabsorption across the apical membrane of the renal proximal tubules. The different transport system activities may become identifiable in response to external stimuli, such as folate availability and exposure to chemotherapeutic agents. We have explored the effect of folate deficiency on the activity and expression of folate transporters in rat kidneys. Wistar rats were fed a folate-containing diet (2 mg folic acid kg(-1) diet) or a folic acid-free diet over a 3-month period, and mechanisms of folate transport were studied in renal brush border membrane vesicles and basolateral membrane vesicles. The renal folate uptake process is saturable and pH dependent, and it involves the folate receptor and reduced folate carrier (RFC) systems and possibly the proton coupled folate transporter (PCFT) system. We found that folate deficiency increased the renal brush border membrane and basolateral folate uptake by increasing the number of transporter molecules. The observed up-regulation of mRNA expression was also associated with a significant increase in RFC and PCFT expression at the protein level.

  16. [Rupture of simple renal cyst after minimal renal injury].

    PubMed

    Fernández Férnandez, A; Mayayo Dehesa, T; Rodríguez Luna, J M; Platas Sancho, A; Gómez Aguinaga, M A; Castaño Llaneza, C; Berenguer Sánchez, A

    1989-01-01

    A case is presented of minimum renal trauma, leading to a retroperitoneal hematoma as a consequence of a simple renal cyst rupture as well as an artery contained therein. The etiopathogenicity of this phenomenon is commented. The different clinical manifestations of renal trauma are highlighted, as well as the suspicion of previous renal pathology when a large renal lesion is found secondary to minimum renal trauma. The approach of the renal pediculum must be the first step in the surgical treatment of renal trauma.

  17. Renal response to restricted protein intake in diabetic nephropathy.

    PubMed

    Bending, J J; Dodds, R A; Keen, H; Viberti, G C

    1988-12-01

    Proteinuria in diabetes is associated with progressive glomerular damage. We studied the effects of 3-wk dietary protein restriction on proteinuria and renal function in 10 insulin-dependent diabetic men with diabetic nephropathy. Patients were randomly assigned by a crossover design to 40-g low-protein diet (LPD) or usual-protein diet (UPD). Glomerular filtration rate and renal plasma flow were measured by inulin and p-aminohippurate clearance at the end of each period under conditions of sustained euglycemia. Total calorie intake, body weight, serum albumin and total protein concentrations, hematocrit, blood pressure, and glucose control were similar during the two diets. Achieved protein intake was 46 +/- 3 g/day during LPD and 81 +/- 4 g/day during UPD (P less than .001). Urinary urea appearance and plasma urea were significantly lower on LPD. Median total urinary protein was reduced from 3.9 g/day (range 0.5-12.3) on UPD to 2.4 (range 0.2-9.0) on LPD (P less than .006), and there was a significant fall in the median fractional clearance of albumin from 2.0 x 10(-4) (range 0.1-90.9) on UPD to 1.0 x 10(-4) (range 0.1-51.4) on LPD and IgG from 2.1 x 10(-5) (range 0.2-238) to 1.5 x 10(-5) (range 0.1-77) (P less than .006 and P less than .02, respectively). The reabsorption rate of beta 2-microglobulin was similar on the two diets and glomerular filtration rate, renal plasma flow, and filtration fraction remained unchanged. Thus, short-term dietary protein restriction reduces diabetic proteinuria independently of blood glucose or systemic blood pressure changes by improving glomerular permselectivity.

  18. Renal pelvis or ureter cancer

    MedlinePlus

    Transitional cell cancer of the renal pelvis or ureter; Kidney cancer - renal pelvis; Ureter cancer ... Cancer can grow in the urine collection system, but it is uncommon. Renal pelvis and ureter cancers ...

  19. Laboratory Markers of Ventricular Arrhythmia Risk in Renal Failure

    PubMed Central

    2014-01-01

    Sudden cardiac death continues to be a major public health problem. Ventricular arrhythmia is a main cause of sudden cardiac death. The present review addresses the links between renal function tests, several laboratory markers, and ventricular arrhythmia risk in patients with renal disease, undergoing or not hemodialysis or renal transplant, focusing on recent clinical studies. Therapy of hypokalemia, hypocalcemia, and hypomagnesemia should be an emergency and performed simultaneously under electrocardiographic monitoring in patients with renal failure. Serum phosphates and iron, PTH level, renal function, hemoglobin and hematocrit, pH, inflammatory markers, proteinuria and microalbuminuria, and osmolarity should be monitored, besides standard 12-lead ECG, in order to prevent ventricular arrhythmia and sudden cardiac death. PMID:24982887

  20. Bilateral renal lymphoangiomatosis

    PubMed Central

    Raed, Alqahtani; Sultan, Alkhateeb; Bader, Al-Mutairi

    2015-01-01

    Introduction Renal lymphangiomatosis is a rare congenital benign disease of renal lymphatic system, here we are presenting a very rare form of disease which is bilateral form. Presentation of the case A young adult presented to our clinic after being referred from primary care clinic with intermittent bilateral flank pain and no other symptoms after extensive radiological investigations diagnosis has been made and confirmed by radiological finding of disease. Active treatment usually preserved for complex cases and for the complications of the disease but in our patient as needed analgesia worked well in controlling his intermittent pain and his wish not to pursue any intervention. The vague presentation with initial imaging rising suspicion of renal tumor or complex renal cyst might cause psychological street on the patient, which our patient had, but reassurance after extensive radiological work up relive that's stress. Discussion Although it is very rare disease to be bilateral but wide variety of other differential diagnoses make importance of disease recognition and accurate diagnosis is the key. Conclusion Renal lymphangiomatosis is a rare benign disease of renal lymphatic, which usually affect one side, but bilateral form is very rare form, which may raise the suspicions of genetic form of renal malignancy. Accurate diagnosis requires work up to role out malignant and other renal tumor, which require active surgical management. PMID:26719997

  1. Epidemiologic aspects of renal cell carcinoma.

    PubMed

    McLaughlin, Joseph K; Lipworth, Loren; Tarone, Robert E

    2006-10-01

    Renal cell cancer accounts for 2% of all new cancer cases worldwide. Incidence rates have been rising steadily around the world. In the United States, the rates have been rapidly increasing among black Americans, whose incidence rate has now surpassed that of white Americans. Cigarette smoking and obesity are the most consistently established causal risk factors, accounting for more than 20% and 30% of renal cell cancers, respectively. Hypertension, rather than antihypertensive drugs, appears to influence renal cell cancer development, although the mechanism is unknown. Analgesics have not been convincingly linked with renal cell cancer risk. In general, there appears to be a protective effect of fruit and vegetable consumption, although no particular component of diet has been clearly implicated. There are sporadic and inconsistent reports of occupations or occupational exposures being associated with this cancer. Epidemiologic studies are needed to identify reasons for the increasing incidence of renal cell cancer, with particular focus on why the incidence rate for black Americans has risen to significantly surpass that of white Americans.

  2. Dysfunction of fibroblasts of extrarenal origin underlies renal fibrosis and renal anemia in mice.

    PubMed

    Asada, Nariaki; Takase, Masayuki; Nakamura, Jin; Oguchi, Akiko; Asada, Misako; Suzuki, Norio; Yamamura, Ken-ichi; Nagoshi, Narihito; Shibata, Shinsuke; Rao, Tata Nageswara; Fehling, Hans Joerg; Fukatsu, Atsushi; Minegishi, Naoko; Kita, Toru; Kimura, Takeshi; Okano, Hideyuki; Yamamoto, Masayuki; Yanagita, Motoko

    2011-10-01

    In chronic kidney disease, fibroblast dysfunction causes renal fibrosis and renal anemia. Renal fibrosis is mediated by the accumulation of myofibroblasts, whereas renal anemia is mediated by the reduced production of fibroblast-derived erythropoietin, a hormone that stimulates erythropoiesis. Despite their importance in chronic kidney disease, the origin and regulatory mechanism of fibroblasts remain unclear. Here, we have demonstrated that the majority of erythropoietin-producing fibroblasts in the healthy kidney originate from myelin protein zero-Cre (P0-Cre) lineage-labeled extrarenal cells, which enter the embryonic kidney at E13.5. In the diseased kidney, P0-Cre lineage-labeled fibroblasts, but not fibroblasts derived from injured tubular epithelial cells through epithelial-mesenchymal transition, transdifferentiated into myofibroblasts and predominantly contributed to fibrosis, with concomitant loss of erythropoietin production. We further demonstrated that attenuated erythropoietin production in transdifferentiated myofibroblasts was restored by the administration of neuroprotective agents, such as dexamethasone and neurotrophins. Moreover, the in vivo administration of tamoxifen, a selective estrogen receptor modulator, restored attenuated erythropoietin production as well as fibrosis in a mouse model of kidney fibrosis. These findings reveal the pathophysiological roles of P0-Cre lineage-labeled fibroblasts in the kidney and clarify the link between renal fibrosis and renal anemia.

  3. Reduced renal sodium excretion in Walker-256 tumor-bearing rats.

    PubMed

    Rettori, O; Vieira-Matos, A N; Gontijo, J A

    1996-01-01

    Subcutaneous inoculation of Walker-256 tumor is followed by an asymptomatic period which is widely variable in duration, after which, paraneoplastic effects appear suddenly in the form of progressive and rapidly changing homeostatic alterations. Multifocal inoculation of tumor cells in each animal, was carried out with data averaging in each (sub-clinical [SubC], moderate [mCP] and grave [gCP] clinical phases and compared to foodrestricted (FR) rats. Results showed a significant and early decrease in urinary sodium excretion during mCP when compared to SubC and FR. The renal sites involved were studied in awake unrestrained animals by measure of sodium, creatinine and lithium clearance. Results indicated an initial increase of both absolute proximal (mCP: 21.4 +/- 1.7 vs FR: 16.0 +/- 1.1 mmol@min/100 g.b.w., p < 0.05) and postproximal (mCP: 11.1 +/- 0.4 vs FR: 6.6 +/- 0.4 mmol/min/100 g b.w., p < 0.001) Na+ reabsorption, which were partially compensated by a rise in glomerular filtration rate (mCP: 213 +/- 11.4 vs FR: 162+ 10.2pl/min/100 g b.w., p < 0.01) and by fell of fractional proximal Na+ reabsorption (mCP: 62.8 +/- 2.2 vs FR: 70.1 +/- 1.7%, p < 0.05), despite this a significant Na+ and fluid retention was observed. Additionally, this study shows that terminal phase of the illness (gCP) culminated with a marked decrease in the creatinine clearance suggesting a significant fall of the renal function.

  4. Aflatoxicosis alters avian renal function, calcium, and vitamin D metabolism.

    PubMed

    Glahn, R P; Beers, K W; Bottje, W G; Wideman, R F; Huff, W E; Thomas, W

    1991-11-01

    Experiments were designed to determine the effects of aflatoxicosis on avian renal function, calcium (CA), inorganic phosphorous (Pi), and vitamin D metabolism, and to determine if the effects of aflatoxin are reversible upon discontinuation of toxin administration. Three-week-old male broiler chickens (n = 12 per treatment) received aflatoxin (AF; 2 mg/kg po) or an equal volume of corn oil, the AF carrier vehicle, for 10 consecutive days. After 10 d of treatment, half of the birds from each treatment group were anesthetized and prepared for renal function analysis, which included a 2-h phosphate loading period. Ten days after discontinuation of AF treatment, the remaining birds in each treatment group were anesthetized and prepared for renal function analysis. AF decreased plasma 25-hydroxy vitamin D [25(OH)D] and 1,25-dihydroxy vitamin D [1,25(OH)2D] levels after 5 d of treatment. After 10 d of treatment, urine flow rate (V), fractional sodium excretion (FENa), and fractional potassium excretion (FEK) were lower in AF-treated birds. In addition, total plasma Ca tended to be lower (p = .10) and fractional Ca excretion (FECa) tended to be higher (p = .10) in the AF-treated birds. Intravenous phosphate loading produced a sharp increase in urine hydrogen ion concentration ([H+]) in the AF-treated birds. Glomerular filtration rate (GFR) was reduced and plasma osmolality was increased in AF-treated birds 10 d after discontinuation of toxin administration. The results indicate that AF directly or indirectly affects Ca and Pi metabolism in avians. At the present time, the effects may be related to altered vitamin D and parathyroid hormone (PTH) metabolism. Aflatoxicosis may decrease endogenous PTH synthesis and the renal sensitivity to PTH. The AF-related increase in urine [H+] during phosphate loading is probably due to increased Na+/H+ counterport, suggesting that AF stimulates sodium reabsorption. Also, the decrease in GFR exhibited 10 d after toxin removal indicates

  5. Renal excretion of intravenously infused amoxycillin and ampicillin.

    PubMed Central

    Sjövall, J; Westerlund, D; Alván, G

    1985-01-01

    The aim of this study was to determine whether concentration-dependent renal clearance of ampicillin and amoxycillin occurs. The drugs were given as single 20 min i.v. infusions in doses ranging from 1.9 to 2.8 g to nine healthy volunteers using a cross-over design. Plasma and urinary concentrations were determined by a selective liquid chromatographic method using frequent sampling up to 10 and 30 h respectively after termination of the infusion. The renal clearance of the drugs was independent of the plasma concentration. The mean (s.d.) renal clearances of ampicillin and amoxycillin were 167 (24) and 157 (20) ml min-1 1.73 m-2 respectively. The net secretion was about 50% of the total renal clearance of both drugs. The plasma concentration and urinary excretion rate versus time curves indicated a polyexponential decline, which could be described by both a biexponential and a triexponential equation. The former proved to be more reliable, especially in the calculation of micro rate constants. There was a tendency to more sustained plasma concentrations after amoxycillin, also illustrated by a significantly lower mean (s.d.) plasma clearance of this drug, viz. 185 (30) ml min-1 1.73 m-2, as compared to ampicillin, 210 (24) ml min-1 1.73 m-2 (P less than 0.04). There were no major differences in the disposition rate constants and the distribution volumes of ampicillin and amoxycillin. The mean (s.d.) plasma half-life was 1.7 (0.3) h for both drugs. The urinary excretion rate indicated a slower terminal disposition rate however, with ampicillin and amoxycillin half-lives of 3.4 (2.0) and 3.9 (1.2) h respectively. The longer half-life in the terminal phase may be due to increased tubular reabsorption at low urinary concentrations. It was not possible to determine in this study whether the half-life was affected by changes in clearance or volume of distribution. The urinary solubility of the drugs was dependent on pH. This could explain the massive macroscopic

  6. Renal autotransplantation: current perspectives.

    PubMed

    Stewart, B H; Banowsky, L H; Hewitt, C B; Straffon, R A

    1976-01-01

    Autotransplantation, with or without an extracorporeal renal operation, has been done 39 times in 37 patients. Indications for the procedure included severe ureteral injury in 4 patients, failed supravesical diversion in 2, renal carcinoma in a solitary kidney in 1, renovascular hypertension in 1 and donor arterial reconstruction before renal transplantation in 29. Success was obtained in all but 2 procedures, both of which involved previously operated kidneys with severe inflammation and adhesions involving the renal pelvis and pedicle. Based on our experience and a review of currently available literature we believe that renal autotransplantation and extracorporeal reconstruction can provide the best solution for patients with severe renovascular and ureteral disease not correctable by conventional operative techniques. The technique can be of particular value in removing centrally located tumors in solitary kidneys and in preparing donor kidneys with abnormal arteries for renal transplantation. The role of autotransplantation in the management of advanced renal trauma and calculus disease is less clear. A long-term comparison of patients treated by extracorporeal nephrolithotomy versus conventional lithotomy techniques will be necessary before a conclusion is reached in these disease categories.

  7. Renal autotransplantation: current perspectives.

    PubMed

    Stewart, B H; Banowsky, L H; Hewitt, C B; Straffon, R A

    1977-09-01

    Autotransplantation, with or without an extracorporeal renal operation, has been done 39 times in 37 patients. Indications for the procedure included several ureteral injury in 4 patients, failed supravesical diversion in 2, renal carcinoma in a solitary kidney in 1, renovascular hypertension in 1 and donor arterial reconstruction before renal transplantation in 29. Success was obtained in all but 2 procedures, both of which involved previously operated kidneys with severe inflammation and adhesions involving the renal pelvis and pedicle. Based on our experience and a review of currently available literature we believe that renal autotransplantation and extracorporeal reconstruction can provide the best solution for patients with severe renovascular and ureteral disease not correctable by conventional operative techniques. The technique can be of particular value in removing centrally located tumors in solitary kidneys and in preparing donor kidneys with abnormal arteries for renal transplantation. The role of autotransplantation in the management of advanced renal trauma and calculus disease is less clear. A long-term comparison of patients treated by extracorporeal nephrolithotomy versus conventional lithotomy techniques will be necessary before a conclusion is reached in these disease categories.

  8. [Atherosclerotic renal artery stenosis].

    PubMed

    Sauguet, A; Honton, B

    2014-12-01

    Atherosclerotic renal artery stenosis can cause ischaemic nephropathy and arterial hypertension. Renal artery stenosis (RAS) continues to be a problem for clinicians, with no clear consensus on how to investigate and assess the clinical significance of stenotic lesions and manage the findings. RAS caused by fibromuscular dysplasia is probably commoner than previously appreciated, should be actively looked for in younger hypertensive patients and can be managed successfully with angioplasty. Atheromatous RAS is associated with increased incidence of cardiovascular events and increased cardiovascular mortality, and is likely to be seen with increasing frequency. Many patients with RAS may be managed effectively with medical therapy for several years without endovascular stenting, as demonstrated by randomized, prospective trials including the cardiovascular outcomes in Renal Atherosclerotic Lesions (CORAL) trial, the Angioplasty and Stenting for Renal Artery Lesions (ASTRAL) trial. These trials share the limitation of excluding subsets of patients with high-risk clinical presentations, including episodic pulmonary edema and rapidly progressing renal failure and hypertension. Blood pressure control and medication adjustment may become more difficult with declining renal function and may prevent the use of angiotensin receptor blocker and angiotensin-converting enzyme inhibitors. The objective of this review is to evaluate the current management of RAS for cardiologists in the context of recent randomized clinical trials. There is now interest in looking more closely at patient selection for intervention, with focus on intervening only in patients with the highest-risk presentations such as flash pulmonary edema, rapidly declining renal function and severe resistant hypertension. PMID:25450992

  9. Fructokinase activity mediates dehydration-induced renal injury

    PubMed Central

    Roncal Jimenez, Carlos A; Ishimoto, Takuji; Lanaspa, Miguel A; Rivard, Christopher J; Nakagawa, Takahiko; Ejaz, A. Ahsan; Cicerchi, Christina; Inaba, Shinichiro; Le, MyPhuong; Miyazaki, Makoto; Glaser, Jason; Correa-Rotter, Ricardo; González, Marvin A; Aragón, Aurora; Wesseling, Catharina; Sánchez-Lozada, Laura G; Johnson, Richard J

    2014-01-01

    The epidemic of chronic kidney disease in Nicaragua (Mesoamerican nephropathy) has been linked with recurrent dehydration. Here we tested whether recurrent dehydration may cause renal injury by activation of the polyol pathway, resulting in the generation of endogenous fructose in the kidney that might subsequently induce renal injury via metabolism by fructokinase. Wild-type and fructokinase-deficient mice were subjected to recurrent heat-induced dehydration. One group of each genotype was provided water throughout the day and the other group was hydrated at night, after the dehydration. Both groups received the same total hydration in 24 h. Wild-type mice that received delayed hydration developed renal injury, with elevated serum creatinine, increased urinary NGAL, proximal tubular injury, and renal inflammation and fibrosis. This was associated with activation of the polyol pathway, with increased renal cortical sorbitol and fructose levels. Fructokinase-knockout mice with delayed hydration were protected from renal injury. Thus, recurrent dehydration can induce renal injury via a fructokinase-dependent mechanism, likely from the generation of endogenous fructose via the polyol pathway. Access to sufficient water during the dehydration period can protect mice from developing renal injury. These studies provide a potential mechanism for Mesoamerican nephropathy. PMID:24336030

  10. Cadmium and renal cancer

    SciTech Connect

    Il'yasova, Dora; Schwartz, Gary G. . E-mail: gschwart@wfubmc.edu

    2005-09-01

    Background: Rates of renal cancer have increased steadily during the past two decades, and these increases are not explicable solely by advances in imaging modalities. Cadmium, a widespread environmental pollutant, is a carcinogen that accumulates in the kidney cortex and is a cause of end-stage renal disease. Several observations suggest that cadmium may be a cause of renal cancer. Methods: We performed a systematic review of the literature on cadmium and renal cancer using MEDLINE for the years 1966-2003. We reviewed seven epidemiological and eleven clinical studies. Results: Despite different methodologies, three large epidemiologic studies indicate that occupational exposure to cadmium is associated with increased risk renal cancer, with odds ratios varying from 1.2 to 5.0. Six of seven studies that compared the cadmium content of kidneys from patients with kidney cancer to that of patients without kidney cancer found lower concentrations of cadmium in renal cancer tissues. Conclusions: Exposure to cadmium appears to be associated with renal cancer, although this conclusion is tempered by the inability of studies to assess cumulative cadmium exposure from all sources including smoking and diet. The paradoxical findings of lower cadmium content in kidney tissues from patients with renal cancer may be caused by dilution of cadmium in rapidly dividing cells. This and other methodological problems limit the interpretation of studies of cadmium in clinical samples. Whether cadmium is a cause of renal cancer may be answered more definitively by future studies that employ biomarkers of cadmium exposure, such as cadmium levels in blood and urine.

  11. Role of the renal circadian timing system in maintaining water and electrolytes homeostasis.

    PubMed

    Firsov, Dmitri; Tokonami, Natsuko; Bonny, Olivier

    2012-02-01

    Many basic physiological functions exhibit circadian rhythmicity. These functional rhythms are driven, in part, by the circadian clock, an ubiquitous molecular mechanism allowing cells and tissues to anticipate regular environmental events and to prepare for them. This mechanism has been shown to play a particularly important role in maintaining stability (homeostasis) of internal conditions. Because the homeostatic equilibrium is continuously challenged by environmental changes, the role of the circadian clock is thought to consist in the anticipative adjustment of homeostatic pathways in relation with the 24h environmental cycle. The kidney is the principal organ responsible for the regulation of the composition and volume of extracellular fluids (ECF). Several major parameters of kidney function, including renal plasma flow (RPF), glomerular filtration rate (GFR) and tubular reabsorption and secretion have been shown to exhibit strong circadian oscillations. Recent evidence suggest that the circadian clock can be involved in generation of these rhythms through external circadian time cues (e.g. humoral factors, activity and body temperature rhythms) or, trough the intrinsic renal circadian clock. Here, we discuss the role of renal circadian mechanisms in maintaining homeostasis of water and three major ions, namely, Na(+), K(+) and Cl(-).

  12. Mitochondrial and metabolic dysfunction in renal convoluted tubules of obese mice: protective role of melatonin.

    PubMed

    Stacchiotti, Alessandra; Favero, Gaia; Giugno, Lorena; Lavazza, Antonio; Reiter, Russel J; Rodella, Luigi Fabrizio; Rezzani, Rita

    2014-01-01

    Obesity is a common and complex health problem, which impacts crucial organs; it is also considered an independent risk factor for chronic kidney disease. Few studies have analyzed the consequence of obesity in the renal proximal convoluted tubules, which are the major tubules involved in reabsorptive processes. For optimal performance of the kidney, energy is primarily provided by mitochondria. Melatonin, an indoleamine and antioxidant, has been identified in mitochondria, and there is considerable evidence regarding its essential role in the prevention of oxidative mitochondrial damage. In this study we evaluated the mechanism(s) of mitochondrial alterations in an animal model of obesity (ob/ob mice) and describe the beneficial effects of melatonin treatment on mitochondrial morphology and dynamics as influenced by mitofusin-2 and the intrinsic apoptotic cascade. Melatonin dissolved in 1% ethanol was added to the drinking water from postnatal week 5-13; the calculated dose of melatonin intake was 100 mg/kg body weight/day. Compared to control mice, obesity-related morphological alterations were apparent in the proximal tubules which contained round mitochondria with irregular, short cristae and cells with elevated apoptotic index. Melatonin supplementation in obese mice changed mitochondria shape and cristae organization of proximal tubules, enhanced mitofusin-2 expression, which in turn modulated the progression of the mitochondria-driven intrinsic apoptotic pathway. These changes possibly aid in reducing renal failure. The melatonin-mediated changes indicate its potential protective use against renal morphological damage and dysfunction associated with obesity and metabolic disease.

  13. Molecular clock is involved in predictive circadian adjustment of renal function.

    PubMed

    Zuber, Annie Mercier; Centeno, Gabriel; Pradervand, Sylvain; Nikolaeva, Svetlana; Maquelin, Lionel; Cardinaux, Léonard; Bonny, Olivier; Firsov, Dmitri

    2009-09-22

    Renal excretion of water and major electrolytes exhibits a significant circadian rhythm. This functional periodicity is believed to result, at least in part, from circadian changes in secretion/reabsorption capacities of the distal nephron and collecting ducts. Here, we studied the molecular mechanisms underlying circadian rhythms in the distal nephron segments, i.e., distal convoluted tubule (DCT) and connecting tubule (CNT) and the cortical collecting duct (CCD). Temporal expression analysis performed on microdissected mouse DCT/CNT or CCD revealed a marked circadian rhythmicity in the expression of a large number of genes crucially involved in various homeostatic functions of the kidney. This analysis also revealed that both DCT/CNT and CCD possess an intrinsic circadian timing system characterized by robust oscillations in the expression of circadian core clock genes (clock, bma11, npas2, per, cry, nr1d1) and clock-controlled Par bZip transcriptional factors dbp, hlf, and tef. The clock knockout mice or mice devoid of dbp/hlf/tef (triple knockout) exhibit significant changes in renal expression of several key regulators of water or sodium balance (vasopressin V2 receptor, aquaporin-2, aquaporin-4, alphaENaC). Functionally, the loss of clock leads to a complex phenotype characterized by partial diabetes insipidus, dysregulation of sodium excretion rhythms, and a significant decrease in blood pressure. Collectively, this study uncovers a major role of molecular clock in renal function.

  14. Midterm renal functions following acute renal infarction.

    PubMed

    Ongun, Sakir; Bozkurt, Ozan; Demir, Omer; Cimen, Sertac; Aslan, Guven

    2015-10-01

    The aim of this study was to explore clinical features of renal infarction (RI) that may have a role in diagnosis and treatment in our patient cohort and provide data on midterm renal functions. Medical records of patients with diagnosis of acute RI, established by contrast enhanced computed tomography (CT) and at least 1 year follow-up data, who were hospitalized in our clinic between 1998 and 2012 were retrospectively reviewed; including descriptive data, clinical signs and symptoms, etiologic factors, laboratory findings, and prescribed treatments. Patients with solitary infarct were treated with acetylsalicylic acid (ASA) only, whereas patients with atrial fibrillation (AF) or multiple or global infarct were treated with anticoagulants. Estimated Glomerular Filtration Rate (eGFR) referring to renal functions was determined by the Modification of Diet in Renal Disease (MDRD) formula. Twenty-seven renal units of 23 patients with acute RI were identified. The mean age was 59.7 ± 15.7 years. Fourteen patients (60.8%) with RI had atrial fibrillation (AF) as an etiologic factor of which four had concomitant mesenteric ischemia at diagnosis. At presentation, 20 patients (86.9%) had elevated serum lactate dehydrogenase (LDH), 18 patients (78.2%) had leukocytosis, and 16 patients (69.5%) had microscopic hematuria. Two patients with concomitant mesenteric ischemia and AF passed away during follow up. Mean eGFR was 70.8 ± 23.2 mL/min/1.73 m(2) at admission and increased to 82.3 ± 23.4 mL/min/1.73 m(2) at 1 year follow up. RI should be considered in patients with persistent flank or abdominal pain, particularly if they are at high risk of thromboembolism. Antiplatelet and/or anticoagulant drugs are both effective treatment options according to the amplitude of the infarct for preserving kidney functions.

  15. Sympatho-renal interactions.

    PubMed

    Zanchetti, A; Stella, A

    1987-10-01

    The renal nerves appear to be involved in the control of cardiovascular homeostasis and volume balance both in physiological and in pathological conditions such as experimental hypertension. Anatomical and electrophysiological evidence suggests that the kidney has a diffuse sensory innervation connected with areas in the brain and spinal cord that are known to regulate cardiovascular functions by both neural and humoral mechanisms. The demonstration of the existence of neural reno-renal reflexes controlling several renal functions indicates that a functional balance between the two kidneys exists and may play an important role in the moment-to-moment control of kidney functions.

  16. Renal scintigraphy in veterinary medicine.

    PubMed

    Tyson, Reid; Daniel, Gregory B

    2014-01-01

    Renal scintigraphy is performed commonly in dogs and cats and has been used in a variety of other species. In a 2012 survey of the members of the Society of Veterinary Nuclear Medicine, 95% of the respondents indicated they perform renal scintigraphy in their practice. Renal scintigraphy is primarily used to assess renal function and to evaluate postrenal obstruction. This article reviews how renal scintigraphy is used in veterinary medicine and describes the methods of analysis. Species variation is also discussed.

  17. Idiopathic hypercalciuria and formation of calcium renal stones.

    PubMed

    Coe, Fredric L; Worcester, Elaine M; Evan, Andrew P

    2016-09-01

    The most common presentation of nephrolithiasis is idiopathic calcium stones in patients without systemic disease. Most stones are primarily composed of calcium oxalate and form on a base of interstitial apatite deposits, known as Randall's plaque. By contrast some stones are composed largely of calcium phosphate, as either hydroxyapatite or brushite (calcium monohydrogen phosphate), and are usually accompanied by deposits of calcium phosphate in the Bellini ducts. These deposits result in local tissue damage and might serve as a site of mineral overgrowth. Stone formation is driven by supersaturation of urine with calcium oxalate and brushite. The level of supersaturation is related to fluid intake as well as to the levels of urinary citrate and calcium. Risk of stone formation is increased when urine citrate excretion is <400 mg per day, and treatment with potassium citrate has been used to prevent stones. Urine calcium levels >200 mg per day also increase stone risk and often result in negative calcium balance. Reduced renal calcium reabsorption has a role in idiopathic hypercalciuria. Low sodium diets and thiazide-type diuretics lower urine calcium levels and potentially reduce the risk of stone recurrence and bone disease. PMID:27452364

  18. Complete renal recovery from severe acute renal failure after thrombolysis of bilateral renal vein thrombosis.

    PubMed

    Ramadoss, Suresh; Jones, Robert G; Foggensteiner, Lukas; Willis, Andrew P; Duddy, Martin J

    2012-10-01

    A previously healthy young man presented with acute renal failure due to extensive spontaneous deep vein thrombosis, including the inferior vena cava (IVC) and both renal veins. The patient was treated with selectively delivered thrombolytic therapy over a 7-day-period, which resulted in renal vein patency and complete recovery of renal function. A stent was placed over a segment stenosis of the IVC. No thrombophilic factors were identified. Bilateral renal vein thrombosis in young fit individuals is an unusual cause of acute renal failure. Thrombolytic therapy, even with delay, can completely restore renal function.

  19. Renal Mitochondrial Cytopathies

    PubMed Central

    Emma, Francesco; Montini, Giovanni; Salviati, Leonardo; Dionisi-Vici, Carlo

    2011-01-01

    Renal diseases in mitochondrial cytopathies are a group of rare diseases that are characterized by frequent multisystemic involvement and extreme variability of phenotype. Most frequently patients present a tubular defect that is consistent with complete De Toni-Debré-Fanconi syndrome in most severe forms. More rarely, patients present with chronic tubulointerstitial nephritis, cystic renal diseases, or primary glomerular involvement. In recent years, two clearly defined entities, namely 3243 A > G tRNALEU mutations and coenzyme Q10 biosynthesis defects, have been described. The latter group is particularly important because it represents the only treatable renal mitochondrial defect. In this paper, the physiopathologic bases of mitochondrial cytopathies, the diagnostic approaches, and main characteristics of related renal diseases are summarized. PMID:21811680

  20. Oxidative stress, nitric oxide production, and renal sodium handling in leptin-induced hypertension.

    PubMed

    Beltowski, Jerzy; Wójcicka, Grazyna; Marciniak, Andrzej; Jamroz, Anna

    2004-04-30

    Chronic hyperleptinemia induces arterial hypertension in experimental animals and may contribute to the development of hypertension in obese humans; however, the mechanism of hypertensive effect of leptin is not completely elucidated. We investigated the effect of leptin on whole-body oxidative stress, nitric oxide production, and renal sodium handling. The study was performed on male Wistar rats divided into 3 groups: 1) control, fed standard chow ad libitum, 2) leptin-treated group, receiving leptin injections (0.25 mg/kg twice daily s.c. for 7 days), 3) pair-fed group, in which food intake was adjusted to the leptin group. Leptin caused 30.5% increase in systolic blood pressure. Plasma concentration and urinary excretion of 8-isoprostanes in animals receiving leptin was 46.4% and 49.2% higher, respectively. The level of lipid peroxidation products, malonyldialdehyde + 4-hydroxyalkenals, increased by 52.5% in the renal cortex and by 48.4% in the renal medulla following leptin treatment, whereas aconitase activity decreased in these regions of the kidney by 45.3% and 39.2%, respectively. Urinary excretion of nitric oxide metabolites (NOx) was 55.0% lower, and fractional excretion of NOx was 55.8% lower in the leptin-treated group. Urinary excretion of cGMP decreased in leptin-treated rats by 26.3%. Following leptin treatment, absolute and fractional sodium excretion decreased by 35.0% and 41.2%, respectively. These results indicate that hyperleptinemia induces systemic and intrarenal oxidative stress, decreases the amount of bioactive NO possibly due to its degradation by reactive oxygen species, and causes renal sodium retention by stimulating tubular sodium reabsorption. NO deficiency and abnormal renal Na+ handling may contribute to leptin-induced hypertension.

  1. 'Transcollateral' Renal Angioplasty for a Completely Occluded Renal Artery

    SciTech Connect

    Chandra, Subash; Chadha, Davinder S. Swamy, Ajay

    2011-02-15

    Percutaneous transluminal renal angioplasty with stenting has been effective in the control of hypertension, renal function, and pulmonary edema caused by atherosclerotic renal artery stenosis. However, the role of the procedure has not been fully established in the context of chronic total occlusion of renal artery. We report the successful use of this procedure in 57-year-old male patient who reported for evaluation of a recent episode of accelerated hypertension. A renal angiogram in this patient showed ostial stenosis of the right renal artery, which was filling by way of the collateral artery. Renal angioplasty for chronic total occlusion of right renal artery was successfully performed in a retrograde fashion through a collateral artery, thereby leading to improvement of renal function and blood pressure control.

  2. [Hyperuricemia and renal risk].

    PubMed

    Viazzi, Francesca; Bonino, Barbara; Ratto, Elena; Desideri, Giovambattista; Pontremoli, Roberto

    2015-01-01

    Recent studies have revealed an association between elevated levels of uric acid and conditions correlated to chronic kidney diseases such as hypertension, cardiovascular and cerebral disease, insulin resistance. Several pathogenetic mechanisms at cellular and tissue levels could justify a direct correlation between serum uric acid levels and renal damage. Growing evidence indicating a correlation between urate lowering therapy and renal morbidity could encourage the use of urate lowering therapy in primary or secondary prevention in chronic kidney disease.

  3. Laparoscopic retroperitoneal renal cystectomy.

    PubMed

    Munch, L C; Gill, I S; McRoberts, J W

    1994-01-01

    Laparoscopic manipulation of retroperitoneal organs is usually performed by the transperitoneal approach primarily because of the ease of access by way of the pneumoperitoneum. However, difficulty in adequately accessing structures that are surrounded by bowel, liver, spleen or postoperative adhesions makes this approach suboptimal in certain cases. We describe the use of the retroperitoneal laparoscopic approach to the upper pole of a kidney for marsupialization of a symptomatic, recurrent, complex renal cyst. An algorithm for current management of symptomatic renal cysts is discussed.

  4. Renal depletion of myo-inositol is associated with its increased degradation in animal models of metabolic disease.

    PubMed

    Chang, H-H; Chao, H-N; Walker, C S; Choong, S-Y; Phillips, A; Loomes, K M

    2015-11-01

    Renal depletion of myo-inositol (MI) is associated with the pathogenesis of diabetic nephropathy in animal models, but the underlying mechanisms involved are unclear. We hypothesized that MI depletion was due to changes in inositol metabolism and therefore examined the expression of genes regulating de novo biosynthesis, reabsorption, and catabolism of MI. We also extended the analyses from diabetes mellitus to animal models of dietary-induced obesity and hypertension. We found that renal MI depletion was pervasive across these three distinct disease states in the relative order: hypertension (-51%)>diabetes mellitus (-35%)>dietary-induced obesity (-19%). In 4-wk diabetic kidneys and in kidneys derived from insulin-resistant and hypertensive rats, MI depletion was correlated with activity of the MI-degrading enzyme myo-inositol oxygenase (MIOX). By contrast, there was decreased MIOX expression in 8-wk diabetic kidneys. Immunohistochemistry localized the MI-degrading pathway comprising MIOX and the glucuronate-xylulose (GX) pathway to the proximal tubules within the renal cortex. These findings indicate that MI depletion could reflect increased catabolism through MIOX and the GX pathway and implicate a common pathological mechanism contributing to renal oxidative stress in metabolic disease.

  5. Neonatal renal vein thrombosis.

    PubMed

    Brandão, Leonardo R; Simpson, Ewurabena A; Lau, Keith K

    2011-12-01

    Neonatal renal vein thrombosis (RVT) continues to pose significant challenges for pediatric hematologists and nephrologists. The precise mechanism for the onset and propagation of renal thrombosis within the neonatal population is unclear, but there is suggestion that acquired and/or inherited thrombophilia traits may increase the risk for renal thromboembolic disease during the newborn period. This review summarizes the most recent studies of neonatal RVT, examining its most common features, the prevalence of acquired and inherited prothrombotic risk factors among these patients, and evaluates their short and long term renal and thrombotic outcomes as they may relate to these risk factors. Although there is some consensus regarding the management of neonatal RVT, the most recent antithrombotic therapy guidelines for the management of childhood thrombosis do not provide a risk-based algorithm for the acute management of RVT among newborns with hereditary prothrombotic disorders. Whereas neonatal RVT is not a condition associated with a high mortality rate, it is associated with significant morbidity due to renal impairment. Recent evidence to evaluate the effects of heparin-based anticoagulation and thrombolytic therapy on the long term renal function of these patients has yielded conflicting results. Long term cohort studies and randomized trials may be helpful to clarify the impact of acute versus prolonged antithrombotic therapy for reducing the morbidity that is associated with neonatal RVT.

  6. Spontaneous renal artery dissection with renal infarction.

    PubMed

    Renaud, Sophie; Leray-Moraguès, Hélène; Chenine, Leila; Canaud, Ludovic; Vernhet-Kovacsik, Hélène; Canaud, Bernard

    2012-06-01

    Spontaneous renal artery dissection (SRAD) is a rare entity, which often presents diagnostic difficulties because of its non-specific clinical presentation. We report six cases complicated with renal infarction, occurring in middle-aged male patients without risk factors, illustrating the difficulty and delay for diagnosing SRAD. Ultrasound and Doppler imaging were not sensitive enough to confirm the diagnosis, and contrast-enhanced abdominal computed tomography was used to correct the diagnosis and allow the clinicians to propose appropriate treatment. We conclude that considering the urgency in diagnosing and treating SRAD, contrast enhanced abdominal tomography and/or abdominal magnetic resonance imaging should be proposed as soon as a suspicion of SRAD is evoked by the clinical presentation.

  7. Mutations in PCBD1 Cause Hypomagnesemia and Renal Magnesium Wasting

    PubMed Central

    Ferrè, Silvia; de Baaij, Jeroen H.F.; Ferreira, Patrick; Germann, Roger; de Klerk, Johannis B.C.; Lavrijsen, Marla; van Zeeland, Femke; Venselaar, Hanka; Kluijtmans, Leo A.J.; Hoenderop, Joost G.J.

    2014-01-01

    Mutations in PCBD1 are causative for transient neonatal hyperphenylalaninemia and primapterinuria (HPABH4D). Until now, HPABH4D has been regarded as a transient and benign neonatal syndrome without complications in adulthood. In our study of three adult patients with homozygous mutations in the PCBD1 gene, two patients were diagnosed with hypomagnesemia and renal Mg2+ loss, and two patients developed diabetes with characteristics of maturity onset diabetes of the young (MODY), regardless of serum Mg2+ levels. Our results suggest that these clinical findings are related to the function of PCBD1 as a dimerization cofactor for the transcription factor HNF1B. Mutations in the HNF1B gene have been shown to cause renal malformations, hypomagnesemia, and MODY. Gene expression studies combined with immunohistochemical analysis in the kidney showed that Pcbd1 is expressed in the distal convoluted tubule (DCT), where Pcbd1 transcript levels are upregulated by a low Mg2+-containing diet. Overexpression in a human kidney cell line showed that wild-type PCBD1 binds HNF1B to costimulate the FXYD2 promoter, the activity of which is instrumental in Mg2+ reabsorption in the DCT. Of seven PCBD1 mutations previously reported in HPABH4D patients, five mutations caused proteolytic instability, leading to reduced FXYD2 promoter activity. Furthermore, cytosolic localization of PCBD1 increased when coexpressed with HNF1B mutants. Overall, our findings establish PCBD1 as a coactivator of the HNF1B-mediated transcription necessary for fine tuning FXYD2 transcription in the DCT and suggest that patients with HPABH4D should be monitored for previously unrecognized late complications, such as hypomagnesemia and MODY diabetes. PMID:24204001

  8. Renal Proteome in Mice with Different Susceptibilities to Fluorosis

    PubMed Central

    Peres-Buzalaf, Camila; Salvato, Fernanda; Labate, Carlos Alberto; Everett, Eric T.; Whitford, Gary Milton; Buzalaf, Marília Afonso Rabelo

    2013-01-01

    A/J and 129P3/J mouse strains have different susceptibilities to dental fluorosis due to their genetic backgrounds. They also differ with respect to several features of fluoride (F) metabolism and metabolic handling of water. This study was done to determine whether differences in F metabolism could be explained by diversities in the profile of protein expression in kidneys. Weanling, male A/J mice (susceptible to dental fluorosis, n = 18) and 129P3/J mice (resistant, n = 18) were housed in pairs and assigned to three groups given low-F food and drinking water containing 0, 10 or 50 ppm [F] for 7 weeks. Renal proteome profiles were examined using 2D-PAGE and LC-MS/MS. Quantitative intensity analysis detected between A/J and 129P3/J strains 122, 126 and 134 spots differentially expressed in the groups receiving 0, 10 and 50 ppmF, respectively. From these, 25, 30 and 32, respectively, were successfully identified. Most of the proteins were related to metabolic and cellular processes, followed by response to stimuli, development and regulation of cellular processes. In F-treated groups, PDZK-1, a protein involved in the regulation of renal tubular reabsorption capacity was down-modulated in the kidney of 129P3/J mice. A/J and 129P3/J mice exhibited 11 and 3 exclusive proteins, respectively, regardless of F exposure. In conclusion, proteomic analysis was able to identify proteins potentially involved in metabolic handling of F and water that are differentially expressed or even not expressed in the strains evaluated. This can contribute to understanding the molecular mechanisms underlying genetic susceptibility to dental fluorosis, by indicating key-proteins that should be better addressed in future studies. PMID:23308176

  9. Clinical values of urinary IL-6 in asymptomatic renal hematuria and renal hematuria with proteins

    PubMed Central

    SONG, MINGHUI; MA, LU; YANG, DAN; HE, ZHIJUN; LI, CHAOBO; PAN, TAO; LI, ANJUN

    2013-01-01

    Renal hematuria is caused by glomerular disease. Under pathological conditions, the distribution of interleukin-6 (IL-6) in kidney tissue is abnormal and urinary IL-6 levels are increased. Abnormal IL-6 secretion promotes the hyperplasia of mesangial cells and matrix and, thus, affects the permeability of the glomerular filtration membrane. Therefore, the detection of urinary IL-6 levels in patients with renal hematuria is beneficial for disease evaluation. A total of 82 patients with primary renal hematuria were divided into group 1 (UPr/24 h < 150 mg; pure hematuria group), group 2 (150 mg ≤ UPr/24 h ≤ 1,000 mg) and group 3 (UPr/24 h > 1,000 mg). A total of 30 normal individuals were selected as the controls. The urinary IL-6 levels were detected by the enzyme-linked immunosorbent assay (ELISA) method and a renal biopsy was conducted. The urinary IL-6 levels and renal pathological damage scores in groups 1 and 2 were significantly reduced compared with those in group 3, (P<0.001 and 0.01, respectively), with no significant difference between groups 1 and 2 (P>0.05). The correlation coefficient (r) of urinary IL-6 with 24 h urinary protein (UPr/24 h) in groups 1, 2 and 3 was 0.017, 0.045 and 0.747, respectively, and that of urinary IL-6 with renal pathological damage score was 0.627, 0.199 and 0.119, respectively. The UPr/24 h was significantly correlated with IL-6 level (r=0.7320, P<0.000). In group 1, the urinary IL-6 levels were correlated with the degree of renal pathological damage. A positive correlation was observed between urinary IL-6 levels and UPr/24 h. PMID:24137196

  10. Changes in the rate of formation and resistance to reabsorption of cerebrospinal fluid during deliberate hypotension induced with adenosine or hemorrhage.

    PubMed

    Shapira, Y; Artru, A A; Lam, A M

    1992-03-01

    Adenosine is recommended for induction of deliberate hypotension. Although its effects on brain vasculature and metabolism and intracranial pressure have been reported, its effects on cerebrospinal fluid dynamics have not. In this study the rate of cerebrospinal fluid formation (Vf), resistance to reabsorption of cerebrospinal fluid (Ra), and electroencephalogram (EEG) activity were determined in rabbits before and during decrease of cerebral perfusion pressure (CPP) with intravenous (iv) adenosine or hemorrhage. In the adenosine group (n = 6), Vf and Ra were determined at control CPP, at CPP of 50, 35, and 28 mmHg achieved with iv adenosine, and at CPP greater than 60 mmHg achieved with iv adenosine combined with iv phenylephrine. In the hemorrhage group (n = 6), Vf and Ra were determined at the first four experimental conditions only. Control values for Vf (9 +/- 3 and 9 +/- 4 microliter.min-1, mean +/- SD) and Ra (428 +/- 567 and 412 +/- 144 cmH2O.ml-1.min) did not differ between groups. In the adenosine group, Vf did not change significantly when CPP was decreased. However, in the hemorrhage group, Vf decreased significantly at CPP of 50 and 35 mmHg and became unmeasurable at CPP of 28 mmHg. Ra did not change significantly in either group. An increase of low-frequency (0.5-3.0 Hz) EEG activity and/or decrease of higher-frequency (3.5-30 Hz) EEG activity occurred at CPP of 28 mmHg in the adenosine group and at CPP of 35 mmHg in the hemorrhage group.(ABSTRACT TRUNCATED AT 250 WORDS)

  11. p66Shc regulates renal vascular tone in hypertension-induced nephropathy.

    PubMed

    Miller, Bradley; Palygin, Oleg; Rufanova, Victoriya A; Chong, Andrew; Lazar, Jozef; Jacob, Howard J; Mattson, David; Roman, Richard J; Williams, Jan M; Cowley, Allen W; Geurts, Aron M; Staruschenko, Alexander; Imig, John D; Sorokin, Andrey

    2016-07-01

    Renal preglomerular arterioles regulate vascular tone to ensure a large pressure gradient over short distances, a function that is extremely important for maintaining renal microcirculation. Regulation of renal microvascular tone is impaired in salt-sensitive (SS) hypertension-induced nephropathy, but the molecular mechanisms contributing to this impairment remain elusive. Here, we assessed the contribution of the SH2 adaptor protein p66Shc (encoded by Shc1) in regulating renal vascular tone and the development of renal vascular dysfunction associated with hypertension-induced nephropathy. We generated a panel of mutant rat strains in which specific modifications of Shc1 were introduced into the Dahl SS rats. In SS rats, overexpression of p66Shc was linked to increased renal damage. Conversely, deletion of p66Shc from these rats restored the myogenic responsiveness of renal preglomerular arterioles ex vivo and promoted cellular contraction in primary vascular smooth muscle cells (SMCs) that were isolated from renal vessels. In primary SMCs, p66Shc restricted the activation of transient receptor potential cation channels to attenuate cytosolic Ca2+ influx, implicating a mechanism by which overexpression of p66Shc impairs renal vascular reactivity. These results establish the adaptor protein p66Shc as a regulator of renal vascular tone and a driver of impaired renal vascular function in hypertension-induced nephropathy. PMID:27270176

  12. p66Shc regulates renal vascular tone in hypertension-induced nephropathy

    PubMed Central

    Miller, Bradley; Palygin, Oleg; Rufanova, Victoriya A.; Lazar, Jozef; Jacob, Howard J.; Mattson, David; Roman, Richard J.; Williams, Jan M.; Cowley, Allen W.; Geurts, Aron M.; Imig, John D.

    2016-01-01

    Renal preglomerular arterioles regulate vascular tone to ensure a large pressure gradient over short distances, a function that is extremely important for maintaining renal microcirculation. Regulation of renal microvascular tone is impaired in salt-sensitive (SS) hypertension–induced nephropathy, but the molecular mechanisms contributing to this impairment remain elusive. Here, we assessed the contribution of the SH2 adaptor protein p66Shc (encoded by Shc1) in regulating renal vascular tone and the development of renal vascular dysfunction associated with hypertension-induced nephropathy. We generated a panel of mutant rat strains in which specific modifications of Shc1 were introduced into the Dahl SS rats. In SS rats, overexpression of p66Shc was linked to increased renal damage. Conversely, deletion of p66Shc from these rats restored the myogenic responsiveness of renal preglomerular arterioles ex vivo and promoted cellular contraction in primary vascular smooth muscle cells (SMCs) that were isolated from renal vessels. In primary SMCs, p66Shc restricted the activation of transient receptor potential cation channels to attenuate cytosolic Ca2+ influx, implicating a mechanism by which overexpression of p66Shc impairs renal vascular reactivity. These results establish the adaptor protein p66Shc as a regulator of renal vascular tone and a driver of impaired renal vascular function in hypertension-induced nephropathy. PMID:27270176

  13. Visualizing renal primary cilia.

    PubMed

    Deane, James A; Verghese, Elizabeth; Martelotto, Luciano G; Cain, Jason E; Galtseva, Alya; Rosenblum, Norman D; Watkins, D Neil; Ricardo, Sharon D

    2013-03-01

    Renal primary cilia are microscopic sensory organelles found on the apical surface of epithelial cells of the nephron and collecting duct. They are based upon a microtubular cytoskeleton, bounded by a specialized membrane, and contain an array of proteins that facilitate their assembly, maintenance and function. Cilium-based signalling is important for the control of epithelial differentiation and has been implicated in the pathogenesis of various cystic kidney diseases and in renal repair. As such, visualizing renal primary cilia and understanding their composition has become an essential component of many studies of inherited kidney disease and mechanisms of epithelial regeneration. Primary cilia were initially identified in the kidney using electron microscopy and this remains a useful technique for the high resolution examination of these organelles. New reagents and techniques now also allow the structure and composition of primary cilia to be analysed in detail using fluorescence microscopy. Primary cilia can be imaged in situ in sections of kidney, and many renal-derived cell lines produce primary cilia in culture providing a simplified and accessible system in which to investigate these organelles. Here we outline microscopy-based techniques commonly used for studying renal primary cilia.

  14. Nox and renal disease.

    PubMed

    Holterman, Chet E; Read, Naomi C; Kennedy, Chris R J

    2015-04-01

    Since the first demonstration of Nox enzyme expression in the kidney in the early 1990s and the subsequent identification of Nox4, or RENOX, a decade later, it has become apparent that the Nox family of reactive oxygen species (ROS) generating enzymes plays an integral role in the normal physiological function of the kidney. As our knowledge of Nox expression patterns and functions in various structures and specialized cell types within the kidney grows, so does the realization that Nox-derived oxidative stress contributes significantly to a wide variety of renal pathologies through their ability to modify lipids and proteins, damage DNA and activate transcriptional programmes. Diverse studies demonstrate key roles for Nox-derived ROS in kidney fibrosis, particularly in settings of chronic renal disease such as diabetic nephropathy. As the most abundant Nox family member in the kidney, much emphasis has been placed on the role of Nox4 in this setting. However, an ever growing body of work continues to uncover key roles for other Nox family members, not only in diabetic kidney disease, but in a diverse array of renal pathological conditions. The objective of the present review is to highlight the latest novel developments in renal Nox biology with an emphasis not only on diabetic nephropathy but many of the other renal disease contexts where oxidative stress is implicated.

  15. Renal disease in Colombia.

    PubMed

    Gómez, Rafael Alberto

    2006-01-01

    Chronic renal disease represents a problem of public health in Colombia. Its prevalence has increased in last decade, with a prevalence of 44.7 patients per million (ppm) in 1993 to 294.6 ppm in 2004, considering that only 56.2% of the population has access to the health. This increase complies with the implementation of Law 100 of 1993, offering greater coverage of health services to the Colombian population. The cost of these pathologies is equivalent to the 2.49% of the budget for health of the nation. The three most common causes of renal failure are diabetes mellitus (DM; 30%), arterial hypertension (30%), and glomerulonephritis (7.85%). In incident patients, the DM accounts for 32.9%. The rate of global mortality is 15.8%, 17.4% in hemodialysis and 15.1% in peritoneal dialysis. In 2004, 467 renal transplants were made, 381 of deceased donor with an incidence of 10.3 ppm. The excessive cost of these pathologies can cause the nation's health care system to collapse if preventative steps are not taken. In December of 2004, the Colombian Association of Nephrology with the participation of the Latin American Society of Nephrology and Arterial Hypertension wrote the "Declaration of Bogotá," committing the state's scientific societies and promotional health companies to develop a model of attention for renal health that, in addition to implementing national registries, continues to manage renal disease. PMID:17162422

  16. [The focal renal lesions].

    PubMed

    Tuma, Jan

    2013-06-01

    The focal renal lesions are altogether common. Most frequently are found Columna Bertini hypertrophies (so called pseudotumors) and simple renal cysts. The role of sonography in the practice is to distinguish pseudotumors from real renal tumors, and simple renal cysts from complex cysts. The differentiation of complex renal cysts is possible with the help of the CEUS (= contrast enhanced ultrasound) and other imaging modalities such as CT or MRI. In these cases, the CEUS imaging agent has clear advantages over CT and MRI, because it is composed of gas bubbles, which are only slightly smaller than red blood cells and remains exclusively intravascularly while the CT and MRI contrast agents diffuse into the interstitial space without any real perfusion. The real tumors can be differentiated from certain focal non-tumorous changes based on the ultrasound and clinic. The further differentiation of individual kidney tumors and metastases using ultrasound, MRI, CT and CEUS is only partly possible. In all uncertain or unclear cases, therefore, an open or ultrasound-guided biopsy is useful.

  17. Can renal infarction occur after renal cyst aspiration? Case report.

    PubMed

    Emre, Habib; Soyoral, Yasemin Usul; Tanik, Serhat; Gecit, Ilhan; Begenik, Huseyin; Pirincci, Necip; Erkoc, Reha

    2011-01-01

    Renal infarction (RI) is a rarely seen disorder, and the diagnosis is often missed. The two major causes of RI are thromboemboli originhating from a thrombus in the heart or aorta, and in-situ thrombosis of a renal artery. We report a case of RI that developed due to renal artery and vein thrombosis, as confirmed by pathological evaluation of the nephrectomy material, three weeks after renal cyst aspiration.

  18. Community Links

    ERIC Educational Resources Information Center

    Nelson, Mary

    1975-01-01

    At Moraine Valley Community College (Illinois), a chain of events, programs, activities, and services has linked the college and community in such areas as fine arts, ethnic groups, public services, community action, community service, and community education. (Author/NHM)

  19. Link Analysis

    NASA Astrophysics Data System (ADS)

    Donoho, Steve

    Link analysis is a collection of techniques that operate on data that can be represented as nodes and links. This chapter surveys a variety of techniques including subgraph matching, finding cliques and K-plexes, maximizing spread of influence, visualization, finding hubs and authorities, and combining with traditional techniques (classification, clustering, etc). It also surveys applications including social network analysis, viral marketing, Internet search, fraud detection, and crime prevention.

  20. Physiological and molecular responses of the goldfish (Carassius auratus) kidney to metabolic acidosis, and potential mechanisms of renal ammonia transport.

    PubMed

    Lawrence, Michael J; Wright, Patricia A; Wood, Chris M

    2015-07-01

    Relative to the gills, the mechanisms by which the kidney contributes to ammonia and acid-base homeostasis in fish are poorly understood. Goldfish were exposed to a low pH environment (pH 4.0, 48 h), which induced a characteristic metabolic acidosis and an increase in total plasma [ammonia] but reduced plasma ammonia partial pressure (PNH3). In the kidney tissue, total ammonia, lactate and intracellular pH remained unchanged. The urinary excretion rate of net base under control conditions changed to net acid excretion under low pH, with contributions from both the NH4 (+) (∼30%) and titratable acidity minus bicarbonate (∼70%; TA-HCO3 (-)) components. Inorganic phosphate (Pi), urea and Na(+) excretion rates were also elevated while Cl(-) excretion rates were unchanged. Renal alanine aminotransferase activity increased under acidosis. The increase in renal ammonia excretion was due to significant increases in both the glomerular filtration and the tubular secretion rates of ammonia, with the latter accounting for ∼75% of the increase. There was also a 3.5-fold increase in the mRNA expression of renal Rhcg-b (Rhcg1) mRNA. There was no relationship between ammonia secretion and Na(+) reabsorption. These data indicate that increased renal ammonia secretion during acidosis is probably mediated through Rhesus (Rh) glycoproteins and occurs independently of Na(+) transport, in contrast to branchial and epidermal models of Na(+)-dependent ammonia transport in freshwater fish. Rather, we propose a model of parallel H(+)/NH3 transport as the primary mechanism of renal tubular ammonia secretion that is dependent on renal amino acid catabolism.

  1. Renal (Kidney) Manifestations in TSC

    MedlinePlus

    ... PKD1 genes, severe kidney disease can develop in infancy or early childhood and renal failure most often ... of renal angiomyolipoma and TSC is in its infancy and we will have further information in a ...

  2. [Management of renal stones].

    PubMed

    Lechevallier, E; Traxer, O; Saussine, C

    2008-12-01

    The management of renal stones needs a recent and good quality imaging. Contrast medium injection is optional. Extracorporeal shockwave lithotripsy (ESWL) is the most common treatment of renal stones. ESWL is indicated as first line treatment for less than 1.5cm stones. The stone-free (SF) rate at 3 months of ESWL is 70-80%. Results of ESWL for stones with more than 1000UH density or located in the lower calyx are poor. Flexible ureteroscopy (URS) is indicated in case of ESWL failure or for hyperdense, 1-2cm stones. The SF rate of flexible is 80%. Percutaneous nephrolithotomy is indicated for complex or more than 2cm stones. Asymptomatic and non infected stones, especially if located in the lower calyx, do not need urological treatment but must be followed up. In all cases, renal stones needs a metabolic evaluation and treatment, and annual follow-up.

  3. Renal denervation and hypertension.

    PubMed

    Schlaich, Markus P; Krum, Henry; Sobotka, Paul A; Esler, Murray D

    2011-06-01

    Essential hypertension remains one of the biggest challenges in medicine with an enormous impact on both individual and society levels. With the exception of relatively rare monogenetic forms of hypertension, there is now general agreement that the condition is multifactorial in nature and hence requires therapeutic approaches targeting several aspects of the underlying pathophysiology. Accordingly, all major guidelines promote a combination of lifestyle interventions and combination pharmacotherapy to reach target blood pressure (BP) levels in order to reduce overall cardiovascular risk in affected patients. Although this approach works for many, it fails in a considerable number of patients for various reasons including drug-intolerance, noncompliance, physician inertia, and others, leaving them at unacceptably high cardiovascular risk. The quest for additional therapeutic approaches to safely and effectively manage hypertension continues and expands to the reappraisal of older concepts such as renal denervation. Based on the robust preclinical and clinical data surrounding the role of renal sympathetic nerves in various aspects of BP control very recent efforts have led to the development of a novel catheter-based approach using radiofrequency (RF) energy to selectively target and disrupt the renal nerves. The available evidence from the limited number of uncontrolled hypertensive patients in whom renal denervation has been performed are auspicious and indicate that the procedure has a favorable safety profile and is associated with a substantial and presumably sustained BP reduction. Although promising, a myriad of questions are far from being conclusively answered and require our concerted research efforts to explore the full potential and possible risks of this approach. Here we briefly review the science surrounding renal denervation, summarize the current data on safety and efficacy of renal nerve ablation, and discuss some of the open questions that need

  4. Pharmacokinetics and pharmacodynamics of a human monoclonal anti‐FGF23 antibody (KRN23) in the first multiple ascending‐dose trial treating adults with X‐linked hypophosphatemia

    PubMed Central

    Imel, Erik A.; Ruppe, Mary D.; Weber, Thomas J.; Klausner, Mark A.; Ito, Takahiro; Vergeire, Maria; Humphrey, Jeffrey; Glorieux, Francis H.; Portale, Anthony A.; Insogna, Karl; Carpenter, Thomas O.; Peacock, Munro

    2015-01-01

    Abstract In X‐linked hypophosphatemia (XLH), serum fibroblast growth factor 23 (FGF23) is increased and results in reduced renal maximum threshold for phosphate reabsorption (TmP), reduced serum inorganic phosphorus (Pi), and inappropriately low normal serum 1,25 dihydroxyvitamin D (1,25[OH]2D) concentration, with subsequent development of rickets or osteomalacia. KRN23 is a recombinant human IgG1 monoclonal antibody that binds to FGF23 and blocks its activity. Up to 4 doses of KRN23 were administered subcutaneously every 28 days to 28 adults with XLH. Mean ± standard deviation KRN23 doses administered were 0.05, 0.10 ± 0.01, 0.28 ± 0.06, and 0.48 ± 0.16 mg/kg. The mean time to reach maximum serum KRN23 levels was 7.0 to 8.5 days. The mean KRN23 half‐life was 16.4 days. The mean area under the concentration–time curve (AUCn) for each dosing interval increased proportionally with increases in KRN23 dose. The mean intersubject variability in AUCn ranged from 30% to 37%. The area under the effect concentration–time curve (AUECn) for change from baseline in TmP per glomerular filtration rate, serum Pi, 1,25(OH)2D, and bone markers for each dosing interval increased linearly with increases in KRN23 AUCn. Linear correlation between serum KRN23 concentrations and increase in serum Pi support KRN23 dose adjustments based on predose serum Pi concentration. © 2015 The Authors. The Journal of Clinical Pharmacology Published by Wiley Periodicals, Inc. on behalf of American College of Clinical Pharmacology PMID:26073451

  5. Pharmacokinetics and pharmacodynamics of a human monoclonal anti-FGF23 antibody (KRN23) in the first multiple ascending-dose trial treating adults with X-linked hypophosphatemia.

    PubMed

    Zhang, Xiaoping; Imel, Erik A; Ruppe, Mary D; Weber, Thomas J; Klausner, Mark A; Ito, Takahiro; Vergeire, Maria; Humphrey, Jeffrey; Glorieux, Francis H; Portale, Anthony A; Insogna, Karl; Carpenter, Thomas O; Peacock, Munro

    2016-02-01

    In X-linked hypophosphatemia (XLH), serum fibroblast growth factor 23 (FGF23) is increased and results in reduced renal maximum threshold for phosphate reabsorption (TmP), reduced serum inorganic phosphorus (Pi), and inappropriately low normal serum 1,25 dihydroxyvitamin D (1,25[OH]2 D) concentration, with subsequent development of rickets or osteomalacia. KRN23 is a recombinant human IgG1 monoclonal antibody that binds to FGF23 and blocks its activity. Up to 4 doses of KRN23 were administered subcutaneously every 28 days to 28 adults with XLH. Mean ± standard deviation KRN23 doses administered were 0.05, 0.10 ± 0.01, 0.28 ± 0.06, and 0.48 ± 0.16 mg/kg. The mean time to reach maximum serum KRN23 levels was 7.0 to 8.5 days. The mean KRN23 half-life was 16.4 days. The mean area under the concentration-time curve (AUCn ) for each dosing interval increased proportionally with increases in KRN23 dose. The mean intersubject variability in AUCn ranged from 30% to 37%. The area under the effect concentration-time curve (AUECn ) for change from baseline in TmP per glomerular filtration rate, serum Pi, 1,25(OH)2 D, and bone markers for each dosing interval increased linearly with increases in KRN23 AUCn . Linear correlation between serum KRN23 concentrations and increase in serum Pi support KRN23 dose adjustments based on predose serum Pi concentration.

  6. Pharmacokinetics and pharmacodynamics of a human monoclonal anti-FGF23 antibody (KRN23) in the first multiple ascending-dose trial treating adults with X-linked hypophosphatemia.

    PubMed

    Zhang, Xiaoping; Imel, Erik A; Ruppe, Mary D; Weber, Thomas J; Klausner, Mark A; Ito, Takahiro; Vergeire, Maria; Humphrey, Jeffrey; Glorieux, Francis H; Portale, Anthony A; Insogna, Karl; Carpenter, Thomas O; Peacock, Munro

    2016-02-01

    In X-linked hypophosphatemia (XLH), serum fibroblast growth factor 23 (FGF23) is increased and results in reduced renal maximum threshold for phosphate reabsorption (TmP), reduced serum inorganic phosphorus (Pi), and inappropriately low normal serum 1,25 dihydroxyvitamin D (1,25[OH]2 D) concentration, with subsequent development of rickets or osteomalacia. KRN23 is a recombinant human IgG1 monoclonal antibody that binds to FGF23 and blocks its activity. Up to 4 doses of KRN23 were administered subcutaneously every 28 days to 28 adults with XLH. Mean ± standard deviation KRN23 doses administered were 0.05, 0.10 ± 0.01, 0.28 ± 0.06, and 0.48 ± 0.16 mg/kg. The mean time to reach maximum serum KRN23 levels was 7.0 to 8.5 days. The mean KRN23 half-life was 16.4 days. The mean area under the concentration-time curve (AUCn ) for each dosing interval increased proportionally with increases in KRN23 dose. The mean intersubject variability in AUCn ranged from 30% to 37%. The area under the effect concentration-time curve (AUECn ) for change from baseline in TmP per glomerular filtration rate, serum Pi, 1,25(OH)2 D, and bone markers for each dosing interval increased linearly with increases in KRN23 AUCn . Linear correlation between serum KRN23 concentrations and increase in serum Pi support KRN23 dose adjustments based on predose serum Pi concentration. PMID:26073451

  7. Population pharmacokinetic and pharmacodynamic analyses from a 4-month intradose escalation and its subsequent 12-month dose titration studies for a human monoclonal anti-FGF23 antibody (KRN23) in adults with X-linked hypophosphatemia.

    PubMed

    Zhang, Xiaoping; Peyret, Thomas; Gosselin, Nathalie H; Marier, J F; Imel, Erik A; Carpenter, Thomas O

    2016-04-01

    X-linked hypophosphatemia (XLH) is an inherited metabolic bone disease with abnormally elevated serum FGF23 resulting in low renal maximum threshold for phosphate reabsorption, low serum phosphate (Pi) and 1,25-dihydroxyvitamin D levels with subsequent development of short stature and skeletal deformities. KRN23 is a novel human anti-FGF23 antibody for the treatment of XLH. The pharmacokinetics (PK) and pharmacodynamics (PD) models of KRN23 were assessed following subcutaneous dosing every 28 days over an initial 4-month dose escalation (0.05-0.6 mg/kg) and a subsequent 12-month titration period (0.1-1.0 mg/kg) in XLH adults. The PK of KRN23 was described by a 1-compartmental model with first-order absorption and elimination at doses ≥0.1 mg/kg. The elimination half-life was 17.8 days. Covariates did not affect KRN23 PK. Mean peak serum Pi was attained 7-10 days after dosing and progressively increased following each of the initial 4 doses with comparable peak values attained following the sixth through tenth doses with a slight decrease thereafter. A PK-PD model with a maximum effect (Emax ) and a time-varying effective concentration to reach 50% of Emax (EC50,t ) described data adequately. Typical Emax was 1.5 mg/dL. Typical EC50,t was 1780 ng/mL and 5999 ng/mL after first and last dose, respectively. PMID:26247790

  8. Renal adaptation during hibernation.

    PubMed

    Jani, Alkesh; Martin, Sandra L; Jain, Swati; Keys, Daniel; Edelstein, Charles L

    2013-12-01

    Hibernators periodically undergo profound physiological changes including dramatic reductions in metabolic, heart, and respiratory rates and core body temperature. This review discusses the effect of hypoperfusion and hypothermia observed during hibernation on glomerular filtration and renal plasma flow, as well as specific adaptations in renal architecture, vasculature, the renin-angiotensin system, and upregulation of possible protective mechanisms during the extreme conditions endured by hibernating mammals. Understanding the mechanisms of protection against organ injury during hibernation may provide insights into potential therapies for organ injury during cold storage and reimplantation during transplantation.

  9. Renal Failure in Pregnancy.

    PubMed

    Balofsky, Ari; Fedarau, Maksim

    2016-01-01

    Renal failure during pregnancy affects both mother and fetus, and may be related to preexisting disease or develop secondary to diseases of pregnancy. Causes include hypovolemia, sepsis, shock, preeclampsia, thrombotic microangiopathies, and renal obstruction. Treatment focuses on supportive measures, while pharmacologic treatment is viewed as second-line therapy, and is more useful in mitigating harmful effects than treating the underlying cause. When supportive measures and pharmacotherapy prove inadequate, dialysis may be required, with the goal being to prolong pregnancy until delivery is feasible. Outcomes and recommendations depend primarily on the underlying cause.

  10. Oxidant Mechanisms in Renal Injury and Disease

    PubMed Central

    Ratliff, Brian B.; Abdulmahdi, Wasan; Pawar, Rahul

    2016-01-01

    Abstract Significance: A common link between all forms of acute and chronic kidney injuries, regardless of species, is enhanced generation of reactive oxygen species (ROS) and reactive nitrogen species (RNS) during injury/disease progression. While low levels of ROS and RNS are required for prosurvival signaling, cell proliferation and growth, and vasoreactivity regulation, an imbalance of ROS and RNS generation and elimination leads to inflammation, cell death, tissue damage, and disease/injury progression. Recent Advances: Many aspects of renal oxidative stress still require investigation, including clarification of the mechanisms which prompt ROS/RNS generation and subsequent renal damage. However, we currently have a basic understanding of the major features of oxidative stress pathology and its link to kidney injury/disease, which this review summarizes. Critical Issues: The review summarizes the critical sources of oxidative stress in the kidney during injury/disease, including generation of ROS and RNS from mitochondria, NADPH oxidase, and inducible nitric oxide synthase. The review next summarizes the renal antioxidant systems that protect against oxidative stress, including superoxide dismutase and catalase, the glutathione and thioredoxin systems, and others. Next, we describe how oxidative stress affects kidney function and promotes damage in every nephron segment, including the renal vessels, glomeruli, and tubules. Future Directions: Despite the limited success associated with the application of antioxidants for treatment of kidney injury/disease thus far, preventing the generation and accumulation of ROS and RNS provides an ideal target for potential therapeutic treatments. The review discusses the shortcomings of antioxidant treatments previously used and the potential promise of new ones. Antioxid. Redox Signal. 25, 119–146. PMID:26906267

  11. Epidemiologic characteristics and risk factors for renal cell cancer

    PubMed Central

    Lipworth, Loren; Tarone, Robert E; Lund, Lars; McLaughlin, Joseph K

    2009-01-01

    Incidence rates of renal cell cancer, which accounts for 85% of kidney cancers, have been rising in the United States and in most European countries for several decades. Family history is associated with a two- to four-fold increase in risk, but the major forms of inherited predisposition together account for less than 4% of renal cell cancers. Cigarette smoking, obesity, and hypertension are the most consistently established risk factors. Analgesics have not been convincingly linked with renal cell cancer risk. A reduced risk of renal cell cancer among statin users has been hypothesized but has not been adequately studied. A possible protective effect of fruit and vegetable consumption is the only moderately consistently reported dietary finding, and, with the exception of a positive association with parity, evidence for a role of hormonal or reproductive factors in the etiology of renal cell cancer in humans is limited. A recent hypothesis that moderate levels of alcohol consumption may be protective for renal cell cancer is not strongly supported by epidemiologic results, which are inconsistent with respect to the categories of alcohol consumption and the amount of alcohol intake reportedly associated with decreased risk. For occupational factors, the weight of the evidence does not provide consistent support for the hypotheses that renal cell cancer may be caused by asbestos, gasoline, or trichloroethylene exposure. The established determinants of renal cell cancer, cigarette smoking, obesity, and hypertension, account for less than half of these cancers. Novel epidemiologic approaches, including evaluation of gene–environment interactions and epigenetic mechanisms of inherited and acquired increased risk, are needed to explain the increasing incidence of renal cell cancer. PMID:20865085

  12. Epidemiologic characteristics and risk factors for renal cell cancer.

    PubMed

    Lipworth, Loren; Tarone, Robert E; Lund, Lars; McLaughlin, Joseph K

    2009-08-09

    Incidence rates of renal cell cancer, which accounts for 85% of kidney cancers, have been rising in the United States and in most European countries for several decades. Family history is associated with a two- to four-fold increase in risk, but the major forms of inherited predisposition together account for less than 4% of renal cell cancers. Cigarette smoking, obesity, and hypertension are the most consistently established risk factors. Analgesics have not been convincingly linked with renal cell cancer risk. A reduced risk of renal cell cancer among statin users has been hypothesized but has not been adequately studied. A possible protective effect of fruit and vegetable consumption is the only moderately consistently reported dietary finding, and, with the exception of a positive association with parity, evidence for a role of hormonal or reproductive factors in the etiology of renal cell cancer in humans is limited. A recent hypothesis that moderate levels of alcohol consumption may be protective for renal cell cancer is not strongly supported by epidemiologic results, which are inconsistent with respect to the categories of alcohol consumption and the amount of alcohol intake reportedly associated with decreased risk. For occupational factors, the weight of the evidence does not provide consistent support for the hypotheses that renal cell cancer may be caused by asbestos, gasoline, or trichloroethylene exposure. The established determinants of renal cell cancer, cigarette smoking, obesity, and hypertension, account for less than half of these cancers. Novel epidemiologic approaches, including evaluation of gene-environment interactions and epigenetic mechanisms of inherited and acquired increased risk, are needed to explain the increasing incidence of renal cell cancer.

  13. Physiology of the Renal Interstitium

    PubMed Central

    2015-01-01

    Long overlooked as the virtual compartment and then strictly characterized through descriptive morphologic analysis, the renal interstitium has finally been associated with function. With identification of interstitial renin- and erythropoietin-producing cells, the most prominent endocrine functions of the kidney have now been attributed to the renal interstitium. This article reviews the functional role of renal interstitium. PMID:25813241

  14. Effect of chronic poisoning with aluminum on the renal handling of phosphate in the rat.

    PubMed

    Mahieu, S; Calvo, M L

    1998-01-16

    The effects of aluminum on renal function and phosphate handling were studied using clearance techniques in chronically-intoxicated rats. Rats were given aluminum hydroxide (80 mg/kg b.w., i.p.), three times per week during 6 months. The phosphate tubular transport capacity was evaluated by determining the maximum tubular transport (TmRPi) and the fractional excretion of phosphate (FE% Pi) during the infusion of phosphate solutions with increasing concentrations (0, 9, 18, 33 mM). Parathyroid gland function was studied using indirect methods: calcemia recovery after EDTA administration and the nephrogenic excretion of cAMP as indicative of renal PTH actions, by RIA. The systemic acid base status was determined and food intake and rat growth were controlled in both groups. No changes were observed in the renal function. Pi reabsorption values per ml glomerular filtration rate (TRPi/GFR microg/ml) for different Pi plasmatic concentrations were distributed following a saturation curve compatible with a saturation kinetics. Aluminum increased TmRPi/GFR in treated animals (T) 76+/-4 as compared with control animals (C) 57+/-7 microg/ml, without a statistical modification in the apparent affinity. The FE% Pi and FE% Na were significantly lower in treated animals than in control animals. There were neither systemic variations in the acid-base balance nor in the Ca and Pi concentrations in plasma. The calcemia recovery following a hypocalcemic stimulus and the nephrogenic excretion of cAMP (T: 44+/-4; C: 91+/-7 pmol/min) were diminished. Considering all these facts, it can be postulated that the aluminum renal effect is associated from a decrease in PTH phosphaturic capacity. Nevertheless, other associated factors like minor phosphate intestinal absorption rate may not be disregarded, even though there were no significant intake variations. PMID:9544698

  15. Calcium Extrusion Pump PMCA4: A New Player in Renal Calcium Handling?

    PubMed Central

    van Loon, Ellen P. M.; Little, Robert; Prehar, Sukhpal; Bindels, René J. M.; Cartwright, Elizabeth J.; Hoenderop, Joost G. J.

    2016-01-01

    Calcium (Ca2+) is vital for multiple processes in the body, and maintenance of the electrolyte concentration is required for everyday physiological function. In the kidney, and more specifically, in the late distal convoluted tubule and connecting tubule, the fine-tuning of Ca2+ reabsorption from the pro-urine takes place. Here, Ca2+ enters the epithelial cell via the transient receptor potential vanilloid receptor type 5 (TRPV5) channel, diffuses to the basolateral side bound to calbindin-D28k and is extruded to the blood compartment via the Na+/Ca2+ exchanger 1 (NCX1) and the plasma membrane Ca2+ ATPase (PMCA). Traditionally, PMCA1 was considered to be the primary Ca2+ pump in this process. However, in recent studies TRPV5-expressing tubules were shown to highly express PMCA4. Therefore, PMCA4 may have a predominant role in renal Ca2+ handling. This study aimed to elucidate the role of PMCA4 in Ca2+ homeostasis by characterizing the Ca2+ balance, and renal and duodenal Ca2+-related gene expression in PMCA4 knockout mice. The daily water intake of PMCA4 knockout mice was significantly lower compared to wild type littermates. There was no significant difference in serum Ca2+ level or urinary Ca2+ excretion between groups. In addition, renal and duodenal mRNA expression levels of Ca2+-related genes, including TRPV5, TRPV6, calbindin-D28k, calbindin-D9k, NCX1 and PMCA1 were similar in wild type and knockout mice. Serum FGF23 levels were significantly increased in PMCA4 knockout mice. In conclusion, PMCA4 has no discernible role in normal renal Ca2+ handling as no urinary Ca2+ wasting was observed. Further investigation of the exact role of PMCA4 in the distal convoluted tubule and connecting tubule is required. PMID:27101128

  16. Increased Klk9 Urinary Excretion Is Associated to Hypertension-Induced Cardiovascular Damage and Renal Alterations

    PubMed Central

    Blázquez-Medela, Ana M.; García-Sánchez, Omar; Quirós, Yaremi; Blanco-Gozalo, Victor; Prieto-García, Laura; Sancho-Martínez, Sandra M.; Romero, Miguel; Duarte, Juan M.; López-Hernández, Francisco J.; López-Novoa, José M.; Martínez-Salgado, Carlos

    2015-01-01

    Abstract Early detection of hypertensive end-organ damage and secondary diseases are key determinants of cardiovascular prognosis in patients suffering from arterial hypertension. Presently, there are no biomarkers for the detection of hypertensive target organ damage, most outstandingly including blood vessels, the heart, and the kidneys. We aimed to validate the usefulness of the urinary excretion of the serine protease kallikrein-related peptidase 9 (KLK9) as a biomarker of hypertension-induced target organ damage. Urinary, plasma, and renal tissue levels of KLK9 were measured by the Western blot in different rat models of hypertension, including angiotensin-II infusion, DOCA-salt, L-NAME administration, and spontaneous hypertension. Urinary levels were associated to cardiovascular and renal injury, assessed by histopathology. The origin of urinary KLK9 was investigated through in situ renal perfusion experiments. The urinary excretion of KLK9 is increased in different experimental models of hypertension in rats. The ACE inhibitor trandolapril significantly reduced arterial pressure and the urinary level of KLK9. Hypertension did not increase kidney, heart, liver, lung, or plasma KLK9 levels. Hypertension-induced increased urinary excretion of KLK9 results from specific alterations in its tubular reabsorption, even in the absence of overt nephropathy. KLK9 urinary excretion strongly correlates with cardiac hypertrophy and aortic wall thickening. KLK9 appears in the urine in the presence of hypertension as a result of subtle renal handling alterations. Urinary KLK9 might be potentially used as an indicator of hypertensive cardiac and vascular damage. PMID:26469898

  17. Significant impact of transient deterioration of renal function on dosimetry in PRRT.

    PubMed

    Van Binnebeek, Sofie; Baete, Kristof; Terwinghe, Christelle; Vanbilloen, Bert; Haustermans, Karin; Mortelmans, Luc; Borbath, Ivan; Van Cutsem, Eric; Verslype, Chris; Mottaghy, Felix M; Verbruggen, Alfons; Deroose, Christophe M

    2013-01-01

    Peptide receptor radionuclide therapy (PRRT), with (90)Y-DOTATOC and (177)Lu-DOTATATE as most clinically used radiopeptides, is widely used in the management of metastatic neuroendocrine tumors. With respect to radiation dosimetry, the kidneys are the critical organ for (90)Y-DOTATOC. Renal irradiation is significant because of reabsorption of the radiopeptide from the proximal tubuli and the resulting retention in the interstitium, mainly in the inner cortical zone. The high energy and consequently wide range in tissue of the yttrium-90 beta particle result in high absorbed doses to the kidney cortex and medulla. Accurate renal dosimetry can help minimizing radiation nephropathy. We report a case of a 69-year-old candidate for PRRT with an acceptable kidney function at the time of screening. When performing (111)In-octreotide pretreatment dosimetry 3 weeks later, we observed a drastic deterioration in kidney function, caused by undisclosed non-steroidal anti-inflammatory drug intake. The calculated kidney biological effective dose (BED) was 153 Gy after four projected cycles. PRRT was canceled as our full-course BED limit is 37 Gy and the patient was switched to morphine analgesics. Renal function normalized after 3 months and repeated dosimetry yielded an acceptable kidney BED of 28 Gy after four projected cycles (7 Gy/cycle). This case emphasizes that acute kidney insufficiency can yield toxic kidney doses in a single therapy cycle, with an inherent risk of persistent renal insufficiency. All clinical factors which might influence kidney function should be verified at screening and before PRRT administration.

  18. Effect of chronic poisoning with aluminum on the renal handling of phosphate in the rat.

    PubMed

    Mahieu, S; Calvo, M L

    1998-01-16

    The effects of aluminum on renal function and phosphate handling were studied using clearance techniques in chronically-intoxicated rats. Rats were given aluminum hydroxide (80 mg/kg b.w., i.p.), three times per week during 6 months. The phosphate tubular transport capacity was evaluated by determining the maximum tubular transport (TmRPi) and the fractional excretion of phosphate (FE% Pi) during the infusion of phosphate solutions with increasing concentrations (0, 9, 18, 33 mM). Parathyroid gland function was studied using indirect methods: calcemia recovery after EDTA administration and the nephrogenic excretion of cAMP as indicative of renal PTH actions, by RIA. The systemic acid base status was determined and food intake and rat growth were controlled in both groups. No changes were observed in the renal function. Pi reabsorption values per ml glomerular filtration rate (TRPi/GFR microg/ml) for different Pi plasmatic concentrations were distributed following a saturation curve compatible with a saturation kinetics. Aluminum increased TmRPi/GFR in treated animals (T) 76+/-4 as compared with control animals (C) 57+/-7 microg/ml, without a statistical modification in the apparent affinity. The FE% Pi and FE% Na were significantly lower in treated animals than in control animals. There were neither systemic variations in the acid-base balance nor in the Ca and Pi concentrations in plasma. The calcemia recovery following a hypocalcemic stimulus and the nephrogenic excretion of cAMP (T: 44+/-4; C: 91+/-7 pmol/min) were diminished. Considering all these facts, it can be postulated that the aluminum renal effect is associated from a decrease in PTH phosphaturic capacity. Nevertheless, other associated factors like minor phosphate intestinal absorption rate may not be disregarded, even though there were no significant intake variations.

  19. Metabolic clearance of recombinant human growth hormone in health and chronic renal failure.

    PubMed Central

    Haffner, D; Schaefer, F; Girard, J; Ritz, E; Mehls, O

    1994-01-01

    Despite the increasing therapeutic use of recombinant human growth hormone (rhGH), its metabolic clearance has not been investigated in detail. To evaluate the kinetics of rhGH as a possible function of GH plasma concentration and glomerular filtration rate (GFR), we investigated the steady state metabolic clearance rate (MCR), disappearance half-life, and apparent volume of distribution of rhGH at low and high physiological as well as supraphysiological plasma GH levels during pharmacological suppression of endogenous GH secretion in human subjects with normal and reduced renal function. GH in plasma and urine was determined by an immunoradiometric assay, and GFR by inulin clearance. In all subjects MCR decreased and plasma half-life increased with increasing plasma GH concentrations (P < 0.001). MCR of rhGH was approximately half in patients with chronic renal failure at each GH level and plasma half-life was increased by 25-50%. Allowing for the linear dependence of MCR on GFR and assuming single-compartment distribution, the estimated renal fraction of total MCR was 25-53 and 4-15% in controls and patients, respectively. Saturation of extrarenal disposal of GH was suggested by an inverse hyperbolic relationship between extrarenal MCR and plasma GH concentrations in all subjects. Fractional GH excretion was up to 1,000-fold higher in patients than in controls. We conclude that MCR of hGH is a function of plasma GH concentrations and GFR. Extrarenal elimination is saturable in the upper physiological range of GH concentrations, whereas renal MCR is independent of plasma GH levels. The kidney handles GH like a microprotein involving glomerular filtration, tubular reabsorption, and urinary excretion. Images PMID:8132756

  20. Hemorrhagic fever with renal syndrome.

    PubMed

    Lee, H W; van der Groen, G

    1989-01-01

    Hantaviruses, the causative agents of HFRS, have become more widely recognized. Epidemiologic evidence indicates that these pathogens are distributed worldwide. People who come into close contact with infected rodents in urban, rural and laboratory environments are at particular risk. Transmission to man occurs mainly via the respiratory tract. The epidemiology of the hantaviruses is intimately linked to the ecology of their principal vertebrate hosts. Four distinct viruses are now recognized within the hantavirus genus and that number is likely to increase to six very soon; however, further investigations are necessary. Much more work is still needed before we fully understand the wide spectrum of clinical signs and symptoms of HFRS as well as the pathogenicity of the different viruses in the hantavirus genus of the Bunyaviridae family. HFRS is difficult to diagnose on clinical grounds alone and serological evidence is often needed. A fourfold rise in IgG antibody titer in a 1-week interval, and the presence of the IgM type of antibodies against hantaviruses are good evidence for an acute hantavirus infection. Physicians should be alert for HFRS each time they deal with patients with acute febrile flu-like illness, renal failure of unknown origin and sometimes hepatic dysfunction. Especially the mild form of HFRS is difficult to diagnose. Acute onset, headache, fever, increased serum creatinine, proteinuria and polyuria are signs and symptoms compatible with a mild form of HFRS. Differential diagnosis should be considered for the following diseases in the endemic areas of HFRS: acute renal failure, hemorrhagic scarlet fever, acute abdomen, leptospirosis, scrub typhus, murine typhus, spotted fevers, non-A, non-B hepatitis, Colorado tick fever, septicemia, dengue, heartstroke and DIC. Treatment of HFRS is mainly supportive. Recently, however, treatment of HFRS patients with ribavirin in China and Korea, within 7 days after onset of fever, resulted in a reduced

  1. Relations between liver cadmium, cumulative exposure, and renal function in cadmium alloy workers.

    PubMed Central

    Mason, H J; Davison, A G; Wright, A L; Guthrie, C J; Fayers, P M; Venables, K M; Smith, N J; Chettle, D R; Franklin, D M; Scott, M C

    1988-01-01

    Detailed biochemical investigations of renal function were made on 75 male workers exposed to cadmium and an equal number of referents matched for age, sex, and employment status. The exposed group consisted of current and retired workers who had been employed in the manufacture of copper-cadmium alloy at a single factory in the United Kingdom for periods of up to 39 years and for whom cumulative cadmium exposure indices could be calculated. In vivo measurements of liver and kidney cadmium burden were made on exposed and referent workers using a transportable neutron activation analysis facility. Significant increases in the urinary excretion of albumin, retinol binding protein, beta 2 microglobulin, N-acetylglucosaminidase (NAG), alkaline phosphatase, gamma-glutamyl transferase and significant decreases in the renal reabsorption of calcium, urate, and phosphate were found in the exposed group compared with the referent group. Measures of glomerular filtration rate (GFR) (creatinine clearance, serum creatinine, and beta 2 microglobulin) indicated a reduction in GFR in the exposed population. Many of these tubular and glomerular function indicators were significantly correlated with both cumulative exposure index and liver cadmium burden. Using cumulative exposure index and liver cadmium as estimates of dose, a two phase linear regression model was applied to identify an inflection point signifying a threshold level above which changes in renal function occur. Many biochemical variables fitted this model; urinary total protein, retinol binding protein, albumin, and beta 2 microglobulin gave similar inflection points at cumulative exposure levels of about 1100 y.micrograms/m3 whereas changes in the tubular reabsorption of urate and phosphate occurred at higher cumulative exposure indices. Measures of GFR, although fitting the threshold model did not give well defined inflection points. Fewer variables fitted the two phase model using liver cadmium; those that did

  2. Nephrology and astrology--is there a link?

    PubMed

    Hughes, S

    1990-07-01

    Astrologers presume a link between the susceptibility of particular organs to disease and signs of the Zodiac. A simple test of the positive connection between renal disease and the sign of Libra was undertaken by studying the birth dates of consecutive nephrology in-patient admissions. No significant link was found on analysis, thus disproving the traditional astrologers' claims.

  3. Serial Radiohippurate Renal Scintiphotography

    PubMed Central

    Rosenthall, Leonard; Greyson, N. David; Martin, Robert H.

    1970-01-01

    The results of serial radiohippurate scintiphotography in 222 patients are analyzed. The findings in various renal diseases are discussed and compared with those obtained from the excretory urogram, BUN, serum creatinine and creatinine clearance. ImagesFIG. 1FIG. 2FIG. 3FIG. 4aFIG. 4bFIG. 5aFIG. 5b PMID:5536740

  4. Management of Renal Cysts

    PubMed Central

    Nalbant, Ismail; Can Sener, Nevzat; Firat, Hacer; Yeşil, Süleyman; Zengin, Kürşad; Yalcınkaya, Fatih; Imamoglu, Abdurrahim

    2015-01-01

    Background and Objectives: Renal cysts have a high prevalence in the general population, and their estimated incidence increases with age. Renal cyst aspiration (usually with sclerotherapy) or open/laparoscopic decortication is a generally effective and safe method in the treatment of symptomatic simple renal cysts. The success rates of laparoscopic decortication and percutaneous aspiration-sclerotherapy were compared to assist in the decision making for the procedure. Methods: A total of 184 patients with symptomatic simple renal cysts were treated with either laparoscopic decortication in 149 cases or percutaneous aspiration-sclerotherapy in 35 cases. The follow-up period was approximately 35 months, and the symptomatic and radiologic success rates of the 2 techniques were compared retrospectively. Results: Laparoscopic decortication was found to have high success rates, a low recurrence rate, and minimal morbidity. Percutaneous aspiration-sclerotherapy is an outpatient procedure with a minimally higher recurrence rate. Conclusion: When a symptomatic cyst is encountered and treatment of the cyst is indicated, laparoscopic decortication is a more efficient method that offers better results than percutaneous aspiration-sclerotherapy. PMID:25848184

  5. Impact of renal medullary three-dimensional architecture on oxygen transport.

    PubMed

    Fry, Brendan C; Edwards, Aurélie; Sgouralis, Ioannis; Layton, Anita T

    2014-08-01

    We have developed a highly detailed mathematical model of solute transport in the renal medulla of the rat kidney to study the impact of the structured organization of nephrons and vessels revealed in anatomic studies. The model represents the arrangement of tubules around a vascular bundle in the outer medulla and around a collecting duct cluster in the upper inner medulla. Model simulations yield marked gradients in intrabundle and interbundle interstitial fluid oxygen tension (PO2), NaCl concentration, and osmolality in the outer medulla, owing to the vigorous active reabsorption of NaCl by the thick ascending limbs. In the inner medulla, where the thin ascending limbs do not mediate significant active NaCl transport, interstitial fluid composition becomes much more homogeneous with respect to NaCl, urea, and osmolality. Nonetheless, a substantial PO2 gradient remains, owing to the relatively high oxygen demand of the inner medullary collecting ducts. Perhaps more importantly, the model predicts that in the absence of the three-dimensional medullary architecture, oxygen delivery to the inner medulla would drastically decrease, with the terminal inner medulla nearly completely deprived of oxygen. Thus model results suggest that the functional role of the three-dimensional medullary architecture may be to preserve oxygen delivery to the papilla. Additionally, a simulation that represents low medullary blood flow suggests that the separation of thick limbs from the vascular bundles substantially increases the risk of the segments to hypoxic injury. When nephrons and vessels are more homogeneously distributed, luminal PO2 in the thick ascending limb of superficial nephrons increases by 66% in the inner stripe. Furthermore, simulations predict that owing to the Bohr effect, the presumed greater acidity of blood in the interbundle regions, where thick ascending limbs are located, relative to that in the vascular bundles, facilitates the delivery of O2 to support the

  6. Ablative therapies for renal tumors

    PubMed Central

    Ramanathan, Rajan; Leveillee, Raymond J.

    2010-01-01

    Owing to an increased use of diagnostic imaging for evaluating patients with other abdominal conditions, incidentally discovered kidney masses now account for a majority of renal tumors. Renal ablative therapy is assuming a more important role in patients with borderline renal impairment. Renal ablation uses heat or cold to bring about cell death. Radiofrequency ablation and cryoablation are two such procedures, and 5-year results are now emerging from both modalities. Renal biopsy at the time of ablation is extremely important in order to establish tissue diagnosis. Real-time temperature monitoring at the time of radiofrequency ablation is very useful to ensure adequacy of ablation. PMID:21789083

  7. An experimental renal acidification defect in patients with hereditary fructose intolerance

    PubMed Central

    Morris, R. Curtis

    1968-01-01

    In three unrelated patients with hereditary fructose intolerance (HFI), but in none of five normal subjects, the experimental administration of fructose invariably induced a reversible dysfunction of the renal tubule with biochemical and physiological characteristics of renal tubular acidosis. During a state of ammonium chloride-induced acidosis, (a) urinary pH was greater than six and the rate of excretion of net acid (titratable acid plus ammonium minus bicarbonate) was inappropriately low, (b) the glomerular filtration rate remained unchanged or decreased modestly, and (c) urinary excretion of titratable acid increased briskly with diuresis of infused phosphate, although urinary pH changed little. The tubular dysfunction, which also includes impaired tubular reabsorption of alpha amino nitrogen and phosphate, persisted throughout administration of fructose and disappeared afterward. The tubular dysfunction was not causally dependent on hypoglucosemia, ammonium chloride-induced acidosis or osmotic diuresis. Rather, it appeared causally related to the fructose-induced metabolic abnormality of patients with HFI. The causal enzymatic defect, the virtual absence of fructose-1-phosphate aldolase, occurs in the kidney as well as in the liver of patients with HFI. Images PMID:5653216

  8. Direct effect of vanadium on citrate uptake by rat renal brush border membrane vesicles (BBMV).

    PubMed

    Sato, Kazuhiro; Kusaka, Yukinori; Akino, Hironobu; Kanamaru, Hiroshi; Okada, Kenichiro

    2002-07-01

    Vanadium pentoxide is used as a catalyst and a ferrovanadium alloy ingredient in automotive steels and in jet engines and airframes. In addition, vanadium is found in fuel oils. Thus, occupational exposures to vanadium pentoxide and trioxide may occur during the cleaning of oil-fired ship boilers, and from oil-fired power station boilers. Occupational exposure to vanadium pentoxide induces green tongue, asthmatic symptoms and albuminuria with cast. Urinary citrate is freely filtered at the glomerulus, and its reabsorption in the proximal tubule is the major determinant of the rate of renal excretion. In this study, we exposed rat renal brush border membrane vesicles (BBMV) to vanadium pentoxide and examined their citrate uptake characteristics. The preincubation of BBMV with 1 mM V2O5 for 8 hours significantly inhibited citrate uptake compared with that of BBMV without V2O5, preincubation. These findings indicate that the preincubation of BBMV with vanadium pentoxide results in a time-dependent inhibition of citrate uptake by BBMV. These findings might contribute to nephrotoxicity in vanadium exposure. PMID:12141377

  9. Syndrome of Inappropriate Antidiuretic Hormone Secretion and Cerebral/Renal Salt Wasting Syndrome: Similarities and Differences

    PubMed Central

    Oh, Ji Young; Shin, Jae Il

    2015-01-01

    Hyponatremia (sodium levels of <135 mEq/L) is one of the most common electrolyte imbalances in clinical practice, especially in patients with neurologic diseases. Hyponatremia can cause cerebral edema and brain herniation; therefore, prompt diagnosis and proper treatment is important in preventing morbidity and mortality. Among various causes of hyponatremia, diagnosing syndrome of inappropriate antidiuretic hormone secretion (SIADH) and cerebral/renal salt wasting syndrome (C/RSW) is difficult due to many similarities. SIADH is caused by excess of renal water reabsorption through inappropriate antidiuretic hormone secretion, and fluid restriction is the treatment of choice. On the other hand, C/RSW is caused by natriuresis, which is followed by volume depletion and negative sodium balance and replacement of water and sodium is the mainstay of treatment. Determinating volume status in hyponatremic patients is the key point in differential between SIADH and C/RSW. However, in most situations, differential diagnosis of these two diseases is difficult because they overlap in many clinical and laboratory aspects, especially to assess differences in volume status of these patients. Although distinction between the SIADH and C/RSW is difficult, improvement of hypouricemia and an increased fractional excretion of uric acid after the correction of hyponatremia in SIADH, not in C/RSW, may be one of the helpful points in discriminating the two diseases. In this review, we compare these two diseases regarding the pathophysiologic mechanisms, diagnosis, and therapeutic point of view. PMID:25657991

  10. Blood pressure and amiloride-sensitive sodium channels in vascular and renal cells.

    PubMed

    Warnock, David G; Kusche-Vihrog, Kristina; Tarjus, Antoine; Sheng, Shaohu; Oberleithner, Hans; Kleyman, Thomas R; Jaisser, Frederic

    2014-03-01

    Sodium transport in the distal nephron is mediated by epithelial sodium channel activity. Proteolytic processing of external domains and inhibition with increased sodium concentrations are important regulatory features of epithelial sodium channel complexes expressed in the distal nephron. By contrast, sodium channels expressed in the vascular system are activated by increased external sodium concentrations, which results in changes in the mechanical properties and function of endothelial cells. Mechanosensitivity and shear stress affect both epithelial and vascular sodium channel activity. Guyton's hypothesis stated that blood pressure control is critically dependent on vascular tone and fluid handling by the kidney. The synergistic effects, and complementary regulation, of the epithelial and vascular systems are consistent with the Guytonian model of volume and blood pressure regulation, and probably reflect sequential evolution of the two systems. The integration of vascular tone, renal perfusion and regulation of renal sodium reabsorption is the central underpinning of the Guytonian model. In this Review, we focus on the expression and regulation of sodium channels, and we outline the emerging evidence that describes the central role of amiloride-sensitive sodium channels in the efferent (vascular) and afferent (epithelial) arms of this homeostatic system.

  11. How Do Antihypertensive Drugs Work? Insights from Studies of the Renal Regulation of Arterial Blood Pressure

    PubMed Central

    Digne-Malcolm, Holly; Frise, Matthew C.; Dorrington, Keith L.

    2016-01-01

    Though antihypertensive drugs have been in use for many decades, the mechanisms by which they act chronically to reduce blood pressure remain unclear. Over long periods, mean arterial blood pressure must match the perfusion pressure necessary for the kidney to achieve its role in eliminating the daily intake of salt and water. It follows that the kidney is the most likely target for the action of most effective antihypertensive agents used chronically in clinical practice today. Here we review the long-term renal actions of antihypertensive agents in human studies and find three different mechanisms of action for the drugs investigated. (i) Selective vasodilatation of the renal afferent arteriole (prazosin, indoramin, clonidine, moxonidine, α-methyldopa, some Ca++-channel blockers, angiotensin-receptor blockers, atenolol, metoprolol, bisoprolol, labetolol, hydrochlorothiazide, and furosemide). (ii) Inhibition of tubular solute reabsorption (propranolol, nadolol, oxprenolol, and indapamide). (iii) A combination of these first two mechanisms (amlodipine, nifedipine and ACE-inhibitors). These findings provide insights into the actions of antihypertensive drugs, and challenge misconceptions about the mechanisms underlying the therapeutic efficacy of many of the agents. PMID:27524972

  12. Demeclocycline attenuates hyponatremia by reducing aquaporin-2 expression in the renal inner medulla.

    PubMed

    Kortenoeven, Marleen L A; Sinke, Anne P; Hadrup, Niels; Trimpert, Christiane; Wetzels, Jack F M; Fenton, Robert A; Deen, Peter M T

    2013-12-15

    Binding of vasopressin to its type 2 receptor in renal collecting ducts induces cAMP signaling, transcription and translocation of aquaporin (AQP)2 water channels to the plasma membrane, and water reabsorption from the prourine. Demeclocycline is currently used to treat hyponatremia in patients with the syndrome of inappropriate antidiuretic hormone secretion (SIADH). Demeclocycline's mechanism of action, which is poorly understood, is studied here. In mouse cortical collecting duct (mpkCCD) cells, which exhibit deamino-8-D-arginine vasopressin (dDAVP)-dependent expression of endogenous AQP2, demeclocycline decreased AQP2 abundance and gene transcription but not its protein stability. Demeclocycline did not affect vasopressin type 2 receptor localization but decreased dDAVP-induced cAMP generation and the abundance of adenylate cyclase 3 and 5/6. The addition of exogenous cAMP partially corrected the demeclocycline effect. As in patients, demeclocycline increased urine volume, decreased urine osmolality, and reverted hyponatremia in an SIADH rat model. AQP2 and adenylate cyclase 5/6 abundances were reduced in the inner medulla but increased in the cortex and outer medulla, in the absence of any sign of toxicity. In conclusion, our in vitro and in vivo data indicate that demeclocycline mainly attenuates hyponatremia in SIADH by reducing adenylate cyclase 5/6 expression and, consequently, cAMP generation, AQP2 gene transcription, and AQP2 abundance in the renal inner medulla, coinciding with a reduced vasopressin escape response in other collecting duct segments.

  13. Quantitative estimation of transmembrane ion transport in rat renal collecting duct principal cells.

    PubMed

    Ilyaskin, Alexander V; Karpov, Denis I; Medvedev, Dmitriy A; Ershov, Alexander P; Baturina, Galina S; Katkova, Liubov E; Solenov, Evgeniy I

    2014-01-01

    Kidney collecting duct principal cells play a key role in regulated tubular reabsorption of water and sodium and secretion of potassium. The importance of this function for the maintenance of the osmotic homeostasis of the whole organism motivates extensive study of the ion transport properties of collecting duct principal cells. We performed experimental measurements of cell volume and intracellular sodium concentration in rat renal collecting duct principal cells from the outer medulla (OMCD) and used a mathematical model describing transmembrane ion fluxes to analyze the experimental data. The sodium and chloride concentrations ([Na+]in = 37.3 ± 3.3 mM, [Cl-]in = 32.2 ± 4.0 mM) in OMCD cells were quantitatively estimated. Correspondence between the experimentally measured cell physiological characteristics and the values of model permeability parameters was established. Plasma membrane permeabilities and the rates of transmembrane fluxes for sodium, potassium and chloride ions were estimated on the basis of ion substitution experiments and model predictions. In particular, calculated sodium (PNa), potassium (PK) and chloride (PCl) permeabilities were equal to 3.2 × 10-6 cm/s, 1.0 × 10-5 cm/s and 3.0 × 10-6 cm/s, respectively. This approach sets grounds for utilization of experimental measurements of intracellular sodium concentration and cell volume to quantify the ion permeabilities of OMCD principal cells and aids us in understanding the physiology of the adjustment of renal sodium and potassium excretion.

  14. Shear-induced reorganization of renal proximal tubule cell actin cytoskeleton and apical junctional complexes.

    PubMed

    Duan, Yi; Gotoh, Nanami; Yan, Qingshang; Du, Zhaopeng; Weinstein, Alan M; Wang, Tong; Weinbaum, Sheldon

    2008-08-12

    In this study, we demonstrate that fluid shear stress (FSS)-induced actin cytoskeletal reorganization and junctional formation in renal epithelial cells are nearly completely opposite the corresponding changes in vascular endothelial cells (ECs) [Thi MM et al. (2004) Proc Natl Acad Sci USA 101:16483-16488]. Mouse proximal tubule cells (PTCs) were subjected to 5 h of FSS (1 dyn/cm(2)) to investigate the dynamic responses of the cytoskeletal distribution of filamentous actin (F-actin), ZO-1, E-cadherin, vinculin, and paxillin to FSS. Immunofluorescence analysis revealed that FSS caused basal stress fiber disruption, more densely distributed peripheral actin bands (DPABs), and the formation of both tight junctions (TJs) and adherens junctions (AJs). A dramatic reinforcement of vinculin staining was found at the cell borders as well as the cell interior. These responses were abrogated by the actin-disrupting drug, cytochalasin D. To interpret these results, we propose a "junctional buttressing" model for PTCs in which FSS enables the DPABs, TJs, and AJs to become more tightly connected. In contrast, in the "bumper-car" model for ECs, all junctional connections were severely disrupted by FSS. This "junctional buttressing" model explains why a FSS of only 1/10 of that used in the EC study can cause a similarly dramatic, cytoskeletal response in these tall, cuboidal epithelial cells; and why junctional buttressing between adjacent cells may benefit renal epithelium in maximizing flow-activated, brush border-dependent, transcellular salt and water reabsorption. PMID:18685100

  15. How Do Antihypertensive Drugs Work? Insights from Studies of the Renal Regulation of Arterial Blood Pressure.

    PubMed

    Digne-Malcolm, Holly; Frise, Matthew C; Dorrington, Keith L

    2016-01-01

    Though antihypertensive drugs have been in use for many decades, the mechanisms by which they act chronically to reduce blood pressure remain unclear. Over long periods, mean arterial blood pressure must match the perfusion pressure necessary for the kidney to achieve its role in eliminating the daily intake of salt and water. It follows that the kidney is the most likely target for the action of most effective antihypertensive agents used chronically in clinical practice today. Here we review the long-term renal actions of antihypertensive agents in human studies and find three different mechanisms of action for the drugs investigated. (i) Selective vasodilatation of the renal afferent arteriole (prazosin, indoramin, clonidine, moxonidine, α-methyldopa, some Ca(++)-channel blockers, angiotensin-receptor blockers, atenolol, metoprolol, bisoprolol, labetolol, hydrochlorothiazide, and furosemide). (ii) Inhibition of tubular solute reabsorption (propranolol, nadolol, oxprenolol, and indapamide). (iii) A combination of these first two mechanisms (amlodipine, nifedipine and ACE-inhibitors). These findings provide insights into the actions of antihypertensive drugs, and challenge misconceptions about the mechanisms underlying the therapeutic efficacy of many of the agents. PMID:27524972

  16. Thyroid hormones increase Na -H exchange activity in renal brush border membranes

    SciTech Connect

    Kinsella, J.; Sacktor, B.

    1985-06-01

    Na -H exchange activity, i.e., amiloride-sensitive Na and H flux, in renal proximal tubule brush border (luminal) membrane vesicles was increased in the hyperthyroid rat and decreased in the hypothyroid rat, relative to the euthyroid animal. A positive correlation was found between Na -H exchange activity and serum concentrations of thyroxine (T4) and triiodothyronine (T3). The thyroid status of the animal did not alter amiloride-insensitive Na uptake. The rate of passive pH gradient dissipation was higher in membrane vesicles from hyperthyroid rats compared to the rate in vesicles from hypothyroid animals, a result which would tend to limit the increase in Na uptake in vesicles from hyperthyroid animals. Na -dependent phosphate uptake was increased in membrane vesicles from hyperthyroid rats; Na -dependent D-glucose and L-proline uptakes were not changed by the thyroid status of the animal. The effect of thyroid hormones in increasing the uptake of Na in the brush border membrane vesicle is consistent with the action of the hormones in enhancing renal Na reabsorption.

  17. [Renal abnormalities in ankylosing spondylitis].

    PubMed

    Samia, Barbouch; Hazgui, Faiçal; Abdelghani, Khaoula Ben; Hamida, Fethi Ben; Goucha, Rym; Hedri, Hafedh; Taarit, Chokri Ben; Maiz, Hedi Ben; Kheder, Adel

    2012-07-01

    We will study the epidemiologic, clinical, biological, therapeutic, prognostic characteristics and predictive factors of development of nephropathy in ankylosing spondylitis patients. We retrospectively reviewed the medical record of 32 cases with renal involvement among 212 cases of ankylosing spondylitis followed in our service during the period spread out between 1978 and 2006. The renal involvement occurred in all patients a mean of 12 years after the clinical onset of the rheumatic disease. Thirty-two patients presented one or more signs of renal involvement: microscopic hematuria in 22 patients, proteinuria in 23 patients, nephrotic syndrome in 11 patients and decreased renal function in 24 patients (75%). Secondary renal amyloidosis (13 patients), which corresponds to a prevalence of 6,1% and tubulointerstitial nephropathy (7 patients) were the most common cause of renal involvement in ankylosing spondylitis followed by IgA nephropathy (4 patients). Seventeen patients evolved to the end stage renal disease after an average time of 29.8 ± 46 months. The average follow-up of the patients was 4,4 years. By comparing the 32 patients presenting a SPA and renal disease to 88 with SPA and without nephropathy, we detected the predictive factors of occurred of nephropathy: tobacco, intense inflammatory syndrome, sacroileite stage 3 or 4 and presence of column bamboo. The finding of 75% of the patients presented a renal failure at the time of the diagnosis of renal involvement suggests that evidence of renal abnormality involvement should be actively sought in this disease. PMID:22520483

  18. [Renal abnormalities in ankylosing spondylitis].

    PubMed

    Samia, Barbouch; Hazgui, Faiçal; Abdelghani, Khaoula Ben; Hamida, Fethi Ben; Goucha, Rym; Hedri, Hafedh; Taarit, Chokri Ben; Maiz, Hedi Ben; Kheder, Adel

    2012-07-01

    We will study the epidemiologic, clinical, biological, therapeutic, prognostic characteristics and predictive factors of development of nephropathy in ankylosing spondylitis patients. We retrospectively reviewed the medical record of 32 cases with renal involvement among 212 cases of ankylosing spondylitis followed in our service during the period spread out between 1978 and 2006. The renal involvement occurred in all patients a mean of 12 years after the clinical onset of the rheumatic disease. Thirty-two patients presented one or more signs of renal involvement: microscopic hematuria in 22 patients, proteinuria in 23 patients, nephrotic syndrome in 11 patients and decreased renal function in 24 patients (75%). Secondary renal amyloidosis (13 patients), which corresponds to a prevalence of 6,1% and tubulointerstitial nephropathy (7 patients) were the most common cause of renal involvement in ankylosing spondylitis followed by IgA nephropathy (4 patients). Seventeen patients evolved to the end stage renal disease after an average time of 29.8 ± 46 months. The average follow-up of the patients was 4,4 years. By comparing the 32 patients presenting a SPA and renal disease to 88 with SPA and without nephropathy, we detected the predictive factors of occurred of nephropathy: tobacco, intense inflammatory syndrome, sacroileite stage 3 or 4 and presence of column bamboo. The finding of 75% of the patients presented a renal failure at the time of the diagnosis of renal involvement suggests that evidence of renal abnormality involvement should be actively sought in this disease.

  19. Site-Specific Radioiodination of HER2-Targeting Affibody Molecules using 4-Iodophenethylmaleimide Decreases Renal Uptake of Radioactivity

    PubMed Central

    Strand, Joanna; Nordeman, Patrik; Honarvar, Hadis; Altai, Mohamed; Orlova, Anna; Larhed, Mats; Tolmachev, Vladimir

    2015-01-01

    Affibody molecules are small scaffold-based affinity proteins with promising properties as probes for radionuclide-based molecular imaging. However, a high reabsorption of radiolabeled Affibody molecules in kidneys is an issue. We have shown that the use of 125I-3-iodo-((4-hydroxyphenyl)ethyl)maleimide (IHPEM) for site-specific labeling of cysteine-containing Affibody molecules provides high tumor uptake but low radioactivity retention in kidneys. We hypothesized that the use of 4-iodophenethylmaleimide (IPEM) would further reduce renal retention of radioactivity because of higher lipophilicity of radiometabolites. An anti-human epidermal growth factor receptor type 2 (HER2) Affibody molecule (ZHER2:2395) was labeled using 125I-IPEM with an overall yield of 45±3 %. 125I-IPEM-ZHER2:2395 bound specifically to HER2-expressing human ovarian carcinoma cells (SKOV-3 cell line). In NMRI mice, the renal uptake of 125I-IPEM-ZHER2:2395 (24±2 and 5.7±0.3 % IA g−1at 1 and 4 h after injection, respectively) was significantly lower than uptake of 125I-IHPEM-ZHER2:2395 (50±8 and 12±2 % IA g−1at 1 and 4 h after injection, respectively). In conclusion, the use of a more lipophilic linker for the radioiodination of Affibody molecules reduces renal radioactivity. PMID:25969816

  20. Novel cystine transporter in renal proximal tubule identified as a missing partner of cystinuria-related plasma membrane protein rBAT/SLC3A1

    PubMed Central

    Nagamori, Shushi; Wiriyasermkul, Pattama; Guarch, Meritxell Espino; Okuyama, Hirohisa; Nakagomi, Saya; Tadagaki, Kenjiro; Nishinaka, Yumiko; Bodoy, Susanna; Takafuji, Kazuaki; Okuda, Suguru; Kurokawa, Junko; Ohgaki, Ryuichi; Nunes, Virginia; Palacín, Manuel; Kanai, Yoshikatsu

    2016-01-01

    Heterodimeric amino acid transporters play crucial roles in epithelial transport, as well as in cellular nutrition. Among them, the heterodimer of a membrane protein b0,+AT/SLC7A9 and its auxiliary subunit rBAT/SLC3A1 is responsible for cystine reabsorption in renal proximal tubules. The mutations in either subunit cause cystinuria, an inherited amino aciduria with impaired renal reabsorption of cystine and dibasic amino acids. However, an unsolved paradox is that rBAT is highly expressed in the S3 segment, the late proximal tubules, whereas b0,+AT expression is highest in the S1 segment, the early proximal tubules, so that the presence of an unknown partner of rBAT in the S3 segment has been proposed. In this study, by means of coimmunoprecipitation followed by mass spectrometry, we have found that a membrane protein AGT1/SLC7A13 is the second partner of rBAT. AGT1 is localized in the apical membrane of the S3 segment, where it forms a heterodimer with rBAT. Depletion of rBAT in mice eliminates the expression of AGT1 in the renal apical membrane. We have reconstituted the purified AGT1-rBAT heterodimer into proteoliposomes and showed that AGT1 transports cystine, aspartate, and glutamate. In the apical membrane of the S3 segment, AGT1 is suggested to locate itself in close proximity to sodium-dependent acidic amino acid transporter EAAC1 for efficient functional coupling. EAAC1 is proposed to take up aspartate and glutamate released into luminal fluid by AGT1 due to its countertransport so that preventing the urinary loss of aspartate and glutamate. Taken all together, AGT1 is the long-postulated second cystine transporter in the S3 segment of proximal tubules and a possible candidate to be involved in isolated cystinuria. PMID:26739563

  1. Transarterial embolization for serious renal hemorrhage following renal biopsy.

    PubMed

    Zeng, Dan; Liu, Guihua; Sun, Xiangzhou; Zhuang, Wenquan; Zhang, Yuanyuan; Guo, Wenbo; Yang, Jianyong; Chen, Wei

    2013-01-01

    The goal of this study is to evaluate the feasibility and efficacy of percutaneous transarterial embolization for the treatment of serious renal hemorrhage after renal biopsy. Nine patients with renal hemorrhage had frank pain and gross hematuria as main symptoms after renal biopsy. Intrarenal arterial injuries and perinephric hematoma were confirmed by angiography in all cases. The arterial injuries led to two types of renal hemorrhage, Type I: severe renal injure or intrarenal renal artery rupture (n=5), with contrast medium spilling out of the artery and spreading into renal pelvis or kidney capsule in angiography; Type II, pseudo aneurysm or potential risk of intrarenal artery injure (n=4), where contrast medium that spilled out of intraartery was retained in the parenchyma as little spots less than 5 mm in diameter in angiography. Transcatheter superselective intrarenal artery embolization was performed with coils or microcoils (Type I intrarenal artery injure) and polyvinyl alcohol particles (Type II injure). The intrarenal arterial injuries were occluded successfully in all patients. Light or mild back or abdominal pain in the side of the embolized kidney was found in three patients following embolization procedures and disappeared 3 days later. Serum creatinine and perinephric hematoma were stable, and gross hematuresis stopped immediately (n=4) or 3-5 days (n=3) after embolization. In conclusions, transcatheter superselective intrarenal artery embolization as a minimally invasive therapy is safe and effective for treatment of serious renal hemorrhage following percutaneous renal biopsy.

  2. [Mitochondria and oxidative stress participation in renal inflammatory process].

    PubMed

    Manucha, Walter

    2014-01-01

    The apoptosis and renal fibrosis are processes inherent to the chronic kidney disease, and consequently a clear deregulation of the mitochondrial respiratory mechanism has been described in patients with chronic renal disease associated to an increase of the oxidative stress. The injured tubular cells linked to the interstitial macrophages and myofibroblasts produce cytokines and growth factors that encourage an inflammatory condition, inducing the apoptosis of the tubular cells and enabling the accumulation of the extracellular matrix. The angiotensin II has a central role in the renal fibrogenesis leading to a rapid progression of the chronic kidney disease. The growing levels of the angiotensin II induce pro-inflammatory cytokines, the activation of NF-kB, adhesion molecules,chemokines, growth factors, and oxidative stress. The current evidence suggests that the angiotensin II increases the mitochondrial oxidative stress, regulates the induction of the apoptosis and conditions the inflammatory process. Therefore the mitochondria and the oxidative stress would play a determinant role in the renal inflammatory process. Finally, this review summarizes our present knowledge regarding the possible mechanisms that would contribute to the apoptosis conditioned by inflammation and/or oxidative stress during the chronic renal disease. Additionally, a new concept of the anti-inflammatory tools is proposed to regulate the mitochondrial oxidative stress that would directly affect the inflammatory process and apoptosis. This concept could have positive consequences on the treatment of renal inflammatory pathologies and related diseases.

  3. Altered renal lipid metabolism and renal lipid accumulation in human diabetic nephropathy

    PubMed Central

    Herman-Edelstein, Michal; Scherzer, Pnina; Tobar, Ana; Levi, Moshe; Gafter, Uzi

    2014-01-01

    Animal models link ectopic lipid accumulation to renal dysfunction, but whether this process occurs in the human kidney is uncertain. To this end, we investigated whether altered renal TG and cholesterol metabolism results in lipid accumulation in human diabetic nephropathy (DN). Lipid staining and the expression of lipid metabolism genes were studied in kidney biopsies of patients with diagnosed DN (n = 34), and compared with normal kidneys (n = 12). We observed heavy lipid deposition and increased intracellular lipid droplets. Lipid deposition was associated with dysregulation of lipid metabolism genes. Fatty acid β-oxidation pathways including PPAR-α, carnitine palmitoyltransferase 1, acyl-CoA oxidase, and L-FABP were downregulated. Downregulation of renal lipoprotein lipase, which hydrolyzes circulating TGs, was associated with increased expression of angiopoietin-like protein 4. Cholesterol uptake receptor expression, including LDL receptors, oxidized LDL receptors, and acetylated LDL receptors, was significantly increased, while there was downregulation of genes effecting cholesterol efflux, including ABCA1, ABCG1, and apoE. There was a highly significant correlation between glomerular filtration rate, inflammation, and lipid metabolism genes, supporting a possible role of abnormal lipid metabolism in the pathogenesis of DN. These data suggest that renal lipid metabolism may serve as a target for specific therapies aimed at slowing the progression of glomerulosclerosis. PMID:24371263

  4. Prolonged Correction of Serum Phosphorus in Adults With X-Linked Hypophosphatemia Using Monthly Doses of KRN23

    PubMed Central

    Zhang, Xiaoping; Ruppe, Mary D.; Weber, Thomas J.; Klausner, Mark A.; Ito, Takahiro; Vergeire, Maria; Humphrey, Jeffrey S.; Glorieux, Francis H.; Portale, Anthony A.; Insogna, Karl; Peacock, Munro; Carpenter, Thomas O.

    2015-01-01

    Context: In X-linked hypophosphatemia (XLH), elevated fibroblast growth factor 23 (FGF23) decreases the renal tubular maximum reabsorption rate of phosphate/glomerular filtration rate (TmP/GFR) and serum inorganic phosphorus (Pi), resulting in rickets and/or osteomalacia. Objective: The objective was to test the hypothesis that monthly KRN23 (anti-FGF23 antibody) would safely improve serum Pi in adults with XLH. Design: Two sequential open-label phase 1/2 studies were done. Setting: Six academic medical centers were used. Participants: Twenty-eight adults with XLH participated in a 4-month dose-escalation study (0.05–0.6 mg/kg); 22 entered a 12-month extension study (0.1–1 mg/kg). Intervention: KRN23 was injected sc every 28 days. Main Outcome Measure: The main outcome measure was the proportion of subjects attaining normal serum Pi and safety. Results: At baseline, mean TmP/GFR, serum Pi, and 1,25-dihydroxyvitamin D [1,25(OH)2D] were 1.6 ± 0.4 mg/dL, 1.9 ± 0.3 mg/dL, and 36.6 ± 14.3 pg/mL, respectively. During dose escalation, TmP/GFR, Pi, and 1,25(OH)2D increased, peaking at 7 days for TmP/GFR and Pi and at 3–7 days for 1,25(OH)2D, remaining above (TmP/GFR, Pi) or near [1,25(OH)2D] pre-dose levels at trough. After each of the four escalating doses, peak Pi was between 2.5 and 4.5 mg/dL in 14.8, 37.0, 74.1, and 88.5% of subjects, respectively. During the 12-month extension, peak Pi was in the normal range for 57.9–85.0% of subjects, and ≥25% maintained trough Pi levels within the normal range. Serum Pi did not exceed 4.5 mg/dL in any subject. Although 1,25(OH)2D levels increased transiently, mean serum and urinary calcium remained normal. KRN23 treatment increased biomarkers of skeletal turnover and had a favorable safety profile. Conclusions: Monthly KRN23 significantly increased serum Pi, TmP/GFR, and 1,25(OH)2D in all subjects. KRN23 has potential for effectively treating XLH. PMID:25919461

  5. Renal proximal tubule Na,K-ATPase is controlled by CREB-regulated transcriptional coactivators as well as salt-inducible kinase 1.

    PubMed

    Taub, Mary; Garimella, Sudha; Kim, Dongwook; Rajkhowa, Trivikram; Cutuli, Facundo

    2015-12-01

    Sodium reabsorption by the kidney is regulated by locally produced natriuretic and anti-natriuretic factors, including dopamine and norepinephrine, respectively. Previous studies indicated that signaling events initiated by these natriuretic and anti-natriuretic factors achieve their effects by altering the phosphorylation of Na,K-ATPase in the renal proximal tubule, and that protein kinase A (PKA) and calcium-mediated signaling pathways are involved. The same signaling pathways also control the transcription of the Na,K-ATPase β subunit gene atp1b1 in renal proximal tubule cells. In this report, evidence is presented that (1) both the recently discovered cAMP-regulated transcriptional coactivators (CRTCs) and salt-inducible kinase 1 (SIK1) contribute to the transcriptional regulation of atp1b1 in renal proximal tubule (RPT) cells and (2) renal effectors, including norepinephrine, dopamine, prostaglandins, and sodium, play a role. Exogenously expressed CRTCs stimulate atp1b1 transcription. Evidence for a role of endogenous CRTCs includes the loss of transcriptional regulation of atp1b1 by a dominant-negative CRTC, as well as by a CREB mutant, with an altered CRTC binding site. In a number of experimental systems, SIK phosphorylates CRTCs, which are then sequestered in the cytoplasm, preventing their nuclear effects. Consistent with such a role of SIK in primary RPT cells, atp1b1 transcription increased in the presence of a dominant-negative SIK1, and in addition, regulation by dopamine, norepinephrine, and monensin was disrupted by a dominant-negative SIK1. These latter observations can be explained if SIK1 is phosphorylated and inactivated in the presence of these renal effectors. Our results support the hypothesis that Na,K-ATPase in the renal proximal tubule is regulated at the transcriptional level via SIK1 and CRTCs by renal effectors, in addition to the previously reported control of the phosphorylation of Na,K-ATPase.

  6. Renal Medullary Interstitial Cells

    NASA Astrophysics Data System (ADS)

    Rao, Reena; Hao, Chuan-Ming; Breyer, Matthew D.

    2007-04-01

    Renal medullary interstitial cells (RMICs) are specialized fibroblast-like cells that reside in the renal medulla among the vasa recta, the thin limbs of Henle's loop, and medullary collecting ducts. These cells are characterized by abundant lipid droplets in the cytoplasm. The lipid droplets are composed of triglycerides, cholesterol esters and free long-chain fatty acids, including arachidonic acid. RMICs are also a major site of cyclooxygenase2 (COX-2) expression, and thus a major site of COX-2 derived prostanoid biosynthesis. RMICs are also a potential target of hormones such as angiotensin II and endothelin. The RMIC COX-2 expression and the abundance of lipid droplets change with salt and water intake. These properties of RMICs are consistent with an important role of these cells in modulating physiologic and pathologic processes of the kidney.

  7. Renal stones in pregnancy

    PubMed Central

    Gibbons, Norma; DasGupta, Ranan

    2014-01-01

    Diagnosis and treatment of renal stones during pregnancy is a complex problem. Risks to the fetus from ionising radiation and interventional procedures need to be balanced with optimising clinical care for the mother. Management of such patients requires a clear understanding of available options, with a multidisciplinary team approach. In this review, we discuss the role of different diagnostic tests including ultrasound, magnetic resonance urography, and computerized tomography. We also provide an update on recent developments in the treatment of renal stones during pregnancy. Expectant management remains first-line treatment. Where definitive treatment of the stone is required, new evidence suggests that ureteroscopic stone removal may be equally safe, and possibly better than traditional temporising procedures. PMID:27512433

  8. Renal Replacement Therapy

    PubMed Central

    Ricci, Zaccaria; Romagnoli, Stefano; Ronco, Claudio

    2016-01-01

    During the last few years, due to medical and surgical evolution, patients with increasingly severe diseases causing multiorgan dysfunction are frequently admitted to intensive care units. Therapeutic options, when organ failure occurs, are frequently nonspecific and mostly directed towards supporting vital function. In these scenarios, the kidneys are almost always involved and, therefore, renal replacement therapies have become a common routine practice in critically ill patients with acute kidney injury. Recent technological improvement has led to the production of safe, versatile and efficient dialysis machines. In addition, emerging evidence may allow better individualization of treatment with tailored prescription depending on the patients’ clinical picture (e.g. sepsis, fluid overload, pediatric). The aim of the present review is to give a general overview of current practice in renal replacement therapies for critically ill patients. The main clinical aspects, including dose prescription, modality of dialysis delivery, anticoagulation strategies and timing will be addressed. In addition, some technical issues on physical principles governing blood purification, filters characteristics, and vascular access, will be covered. Finally, a section on current standard nomenclature of renal replacement therapy is devoted to clarify the “Tower of Babel” of critical care nephrology. PMID:26918174

  9. Renal Replacement Therapy.

    PubMed

    Ricci, Zaccaria; Romagnoli, Stefano; Ronco, Claudio

    2016-01-01

    During the last few years, due to medical and surgical evolution, patients with increasingly severe diseases causing multiorgan dysfunction are frequently admitted to intensive care units. Therapeutic options, when organ failure occurs, are frequently nonspecific and mostly directed towards supporting vital function. In these scenarios, the kidneys are almost always involved and, therefore, renal replacement therapies have become a common routine practice in critically ill patients with acute kidney injury. Recent technological improvement has led to the production of safe, versatile and efficient dialysis machines. In addition, emerging evidence may allow better individualization of treatment with tailored prescription depending on the patients' clinical picture (e.g. sepsis, fluid overload, pediatric). The aim of the present review is to give a general overview of current practice in renal replacement therapies for critically ill patients. The main clinical aspects, including dose prescription, modality of dialysis delivery, anticoagulation strategies and timing will be addressed. In addition, some technical issues on physical principles governing blood purification, filters characteristics, and vascular access, will be covered. Finally, a section on current standard nomenclature of renal replacement therapy is devoted to clarify the "Tower of Babel" of critical care nephrology. PMID:26918174

  10. Interpretation of male rat renal tubule tumors

    SciTech Connect

    Rodgers, I.S.; Baetcke, K.P.

    1993-12-01

    Based on an analysis of recent scientific studies, a Technical Panel of the U.S. Environmental Protection Agency`s (EPA) Risk Assessment Forum recently advised EPA risk assessors against using information on certain male rat renal tubule tumors to assess human risk under conditions specified in a new Forum report. Risk assessment approaches generally assume that chemicals producing tumors in laboratory animals are a potential cancer hazard to humans. For most chemicals, including classical rodent kidney carcinogens such as N-ethyl-N-hydroxyethylnitrosamine, this extrapolation remains appropriate. Some chemicals, however, induce accumulation of {alpha}{sub 2u}-globulin ({alpha}{sub 2u}-g), a low molecular weight protein, in the male rat kidney. The {alpha}{sub 2u}-g accumulation initiates a sequence of events that appears to lead to renal tubule tumor formation. Female rats and other laboratory mammals administered the same chemicals do not accumulate low molecular weight protein in the kidney, and they do not develop renal tubule tumors. Because humans appear to be more like other laboratory animals than like the male rat, in this special situation, the male rat is not a good model for assessing human risk. The Forum report stresses the need for full scrutiny of a substantial set of data to determine when it is reasonable to presume that renal tumors in male rats are linked to a process involving {alpha}{sub 2u}-g accumulation and to select appropriate procedures for estimating human risks under such circumstances. 92 refs.

  11. H+, Water and Urea Transport in the Inner Medullary Collecting Duct and Their Role in the Prevention and Pathogenesis of Renal Stone Disease

    NASA Astrophysics Data System (ADS)

    Wall, Susan M.; Klein, Janet D.

    2008-09-01

    The inner medullary collecting duct (IMCD) is the final site within the kidney for the reabsorption of urea, water and electrolytes and for the secretion of H+ before the luminal fluid becomes the final urine. Transporters expressed in the IMCD contribute to the generation of the large ion gradients that exist between the interstitium and the collecting duct lumen. Thus, the luminal fluid within the human IMCD can reach an osmolality of 1200 mOsm/kg H2O and a pH of 4. This ability of the human nephron to concentrate and acidify the urine might predispose to stone formation. However, under treatment conditions that predispose to stone formation, such as during hypercalciuria, the kidney mitigates stone formation by reducing solute concentration by reducing H2O reabsorption. Moreover, the kidney attenuates stone formation by tightly controlling acid-base balance, which prevents the bone loss, hypocitraturia and hypercalciuria observed during metabolic acidosis by augmenting net H+ excretion by tightly regulating H+ transporter function and through luminal buffering, particularly with NH3. This article will review the ion transporters present in the mammalian IMCD and their role in the prevention and in the pathogenesis of renal stone formation.

  12. Regulation of Renal Hemodynamics and Function by RGS2.

    PubMed

    Osei-Owusu, Patrick; Owens, Elizabeth A; Jie, Li; Reis, Janaina S; Forrester, Steven J; Kawai, Tatsuo; Eguchi, Satoru; Singh, Harpreet; Blumer, Kendall J

    2015-01-01

    Regulator of G protein signaling 2 (RGS2) controls G protein coupled receptor (GPCR) signaling by acting as a GTPase-activating protein for heterotrimeric G proteins. Certain Rgs2 gene mutations have been linked to human hypertension. Renal RGS2 deficiency is sufficient to cause hypertension in mice; however, the pathological mechanisms are unknown. Here we determined how the loss of RGS2 affects renal function. We examined renal hemodynamics and tubular function by monitoring renal blood flow (RBF), glomerular filtration rate (GFR), epithelial sodium channel (ENaC) expression and localization, and pressure natriuresis in wild type (WT) and RGS2 null (RGS2-/-) mice. Pressure natriuresis was determined by stepwise increases in renal perfusion pressure (RPP) and blood flow, or by systemic blockade of nitric oxide synthase with L-NG-Nitroarginine methyl ester (L-NAME). Baseline GFR was markedly decreased in RGS2-/- mice compared to WT controls (5.0 ± 0.8 vs. 2.5 ± 0.1 μl/min/g body weight, p<0.01). RBF was reduced (35.4 ± 3.6 vs. 29.1 ± 2.1 μl/min/g body weight, p=0.08) while renal vascular resistance (RVR; 2.1 ± 0.2 vs. 3.0 ± 0.2 mmHg/μl/min/g body weight, p<0.01) was elevated in RGS2-/- compared to WT mice. RGS2 deficiency caused decreased sensitivity and magnitude of changes in RVR and RBF after a step increase in RPP. The acute pressure-natriuresis curve was shifted rightward in RGS2-/- relative to WT mice. Sodium excretion rate following increased RPP by L-NAME was markedly decreased in RGS2-/- mice and accompanied by increased translocation of ENaC to the luminal wall. We conclude that RGS2 deficiency impairs renal function and autoregulation by increasing renal vascular resistance and reducing renal blood flow. These changes impair renal sodium handling by favoring sodium retention. The findings provide a new line of evidence for renal dysfunction as a primary cause of hypertension. PMID:26193676

  13. Regulation of Renal Hemodynamics and Function by RGS2

    PubMed Central

    Osei-Owusu, Patrick; Owens, Elizabeth A.; Jie, Li; Reis, Janaina S.; Forrester, Steven J.; Kawai, Tatsuo; Eguchi, Satoru; Singh, Harpreet; Blumer, Kendall J.

    2015-01-01

    Regulator of G protein signaling 2 (RGS2) controls G protein coupled receptor (GPCR) signaling by acting as a GTPase-activating protein for heterotrimeric G proteins. Certain Rgs2 gene mutations have been linked to human hypertension. Renal RGS2 deficiency is sufficient to cause hypertension in mice; however, the pathological mechanisms are unknown. Here we determined how the loss of RGS2 affects renal function. We examined renal hemodynamics and tubular function by monitoring renal blood flow (RBF), glomerular filtration rate (GFR), epithelial sodium channel (ENaC) expression and localization, and pressure natriuresis in wild type (WT) and RGS2 null (RGS2-/-) mice. Pressure natriuresis was determined by stepwise increases in renal perfusion pressure (RPP) and blood flow, or by systemic blockade of nitric oxide synthase with L-NG-Nitroarginine methyl ester (L-NAME). Baseline GFR was markedly decreased in RGS2-/- mice compared to WT controls (5.0 ± 0.8 vs. 2.5 ± 0.1 μl/min/g body weight, p<0.01). RBF was reduced (35.4 ± 3.6 vs. 29.1 ± 2.1 μl/min/g body weight, p=0.08) while renal vascular resistance (RVR; 2.1 ± 0.2 vs. 3.0 ± 0.2 mmHg/μl/min/g body weight, p<0.01) was elevated in RGS2-/- compared to WT mice. RGS2 deficiency caused decreased sensitivity and magnitude of changes in RVR and RBF after a step increase in RPP. The acute pressure–natriuresis curve was shifted rightward in RGS2-/- relative to WT mice. Sodium excretion rate following increased RPP by L-NAME was markedly decreased in RGS2-/- mice and accompanied by increased translocation of ENaC to the luminal wall. We conclude that RGS2 deficiency impairs renal function and autoregulation by increasing renal vascular resistance and reducing renal blood flow. These changes impair renal sodium handling by favoring sodium retention. The findings provide a new line of evidence for renal dysfunction as a primary cause of hypertension. PMID:26193676

  14. Increased Renal Solute Excretion in Rats Following Space Flight

    NASA Technical Reports Server (NTRS)

    Wade, Charles E.; Moore, A. L.; Morey-Holton, E.

    1995-01-01

    Following space flight a diuresis, due to an increase in free water clearance, has been suggested in humans. To assess the effects of space flight on renal function, rats were flown in space for 14 days. Rats were divided into three groups; vivarium controls (V;n=6; housed 2/shoe box cage), flight controls (FC;n=6; group housed in a flight cage), and flight animals (F;n=6). Upon landing all animals were placed into individual metabolic cages. Urine was collected daily for 7 days and every other day for 14 days. Urine output was increased (p less than 0.05; ANOVA) following flight for 3 days. On postflight day 1, flow rates were, V=6.8 plus or minus 0.9, FC=8.711.8 and F=16.6 plus or minus 2.7 microliter/min. Excretion rates of Na+ and K+ were increased, resulting in an increased osmotic excretion rate (V=7.9 plus or minus 0.9, FC=6.1 plus or minus 0.7 and F=13.5 plus or minus 0.7 uOsm/min). Creatinine excretion rate was increased over the first two postflight days. In the absence of changes in plasma creatinine, Na+, or K+ (samples obtained immediately post flight from similar rats compared to Day 14), GFR was increased following space flight. The increased excretion of solute was thus the result of increased delivery and decreased reabsorption. Osmotic clearance was increased (V=28, FC=27 and F=51 microliter/min), while free water clearance was decreased post flight (V=-21,FC=-18 and F=-34 microliter/min). In rats, the postflight diuresis is the result of an increase in solute (osmotic) excretion with an accompanying reduction in free water clearance.

  15. Dopamine-2 receptor blockade potentiates the renal effects of nitric oxide inhibition in humans.

    PubMed

    Montanari, A; Tateo, E; Fasoli, E; Donatini, A; Cimolato, B; Perinotto, P; Dall'Aglio, P

    1998-01-01

    In eight young healthy subjects on a 240 mM Na diet mean arterial pressure (MAP), renal hemodynamics and renal handling of Na and exogenous Li were measured at baseline and during acute nitric oxide (NO) inhibition with 90-minute infusion of 3.0 microg/kg x min(-1) of N(G)-L-arginine methyl ester (L-NAME). The same experiment was repeated with infusion of 50 microg/kg x min(-1) of DA2 receptor blocker L-Sulpiride (L-SULP) alone and, finally, with simultaneous infusion of both L-NAME and L-SULP. L-SULP alone did not elicit any effect. L-NAME alone produced no changes in MAP from 0 to 45 minutes (P1) and a 6.6% increase at 45 to 90 minutes (P2) of infusion. Effective renal plasma flow (ERPF, PAH clearance) and glomerular filtration rate (GFR, inulin clearance) declined by 10.2% and 7.6%, respectively, in P1 and by 15.3% and 11.5% in P2. Filtration Fraction (FF) rose by 4.2% in P2. Calculated renal vascular resistance (RVR) increased by 13.0% to 25.6%. Fractional excretion of Na (FENa) and Li (FELi) fell by 20.0% and by 16.0%, respectively, in P1 and by 40.0% and 25.1% in P2. All these variations, except for MAP and GFR, were significantly greater during coinfusion of L-NAME and L-SULP. ERPF declined by 17.8% to 33.7%, FENa by 26.7% to 53.3%, FELi by 13.8% to 34.8%, while RVR rose by 22.5% to 59.1% and FF by 10.1% to 29.3%. The present data confirm that NO blockade with low-dose systemic infusion of L-NAME produces renal vasoconstriction, reduced GFR with slight increase in FF, and enhanced tubular Li, and Na reabsorption. Since increase in RVR and FF and decrease in FENa and FELi are markedly potentiated by the simultaneous infusion of DA2 blocker L-SULP, which exerts no effects by itself, we suggest that DA interactions between DA system at the level of DA2 receptors and basal NO production play a physiological role in the regulation of renal function in humans.

  16. Renal implications of arterial hypertension.

    PubMed

    Ruilope, L M

    1997-03-01

    Renal vascular damage caused by arterial hypertension participates in alterations of the systemic vascular function and structure. Nephrosclerosis seems to run in parallel with the systemic atherosclerosis that accounts for the increased cardiovascular morbidity and mortality seen in hypertensive patients. Parameters indicating the existence of an alteration in renal function (increased serum creatinine, proteinuria and microalbuminuria) are independent predictors for an increased cardiovascular morbidity and mortality. Hence, parameters of renal function must be considered in any stratification of cardiovascular risk in hypertensive patients.

  17. Multiple oncocytomas and renal carcinoma

    SciTech Connect

    Velasquez, G.; Glass, T.A.; D'Souza, V.J.; Formanek, A.G.

    1984-01-01

    Renal oncocytoma, although rare, is being diagnosed more frequently, and criteria to differentiate it from other tumors have been described. Multiple oncocytomas have been reported, but an association between multiple oncocytomas and renal carcinoma in the same kidney has not been described. The authors report a case with two oncocytomas and a renal carcinoma in the right kidney as well as a right adrenal adenoma.

  18. [Fibromuscular dysplasia of renal arteries].

    PubMed

    Plouin, Pierre-François; Fiquet, Béatrice; Bobrie, Guillaume; Jeunemaître, Xavier

    2016-04-01

    Fibromuscular dysplasia is non-atherosclerotic, non-inflammatory disease of the medium caliber arteries causing segmental stenosis, and sometimes aneurysm and/or dissection. Renal involvement is either asymptomatic or revealed by hypertension, rarely acute complications (renal infarction/hemorrhage). Cross-sectional imaging or angiography differentiates multifocal fibromuscular dysplasia (pearl necklace appearance) and focal fibromuscular dysplasia (tubular stenosis). Several differential diagnoses are to be mentioned. Carotid and vertebral involvement are possible. Smoking cessation must be encouraged. Selected patients benefit from renal revascularization. The best indications are recent or resistant hypertension, and progressive renal atrophy. Angioplasty without stent revascularization is the technique of choice in purely stenotic forms. PMID:26968476

  19. [Mechanisms of repair after renal injury].

    PubMed

    Menè, P; Polci, R; Festuccia, F

    2003-01-01

    Recovery from kidney injury through repair mechanisms often linked to inflammation is conditioned by nature and severity of the insult. In the assessment of kidney repair, functional recovery should be kept distinct from structural repair: compensatory hypertrophy/function of intact nephrons often masks the inability of the kidney to heal or replace damaged structures. The mechanisms of repair reflect three degrees of injury, differently handled by the kidney. First, repair of DNA damage is accomplished through proofreading DNA polymerases, along with other controls for sequence misalignment / nucleotide replacement. If DNA cannot be repaired, cells carrying mutation(s) are disposed of through apoptosis, which is also critical to clearing damaged kidney cells and infiltrating leukocytes in acute and chronic ischemic, immunological, or chemical damage. A second mechanism of repair is linked to proliferation of surviving cells. At least 5 types of reparative proliferation are known to occur, some of which implicate stem cell immigration from distant reservoirs, followed by in situ differentiation. A third mode of repair could be referred to as structural repair, indeed limited in the human kidney by the absence of postnatal nephrogenesis. Recovery from acute tubular necrosis involves remodelling of the proximal tubule, with a strict requirement for integrity of the basement membrane. Contrary to the current dogma that only acute injury can be repaired, whereas chronic damage leads to irreversible loss of nephrons, evidence is emerging that some degree of renal remodelling occurs even in chronic renal disease, despite the occurrence of stabilized structural changes.

  20. Aquatic models for the study of renal transport function and pollutant toxicity

    SciTech Connect

    Miller, D.S.

    1987-04-01

    Studies of renal cell transport mechanisms and their impairment by xenobiotics are often limited by technical difficulties related to renal tubule complexity. Problems include the juxtaposition of multiple tubule segments with different transport functions and severely limited access to the tubular lumen. Some limitations can be overcome by the careful selection of an appropriate aquatic experimental system. Two aquatic models for the vertebrate proximal segment are discussed here. The first is the kidney from certain marine flounder, which offers the following advantages: long-term viability, little tissue of nonproximal origin, and easy tubule isolation. Data are presented to demonstrate how studies with flounder kidney can be used to elucidate cellular mechanisms whereby different classes of toxic pollutants may interact. Results from these experiments indicate that the excretion of certain anionic xenobiotics can be delayed (1) by other anionic xenobiotics that compete for secretory transport sites and (2) by compounds that disrupt cellular ion gradients and energy metabolism needed to drive transport. The second system is the crustacean urinary bladder, a simple, flatsheet epithelium. Bladder morphology and transport physiology closely resemble those of vertebrate proximal segment. Electron micrographs show a brush border membrane at the luminal surface, numerous mitochondria, and an infolded serosal membrane, while in vivo and in vitro transport studies show reabsorption of NaCl, nutrients and water and secretion of organic cations; organic anions are secreted in bladders from some species and reabsorbed in others. Moreover, since bladders can be mounted as flat sheets in flux chambers, studies with this tissue avoid the problems of complex renal tubule geometry and tissue heterogeneity and tissue heterogeneity that limit transport studies in proximal tubule.

  1. Modification by phosphate of PTH-dependent renal cyclic AMP response.

    PubMed

    Guillemant, J; Guillemant, S

    1993-04-01

    The PTH response and the renal cAMP response obtained after oral administration of either tricalcium phosphate or calcium gluconolactate were compared in 12 young adult males. Each subject was studied during a control period of two hours before and during an experimental period of four hours after ingestion of a single oral dose of calcium salt. The respective dosages (1.2 g of calcium plus 0.6 g phosphorus for tricalcium phosphate; 0.5 g of calcium for gluconolactate calcium) were chosen to provide similar significant (p = 0.0001) increases in serum ionized calcium (from 1.23 to 1.29 mmol/l vs from 1.23 to 1.28 mmol/l). After tricalcium phosphate a modest (10%) but significant (p < 0.001) rise in serum phosphate was observed. In both series of experiments similar inhibitory effects on PTH circulating levels were obtained (from 22.6 to 12.4 pg/ml after tricalcium phosphate and from 24.1 to 10.6 pg/ml after calcium gluconolactate). After ingestion of calcium gluconolactate the renal secretion of cAMP fell from 12.68 to 8.64 nmol/l GF (p < 0.001), whereas no significant alterations of the mean values of nephrogenous cAMP were detected after ingestion of tricalcium phosphate. In accordance with the role of cAMP as a second messenger, after calcium gluconolactate we obtained a significant increase in tubular maximal reabsorption of phosphate (p < 0.0001) contrasting with the absence of significant effect after tricalcium phosphate. The present results confirm that suppression of PTH secretion only depends on the rise of serum ionized calcium and suggest that additional phosphate administration could have a decoupling effect between PTH and renal cAMP secretion. PMID:8390394

  2. Functional coupling of renal K+ and Na+ handling causes high blood pressure in Na+ replete mice

    PubMed Central

    Vitzthum, Helga; Seniuk, Anika; Schulte, Laura Helene; Müller, Maxie Luise; Hetz, Hannah; Ehmke, Heimo

    2014-01-01

    A network of kinases, including WNKs, SPAK and Sgk1, is critical for the independent regulation of K+ and Na+ transport in the distal nephron. Angiotensin II is thought to act as a key hormone in orchestrating these kinases to switch from K+ secretion during hyperkalaemia to Na+ reabsorption during intravascular volume depletion, thus keeping disturbances in electrolyte and blood pressure homeostasis at a minimum. It remains unclear, however, how K+ and Na+ transport are regulated during a high Na+ intake, which is associated with suppressed angiotensin II levels and a high distal tubular Na+ load. We therefore investigated the integrated blood pressure, renal, hormonal and gene and protein expression responses to large changes of K+ intake in Na+ replete mice. Both low and high K+ intake increased blood pressure and caused Na+ retention. Low K+ intake was accompanied by an upregulation of the sodium-chloride cotransporter (NCC) and its activating kinase SPAK, and inhibition of NCC normalized blood pressure. Renal responses were unaffected by angiotensin AT1 receptor antagonism, indicating that low K+ intake activates the distal nephron by an angiotensin-independent mode of action. High K+ intake was associated with elevated plasma aldosterone concentrations and an upregulation of the epithelial sodium channel (ENaC) and its activating kinase Sgk1. Surprisingly, high K+ intake increased blood pressure even during ENaC or mineralocorticoid receptor antagonism, suggesting the contribution of aldosterone-independent mechanisms. These findings show that in a Na+ replete state, changes in K+ intake induce specific molecular and functional adaptations in the distal nephron that cause a functional coupling of renal K+ and Na+ handling, resulting in Na+ retention and high blood pressure when K+ intake is either restricted or excessively increased. PMID:24396058

  3. GATA2 Regulates Body Water Homeostasis through Maintaining Aquaporin 2 Expression in Renal Collecting Ducts

    PubMed Central

    Yu, Lei; Souma, Tomokazu; Takai, Jun; Satoh, Hironori; Morito, Naoki; Engel, James Douglas

    2014-01-01

    The transcription factor GATA2 plays pivotal roles in early renal development, but its distribution and physiological functions in adult kidney are largely unknown. We examined the GATA2 expression pattern in the adult kidney by tracing green fluorescent protein (GFP) fluorescence in Gata2GFP/+ mice that recapitulate endogenous GATA2 expression and found a robust GFP expression specifically in the renal medulla. Upon purification of the GFP-positive cells, we found that collecting duct (CD)-specific markers, including aquaporin 2 (Aqp2), an important channel for water reabsorption from urine, were abundantly expressed. To address the physiological function of GATA2 in the CD cells, we generated renal tubular cell-specific Gata2-deficient mice (Gata2-CKO) by crossing Gata2 floxed mice with inducible Pax8-Cre mice. We found that the Gata2-CKO mice showed a significant decrease in Aqp2 expression. The Gata2-CKO mice exhibited high 24-h urine volume and low urine osmolality, two important signs of diabetes insipidus. We introduced biotin-tagged GATA2 into a mouse CD-derived cell line and conducted chromatin pulldown assays, which revealed direct GATA2 binding to conserved GATA motifs in the Aqp2 promoter region. A luciferase reporter assay using an Aqp2 promoter-reporter showed that GATA2 trans activates Aqp2 through the GATA motifs. These results demonstrate that GATA2 regulates the Aqp2 gene expression in CD cells and contributes to the maintenance of the body water homeostasis. PMID:24636993

  4. Renal medullary ETB receptors produce diuresis and natriuresis via NOS1.

    PubMed

    Nakano, Daisuke; Pollock, Jennifer S; Pollock, David M

    2008-05-01

    Endothelin-1 (ET-1) plays an important role in the regulation of salt and water excretion in the kidney. Considerable in vitro evidence suggests that the renal medullary ET(B) receptor mediates ET-1-induced inhibition of electrolyte reabsorption by stimulating nitric oxide (NO) production. The present study was conducted to test the hypothesis that NO synthase 1 (NOS1) and protein kinase G (PKG) mediate the diuretic and natriuretic effects of ET(B) receptor stimulation in vivo. Infusion of the ET(B) receptor agonist sarafotoxin S6c (S6c: 0.45 microg x kg(-1) x h(-1)) in the renal medulla of anesthetized, male Sprague-Dawley rats markedly increased the urine flow (UV) and urinary sodium excretion (UNaV) by 67 and 120%, respectively. This was associated with an increase in medullary cGMP content but did not affect blood pressure. In addition, S6c-induced diuretic and natriuretic responses were absent in ET(B) receptor-deficient rats. Coinfusion of N(G)-propyl-l-arginine (10 microg x kg(-1) x h(-1)), a selective NOS1 inhibitor, suppressed S6c-induced increases in UV, UNaV, and medullary cGMP concentrations. Rp-8-Br-PET-cGMPS (10 microg x kg(-1) x h(-1)) or RQIKIWFQNRRMKWKK-LRK(5)H-amide (18 microg x kg(-1) x h(-1)), a PKG inhibitor, also inhibited S6c-induced increases in UV and UNaV. These results demonstrate that renal medullary ET(B) receptor activation induces diuretic and natriuretic responses through a NOS1, cGMP, and PKG pathway.

  5. Renal cirsoid arteriovenous malformation masquerading as neoplasia.

    PubMed

    Silverthorn, K; George, D

    1988-12-01

    A woman with renal colic and microscopic hematuria had filling defects in the left renal collecting system detected on excretory urography. A nephrectomy, performed because of suspected malignancy, might have been averted by renal angiography.

  6. Controversies in the pathogenesis of HIV-associated renal diseases

    PubMed Central

    Bruggeman, Leslie A.; Nelson, Peter J.

    2009-01-01

    The two most common HIV-associated renal diseases, HIV-associated nephropathy and HIV-immune-complex kidney disease, share the common pathologic finding of hyperplasia within the glomerulus. Podocyte injury is central to the pathogenesis of these diseases; however, the source of the proliferating glomerular epithelial cell remains a topic of debate. Parenchymal injury has been linked to direct infection of renal epithelial cells by HIV-1, although the mechanism of viral entry into this non-lymphoid compartment is unclear. Although transgenic rodent models have provided insight into viral proteins responsible for inducing renal disease, such models have important limitations. Rodent HIV-1 models, for instance, cannot replicate all aspects of immune activation, a process that could have an important role in the pathogenesis PMID:19776779

  7. Advanced glycation end products in renal failure: an overview.

    PubMed

    Noordzij, M J; Lefrandt, J D; Smit, A J

    2008-12-01

    The article aims to present an overview of the existing knowledge on advanced glycation end products (AGE). They are moieties that bind to proteins, but also lipids and nuclear acids. AGE are formed during glycation and oxidative stress. Accumulation of AGE occurs especially in diabetes and chronic renal failure and plays a major pathogenetic role. The deleterious effects of AGE result from cross-linking of proteins and activation of the receptor for advanced glycation end products. AGE accumulation can be noninvasively assessed by the skin autofluorescence reader. In diabetics, the skin autofluorescence predicts cardiac mortality and the occurrence of macro- and microvascular complications. In patients on haemodialysis, skin autofluorescence is highly elevated and predicts mortality. After renal transplantation AGE accumulation is lower than during haemodialysis, but still remains elevated and is a strong risk factor for chronic renal transplant dysfunction. Some of the potential methods to intervene with AGE accumulation are discussed in this article.

  8. Advanced glycation end products in renal failure: an overview.

    PubMed

    Noordzij, M J; Lefrandt, J D; Smit, A J

    2008-12-01

    The article aims to present an overview of the existing knowledge on advanced glycation end products (AGE). They are moieties that bind to proteins, but also lipids and nuclear acids. AGE are formed during glycation and oxidative stress. Accumulation of AGE occurs especially in diabetes and chronic renal failure and plays a major pathogenetic role. The deleterious effects of AGE result from cross-linking of proteins and activation of the receptor for advanced glycation end products. AGE accumulation can be noninvasively assessed by the skin autofluorescence reader. In diabetics, the skin autofluorescence predicts cardiac mortality and the occurrence of macro- and microvascular complications. In patients on haemodialysis, skin autofluorescence is highly elevated and predicts mortality. After renal transplantation AGE accumulation is lower than during haemodialysis, but still remains elevated and is a strong risk factor for chronic renal transplant dysfunction. Some of the potential methods to intervene with AGE accumulation are discussed in this article. PMID:19090900

  9. The renal scan in pregnant renal transplant patients

    SciTech Connect

    Goldstein, H.A.; Ziessman, H.A.; Fahey, F.H.; Collea, J.V.; Alijani, M.R.; Helfrich, G.B.

    1985-05-01

    With the greater frequency of renal transplant surgery, more female pts are becoming pregnant and carrying to term. In the renal allograft blood vessels and ureter may be compressed resulting in impaired renal function and/or, hypertension. Toxemia of pregnancy is seen more frequently than normal. Radionuclide renal scan monitoring may be of significant value in this high risk obstetrical pt. After being maintained during the pregnancy, renal function may also deteriorate in the post partum period. 5 pregnant renal transplant pts who delivered live babies had renal studies with Tc-99m DTPA to assess allograft perfusion and function. No transplanted kidney was lost during or after pregnancy as a result of pregnancy. No congenital anomalies were associated with transplant management. 7 studies were performed on these 5 pts. The 7 scans all showed the uterus/placenta. The bladder was always distorted. The transplanted kidney was rotated to a more vertical position in 3 pts. The radiation dose to the fetus is calculated at 0.024 rad/mCi administered. This study demonstrates the anatomic and physiologic alterations expected in the transplanted kidney during pregnancy when evaluated by renal scan and that the radiation burden may be acceptable in management of these pts.

  10. Re-assessment of the renal hydrosaline dysfunction in rats bearing the Walker-256 tumor.

    PubMed

    Rettori, O; Vieira-Matos, A N; Gontijo, J A

    2000-11-01

    Sodium retention is a frequent effect of cancer in humans and animals, but the mechanism involved is not yet understood. In the Walker-256 tumor, sodium retention has been considered to be a late effect, secondary to retention in the tumor mass, and/or to adrenal hypertrophy. Normally, (in rats receiving single tumor implants), the development of different tumor systemic effects (TSE) such as anorexia, sodium and fluid retention, anemia and immune depression in rats is synchronous within each individual but random among individuals of a given group in which they appear 6-47 days, or more, after inoculation. In present study, multifocal simultaneous inoculations of tumor cells resulted in a rapid and synchronous initiation of TSE (in 3-4 days) in all rats when no local effects of metastases could mask the results. Sodium retention is a special tumor effect on Na+ balance and a very sensitive indicator of TSE initiation. The results from multifocally inoculated rats were averaged in each (sub-clinical (SubC), moderate (mCP) and grave (gCP)) clinical phase and compared to food-restricted (FR) rats. There was a significant, early decrease in urinary Na+ excretion during mCP when compared to SubC and FR. The renal sites involved were studied in awake, unrestrained animals by measuring of sodium, creatinine and lithium clearances. There was an initial increase in the absolute proximal (mCP: 21.4 +/- 1.7 vs FR: 16.0 +/- 1.1 mmol/min/100 g b.w., p < 0.05) and post-proximal (mCP: 11.1 +/- 0.4 vs FR: 6.6 +/- 0.4 mmol/min/100 g b.w., p < 0.001) Na+ reabsorption, which were partially compensated for by a rise in glomerular filtration rate (mCP: 213 +/- 11.4 vs FR: 162 +/- 10.2 microL/min/100 g b.w., p < 0.01) and by a fall in fractional proximal Na+ reabsorption (mCP: 62.8 +/- 2.2% vs FR: 70.1 +/- 1.7%, p < 0.05), despite significant Na+ and fluid retention. The terminal phase of illness (gCP) culminated with a marked decrease in creatinine clearance, suggesting a significant

  11. Persistent Increase in Blood Pressure After Renal Nerve Stimulation in Accessory Renal Arteries After Sympathetic Renal Denervation.

    PubMed

    de Jong, Mark R; Hoogerwaard, Annemiek F; Gal, Pim; Adiyaman, Ahmet; Smit, Jaap Jan J; Delnoy, Peter Paul H M; Ramdat Misier, Anand R; van Hasselt, Boudewijn A A M; Heeg, Jan-Evert; le Polain de Waroux, Jean-Benoit; Lau, Elizabeth O Y; Staessen, Jan A; Persu, Alexandre; Elvan, Arif

    2016-06-01

    Blood pressure response to renal denervation is highly variable, and the proportion of responders is disappointing. This may be partly because of accessory renal arteries too small for denervation, causing incomplete ablation. Renal nerve stimulation before and after renal denervation is a promising approach to assess completeness of renal denervation and may predict blood pressure response to renal denervation. The objective of the current study was to assess renal nerve stimulation-induced blood pressure increase before and after renal sympathetic denervation in main and accessory renal arteries of anaesthetized patients with drug-resistant hypertension. The study included 21 patients. Nine patients had at least 1 accessory renal artery in which renal denervation was not feasible. Renal nerve stimulation was performed in the main arteries of all patients and in accessory renal arteries of 6 of 9 patients with accessory arteries, both before and after renal sympathetic denervation. Renal nerve stimulation before renal denervation elicited a substantial increase in systolic blood pressure, both in main (25.6±2.9 mm Hg; P<0.001) and accessory (24.3±7.4 mm Hg; P=0.047) renal arteries. After renal denervation, renal nerve stimulation-induced systolic blood pressure increase was blunted in the main renal arteries (Δ systolic blood pressure, 8.6±3.7 mm Hg; P=0.020), but not in the nondenervated renal accessory renal arteries (Δ systolic blood pressure, 27.1±7.6 mm Hg; P=0.917). This residual source of renal sympathetic tone may result in persistent hypertension after ablation and partly account for the large response variability.

  12. Ochratoxin A is not detectable in renal and testicular tumours

    PubMed Central

    Fahmy, Nader; Woo, Mark; Alameldin, Mona; MacDonald, Kyle; Goneau, Lee W.; Cadieux, Peter; Pautler, Stephen E.

    2014-01-01

    Introduction: Ochratoxin-A (OTA) is one of the most abundant food-contaminating mycotoxins, known for its nephrotoxicity, neurotoxicity, gonadotoxicity, teratogenicity, immunosuppression and carcinogenesis. OTA has been linked to several genitourinary pathologies, including Balkan nephropathy and genitourinary malignancies. We examine OTA levels in serum samples and tumour specimens collected from patients with renal and testicular tumours. Methods: Frozen samples were obtained from the Ontario Tumour Bank. Serum specimens, along with renal and testicular tumour biopsies, were included in this study. Normal tissue from the negative surgical margins of each tumour served as a control. OTA levels in serum was measured using the enzyme-linked immunosorbent assay (ELISA), while OTA detection in tissue specimens was determined using immunohistochemistry (IHC). Results: We included specimens collected from 56 patients (36 men and 20 women). Histopathology of the 52 renal tumours included 31 (60%) conventional type renal cell carcinomas (RCC), 5 (10%) chromophobe RCC, 5 (10%) papillary RCC, 1 (2%) oncocytoma and 10 (19%) upper tract urothelial carcinoma (UC). The 4 testicular tumours included 1 seminomatous (25%) germ cell tumour and 3 (75%) non-seminomatous germ cell tumours. OTA was detected in the serum of renal tumour patients, with a range from 0.004 to 0.25 ng/mL (mean: 0.07 and median 0.06 ng/mL). There was no OTA signal detected by IHC staining in all tested renal and testicular tumours. Conclusions: The OTA levels detected in the serum of patients were highly variable and relatively low. No OTA was detected in the tissue samples. PMID:24578744

  13. Early diagnosis of renal disease and renal failure.

    PubMed

    Lees, George E

    2004-07-01

    The main goal of early diagnosis of renal disease and renal failure in dogs and cats is to enable timely application of therapeutic interventions that may slow or halt disease progression. Strategies for early diagnosis of renal disease use urine tests that detect proteinuria that is a manifestation of altered glomerular permselectivity or impaired urine-concentrating ability as well blood tests to evaluate plasma creatinine concentration. Animals with progressive renal disease should be carefully investigated and treated appropriately. Animals with mild, possibly nonprogressive, renal disease should be monitored adequately to detect any worsening trends,which should lead to further investigation and treatment even if the increments of change are small. PMID:15223206

  14. Renal metabolism of calcitonin

    SciTech Connect

    Simmons, R.E.; Hjelle, J.T.; Mahoney, C.; Deftos, L.J.; Lisker, W.; Kato, P.; Rabkin, R.

    1988-04-01

    The kidneys account for approximately two-thirds of the metabolism of calcitonin, but relatively little is known regarding the details thereof. To further characterize this process, we examined the renal handling and metabolism of human calcitonin (hCT) by the isolated perfused rat kidney. We also studied the degradation of radiolabeled salmon calcitonin (sCT) by subcellular fractions prepared from isolated rabbit proximal tubules. The total renal (organ) clearance of immunoreactive hCT by the isolated kidney was 1.96 +/- 0.18 ml/min. This was independent of the perfusate total calcium concentration from 5.5 to 10.2 mg/dl. Total renal clearance exceeded the glomerular filtration rate (GFR, 0.68 +/- 0.05 ml/min), indicating filtration-independent removal. Urinary calcitonin clearance as a fraction of GFR averaged 2.6%. Gel filtration chromatography of medium from isolated kidneys perfused with /sup 125/I-labeled sCT showed the principal degradation products to be low molecular weight forms eluting with monoiodotyrosine. Intermediate size products were not detected. In the subcellular fractionation experiments, when carried out at pH 5.0, calcitonin hydrolysis exclusively followed the activities of the lysosomal enzyme N-acetyl-beta-glucosaminidase. Typically, at pH 7.5, 42% of total degradation occurred in the region of the brush-border enzyme alanyl aminopeptidase and 29% occurred in the region of the cytosolic enzyme phosphoglucomutase. Although 9% of the calcitonin-degrading activity was associated with basolateral membrane fractions, most of this activity could be accounted for by the presence of brush-border membranes.

  15. Renal failure in Yemen.

    PubMed

    Al-Rohani, M

    2004-01-01

    Renal failure remains a serious cause of mortality in Yemen. Our region has 1.25 million population and our hospital is the central hospital, which has a nephrology department and performs dialysis for the region. Between January 1998 and December 2002, we admitted 547 patients; including children, with acute renal failure (ARF) and chronic renal failure (CRF). CRF was observed in 400 patients, an incidence of 64 per million per year and a prevalence of 320 per million. ARF occurred in 147 persons with an incidence of 23.5 per million per year and a prevalence of 117.5 patients per million. Of all patients, 72% were adults (age range, 20-60 years) with a male preponderance. As a tropical country, malaria (27.9%), diarrhea (13.6%), and other infectious diseases were the main causes. Next most common were obstructive diseases causing CRF and ARF (26.8% and 12.9%, respectively), mainly urolithiasis, Schistosomiasis, and prostatic enlargement. However the cause of CRF in 57.5% of patients was unknown as most persons presented late with end-stage disease (64.7%), requiring immediate intervention. Other causes, such as hepatorenal syndrome, snake bite, diabetes mellitus, and hypertension, showed low occurrence rates. Patients presented to the hospital mostly in severe uremia and without a clear history of prior medications. The major findings were vomiting, acidosis, and hypertension with serum creatinine values ranging between 2.8-45 mg/dL (mean value, 13.4 mg/dL). Anemia was observed in 80.4% of CRF versus 62.6% of ARF patients. Hypertension prevalence was 65.5% among CRF patients, of whom 25% were in hypertensive crisis, whereas among ARF the prevalence was only 26.5%. PMID:15350475

  16. Renal calculus disease.

    PubMed

    Schulsinger, D A; Sosa, R E

    1998-03-01

    We have seen an explosion in technical innovations for the management of urolithiasis. Today, the endourologist possesses an assortment of minimally invasive tools to treat renal stones. Most patients receive fast, safe and effective treatment in the outpatient setting. Despite the many technical advances, however, anatomical malformations and complex stones still provide significant challenges in diagnosis, access to a targeted stone, fragmentation, and clearance of the resulting fragments. This review examines a variety of urinary stone presentations and treatment strategies for cost-effective management.

  17. Ifosfamide induced renal rickets.

    PubMed

    Lionel, Arul P; Chinnaswamy, Girish; John, Rikki R; Mathai, Sarah

    2014-09-01

    Ifosfamide is commonly used as a chemotherapeutic agent in children. The authors report a 4-y-old boy who developed proximal renal tubulopathy with florid rickets a year after completion of ifosfamide therapy for Ewing's sarcoma. After initiation of treatment, there was complete healing of rickets and he did not need supplements beyond 18 mo. Growth monitoring and musculoskeletal system examination is important in all children who have received ifosfamide therapy. Routine monitoring for nephrotoxicity during and after ifosfamide therapy helps in early identification and intervention. PMID:23912821

  18. [Renal oncocytoma: 2 clinical cases].

    PubMed

    Mazzoni, M; Boschi, L; Zamboni, W; Mandrioli, M

    1990-05-31

    Renal oncocytoma is an uncommon benign neoplasm of tubular epithelial origin. It usually occurs as single mass and clinically may be confused with renal cell carcinoma. Angiographic, CT and ultrasound studies may suggest the diagnosis but they are not pathognomonic. The clinical, diagnostic and anatomopathological features of two cases are presented and discussed.

  19. Polyhydramnios and acute renal failure

    PubMed Central

    Hamilton, D. V.; Kelly, Moira B.; Pryor, J. S.

    1980-01-01

    Acute renal failure secondary to ureteric obstruction is described in a primigravida with twin gestation and polyhydramnios. Relief of the obstruction occurred on drainage of the liquor and return to normal renal function following delivery. ImagesFig. 1 PMID:7022419

  20. Heterogeneity of bilateral renal agenesis.

    PubMed Central

    Fitch, N.

    1977-01-01

    Bilateral and unilateral renal agenesis may be expressions of single dominant gene. Chromosome abnormalities may be present and the renal agenesis may be part of a syndrome of multiple abnormalities. Apparently normal relatives of affected individuals should be screened by intravenous pyelography before genetic counselling given. PMID:844022

  1. Disseminated fungal infection with renal infarction simulating homicide.

    PubMed

    Ingham, Annabel; Gilbert, John D; Byard, Roger W

    2010-12-01

    Renal infarction is an uncommon finding at autopsy most often related to occlusive thromboembolism or to trauma. A 42-year-old woman is reported who presented with persistent right flank pain after an alleged assault with injury to the area 3 weeks previously. Renal infarction necessitated a right nephrectomy that was followed by multiorgan failure and death. Given the possible link between the assault and the renal pathology, a homicide investigation was initiated. Although renal infarction had been confirmed by hospital pathologists, microscopy with special staining of both kidneys and the heart after autopsy revealed multifocal areas of angioinvasion by fungi having morphologic characteristics of mucormycosis. The only other finding of significance was alcohol-related micronodular cirrhosis of the liver. Renal infarction had therefore been caused by an angioinvasive fungal infection predisposed to by immunocompromise associated with alcoholism and not by trauma-induced arterial dissection. This case demonstrates that careful histological assessment of tissues from medicolegal autopsies may occasionally identify unexpected and rare disorders that have been confused with the sequelae of inflicted injury.

  2. Successful Long-term Graft Survival of a Renal Transplantation Patient with Wiskott-Aldrich Syndrome.

    PubMed

    Kai, Kotaro; Sumida, Maki; Motoyoshi, Yaeko; Ogawa, Yuichi; Miki, Katsuyuki; Iwadoh, Kazuhiro; Sannomiya, Akihito; Murakami, Toru; Koyama, Ichiro; Kitajima, Kumiko; Nakajima, Ichiro; Morio, Tomohiro; Fuchinoue, Shohei

    2016-01-01

    Wiskott-Aldrich syndrome, a rare X-linked hereditary syndrome, is characterized by immunodeficiency, thrombocytopenia, and eczema. The underlying T-cell defect renders renal transplantation and immunosuppressive treatments uncertain. The present case exhibited the mild clinical manifestation, regarded as X-linked thrombocytopenia. He successfully underwent a living-donor ABO-compatible renal transplantation and splenectomy in 2002, and thereafter experiencing no severe rejection, serious infection, or malignancy for more than 10 years. Though IgA nephropathy was detected 8 months after transplantation, the patient's renal function and proteinuria were stable without any treatment. The present case showed a successful long-term graft survival and the importance of splenectomy added to renal transplantation. PMID:27374679

  3. Development of the Renal Arterioles

    PubMed Central

    Gomez, R. Ariel

    2011-01-01

    The kidney is a highly vascularized organ that normally receives a fifth of the cardiac output. The unique spatial arrangement of the kidney vasculature with each nephron is crucial for the regulation of renal blood flow, GFR, urine concentration, and other specialized kidney functions. Thus, the proper and timely assembly of kidney vessels with their respective nephrons is a crucial morphogenetic event leading to the formation of a functioning kidney necessary for independent extrauterine life. Mechanisms that govern the development of the kidney vasculature are poorly understood. In this review, we discuss the anatomical development, embryological origin, lineage relationships, and key regulators of the kidney arterioles and postglomerular circulation. Because renal disease is associated with deterioration of the kidney microvasculature and/or the reenactment of embryonic pathways, understanding the morphogenetic events and processes that maintain the renal vasculature may open new avenues for the preservation of renal structure and function and prevent the progression of renal disease. PMID:22052047

  4. Renal biopsy: methods and interpretation.

    PubMed

    Vaden, Shelly L

    2004-07-01

    Renal biopsy most often is indicated in the management of dogs and cats with glomerular disease or acute renal failure. Renal biopsy can readily be performed in dogs and cats via either percutaneous or surgical methods. Care should be taken to ensure that proper technique is used. When proper technique is employed and patient factors are properly addressed, renal biopsy is a relatively safe procedure that minimally affects renal function. Patients should be monitored during the post biopsy period for severe hemorrhage, the most common complication. Accurate diagnosis of glomerular disease, and therefore, accurate treatment planning,requires that the biopsy specimens not only be evaluated by light microscopy using special stains but by electron and immunofluorescent microscopy. PMID:15223207

  5. Renal Denervation: Where to Now?

    PubMed

    Wimmer, Neil J; Mauri, Laura

    2015-12-01

    Resistant hypertension remains a growing problem worldwide. Renal sympathetic denervation was thought to be a new method for the treatment for resistant hypertension. Early studies demonstrated a marked benefit in patients who underwent renal denervation procedures, but the pivotal SYMPLICITY 3-HTN trial, the only sham-controlled randomized trial performed, did not show a benefit for patients treated with the procedure compared to sham. There is still much to learn about the physiology and anatomy of renal sympathetic pathways as well as careful attention to medication adherence in order to understand the role of renal sympathetic denervation in treating hypertensive patients. While renal denervation technology remains available in clinical practice outside of the USA, we expect further development of this technology in the upcoming years and the continued evaluation of this technology in patients with hypertension as well as other disease states to fully understand its role. PMID:26482759

  6. Renal transplantation in infants.

    PubMed

    Jalanko, Hannu; Mattila, Ilkka; Holmberg, Christer

    2016-05-01

    Renal transplantation (RTx) has become an accepted mode of therapy in infants with severe renal failure. The major indications are structural abnormalities of the urinary tract, congenital nephrotic syndrome, polycystic diseases, and neonatal kidney injury. Assessment of these infants needs expertise and time as well as active treatment before RTx to ensure optimal growth and development, and to avoid complications that could lead to permanent neurological defects. RTx can be performed already in infants weighing around 5 kg, but most operations occur in infants with a weight of 10 kg or more. Perioperative management focuses on adequate perfusion of the allograft and avoidance of thrombotic and other surgical complications. Important long-term issues include rejections, infections, graft function, growth, bone health, metabolic problems, neurocognitive development, adherence to medication, pubertal maturation, and quality of life. The overall outcome of infant RTx has dramatically improved, with long-term patient and graft survivals of over 90 and 80 %, respectively. PMID:26115617

  7. Epigenetic Regulation of MicroRNAs Controlling CLDN14 Expression as a Mechanism for Renal Calcium Handling

    PubMed Central

    Gong, Yongfeng; Himmerkus, Nina; Plain, Allein; Bleich, Markus

    2015-01-01

    The kidney has a major role in extracellular calcium homeostasis. Multiple genetic linkage and association studies identified three tight junction genes from the kidney—claudin-14, -16, and -19—as critical for calcium imbalance diseases. Despite the compelling biologic evidence that the claudin-14/16/19 proteins form a regulated paracellular pathway for calcium reabsorption, approaches to regulate this transport pathway are largely unavailable, hindering the development of therapies to correct calcium transport abnormalities. Here, we report that treatment with histone deacetylase (HDAC) inhibitors downregulates renal CLDN14 mRNA and dramatically reduces urinary calcium excretion in mice. Furthermore, treatment of mice with HDAC inhibitors stimulated the transcription of renal microRNA-9 (miR-9) and miR-374 genes, which have been shown to repress the expression of claudin-14, the negative regulator of the paracellular pathway. With renal clearance and tubule perfusion techniques, we showed that HDAC inhibitors transiently increase the paracellular cation conductance in the thick ascending limb. Genetic ablation of claudin-14 or the use of a loop diuretic in mice abrogated HDAC inhibitor-induced hypocalciuria. The genetic mutations in the calcium-sensing receptor from patients with autosomal dominant hypocalcemia (ADH) repressed the transcription of miR-9 and miR-374 genes, and treatment with an HDAC inhibitor rescued the phenotypes of cell and animal models of ADH. Furthermore, systemic treatment of mice with antagomiRs against these miRs relieved claudin-14 gene silencing and caused an ADH-like phenotype. Together, our findings provide proof of concept for a novel therapeutic principle on the basis of epigenetic regulation of renal miRs to treat hypercalciuric diseases. PMID:25071082

  8. Roles of Rat Renal Organic Anion Transporters in Transporting Perfluorinated Carboxylates with Different Chain Lengths

    PubMed Central

    Weaver, Yi M.; Ehresman, David J.; Butenhoff, John L.; Hagenbuch, Bruno

    2010-01-01

    Perfluorinated carboxylates (PFCAs) are generally stable to metabolic and environmental degradation and have been found at low concentrations in environmental and biological samples. Renal clearance of PFCAs depends on chain length, species, and, in some cases, gender within species. While perfluoroheptanoate (C7) is almost completely eliminated renally in both male and female rats, renal clearance of perfluorooctanoate (C8) and perfluorononanoate (C9) is much higher in female rats. Perfluorodecanoate (C10) mainly accumulates in the liver for both genders. Therefore, we tested whether PFCAs with different chain lengths are substrates of rat renal transporters with gender-specific expression patterns. Inhibition of uptake of model substrates was measured for the basolateral organic anion transporter (Oat)1 and Oat3 and the apical Oat2, organic anion transporting polypeptide (Oatp)1a1, and Urat1 with 10μM PFCAs with chain lengths from 2 to 18 (C2–C18) carbons. Perfluorohexanoate (C6), C7, and C8 inhibited Oat1-mediated p-aminohippurate transport, with C7 being the strongest inhibitor. C8 and C9 were the strongest inhibitors for Oat3-mediated estrone-3-sulfate transport, while Oatp1a1-mediated estradiol-17β-glucuronide uptake was inhibited by C9, C10, and perflouroundecanoate (C11), with C10 giving the strongest inhibition. No strong inhibitors were found for Oat2 or Urat1. Kinetic analysis was performed for the strongest inhibitors. Oat1 transported C7 and C8 with Km values of 50.5 and 43.2μM, respectively. Oat3 transported C8 and C9 with Km values of 65.7 and 174.5μM, respectively. Oatp1a1-mediated transport yielded Km values of 126.4 (C8), 20.5 (C9), and 28.5μM (C10). These results suggest that Oat1 and Oat3 are involved in renal secretion of C7–C9, while Oatp1a1 can contribute to the reabsorption of C8 through C10, with highest affinities for C9 and C10. PMID:19915082

  9. Renal histology and immunopathology in distal renal tubular acidosis.

    PubMed

    Feest, T G; Lockwood, C M; Morley, A R; Uff, J S

    1978-11-01

    Renal biospy studies are reported from 10 patients with distal renal tubular acidosis (DRTA). On the biopsies from 6 patients who had associated immunological abnormalities immunofluorescent studies for immunoglobulins, complement, and fibrin were performed. Interstitial cellular infiltration and fibrosis were common findings in patients with and without immunological abnormalities, and were usually associated with nephrocalcinosis and/or recurrent urinary infection. No immune deposits were demonstrated in association with the renal tubules. This study shows that DRTA in immunologically abnormal patients is not caused by tubular deposition of antibody or immune complexes. The possibility of cell mediated immune damage is discussed.

  10. Spontaneous renal artery dissection complicating with renal infarction.

    PubMed

    Tsai, Tsung-Han; Su, Jung-Tsung; Hu, Sung-Yuan; Chao, Chih-Chung; Tsan, Yu-Tse; Lin, Tzu-Chieh

    2010-12-01

    Spontaneous renal artery dissection (SRAD) is a rare entity. We reported a 30-year-old healthy man presenting with sudden onset of left flank pain. Abdominal plain film and sonography were unremarkable. The contrast-enhanced abdominal computed tomographic (CT) scan demonstrated a dissecting intimal flap of the left distal renal artery (RA) complicating infarction. Selective angiography of the renal artery disclosed a long dissection of left distal RA with a patent true lumen and occlusion of left accessory RA. Conservative treatment with control of blood pressure and antiplatelet agent was prescribed. The patient was discharged with an uneventful condition on day 5.

  11. Study of the Renal Tubular Interactions of Thyrocalcitonin, Cyclic Adenosine 3′, 5′ -Monophosphate, 25-Hydroxycholecalciferol, and Calcium Ion

    PubMed Central

    Puschett, Jules B.; Beck, William S.; Jelonek, Adam; Fernandez, Pedro C.

    1974-01-01

    Acute clearance studies were performed in thyroparathyroidectomized animals to determine the actions and interactions of thyrocalcitonin (TCT), cyclic adenosine 3′5′-monophosphate (cAMP), 25-hydroxycholecalciferol (25HCC), and calcium ion on the reabsorption of phosphate, calcium, sodium, and potassium by the kidney. The infusion of 25HCC in a dosage of 60 U/h to moderately saline-expanded animals (2.5% body weight) induced a fall in the excretion of all of the ions under study after 90-120 min similar to that observed in previous experiments from this laboratory. Mean decrements in fractional excretion were: phosphate, 42.0% (P < 0.005); calcium, 25.0% (P < 0.005); sodium, 23.4% (P < 0.001); and potassium, 14.7% (P < 0.005). The superimposition of either porcine or salmon TCT (1-100 MRC U/h for 2 h) resulted in no further alterations in electrolyte excretion. However, the infusion of TCT during steady-state saline expansion, before the administration of 25HCC, obviated the renal transport effects of the vitamin D metabolite. Both in the latter studies, as well as those in which similar doses of TCT were given to hydropenic animals, the hormone itself failed to induce any consistent alteration in electrolyte excretion. Cyclic AMP (50 mg/h) caused an increase in the excretion of phosphate, sodium, and potassium and no change in calcium excretion. Like TCT, the nucleotide blocked the action of 25HCC on the kidney. Raising the mean level of serum ultrafilterable calcium to 3.02±0.25 mEq/liter from 1.62±0.17 mEq/liter likewise prevented enhanced ionic reabsorption due to 25HCC. PMID:4359939

  12. Uptake and binding of /sup 125/I-calmodulin by isolated rat renal brush border membrane vesicles

    SciTech Connect

    Meezan, E.; Elgavish, A.; Wallace, R.W.

    1986-05-01

    The authors have investigated the interaction of /sup 125/I-calmodulin with isolated rat renal brush border membrane vesicles (BBV) using an experimental protocol which allows us to distinguish between ligand binding to the outside of the vesicles vs. uptake and possible binding to the vesicle interior. By examining the association of /sup 125/I-calmodulin with BBV as a function of medium osmolarity (300-1100 mosm) to alter intravesicular space, virtually all ligand interaction with BBV was found to represent uptake of intact /sup 125/I-calmodulin into the intravesicular space. Uptake appeared specific by the following criteria: (1) it was largely calcium dependent (2) it was inhibited in a dose dependent fashion by calmodulin and the homologous protein troponin C, but not by unrelated proteins (lysozyme, cytochrome C, insulin) (3) it was inhibited by known calmodulin antagonists (calmidazolium, mellitin, trifluoperazine). Calmodulin uptake may be followed by binding of /sup 125/I-calmodulin to intravesicular BBV proteins; calmodulin-binding proteins in BBV with molecular weights of 143K, 118K, 50K, 47.5K, 46.5K and 35K were identified by Western blotting techniques. The specific association of /sup 125/I-calmodulin with isolated BBV is of interest in regard to the possible role of this calcium regulatory protein in the protein reabsorptive and ion transport functions of this renal tubular membrane fraction.

  13. SORLA/SORL1 functionally interacts with SPAK to control renal activation of Na(+)-K(+)-Cl(-) cotransporter 2.

    PubMed

    Reiche, Juliane; Theilig, Franziska; Rafiqi, Fatema H; Carlo, Anne-Sophie; Militz, Daniel; Mutig, Kerim; Todiras, Mihail; Christensen, Erik Ilsø; Ellison, David H; Bader, Michael; Nykjaer, Anders; Bachmann, Sebastian; Alessi, Dario; Willnow, Thomas E

    2010-06-01

    Proper control of NaCl excretion in the kidney is central to bodily functions, yet many mechanisms that regulate reabsorption of sodium and chloride in the kidney remain incompletely understood. Here, we identify an important role played by the intracellular sorting receptor SORLA (sorting protein-related receptor with A-type repeats) in functional activation of renal ion transporters. We demonstrate that SORLA is expressed in epithelial cells of the thick ascending limb (TAL) of Henle's loop and that lack of receptor expression in this cell type in SORLA-deficient mice results in an inability to properly reabsorb sodium and chloride during osmotic stress. The underlying cellular defect was correlated with an inability of the TAL to phosphorylate Na(+)-K(+)-Cl(-) cotransporter 2 (NKCC2), the major sodium transporter in the distal nephron. SORLA functionally interacts with Ste-20-related proline-alanine-rich kinase (SPAK), an activator of NKCC2, and receptor deficiency is associated with missorting of SPAK. Our data suggest a novel regulatory pathway whereby intracellular trafficking of SPAK by the sorting receptor SORLA is crucial for proper NKCC2 activation and for maintenance of renal ion balance. PMID:20385770

  14. Absorption capacity of renal proximal tubular cells studied by combined injections of YFP and GFP in Rana temporaria L.

    PubMed

    Prutskova, N P; Seliverstova, E V

    2013-09-01

    The capacity for protein reabsorption in the renal proximal tubule (PT) was studied in Rana temporaria frogs by separate, simultaneous and sequential introduction of yellow fluorescent protein (YFP) and green fluorescent protein (GFP). The uptake patterns of YFP and GFP in PT epithelial cells were investigated 15-120min after their bolus intravenous and intraperitoneal injection. As shown by confocal microscopy, the tubular uptake of YFP and GFP was time- and dose-dependent. These proteins are absorbed in similar way and can be accumulated in the same endocytic vesicles after their combined injections. When GFP was injected 30 and 90min before YFP, and vice versa, the number of vesicles with pre-injected protein increased and the percentage of vesicles with colocalized GFP and YFP reduced. At the same time, the uptake rate of a protein injected later progressively and significantly decreased. Subcellular localization of endocytic receptors, megalin and cubilin, in renal PT cells after intravenous YFP introduction were revealed by immunofluorescent microscopy. Colocalization of internalized YFP with megalin or cubilin in the endocytic vesicles was demonstrated. The data suggest the possibility of protein uptake by receptor-mediated endocytosis and the existence of a mechanism limiting the protein absorption rate in wintering frogs.

  15. Renal Toxicities of Targeted Therapies.

    PubMed

    Abbas, Anum; Mirza, Mohsin M; Ganti, Apar Kishor; Tendulkar, Ketki

    2015-12-01

    With the incorporation of targeted therapies in routine cancer therapy, it is imperative that the array of toxicities associated with these agents be well-recognized and managed, especially since these toxicities are distinct from those seen with conventional cytotoxic agents. This review will focus on these renal toxicities from commonly used targeted agents. This review discusses the mechanisms of these side effects and management strategies. Anti-vascular endothelial growth factor (VEGF) agents including the monoclonal antibody bevacizumab, aflibercept (VEGF trap), and anti-VEGF receptor (VEGFR) tyrosine kinase inhibitors (TKIs) all cause hypertension, whereas some of them result in proteinuria. Monoclonal antibodies against the human epidermal growth factor receptor (HER) family of receptors, such as cetuximab and panitumumab, cause electrolyte imbalances including hypomagnesemia and hypokalemia due to the direct nephrotoxic effect of the drug on renal tubules. Cetuximab may also result in renal tubular acidosis. The TKIs, imatinib and dasatinib, can result in acute or chronic renal failure. Rituximab, an anti-CD20 monoclonal antibody, can cause acute renal failure following initiation of therapy because of the onset of acute tumor lysis syndrome. Everolimus, a mammalian target of rapamycin (mTOR) inhibitor, can result in proteinuria. Discerning the renal adverse effects resulting from these agents is essential for safe treatment strategies, particularly in those with pre-existing renal disease.

  16. Wegener's granulomatosis with renal involvement: patient survival and correlations between initial renal function, renal histology, therapy and renal outcome.

    PubMed

    Andrassy, K; Erb, A; Koderisch, J; Waldherr, R; Ritz, E

    1991-04-01

    Patient survival and renal outcome were followed in 25 patients with biopsy confirmed Wegener's granulomatosis and renal involvement. Fourteen out of 25 patients required dialysis on admission, 11/25 patients did not. All patients were treated with a novel protocol comprising methylprednisolone and cyclophosphamide. The median follow-up observation was 36 months (12-113 months). With the exception of 1 patient (who died from causes not related to Wegener's granulomatosis) all patients are alive. Among the patients initially requiring dialysis (n = 14) 4 are in terminal renal failure after 0, 7, 21 and 38 months respectively. In the nondialysis group (n = 11) only 1 patient subsequently required chronic dialysis 30 months after clinical admission. Renal failure was due to non-compliance with immunosuppressive therapy in at least 2 patients. Percentage of obsolescent glomeruli and the degree of tubulointerstitial lesions, but not active glomerular lesions (crescents, necroses) predicted renal outcome. The major cause of renal functional impairment was relapse of Wegener's granulomatosis usually within 2 years after clinical remission. Therefore prolonged treatment with cyclophosphamide for at least 2 years after clinical remission is recommended. Two patients with initially negative immunohistology had a second renal biopsy which revealed de novo appearance of mesangial IgA deposits.

  17. Renal Toxicities of Targeted Therapies.

    PubMed

    Abbas, Anum; Mirza, Mohsin M; Ganti, Apar Kishor; Tendulkar, Ketki

    2015-12-01

    With the incorporation of targeted therapies in routine cancer therapy, it is imperative that the array of toxicities associated with these agents be well-recognized and managed, especially since these toxicities are distinct from those seen with conventional cytotoxic agents. This review will focus on these renal toxicities from commonly used targeted agents. This review discusses the mechanisms of these side effects and management strategies. Anti-vascular endothelial growth factor (VEGF) agents including the monoclonal antibody bevacizumab, aflibercept (VEGF trap), and anti-VEGF receptor (VEGFR) tyrosine kinase inhibitors (TKIs) all cause hypertension, whereas some of them result in proteinuria. Monoclonal antibodies against the human epidermal growth factor receptor (HER) family of receptors, such as cetuximab and panitumumab, cause electrolyte imbalances including hypomagnesemia and hypokalemia due to the direct nephrotoxic effect of the drug on renal tubules. Cetuximab may also result in renal tubular acidosis. The TKIs, imatinib and dasatinib, can result in acute or chronic renal failure. Rituximab, an anti-CD20 monoclonal antibody, can cause acute renal failure following initiation of therapy because of the onset of acute tumor lysis syndrome. Everolimus, a mammalian target of rapamycin (mTOR) inhibitor, can result in proteinuria. Discerning the renal adverse effects resulting from these agents is essential for safe treatment strategies, particularly in those with pre-existing renal disease. PMID:25922090

  18. Angio-embolization of a renal pseudoaneurysm complicating a percutaneous renal biopsy: a case report.

    PubMed

    Rafik, Hicham; Azizi, Mounia; El Kabbaj, Driss; Benyahia, Mohammed

    2015-01-01

    We report the treatment of a bleeding renal pseudoaneurysm by angio-embolization. A 21 years old woman developed macroscopic haematuria following renal biopsy. Renal angio-scan showed a 1.4 cm renal pseudoaneurysm in the left kidney. The presence of pseudoaneurysm was confirmed by selective renal angiography. Successful embolization was performed using gelatine sponge particles.

  19. Angio-embolization of a renal pseudoaneurysm complicating a percutaneous renal biopsy: a case report

    PubMed Central

    Rafik, Hicham; Azizi, Mounia; Kabbaj, Driss El; Benyahia, Mohammed

    2015-01-01

    We report the treatment of a bleeding renal pseudoaneurysm by angio-embolization. A 21 years old woman developed macroscopic haematuria following renal biopsy. Renal angio-scan showed a 1.4 cm renal pseudoaneurysm in the left kidney. The presence of pseudoaneurysm was confirmed by selective renal angiography. Successful embolization was performed using gelatine sponge particles. PMID:26958141

  20. Successful management of neonatal renal venous thrombosis.

    PubMed

    Piscitelli, Antonio; Galiano, Rossella; Piccolo, Vincenzo; Concolino, Daniela; Strisciuglio, Pietro

    2014-10-01

    Renal vein thrombosis is the most common vascular condition involving the newborn kidney and it can result in severe renal damage. We report a newborn with renal vein thrombosis treated with continuous infusion of unfractionated heparin who had normal total renal function after 3 years of follow up, despite reduction of the functional contribution of the affected kidney.

  1. Diagnosis and management of renal angioma.

    PubMed Central

    Abercrombie, J F; Holmes, S A; Ball, A J

    1992-01-01

    Five patients with symptomatic renal angiomata are described. All presented with heavy haematuria and unilateral ureteric obstruction without evidence of a mass distorting the renal architecture. Renal angiomata are most easily diagnosed by selective renal angiography. They may be treated by intraarterial embolization, avoiding the need for major ablative surgery. Images Figure 1. Figure 2. Figure 3. PMID:1433042

  2. ER stress and basement membrane defects combine to cause glomerular and tubular renal disease resulting from Col4a1 mutations in mice.

    PubMed

    Jones, Frances E; Bailey, Matthew A; Murray, Lydia S; Lu, Yinhui; McNeilly, Sarah; Schlötzer-Schrehardt, Ursula; Lennon, Rachel; Sado, Yoshikazu; Brownstein, David G; Mullins, John J; Kadler, Karl E; Van Agtmael, Tom

    2016-02-01

    Collagen IV is a major component of basement membranes, and mutations in COL4A1, which encodes collagen IV alpha chain 1, cause a multisystemic disease encompassing cerebrovascular, eye and kidney defects. However, COL4A1 renal disease remains poorly characterized and its pathomolecular mechanisms are unknown. We show that Col4a1 mutations in mice cause hypotension and renal disease, including proteinuria and defects in Bowman's capsule and the glomerular basement membrane, indicating a role for Col4a1 in glomerular filtration. Impaired sodium reabsorption in the loop of Henle and distal nephron despite elevated aldosterone levels indicates that tubular defects contribute to the hypotension, highlighting a novel role for the basement membrane in vascular homeostasis by modulation of the tubular response to aldosterone. Col4a1 mutations also cause diabetes insipidus, whereby the tubular defects lead to polyuria associated with medullary atrophy and a subsequent reduction in the ability to upregulate aquaporin 2 and concentrate urine. Moreover, haematuria, haemorrhage and vascular basement membrane defects confirm an important vascular component. Interestingly, although structural and compositional basement membrane defects occurred in the glomerulus and Bowman's capsule, no tubular basement membrane defects were detected. By contrast, medullary atrophy was associated with chronic ER stress, providing evidence for cell-type-dependent molecular mechanisms of Col4a1 mutations. These data show that both basement membrane defects and ER stress contribute to Col4a1 renal disease, which has important implications for the development of treatment strategies for collagenopathies.

  3. Serial follow-up study on renal handling of calcium and phosphorus after soil replacement in Cd-polluted rice paddies estimated using a general linear mixed model.

    PubMed

    Kobayashi, Etsuko; Suwazono, Yasushi; Honda, Ryumon; Dochi, Mire; Nishijo, Muneko; Kido, Teruhiko; Nakagawa, Hideaki

    2009-01-01

    A 10-year follow-up study was conducted to investigate the effects of renal handling of calcium (Ca) and phosphorus (P) after the removal of cadmium-polluted soil in rice paddies and replacing it with nonpolluted soil. Using a general linear mixed model, serial changes of Ca and P concentrations in urine and serum (Ca-U/S, P-U/S), fractional excretion of Ca (FECa), and percent tubular reabsorption of P (%TRP) were determined in 37 persons requiring observation in the Cd-polluted Kakehashi River Basin, Japan. Ca-U and Ca-S remained within the normal range in both sexes. FECa in men returned to the normal level within 3.3 years from the completion of soil replacement. Overall, it is suggested that the renal handling of Ca showed no or only a slight change throughout the observation period in both sexes. P-U decreased gradually. P-S showed lower than normal values in the men and values at the lower end of the normal range in women, although the values recovered gradually to normal. %TRP values remained low throughout the observation period and the values did not recover in either sex. However, the results of P-U and P-S suggested that the renal handling of P may recover after the completion of soil replacement.

  4. [Travel and renal insufficiency].

    PubMed

    Lavelle, O; Berland, Y

    1997-01-01

    Traveling can be dangerous for subjects with kidney insufficiency. Water loss or septic episodes can further increase renal dysfunction. Poor diet can lead to hyperkaliemia. Immunosuppression not only enhances the risk of infection but also complicates administration of live vaccines. Some antimalarial drugs are contraindicated (e.g. mefloquine) and others must be used with precaution. Prior to departure persons requiring hemodialysis should book sessions at centers listed in specialized guidebooks. In addition to infection, risks for hemodialysis patients include thrombosis of the arteriovenous fistula in case of dehydration or hypotension. In subjects with transplanted kidney, the risk of rejection can be enhanced either by poor compliance with immunodepressor treatment or by vaccination-induced antigenic stimulation. Pre-travel evaluation is necessary to determine metabolic, nutritional, and immune status. Subjects with kidney insufficiency and transplanted kidneys should be informed of the dangers and appropriate action in case of trouble.

  5. Hyperparathyroidism of Renal Disease

    PubMed Central

    Yuen, Noah K; Ananthakrishnan, Shubha; Campbell, Michael J

    2016-01-01

    Renal hyperparathyroidism (rHPT) is a common complication of chronic kidney disease characterized by elevated parathyroid hormone levels secondary to derangements in the homeostasis of calcium, phosphate, and vitamin D. Patients with rHPT experience increased rates of cardiovascular problems and bone disease. The Kidney Disease: Improving Global Outcomes guidelines recommend that screening and management of rHPT be initiated for all patients with chronic kidney disease stage 3 (estimated glomerular filtration rate, < 60 mL/min/1.73 m2). Since the 1990s, improving medical management with vitamin D analogs, phosphate binders, and calcimimetic drugs has expanded the treatment options for patients with rHPT, but some patients still require a parathyroidectomy to mitigate the sequelae of this challenging disease. PMID:27479950

  6. Renal Ablation Update

    PubMed Central

    Khiatani, Vishal; Dixon, Robert G.

    2014-01-01

    Thermal ablative technologies have evolved considerably in the recent past and are now an important component of current clinical guidelines for the treatment of small renal masses. Both radiofrequency ablation and cryoablation have intermediate-term oncologic control that rivals surgical options, with favorable complication profiles. Studies comparing cryoablation and radiofrequency ablation show no significant difference in oncologic control or complication profile between the two modalities. Early data from small series with microwave ablation have shown similar promising results. Newer technologies including irreversible electroporation and high-intensity–focused ultrasound have theoretical advantages, but will require further research before becoming a routine part of the ablation armamentarium. The purpose of this review article is to discuss the current ablative technologies available, briefly review their mechanisms of action, discuss technical aspects of each, and provide current data supporting their use. PMID:25049445

  7. Cardiovascular risk factors following renal transplant

    PubMed Central

    Neale, Jill; Smith, Alice C

    2015-01-01

    Kidney transplantation is the gold-standard treatment for many patients with end-stage renal disease. Renal transplant recipients (RTRs) remain at an increased risk of fatal and non-fatal cardiovascular (CV) events compared to the general population, although rates are lower than those patients on maintenance haemodialysis. Death with a functioning graft is most commonly due to cardiovascular disease (CVD) and therefore this remains an important therapeutic target to prevent graft failure. Conventional CV risk factors such as diabetes, hypertension and renal dysfunction remain a major influence on CVD in RTRs. However it is now recognised that the morbidity and mortality from CVD are not entirely accounted for by these traditional risk-factors. Immunosuppression medications exert a deleterious effect on many of these well-recognised contributors to CVD and are known to exacerbate the probability of developing diabetes, graft dysfunction and hypertension which can all lead on to CVD. Non-traditional CV risk factors such as inflammation and anaemia have been strongly linked to increased CV events in RTRs and should be considered alongside those which are classified as conventional. This review summarises what is known about risk-factors for CVD in RTRs and how, through identification of those which are modifiable, outcomes can be improved. The overall CV risk in RTRs is likely to be multifactorial and a complex interaction between the multiple traditional and non-traditional factors; further studies are required to determine how these may be modified to enhance survival and quality of life in this unique population. PMID:26722646

  8. Renal rickets-practical approach

    PubMed Central

    Sahay, Manisha; Sahay, Rakesh

    2013-01-01

    Rickets/osteomalacia is an important problem in a tropical country. Many cases are due to poor vitamin D intake or calcium deficient diets and can be corrected by administration of calcium and vitamin D. However, some cases are refractory to vitamin D therapy and are related to renal defects. These include rickets of renal tubular acidosis (RTA), hypophosphatemic rickets, and vitamin D dependent rickets (VDDR). The latter is due to impaired action of 1α-hydroxylase in renal tubule. These varieties need proper diagnosis and specific treatment. PMID:24251212

  9. Renal Cancer in the Elderly.

    PubMed

    González León, Tania; Morera Pérez, Maricela

    2016-01-01

    The increase of the aging population corresponds with the rise of renal cancer in elderly patients. The distinction between functional and chronological age, quality of life, and survival estimate are important issues, among others, that should be considered in the management of renal cancer in elderly patients. We made this review with the purpose of synthesizing the most updated criteria regarding indications and outcomes of the different therapeutic options in the management of elderly patients with renal cancer, beginning from the physiologic considerations that characterize them, their capacity to tolerate different therapeutic possibilities, and the prognosis of the patients' risks and comorbidity assessment.

  10. Unusual renal tumour: multilocular cystic renal cell carcinoma.

    PubMed

    Palmeiro, Marta Morna; Niza, João Luz; Loureiro, Ana Luisa; Conceição e Silva, João Paulo

    2016-01-01

    Multilocular cystic renal cell carcinoma (MCRCC) is a rare presentation of renal cell carcinoma. Most patients are asymptomatic and frequently MCRCCs are detected incidentally. MCRCCs have good prognosis because of their low malignant potential. We report a case of a 39-year-old woman who presented with mild right flank pain and normal laboratory data. On imaging examinations, a Bosniak III cystic lesion was detected in the lower third of the right kidney. She underwent right partial nephrectomy and histopathology showed a multilocular cystic renal cell carcinoma Fuhrman grade 1. In this article, we also present a review of the literature on MCRCC, highlight the correlation of the pathological and imaging characteristics of these low aggressive renal lesions, and underscore the importance of their recognition to prevent unnecessary radical surgery. PMID:26957035

  11. Sex-linked dominant

    MedlinePlus

    Inheritance - sex-linked dominant; Genetics - sex-linked dominant; X-linked dominant; Y-linked dominant ... can be either an autosomal chromosome or a sex chromosome. It also depends on whether the trait ...

  12. Renal Histologic Parameters Influencing Postoperative Renal Function in Renal Cell Carcinoma Patients

    PubMed Central

    Koh, Myoung Ju; Lim, Beom Jin; Choi, Kyu Hun; Kim, Yon Hee

    2013-01-01

    Background Pre-existing non-neoplastic renal diseases or lesions may influence patient renal function after tumor removal. However, its description is often neglected or omitted in pathologic reports. To determine the incidence and clinical significance of non-neoplastic lesions, we retrospectively examined renal tissues obtained during 85 radical nephrectomies for renal cell carcinoma. Methods One paraffin-embedded tissue block from each case containing a sufficient amount of non-tumorous renal parenchyma was cut and processed with hematoxylin and eosin and periodic acid-Schiff methods. Non-neoplastic lesions of each histological compartment were semi-quantitatively and quantitatively evaluated. Results Among the various histologic lesions found, tubular atrophy, arterial intimal thickening, and glomerulosclerosis were the most common (94.1%, 91.8%, and 88.2%, respectively). Glomerulosclerosis correlated with estimated glomerular filtration rate at the time of surgery, as well as at 1- and 5-years post-surgery (p=.0071), but tubulointerstitial fibrosis or arterial fibrous intimal thickening did not. Post-hoc analysis revealed that glomerulosclerosis of more than 20% predicted post-operative renal function. However, its significance disappeared when gender and age were considered. Conclusions In conclusion, non-neoplastic lesions, especially with regard to glomerulosclerosis percentage, should be described in pathology reports to provide additional information on renal function decline. PMID:24421849

  13. [Spontaneous renal artery dissection with renal infarction: a case report].

    PubMed

    Oki, Takashi; Adachi, Hiroyuki; Tahara, Hideo; Kino, Sigeo

    2011-11-01

    A 58-year-old woman visited our hospital with nausea and right flank pain. At first abdominal ultrasonography was performed, suggesting a right renal infarction. Computed tomography (CT) study of the abdomen with intravenous contrast was performed to determine the cause of the symptoms. The scan revealed poor enhancement in the lower half of the right kidney. She was diagnosed with a right renal infarction. She was initially treated with anticoagulant therapy, but 5 days later, she complained of nausea. This time, CT demonstrated exacerbation of a right renal infarction with renal artery dissection. Based on this finding, we performed a right nephrectomy. The result of pathology was segmental arterial mediolysis. She was discharged 12 days after the surgery and is doing well at 6 months after discharge. Spontaneous renal artery dissection is a rare disease. It constitutes approximately 0.05% of arteriographic dissections. In addition, spontaneous renal artery dissection shows nonspecific symptoms. Together, these two factors may cause a delay in diagnosis.

  14. Resolving an 80-yr-old controversy: the beginning of the modern era of renal physiology.

    PubMed

    Jamison, Rex L

    2014-12-01

    Marcello Malpighi discovered the glomerulus that bears his name in the 17th century, but it was not until the middle of the 19th century, in 1842, that William Bowman in London published his studies of the histological structure of the glomerulus and proposed that urine formation begins with glomerular secretion. At nearly the same time in Marburg, Carl Ludwig, unaware of Bowman's findings, proposed that urine formation begins with glomerular filtration followed by tubule reabsorption. The controversy lasted 80 yr. Prominent investigators weighed in on both sides. Rudolph Heidenhain's findings in 1874 swung the pendulum toward Bowman's theory until Arthur Cushny published his book, The Secretion of Urine, in 1917, in which he found the evidence insufficient to prove either theory. In 1921, a young physician, Joseph Wearn, began his postresidency training in the laboratory of Alfred N. Richards. He read Cushny's book and learned how to expose the glomerulus of a living frog. Richards proposed that Wearn use that experimental preparation to inject epinephrine into the glomerulus. Wearn proposed a different experiment: instead of using injection, collect fluid from the glomerulus and analyze it. Richards agreed, and the landmark results of that experiment, published in 1924, settled the controversy. The modern era of renal physiology was born.

  15. Fetal dexamethasone exposure accelerates development of renal function: relationship to dose, cell differentiation and growth inhibition.

    PubMed

    Slotkin, T A; Seidler, F J; Kavlock, R J; Gray, J A

    1992-02-01

    Fetal exposure to high doses of glucocorticoids slows cellular development and impairs organ performance, in association with growth retardation. Nevertheless, low doses of glucocorticoids may enhance cell differentiation and accelerate specific functions. The current study examined this apparent paradox in the developing rat kidney, using doses of dexamethasone that span the threshold for growth impairment: 0.05 or 0.2 mg/kg given on gestational days 17, 18 and 19. At the lower dose, which did not significantly retard body growth, the postnatal development of tubular reabsorptive capabilities for sodium, potassium, osmotic particles, water and urea was accelerated. These effects were less notable at the higher dose, which caused initial body growth impairment. The selectivity toward promotion of tubular function was evidenced by the absence of effect of either dose of dexamethasone on development of glomerular filtration rate. Because of the wide spectrum of dexamethasone's effects on tubular function, we also assessed fetal kidney adenylate cyclase as a means of detecting altered cell differentiation in the prenatal period during which dexamethasone was given. Either glucocorticoid dose increased the total adenylate cyclase catalytic activity (assessed with forskolin). Thus, the net effect of fetal dexamethasone exposure on development of renal excretory capabilities probably represents the summation of promoted cell differentiation and slowed development consequent to growth retardation. At low dose levels, the former effect predominates, leading to enhanced functional development, whereas higher doses that interfere with general growth and development can offset the direct promotional effect.

  16. Urea distribution in renal failure

    PubMed Central

    Blackmore, D. J.; Elder, W. J.; Bowden, C. H.

    1963-01-01

    An assessment of intracellular urea removed during haemodialysis has been made from urea extraction and plasma urea estimations. An apparent wide variation in the movement of intracellular urea in patients with acute renal failure from obstetric and traumatic causes and with chronic renal failure is reported. A method for the estimation of red cell water urea is presented. In two patients with chronic renal failure the red cell urea level was much higher than would have been expected from the plasma urea level before dialysis. In two obstetric patients there was no such discrepancy. The conclusion is drawn that research should be directed to variations of intracellular metabolism in renal failure before a more rational approach can be made to its management. PMID:16811009

  17. The renal mononuclear phagocytic system.

    PubMed

    Nelson, Peter J; Rees, Andrew J; Griffin, Matthew D; Hughes, Jeremy; Kurts, Christian; Duffield, Jeremy

    2012-02-01

    The renal mononuclear phagocytic system, conventionally composed of macrophages (Mø) and dendritic cells (DCs), plays a central role in health and disease of the kidney. Overlapping definitions of renal DCs and Mø, stemming from historically separate research tracks and the lack of experimental tools to specifically study the roles of these cells in vivo, have generated confusion and controversy, however, regarding their immunologic function in the kidney. This brief review provides an appraisal of the current state of knowledge of the renal mononuclear phagocytic system interpreted from the perspective of immunologic function. Physical characteristics, ontogeny, and known functions of the main subsets of renal mononuclear phagocytes as they relate to homeostasis, surveillance against injury and infection, and immune-mediated inflammatory injury and repair within the kidney are described. Gaps and inconsistencies in current knowledge are used to create a roadmap of key questions to be answered in future research. PMID:22135312

  18. Mucormycosis (zygomycosis) of renal allograft.

    PubMed

    Gupta, Krishan L; Joshi, Kusum; Kohli, Harbir S; Jha, Vivekanand; Sakhuja, Vinay

    2012-12-01

    Fungal infection is relatively common among renal transplant recipients from developing countries. Mucormycosis, also known as zygomycosis, is one of the most serious fungal infections in these patients. The most common of presentation is rhino-cerebral. Isolated involvement of a renal allograft is very rare. A thorough search of literature and our medical records yielded a total of 24 cases with mucormycosis of the transplanted kidney. There was an association with cytomegalovirus (CMV) infection and anti-rejection treatment in these patients and most of these transplants were performed in the developing countries from unrelated donors. The outcome was very poor with an early mortality in 13 (54.5%) patients. Renal allograft mucormycosis is a relatively rare and potentially fatal complication following renal transplantation. Early diagnosis, graft nephrectomy and appropriate antifungal therapy may result in an improved prognosis for these patients.

  19. Renal infarction complicating fibromuscular dysplasia.

    PubMed

    Gavalas, M; Meisner, R; Labropoulos, N; Gasparis, A; Tassiopoulos, A

    2014-01-01

    Fibromuscular dysplasia (FMD) is a nonatherosclerotic, noninflammatory vascular disease that most commonly affects the renal and extracranial carotid arteries. We present 3 cases of renal infarction complicating renal artery FMD in 42-, 43-, and 46-year-old females and provide a comprehensive review of the literature on this topic. In our patients, oral anticoagulation therapy was used to treat all cases of infarction, and percutaneous angioplasty was used nonemergently in one case to treat refractory hypertension. All patients remained stable at 1-year follow-up. This is consistent with outcomes in previously published reports where conservative medical management was comparable to surgical and interventional therapies. Demographic differences may also exist in patients with renal infarction and FMD. A higher prevalence of males and a younger age at presentation have been found in these patients when compared to the general population with FMD.

  20. Renal Disease and Adult Vaccination

    MedlinePlus

    ... Resources for Healthcare Professionals Renal Disease and Adult Vaccination Recommend on Facebook Tweet Share Compartir Vaccines are ... have immunity to this disease Learn about adult vaccination and other health conditions Asplenia Diabetes Type 1 ...

  1. Primary carcinoma of renal calyx.

    PubMed

    Williams, Phillip A; Mai, Kien T

    2013-10-01

    Renal calyx carcinoma (RCXC) may mimic collecting duct carcinoma (CDC) or urothelial carcinoma (UC) of the renal pelvis. RCXC is distinguished from CDC and UC of the renal pelvis as having the tumor epicenter in the renal calyx, with limited involvement of the surrounding renal pelvis surface urothelium. In this study, we summarize our experience with this entity. Ten cases of RCXC, including 9 cases with urothelial differentiation (RCXC-UC) and 1 case with salivary gland-type differentiation (RCXC-SC), were identified. Ten consecutive cases of UC were selected for comparison, with extensive renal pelvis involvement and with secondary renal parenchymal invasion. Two cases of collecting duct carcinoma (CDC) were also examined. Immunohistochemistry (IHC) was performed on representative tissue blocks for PAX8, PAX2, CK5, CK7, CK20, p63, GATA3, AMACR, RCC, CD10, vimentin, S100, and MSA. The 10 cases of RCXC (M:F=4:6, ages: 62-91 years, mean: 76) presented with renal masses of 3-6cm. Ureteroscopic studies and renal pelvic washings showed atypical/malignant cells in three cases. Seven patients were treated with nephrectomy followed by radiation±chemotherapy, and all cases developed metastases to lymph nodes or liver/lung/bone. In all 7 cases with nephrectomy, there was extensive renal parenchymal involvement with infiltrating borders and diffuse spread along collecting ducts. Six RCXC-UC contained focal squamous differentiation. The RCXC-SC displayed features of adenoid cystic and basaloid features. In situ UC, with or without papillary components, was identified in the calyces in all 7 nephrectomy cases with remaining renal pelvis harboring small tumor burden in 5 cases, and no tumor in another 2 cases. Of the three cases without nephrectomy, no tumor in the renal pelvis could be visualized with endoscopy, however one case was associated with UC of the urinary bladder. Of 10 control UC cases, tumor was limited to the tip of renal papilla in 7 cases, extensive in 3

  2. Renal protection in cardiovascular surgery

    PubMed Central

    Di Tomasso, Nora; Monaco, Fabrizio; Landoni, Giovanni

    2016-01-01

    Acute kidney injury (AKI) is one of the most relevant complications after major surgery and is a predictor of mortality. In Western countries, patients at risk of developing AKI are mainly those undergoing cardiovascular surgical procedures. In this category of patients, AKI depends on a multifactorial etiology, including low ejection fraction, use of contrast media, hemodynamic instability, cardiopulmonary bypass, and bleeding. Despite a growing body of literature, the treatment of renal failure remains mainly supportive (e.g. hemodynamic stability, fluid management, and avoidance of further damage); therefore, the management of patients at risk of AKI should aim at prevention of renal damage. Thus, the present narrative review analyzes the pathophysiology underlying AKI (specifically in high-risk patients), the preoperative risk factors that predispose to renal damage, early biomarkers related to AKI, and the strategies employed for perioperative renal protection. The most recent scientific evidence has been considered, and whenever conflicting data were encountered possible suggestions are provided. PMID:26998249

  3. From Pre-Existing Renal Failure to Perioperative Renal Protection: The Anesthesiologist’s Dilemmas

    PubMed Central

    Domi, Rudin; Huti, Gentian; Sula, Hektor; Baftiu, Nehat; Kaci, Myzafer; Bodeci, Artan; Pesha, Albert

    2016-01-01

    Context Pre-existing renal dysfunction presents specific features that anesthesiologists must deal with. Anesthesia and renal function are connected and can interfere with each other. Induced hypotension anesthesia and the toxic effects of anesthetic drugs can further deteriorate renal function. Evidence Acquisition Decreased renal function can prolong anesthetic drug effects by decreased elimination of these drugs. Anesthesia can deteriorate renal function and decreased renal function can interfere with drug elimination leading to their prolonged effect. The anesthesiologist must understand all the physiological aspects of the patient, renal protection, and the relationships between anesthetic drugs and renal function. This review article aims to summarize these aspects. Results Perioperative renal failure and renal protection is a crucial moment in clinical practice of every anesthesiologist. Conclusions Good knowledges for renal function remain a hallmark of daily practice of the anesthesiologist, considering renal function as an important determinant factor in anesthesia practice. PMID:27642570

  4. Metoclopramide and renal vascular resistance.

    PubMed

    Manara, A R; Bolsin, S; Monk, C R; Hartnell, G; Harris, R A

    1991-01-01

    We have studied the effect of i.v. metoclopramide on renal vascular resistance in nine healthy volunteers. Peak systolic and end-diastolic frequencies were measured using duplex Doppler ultrasound of a renal interlobar artery, before and after the administration of i.v. metoclopramide 10 mg, and the resistance index derived. There was no significant change in mean arterial pressure or resistance index following metoclopramide.

  5. Renal Ammonia Metabolism and Transport

    PubMed Central

    Weiner, I. David; Verlander, Jill W.

    2015-01-01

    Renal ammonia metabolism and transport mediates a central role in acid-base homeostasis. In contrast to most renal solutes, the majority of renal ammonia excretion derives from intrarenal production, not from glomerular filtration. Renal ammoniagenesis predominantly results from glutamine metabolism, which produces 2 NH4+ and 2 HCO3− for each glutamine metabolized. The proximal tubule is the primary site for ammoniagenesis, but there is evidence for ammoniagenesis by most renal epithelial cells. Ammonia produced in the kidney is either excreted into the urine or returned to the systemic circulation through the renal veins. Ammonia excreted in the urine promotes acid excretion; ammonia returned to the systemic circulation is metabolized in the liver in a HCO3−-consuming process, resulting in no net benefit to acid-base homeostasis. Highly regulated ammonia transport by renal epithelial cells determines the proportion of ammonia excreted in the urine versus returned to the systemic circulation. The traditional paradigm of ammonia transport involving passive NH3 diffusion, protonation in the lumen and NH4+ trapping due to an inability to cross plasma membranes is being replaced by the recognition of limited plasma membrane NH3 permeability in combination with the presence of specific NH3-transporting and NH4+-transporting proteins in specific renal epithelial cells. Ammonia production and transport are regulated by a variety of factors, including extracellular pH and K+, and by several hormones, such as mineralocorticoids, glucocorticoids and angiotensin II. This coordinated process of regulated ammonia production and transport is critical for the effective maintenance of acid-base homeostasis. PMID:23720285

  6. Metoclopramide and renal vascular resistance.

    PubMed

    Manara, A R; Bolsin, S; Monk, C R; Hartnell, G; Harris, R A

    1991-01-01

    We have studied the effect of i.v. metoclopramide on renal vascular resistance in nine healthy volunteers. Peak systolic and end-diastolic frequencies were measured using duplex Doppler ultrasound of a renal interlobar artery, before and after the administration of i.v. metoclopramide 10 mg, and the resistance index derived. There was no significant change in mean arterial pressure or resistance index following metoclopramide. PMID:1997046

  7. Treatment of Autonomous Hyperparathyroidism in Post Renal Transplant Recipients

    ClinicalTrials.gov

    2015-12-23

    Chronic Allograft Nephropathy; Chronic Kidney Disease; Chronic Renal Failure; Disordered Mineral Metabolism; End Stage Renal Disease; Hyperparathyroidism; Hypophosphatemia; Kidney Disease; Kidney Transplantation; Post Renal Transplantation

  8. Preoperative evaluation of renal artery in patients with renal tumor

    PubMed Central

    Zhu, Liangsong; Wu, Guangyu; Wang, Jianfeng; Huang, Jiwei; Kong, Wen; Chen, Yonghui; Xue, Wei; Huang, Yiran; Zhang, Jin

    2016-01-01

    Abstract To investigate the feasibility of the noncontrast-enhanced magnetic resonance angiography (NCE-MRA) to evaluate renal arteries before partial nephrectomy (PN). Retrospective analyzed 479 patients who underwent renal surgery between January 2013 and December 2015 with NCE-MRA or computed tomographic angiography (CTA) renal artery image reconstruction preoperative in our department. The renal artery reconstruction score (RARS) was based on the level of artery visualization in a 4-class criterion, and the R.E.N.A.L nephrometry score (R.E.N.A.L), arterial based complexity (ABC) were also analyzed. Of the 479 patients, the overall-lever RARS was 3.62, and the average in 2 groups was no significant difference (NCE-MRA vs CTA, P = 0.072). The performance of NCE-MRA in PN group was similar with CTA. Further comparison demonstrated that the efficiency of NCE-MRA in moderate- or low-degree tumor according to the R.E.N.A.L and ABC complexity less than 3S was equal to CTA. However, high degree (P < 0.001), 3S (P = 0.027), or 3H (P < 0.001) would affect the imaging of renal artery. Intragroup analysis showed that tumor complexity such as max tumor size (r = −o.351, P < 0.001), R.E.N.A.L (r = −0.439, P < 0.001), and ABC (r = −0.619, P < 0.001) were closely correlated with the NCE-MRA performance. The images of 2 sides of the kidney were compared in single person as well, which was meaningful for NCE-MRA patients only (NCE-MRA, P < 0.001; CTA, P = 0.182). The renal artery reconstruction performed by NCE-MRA is feasible and has a similar achievement in the PN potential recipients, with a lower side effect, and meets the requirements for making surgical decision. It has a broad application prospect in clinical practice; however, it still needs to further improve the ability in more complex tumors. PMID:27759632

  9. Renal radiopharmaceuticals--an update

    SciTech Connect

    Chervu, L.R.; Blaufox, M.D.

    1982-07-01

    Noninvasive radionuclide procedures in the evaluation of renal disease have been accepted increasingly as effective and valuable alternatives to older clinical methods. The development of suitable radiopharmaceuticals labeled with high photon intensity radionuclides and with /sup 99m/Tc in particular has stimulated this modality during the last few years. Currently several nearly ideal agents are available for anatomical and functional studies of kidney imparting very low absorbed radiation doses. These include /sup 99m/Tc-GHA and /sup 99m/Tc-DMSA for renal morphology and differential function evaluation, /sup 99m/Tc-DTPA for GFR and /sup 123/I orthoiodohippurate for ERPF measurements. A suitable agent as a replacement for the latter labeled with /sup 99m/Tc is actively being sought. Computer-assisted processing of dynamic renal function studies enables the observer to obtain a wealth of information related to the renal extraction, uptake, parenchymal transit and pelvic transit parameters of the agent administered into the bloodstream. Each of these parameters either globally or differentially contributes to a detailed evaluation of renal disease states. Several of these procedures have been validated against classical techniques clinically but more detailed information is being sought with the recently introduced radiopharmaceuticals. With the detailed validation and increasing recognition of the clinical utility of several of the radionuclidic procedures at many centers, it is hoped that radionuclide assessment of renal disorders ultimately will be made available routinely at all medical facilities.

  10. Renal ischemic injury affects renal hemodynamics and excretory functions in Sprague Dawley rats: involvement of renal sympathetic tone.

    PubMed

    Salman, Ibrahim M; Sattar, Munavvar A; Abdullah, Nor A; Ameer, Omar Z; Yam, Mun F; Kaur, Gurjeet; Hye Khan, Md Abdul; Johns, Edward J

    2010-01-01

    The role of renal sympathetic nerves in the pathogenesis of ischemic acute renal failure (ARF) and the immediate changes in the renal excretory functions following renal ischemia were investigated. Two groups of male Sprague Dawley (SD) rats were anesthetized (pentobarbitone sodium, 60 mg kg(-1) i.p.) and subjected to unilateral renal ischemia by clamping the left renal artery for 30 min followed by reperfusion. In group 1, the renal nerves were electrically stimulated and the responses in the renal blood flow (RBF) and renal vascular resistance (RVR) were recorded, while group 2 was used to study the early changes in the renal functions following renal ischemia. In post-ischemic animals, basal RBF and the renal vasoconstrictor reperfusion to renal nerve stimulation (RNS) were significantly lower (all p < 0.05 vs. control). Mean arterial pressure (MAP), basal RVR, urine flow rate (UFR), absolute and fractional excretions of sodium (U(Na)V and FE(Na)), and potassium (U(K)V and FE(K)) were higher in ARF rats (all p < 0.05 vs. control). Post-ischemic animals showed markedly lower glomerular filtration rate (GFR) (p < 0.05 vs. control). No appreciable differences were observed in urinary sodium to potassium ratio (U(Na)/U(K)) during the early reperfusion phase of renal ischemia (p > 0.05 vs. control). The data suggest an immediate involvement of renal sympathetic nerve action in the pathogenesis of ischemic ARF primarily through altered renal hemodynamics. Diuresis, natriuresis, and kaliuresis due to impaired renal tubular functions are typical responses to renal ischemia and of comparable magnitudes.

  11. Blood Pressure and Amiloride-Sensitive Sodium Channels in Vascular and Renal Cells

    PubMed Central

    Warnock, David G.; Kusche-Vihrog, Kristina; Tarjus, Antoine; Sheng, Shaohu; Oberleithner, Hans; Kleyman, Thomas R.; Jaisser, Frederic

    2014-01-01

    This review is focused on the expression and regulation of amiloride-sensitive sodium channels in the epithelial cells of the aldosterone-sensitive distal nephron (ENaC) and amiloride-sensitive sodium channel activity in vascular endothelial and smooth muscle cells. Guyton’s hypothesis stated that blood pressure control is critically dependent on vascular tone and fluid handling by the kidney. With the study of Mendelian forms of hypertension and their corresponding transgenic mouse models, the main components of the aldosterone- and angiotensin-dependent sodium transporters have been identified over the past 20 years. Proteolytic processing of the ENaC external domain, and inhibition by increased sodium concentrations are important features of the ENaC complexes expressed in the distal nephron. In contrast, amiloride-sensitive sodium channels expressed in the vascular system are activated by increased external sodium concentrations, resulting in changes in the mechanical properties and function of endothelial cells. Mechano-sensitivity and shear stress affect both epithelial and vascular sodium channel activity. The synergistic effects and complementary regulation of the epithelial and vascular systems are consistent with the Guytonian model of volume and blood pressure regulation, and may reflect sequential evolution of the two systems. The integration of vascular tone, renal perfusion and regulation of renal sodium reabsorption is the central underpinning of the Guytonian model. We summarize the recent evidence in this review that describes the central role of amiloride-sensitive sodium channels in the efferent (e.g., vascular) and afferent (e.g., epithelial) arms of this homeostatic system. PMID:24419567

  12. Impact of bicarbonate, ammonium chloride, and acetazolamide on hepatic and renal SLC26A4 expression.

    PubMed

    Alesutan, Ioana; Daryadel, Arezoo; Mohebbi, Nilufar; Pelzl, Lisann; Leibrock, Christina; Voelkl, Jakob; Bourgeois, Soline; Dossena, Silvia; Nofziger, Charity; Paulmichl, Markus; Wagner, Carsten A; Lang, Florian

    2011-01-01

    SLC26A4 encodes pendrin, a transporter exchanging anions such as chloride, bicarbonate, and iodide. Loss of function mutations of SLC26A4 cause Pendred syndrome characterized by hearing loss and enlarged vestibular aqueducts as well as variable hypothyroidism and goiter. In the kidney, pendrin is expressed in the distal nephron and accomplishes HCO(3)(-) secretion and Cl(-) reabsorption. Renal pendrin expression is regulated by acid-base balance. The liver contributes to acid-base regulation by producing or consuming glutamine, which is utilized by the kidney for generation and excretion of NH(4)(+), paralleled by HCO(3)(-) formation. Little is known about the regulation of pendrin in liver. The present study thus examined the expression of Slc26a4 in liver and kidney of mice drinking tap water without or with NaHCO(3) (150 mM), NH(4)Cl (280 mM) or acetazolamide (3.6 mM) for seven days. As compared to Gapdh transcript levels, Slc26a4 transcript levels were moderately lower in liver than in renal tissue. Slc26a4 transcript levels were not significantly affected by NaHCO(3) in liver, but significantly increased by NaHCO(3) in kidney. Pendrin protein expression was significantly enhanced in kidney and reduced in liver by NaHCO(3). Slc26a4 transcript levels were significantly increased by NH(4)Cl and acetazolamide in liver, and significantly decreased by NH(4)Cl and by acetazolamide in kidney. NH(4)Cl and acetazolamide reduced pendrin protein expression significantly in kidney, but did not significantly modify pendrin protein expression in liver. The observations point to expression of pendrin in the liver and to opposite effects of acidosis on pendrin transcription in liver and kidney. PMID:22116370

  13. Determinations of renal cortical and medullary oxygenation using BOLD Magnetic Resonance Imaging and selective diuretics

    PubMed Central

    Warner, Lizette; Glockner, James F.; Woollard, John; Textor, Stephen C.; Romero, Juan C.; Lerman, Lilach O.

    2010-01-01

    Objective This study was undertaken to test the hypothesis that blood O2 level dependent magnetic resonance imaging (BOLD MRI) can detect changes in cortical proximal tubule (PT) and medullary thick ascending limb of Henle (TAL) oxygenation consequent to successive administration of furosemide and acetazolamide (Az). Assessment of PT and TAL function could be useful to monitor renal disease states in vivo. Therefore, the adjunct use of diuretics that inhibit Na+ reabsorption selectively in PT and TAL, Az and furosemide, respectively, may help discern tubular function by using BOLD MRI to detect changes in tissue oxygenation. Material and Methods BOLD MRI signal R2* (inversely related to oxygenation) and tissue oxygenation with intrarenal O2 probes were measured in pigs that received either furosemide (0.5mg/kg) or Az (15mg/kg) alone, Az sequentially after furosemide (n=6 each, 15-minute intervals), or only saline vehicle (n=3). Results R2* decreased in the cortex of Az-treated and medulla of furosemide-treated kidneys, corresponding to an increase in their tissue O2 assessed with probes. However, BOLD MRI also showed decreased cortical R2* following furosemide that was additive to the Az-induced decrease. Az administration, both alone and after furosemide, also decreased renal blood flow (−26±3.5 and −29.2±3%, respectively, p<0.01). Conclusion These results suggest that an increase in medullary and cortical tissue O2 elicited by selective diuretics is detectable by BOLD MRI, but may be complicated by hemodynamic effects of the drugs. Therefore, the BOLD MRI signal may reflect functional changes additional to oxygenation, and needs to be interpreted cautiously. PMID:20856128

  14. Regulation of renal proximal tubule Na-K-ATPase by prostaglandins.

    PubMed

    Herman, Maryann B; Rajkhowa, Trivikram; Cutuli, Facundo; Springate, James E; Taub, Mary

    2010-05-01

    Prostaglandins (PGs) play a number of roles in the kidney, including regulation of salt and water reabsorption. In this report, evidence was obtained for stimulatory effects of PGs on Na-K-ATPase in primary cultures of rabbit renal proximal tubule (RPT) cells. The results of our real-time PCR studies indicate that in primary RPTs the effects of PGE(2), the major renal PG, are mediated by four classes of PGE (EP) receptors. The role of these EP receptors in the regulation of Na-K-ATPase was examined at the transcriptional level. Na-K-ATPase consists of a catalytic α-subunit encoded by the ATP1A1 gene, as well as a β-subunit encoded by the ATP1B1 gene. Transient transfection studies conducted with pHβ1-1141 Luc, a human ATP1B1 promoter/luciferase construct, indicate that both PGE(1) and PGE(2) are stimulatory. The evidence for the involvement of both the cAMP and Ca(2+) signaling pathways includes the inhibitory effects of the myristolylated PKA inhibitor PKI, the adenylate cyclase (AC) inhibitor SQ22536, and the PKC inhibitors Gö 6976 and Ro-32-0432 on the PGE(1) stimulation. Other effectors that similarly act through cAMP and PKC were also stimulatory to transcription, including norepinephrine and dopamine. In addition to its effects on transcription, a chronic incubation with PGE(1) was observed to result in an increase in Na-K-ATPase mRNA levels as well as an increase in Na-K-ATPase activity. An acute stimulatory effect of PGE(1) on Na-K-ATPase was observed and was associated with an increase in the level of Na-K-ATPase in the basolateral membrane.

  15. Renal artery injury during robot-assisted renal surgery.

    PubMed

    Lee, Jae Won; Yoon, Young Eun; Kim, Dae Keun; Park, Sung Yul; Moon, Hong Sang; Lee, Tchun Yong

    2010-07-01

    Laparoscopic partial nephrectomy (LPN) is becoming the standard of care for incidentally diagnosed, small renal tumors. With its seven degrees of freedom and three-dimensional vision, the DaVinci robotic surgical system has been used to assist in LPNs. The main disadvantage of robot-assisted surgery, however, is the lack of tactile feedback. We present a case of renal artery injury during robot-assisted renal surgery. Robot-assisted partial nephrectomy (RPN) was planned for 47-year-old man with a 3.5-cm right renal mass. After standard bowel mobilization, renal hilar dissection was performed. In the attempt to complete the dissection posteriorly, however, there was sudden profuse bleeding. The intraperitoneal pressure immediately increased to 20 mm Hg, and an additional suction device was inserted through the 5-mm liver retractor port. On inspection, there was an injury at the takeoff of the posterior segmental artery. A decision was made to convert to robot-assisted laparoscopic radical nephrectomy. The main renal artery and renal vein were controlled with Hem-o-Lok clips. The estimated blood loss was 2,000 mL. Four units of packed red blood cells were transfused intraoperatively. The post-transfusion hemoglobin level was 12.6 g/dL. There were no other perioperative complications. The surgeon should keep in mind that the robotic arms are very powerful and can easily injure major vessels because of lack of tactile feedback. A competent and experienced tableside surgeon is very important in robot-assisted surgery because the unsterile console surgeon cannot immediately react to intraoperative complications.

  16. Pathophysiology and management of progressive renal disease.

    PubMed

    Brown, S A; Crowell, W A; Brown, C A; Barsanti, J A; Finco, D R

    1997-09-01

    Recently, the hypothesis that all renal diseases are inherently progressive and self-perpetuating has focused attention on adaptive changes in renal structure and function that occur whenever renal function is reduced. These glomerular adaptations to renal disease include increases in filtration rate, capillary pressure and size, and are referred to as glomerular hyperfiltration, glomerular hypertension and glomerular hypertrophy, respectively. Extrarenal changes, such as dietary phosphate excess, systemic hypertension, hyperlipidaemia, acidosis and hyperparathyroidism occur in animals with renal disease and may be contributors to progression of renal disease. Emphasis in the management of companion animals with renal disease has shifted to identifying, understanding and controlling those processes that play a role in the progression from early to end-stage renal failure. Advances made by veterinary nephrologists in the past 15 years permit resolution of old controversies, formulation of new hypotheses and discussion of unresolved issues about the nature of progressive renal disease in dogs and cats. PMID:9308397

  17. Renal manifestations of tuberous sclerosis complex.

    PubMed

    O'Hagan, A R; Ellsworth, R; Secic, M; Rothner, A D; Brouhard, B H

    1996-10-01

    Patients with tuberous sclerosis complex (TSC) are at increased risk of renal disease, predominantly angiomyolipomas and renal cysts. We retrospectively reviewed clinical data of 71 patients diagnosed with TSC. Progression of renal lesions was noted. TSC patients with renal lesions were compared with TSC patients without renal disease. Fifteen of 38 patients had renal abnormalities by imaging at presentation. Six of 9 with initially normal kidneys subsequently developed new lesions. Although not of statistical significance, there was a trend toward increased retinal hamartomas, cardiac rhabdomyomas, and skin lesions in those patients who also had renal abnormalities. Renal disease should be considered and sought in all patients with TSC, both at initial presentation and subsequently, since renal disease is a very significant cause of morbidity and mortality.

  18. Renal failure in patients with multiple myeloma.

    PubMed

    Almueilo, Samir H

    2015-01-01

    Renal dysfunction is encountered in 20-25% of patients with multiple myeloma (MM) at the time of diagnosis. There is often a precipitating event. Several biochemical and clinical correlations with renal failure in MM have been reported. Renal failure in MM is associated with worse outcome of the disease. We retrospectively analyzed the medical records of 64 patients with MM admitted to our institution during the period January 1992 to December 2012. Abnormal renal function was observed in 24 (37.5%) patients and 17 (26.6%) of them had renal failure; 14 of the 17 (82.4%) of patients with renal failure had Stage III MM. Urine Bence- Jones protein was positive in ten (58.8%) patients with renal failure versus ten (21.3%) patients without renal failure (P = 0.004). Potential precipitating factors of renal failure were determined in nine patients. Renal function normalized in 11 patients with simple measures, while six patients required hemodialysis; one remained dialysis dependent till time of death. Early mortality occurred in five (29.4%) patients with renal failure as compared with two (4.3%) patients in the group without renal failure (P = 0.005). In conclusion, renal failure is associated with a higher tumor burden and Bence-Jones proteinuria in patients with MM. It is reversible in the majority of patients; however, early mortality tends to be higher in patients with persistent renal failure.

  19. [Renal transplantation: ethical issues].

    PubMed

    Mamzer-Bruneel, Marie-France; Laforêt, Emmanuelle Grand; Kreis, Henri; Thervet, Éric; Martinez, Frank; Snanoudj, Renaud; Hervé, Christian; Legendre, Christophe

    2012-12-01

    One of the most significant advances in medicine during the last 50 years is the development of organ transplantation. In the context of chronic kidney diseases, renal transplantation offers patients a better clinical outcome than other treatment options. However, the benefits of organ transplantation have not been maximized due to an inadequate supply of organs for transplantation. Despite the establishment of elaborate legal rules for organs procurement, both on deceased and living donors in numerous countries, ethical concerns remain. Most of them are consequences of the strategies implemented or proposed to address the so-called organ shortage. The involvement of society in these complex problems is crucial as numerous questions emerge: could actual state of organ procurement change? Is it possible and/or realistic to increase the number of organs, with respects to living donors or deceased persons? Is the shortage an indicator to limit the use of kidney transplantation? How do we maintain efficiency and justice, in this context. PMID:23168353

  20. Angiotensin II blockade does not prevent renal effects of L-NAME in sodium-repleted humans.

    PubMed

    Montanari, A; Tateo, E; Fasoli, E; Giberti, D; Perinotto, P; Novarini, A; Dall'Aglio, P

    1997-09-01

    In seven healthy, young subjects on a 240 mmol sodium diet, mean arterial pressure (MAP), renal hemodynamics, and renal handling of Na and exogenous Li were measured at baseline and during short-term nitric oxide (NO) blockade with a 90-minute infusion of 3.0 microg x kg(-1) x min(-1) of N(G)-L-arginine methyl ester (L-NAME). The infusion was performed twice: after a 3-day pretreatment with either placebo or 50 mg losartan to block Ang II receptors. With placebo, L-NAME produced no change in MAP from 0 to 45 minutes (period 1) and only a 5% increase at 45 to 90 minutes (period 2) of infusion. Effective renal plasma flow (ERPF, PAH clearance) and glomerular filtration rate (GFR, inulin clearance) declined by 11.7% and 8.0%, respectively in period 1 and by 14.6% and 11.6%, respectively, in period 2. Calculated renal vascular resistance (RVR) increased by 13.0% to 20.6%. Fractional excretion of Na (FE(Na)) and Li (FE(Li)) fell by 30.0% and 21.0%, respectively, in period 1 and by 44.2% and 31.1% in period 2. All these variations were significant versus baseline. With losartan, the rise in MAP at 45 to 90 minutes was completely abolished, whereas all changes in ERPF, GFR, RVR, FE(Na), and FE(Li) in response to L-NAME were the same as those observed with placebo. The present data show that NO blockade with low-dose systemic infusion of L-NAME produces renal vasoconstriction, reduced GFR, and increased tubular Na reabsorption independent of changes in MAP. Reduced FE(Li) indicates an effect of NO on the proximal tubule. Since these changes are not prevented by losartan, we conclude that in Na-repleted humans, renal vasoconstriction and Na-retaining effects of inhibition of basal NO production are not due to the unopposed action of endogenous Ang II.

  1. Prion Protein Protects against Renal Ischemia/Reperfusion Injury.

    PubMed

    Zhang, Bo; Cowden, Daniel; Zhang, Fan; Yuan, Jue; Siedlak, Sandra; Abouelsaad, Mai; Zeng, Liang; Zhou, Xuefeng; O'Toole, John; Das, Alvin S; Kofskey, Diane; Warren, Miriam; Bian, Zehua; Cui, Yuqi; Tan, Tao; Kresak, Adam; Wyza, Robert E; Petersen, Robert B; Wang, Gong-Xian; Kong, Qingzhong; Wang, Xinglong; Sedor, John; Zhu, Xiongwei; Zhu, Hua; Zou, Wen-Quan

    2015-01-01

    The cellular prion protein (PrPC), a protein most noted for its link to prion diseases, has been found to play a protective role in ischemic brain injury. To investigate the role of PrPC in the kidney, an organ highly prone to ischemia/reperfusion (IR) injury, we examined wild-type (WT) and PrPC knockout (KO) mice that were subjected to 30-min of renal ischemia followed by 1, 2, or 3 days of reperfusion. Renal dysfunction and structural damage was more severe in KO than in WT mice. While PrP was undetectable in KO kidneys, Western blotting revealed an increase in PrP in IR-injured WT kidneys compared to sham-treated kidneys. Compared to WT, KO kidneys exhibited increases in oxidative stress markers heme oxygenase-1, nitrotyrosine, and Nε-(carboxymethyl)lysine, and decreases in mitochondrial complexes I and III. Notably, phosphorylated extracellular signal-regulated kinase (pERK) staining was predominantly observed in tubular cells from KO mice following 2 days of reperfusion, a time at which significant differences in renal dysfunction, histological changes, oxidative stress, and mitochondrial complexes between WT and KO mice were observed. Our study provides the first evidence that PrPC may play a protective role in renal IR injury, likely through its effects on mitochondria and ERK signaling pathways. PMID:26327228

  2. [Brown tumor in hyperparathyroidism secondary to chronic renal failure].

    PubMed

    Spitale, Luis S; Piccinni, Daniel J

    2004-01-01

    Brown tumor (BT) is an uncommon condition that represents the terminal stage of the cystic osteitis fibrosa and have been increasingly reported in hyperparathyroidism secondary to renal failure, due to the increase of survival in patient with hemodialysis. The fine needle aspiration diagnosis is of great importance in the recognition of the BT, although it can be difficult to distinguish it of lesions as the aneurysmal bone cyst and giant-cell tumor. We describe the case of 20-year-old female with chronic renal failure undergoing hemodialysis during six years. Both x-rays and computer tomography revealed a tumor in head of right humerus and lytic images in scapula of the same side, clavicles and ribs. The patient was subjected to a fine needle aspiration biopsy of the tumor of humerus head and the sample was processed with the habitual technique of inclusion in paraffin and stained with hematoxilina and eosina. Histological preparations showed several multinucleate giant cells and spindly or fibrillary cells, feature that was pointed out as compatible, in a context of secondary hyperparathyroidism to chronic renal failure, with a BT. We consider that the radiological and tomographyc finds, besides the history of chronic renal failure with a long history of hemodialysis, were enough to link, with great approach, the histopathology with the diagnosis of BT.

  3. Vascular and Renal Hemodynamic Changes after Renal Denervation

    PubMed Central

    Ott, Christian; Janka, Rolf; Schmid, Axel; Titze, Stephanie; Ditting, Tilmann; Sobotka, Paul A.; Veelken, Roland; Uder, Michael

    2013-01-01

    Summary Background and objectives Renal denervation (RDN) has been shown to be effective in reducing BP in treatment-resistant hypertension. Measurement of the renal and sympathetic activity revealed a decrease in sympathetic drive to the kidney and small resistance vessels after RDN. However, the consequences on renal perfusion and renal vascular resistance (RVR), as well as central hemodynamics, are unknown. Design, setting, participants, & measurements Nineteen patients with treatment-resistant hypertension (office BP≥140/90 mmHg, despite at least three antihypertensive drugs [including a diuretic], and diagnosis confirmed by 24-hour ambulatory BP monitoring) underwent RDN between January and October 2011. Renal perfusion and RVR were noninvasively assessed by magnetic resonance imaging with arterial spin labeling, and renal function was assessed by estimating GFR before (day −1), after (day +1), and again after 3 months of RDN. Central hemodynamics was assessed using pulse wave analysis at day −1 and after 6 months of RDN. Results Peripheral office BP (systolic, 158±26 versus 142±23 mmHg, P=0.002; diastolic, 83±13 versus 76±9 mmHg, P=0.02) and mean systolic 24-hour ambulatory BP (159±17 versus 152±17 mmHg, P=0.02) were significantly reduced 6 months after RDN. Renal perfusion was not statistically different between day −1 and day +1 (256.8 [interquartile range (IQR), 241–278] versus 263.4 [IQR, 252–277] ml/min per 100 g; P=0.17) as well as after 3 months (256.8 [IQR, 241–278] versus 261.2 [IQR, 240–285] ml/min per 100 g; P=0.27) after RDN. RVR dropped (432.1 [IQR, 359–525] versus 390.6 [IQR, 338–461] AU; P=0.02), whereas renal function was not statistically different at any time point. Central systolic BP (145±31 versus 131±28 mmHg; P=0.009), diastolic BP (85±18 versus 80±14 mmHg; P=0.03), and central pulse pressure (61±18 versus 52±18 mmHg; P=0.02) were significantly reduced 6 months after RDN. Central augmentation index (24±8

  4. Effects of adenosine infusion into renal interstitium on renal hemodynamics

    SciTech Connect

    Pawlowska, D.; Granger, J.P.; Knox, F.G.

    1987-04-01

    This study was designed to investigate the hemodynamic effects of exogenous adenosine in the interstitium of the rat kidney. Adenosine or its analogues were infused into the renal interstitium by means of chronically implanted capsules. In fusion of adenosine decreased glomerular filtration rate (GFR) from 0.81 +/- 0.06 to 0.37 +/- 0.06 ml/min while having no effect on renal blood flow (RBF). The metabolically stable analogue, 2-chloradenosine (2-ClAdo), decreased GFR from 0.73 +/- 0.07 to 021 +/- 0.06 ml/min. Interstitial infusion of theophylline, an adenosine receptor antagonist, completely abolished the effects of adenosine and 2-ClAdo on GFR. The distribution of adenosine, when infused into the renal interstitium, was determined using radiolabeled 5'-(N-ethyl)-carboxamidoadenosine (NECA), a metabolically stable adenosine agonist. After continuous infusion, (/sup 3/H)NECA was distributed throughout the kidney. The effects of NECA to reduce GFR were similar to those of adenosine and 2-ClAdo. They conclude that increased levels of adenosine in the renal interstitium markedly decrease GFR without affecting RBF in steady-state conditions. The marked effects of adenosine agonists during their infusion into the renal interstitium and the complete blockade of these effects by theophylline suggest an extracellular action of adenosine.

  5. Renal Function and Hematology in Rats with Congenital Renal Hypoplasia

    PubMed Central

    Yasuda, Hidenori; Amakasu, Kohei; Tochigi, Yuki; Katayama, Kentaro; Suzuki, Hiroetsu

    2016-01-01

    Renal hypoplasia due to a congenitally reduced number of nephrons progresses to chronic kidney disease and may cause renal anemia, given that the kidneys are a major source of erythropoietin in adults. Hypoplastic kidney (HPK) rats have only about 20% of the normal number of nephrons and develop CKD. This study assessed the renal function and hematologic changes in HPK rats from 70 to 210 d of age. HPK rats demonstrated deterioration of renal excretory function, slightly macrocytic erythropenia at all days examined, age-related increases in splenic hemosiderosis accompanied by a tendency toward increased hemolysis, normal plasma erythropoietin levels associated with increased hepatic and decreased renal erythropoietin production, and maintenance of the response for erythropoietin production to hypoxic conditions, with increased interstitial fibrosis at 140 d of age. These results indicate that increases in splenic hemosiderosis and the membrane fragility of RBC might be associated with erythropenia and that hepatic production of erythropoietin might contribute to maintaining the blood Hgb concentration in HPK rats. PMID:26884405

  6. Nutrition disorders during acute renal failure and renal replacement therapy.

    PubMed

    Wiesen, Patricia; Van Overmeire, Lionel; Delanaye, Pierre; Dubois, Bernard; Preiser, Jean-Charles

    2011-03-01

    The physiological and biological modifications related to acute renal failure in critically ill patients, including the current use of continuous renal replacement therapies, have dramatically changed the type and importance of the metabolic and nutrition disturbances observed during treatment of renal failure. This review summarizes the current knowledge and makes recommendations for the daily nutrition management of these patients. The filtration of water-soluble substances of low molecular weight by continuous hemodiafiltration results in significant losses of glucose, amino acids, low-molecular-weight proteins, trace elements, and water-soluble vitamins. The losses of these macronutrients and micronutrients should be compensated for. During continuous renal replacement therapy, the daily recommended energy allowance is between 25 and 35 kcal/kg, with a ratio of 60%-70% carbohydrates to 30%-40% lipids, and between 1.5 and 1.8 g/kg protein. Providing energy 25-35 kcal/kg/d with a carbohydrate/lipid ratio of 60-70/30-40 and protein 1.5-1.8 g/kg/d is recommended during continuous renal replacement therapy. Supplemental vitamin B(1) (100 mg/d), vitamin C (250 mg/d), and selenium (100 mcg/d) are also recommended.

  7. Tenofovir renal toxicity targets mitochondria of renal proximal tubules

    PubMed Central

    Kohler, James J; Hosseini, Seyed H; Hoying-Brandt, Amy; Green, Elgin; Johnson, David M; Russ, Rodney; Tran, Dung; Raper, C Michael; Santoianni, Robert; Lewis, William

    2009-01-01

    Tenofovir disoproxil fumarate (TDF) is an analog of adenosine monophosphate that inhibits HIV reverse transcriptase in HIV/AIDS. Despite its therapeutic success, renal tubular side effects are reported. The mechanisms and targets of tenofovir toxicity were determined using ‘2 × 2’ factorial protocols, and HIV transgenic (TG) and wild-type (WT) littermate mice with or without TDF (5 weeks). A parallel study used didanosine (ddI) instead of TDF. At termination, heart, kidney, and liver samples were retrieved. Mitochondrial DNA (mtDNA) abundance, and histo- and ultrastructural pathology were analyzed. Laser-capture microdissection (LCM) was used to isolate renal proximal tubules for molecular analyses. Tenofovir increased mtDNA abundance in TG whole kidneys, but not in their hearts or livers. In contrast, ddI decreased mtDNA abundance in the livers of WTs and TGs, but had no effect on their hearts or kidneys. Histological analyses of kidneys showed no disruption of glomeruli or proximal tubules with TDF or ddI treatments. Ultrastructural changes in renal proximal tubules from TDF-treated TGs included an increased number and irregular shape of mitochondria with sparse fragmented cristae. LCM-captured renal proximal tubules from TGs showed decreased mtDNA abundance with tenofovir. The results indicate that tenofovir targets mitochondrial toxicity on the renal proximal tubule in an AIDS model. PMID:19274046

  8. Antihypertensive agents and renal transplantation

    PubMed Central

    Vergoulas, G

    2007-01-01

    Advances in the field of kidney transplantation have led to a significant increase in the life of renal allograft with 1 - year graft survival rates of 93% to 99%.This increase in early graft survival has made it possible to observe the long-term morbidities that accompany renal transplantation. Studies correlating the reduction of arterial blood pressure with patient and graft survival as well as the risk of cardiovascular disease do not exist. The recommendations come from the general population and from comparative studies of hypertensive and normotensive kidney graft recipients. It is known that in the general population hypertension is a risk factor for chronic kidney disease but at the same time a risk factor for death, ischaemic heart disease, chronic heart failure and left ventricular hypertrophy. We must always have in mind that there are many similarities between a kidney graft recipient and a patient with chronic kidney disease. Renal transplant recipients represent a patient population with a very high risk for development of cardiovascular disease which has been identified as the leading cause of death in these patients1. Of 18,482 deaths among renal allograft recipients, 38% had functioning renal allografts 2, 3. Successful renal transplantation (Rt) can result in partial regression of left ventricular hypertrophy (LVH) if it is associated with hypertension (HTN) remission or if HTN is controlled by medications. Frequently post transplant HTN is associated with failure of LVH to regress. Transplant clinicians must choose antihypertensive agents that will provide their patients with maximum benefit from renal allograft and cardiovascular perspective. The target must always be long term patient and graft survival and acceptable quality of life. The antihypertensive drugs usually used after kidney transplantation are diuretics, calcium channel blockers, angiotensin converting enzyme inhibitors, angiotensin II receptor blockers and β – blockers. Most

  9. Gerota versus Zuckerkandl: the renal fascia revisited.

    PubMed

    Chesbrough, R M; Burkhard, T K; Martinez, A J; Burks, D D

    1989-12-01

    In the medical literature, Gerota fascia is frequently used as a general term to describe both the anterior and posterior pararenal fascia. However, Zuckerkandl's name is also often used to describe either the anterior or posterior fascia. To resolve this confusion, the authors reviewed the original works by Gerota and Zuckerkandl. In 1883, Zuckerkandl described the posterior renal fascia but did not recognize the presence of the anterior renal fascia. In 1895, Gerota documented the presence of the anterior renal fascia and clearly assigned Zuckerkandl's name to the posterior renal fascia. Thus, the terms Zuckerkandl fascia and posterior renal fascia are synonymous, as are Gerota fascia and anterior renal fascia.

  10. Renal infarction secondary to ketamine abuse.

    PubMed

    Chen, Chin-Li; Chen, Jin-Li; Cha, Tai-Lung; Wu, Sheng-Tang; Tang, Shou-Hung; Tsao, Chih-Wei; Meng, En

    2013-07-01

    Renal infarction is an uncommon condition that resulted from inadequate perfusion of the kidney and is easily missed diagnosed due to its nonspecific clinical presentations. Major risk factors for renal infarction are atrial fibrillation, previous embolism, and ischemic and valvular heart disease. Progressive decrease in renal function or even death can occur if renal infarction is not diagnosed accurately and promptly. Ketamine abuse may cause variable urinary tract injury. However, renal infarction caused by ketamine abuse has never been reported. To our knowledge, this is the first documented case of renal infarction following nasal insufflation of ketamine.

  11. Multiple variations of the right renal vessels.

    PubMed

    Nayak, B S

    2008-06-01

    Multiple variations of the right renal and testicular vessels were found during routine dissection in a 65-year-old male cadaver. The cadaver was healthy and did not have any other anomalies. The variations found were: presence of three right renal arteries, origin of the right inferior suprarenal artery from the middle right renal artery, two right renal veins, origin of the right testicular artery from the inferior right renal artery and the termination of the right testicular vein into the right renal vein. A sound knowledge of vascular variations in relation to the right kidney and right suprarenal gland is important in kidney transplantation and suprarenal surgery.

  12. Bicarbonate promotes BK-α/β4-mediated K excretion in the renal distal nephron.

    PubMed

    Cornelius, Ryan J; Wen, Donghai; Hatcher, Lori I; Sansom, Steven C

    2012-12-01

    Ca-activated K channels (BK), which are stimulated by high distal nephron flow, are utilized during high-K conditions to remove excess K. Because BK predominantly reside with BK-β4 in acid/base-transporting intercalated cells (IC), we determined whether BK-β4 knockout mice (β4KO) exhibit deficient K excretion when consuming a high-K alkaline diet (HK-alk) vs. high-K chloride diet (HK-Cl). When wild type (WT) were placed on HK-alk, but not HK-Cl, renal BK-β4 expression increased (Western blot). When WT and β4KO were placed on HK-Cl, plasma K concentration ([K]) was elevated compared with control K diets; however, K excretion was not different between WT and β4KO. When HK-alk was consumed, the plasma [K] was lower and K clearance was greater in WT compared with β4KO. The urine was alkaline in mice on HK-alk; however, urinary pH was not different between WT and β4KO. Immunohistochemical analysis of pendrin and V-ATPase revealed the same increases in β-IC, comparing WT and β4KO on HK-alk. We found an amiloride-sensitive reduction in Na excretion in β4KO, compared with WT, on HK-alk, indicating enhanced Na reabsorption as a compensatory mechanism to secrete K. Treating mice with an alkaline, Na-deficient, high-K diet (LNaHK) to minimize Na reabsorption exaggerated the defective K handling of β4KO. When WT on LNaHK were given NH(4)Cl in the drinking water, K excretion was reduced to the magnitude of β4KO on LNaHK. These results show that WT, but not β4KO, efficiently excretes K on HK-alk but not on HK-Cl and suggest that BK-α/β4-mediated K secretion is promoted by bicarbonaturia.

  13. Elucidation of the distal convoluted tubule transcriptome identifies new candidate genes involved in renal Mg(2+) handling.

    PubMed

    de Baaij, Jeroen H F; Groot Koerkamp, Marian J; Lavrijsen, Marla; van Zeeland, Femke; Meijer, Hans; Holstege, Frank C P; Bindels, René J M; Hoenderop, Joost G J

    2013-12-01

    The kidney plays a key role in the maintenance of Mg(2+) homeostasis. Specifically, the distal convoluted tubule (DCT) is instrumental in the fine-tuning of renal Mg(2+) handling. In recent years, hereditary Mg(2+) transport disorders have helped to identify important players in DCT Mg(2+) homeostasis. Nevertheless, several proteins involved in DCT-mediated Mg(2+) reabsorption remain to be discovered, and a full expression profile of this complex nephron segment may facilitate the discovery of new Mg(2+)-related genes. Here, we report Mg(2+)-sensitive expression of the DCT transcriptome. To this end, transgenic mice expressing enhanced green fluorescent protein under a DCT-specific parvalbumin promoter were subjected to Mg(2+)-deficient or Mg(2+)-enriched diets. Subsequently, the Complex Object Parametric Analyzer and Sorter allowed, for the first time, isolation of enhanced green fluorescent protein-positive DCT cells. RNA extracts thereof were analyzed by DNA microarrays comparing high versus low Mg(2+) to identify Mg(2+) regulatory genes. Based on statistical significance and a fold change of at least 2, 46 genes showed differential expression. Several known magnesiotropic genes, such as transient receptor potential cation channel, subfamily M, member 6 (Trpm6), and Parvalbumin, were upregulated under low dietary Mg(2+). Moreover, new genes were identified that are potentially involved in renal Mg(2+) handling. To confirm that the selected candidate genes were regulated by dietary Mg(2+) availability, the expression levels of solute carrier family 41, member 3 (Slc41a3), pterin-4 α-carbinolamine dehydratase/dimerization cofactor of hepatocyte nuclear factor-1α (Pcbd1), TBC1 domain family, member 4 (Tbc1d4), and uromodulin (Umod) were determined by RT-PCR analysis. Indeed, all four genes show significant upregulation in the DCT of mice fed a Mg(2+)-deficient diet. By elucidating the Mg(2+)-sensitive DCT transcriptome, new candidate genes in renal Mg(2

  14. Genetics Home Reference: action myoclonus-renal failure syndrome

    MedlinePlus

    ... Action Myoclonus - Renal Failure Syndrome Genetic Testing Registry: Epilepsy, progressive myoclonic 4, with or without renal failure ... failure syndrome action myoclonus–renal failure syndrome AMRF epilepsy, progressive myoclonic 4, with or without renal failure ...

  15. The role of renal biopsy in small renal masses.

    PubMed

    Burruni, Rodolfo; Lhermitte, Benoit; Cerantola, Yannick; Tawadros, Thomas; Meuwly, Jean-Yves; Berthold, Dominik; Jichlinski, Patrice; Valerio, Massimo

    2016-01-01

    Renal biopsy is being increasingly proposed as a diagnostic tool to characterize small renal masses (SRM). Indeed, the wide adoption of imaging in the diagnostic workup of many diseases had led to a substantial increased incidence of SRM (diameter ≤4 cm). While modern ultrasound, computed tomography (CT) and magnetic resonance imaging (MRI) techniques have high sensitivity for detecting SRM, none is able to accurately and reliably characterize them in terms of histological features. This is currently of key importance in guiding clinical decision-making in some situations, and in these cases renal biopsy should be considered. In this review, we aim to summarize the technique, diagnostic performance, and predicting factors of nondiagnostic biopsy, as well as the future perspectives.

  16. The role of renal biopsy in small renal masses

    PubMed Central

    Burruni, Rodolfo; Lhermitte, Benoit; Cerantola, Yannick; Tawadros, Thomas; Meuwly, Jean-Yves; Berthold, Dominik; Jichlinski, Patrice; Valerio, Massimo

    2016-01-01

    Renal biopsy is being increasingly proposed as a diagnostic tool to characterize small renal masses (SRM). Indeed, the wide adoption of imaging in the diagnostic workup of many diseases had led to a substantial increased incidence of SRM (diameter ≤4 cm). While modern ultrasound, computed tomography (CT) and magnetic resonance imaging (MRI) techniques have high sensitivity for detecting SRM, none is able to accurately and reliably characterize them in terms of histological features. This is currently of key importance in guiding clinical decision-making in some situations, and in these cases renal biopsy should be considered. In this review, we aim to summarize the technique, diagnostic performance, and predicting factors of nondiagnostic biopsy, as well as the future perspectives. PMID:26858784

  17. Paraneoplastic Cough and Renal Cell Carcinoma

    PubMed Central

    Sullivan, Stephen

    2016-01-01

    A case of patient with intractable cough due to renal cell carcinoma is reported. The discussion reviews the literature regarding this unusual paraneoplastic manifestation of renal malignancy. PMID:27445553

  18. General Information about Renal Cell Cancer

    MedlinePlus

    ... Renal Cell Cancer Treatment (PDQ®)–Patient Version General Information About Renal Cell Cancer Go to Health Professional ... the PDQ Adult Treatment Editorial Board . Clinical Trial Information A clinical trial is a study to answer ...

  19. Paraneoplastic Cough and Renal Cell Carcinoma.

    PubMed

    Sullivan, Stephen

    2016-01-01

    A case of patient with intractable cough due to renal cell carcinoma is reported. The discussion reviews the literature regarding this unusual paraneoplastic manifestation of renal malignancy. PMID:27445553

  20. Drugs Approved for Kidney (Renal Cell) Cancer

    MedlinePlus

    ... Ask about Your Treatment Research Drugs Approved for Kidney (Renal Cell) Cancer This page lists cancer drugs ... that are not listed here. Drugs Approved for Kidney (Renal Cell) Cancer Afinitor (Everolimus) Aldesleukin Avastin (Bevacizumab) ...

  1. Cardiovascular effects of afferent renal nerve stimulation.

    PubMed

    Stella, A; Weaver, L; Golin, R; Genovesi, S; Zanchetti, A

    1987-01-01

    Electrical stimulation of afferent renal nerves elicits an increase in arterial pressure and heart rate. The hypertensive response is presumably due to the widespread activation of the sympathetic nervous system leading to peripheral vasoconstriction. Interestingly, the kidney does not appear involved in this reflex excitatory response to afferent renal nerve stimulation since changes in vascular conductances and excretory functions are equal in both the innervated and denervated kidney, and secondary to changes in renal perfusion pressure. In addition, no changes in renin release from either kidneys are observed during afferent renal nerve stimulation. It is likely that the electrical stimulation of afferent renal nerves activates other reflexes exerting an inhibitory influence on efferent renal nerve activity. Indeed, neural renorenal reflexes which tonically inhibit renal functions have clearly been demonstrated. Furthermore, preferential inhibition of efferent renal nerve activity by cardiopulmonary and sinoaortic receptors has recently been shown during activation of other visceral afferents.

  2. Complex renal vascular variation: a case report.

    PubMed

    Tanyeli, Ercan; Uzel, Mehmet; Soyluoğlu, Ali Ihsan

    2006-09-01

    As the number of renal surgical interventions increase a better understanding of the anatomy of renal arteries and their branches gain in importance. Here we describe a common trunk from the right side of the aorta ramifying into suprarenal and two renal hilar arteries in a 40-year-old male cadaver detected during dissections performed in a routine gross anatomy course. The suprarenal branch is divided into several smaller branches to supply blood to the suprarenal gland. The superior renal hilar artery gave rise to the right testicular artery and an additional suprarenal artery. The inferior renal hilar artery gave rise to one more additional suprarenal artery. The superior renal hilar artery crossed the inferior renal hilar artery. On the same side renal veins were also doubled. For better outcome interesting variations such as in this case should be kept in mind before and during any interventions involving this region.

  3. Renal drainage after percutaneous nephrolithotomy.

    PubMed

    Srinivasan, Arun K; Herati, Amin; Okeke, Zeph; Smith, Arthur D

    2009-10-01

    Exit strategy after percutaneous nephrolithotomy (PCNL) is an area of continuing innovation to improve postoperative morbidity and operative outcomes for patients. The two important components of an exit strategy after PCNL are hemostasis and renal drainage. We review the different techniques of renal drainage after PCNL-ie, nephrostomy tube, ureteral stents, and totally tubeless strategy with critical discussion of available evidence for and against each of these techniques. We conclude that the optimal renal drainage method depends on patient characteristics and the operative course; hence, it should be individualized. To simplify this, we group patients undergoing PCNL as routine, problematic, and complicated, based on increasing complexity of the procedure and procedural complications. In routine PCNLs, we favor placement of an ureteral stent or a small-bore nephrostomy tube. In problematic and complicated PCNLs, we think the evidence directs toward placement of a nephrostomy tube, small bore being an option in problematic PCNLs.

  4. Parasites and chronic renal failure

    PubMed Central

    Mohammadi Manesh, Reza; Hosseini Safa, Ahmad; Sharafi, Seyedeh Maryam; Jafari, Rasool; Bahadoran, Mehran; Yousefi, Morteza; Nasri, Hamid; Yousofi Darani, Hossein

    2014-01-01

    Suppression of the human immune system results in an increase in susceptibility to infection by various infectious agents. Conditions such as AIDS, organ transplantation and chronic renal insufficiency (CRI) are the most important cause of insufficient immune response against infections. Long term renal disorders result in uremia, which can suppress human immune system. Parasitic infections are one of the most important factors indicating the public health problems of the societies. These infections can be more hostile and life threatening in susceptible individuals than in the normal people. In these patients some parasitic infections such as blastocystiosis, cryptosporidiosis and toxoplasmosis have been reported to be more prevalent. This review aimed to give an overview about parasitic infections in patients with renal disorders. PMID:25610885

  5. Future challenges in renal transplantation.

    PubMed

    Whalen, H; Clancy, M; Jardine, A

    2012-02-01

    There is a worldwide increase in the incidence of end-stage renal disease. Renal transplantation has been shown to be cost effective, prolong survival and provide a better quality of life in comparison to dialysis. Consequently, there has been a steady increase in demand for organs leading to a shortage of available kidneys, and an increase in transplant waiting lists. Renal transplantation is therefore an expanding field with a number of unique future challenges to address. This article outlines strategies that may be employed to expand organ supply in order to meet increased demand. The ethical issues surrounding this are also summarized. Furthermore, we highlight techniques with the potential to minimize peri-transplant injury to the kidney on its journey from donor to recipient. Current and potential future management strategies to optimize graft and patient survival are also discussed. PMID:22361673

  6. Polyoma (BK) virus associated urothelial carcinoma originating within a renal allograft five years following resolution of polyoma virus nephropathy.

    PubMed

    Salvatore, Steven P; Myers-Gurevitch, Patricia M; Chu, Stacy; Robinson, Brian D; Dadhania, Darshana; Seshan, Surya V

    2016-03-01

    A direct role for BK polyomavirus infection in malignant tumors of renal allografts and urinary tract is emerging. Case reports suggest a link between BK virus (BKV) reactivation and development of malignancy in renal allograft recipients. Herein we describe the first case of BKV positive invasive urothelial carcinoma within the renal allograft, presenting with chronic diarrhea and weight loss 5 years following resolution of BK viremia/nephropathy (BKVN). Unique to our case was the remote history of BK viremia/BKVN, rising titer of anti-HLA antibody and presence of renal limited urothelial carcinoma with microinvasion of malignant cells staining positive for SV40 large T antigen (T-Ag). These findings suggest that persistence of subclinical BKV infection within the renal allograft may play a role in the malignant transformation of epithelial cells. Patients with history of BKVN may be at risk for kidney and urinary tract malignancy despite resolution of BK viremia/BKVN.

  7. Polyoma (BK) virus associated urothelial carcinoma originating within a renal allograft five years following resolution of polyoma virus nephropathy.

    PubMed

    Salvatore, Steven P; Myers-Gurevitch, Patricia M; Chu, Stacy; Robinson, Brian D; Dadhania, Darshana; Seshan, Surya V

    2016-03-01

    A direct role for BK polyomavirus infection in malignant tumors of renal allografts and urinary tract is emerging. Case reports suggest a link between BK virus (BKV) reactivation and development of malignancy in renal allograft recipients. Herein we describe the first case of BKV positive invasive urothelial carcinoma within the renal allograft, presenting with chronic diarrhea and weight loss 5 years following resolution of BK viremia/nephropathy (BKVN). Unique to our case was the remote history of BK viremia/BKVN, rising titer of anti-HLA antibody and presence of renal limited urothelial carcinoma with microinvasion of malignant cells staining positive for SV40 large T antigen (T-Ag). These findings suggest that persistence of subclinical BKV infection within the renal allograft may play a role in the malignant transformation of epithelial cells. Patients with history of BKVN may be at risk for kidney and urinary tract malignancy despite resolution of BK viremia/BKVN. PMID:26709521

  8. An unrecognized renal physiologist: Friedrich Wöhler.

    PubMed

    Richet, G

    1995-01-01

    Wöhler, in 1828, was the first chemist to synthesize urea. In 1824, towards the end of his medical studies, he had already published an important article on the renal excretion of some 41 substances administered orally or parenterally and on the links between their renal excretion and their metabolism: salts of potassium are excreted either reduced or oxidized, urine can be acidic when the blood is alkaline, the rate of water excretion is influenced by the rate of substances excreted in the same form as they are administered. He adumbrated the general concepts on the role of the kidney in the maintenance of the composition of the body. Had he continued in this direction, Wöhler would have been recognized not only as a remarkable chemist but also as a great physiologist. PMID:8546178

  9. [Carbonyl stress and oxidatively modified proteins in chronic renal failure].

    PubMed

    Bargnoux, A-S; Morena, M; Badiou, S; Dupuy, A-M; Canaud, B; Cristol, J-P

    2009-01-01

    Oxidative stress is commonly observed in chronic renal failure patients resulting from an unbalance between overproduction of reactive oxygen species and impairement of defense mechanisms. Proteins appear as potential targets of uremia-induced oxidative stress and may undergo qualitative modifications. Proteins could be directly modified by reactive oxygen species which leads to amino acid oxydation and cross-linking. Proteins could be indirectly modified by reactive carbonyl compounds produced by glycoxidation and lipo-peroxidation. The resulting post-traductional modifications are known as carbonyl stress. In addition, thiols could be oxidized or could react with homocystein leading to homocysteinylation. Finally, tyrosin could be oxidized by myeloperoxidase leading to advanced oxidative protein products (AOPP). Oxidatively modified proteins are increased in chronic renal failure patients and may contribute to exacerbate the oxidative stress/inflammation syndrome. They have been involved in long term complications of uremia such as amyloidosis and accelerated atherosclerosis. PMID:19297289

  10. An unrecognized renal physiologist: Friedrich Wöhler.

    PubMed

    Richet, G

    1995-01-01

    Wöhler, in 1828, was the first chemist to synthesize urea. In 1824, towards the end of his medical studies, he had already published an important article on the renal excretion of some 41 substances administered orally or parenterally and on the links between their renal excretion and their metabolism: salts of potassium are excreted either reduced or oxidized, urine can be acidic when the blood is alkaline, the rate of water excretion is influenced by the rate of substances excreted in the same form as they are administered. He adumbrated the general concepts on the role of the kidney in the maintenance of the composition of the body. Had he continued in this direction, Wöhler would have been recognized not only as a remarkable chemist but also as a great physiologist.

  11. Renal tubular secretion of pramipexole.

    PubMed

    Knop, Jana; Hoier, Eva; Ebner, Thomas; Fromm, Martin F; Müller, Fabian

    2015-11-15

    The dopamine agonist pramipexole is cleared predominantly by the kidney with a major contribution of active renal secretion. Previously the organic cation transporter 2 (OCT2) was shown to be involved in the uptake of pramipexole by renal tubular cells, while the mechanism underlying efflux into tubular lumen remains unclear. Cimetidine, a potent inhibitor of multidrug and toxin extrusion proteins 1 (MATE1) and 2-K (MATE2-K), decreases renal pramipexole clearance in humans. We hypothesized that, in addition to OCT2, pramipexole may be a substrate of MATE-mediated transport. Pramipexole uptake was investigated using MDCK or HEK cells overexpressing OCT2, MATE1 or MATE2-K and the respective vector controls (Co). Transcellular pramipexole transport was investigated in MDCK cells single- or double-transfected with OCT2 and/or MATE1 and in Co cells, separating a basal from an apical compartment in a model for renal tubular secretion. Pramipexole uptake was 1.6-, 1.1-, or 1.6-folds in cells overexpressing OCT2, MATE1 or MATE2-K, respectively as compared to Co cells (p<0.05). In transcellular transport experiments, intracellular pramipexole accumulation was 1.7-folds in MDCK-OCT2 (p<0.001), and transcellular pramipexole transport was 2.2- and 4.0-folds in MDCK-MATE1 and MDCK-OCT2-MATE1 cells as compared to Co cells (p<0.001). Transcellular pramipexole transport was pH dependent and inhibited by cimetidine with IC50 values of 12μM and 5.5μM in MATE1 and OCT2-MATE1 cells, respectively. Taken together, coordinate activity of OCT2-mediated uptake and MATE-mediated efflux determines pramipexole renal secretion. Reduced OCT2 or MATE transport activity due to genetic variation or drug-drug interactions may affect pramipexole renal secretion.

  12. Renal calculus complicated with squamous cell carcinoma of renal pelvis: Report of two cases.

    PubMed

    Xiao, Jiantao; Lei, Jun; He, Leye; Yin, Guangming

    2015-01-01

    Longstanding renal calculus is a risk factor of squamous cell carcinoma (SCC) of the renal pelvis. It is highly aggressive and usually diagnosed at advanced stages with a poor prognosis. We present two cases of kidney stone complications with renal pelvic SCC. These two patients had a radical nephrectomy and the dissected tissues were renal pelvic SCC. Our cases further emphasize that renal pelvic SCC should be considered in patients with longstanding renal calculus. These cases contribute greatly to an early diagnosis and early treatment, both of which will significantly minimize the damage of, and markedly improve the prognosis of, renal pelvic SCC.

  13. Repair of Internal Iliac Artery Aneurysm Anastomosed to Donor Renal Artery in a Renal Transplant Patient

    PubMed Central

    Takano, Hiroshi; Kin, Keiwa; Maeda, Shuusaku

    2016-01-01

    We herein report a successful repair of an internal iliac artery aneurysm in a renal transplant patient. At renal transplantation, the main renal artery and accessory renal artery had been anastomosed to the right internal iliac artery and right external iliac artery, respectively. The patient underwent resection and graft replacement of the iliac artery aneurysm with reattachment of the main renal artery to the right external iliac artery through a midline laparotomy with repeated topical cold perfusion for renal protection. The postoperative course was uneventful, and no evidence of renal function impairment was present at discharge. PMID:27738467

  14. [Bacteria isolated from urine and renal tissue samples and their relation to renal histology].

    PubMed

    Gökalp, A; Gültekin, E Y; Bakici, M Z; Ozdeşlik, B

    1988-01-01

    The bacteria from the urine and renal biopsy specimens of 40 patients undergoing renal surgery were isolated and their relations with renal histology investigated. The urine cultures were positive in 14 patients, the same organisms being isolated from the renal tissue in 7 cases. In 6 patients with negative urine cultures, bacteria were isolated from renal tissues. Of the 28 cases pathologically diagnosed as chronic pyelonephritis, bacteria were isolated from the renal tissue in 13 cases, the urine cultures being positive in only 11 cases. E. coli was the most commonly encountered bacteria in both the urine and renal tissues.

  15. Acute renal infarction secondary to atrial fibrillation - mimicking renal stone picture.

    PubMed

    Salih, Salih Bin; Al Durihim, Huda; Al Jizeeri, Ahmed; Al Maziad, Ghassan

    2006-06-01

    Acute renal infarction presents in a similar clinical picture to that of a renal stone. We report a 55-year-old Saudi female, known to have atrial fibrillation secondary to mitral stenosis due to rheumatic heart disease. She presented with a two day history of right flank pain that was treated initially as a renal stone. Further investigations confirmed her as a case of renal infarction. Renal infarction is under-diagnosed because the similarity of its presentation to renal stone. Renal infarction should be considered in the differential diagnosis of loin pain, particularly in a patient with atrial fibrillation.

  16. Renal infarction associated with adrenal pheochromocytoma.

    PubMed

    Thewjitcharoen, Yotsapon; Atikankul, Taywin; Sunthornyothin, Sarat

    2013-09-01

    The coexistence of pheochromocytoma and renal artery stenosis had been reported occasionally from the possible mechanism of catecholoamine-induced vasospasm and extrinsic compression of renal artery in some reported cases. However, renal infarction caused by pheochromocytoma is an uncommon phenomenon. Herein, we report an interesting case of adrenal pheochromocytoma associated with renal artery thrombosis, which should be included in the differential diagnosis of pheochromocytoma patients who present with abdominal pain.

  17. Nutcracker syndrome complicating with renal abscess.

    PubMed

    Yavuz, Sevgi; Ece, Aydin; Corapli, Mahmut; Ilter, Cigdem; Guven, Rufat

    2016-04-01

    The nutcracker syndrome refers to compression of left renal vein between the superior mesenteric artery and aorta. Renal abscess consists of purulent and necrotic material localised to the renal parenchyma. These two entities are extremely rare and their coincidence has not previously been described in literature. Here, we report a case of a 10-year-old girl who developed left renal abscess probably due to nutcracker syndrome.

  18. Renal denervation attenuates NADPH oxidase-mediated oxidative stress and hypertension in rats with hydronephrosis.

    PubMed

    Peleli, Maria; Al-Mashhadi, Ammar; Yang, Ting; Larsson, Erik; Wåhlin, Nils; Jensen, Boye L; G Persson, A Erik; Carlström, Mattias

    2016-01-01

    hypertension and restores the renal excretion pattern, which is associated with reduced renal NOX and components of the renin-angiotensin-aldosterone system. This study emphasizes a link between renal nerves, the development of hypertension, and modulation of NOX function.

  19. Renal pelvis urothelial carcinoma of the upper moiety in complete right renal duplex: a case report

    PubMed Central

    Zhang, Yiran; Yu, Quanfeng; Zhang, Zhihong; Liu, Ranlu; Xu, Yong

    2015-01-01

    Urothelial carcinoma (UC) originated from renal pelvis is the common tumor of the urinary system, however, neoplasia of the renal pelvis in duplex kidneys is extremely rare, especially in the complete renal and ureteral duplex cases. We present the first case of renal pelvis UC of the upper moiety in a complete right renal duplex. This male patient has bilateral complete renal and ureteral duplex. To the best of our knowledge, this is the first reported case of renal pelvis UC in a complete renal duplex system. After this experience we feel that the diagnosis of renal pelvis UC in duplex kidneys is not so easy, and once the diagnosis is determined, the whole renal duplex units and bladder cuff or ectopic orifice should be excised radically. PMID:26823906

  20. [Molecular aspects of renal desease].

    PubMed

    Nichik, T E; Lin'kova, N S; Kraskovskaia, N A; Dudkov, A V; Khavinson, V Kh

    2014-01-01

    The review considers molecular mechanisms of chronic renal failure and cancer kidney disease. The most important molecules inducing inflammation are cytokines (MCP-1, TNFalpha, IFN-gamma, IL-1,6,8,18), matrix metalloproteinases MMP-2,3,9,14, tissue inhibitors of metalloproteinases (TIMPs) and grow factors (VEGF PDGE FGF). This signal molecules regulate the activity of immune cells and remodeling extracellular matrix (ECM) components taken place in inflammatory reactions, proliferation, apoptosis and also in the differentiation of kidney cells. On the basis of these data nowadays developed new highly selective approaches to diagnosis, prediction, estimation of efficiency of treatment of renal disease and creating of target drugs. PMID:25707263

  1. Diagnostic management of renal colic.

    PubMed

    Nicolau, C; Salvador, R; Artigas, J M

    2015-01-01

    Renal colic is a common reason for presentation to emergency departments, and imaging has become fundamental for the diagnosis and clinical management of this condition. Ultrasonography and particularly noncontrast computed tomography have good diagnostic performance in diagnosing renal colic. Radiologic management will depend on the tools available at the center and on the characteristics of the patient. It is essential to use computed tomography techniques that minimize radiation and to use alternatives like ultrasonography in pregnant patients and children. In this article, we review the epidemiology, clinical and radiologic presentations, and clinical management of ureteral lithiasis.

  2. [Managing focal incidental renal lesions].

    PubMed

    Nicolau, C; Paño, B; Sebastià, C

    2016-01-01

    Incidental renal lesions are relatively common in daily radiological practice. It is important to know the different diagnostic possibilities for incidentally detected lesions, depending on whether they are cystic or solid. The management of cystic lesions is guided by the Bosniak classification. In solid lesions, the goal is to differentiate between renal cancer and benign tumors such as fat-poor angiomyolipoma and oncocytoma. Radiologists need to know the recommendations for the management of these lesions and the usefulness of the different imaging techniques and interventional procedures in function of the characteristics of the incidental lesion and the patient's life expectancy.

  3. [Retroperitoneal marsupialization of renal cysts].

    PubMed

    Radović, N; Popović, D; Rifai, M; Mavrić, I; Sefc, J; Hrmić, I

    1997-01-01

    The use of minimal invasive surgery in urology continue to increase. Retroperitoneoscopic approach in performing minimal invasive surgery of retroperitoneum shortens the duration of operation in comparison with transabdominal approach, with minimal risk of intraabdominal complications. We described the use of the retroperitoneoscopic approach to the upper pole of a kidney for marsupialization of a symptomatic renal cyst. The procedure was minimally traumatic, morbidity was negligible and the patient was discharged from the hospital the third day after the operation. We believe that retroperitoneoscopic management of giant symptomatic renal cysts will be applicable, together with other existing methods.

  4. Hypogonadism and renal failure: An update.

    PubMed

    Thirumavalavan, Nannan; Wilken, Nathan A; Ramasamy, Ranjith

    2015-01-01

    The prevalence of both hypogonadism and renal failure is increasing. Hypogonadism in men with renal failure carries with it significant morbidity, including anemia and premature cardiovascular disease. It remains unclear whether testosterone therapy can affect the morbidity and mortality associated with renal failure. As such, in this review, we sought to evaluate the current literature addressing hypogonadism and testosterone replacement, specifically in men with renal failure. The articles chosen for this review were selected by performing a broad search using Pubmed, Embase and Scopus including the terms hypogonadism and renal failure from 1990 to the present. This review is based on both primary sources as well as review articles. Hypogonadism in renal failure has a multifactorial etiology, including co-morbid conditions such as diabetes, hypertension, old age and obesity. Renal failure can lead to decreased luteinizing hormone production and decreased prolactin clearance that could impair testosterone production. Given the increasing prevalence of hypogonadism and the potential morbidity associated with hypogonadism in men with renal failure, careful evaluation of serum testosterone would be valuable. Testosterone replacement therapy should be considered in men with symptomatic hypogonadism and renal failure, and may ameliorate some of the morbidity associated with renal failure. Patients with all stages of renal disease are at an increased risk of hypogonadism that could be associated with significant morbidity. Testosterone replacement therapy may reduce some of the morbidity of renal failure, although it carries risk.

  5. [Atherosclerotic renal artery disease diagnosis update].

    PubMed

    Meier, Pascal; Haesler, Erik; Teta, Daniel; Qanadli, Salah Dine; Burnier, Michel

    2009-02-01

    Atherosclerotic renal artery disease represents a cause of which little is known but not a cause to be neglected for hypertension and renal insufficiency. Even though its occurrence remains badly defined, atherosclerotic renal artery disease is constantly on the rise due to the aging population, the never prevailing hypertension and diabetes mellitus. This review aims to give a clinical profile of patients presenting with atherosclerotic renal artery disease and to discuss, in the light of study results, which diagnostic evaluation should be used considering the sequence and the benefit and risk of each in order to initiate a personalized treatment. Patients affected by atherosclerotic renal artery disease are likely to have more complications and more extensive target-organ damage than patients without renal artery stenosis. The evolution of the atherosclerotic renal artery disease is in general slow and progressive. Nevertheless, certain clinical cases manifest themselves with the onset of acute renal failure bought upon by the administration of blockers of the rennin-angiotensin-aldosterone system, or by some other causes responsible for a sudden drop in renal plasma flow (e.g., thrombosis of the renal artery). The relationship between atherosclerotic renal artery disease and atherosclerosis is complex, and mediators implicated in the pathophysiology of renovascular disease may also contribute to the progression of cardiovascular damage. An early assumption of the atherosclerotic renal artery stenosis is warranted to determine the adapted treatment (i.e., medical treatment, revascularisation...) just as the assumption and the correction of the more general cardiovascular risk factors. PMID:18809367

  6. BK Viremia among Iranian Renal Transplant Candidates

    PubMed Central

    Jozpanahi, Manizheh; Ramezani, Amitis; Ossareh, Shahrzad; Banifazl, Mohammad; Bavand, Anahita; Mamishi, Setareh; Aghakhani, Arezoo

    2016-01-01

    Background: Primary infection with BK virus (BKV) is occurred during childhood and usually asymptomatic, but after initial infection, BKV may persist lifelong in the kidney and genitourinary tract. Reactivation may occur in individuals with compromised immunity such as renal transplant recipients. Due to the role of BKV in BK virus-associated nephropathy (BKVAN) and potentially renal allograft rejection, the detection of BKV in renal transplant candidates is very important. The aim of this study was to evaluate the frequency of BK viremia in end stage renal disease cases who were candidates for renal transplantation. Methods: In this cross-sectional study, 50 cases with end stage renal disease who were candidates for renal transplantation were recruited from the main dialysis unit in Tehran, Iran. Presence of BK viremia was determined in plasma samples of cases using real time PCR. Results: A total of 50 renal transplant candidates with mean age 37.8±13 yr were enrolled in the study. Fifty two percent of subjects were male. Forty six (92%) of them were under HD and 4 (8%) were on PD. BK virus was not detected in any plasma samples of renal transplant candidates. Conclusion: This study showed absence of BK viremia in our renal transplant candidates. However, due to the important role of BKV in BKVAN and renal graft failure and rejection, further studies involving larger number of cases are required to elucidate the rate of the BKV in renal transplant candidates. PMID:27799969

  7. Acute Renal Failure after Uterine Artery Embolization

    SciTech Connect

    Rastogi, Sachin; Wu, Yu-Hsin; Shlansky-Goldberg, Richard D.; Stavropoulos, S. William

    2004-09-15

    Renal failure is a potential complication of any endovascular procedure using iodinated contrast, including uterine artery embolization (UAE). In this report we present a case of acute renal failure (ARF) following UAE performed as a treatment for uterine fibroids. The likely causes of ARF in this patient are explored and the possible etiologies of renal failure in patients undergoing UAE are reviewed.

  8. Renal rescue of dopamine D2 receptor function reverses renal injury and high blood pressure

    PubMed Central

    Konkalmatt, Prasad R.; Asico, Laureano D.; Zhang, Yanrong; Yang, Yu; Drachenberg, Cinthia; Zheng, Xiaoxu; Han, Fei; Jose, Pedro A.; Armando, Ines

    2016-01-01

    Dopamine D2 receptor (DRD2) deficiency increases renal inflammation and blood pressure in mice. We show here that long-term renal-selective silencing of Drd2 using siRNA increases renal expression of proinflammatory and profibrotic factors and blood pressure in mice. To determine the effects of renal-selective rescue of Drd2 expression in mice, the renal expression of DRD2 was first silenced using siRNA and 14 days later rescued by retrograde renal infusion of adeno-associated virus (AAV) vector with DRD2. Renal Drd2 siRNA treatment decreased the renal expression of DRD2 protein by 55%, and DRD2 AAV treatment increased the renal expression of DRD2 protein by 7.5- to 10-fold. Renal-selective DRD2 rescue reduced the expression of proinflammatory factors and kidney injury, preserved renal function, and normalized systolic and diastolic blood pressure. These results demonstrate that the deleterious effects of renal-selective Drd2 silencing on renal function and blood pressure were rescued by renal-selective overexpression of DRD2. Moreover, the deleterious effects of 45-minute bilateral ischemia/reperfusion on renal function and blood pressure in mice were ameliorated by a renal-selective increase in DRD2 expression by the retrograde ureteral infusion of DRD2 AAV immediately after the induction of ischemia/reperfusion injury. Thus, 14 days after ischemia/reperfusion injury, the renal expression of profibrotic factors, serum creatinine, and blood pressure were lower in mice infused with DRD2 AAV than in those infused with control AAV. These results indicate an important role of renal DRD2 in limiting renal injury and preserving normal renal function and blood pressure. PMID:27358912

  9. Automated renal histopathology: digital extraction and quantification of renal pathology

    NASA Astrophysics Data System (ADS)

    Sarder, Pinaki; Ginley, Brandon; Tomaszewski, John E.

    2016-03-01

    The branch of pathology concerned with excess blood serum proteins being excreted in the urine pays particular attention to the glomerulus, a small intertwined bunch of capillaries located at the beginning of the nephron. Normal glomeruli allow moderate amount of blood proteins to be filtered; proteinuric glomeruli allow large amount of blood proteins to be filtered. Diagnosis of proteinuric diseases requires time intensive manual examination of the structural compartments of the glomerulus from renal biopsies. Pathological examination includes cellularity of individual compartments, Bowman's and luminal space segmentation, cellular morphology, glomerular volume, capillary morphology, and more. Long examination times may lead to increased diagnosis time and/or lead to reduced precision of the diagnostic process. Automatic quantification holds strong potential to reduce renal diagnostic time. We have developed a computational pipeline capable of automatically segmenting relevant features from renal biopsies. Our method first segments glomerular compartments from renal biopsies by isolating regions with high nuclear density. Gabor texture segmentation is used to accurately define glomerular boundaries. Bowman's and luminal spaces are segmented using morphological operators. Nuclei structures are segmented using color deconvolution, morphological processing, and bottleneck detection. Average computation time of feature extraction for a typical biopsy, comprising of ~12 glomeruli, is ˜69 s using an Intel(R) Core(TM) i7-4790 CPU, and is ~65X faster than manual processing. Using images from rat renal tissue samples, automatic glomerular structural feature estimation was reproducibly demonstrated for 15 biopsy images, which contained 148 individual glomeruli images. The proposed method holds immense potential to enhance information available while making clinical diagnoses.

  10. Cyclosporine-induced renal dysfunction in human renal allograft recipients.

    PubMed

    Kiberd, B A

    1989-12-01

    Cyclosporine-treated renal allograft recipients frequently suffer CsA-related nephrotoxicity and hypertension. This study demonstrates that glomerular filtration rate is reduced acutely by 13% (P less than 0.02) and renal vascular resistance increased by 30% (P less than 0.05), immediately after patients take their CsA dose. The reduction in GFR is directly related to their trough CsA level (r = 0.82; P less than 0.01). The lower the trough CsA level the greater the fall in GFR after the CsA dose. Plasma renin activity does not increase after the CsA dose (pre-CsA 0.6 +/- 0.2 ng/L/sec vs. post-CsA 0.4 +/- 0.1 ng/L/sec; P = NS), and therefore cannot be responsible for the reduction in renal function. Short-term nifedipine treatment is effective in preventing the acute reduction in GFR (P less than 0.05). This occurred despite no apparent effect of nifedipine in altering trough or post-dose CsA levels. Furthermore nifedipine was effective in lowering both the mean arterial blood pressure (109 mmHg to 94 mmHg; P less than 0.01) and the elevated renal vascular resistance (25% reduction; P less than 0.02) observed in these patients. These results suggest that nifedipine may be a suitable agent for limiting acute CsA nephrotoxicity and for treating CsA-associated hypertension in renal allograft recipients.

  11. Renal cell carcinoma with areas mimicking renal angiomyoadenomatous tumor/clear cell papillary renal cell carcinoma.

    PubMed

    Petersson, Fredrik; Grossmann, Petr; Hora, Milan; Sperga, Maris; Montiel, Delia Perez; Martinek, Petr; Gutierrez, Maria Evelyn Cortes; Bulimbasic, Stela; Michal, Michal; Branzovsky, Jindrich; Hes, Ondrej

    2013-07-01

    We present a cohort of 8 renal carcinomas that displayed a variable (5%-95% extent) light microscopic appearance of renal angiomyoadenomatous tumor/clear cell papillary renal cell carcinoma (RAT/CCPRCC) without fulfilling the criteria for these tumors. All but 1 case predominantly (75%-95% extent) showed histopathologic features of conventional clear cell renal cell carcinoma. In 5 of 7 cases with mostly conventional clear renal cell carcinoma (CRCC) morphology, a diagnosis of CRCC was supported by the molecular genetic findings (presence of von Hippel-Lindau tumor suppressor [VHL] mutation and/or VHL promoter methylation and/or loss of heterozygosity [LOH] for 3p). Of the other 2 cases with predominantly characteristic CRCC morphology, 1 tumor did not reveal any VHL mutation, VHL promoter methylation, or LOH for 3p, and both chromosomes 7 and 17 were disomic, whereas the other tumor displayed polysomy for chromosomes 7 and 17 and no VHL mutation, VHL promoter methylation, or LOH for 3p. One tumor was composed primarily (95%) of distinctly RAT/CCPRCC-like morphology, and this tumor harbored a VHL mutation and displayed polysomy for chromosomes 7 and 17. Of the 5 cases with both histomorphologic features and molecular genetic findings of CRCC, we detected significant immunoreactivity for α-methylacyl-CoA racemase in 2 cases and strong diffuse immunopositivity for cytokeratin 7 in 3 cases. Despite the combination of positivity for α-methylacyl-CoA racemase and cytokeratin 7 in 2 cases, there was nothing to suggest of the possibility of a conventional papillary renal cell carcinoma with a predominance of clear cells.

  12. Evidence for Kidney Rejection after Combined Bone Marrow and Renal Transplantation Despite Ongoing Whole-blood Chimerism in Rhesus Macaques

    PubMed Central

    Ramakrishnan, Swetha K; Page, Andrew; Farris, Alton B.; Singh, Karnail; Leopardi, Frank; Hamby, Kelly; Sen, Sharon; Polnett, Aneesah; Deane, Taylor; Song, Mingqing; Stempora, Linda; Strobert, Elizabeth; Kirk, Allan D.; Larsen, Christian P.; Kean, Leslie S.

    2012-01-01

    Although there is evidence linking hematopoietic chimerism-induction and solid organ transplant tolerance, the mechanistic requirements for chimerism-induced tolerance are not clearly elucidated. To address this, we used an MHC-defined primate model to determine the impact of impermanent, T cell-poor, mixed-chimerism on renal allograft survival. We compared two cohorts: one receiving a bone marrow + renal transplant (“BMT/renal”) and one receiving only a renal transplant. Both cohorts received maintenance immunosuppression with CD28/CD40-directed costimulation blockade and sirolimus. As previously demonstrated, this transplant strategy consistently induced compartmentalized donor chimerism, (significant whole-blood chimerism, lacking T cell chimerism). This chimerism was not sufficient to prolong renal allograft acceptance: the BMT/renal mean survival time (MST, 76 days) was not significantly different than the renal transplant alone MST (85 days, p= 0. 46), with histopathology documenting T-cell mediated rejection. Flow cytometric analysis revealed significant enrichment for CD28-/CD95+ CD4+ and CD8+ Tem cells in the rejected kidney, suggesting a link between CD28-negative Tem and costimulation blockade-resistant rejection. These results suggest that in some settings, transient T cell-poor chimerism is not sufficient to induce tolerance to a concurrently placed renal allograft and that the presence of this chimerism per se is not an independent biomarker to identify tolerance. PMID:22642491

  13. Dynamics of Urinary Calprotectin after Renal Ischaemia

    PubMed Central

    Ebbing, Jan; Seibert, Felix S.; Pagonas, Nikolaos; Bauer, Frederic; Miller, Kurt; Kempkensteffen, Carsten; Günzel, Karsten; Bachmann, Alexander; Seifert, Hans H.; Rentsch, Cyrill A.; Ardelt, Peter; Wetterauer, Christian; Amico, Patrizia; Babel, Nina; Westhoff, Timm H.

    2016-01-01

    Background: Urinary calprotectin has been identified as a promising biomarker for acute kidney injury. To date, however, the time-dependent changes of this parameter during acute kidney injury remain elusive. The aim of the present work was to define the time-course of urinary calprotectin secretion after ischaemia/reperfusion-induced kidney injury in comparison to neutrophil gelatinase—associated lipocalin, thereby monitoring the extent of tubular damage in nephron sparing surgery for kidney tumours. Methods: The study population consisted of 42 patients. Thirty-two patients underwent either open or endoscopic nephron sparing surgery for kidney tumours. During the surgery, the renal arterial pedicle was clamped with a median ischaemic time of 13 minutes (interquartile range, 4.5–20.3 minutes) in 26 patients. Ten retro-peritoneoscopic living donor nephrectomy patients and 6 nephron sparing surgery patients in whom the renal artery was not clamped served as controls. Urinary calprotectin and neutrophil gelatinase—associated lipocalin concentrations were repeatedly measured by enzyme-linked immunosorbent assay and assessed according to renal function parameters. Results: Urinary concentrations of calprotectin and neutrophil gelatinase—associated lipocalin increased significantly after ischaemia/reperfusion injury, whereas concentrations remained unchanged after nephron sparing surgery without ischaemia/reperfusion injury and after kidney donation. Calprotectin and neutrophil gelatinase—associated lipocalin levels were significantly increased 2 and 8 hours, respectively, post-ischaemia. Both proteins reached maximal concentrations after 48 hours, followed by a subsequent persistent decrease. Maximal neutrophil gelatinase—associated lipocalin and calprotectin concentrations were 9-fold and 69-fold higher than their respective baseline values. The glomerular filtration rate was only transiently impaired at the first post-operative day after ischaemia

  14. Chemical Renal Denervation in the Rat

    SciTech Connect

    Consigny, Paul M. Davalian, Dariush; Donn, Rosy Hu, Jie; Rieser, Matthew Stolarik, DeAnne

    2013-12-03

    Introduction: The recent success of renal denervation in lowering blood pressure in drug-resistant hypertensive patients has stimulated interest in developing novel approaches to renal denervation including local drug/chemical delivery. The purpose of this study was to develop a rat model in which depletion of renal norepinephrine (NE) could be used to determine the efficacy of renal denervation after the delivery of a chemical to the periadventitial space of the renal artery. Methods: Renal denervation was performed on a single renal artery of 90 rats (n = 6 rats/group). The first study determined the time course of renal denervation after surgical stripping of a renal artery plus the topical application of phenol in alcohol. The second study determined the efficacy of periadventitial delivery of hypertonic saline, guanethidine, and salicylic acid. The final study determined the dose–response relationship for paclitaxel. In all studies, renal NE content was determined by liquid chromatography–mass spectrometry. Results: Renal NE was depleted 3 and 7 days after surgical denervation. Renal NE was also depleted by periadventitial delivery of all agents tested (hypertonic saline, salicylic acid, guanethidine, and paclitaxel). A dose response was observed after the application of 150 μL of 10{sup −5} M through 10{sup −2} M paclitaxel. Conclusion: We developed a rat model in which depletion of renal NE was used to determine the efficacy of renal denervation after perivascular renal artery drug/chemical delivery. We validated this model by demonstrating the efficacy of the neurotoxic agents hypertonic saline, salicylic acid, and guanethidine and increasing doses of paclitaxel.

  15. Emphysema in the renal allograft

    SciTech Connect

    Potter, J.L.; Sullivan, B.M.; Fluornoy, J.G.; Gerza, C.

    1985-04-01

    Two diabetic patients in whom emphysematous pyelonephritis developed after renal transplantation are described. Clinical recognition of this unusual and serious infection is masked by the effects of immunosuppression. Abdominal radiographic, ultrasound, and computed tomography findings are discussed. The clinical presentation includes urinary tract infection, sepsis, and acute tubular malfunction of the allograft in insulin-dependent diabetics.

  16. Renal metastases from osteogenic sarcoma

    SciTech Connect

    Ayres, R.; Curry, N.S.; Gordon, L.; Bradford, B.F.

    1985-01-01

    A clinically and radiographically unsuspected ossified renal metastasis from a primary osteogenic sarcoma was identified by computed tomography (CT) and radionuclide bone scan. These imaging modalities play an important adjunctive role in the evaluation and follow-up of patients with primary osteogenic sarcoma.

  17. Fibrate therapy and renal function.

    PubMed

    Sica, Domenic A

    2009-09-01

    Fibrates are a class of lipid-lowering medications primarily used as second-line agents behind statins. The adverse-effect profile of fibrates has been marked by a puzzling yet reversible rise in serum creatinine values with their use. It is not known whether this finding represents a true change in renal function. One proposed explanation for this phenomenon is that fibrates increase the production of creatinine, in which case a rise in serum creatinine values would not represent a true deterioration in renal function. An alternative theory is that fibrates reduce the production of vasodilatory prostaglandins, which would lead to a true change in renal function in patients who experience a rise in serum creatinine values. Routine serum creatinine monitoring is advisable in fibrate-treated patients, particularly in those with preexisting renal disease. A 30% increase in serum creatinine values in the absence of other causes of serum creatinine change warrants discontinuation of fibrate therapy. Serum creatinine values can take several weeks to return to their baseline values following discontinuation of a fibrate.

  18. Renal leiomyosarcoma in a cat.

    PubMed

    Evans, Dawn; Fowlkes, Natalie

    2016-05-01

    Renal leiomyosarcoma was diagnosed in a 10-year-old Domestic Shorthair cat with a 3-year history of clinically managed, chronic renal disease. Sudden death was preceded by a brief episode of mental dullness and confusion. At postmortem examination, the gross appearance of the left kidney was suggestive of hydronephrosis, and a nephrolith was present in the contralateral kidney. However, histology revealed an infiltrative, poorly differentiated, spindle cell sarcoma bordering the grossly cavitated area. Neoplastic cells were immunoreactive for vimentin and smooth muscle actin, which led to a diagnosis of renal leiomyosarcoma; neoplastic cells were not immunoreactive for desmin. Leiomyosarcoma arising in the kidney is a rare occurrence in humans and an even rarer occurrence in veterinary medicine with no prior cases being reported in cats in the English literature. The macroscopic appearance of the tumor at postmortem examination was misleadingly suggestive of hydronephrosis as a result of the large cavitation and may be similar to particularly unusual cases of renal leiomyosarcomas in humans that have a cystic or cavitated appearance.

  19. Sonographic Findings in Fetal Renal Vein Thrombosis.

    PubMed

    Gerber, Rebecca E; Bromley, Bryann; Benson, Carol B; Frates, Mary C

    2015-08-01

    We present the sonographic findings of fetal renal vein thrombosis in a series of 6 patients. The mean gestational age at diagnosis was 31.2 weeks. Four cases were unilateral, and 2 were bilateral. The most common findings were renal enlargement and intrarenal vascular calcifications, followed by increased renal parenchymal echogenicity. Inferior vena cava thrombosis was found in 4 patients and common iliac vein thrombosis in 2. Fetal renal vein thrombosis is an uncommon diagnosis with characteristic sonographic findings. The presence of these findings should prompt Doppler interrogation of the renal vein and inferior vena cava to confirm the diagnosis.

  20. Nephrotic Syndrome Associated with Renal Vein Thrombosis

    PubMed Central

    Kang, Sung Kyew; Park, Sung Kwang

    1987-01-01

    The coexistence of nephrotic syndrome and renal vein thrombosis has been of medical interest since Rayer’s description in 1840. Renal vein thrombosis has been underdiagnosed because of its variable clinical and radiological findings but it becomes a more frequently recognizable clinical entity since diagnosis can be easily established by modern angiographic techniques. Generally it has been believed that renal vein thrombosis may cause nephrotic syndrome. But recent articles strongly suggest that renal vein thrombosis is a complication of the nephrotic syndrome rather than a cause. We report three cases of nephrotic syndrome associated with renal vein thrombosis. PMID:3154812

  1. Atherosclerotic renal artery stenosis: Current status

    PubMed Central

    Kwon, Soon Hyo; Lerman, Lilach O.

    2014-01-01

    Atherosclerotic renal artery stenosis (ARAS) remains a major cause of secondary hypertension and renal failure. Randomized, prospective trials show that medical treatment should constitute the main therapeutic approach in ARAS. Regardless of intensive treatment and adequate blood pressure control, however, renal and extra-renal complications are not uncommon. Yet, the precise mechanisms, accurate detection, and optimal treatment in ARAS remain elusive. Strategies oriented to early detection and targeting these pathogenic pathways might prevent development of clinical endpoints. Here, we review the results of recent clinical trials, current understanding of the pathogenic mechanisms, novel imaging techniques to assess renal damage in ARAS, and treatment options. PMID:25908472

  2. Analyzing Optical Communications Links

    NASA Technical Reports Server (NTRS)

    Marshall, William K.; Burk, Brian D.

    1990-01-01

    Optical Communication Link Analysis Program, OPTI, analyzes optical and near-infrared communication links using pulse-position modulation (PPM) and direct detention. Link margins and design-control tables generated from input parameters supplied by user. Enables user to save sets of input parameters that define given link and read them back into program later. Alters automatically any of input parameters to achieve desired link margin. Written in FORTRAN 77.

  3. An orally active adenosine A1 receptor antagonist, FK838, increases renal excretion and maintains glomerular filtration rate in furosemide-resistant rats

    PubMed Central

    Schnackenberg, Christine G; Merz, Emily; Brooks, David P

    2003-01-01

    Loop and thiazide diuretics are common therapeutic agents for the treatment of sodium retention and oedema. However, resistance to diuretics and decreases in renal function can develop during diuretic therapy. Adenosine causes renal vasoconstriction, sodium reabsorption, and participates in the tubuloglomerular feedback mechanism for the regulation of glomerular filtration rate.We tested the hypothesis that the selective adenosine A1 receptor antagonist FK838 is orally active and causes diuresis and natriuresis, but maintains glomerular filtration rate in normal rats or in rats with furosemide resistance.In normal male Sprague – Dawley rats, FK838 dose-dependently increased urine flow and sodium and chloride excretion while sparing potassium. In combination with furosemide, FK838 enhanced the diuretic and natriuretic actions of furosemide to the same extent as hydrochlorothiazide and did not increase the potassium loss in normal rats. In furosemide-resistant rats, FK838 increased urine flow and electrolyte excretion to a greater extent than hydrochlorothiazide. In addition, hydrochlorothiazide significantly decreased glomerular filtration rate, whereas FK838 maintained glomerular filtration rate in furosemide-resistant rats.This study shows that the adenosine A1 receptor antagonist FK838 is orally active and causes potent diuresis and natriuresis and maintains glomerular filtration rate in normal or furosemide-resistant rats. Adenosine A1 receptor antagonists may be novel therapeutics for the treatment of oedema in normal or otherwise diuretic-resistant patients. PMID:12922924

  4. Assay development of inducible human renal phosphate transporter Npt2A (SLC34A1) in Flp-In-Trex-HEK293 cells.

    PubMed

    Wu, Hongzhong; Mao, Chonghong; Duenstl, Georg; Su, Wan; Qian, Su

    2013-12-01

    Hyperphosphatemia is associated with severe decline of renal function in chronic kidney disease and elevates cardiovascular mortality. Type II sodium dependent phosphate transporter 2A (Npt2A) plays a major role in renal phosphate reabsorption and could be explored as a target for anti-hyperphosphatemia therapy. Human Npt2A transporter activity was examined upon transfection into CHO, MDCK, HEK293, Flp-In-CHO and Flp-In-HEK293 cells. Only kidney-derived cells expressed functional Npt2A. HEK293 and Flp-In-HEK293 cell lines stably transfected with hNpt2A could be selected, but these cells were inactive in phosphate transport. This suggests that high-level, constitutive Npt2A expression has deleterious effects on the cell. By using the conditional promoter in the Flp-In-Trex vector, functional expression of Npt2A was achieved by doxycycline induction in HEK293 cells. The EGFP tagged and non-tagged, inducible stable hNpt2A-HEK293 cell lines afforded development of a robust phosphate uptake assay mediated by hNpt2A, which can be used to screen hNpt2A inhibitors and inducers of hNpt2A expression. Using this assay, the small molecule LC-1 was identified as a potent inhibitor of hNpt2A, suggesting that it is feasible to develop potent specific hNpt2A inhibitors to control phosphate overloading for hyperphosphatemia therapy.

  5. Renal lesions of nondomestic felids.

    PubMed

    Newkirk, K M; Newman, S J; White, L A; Rohrbach, B W; Ramsay, E C

    2011-05-01

    To comprehensively evaluate the occurrence of renal lesions in a variety of nondomestic felids, necropsy cases from 1978 to 2008 were reviewed from a municipal zoo and a large cat sanctuary for those in which the kidneys were examined histologically. Seventy exotic felids were identified (25 tigers, 18 lions, 6 cougars, 5 leopards, 3 snow leopards, 3 clouded leopards, 3 Canadian lynx, 2 ocelots, 2 bobcats, 2 cheetahs, 1 jaguar), and their histologic renal lesions were evaluated and compared. The most common lesion was tubulointerstitial nephritis (TIN); 36 of 70 (51%) cats were affected to some degree. Lymphocytic interstitial nephritis was the most common lesion in the tigers (9 of 25, 36%) and was rarely seen in other species. Although the renal pelvis was not available for all cats, 28 of 47 (60%) had some degree of lymphocytic pyelitis. There was no significant association between the presence of pyelitis and that of TIN. Only 1 cat had pyelonephritis. Renal papillary necrosis was present in 13 of 70 (19%) cats and was significantly associated with historical nonsteroidal anti-inflammatory drug treatment (odds ratio, 7.1; 95% confidence interval, 1.9 to 26.8). Only 1 cat (lion) had amyloid accumulation, and it was restricted to the corticomedullary junction. Primary glomerular lesions were absent in all cats. Intraepithelial pigment was identified in many of the cats but was not correlated with severity of TIN. Despite several previous reports describing primary glomerular disease or renal amyloidosis in exotic felids, these lesions were rare to absent in this population. PMID:20876911

  6. Imaging of haemodialysis: renal and extrarenal findings.

    PubMed

    Degrassi, Ferruccio; Quaia, Emilio; Martingano, Paola; Cavallaro, Marco; Cova, Maria Assunta

    2015-06-01

    Electrolyte alterations and extra-renal disorders are quite frequent in patients undergoing haemodialysis or peritoneal dialysis. The native kidneys may be the site of important pathologies in patients undergoing dialysis, especially in the form of acquired renal cystic disease with frequent malignant transformation. Renal neoplasms represents an important complication of haemodialysis-associated acquired cystic kidney disease and imaging surveillance is suggested. Extra-renal complications include renal osteodistrophy, brown tumours, and thoracic and cardiovascular complications. Other important fields in which imaging techniques may provide important informations are arteriovenous fistula and graft complications. Teaching points • Renal neoplasms represent a dreaded complication of haemodialysis.• In renal osteodystrophy bone resorption typically manifests along the middle phalanges.• Brown tumours are well-defined lytic lesions radiographically, possibly causing bone expansion.• Vascular calcifications are very common in patients undergoing haemodialysis.• Principal complications of the AV fistula consist of thrombosis, aneurysms and pseudoaneurysms. PMID:25680325

  7. Renal interventions during endovascular aneurysm repair.

    PubMed

    Davies, Mark G

    2013-12-01

    Renal insufficiency is a risk factor for mortality and morbidity during endovascular aneurysm repair. Multiple changes in practice have occurred to mitigate renal injury and renal dysfunction. Transrenal fixation does carry an increased risk of a decline in renal function in the medium term. Renal stenting for athero-occlusive disease during endovascular aneurysm repair needs careful consideration, as indications have changed and there are unexpected consequences with early vessel occlusion. The growing number of renal interventions during complex endovascular aneurysm repair with the advent of chimney snorkel/periscope techniques and the introduction of fenestrated grafts has shown the resilience of the intervention with relatively low renal issues (approximately 10%), but has also illustrated the need for additional device development.

  8. A case report of retroaortic left renal vein with tumor thrombus of renal cell carcinoma.

    PubMed

    Otsuki, Hideo; Kuroda, Kenji; Kosaka, Takeo; Ito, Keiichi; Hayakawa, Masamichi; Asano, Tomohiko

    2011-06-01

    A 75-year-old woman was referred to our department for evaluation of a left renal tumor. Computed tomography and other imaging studies demonstrated a left renal mass and tumor extension into the left renal vein passing caudally behind the aorta. We clinically diagnosed the tumor as renal cell carcinoma (RCC) associated with a retroaortic left renal vein thrombus, and performed a radical nephrectomy. Pathological examination of the surgical specimen showed a grade 2, clear cell carcinoma with a renal vein thrombus and negative surgical margin. Retroaortic left renal vein is a rare anomaly with a prevalence of 1.8-2.4%. RCC associated with a retroaortic left renal vein thrombus is rarer still. To our knowledge, this is only the third case report to describe an RCC associated with a tumor thrombus in the retroaortic left renal vein.

  9. Olmesartan associated with acute renal failure in a patient with bilateral renal artery stenosis.

    PubMed

    Bavbek, Nukhet; Kasapoglu, Benan; Isik, Ayse; Kargili, Ayse; Kirbas, Ismail; Akcay, Ali

    2010-01-01

    In patients with renal artery stenosis (RAS), the inhibition of renin-angiotensin-aldosterone system can cause deterioration of renal function. Here we present a 75-year-old man who developed acute renal failure after olmesartan treatment. Following discontinuation of olmesartan, his renal functions normalized. His renal Doppler ultrasonography and renal angiography showed findings consistent with bilateral RAS. In this case, unlike those previously reported, renal failure developed with olmesartan for the first time and after only a single dose, which is thought to be a new, safe, and tolerable antihypertensive agent. This is a well-defined effect of angiotensin-converting enzyme inhibitors, in patients with RAS. Also with the increasing use of angiotensin II receptor blockers (ARBs), renal failure associated with ARBs in patients with RAS is rising. The use of olmesartan also requires caution and close follow-up of renal functions for patients who have risk factors. PMID:20863218

  10. Increased hexokinase II expression in the renal glomerulus of mice in response to arsenic

    SciTech Connect

    Pysher, Michele D.; Sollome, James J.; Regan, Suzanne; Cardinal, Trevor R.; Hoying, James B.; Brooks, Heddwen L.; Vaillancourt, Richard R.

    2007-10-01

    Epidemiological studies link arsenic exposure to increased risks of cancers of the skin, kidney, lung, bladder and liver. Additionally, a variety of non-cancerous conditions such as diabetes mellitus, hypertension, and cardiovascular disease have been associated with chronic ingestion of low levels of arsenic. However, the biological and molecular mechanisms by which arsenic exerts its effects remain elusive. Here we report increased renal hexokinase II (HKII) expression in response to arsenic exposure both in vivo and in vitro. In our model, HKII was up-regulated in the renal glomeruli of mice exposed to low levels of arsenic (10 ppb or 50 ppb) via their drinking water for up to 21 days. Additionally, a similar effect was observed in cultured renal mesangial cells exposed to arsenic. This correlation between our in vivo and in vitro data provides further evidence for a direct link between altered renal HKII expression and arsenic exposure. Thus, our data suggest that alterations in renal HKII expression may be involved in arsenic-induced pathological conditions involving the kidney. More importantly, these results were obtained using environmentally relevant arsenic concentrations.

  11. A Population- and Hospital-based Cross-sectional Study of Renal Function in Hidradenitis Suppurativa.

    PubMed

    Miller, Iben M; Carlson, Nicholas; Mogensen, Ulla B; Ellervik, Christina; Jemec, Gregor B E

    2016-01-01

    The chronic inflammatory skin diseases hidradenitis suppurativa (HS) and psoriasis have been linked to cardiovascular risk factors and the latter has also been linked to possible renal dysfunction. Since basement membrane thinning in the skin of HS patients has been described, we speculated whether similar basement membrane defects might occur in renal tissue. Our objective was to investigate a possible association between HS and renal dysfunction. We performed a hospital and population-based cross-sectional study using estimated Glomerular-Filtration-Rate (eGFR) to assess renal function. Thirty-two hospital individuals with HS, 430 population individuals with HS, and 20,780 population individuals without HS were (controls) identified. The age-, sex-, smoking-, BMI-, hypertension- and diabetes-adjusted analysis revealed a statistically significant higher eGFR for the hospital group with HS and a mean difference in eGFR of 6.81 (1.27-12.35) ml/min/1.73 m2 between the hospital group with HS and the population group without HS. The observed higher eGFR in the hospital group with HS indicates a possible association of HS and renal dysfunction.

  12. Paeoniflorin ameliorates acute necrotizing pancreatitis and pancreatitis-induced acute renal injury

    PubMed Central

    Wang, Peng; Wang, Weixing; Shi, Qiao; Zhao, Liang; Mei, Fangchao; Li, Chen; Zuo, Teng; He, Xiaobo

    2016-01-01

    Acute renal injury caused by acute necrotizing pancreatitis (ANP) is a common complication that is associated with a high rate of mortality. Paeoniflorin is the active ingredient of paeonia radix and exhibits a number of pharmacological effects, such as anti-inflammatory, anticancer, analgesic and immunomodulatory effects. The present study detected the potential treatment effects of paeoniflorin on acute renal injury induced by ANP in a rat model. The optimal dose of paeoniflorin for preventing acute renal injury induced by ANP was determined. Then, the possible protective mechanism of paeoniflorin was investigated. The serum levels of tumor necrosis factor (TNF)-α, interleukin (IL)-1β and IL-6 were measured with enzyme-linked immunosorbent assay kits. Renal inflammation and apoptosis were measured by immunohistochemistry and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling assay. The expression of nitric oxide in kidney tissues was also evaluated. The p38 mitogen-activated protein kinases (MAPKs) were measured by western blotting. The results shown that paeoniflorin may ameliorate acute renal injury following ANP in rats by inhibiting inflammatory responses and renal cell apoptosis. These effects may be associated with the p38MAPK and nuclear factor-κB signal pathway. PMID:27279569

  13. An exceptional case of renal artery restenosis in a patient with polycythaemia vera.

    PubMed

    Gavriilaki, Eleni; Sampanis, Nikolaos; Kavlakoudis, Christos; Papaioannou, George; Vasileiou, Sotirios

    2014-12-01

    Polycythaemia vera represents a rare chronic myeloproliferative neoplasm characterized by an increased thrombotic risk. Previous case reports have documented a link between primary or secondary polycythemia and the presence of renal artery stenosis and renovascular hypertension. Herein, we report an exceptional case of renal artery restenosis leading to uncontrolled hypertension in a patient with PV and high haematocrit levels. A 52-year-old female patient with a history of polycythaemia vera under treatment with hydroxyurea and phlebotomy presented in our outpatient clinic with newly diagnosed hypertension caused by left renal artery stenosis. Six months after stenting, patient returned for a follow-up visit due to uncontrolled hypertension and high haematocrit levels. Total restenosis of the left renal artery was found. Patient received optical medical treatment and was prescribed to higher doses of hydroxyurea by her treating haematologist. Since then, blood pressure and Hct levels remain adequately controlled. As described by earlier case reports, renal artery stenosis, hypertension and polycythemia often coexist. However, renovascular hypertension may not only lead to secondary erythrocytosis but also be a thrombotic complication of primary erythrocytosis. Thus, patients with polycythaemia vera should be carefully evaluated and optimally managed when hypertension or impaired renal function coexist. PMID:24991947

  14. Vasopressin: the missing link for preeclampsia?

    PubMed

    Sandgren, Jeremy A; Scroggins, Sabrina M; Santillan, Donna A; Devor, Eric J; Gibson-Corley, Katherine N; Pierce, Gary L; Sigmund, Curt D; Santillan, Mark K; Grobe, Justin L

    2015-11-01

    Preeclampsia is a devastating cardiovascular disorder of late pregnancy, affecting 5-7% of all pregnancies and claiming the lives of 76,000 mothers and 500,000 children each year. Various lines of evidence support a "tissue rejection" type reaction toward the placenta as the primary initiating event in the development of preeclampsia, followed by a complex interplay among immune, vascular, renal, and angiogenic mechanisms that have been implicated in the pathogenesis of preeclampsia beginning around the end of the first trimester. Critically, it remains unclear what mechanism links the initiating event and these pathogenic mechanisms. We and others have now demonstrated an early and sustained increase in maternal plasma concentrations of copeptin, a protein by-product of arginine vasopressin (AVP) synthesis and release, during preeclampsia. Furthermore, chronic infusion of AVP during pregnancy is sufficient to phenocopy essentially all maternal and fetal symptoms of preeclampsia in mice. As various groups have demonstrated interactions between AVP and immune, renal, and vascular systems in the nonpregnant state, elevations of this hormone are therefore positioned both in time (early pregnancy) and function to contribute to preeclampsia. We therefore posit that AVP represents a missing mechanistic link between initiating events and established midpregnancy dysfunctions that cause preeclampsia. PMID:25810383

  15. Does Renal Artery Supply Indicate Treatment Success of Renal Denervation?

    SciTech Connect

    Schmid, Axel; Ditting, Tilmann; Sobotka, Paul A.; Veelken, Roland Schmieder, Roland E.; Uder, Michael; Ott, Christian

    2013-08-01

    PurposeRenal denervation (RDN) emerged as an innovative interventional antihypertensive therapy. With the exception of pretreatment blood pressure (BP) level, no other clear predictor for treatment efficacy is yet known. We analyzed whether the presence of multiple renal arteries has an impact on BP reduction after RDN.MethodsFifty-three patients with treatment-resistant hypertension (office BP {>=} 140/90 mmHg and 24-h ambulatory BP monitoring ({>=}130/80 mmHg) underwent bilateral catheter-based RDN. Patients were stratified into one-vessel (OV) (both sides) and at least multivessel (MV) supply at one side. Both groups were treated on one vessel at each side; in case of multiple arteries, only the dominant artery was treated on each side.ResultsBaseline clinical characteristics (including BP, age, and estimated glomerular filtration rate) did not differ between patients with OV (n = 32) and MV (n = 21). Office BP was significantly reduced in both groups at 3 months (systolic: OV -15 {+-} 23 vs. MV -16 {+-} 20 mmHg; diastolic: OV -10 {+-} 12 vs. MV -8 {+-} 11 mmHg, both p = NS) as well as 6 months (systolic: OV -18 {+-} 18 vs. MV -17 {+-} 22 mmHg; diastolic: OV -10 {+-} 10 vs. -10 {+-} 12 mmHg, both p = NS) after RDN. There was no difference in responder rate (rate of patients with office systolic BP reduction of at least 10 mmHg after 6 months) between the groups.ConclusionIn patients with multiple renal arteries, RDN of one renal artery-namely, the dominant one-is sufficient to induce BP reduction in treatment-resistant hypertension.

  16. A low-salt diet increases the expression of renal sirtuin 1 through activation of the ghrelin receptor in rats.

    PubMed

    Yang, Shao-Yu; Lin, Shuei-Liong; Chen, Yung-Ming; Wu, Vin-Cent; Yang, Wei-Shiung; Wu, Kwan-Dun

    2016-01-01

    Previous studies have shown that sirtuin 1 (Sirt1) is renoprotective; however, details regarding its distribution and functions in the kidney remain unknown. Here, we demonstrated that Sirt1 was mainly expressed in the tubulointerstitial cells of normal rat kidneys and was co-localized with aquaporin 2, indicating it may be involved in water/salt regulation. Renal Sirt1 expression increased in the non-glomerular cytoplasmic portion of the kidney after a 24-h fast, but no significant changes in Sirt1 expression occurred after water loading (50 mL/kg) or 24-h water deprivation. After consuming a low-salt (0.075%) or 60% calorie restriction diet for 7 days, Sirt1 expression in the rat kidney was significantly increased, whereas a high-salt (8%) diet did not change the level of Sirt1 expression. The low-salt diet also increased Sirt1 expression in the heart, muscle, brain, and fat tissues. The increased Sirt1 that was observed in rats on a low-salt diet was associated with increased ghrelin expression in the distal nephron, with both molecules exhibiting similar distribution patterns. An in vitro experiment suggested that ghrelin increases Sirt1 expression in cortical collecting duct cells by activating ghrelin receptors. Our study indicates that this 'ghrelin-Sirt1 system' may participate in regulating sodium reabsorption in the distal nephron. PMID:27600292

  17. Renal carbonic anhydrase in the quail Coturnix coturnix japonica: I. Activity and distribution in male and female metanephros.

    PubMed

    Gabrielli, M G; Palatroni, P; Vincenzetti, S

    1990-11-01

    Carbonic anhydrase activity was studied in the quail metanephros by means of histochemical, histophotometrical and biochemical methods. Male and female samples were examined separately in order to show sex-related differences in enzyme activity and localization. The staining patterns revealed differential distribution of reaction product in the different tubular segments. The initial portion of proximal tubules showed positivity on the brush border in female kidneys only. Extra situ investigations provided further evidence of sexual dimorphism resulting in higher values of enzyme activity for female than for male kidneys. In both sexes, marked staining was detected at the distal tubule level where histophotometric analysis confirmed the highest amount of reaction product. Moreover, the intracellular staining distribution at this site proved to be similar to that observed for mammalian proximal convoluted tubules. In the collecting ducts, a mosaic-like pattern was found with respect to both carbonic anhydrase staining and metachromatic properties. The functional significance of the presence of enzyme in the different renal tubules is discussed by comparison with the mammalian kidney. A model is proposed whereby the distal tubules represent the main sites of urinary acidification and bicarbonate reabsorption.

  18. A low-salt diet increases the expression of renal sirtuin 1 through activation of the ghrelin receptor in rats

    PubMed Central

    Yang, Shao-Yu; Lin, Shuei-Liong; Chen, Yung-Ming; Wu, Vin-Cent; Yang, Wei-Shiung; Wu, Kwan-Dun

    2016-01-01

    Previous studies have shown that sirtuin 1 (Sirt1) is renoprotective; however, details regarding its distribution and functions in the kidney remain unknown. Here, we demonstrated that Sirt1 was mainly expressed in the tubulointerstitial cells of normal rat kidneys and was co-localized with aquaporin 2, indicating it may be involved in water/salt regulation. Renal Sirt1 expression increased in the non-glomerular cytoplasmic portion of the kidney after a 24-h fast, but no significant changes in Sirt1 expression occurred after water loading (50 mL/kg) or 24-h water deprivation. After consuming a low-salt (0.075%) or 60% calorie restriction diet for 7 days, Sirt1 expression in the rat kidney was significantly increased, whereas a high-salt (8%) diet did not change the level of Sirt1 expression. The low-salt diet also increased Sirt1 expression in the heart, muscle, brain, and fat tissues. The increased Sirt1 that was observed in rats on a low-salt diet was associated with increased ghrelin expression in the distal nephron, with both molecules exhibiting similar distribution patterns. An in vitro experiment suggested that ghrelin increases Sirt1 expression in cortical collecting duct cells by activating ghrelin receptors. Our study indicates that this ‘ghrelin-Sirt1 system’ may participate in regulating sodium reabsorption in the distal nephron. PMID:27600292

  19. Renal diseases in haemophilic patients: pathogenesis and clinical management.

    PubMed

    Esposito, Pasquale; Rampino, Teresa; Gregorini, Marilena; Fasoli, Gianluca; Gamba, Gabriella; Dal Canton, Antonio

    2013-10-01

    Haemophilia A and B are genetic X-linked bleeding disorders, caused by mutations in genes encoding factors VIII and IX, respectively. Clinical manifestations of haemophilia are spontaneous haemorrhage or acute bleeding caused by minor trauma, resulting in severe functional consequences that can culminate in a debilitating arthropathy. Life expectancy and quality of life of patients with haemophilia have dramatically improved over the last years, mainly for new therapeutic options and the awareness to the risk of HCV and HIV infections. Different clinical problems arise from this important change in history of patients with haemophilia. In particular, ageing-related diseases, such as diabetes, hypertension and cancer, and chronic viral infections are emerging as new challenges in this patient population. Among the different types of chronic illnesses, renal diseases are of special interest as they involve some difficult management issues. In fact, decisions regarding adequate preventive strategies and viral infection treatment, the choice of the dialytic modality, placement of vascular access and prescription of dialytic treatments are particularly complicated, because only few data are available. In this review, we discuss the pathogenesis of renal damage in patients with haemophilia, especially in those with blood-transmitted viral infections, and the major issues about the management of renal diseases, including problems related to dialytic treatment and kidney transplantation, providing practical algorithms to guide the clinical decision-making process.

  20. Early enhancement of fluid transport in rabbit proximal straight tubules after loss of contralateral renal excretory function.

    PubMed Central

    Tabei, K; Levenson, D J; Brenner, B M

    1983-01-01

    To assess the renal functional adaptation to reduced excretory capacity, we studied whole kidney and single nephron function in anesthetized volume-replete rabbits after unilateral (left kidney) nephrectomy (UNX), ureteral obstruction (UO), or ureteroperitoneostomy (UP). At 24 h, despite the absence of measurable hypertrophy of the contralateral (right) kidney, these procedures significantly increased p-aminohippurate clearance (45-54%) and inulin clearance (CIN) (64-110%) compared with sham-operated control animals. In each group, whole kidney sodium reabsorption increased in proportion to the rise in CIN. To determine whether the intrinsic transport capacity of proximal tubule segments is altered by these maneuvers, we measured fluid volume reabsorption rate (Jv) in isolated superficial proximal straight tubule (PST) segments perfused in vitro, comparing each control tubule (obtained by biopsy of the left kidney immediately before an experimental maneuver) with a corresponding tubule segment obtained 24 h or 7 d later from the contralateral kidney. Control tubule Jv in sham-24 h animals averaged 0.48 +/- 0.04 nl/(min X mm). Jv did not change significantly at 24 h or 7 d after sham maneuvers but increased significantly at 24 h after UNX [delta Jv = 0.13 +/- 0.03 nl/(min X mm)], UO [delta Jv = 0.10 +/- 0.04 nl/(min X mm)], and UP [delta Jv = 0.13 +/- 0.04 nl/(min X mm)]. Jv remained increased by similar amounts at 7 d after UNX and UO. To evaluate whether an increase in glomerular filtration rate (GFR) might be the stimulus to this augmentation in Jv values, methylprednisolone (MP) (15 mg/kg per d) was administered daily to sham-operated animals, a maneuver which induced a 73% rise in CIN by day 5. This procedure also produced a significant increase in Jv in PST at 5 d [delta Jv = 0.16 +/- 0.05 nl/(min X mm)]. The increase in Jv evident in each group at 5 or 7 d was paralleled by an equivalent change in tubule cell volume and apparent tubule luminal surface area in