Science.gov

Sample records for linolenic acid contents

  1. Differential Contribution of Endoplasmic Reticulum and Chloroplast ω-3 Fatty Acid Desaturase Genes to the Linolenic Acid Content of Olive (Olea europaea) Fruit.

    PubMed

    Hernández, M Luisa; Sicardo, M Dolores; Martínez-Rivas, José M

    2016-01-01

    Linolenic acid is a polyunsaturated fatty acid present in plant lipids, which plays key roles in plant metabolism as a structural component of storage and membrane lipids, and as a precursor of signaling molecules. The synthesis of linolenic acid is catalyzed by two different ω-3 fatty acid desaturases, which correspond to microsomal- (FAD3) and chloroplast- (FAD7 and FAD8) localized enzymes. We have investigated the specific contribution of each enzyme to the linolenic acid content in olive fruit. With that aim, we isolated two different cDNA clones encoding two ω-3 fatty acid desaturases from olive (Olea europaea cv. Picual). Sequence analysis indicates that they code for microsomal (OepFAD3B) and chloroplast (OepFAD7-2) ω-3 fatty acid desaturase enzymes, different from the previously characterized OekFAD3A and OekFAD7-1 genes. Functional expression in yeast of the corresponding OepFAD3A and OepFAD3B cDNAs confirmed that they encode microsomal ω-3 fatty acid desaturases. The linolenic acid content and transcript levels of olive FAD3 and FAD7 genes were measured in different tissues of Picual and Arbequina cultivars, including mesocarp and seed during development and ripening of olive fruit. Gene expression and lipid analysis indicate that FAD3A is the gene mainly responsible for the linolenic acid present in the seed, while FAD7-1 and FAD7-2 contribute mostly to the linolenic acid present in the mesocarp and, therefore, in the olive oil. These results also indicate the relevance of lipid trafficking between the endoplasmic reticulum and chloroplast in determining the linolenic acid content of membrane and storage lipids in oil-accumulating photosynthetic tissues.

  2. Structural organization of fatty acid desaturase loci in linseed lines with contrasting linolenic acid contents.

    PubMed

    Thambugala, Dinushika; Ragupathy, Raja; Cloutier, Sylvie

    2016-07-01

    Flax (Linum usitatissimum L.), the richest crop source of omega-3 fatty acids (FAs), is a diploid plant with an estimated genome size of ~370 Mb and is well suited for studying genomic organization of agronomically important traits. In this study, 12 bacterial artificial chromosome clones harbouring the six FA desaturase loci sad1, sad2, fad2a, fad2b, fad3a and fad3b from the conventional variety CDC Bethune and the high linolenic acid line M5791 were sequenced, analysed and compared to determine the structural organization of these loci and to gain insights into the genetic mechanisms underlying FA composition in flax. With one gene every 3.2-4.6 kb, the desaturase loci have a higher gene density than the genome's average of one gene per 7.8-8.2 kb. The gene order and orientation across the two genotypes were generally conserved with the exception of the sad1 locus that was predicted to have additional genes in CDC Bethune. High sequence conservation in both genic and intergenic regions of the sad and fad2b loci contrasted with the significant level of variation of the fad2a and fad3 loci, with SNPs being the most frequently observed mutation type. The fad2a locus had 297 SNPs and 36 indels over ~95 kb contrasting with the fad2b locus that had a mere seven SNPs and four indels in ~110 kb. Annotation of the gene-rich loci revealed other genes of known role in lipid or carbohydrate metabolic/catabolic pathways. The organization of the fad2b locus was particularly complex with seven copies of the fad2b gene in both genotypes. The presence of Gypsy, Copia, MITE, Mutator, hAT and other novel repeat elements at the desaturase loci was similar to that of the whole genome. This structural genomic analysis provided some insights into the genomic organization and composition of the main desaturase loci of linseed and of their complex evolution through both tandem and whole genome duplications. PMID:27142663

  3. Composition of transgenic soybean seeds with higher γ-linolenic acid content is equivalent to that of conventional control.

    PubMed

    Qin, Fengyun; Kang, Linzhi; Guo, Liqiong; Lin, Junfang; Song, Jingshen; Zhao, Yinhua

    2012-03-01

    γ-Linolenic acid (GLA) has been used as a general nutraceutical for pharmacologic applications, particularly in the treatment of skin conditions such as eczema. Four transgenic soybean lines that produce GLA at high yields (4.21% of total fatty acids, up to 1002-fold) were generated through the stable insertion of the Delta-6-fatty acid desaturase gene isolated from Borago officinalis into the genome of a conventional soybean cultivar. As part of the safety assessment of genetically engineered crops, the transgenic soybean seeds were compared with their parental soybean seeds (nontransgenic) by applying the principle of substantial equivalence. Compositional analyses were conducted by measuring the fatty acids, proximate analysis (moisture, crude protein, crude fat, carbohydrates, TDF, and ash contents), amino acids, lectins, and trypsin inhibitor activity. The present results showed that the specific transgenic cultivar studied was similar to the conventional control.

  4. Composition of transgenic soybean seeds with higher γ-linolenic acid content is equivalent to that of conventional control.

    PubMed

    Qin, Fengyun; Kang, Linzhi; Guo, Liqiong; Lin, Junfang; Song, Jingshen; Zhao, Yinhua

    2012-03-01

    γ-Linolenic acid (GLA) has been used as a general nutraceutical for pharmacologic applications, particularly in the treatment of skin conditions such as eczema. Four transgenic soybean lines that produce GLA at high yields (4.21% of total fatty acids, up to 1002-fold) were generated through the stable insertion of the Delta-6-fatty acid desaturase gene isolated from Borago officinalis into the genome of a conventional soybean cultivar. As part of the safety assessment of genetically engineered crops, the transgenic soybean seeds were compared with their parental soybean seeds (nontransgenic) by applying the principle of substantial equivalence. Compositional analyses were conducted by measuring the fatty acids, proximate analysis (moisture, crude protein, crude fat, carbohydrates, TDF, and ash contents), amino acids, lectins, and trypsin inhibitor activity. The present results showed that the specific transgenic cultivar studied was similar to the conventional control. PMID:22324875

  5. Characterisation of a highly saturated Irvingia gabonensis seed kernel oil with unusual linolenic acid content.

    PubMed

    Zoué, Lessoy T; Bédikou, Micaël E; Faulet, Betty M; Gonnety, Jean T; Niamké, Sébastien L

    2013-02-01

    The search for new sources of oil with improved characteristics has focused our attention on the characterisation of Irvingia gabonensis seed kernel oil. Physicochemical analysis have revealed the following assets: refractive index (1.42 ± 0.00), free fatty acids (2.3 ± 0.8%), peroxide value (3.33 ± 0.57 meq O(2)/kg), iodine value (32.43 ± 1.22 g I(2)/100 g), saponification value (233.75 ± 2.60 mg KOH/g), unsaponifiable matter (1.5 ± 0.02%), carotenoids (63 ± 0.01 mg β-carotene/100 g) and phospholipids (2.1 ± 0.01%). Absorbance of this oil decreased abruptly in the range of UV-B and UV-A wavelengths. Gas chromatography analysis showed that the major fatty acids were saturated, being mainly composed of lauric (C12:0, 39.35 ± 0.01%) and myristic acids (C14:0, 20.54 ± 0.01%). Nevertheless, an unusually high amount (6.44 ± 0.02%) of linolenic acid was also noted. Mass spectrometer analysis of volatile compounds highlighted the presence of various aromatic and aliphatic organic compounds. I. gabonensis seed kernel oil also showed oxidative stability at 60 °C after 12 days of storage with maximum peroxide value of 34.66 meq O(2)/kg. In view of these interesting characteristics, I. gabonensis seed kernel could be used as an alternative source of oil for lipid industries. PMID:23345325

  6. Alpha-linolenic acid content of commonly available nuts in Hangzhou.

    PubMed

    Li, Duo; Yao, Ting; Siriamornpun, Sirithon

    2006-01-01

    The total lipid content of eight species of nuts available in Hangzhou ranged from 49.5 g/100 g weight in Cannabis sativa to 75.4 g/100 g in walnut. The predominant content of lipid is triacylglycerol, ranging from 91.1% in Cannabis sativa to 98.4% in macadamia. There were two polyunsaturated fatty acids (PUFA) in all nuts analyzed; 18:2n-6 and 18:3n-3. The content of 18:3n-3 ranging from 0.2% in almond to 15.2% in Cannabis sativa, 18:2n-6 ranged from 2.5% in macadamia to 61.6% in pine nut. The proportion of total PUFA in analyzed eight nut species ranging from 2.8% in macadamia to 71.7% in walnut (p < 0.001). Monounsaturated fatty acid composition ranged from 18.0% in Cannabis sativa to 82.6% in macadamia (p < 0.001). The proportion of saturated fatty acid ranged from 7.4% in filbert to 14.7% of total fatty acids in macadamia (p < 0.001). No C20 fatty acids were detected in any of the samples in the present study. The lipids content and fatty acid compositions in analyzed samples were varied between nut species. Cannabis sativa and walnut contained relatively high 18:3n-3, consumption of several these nuts each day can contribute to n-3 PUFA intake, especially for the vegetarian population.

  7. Alpha-linolenic acid content of commonly available nuts in Hangzhou.

    PubMed

    Li, Duo; Yao, Ting; Siriamornpun, Sirithon

    2006-01-01

    The total lipid content of eight species of nuts available in Hangzhou ranged from 49.5 g/100 g weight in Cannabis sativa to 75.4 g/100 g in walnut. The predominant content of lipid is triacylglycerol, ranging from 91.1% in Cannabis sativa to 98.4% in macadamia. There were two polyunsaturated fatty acids (PUFA) in all nuts analyzed; 18:2n-6 and 18:3n-3. The content of 18:3n-3 ranging from 0.2% in almond to 15.2% in Cannabis sativa, 18:2n-6 ranged from 2.5% in macadamia to 61.6% in pine nut. The proportion of total PUFA in analyzed eight nut species ranging from 2.8% in macadamia to 71.7% in walnut (p < 0.001). Monounsaturated fatty acid composition ranged from 18.0% in Cannabis sativa to 82.6% in macadamia (p < 0.001). The proportion of saturated fatty acid ranged from 7.4% in filbert to 14.7% of total fatty acids in macadamia (p < 0.001). No C20 fatty acids were detected in any of the samples in the present study. The lipids content and fatty acid compositions in analyzed samples were varied between nut species. Cannabis sativa and walnut contained relatively high 18:3n-3, consumption of several these nuts each day can contribute to n-3 PUFA intake, especially for the vegetarian population. PMID:16711652

  8. Omega-3 enriched egg production: the effect of α -linolenic ω -3 fatty acid sources on laying hen performance and yolk lipid content and fatty acid composition.

    PubMed

    Antruejo, A; Azcona, J O; Garcia, P T; Gallinger, C; Rosmini, M; Ayerza, R; Coates, W; Perez, C D

    2011-12-01

    1. Diets high in total lipids, saturated fatty acids, trans fatty acids, and having high ω-6:ω-3 fatty acid ratios, have been shown to be related to increased instances of coronary heart disease, while diets high in ω-3 fatty acids have been shown to decrease the risk. 2. Feeding ω-3 fatty acid diets to laying hens has been shown to improve the quality of eggs produced in terms of saturation and ω-3 content. 3. A study was undertaken to determine if the ω-3 fatty acid source, when fed to hens, influences the amount transferred to eggs. 4. Flaxseed and flaxseed oil, along with chia seed and chia seed oil, were the two main sources of ω-3 fatty acid examined during the 84 d trial. 5. All α-linolenic enriched treatments yielded significantly higher ω-3 fatty acid contents per g of yolk and per yolk, than the non-α-linolenic enriched diets. Chia oil and chia seed yielded 54·5 and 63·5% more mg of ω-3 fatty acid per g of yolk for the 56 d test period, and 13·4 and 66·2% more for the 84 d test period, than flaxseed oil and flaxseed, respectively. 6. The differences in omega-3 content were significant, except for the chia oil compared with the flax oil, at the end of the trial. 7. This trial has shown that differences in conversion exist among ω-3 fatty acid sources, at least when fed to hens, and indicates that chia may hold a significant potential as a source of ω-3 fatty acid for enriching foods, thereby making these foods a healthier choice for consumers. PMID:22221241

  9. Omega-3 enriched egg production: the effect of α -linolenic ω -3 fatty acid sources on laying hen performance and yolk lipid content and fatty acid composition.

    PubMed

    Antruejo, A; Azcona, J O; Garcia, P T; Gallinger, C; Rosmini, M; Ayerza, R; Coates, W; Perez, C D

    2011-12-01

    1. Diets high in total lipids, saturated fatty acids, trans fatty acids, and having high ω-6:ω-3 fatty acid ratios, have been shown to be related to increased instances of coronary heart disease, while diets high in ω-3 fatty acids have been shown to decrease the risk. 2. Feeding ω-3 fatty acid diets to laying hens has been shown to improve the quality of eggs produced in terms of saturation and ω-3 content. 3. A study was undertaken to determine if the ω-3 fatty acid source, when fed to hens, influences the amount transferred to eggs. 4. Flaxseed and flaxseed oil, along with chia seed and chia seed oil, were the two main sources of ω-3 fatty acid examined during the 84 d trial. 5. All α-linolenic enriched treatments yielded significantly higher ω-3 fatty acid contents per g of yolk and per yolk, than the non-α-linolenic enriched diets. Chia oil and chia seed yielded 54·5 and 63·5% more mg of ω-3 fatty acid per g of yolk for the 56 d test period, and 13·4 and 66·2% more for the 84 d test period, than flaxseed oil and flaxseed, respectively. 6. The differences in omega-3 content were significant, except for the chia oil compared with the flax oil, at the end of the trial. 7. This trial has shown that differences in conversion exist among ω-3 fatty acid sources, at least when fed to hens, and indicates that chia may hold a significant potential as a source of ω-3 fatty acid for enriching foods, thereby making these foods a healthier choice for consumers.

  10. A high-fat, high-oleic diet, but not a high-fat, saturated diet, reduces hepatic alpha-linolenic acid and eicosapentaenoic acid content in mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Considerable research centers upon the role of linoleic acid (LNA; 18:2n6) as a competitive inhibitor of a-linolenic (ALA; 18:3n3) metabolism; however, little data exist as to the impact of saturated fatty acids (SFA) and monounsaturated fatty acids (MUFA) on ALA metabolism. We tested the hypothesi...

  11. alpha-Linolenic acid content of adipose breast tissue: a host determinant of the risk of early metastasis in breast cancer.

    PubMed Central

    Bougnoux, P.; Koscielny, S.; Chajès, V.; Descamps, P.; Couet, C.; Calais, G.

    1994-01-01

    The association between the levels of various fatty acids in adipose breast tissue and the emergence of visceral metastases was prospectively studied in a cohort of 121 patients with an initially localised breast cancer. Adipose breast tissue was obtained at the time of initial surgery, and its fatty acid content analysed by capillary gas chromatography. A low level of alpha-linolenic acid (18:3n-3) in adipose breast tissue was associated with positive axillary lymph node status and with the presence of vascular invasion, but not with tumour size or mitotic index. After an average 31 months of follow-up, 21 patients developed metastases. Large tumour size, high mitotic index, presence of vascular invasion and low level of 18:3n-3 were single factors significantly associated with an increased risk of metastasis. A Cox proportional hazard regression model was used to identify prognostic factors. Low 18:3n-3 level and large tumour size were the two factors predictive of metastases. These results suggest that host alpha-linolenic acid has a specific role in the metastatic process in vivo. Further understanding of the biology of this essential fatty acid of the n-3 series is needed in breast carcinoma. PMID:7914425

  12. Microsomal Omega-3 Fatty Acid Desaturase Genes in Low Linolenic Acid Soybean Line RG10 and Validation of Major Linolenic Acid QTL

    PubMed Central

    Reinprecht, Yarmilla; Pauls, K. Peter

    2016-01-01

    High levels of linolenic acid (80 g kg−1) are associated with the development of off-flavors and poor stability in soybean oil. The development of low linolenic acid lines such as RG10 (20 g kg−1 linolenic acid) can reduce these problems. The level of linolenic acid in seed oil is determined by the activities of microsomal omega-3 fatty acid desaturases (FAD3). A major linolenic acid QTL (>70% of variation) on linkage group B2 (chromosome Gm14) was previously detected in a recombinant inbred line population from the RG10 × OX948 cross. The objectives of this study were to validate the major linolenic acid QTL in an independent population and characterize all the soybean FAD3 genes. Four FAD3 genes were sequenced and localized in RG10 and OX948 and compared to the genes in the reference Williams 82 genome. The FAD3A gene sequences mapped to the locus Glyma.14g194300 [on the chromosome Gm14 (B2)], which is syntenic to the FAD3B gene (locus Glyma.02g227200) on the chromosome Gm02 (D1b). The location of the FAD3A gene is the same as was previously determined for the fan allele, that conditions low linolenic acid content and several linolenic acid QTL, including Linolen 3-3, mapped previously with the RG10 × OX948 population and confirmed in the PI 361088B × OX948 population as Linolen-PO (FAD3A). The FAD3B gene-based marker, developed previously, was mapped to the chromosome Gm02 (D1b) in a region containing a newly detected linolenic acid QTL [Linolen-RO(FAD3B)] in the RG10 × OX948 genetic map and corresponds well with the in silico position of the FAD3B gene sequences. FAD3C and FAD3D gene sequences, mapped to syntenic regions on chromosomes Gm18 (locus Glyma.18g062000) and Gm11 (locus Glyma.11g227200), respectively. Association of linolenic acid QTL with the desaturase genes FAD3A and FAD3B, their validation in an independent population, and development of FAD3 gene-specific markers should simplify and accelerate breeding for low linolenic acid soybean

  13. Replacement of dietary fish oils by alpha-linolenic acid-rich oils lowers omega 3 content in tilapia flesh.

    PubMed

    Karapanagiotidis, Ioannis T; Bell, Michael V; Little, David C; Yakupitiyage, Amararatne

    2007-06-01

    A 20-week feeding trial was conducted to determine whether increasing linolenic acid (18:3n-3) in vegetable oil (VO) based diets would lead to increased tissue deposition of 22:6n-3 in Nile tilapia (Oreochromis niloticus). Five isonitrogenous and isoenergetic diets were supplemented with 3% of either linseed oil (LO), a mixture of linseed oil with refined palm olein oil (PO) (LO-PO 2:1) and a mixture of refined palm olein oil with linseed oil (PO-LO 3:2) or with fish oil (FO) or corn oil (CO) as controls. The PO-LO, LO-PO and LO diets supplied a similar amount of 18:2n-6 (0.5% of diet by dry weight) and 0.5, 0.7 and 1.1% of 18:3n-3, respectively. Increased dietary 18:3n-3 caused commensurate increases in longer-chain n-3 PUFA and decreases in longer-chain n-6 PUFA in the muscle lipids of tilapia. However, the biosynthetic activities of fish fed the LO-based diets were not sufficient to raise the tissue concentrations of 20:5n-3, 22:5n-3 and 22:6n-3 to those of fish fed FO. The study suggests that tilapia (O. niloticus) has a limited capacity to synthesise 20:5n-3 and 22:6n-3 from dietary 18:3n-3. The replacement of FO in the diet of farmed tilapia with vegetable oils could therefore lower tissue concentrations of 20:5n-3 and 22:6n-3, and consequently produce an aquaculture product of lower lipid nutritional value for the consumer.

  14. A new near-infrared reflectance spectroscopy method for high-throughput analysis of oleic acid and linolenic acid content of single seeds in oilseed rape (Brassica napus L.).

    PubMed

    Niewitetzki, Oliver; Tillmann, Peter; Becker, Heiko C; Möllers, Christian

    2010-01-13

    The development of oilseed rape cultivars with a high content of oleic acid (18:1) and a low content of linolenic acid (18:3) in the seed oil is an important breeding aim. Oil of this quality is increasingly being sought by the food and the oleochemical industry. Since the oil quality is determined by the genotype of the seed, a selection can be performed among single seeds of segregating populations. For this purpose a high-throughput Near-Infrared Reflectance Spectroscopy (NIRS) method using an automated sample presentation unit for single seeds of oilseed rape and a spectrometer equipped with a photodiode array detector was developed. Single-seed analyses have been accomplished with a throughput of up to 800 seeds per hour. Seeds from segregating populations of different origin were analyzed by NIRS and gas chromatography. Calibration equations were developed and validated applying the Modified Partial Least Square regression (MPLS) and LOCAL procedure. In three independent validations, standard errors of prediction corrected for bias between 2.7% and 3.7% for oleic acid and 1.2% and 1.8% for linolenic acid were determined using MPLS. Similar results were obtained applying the LOCAL procedure. The results show that the new high-throughput method can be applied to predict the oleic acid and linolenic acid content of single seeds of oilseed rape.

  15. Culture Conditions stimulating high γ-Linolenic Acid accumulation by Spirulina platensis

    PubMed Central

    Ronda, Srinivasa Reddy; Lele, S.S.

    2008-01-01

    Gamma-linolenic acid (GLA) production by Spirulina platensis under different stress-inducing conditions was studied. Submerged culture studies showed that low temperature (25°C), strong light intensity (6 klux) and primrose oil supplement (0.8%w/v) induced 13.2 mg/g, 14.6 mg/g and 13.5 mg linolenic acid per gram dry cell weight respectively. A careful observation of fatty acid profile of the cyanobacteria shows that, oleic acid and linoleic acid, in experiments with varying growth temperature and oil supplements respectively, helped in accumulating excess γ-linolenic acid. In addition, cultures grown at increasing light regimes maintained the γ-linolenic acid to the total fatty acid ratio(GLA/TFA) constant, despite any change in γ-linolenic acid content of the cyanobacteria. PMID:24031291

  16. Identification of FAD2 and FAD3 genes in Brassica napus genome and development of allele-specific markers for high oleic and low linolenic acid contents.

    PubMed

    Yang, Qingyong; Fan, Chuchuan; Guo, Zhenhua; Qin, Jie; Wu, Jianzhong; Li, Qingyuan; Fu, Tingdong; Zhou, Yongming

    2012-08-01

    Modification of oleic acid (C18:1) and linolenic acid (C18:3) contents in seeds is one of the major goals for quality breeding after removal of erucic acid in oilseed rape (Brassica napus). The fatty acid desaturase genes FAD2 and FAD3 have been shown as the major genes for the control of C18:1 and C18:3 contents. However, the genome structure and locus distributions of the two gene families in amphidiploid B. napus are still not completely understood to date. In the present study, all copies of FAD2 and FAD3 genes in the A- and C-genome of B. napus and its two diploid progenitor species, Brassica rapa and Brassica oleracea, were identified through bioinformatic analysis and extensive molecular cloning. Two FAD2 genes exist in B. rapa and B. oleracea, and four copies of FAD2 genes exist in B. napus. Three and six copies of FAD3 genes were identified in diploid species and amphidiploid species, respectively. The genetic control of high C18:1 and low C18:3 contents in a double haploid population was investigated through mapping of the quantitative trait loci (QTL) for the traits and the molecular cloning of the underlying genes. One major QTL of BnaA.FAD2.a located on A5 chromosome was responsible for the high C18:1 content. A deleted mutation in the BnaA.FAD2.a locus was uncovered, which represented a previously unidentified allele for the high oleic variation in B. napus species. Two major QTLs on A4 and C4 chromosomes were found to be responsible for the low C18:3 content in the DH population as well as in SW Hickory. Furthermore, several single base pair changes in BnaA.FAD3.b and BnaC.FAD3.b were identified to cause the phenotype of low C18:3 content. Based on the results of genetic mapping and identified sequences, allele-specific markers were developed for FAD2 and FAD3 genes. Particularly, single-nucleotide amplified polymorphisms markers for FAD3 alleles were demonstrated to be a reliable type of SNP markers for unambiguous identification of genotypes with

  17. Identification of FAD2 and FAD3 genes in Brassica napus genome and development of allele-specific markers for high oleic and low linolenic acid contents.

    PubMed

    Yang, Qingyong; Fan, Chuchuan; Guo, Zhenhua; Qin, Jie; Wu, Jianzhong; Li, Qingyuan; Fu, Tingdong; Zhou, Yongming

    2012-08-01

    Modification of oleic acid (C18:1) and linolenic acid (C18:3) contents in seeds is one of the major goals for quality breeding after removal of erucic acid in oilseed rape (Brassica napus). The fatty acid desaturase genes FAD2 and FAD3 have been shown as the major genes for the control of C18:1 and C18:3 contents. However, the genome structure and locus distributions of the two gene families in amphidiploid B. napus are still not completely understood to date. In the present study, all copies of FAD2 and FAD3 genes in the A- and C-genome of B. napus and its two diploid progenitor species, Brassica rapa and Brassica oleracea, were identified through bioinformatic analysis and extensive molecular cloning. Two FAD2 genes exist in B. rapa and B. oleracea, and four copies of FAD2 genes exist in B. napus. Three and six copies of FAD3 genes were identified in diploid species and amphidiploid species, respectively. The genetic control of high C18:1 and low C18:3 contents in a double haploid population was investigated through mapping of the quantitative trait loci (QTL) for the traits and the molecular cloning of the underlying genes. One major QTL of BnaA.FAD2.a located on A5 chromosome was responsible for the high C18:1 content. A deleted mutation in the BnaA.FAD2.a locus was uncovered, which represented a previously unidentified allele for the high oleic variation in B. napus species. Two major QTLs on A4 and C4 chromosomes were found to be responsible for the low C18:3 content in the DH population as well as in SW Hickory. Furthermore, several single base pair changes in BnaA.FAD3.b and BnaC.FAD3.b were identified to cause the phenotype of low C18:3 content. Based on the results of genetic mapping and identified sequences, allele-specific markers were developed for FAD2 and FAD3 genes. Particularly, single-nucleotide amplified polymorphisms markers for FAD3 alleles were demonstrated to be a reliable type of SNP markers for unambiguous identification of genotypes with

  18. Effectiveness of rubber seed oil and flaxseed oil to enhance the α-linolenic acid content in milk from dairy cows.

    PubMed

    Pi, Y; Gao, S T; Ma, L; Zhu, Y X; Wang, J Q; Zhang, J M; Xu, J C; Bu, D P

    2016-07-01

    This experiment was conducted to investigate effect of rubber seed oil compared with flaxseed oil when fed alone or in combination on milk yield, milk composition, and α-linolenic acid (ALA) concentration in milk of dairy cows. Forty-eight mid-lactation Holstein dairy cows were randomly assigned to 1 of 4 treatments according to a completely randomized design. Cows were fed a basal diet (control; CON) or a basal diet supplemented with 4% rubber seed oil (RO), 4% flaxseed oil (FO), or 2% rubber seed oil plus 2% flaxseed oil (RFO) on a dry matter basis for 9 wk. Feed intake, milk protein percentage, and milk fat levels did not differ between the treatments. Cows fed the RO, FO, or RFO treatments had a higher milk yield than the CON group (up to 10.5% more), whereas milk fat percentages decreased. Compared with the CON, milk concentration of ALA was substantially higher in cows receiving RO or RFO, and was doubled in cows receiving FO. The ALA yield (g/d) increased by 31.0, 70.3, and 33.4% in milk from cows fed RO, FO, or RFO, respectively, compared with the CON. Both C18:1 trans-11 (vaccenic acid) and C18:2 cis-9,trans-11 (conjugated linoleic acid; CLA) levels were higher in cows fed added flaxseed or rubber seed oil. The CLA yield (g/d) increased by 336, 492, and 484% in cows fed RO, FO, or RFO, respectively, compared with the CON. The increase in vaccenic acid, ALA, and CLA was greater in cows fed RFO than in cows fed RO alone. Compared with the CON, the milk fat from cows fed any of the dietary supplements had a higher concentration of unsaturated fatty acids, monounsaturated fatty acids, and polyunsaturated fatty acids; conversely, the saturated fatty acids levels in milk fat were 30.5% lower. Insulin and growth hormones were not affected by dietary treatments; however, we noted an increase in both cholesterol and nonesterified fatty acids levels in the RO, FO, or RFO treatments. These results indicate that rubber seed oil and flaxseed oil will increase milk

  19. Effectiveness of rubber seed oil and flaxseed oil to enhance the α-linolenic acid content in milk from dairy cows.

    PubMed

    Pi, Y; Gao, S T; Ma, L; Zhu, Y X; Wang, J Q; Zhang, J M; Xu, J C; Bu, D P

    2016-07-01

    This experiment was conducted to investigate effect of rubber seed oil compared with flaxseed oil when fed alone or in combination on milk yield, milk composition, and α-linolenic acid (ALA) concentration in milk of dairy cows. Forty-eight mid-lactation Holstein dairy cows were randomly assigned to 1 of 4 treatments according to a completely randomized design. Cows were fed a basal diet (control; CON) or a basal diet supplemented with 4% rubber seed oil (RO), 4% flaxseed oil (FO), or 2% rubber seed oil plus 2% flaxseed oil (RFO) on a dry matter basis for 9 wk. Feed intake, milk protein percentage, and milk fat levels did not differ between the treatments. Cows fed the RO, FO, or RFO treatments had a higher milk yield than the CON group (up to 10.5% more), whereas milk fat percentages decreased. Compared with the CON, milk concentration of ALA was substantially higher in cows receiving RO or RFO, and was doubled in cows receiving FO. The ALA yield (g/d) increased by 31.0, 70.3, and 33.4% in milk from cows fed RO, FO, or RFO, respectively, compared with the CON. Both C18:1 trans-11 (vaccenic acid) and C18:2 cis-9,trans-11 (conjugated linoleic acid; CLA) levels were higher in cows fed added flaxseed or rubber seed oil. The CLA yield (g/d) increased by 336, 492, and 484% in cows fed RO, FO, or RFO, respectively, compared with the CON. The increase in vaccenic acid, ALA, and CLA was greater in cows fed RFO than in cows fed RO alone. Compared with the CON, the milk fat from cows fed any of the dietary supplements had a higher concentration of unsaturated fatty acids, monounsaturated fatty acids, and polyunsaturated fatty acids; conversely, the saturated fatty acids levels in milk fat were 30.5% lower. Insulin and growth hormones were not affected by dietary treatments; however, we noted an increase in both cholesterol and nonesterified fatty acids levels in the RO, FO, or RFO treatments. These results indicate that rubber seed oil and flaxseed oil will increase milk

  20. High-throughput and functional SNP detection assays for oleic and linolenic acids in soybean

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soybean is a primary source of vegetable oil, accounting for 53% of the total vegetable oil consumption in the USA in 2013. Soybean oil with high oleic acid and low linolenic acid content is desired, because it not only improves the oxidative stability of the oil, but also reduces the amount of unde...

  1. A new low linolenic acid allele of GmFAD3A gene in soybean PE1690

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Relative fatty acid content of soybean oil is about 12 % palmitic acid, 4 % stearic acid, 23 % oleic acid, 54 % linoleic acid, and 8 % linolenic acid. To improve oxidative stability and quality of oil, breeding programs have mainly focused on reducing saturated fatty acids, increasing oleic acid, an...

  2. Effects of Oils Rich in Linoleic and α-Linolenic Acids on Fatty Acid Profile and Gene Expression in Goat Meat

    PubMed Central

    Ebrahimi, Mahdi; Rajion, Mohamed Ali; Goh, Yong Meng

    2014-01-01

    Alteration of the lipid content and fatty acid (FA) composition of foods can result in a healthier product. The aim of this study was to determine the effect of flaxseed oil or sunflower oil in the goat diet on fatty acid composition of muscle and expression of lipogenic genes in the semitendinosus (ST) muscle. Twenty-one entire male Boer kid goats were fed diets containing different levels of linoleic acid (LA) and α-linolenic acid (LNA) for 100 days. Inclusion of flaxseed oil increased (p < 0.05) the α-linolenic acid (C18:3n-3) concentration in the ST muscle. The diet high in α-linolenic acid (p < 0.05) decreased the arachidonic acid (C20:4n-6) and conjugated linolenic acid (CLA) c-9 t-11 content in the ST muscle. There was a significant (p < 0.05) upregulation of PPARα and PPARγ gene expression and downregulation of stearoyl-CoA desaturase (SCD) gene in the ST muscle for the high α-linolenic acid group compared with the low α-linolenic acid group. The results of the present study show that flaxseed oil as a source of α-linolenic acid can be incorporated into the diets of goats to enrich goat meat with n-3 fatty acids, upregulate the PPARα and PPARγ, and downregulate the SCD gene expression. PMID:25255382

  3. Gamma linolenic acid: an antiinflammatory omega-6 fatty acid.

    PubMed

    Kapoor, Rakesh; Huang, Yung-Sheng

    2006-12-01

    Inflammation plays an important role in health and disease. Most of the chronic diseases of modern society, including cancer, diabetes, heart disease, arthritis, Alzheimer's disease, etc. have inflammatory component. At the same time, the link between diet and disease is also being recognized. Amongst dietary constituents, fat has gained most recognition in affecting health. Saturated and trans fatty acids have been implicated in obesity, heart disease, diabetes and cancer while polyunsaturated fatty acids (PUFAs) generally have a positive effect on health. The PUFAs of omega-3 and omega-6 series play a significant role in health and disease by generating potent modulatory molecules for inflammatory responses, including eicosanoids (prostaglandins, and leukotrienes), and cytokines (interleukins) and affecting the gene expression of various bioactive molecules. Gamma linolenic acid (GLA, all cis 6, 9, 12-Octadecatrienoic acid, C18:3, n-6), is produced in the body from linoleic acid (all cis 6,9-octadecadienoic acid), an essential fatty acid of omega-6 series by the enzyme delta-6-desaturase. Preformed GLA is present in trace amounts in green leafy vegetables and in nuts. The most significant source of GLA for infants is breast milk. GLA is further metabolized to dihomogamma linlenic acid (DGLA) which undergoes oxidative metabolism by cyclooxygenases and lipoxygenases to produce anti-inflammatory eicosanoids (prostaglandins of series 1 and leukotrienes of series 3). GLA and its metabolites also affect expression of various genes where by regulating the levels of gene products including matrix proteins. These gene products play a significant role in immune functions and also in cell death (apoptosis). The present review will emphasize the role of GLA in modulating inflammatory response, and hence its potential applications as an anti-inflammatory nutrient or adjuvant.

  4. Survey of the total fatty acid and triacylglycerol composition and content of 30 duckweed species and cloning of a Δ6-desaturase responsible for the production of γ-linolenic and stearidonic acids in Lemna gibba

    PubMed Central

    2013-01-01

    Background Duckweeds, i.e., members of the Lemnoideae family, are amongst the smallest aquatic flowering plants. Their high growth rate, aquatic habit and suitability for bio-remediation make them strong candidates for biomass production. Duckweeds have been studied for their potential as feedstocks for bioethanol production; however, less is known about their ability to accumulate reduced carbon as fatty acids (FA) and oil. Results Total FA profiles of thirty duckweed species were analysed to assess the natural diversity within the Lemnoideae. Total FA content varied between 4.6% and 14.2% of dry weight whereas triacylglycerol (TAG) levels varied between 0.02% and 0.15% of dry weight. Three FA, 16:0 (palmitic), 18:2Δ9,12 (Linoleic acid, or LN) and 18:3Δ9,12,15 (α-linolenic acid, or ALA) comprise more than 80% of total duckweed FA. Seven Lemna and two Wolffiela species also accumulate polyunsaturated FA containing Δ6-double bonds, i.e., GLA and SDA. Relative to total FA, TAG is enriched in saturated FA and deficient in polyunsaturated FA, and only five Lemna species accumulate Δ6-FA in their TAG. A putative Δ6-desaturase designated LgDes, with homology to a family of front-end Δ6-FA and Δ8-spingolipid desaturases, was identified in the assembled DNA sequence of Lemna gibba. Expression of a synthetic LgDes gene in Nicotiana benthamiana resulted in the accumulation of GLA and SDA, confirming it specifies a Δ6-desaturase. Conclusions Total accumulation of FA varies three-fold across the 30 species of Lemnoideae surveyed. Nine species contain GLA and SDA which are synthesized by a Δ6 front-end desaturase, but FA composition is otherwise similar. TAG accumulates up to 0.15% of total dry weight, comparable to levels found in the leaves of terrestrial plants. Polyunsaturated FA is underrepresented in TAG, and the Δ6-FA GLA and SDA are found in the TAG of only five of the nine Lemna species that produce them. When present, GLA is enriched and SDA diminished

  5. Effect of feeding linseed oil in diets differing in forage to concentrate ratio: 1. Production performance and milk fat content of biohydrogenation intermediates of α-linolenic acid.

    PubMed

    Saliba, Leacady; Gervais, Rachel; Lebeuf, Yolaine; Chouinard, P Yvan

    2014-02-01

    To evaluate the interaction between the levels of dietary concentrate and linseed oil (LO) on milk fatty acid (FA) profile, 24 Holstein cows were used in a randomised complete block design based on days in milk, with a 2×2 factorial arrangement of treatments. Within each block, cows were fed one of four experimental diets containing 30% concentrate (LC) or 70% concentrate (HC), without LO (NLO) or with LO supplemented at 3% of dietary dry matter. Milk FA profiles were analysed with a special emphasis on the intermediates of the predominant trans-11, and a putative trans-13 pathways of ruminal biohydrogenation of cis-9, cis-12, cis-15 18:3. Feeding LO increased the concentrations of cis-9, cis-12, cis-15 18:3 and trans-11, cis-15 18:2 in milk fat, and these increases were of a higher magnitude when LO was added in HC as compared with LC diet (interaction of LO by concentrate). A treatment interaction was also observed for the level of trans-11 18:1 which was higher when feeding LO, but for which the increase was more pronounced with the LC as compared with HC diet. The concentrations of cis-15 18:1 and cis-9, trans-11, cis-15 18:3 were higher in cows fed LO, but feeding HC diets decreased milk fat content of cis-15 18:1 and a tendency for a decrease in cis-9, trans-11, cis-15 18:3 was apparent. Feeding LO increased milk fat content of trans-13 18:1 and cis-9, trans-13 18:2, while the concentrations of these two isomers were not affected by the level of dietary concentrates. The isomer cis-9, trans-13, cis-15 18:3 has not been detected in any of the milk samples. In conclusion, interactions were observed between LO and dietary concentrates on the proportions of some intermediates of the trans-11 biohydrogenation pathway. The presence of trans-13 18:1 and cis-9, trans-13 18:2 supports the existence of a trans-13 pathway, but an 18:3 intermediate with a trans-13 double bond has not been identified.

  6. Effects of a rapeseed oil-enriched hypoenergetic diet with a high content of α-linolenic acid on body weight and cardiovascular risk profile in patients with the metabolic syndrome.

    PubMed

    Baxheinrich, Andrea; Stratmann, Bernd; Lee-Barkey, Young Hee; Tschoepe, Diethelm; Wahrburg, Ursel

    2012-08-01

    In therapy of the metabolic syndrome, the optimal dietary approach with regard to its macronutrient composition and metabolically favourable food components, such as the plant-derived n-3 fatty acid α-linolenic acid (ALA), is still a matter of debate. We investigated the effects of a hypoenergetic diet with low energy density (ED) enriched in rapeseed oil, resulting in high MUFA content and an ALA intake of 3.5 g/d on body weight and cardiovascular risk profile in eighty-one patients with the metabolic syndrome in comparison with an olive oil diet rich in MUFA, but with a low ALA content. After a 6-month dietary intervention, body weight was significantly reduced in the rapeseed oil and olive oil groups ( -7.8 v. -6.0 kg; P < 0.05). There were significant decreases in systolic blood pressure, total cholesterol and LDL-cholesterol, and insulin levels in both groups (P < 0.05). For all of these changes, no inter-group differences were observed. After the rapeseed oil diet, diastolic blood pressure declined more than after the olive oil diet (P < 0.05 for time × group interaction). Furthermore, concentrations of serum TAG were significantly reduced after the high ALA intake, but not in the low ALA group (P < 0.05 for time × group interaction). In conclusion, our dietary food pattern with a low ED and high intakes of MUFA and ALA may be a practical approach for long-term dietary treatment in patients with the metabolic syndrome, leading to weight reduction and an improvement in the overall cardiovascular risk profile.

  7. Production of γ-linolenic acid and stearidonic acid by Synechococcus sp. PCC7002 containing cyanobacterial fatty acid desaturase genes

    NASA Astrophysics Data System (ADS)

    Dong, Xuewei; He, Qingfang; Peng, Zhenying; Yu, Jinhui; Bian, Fei; Li, Youzhi; Bi, Yuping

    2016-07-01

    Genetic modification is useful for improving the nutritional qualities of cyanobacteria. To increase the total unsaturated fatty acid content, along with the ratio of ω-3/ω-6 fatty acids, genetic engineering can be used to modify fatty acid metabolism. Synechococcus sp. PCC7002, a fast-growing cyanobacterium, does not contain a Δ6 desaturase gene and is therefore unable to synthesize γ-linolenic acid (GLA) and stearidonic acid (SDA), which are important in human health. In this work, we constructed recombinant vectors Syd6D, Syd15D and Syd6Dd15D to express the Δ15 desaturase and Δ6 desaturase genes from Synechocystis PCC6803 in Synechococcus sp. PCC7002, with the aim of expressing polyunsaturated fatty acids. Overexpression of the Δ15 desaturase gene in Synechococcus resulted in 5.4 times greater accumulation of α-linolenic acid compared with the wild-type while Δ6 desaturase gene expression produced both GLA and SDA. Co-expression of the two genes resulted in low-level accumulation of GLA but much larger amounts of SDA, accounting for as much to 11.64% of the total fatty acid content.

  8. Biosynthesis of gamma-linolenic acid in cotyledons and microsomal preparations of the developing seeds of common borage (Borago officinalis).

    PubMed

    Stymne, S; Stobart, A K

    1986-12-01

    The developing seeds of Borago officinalis (common borage) accumulate a triacylglycerol oil that is relatively rich in the uncommon fatty acid gamma-linolenate (octadec-6,9,12-trienoic acid). Incubation of developing, whole, cotyledons with [14C]oleate and [14C]linoleate showed that the gamma-linolenate was synthesized by the sequential desaturation of oleate----linoleate----gamma-linolenate. Microsomal membrane preparations from the developing cotyledons contained an active delta 6-desaturase enzyme that catalysed the conversion of linoleate into gamma-linolenate. Experiments were designed to manipulate the [14C]linoleate content of the microsomal phosphatidylcholine. The [14C]linoleoyl phosphatidylcholine labelled in situ was converted into gamma-linolenoyl phosphatidylcholine in the presence of NADH. The substrate for the delta 6-desaturase in borage was, therefore, the linoleate in the complex microsomal lipid phosphatidylcholine, rather than, as in animals, the acyl-CoA. This was further confirmed in experiments that compared the specific radioactivity of the gamma-linolenate, in acyl-CoA and phosphatidylcholine, that was synthesized when [14C]linoleoyl-CoA was incubated with microsomal membranes, NADH and non-radioactive gamma-linolenoyl-CoA. The delta 6-desaturase was positionally specific and only utilized the linoleate in position 2 of sn-phosphatidylcholine. Analysis of the positional distribution of fatty acids in the endogenous microsomal sn-phosphatidylcholine showed that, whereas position 1 contained substantial linoleate, only small amounts of gamma-linolenate were present. The results shed further light on the synthesis of C18 polyunsaturated fatty acids in plants and in particular its relationship to the regulation of the acyl quality of the triacylglycerols in oilseeds.

  9. [Effect of gamma-linolenic acid on microsomal oxidation in the rat liver following gamma-irradiation].

    PubMed

    Zavodnik, L B; Sushko, L I; Tarasov, Iu A; Ignatenko, K V; Chumachenko, S S; Ovchinnikov, V A; Brzosko, V; Buko, V U

    2001-01-01

    The antioxidant and radioprotector properties of gamma-linolenic acid isolated from the seeds of Borago officialis were studied on rats gamma-irradiated to a dose of 1 Gy. The irradiation caused an increase in the content of malonaldehyde in microsomal liver fraction and disturbed the metabolism of xenobiotics. The administration of gamma-linolenic acid in the form of a commercial drug Neoglandin (daily dose, 150 mg/kg, p.o.; over 1, 3, or 7 days after irradiation reduced the level of lipid peroxidation (for all treatment schedules), normalized the activity of NADPH-oxidase, NADH-oxidase, and NADPH-reductase, and increased the content of cytochromes P-450 and b5 as compared to bothirradiated and control animals. PMID:11589114

  10. Effect of dietary alpha-linolenic fatty acid derived from chia when fed as ground seed, whole seed and oil on lipid content and fatty acid composition of rat plasma.

    PubMed

    Ayerza, Ricardo; Coates, Wayne

    2007-01-01

    Coronary heart disease (CHD) is the most common cause of death in the Western world. In both the USA and the EU it accounts for over 600,000 deaths yearly. Early data showing the benefits n-3 fatty acids provide in preventing CHD disease were obtained using 20:5n-3 and 22:6n-3 fatty acids derived from fish. Recently, however, it has been shown that reduced risks of CHD and other cardiovascular diseases are found with 18:3n-3 fatty acid as well. To determine if 18:3n-3 fatty acids positively influence plasma composition, 32 male Wistar rats were fed ad libitum four isocaloric diets with the energy derived from corn oil (T(1)), whole chia seed (T(2)), ground chia seed (T(3)), or chia oil (T(4)) for 30 days. At the end of the feeding period the rats were sacrificed, and blood samples were analyzed to determine serum CHOL, HDL, LDL, TG content, hemogram, and fatty acid composition. Chia decreased serum TG content and increased HDL content. Only with the T(2) diet was TG significantly (p < 0.05) lower, and only with the T(3) diet was HDL significantly (p < 0.05) higher, than the control diet. Chia significantly (p < 0.05) increased the 18:3n-3, 20:5n-3 and 22:6n-3 plasma contents compared to the control diet, with no significant (p < 0.05) difference among chia diets detected. Significant (p < 0.05) improvement in n-6/n-3 fatty acid ratio was observed for all chia diets when compared to the control.

  11. Eskimo plasma constituents, dihomo-gamma-linolenic acid, eicosapentaenoic acid and docosahexaenoic acid inhibit the release of atherogenic mitogens.

    PubMed

    Smith, D L; Willis, A L; Nguyen, N; Conner, D; Zahedi, S; Fulks, J

    1989-01-01

    Studies in man and laboratory animals suggest that omega 3 polyunsaturated fatty acid constituents of fish oils have antiatherosclerotic properties. We have studied the effects of several such polyunsaturated fatty acids for ability to modify the in vitro release of mitogens from human platelets. Such mitogens may produce the fibro-proliferative component of atherosclerotic plaques. Both 5,8,11,14,17-eicosapentaenoic acid (20:5 omega 3) and 4,7,10,13,16,19-docosahexaenoic acid (22:6 omega 3), major constituents of fish oils, inhibited adenosine diphosphate-induced aggregation of platelets and the accompanying release of mitogens. These effects are dose dependent. Linolenic acid (18:3 omega 3), the biosynthetic precursor of eicosapentaenoic acid, also inhibited platelet aggregation and mitogen release. Eicosapentaenoic acid also inhibited mitogen release from human monocyte-derived macrophages, which, in vivo, are an additional source of mitogens during atherogenesis. Potent inhibition of human platelet aggregation and mitogen release was also seen with dihomo-gamma-linolenic acid (8,11,14-eicosatrienoic acid 20:3 omega 6), whose levels are reportedly elevated in Eskimos subsisting on marine diets. We conclude that diets that elevate plasma and/or tissue levels of eicosapentaenoic acid, docosahexaenoic acid and dihomo-gamma-linolenic acid precursor gamma-linolenic acid (18:3 omega 6) may exert antiatherosclerotic effects by inhibiting the release of mitogens from platelets and other cells.

  12. Delta-6 desaturase from borage converts linoleic acid to gamma-linolenic acid in HEK293 cells.

    PubMed

    Chen, Qing; Nimal, Jonathan; Li, Wanli; Liu, Xia; Cao, Wenguang

    2011-07-01

    Gamma-linolenic acid (GLA, 18:3 n6) is an essential polyunsaturated fatty acid of the omega-6 family and is found to be effective in prevention and/or treatment of various health problems. In this study, we evaluated the possibility of increasing γ-linolenic acid contents in mammalian cells using the delta-6 gene from Borago officinalis. The borage Δ6-desaturase gene (sDelta-6) was codon-optimized and introduced into HEK293 cells by lipofectin transfection. Co-expression of GFP with sDelta-6 and RT-PCR analysis indicated that sDelta-6 could be expressed in mammalian cells. Subsequently, the heterologous expression of borage Δ6-desaturase was evaluated by fatty acid analysis. Total cellular lipid analysis of transformed cells fed with linoleic acid (LA 18:2 n6) as a substrate showed that the expression of sDelta-6 resulted in an 228-483% (p<0.05) increase of GLA when compared with that in the control cells. The highest conversion efficiency of LA into GLA in sDelta-6(+) cells was 6.9 times higher than that in the control group (11.59% vs. 1.69%; p<0.05). Our present work demonstrated that the sDelta-6 gene from borage could be functionally expressed in mammalian cells, and could convert LA into GLA. Furthermore, this study may pave the way to generate transgenic livestock that can synthesise GLA.

  13. Oleic, Linoleic and Linolenic Acids Increase ROS Production by Fibroblasts via NADPH Oxidase Activation

    PubMed Central

    Hatanaka, Elaine; Dermargos, Alexandre; Hirata, Aparecida Emiko; Vinolo, Marco Aurélio Ramirez; Carpinelli, Angelo Rafael; Newsholme, Philip; Armelin, Hugo Aguirre; Curi, Rui

    2013-01-01

    The effect of oleic, linoleic and γ-linolenic acids on ROS production by 3T3 Swiss and Rat 1 fibroblasts was investigated. Using lucigenin-amplified chemiluminescence, a dose-dependent increase in extracellular superoxide levels was observed during the treatment of fibroblasts with oleic, linoleic and γ-linolenic acids. ROS production was dependent on the addition of β-NADH or NADPH to the medium. Diphenyleneiodonium inhibited the effect of oleic, linoleic and γ-linolenic acids on fibroblast superoxide release by 79%, 92% and 82%, respectively. Increased levels of p47phox phosphorylation due to fatty acid treatment were detected by Western blotting analyses of fibroblast proteins. Increased p47phox mRNA expression was observed using real-time PCR. The rank order for the fatty acid stimulation of the fibroblast oxidative burst was as follows: γ-linolenic > linoleic > oleic. In conclusion, oleic, linoleic and γ-linolenic acids stimulated ROS production via activation of the NADPH oxidase enzyme complex in fibroblasts. PMID:23579616

  14. Aeration effect on Spirulina platensis growth and γ-Linolenic acid production.

    PubMed

    Ronda, Srinivasa Reddy; Bokka, Chandra Sekhar; Ketineni, Chandrika; Rijal, Binod; Allu, Prasada Rao

    2012-01-01

    The influence of aeration on algal growth and gamma-linolenic acid (GLA) production in a bubble column photobioreactor was investigated. Studies were performed in a 20-L reactor at different aeration rates (0.2- 2.5 vvm). Static, continuous, and periodic operation of air resulted in 41.9%, 88.4%, and 108% air saturation of dissolved oxygen, for which the corresponding values of GLA were 2.3, 6.5, and 7.5 mg·g(-1) dry cell weight, respectively. An increase in the aeration rate from 0.2 to 2.5 vvm enhanced both the specific growth rate and GLA content under periodic sparging in the bicarbonate medium. With a 6-fold increase in the aeration rate, the GLA content of the alga increased by 69.64% (5.6-9.5 mg· g(-1) dry cell weight). In addition, the total fatty acid (TFA) content in dry biomass increased from 2.22% to 4.41%, whereas the algae maintained a constant GLA to TFA ratio within the aeration rate tested. The dependence of GLA production on the aeration rate was explained by interrelating the GLA production rate with the specific growth rate using the Luedeking and Piret mixed growth model.

  15. Aeration effect on Spirulina platensis growth and γ-Linolenic acid production

    PubMed Central

    Ronda, Srinivasa Reddy; Bokka, Chandra Sekhar; Ketineni, Chandrika; Rijal, Binod; Allu, Prasada Rao

    2012-01-01

    The influence of aeration on algal growth and gamma-linolenic acid (GLA) production in a bubble column photobioreactor was investigated. Studies were performed in a 20-L reactor at different aeration rates (0.2– 2.5 vvm). Static, continuous, and periodic operation of air resulted in 41.9%, 88.4%, and 108% air saturation of dissolved oxygen, for which the corresponding values of GLA were 2.3, 6.5, and 7.5 mg·g-1 dry cell weight, respectively. An increase in the aeration rate from 0.2 to 2.5 vvm enhanced both the specific growth rate and GLA content under periodic sparging in the bicarbonate medium. With a 6-fold increase in the aeration rate, the GLA content of the alga increased by 69.64% (5.6–9.5 mg· g-1 dry cell weight). In addition, the total fatty acid (TFA) content in dry biomass increased from 2.22% to 4.41%, whereas the algae maintained a constant GLA to TFA ratio within the aeration rate tested. The dependence of GLA production on the aeration rate was explained by interrelating the GLA production rate with the specific growth rate using the Luedeking and Piret mixed growth model. PMID:24031799

  16. Oxidative and Flavor Stability of Tortilla Chips Fried in Expeller Pressed Low Linolenic Acid Soybean Oil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Continuous pilot plant frying studies were conducted for potato chips using five oils: expeller pressed soybean oil (SBO); low linolenic acid expeller pressed SBO (EPLLSBO); high oleic sunflower oil (HOSUN); corn oil and hydrogenated SBO (HSBO) for 9 h of frying. The chips were aged at 25 deg C. A...

  17. Delta-6 desaturase from borage converts linoleic acid to gamma-linolenic acid in HEK293 cells.

    PubMed

    Chen, Qing; Nimal, Jonathan; Li, Wanli; Liu, Xia; Cao, Wenguang

    2011-07-01

    Gamma-linolenic acid (GLA, 18:3 n6) is an essential polyunsaturated fatty acid of the omega-6 family and is found to be effective in prevention and/or treatment of various health problems. In this study, we evaluated the possibility of increasing γ-linolenic acid contents in mammalian cells using the delta-6 gene from Borago officinalis. The borage Δ6-desaturase gene (sDelta-6) was codon-optimized and introduced into HEK293 cells by lipofectin transfection. Co-expression of GFP with sDelta-6 and RT-PCR analysis indicated that sDelta-6 could be expressed in mammalian cells. Subsequently, the heterologous expression of borage Δ6-desaturase was evaluated by fatty acid analysis. Total cellular lipid analysis of transformed cells fed with linoleic acid (LA 18:2 n6) as a substrate showed that the expression of sDelta-6 resulted in an 228-483% (p<0.05) increase of GLA when compared with that in the control cells. The highest conversion efficiency of LA into GLA in sDelta-6(+) cells was 6.9 times higher than that in the control group (11.59% vs. 1.69%; p<0.05). Our present work demonstrated that the sDelta-6 gene from borage could be functionally expressed in mammalian cells, and could convert LA into GLA. Furthermore, this study may pave the way to generate transgenic livestock that can synthesise GLA. PMID:21679695

  18. Mid-oleic/ultra low linolenic acid soybean oil - a healthful new alternative to hydrogenated oils for frying

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To determine the frying stability of mid-oleic/ultra low linolenic acid soybean oil (MO/ULLSBO) and the storage stability of food fried in it, tortilla chips were fried in MO/ULLSBO, soybean oil (SBO), hydrogenated SBO (HSBO) and ultra low linolenic SBO (ULLSBO). Intermittent batch frying tests wer...

  19. Effect of gamma-linolenic acid and dihomo-gamma-linolenic acid 7,12-dimethylbenz(a)anthracene-induced mammary tumorigenesis

    SciTech Connect

    Ramchurren, N.; Karmali, R.A. )

    1991-03-15

    Gamma-linolenic acid (GLA) and its sequential metabolite, dihomogamma-linolenic acid (DHLA) have been reported to influence growth of neoplastic cells in culture. The pure forms of these fatty acids have not been tested in vivo. The authors have studied the effect of GLA and DHLA on mammary tumors induced by 7,12-dimethylbenz(a) anthracene (DMBA) (7.5 mg/rat) in female Sprague-Dawley rats. Rats received either 0.15 g of GLA or DHLA or corn oil (CO) orally, twice weekly for a period of 12 weeks. All three groups of rats were maintained on a diet containing 5% (w/w) corn oil as fat. Tumor incidence and multiplicity were recorded. The group receiving 0.15 g Co had higher tumor yields than those receiving GLA or DHLA. At the end of the experiment, tumor incidence was the lowest in the group receiving DHLA. Tumor multiplicity was consistently lowest with GLA. Fatty acid composition of mammary tissue and liver reflected that of fatty acid treatment. These results suggest that oral administration of GLA or DHLA retards the development of DMBA-induced mammary tumors in rats receiving a diet containing 5% (w/w) corn oil.

  20. Abnormal essential fatty acid composition of tissue lipids in genetically diabetic mice is partially corrected by dietary linoleic and gamma-linolenic acids.

    PubMed

    Cunnane, S C; Manku, M S; Horrobin, D F

    1985-05-01

    Genetically diabetic mice (db/db) and their non-diabetic litter-mates were maintained for 15 weeks on diets supplemented with safflower oil or evening primrose (Oenothera bienis) oil, both essential fatty acid (EFA)-rich sources, or hydrogenated coconut oil (devoid of EFA). Plasma glucose was higher in the diabetic mice supplemented with the oils than in the unsupplemented diabetic mice. In the oil-supplemented non-diabetic mice, plasma glucose did not differ compared with the unsupplemented non-diabetic mice. The proportional content of arachidonic acid in the phospholipids of the pancreas was significantly decreased in diabetic mice, an effect which was completely prevented by supplementation with safflower or evening primrose oil but not hydrogenated coconut oil. In the liver phospholipids of the diabetic mice, dihomo-gamma-linolenic acid was proportionally increased, an effect reduced by supplementation with safflower oil but not evening primrose or hydrogenated coconut oils. In the liver triglycerides of the diabetic mice, gamma-linolenic acid, dihomo-gamma-linolenic acid and arachidonic acid were all proportionally decreased, effects which were also prevented by safflower or evening primrose oil but not hydrogenated coconut oil. Alopecia and dry scaly skin were prominent in the diabetic mice but less extensive in the diabetic mice supplemented with EFA.

  1. Classroom Research: GC Studies of Linoleic and Linolenic Fatty Acids Found in French Fries

    NASA Astrophysics Data System (ADS)

    Crowley, Janice P.; Deboise, Kristen L.; Marshall, Megan R.; Shaffer, Hannah M.; Zafar, Sara; Jones, Kevin A.; Palko, Nick R.; Mitsch, Stephen M.; Sutton, Lindsay A.; Chang, Margaret; Fromer, Ilana; Kraft, Jake; Meister, Jessica; Shah, Amar; Tan, Priscilla; Whitchurch, James

    2002-07-01

    A study of fatty-acid ratios in French fries has proved to be an excellent choice for an entry-level research class. This research develops reasoning skills and involves the subject of breast cancer, a major concern of American society. Analysis of tumor samples removed from women with breast cancer revealed high ratios of linoleic to linolenic acid, suggesting a link between the accelerated growth of breast tumors and the combination of these two fatty acids. When the ratio of linoleic to linolenic acid was approximately 9 to 1, accelerated growth was observed. Since these fatty acids are found in cooking oils, Wichita Collegiate students, under the guidance of their chemistry teacher, decided that an investigation of the ratios of these two fatty acids should be conducted. A research class was structured using a gas chromatograph for the analysis. Separation of linoleic from linolenic acid was successfully accomplished. The students experienced inductive experimental research chemistry as it applies to everyday life. The structure of this research class can serve as a model for high school and undergraduate college research curricula.

  2. Are conjugated linolenic acid isomers an alternative to conjugated linoleic acid isomers in obesity prevention?

    PubMed

    Miranda, Jonatan; Arias, Noemi; Fernández-Quintela, Alfredo; del Puy Portillo, María

    2014-04-01

    Despite its benefits, conjugated linoleic acid (CLA) may cause side effects after long-term administration. Because of this and the controversial efficacy of CLA in humans, alternative biomolecules that may be used as functional ingredients have been studied in recent years. Thus, conjugated linolenic acid (CLNA) has been reported to be a potential anti-obesity molecule which may have additional positive effects related to obesity. According to the results reported in obesity, CLNA needs to be given at higher doses than CLA to be effective. However, because of the few studies conducted so far, it is still difficult to reach clear conclusions about the potential use of these CLNAs in obesity and its related changes (insulin resistance, dyslipidemia, or inflammation).

  3. Short-term supplementation of low-dose gamma-linolenic acid (GLA), alpha-linolenic acid (ALA), or GLA plus ALA does not augment LCP omega 3 status of Dutch vegans to an appreciable extent.

    PubMed

    Fokkema, M R; Brouwer, D A; Hasperhoven, M B; Martini, I A; Muskiet, F A

    2000-11-01

    Vegans do not consume meat and fish and have therefore low intakes of long chain polyunsaturated fatty acids (LCP). They may consequently have little negative feedback inhibition from dietary LCP on conversion of alpha -linolenic acid (ALA) to the LCP omega 3 eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids. We investigated whether supplementation of nine apparently healthy vegans with 2.01 g ALA (4 ml linseed oil), 1.17 g gamma-linolenic acid (GLA) (6 ml borage oil) or their combination increases the LCP omega 3 contents of erythrocytes (RBC) and platelets (PLT), and of plasma phospholipids (PL), cholesterol esters (CE) and triglycerides (TG). The supplements changed the dietary LA/ALA ratio (in g/g) from about 13.7 (baseline) to 6.8 (linseed oil), 14.3 (borage oil) and 6.4 (linseed + borage oil), respectively. ALA or GLA given as single supplements did not increase LCP omega 3 status, but their combination augmented LCP omega 3 (in CE) and EPA (in fasting TG) to a statistically significant, but nevertheless negligible, extent. We conclude that negative feedback inhibition by dietary LCP, if any, does not play an important role in the inability to augment notably DHA status by dietary ALA. The reach of a DHA plateau already at low dietary ALA intakes suggests that dietary DHA causes a non-functional DHA surplus, or is, alternatively, important for maintaining DHA status at a functionally relevant level. PMID:11090255

  4. Incorporation and distribution of dihomo-gamma-linolenic acid, arachidonic acid, and eicosapentaenoic acid in cultured human keratinocytes

    SciTech Connect

    Punnonen, K.; Puustinen, T.; Jansen, C.T.

    1986-02-01

    Human keratinocytes in culture were labelled with /sup 14/C-dihomo-gamma-linolenic acid, /sup 14/C-arachidonic acid or /sup 14/C-eicosapentaenoic acid. All three eicosanoid precursor fatty acids were effectively incorporated into the cells. In phospholipids most of the radioactivity was recovered, in neutral lipids a substantial amount, and as free unesterified fatty acids only a minor amount. Most of the radioactivity was found in phosphatidylethanolamine which was also the major phospholipid as measured by phosphorous assay. The incorporation of dihomo-gamma-linolenic acid and arachidonic acid into lipid subfractions was essentially similar. Eicosapentaenoic acid was, however, much less effectively incorporated into phosphatidylinositol + phosphatidylserine and, correspondingly, more effectively into triacylglycerols as compared to the two other precursor fatty acids. Once incorporated, the distribution of all three precursor fatty acids was relatively stable, and only minor amounts of fatty acids were released into the culture medium during short term culture (two days). Our study demonstrates that eicosanoid precursor fatty acids are avidly taken up by human keratinocytes and esterified into membrane lipids. The clinical implication of this finding is that dietary manipulations might be employed to cause changes in the fatty acid composition of keratinocytes.

  5. The Immunomodulatory Activity of Jacaric Acid, a Conjugated Linolenic Acid Isomer, on Murine Peritoneal Macrophages.

    PubMed

    Liu, Wai Nam; Leung, Kwok Nam

    2015-01-01

    This study aims at demonstrating the immunomodulatory property of jacaric acid, a conjugated linolenic acid (CLNA) isomer that is present in jacaranda seed oil, on murine peritoneal macrophages. Our results showed that jacaric acid exhibited no significant cytotoxicity on the thioglycollate-elicited murine peritoneal macrophages as revealed by the neutral red uptake assay, but markedly increased their cytostatic activity on the T-cell lymphoma MBL-2 cells as measured by the fluorometric CyQuant® NF Cell Proliferation Assay Kit. Flow cytometric analysis indicated that jacaric acid could enhance the endocytic activity of macrophages and elevated their intracellular production of superoxide anion. Moreover, jacaric acid-treated macrophages showed an increase in the production of nitric oxide which was accompanied by an increase in the expression level of inducible nitric oxide synthase protein. In addition, the secretion of several pro-inflammatory cytokines, including interferon-γ, interleukin-1β and tumor necrosis factor-α, was up-regulated. Collectively, our results indicated that the naturally-occurring CLNA isomer, jacaric acid, could exhibit immunomodulating activity on the murine peritoneal macrophages in vitro, suggesting that this CLNA isomer may act as an immunopotentiator which can be exploited for the treatment of some immunological disorders with minimal toxicity and fewer side effects.

  6. The Immunomodulatory Activity of Jacaric Acid, a Conjugated Linolenic Acid Isomer, on Murine Peritoneal Macrophages

    PubMed Central

    Liu, Wai Nam; Leung, Kwok Nam

    2015-01-01

    This study aims at demonstrating the immunomodulatory property of jacaric acid, a conjugated linolenic acid (CLNA) isomer that is present in jacaranda seed oil, on murine peritoneal macrophages. Our results showed that jacaric acid exhibited no significant cytotoxicity on the thioglycollate-elicited murine peritoneal macrophages as revealed by the neutral red uptake assay, but markedly increased their cytostatic activity on the T-cell lymphoma MBL-2 cells as measured by the fluorometric CyQuant® NF Cell Proliferation Assay Kit. Flow cytometric analysis indicated that jacaric acid could enhance the endocytic activity of macrophages and elevated their intracellular production of superoxide anion. Moreover, jacaric acid-treated macrophages showed an increase in the production of nitric oxide which was accompanied by an increase in the expression level of inducible nitric oxide synthase protein. In addition, the secretion of several pro-inflammatory cytokines, including interferon-γ, interleukin-1β and tumor necrosis factor-α, was up-regulated. Collectively, our results indicated that the naturally-occurring CLNA isomer, jacaric acid, could exhibit immunomodulating activity on the murine peritoneal macrophages in vitro, suggesting that this CLNA isomer may act as an immunopotentiator which can be exploited for the treatment of some immunological disorders with minimal toxicity and fewer side effects. PMID:26629697

  7. Past and Present Insights on Alpha-linolenic Acid and the Omega-3 Fatty Acid Family.

    PubMed

    Stark, Aliza H; Reifen, Ram; Crawford, Michael A

    2016-10-25

    Alpha-linolenic acid (ALA) is the parent essential fatty acid of the omega-3 family. This family includes docosahexaenoic acid (DHA), which has been conserved in neural signaling systems in the cephalopods, fish, amphibian, reptiles, birds, mammals, primates, and humans. This extreme conservation, in spite of wide genomic changes of over 500 million years, testifies to the uniqueness of this molecule in the brain and affirms the importance of omega-3 fatty acids. While DHA and its close precursor, eicosapentaenoic acids (EPA), have received much attention by the research community, ALA, as the precursor of both, has been considered of little interest. There are many papers on ALA requirements in experimental animals. Unlike humans, rats and mice can readily convert ALA to EPA and DHA, so it is unclear whether the effect is solely due to the conversion products or to ALA itself. The intrinsic role of ALA has yet to be defined. This paper will discuss both recent and historical findings related to this distinctive group of fatty acids, and will highlight the physiological significance of the omega-3 family.

  8. Optimization of medium components using orthogonal arrays for Linolenic acid production by Spirulina platensis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This work describes the medium optimization of '-Linolenic acid (GLA) production by Spirulina platensis using one-factor and orthogonal array design methods. In the one-factor experiments, NaHCO3 (9 mg L-1), NaNO3 (13.5 mg L-1) and MgSO4•7H2O (11.85 mg L-1) proved to be the best components for GLA p...

  9. Mechanism of Antibacterial Activity of Liposomal Linolenic Acid against Helicobacter pylori

    PubMed Central

    Jung, Sung Woo; Thamphiwatana, Soracha; Zhang, Liangfang; Obonyo, Marygorret

    2015-01-01

    Helicobacter pylori infects approximately half of the world population and is a major cause of gastritis, peptic ulcer, and gastric cancer. Moreover, this bacterium has quickly developed resistance to all major antibiotics. Recently, we developed a novel liposomal linolenic acid (LipoLLA) formulation, which showed potent bactericidal activity against several clinical isolated antibiotic-resistant strains of H. pylori including both the spiral and coccoid form. In addition, LipoLLA had superior in vivo efficacy compared to the standard triple therapy. Our data showed that LipoLLA associated with H. pylori cell membrane. Therefore, in this study, we investigated the possible antibacterial mechanism of LipoLLA against H. pylori. The antibacterial activity of LipoLLA (C18:3) was compared to that of liposomal stearic acid (LipoSA, C18:0) and oleic acid (LipoOA, C18:1). LipoLLA showed the most potent bactericidal effect and completely killed H. pylori within 5 min. The permeability of the outer membrane of H. pylori increased when treated with LipoOA and LipoLLA. Moreover, by detecting released adenosine triphosphate (ATP) from bacteria, we found that bacterial plasma membrane of H. pylori treated with LipoLLA exhibited significantly higher permeability than those treated with LipoOA, resulting in bacteria cell death. Furthermore, LipoLLA caused structural changes in the bacterial membrane within 5 min affecting membrane integrity and leading to leakage of cytoplasmic contents, observed by both transmission electron microscopy (TEM) and scanning electron microscopy (SEM). Our findings showing rapid bactericidal effect of LipoLLA suggest it is a very promising new, effective anti-H. pylori agent. PMID:25793403

  10. Dietary gamma-linolenic acid in the form of borage oil causes less body fat accumulation accompanying an increase in uncoupling protein 1 mRNA level in brown adipose tissue.

    PubMed

    Takahashi, Y; Ide, T; Fujita, H

    2000-10-01

    Rats were fed a low-fat diet containing 2% safflower oil or 20% fat diets containing either safflower oil rich in linoleic acid, borage oil containing 25% gamma (gamma)-linolenic acid or enzymatically prepared gamma-linolenic acid enriched borage oil containing 47% gamma-linolenic acid for 14 days. Energy intake and growth of animals were the same among groups. A high safflower oil diet compared with a low-fat diet caused significant increases in both epididymal and perirenal white adipose tissue weights. However, high-fat diets rich in gamma-linolenic acid failed to do so. Compared with a low-fat diet, all the high-fat diets increased mRNA levels of uncoupling protein 1 and lipoprotein lipase in brown adipose tissue. The extents of the increase were greater with high-fat diets rich in gamma-linolenic acid. Various high-fat diets, compared with a low-fat diet, decreased glucose transporter 4 mRNA in white adipose tissue to the same levels. The amount and types of dietary fat did not affect the leptin mRNA level in epididymal white adipose tissue. However, a high safflower oil diet, but not high-fat diets rich in gamma-linolenic acid relative to a low-fat diet, increased perirenal white adipose tissue leptin mRNA levels. All high-fat diets, relative to a low-fat diet, increased the hepatic mitochondrial fatty acid oxidation rate and fatty acid oxidation enzyme mRNA abundances to the same levels. High-fat diets also increased these parameters in the peroxisomal pathway, and the increases were greater with high-fat diets rich in gamma-linolenic acid. The physiological activity in increasing brown adipose tissue gene expression and peroxisomal fatty acid oxidation was similar between the two types of borage oil differing in gamma-linolenic acid content. It was suggested that dietary gamma-linolenic acid attenuates body fat accumulation through the increase in gene expressions of uncoupling protein 1 in brown adipose tissue. An increase in hepatic peroxisomal fatty acid

  11. Dietary gamma-linolenic acid in the form of borage oil causes less body fat accumulation accompanying an increase in uncoupling protein 1 mRNA level in brown adipose tissue.

    PubMed

    Takahashi, Y; Ide, T; Fujita, H

    2000-10-01

    Rats were fed a low-fat diet containing 2% safflower oil or 20% fat diets containing either safflower oil rich in linoleic acid, borage oil containing 25% gamma (gamma)-linolenic acid or enzymatically prepared gamma-linolenic acid enriched borage oil containing 47% gamma-linolenic acid for 14 days. Energy intake and growth of animals were the same among groups. A high safflower oil diet compared with a low-fat diet caused significant increases in both epididymal and perirenal white adipose tissue weights. However, high-fat diets rich in gamma-linolenic acid failed to do so. Compared with a low-fat diet, all the high-fat diets increased mRNA levels of uncoupling protein 1 and lipoprotein lipase in brown adipose tissue. The extents of the increase were greater with high-fat diets rich in gamma-linolenic acid. Various high-fat diets, compared with a low-fat diet, decreased glucose transporter 4 mRNA in white adipose tissue to the same levels. The amount and types of dietary fat did not affect the leptin mRNA level in epididymal white adipose tissue. However, a high safflower oil diet, but not high-fat diets rich in gamma-linolenic acid relative to a low-fat diet, increased perirenal white adipose tissue leptin mRNA levels. All high-fat diets, relative to a low-fat diet, increased the hepatic mitochondrial fatty acid oxidation rate and fatty acid oxidation enzyme mRNA abundances to the same levels. High-fat diets also increased these parameters in the peroxisomal pathway, and the increases were greater with high-fat diets rich in gamma-linolenic acid. The physiological activity in increasing brown adipose tissue gene expression and peroxisomal fatty acid oxidation was similar between the two types of borage oil differing in gamma-linolenic acid content. It was suggested that dietary gamma-linolenic acid attenuates body fat accumulation through the increase in gene expressions of uncoupling protein 1 in brown adipose tissue. An increase in hepatic peroxisomal fatty acid

  12. Is docosahexaenoic acid synthesis from α-linolenic acid sufficient to supply the adult brain?

    PubMed

    Domenichiello, Anthony F; Kitson, Alex P; Bazinet, Richard P

    2015-07-01

    Docosahexaenoic acid (DHA) is important for brain function, and can be obtained directly from the diet or synthesized in the body from α-linolenic acid (ALA). Debate exists as to whether DHA synthesized from ALA can provide sufficient DHA for the adult brain, as measures of DHA synthesis from ingested ALA are typically <1% of the oral ALA dose. However, the primary fate of orally administered ALA is β-oxidation and long-term storage in adipose tissue, suggesting that DHA synthesis measures involving oral ALA tracer ingestion may underestimate total DHA synthesis. There is also evidence that DHA synthesized from ALA can meet brain DHA requirements, as animals fed ALA-only diets have brain DHA concentrations similar to DHA-fed animals, and the brain DHA requirement is estimated to be only 2.4-3.8 mg/day in humans. This review summarizes evidence that DHA synthesis from ALA can provide sufficient DHA for the adult brain by examining work in humans and animals involving estimates of DHA synthesis and brain DHA requirements. Also, an update on methods to measure DHA synthesis in humans is presented highlighting a novel approach involving steady-state infusion of stable isotope-labeled ALA that bypasses several limitations of oral tracer ingestion. It is shown that this method produces estimates of DHA synthesis that are at least 3-fold higher than brain uptake rates in rats.

  13. Induction of renal cytochrome P450 arachidonic acid epoxygenase activity by dietary gamma-linolenic acid.

    PubMed

    Yu, Zhigang; Ng, Valerie Y; Su, Ping; Engler, Marguerite M; Engler, Mary B; Huang, Yong; Lin, Emil; Kroetz, Deanna L

    2006-05-01

    Dietary gamma-linolenic acid (GLA), a omega-6 polyunsaturated fatty acid found in borage oil (BOR), lowers systolic blood pressure in spontaneously hypertensive rats (SHRs). GLA is converted into arachidonic acid (AA) by elongation and desaturation steps. Epoxyeicosatrienoic acids (EETs) and 20-hydroxyeicosatetraenoic acid (20-HETE) are cytochrome P450 (P450)-derived AA eicosanoids with important roles in regulating blood pressure. This study tested the hypothesis that the blood pressure-lowering effect of a GLA-enriched diet involves alteration of P450-catalyzed AA metabolism. Microsomes and RNA were isolated from the renal cortex of male SHRs fed a basal fat-free diet for 5 weeks to which 11% by weight of sesame oil (SES) or BOR was added. There was a 2.6- to 3.5-fold increase in P450 epoxygenase activity in renal microsomes isolated from the BOR-fed SHRs compared with the SES-fed rats. Epoxygenase activity accounted for 58% of the total AA metabolism in the BOR-treated kidney microsomes compared with 33% in the SES-treated rats. More importantly, renal 14,15- and 8,9-EET levels increased 1.6- to 2.5-fold after dietary BOR treatment. The increase in EET formation is consistent with increases in CYP2C23, CYP2C11, and CYP2J protein levels. There were no differences in the level of renal P450 epoxygenase mRNA between the SES- and BOR-treated rats. Enhanced synthesis of the vasodilatory EETs and decreased formation of the vasoconstrictive 20-HETE suggests that changes in P450-mediated AA metabolism may contribute, at least in part, to the blood pressure-lowering effect of a BOR-enriched diet. PMID:16421287

  14. alpha-Linolenic acid- and docosahexaenoic acid-enriched eggs from hens fed flaxseed: influence on blood lipids and platelet phospholipid fatty acids in humans.

    PubMed

    Ferrier, L K; Caston, L J; Leeson, S; Squires, J; Weaver, B J; Holub, B J

    1995-07-01

    This study was undertaken to examine the effects that consumption of eggs from hens fed diets containing flaxseed would have on plasma and platelet lipids of male volunteers. Feeding diets containing 0%, 10%, and 20% ground flaxseed to Leghorn pullets provided a marked progressive increase in n-3 fatty acid content as alpha-linolenic acid (alpha-LNA) (28, 261, and 527 mg/egg) and docosahexaenoic acid (DHA) (51, 81, and 87 mg/egg) but no alteration in the cholesterol concentration of the egg yolk. Twenty-eight male volunteers, divided into three groups, were fed four eggs per day for 2 wk according to a cyclic Latin-square design. No statistically significant changes were observed in total cholesterol, high-density-lipoprotein cholesterol, or plasma triglyceride concentrations. Significant increases in total n-3 fatty acids and in DHA content (which rose from 1.5 to 2.0% by wt or 33% overall), and a significant decrease in ratio of n-6 to n-3 fatty acids were found in platelet phospholipids of subjects consuming eggs from flaxseed-fed hens. Health and Welfare Canada in 1990 set recommended intakes for dietary n-3 fatty acids and for the ratio of n-6 to n-3 fatty acids, which are not being met currently by the overall population. Eggs modified by the inclusion of flaxseed in the laying hens' diet could provide an important nutritional source of n-3 fatty acid. PMID:7598070

  15. Radiation-induced lipid peroxidation in whole grain of rye, wheat and rice: Effects on linoleic and linolenic acid

    NASA Astrophysics Data System (ADS)

    Vaca, C. E.; Harms-Ringdahl, M.

    Changes in the fatty acid composition in lipids after γ-irradation of whole grain of wheat, rye and rice were examined. The radiosensitivity of linoleic acid (18:2) and linolenic acid (18:3) was studied up to a dose of 63 kGy in seeds with different water content and after a post-irradiation storage time of 2 months. At doses in the range recommended for grain desinfestation, i.e. 0.1-1.0 kGy, no detectable degradation of 18:2 and 18:3 was found, but at the highest dose applied, 63 kGy, a degradation in the range from a few percent up to 40% was observed. Under extreme conditions, i.e. pre- and post-irradation treatment with oxygen, or when the flour prepared from the seeds was mixed with water and heated before the extraction of the lipids, a more pronounced degradation of the unsaturated fatty acids was noticed. Lipid peroxidation induced by γ-irradation was estimated using the thiobarbituric acid (TBA) method. High yields of the TBA-reactive material were formed in the three types of grain investigated corresponding to G-values in the range of 12-18. The influence on peroxidation yields of the water content of the seeds was studied in wheat. The origin of the TBA-reactive material formed in the seeds is not yet known, but could only to a minor extent be due to fatty acid peroxidation.

  16. In vivo treatment of Helicobacter pylori infection with liposomal linolenic acid reduces colonization and ameliorates inflammation

    PubMed Central

    Thamphiwatana, Soracha; Gao, Weiwei; Obonyo, Marygorret; Zhang, Liangfang

    2014-01-01

    Helicobacter pylori infection is marked by a vast prevalence and strong association with various gastric diseases, including gastritis, peptic ulcers, and gastric cancer. Because of the rapid emergence of H. pylori strains resistant to existing antibiotics, current treatment regimens show a rapid decline of their eradication rates. Clearly, novel antibacterial strategies against H. pylori are urgently needed. Here, we investigated the in vivo therapeutic potential of liposomal linolenic acid (LipoLLA) for the treatment of H. pylori infection. The LipoLLA formulation with a size of ∼100 nm was prone to fusion with bacterial membrane, thereby directly releasing a high dose of linolenic acids into the bacterial membrane. LipoLLA penetrated the mucus layer of mouse stomach, and a significant portion of the administered LipoLLA was retained in the stomach lining up to 24 h after the oral administration. In vivo tests further confirmed that LipoLLA was able to kill H. pylori and reduce bacterial load in the mouse stomach. LipoLLA treatment was also shown to reduce the levels of proinflammatory cytokines including interleukin 1β, interleukin 6, and tumor necrosis factor alpha, which were otherwise elevated because of the H. pylori infection. Finally, a toxicity test demonstrated excellent biocompatibility of LipoLLA to normal mouse stomach. Collectively, results from this study indicate that LipoLLA is a promising, effective, and safe therapeutic agent for the treatment of H. pylori infection. PMID:25422427

  17. Multiple roles of dihomo-γ-linolenic acid against proliferation diseases.

    PubMed

    Wang, Xiaoping; Lin, Huanping; Gu, Yan

    2012-02-14

    Considerable arguments remain regarding the diverse biological activities of polyunsaturated fatty acids (PUFA). One of the most interesting but controversial dietary approaches focused on the diverse function of dihomo-dietary γ-linolenic acid (DGLA) in anti-inflammation and anti-proliferation diseases, especially for cancers. This strategy is based on the ability of DGLA to interfere in cellular lipid metabolism and eicosanoid (cyclooxygenase and lipoxygenase) biosynthesis. Subsequently, DGLA can be further converted by inflammatory cells to 15-(S)-hydroxy-8,11,13-eicosatrienoic acid and prostaglandin E1 (PGE1). This is noteworthy because these compounds possess both anti-inflammatory and anti-proliferative properties. PGE1 could also induce growth inhibition and differentiation of cancer cells. Although the mechanism of DGLA has not yet been elucidated, it is significant to anticipate the antitumor potential benefits from DGLA.

  18. Is there A Role for Alpha-Linolenic Acid in the Fetal Programming of Health?

    PubMed

    Leikin-Frenkel, Alicia I

    2016-03-23

    The role of ω3 alpha linolenic acid (ALA) in the maternal diet during pregnancy and lactation, and its effect on the prevention of disease and programming of health in offspring, is largely unknown. Compared to ALA, ω3 docosahexaenoic (DHA) and eicosapentaenoic (EPA) acids have been more widely researched due to their direct implication in fetal neural development. In this literature search we found that ALA, the essential ω3 fatty acid and metabolic precursor of DHA and EPA has been, paradoxically, almost unexplored. In light of new and evolving findings, this review proposes that ALA may have an intrinsic role, beyond the role as metabolic parent of DHA and EPA, during fetal development as a regulator of gene programming for the prevention of metabolic disease and promotion of health in offspring.

  19. Is there A Role for Alpha-Linolenic Acid in the Fetal Programming of Health?

    PubMed Central

    Leikin-Frenkel, Alicia I.

    2016-01-01

    The role of ω3 alpha linolenic acid (ALA) in the maternal diet during pregnancy and lactation, and its effect on the prevention of disease and programming of health in offspring, is largely unknown. Compared to ALA, ω3 docosahexaenoic (DHA) and eicosapentaenoic (EPA) acids have been more widely researched due to their direct implication in fetal neural development. In this literature search we found that ALA, the essential ω3 fatty acid and metabolic precursor of DHA and EPA has been, paradoxically, almost unexplored. In light of new and evolving findings, this review proposes that ALA may have an intrinsic role, beyond the role as metabolic parent of DHA and EPA, during fetal development as a regulator of gene programming for the prevention of metabolic disease and promotion of health in offspring. PMID:27023621

  20. Occurrence and characterization of oils rich in gamma-linolenic acid part II: fatty acids and squalene from Macaronesian Echium leaves.

    PubMed

    Guil-Guerrero, J L; García-Maroto, F; Campra-Madrid, P; Gómez-Mercado, F

    2000-06-01

    Leaves from 25 Macaronesian Echium (Boraginaceae) species have been surveyed for hydrocarbon compounds. These plants were previously reported as the major source of gamma-linolenic acid so far found in nature. In addition, six European Echium species and the common Borago officinalis have been analysed for comparative purposes. High squalene amounts were found in all Echium plants from the Macaronesia, ranging from 3.73%, in E. simplex to 20.1% in E. fastousum. Squalene was almost absent from all European Echium species, and the same is true for B. officinalis. The relatively high oil content (2.27%) in leaves of E. fastuosum raises the total squalene amount to about 0.46% within this tissue. The main fatty acid component in the leaf was alpha-linolenic acid (ALA, 18:3omega3), ranging in the Macaronesian Echium from 9.32% in E. acanthocarpum to 54.45% in E. simplex. Possible utilisation of these plants as a commercial source of squalene and hypotheses about its physiological role in the plant are discussed. PMID:10939357

  1. Dietary source of stearidonic acid promotes higher muscle DHA concentrations than linolenic acid in hybrid striped bass.

    PubMed

    Bharadwaj, Anant S; Hart, Steven D; Brown, Billie J; Li, Yong; Watkins, Bruce A; Brown, Paul B

    2010-01-01

    Rapid expansion of aquacultural production is placing increasing demand on fish oil supplies and intensified the search for alternative lipid sources. Many of the potential alternative sources contain low concentrations of long chain n-3 fatty acids and the conversion of dietary linolenic acid to longer chain highly unsaturated fatty acids is a relatively inefficient process in some species. A 6-week study was conducted to compare tissue fatty acid (FA) concentrations in hybrid striped bass fed either 18:3n-3 (alpha-linolenic acid; ALA) or 18:4n-3 (stearidonic acid; SDA). Hybrid striped bass were fed either a control diet containing fish oil, or diets containing ALA or SDA at three different levels (0.5, 1 and 2% of the diet). There were no significant differences in whole animal responses between fish fed ALA or SDA. Liver and muscle concentrations of ALA and SDA were responsive to dosages fed. However, only 22:6n-3 concentrations in muscle were significantly affected by dietary source of 18 carbon precursors. Muscle 22:6n-3 concentrations were significantly higher in fish fed SDA compared to fish fed ALA. Based on these data, it appears that feeding SDA can increase long chain n-3 fatty acid concentrations in fish muscle.

  2. Gamma-linolenic acid in borage oil reverses epidermal hyperproliferation in guinea pigs.

    PubMed

    Chung, S; Kong, S; Seong, K; Cho, Y

    2002-10-01

    As dietary sources of gamma-linolenic acid [GLA; 18:3(n-6)], borage oil (BO; 24-25 g/100 g GLA) and evening primrose oil (PO; 8-10 g/100 g GLA) are efficacious in treating skin disorders. The triglycerol stereospecificity of these oils is distinct, with GLA being concentrated in the sn-2 position of BO and in the sn-3 position of PO. To determine whether the absolute level and/or the triglycerol stereospecificity of GLA in oils affect biological efficacy, epidermal hyperproliferation was induced in guinea pigs by a hydrogenated coconut oil (HCO) diet for 8 wk. Subsequently, guinea pigs were fed diets of PO, BO or a mixture of BO and safflower oil (SO) for 2 wk. The mixture of BO and SO (BS) diet had a similar level of GLA as PO but with sn-2 stereospecificity. As controls, two groups were fed SO and HCO for 10 wk. Epidermal hyperproliferation was reversed by all three oils in the order of BO > BS > PO. However, proliferation scores of group PO were higher than of the normal control group, SO. The accumulations of dihomo-gamma-linolenic acid [DGLA; 20:3(n-6)], an elongase product of GLA, into phospholipids and ceramides, of 15-hydroxyeicosatrienoic acid (15-HETrE), the potent antiproliferative metabolite of DGLA, and of ceramides, the major lipid maintaining epidermal barrier, in the epidermis of group BO were greater than of groups BS and PO. Group BS had higher levels of DGLA, 15-HETrE and ceramides than group PO. With primary dependence on absolute levels, our data demonstrate that the antiproliferative efficacy of GLA in the epidermis is preferably exerted from sn-2 stereospecificity of GLA in BO. PMID:12368400

  3. Gamma-linolenic acid in borage oil reverses epidermal hyperproliferation in guinea pigs.

    PubMed

    Chung, S; Kong, S; Seong, K; Cho, Y

    2002-10-01

    As dietary sources of gamma-linolenic acid [GLA; 18:3(n-6)], borage oil (BO; 24-25 g/100 g GLA) and evening primrose oil (PO; 8-10 g/100 g GLA) are efficacious in treating skin disorders. The triglycerol stereospecificity of these oils is distinct, with GLA being concentrated in the sn-2 position of BO and in the sn-3 position of PO. To determine whether the absolute level and/or the triglycerol stereospecificity of GLA in oils affect biological efficacy, epidermal hyperproliferation was induced in guinea pigs by a hydrogenated coconut oil (HCO) diet for 8 wk. Subsequently, guinea pigs were fed diets of PO, BO or a mixture of BO and safflower oil (SO) for 2 wk. The mixture of BO and SO (BS) diet had a similar level of GLA as PO but with sn-2 stereospecificity. As controls, two groups were fed SO and HCO for 10 wk. Epidermal hyperproliferation was reversed by all three oils in the order of BO > BS > PO. However, proliferation scores of group PO were higher than of the normal control group, SO. The accumulations of dihomo-gamma-linolenic acid [DGLA; 20:3(n-6)], an elongase product of GLA, into phospholipids and ceramides, of 15-hydroxyeicosatrienoic acid (15-HETrE), the potent antiproliferative metabolite of DGLA, and of ceramides, the major lipid maintaining epidermal barrier, in the epidermis of group BO were greater than of groups BS and PO. Group BS had higher levels of DGLA, 15-HETrE and ceramides than group PO. With primary dependence on absolute levels, our data demonstrate that the antiproliferative efficacy of GLA in the epidermis is preferably exerted from sn-2 stereospecificity of GLA in BO.

  4. Preferential pi-pi complexation between tamoxifen and borage oil/gamma linolenic acid: transcutaneous delivery and NMR spectral modulation.

    PubMed

    Heard, Charles M; Gallagher, Simon J; Congiatu, Costantino; Harwood, John; Thomas, Christopher P; McGuigan, Christopher; Nemcová, Marta; Nouskova, Tereza

    2005-09-30

    The effect of different proportions of borage oil on the in vitro transcutaneous delivery of tamoxifen were studied, with the aim of developing a gel capable of the simultaneous delivery of tamoxifen and gamma linolenic acid across (breast) skin. Supplementary work probed 1H NMR spectral data for tamoxifen in the presence of different proportions of polyunsaturated or unsaturated fatty acids. Typical, non-aqueous gels were modified to contain 1% tamoxifen and three levels of borage oil ( approximately 25% gamma linolenic acid) and the transcutaneous delivery of both tamoxifen and GLA across full thickness skin determined in vitro. Both tamoxifen and gamma linolenic acid permeated the skin with the ratio of moles being consistent at approximately 4:1. This was irrespective of time, amount of borage oil contained in the formulation (above a minimum) and the presence of other (unsaturated) excipients: mineral oil, Miglyiol 810N, white soft paraffin, PEG400 and Cabosil M5. Dose-dependent downfield shifts of tamoxifen aromatic protons were observed in the presence of borage oil and linolenic acid (gamma and alpha), but not saturated triacyl glycerol. The permeation data suggested vehicular complexation between tamoxifen and polyunsaturated constituents of borage oil and that such complexes permeated the skin intact. The 1H NMR data supported the hypothesis that such complexation was a consequence of preferential pi-pi orbital interactions between the phenyl groups of tamoxifen and the multiple double bonds of GLA. The mechanism for the permeation of intact complexes across skin remains to be elucidated.

  5. [The importance of γ-linolenic acid in the prevention and treatment].

    PubMed

    Białek, Małgorzata; Rutkowska, Jarosława

    2015-01-01

    The etiology of diet-related disorders is closely associated with dietary factors. A special role is attributed to intake of fat and fatty acid profile, both quantitative and qualitative. For prevention and treatment of the abovementioned diseases a proper supply of unsaturated fatty acids plays a significant role, because of their particular importance to health. γ-Linolenic acid (GLA), with three double bonds in the carbon chain, also known as all-cis 6,9,12-octadecatrienoic acid, belongs to the n-6 family of fatty acids. It plays biologically important functions in the human body, such as being a substrate for eicosanoids synthesis, involvement in the transport and oxidation of cholesterol, and being one of the components of lipid membrane. Its inadequate dietary intake or impaired formation is the cause of many inflammatory and degenerative diseases. A rich source of this fatty acid is vegetable oils, until recently used mainly in folk medicine. Nowadays, studies conducted both in animal models and in humans suggest its health-promoting properties in the prevention and treatment of atopic dermatitis, cardiovascular diseases, diabetes, cancers and rheumatoid arthritis. PMID:26270516

  6. Biosynthesis of gamma-linolenic acid and beta-carotene by Zygomycetes fungi.

    PubMed

    Klempova, Tatiana; Basil, Eva; Kubatova, Alena; Certik, Milan

    2013-07-01

    Due to increasing demand for natural sources of both polyunsaturated fatty acids (PUFAs) and beta-carotene, 28 Zygomycetes fungal soil isolates were screened for their potential to synthesize these biologically active compounds. Although all fungi produced C18 PUFAs, only nine strains also formed beta-carotene. Although Actinomucor elegans CCF 3218 was the best producer of gamma-linolenic acid (GLA) (251 mg/L), Umbelopsis isabellina CCF 2412 was found to be the most valuable fungus because of the dual production of GLA (217 mg/L) and beta-carotene (40.7 mg/L). The calculated ratio of formed PUFAs provided new insight into activities of individual fatty acid desaturases involved in biosynthetic pathways for various types of PUFAs. The maximal activity of delta-9 desaturase was accompanied by high accumulation of storage lipids in fungal cells. On the other hand, maximal activity of delta-15 desaturase was found in strains synthesizing low amounts of oleic acid due to diminished delta-9 desaturase. Activities of delta-6 desaturase showed competition for fatty acids engaged in n3, n6, and n9 biosynthetic pathways. Such knowledge about fatty acid desaturase activities provides new challenges for the regulation of biotechnological production of PUFAs by Zygomycetes fungi. PMID:23625863

  7. The influence of different combinations of gamma-linolenic, stearidonic and eicosapentaenoic acids on the fatty acid composition of blood lipids and mononuclear cells in human volunteers.

    PubMed

    Miles, Elizabeth A; Banerjee, Tapati; Calder, Philip C

    2004-06-01

    This study set out to identify whether stearidonic acid (18:4n-3; STA) can be used to increase the eicosapentaenoic acid (20:5n-3; EPA) content of plasma lipids and cells in humans and to understand more about the effects of increased consumption of gamma-linolenic acid (18:3n-3; GLA), STA and EPA in humans. Healthy young males were randomised to consume one of seven oil blends for a period of 12 weeks (9g oil/day) (n = 8-12 subjects/group). Palm oil, sunflower oil, an EPA-rich oil, borage oil (rich in GLA), and Echium oil (rich in STA) were blended in various combinations to generate a placebo oil and oils providing approximately 2g GLA + STA + EPA per day, but in different combinations. Blood was collected at 0, 4, 8 and 12 weeks and the fatty acid compositions of plasma triacylglycerols, cholesteryl esters and phospholipids and of peripheral blood mononuclear cells (PBMCs) determined. Significant effects were observed with each lipid fraction. Neither STA nor its derivative 20:4n-3 appeared in any of the lipid fractions studied when STA (up to 1g/day) was consumed. However, STA (1g/day), in combination with GLA (0.9 g/day), increased the proportion of EPA in some lipid fractions, suggesting that STA-rich plant oils may offer a novel means of increasing EPA status. Furthermore, this combination tended to increase the dihomo-gamma-linolenic acid (20:3n-6; DGLA) content of PBMCs, without an increase in arachidonic acid (AA) (20:4n-6) content. EPA consumption increased the EPA content of all lipid fractions studied. Consumption of GLA (2g/day), in the absence of STA or EPA, increased DGLA content with a tendency to increase AA content in some fractions. This effect was prevented by inclusion of EPA in combination with GLA. Thus, this study indicates that STA may be used as a precursor to increase the EPA content of human lipids and that combinations of GLA, STA and EPA can be used to manipulate the fatty acid compositions of lipid pools in subtle ways. Such effects

  8. The influence of different combinations of gamma-linolenic, stearidonic and eicosapentaenoic acids on the fatty acid composition of blood lipids and mononuclear cells in human volunteers.

    PubMed

    Miles, Elizabeth A; Banerjee, Tapati; Calder, Philip C

    2004-06-01

    This study set out to identify whether stearidonic acid (18:4n-3; STA) can be used to increase the eicosapentaenoic acid (20:5n-3; EPA) content of plasma lipids and cells in humans and to understand more about the effects of increased consumption of gamma-linolenic acid (18:3n-3; GLA), STA and EPA in humans. Healthy young males were randomised to consume one of seven oil blends for a period of 12 weeks (9g oil/day) (n = 8-12 subjects/group). Palm oil, sunflower oil, an EPA-rich oil, borage oil (rich in GLA), and Echium oil (rich in STA) were blended in various combinations to generate a placebo oil and oils providing approximately 2g GLA + STA + EPA per day, but in different combinations. Blood was collected at 0, 4, 8 and 12 weeks and the fatty acid compositions of plasma triacylglycerols, cholesteryl esters and phospholipids and of peripheral blood mononuclear cells (PBMCs) determined. Significant effects were observed with each lipid fraction. Neither STA nor its derivative 20:4n-3 appeared in any of the lipid fractions studied when STA (up to 1g/day) was consumed. However, STA (1g/day), in combination with GLA (0.9 g/day), increased the proportion of EPA in some lipid fractions, suggesting that STA-rich plant oils may offer a novel means of increasing EPA status. Furthermore, this combination tended to increase the dihomo-gamma-linolenic acid (20:3n-6; DGLA) content of PBMCs, without an increase in arachidonic acid (AA) (20:4n-6) content. EPA consumption increased the EPA content of all lipid fractions studied. Consumption of GLA (2g/day), in the absence of STA or EPA, increased DGLA content with a tendency to increase AA content in some fractions. This effect was prevented by inclusion of EPA in combination with GLA. Thus, this study indicates that STA may be used as a precursor to increase the EPA content of human lipids and that combinations of GLA, STA and EPA can be used to manipulate the fatty acid compositions of lipid pools in subtle ways. Such effects

  9. Genetic manipulation of gamma-linolenic acid (GLA) synthesis in a commercial variety of evening primrose (Oenothera sp.).

    PubMed

    de Gyves, Emilio Mendoza; Sparks, Caroline A; Sayanova, Olga; Lazzeri, Paul; Napier, Johnathan A; Jones, Huw D

    2004-07-01

    A robust Agrobacterium-mediated transformation procedure was developed for Rigel, a commercial cultivar of evening primrose, and used to deliver a cDNA encoding a Delta(6)-desaturase from borage under the control of a cauliflower mosaic virus (CaMV) 35S promoter. Analysis of the transformed plants demonstrated an altered profile of polyunsaturated fatty acids, with an increase in gamma-linolenic acid and octadecatetraenoic acid in leaf tissues when compared with control lines. PMID:17134396

  10. Comparison of growth and fatty acid metabolism in rats fed diets containing equal levels of gamma-linolenic acid from high gamma-linolenic acid canola oil or borage oil.

    PubMed

    Palombo, J D; DeMichele, S J; Liu, J W; Bistrian, B R; Huang, Y S

    2000-09-01

    We have utilized transgenic technology to develop a new source of gamma-linolenic acid (GLA) using the canola plant as a host. The aim of the present study was to compare the growth and fatty acid metabolism in rats fed equal amounts of GLA obtained from the transgenic canola plant relative to GLA from the borage plant. Young male Sprague-Dawley rats (n = 10/group) were randomized and fed a purified AIN93G diet (10% lipid by weight) containing either a mixture of high GLA canola oil (HGCO) and corn oil or a control diet containing borage oil (BO) for 6 wk. GLA accounted for 23%, of the triglyceride fatty acids in both diets. Growth and diet consumption were monitored every 2-3 d throughout the study. At study termination, the fatty acid composition of the liver and plasma phospholipids was analyzed by gas chromatography. The growth and diet consumption of the HGCO group were similar to the BO group. There were no adverse effects of either diet on the general health or appearance of the rats, or on the morphology of the major organs. There was no significant difference between the diet groups for total percentage of n-6 polyunsaturated fatty acids present in either the total or individual phospholipid fractions of liver or plasma. The relative percentage of GLA and its main metabolite, arachidonic acid, in each phospholipid fraction of liver or plasma were also similar between groups. The percentage of 18:2n-6 in liver phosphatidylethanolamine and phosphatidylinositol/serine was higher (P < 0.05) and 22:5n-6 was lower in the HGCO group than the BO group. This finding could be attributed to the higher 18:3n-3 content in the HGCO diet than the BO diet. Results from this long-term feeding study of rats show for the first time that a diet containing transgenically modified canola oil was well-tolerated, and had similar biological effects, i.e., growth characteristics and hepatic metabolism of n-6 fatty acids, as a diet containing borage oil. PMID:11026618

  11. Comparison of growth and fatty acid metabolism in rats fed diets containing equal levels of gamma-linolenic acid from high gamma-linolenic acid canola oil or borage oil.

    PubMed

    Palombo, J D; DeMichele, S J; Liu, J W; Bistrian, B R; Huang, Y S

    2000-09-01

    We have utilized transgenic technology to develop a new source of gamma-linolenic acid (GLA) using the canola plant as a host. The aim of the present study was to compare the growth and fatty acid metabolism in rats fed equal amounts of GLA obtained from the transgenic canola plant relative to GLA from the borage plant. Young male Sprague-Dawley rats (n = 10/group) were randomized and fed a purified AIN93G diet (10% lipid by weight) containing either a mixture of high GLA canola oil (HGCO) and corn oil or a control diet containing borage oil (BO) for 6 wk. GLA accounted for 23%, of the triglyceride fatty acids in both diets. Growth and diet consumption were monitored every 2-3 d throughout the study. At study termination, the fatty acid composition of the liver and plasma phospholipids was analyzed by gas chromatography. The growth and diet consumption of the HGCO group were similar to the BO group. There were no adverse effects of either diet on the general health or appearance of the rats, or on the morphology of the major organs. There was no significant difference between the diet groups for total percentage of n-6 polyunsaturated fatty acids present in either the total or individual phospholipid fractions of liver or plasma. The relative percentage of GLA and its main metabolite, arachidonic acid, in each phospholipid fraction of liver or plasma were also similar between groups. The percentage of 18:2n-6 in liver phosphatidylethanolamine and phosphatidylinositol/serine was higher (P < 0.05) and 22:5n-6 was lower in the HGCO group than the BO group. This finding could be attributed to the higher 18:3n-3 content in the HGCO diet than the BO diet. Results from this long-term feeding study of rats show for the first time that a diet containing transgenically modified canola oil was well-tolerated, and had similar biological effects, i.e., growth characteristics and hepatic metabolism of n-6 fatty acids, as a diet containing borage oil.

  12. Eicosapentaenoic and dihomo gamma linolenic acid metabolism by cultured rat mesangial cells

    SciTech Connect

    Scharschmidt, L.A.; Gibbons, N.B.; Neuwirth, R.

    1989-01-01

    To better understand the effects of dietary fatty acid manipulations on glomerular function, we compared mesangial incorporation, release, and metabolism of arachidonic (AA), eicosapentaenoic (EPA), and dihomo gamma linolenic (DHG) acids. We found marked differences in mesangial handling of these fatty acids. AA was incorporated into lipids of mesangial cells much more rapidly than EPA or DHG. Ionophore-induced stimulation of fatty acid release from mesangial cells prelabeled with (/sup 14/C)AA, (/sup 14/C)EPA, or (/sup 14/C)DHG caused a release of labeled AA greater than DHG much less than EPA, respectively. Preloading mesangial cells with DHG or EPA for 24 h reduced subsequent basal, ionophore-, and hormone-stimulated prostaglandin E2 (PGE2) synthesis. Finally, unlike AA, neither EPA nor DHG was converted to a significant extent by mesangial cyclooxygenase or lipoxygenase. Thus the mesangial metabolism of DHG and EPA differs both quantitatively and qualitatively from that of AA. Furthermore, EPA and DHG inhibit metabolism of AA at the level of mesangial cyclooxygenase.

  13. Genotypic variation in fatty acid content of blackcurrant seeds.

    PubMed

    Ruiz del Castillo, M L; Dobson, G; Brennan, R; Gordon, S

    2002-01-16

    The fatty acid composition and total fatty acid content of seeds from 36 blackcurrant genotypes developed at the Scottish Crop Research Institute were examined. A rapid small-scale procedure, involving homogenization of seeds in toluene followed by sodium methoxide transesterification and gas chromatography, was used. There was considerable variation between genotypes. The gamma-linolenic acid content generally varied from 11 to 19% of the total fatty acids, but three genotypes had higher values of 22-24%, levels previously not reported for blackcurrant seed and similar to those for borage seed. Other nutritionally important fatty acids, stearidonic acid and alpha-linolenic acid, varied from 2 to 4% and 10-19%, respectively. The mean total fatty acid contents ranged from 14 to 23% of the seed, but repeatability was poor. The results are discussed. Blackcurrant seeds are mainly byproducts from juice production, and the study shows the potential for developing blackcurrant genotypes with optimal added value. PMID:11782203

  14. The Evidence for α-Linolenic Acid and Cardiovascular Disease Benefits: Comparisons with Eicosapentaenoic Acid and Docosahexaenoic Acid12

    PubMed Central

    Fleming, Jennifer A.; Kris-Etherton, Penny M.

    2014-01-01

    Our understanding of the cardiovascular disease (CVD) benefits of α-linolenic acid (ALA, 18:3n–3) has advanced markedly during the past decade. It is now evident that ALA benefits CVD risk. The expansion of the ALA evidence base has occurred in parallel with ongoing research on eicosapentaenoic acid (EPA, 20:5n–3) and docosahexaenoic acid (DHA, 22:6n–3) and CVD. The available evidence enables comparisons to be made for ALA vs. EPA + DHA for CVD risk reduction. The epidemiologic evidence suggests comparable benefits of plant-based and marine-derived n–3 (omega-3) PUFAs. The clinical trial evidence for ALA is not as extensive; however, there have been CVD event benefits reported. Those that have been reported for EPA + DHA are stronger because only EPA + DHA differed between the treatment and control groups, whereas in the ALA studies there were diet differences beyond ALA between the treatment and control groups. Despite this, the evidence suggests many comparable CVD benefits of ALA vs. EPA + DHA. Thus, we believe that it is time to revisit what the contemporary dietary recommendation should be for ALA to decrease the risk of CVD. Our perspective is that increasing dietary ALA will decrease CVD risk; however, randomized controlled clinical trials are necessary to confirm this and to determine what the recommendation should be. With a stronger evidence base, the nutrition community will be better positioned to revise the dietary recommendation for ALA for CVD risk reduction. PMID:25398754

  15. Effect of N-tris (Hydroxymethyl) Methylglycine and N-2-Hydroxyethyl-piperazine-N′-2-Ethanesulfonic Acid Buffers on Linolenic Acid as a Substrate for Flaxseed Lipoxidase

    PubMed Central

    Zimmerman, Don C.

    1968-01-01

    The delay in, or loss of, flaxseed lipoxidase activity in N-tris (hydroxymethyl) methylglycine and N-2-hydroxyethylpiperazine-N′-2-ethanesulfonic acid buffers with linolenic acid as a substrate appears due to an alteration of the lipid micelle. Flaxseed lipoxidase activity is dependent on the ionic strength of the assay solution. These effects are not observed with linoleic acid as substrate. The influence of these 2 buffers on linolenic acid micelles may have a direct bearing on recent reports of chloroplast structure and activity in these buffers. PMID:16656951

  16. Intestinal absorption and lymphatic transport of a high gamma-linolenic acid canola oil in lymph fistula Sprague-Dawley rats.

    PubMed

    Tso, Patrick; Ding, Kexi; DeMichele, Stephen; Huang, Yung-Sheng

    2002-02-01

    A new canola strain capable of producing >30% gamma-linolenic acid [GLA, 18:3(n-6)] in the seed oil has been developed in our laboratories. This study compares the intestinal absorption and lymphatic transport of this newly developed high GLA content canola oil (HGCO) with traditional GLA-rich borage oil (BO) using a lymph fistula rat model. To assess the extent that 1 mL of GLA in the supplemented oil was absorbed and transported, the fatty acid compositions of triglycerides in mesenteric lymph were compared over a 24-h collection period. The digestion, uptake and lymphatic transport of HGCO and the normal physiologic changes associated with fat absorption (e.g., lymph flow and an increase in lymphatic endogenous lipids outputs, triglycerides, cholesterol and phospholipids) were similar in the HGCO-and the BO-fed rats. The original differences in gamma-linolenic acid content in HGCO and BO were preserved in the fatty acid composition of the rats' lymph lipid. We conclude that the HGCO derived from the genetically modified canola plant is absorbed and transported into lymph similarly to BO. PMID:11823581

  17. Intake of alpha-linolenic acid and risk of coronary heart disease

    PubMed Central

    Vedtofte, Mia Sadowa; Jakobsen, Marianne U.; Lauritzen, Lotte; O'Reilly, Eilis J.; Jarmo, Virtamo; Knekt, Paul; Colditz, Graham; Hallmans, Göran; Buring, Julie; Steffen, Lyn M.; Robien, Kimberly; Rimm, Eric B.; Heitmann., Berit L.

    2014-01-01

    Intake of the mainly plant derived n-3 polyunsaturated fatty acid (PUFA) α-linolenic acid (ALA) has been associated with lower risk of coronary heart disease (CHD). However, the results have been inconsistent. Therefore, the objective of this study was to examine the association between ALA consumption and risk of CHD. Potential effect modification by long-chain n-3 PUFA (n-3 LCPUFA) was also investigated. Data from eight American and European prospective cohort studies including 148,675 women and 80,368 men were used. The outcome measure was incident CHD (CHD event and death). During follow-up of 4-10 years, 4,493 CHD events and 1,751 CHD deaths occurred. Among men we found an inverse association (not significant) between intake of ALA and CHD event and death. For each additional gram of ALA, there was a 15% lower risk of CHD events (HR: 0.85; 95% CI: 0.72, 1.01) and a 23% lower risk of CHD deaths (HR: 0.77; 95% CI 0.58, 1.01). We found no consistent associations among women. No effect modification by intake of n-3 LCPUFA was found. PMID:24964401

  18. Lipid metabolic dose response to dietary alpha-linolenic acid in monk parrot (Myiopsitta monachus).

    PubMed

    Petzinger, Christina; Heatley, J J; Bailey, Christopher A; Bauer, John E

    2014-03-01

    Monk parrots (Myiopsitta monachus) are susceptible to atherosclerosis, a progressive disease characterized by the formation of plaques in the arteries accompanied by underlying chronic inflammation. The family of n-3 fatty acids, especially eicosapentaenoic acid (20:5n-3, EPA) and docosahexaenoic acid (22:6n-3, DHA), have consistently been shown to reduce atherosclerotic risk factors in humans and other mammals. Some avian species have been observed to convert α-linolenic acid (18:3n-3, ALA) to EPA and DHA (Htin et al. in Arch Geflugelk 71:258-266, 2007; Petzinger et al. in J Anim Physiol Anim Nutr, 2013). Therefore, the metabolic effects of including flaxseed oil, as a source of ALA, in the diet at three different levels (low, medium, and high) on the lipid metabolism of Monk parrots was evaluated through measuring plasma total cholesterol (TC), free cholesterol (FC), triacylglycerols (TAG), and phospholipid fatty acids. Feed intake, body weight, and body condition score were also assessed. Thus the dose and possible saturation response of increasing dietary ALA at constant linoleic acid (18:2n-6, LNA) concentration on lipid metabolism in Monk parrots (M. monachus) was evaluated. Calculated esterified cholesterol in addition to plasma TC, FC, and TAG were unaltered by increasing dietary ALA. The high ALA group had elevated levels of plasma phospholipid ALA, EPA, and docosapentaenoic acid (DPAn-3, 22:5n-3). The medium and high ALA groups had suppressed plasma phospholipid 20:2n-6 and adrenic acid (22:4n-6, ADA) compared to the low ALA group. When the present data were combined with data from a previous study (Petzinger et al. in J Anim Physiol Anim Nutr, 2013) a dose response to dietary ALA was observed when LNA was constant. Plasma phospholipid ALA, EPA, DPAn-3, DHA, and total n-3 were positively correlated while 20:2n-6, di-homo-gamma-linoleic acid (20:3n-6Δ7), arachidonic acid (20:4n-6), ADA, and total n-6 were inversely correlated with dietary en% ALA.

  19. Preferential pi-pi complexation between tamoxifen and borage oil/gamma linolenic acid: transcutaneous delivery and NMR spectral modulation.

    PubMed

    Heard, Charles M; Gallagher, Simon J; Congiatu, Costantino; Harwood, John; Thomas, Christopher P; McGuigan, Christopher; Nemcová, Marta; Nouskova, Tereza

    2005-09-30

    The effect of different proportions of borage oil on the in vitro transcutaneous delivery of tamoxifen were studied, with the aim of developing a gel capable of the simultaneous delivery of tamoxifen and gamma linolenic acid across (breast) skin. Supplementary work probed 1H NMR spectral data for tamoxifen in the presence of different proportions of polyunsaturated or unsaturated fatty acids. Typical, non-aqueous gels were modified to contain 1% tamoxifen and three levels of borage oil ( approximately 25% gamma linolenic acid) and the transcutaneous delivery of both tamoxifen and GLA across full thickness skin determined in vitro. Both tamoxifen and gamma linolenic acid permeated the skin with the ratio of moles being consistent at approximately 4:1. This was irrespective of time, amount of borage oil contained in the formulation (above a minimum) and the presence of other (unsaturated) excipients: mineral oil, Miglyiol 810N, white soft paraffin, PEG400 and Cabosil M5. Dose-dependent downfield shifts of tamoxifen aromatic protons were observed in the presence of borage oil and linolenic acid (gamma and alpha), but not saturated triacyl glycerol. The permeation data suggested vehicular complexation between tamoxifen and polyunsaturated constituents of borage oil and that such complexes permeated the skin intact. The 1H NMR data supported the hypothesis that such complexation was a consequence of preferential pi-pi orbital interactions between the phenyl groups of tamoxifen and the multiple double bonds of GLA. The mechanism for the permeation of intact complexes across skin remains to be elucidated. PMID:16115741

  20. Gamma-linolenic acid enrichment from Borago officinalis and Echium fastuosum seed oils and fatty acids by low temperature crystallization.

    PubMed

    López-Martínez, Juan Carlos; Campra-Madrid, Pablo; Guil-Guerrero, José Luis

    2004-01-01

    Solvent winterization of seed oil and free fatty acids (FFAs) was employed to obtain gamma-linolenic acid (GLA; 18:3omega6) concentrates from seed oils of two Boraginaceae species, Echium fastuosum and Borago officinalis. Different solutions of seed oils and FFAs from these two oils at 10%, 20% and 40% (w/w) were crystallized at 4 degrees C, -24 degrees C and -70 degrees C, respectively, using hexane, acetone, diethyl ether, isobutanol and ethanol as solvents. Best results were obtained for B. officinalis FFAs in hexane, reaching a maximum GLA concentration of 58.8% in the liquid fraction (LF). In E. fastuosum, the highest GLA concentration (39.9%) was also achieved with FFAs in hexane. PMID:16233632

  1. Gamma-linolenic acid enrichment from Borago officinalis and Echium fastuosum seed oils and fatty acids by low temperature crystallization.

    PubMed

    López-Martínez, Juan Carlos; Campra-Madrid, Pablo; Guil-Guerrero, José Luis

    2004-01-01

    Solvent winterization of seed oil and free fatty acids (FFAs) was employed to obtain gamma-linolenic acid (GLA; 18:3omega6) concentrates from seed oils of two Boraginaceae species, Echium fastuosum and Borago officinalis. Different solutions of seed oils and FFAs from these two oils at 10%, 20% and 40% (w/w) were crystallized at 4 degrees C, -24 degrees C and -70 degrees C, respectively, using hexane, acetone, diethyl ether, isobutanol and ethanol as solvents. Best results were obtained for B. officinalis FFAs in hexane, reaching a maximum GLA concentration of 58.8% in the liquid fraction (LF). In E. fastuosum, the highest GLA concentration (39.9%) was also achieved with FFAs in hexane.

  2. Microencapsulation of conjugated linolenic acid-rich pomegranate seed oil by an emulsion method.

    PubMed

    Sen Gupta, Surashree; Ghosh, Santinath; Maiti, Prabir; Ghosh, Mahua

    2012-12-01

    Controlled release of food ingredients and their protection from oxidation are the key functionality provided by microencapsulation. In the present study, pomegranate seed oil, rich in conjugated linolenic acid, was microencapsulated. As encapsulating agent, sodium alginate or trehalose was used. Calcium caseinate was used as the emulsifier. Performances of the two encapsulants were compared in respect of the rate of release of core material from the microcapsules and stability of microcapsules against harsh conditions. Microencapsulation was carried out by preparation of an emulsion containing calcium caseinate as the emulsion stabilizer and a water-soluble carbohydrate (either sodium alginate or trehalose) as the encapsulant. An oil-in-water emulsion was prepared with pomegranate seed oil as the inner core material. The emulsion was thereby freeze-dried and the dried product pulverized. External morphology of the microcapsules was studied under scanning electron microscope. Micrographs showed that both types of microcapsules had uneven surface morphology. Release rate of the microcapsules was studied using UV-spectrophotometer. Trehalose-based microcapsules showed higher release rate. On subjecting the microcapsules at 110 °C for specific time periods, it was observed that sodium alginate microcapsules retained their original properties. Hence, we can say that sodium alginate microcapsules are more heat resistant than trehalose microcapsules. PMID:23014855

  3. Antineoplastic Effects of Gamma Linolenic Acid on Hepatocellular Carcinoma Cell Lines

    PubMed Central

    Itoh, Shinji; Taketomi, Akinobu; Harimoto, Norifumi; Tsujita, Eiji; Rikimaru, Tatsuya; Shirabe, Ken; Shimada, Mitsuo; Maehara, Yoshihiko

    2010-01-01

    The aim of this study was to investigate the effect and the mechanism of gamma linolenic acid (GLA) treatment on human hepatocellular (HCC) cell lines. The human HCC cell line HuH7 was exposed to GLA. Cell proliferation and reactive oxygen species (ROS) generation including lipid peroxidation and apoptosis were compared. We then used a cDNA microarray analysis to investigate the molecular changes induced by GLA. GLA treatment significantly reduced cell proliferation, generated ROS, and induced apoptosis. After 24 h exposure of Huh7 cells to GLA, we identified several genes encoding the antioxidant proteins to be upregulated: heme oxygenase-1 (HO-1), aldo-keto reductase 1 family C1 (AKR1C1), C4 (AKR1C4), and thioredoxin (Trx). The HO-1 protein levels were overexpressed in Huh7 cells after GLA exposure using a Western blot analysis. Furthermore, chromium mesoporphyrin (CrMP), an inhibitor of HO activity, significantly potentiated GLA cytotoxicity. GLA treatment has induced cell growth inhibition, ROS generation including lipid peroxidation, and HO-1 production for antioxidant protection against oxidative stress caused by GLA in Huh7 cells. GLA treatment should be considered as a therapeutic modality in patients with advanced HCC. PMID:20664735

  4. Linolenic acid grafted hyaluronan: Process development, structural characterization, biological assessing, and stability studies.

    PubMed

    Huerta-Angeles, Gloria; Brandejsová, Martina; Kulhánek, Jaromír; Pavlík, Vojtěch; Šmejkalová, Daniela; Vágnerová, Hana; Velebný, Vladimír

    2016-11-01

    In this study, hyaluronan (HA) was grafted with alpha-linolenic acid (αLNA) by benzoyl mixed anhydrides methodology, which allowed the derivatization of HA under mild reaction conditions. The reaction was optimized and transferred from laboratory to semi-scale production. The derivative revealed an unexpected cytotoxicity after oven drying and storage at 40°C. For this reason, the storage conditions of sodium linolenyl hyaluronate (αLNA-HA) were optimized in order to preserve the beneficial effect of the derivative. Oven, spray dried and lyophilized samples were prepared and stored at -20°C, 4°C and 25°C up to 6 months. A comprehensive material characterization including stability study of the derivative, as well as evaluation of possible changes on chemical structure and presence of peroxidation products were studied by Nuclear magnetic resonance (NMR), Fourier transform infrared spectroscopy (FTIR), gas chromatography-mass spectrometry (GC-MS), thermogravimetric analysis (TGA) and complemented with assessment of in vitro viability on mouse fibroblasts NIH-3T3. The most stable αLNA-HA derivative was obtained after spray drying and storage at ambient temperature under inert atmosphere. The choice of inert atmosphere is recommended to suppress oxidation of αLNA supporting the positive influence of the derivative on cell viability. The encapsulation of hydrophobic drugs of αLNA-HA were also demonstrated. PMID:27516333

  5. Biosynthesis of gamma-linolenic acid in developing seeds of borage (Borago officinalis L.).

    PubMed

    Galle, A M; Joseph, M; Demandre, C; Guerche, P; Dubacq, J P; Oursel, A; Mazliak, P; Pelletier, G; Kader, J C

    1993-08-20

    delta 6-desaturation of [14C]linoleoyl-CoA or [14C]oleoyl-CoA leading to the synthesis of gamma-linolenic acid was studied in vitro with microsomal fractions from developing seeds of Borago officinalis. Time course of the reaction, effects of protein and precursor concentrations and nucleotide requirements were examined. These parameters allowed us to improve the in vitro delta 6-desaturation assay. We observed that the precursors were acylated mainly in phosphatidylcholine, diacylglycerol and triacylglycerol, and then desaturated. NADH was absolutely required when [14C]oleoyl-CoA was the precursor, but not when [14C]linoleoyl-CoA was the precursor although it stimulated the reaction. The in vitro delta 6-desaturase activity was found mainly in phosphatidylcholine, associated with enriched endoplasmic reticulum membranes (ER) from embryos. No activity was observed in ER from seed coat or seedling. During maturation of the seeds, delta 6-desaturase reached its highest activity 14 to 16 days after pollination.

  6. Lipid formation and γ-linolenic acid production by Mucor circinelloides and Rhizopus sp., grown on vegetable oil

    PubMed Central

    Tauk-Tornisielo, Sâmia M.; Arasato, Luciana S.; de Almeida, Alex F.; Govone, José S.; Malagutti, Eleni N.

    2009-01-01

    The fungi strains were tested in Bioscreen automated system to select the best nutritional source. Following, shaking submserse cultures were studied in media containing sole carbon or nitrogen source. The growth of these strains improved in media containing vegetable oil, with high concentration of lipids. The high concentration of γ-linolenic acid was obtained with M. circinelloides in culture containing sesame oil. PMID:24031370

  7. Modification of Docosahexaenoic Acid Composition of Milk from Nursing Women Who Received Alpha Linolenic Acid from Chia Oil during Gestation and Nursing.

    PubMed

    Valenzuela, Rodrigo; Bascuñán, Karla; Chamorro, Rodrigo; Barrera, Cynthia; Sandoval, Jorge; Puigrredon, Claudia; Parraguez, Gloria; Orellana, Paula; Gonzalez, Valeria; Valenzuela, Alfonso

    2015-08-01

    α-Linolenic acid (ALA) is the precursor of docosahexaenoic acid (DHA) in humans, which is fundamental for brain and visual function. Western diet provides low ALA and DHA, which is reflected in low DHA in maternal milk. Chia oil extracted from chia (Salvia hispanica L.), a plant native to some Latin American countries, is high in ALA (up to 60%) and thereby is an alternative to provide ALA with the aim to reduce DHA deficits. We evaluated the modification of the fatty acid profile of milk obtained from Chilean mothers who received chia oil during gestation and nursing. Forty healthy pregnant women (22-35 years old) tabulated for food consumption, were randomly separated into two groups: a control group with normal feeding (n = 21) and a chia group (n = 19), which received 16 mL chia oil daily from the third trimester of pregnancy until the first six months of nursing. The fatty acid profile of erythrocyte phospholipids, measured at six months of pregnancy, at time of delivery and at six months of nursing, and the fatty acid profile of the milk collected during the first six months of nursing were assessed by gas-chromatography. The chia group, compared to the control group, showed (i) a significant increase in ALA ingestion and a significant reduction of linoleic acid (LA) ingestion, no showing modification of arachidonic acid (AA), eicosapentaenoic acid (EPA) and DHA; (ii) a significant increase of erythrocyte ALA and EPA and a reduction of LA. AA and DHA were not modified; (iii) a increased milk content of ALA during the six months of nursing, whereas LA showed a decrease. AA and EPA were not modified, however DHA increased only during the first three months of nursing. Consumption of chia oil during the last trimester of pregnancy and the first three months of nursing transiently increases the milk content of DHA. PMID:26247968

  8. Modification of Docosahexaenoic Acid Composition of Milk from Nursing Women Who Received Alpha Linolenic Acid from Chia Oil during Gestation and Nursing

    PubMed Central

    Valenzuela, Rodrigo; Bascuñán, Karla A.; Chamorro, Rodrigo; Barrera, Cynthia; Sandoval, Jorge; Puigrredon, Claudia; Parraguez, Gloria; Orellana, Paula; Gonzalez, Valeria; Valenzuela, Alfonso

    2015-01-01

    α-Linolenic acid (ALA) is the precursor of docosahexaenoic acid (DHA) in humans, which is fundamental for brain and visual function. Western diet provides low ALA and DHA, which is reflected in low DHA in maternal milk. Chia oil extracted from chia (Salvia hispanica L.), a plant native to some Latin American countries, is high in ALA (up to 60%) and thereby is an alternative to provide ALA with the aim to reduce DHA deficits. We evaluated the modification of the fatty acid profile of milk obtained from Chilean mothers who received chia oil during gestation and nursing. Forty healthy pregnant women (22–35 years old) tabulated for food consumption, were randomly separated into two groups: a control group with normal feeding (n = 21) and a chia group (n = 19), which received 16 mL chia oil daily from the third trimester of pregnancy until the first six months of nursing. The fatty acid profile of erythrocyte phospholipids, measured at six months of pregnancy, at time of delivery and at six months of nursing, and the fatty acid profile of the milk collected during the first six months of nursing were assessed by gas-chromatography. The chia group, compared to the control group, showed (i) a significant increase in ALA ingestion and a significant reduction of linoleic acid (LA) ingestion, no showing modification of arachidonic acid (AA), eicosapentaenoic acid (EPA) and DHA; (ii) a significant increase of erythrocyte ALA and EPA and a reduction of LA. AA and DHA were not modified; (iii) a increased milk content of ALA during the six months of nursing, whereas LA showed a decrease. AA and EPA were not modified, however DHA increased only during the first three months of nursing. Consumption of chia oil during the last trimester of pregnancy and the first three months of nursing transiently increases the milk content of DHA. PMID:26247968

  9. Modification of Docosahexaenoic Acid Composition of Milk from Nursing Women Who Received Alpha Linolenic Acid from Chia Oil during Gestation and Nursing.

    PubMed

    Valenzuela, Rodrigo; Bascuñán, Karla; Chamorro, Rodrigo; Barrera, Cynthia; Sandoval, Jorge; Puigrredon, Claudia; Parraguez, Gloria; Orellana, Paula; Gonzalez, Valeria; Valenzuela, Alfonso

    2015-08-04

    α-Linolenic acid (ALA) is the precursor of docosahexaenoic acid (DHA) in humans, which is fundamental for brain and visual function. Western diet provides low ALA and DHA, which is reflected in low DHA in maternal milk. Chia oil extracted from chia (Salvia hispanica L.), a plant native to some Latin American countries, is high in ALA (up to 60%) and thereby is an alternative to provide ALA with the aim to reduce DHA deficits. We evaluated the modification of the fatty acid profile of milk obtained from Chilean mothers who received chia oil during gestation and nursing. Forty healthy pregnant women (22-35 years old) tabulated for food consumption, were randomly separated into two groups: a control group with normal feeding (n = 21) and a chia group (n = 19), which received 16 mL chia oil daily from the third trimester of pregnancy until the first six months of nursing. The fatty acid profile of erythrocyte phospholipids, measured at six months of pregnancy, at time of delivery and at six months of nursing, and the fatty acid profile of the milk collected during the first six months of nursing were assessed by gas-chromatography. The chia group, compared to the control group, showed (i) a significant increase in ALA ingestion and a significant reduction of linoleic acid (LA) ingestion, no showing modification of arachidonic acid (AA), eicosapentaenoic acid (EPA) and DHA; (ii) a significant increase of erythrocyte ALA and EPA and a reduction of LA. AA and DHA were not modified; (iii) a increased milk content of ALA during the six months of nursing, whereas LA showed a decrease. AA and EPA were not modified, however DHA increased only during the first three months of nursing. Consumption of chia oil during the last trimester of pregnancy and the first three months of nursing transiently increases the milk content of DHA.

  10. Docosahexaenoic acid synthesis from alpha-linolenic acid by rat brain is unaffected by dietary n-3 PUFA deprivation.

    PubMed

    Igarashi, Miki; DeMar, James C; Ma, Kaizong; Chang, Lisa; Bell, Jane M; Rapoport, Stanley I

    2007-05-01

    Rates of conversion of alpha-linolenic acid (alpha-LNA, 18:3n-3) to docosahexaenoic acid (DHA, 22:6n-3) by the mammalian brain and the brain's ability to upregulate these rates during dietary deprivation of n-3 polyunsaturated fatty acids (PUFAs) are unknown. To answer these questions, we measured conversion coefficients and rates in post-weaning rats fed an n-3 PUFA deficient (0.2% alpha-LNA of total fatty acids, no DHA) or adequate (4.6% alpha-LNA, no DHA) diet for 15 weeks. Unanesthetized rats in each group were infused intravenously with [1-(14)C]alpha-LNA, and their arterial plasma and microwaved brains collected at 5 minutes were analyzed. The deficient compared with adequate diet reduced brain DHA by 37% and increased brain arachidonic (20:4n-6) and docosapentaenoic (22:5n-6) acids. Only 1% of plasma [1-(14)C]alpha-LNA entering brain was converted to DHA with the adequate diet, and conversion coefficients of alpha-LNA to DHA were unchanged by the deficient diet. In summary, the brain's ability to synthesize DHA from alpha-LNA is very low and is not altered by n-3 PUFA deprivation. Because the liver's reported ability is much higher, and can be upregulated by the deficient diet, DHA converted by the liver from circulating alphaLNA is the source of the brain's DHA when DHA is not in the diet.

  11. Crystal structure of FAS thioesterase domain with polyunsaturated fatty acyl adduct and inhibition by dihomo-[gamma]-linolenic acid

    SciTech Connect

    Zhang, Wei; Chakravarty, Bornali; Zheng, Fei; Gu, Ziwei; Wu, Hongmei; Mao, Jianqiang; Wakil, Salih J.; Quiocho, Florante A.

    2012-05-29

    Human fatty acid synthase (hFAS) is a homodimeric multidomain enzyme that catalyzes a series of reactions leading to the de novo biosynthesis of long-chain fatty acids, mainly palmitate. The carboxy-terminal thioesterase (TE) domain determines the length of the fatty acyl chain and its ultimate release by hydrolysis. Because of the upregulation of hFAS in a variety of cancers, it is a target for antiproliferative agent development. Dietary long-chain polyunsaturated fatty acids (PUFAs) have been known to confer beneficial effects on many diseases and health conditions, including cancers, inflammations, diabetes, and heart diseases, but the precise molecular mechanisms involved have not been elucidated. We report the crystal structure of the hFAS TE domain covalently modified and inactivated by methyl {gamma}-linolenylfluorophosphonate. Whereas the structure confirmed the phosphorylation by the phosphonate head group of the active site serine, it also unexpectedly revealed the binding of the 18-carbon polyunsaturated {gamma}-linolenyl tail in a long groove-tunnel site, which itself is formed mainly by the emergence of an {alpha} helix (the 'helix flap'). We then found inhibition of the TE domain activity by the PUFA dihomo-{gamma}-linolenic acid; {gamma}- and {alpha}-linolenic acids, two popular dietary PUFAs, were less effective. Dihomo-{gamma}-linolenic acid also inhibited fatty acid biosynthesis in 3T3-L1 preadipocytes and selective human breast cancer cell lines, including SKBR3 and MDAMB231. In addition to revealing a novel mechanism for the molecular recognition of a polyunsaturated fatty acyl chain, our results offer a new framework for developing potent FAS inhibitors as therapeutics against cancers and other diseases.

  12. Ultraviolet B irradiation induces changes in the distribution and release of arachidonic acid, dihomo-gamma-linolenic acid, and eicosapentaenoic acid in human keratinocytes in culture

    SciTech Connect

    Punnonen, K.; Puustinen, T.; Jansen, C.T.

    1987-05-01

    There is increasing evidence that derivatives of 20-carbon polyunsaturated fatty acids, the eicosanoids, play an important role in the inflammatory responses of the human skin. To better understand the metabolic fate of fatty acids in the skin, the effect of ultraviolet B (UVB) irradiation (280-320 nm) on the distribution and release of /sup 14/C-labeled arachidonic acid, dihomo-gamma-linolenic acid, and eicosapentaenoic acid in human keratinocytes in culture was investigated. Ultraviolet B irradiation induced the release of all three /sup 14/C-labeled fatty acids from the phospholipids, especially from phosphatidylethanolamine, and this was accompanied by increased labeling of the nonphosphorus lipids. This finding suggests that UVB induces a significant liberation of eicosanoid precursor fatty acids from cellular phospholipids, but the liberated fatty acids are largely reincorporated into the nonphosphorus lipids. In conclusion, the present study suggests that not only arachidonic acid but also dihomo-gamma-linolenic acid, and eicosapentaenoic acid might be involved in the UVB irradiation-induced inflammatory reactions of human skin.

  13. Role of adenosine 5'-monophosphate-activated protein kinase in α-linolenic acid-induced intestinal lipid metabolism.

    PubMed

    Zhou, Xihong; Chen, Jingqing; Wu, Weiche; Wang, Xinxia; Wang, Yizhen

    2015-09-28

    n-3 Long-chain PUFA up-regulate intestinal lipid metabolism. However, whether these metabolic effects of PUFA on intestine are mediated by AMP-activated protein kinase (AMPK) remains to be elucidated. To determine the effects of α-linolenic acid (ALA) on intestinal fatty acid (FA) metabolism and whether these effects were affected by AMPK deletion, mice deficient in the catalytic subunit of AMPKα1 or AMPKα2 and wild-type (WT) mice were fed either a high-fat diet (HF) or HF supplemented with ALA (HF-A). The results showed that ALA supplementation decreased serum TAG content in WT mice. ALA also increased mRNA expression of genes (carnitine palmitoyltransferase 1a, acyl-CoA oxidase 1, medium-chain acyl-CoA dehydrogenase, cytochrome P450 4A10 and pyruvate dehydrogenase kinase isoenzyme 4a) involved in intestinal lipid oxidation and mRNA expression of TAG synthesis-related genes (monoacylglycerol O-acyltransferase 2, diacylglycerol O-acyltransferases 1 and 2) in WT mice. Consistent with these, expression levels of phosphorylated AMPKα1 and AMPKα2 were also increased in WT mice after ALA addition. However, in the absence of either AMPKα1 or AMPKα2, ALA supplementation failed to increase intestinal lipid oxidation. In addition, no significant effects of either diet (HF and HF-A) or genotype (WT, AMPKα1(-/-) and AMPKα2(-/-)) on FA uptake in the intestine and faecal TAG output were observed. Our results suggest that AMPK is indispensable for the effects of ALA on intestinal lipid oxidation. PMID:26268732

  14. Gamma Linolenic Acid Exerts Anti-Inflammatory and Anti-Fibrotic Effects in Diabetic Nephropathy

    PubMed Central

    Kim, Do-Hee; Yoo, Tae-Hyun; Lee, Soon Ha; Kang, Hye Young; Nam, Bo Young; Kwak, Seung Jae; Kim, Jwa-Kyung; Park, Jung Tak; Han, Seung Hyeok

    2012-01-01

    Purpose This study was undertaken to investigate the effects of gamma linolenic acid (GLA) on inflammation and extracellular matrix (ECM) synthesis in mesangial and tubular epithelial cells under diabetic conditions. Materials and Methods Sprague-Dawley rats were intraperitoneally injected with either a diluent [n=16, control (C)] or streptozotocin [n=16, diabetes (DM)], and eight rats each from the control and diabetic groups were treated with evening primrose oil by gavage for three months. Rat mesangial cells and NRK-52E cells were exposed to medium containing 5.6 mM glucose and 30 mM glucose (HG), with or without GLA (10 or 100 µM). Intercellular adhesion molecule-1 (ICAM-1), monocyte chemoattractant protein-1 (MCP-1), and fibronectin (FN) mRNA and protein expression levels were evaluated. Results Twenty-four-hour urinary albumin excretion was significantly increased in DM compared to C rats, and GLA treatment significantly reduced albuminuria in DM rats. ICAM-1, MCP-1, FN mRNA and protein expression levels were significantly higher in DM than in C kidneys, and these increases were significantly abrogated by GLA treatment. In vitro, GLA significantly inhibited increases in MCP-1 mRNA expression and protein levels under high glucose conditions in HG-stimulated mesangial and tubular epithelial cells (p<0.05, respectively). ICAM-1 and FN expression showed a similar pattern to the expression of MCP-1. Conclusion GLA attenuates not only inflammation by inhibiting enhanced MCP-1 and ICAM-1 expression, but also ECM accumulation in diabetic nephropathy. PMID:23074118

  15. Cytotoxicity of food preservatives in cultured rat hepatocytes loaded with linolenic acid.

    PubMed

    Sugihara, N; Shimomichi, K; Furuno, K

    1997-06-01

    We investigated the ability of eight food preservatives to induce lipid peroxidation in normal and alpha-linolenic acid (LNA)-loaded cultured rat hepatocytes. On the addition of sodium dehydroacetate (DHA-Na), potassium sorbate (SA-K) or thiabendazole (TBZ) to the cell culture, lipid peroxidation, assessed in terms of the production of malondialdehyde (MDA), was induced in LNA-loaded cells, but not in normal cells. At the low concentrations, induction of lipid peroxidation in LNA-loaded cells was highest with TBZ, whereas at high concentrations DHA-Na greatly induced lipid peroxidation. The occurrence of lipid peroxidation in LNA-loaded cells was accompanied by a decrease in cellular GSH levels with the three preservatives and by a decrease in cellular protein-SH levels with DHA-Na and TBZ. Furthermore, cell injury, measured by the release of LDH, was produced in LNA-loaded cells exposed to DHA-Na and SA-K. The addition of TBZ caused substantial cell injury in normal cells, and even greater injury in LNA-loaded cells. The prevention of lipid peroxidation in LNA-loaded hepatocytes by addition of an antioxidant, N,N'-diphenyl-p-phenylenediamine (DPPD) almost completely prevented DHA-Na- and SA-K-induced cell injury, and reduced TBZ-induced cell injury. The addition of diphenyl (DP), o-phenylphenol (OPP) or butyl p-hydroxybenzoate (BHB) caused severe cell injury, in association with a marked decrease in cellular levels of both of GSH and protein-SH in both groups of cells. However, lipid peroxidation was not detectable in either group of cells exposed to these preservatives. Sodium propionate (PA-Na) and sodium benzoate (BA-Na) had little effect on any cytotoxic parameter in either group of cells.

  16. Alpha-linolenic acid protects against cardiac injury and remodelling induced by beta-adrenergic overstimulation.

    PubMed

    Folino, A; Sprio, A E; Di Scipio, F; Berta, G N; Rastaldo, R

    2015-07-01

    We investigated the effect of α-linolenic acid (ALA) in protecting the heart from injury caused by β-adrenergic overstimulation. ALA's role either in isoproterenol (ISO)-treated isolated rat cardiomyocytes (H9c2 cells) or in in vivo rat hearts was studied. In isolated cardiomyocytes in vitro, the involvement of kinases (Src and PI3K) in protection was tested using the specific inhibitors (PP2 or LY294002 respectively), while the role of caveolae was assessed by their disruption with methyl-β-cyclodextrin. The rats underwent either a normal chow diet or, alternatively, an ALA-enriched diet before, during and throughout the 60 days after 5 days of isoproterenol administration. Before sacrifice, the hemodynamic changes were measured using echocardiography. In the explanted hearts, histological changes together with molecular markers of cardiac fibrosis and hypertrophy were evaluated. In H9c2 cells, ALA abolished the ISO-induced reduction of viability. This effect was suppressed by both the inhibitor PP2 or LY294002 and the caveolae disrupter methyl-β-cyclodextrin. In the rats, ALA prevented ISO-induced myocardial fibrosis and hypertrophy and kept the cardiac mechanical function as in the control. It also counteracted the increased expressions of transforming growth factor-β (TGF-β) and β-myosin (β-MHC), the decreased expression of tissue inhibitor metalloproteinase-1 (TIMP-1) and the enhanced activity of matrix metalloproteinase-2 (MMP-2). In conclusion, ALA-induced protection requires the integrity of caveolae where β2-adrenergic receptors (β2ARs) are restricted and mediate the activation of the Src-PI3K protective pathway. By preserving this β2AR pro-survival pathway, an ALA-enriched diet protects the heart against ISO-induced fibrosis and hypertrophy. PMID:26068025

  17. Optimization of Aeration and Agitation Rate for Lipid and Gamma Linolenic Acid Production by Cunninghamella bainieri 2A1 in Submerged Fermentation Using Response Surface Methodology

    PubMed Central

    Saad, Normah; Abdeshahian, Peyman; Kalil, Mohd Sahaid; Wan Yusoff, Wan Mohtar

    2014-01-01

    The locally isolated filamentous fungus Cunninghamella bainieri 2A1 was cultivated in a 5 L bioreactor to produce lipid and gamma-linolenic acid (GLA). The optimization was carried out using response surface methodology based on a central composite design. A statistical model, second-order polynomial model, was adjusted to the experimental data to evaluate the effect of key operating variables, including aeration rate and agitation speed on lipid production. Process analysis showed that linear and quadratic effect of agitation intensity significantly influenced lipid production process (P < 0.01). The quadratic model also indicated that the interaction between aeration rate and agitation speed had a highly significant effect on lipid production (P < 0.01). Experimental results showed that a lipid content of 38.71% was produced in optimum conditions using an airflow rate and agitation speed of 0.32 vvm and 599 rpm, respectively. Similar results revealed that 0.058 (g/g) gamma-linolenic acid was produced in optimum conditions where 1.0 vvm aeration rate and 441.45 rpm agitation rate were used. The regression model confirmed that aeration and agitation were of prime importance for optimum production of lipid in the bioreactor. PMID:25610901

  18. Punicic Acid a Conjugated Linolenic Acid Inhibits TNFα-Induced Neutrophil Hyperactivation and Protects from Experimental Colon Inflammation in Rats

    PubMed Central

    Boussetta, Tarek; Raad, Houssam; Lettéron, Philippe; Gougerot-Pocidalo, Marie-Anne; Marie, Jean-Claude

    2009-01-01

    Background Neutrophils play a major role in inflammation by releasing large amounts of ROS produced by NADPH-oxidase and myeloperoxidase (MPO). The proinflammatory cytokine TNFα primes ROS production through phosphorylation of the NADPH-oxidase subunit p47phox on Ser345. Conventional anti-inflammatory therapies remain partially successful and may have side effects. Therefore, regulation of neutrophil activation by natural dietary components represents an alternative therapeutic strategy in inflammatory diseases such as inflammatory bowel diseases. The aim of this study was to assess the effect of punicic acid, a conjugated linolenic fatty acid from pomegranate seed oil on TNFα-induced neutrophil hyperactivation in vitro and on colon inflammation in vivo. Methodology and Principal Findings We analyzed the effect of punicic acid on TNFα-induced neutrophil upregulation of ROS production in vitro and on TNBS-induced rat colon inflammation. Results show that punicic acid inhibited TNFα-induced priming of ROS production in vitro while preserving formyl-methionyl-leucyl-phenylalanine (fMLP)-induced response. This effect was mediated by the inhibition of Ser345-p47phox phosphorylation and upstream kinase p38MAPK. Punicic acid also inhibited fMLP- and TNFα+fMLP-induced MPO extracellular release from neutrophils. In vivo experiments showed that punicic acid and pomegranate seed oil intake decreased neutrophil-activation and ROS/MPO-mediated tissue damage as measured by F2-isoprostane release and protected rats from TNBS-induced colon inflammation. Conclusions/Significance These data show that punicic acid exerts a potent anti-inflammatory effect through inhibition of TNFα-induced priming of NADPH oxidase by targeting the p38MAPKinase/Ser345-p47phox-axis and MPO release. This natural dietary compound may provide a novel alternative therapeutic strategy in inflammatory diseases such as inflammatory bowel diseases. PMID:19649246

  19. [Expression of Mortierella isabellina delta6-fatty acid desaturase gene in gamma-linolenic acid production in transgenic tobacco].

    PubMed

    Li, Ming-Chun; Liu, Li; Hu, Guo-Wu; Xing, Lai-Jun

    2003-03-01

    Gamma-linolenic acid (GLA, C18:3delta6.9.12) is nutritional and important polyunsaturated fatty acid in human and animal diets. GLA play an important role in hormone regulation and fatty acid metabolization. Furthermore it is also the biological precursor of a group of molecules, including prostaglandins, leukotrienes and thromboxanes. Vast majority of oilseed crops do not produce GLA, but linoleic acid (LA, C18:2delta9.12) as its substrate. GLA is only produced by a small number of oilseed plants such as evening promrose ( Oenotheera spp.), borage (Borago officinalis) and etc. delta6-fatty acid desaturase (D6D) is the rate-limiting enzyme in the production of GLA. It can convert from linoleic acid to linolenic acid. To produce GLA in tobacco, plant expression vector was first constructed. To facilitate preparation of plant expression constructs, flanking Xba I and Bgl II restriction enzyme sites were added to the coding region of clone pTMICL6 by PCR amplification. pTMICL6 contains delta6-fatty acid desaturase gene cloned from Mortierella isabellina which is an oil-producing fugus. The PCR product was purified and subcloned into the plant expression vector pGA643 to generate the recombinant vector pGAMICL6 which contains the ORF of the D6D gene of Mortierella isabellina, together with regulatory elements consisting of the cauliflower mosaic virus 35S promoter and the nopaline synthase (nos) termination sequence. The plasmid pGAMICL6 was transformed into Agrobacterium tumefaciens strain LBA4404 by method of freeze thawing of liquid nitrogen. Transformants were selected by plating on YEB medium plates containing kanamycin and streptomycin and grown overnight at 28 degrees C, then transformants were further identified by PCR. The positive transformant containing the plant expression vector pGAMICL6 was transformed into tobacco ( Nicotiana tabacum cv. Xanthi) via Agrobacterium infection. Transgenic plants were selected on 100 microg/mL kanamycin. Plants were

  20. Protective effect of borage seed oil and gamma linolenic acid on DNA: in vivo and in vitro studies.

    PubMed

    Tasset-Cuevas, Inmaculada; Fernández-Bedmar, Zahira; Lozano-Baena, María Dolores; Campos-Sánchez, Juan; de Haro-Bailón, Antonio; Muñoz-Serrano, Andrés; Alonso-Moraga, Angeles

    2013-01-01

    Borage (Borago officinalis L.) seed oil has been used as a treatment for various degenerative diseases. Many useful properties of this oil are attributed to its high gamma linolenic acid content (GLA, 18:3 ω-6). The purpose of this study was to demonstrate the safety and suitability of the use of borage seed oil, along with one of its active components, GLA, with respect to DNA integrity, and to establish possible in vivo toxic and in vitro cytotoxic effects. In order to measure these properties, five types of assays were carried out: toxicity, genotoxicity, antigenotoxicity, cytotoxicity (using the promyelocytic leukaemia HL60 cell line), and life span (in vivo analysis using the Drosophila model). Results showed that i) Borage seed oil is not toxic to D. melanogaster at physiological concentrations below 125 µl/ml and the studies on GLA indicated non-toxicity at the lowest concentration analyzed ii) Borage seed oil and GLA are DNA safe (non-genotoxic) and antimutagenic compared to hydrogen peroxide, thereby confirming its antioxidant capacity; iii) Borage seed oil and GLA exhibited cytotoxic activity in low doses (IC50 of 1 µl/ml and 0.087 mM, respectively) iv) Low doses of borage seed oil (0.19%) increased the health span of D. melanogaster; and v) GLA significantly decreased the life span of D. melanogaster.Based on the antimutagenic and cytotoxic effects along with the ability to increase the health span, we propose supplementation with borage seed oil rather than GLA, because it protects DNA by modulating oxidative genetic damage in D. melanogaster, increases the health span and exerts cytotoxic activity towards promyelocytic HL60 cells. PMID:23460824

  1. Protective Effect of Borage Seed Oil and Gamma Linolenic Acid on DNA: In Vivo and In Vitro Studies

    PubMed Central

    Tasset-Cuevas, Inmaculada; Fernández-Bedmar, Zahira; Lozano-Baena, María Dolores; Campos-Sánchez, Juan; de Haro-Bailón, Antonio; Muñoz-Serrano, Andrés; Alonso-Moraga, Ángeles

    2013-01-01

    Borage (Borago officinalis L.) seed oil has been used as a treatment for various degenerative diseases. Many useful properties of this oil are attributed to its high gamma linolenic acid content (GLA, 18:3 ω-6). The purpose of this study was to demonstrate the safety and suitability of the use of borage seed oil, along with one of its active components, GLA, with respect to DNA integrity, and to establish possible in vivo toxic and in vitro cytotoxic effects. In order to measure these properties, five types of assays were carried out: toxicity, genotoxicity, antigenotoxicity, cytotoxicity (using the promyelocytic leukaemia HL60 cell line), and life span (in vivo analysis using the Drosophila model). Results showed that i) Borage seed oil is not toxic to D. melanogaster at physiological concentrations below 125 µl/ml and the studies on GLA indicated non-toxicity at the lowest concentration analyzed ii) Borage seed oil and GLA are DNA safe (non-genotoxic) and antimutagenic compared to hydrogen peroxide, thereby confirming its antioxidant capacity; iii) Borage seed oil and GLA exhibited cytotoxic activity in low doses (IC50 of 1 µl/ml and 0.087 mM, respectively) iv) Low doses of borage seed oil (0.19%) increased the health span of D. melanogaster; and v) GLA significantly decreased the life span of D. melanogaster. Based on the antimutagenic and cytotoxic effects along with the ability to increase the health span, we propose supplementation with borage seed oil rather than GLA, because it protects DNA by modulating oxidative genetic damage in D. melanogaster, increases the health span and exerts cytotoxic activity towards promyelocytic HL60 cells. PMID:23460824

  2. Protective effect of borage seed oil and gamma linolenic acid on DNA: in vivo and in vitro studies.

    PubMed

    Tasset-Cuevas, Inmaculada; Fernández-Bedmar, Zahira; Lozano-Baena, María Dolores; Campos-Sánchez, Juan; de Haro-Bailón, Antonio; Muñoz-Serrano, Andrés; Alonso-Moraga, Angeles

    2013-01-01

    Borage (Borago officinalis L.) seed oil has been used as a treatment for various degenerative diseases. Many useful properties of this oil are attributed to its high gamma linolenic acid content (GLA, 18:3 ω-6). The purpose of this study was to demonstrate the safety and suitability of the use of borage seed oil, along with one of its active components, GLA, with respect to DNA integrity, and to establish possible in vivo toxic and in vitro cytotoxic effects. In order to measure these properties, five types of assays were carried out: toxicity, genotoxicity, antigenotoxicity, cytotoxicity (using the promyelocytic leukaemia HL60 cell line), and life span (in vivo analysis using the Drosophila model). Results showed that i) Borage seed oil is not toxic to D. melanogaster at physiological concentrations below 125 µl/ml and the studies on GLA indicated non-toxicity at the lowest concentration analyzed ii) Borage seed oil and GLA are DNA safe (non-genotoxic) and antimutagenic compared to hydrogen peroxide, thereby confirming its antioxidant capacity; iii) Borage seed oil and GLA exhibited cytotoxic activity in low doses (IC50 of 1 µl/ml and 0.087 mM, respectively) iv) Low doses of borage seed oil (0.19%) increased the health span of D. melanogaster; and v) GLA significantly decreased the life span of D. melanogaster.Based on the antimutagenic and cytotoxic effects along with the ability to increase the health span, we propose supplementation with borage seed oil rather than GLA, because it protects DNA by modulating oxidative genetic damage in D. melanogaster, increases the health span and exerts cytotoxic activity towards promyelocytic HL60 cells.

  3. Adverse effects of conjugated alpha-linolenic acids (CLnA) on lipoprotein profile on experimental atherosclerosis in hamsters.

    PubMed

    Plourde, M; Ledoux, M; Grégoire, S; Portois, L; Fontaine, J J; Carpentier, Y A; Angers, P; Chardigny, J M; Sébédio, J L

    2007-07-01

    Conjugated linoleic acids (CLAs) such as rumenic acid (RA) have the potential to alter blood lipid profiles in animals and in humans. In contrast, physiological effects of conjugated α-linolenic acids (CLnAs), which concomitantly are omega-3 and conjugated fatty acids, are still unknown. The aim of this study was to evaluate the potential of CLnA to interfere in early steps of atherosclerosis by altering lipoprotein profiles and fatty streaks in the aortas. F1B hamsters were fed a control or one of the three hypercholesterolemic (HC) diets: HC-control, HC-RA (18:2 cis-9, trans-11) or HC-CLnA (CLnA: equimolar mixture of 18:3 cis-9, trans-11, cis-15 and cis-9, trans-13, cis-15) diet. In low-cholesterol control-fed hamsters, the proportion of high-density lipoprotein cholesterol (HDL-C) was around 45% while in HC-fed hamsters, HDL-C was around 10% and cholesterol was mostly (80%) carried by triglyceride-rich lipoproteins (TRL). Low-density lipoprotein (LDL) triglycerides (TGs) increased by approximately 60% in hamsters fed either HC-RA or HC-CLnA compared with HC-controls but not compared with the low-cholesterol control diet. HDL cholesterol decreased by 24% and 16% in hamsters fed HC-RA and HC-CLnA, respectively. Small dense LDL-cholesterol increased by approximately 60% in hamsters fed HC-RA and HC-CLnA compared with the HC-control group and by more than a 100% compared with hamsters on the control diet. The relative percentage of liver cholesteryl ester content increased by 88% in hamsters fed HC diets compared with the control diet. Significant differences in fatty streaks were observed between control and HC-diet-fed hamsters. However, no significant difference was observed among the HC-diet-fed hamsters. This study shows that animals fed any one of the HC diets developed an adverse lipoprotein profile compared with a normolipidic diet. Also, HC-RA or HC-CLnA diets altered lipoprotein profile compared with animals fed the HC-control diet but had no beneficial

  4. Borage or primrose oil added to standardized diets are equivalent sources for gamma-linolenic acid in rats.

    PubMed

    Raederstorff, D; Moser, U

    1992-12-01

    The aim of this study was to evaluate the effect of different doses and sources of dietary gamma-linolenic acid (GLA) on the tissue phospholipid fatty acid composition. Rats fed four different levels of GLA (2.3, 4.6, 6.4 and 16.2 g of GLA/kg diet) in the form of either borage oil or evening primrose oil during 6 wk were compared with animals fed corn oil. The levels of dihomo-gamma-linolenic acid (DHLA) and GLA showed a significant dose-related increase in liver, erythrocyte and aorta phospholipids. Moreover, the arachidonic acid/DHLA ratios in tissues decreased with increasing intake of dietary GLA. There was no significant difference in tissue GLA and DHLA levels within groups given equal amounts of dietary GLA either as borage oil or evening primrose oil. The amount of dietary GLA administered did not significantly influence prostaglandin E2 production in stimulated aortic rings and thromboxane B2 levels in serum; however, an increase in prostaglandin E1 derived from DHLA was observed in the supernatants of stimulated aorta.

  5. Alpha-linolenic acid: an omega-3 fatty acid with neuroprotective properties-ready for use in the stroke clinic?

    PubMed

    Blondeau, Nicolas; Lipsky, Robert H; Bourourou, Miled; Duncan, Mark W; Gorelick, Philip B; Marini, Ann M

    2015-01-01

    Alpha-linolenic acid (ALA) is plant-based essential omega-3 polyunsaturated fatty acids that must be obtained through the diet. This could explain in part why the severe deficiency in omega-3 intake pointed by numerous epidemiologic studies may increase the brain's vulnerability representing an important risk factor in the development and/or deterioration of certain cardio- and neuropathologies. The roles of ALA in neurological disorders remain unclear, especially in stroke that is a leading cause of death. We and others have identified ALA as a potential nutraceutical to protect the brain from stroke, characterized by its pleiotropic effects in neuroprotection, vasodilation of brain arteries, and neuroplasticity. This review highlights how chronic administration of ALA protects against rodent models of hypoxic-ischemic injury and exerts an anti-depressant-like activity, effects that likely involve multiple mechanisms in brain, and may be applied in stroke prevention. One major effect may be through an increase in mature brain-derived neurotrophic factor (BDNF), a widely expressed protein in brain that plays critical roles in neuronal maintenance, and learning and memory. Understanding the precise roles of ALA in neurological disorders will provide the underpinnings for the development of new therapies for patients and families who could be devastated by these disorders. PMID:25789320

  6. Alpha-Linolenic Acid: An Omega-3 Fatty Acid with Neuroprotective Properties—Ready for Use in the Stroke Clinic?

    PubMed Central

    Blondeau, Nicolas; Lipsky, Robert H.; Bourourou, Miled; Duncan, Mark W.; Gorelick, Philip B.; Marini, Ann M.

    2015-01-01

    Alpha-linolenic acid (ALA) is plant-based essential omega-3 polyunsaturated fatty acids that must be obtained through the diet. This could explain in part why the severe deficiency in omega-3 intake pointed by numerous epidemiologic studies may increase the brain's vulnerability representing an important risk factor in the development and/or deterioration of certain cardio- and neuropathologies. The roles of ALA in neurological disorders remain unclear, especially in stroke that is a leading cause of death. We and others have identified ALA as a potential nutraceutical to protect the brain from stroke, characterized by its pleiotropic effects in neuroprotection, vasodilation of brain arteries, and neuroplasticity. This review highlights how chronic administration of ALA protects against rodent models of hypoxic-ischemic injury and exerts an anti-depressant-like activity, effects that likely involve multiple mechanisms in brain, and may be applied in stroke prevention. One major effect may be through an increase in mature brain-derived neurotrophic factor (BDNF), a widely expressed protein in brain that plays critical roles in neuronal maintenance, and learning and memory. Understanding the precise roles of ALA in neurological disorders will provide the underpinnings for the development of new therapies for patients and families who could be devastated by these disorders. PMID:25789320

  7. Effects of different levels of intravenous alpha-linolenic acid and supplemental breast milk on red blood cell docosahexaenoic acid in very low birth-weight infants.

    PubMed

    Rhodes, P G; Reddy, N S; Downing, G; Carlson, S E

    1991-07-01

    Preterm infants weighing less than 1,500 g were started on total parenteral nutrition (TPN) if unable to tolerate full enteral feedings. They were randomly assigned to receive intravenous lipids containing either 4.2 or 9.0% alpha-linolenic acid to assess the effect on red blood cell (RBC) phospholipid polyenoic fatty acid composition, particularly docosahexaenoic acid (22:6n3) (DHA). DHA ultimately comes from alpha-linolenic acid (18:3n3), although there is evidence in human preterm infants that they require preformed DHA. After 1 week of TPN, infants were started on gradually increasing amounts of enteral feeding, breast milk, if elected by mothers, or premature milk formula (Preemie Enfamil). RBC phospholipid fatty acids were measured weekly. Results were evaluated comparing samples from week 1 and week 6. Supplying 9% alpha-linolenic acid in intravenous lipids did not prevent a fall in DHA by 6 weeks; however, infants receiving breast-milk feeding did not have a significant decrease in DHA. Studies are needed to evaluate supplying DHA in intravenous lipids.

  8. Distribution and metabolism of dihomo-gamma-linolenic acid (DGLA, 20:3n-6) by oral supplementation in rats.

    PubMed

    Umeda-Sawada, Rumi; Fujiwara, Yoko; Ushiyama, Ikuko; Sagawa, Satoe; Morimitsu, Yasujiro; Kawashima, Hiroshi; Ono, Yoshiko; Kiso, Yoshinobu; Matsumoto, Akiyo; Seyama, Yousuke

    2006-09-01

    We compared the dietary effects of dihomo-gamma-linolenic acid (DGLA) contained in the DGLA oil produced by a fungus with gamma-linolenic acid (GLA) on the fatty acid composition. Wistar rats were fed with three kinds of oil for two weeks as follows: (i) control group: corn oil; (ii) GLA group: borage oil; (iii) DGLA group: DGLA oil/safflower oil = 55:45. The DGLA concentrations in the liver, serum, and brain of the DGLA group were higher than those of the GLA oil group. We also examined the dose effect of DGLA. The DGLA levels in the liver, serum, and brain significantly increased with increasing dosage of DGLA in the diet. DGLA administration significantly increased the ratio of PGE1/PGE2 in the rat plasma. The mechanism for GLA administration to improve atopic eczema is thought to involve an increase in the concentration of DGLA metabolized from GLA, so these results suggest that the dietary effect of DGLA would be more dominant than GLA. PMID:16960355

  9. An Iron 13S-Lipoxygenase with an α-Linolenic Acid Specific Hydroperoxidase Activity from Fusarium oxysporum

    PubMed Central

    Brodhun, Florian; Cristobal-Sarramian, Alvaro; Zabel, Sebastian; Newie, Julia; Hamberg, Mats; Feussner, Ivo

    2013-01-01

    Jasmonates constitute a family of lipid-derived signaling molecules that are abundant in higher plants. The biosynthetic pathway leading to plant jasmonates is initiated by 13-lipoxygenase-catalyzed oxygenation of α-linolenic acid into its 13-hydroperoxide derivative. A number of plant pathogenic fungi (e.g. Fusarium oxysporum) are also capable of producing jasmonates, however, by a yet unknown biosynthetic pathway. In a search for lipoxygenase in F. oxysporum, a reverse genetic approach was used and one of two from the genome predicted lipoxygenases (FoxLOX) was cloned. The enzyme was heterologously expressed in E. coli, purified via affinity chromatography, and its reaction mechanism characterized. FoxLOX was found to be a non-heme iron lipoxygenase, which oxidizes C18-polyunsaturated fatty acids to 13S-hydroperoxy derivatives by an antarafacial reaction mechanism where the bis-allylic hydrogen abstraction is the rate-limiting step. With α-linolenic acid as substrate FoxLOX was found to exhibit a multifunctional activity, because the hydroperoxy derivatives formed are further converted to dihydroxy-, keto-, and epoxy alcohol derivatives. PMID:23741422

  10. Nitro-Fatty Acids in Plant Signaling: Nitro-Linolenic Acid Induces the Molecular Chaperone Network in Arabidopsis1[OPEN

    PubMed Central

    Padilla, María N.; Begara-Morales, Juan C.; Luque, Francisco; Melguizo, Manuel; Fierro-Risco, Jesús; Peñas-Sanjuán, Antonio; Valderrama, Raquel

    2016-01-01

    Nitro-fatty acids (NO2-FAs) are the product of the reaction between reactive nitrogen species derived of nitric oxide (NO) and unsaturated fatty acids. In animal systems, NO2-FAs are considered novel signaling mediators of cell function based on a proven antiinflammatory response. Nevertheless, the interaction of NO with fatty acids in plant systems has scarcely been studied. Here, we examine the endogenous occurrence of nitro-linolenic acid (NO2-Ln) in Arabidopsis and the modulation of NO2-Ln levels throughout this plant’s development by mass spectrometry. The observed levels of this NO2-FA at picomolar concentrations suggested its role as a signaling effector of cell function. In fact, a transcriptomic analysis by RNA-seq technology established a clear signaling role for this molecule, demonstrating that NO2-Ln was involved in plant defense response against different abiotic-stress conditions, mainly by inducing heat shock proteins and supporting a conserved mechanism of action in both animal and plant defense processes. Bioinformatics analysis revealed that NO2-Ln was also involved in the response to oxidative stress conditions, mainly depicted by H2O2, reactive oxygen species, and oxygen-containing compound responses, with a high induction of ascorbate peroxidase expression. Closely related to these results, NO2-Ln levels significantly rose under several abiotic-stress conditions such as wounding or exposure to salinity, cadmium, and low temperature, thus validating the outcomes found by RNA-seq technology. Jointly, to our knowledge, these are the first results showing the endogenous presence of NO2-Ln in Arabidopsis (Arabidopsis thaliana) and supporting the strong signaling role of these molecules in the defense mechanism against different abiotic-stress situations. PMID:26628746

  11. Nitro-Fatty Acids in Plant Signaling: Nitro-Linolenic Acid Induces the Molecular Chaperone Network in Arabidopsis.

    PubMed

    Mata-Pérez, Capilla; Sánchez-Calvo, Beatriz; Padilla, María N; Begara-Morales, Juan C; Luque, Francisco; Melguizo, Manuel; Jiménez-Ruiz, Jaime; Fierro-Risco, Jesús; Peñas-Sanjuán, Antonio; Valderrama, Raquel; Corpas, Francisco J; Barroso, Juan B

    2016-02-01

    Nitro-fatty acids (NO2-FAs) are the product of the reaction between reactive nitrogen species derived of nitric oxide (NO) and unsaturated fatty acids. In animal systems, NO2-FAs are considered novel signaling mediators of cell function based on a proven antiinflammatory response. Nevertheless, the interaction of NO with fatty acids in plant systems has scarcely been studied. Here, we examine the endogenous occurrence of nitro-linolenic acid (NO2-Ln) in Arabidopsis and the modulation of NO2-Ln levels throughout this plant's development by mass spectrometry. The observed levels of this NO2-FA at picomolar concentrations suggested its role as a signaling effector of cell function. In fact, a transcriptomic analysis by RNA-seq technology established a clear signaling role for this molecule, demonstrating that NO2-Ln was involved in plant defense response against different abiotic-stress conditions, mainly by inducing heat shock proteins and supporting a conserved mechanism of action in both animal and plant defense processes. Bioinformatics analysis revealed that NO2-Ln was also involved in the response to oxidative stress conditions, mainly depicted by H2O2, reactive oxygen species, and oxygen-containing compound responses, with a high induction of ascorbate peroxidase expression. Closely related to these results, NO2-Ln levels significantly rose under several abiotic-stress conditions such as wounding or exposure to salinity, cadmium, and low temperature, thus validating the outcomes found by RNA-seq technology. Jointly, to our knowledge, these are the first results showing the endogenous presence of NO2-Ln in Arabidopsis (Arabidopsis thaliana) and supporting the strong signaling role of these molecules in the defense mechanism against different abiotic-stress situations. PMID:26628746

  12. Hypolipidemic Activity of Peony Seed Oil Rich in α-Linolenic, is Mediated Through Inhibition of Lipogenesis and Upregulation of Fatty Acid β-Oxidation.

    PubMed

    Su, Jianhui; Ma, Chaoyang; Liu, Chengxiang; Gao, Chuanzhong; Nie, Rongjing; Wang, Hongxin

    2016-04-01

    Peony seed oil (PSO) is a new resource food rich in α-Linolenic Acid(ALA) (38.66%). The objective of this study was to assess the modulatory effect of PSO on lipid metabolism. Lard oil, safflower oil (SFO), and PSO were fed to wistar rats with 1% cholesterol in the diet for 60 d. Serum and liver lipids showed significant decrease in total cholesterol (TC), triglyceride (TG), and low density lipoprotein-cholesterol (LDL-C) levels in PSO fed rats compared to lard oil and SFO fed rats. ALA, eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA), contents were significantly increased, whereas linoleic acid (LA), arachidonic acid (AA) levels decreased in serum and liver of PSO fed rats. Feeding PSO increased ALA level and decreased n-6 to n-3 polyunsaturated fatty acid (PUFA) ratio. The hypolipidemic result of PSO indicated that PSO participated in the regulation of plasma lipid concentration and cholesterol metabolism in liver. The decreased expression of sterol regulatory element-binding proteins 1C (SREBP-1c), acetyl-CoA carboxylase (ACC), and fatty acid synthase (FAS)-reduced lipid synthesis; Activation of peroxisome proliferator-activator receptor (PPARα) accompanied by increase of uncoupling protein2 (UP2) and acyl-CoA oxidase (AOX) stimulated lipid metabolism and exerted an antiobesity effect via increasing energy expenditure for prevention of obesity. PMID:26930155

  13. Flaxseed Oil Containing α-Linolenic Acid Ester of Plant Sterol Improved Atherosclerosis in ApoE Deficient Mice

    PubMed Central

    Han, Hao; Yan, Peipei; Chen, Li; Luo, Cheng; Gao, Hui; Deng, Qianchun; Zheng, Mingming; Shi, Yong; Liu, Liegang

    2015-01-01

    Plant sterols (PS) have potential preventive function in atherosclerosis due to their cholesterol-lowering ability. Dietary α-linolenic acid in flaxseed oil is associated with a reduction in cardiovascular events through its hypolipidemic and anti-inflammation properties. This study was designed to evaluate the effects of flaxseed oil containing α-linolenic acid ester of PS (ALA-PS) on atherosclerosis and investigate the underlying mechanisms. C57BL/6 mice were administered a regular diet and apoE knockout (apoE-KO) mice were given a high fat diet alone or supplemented with 5% flaxseed oil with or without 3.3% ALA-PS for 18 weeks. Results demonstrated that flaxseed oil containing ALA-PS was synergistically interaction in ameliorating atherosclerosis as well as optimizing overall lipid levels, inhibiting inflammation and reducing oxidative stress. These data were associated with the modification effects on expression levels of genes involved in lipid metabolism (PPARα, HMGCR, and SREBPs), inflammation (IL-6, TNF, MCP-1, and VCAM-1), and oxidative stress (NADPH oxidase). PMID:26180602

  14. Modelling linoleic acid and α-linolenic acid requirements for infants and young children in developing countries.

    PubMed

    Yang, Zhenyu; Huffman, Sandra L

    2013-01-01

    Essential fatty acids (EFAs), linoleic acid (LA) and α-linolenic acid (ALA), play a critical role in the growth and development of infants and young children. However, national guidelines for recommended intakes of EFAs are lacking in most developing countries. The objective of this study was to convert international EFA recommendations based on % of daily energy intake to recommended daily amounts for children aged 6-23 months in developing countries. The Food and Agriculture Organization (FAO) reports adequate intakes (AIs) for ALA as 0.4-0.6% of energy intake for children 6-23 months of age and as 3.0-4.5% of energy intake for LA. In order to estimate energy intakes, FAO daily energy requirements based on body weight were used. The daily AI amounts for these EFAs were calculated using the median body weight of the World Health Organization (WHO) Growth Standard population and median body weights with varying levels of malnutrition. The AI for ALA is equivalent to 0.3-0.4, 0.3-0.5 and 0.4-0.6 g day(-1), and the AI for LA is equivalent to 2.1-3.1, 2.4-3.5 and 2.8-4.3 g day(-1) for children aged 6-8, 9-11 and 12-23 months, respectively. While the lower median body weights of children in developing countries and associated reduced energy intake recommendations give lower estimated EFA requirements, recommendations based on median body weights in the WHO Reference Growth Standard is suggested. The upper levels of these calculated AIs are lower than or equal to those in North America (ALA: 0.5 and 0.7 g day(-1); LA: 4.6 and 7 g day(-1) for children aged 6-12 months and 1-3 years, respectively). The FAO AIs (g day(-1)) calculated here for ALA and LA can serve as a guideline for developing countries for setting national standards.

  15. Priming by Hexanoic Acid Induce Activation of Mevalonic and Linolenic Pathways and Promotes the Emission of Plant Volatiles

    PubMed Central

    Llorens, Eugenio; Camañes, Gemma; Lapeña, Leonor; García-Agustín, Pilar

    2016-01-01

    Hexanoic acid (Hx) is a short natural monocarboxylic acid present in some fruits and plants. Previous studies reported that soil drench application of this acid induces effective resistance in tomato plants against Botrytis cinerea and Pseudomonas syringae and in citrus against Alternaria alternata and Xanthomonas citri. In this work, we performed an in deep study of the metabolic changes produced in citrus by the application of Hx in response to the challenge pathogen A. alternata, focusing on the response of the plant. Moreover, we used 13C labeled hexanoic to analyze its behavior inside the plants. Finally, we studied the volatile emission of the treated plants after the challenge inoculation. Drench application of 13C labeled hexanoic demonstrated that this molecule stays in the roots and is not mobilized to the leaves, suggesting long distance induction of resistance. Moreover, the study of the metabolic profile showed an alteration of more than 200 molecules differentially induced by the application of the compound and the inoculation with the fungus. Bioinformatics analysis of data showed that most of these altered molecules could be related with the mevalonic and linolenic pathways suggesting the implication of these pathways in the induced resistance mediated by Hx. Finally, the application of this compound showed an enhancement of the emission of 17 volatile metabolites. Taken together, this study indicates that after the application of Hx this compound remains in the roots, provoking molecular changes that may trigger the defensive response in the rest of the plant mediated by changes in the mevalonic and linolenic pathways and enhancing the emission of volatile compounds, suggesting for the first time the implication of mevalonic pathway in response to hexanoic application. PMID:27148319

  16. Alpha-Linolenic Acid-Induced Increase in Neurogenesis is a Key Factor in the Improvement in the Passive Avoidance Task After Soman Exposure.

    PubMed

    Piermartiri, Tetsade C B; Pan, Hongna; Chen, Jun; McDonough, John; Grunberg, Neil; Apland, James P; Marini, Ann M

    2015-09-01

    Exposure to organophosphorous (OP) nerve agents such as soman inhibits the critical enzyme acetylcholinesterase (AChE) leading to excessive acetylcholine accumulation in synapses, resulting in cholinergic crisis, status epilepticus and brain damage in survivors. The hippocampus is profoundly damaged after soman exposure leading to long-term memory deficits. We have previously shown that treatment with three sequential doses of alpha-linolenic acid, an essential omega-3 polyunsaturated fatty acid, increases brain plasticity in naïve animals. However, the effects of this dosing schedule administered after a brain insult and the underlying molecular mechanisms in the hippocampus are unknown. We now show that injection of three sequential doses of alpha-linolenic acid after soman exposure increases the endogenous expression of mature BDNF, activates Akt and the mammalian target of rapamycin complex 1 (mTORC1), increases neurogenesis in the subgranular zone of the dentate gyrus, increases retention latency in the passive avoidance task and increases animal survival. In sharp contrast, while soman exposure also increases mature BDNF, this increase did not activate downstream signaling pathways or neurogenesis. Administration of the inhibitor of mTORC1, rapamycin, blocked the alpha-linolenic acid-induced neurogenesis and the enhanced retention latency but did not affect animal survival. Our results suggest that alpha-linolenic acid induces a long-lasting neurorestorative effect that involves activation of mTORC1 possibly via a BDNF-TrkB-mediated mechanism. PMID:25920465

  17. Repeated systemic administration of the nutraceutical alpha-linolenic acid exerts neuroprotective efficacy, an antidepressant effect and improves cognitive performance when given after soman exposure.

    PubMed

    Pan, Hongna; Piermartiri, Tetsade C B; Chen, Jun; McDonough, John; Oppel, Craig; Driwech, Wafae; Winter, Kristin; McFarland, Emylee; Black, Katelyn; Figueiredo, Taiza; Grunberg, Neil; Marini, Ann M

    2015-12-01

    Exposure to nerve agents results in severe seizures or status epilepticus caused by the inhibition of acetylcholinesterase, a critical enzyme that breaks down acetylcholine to terminate neurotransmission. Prolonged seizures cause brain damage and can lead to long-term consequences. Current countermeasures are only modestly effective against the brain damage supporting interest in the evaluation of new and efficacious therapies. The nutraceutical alpha-linolenic acid (LIN) is an essential omega-3 polyunsaturated fatty acid that has a wide safety margin. Previous work showed that a single intravenous injection of alpha-linolenic acid (500 nmol/kg) administered before or after soman significantly protected against soman-induced brain damage when analyzed 24h after exposure. Here, we show that administration of three intravenous injections of alpha-linolenic acid over a 7 day period after soman significantly improved motor performance on the rotarod, enhanced memory retention, exerted an anti-depressant-like activity and increased animal survival. This dosing schedule significantly reduced soman-induced neuronal degeneration in four major vulnerable brain regions up to 21 days. Taken together, alpha-linolenic acid reduces the profound behavioral deficits induced by soman possibly by decreasing neuronal cell death, and increases animal survival.

  18. The effect of linoleic acid on the whole body synthesis rates of polyunsaturated fatty acids from α-linolenic acid and linoleic acid in free-living rats.

    PubMed

    Domenichiello, Anthony F; Kitson, Alex P; Chen, Chuck T; Trépanier, Marc-Olivier; Stavro, P Mark; Bazinet, Richard P

    2016-04-01

    Docosahexaenoic acid (DHA) is thought to be important for brain function. The main dietary source of DHA is fish, however, DHA can also be synthesized from precursor omega-3 polyunsaturated fatty acids (n-3 PUFA), the most abundantly consumed being α-linolenic acid (ALA). The enzymes required to synthesize DHA from ALA are also used to synthesize longer chain omega-6 (n-6) PUFA from linoleic acid (LNA). The large increase in LNA consumption that has occurred over the last century has led to concern that LNA and other n-6 PUFA outcompete n-3 PUFA for enzymes involved in DHA synthesis, and therefore, decrease overall DHA synthesis. To assess this, rats were fed diets containing LNA at 53 (high LNA diet), 11 (medium LNA diet) or 1.5% (low LNA diet) of the fatty acids with ALA being constant across all diets (approximately 4% of the fatty acids). Rats were maintained on these diets from weaning for 8 weeks, at which point they were subjected to a steady-state infusion of labeled ALA and LNA to measure DHA and arachidonic acid (ARA) synthesis rates. DHA and ARA synthesis rates were generally highest in rats fed the medium and high LNA diets, while the plasma half-life of DHA was longer in rats fed the low LNA diet. Therefore, increasing dietary LNA, in rats, did not impair DHA synthesis; however, low dietary LNA led to a decrease in DHA synthesis with tissue concentrations of DHA possibly being maintained by a longer DHA half-life.

  19. Simultaneous Inhibition of Linolenic Acid Synthesis in Winter Wheat Roots and Frost Hardening by BASF 13-338, a Derivative of Pyridazinone.

    PubMed

    Willemot, C

    1977-07-01

    Treatment of 12-day-old winter wheat (Triticum aestivum) plants with BASF 13-338 {4-chloro-5 (dimethylamino)-2-phenyl-3(2H)-pyridazinone} 36 hours before frost hardening simultaneously and completely inhibits accumulation of linolenic acid in the roots during the hardening period and the acquisition of frost resistance. Increased unsaturation of fatty acids is therefore probably an important part of the mechanism of cold adaptation in winter wheat.BASF 13-338 also prevents the increase in per cent dry weight in roots and shoots during hardening and causes a decrease in root lipid phosphorus and total fatty acids.The concurrent increase in linoleic acid and decrease in linolenic acid in the treated plants, while the level of the other fatty acids is but little affected, suggest that BASF 13-338 specifically inhibits linoleic acid desaturase.

  20. Production of arachidonic acid and dihomo-gamma-linolenic acid from glycerol by oil-producing filamentous fungi, Mortierella in the ARS culture collection.

    PubMed

    Hou, Ching T

    2008-06-01

    The filamentous fungi of the genus Mortierella are known to produce arachidonic acid from glucose, and the species alpina is currently used in industrial production of arachidonic acid in Japan. In anticipation of a large excess of the co-product glycerol from the national biodiesel program, we are trying to find new uses for bioglycerin. We screened 12 Mortierella species: M. alpina NRRL 6302, M. claussenii NRRL 2760, M. elongata NRRL 5246, M. epigama NRRL 5512, M. humilis NRRL 6369, M. hygrophila NRRL 2591, M. minutissima NRRL 6462, M. multidivaricata NRRL 6456, M. nantahalensis NRRL 5216, M. parvispora NRRL 2941, M. sepedonioides NRRL 6425, and M. zychae NRRL 2592 for their production of arachidonic acid (AA) and dihomo-gamma-linolenic acid (DGLA) from glycerol. With glucose as substrate all of the strains tested produced AA and DGLA. The total fatty acid content of 125 mg/g cell dry weight (CDW) and fatty acid composition for AA (19.63%) and DGLA (5.95%) in the mycelia of M. alpina grown on glucose were comparable with those reported by Takeno et al. (Appl Environ Microbiol 71:5124-5128, 2005). With glycerol as substrate all species tested grew on glycerol and produced AA and DGLA except M. nantahalensis NRRL 5216, which could not grow on glycerol. The amount of AA and DGLA produced were comparable with those obtained with glucose-grown mycelia. The top five AA producers (mg AA/CDW) from glycerol were in the following order: M. parvispora>M. claussenii>M. alpina>M. zychae>M. minutissima. The top five dry mycelia weights were: M. zychae>M. epigama>M. hygrophila>M. humilis>M. minutissima. The top five species for total fatty acids production (mg/g CDW) were: M. claussenii>M. parvispora>M. minutissima>M. hygrophila>M. maltidivaricata. We selected two species, M. alpina and M. zychae for further studies with glycerol substrate. Their optimum production conditions were determined. Time course studies showed that the maximum cell growth and AA production for both

  1. Functional bread with n-3 alpha linolenic acid from whole chia (Salvia hispanica L.) flour.

    PubMed

    Luna Pizarro, Patricia; Almeida, Eveline Lopes; Coelho, Alessandra Silva; Sammán, Norma Cristina; Hubinger, Miriam Dupas; Chang, Yoon Kil

    2015-07-01

    This work proposed to study the effects of the addition of whole chia flour (WCF) on the technological, nutritional and sensory qualities of bread. Different WCF contents (0 and 20 %) and vital gluten (VG) (0 and 4 %) were added to bread according to a 2(2) central composite rotational design. WCF decreased the specific volume, lightness and hue angle of the bread loaves, but did not affect the chroma values. WCF and VG contributed to maintenance of the moisture content of the loaves during the storage period. The increased firmness found with the addition of high levels of WCF (more than 10 %) was countered by larger amounts of VG (more than 2 %). The optimum loaf (10 % WCF and 2 % VG) showed 26 % more lipids, 19 % more protein and 11 % more ash than the standard loaf (0 % WCF and 0 % VG). A better lipid profile was also found (higher omega-3 fatty acid content and a better omega-6/omega-3 ratio). Both breads were positively rated in the sensory profile analysis.

  2. Screening and molecular identification of overproducing γ-linolenic acid fungi and cloning the delta 6-desaturase gene.

    PubMed

    Lu, He; Zhu, Yu

    2015-01-01

    This research aims at isolating and identifying γ-linolenic acid (GLA)-producing fungi in the traditional Chinese salt-fermented soybean food, Douchi, from Yongchuan, People's Republic of China. In this study, Rhizopus oryzae DR3 was identified as a novel fungal species that produces large amounts of GLA. A full-length cDNA, designated as RoD6 D, with high homology to fungal △6 fatty acid desaturase genes was isolated from R. oryzae by using the rapid amplification of cDNA ends method. It had an open reading frame of 1,176 bp encoding a deduced polypeptide of 391 amino acids. Bioinformatics analysis characterized the putative RoD6 D protein as a typical membrane-bound desaturase, including three conserved histidine-rich motifs, a hydropathy profile, and a cytochrome b5 -like domain in the N-terminus. When the coding sequence was expressed in the Saccharomyces cerevisiae strain INVScl, the encoded product of RoD6 D exhibited △6 fatty acid desaturase activity that led to the accumulation of GLA. The results show that Douchi contains a large natural diverse composition, and some strains could be selected as starters for functional fermented foods. This study has also laid a foundation for developing functional Douchi products for further research. PMID:25169017

  3. Screening of microbial lipases and evalutaion of their potential to produce glycerides with high gamma linolenic acid concentration.

    PubMed

    Fregolente, Patricia B L; Fregolente, Leonardo V; Maciel, Maria R W; Carvalho, Patricia O

    2009-10-01

    Gamma linolenic acid (GLA, 18:3, cis- 6,9,12- octadecatrienoic acid), an important compound in n- 6 eicosanoid family biosynthesis, occurs in the lipids of a few plant and microbial sources. This study focused on the screening of microbial strains with suitable lipase activity for enrichment of GLA by selective hydrolysis of the borage oil (21.6 % of GLA/total fatty acids). Firstly, 352 microrganisms were tested for their lipolytic capacity using screening techniques on agar plates containing borage oil, strains were then selected and screened for their activity (U/mg) using both submerged fermentation (SmF) and solid state fermentation (SSF). The rate of hydrolysis and the selective preference of these hydrolytic enzymes towards fatty acids, with a special focus on enrichment of GLA were studied and compared with those obtained by two commercially-available lipases. Only one of the lipases tested during this study displayed selectivity, discriminating the GLA during the hydrolysis reaction. Using the enzymatic extract from Geotrichum candidum as a biocatalyst of the reaction, it was possible to obtain a percentage of 41.7% of GLA in acylglycerols fraction when the borage oil was treated in a fixed-bed reactor for 24 hours at 30ºC. PMID:24031421

  4. Screening and molecular identification of overproducing γ-linolenic acid fungi and cloning the delta 6-desaturase gene.

    PubMed

    Lu, He; Zhu, Yu

    2015-01-01

    This research aims at isolating and identifying γ-linolenic acid (GLA)-producing fungi in the traditional Chinese salt-fermented soybean food, Douchi, from Yongchuan, People's Republic of China. In this study, Rhizopus oryzae DR3 was identified as a novel fungal species that produces large amounts of GLA. A full-length cDNA, designated as RoD6 D, with high homology to fungal △6 fatty acid desaturase genes was isolated from R. oryzae by using the rapid amplification of cDNA ends method. It had an open reading frame of 1,176 bp encoding a deduced polypeptide of 391 amino acids. Bioinformatics analysis characterized the putative RoD6 D protein as a typical membrane-bound desaturase, including three conserved histidine-rich motifs, a hydropathy profile, and a cytochrome b5 -like domain in the N-terminus. When the coding sequence was expressed in the Saccharomyces cerevisiae strain INVScl, the encoded product of RoD6 D exhibited △6 fatty acid desaturase activity that led to the accumulation of GLA. The results show that Douchi contains a large natural diverse composition, and some strains could be selected as starters for functional fermented foods. This study has also laid a foundation for developing functional Douchi products for further research.

  5. Screening of microbial lipases and evalutaion of their potential to produce glycerides with high gamma linolenic acid concentration

    PubMed Central

    Fregolente, Patricia B.L.; Fregolente, Leonardo V.; Maciel, Maria R.W.; Carvalho, Patricia O.

    2009-01-01

    Gamma linolenic acid (GLA, 18:3, cis- 6,9,12- octadecatrienoic acid), an important compound in n- 6 eicosanoid family biosynthesis, occurs in the lipids of a few plant and microbial sources. This study focused on the screening of microbial strains with suitable lipase activity for enrichment of GLA by selective hydrolysis of the borage oil (21.6 % of GLA/total fatty acids). Firstly, 352 microrganisms were tested for their lipolytic capacity using screening techniques on agar plates containing borage oil, strains were then selected and screened for their activity (U/mg) using both submerged fermentation (SmF) and solid state fermentation (SSF). The rate of hydrolysis and the selective preference of these hydrolytic enzymes towards fatty acids, with a special focus on enrichment of GLA were studied and compared with those obtained by two commercially-available lipases. Only one of the lipases tested during this study displayed selectivity, discriminating the GLA during the hydrolysis reaction. Using the enzymatic extract from Geotrichum candidum as a biocatalyst of the reaction, it was possible to obtain a percentage of 41.7% of GLA in acylglycerols fraction when the borage oil was treated in a fixed-bed reactor for 24 hours at 30ºC. PMID:24031421

  6. Screening of microbial lipases and evalutaion of their potential to produce glycerides with high gamma linolenic acid concentration.

    PubMed

    Fregolente, Patricia B L; Fregolente, Leonardo V; Maciel, Maria R W; Carvalho, Patricia O

    2009-10-01

    Gamma linolenic acid (GLA, 18:3, cis- 6,9,12- octadecatrienoic acid), an important compound in n- 6 eicosanoid family biosynthesis, occurs in the lipids of a few plant and microbial sources. This study focused on the screening of microbial strains with suitable lipase activity for enrichment of GLA by selective hydrolysis of the borage oil (21.6 % of GLA/total fatty acids). Firstly, 352 microrganisms were tested for their lipolytic capacity using screening techniques on agar plates containing borage oil, strains were then selected and screened for their activity (U/mg) using both submerged fermentation (SmF) and solid state fermentation (SSF). The rate of hydrolysis and the selective preference of these hydrolytic enzymes towards fatty acids, with a special focus on enrichment of GLA were studied and compared with those obtained by two commercially-available lipases. Only one of the lipases tested during this study displayed selectivity, discriminating the GLA during the hydrolysis reaction. Using the enzymatic extract from Geotrichum candidum as a biocatalyst of the reaction, it was possible to obtain a percentage of 41.7% of GLA in acylglycerols fraction when the borage oil was treated in a fixed-bed reactor for 24 hours at 30ºC.

  7. Metabolic engineering of long chain-polyunsaturated fatty acid biosynthetic pathway in oleaginous fungus for dihomo-gamma linolenic acid production.

    PubMed

    Chutrakul, Chanikul; Jeennor, Sukanya; Panchanawaporn, Sarocha; Cheawchanlertfa, Pattsarun; Suttiwattanakul, Sarinya; Veerana, Mayura; Laoteng, Kobkul

    2016-01-20

    Microbial lipids are promising alternative sources of long chain-polyunsaturated fatty acids (LC-PUFAs) for food, feed, nutraceutical and pharmaceutical sectors. Dihomo-γ-linolenic acid (C20:3Δ(8,11,14); DGLA) is an important LC-PUFAs with anti-inflammatory and anti-proliferative effects. To generate a DGLA-producing strain, fatty acid reconstitution in Aspergillus oryzae was performed by metabolic engineering through co-expression of codon-optimized Pythium Δ(6)-desaturase and Δ(6)-elongase, which had high conversion rates of substrates to respective products as compared to the native enzymes. The Δ(6)-desaturated and Δ(6)-elongated products, γ-linolenic acid (C18:3Δ(6,9,12); GLA) and DGLA, were accumulated in phospholipids rather than triacylglycerol. Interestingly, the manipulation of lipid quality in the oleaginous fungus did not affect growth and lipid phenotypes. This strategy might expand to development of the oleaginous fungal strain for producing other tailor-made oils with industrial applications. PMID:26686314

  8. Metabolic engineering of long chain-polyunsaturated fatty acid biosynthetic pathway in oleaginous fungus for dihomo-gamma linolenic acid production.

    PubMed

    Chutrakul, Chanikul; Jeennor, Sukanya; Panchanawaporn, Sarocha; Cheawchanlertfa, Pattsarun; Suttiwattanakul, Sarinya; Veerana, Mayura; Laoteng, Kobkul

    2016-01-20

    Microbial lipids are promising alternative sources of long chain-polyunsaturated fatty acids (LC-PUFAs) for food, feed, nutraceutical and pharmaceutical sectors. Dihomo-γ-linolenic acid (C20:3Δ(8,11,14); DGLA) is an important LC-PUFAs with anti-inflammatory and anti-proliferative effects. To generate a DGLA-producing strain, fatty acid reconstitution in Aspergillus oryzae was performed by metabolic engineering through co-expression of codon-optimized Pythium Δ(6)-desaturase and Δ(6)-elongase, which had high conversion rates of substrates to respective products as compared to the native enzymes. The Δ(6)-desaturated and Δ(6)-elongated products, γ-linolenic acid (C18:3Δ(6,9,12); GLA) and DGLA, were accumulated in phospholipids rather than triacylglycerol. Interestingly, the manipulation of lipid quality in the oleaginous fungus did not affect growth and lipid phenotypes. This strategy might expand to development of the oleaginous fungal strain for producing other tailor-made oils with industrial applications.

  9. Targeted Lipidomics Studies Reveal that Linolenic Acid Promotes Cotton Fiber Elongation by Activating Phosphatidylinositol and Phosphatidylinositol Monophosphate Biosynthesis.

    PubMed

    Liu, Gao-Jun; Xiao, Guang-Hui; Liu, Ning-Jing; Liu, Dan; Chen, Pei-Shuang; Qin, Yong-Mei; Zhu, Yu-Xian

    2015-06-01

    The membrane lipids from fast-elongating wild-type cotton (Gossypium hirsutum) fibers at 10 days post-anthesis, wild-type ovules with fiber cells removed, and ovules from the fuzzless-lintless mutant harvested at the same age, were extracted, separated, and quantified. Fiber cells contained significantly higher amounts of phosphatidylinositol (PI) than both ovule samples with PI 34:3 being the most predominant species. The genes encoding fatty acid desaturases (Δ(15)GhFAD), PI synthase (PIS) and PI kinase (PIK) were expressed in a fiber-preferential manner. Further analysis of phosphatidylinositol monophosphate (PIP) indicated that elongating fibers contained four- to five-fold higher amounts of PIP 34:3 than the ovules. Exogenously applied linolenic acid (C18:3), soybean L-α-PI, and PIPs containing PIP 34:3 promoted significant fiber growth, whereas a liver PI lacking the C18:3 moiety, linoleic acid, and PIP 36:2 were completely ineffective. The growth inhibitory effects of carbenoxolone, 5-hydroxytryptamine, and wortmannin were reverted by C18:3, PI, or PIP, respectively, suggesting that PIP signaling is essential for fiber cell growth. Furthermore, cotton plants expressing virus-induced gene-silencing constructs that specifically suppressed GhΔ(15)FAD, GhPIS, or GhPIK expression, resulted in significantly short-fibered phenotypes. Our data provide the basis for in-depth studies on the roles of PI and PIP in mediating cotton fiber growth.

  10. Down-regulation of malignant potential by alpha linolenic acid in human and mouse colon cancer cells.

    PubMed

    Chamberland, John P; Moon, Hyun-Seuk

    2015-03-01

    Omega-3 fatty acids (also called ω-3 fatty acis or n-3 fatty acid) are polyunsaturated fatty acids (PUFAs) with a double bond (C=C) at the third carbon atom from the end of the carbon chain. Numerous test tube and animal studies have shown that omega-3 fatty acids may prevent or inhibit the growth of cancers, suggesting that omega-3 fatty acids are important in cancer physiology. Alpha-linolenic acid (ALA) is one of an essential omega-3 fatty acid and organic compound found in seeds (chia and flaxseed), nuts (notably walnuts), and many common vegetable oils. ALA has also been shown to down-regulate cell proliferation of prostate, breast, and bladder cancer cells. However, direct evidence that ALA suppresses to the development of colon cancer has not been studied. Also, no previous studies have evaluated whether ALA may regulate malignant potential (adhesion, invasion and colony formation) in colon cancer cells. In order to address the questions above, we conducted in vitro studies and evaluated whether ALA may down-regulate malignant potential in human (HT29 and HCT116) and mouse (MCA38) colon cancer cell lines. We observed that treatment with 1-5 mM of ALA inhibits cell proliferation, adhesion and invasion in both human and mouse colon cancer cell lines. Interestingly, we observed that ALA did not decrease total colony numbers when compared to control. By contrast, we found that size of colony was significantly changed by ALA treatment when compared to control in all colon cancer cell lines. We suggest that our data enhance our current knowledge of ALA's mechanism and provide crucial information to further the development of new therapies for the management or chemoprevention of colon cancer.

  11. Bioconversion of α-linolenic acid to n-3 LCPUFA and expression of PPAR-alpha, acyl Coenzyme A oxidase 1 and carnitine acyl transferase I are incremented after feeding rats with α-linolenic acid-rich oils.

    PubMed

    González-Mañán, Daniel; Tapia, Gladys; Gormaz, Juan Guillermo; D'Espessailles, Amanda; Espinosa, Alejandra; Masson, Lilia; Varela, Patricia; Valenzuela, Alfonso; Valenzuela, Rodrigo

    2012-07-01

    High dietary intake of n-6 fatty acids in relation to n-3 fatty acids may generate health disorders, such as cardiovascular and other chronic diseases. Fish consumption rich in n-3 fatty acids is low in Latin America, it being necessary to seek other alternatives to provide α-linolenic acid (ALA), precursor of n-3 LCPUFA (EPA and DHA). Two innovative oils were assayed, chia (Salvia hispanica) and rosa mosqueta (Rosa rubiginosa). This study evaluated hepatic bioconversion of ALA to EPA and DHA, expression of PPAR-α, acyl-Coenzyme A oxidase 1 (ACOX1) and carnitine acyltransferase I (CAT-I), and accumulation of EPA and DHA in plasma and adipose tissue in Sprague-Dawley rats. Three experimental groups were fed 21 days: sunflower oil (SFO, control); chia oil (CO); rosa mosqueta oil (RMO). Fatty acid composition of total lipids and phospholipids from plasma, hepatic and adipose tissue was assessed by gas-liquid chromatography and TLC. Expression of PPAR-α (RT-PCR) and ACOX1 and CAT-I (Western blot). CO and RMO increased plasma, hepatic and adipose tissue levels of ALA, EPA and DHA and decreased n-6:n-3 ratio compared to SFO (p < 0.05, One-way ANOVA and Newman-Keuls test). CO increased levels of ALA and EPA compared to RMO (p < 0.05). No significant differences were observed for DHA levels. CO also increased the expression of PPAR-α, ACOX1 and CAT-I. Only CAT-I levels were increased by RO. CO and RMO may be a nutritional alternative to provide ALA for its bioconversion to EPA and DHA, and to increase the expression of PPAR-α, ACOX1 and CAT-I, especially CO-oil.

  12. α-linolenic acid concentration and not wounding per se is the key regulator of octadecanoid (oxylipin) pathway activity in rice (Oryza sativa L.) leaves.

    PubMed

    Christeller, John T; Galis, Ivan

    2014-10-01

    Using an in vitro system composed of crushed leaf tissues to simulate the wounding response in rice leaves, we established that synthesis of jasmonic acid (JA) and jasmonic acid-isoleucine (JA-Ile) can only occur in unwounded tissue and, in wounded tissue, that only the chloroplast-located section of the octadecanoid pathway is active, resulting in the accumulation of 12-oxo-phytodienoic acid (OPDA). We further showed that OPDA accumulation in vitro was inhibited by 90% using the general lipase inhibitor, tetrahydrolipstatin, indicating that production of α-linolenic acid was the rate-limiting step in octadecanoid pathway activity in rice following wounding and the enzyme capacity for an active pathway was already present. We confirmed this result by showing that added α-linolenic acid stimulated OPDA synthesis in vitro and stimulated OPDA, JA and JA-Ile synthesis in vivo in unwounded tissue. Thus, the response to wounding can be mimicked by the provision of free α-linolenic acid. Our results draw attention to the key importance of lipase activity in initiation of JA and JA-Ile biosynthesis and our lack of knowledge of the cognate lipase(s), lipase substrate identity and mechanism(s) of activation in wounded and unwounded tissue.

  13. Dihomo-gamma-linolenic acid inhibits tumour necrosis factor-alpha production by human leucocytes independently of cyclooxygenase activity.

    PubMed

    Dooper, Maaike M B W; van Riel, Boet; Graus, Yvo M F; M'Rabet, Laura

    2003-11-01

    Dietary oils (such as borage oil), which are rich in gamma-linolenic acid (GLA), have been shown to be beneficial under inflammatory conditions. Dihomo-GLA (DGLA) is synthesized directly from GLA and forms a substrate for cyclooxygenase (COX) enzymes, resulting in the synthesis of lipid mediators (eicosanoids). In the present study, the immunomodulatory effects of DGLA were investigated and compared with those of other relevant fatty acids. Freshly isolated human peripheral blood mononuclear cells (PBMC) were cultured in fatty acid (100 microm)-enriched medium for 48 hr. Subsequently, cells were stimulated with lipopolysaccharide (LPS) for 20 hr and the cytokine levels were measured, in supernatants, by enzyme-linked immunosorbent assay (ELISA). Phospholipids were analysed by gas chromatography. Fatty acids were readily taken up, metabolized and incorporated into cellular phospholipids. Compared with the other fatty acids tested, DGLA exerted pronounced modulatory effects on cytokine production. Tumour necrosis factor-alpha (TNF-alpha) and interleukin (IL)-10 levels were reduced to 60% of control levels, whereas IL-6 levels were not affected by DGLA. Kinetic studies showed that peak levels of TNF-alpha, occurring early after LPS addition, were inhibited strongly, whereas IL-10 levels were not affected until 15 hr after stimulation. Both the reduction of cytokine levels and the decrease in arachidonic acid levels in these cells, induced by DGLA, were dose dependent, suggesting a shift in eicosanoid-subtype synthesis. However, although some DGLA-derived eicosanoids similarly reduced TNF-alpha levels, the effects of DGLA were probably not mediated by COX products, as the addition of indomethacin did not alter the effects of DGLA. In conclusion, these results suggest that DGLA affects cytokine production by human PBMC independently of COX activation. PMID:14632663

  14. α-Ketol linolenic acid (KODA) application affects endogenous abscisic acid, jasmonic acid and aromatic volatiles in grapes infected by a pathogen (Glomerella cingulata).

    PubMed

    Wang, Shanshan; Saito, Takanori; Ohkawa, Katsuya; Ohara, Hitoshi; Shishido, Masahiro; Ikeura, Hiromi; Takagi, Kazuteru; Ogawa, Shigeyuki; Yokoyama, Mineyuki; Kondo, Satoru

    2016-03-15

    Effects of α-ketol linolenic acid (KODA) application on endogenous abscisic acid (ABA), jasmonic acid (JA), and aromatic volatiles were investigated in 'Kyoho' grapes (Vitis labrusca×Vitis vinifera) infected by a pathogen (Glomerella cingulata). The expressions of 9-cis-epoxycarotenoid dioxygenase (VvNCED1), ABA 8'-hydroxylase (VvCYP707A1), lipoxygenase (VvLOX), and allene oxide synthase (VvAOS) were also examined. The grape berries were dipped in 0.1mM KODA solution before inoculation with the pathogen and stored at 25°C for 12 days. The development of infection was significantly suppressed upon KODA treatment. Endogenous ABA, JA and phaseic acid (PA) were induced in inoculated berries. KODA application before inoculation increased endogenous ABA, PA and JA through the activation of VvNCED1, VvCYP707A1 and VvAOS genes, respectively. In addition, terpenes, methyl salicylate (Me-SA) and C6-aldehydes such as (E)-2-hexenal and cis-3-hexenal associated with fungal resistance also increased in KODA-treated berries during storage. These results suggest that the synergistic effect of JA, ABA, and some aromatic volatiles induced by KODA application may provide resistance to pathogen infection in grape berries. PMID:26881925

  15. Differential effect of maternal diet supplementation with α-Linolenic adcid or n-3 long-chain polyunsaturated fatty acids on glial cell phosphatidylethanolamine and phosphatidylserine fatty acid profile in neonate rat brains

    PubMed Central

    2010-01-01

    Background Dietary long-chain polyunsaturated fatty acids (LC-PUFA) are of crucial importance for the development of neural tissues. The aim of this study was to evaluate the impact of a dietary supplementation in n-3 fatty acids in female rats during gestation and lactation on fatty acid pattern in brain glial cells phosphatidylethanolamine (PE) and phosphatidylserine (PS) in the neonates. Methods Sprague-Dawley rats were fed during the whole gestation and lactation period with a diet containing either docosahexaenoic acid (DHA, 0.55%) and eicosapentaenoic acid (EPA, 0.75% of total fatty acids) or α-linolenic acid (ALA, 2.90%). At two weeks of age, gastric content and brain glial cell PE and PS of rat neonates were analyzed for their fatty acid and dimethylacetal (DMA) profile. Data were analyzed by bivariate and multivariate statistics. Results In the neonates from the group fed with n-3 LC-PUFA, the DHA level in gastric content (+65%, P < 0.0001) and brain glial cell PE (+18%, P = 0.0001) and PS (+15%, P = 0.0009) were significantly increased compared to the ALA group. The filtered correlation analysis (P < 0.05) underlined that levels of dihomo-γ-linolenic acid (DGLA), DHA and n-3 docosapentaenoic acid (DPA) were negatively correlated with arachidonic acid (ARA) and n-6 DPA in PE of brain glial cells. No significant correlation between n-3 and n-6 LC-PUFA were found in the PS dataset. DMA level in PE was negatively correlated with n-6 DPA. DMA were found to occur in brain glial cell PS fraction; in this class DMA level was correlated negatively with DHA and positively with ARA. Conclusion The present study confirms that early supplementation of maternal diet with n-3 fatty acids supplied as LC-PUFA is more efficient in increasing n-3 in brain glial cell PE and PS in the neonate than ALA. Negative correlation between n-6 DPA, a conventional marker of DHA deficiency, and DMA in PE suggests n-6 DPA that potentially be considered as a marker of tissue

  16. Effect of long-term dietary supplementation of high-gamma-linolenic canola oil versus borage oil on growth, hematology, serum biochemistry, and N-6 fatty acid metabolism in rats.

    PubMed

    Liu, Jim-Wen; DeMichele, Stephen J; Palombo, John; Chuang, Lu-Te; Hastilow, Christine; Bobik, Emil; Huang, Yung-Sheng

    2004-06-16

    Dietary supplementation of a high-gamma-linolenic acid canola oil (HGCO) containing approximately 36% (w/w) of gamma-linolenic acid (GLA, 18:3n-6) from the seeds of a genetically transformed canola strain, was assessed for its long-term biological effects. Growing Sprague-Dawley rats (n = 30) were fed a purified AIN93G diet containing 5, 10, or 15% (w/w) of HGCO as the fat source. For comparison, a separate group of rats (n = 10) was given the diet containing 15% (w/w) of borage oil (BO), which contained 22% (w/w) of GLA. After 12 weeks of feeding, the growth, relative organ weights, hematology, and serum biochemistry were found to be similar among rats fed the 5, 10, and 15% HGCO diets. The GLA levels in plasma and liver phospholipids (PL) were also similar. However, the levels of GLA in peripheral tissues (muscle PL and adipose triacylglycerols) were significantly higher in rats fed the 10 and 15% HGCO diets than those fed the 5% HGCO diet. When the above biologic parameters were compared between the 15% HGCO and 15% BO dietary groups, there were no significant differences except for lower final body weights and higher tissue levels of GLA, dihomo-gamma-linolenic acid (20:3n-6) and arachidonic acid (20:4n-6) in the 15% HGCO dietary group as compared with the 15% BO dietary group. This is due to a higher GLA content and possibly a more favorable stereospecific distribution of GLA in HGCO. Overall, long-term (12-week) feeding with diets containing up to 15% HGCO resulted in no adverse effects on growth, organ weight, hematology and serum biochemistry as compared to the diet containing 15% BO, suggesting that HGCO may be a safe alternative source of GLA. PMID:15186123

  17. Effect of long-term dietary supplementation of high-gamma-linolenic canola oil versus borage oil on growth, hematology, serum biochemistry, and N-6 fatty acid metabolism in rats.

    PubMed

    Liu, Jim-Wen; DeMichele, Stephen J; Palombo, John; Chuang, Lu-Te; Hastilow, Christine; Bobik, Emil; Huang, Yung-Sheng

    2004-06-16

    Dietary supplementation of a high-gamma-linolenic acid canola oil (HGCO) containing approximately 36% (w/w) of gamma-linolenic acid (GLA, 18:3n-6) from the seeds of a genetically transformed canola strain, was assessed for its long-term biological effects. Growing Sprague-Dawley rats (n = 30) were fed a purified AIN93G diet containing 5, 10, or 15% (w/w) of HGCO as the fat source. For comparison, a separate group of rats (n = 10) was given the diet containing 15% (w/w) of borage oil (BO), which contained 22% (w/w) of GLA. After 12 weeks of feeding, the growth, relative organ weights, hematology, and serum biochemistry were found to be similar among rats fed the 5, 10, and 15% HGCO diets. The GLA levels in plasma and liver phospholipids (PL) were also similar. However, the levels of GLA in peripheral tissues (muscle PL and adipose triacylglycerols) were significantly higher in rats fed the 10 and 15% HGCO diets than those fed the 5% HGCO diet. When the above biologic parameters were compared between the 15% HGCO and 15% BO dietary groups, there were no significant differences except for lower final body weights and higher tissue levels of GLA, dihomo-gamma-linolenic acid (20:3n-6) and arachidonic acid (20:4n-6) in the 15% HGCO dietary group as compared with the 15% BO dietary group. This is due to a higher GLA content and possibly a more favorable stereospecific distribution of GLA in HGCO. Overall, long-term (12-week) feeding with diets containing up to 15% HGCO resulted in no adverse effects on growth, organ weight, hematology and serum biochemistry as compared to the diet containing 15% BO, suggesting that HGCO may be a safe alternative source of GLA.

  18. Conversion of α-linolenic acid to long-chain omega-3 fatty acid derivatives and alterations of HDL density subfractions and plasma lipids with dietary polyunsaturated fatty acids in Monk parrots (Myiopsitta monachus).

    PubMed

    Petzinger, C; Larner, C; Heatley, J J; Bailey, C A; MacFarlane, R D; Bauer, J E

    2014-04-01

    The effect of α-linolenic acid from a flaxseed (FLX)-enriched diet on plasma lipid and fatty acid metabolism and possible atherosclerosis risk factors was studied in Monk parrots (Myiopsitta monachus). Twenty-four Monk parrots were randomly assigned to diets containing either 10% ground SUNs or 10% ground FLXs. Feed intake was calculated daily. Blood samples, body condition scores and body weights were obtained at -5 weeks, day 0, 7, 14, 28, 42 and 70. Plasma samples were analysed for total cholesterol, free cholesterol, triacylglycerols and lipoproteins. Phospholipid subfraction fatty acid profiles were determined. By day 70, the FLX group had significantly higher plasma phospholipid fatty acids including 18:3n-3 (α-linolenic acid), 20:5n-3 (eicosapentaenoic acid) and 22:6n-3 (docosahexaenoic acid). The sunflower group had significantly higher plasma phospholipid levels of 20:4n-6 (arachidonic acid). By day 70, the high-density lipoprotein (HDL) peak shifted resulting in significantly different HDL peak densities between the two experimental groups (1.097 g/ml FLX group and 1.095 g/ml SUN group, p = 0.028). The plasma fatty acid results indicate that Monk parrots can readily convert α-linolenic acid to the long-chain omega-3 derivatives including docosahexaenoic acid and reduce 20:4n-6 accumulation in plasma phospholipids. The reason for a shift in the HDL peak density is unknown at this time. PMID:23600588

  19. Conversion of α-linolenic acid to long-chain omega-3 fatty acid derivatives and alterations of HDL density subfractions and plasma lipids with dietary polyunsaturated fatty acids in Monk parrots (Myiopsitta monachus).

    PubMed

    Petzinger, C; Larner, C; Heatley, J J; Bailey, C A; MacFarlane, R D; Bauer, J E

    2014-04-01

    The effect of α-linolenic acid from a flaxseed (FLX)-enriched diet on plasma lipid and fatty acid metabolism and possible atherosclerosis risk factors was studied in Monk parrots (Myiopsitta monachus). Twenty-four Monk parrots were randomly assigned to diets containing either 10% ground SUNs or 10% ground FLXs. Feed intake was calculated daily. Blood samples, body condition scores and body weights were obtained at -5 weeks, day 0, 7, 14, 28, 42 and 70. Plasma samples were analysed for total cholesterol, free cholesterol, triacylglycerols and lipoproteins. Phospholipid subfraction fatty acid profiles were determined. By day 70, the FLX group had significantly higher plasma phospholipid fatty acids including 18:3n-3 (α-linolenic acid), 20:5n-3 (eicosapentaenoic acid) and 22:6n-3 (docosahexaenoic acid). The sunflower group had significantly higher plasma phospholipid levels of 20:4n-6 (arachidonic acid). By day 70, the high-density lipoprotein (HDL) peak shifted resulting in significantly different HDL peak densities between the two experimental groups (1.097 g/ml FLX group and 1.095 g/ml SUN group, p = 0.028). The plasma fatty acid results indicate that Monk parrots can readily convert α-linolenic acid to the long-chain omega-3 derivatives including docosahexaenoic acid and reduce 20:4n-6 accumulation in plasma phospholipids. The reason for a shift in the HDL peak density is unknown at this time.

  20. NO synthesis from arginine is favored by α-linolenic acid in mice fed a high-fat diet.

    PubMed

    Hermier, Dominique; Guelzim, Najoua; Martin, Pascal G P; Huneau, Jean-François; Mathé, Véronique; Quignard-Boulangé, Annie; Lasserre, Frédéric; Mariotti, François

    2016-09-01

    Alterations in NO availability and signaling play a pivotal role at early stages of the metabolic syndrome (MetSynd). We hypothesized that dietary α-linolenic acid (ALA, 18:3 n-3) favors NO availability by modulating amino acid metabolism, with a specific impact on the arginine-NO pathway. Mice were fed a hyperlipidic diet (285 g lipid/kg, 51.1 % energy), rich in either saturated fatty acids (SFA, provided by palm oil, PALM group) or ALA (provided by linseed oil, LIN group). We measured whole-body NO synthesis and systemic arginine hydrolysis with a tracer-based method, plasma concentration of related metabolites, and hepatic mRNA level of related enzymes, and the study was completed by a transcriptomic analysis in the liver. As expected with this model, hyperlipidic diets resulted in increased adiposity and glycemia after 5 weeks. As compared to PALM mice, LIN mice had a higher plasma nitrite and nitrate concentration, a higher whole-body conversion of arginine into NO vs urea, and a similar plasma concentration of asymmetric dimethylarginine (ADMA), despite a higher expression of the liver dimethylargininase-1. In LIN mice, there was a higher expression of genes involved in PPARα signaling, but a little impact on gene expression related to amino acids and arginine metabolism. This effect cannot be directly ascribed to changes in arginase activity in the liver or ADMA metabolism, nor to direct regulation of the related target genes. In conclusion, dietary ALA favors NO synthesis, which could contribute to rescue NO availability when jeopardized by the nutritional conditions in relation with the initiation of the MetSynd. PMID:27178023

  1. The use of alpha-lipoic acid (ALA), gamma linolenic acid (GLA) and rehabilitation in the treatment of back pain: effect on health-related quality of life.

    PubMed

    Ranieri, M; Sciuscio, M; Cortese, A M; Santamato, A; Di Teo, L; Ianieri, G; Bellomo, R G; Stasi, M; Megna, M

    2009-01-01

    The aim of this trial was to evaluate the effects of alpha-lipoic acid (ALA) and gamma-linolenic acid (GLA) and the beneficial effect of physical exercise on positive sensory symptoms and neuropathic pain in patients with compressive radiculopathy syndrome from disc-nerve root conflict. Often these painful syndromes after the acute event, tend to recurr becoming subacute or chronic syndromes that become for the period of interest disabiling is an event very important in these cases proper prevention, based on a maintenance drug therapy and the strengthening exercises of paravertebral muscles, flexibility exercises on the spine and when needed on the reduction of body weight. In this Observational Cohort, two-arm trial, 203 patients were enrolled and divided into two groups, the first, ALA and GLA group, (n = 101) received oral dose of 600 mg of alpha-lipoic acid (ALA) and 360 mg of gamma-linolenic acid (GLA) and a rehabilitation program for six weeks, the second (n = 102) treated with only rehabilitation program. Patients were recruited at the centre of Physical Medicine and Rehabilitation, they underwent a physiatric examination at the primary outcome (t0) and secondary outcomes were recorded at monitoring visits scheduled at two weeks = t1, four weeks = t2, six weeks = t3, and at the same has been administered the following scale: VAS scale, SF-36, Oswestry Low Back Pain Disability Questionnaire, Aberdeen Back Pain Scale (ABPS), Revised Leeds Disability Questionnaire (LDQ), Roland and Morris Disability Questionnaire. Significant improvements was noted in the ALA and GLA group for paresthesia, stabbing and burning pain, as showed by VAS (Visual Analogue Scale), Oswestry Low Back Pain Disability Questionnaire, Aberdeen Low Back Pain Scale; also, improvements of quality of life has been noted, in the same group, as showed by SF-36, LDQ (Revised Leeds Disability Questionnaire), Roland and Morris disability questionnaire. All these outcome measure showed statistically

  2. Singlet oxygen generation from the decomposition of alpha-linolenic acid hydroperoxide by cytochrome c and lactoperoxidase.

    PubMed

    Sun, Shuna; Bao, Zhijuan; Ma, Huimin; Zhang, Deqing; Zheng, Xiaoping

    2007-06-01

    Generation of singlet oxygen is first investigated in the decomposition of polyunsaturated lipid peroxide, alpha-linolenic acid hydroperoxide (LAOOH), by heme-proteins such as cytochrome c and lactoperoxidase. Chemiluminescence and electron spin resonance methods are used to confirm the singlet oxygen generation and quantify its yield. Decomposition products of LAOOH are characterized by HPLC-ESI-MS, which suggests that singlet oxygen is produced via the decomposition of a linear tetraoxide intermediate (Russell's mechanism). Free radicals formed in the decomposition are also identified by the electron spin resonance technique, and the results show that peroxyl, alkyl, and epoxyalkyl radicals are involved. The changes of cytochrome c and lactoperoxidase in the reaction are monitored by UV-visible spectroscopy, revealing the action of a monoelectronic and two-electronic oxidation for cytochrome c and lactoperoxidase, respectively. These results suggest that cytochrome c causes a homolytic reaction of LAOOH, generating alkoxyl radical and then peroxyl radical, which in turn releases singlet oxygen following the Russell mechanism, whereas lactoperoxidase leads to a heterolytic reaction of LAOOH, and the resulting ferryl porphyryl radical of lactoperoxidase abstracts the hydrogen atom from LAOOH to give peroxyl radical and then singlet oxygen. This observation would be important for a better understanding of the damage mechanism of cell membrane or lipoprotein by singlet oxygen and various radicals generated in the peroxidation and decomposition of lipids induced by heme-proteins.

  3. Transcriptomic profiling of linolenic acid-responsive genes in ROS signaling from RNA-seq data in Arabidopsis

    PubMed Central

    Mata-Pérez, Capilla; Sánchez-Calvo, Beatriz; Begara-Morales, Juan C.; Luque, Francisco; Jiménez-Ruiz, Jaime; Padilla, María N.; Fierro-Risco, Jesús; Valderrama, Raquel; Fernández-Ocaña, Ana; Corpas, Francisco J.; Barroso, Juan B.

    2015-01-01

    Linolenic acid (Ln) released from chloroplast membrane galactolipids is a precursor of the phytohormone jasmonic acid (JA). The involvement of this hormone in different plant biological processes, such as responses to biotic stress conditions, has been extensively studied. However, the role of Ln in the regulation of gene expression during abiotic stress situations mediated by cellular redox changes and/or by oxidative stress processes remains poorly understood. An RNA-seq approach has increased our knowledge of the interplay among Ln, oxidative stress and ROS signaling that mediates abiotic stress conditions. Transcriptome analysis with the aid of RNA-seq in the absence of oxidative stress revealed that the incubation of Arabidopsis thaliana cell suspension cultures (ACSC) with Ln resulted in the modulation of 7525 genes, of which 3034 genes had a 2-fold-change, being 533 up- and 2501 down-regulated genes, respectively. Thus, RNA-seq data analysis showed that an important set of these genes were associated with the jasmonic acid biosynthetic pathway including lypoxygenases (LOXs) and Allene oxide cyclases (AOCs). In addition, several transcription factor families involved in the response to biotic stress conditions (pathogen attacks or herbivore feeding), such as WRKY, JAZ, MYC, and LRR were also modified in response to Ln. However, this study also shows that Ln has the capacity to modulate the expression of genes involved in the response to abiotic stress conditions, particularly those mediated by ROS signaling. In this regard, we were able to identify new targets such as galactinol synthase 1 (GOLS1), methionine sulfoxide reductase (MSR) and alkenal reductase in ACSC. It is therefore possible to suggest that, in the absence of any oxidative stress, Ln is capable of modulating new sets of genes involved in the signaling mechanism mediated by additional abiotic stresses (salinity, UV and high light intensity) and especially in stresses mediated by ROS. PMID

  4. Food sources of alpha-linolenic acid (PFA 18:3), listed in descending order by percentages of their contribution to intake, based on data from the National Health and Nutrition Examination Survey 2005-2006

    Cancer.gov

    Food sources of alpha-linolenic acid (PFA 18:3), listed in descending order by percentages of their contribution to intake, based on data from the National Health and Nutrition Examination Survey 2005-2006

  5. Subchronic alpha-linolenic acid treatment enhances brain plasticity and exerts an antidepressant effect: a versatile potential therapy for stroke.

    PubMed

    Blondeau, Nicolas; Nguemeni, Carine; Debruyne, David N; Piens, Marie; Wu, Xuan; Pan, Hongna; Hu, XianZhang; Gandin, Carine; Lipsky, Robert H; Plumier, Jean-Christophe; Marini, Ann M; Heurteaux, Catherine

    2009-11-01

    Omega-3 polyunsaturated fatty acids are known to have therapeutic potential in several neurological and psychiatric disorders. However, the molecular mechanisms of action underlying these effects are not well elucidated. We previously showed that alpha-linolenic acid (ALA) reduced ischemic brain damage after a single treatment. To follow-up this finding, we investigated whether subchronic ALA treatment promoted neuronal plasticity. Three sequential injections with a neuroprotective dose of ALA increased neurogenesis and expression of key proteins involved in synaptic functions, namely, synaptophysin-1, VAMP-2, and SNAP-25, as well as proteins supporting glutamatergic neurotransmission, namely, V-GLUT1 and V-GLUT2. These effects were correlated with an increase in brain-derived neurotrophic factor (BDNF) protein levels, both in vitro using neural stem cells and hippocampal cultures and in vivo, after subchronic ALA treatment. Given that BDNF has antidepressant activity, this led us to test whether subchronic ALA treatment could produce antidepressant-like behavior. ALA-treated mice had significantly reduced measures of depressive-like behavior compared with vehicle-treated animals, suggesting another aspect of ALA treatment that could stimulate functional stroke recovery by potentially combining acute neuroprotection with long-term repair/compensatory plasticity. Indeed, three sequential injections of ALA enhanced protection, either as a pretreatment, wherein it reduced post-ischemic infarct volume 24 h after a 1-hour occlusion of the middle cerebral artery or as post-treatment therapy, wherein it augmented animal survival rates by threefold 10 days after ischemia. PMID:19641487

  6. Studies of reaction variables for lipase-catalyzed production of alpha-linolenic acid enriched structured lipid and oxidative stability with antioxidants.

    PubMed

    Mitra, Kanika; Shin, Jung-Ah; Lee, Jeung-Hee; Kim, Seong-Ai; Hong, Soon-Taek; Sung, Chang-Keun; Xue, Cheng Lian; Lee, Ki-Teak

    2012-01-01

    Alpha-linolenic acid (ALA) enriched structured lipid (SL) was produced by lipase-catalyzed interesterification from perilla oil (PO) and corn oil (CO). The effects of different reaction conditions (substrate molar ratio [PO/CO 1:1 to 1:3], reaction time [0 to 24 h], and reaction temperature [55 to 65 °C]) were studied. Lipozyme RM IM from Rhizomucor miehei was used as biocatalyst. We obtained 32.39% of ALA in SL obtained under the optimized conditions (molar ratio-1:1 [PO:CO], temperature-60 °C, reaction time-15 h). In SL, the major triacylglycerol (TAG) species (linolenoyl-linolenoyl-linolenoyl glycerol [LnLnLn], linolenoyl-linolenoyl-linoleoyl glycerol [LnLnL]) mainly from PO and linoleoyl-linoleoyl-oleoyl glycerol (LLO), linoleoyl-oleoyl-oleoyl glycerol (LOO), palmitoyl-linoleoyl-oleoyl glycerol (PLO) from CO decreased while linolenoyl-linolenoyl-oleoyl glycerol (LnLnO) (18.41%), trilinolein (LLL) (9.06%), LLO (16.66%), palmitoyl-linoleoyl-linoleoyl glycerol (PLL) (9.69%) were increased compared to that of physical blend. Total tocopherol content (28.01 mg/100 g), saponification value (SV) (192.2), and iodine value (IV) (161.9) were obtained. Furthermore, oxidative stability of the SL was also investigated by addition of 3 different antioxidants (each 200 ppm of rosemary extract [SL-ROS], BHT [SL-BHT], catechin [SL-CAT]) was added into SL and stored in 60 °C oven for 30 d. 2-Thiobabituric acid-reactive substances (TBARS) value was 0.16 mg/kg in SL-CAT and 0.18 mg/kg in SL-ROS as compared with 0.22 mg/kg in control (SL) after oxidation. The lowest peroxide value (POV, 200.9 meq/kg) and longest induction time (29.88 h) was also observed in SL-CAT. PMID:22122200

  7. Gamma-linolenic acid egg production enriched with hemp seed oil and evening primrose oil in diet of laying hens.

    PubMed

    Park, Sang-Oh; Hwangbo, Jong; Yuh, In-Suh; Park, Byung-Sung

    2014-07-01

    This study was carried out to find out the effect of supplying gamma linolenic acid (GLA) on laying performance and egg quality. A hundred twenty of 30 weeks old hyline brown laying hens with 98% of egg production were completely randomized to 4 different treatment groups by 30 hens (the control group fed with the diet containing beef tallow, 3 treatment groups fed with the diet containing corn oil, the diet containing hemp seed oil and the diet containing evening primrose oil, respectively), and their laying performance and egg production were investigated for 5 weeks. Intake of hemp seed oil or evening primrose helped to increase the retention rate of GLA, which was transmigrated into eggs from blood. GLA was not detected in the blood samples of control group and treatment group fed diet containing corn oil, while it was significantly increased in the blood samples of the treatment groups fed with diet containing hemp seed oil and diet containing evening primrose oil, respectively. GLA retention was not observed in the eggs produced respectively by control group and treatment group fed with diet containing corn oil, whereas it was significantly increased in the eggs produced by the treatment group fed with diet containing hemp seed oil by 1.09% and the treatment group fed with diet containing evening primrose oil by 4.87%. This result suggests that GLA-reinforced functional eggs can be produced by adding hemp seed oil and evening primrose oil to the feed for laying hens and feeding them with it. It is thought that further researches and clinical trials on biochemical mechanism related to atopic dermatitis should be conducted in future.

  8. Effect of supplementation of the laying hen diet with olive leaves (Olea europea L.) on lipid oxidation and fatty acid profile of α-linolenic acid enriched eggs during storage.

    PubMed

    Botsoglou, E; Govaris, A; Fletouris, D; Botsoglou, N

    2012-01-01

    1. The aim of this study was to evaluate the effect of supplementation of the layer diet with olive leaves (Olea europea L.) on lipid oxidation and fatty acid profile of α-linolenic acid enriched eggs during refrigerated storage, and to compare this effect with α-tocopheryl acetate supplementation. 2. A total of 72 brown Lohmann laying hens, equally allocated to 3 groups, were fed on diets supplemented with 40 g/kg linseed oil, or linseed oil and olive leaves at 10 g/kg or linseed oil and α-tocopheryl acetate at 200 mg/kg. Collected eggs were analysed for fatty acid profile and lipid oxidation either fresh or following 60 d storage at 4°C. 3. Results showed that olive leaves or α-tocopheryl acetate supplementation reduced lipid hydroperoxide concentration in fresh eggs but had no effect on their fatty acid profile and malondialdehyde (MDA) content compared to controls. 4. Refrigerated storage for 60 d decreased the proportions of PUFAs but increased those of MUFAs in eggs from the control diet, whilst it had no effect on the fatty acid composition of eggs from the diets supplemented with olive leaves or α-tocopheryl acetate, which in turn showed decreased concentrations of lipid hydroperoxides and MDA.

  9. Effects of alpha-linolenic acid vs. docosahexaenoic acid supply on the distribution of fatty acids among the rat cardiac subcellular membranes after a short- or long-term dietary exposure

    PubMed Central

    Brochot, Amandine; Guinot, Marine; Auchere, Daniel; Macaire, Jean-Paul; Weill, Pierre; Grynberg, Alain; Rousseau-Ralliard, Delphine

    2009-01-01

    Background Previous work showed that the functional cardiac effect of dietary alpha-linolenic acid (ALA) in rats requires a long feeding period (6 months), although a docosahexaenoic (DHA) acid-supply affects cardiac adrenergic response after 2 months. However, the total cardiac membrane n-3 polyunsaturated fatty acid (PUFA) composition remained unchanged after 2 months. This delay could be due to a specific reorganization of the different subcellular membrane PUFA profiles. This study was designed to investigate the evolution between 2 and 6 months of diet duration of the fatty acid profile in sarcolemmal (SL), mitochondrial (MI), nuclear (NU) and sarcoplasmic reticulum (SR) membrane fractions. Methods Male Wistar rats were randomly assigned to 3 dietary groups (n = 10/diet/period), either n-3 PUFA-free diet (CTL), or ALA or DHA-rich diets. After 2 or 6 months, the subcellular cardiac membrane fractions were separated by differential centrifugations and sucrose gradients. Each membrane profile was analysed by gas chromatography (GC) after lipid extraction. Results As expected the n-3 PUFA-rich diets incorporated n-3 PUFA instead of n-6 PUFA in all the subcellular fractions, which also exhibited individual specificities. The diet duration increased SFA and decreased PUFA in SL, whereas NU remained constant. The SR and MI enriched in n-3 PUFA exhibited a decreased DHA level with ageing in the DHA and CTL groups. Conversely, the n-3 PUFA level remained unchanged in the ALA group, due to a significant increase in docosapentaenoic acid (DPA). N-3 PUFA rich diets lead to a better PUFA profile in all the fractions and significantly prevent the profile modifications induced by ageing. Conclusion With the ALA diet the n-3 PUFA content, particularly in SR and SL kept increasing between 2 and 6 months, which may partly account for the delay to achieve the modification of adrenergic response. PMID:19320987

  10. Starch and oil in the donor cow diet and starch in substrate differently affect the in vitro ruminal biohydrogenation of linoleic and linolenic acids.

    PubMed

    Zened, A; Troegeler-Meynadier, A; Nicot, M C; Combes, S; Cauquil, L; Farizon, Y; Enjalbert, F

    2011-11-01

    Trans isomers of fatty acids exhibit different health properties. Among them, trans-10,cis-12 conjugated linoleic acid has negative effects on milk fat production and can affect human health. A shift from the trans-11 to the trans-10 pathway of biohydrogenation (BH) can occur in the rumen of dairy cows receiving high-concentrate diets, especially when the diet is supplemented with highly unsaturated fat sources. The differences of BH patterns between linoleic acid (LeA) and linolenic acid (LnA) in such ruminal conditions remain unknown; thus, the aim of this work was to investigate in vitro the effects of starch and sunflower oil in the diet of the donor cows and starch level in the incubates on the BH patterns and efficiencies of LeA and LnA. The design was a 4 × 4 Latin square design with 4 cows, 4 periods, and 4 diets with combinations of 21 or 34% starch and 0 or 5% sunflower oil. The rumen content of each cow during each period was incubated with 4 substrates, combining 2 starch levels and either LeA or LnA addition. Capillary electrophoresis single-strand conformation polymorphism of incubates showed that dietary starch decreased the diversity of the bacterial community and the high-starch plus oil diet modified its structure. High-starch diets poorly affected isomerization and first reduction of LeA and LnA, but decreased the efficiencies of trans-11,cis-15-C18:2 and trans C18:1 reduction. Dietary sunflower oil increased the efficiency of LeA isomerization but decreased the efficiency of trans C18:1 reduction. An interaction between dietary starch and dietary oil resulted in the highest trans-10 isomers production in incubates when the donor cow received the high-starch plus oil diet. The partition between trans-10 and trans-11 isomers was also affected by an interaction between starch level and the fatty acid added to the incubates, showing that the trans-10 shift only occurred with LeA, whereas LnA was mainly hydrogenated via the more usual trans-11

  11. High levels of stearic acid, palmitoleic acid, and dihomo-γ-linolenic acid and low levels of linoleic acid in serum cholesterol ester are associated with high insulin resistance.

    PubMed

    Kurotani, Kayo; Sato, Masao; Ejima, Yuko; Nanri, Akiko; Yi, Siyan; Pham, Ngoc Minh; Akter, Shamima; Poudel-Tandukar, Kalpana; Kimura, Yasumi; Imaizumi, Katsumi; Mizoue, Tetsuya

    2012-09-01

    The association of fatty acid composition with insulin resistance and type 2 diabetes has been reported in Western populations, but there is limited evidence of this association among the Japanese, whose populace consume large amounts of fish. To test the hypothesis that high palmitic, palmitoleic, and dihomo-γ-linolenic acids and low levels of linoleic and n-3 fatty acids are associated with higher insulin resistance among the Japanese, the authors investigated the relationship between serum fatty acid composition and serum C-peptide concentrations in 437 Japanese employees aged 21 to 67 years who participated in a workplace health examination. Serum cholesterol ester and phospholipid fatty acid compositions were measured by gas-liquid chromatography. Desaturase activity was estimated by fatty acid product-to-precursor ratios. A multiple regression was used to assess the association between fatty acid and C-peptide concentrations. C-peptide concentrations were associated inversely with linoleic acid levels in cholesterol ester and phospholipid (P for trend = .01 and .02, respectively) and positively with stearic and palmitoleic acids in cholesterol ester (P for trend =.02 and .006, respectively) and dihomo-γ-linolenic acid in cholesterol ester and phospholipid (P for trend < .0001 for both). C-peptide concentrations were not associated with n-3 polyunsaturated fatty acids. C-peptide concentrations significantly increased as δ-9-desaturase (16:1 n-7/16:0) and δ-6-desaturase (18:3 n-6/18:2 n-6) increased (P for trend = .01 and .03, respectively) and δ-5-desaturase (20:4 n-6/20:3 n-6) decreased (P for trend = .004). In conclusion, a fatty acid pattern with high levels of serum stearic, palmitoleic, or dihomo-γ-linolenic acids; δ-9-desaturase (16:1 n-7/16:0) or δ-6-desaturase (18:3 n-6/18:2 n-6) activities; and low levels of serum linoleic acid or δ-5-desaturase (20:4 n-6/20:3 n-6) activity might be associated with higher insulin resistance in Japanese adults.

  12. Growth, body fatty acid composition, immune response and resistance to Streptococcus iniae of hybrid tilapia, Oreochromis niloticus X O. aureus, fed diets containing various levels of linoleic and linolenic acids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effects of dietary linoleic (LA) and linolenic acids (LN) on growth and immunity of all-male hybrid tilapia, Oreochromis niloticus × O. aureus, were evaluated for 10 weeks. Fish fed 0.12% LA + 0% LN had the lowest weight gain (WG) but was not significantly different from diets containing 0.5% LA...

  13. Modulatory effects of alpha-linolenic acid on generation of reactive oxygen species in elaidic acid enriched peritoneal macrophages in rats.

    PubMed

    Rao, Y Poorna Chandra; Lokesh, B R

    2014-09-01

    Fatty acids are known to influence the ability of macrophages to generate reactive oxygen species (ROS). However the effect of elaidic acid (EA, 18:1 trans fatty acid) on ROS generation is not well studied. Rat peritoneal macrophages were enriched with elaidic acid by incubating the cells with 80 1M EA. The macrophages containing EA generated higher amounts of superoxide anion (O2*-), hydrogen peroxide (H2O2) and nitric oxide (NO) by 54, 123 and 237%, respectively as compared to control cells which did not contain EA. To study the competition of other C18 fatty acids with EA macrophages were incubated with EA along with stearic acid (18:0), oleic acid (18:1), linoleic acid (18:2) and alpha-linolenic acid (ALA, 18:3). ALA significantly reduced the incorporation of EA into macrophage lipids. This also significantly reduced the generation of O2*-, H2O2, NO by macrophages. Studies were also conducted by feeding rats with diet containing partially hydrogenated vegetable fat (PHVF) as a source for EA and linseed oil (LSO) as a source for ALA. The rats were fed AIN-93 diet containing PHVF with 17% EA and incremental amounts of linseed oil for 10 weeks. The peritoneal macrophages from rats fed partially hydrogenated vegetable fat generated higher levels of O2*-, H2O2, NO by 46, 161 and 76% respectively, when compared to rats fed control diets containing ground nut oil. Macrophages from rats fed PHVF with incremental amounts of LSO produced significantly lower levels ROS in a dose dependent manner. Thus ALA reduces the higher levels of ROS generated by macrophages containing EA.

  14. Temperature-Dependent Electron Paramagnetic Resonance Studies of Docosahexaenoic Acid and Gamma Linolenic Acid Effects on Phospholipid Membranes With and Without Cholesterol

    NASA Astrophysics Data System (ADS)

    Yonar, D.; Horasanb, N.; Sünnetçioğlu, M. Maral

    2016-07-01

    Free docosahexaenoic acid (DHAn-3) and gamma linolenic acid (GLAn-6) effects on dimyristoyl phosphatidylcholine (DMPC) membranes were studied as a function of temperature by electron paramagnetic resonance (EPR) spectroscopy. 5- and 16-doxyl stearic acid (5-, 16-DS) spin labels were utilized to obtain information from the interfacial and alkyl chain region, respectively. In the studied temperature range, the presence of DHAn-3 or GLAn-6 caused decreases in maximum hyperfi ne splitting values and correlation times of DMPC membranes. Both in the interfacial region and depths of membrane, changes were more pronounced for DHAn-3 in pure DMPC. In the presence of cholesterol (CH), DHAn-3 and GLAn-6 effects were similar and more pronounced in the depths of the membrane. The changes in the structure and dynamics of samples were obtained from simulations of spectra, which indicated some changes in the number of spectral components by incorporation of DHAn-3 and GLAn-6. In the interfacial region and below the main phase transition temperature of DMPC, there was an increase in heterogeneity. For temperatures above the phase transition, a more homogeneous environment for spin label was obtained in the presence of fatty acids.

  15. Effects of α-linolenic acid-enriched diets on gene expression of key inflammatory mediators in immune and milk cells obtained from Holstein dairy cows.

    PubMed

    Rezamand, Pedram; Hatch, Brent P; Carnahan, Kevin G; McGuire, Mark A

    2016-02-01

    Immune system and inflammatory responses are affected by α-linolenic acid (αLA: 18:3 ω-3). The objective of this study was to determine the effects of αLA-enriched rations on gene expression of systemic (blood) and local (mammary gland) inflammatory markers in Holstein dairy cattle. Further, the effect of dietary treatments was evaluated on the concentration of αLA in serum phospholipids. Camelina (Camelina sativa) meal (containing 24.2% αLA) was fed at 0, 3, 6, and 9% (dry matter basis) replacing canola meal (rich in 18:1 ω-9) to provide rations with incremental concentrations of αLA. Lactating primiparous Holstein cows (n = 18) were randomly assigned to a treatment sequence in a 4 × 4 Latin square design. Each period lasted 16 d and milk and blood samples were collected during the final 2 d of each period. Peripheral blood mononuclear cells (PBMC) and milk cells (MC) were harvested, and RNA extracted and converted to complementary DNA for quantitative real time PCR analysis. The effect of dietary treatments (αLA) on the relative abundance of pro- and anti-inflammatory genes in the PBMC and MC was tested by the MIXED procedure of SAS. Expression of pro-inflammatory tumour necrosis factor (TNF)-α in MC was linearly reduced (up to 40%) as dietary αLA increased. Expression of pro-inflammatory markers interleukin (IL)-1β, IL-8, and TNF-α was reduced (29, 20, and 27%, respectively) in PBMC isolated from cows fed 6% camelina meal ration as compared with cows fed 0% (control). Expression of IL-6 was, however, increased with inclusion of camelina meal. Greater dietary αLA linearly increased serum phospholipids αLA contents, and when fed up to 6% DM down-regulated expression of some of the local (milk) and systemic (blood) pro-inflammatory markers in vivo. PMID:26869108

  16. Effect of dietary microbially produced gamma-linolenic acid and plant extracts on enzymatic and non-enzymatic antioxidants in various broiler chicken organs.

    PubMed

    Fejerčáková, A; Vašková, J; Bača, M; Vaško, L; Marcinčák, S; Hertelyová, Z; Petrášová, D; Guothová, L

    2014-10-01

    Plant extracts and fungal fermented feed with gamma-linolenic acid-rich microbial oils are perspective additives for use in animal nutrition as appetite and digestion stimulants, stimulants of physiological functions, for the prevention and treatment for certain pathological conditions, and as antioxidants. The activity of antioxidant enzymes and the level of reduced glutathione were measured in the plasma and in liver, heart and kidney mitochondria after 42 days of feeding broiler chickens both regular and combination diets. These were selected based on our previous experience. The administration of agrimony and gamma-linolenic acid resulted in a significant decrease in superoxide dismutase activity in all four bodies in contrast to plant extracts. We conclude that the decrease in activity is due to decreased production, and hence dismutation, of superoxide radicals to peroxides followed by lower activity of glutathione peroxidase, which was not seen in the case of only plant extract administration. Generally, higher glutathione reductase activity would be in response to increased demands on reduced glutathione as a cofactor for the reaction catalysed by glutathione peroxidase and the utilization of glutathione itself. However, measured levels of reduced glutathione showed no change. The results argue against any oxidative stress conditions. The application of agrimony extract appears to be suitable for the antioxidant effect against peroxidation of gamma-linolenic acid. As the efficacy of measuring the effects of diets on the oxidative stability of meat caused by selected antioxidant enzymes is rather low, additional data from the experiment will be processed to clearly assess the influence of this combination of diets.

  17. Production of Conjugated Linoleic and Conjugated α-Linolenic Acid in a Reconstituted Skim Milk-Based Medium by Bifidobacterial Strains Isolated from Human Breast Milk

    PubMed Central

    Villar-Tajadura, María Antonia; Rodríguez-Alcalá, Luis Miguel; Martín, Virginia; Gómez de Segura, Aránzazu; Rodríguez, Juan Miguel; Fontecha, Javier

    2014-01-01

    Eight bifidobacterial strains isolated from human breast milk have been tested for their abilities to convert linoleic acid (LA) and α-linolenic acid (LNA) to conjugated linoleic acid (CLA) and conjugated α-linolenic acid (CLNA), respectively. These bioactive lipids display important properties that may contribute to the maintenance and improvement human health. Three selected Bifidobacterium breve strains produced CLA from LA and CLNA from LNA in MRS (160–170 and 210–230 μg mL−1, resp.) and, also, in reconstituted skim milk (75–95 and 210–244 μg mL−1, resp.). These bifidobacterial strains were also able to simultaneously produce both CLA (90–105 μg mL−1) and CLNA (290–320 μg mL−1) in reconstituted skim milk. Globally, our findings suggest that these bifidobacterial strains are potential candidates for the design of new fermented dairy products naturally containing very high concentrations of these bioactive lipids. To our knowledge, this is the first study describing CLNA production and coproduction of CLA and CLNA by Bifidobacterium breve strains isolated from human milk in reconstituted skim milk. PMID:25110689

  18. Production of conjugated linoleic and conjugated α-linolenic acid in a reconstituted skim milk-based medium by bifidobacterial strains isolated from human breast milk.

    PubMed

    Villar-Tajadura, María Antonia; Rodríguez-Alcalá, Luis Miguel; Martín, Virginia; Gómez de Segura, Aránzazu; Rodríguez, Juan Miguel; Requena, Teresa; Fontecha, Javier

    2014-01-01

    Eight bifidobacterial strains isolated from human breast milk have been tested for their abilities to convert linoleic acid (LA) and α-linolenic acid (LNA) to conjugated linoleic acid (CLA) and conjugated α-linolenic acid (CLNA), respectively. These bioactive lipids display important properties that may contribute to the maintenance and improvement human health. Three selected Bifidobacterium breve strains produced CLA from LA and CLNA from LNA in MRS (160-170 and 210-230 μg mL(-1), resp.) and, also, in reconstituted skim milk (75-95 and 210-244 μg mL(-1), resp.). These bifidobacterial strains were also able to simultaneously produce both CLA (90-105 μg mL(-1)) and CLNA (290-320 μg mL(-1)) in reconstituted skim milk. Globally, our findings suggest that these bifidobacterial strains are potential candidates for the design of new fermented dairy products naturally containing very high concentrations of these bioactive lipids. To our knowledge, this is the first study describing CLNA production and coproduction of CLA and CLNA by Bifidobacterium breve strains isolated from human milk in reconstituted skim milk.

  19. Preliminary Validation of a High Docosahexaenoic Acid (DHA) and -Linolenic Acid (ALA) Dietary Oil Blend: Tissue Fatty Acid Composition and Liver Proteome Response in Atlantic Salmon (Salmo salar) Smolts

    PubMed Central

    Nuez-Ortín, Waldo G.; Carter, Chris G.; Wilson, Richard; Cooke, Ira; Nichols, Peter D.

    2016-01-01

    Marine oils are important to human nutrition as the major source of docosahexaenoic acid (DHA), a key omega-3 long-chain (≥C20) polyunsaturated fatty acid (n-3 LC-PUFA) that is low or lacking in terrestrial plant or animal oils. The inclusion of fish oil as main source of n-3 LC-PUFA in aquafeeds is mostly limited by the increasing price and decreasing availability. Fish oil replacement with cheaper terrestrial plant and animal oils has considerably reduced the content of n-3 LC-PUFA in flesh of farmed Atlantic salmon. Novel DHA-enriched oils with high alpha-linolenic acid (ALA) content will be available from transgenic oilseeds plants in the near future as an alternative for dietary fish oil replacement in aquafeeds. As a preliminary validation, we formulated an oil blend (TOFX) with high DHA and ALA content using tuna oil (TO) high in DHA and the flaxseed oil (FX) high in ALA, and assessed its ability to achieve fish oil-like n-3 LC-PUFA tissue composition in Atlantic salmon smolts. We applied proteomics as an exploratory approach to understand the effects of nutritional changes on the fish liver. Comparisons were made between fish fed a fish oil-based diet (FO) and a commercial-like oil blend diet (fish oil + poultry oil, FOPO) over 89 days. Growth and feed efficiency ratio were lower on the TOFX diet. Fish muscle concentration of n-3 LC-PUFA was significantly higher for TOFX than for FOPO fish, but not higher than for FO fish, while retention efficiency of n-3 LC-PUFA was promoted by TOFX relative to FO. Proteomics analysis revealed an oxidative stress response indicative of the main adaptive physiological mechanism in TOFX fish. While specific dietary fatty acid concentrations and balances and antioxidant supplementation may need further attention, the use of an oil with a high content of DHA and ALA can enhance tissue deposition of n-3 LC-PUFA in relation to a commercially used oil blend. PMID:27556399

  20. Preliminary Validation of a High Docosahexaenoic Acid (DHA) and -Linolenic Acid (ALA) Dietary Oil Blend: Tissue Fatty Acid Composition and Liver Proteome Response in Atlantic Salmon (Salmo salar) Smolts.

    PubMed

    Nuez-Ortín, Waldo G; Carter, Chris G; Wilson, Richard; Cooke, Ira; Nichols, Peter D

    2016-01-01

    Marine oils are important to human nutrition as the major source of docosahexaenoic acid (DHA), a key omega-3 long-chain (≥C20) polyunsaturated fatty acid (n-3 LC-PUFA) that is low or lacking in terrestrial plant or animal oils. The inclusion of fish oil as main source of n-3 LC-PUFA in aquafeeds is mostly limited by the increasing price and decreasing availability. Fish oil replacement with cheaper terrestrial plant and animal oils has considerably reduced the content of n-3 LC-PUFA in flesh of farmed Atlantic salmon. Novel DHA-enriched oils with high alpha-linolenic acid (ALA) content will be available from transgenic oilseeds plants in the near future as an alternative for dietary fish oil replacement in aquafeeds. As a preliminary validation, we formulated an oil blend (TOFX) with high DHA and ALA content using tuna oil (TO) high in DHA and the flaxseed oil (FX) high in ALA, and assessed its ability to achieve fish oil-like n-3 LC-PUFA tissue composition in Atlantic salmon smolts. We applied proteomics as an exploratory approach to understand the effects of nutritional changes on the fish liver. Comparisons were made between fish fed a fish oil-based diet (FO) and a commercial-like oil blend diet (fish oil + poultry oil, FOPO) over 89 days. Growth and feed efficiency ratio were lower on the TOFX diet. Fish muscle concentration of n-3 LC-PUFA was significantly higher for TOFX than for FOPO fish, but not higher than for FO fish, while retention efficiency of n-3 LC-PUFA was promoted by TOFX relative to FO. Proteomics analysis revealed an oxidative stress response indicative of the main adaptive physiological mechanism in TOFX fish. While specific dietary fatty acid concentrations and balances and antioxidant supplementation may need further attention, the use of an oil with a high content of DHA and ALA can enhance tissue deposition of n-3 LC-PUFA in relation to a commercially used oil blend. PMID:27556399

  1. Simultaneous permeation of tamoxifen and gamma linolenic acid across excised human skin. Further evidence of the permeation of solvated complexes.

    PubMed

    Karia, Clare; Harwood, John L; Morris, Andy P; Heard, Charles M

    2004-03-01

    Tamoxifen is the hormonal treatment of choice in women who have hormone-dependent breast cancer and its efficacy in those women considered to have a high risk of developing breast cancer, has also been established. Gamma linolenic acid (GLA) has been shown to decrease the invasion of breast cancer and recent studies have demonstrated that GLA can enhance the oestrogen receptor down-regulation induced by tamoxifen. However, tamoxifen is associated with serious side-effects due mainly to systemic delivery, and targeted delivery of both tamoxifen and GLA would be highly beneficial. This work was a preliminary study for the development of a transcutaneous system to simultaneously deliver both tamoxifen and GLA directly to the breast. Full thickness human skin was dosed with 500 microl saturated solution of tamoxifen in borage oil (25% GLA) and the simultaneous permeation of the two actives determined. There was rapid flux with minimal lag time, the cumulative permeation at 24 h was 764.3 +/- 94.2 microg cm(-2) for GLA and 5.44 +/- 0.67 microg cm(-2) for tamoxifen: the latter being comparable to the amount of tamoxifen associated with cancerous breast tissue from a 20 mg oral dose. The ratio of GLA/tamoxifen permeated at different timepoints was quite consistent, both in terms of mass (mean 138, S.D. 15.1) and mols (mean 184, S.D. 20.3). It was determined that 2.5 molecules of GLA were associated with each molecule of tamoxifen in the permeation process, equating to a solvation cage of three molecules of triacylglycerol. This study has demonstrated the feasibility of administering simultaneously tamoxifen and GLA using borage oil as vehicle, which warrants further investigation as a novel topical two-component system in relation to or prophylaxis of those perceived at high risk of developing breast cancer. The study also provides further evidence of the permeation of solvated complexes across skin, rather than discrete penetrant molecules. PMID:15129999

  2. Vegetable oils rich in alpha linolenic acid increment hepatic n-3 LCPUFA, modulating the fatty acid metabolism and antioxidant response in rats.

    PubMed

    Rincón-Cervera, Miguel Ángel; Valenzuela, Rodrigo; Hernandez-Rodas, María Catalina; Barrera, Cynthia; Espinosa, Alejandra; Marambio, Macarena; Valenzuela, Alfonso

    2016-08-01

    Alpha-linolenic acid (C18:3 n-3, ALA) is an essential fatty acid and the metabolic precursor of long-chain polyunsaturated fatty acids (LCPUFA) from the n-3 family with relevant physiological and metabolic roles: eicosapentaenoic acid (C20:5 n-3, EPA) and docosahexaenoic acid (C22:6 n-3, DHA). Western diet lacks of suitable intake of n-3 LCPUFA and there are recommendations to increase the dietary supply of such nutrients. Seed oils rich in ALA such as those from rosa mosqueta (Rosa rubiginosa), sacha inchi (Plukenetia volubis) and chia (Salvia hispanica) may constitute an alternative that merits research. This study evaluated hepatic and epididymal accretion and biosynthesis of n-3 LCPUFA, the activity and expression of Δ-5 and Δ-6 desaturase enzymes, the expression and DNA-binding activity of PPAR-α and SREBP-1c, oxidative stress parameters and the activity of antioxidative enzymes in rats fed sunflower oil (SFO, 1% ALA) as control group, canola oil (CO, 10% ALA), rosa mosqueta oil (RMO, 33% ALA), sacha inchi oil (SIO, 49% ALA) and chia oil (ChO, 64% ALA) as single lipid source. A larger supply of ALA increased the accretion of n-3 LCPUFA, the activity and expression of desaturases, the antioxidative status, the expression and DNA-binding of PPAR-α, the oxidation of fatty acids and the activity of antioxidant enzymes, whereas the expression and DNA-binding activity of SREBP-1c transcription factor and the biosynthetic activity of fatty acids declined. Results showed that oils rich in ALA such as SIO and ChO may trigger metabolic responses in rats such as those produced by n-3 PUFA.

  3. Vegetable oils rich in alpha linolenic acid increment hepatic n-3 LCPUFA, modulating the fatty acid metabolism and antioxidant response in rats.

    PubMed

    Rincón-Cervera, Miguel Ángel; Valenzuela, Rodrigo; Hernandez-Rodas, María Catalina; Barrera, Cynthia; Espinosa, Alejandra; Marambio, Macarena; Valenzuela, Alfonso

    2016-08-01

    Alpha-linolenic acid (C18:3 n-3, ALA) is an essential fatty acid and the metabolic precursor of long-chain polyunsaturated fatty acids (LCPUFA) from the n-3 family with relevant physiological and metabolic roles: eicosapentaenoic acid (C20:5 n-3, EPA) and docosahexaenoic acid (C22:6 n-3, DHA). Western diet lacks of suitable intake of n-3 LCPUFA and there are recommendations to increase the dietary supply of such nutrients. Seed oils rich in ALA such as those from rosa mosqueta (Rosa rubiginosa), sacha inchi (Plukenetia volubis) and chia (Salvia hispanica) may constitute an alternative that merits research. This study evaluated hepatic and epididymal accretion and biosynthesis of n-3 LCPUFA, the activity and expression of Δ-5 and Δ-6 desaturase enzymes, the expression and DNA-binding activity of PPAR-α and SREBP-1c, oxidative stress parameters and the activity of antioxidative enzymes in rats fed sunflower oil (SFO, 1% ALA) as control group, canola oil (CO, 10% ALA), rosa mosqueta oil (RMO, 33% ALA), sacha inchi oil (SIO, 49% ALA) and chia oil (ChO, 64% ALA) as single lipid source. A larger supply of ALA increased the accretion of n-3 LCPUFA, the activity and expression of desaturases, the antioxidative status, the expression and DNA-binding of PPAR-α, the oxidation of fatty acids and the activity of antioxidant enzymes, whereas the expression and DNA-binding activity of SREBP-1c transcription factor and the biosynthetic activity of fatty acids declined. Results showed that oils rich in ALA such as SIO and ChO may trigger metabolic responses in rats such as those produced by n-3 PUFA. PMID:26995676

  4. Influence of low linoleic and linolenic acids in milk replacer on calf performance and lipids in blood plasma, heart, and liver.

    PubMed

    Jenkins, K J; Kramer, J K

    1986-05-01

    In a 6-wk study with 3-d-old calves (n = 32), we compared effects of low or adequate essential fatty acids in milk replacers on calf performance, feed utilization, and fatty acids in blood plasma, heart, and liver lipids. Four dietary treatments were hydrogenated coconut oil, as low-essential fatty acid basal; basal plus linoleic acid; basal plus linoleic plus linolenic acids; tallow control. None of the calves fed low essential fatty acid diet developed any external deficiency signs seen in monogastric animals. Supplementation of basal diet with essential fatty acids had no influence on weight gains, feed efficiency, or digestibility of lipids, nitrogen, and dry matter. Effects of low essential fatty acid intake were decreased resistance of erythrocytes to lysis, and in tissue lipids, marked reduction of linoleic acid and elevation of trienoic acid, palmitoleic acid, and ratio of trienoic acid to arachidonic acid, all indicative of low essential fatty acid status. Essential fatty acid intake in milk replacer may be more important than indicated here for longer term vealer calves, and where stresses, such as infectious diseases and high environmental temperature, are present.

  5. Dietary intakes of arachidonic acid and alpha-linolenic acid are associated with reduced risk of hip fracture in older adults.

    PubMed

    Farina, Emily K; Kiel, Douglas P; Roubenoff, Ronenn; Schaefer, Ernst J; Cupples, L Adrienne; Tucker, Katherine L

    2011-06-01

    PUFA are hypothesized to influence bone health, but longitudinal studies on hip fracture risk are lacking. We examined associations between intakes of PUFA and fish, and hip fracture risk among older adults (n = 904) in the Framingham Osteoporosis Study. Participants (mean age ~75 y at baseline) were followed for incident hip fracture from the time they completed the baseline exam (1988-1989) until December 31, 2005. HR and 95% CI were estimated for energy-adjusted dietary fatty acid exposure variables [(n-3) fatty acids: α-linolenic acid (ALA), EPA, DHA, EPA+DHA; (n-6) fatty acids: linoleic acid, arachidonic acid (AA); and the (n-6):(n-3) ratio] and fish intake categories, adjusting for potential confounders and covariates. Protective associations were observed between intakes of ALA (P-trend = 0.02) and hip fracture risk in a combined sample of women and men and between intakes of AA (P-trend = 0.05) and hip fracture risk in men only. Participants in the highest quartile of ALA intake had a 54% lower risk of hip fracture than those in the lowest quartile (Q4 vs. Q1: HR = 0.46; 95% CI = 0.26-0.83). Men in the highest quartile of AA intake had an 80% lower risk of hip fracture than those in the lowest quartile (Q4 vs. Q1: HR = 0.20; 95% CI = 0.04-0.96). No significant associations were observed among intakes of EPA, DHA, EPA+DHA, or fish. These findings suggest dietary ALA may reduce hip fracture risk in women and men and dietary AA may reduce hip fracture risk in men.

  6. Dairy fat blends high in α-linolenic acid are superior to n-3 fatty-acid-enriched palm oil blends for increasing DHA levels in the brains of young rats.

    PubMed

    Du, Qin; Martin, Jean-Charles; Agnani, Genevieve; Pages, Nicole; Leruyet, Pascale; Carayon, Pierre; Delplanque, Bernadette

    2012-12-01

    Achieving an appropriate docosahexaenoic acid (DHA) status in the neonatal brain is an important goal of neonatal nutrition. We evaluated how different dietary fat matrices improved DHA content in the brains of both male and female rats. Forty rats of each gender were born from dams fed over gestation and lactation with a low α-linolenic acid (ALA) diet (0.4% of fatty acids) and subjected for 6 weeks after weaning to a palm oil blend-based diet (10% by weight) that provided either 1.5% ALA or 1.5% ALA and 0.12% DHA with 0.4% arachidonic acid or to an anhydrous dairy fat blend that provided 1.5% or 2.3% ALA. Fatty acids in the plasma, red blood cells (RBCs) and whole brain were determined by gas chromatography. The 1.5% ALA dairy fat was superior to both the 1.5% ALA palm oil blends for increasing brain DHA (14.4% increase, P<.05), and the 2.3% ALA dairy blend exhibited a further increase that could be ascribed to both an ALA increase and n-6/n-3 ratio decrease. Females had significantly higher brain DHA due to a gender-to-diet interaction, with dairy fats attenuating the gender effect. Brain DHA was predicted with a better accuracy by some plasma and RBC fatty acids when used in combination (R(2) of 0.6) than when used individually (R(2)=0.47 for RBC n-3 docosapentaenoic acid at best). In conclusion, dairy fat blends enriched with ALA appear to be an interesting strategy for achieving optimal DHA levels in the brain of postweaning rats. Human applications are worth considering.

  7. High level accumulation of gamma linolenic acid (C18:3Δ6.9,12 cis) in transgenic safflower (Carthamus tinctorius) seeds.

    PubMed

    Nykiforuk, Cory L; Shewmaker, Christine; Harry, Indra; Yurchenko, Olga P; Zhang, Mei; Reed, Catherine; Oinam, Gunamani S; Zaplachinski, Steve; Fidantsef, Ana; Boothe, Joseph G; Moloney, Maurice M

    2012-04-01

    Gamma linolenic acid (GLA; C18:3Δ6,9,12 cis), also known as γ-Linolenic acid, is an important essential fatty acid precursor for the synthesis of very long chain polyunsaturated fatty acids and important pathways involved in human health. GLA is synthesized from linoleic acid (LA; C18:2Δ9,12 cis) by endoplasmic reticulum associated Δ6-desaturase activity. Currently sources of GLA are limited to a small number of plant species with poor agronomic properties, and therefore an economical and abundant commercial source of GLA in an existing crop is highly desirable. To this end, the seed oil of a high LA cultivated species of safflower (Carthamus tinctorius) was modified by transformation with Δ6-desaturase from Saprolegnia diclina resulting in levels exceeding 70% (v/v) of GLA. Levels around 50% (v/v) of GLA in seed oil was achieved when Δ12-/Δ6-desaturases from Mortierella alpina was over-expressed in safflower cultivars with either a high LA or high oleic (OA; C18:1Δ9 cis) background. The differences in the overall levels of GLA suggest the accumulation of the novel fatty acid was not limited by a lack of incorporation into the triacylgylcerol backbone (>66% GLA achieved), or correlated with gene dosage (GLA levels independent of gene copy number), but rather reflected the differences in Δ6-desaturase activity from the two sources. To date, these represent the highest accumulation levels of a newly introduced fatty acid in a transgenic crop. Events from these studies have been propagated and recently received FDA approval for commercialization as Sonova™400.

  8. Relationship between cannabinoids content and composition of fatty acids in hempseed oils.

    PubMed

    Petrović, Marinko; Debeljak, Željko; Kezić, Nataša; Džidara, Petra

    2015-03-01

    Hempseed oils acquired on the Croatian markets were characterised by cannabinoid content and fatty acid composition. The new method for determination of cannabinoid content was developed and validated in the range of 0.05-60 mg/kg, and the content of tetrahydrocannabinol varied between 3.23 and 69.5 mg/kg. Large differences among the samples were obtained for phenotype ratio suggesting that not all of analysed hempseed oils were produced from industrial hemp. Sample clustering based on cannabinoid content assigned samples to two groups closely related to the phenotype ratios obtained. The results of this study confirm that hempseed oil is a good source of polyunsaturated fatty acids, especially γ-linolenic and stearidonic acid, but the content varies a lot more than the omega-6/omega-3 ratio. The grouping of samples on fatty acid content assigned samples to two groups which were consistent with the groups obtained based on cannabinoid content clustering. PMID:25306338

  9. Relationship between cannabinoids content and composition of fatty acids in hempseed oils.

    PubMed

    Petrović, Marinko; Debeljak, Željko; Kezić, Nataša; Džidara, Petra

    2015-03-01

    Hempseed oils acquired on the Croatian markets were characterised by cannabinoid content and fatty acid composition. The new method for determination of cannabinoid content was developed and validated in the range of 0.05-60 mg/kg, and the content of tetrahydrocannabinol varied between 3.23 and 69.5 mg/kg. Large differences among the samples were obtained for phenotype ratio suggesting that not all of analysed hempseed oils were produced from industrial hemp. Sample clustering based on cannabinoid content assigned samples to two groups closely related to the phenotype ratios obtained. The results of this study confirm that hempseed oil is a good source of polyunsaturated fatty acids, especially γ-linolenic and stearidonic acid, but the content varies a lot more than the omega-6/omega-3 ratio. The grouping of samples on fatty acid content assigned samples to two groups which were consistent with the groups obtained based on cannabinoid content clustering.

  10. Dietary zinc deficiency affects blood linoleic acid: dihomo-γ-linolenic acid (LA:DGLA) ratio; a sensitive physiological marker of zinc status in vivo (Gallus gallus).

    PubMed

    Reed, Spenser; Qin, Xia; Ran-Ressler, Rinat; Brenna, James Thomas; Glahn, Raymond P; Tako, Elad

    2014-03-20

    Zinc is a vital micronutrient used for over 300 enzymatic reactions and multiple biochemical and structural processes in the body. To date, sensitive and specific biological markers of zinc status are still needed. The aim of this study was to evaluate Gallus gallus as an in vivo model in the context of assessing the sensitivity of a previously unexplored potential zinc biomarker, the erythrocyte linoleic acid: dihomo-γ-linolenic acid (LA:DGLA) ratio. Diets identical in composition were formulated and two groups of birds (n = 12) were randomly separated upon hatching into two diets, Zn⁺ (zinc adequate control, 42.3 μg/g zinc), and Zn⁻ (zinc deficient, 2.5 μg/g zinc). Dietary zinc intake, body weight, serum zinc, and the erythrocyte fatty acid profile were measured weekly. At the conclusion of the study, tissues were collected for gene expression analysis. Body weight, feed consumption, zinc intake, and serum zinc were higher in the Zn⁺ control versus Zn⁻ group (p < 0.05). Hepatic TNF-α, IL-1β, and IL-6 gene expression were higher in the Zn⁺ control group (p < 0.05), and hepatic Δ⁶ desaturase was significantly higher in the Zn⁺ group (p < 0.001). The LA:DGLA ratio was significantly elevated in the Zn⁻ group compared to the Zn⁺ group (22.6 ± 0.5 and 18.5 ± 0.5, % w/w, respectively, p < 0.001). This study suggests erythrocyte LA:DGLA is able to differentiate zinc status between zinc adequate and zinc deficient birds, and may be a sensitive biomarker to assess dietary zinc manipulation.

  11. Dietary linoleic acid requirements in the presence of α-linolenic acid are lower than the historical 2 % of energy intake value, study in rats.

    PubMed

    Choque, Benjamin; Catheline, Daniel; Delplanque, Bernadette; Guesnet, Philippe; Legrand, Philippe

    2015-04-14

    Previous studies on rats and human subjects have established that the linoleic acid (LA) requirement is 2 % of the total energy intake (en%), but is obtained in the absence of α-linolenic acid (ALA) and consequently appear to be overestimated. This raises questions since a recent study including ALA has suggested to divide the historical value by four. However, this recent study has remained inconclusive because the animals used were not totally LA-deficient animals. For the first time, the present study was especially designed using physiological and biochemical markers and performed in two steps: (1) to achieve a specific n-6 fatty acid deficiency model using growing male rats fed either a 0 en% from LA/0 en% from ALA (0LA/0ALA), 0LA/0·5ALA or 2LA/0·5ALA diet, born from female rats fed a 0LA/0·5ALA diet; and (2) to refine the required level of LA in the presence of ALA using rats fed either a 0LA/0ALA, 0·5LA/0·5ALA, 1LA/0·5ALA, 1·5LA/0·5ALA diet, born from female rats fed a 0LA/0·5ALA diet. The first step shows that the best LA deficiency model was obtained using rats fed the 0LA/0ALA diet, born from female rats fed the 0LA/0·5ALA diet. The second step demonstrates that in growing rats, LA deficiency was corrected with an intake of 1-1·5 en% from LA and 0·5 en% from ALA. These data suggest that the requirements in humans should be revisited, considering the presence of ALA to set up the recommendation for LA.

  12. Maternal Nutritional Imbalance between Linoleic Acid and Alpha-Linolenic Acid Increases Offspring's Anxious Behavior with a Sex-Dependent Manner in Mice.

    PubMed

    Sakayori, Nobuyuki; Tokuda, Hisanori; Yoshizaki, Kaichi; Kawashima, Hiroshi; Innis, Sheila M; Shibata, Hiroshi; Osumi, Noriko

    2016-01-01

    Omega-6 (n-6) and omega-3 (n-3) polyunsaturated fatty acids (PUFAs) are essential nutrients for normal brain development. The principal dietary n-6 and n-3 PUFAs are linoleic acid (LA) and α-linolenic acid (ALA), respectively, We have previously shown that maternal dietary imbalance between these PUFAs, i.e., rich in LA and poor in ALA, affected brain development and increased anxiety-related behavior in the mouse offspring. Here we further addressed sex difference in anxiety-related behavior in the offspring exposed to maternal LA:ALA imbalance. We fed pregnant mice a LA excess/ALA deficient (LA(ex)/ALA(def)) diet, and raised their offspring on a well-balanced LA:ALA diet from an early lactation period. When the offspring were grown to adulthood, they were subjected to behavioral and biochemical analyses. We found that both male and female offspring exposed to the LA(ex)/ALA(def) diet showed increased anxiety-related behavior compared to those exposed to the control diet, which was differently observed between the sexes. The female offspring also exhibited hyperactivity by maternal intake of the LA(ex)/ALA(def) diet. On the other hand, abnormal depressive behavior was undetected in both sexes. We also found that the ratio of n-6 to n-3 PUFAs in the brain was unaffected regardless of maternal diet or offspring's sex. Since the n-6/n-3 ratio is known to influence emotional behavior, it is reasonable to assume that LA:ALA imbalance exposed during brain development is the key for causing enhanced anxiety in adulthood. The present study indicates that maternal dietary imbalance between LA and ALA increases offspring's anxiety-related behavior with a sex-dependent manner. PMID:27558477

  13. Dietary Zinc Deficiency Affects Blood Linoleic Acid: Dihomo-γ-linolenic Acid (LA:DGLA) Ratio; a Sensitive Physiological Marker of Zinc Status in Vivo (Gallus gallus)

    PubMed Central

    Reed, Spenser; Qin, Xia; Ran-Ressler, Rinat; Brenna, James Thomas; Glahn, Raymond P.; Tako, Elad

    2014-01-01

    Zinc is a vital micronutrient used for over 300 enzymatic reactions and multiple biochemical and structural processes in the body. To date, sensitive and specific biological markers of zinc status are still needed. The aim of this study was to evaluate Gallus gallus as an in vivo model in the context of assessing the sensitivity of a previously unexplored potential zinc biomarker, the erythrocyte linoleic acid: dihomo-γ-linolenic acid (LA:DGLA) ratio. Diets identical in composition were formulated and two groups of birds (n = 12) were randomly separated upon hatching into two diets, Zn(+) (zinc adequate control, 42.3 μg/g zinc), and Zn(−) (zinc deficient, 2.5 μg/g zinc). Dietary zinc intake, body weight, serum zinc, and the erythrocyte fatty acid profile were measured weekly. At the conclusion of the study, tissues were collected for gene expression analysis. Body weight, feed consumption, zinc intake, and serum zinc were higher in the Zn(+) control versus Zn(−) group (p < 0.05). Hepatic TNF-α, IL-1β, and IL-6 gene expression were higher in the Zn(+) control group (p < 0.05), and hepatic Δ6 desaturase was significantly higher in the Zn(+) group (p < 0.001). The LA:DGLA ratio was significantly elevated in the Zn(−) group compared to the Zn(+) group (22.6 ± 0.5 and 18.5 ± 0.5, % w/w, respectively, p < 0.001). This study suggests erythrocyte LA:DGLA is able to differentiate zinc status between zinc adequate and zinc deficient birds, and may be a sensitive biomarker to assess dietary zinc manipulation. PMID:24658588

  14. Identification of the geometrical isomers of α-linolenic acid using gas chromatography/mass spectrometry with a binary decision tree.

    PubMed

    Hejazi, Leila; Hibbert, David Brynn; Ebrahimi, Diako

    2011-01-30

    Gas chromatography, using a highly polar column, low energy (30 eV) electron ionization mass spectrometry and multivariate curve resolution, are combined to obtain the mass spectra of all eight geometrical isomers of α-linolenic acid. A step by step Student's t-test is performed on the m/z 50-294 to identify the m/z by which the geometries of the double bonds could be discriminated. The most intense peak discriminates between cis (m/z 79) and trans (m/z 95) at the central (carbon 12) position. The configuration at carbon 15 is then distinguished by m/z 68 and 236, and finally the geometry at carbon 9 is determined by m/z 93, 173, 191 and 236. A three-question binary tree is developed based on the normalized intensities of these ions by which the identity of any given isomer of α-linolenic is accurately determined. Application of Bayes theorem to data from independent samples shows that the complete configuration is determined correctly with a minimum probability of 87%.

  15. Fuel properties of methyl esters of borage and black currant oils containing methyl-gamma-linolenate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Additional or alternative feedstocks are one of the major areas of interest regarding biodiesel. In this work, two oils enriched in gamma-linolenic acid (6Z,9Z,12Z-octadecatrienoic acid) were investigated as biodiesel feedstocks. One oil is black currant in which gamma-linolenic and alpha-linolenic ...

  16. Oils rich in α-linolenic acid independently protect against characteristics of fatty liver disease in the Δ6-desaturase null mouse.

    PubMed

    Monteiro, Jessica; Askarian, Fatemeh; Nakamura, Manabu T; Moghadasian, Mohammed H; Ma, David W L

    2013-06-01

    Alpha-linolenic acid's (ALA) biological activity is poorly understood and primarily associated with its conversion to eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). Delta-6 desaturase (D6D) initiates the metabolism of linoleic acid (LA) and ALA to arachidonic acid, EPA, and DHA, respectively. In this study, D6D knock-out (D6KO) mice were used to evaluate the effects of ALA-rich oils in preventing hepatic steatosis and inflammation. D6KO and wild-type mice were fed 1 of 4 high-fat (14% w/w) diets: (i) lard (LD, 0% n-3 PUFA), (ii) canola oil + ARASCO (CD, 8% ALA), (iii) flax seed oil + ARASCO (FD, 55% ALA), (iv) menhaden oil (MD, 30% EPA/DHA) for 8 or 20 weeks. Livers of D6KO mice consuming CD and FD were depleted of EPA/DHA, and enriched in ALA. Markers of fat accumulation and inflammation were lowest in the MD-fed mice, at 8 and 20 weeks, regardless of genotype. CD- and FD-fed D6KO groups were found to have lower liver lipid accumulation and lower hepatic inflammation relative to the LD-fed mice at 8 weeks. In conclusion, while MD was the most protective, this study shows that ALA can act independently on risk factors associated with the development of fatty liver disease.

  17. Rapeseed or linseed in grass-based diets: effects on conjugated linoleic and conjugated linolenic acid isomers in milk fat from Holstein cows over 2 consecutive lactations.

    PubMed

    Lerch, S; Shingfield, K J; Ferlay, A; Vanhatalo, A; Chilliard, Y

    2012-12-01

    Changes in the distribution of conjugated linoleic (CLA) and conjugated linolenic (CLnA) acid isomers in milk from Holstein cows in response to 4 different oilseed supplements rich in either cis-9 18:1 or 18:3n-3 were determined over 2 consecutive lactations in 58 and 35 cows during the first and second years, respectively. For the first 5 wk of the first lactation, all cows were fed the same diet. Thereafter, cows received 1 of 5 treatments for 2 consecutive lactations, including the prepartum period. Treatments comprised the basal diet with no additional lipid, or supplements of extruded linseeds (EL), extruded rapeseeds (ER), cold-pressed fat-rich rapeseed meal, or whole unprocessed rapeseeds to provide 2.5 to 3.0% of additional oil in diet dry matter. During indoor periods, cows were housed and received a mixture (3:1, wt/wt) of grass silage and hay, whereas cows were at pasture during outdoor periods. Over the entire study, EL resulted in the enrichment of ∆11,13 CLA, ∆12,14 CLA, trans-9,trans-11 CLA, trans-13,trans-15 CLA, ∆9,11,15 CLnA, and cis-9,trans-11,trans-13 CLnA (identified for the first time in bovine milk fat) in milk fat, whereas ER and cold-pressed fat-rich rapeseed meal in particular, increased milk fat trans-7,cis-9 CLA concentration. With the exception of the first indoor period, whole unprocessed rapeseeds decreased cis-9,trans-11 CLA, trans-9,cis-11 CLA, and trans-10,trans-12 CLA abundance. During the second indoor period, EL increased milk trans-9,cis-11 CLA and trans-10,cis-12 CLA concentrations, but the increases in cis-9,trans-11 CLA, cis-12,trans-14 CLA, trans-11,cis-13 CLA, and cis-9,trans-11,cis-15 CLnA concentrations to EL and ER were lower for the second than first indoor period. In contrast to the indoor periods, EL and ER decreased milk cis-9,trans-11 CLA, trans-9,cis-11 CLA, and trans-10,cis-12 CLA concentrations at pasture. The extent of changes in the relative distribution and abundance of CLA and CLnA isomers in milk fat

  18. Dietary α-linolenic acid-rich flaxseed oil prevents against alcoholic hepatic steatosis via ameliorating lipid homeostasis at adipose tissue-liver axis in mice

    PubMed Central

    Wang, Meng; Zhang, Xiao-Jing; Feng, Kun; He, Chengwei; Li, Peng; Hu, Yuan-Jia; Su, Huanxing; Wan, Jian-Bo

    2016-01-01

    Low levels of n-3 polyunsaturated fatty acids (PUFAs) in serum and liver tissue biopsies are the common characteristics in patients with alcoholic liver disease. The α-linolenic acid (ALA) is a plant-derived n-3 PUFA and is rich in flaxseed oil. However, the impact of ALA on alcoholic fatty liver is largely unknown. In this study, we assessed the potential protective effects of ALA-rich flaxseed oil (FO) on ethanol-induced hepatic steatosis and observed that dietary FO supplementation effectively attenuated the ethanol-induced hepatic lipid accumulation in mice. Ethanol exposure stimulated adipose lipolysis but reduced fatty acid/lipid uptake, which were normalized by FO. Our investigations into the corresponding mechanisms demonstrated that the ameliorating effect of FO might be associated with the lower endoplasmic reticulum stress and normalized lipid metabolism in adipose tissue. In the liver, alcohol exposure stimulated hepatic fatty acid uptake and triglyceride synthesis, which were attenuated by FO. Additionally, dietary FO upregulated plasma adiponectin concentration, hepatic adiponectin receptor 2 expression, and the activation of hepatic adenosine monophosphate-activated protein kinase. Collectively, dietary FO protects against alcoholic hepatic steatosis by improving lipid homeostasis at the adipose tissue-liver axis, suggesting that dietary ALA-rich flaxseed oil might be a promising approach for prevention of alcoholic fatty liver. PMID:27220557

  19. Fatty acid content of New Zealand-grown walnuts (Juglans regia L.).

    PubMed

    Zwarts, L; Savage, G P; McNeil, D L

    1999-05-01

    Walnut (Juglans regia L.) samples were collected during the 1994 and 1995 harvest from ten different cultivars of trees grown in a replicated trial in an experimental orchard at Lincoln University, New Zealand. Two US commercial cultivars (Tehama and Vina), three European commercial cultivars (Esterhazy, 139, G120) and five New Zealand selections (Rex, Dublin's Glory, Meyric, McKinster, Stanley) were evaluated. Total oil was extracted using a cold press and individual fatty acids were analysed by GLC. The total oil content of the nuts ranged from 62.4 to 68.7%. The oleic acid content of the oils ranged from 14.3 to 26.1% of the total fatty acids, while the linoleic acid content ranged from 49.3 to 62.3% and the linolenic contents from 8.0 to 13.8%. PMID:10627834

  20. Alpha-linolenic acid intake prevents endothelial dysfunction in high-fat diet-fed streptozotocin rats and underlying mechanisms.

    PubMed

    Zhang, Wei; Fu, Fang; Tie, Ru; Liang, Xiangyan; Tian, Fei; Xing, Wenjuan; Li, Jia; Ji, Lele; Xing, Jinliang; Sun, Xin; Zhang, Haifeng

    2013-11-01

    Hintergrund: Die endotheliale Dysfunktion ist ein wichtiger Faktor in der Pathogenenese von diabetes- assoziierten Gefäßkomplikationen. Alpha-Linolensäure (ALA) kann die flußvermittelte Dilatation der diabetischen Arterie vier Stunden postprandial erhöhen. Es ist aber weitgehend unklar, ob eine chronische ALA Supplementierung eine endotheliale Dysfunktion verhüten kann. Material und Methoden: Streptozotozin (HFD-STZ) Ratten unter hochdosierter Fettdiät (HFD-STZ) stellen ein Tiermodell für den Typ 2 Diabetes (T2DM) dar. Altersgleiche normale und HFD-STZ Ratten bekamen randomisiert eine normale Diät oder ALA (500 mg/kg pro Tag). Nach 5 Wochen wurde die endotheliale Dysfunktion gemessen. Ergebnisse: Diabetes verursachte eine signifikante endotheliale Dysfunktion (maximale Vasorelaxation auf Azetylcholin) in aortalen Segmenten. ALA Aufnahme milderte die endotheliale Dysfunktion. Superoxide Produktion and Peroxynitrite (ONOO-) Bildung waren unter ALA Supplementierung in den diabetischen Gefäßsegmenten vermindert. Bemerkenswerterweise verstärkte die ALA Aufnahme eNOS, hemmte aber die iNOS Aktivität in diabetischen Gefäßen. Darüber hinaus steigerte ALA die Aufnahme der eNOS Phosphorylation signifikant. Andererseits waren gp91phox und iNOS Überexpression moderat bei ALA Aufnahme reduziert. Schlussfolgerungen: ALA wirkt präventiv auf eine diabetes-induzierte endotheliale Dysfunktion, indem es die eNOS Aktivität verstärkt und den oxidativen/nitrativen Stress durch Hemmung der iNOS und NADPH Oxidase Expression und ONOO-Production mildert.

  1. Alpha linolenic acid (ALA) from Rosa canina, sacha inchi and chia oils may increase ALA accretion and its conversion into n-3 LCPUFA in diverse tissues of the rat.

    PubMed

    Valenzuela B, Rodrigo; Barrera R, Cynthia; González-Astorga, Marcela; Sanhueza C, Julio; Valenzuela B, Alfonso

    2014-07-25

    Alpha-linolenic acid (ALA) is an essential n-3 PUFA; its n-3 LCPUFA derivatives EPA and DHA, which have diverse beneficial effects, are scarce in the human diet. In recent years nontraditional vegetable oils rich in ALA (up to 45%) have been developed as new alternatives to increase ALA consumption. This work evaluated the accretion of ALA, EPA and DHA into the phospholipids extracted from erythrocytes, liver, kidney, small intestine, heart, quadriceps and the brain in rats fed sunflower (SFO), canola (CO), Rosa canina (RCO), sacha inchi (Plukenetia volubilis, SIO) and chia (Salvia hispánica, ChO) oils. Five experimental groups (n = 12 per group) were fed for 21 days with SFO (1% ALA), CO (10% ALA), RCO (33% ALA), SIO (49% ALA), and ChO (64% ALA). SIO and ChO allowed higher ALA accretion in all tissues, except the brain, and a reduction in the content of arachidonic acid in all tissues except the brain. EPA was increased in erythrocytes, liver, kidney, small intestine, heart and quadriceps, but not in the brain. DHA was increased in the liver, small intestine and brain tissues. Our results demonstrate that ALA, when provided in significant amounts, can be converted into n-3 LCPUFA, mostly DHA in the liver and brain. It is suggested that oils rich in ALA, such as SIO and ChO, are good sources for obtaining higher tissue levels of ALA, also allowing its selective conversion into n-3 LCPUFA in some tissues of the rat.

  2. α-Linolenic acid supplementation in BioXcell® extender can improve the quality of post-cooling and frozen-thawed bovine sperm.

    PubMed

    Kaka, Asmatullah; Wahid, Haron; Rosnina, Yusoff; Yimer, Nurhusien; Khumran, A M; Sarsaifi, Kazhal; Behan, Atique Ahmed; Kaka, Ubedullah; Ebrahimi, M

    2015-02-01

    The present study was conducted to determine the effects of supplementing α-linolenic acid (ALA) into BioXcell(®) extender on post-cooling, post-thawed bovine spermatozoa and post thawed fatty acid composition. Twenty-four semen samples were collected from three bulls using an electro-ejaculator. Fresh semen samples were evaluated for general motility using computer assisted semen analyzer (CASA) whereas morphology and viability with eosin-nigrosin stain. Semen samples extended into BioXcell(®) were divided into five groups to which 0, 3, 5, 10 and 15 ng/ml of ALA were added, respectively. The treated samples were incubated at 37°C for 15 min for ALA uptake by sperm cells before being cooled for 2 h at 5°C. After evaluation, the cooled samples were packed into 0.25 ml straws and frozen in liquid nitrogen for 24 h before thawing and evaluation for semen quality. Evaluation of cooled and frozen-thawed semen showed that the percentages of all the sperm parameters improved with 5 ng/ml ALA supplement. ALA was higher in all treated groups than control groups than control group. In conclusion, 5 ng/ml ALA supplemented into BioXcell(®) extender improved the cooled and frozen-thawed quality of bull spermatozoa.

  3. Effect of Increasing Doses of Linoleic and α-Linolenic Acids on High-Fructose and High-Fat Diet Induced Metabolic Syndrome in Rats.

    PubMed

    Zhang, Jianan; Wang, Ou; Guo, Yingjian; Wang, Tuo; Wang, Siyi; Li, Guopeng; Ji, Baoping; Deng, Qianchun

    2016-02-01

    Doses and ratio of linoleic acid (LA) and α-linolenic acid (ALA) preventing metabolic syndrome (MS) were investigated. SD rats were fed (i) basal diet, (ii) high-fructose and high-fat diet (HFFD), (iii) HFFD with increasing-dose LA (0.75 energy-% ALA + 3, 6, 9, 12, 15, and 30 energy-% LA), and (iv) HFFD with increasing-dose ALA (6 energy-% LA + 0.3, 0.5, 0.75, 1.5, 2.25, and 3.75 energy-% ALA) for 18 weeks. Results showed 6, 12, 15, and 30 energy-% LA significantly ameliorated central obesity, hyperlipidemia, glucose homeostasis, and leptin status; 0.5 and 0.75 energy-% ALA significantly improved insulin sensitivity, adiponectin, and anti-inflammatory status. Moreover, high intakes of ALA (1.5, 2.25, and 3.75 energy-%) presented a pro-oxidant activity. In conclusion, dose instead of ratio determines the prevention of MS. The optimal doses are 6 energy-% LA and 0.75 energy-% ALA; high intakes of ALA may have side effects.

  4. Alpha-linolenic acid given as enteral or parenteral nutritional intervention against sensorimotor and cognitive deficits in a mouse model of ischemic stroke.

    PubMed

    Bourourou, Miled; Heurteaux, Catherine; Blondeau, Nicolas

    2016-09-01

    Stroke is a leading cause of disability and death worldwide. Numerous therapeutics applied acutely after stroke have failed to improve long-term clinical outcomes. An emerging direction is nutritional intervention with omega-3 polyunsaturated fatty acids acting as disease-modifying factors and targeting post-stroke disabilities. Our previous studies demonstrated that the omega-3 precursor, alpha-linolenic acid (ALA) administrated by injections or dietary supplementation reduces stroke damage by direct neuroprotection, and triggering brain artery vasodilatation and neuroplasticity. Successful translation of putative therapies will depend on demonstration of robust efficacy on common deficits resulting from stroke like loss of motor control and memory/learning. This study evaluated the value of ALA as adjunctive therapy for stroke recovery by comparing whether oral or intravenous supplementation of ALA best support recovery from ischemia. Motor and cognitive deficits were assessed using rotarod, pole and Morris water maze tests. ALA supplementation in diet was better than intravenous treatment in improving motor coordination, but this improvement was not due to a neuroprotective effect since infarct size was not reduced. Both types of ALA supplementation improved spatial learning and memory after stroke. This cognitive improvement correlated with higher survival of hippocampal neurons. These results support clinical investigation establishing therapeutic plans using ALA supplementation. PMID:27133376

  5. Mass Spectrometric Confirmation of γ-Linolenic Acid Ester-Linked Ceramide 1 in the Epidermis of Borage Oil Fed Guinea Pigs.

    PubMed

    Shin, Kyong-Oh; Kim, Kunpyo; Jeon, Sanghun; Seo, Cho-Hee; Lee, Yong-Moon; Cho, Yunhi

    2015-10-01

    Ceramide 1 (Cer1), a Cer species with eicosasphingenine (d20:1) amide-linked to two different ω-hydroxy fatty acids (C30wh:0:C32wh:1), which are, in turn, ester-linked to linoleic acid (LNA; 18:2n-6), plays a critical role in maintaining the structural integrity of the epidermal barrier. Prompted by the recovery of a disrupted epidermal barrier with dietary borage oil [BO: 36.5% LNA and 23.5% γ-linolenic acid (GLA; 18:3n-6)], in essential fatty acid (EFA)-deficient guinea pigs, we further investigated the effects of BO on the substitution of ester-linked GLA for LNA in these two epidermal Cer1 species by LC-MS in positive and negative modes. Dietary supplementation of BO for 2 weeks in EFA-deficient guinea pigs increased LNA ester-linked to C32wh:1/d20:1 and C30wh:0/d20:1 of Cer1. Moreover, GLA ester-linked to C32wh:1/d20:1, but not to C30wh:0/d20:1, of Cer1 was detected, which was further confirmed by the product ions of m/z 277.2 for ester-linked GLA and m/z 802.3 for the deprotonated C32wh:1/d20:1. C20-Metabolized fatty acids of LNA or GLA were not ester-linked to these Cer1 species. Dietary BO induced GLA ester-linked to C32wh:1/d20:1 of epidermal Cer1. PMID:26233818

  6. Isolation of α-linolenic acid biohydrogenation products by combined silver ion solid phase extraction and semi-preparative high performance liquid chromatography.

    PubMed

    Turner, T D; Meadus, W J; Mapiye, C; Vahmani, P; López-Campos, Ó; Duff, P; Rolland, D C; Church, J S; Dugan, M E R

    2015-02-01

    Polyunsaturated fatty acids typically found in cattle feed include linoleic (LA) and α-linolenic acid (ALA). In the rumen, microbes metabolize these resulting in the formation of biohydrogenation products (BHP), which can be incorporated into meat and milk. Bioactivities of LA-BHP, including conjugated linoleic acid (cis (c) 9,trans (t) 11-18:2 and t10,c12-18:2) and trans fatty acid isomers (t9-, t10- and t11-18:1) have been investigated, but effects of several BHP unique to ALA have not been extensively studied, and most ALA-BHP are not commercially available. The objective of the present research was to develop methods to purify and collect ALA-BHP using silver ion (Ag(+)) chromatography in sufficient quantities to allow for convenient bioactivity testing in cell culture. Fatty acid methyl esters (FAME) were prepared from perirenal adipose tissue from a cow enriched with ALA-BHP by feeding flaxseed. These were applied to Ag(+)-solid phase extraction, and eluted with hexane with increasing quantities of acetone (1, 2, 10, 20%) or acetonitrile (2%) to pre-fractionate FAME based on degree of unsaturation and double bond configuration. Fractions were collected, concentrated and applied to semi-preparative Ag(+)-high performance liquid chromatography (HPLC) for the isolation and collection of purified isomers, which was accomplished using isocratic elutions with hexane containing differing amounts of acetonitrile (from 0.015 to 0.075%). Purified trans-18:1 isomers collected ranged in purity from 88 to 99%. Purity of the ALA-BHP dienes collected, including c9,t13-18:2, t11,c15-18:2 and t10,c15-18:2, exceeded 90%, while purification of other dienes may require the use of other complementary procedures (e.g. reverse phase HPLC). PMID:25579113

  7. Mass Spectrometric Confirmation of γ-Linolenic Acid Ester-Linked Ceramide 1 in the Epidermis of Borage Oil Fed Guinea Pigs.

    PubMed

    Shin, Kyong-Oh; Kim, Kunpyo; Jeon, Sanghun; Seo, Cho-Hee; Lee, Yong-Moon; Cho, Yunhi

    2015-10-01

    Ceramide 1 (Cer1), a Cer species with eicosasphingenine (d20:1) amide-linked to two different ω-hydroxy fatty acids (C30wh:0:C32wh:1), which are, in turn, ester-linked to linoleic acid (LNA; 18:2n-6), plays a critical role in maintaining the structural integrity of the epidermal barrier. Prompted by the recovery of a disrupted epidermal barrier with dietary borage oil [BO: 36.5% LNA and 23.5% γ-linolenic acid (GLA; 18:3n-6)], in essential fatty acid (EFA)-deficient guinea pigs, we further investigated the effects of BO on the substitution of ester-linked GLA for LNA in these two epidermal Cer1 species by LC-MS in positive and negative modes. Dietary supplementation of BO for 2 weeks in EFA-deficient guinea pigs increased LNA ester-linked to C32wh:1/d20:1 and C30wh:0/d20:1 of Cer1. Moreover, GLA ester-linked to C32wh:1/d20:1, but not to C30wh:0/d20:1, of Cer1 was detected, which was further confirmed by the product ions of m/z 277.2 for ester-linked GLA and m/z 802.3 for the deprotonated C32wh:1/d20:1. C20-Metabolized fatty acids of LNA or GLA were not ester-linked to these Cer1 species. Dietary BO induced GLA ester-linked to C32wh:1/d20:1 of epidermal Cer1.

  8. Effects of feeding diets rich in α-linolenic acid and copper on performance, carcass characteristics, and fatty acid profiles of feedlot heifers.

    PubMed

    Alvarado-Gilis, C A; Aperce, C C; Miller, K A; Van Bibber-Krueger, C L; Uwituze, S; Drouillard, J S; Higgins, J J

    2014-12-01

    Our objective was to evaluate whether feeding elevated Cu concentrations in conjunction with Linpro, a co-extruded blend of field peas and flaxseed, affected in vitro fermentation, performance, and plasma lipid profiles of fattening beef heifers. In study 1, 2 in vitro trials were conducted as randomized complete experiments with a 2×2 factorial treatment arrangement (10 or 100 mg/kg added Cu and 0 or 10% Linpro, DM basis) to determine VFA/gas production and IVDMD. Linpro contains 12% α-linolenic acid and added vitamins and minerals. In study 2, a randomized complete block experiment with a 2×2 factorial treatment arrangement was conducted with the same previously described treatment. Crossbred yearling heifers (n=261; 351±23 kg initial BW) were blocked by weight into heavy and light groups and randomly assigned to experimental pens containing 10 or 11 heifers each. In study 1, no interactions between levels of Cu and Linpro were observed. Copper concentration did not affect IVDMD (P>0.2) but increased (P<0.05) by 1.2% when Linpro was included. Final pH was not effected by added Cu (P>0.05), but pH increased when Linpro was added (P<0.05). Total VFA were greater in high-Cu treatments (P=0.038) and molar proportions were not affected (P>0.34). Linpro had no effect on total VFA (P=0.46) and molar proportions of propionate and isobutyrate increased whereas acetate and the acetate:propionate ratio decreased (P<0.01). Linpro increased the production of H2S (30% higher; P=0.05), and Cu inclusion slightly increased CO2 proportion (64.06 vs. 67.58% for Linpro vs. Cu treatments, respectively). In study 2, there were no interactions between levels of Linpro and supplemental Cu except for plasma n-6:n-3 ratio (P<0.01). Final BW were similar for cattle fed 0 and 10% Linpro (581 vs. 588 kg; P>0.20), but cattle fed diets with Linpro consumed less feed (14.08 vs. 13.59 kg/d; P<0.05) and were therefore more efficient (0.129 vs. 0.137 for 0 vs. 10% Linpro, respectively; P<0

  9. Margarines fortified with α-linolenic acid, eicosapentaenoic acid, or docosahexaenoic acid alter the fatty acid composition of erythrocytes but do not affect the antioxidant status of healthy adults.

    PubMed

    Egert, Sarah; Lindenmeier, Michael; Harnack, Kerstin; Krome, Katharina; Erbersdobler, Helmut F; Wahrburg, Ursel; Somoza, Veronika

    2012-09-01

    We aimed to investigate the effects of increased intake of α-linolenic acid (ALA), EPA, or DHA incorporated into a food matrix on the fatty acid composition of erythrocytes and on biomarkers of oxidant/antioxidant status. To this end, a controlled dietary study was conducted in 74 healthy men and women. The participants were randomly assigned to 1 of 3 interventions in which margarines fortified with either 10 weight percent ALA, EPA, or DHA ethyl esters replaced their normal spread for 6 wk. The total intakes of ALA, EPA, and DHA were 4.4, 2.2, and 2.3 g/d, respectively. Consuming EPA increased the erythrocyte proportion of EPA (394%) and the omega-3 index (sum of EPA and DHA, 38%). Consumption of DHA increased erythrocyte DHA (91%), the omega-3 index (98%), and EPA (137%). The omega-3 index increased to a significantly greater extent in the DHA group than in the EPA group. ALA did not increase erythrocyte EPA or the omega-3 index. We found no change in plasma uric acid or antioxidant capacity in any of the groups. Plasma malondialdehyde (MDA) increased with the EPA and DHA interventions. All 3 interventions decreased erythrocyte linoleic acid hydroperoxides but did not affect their MDA concentrations. In conclusion, the intake of both isolated EPA and DHA incorporated into margarine resulted in an enhanced incorporation of EPA and DHA into erythrocytes. Our findings indicate that DHA is quantitatively superior to EPA in view of the EPA+DHA tissue incorporation and also that 4 g/d ALA is not sufficient to increase the omega-3 index over a 6-wk period.

  10. Lipid and protein oxidation of α-linolenic acid-enriched pork during refrigerated storage as influenced by diet supplementation with olive leaves (Olea europea L.) or α-tocopheryl acetate.

    PubMed

    Botsoglou, Evropi; Govaris, Alexander; Ambrosiadis, Ioannis; Fletouris, Dimitrios

    2012-12-01

    The objective of this study was to evaluate the effect of diet supplementation with olive leaves or α-tocopheryl acetate on lipid and protein oxidation of raw and cooked n-3 enriched-pork during refrigerated storage. Enrichment of pork with α-linolenic acid through diet supplementation with linseed oil enhanced (p≤0.05) lipid oxidation in both raw and cooked chops but had no effect (p>0.05) on protein oxidation during refrigerated storage while decreasing (p≤0.05) the sensory attributes of cooked pork. Diet supplementation with olive leaves or α-tocopheryl acetate had no effect (p>0.05) on the fatty acid composition of pork but decreased (p≤0.05) lipid oxidation while exerting no effect (p>0.05) on protein oxidation in both raw and cooked α-linolenic acid-enriched chops stored and chilled for 9 days. Moreover, olive leaves and α-tocopheryl acetate supplemented at 10 g/kg and 200mg/kg diet, respectively, exerted (p≤0.05) a beneficial effect on the sensory attributes of cooked α-linolenic acid-enriched pork chops.

  11. In-vitro transcutaneous delivery of tamoxifen and gamma-linolenic acid from borage oil containing ethanol and 1,8-cineole.

    PubMed

    Ho, Suzanna; Calder, Richard J; Thomas, Christopher P; Heard, Charles M

    2004-11-01

    The objective of this study was to examine the effects of ethanol and 1,8-cineole on the transcutaneous delivery of tamoxifen and gamma-linolenic acid (GLA) as a two-pronged anti-breast cancer therapy. Formulations containing tamoxifen and varying concentrations of borage oil (approximately 25% GLA), 1,8-cineole and ethanol were prepared and the simultaneous permeation of tamoxifen and GLA determined across full-thickness pig skin using Franz-type diffusion cells over 48 h. Analysis of tamoxifen and GLA (as methyl ester) were by reverse-phase HPLC. The highest flux of tamoxifen of 488.2 +/- 191 x 10(-3) microg cm(-2) h(-1) was observed with a formulation containing 20% 1,8-cineole and 20% ethanol. The same formulation also provided the greatest flux of GLA, 830.6 x 10(-3) microg cm(-2 )h(-1). The findings from this work demonstrate the ability of 1,8-cineole and ethanol to enhance the in-vitro permeation of tamoxifen and GLA across the skin and support the plausibility of simultaneously delivering tamoxifen and GLA transcutaneously as a two-pronged anti-breast cancer system. PMID:15525441

  12. In-vitro transcutaneous delivery of tamoxifen and gamma-linolenic acid from borage oil containing ethanol and 1,8-cineole.

    PubMed

    Ho, Suzanna; Calder, Richard J; Thomas, Christopher P; Heard, Charles M

    2004-11-01

    The objective of this study was to examine the effects of ethanol and 1,8-cineole on the transcutaneous delivery of tamoxifen and gamma-linolenic acid (GLA) as a two-pronged anti-breast cancer therapy. Formulations containing tamoxifen and varying concentrations of borage oil (approximately 25% GLA), 1,8-cineole and ethanol were prepared and the simultaneous permeation of tamoxifen and GLA determined across full-thickness pig skin using Franz-type diffusion cells over 48 h. Analysis of tamoxifen and GLA (as methyl ester) were by reverse-phase HPLC. The highest flux of tamoxifen of 488.2 +/- 191 x 10(-3) microg cm(-2) h(-1) was observed with a formulation containing 20% 1,8-cineole and 20% ethanol. The same formulation also provided the greatest flux of GLA, 830.6 x 10(-3) microg cm(-2 )h(-1). The findings from this work demonstrate the ability of 1,8-cineole and ethanol to enhance the in-vitro permeation of tamoxifen and GLA across the skin and support the plausibility of simultaneously delivering tamoxifen and GLA transcutaneously as a two-pronged anti-breast cancer system.

  13. Dietary α-linolenic acid from flaxseed oil or eicosapentaenoic and docosahexaenoic acids from fish oil differentially alter fatty acid composition and characteristics of fresh and frozen-thawed bull semen.

    PubMed

    Moallem, Uzi; Neta, Noam; Zeron, Yoel; Zachut, Maya; Roth, Zvi

    2015-04-15

    Incorporation rates of dietary omega-3 (n-3) fatty acids (FAs) from different sources into bull plasma and sperm and the effects on physiological characteristics of fresh and frozen-thawed semen were determined. Fifteen fertile bulls were assigned to three treatment groups and supplemented for 13 weeks with encapsulated fat: (1) SFA-360 g/d per bull saturated FA; (2) FLX-450 g/d per bull providing 84.2 g/d C18:3n-3 (α-linolenic acid) from flaxseed oil; and (3) FO-450 g/d per bull providing 8.7 g/d C20:5n-3 (eicosapentaenoic acid) and 6.5 g/d C22:6n-3 (docosahexaenoic acid, DHA) from fish oil. Blood samples were taken every 2 weeks and semen was collected weekly. With respect to the FA supplements, the proportion of α-linolenic acid in plasma increased in the FLX bulls, whereas that of DHA was increased in the FO bulls, within 2 weeks. However, changes in the sperm FA fraction were first expressed in the sixth week of supplementation: in the FO and FLX bulls the DHA proportion increased (P < 0.001), whereas that of C22:5n-6 FAs (docosapentaenoic acid [DPA] n-6) decreased (P < 0.001). Sperm motility and progressive motility in fresh semen were higher (P < 0.05), and the fading rate tended to be lower in the FLX than in FO bulls (P < 0.06). Furthermore, sperm motility, progressive motility, and velocity in frozen-thawed semen were higher in FLX than in the other groups (P < 0.008). These findings indicate that the proportion of DHA in sperm can be increased at the expense of DPAn-6 by either FO or FLX supplementation, indicating de novo elongation and desaturation of short- into longer-chain n-3 FAs in testes. Furthermore, the moderate exchange of DHA and DPAn-6 in the FLX group's sperm was associated with changes in the characteristics of both fresh and frozen-thawed semen, suggesting the importance of the ratio between these two FAs for sperm structure and function. PMID:25617988

  14. Dietary α-linolenic acid from flaxseed oil or eicosapentaenoic and docosahexaenoic acids from fish oil differentially alter fatty acid composition and characteristics of fresh and frozen-thawed bull semen.

    PubMed

    Moallem, Uzi; Neta, Noam; Zeron, Yoel; Zachut, Maya; Roth, Zvi

    2015-04-15

    Incorporation rates of dietary omega-3 (n-3) fatty acids (FAs) from different sources into bull plasma and sperm and the effects on physiological characteristics of fresh and frozen-thawed semen were determined. Fifteen fertile bulls were assigned to three treatment groups and supplemented for 13 weeks with encapsulated fat: (1) SFA-360 g/d per bull saturated FA; (2) FLX-450 g/d per bull providing 84.2 g/d C18:3n-3 (α-linolenic acid) from flaxseed oil; and (3) FO-450 g/d per bull providing 8.7 g/d C20:5n-3 (eicosapentaenoic acid) and 6.5 g/d C22:6n-3 (docosahexaenoic acid, DHA) from fish oil. Blood samples were taken every 2 weeks and semen was collected weekly. With respect to the FA supplements, the proportion of α-linolenic acid in plasma increased in the FLX bulls, whereas that of DHA was increased in the FO bulls, within 2 weeks. However, changes in the sperm FA fraction were first expressed in the sixth week of supplementation: in the FO and FLX bulls the DHA proportion increased (P < 0.001), whereas that of C22:5n-6 FAs (docosapentaenoic acid [DPA] n-6) decreased (P < 0.001). Sperm motility and progressive motility in fresh semen were higher (P < 0.05), and the fading rate tended to be lower in the FLX than in FO bulls (P < 0.06). Furthermore, sperm motility, progressive motility, and velocity in frozen-thawed semen were higher in FLX than in the other groups (P < 0.008). These findings indicate that the proportion of DHA in sperm can be increased at the expense of DPAn-6 by either FO or FLX supplementation, indicating de novo elongation and desaturation of short- into longer-chain n-3 FAs in testes. Furthermore, the moderate exchange of DHA and DPAn-6 in the FLX group's sperm was associated with changes in the characteristics of both fresh and frozen-thawed semen, suggesting the importance of the ratio between these two FAs for sperm structure and function.

  15. Screening of the entire USDA castor germplasm collection for oil content and fatty acid composition for optimum biodiesel production.

    PubMed

    Wang, Ming Li; Morris, J Bradley; Tonnis, Brandon; Pinnow, David; Davis, Jerry; Raymer, Paul; Pederson, Gary A

    2011-09-14

    Castor has tremendous potential as a feedstock for biodiesel production. The oil content and fatty acid composition in castor seed are important factors determining the price for production and affecting the key fuel properties of biodiesel. There are 1033 available castor accessions collected or donated from 48 countries worldwide in the USDA germplasm collection. The entire castor collection was screened for oil content and fatty acid composition by nuclear magnetic resonance (NMR) and gas chromatography (GC), respectively. Castor seeds on the average contain 48.2% oil with significant variability ranging from 37.2 to 60.6%. Methyl esters were prepared from castor seed by alkaline transmethylation. GC analysis of methyl esters confirmed that castor oil was composed primarily of eight fatty acids: 1.48% palmitic (C16:0), 1.58% stearic (C18:0), 4.41% oleic (C18:1), 6.42% linoleic (C18:2), 0.68% linolenic (C18:3), 0.45% gadoleic (C20:1), 84.51% ricinoleic (C18:1-1OH), and 0.47% dihydroxystearic (C18:0-2OH) acids. Significant variability in fatty acid composition was detected among castor accessions. Ricinoleic acid (RA) was positively correlated with dihydroxystearic acid (DHSA) but highly negatively correlated with the five other fatty acids except linolenic acid. The results for oil content and fatty acid composition obtained from this study will be useful for end-users to explore castor germplasm for biodiesel production.

  16. Mechanisms Involved in the Improvement of Lipotoxicity and Impaired Lipid Metabolism by Dietary α-Linolenic Acid Rich Salvia hispanica L (Salba) Seed in the Heart of Dyslipemic Insulin-Resistant Rats.

    PubMed

    Creus, Agustina; Ferreira, María R; Oliva, María E; Lombardo, Yolanda B

    2016-01-28

    This study explores the mechanisms underlying the altered lipid metabolism in the heart of dyslipemic insulin-resistant (IR) rats fed a sucrose-rich diet (SRD) and investigates if chia seeds (rich in α-linolenic acid 18:3, n-3 ALA) improve/reverse cardiac lipotoxicity. Wistar rats received an SRD-diet for three months. Half of the animals continued with the SRD up to month 6. The other half was fed an SRD in which the fat source, corn oil (CO), was replaced by chia seeds from month 3 to 6 (SRD+chia). A reference group consumed a control diet (CD) all the time. Triglyceride, long-chain acyl CoA (LC ACoA) and diacylglycerol (DAG) contents, pyruvate dehydrogenase complex (PDHc) and muscle-type carnitine palmitoyltransferase 1 (M-CPT1) activities and protein mass levels of M-CPT1, membrane fatty acid transporter (FAT/CD36), peroxisome proliferator activated receptor α (PPARα) and uncoupling protein 2 (UCP2) were analyzed. Results show that: (a) the hearts of SRD-fed rats display lipotoxicity suggesting impaired myocardial lipid utilization; (b) Compared with the SRD group, dietary chia normalizes blood pressure; reverses/improves heart lipotoxicity, glucose oxidation, the increased protein mass level of FAT/CD36, and the impaired insulin stimulated FAT/CD36 translocation to the plasma membrane. The enhanced M-CPT1 activity is markedly reduced without similar changes in protein mass. PPARα slightly decreases, while the UCP2 protein level remains unchanged in all groups. Normalization of dyslipidemia and IR by chia reduces plasma fatty acids (FAs) availability, suggesting that a different milieu prevents the robust translocation of FAT/CD36. This could reduce the influx of FAs, decreasing the elevated M-CPT1 activity and lipid storage and improving glucose oxidation in cardiac muscles of SRD-fed rats.

  17. Mechanisms Involved in the Improvement of Lipotoxicity and Impaired Lipid Metabolism by Dietary α-Linolenic Acid Rich Salvia hispanica L (Salba) Seed in the Heart of Dyslipemic Insulin-Resistant Rats

    PubMed Central

    Creus, Agustina; Ferreira, María R.; Oliva, María E.; Lombardo, Yolanda B.

    2016-01-01

    This study explores the mechanisms underlying the altered lipid metabolism in the heart of dyslipemic insulin-resistant (IR) rats fed a sucrose-rich diet (SRD) and investigates if chia seeds (rich in α-linolenic acid 18:3, n-3 ALA) improve/reverse cardiac lipotoxicity. Wistar rats received an SRD-diet for three months. Half of the animals continued with the SRD up to month 6. The other half was fed an SRD in which the fat source, corn oil (CO), was replaced by chia seeds from month 3 to 6 (SRD+chia). A reference group consumed a control diet (CD) all the time. Triglyceride, long-chain acyl CoA (LC ACoA) and diacylglycerol (DAG) contents, pyruvate dehydrogenase complex (PDHc) and muscle-type carnitine palmitoyltransferase 1 (M-CPT1) activities and protein mass levels of M-CPT1, membrane fatty acid transporter (FAT/CD36), peroxisome proliferator activated receptor α (PPARα) and uncoupling protein 2 (UCP2) were analyzed. Results show that: (a) the hearts of SRD-fed rats display lipotoxicity suggesting impaired myocardial lipid utilization; (b) Compared with the SRD group, dietary chia normalizes blood pressure; reverses/improves heart lipotoxicity, glucose oxidation, the increased protein mass level of FAT/CD36, and the impaired insulin stimulated FAT/CD36 translocation to the plasma membrane. The enhanced M-CPT1 activity is markedly reduced without similar changes in protein mass. PPARα slightly decreases, while the UCP2 protein level remains unchanged in all groups. Normalization of dyslipidemia and IR by chia reduces plasma fatty acids (FAs) availability, suggesting that a different milieu prevents the robust translocation of FAT/CD36. This could reduce the influx of FAs, decreasing the elevated M-CPT1 activity and lipid storage and improving glucose oxidation in cardiac muscles of SRD-fed rats. PMID:26828527

  18. Conversion of linoleic acid and alpha-linolenic acid to long-chain polyunsaturated fatty acids (LCPUFAs), with a focus on pregnancy, lactation and the first 2 years of life.

    PubMed

    Gibson, Robert A; Muhlhausler, Bev; Makrides, Maria

    2011-04-01

    Over the past two decades, there has been a marked shift in the fatty acid composition of the diets of industrialized nations towards increased intake of the n-6 fatty acid linoleic acid (LA, 18:2n-6), largely as a result of the replacement of saturated fats with plant-based polyunsaturated fatty acid (PUFA). While health agencies internationally continue to advocate for high n-6 PUFA intake combined with increased intakes of preformed n-3 long-chain PUFAs (LCPUFA) docosahexaenoic acid (DHA, 22:6n-3) and eicosapentaenoic acid (EPA, 20:5n-3) to reduce the incidence of cardiovascular disease (CVD), there are questions as to whether this is the best approach. LA competes with alpha-linolenic acid (18:3n-3) for endogenous conversion to the LC derivatives EPA and DHA, and LA also inhibits incorporation of DHA and EPA into tissues. Thus, high-LA levels in the diet generally result in low n-3 LCPUFA status. Pregnancy and infancy are developmental periods during which the fatty acid supply is particularly critical. The importance of an adequate supply of n-3 LCPUFA for ensuring optimal development of infant brain and visual systems is well established, and there is now evidence that the supply of n-3 LCPUFA also influences a range of growth, metabolic and immune outcomes in childhood. This review will re-evaluate the health benefits of modern Western diets and pose the question of whether the introduction of similar diets to nations with emerging economies is the most prudent public health strategy for improving health in these populations.

  19. Using a lipidomics approach for nutritional phenotyping in response to a test meal containing gamma-linolenic acid

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plasma fatty acids are derived from preformed sources in the diet and de novo synthesis through the action of desaturase and elongase enzymes. This study was designed to examine the elongation of 18:3n6 into 20:3n6 over an eight-hour period using both targeted gas chromatography–flame ionization det...

  20. Triticale dried distillers' grain increases alpha-linolenic acid in subcutaneous fat of beef cattle fed oilseeds.

    PubMed

    He, M L; Sultana, H; Oba, M; Kastelic, J P; Dugan, M E R; McKinnon, J J; McAllister, T A

    2012-12-01

    This study investigated the effect of triticale dried distillers' grain with solubles (DDGS), flax (FS) and sunflower (SS) seed on growth and the fatty acid profile of subcutaneous (SQ) fat in individually housed steers (n = 15 per diet) fed ad libitum (DM basis); (1) control (CON) 90% barley grain + 10% barley silage; or substitution of barley grain for: (2) 30% DDGS; (3) 10% FS; (4) 30% DDGS + 8.5% FS; (5) 10% SS and (6) 30% DDGS + 8.5% SS. Oilseeds in the combination diets were reduced to maintain diet lipid levels below 9% DM and to determine if favorable changes in the fatty acid profile could be maintained or enhanced at reduced levels of oilseed. Plasma and SQ fat biopsies were collected at 0, 6, and 12 weeks. Inclusion of DDGS decreased (P < 0.05) average daily gain, feed conversion and backfat thickness. Feeding FS increased (P < 0.05) plasma ALA compared to CON and SS and consistently increased (P < 0.01) ALA and non-conjugated and non-methylene interrupted dienes (NCD), whereas SS tended to decrease ALA in fat. Inclusion of DDGS with FS further increased (P < 0.02) ALA and decreased (P < 0.05) NCD and 18:1-t10 in fat. The fact that the levels of n-3 fatty acids in SQ fat from steers fed DDGS + FS were higher than those obtained with FS alone, has obvious benefits to the practical cost of favorably manipulating fatty acid profiles in beef.

  1. Diets Containing α-Linolenic (ω3) or Oleic (ω9) Fatty Acids Rescues Obese Mice From Insulin Resistance.

    PubMed

    Oliveira, V; Marinho, R; Vitorino, D; Santos, G A; Moraes, J C; Dragano, N; Sartori-Cintra, A; Pereira, L; Catharino, R R; da Silva, A S R; Ropelle, E R; Pauli, J R; De Souza, C T; Velloso, L A; Cintra, D E

    2015-11-01

    Subclinical systemic inflammation is a hallmark of obesity and insulin resistance. The results obtained from a number of experimental studies suggest that targeting different components of the inflammatory machinery may result in the improvement of the metabolic phenotype. Unsaturated fatty acids exert antiinflammatory activity through several distinct mechanisms. Here, we tested the capacity of ω3 and ω9 fatty acids, directly from their food matrix, to exert antiinflammatory activity through the G protein-coupled receptor (GPR)120 and GPR40 pathways. GPR120 was activated in liver, skeletal muscle, and adipose tissues, reverting inflammation and insulin resistance in obese mice. Part of this action was also mediated by GPR40 on muscle, as a novel mechanism described. Pair-feeding and immunoneutralization experiments reinforced the pivotal role of GPR120 as a mediator in the response to the nutrients. The improvement in insulin sensitivity in the high-fat substituted diets was associated with a marked reduction in tissue inflammation, decreased macrophage infiltration, and increased IL-10 levels. Furthermore, improved glucose homeostasis was accompanied by the reduced expression of hepatic gluconeogenic enzymes and reduced body mass. Thus, our data indicate that GPR120 and GPR40 play a critical role as mediators of the beneficial effects of dietary unsaturated fatty acids in the context of obesity-induced insulin resistance. PMID:26280128

  2. n3- polyunsaturated Fat Acid Content of Some Edible Fish from Bahrain Waters

    NASA Astrophysics Data System (ADS)

    Al-Arrayedu, F. H.; Al Maskati, H. A.; Abdullah, F. J.

    1999-08-01

    This study was performed to determine the content of n3- polyunsaturated fatty acids in 10 fish species that are commonly consumed in Bahrain in addition to the main commercial shrimp species. White sardinella, which is a plankton feeder, had the highest content of n3- polyunsaturated fatty acids. It had the highest value of eicosapentaenoic acid (146.5 ± 20 mg 100 g-1) and linolenic acid (98.9±f 100 g-1) and the second highest value of docosahexaenoic acid at (133.7 ± 22 mg 100 g-1). Spanish mackerel which feeds mainly on sardinella was second with eicosapentaenoc acid at 55 ± 5.4 mg 100 g-1, docosahexaenoic acid at 161 ± 19.8 mg 100 g-1, linolenic acid at 16.4 mg 100 g-1 and docosapentaenoic acid at 25 ± 1.9 mg 100 g-1. Rabbitfish, the most popular edible fish in Bahrain which feeds mainly on benthic algae had the third highest content of n3- polyunsaturated fatty acids with eicosapentaenoic acid at 37.5 ± 3.9 mg 100 g-1, docosahexaenoic acid at 76 ± 6.7 mg 100 g-1, and docosapentaenoic acid at 85.8 ± 10 mg 100 g-1. The other fish and crustacean species studied were Arabian carpet shark, doublebar bream, grouper, gray grunt, golden travally, keeled mullet, spangled emperor and shrimp. The study explores the transfer of n3- polyunsaturated fatty acids through the food webs of the examined fish. It is apparent, generally, that plankton feeders displayed the highest content of n3- polyunsaturated fatty acids followed by seaweed and algae grazers, with benthic carnivores feeding on invertebrates displaying the poorest content. The values reported here, however, are much lower than those reported for fish available in American markets and in Mediterranean fish. Warm water temperature and high salinity which lead to lowering of the density of phytoplankton and phytoplankton content of n3- polyunsaturated fatty acids are suggested as the reason for the observed low values of n3- polyunsaturated fatty acids in Bahrain fish.

  3. Alpha linolenic acid (ALA) from Rosa canina, sacha inchi and chia oils may increase ALA accretion and its conversion into n-3 LCPUFA in diverse tissues of the rat.

    PubMed

    Valenzuela B, Rodrigo; Barrera R, Cynthia; González-Astorga, Marcela; Sanhueza C, Julio; Valenzuela B, Alfonso

    2014-07-25

    Alpha-linolenic acid (ALA) is an essential n-3 PUFA; its n-3 LCPUFA derivatives EPA and DHA, which have diverse beneficial effects, are scarce in the human diet. In recent years nontraditional vegetable oils rich in ALA (up to 45%) have been developed as new alternatives to increase ALA consumption. This work evaluated the accretion of ALA, EPA and DHA into the phospholipids extracted from erythrocytes, liver, kidney, small intestine, heart, quadriceps and the brain in rats fed sunflower (SFO), canola (CO), Rosa canina (RCO), sacha inchi (Plukenetia volubilis, SIO) and chia (Salvia hispánica, ChO) oils. Five experimental groups (n = 12 per group) were fed for 21 days with SFO (1% ALA), CO (10% ALA), RCO (33% ALA), SIO (49% ALA), and ChO (64% ALA). SIO and ChO allowed higher ALA accretion in all tissues, except the brain, and a reduction in the content of arachidonic acid in all tissues except the brain. EPA was increased in erythrocytes, liver, kidney, small intestine, heart and quadriceps, but not in the brain. DHA was increased in the liver, small intestine and brain tissues. Our results demonstrate that ALA, when provided in significant amounts, can be converted into n-3 LCPUFA, mostly DHA in the liver and brain. It is suggested that oils rich in ALA, such as SIO and ChO, are good sources for obtaining higher tissue levels of ALA, also allowing its selective conversion into n-3 LCPUFA in some tissues of the rat. PMID:24855655

  4. Case–control and prospective studies of dietary α-linolenic acid intake and prostate cancer risk: a meta-analysis

    PubMed Central

    Carleton, Amanda J; Sievenpiper, John L; de Souza, Russell; McKeown-Eyssen, Gail; Jenkins, David J A

    2013-01-01

    Objective α-Linolenic acid (ALA) is considered to be a cardioprotective nutrient; however, some epidemiological studies have suggested that dietary ALA intake increases the risk of prostate cancer. The main objective was to conduct a systematic review and meta-analysis of case–control and prospective studies investigating the association between dietary ALA intake and prostate cancer risk. Design A systematic review and meta-analysis were conducted by searching MEDLINE and EMBASE for relevant prospective and case–control studies. Included studies We included all prospective cohort, case–control, nested case-cohort and nested case–control studies that investigated the effect of dietary ALA intake on the incidence (or diagnosis) of prostate cancer and provided relative risk (RR), HR or OR estimates. Primary outcome measure Data were pooled using the generic inverse variance method with a random effects model from studies that compared the highest ALA quantile with the lowest ALA quantile. Risk estimates were expressed as RR with 95% CIs. Heterogeneity was assessed by χ2 and quantified by I2. Results Data from five prospective and seven case–control studies were pooled. The overall RR estimate showed ALA intake to be positively but non-significantly associated with prostate cancer risk (1.08 (0.90 to 1.29), p=0.40; I2=85%), but the interpretation was complicated by evidence of heterogeneity not explained by study design. A weak, non-significant protective effect of ALA intake on prostate cancer risk in the prospective studies became significant (0.91 (0.83 to 0.99), p=0.02) without evidence of heterogeneity (I2=8%, p=0.35) on removal of one study during sensitivity analyses. Conclusions This analysis failed to confirm an association between dietary ALA intake and prostate cancer risk. Larger and longer observational and interventional studies are needed to define the role of ALA and prostate cancer. PMID:23674441

  5. Effects of high-gamma-linolenic acid canola oil compared with borage oil on reproduction, growth, and brain and behavioral development in mice.

    PubMed

    Wainwright, Patricia E; Huang, Yung-Sheng; DeMichele, Stephen J; Xing, HuaCheng; Liu, Jim-Wen; Chuang, Lu-Te; Biederman, Jessica

    2003-02-01

    Previous research in rats and mice has suggested that gamma-linolenic acid (GLA) derived from borage oil (BO: 23% GLA) may be an appropriate source for increasing levels of long-chain n-6 FA in the developing brain. Recently, transgenic technology has made available a highly enriched GLA seed oil from the canola plant (HGCO: 36% GLA). The first objective of this study was to compare the effects of diets containing equal levels of GLA (23%) from either BO or HGCO on reproduction, pup development, and pup brain FA composition in mice. The second objective was to compare the effects of the HGCO diluted to 23% GLA (GLA-23) with those of undiluted HGCO containing 36% GLA (GLA-36). The diets were fed to the dams prior to conception and throughout pregnancy and lactation, as well as to the pups after weaning. The behavioral development of the pups was measured 12 d after birth, and anxiety in the adult male offspring was assessed using the plus maze. The findings show that despite equivalent levels of GLA, GLA-23 differed from BO in that it reduced pup body weight and was associated with a slight increase in neonatal pup attrition. However, there were no significant effects on pup behavioral development or on performance in the plus maze. An increase in dietary GLA resulted in an increase in brain 20:4n-6 and 22:4n-6, with a corresponding decrease in 22:6n-3. Again, despite their similar levels of GLA, these effects tended to be larger in GLA-23 than in BO. In comparison with GLA-23, GLA-36 had larger effects on growth and brain FA composition but no differences with respect to effects on reproduction and behavioral development. These findings suggest that the HGCO can be used as an alternative source of GLA. PMID:12733750

  6. Dietary chia seed (Salvia hispanica L.) rich in alpha-linolenic acid improves adiposity and normalises hypertriacylglycerolaemia and insulin resistance in dyslipaemic rats.

    PubMed

    Chicco, Adriana G; D'Alessandro, Maria E; Hein, Gustavo J; Oliva, Maria E; Lombardo, Yolanda B

    2009-01-01

    The present study investigates the benefits of the dietary intake of chia seed (Salvia hispanica L.) rich in alpha-linolenic acid and fibre upon dyslipidaemia and insulin resistance (IR), induced by intake of a sucrose-rich (62.5 %) diet (SRD). To achieve these goals two sets of experiments were designed: (i) to study the prevention of onset of dyslipidaemia and IR in Wistar rats fed during 3 weeks with a SRD in which chia seed was the dietary source of fat; (ii) to analyse the effectiveness of chia seed in improving or reversing the metabolic abnormalities described above. Rats were fed a SRD during 3 months; by the end of this period, stable dyslipidaemia and IR were present in the animals. From months 3-5, half the animals continued with the SRD and the other half were fed a SRD in which the source of fat was substituted by chia seed (SRD+chia). The control group received a diet in which sucrose was replaced by maize starch. The results showed that: (i) dietary chia seed prevented the onset of dyslipidaemia and IR in the rats fed the SRD for 3 weeks--glycaemia did not change; (ii) dyslipidaemia and IR in the long-term SRD-fed rats were normalised without changes in insulinaemia when chia seed provided the dietary fat during the last 2 months of the feeding period. Dietary chia seed reduced the visceral adiposity present in the SRD rats. The present study provides new data regarding the beneficial effect of chia seed upon lipid and glucose homeostasis in an experimental model of dislipidaemia and IR.

  7. Enhancing the intestinal absorption of low molecular weight chondroitin sulfate by conjugation with α-linolenic acid and the transport mechanism of the conjugates.

    PubMed

    Xiao, Yuliang; Li, Pingli; Cheng, Yanna; Zhang, Xinke; Sheng, Juzheng; Wang, Decai; Li, Juan; Zhang, Qian; Zhong, Chuanqing; Cao, Rui; Wang, Fengshan

    2014-04-25

    The purpose of this report was to demonstrate the effect of amphiphilic polysaccharides-based self-assembling micelles on enhancing the oral absorption of low molecular weight chondroitin sulfate (LMCS) in vitro and in vivo, and identify the transepithelial transport mechanism of LMCS micelles across the intestinal barrier. α-Linolenic acid-low molecular weight chondroitin sulfate polymers(α-LNA-LMCS) were successfully synthesized, and characterized by FTIR, (1)HNMR, TGA/DSC, TEM, laser light scattering and zeta potential. The significant oral absorption enhancement and elimination half-life (t₁/₂) extension of LNA-LMCS2 in rats were evidenced by intragastric administration in comparison with CS and LMCS. Caco-2 transport studies demonstrated that the apparent permeability coefficient (Papp) of LNA-LMCS2 was significantly higher than that of CS and LMCS (p<0.001), and no significant effects on the overall integrity of the monolayer were observed during the transport process. In addition, α-LNA-LMCS micelles accumulated around the cell membrane and intercellular space observed by confocal laser scanning microscope (CLSM). Furthermore, evident alterations in the F-actin cytoskeleton were detected by CLSM observation following the treatment of the cell monolayers with α-LNA-LMCS micelles, which further certified the capacity of α-LNA-LMCS micelles to open the intercellular tight junctions rather than disrupt the overall integrity of the monolayer. Therefore, LNA-LMCS2 with low cytotoxicity and high bioavailability might be a promising substitute for CS in clinical use, such as treating osteoarthritis, atherosclerosis, etc.

  8. Effects of high-gamma-linolenic acid canola oil compared with borage oil on reproduction, growth, and brain and behavioral development in mice.

    PubMed

    Wainwright, Patricia E; Huang, Yung-Sheng; DeMichele, Stephen J; Xing, HuaCheng; Liu, Jim-Wen; Chuang, Lu-Te; Biederman, Jessica

    2003-02-01

    Previous research in rats and mice has suggested that gamma-linolenic acid (GLA) derived from borage oil (BO: 23% GLA) may be an appropriate source for increasing levels of long-chain n-6 FA in the developing brain. Recently, transgenic technology has made available a highly enriched GLA seed oil from the canola plant (HGCO: 36% GLA). The first objective of this study was to compare the effects of diets containing equal levels of GLA (23%) from either BO or HGCO on reproduction, pup development, and pup brain FA composition in mice. The second objective was to compare the effects of the HGCO diluted to 23% GLA (GLA-23) with those of undiluted HGCO containing 36% GLA (GLA-36). The diets were fed to the dams prior to conception and throughout pregnancy and lactation, as well as to the pups after weaning. The behavioral development of the pups was measured 12 d after birth, and anxiety in the adult male offspring was assessed using the plus maze. The findings show that despite equivalent levels of GLA, GLA-23 differed from BO in that it reduced pup body weight and was associated with a slight increase in neonatal pup attrition. However, there were no significant effects on pup behavioral development or on performance in the plus maze. An increase in dietary GLA resulted in an increase in brain 20:4n-6 and 22:4n-6, with a corresponding decrease in 22:6n-3. Again, despite their similar levels of GLA, these effects tended to be larger in GLA-23 than in BO. In comparison with GLA-23, GLA-36 had larger effects on growth and brain FA composition but no differences with respect to effects on reproduction and behavioral development. These findings suggest that the HGCO can be used as an alternative source of GLA.

  9. α-Linolenic Acid, A Nutraceutical with Pleiotropic Properties That Targets Endogenous Neuroprotective Pathways to Protect against Organophosphate Nerve Agent-Induced Neuropathology.

    PubMed

    Piermartiri, Tetsade; Pan, Hongna; Figueiredo, Taiza H; Marini, Ann M

    2015-01-01

    α-Linolenic acid (ALA) is a nutraceutical found in vegetable products such as flax and walnuts. The pleiotropic properties of ALA target endogenous neuroprotective and neurorestorative pathways in brain and involve the transcription factor nuclear factor kappa B (NF-κB), brain-derived neurotrophic factor (BDNF), a major neuroprotective protein in brain, and downstream signaling pathways likely mediated via activation of TrkB, the cognate receptor of BDNF. In this review, we discuss possible mechanisms of ALA efficacy against the highly toxic OP nerve agent soman. Organophosphate (OP) nerve agents are highly toxic chemical warfare agents and a threat to military and civilian populations. Once considered only for battlefield use, these agents are now used by terrorists to inflict mass casualties. OP nerve agents inhibit the critical enzyme acetylcholinesterase (AChE) that rapidly leads to a cholinergic crisis involving multiple organs. Status epilepticus results from the excessive accumulation of synaptic acetylcholine which in turn leads to the overactivation of muscarinic receptors; prolonged seizures cause the neuropathology and long-term consequences in survivors. Current countermeasures mitigate symptoms and signs as well as reduce brain damage, but must be given within minutes after exposure to OP nerve agents supporting interest in newer and more effective therapies. The pleiotropic properties of ALA result in a coordinated molecular and cellular program to restore neuronal networks and improve cognitive function in soman-exposed animals. Collectively, ALA should be brought to the clinic to treat the long-term consequences of nerve agents in survivors. ALA may be an effective therapy for other acute and chronic neurodegenerative disorders. PMID:26569216

  10. Comparison of Oil Content and Fatty Acid Profile of Ten New Camellia oleifera Cultivars

    PubMed Central

    Yang, Chunying; Liu, Xueming; Chen, Zhiyi; Lin, Yaosheng; Wang, Siyuan

    2016-01-01

    The oil contents and fatty acid (FA) compositions of ten new and one wild Camellia oleifera varieties were investigated. Oil contents in camellia seeds from new C. oleifera varied with cultivars from 41.92% to 53.30% and were affected by cultivation place. Average oil content (47.83%) of dry seeds from all ten new cultivars was almost the same as that of wild common C. oleifera seeds (47.06%). New C. oleifera cultivars contained similar FA compositions which included palmitic acid (C16:0, PA), palmitoleic acid (C16:1), stearic acid (C18:0, SA), oleic acid (C18:1, OA), linoleic acid (C18:2, LA), linolenic acid (C18:3), eicosenoic acid (C20:1), and tetracosenoic acid (C24:1). Predominant FAs in mature seeds were OA (75.78%~81.39%), LA (4.85%~10.79%), PA (7.68%~10.01%), and SA (1.46%~2.97%) and OA had the least coefficient of variation among different new cultivars. Average ratio of single FA of ten artificial C. oleifera cultivars was consistent with that of wild common C. oleifera. All cultivars contained the same ratios of saturated FA (SFA) and unsaturated FA (USFA). Oil contents and FA profiles of new cultivars were not significantly affected by breeding and selection. PMID:26942012

  11. Selective Production of 9R-Hydroxy-10E,12Z,15Z-Octadecatrienoic Acid from α-Linolenic Acid in Perilla Seed Oil Hydrolyzate by a Lipoxygenase from Nostoc Sp. SAG 25.82

    PubMed Central

    Kim, Kyoung-Rok; An, Jung-Ung; Lee, Seon-Hwa; Oh, Deok-Kun

    2015-01-01

    Hydroxy fatty acids (HFAs) derived from omega-3 polyunsaturated fatty acids have been known as versatile bioactive molecules. However, its practical production from omega-3 or omega-3 rich oil has not been well established. In the present study, the stereo-selective enzymatic production of 9R-hydroxy-10E,12Z,15Z-octadecatrienoic acid (9R-HOTE) from α-linolenic acid (ALA) in perilla seed oil (PO) hydrolyzate was achieved using purified recombinant 9R-lipoxygenase (9R-LOX) from Nostoc sp. SAG 25.82. The specific activity of the enzyme followed the order linoleic acid (LA) > ALA > γ-linolenic acid (GLA). A total of 75% fatty acids (ALA and LA) were used as a substrate for 9R-LOX from commercial PO by hydrolysis of Candida rugosa lipase. The optimal reaction conditions for the production of 9R-HOTE from ALA using 9R-LOX were pH 8.5, 15°C, 5% (v/v) acetone, 0.2% (w/v) Tween 80, 40 g/L ALA, and 1 g/L enzyme. Under these conditions, 9R-LOX produced 37.6 g/L 9R-HOTE from 40 g/L ALA for 1 h, with a conversion yield of 94% and a productivity of 37.6 g/L/h; and the enzyme produced 34 g/L 9R-HOTE from 40 g/L ALA in PO hydrolyzate for 1 h, with a conversion yields of 85% and a productivity of 34 g/L/h. The enzyme also converted 9R-hydroxy-10E,12Z-octadecadienoic acid (9R-HODE) from 40 g/L LA for 1.0 h, with a conversion yield of 95% and a productivity of 38.4 g/L. This is the highest productivity of HFA from both ALA and ALA-rich vegetable oil using LOX ever reported. Therefore, our result suggests an efficient method for the production of 9R-HFAs from LA and ALA in vegetable oil using recombinant LOX in biotechnology. PMID:26379279

  12. Content of polyunsaturated fatty acids (PUFAs) in serum and liver of rats fed restricted diets supplemented with vitamins B2, B6 and folic acid.

    PubMed

    Bertrandt, Jerzy; Klos, Anna; Debski, Bogdan

    2004-01-01

    The aim of study was to investigate an influence of nutritional deficiency and dietary addition of vit. B(2), B(6) and folic acid on PUFAs content in rats' serum and liver. Limitation of consumption full value diet to 50% of its previously determined daily consumption, enriched with m/a vitamins, significant decreased of linoleic (LA) and alpha-linolenic (ALA) acids as well as distinctly increased arachidonic (AA) and docosahexaenoic (DHA) acids content in serum in 30th day. In 60th day lower content of AA and DHA fatty acids was found. Nutrition with such diet, lasting 90 days caused decrease of LA content and increase of AA. Diet limitation to its 30% of daily consumption decreased of eicosapentaenoic acid (EPA) and DHA in the 30th day, while AA and DHA content was increased in the 60th day. Distinct decrease of AA content and increase of EPA content were found in the 90th day of experiment. Use of diets, with limited consumption to 50% caused increase of LA and ALA acids content while AA and DHA acids content were significantly decreased in the liver, in 90th day. Limited consumption supplemented diet to 30% caused in liver significant decrease of LA and increase of EPA acids content.

  13. gamma-Linolenic acid blocks cell cycle progression by regulating phosphorylation of p27kip1 and p57kip2 and their interactions with other cycle regulators in cancer cells.

    PubMed

    Jiang, W G; Bryce, R P; Horrobin, D F; Mansel, R E

    1998-09-01

    gamma-Linolenic acid (gamma-LA), a n-6 essential fatty acid, has been previously shown to affect cell cycle and growth of cancer cells. This study examined the effects of gamma-LA on the cell cycle and cycle regulators in human colon cancer HT115 and breast cancer MCF7 cells. Brief treatment of cancer cells (<2 h) with gamma-LA resulted in a decrease in the phosphorylation of both cell cycle inhibitors, p27kip1 and p57kip2 as shown by immunoprecipitation and Western blotting. Protein levels of both inhibitors were increased following a prolonged culture of cells with the fatty acid. A co-precipitation study showed that in cells treated with gamma-LA there was an increase in the binding of these inhibitors with CDK4, CDC2, and cyclin E. Flow cytometry study indicated an inhibition of cell cycle progression by gamma-LA (G0/G1 -45.4%, S - 34.6%, G2+M - 20.0% in control, and 70.5%, 21.0%, and 8.5%, respectively, in gamma-LA treated cells). It is concluded that gamma-linolenic acid inhibits cell cycle progression in the cancer cell lines investigated, via its regulation of the phosphorylation and subsequent degradation of p27kip1 and p57kip2 and their interactions with other cycle regulators. PMID:9683802

  14. Bioconversion of α-Linolenic Acid into n-3 Long-Chain Polyunsaturated Fatty Acid in Hepatocytes and Ad Hoc Cell Culture Optimisation

    PubMed Central

    Alhazzaa, Ramez; Sinclair, Andrew J.; Turchini, Giovanni M.

    2013-01-01

    This study aimed to establish optimal conditions for a cell culture system that would allow the measurement of 18∶3n-3 (ALA) bioconversion into n-3 long-chain polyunsaturated fatty acid (n-3 LC-PUFA), and to determine the overall pathway kinetics. Using rat hepatocytes (FaO) as model cells, it was established that a maximum 20∶5n-3 (EPA) production from 50 µM ALA initial concentration was achieved after 3 days of incubation. Next, it was established that a gradual increase in the ALA concentration from 0 up to 125µM lead to a proportional increase in EPA, without concomitant increase in further elongated or desaturated products, such as 22∶5n-3 (DPA) and 22∶6n-3 (DHA) in 3 day incubations. Of interest, ALA bioconversion products were observed in the culture medium. Therefore, in vitro experiments disregarding the medium fatty acid content are underestimating the metabolism efficiency. The novel application of the fatty acid mass balance (FAMB) method on cell culture system (cells with medium) enabled quantifying the apparent enzymatic activities for the biosynthesis of n-3 LC-PUFA. The activity of the key enzymes was estimated and showed that, under these conditions, 50% (Km) of the theoretical maximal (Vmax = 3654 µmol.g−1 of cell protein.hour−1) Fads2 activity on ALA can be achieved with 81 µM initial ALA. Interestingly, the apparent activity of Elovl2 (20∶5n-3 elongation) was the slowest amongst other biosynthesis steps. Therefore, the possible improvement of Elovl2 activity is suggested toward a more efficient DHA production from ALA. The present study proposed and described an ad hoc optimised cell culture conditions and methodology towards achieving a reliable experimental platform, using FAMB, to assist in studying the efficiency of ALA bioconversion into n-3 LC-PUFA in vitro. The FAMB proved to be a powerful and inexpensive method to generate a detailed description of the kinetics of n-3 LC-PUFA biosynthesis enzymes activities in vitro

  15. Fatty acid content of selected seed oils.

    PubMed

    Orhan, Ilkay; Sener, Bilge

    2002-01-01

    Fatty acid content of selected seed oils from world-wide edible fruits, Ceratonia ciliqua (carob) from Caesalpiniaceae family, Diospyros kaki (persimmon) from Ebenaceae family, Zizyphus jujuba (jujube) from Rhamnaceae family, and Persea gratissima (avocado pear) from Lauraceae family, were determined by capillary gas chromatography- mass spectrometry (GC-MS) to find new natural sources for essential fatty acids. Among the seed oils analyzed, Ceratonia ciliqua has been found to have the highest essential fatty acid content.

  16. Comparison of growth, serum biochemistries and n-6 fatty acid metabolism in rats fed diets supplemented with high-gamma-linolenic acid safflower oil or borage oil for 90 days.

    PubMed

    Tso, Patrick; Caldwell, Jody; Lee, Dana; Boivin, Gregory P; DeMichele, Stephen J

    2012-06-01

    Recently, steps have been taken to further developments toward increasing gamma-linolenic acid (GLA) concentration and lowering costs in plant seed oils using transgenic technology. Through identification and expression of a fungal delta-6 desaturase gene in the high linoleic acid safflower plant, the seeds from this genetic transformation produce oil with >40% GLA (high GLA safflower oil (HGSO)). The aim of the study was to compare the effects of feeding HGSO to a generally recognized as safe source of GLA, borage oil, in a 90 day safety study in rats. Weanling male and female Sprague-Dawley rats were fed a semi-synthetic, fat free, pelleted diet (AIN93G) supplemented with a 10% (wt/wt) oil blend containing HGSO or borage oil, with equivalent GLA levels. Results demonstrated that feeding diets containing HGSO or borage oil for 90 days had similar biologic effects with regard to growth characteristics, body composition, behavior, organ weight and histology, and parameters of hematology and serum biochemistries in both sexes. Metabolism of the primary n-6 fatty acids in plasma and organ phospholipids was similar, despite minor changes in females. We conclude that HGSO is biologically equivalent to borage oil and provides a safe alternative source of GLA in the diet. PMID:22265940

  17. Comparison of growth, serum biochemistries and n-6 fatty acid metabolism in rats fed diets supplemented with high-gamma-linolenic acid safflower oil or borage oil for 90 days.

    PubMed

    Tso, Patrick; Caldwell, Jody; Lee, Dana; Boivin, Gregory P; DeMichele, Stephen J

    2012-06-01

    Recently, steps have been taken to further developments toward increasing gamma-linolenic acid (GLA) concentration and lowering costs in plant seed oils using transgenic technology. Through identification and expression of a fungal delta-6 desaturase gene in the high linoleic acid safflower plant, the seeds from this genetic transformation produce oil with >40% GLA (high GLA safflower oil (HGSO)). The aim of the study was to compare the effects of feeding HGSO to a generally recognized as safe source of GLA, borage oil, in a 90 day safety study in rats. Weanling male and female Sprague-Dawley rats were fed a semi-synthetic, fat free, pelleted diet (AIN93G) supplemented with a 10% (wt/wt) oil blend containing HGSO or borage oil, with equivalent GLA levels. Results demonstrated that feeding diets containing HGSO or borage oil for 90 days had similar biologic effects with regard to growth characteristics, body composition, behavior, organ weight and histology, and parameters of hematology and serum biochemistries in both sexes. Metabolism of the primary n-6 fatty acids in plasma and organ phospholipids was similar, despite minor changes in females. We conclude that HGSO is biologically equivalent to borage oil and provides a safe alternative source of GLA in the diet.

  18. Effect of dietary supplementation with omega-3 fatty acid and gamma-linolenic acid on acne vulgaris: a randomised, double-blind, controlled trial.

    PubMed

    Jung, Jae Yoon; Kwon, Hyuck Hoon; Hong, Jong Soo; Yoon, Ji Young; Park, Mi Sun; Jang, Mi Young; Suh, Dae Hun

    2014-09-01

    This study was undertaken to evaluate the clinical efficacy, safety, and histological changes induced by dietary omega-3 fatty acid and γ-linoleic acid in acne vulgaris. A 10-week, randomised, controlled parallel dietary intervention study was performed in 45 participants with mild to moderate acne, which were allocated to either an omega-3 fatty acid group (2,000 mg of eicosapentaenoic acid and docosahexaenoic acid), a γ-linoleic acid group (borage oil containing 400 mg γ-linoleic acid), or a control group. After 10 weeks of omega-3 fatty acid or γ-linoleic acid supplementation, inflammatory and non-inflammatory acne lesions decreased significantly. Patient subjective assessment of improvement showed a similar result. Heamatoxylin & eosin staining of acne lesions demonstrated reductions in inflammation and immunohistochemical staining intensity for interleukin-8. No severe adverse effect was reported. This study shows for the first time that omega-3 fatty acid and γ-linoleic acid could be used as adjuvant treatments for acne patients. PMID:24553997

  19. Effect of dietary supplementation with omega-3 fatty acid and gamma-linolenic acid on acne vulgaris: a randomised, double-blind, controlled trial.

    PubMed

    Jung, Jae Yoon; Kwon, Hyuck Hoon; Hong, Jong Soo; Yoon, Ji Young; Park, Mi Sun; Jang, Mi Young; Suh, Dae Hun

    2014-09-01

    This study was undertaken to evaluate the clinical efficacy, safety, and histological changes induced by dietary omega-3 fatty acid and γ-linoleic acid in acne vulgaris. A 10-week, randomised, controlled parallel dietary intervention study was performed in 45 participants with mild to moderate acne, which were allocated to either an omega-3 fatty acid group (2,000 mg of eicosapentaenoic acid and docosahexaenoic acid), a γ-linoleic acid group (borage oil containing 400 mg γ-linoleic acid), or a control group. After 10 weeks of omega-3 fatty acid or γ-linoleic acid supplementation, inflammatory and non-inflammatory acne lesions decreased significantly. Patient subjective assessment of improvement showed a similar result. Heamatoxylin & eosin staining of acne lesions demonstrated reductions in inflammation and immunohistochemical staining intensity for interleukin-8. No severe adverse effect was reported. This study shows for the first time that omega-3 fatty acid and γ-linoleic acid could be used as adjuvant treatments for acne patients.

  20. Reducing the Dietary Omega-6:Omega-3 Utilizing α-Linolenic Acid; Not a Sufficient Therapy for Attenuating High-Fat-Diet-Induced Obesity Development Nor Related Detrimental Metabolic and Adipose Tissue Inflammatory Outcomes

    PubMed Central

    Enos, Reilly T.; Velázquez, Kandy T.; McClellan, Jamie L.; Cranford, Taryn L.; Walla, Michael D.; Murphy, E. Angela

    2014-01-01

    Aims To examine the effect of manipulating the omega-6:omega-3 (1∶1, 5∶1, 10∶1, and 20∶1) utilizing only α-linolenic and linoleic acid within a clinically-relevant high-fat diet (HFD) composed of up to seven sources of fat and designed to be similar to the standard American diet (MUFA∶PUFA of 2∶1, 12% and 40% of calories from saturated and total fat, respectively) on body composition, macrophage polarization, inflammation, and metabolic dysfunction in mice. Methods Diets were administered for 20 weeks. Body composition and metabolism (HOMA index and lipid profile) were examined monthly. GC-MS was utilized to determine the eicosapentaenoic acid (EPA):arachidonic acid (AA) and the docosahexaenoic acid (DHA):AA in AT phospholipids. Adipose tissue (AT) mRNA expression of chemokines (MCP-1, Fetuin-A, CXCL14), marker genes for M1 and M2 macrophages (CD11c and CD206, respectively) and inflammatory markers (TNF-α, IL-6, IL-1β, TLR-2, TLR-4, IL-10, GPR120) were measured along with activation of NFκB, JNK, and STAT-3. Macrophage infiltration into AT was examined using F4/80 immunohistochemistry. Results Any therapeutic benefit produced by reducing the omega-6:omega-3 was evident only when comparing the 1∶1 to 20∶1 HFD; the 1∶1 HFD resulted in a lower TC:HDL-C and decreased AT CXCL14 gene expression and AT macrophage infiltration, which was linked to a higher EPA:AA and DHA:AA in AT phospholipids. However, despite these effects, and independent of the omega-6:omega-3, all HFDs, in general, led to similar levels of adiposity, insulin resistance, and AT inflammation. Conclusion Reducing the omega-6:omega-3 using α-linolenic acid is not an effective therapy for attenuating obesity and type II diabetes mellitus development. PMID:24733548

  1. Treatment of flaxseed to reduce biohydrogenation of a-linolenic acid by ruminal microbes in sheep and cattle and increase n-3 fatty acid concentrations in red meat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Our study determined if flaxseed treated with a formaldehyde-free process increased n-3 fatty acid (FA) levels in ruminant muscle. Twenty-four lambs (initial BW 43.8 ± 4.4 kg) were randomly divided into 4 groups for a 90-d trial. One treatment group (FLX) was fed 136 g/d of non-treated ground flaxse...

  2. Molecular cloning and functional characterization of arachidonate 5-lipoxygenase (Alox5), and its expression in response to the ratio of linolenic acid to linoleic acid in diets of large yellow croaker (Larmichthys crocea).

    PubMed

    Wang, Tianjiao; Zuo, Rantao; Mai, Kangsen; Xu, Wei; Ai, Qinghui

    2016-11-01

    This study was conducted to clone and functionally characterize a full-length cDNA encoding arachidonate 5-lipoxygenase (Alox5) from large yellow croaker (Larmichthys crocea) and investigate its gene expression in response to graded dietary ratio of linolenic acid (ALA) to linoleic acid (LNA) (0.03, 0.06, 0.45, 0.90 and 1.51). An isolated 2372bp cDNA clone of Alox5 contained an open reading frame spanning 2025bp encoding a protein with the ability to modify arachidonate acid (AA) to 5-hydroxyeicosatetraenoic (5-HETE). In the liver, the Alox5 mRNA expression levels significantly increased to the maximum when the dietary ALA/LNA increased from 0.03 to 0.06, and then significantly decreased with dietary ALA/LNA increased to 1.51 (P<0.05). In the kidney, the expression levels of Alox5 of fish fed diets with low dietary ALA/LNA (0.03-0.06) were significantly higher than those of fish fed diets with high dietary ALA/LNA (0.45-1.51) (P<0.05). The dual-luciferase reporter assays showed that the nuclear factor kappa B (NF-κB) could act on cognate cis-acting elements in the promoter of Alox5 and increased the transcription of Alox5. Results of the present study suggested that the expression of Alox5 is higher in croakers fed high concentrations of LNA compared to those fed high concentrations of ALA, which might be regulated by NF-κB and contribute to the inflammation process by catalyzing the dioxygenation of AA. PMID:27378407

  3. Molecular cloning and functional characterization of arachidonate 5-lipoxygenase (Alox5), and its expression in response to the ratio of linolenic acid to linoleic acid in diets of large yellow croaker (Larmichthys crocea).

    PubMed

    Wang, Tianjiao; Zuo, Rantao; Mai, Kangsen; Xu, Wei; Ai, Qinghui

    2016-11-01

    This study was conducted to clone and functionally characterize a full-length cDNA encoding arachidonate 5-lipoxygenase (Alox5) from large yellow croaker (Larmichthys crocea) and investigate its gene expression in response to graded dietary ratio of linolenic acid (ALA) to linoleic acid (LNA) (0.03, 0.06, 0.45, 0.90 and 1.51). An isolated 2372bp cDNA clone of Alox5 contained an open reading frame spanning 2025bp encoding a protein with the ability to modify arachidonate acid (AA) to 5-hydroxyeicosatetraenoic (5-HETE). In the liver, the Alox5 mRNA expression levels significantly increased to the maximum when the dietary ALA/LNA increased from 0.03 to 0.06, and then significantly decreased with dietary ALA/LNA increased to 1.51 (P<0.05). In the kidney, the expression levels of Alox5 of fish fed diets with low dietary ALA/LNA (0.03-0.06) were significantly higher than those of fish fed diets with high dietary ALA/LNA (0.45-1.51) (P<0.05). The dual-luciferase reporter assays showed that the nuclear factor kappa B (NF-κB) could act on cognate cis-acting elements in the promoter of Alox5 and increased the transcription of Alox5. Results of the present study suggested that the expression of Alox5 is higher in croakers fed high concentrations of LNA compared to those fed high concentrations of ALA, which might be regulated by NF-κB and contribute to the inflammation process by catalyzing the dioxygenation of AA.

  4. Palmitic acid (16:0) competes with omega-6 linoleic and omega-3 ɑ-linolenic acids for FADS2 mediated Δ6-desaturation.

    PubMed

    Park, Hui Gyu; Kothapalli, Kumar S D; Park, Woo Jung; DeAllie, Christian; Liu, Lei; Liang, Allison; Lawrence, Peter; Brenna, J Thomas

    2016-02-01

    Sapienic acid, 16:1n-10 is the most abundant unsaturated fatty acid on human skin where its synthesis is mediated by FADS2 in the sebaceous glands. The FADS2 product introduces a double bond at the Δ6, Δ4 and Δ8 positions by acting on at least ten substrates, including 16:0, 18:2n-6, and 18:3n-3. Our aim was to characterize the competition for accessing FADS2 mediated Δ6 desaturation between 16:0 and the most abundant polyunsaturated fatty acids (PUFA) in the human diet, 18:2n-6 and 18:3n-3, to evaluate whether competition may be relevant in other tissues and thus linked to metabolic abnormalities associated with FADS2 or fatty acid levels. MCF7 cells stably transformed with FADS2 biosynthesize 16:1n-10 from exogenous 16:0 in preference to 16:1n-7, the immediate product of SCD highly expressed in cancer cell lines, and 16:1n-9 via partial β-oxidation of 18:1n-9. Increasing availability of 18:2n-6 or 18:3n-3 resulted in decreased bioconversion of 16:0 to 16:1n-10, simultaneously increasing the levels of highly unsaturated products. FADS2 cells accumulate the desaturation-elongation products 20:3n-6 and 20:4n-3 in preference to the immediate desaturation products 18:3n-6 and 18:4n-3 implying prompt/coupled elongation of the nascent desaturation products. MCF7 cells incorporate newly synthesized 16:1n-10 into phospholipids. These data suggest that excess 16:0 due to, for instance, de novo lipogenesis from high carbohydrate or alcohol consumption, inhibits synthesis of highly unsaturated fatty acids, and may in part explain why supplemental preformed EPA and DHA in some studies improves insulin resistance and other factors related to diabetes and metabolic syndrome aggravated by excess calorie consumption.

  5. Dietary Salba (Salvia hispanica L) seed rich in α-linolenic acid improves adipose tissue dysfunction and the altered skeletal muscle glucose and lipid metabolism in dyslipidemic insulin-resistant rats.

    PubMed

    Oliva, M E; Ferreira, M R; Chicco, A; Lombardo, Y B

    2013-10-01

    This work reports the effect of dietary Salba (chia) seed rich in n-3 α-linolenic acid on the morphological and metabolic aspects involved in adipose tissue dysfunction and the mechanisms underlying the impaired glucose and lipid metabolism in the skeletal muscle of rats fed a sucrose-rich diet (SRD). Rats were fed a SRD for 3 months. Thereafter, half the rats continued with SRD while in the other half, corn oil (CO) was replaced by chia seed for 3 months (SRD+chia). In control group, corn starch replaced sucrose. The replacement of CO by chia seed in the SRD reduced adipocyte hypertrophy, cell volume and size distribution, improved lipogenic enzyme activities, lipolysis and the anti-lipolytic action of insulin. In the skeletal muscle lipid storage, glucose phosphorylation and oxidation were normalized. Chia seed reversed the impaired insulin stimulated glycogen synthase activity, glycogen, glucose-6-phosphate and GLUT-4 protein levels as well as insulin resistance and dyslipidemia.

  6. Orotic acid content of infant formulas.

    PubMed

    Durschlag, R P; Robinson, J L

    1980-10-01

    The orotic acid content of four commercially available infant formulas has been examined. Enfamil contains 118 microgram orotic acid per milliliter as fed, Similac 98, SMA 27, and Isomil less than 1 microgram/ml. As expressed relative to total solids, these formulas contain less than 0.1% orotic acid. Since consumption of 1% orotic acid does not lead to a fatty liver in any species examined other than the rat and 0.1% orotic acid fails to induce statistically significant hepatic changes in the rat, it is suggested that orotic acid at the level found in these formulas is not likely to pose a health hazard to the infants consuming them.

  7. Decrease in essential fatty acid content of edible fats during the frying process.

    PubMed

    Gere, A

    1982-09-01

    Degradation of sunflower oil, rapeseed oil, and lard during the frying operation was investigated by studying the loss of essential fatty acids compared to the accumulation of decomposition products. Linoleic and/or linolenic acid concentration was measured by GLC, and for detecting decomposition products determination of polymer content by GPC was chosen. Twelve laboratory experiments with different heating or frying conditions were run aimed at modelling practice and studying the effects of certain factors. The results indicated that loss of essential fatty acids being a parallel process to the accumulation of breakdown products is suitable both for detecting the decrease in nutritive value and for quality assessment of used frying fats. It was also found that the rate of deterioration is considerably affected by the nature of fat and the frying parameters. Study of the relationship between polymer content and the decrease in essential fatty acid concentration (using data from 110 samples) showed that high, linear correlation depending on the nature of fat can be found. Correlation coefficients and equations of regression lines were calculated.

  8. 15-Lipoxygenase metabolites of α-linolenic acid, [13-(S)-HPOTrE and 13-(S)-HOTrE], mediate anti-inflammatory effects by inactivating NLRP3 inflammasome

    PubMed Central

    Kumar, Naresh; Gupta, Geetika; Anilkumar, Kotha; Fatima, Naireen; Karnati, Roy; Reddy, Gorla Venkateswara; Giri, Priyanka Voori; Reddanna, Pallu

    2016-01-01

    The ratio of ω-6 to ω-3 polyunsaturated fatty acids (PUFAs) appears to be critical in the regulation of various pathophysiological processes and to maintain cellular homeostasis. While a high proportion of dietary intake of ω-6 PUFAs is associated with various inflammatory disorders, higher intake of ω-3 PUFAs is known to offer protection. It is now well established that beneficial effects of ω-3 PUFAs are mediated in part by their oxygenated metabolites mainly via the lipoxygenase (LOX) and cyclooxygenase (COX) pathways. However, the down-stream signaling pathways that are involved in these anti-inflammatory effects of ω-3 PUFAs have not been elucidated. The present study evaluates the effects of 15-LOX metabolites of α-linolenic acid (ALA, ω-3 PUFA) on lipopolysaccharide (LPS) induced inflammation in RAW 264.7 cells and peritoneal macrophages. Further, the effect of these metabolites on the survival of BALB/c mice in LPS mediated septic shock and also polymicrobial sepsis in Cecal Ligation and Puncture (CLP) mouse model was studied. These studies reveal the anti-inflammatory effects of 13-(S)-hydroperoxyoctadecatrienoic acid [13-(S)-HPOTrE] and 13-(S)-hydroxyoctadecatrienoic acid [13-(S)-HOTrE] by inactivating NLRP3 inflammasome complex through the PPAR-γ pathway. Additionally, both metabolites also deactivated autophagy and induced apoptosis. In mediating all these effects 13-(S)-HPOTrE was more potent than 13-(S)-HOTrE. PMID:27535180

  9. Fatty acid profile, tocopherol, squalene and phytosterol content of walnuts, almonds, peanuts, hazelnuts and the macadamia nut.

    PubMed

    Maguire, L S; O'Sullivan, S M; Galvin, K; O'Connor, T P; O'Brien, N M

    2004-05-01

    Nuts are high in fat but have a fatty acid profile that may be beneficial in relation to risk of coronary heart disease. Nuts also contain other potentially cardioprotective constituents including phytosterols, tocopherols and squalene. In the present study, the total oil content, peroxide value, composition of fatty acids, tocopherols, phytosterols and squalene content were determined in the oil extracted from freshly ground walnuts, almonds, peanuts, hazelnuts and the macadamia nut. The total oil content of the nuts ranged from 37.9 to 59.2%, while the peroxide values ranged from 0.19 to 0.43 meq O2/kg oil. The main monounsaturated fatty acid was oleic acid (C18:1) with substantial levels of palmitoleic acid (C16:1) present in the macadamia nut. The main polyunsaturated fatty acids present were linoleic acid (C18:2) and linolenic acid (C18:3). alpha-Tocopherol was the most prevalent tocopherol except in walnuts. The levels of squalene detected ranged from 9.4 to 186.4 microg/g. beta-Sitosterol was the most abundant sterol, ranging in concentration from 991.2 to 2071.7 microg/g oil. Campesterol and stigmasterol were also present in significant concentrations. Our data indicate that all five nuts are a good source of monounsaturated fatty acid, tocopherols, squalene and phytosterols.

  10. Fatty acid profile, tocopherol, squalene and phytosterol content of walnuts, almonds, peanuts, hazelnuts and the macadamia nut.

    PubMed

    Maguire, L S; O'Sullivan, S M; Galvin, K; O'Connor, T P; O'Brien, N M

    2004-05-01

    Nuts are high in fat but have a fatty acid profile that may be beneficial in relation to risk of coronary heart disease. Nuts also contain other potentially cardioprotective constituents including phytosterols, tocopherols and squalene. In the present study, the total oil content, peroxide value, composition of fatty acids, tocopherols, phytosterols and squalene content were determined in the oil extracted from freshly ground walnuts, almonds, peanuts, hazelnuts and the macadamia nut. The total oil content of the nuts ranged from 37.9 to 59.2%, while the peroxide values ranged from 0.19 to 0.43 meq O2/kg oil. The main monounsaturated fatty acid was oleic acid (C18:1) with substantial levels of palmitoleic acid (C16:1) present in the macadamia nut. The main polyunsaturated fatty acids present were linoleic acid (C18:2) and linolenic acid (C18:3). alpha-Tocopherol was the most prevalent tocopherol except in walnuts. The levels of squalene detected ranged from 9.4 to 186.4 microg/g. beta-Sitosterol was the most abundant sterol, ranging in concentration from 991.2 to 2071.7 microg/g oil. Campesterol and stigmasterol were also present in significant concentrations. Our data indicate that all five nuts are a good source of monounsaturated fatty acid, tocopherols, squalene and phytosterols. PMID:15223592

  11. Lipid and fatty acid contents in red tides from tropical fish ponds of the coastal water of South China Sea.

    PubMed

    Shamsudin, L

    1996-01-01

    Microplanktonic red tide blooms (dominated by dinoflagellates) were observed in brackish water fish ponds of Terengganu between March 1992 to January 1993. The first short-lived bloom (2-3 days) occurred in October 1992 while the second long-lived bloom (6-7 days) occurred in January 1993. The dominant dinoflagellate species comprised of Peridinium quinquecorne (> 90% total cell count) with considerable proportion of Protoperidinium excentricum. Ciliophora consisting of Tintinopsis sp. and Favella sp. were also present during the bloom period. The total ash, chlorophyll, phaeopigment, lipid and fatty acid content of the microplankton were studied. Considerable amounts (6-11% of the total fatty acid) of the polyunsaturated fatty acid 18:3w3 (linolenic acid) were present in the microplankton. However, high amounts of 20:5w3 (eicosapentanoic acid) and 22:6w3 (docosahexaenoic acid) were present with variable but usually high amounts of 22:4w6 and 22:5w6 acids. The latter microplankton bloom contained higher amounts of 20:5w3 and 22:6w3 acids than the earlier bloom. Lipid content were three to five times higher than chlorophyll a. There was an increase with successive day after bloom outbreak in the relative proportion of total C18, C20, and C22 fatty acid components. The algae microplankton contained the w3-polyunsaturated fatty acids (PUFAs) probably needed for the growth and survival rate of grazing pond animals.

  12. Enrichment of dry-cured ham with α-linolenic acid and α-tocopherol by the use of linseed oil and α-tocopheryl acetate in pig diets.

    PubMed

    Santos, C; Hoz, L; Cambero, M I; Cabeza, M C; Ordóñez, J A

    2008-11-01

    The use of α-linolenic acid and α-tocopherol enriched pork on the fatty acids and the sensory characteristics of Spanish dry-cured hams have been studied. Five batches of hams were manufactured using the posterior legs of pigs fed on diets with the same ingredients except for the oil source: sunflower (C), linseed (L) or linseed and olive (1/1, w/w, LO). Two different α-tocopheryl acetate concentrations [20 (C, L and LO) or 220 (LOE and LE)mg/kg diet] were used. Biceps femoris and Semitendinosus/Semimembranosus muscles from hams with low polyunsaturated fatty acid n-6/n-3 ratio (less than 3) were obtained from animals fed on linseed and linseed/olive oil enriched diets. However, hams from animals fed on diets added with linseed and α-tocopheryl acetate (20mg/kg diet) (batch L) were rejected by consumers because of less acceptable sensory characteristics and higher TBARs. The remaining hams had satisfactory sensory and nutritional characteristics.

  13. Lipid redistribution by α-linolenic acid-rich chia seed inhibits stearoyl-CoA desaturase-1 and induces cardiac and hepatic protection in diet-induced obese rats.

    PubMed

    Poudyal, Hemant; Panchal, Sunil K; Waanders, Jennifer; Ward, Leigh; Brown, Lindsay

    2012-02-01

    Chia seeds contain the essential fatty acid, α-linolenic acid (ALA). This study has assessed whether chia seeds attenuated the metabolic, cardiovascular and hepatic signs of a high-carbohydrate, high-fat (H) diet [carbohydrates, 52% (wt/wt); fat, 24% (wt/wt) with 25% (wt/vol) fructose in drinking water] in rats. Diets of the treatment groups were supplemented with 5% chia seeds after 8 weeks on H diet for a further 8 weeks. Compared with the H rats, chia seed-supplemented rats had improved insulin sensitivity and glucose tolerance, reduced visceral adiposity, decreased hepatic steatosis and reduced cardiac and hepatic inflammation and fibrosis without changes in plasma lipids or blood pressure. Chia seeds induced lipid redistribution with lipid trafficking away from the visceral fat and liver with an increased accumulation in the heart. The stearoyl-CoA desaturase-1 products were depleted in the heart, liver and the adipose tissue of chia seed-supplemented rats together with an increase in the substrate concentrations. The C18:1trans-7 was preferentially stored in the adipose tissue; the relatively inert C18:1n-9 was stored in sensitive organs such as liver and heart and C18:2n-6, the parent fatty acid of the n-6 pathway, was preferentially metabolized. Thus, chia seeds as a source of ALA induce lipid redistribution associated with cardioprotection and hepatoprotection.

  14. Olive leaves (Olea europea L.) and α-tocopheryl acetate as feed antioxidants for improving the oxidative stability of α-linolenic acid-enriched eggs.

    PubMed

    Botsoglou, E; Govaris, A; Fletouris, D; Iliadis, S

    2013-08-01

    Ninety-six brown Lohmann laying hens were equally assigned into four groups with six replicates. Hens within the control group were fed a corn-soybean-based diet supplemented with 4% linseed oil. Two other groups were given the same diet further supplemented with 5 or 10 g ground olive leaves/kg feed, while the diet of the fourth group was further supplemented with 200 mg α-tocopheryl acetate/kg. Supplementing diets with olive leaves had no effect on egg production, feed intake and egg traits. Eggs collected 28 days after feeding the experimental diets were analysed for lipid hydroperoxides and malondialdehyde (MDA) content, fatty acid profile, α-tocopherol concentrations and susceptibility to iron-induced lipid oxidation. Olive leaves were also analysed for total and individual phenolics, and total flavonoids, whereas their antioxidant capacity was determined using both the DPPH (1,1-diphenyl-2-picrylhydrazyl) and ABTS (2,2-azinobis3-ethylbenzothiazoline-6-sulphonic acid) radical scavenging activity assays. Results showed that neither α-tocopheryl acetate nor olive leaves supplementation exerted (p>0.05) any effect on the fatty acid composition of n-3 eggs. Supplementing the diet with 5 g olive leaves/kg had no (p>0.05) effect on the hydroperoxide levels of n-3 eggs, while supplementing with 10 g olive leaves/kg or 200 mg α-tocopheryl acetate/kg, the lipid hydroperoxide levels were reduced (p≤0.05) compared to control. However, although hydroperoxides were reduced, MDA, a secondary lipid oxidation product, was not affected (p>0.05). Iron-induced lipid oxidation increased MDA values in eggs from all groups, the increase being higher (p≤0.05) in the control group and the group supplemented with 5 g olive leaves/kg. The group supplemented with 10 g olive leaves/kg presented MDA values lower (p≤0.05) than the control but higher (p≤0.05) than the α-tocopheryl acetate group, which presented MDA concentrations lower (p≤0.05) than all other experimental

  15. Oil Content, Fatty Acid Composition and Distributions of Vitamin-E-Active Compounds of Some Fruit Seed Oils

    PubMed Central

    Matthäus, Bertrand; Özcan, Mehmet Musa

    2015-01-01

    Oil content, fatty acid composition and the distribution of vitamin-E-active compounds of selected Turkish seeds that are typically by-products of the food processing industries (linseed, apricot, pear, fennel, peanut, apple, cotton, quince and chufa), were determined. The oil content of the samples ranged from 16.9 to 53.4 g/100 g. The dominating fatty acids were oleic acid (apricot seed oil, peanut oil, and chufa seed oil) in the range of 52.5 to 68.4 g/100 g and linoleic acid (pear seed oil, apple seed oil, cottonseed oil and quince seed oil) with 48.1 to 56.3 g/100 g, while in linseed oil mainly α-linolenic acid (53.2 g/100 g) and in fennel seed oil mainly 18:1 fatty acids (80.5 g/100 g) with petroselinic acid predominating. The total content of vitamin-E-active compounds ranged from 20.1 (fennel seed oil) to 96 mg/100 g (apple seed oil). The predominant isomers were established as α- and γ-tocopherol. PMID:26785341

  16. Oil Content, Fatty Acid Composition and Distributions of Vitamin-E-Active Compounds of Some Fruit Seed Oils.

    PubMed

    Matthäus, Bertrand; Musazcan Özcan, Mehmet

    2015-01-01

    Oil content, fatty acid composition and the distribution of vitamin-E-active compounds of selected Turkish seeds that are typically by-products of the food processing industries (linseed, apricot, pear, fennel, peanut, apple, cotton, quince and chufa), were determined. The oil content of the samples ranged from 16.9 to 53.4 g/100 g. The dominating fatty acids were oleic acid (apricot seed oil, peanut oil, and chufa seed oil) in the range of 52.5 to 68.4 g/100 g and linoleic acid (pear seed oil, apple seed oil, cottonseed oil and quince seed oil) with 48.1 to 56.3 g/100 g, while in linseed oil mainly α-linolenic acid (53.2 g/100 g) and in fennel seed oil mainly 18:1 fatty acids (80.5 g/100 g) with petroselinic acid predominating. The total content of vitamin-E-active compounds ranged from 20.1 (fennel seed oil) to 96 mg/100 g (apple seed oil). The predominant isomers were established as α- and γ-tocopherol. PMID:26785341

  17. Knockdown of delta-5-desaturase promotes the anti-cancer activity of dihomo-γ-linolenic acid and enhances the efficacy of chemotherapy in colon cancer cells expressing COX-2

    PubMed Central

    Xu, Yi; Yang, Xiaoyu; Zhao, Pinjing; Yang, Zhongyu; Yan, Changhui; Guo, Bin; Qian, Steven Y.

    2016-01-01

    Cyclooxygenase (COX), commonly overexpressed in cancer cells, is a major lipid peroxidizing enzyme that metabolizes polyunsaturated fatty acids (ω-3s and ω-6s). The COX-catalyzed free radical peroxidation of arachidonic acid (ω-6) can produce deleterious metabolites (e.g. 2-series prostaglandins) that are implicated in cancer development. Thus, COX inhibition has been intensively investigated as a complementary therapeutic strategy for cancer. However, our previous study has demonstrated that a free radical-derived by product (8-hydroxyoctanoic acid) formed from COX-catalyzed peroxidation of dihomo-γ-linolenic acid (DGLA, the precursor of arachidonic acid) can inhibit colon cancer cell growth. We thus hypothesize that the commonly overexpressed COX in cancer (~90% of colon cancer patients) can be taken advantage to suppress cell growth by knocking down delta-5-desaturase (D5D, a key enzyme that converts DGLA to arachidonic acid). In addition, D5D knockdown along with DGLA supplement may enhance the efficacy of chemotherapeutic drugs. After knocking down D5D in HCA-7 colony 29 cells and HT-29 cells (human colon cancer cell lines with high and low COX levels, respectively), the antitumor activity of DGLA was significantly enhanced along with the formation of a threshold range (~0.5–1.0 µM) of 8-hydroxyoctanoic acid. In contrast, DGLA treatment did not inhibit cell growth when D5D was not knocked down and only limited amount of 8-hydroxyoctanoic acid was formed. D5D knockdown along with DGLA treatment also enhanced the cytotoxicities of various chemotherapeutic drugs, including 5-fluorouracil, regorafenib, and irinotecan, potentially through the activation of pro-apoptotic proteins, e.g. p53 and caspase 9. For the first time, we have demonstrated that the overexpressed COX in cancer cells can be utilized in suppressing cancer cell growth. This finding may provide a new option besides COX inhibition to optimize cancer therapy. The outcome of this translational

  18. The effect of dietary alfalfa and flax sprouts on rabbit meat antioxidant content, lipid oxidation and fatty acid composition.

    PubMed

    Dal Bosco, A; Castellini, C; Martino, M; Mattioli, S; Marconi, O; Sileoni, V; Ruggeri, S; Tei, F; Benincasa, P

    2015-08-01

    The aim of this study was to determine the effect of dietary supplementation with flax and alfalfa sprouts on fatty acid, tocopherol and phytochemical contents of rabbit meat. Ninety weaned New Zealand White rabbits were assigned to three dietary groups: standard diet (S); standard diet+20g/d of alfalfa sprouts (A); and standard diet+20g/d of flax sprouts (F). In the F rabbits the Longissimus dorsi muscle showed a higher thio-barbituric acid-reactive value and at the same time significantly higher values of alpha-linolenic acid, total polyunsaturated and n-3 fatty acids. Additionally n-3/n-6 ratio and thrombogenic indices were improved. The meat of A rabbits showed intermediate values of the previously reported examined parameters. Dietary supplementation with sprouts produced meat with a higher total phytoestrogen content. The addition of fresh alfalfa and flax sprouts to commercial feed modified the fat content, fatty acid and phytochemical profile of the meat, but the flax ones worsened the oxidative status of meat.

  19. Effects of dietary conjugated linoleic acid on fatty acid composition and cholesterol content of hen egg yolks.

    PubMed

    Szymczyk, Beata; Pisulewski, Paweł M

    2003-07-01

    The main objectives of the present study were to determine the effect of dietary conjugated linoleic acid (CLA) isomers on the fatty acid composition and cholesterol content of egg-yolk lipids. Forty-five 25-week-old laying hens were randomly distributed into five groups of nine hens each and maintained in individual laying cages, throughout 12 weeks of the experiment. They were assigned to the five treatments that consisted of commercial layer diets containing 0, 5, 10, 15 or 20 g pure CLA/kg. Feed intake of hens varied little and insignificantly. Egg mass was uniformly lower (P<0.05) in the hens fed the CLA-enriched diets. Feed conversion efficiency, when expressed per kg eggs, was impaired (P<0.05), although without obvious relation to the dietary CLA concentration. Feeding the CLA-enriched diets resulted in gradually increasing deposition of CLA isomers (P<0.01) in egg-yolk lipids. Saturated fatty acids were increased (P<0.01) and monounsaturated fatty acids decreased (P<0.01). Polyunsaturated fatty acids (PUFA), when expressed as non-CLA PUFA, were also significantly decreased (P<0.01). The most striking effects (P<0.01) were observed for palmitic (16 : 0) and stearic (18 : 0) acids, which increased from 23.6 to 34 % and from 7.8 to 18 %, respectively. On the other hand, oleic acid (18 : 1n-9) decreased from 45.8 to 24.3 %. Among non-CLA PUFA, linoleic (18 : 2n-6) and alpha-linolenic (18 : 3n-3) acids were strongly (P<0.01) decreased, from 14.2 to 7.7 % and from 1.3 to 0.3 %, respectively. The same was true for arachidonic (20:4n-6) and docosahexaenoic (22 : 6n-3) acids. The cholesterol content of egg yolks, when expressed in mg/g yolk, was not affected by the dietary CLA concentrations. In conclusion, unless the adverse effects of CLA feeding to laying hens on the fatty acid profile of egg yolks are eliminated, the CLA-enriched eggs cannot be considered functional food products. PMID:12844380

  20. Gender differences in the n-3 fatty acid content of tissues.

    PubMed

    Childs, Caroline E; Romeu-Nadal, Meritxell; Burdge, Graham C; Calder, Philip C

    2008-02-01

    Dietary n-3 PUFA have many beneficial effects on cell and tissue function and on human health. In mammals the n-3 essential fatty acid alpha-linolenic acid (ALNA) can be converted into longer-chain (LC) n-3 PUFA such as EPA and DHA via a series of desaturase and elongase enzymes that are mainly active in the liver. Human studies have identified that males and females appear to differ in their ability to synthesise EPA and DHA from ALNA, with associated differences in circulating concentrations. Based on studies of women using the contraceptive pill or hormone-replacement therapy and of trans-sexual subjects it is suggested that sex hormones play a role in these differences. The rat has been used to investigate gender differences in n-3 PUFA status since this model allows greater dietary control than is possible in human subjects. Like human subjects, female rats have higher plasma DHA concentrations than males. Rats also respond to increased dietary ALNA in a way that is comparable with available human data. The concentrations of LC n-3 PUFA in rat plasma and tissues are positively associated with circulating concentrations of oestradiol and progesterone and negatively associated with circulating concentrations of testosterone. These findings suggest that sex hormones act to modify plasma and tissue n-3 PUFA content, possibly by altering the expression of desaturase and elongase enzymes in the liver, which is currently under investigation. PMID:18234128

  1. Linoleic acid content in adipose tissue and coronary heart disease.

    PubMed Central

    Riemersma, R A; Wood, D A; Butler, S; Elton, R A; Oliver, M; Salo, M; Nikkari, T; Vartiainen, E; Puska, P; Gey, F

    1986-01-01

    The possibility of an inverse relation between essential fatty acids in adipose tissue, in particular linoleic acid, and mortality from coronary heart disease was studied by a cross sectional survey of random population samples of apparently healthy men aged 40-49 from four European regions with differing mortality from coronary heart disease. The proportion of linoleic acid in adipose tissue was lowest in men from north Karelia, Finland, where mortality from coronary heart disease is highest, and highest in men from Italy, where mortality is lowest, with intermediate proportions in men from Scotland and south west Finland. Similar gradients were observed for the desaturation and elongation products dihomo-gamma-linolenic and arachidonic acid. The proportion of saturated fatty acids in adipose tissue was highest in Finland, intermediate in Scotland, and lowest in Italy. Italian men also had the highest proportion of oleate in their adipose tissue and the lowest proportion of myristoleate and palmitoleate. Finnish men were more obese and had a higher blood pressure. Serum cholesterol concentration was higher in north Karelia and south west Finland than in Scotland or Italy. High density lipoprotein (HDL) cholesterol concentrations reflected the regional differences in serum cholesterol, being higher in Finland and lower in Italy. The ratios of HDL cholesterol to total cholesterol, however, did not differ. The regional differences in linoleic acid in adipose tissue remained highly significant when the observed differences in other known risk factors for coronary heart disease among the four areas were taken into account by multivariate analysis. The gradients in proportions of polyunsaturated fatty acids probably reflect differences in dietary intake of linoleic acid. PMID:3087455

  2. Early Low-Fat Diet Enriched With Linolenic Acid Reduces Liver Endocannabinoid Tone and Improves Late Glycemic Control After a High-Fat Diet Challenge in Mice.

    PubMed

    Demizieux, Laurent; Piscitelli, Fabiana; Troy-Fioramonti, Stephanie; Iannotti, Fabio Arturo; Borrino, Simona; Gresti, Joseph; Muller, Tania; Bellenger, Jerome; Silvestri, Cristoforo; Di Marzo, Vincenzo; Degrace, Pascal

    2016-07-01

    Evidence suggests that alterations of glucose and lipid homeostasis induced by obesity are associated with the elevation of endocannabinoid tone. The biosynthesis of the two main endocannabinoids, N-arachidonoylethanolamine and 2-arachidonoyl-glycerol, which derive from arachidonic acid, is influenced by dietary fatty acids (FAs). We investigated whether exposure to n-3 FA at a young age may decrease tissue endocannabinoid levels and prevent metabolic disorders induced by a later high-fat diet (HFD) challenge. Three-week-old mice received a 5% lipid diet containing lard, lard plus safflower oil, or lard plus linseed oil for 10 weeks. Then, mice were challenged with a 30% lard diet for 10 additional weeks. A low n-6/n-3 FA ratio in the early diet induces a marked decrease in liver endocannabinoid levels. A similar reduction was observed in transgenic Fat-1 mice, which exhibit high tissue levels of n-3 FA compared with wild-type mice. Hepatic expression of key enzymes involved in carbohydrate and lipid metabolism was concomitantly changed. Interestingly, some gene modifications persisted after HFD challenge and were associated with improved glycemic control. These findings indicate that early dietary interventions based on n-3 FA may represent an alternative strategy to drugs for reducing endocannabinoid tone and improving metabolic parameters in the metabolic syndrome.

  3. Early Low-Fat Diet Enriched With Linolenic Acid Reduces Liver Endocannabinoid Tone and Improves Late Glycemic Control After a High-Fat Diet Challenge in Mice.

    PubMed

    Demizieux, Laurent; Piscitelli, Fabiana; Troy-Fioramonti, Stephanie; Iannotti, Fabio Arturo; Borrino, Simona; Gresti, Joseph; Muller, Tania; Bellenger, Jerome; Silvestri, Cristoforo; Di Marzo, Vincenzo; Degrace, Pascal

    2016-07-01

    Evidence suggests that alterations of glucose and lipid homeostasis induced by obesity are associated with the elevation of endocannabinoid tone. The biosynthesis of the two main endocannabinoids, N-arachidonoylethanolamine and 2-arachidonoyl-glycerol, which derive from arachidonic acid, is influenced by dietary fatty acids (FAs). We investigated whether exposure to n-3 FA at a young age may decrease tissue endocannabinoid levels and prevent metabolic disorders induced by a later high-fat diet (HFD) challenge. Three-week-old mice received a 5% lipid diet containing lard, lard plus safflower oil, or lard plus linseed oil for 10 weeks. Then, mice were challenged with a 30% lard diet for 10 additional weeks. A low n-6/n-3 FA ratio in the early diet induces a marked decrease in liver endocannabinoid levels. A similar reduction was observed in transgenic Fat-1 mice, which exhibit high tissue levels of n-3 FA compared with wild-type mice. Hepatic expression of key enzymes involved in carbohydrate and lipid metabolism was concomitantly changed. Interestingly, some gene modifications persisted after HFD challenge and were associated with improved glycemic control. These findings indicate that early dietary interventions based on n-3 FA may represent an alternative strategy to drugs for reducing endocannabinoid tone and improving metabolic parameters in the metabolic syndrome. PMID:27207550

  4. Effects of an energy-restricted diet rich in plant-derived α-linolenic acid on systemic inflammation and endothelial function in overweight-to-obese patients with metabolic syndrome traits.

    PubMed

    Egert, Sarah; Baxheinrich, Andrea; Lee-Barkey, Young Hee; Tschoepe, Diethelm; Wahrburg, Ursel; Stratmann, Bernd

    2014-10-28

    Plant-derived α-linolenic acid (ALA) may reduce the risk of CVD, possibly by decreasing systemic inflammation and improving endothelial function. In the present study, the effects of a hypoenergetic diet rich in ALA (3·4 g/d) on the biomarkers of systemic inflammation and vascular function were investigated in eighty-one overweight-to-obese patients with metabolic syndrome traits in comparison with a hypoenergetic diet low in ALA (0·9 g/d, control). After a 6-month dietary intervention, there were significant decreases in the serum concentrations of C-reactive protein (CRP), TNF-α, IL-6, soluble intercellular adhesion molecule-1 (sICAM-1), soluble endothelial selectin (sE-selectin) and asymmetric dimethylarginine in both dietary groups. However, no inter-group differences were observed for all these changes. The serum concentration of YKL-40 (human cartilage glycoprotein 39 or chitinase-3-like protein 1) decreased after the ALA diet when compared with the control diet (P< 0·05 for time × treatment interaction). Plasma concentrations of fibrinogen did not significantly change in the two dietary groups. The decreases in the serum concentrations of sICAM-1, sE-selectin, CRP and YKL-40 were significantly correlated with the decreases in body fat mass. In conclusion, the present study indicates that in overweight-to-obese patients with metabolic syndrome traits, both vascular function and inflammation are improved during body-weight loss. The high ALA intake led to a more pronounced reduction in the serum concentration of YKL-40 compared with the intake of the low-ALA control diet, indicating the existence of independent favourable physiological effects of ALA during weight loss.

  5. Breeding Vegetables with Increased Content in Bioactive Phenolic Acids.

    PubMed

    Kaushik, Prashant; Andújar, Isabel; Vilanova, Santiago; Plazas, Mariola; Gramazio, Pietro; Herraiz, Francisco Javier; Brar, Navjot Singh; Prohens, Jaime

    2015-01-01

    Vegetables represent a major source of phenolic acids, powerful antioxidants characterized by an organic carboxylic acid function and which present multiple properties beneficial for human health. In consequence, developing new varieties with enhanced content in phenolic acids is an increasingly important breeding objective. Major phenolic acids present in vegetables are derivatives of cinnamic acid and to a lesser extent of benzoic acid. A large diversity in phenolic acids content has been found among cultivars and wild relatives of many vegetable crops. Identification of sources of variation for phenolic acids content can be accomplished by screening germplasm collections, but also through morphological characteristics and origin, as well as by evaluating mutations in key genes. Gene action estimates together with relatively high values for heritability indicate that selection for enhanced phenolic acids content will be efficient. Modern genomics and biotechnological strategies, such as QTL detection, candidate genes approaches and genetic transformation, are powerful tools for identification of genomic regions and genes with a key role in accumulation of phenolic acids in vegetables. However, genetically increasing the content in phenolic acids may also affect other traits important for the success of a variety. We anticipate that the combination of conventional and modern strategies will facilitate the development of a new generation of vegetable varieties with enhanced content in phenolic acids.

  6. Chia seed (Salvia hispanica L.) as an omega-3 fatty acid source for broilers: influence on fatty acid composition, cholesterol and fat content of white and dark meats, growth performance, and sensory characteristics.

    PubMed

    Ayerza, R; Coates, W; Lauria, M

    2002-06-01

    Five thousand four hundred, 1-d-old, male, Ross 308, broiler chicks were fed for 49 d to compare diets containing 10 and 20% chia (Salvia hispanica L.) seed to a control diet. Cholesterol content, total fat content, and fatty acid composition of white and dark meats were determined at the end of the trial. A taste panel assessed meat flavor and preference. Cholesterol content was not significantly different among treatments; however, the 10% chia diet produced a lower fat content in the dark meat than did the control diet. Palmitic fatty acid content was less in both meat types when chia was fed, with differences being significant (P < 0.05), except for the white meat and the 20% chia diet. alpha-Linolenic fatty acid was significantly higher (P < 0.05) in the white and dark meats with the chia diets. Chia significantly lowered the saturated fatty acid content as well as the saturated:polyunsaturated fatty acid and omega-6:omega-3 ratios of the white and dark meats compared to the control diet. No significant differences in flavor or preference ratings were detected among diets. Body weight and feed conversion were significantly lower with the chia diets than with the control, with weight reductions up to 6.2% recorded with the 20% chia diet. PMID:12079050

  7. Chia seed (Salvia hispanica L.) as an omega-3 fatty acid source for broilers: influence on fatty acid composition, cholesterol and fat content of white and dark meats, growth performance, and sensory characteristics.

    PubMed

    Ayerza, R; Coates, W; Lauria, M

    2002-06-01

    Five thousand four hundred, 1-d-old, male, Ross 308, broiler chicks were fed for 49 d to compare diets containing 10 and 20% chia (Salvia hispanica L.) seed to a control diet. Cholesterol content, total fat content, and fatty acid composition of white and dark meats were determined at the end of the trial. A taste panel assessed meat flavor and preference. Cholesterol content was not significantly different among treatments; however, the 10% chia diet produced a lower fat content in the dark meat than did the control diet. Palmitic fatty acid content was less in both meat types when chia was fed, with differences being significant (P < 0.05), except for the white meat and the 20% chia diet. alpha-Linolenic fatty acid was significantly higher (P < 0.05) in the white and dark meats with the chia diets. Chia significantly lowered the saturated fatty acid content as well as the saturated:polyunsaturated fatty acid and omega-6:omega-3 ratios of the white and dark meats compared to the control diet. No significant differences in flavor or preference ratings were detected among diets. Body weight and feed conversion were significantly lower with the chia diets than with the control, with weight reductions up to 6.2% recorded with the 20% chia diet.

  8. Expression of genes controlling unsaturated fatty acids biosynthesis and oil deposition in developing seeds of Sacha inchi (Plukenetia volubilis L.).

    PubMed

    Wang, Xiaojuan; Liu, Aizhong

    2014-10-01

    Sacha inchi (Plukenetia volubilis L., Euphorbiaceae) seed oil is rich in α-linolenic acid, a kind of n-3 fatty acids with many health benefits. To discover the mechanism underlying α-linolenic acid accumulation in sacha inchi seeds, preliminary research on sacha inchi seed development was carried out from one week after fertilization until maturity, focusing on phenology, oil content, and lipid profiles. The results suggested that the development of sacha inchi seeds from pollination to mature seed could be divided into three periods. In addition, investigations on the effect of temperature on sacha inchi seeds showed that total oil content decreased in the cool season, while unsaturated fatty acid and linolenic acid concentrations increased. In parallel, expression profiles of 17 unsaturated fatty acid related genes were characterized during seed development and the relationships between gene expression and lipid/unsaturated fatty acid accumulation were discussed.

  9. Expression of genes controlling unsaturated fatty acids biosynthesis and oil deposition in developing seeds of Sacha inchi (Plukenetia volubilis L.).

    PubMed

    Wang, Xiaojuan; Liu, Aizhong

    2014-10-01

    Sacha inchi (Plukenetia volubilis L., Euphorbiaceae) seed oil is rich in α-linolenic acid, a kind of n-3 fatty acids with many health benefits. To discover the mechanism underlying α-linolenic acid accumulation in sacha inchi seeds, preliminary research on sacha inchi seed development was carried out from one week after fertilization until maturity, focusing on phenology, oil content, and lipid profiles. The results suggested that the development of sacha inchi seeds from pollination to mature seed could be divided into three periods. In addition, investigations on the effect of temperature on sacha inchi seeds showed that total oil content decreased in the cool season, while unsaturated fatty acid and linolenic acid concentrations increased. In parallel, expression profiles of 17 unsaturated fatty acid related genes were characterized during seed development and the relationships between gene expression and lipid/unsaturated fatty acid accumulation were discussed. PMID:25119487

  10. Partial suckling of lambs reduced the linoleic and conjugated linoleic acid contents of marketable milk in Chios ewes.

    PubMed

    Tzamaloukas, O; Orford, M; Miltiadou, D; Papachristoforou, C

    2015-03-01

    The objective of this work was to investigate the effect of weaning systems applied in a commercial dairy sheep farm on the fatty acid (FA) composition of marketable milk produced. Forty second parity, purebred Chios ewes were allocated to the following weaning treatments: (a) ewes were weaned from their lambs at 48 h after birth and machine milked twice daily [no lambs (NL) group, n=20]; or, (b) starting 48 h postpartum, ewes were separated from their lambs for 12h during the evening, machine milked once daily the following morning, and lambs were allowed to suckle for 12 h during the day for the first 5 wk of lactation [partial suckling (PS) group, n=20]. After weaning of the PS lambs at wk 6 of age, all ewes were machine milked twice daily. Commercial milk yield and milk composition was recorded weekly (fat, protein, FA content) or fortnightly (somatic cell counts) throughout the first 10 wk of lactation. The PS ewes compared with NL group produced commercial milk lower in milk yield, milk fat, and somatic cell counts, but not in protein content during the first 5-wk period. Such differences were not observed after weaning of the PS lambs. The FA profile of commercial milk was also affected by partial suckling during the preweaning period. Total polyunsaturated FA were higher in NL compared with PS ewe milk at wk 1, 2, 4, and 5 (on average, 21% higher), whereas no differences were detected between NL and PS ewe milk from wk 6 to 10 of lactation. From the polyunsaturated FA, linoleic acid (C18:2 cis-9,cis-12) and conjugated linoleic acid (C18:2 cis-9,trans-11; rumenic acid) were particularly affected, showing on average a reduction of 18 and 38%, respectively. From the monounsaturated FA, vaccenic acid (C18:1 trans-11) was affected during wk 1 and 2 of the treatment period, with the PS ewe milk having reduced content compared with the NL milk. Other unsaturated FA, such as oleic acid and α-linolenic acid, or saturated FA were not found to be affected by the

  11. Accurate determination of the amino acid content of selected feedstuffs.

    PubMed

    Rutherfurd, Shane M

    2009-01-01

    The accurate determination of the amino acid content is important. In the present study, a least-squares non-linear regression model of the amino acid content determined over multiple hydrolysis times was used to accurately determine the content of amino acids in five different feedstuffs. These values were compared with 24-h hydrolysis values determined for the same feedstuffs. Overall, approximately two-thirds of the amino acids determined in this study (aspartic acid, threonine, glutamic acid, proline, glycine, alanine, leucine, tyrosine, phenylalanine and arginine) using 24-h hydrolysis were in good agreement (<3% difference). When examined across feedstuffs, the concentration of serine was underestimated by the 24-h hydrolysis method by 4.8%, while the concentrations of histidine and lysine were overestimated by 3.9% and 3.1%, respectively.

  12. The seed's protein and oil content, fatty acid composition, and growing cycle length of a single genotype of chia (Salvia hispanica L.) as affected by environmental factors.

    PubMed

    Ayerza, Ricardo

    2009-01-01

    As a botanical source, variability in chia seed composition could be expected between growing locations, and between years within a location, due to genotype and environment effects as well genetic x environment's interactions. The objective of the present study was to determine the location effect on the growing cycle length, and seed's protein content, lipid content, and fatty acid profiles, of a single chia genotype. Seeds of chia genotype Tzotzol grown on eight sites in five different ecosystems were tested. One site was in Argentina, in the Semi-Arid Chaco ecosystem (T(5)); one was in Bolivia, in the Sub-Humid Chaco ecosystem (T(4)); and six in Ecuador, one in the Coastal Desert (T(3)), two on the Tropical Rain Forest (T(2)), and three in the Inter-Andean Dry Valley ecosystem (T(1)). Seeds from plants grown in T(4) and in T(3) contained significantly (P <0.05) more protein percentage than did seeds from the other three ecosystems. No significant (P <0.05) differences in protein content were found between T(3) and T(4), and between T(1), T(2), and T(5). Seeds from T(1) and T(5) ecosystems, with 33.5 and 32.2%, respectively, were the numerically highest oil content producers, but their results were only significantly (P <0.05) higher when compared with the T(2) seeds. Significant (P <0.05) differences in palmitic, stearic, oleic, linoleic and alpha-linolenic fatty acids between oils from seeds grown in different ecosystems were detected, however. Oil of seeds grown in the T(3) ecosystem had the palmitic, stearic and oleic fatty acids' highest contents. Palmitic and oleic fatty acid levels were significantly (P <0.05) higher when were compared to that of seeds grown in the T(1) ecosystem, and stearic when was compared to that of seeds grown in the T(5) ecosystem; omega-6 linoleic fatty acid content was significantly (P <0.05) lower in oils of seeds produced in T(1), and T(2) than in those produced in T(3), T(4), and T(5) ecosystems; omega-3 alpha-linolenic fatty

  13. [Fatty acid content of sausages manufactured in Venezuela].

    PubMed

    Araujo de Vizcarrondo, C; Martín, E

    1997-06-01

    The moisture and lipid content as well as the fatty acid composition of sausages were determined. Lipids were extracted and purified with a mixture of cloroform/methanol 2:1. Fatty acids in the lipid extract were methylated with 4% sulfuric acid/methanol solution and later were separated as methyl esters by gas liquid cromatography (GLC). Sausages presented a lipid content between 7.10% for canned sausages and 35.23% for the cocktail type. Most of the fatty acids were monounsatured with oleic acid as the major component with values between 42.54% for ham sausage and 48.83% for francfort type. Satured fatty acids followed, with palmitic acid as the major component in a range between 21.46% and 26.59% for bologna and Polaca sausage respectively. Polyunsaturated fatty acids were present in less quantities with concentration of linoleic acid between 8.5% (cotto salami type) and 12.60% (cocktail type). Turkey and poultry sausages presented a higher content of polyunsaturated and less saturated fatty acids than the other types of sausages studied.

  14. A gall-inducing caterpillar species increases essential fatty acid content of its host plant without concomitant increases in phytohormone levels.

    PubMed

    Tooker, John F; De Moraes, Consuelo M

    2009-05-01

    Gall-inducing insects are accomplished plant parasites that can profoundly influence host-plant physiology. We recently reported that the caterpillar Gnorimoschema gallaesolidaginis failed to significantly alter emissions of host-plant volatiles that often recruit natural enemies of insect herbivores, and demonstrated that a caterpillar species feeding on linolenate-deficient plant tissues avoids inducing some of the indirect defenses of its host plant. Here, we investigate whether absence of volatile responses to the galler G. gallaesolidaginis could similarly be explained by a lack of linolenate in galls. We screened interior and exterior tissue of galls and control stems of Solidago altissima for free linolenate, linoleate, 12-oxo-phytodienoate, jasmonate, and salicylate. We found, unexpectedly, that G. gallaesolidaginis strongly increased amounts of linolenic and linoleic acids inside galls without associated increases in two downstream products, 12-oxo-phytodienoic or jasmonic acid. In contrast, the generalist caterpillar Heliothis virescens induced elevated levels of linolenic, linoleic, 12-oxo-phytodienoic, and jasmonic acids in S. altissima. Moreover, these two fatty acids and 12-oxo-phytodienoate were significantly and positively associated with jasmonic acid, suggesting that increased levels of these precursors can lead directly to greater amounts of jasmonic acid. Taken together, these findings suggest that gall insects may be able to nutritionally enhance their food source without inducing concomitant increases in phytohormones and associated defense responses.

  15. [Hydrocyanic acid content in cerals and cereal products].

    PubMed

    Lehmann, G; Zinsmeister, H D; Erb, N; Neunhoeffer, O

    1979-03-01

    In the above paper for the first time a systematic study of the amount of hydrocyanic acid in grains and cereal products is reported. Among 24 analysed wheat, rye, maize and oats types, the presence of hydrocyanic acid could be identified in 19 cases in their Karyopses. Similar is the result with 28 among 31 analysed cereal products. The content of hydrocyanic acid lies between 0.1 and 45 microgram/100 gr dried mass.

  16. Association of SSR markers with contents of fatty acids in olive oil and genetic diversity analysis of an olive core collection.

    PubMed

    Ipek, M; Ipek, A; Seker, M; Gul, M K

    2015-03-27

    The purpose of this research was to characterize an olive core collection using some agronomic characters and simple sequence repeat (SSR) markers and to determine SSR markers associated with the content of fatty acids in olive oil. SSR marker analysis demonstrated the presence of a high amount of genetic variation between the olive cultivars analyzed. A UPGMA dendrogram demonstrated that olive cultivars did not cluster on the basis of their geographic origin. Fatty acid components of olive oil in these cultivars were determined. The results also showed that there was a great amount of variation between the olive cultivars in terms of fatty acid composition. For example, oleic acid content ranged from 57.76 to 76.9% with standard deviation of 5.10%. Significant correlations between fatty acids of olive oil were observed. For instance, a very high negative correlation (-0.812) between oleic and linoleic acids was detected. A structured association analysis between the content of fatty acids in olive oil and SSR markers was performed. STRUCTURE analysis assigned olive cultivars to two gene pools (K = 2). Assignment of olive cultivars to these gene pools was not based on geographical origin. Association between fatty acid traits and SSR markers was evaluated using the general linear model of TASSEL. Significant associations were determined between five SSR markers and stearic, oleic, linoleic, and linolenic acids of olive oil. Very high associations (P < 0.001) between ssrOeUA-DCA14 and stearic acid and between GAPU71B and oleic acid indicated that these markers could be used for marker-assisted selection in olive.

  17. Evaluation of the Quantitative and Qualitative Alterations in the Fatty Acid Contents of the Sebum of Patients with Inflammatory Acne during Treatment with Systemic Lymecycline and/or Oral Fatty Acid Supplementation

    PubMed Central

    Siqueira Talarico, Aline; Parra Duarte, Carla de Oliveira; Silva Pereira, Caroline; de Souza Weimann, Ellem Tatiani; Sabino de Matos, Lissa; Della Coletta, Livia Carolina; Fidelis, Maria Carolina; Vasconcellos, Cidia

    2013-01-01

    Background. Acne is a dermatosis that involves an altered sebum pattern. Objectives. (1) To evaluate if a treatment based on antibiotics (lymecycline) can alter fatty acids contents of the sebum of patients with acne; (2) to evaluate if oral supplementation of fatty acids can interfere with fatty acids contents of the sebum of patients with acne; (3) to evaluate if there is any interaction in fatty acids contents of the sebum of patients with acne when they use both antibiotics and oral supplementation of fatty acids. Methods. Forty-five male volunteers with inflammatory acne vulgaris were treated with 300 mg of lymecycline per day, with 540 mg of γ-linolenic acid, 1,200 mg of linoleic acid, and 510 mg of oleic acid per day, or with both regimens for 90 days. Every 30 days, a sample of sebum from the forehead was collected for fatty acids' chromatographic analysis. Results. Twelve fatty acids studied exhibited some kind of pattern changes during the study: C12:0, C14:0, C15:0, C16:1, C18:0, C18:1n9c+C18:1n9t, C18:2n6t, C18:3n6, C18:3n3, C20:1, C22:0, and C24:0. Conclusions. The daily administration of lymecycline and/or specific fatty acids may slightly influence some fatty acids levels present in the sebum of patients with inflammatory acne vulgaris. PMID:24191156

  18. Analysis of fatty acid content and composition in microalgae.

    PubMed

    Breuer, Guido; Evers, Wendy A C; de Vree, Jeroen H; Kleinegris, Dorinde M M; Martens, Dirk E; Wijffels, René H; Lamers, Packo P

    2013-01-01

    A method to determine the content and composition of total fatty acids present in microalgae is described. Fatty acids are a major constituent of microalgal biomass. These fatty acids can be present in different acyl-lipid classes. Especially the fatty acids present in triacylglycerol (TAG) are of commercial interest, because they can be used for production of transportation fuels, bulk chemicals, nutraceuticals (ω-3 fatty acids), and food commodities. To develop commercial applications, reliable analytical methods for quantification of fatty acid content and composition are needed. Microalgae are single cells surrounded by a rigid cell wall. A fatty acid analysis method should provide sufficient cell disruption to liberate all acyl lipids and the extraction procedure used should be able to extract all acyl lipid classes. With the method presented here all fatty acids present in microalgae can be accurately and reproducibly identified and quantified using small amounts of sample (5 mg) independent of their chain length, degree of unsaturation, or the lipid class they are part of. This method does not provide information about the relative abundance of different lipid classes, but can be extended to separate lipid classes from each other. The method is based on a sequence of mechanical cell disruption, solvent based lipid extraction, transesterification of fatty acids to fatty acid methyl esters (FAMEs), and quantification and identification of FAMEs using gas chromatography (GC-FID). A TAG internal standard (tripentadecanoin) is added prior to the analytical procedure to correct for losses during extraction and incomplete transesterification. PMID:24121679

  19. Indole-3-acetic acid (IAA) induced changes in oil content, fatty acid profiles and expression of four fatty acid biosynthetic genes in Chlorella vulgaris at early stationary growth phase.

    PubMed

    Jusoh, Malinna; Loh, Saw Hong; Chuah, Tse Seng; Aziz, Ahmad; Cha, Thye San

    2015-03-01

    Microalgae lipids and oils are potential candidates for renewable biodiesel. Many microalgae species accumulate a substantial amount of lipids and oils under environmental stresses. However, low growth rate under these adverse conditions account for the decrease in overall biomass productivity which directly influence the oil yield. This study was undertaken to investigate the effect of exogenously added auxin (indole-3-acetic acid; IAA) on the oil content, fatty acid compositions, and the expression of fatty acid biosynthetic genes in Chlorella vulgaris (UMT-M1). Auxin has been shown to regulate growth and metabolite production of several microalgae. Results showed that oil accumulation was highest on days after treatment (DAT)-2 with enriched levels of palmitic (C16:0) and stearic (C18:0) acids, while the linoleic (C18:2) and α-linolenic (C18:3n3) acids levels were markedly reduced by IAA. The elevated levels of saturated fatty acids (C16:0 and C18:0) were consistent with high expression of the β-ketoacyl ACP synthase I (KAS I) gene, while low expression of omega-6 fatty acid desaturase (ω-6 FAD) gene was consistent with low production of C18:2. However, the increment of stearoyl-ACP desaturase (SAD) gene expression upon IAA induction did not coincide with oleic acid (C18:1) production. The expression of omega-3 fatty acid desaturase (ω-3 FAD) gene showed a positive correlation with the synthesis of PUFA and C18:3n3.

  20. Comparison of fatty acid contents and composition in major lipid classes of larvae and adults of mosquitoes (Diptera: Culicidae) from a steppe region.

    PubMed

    Sushchik, Nadezhda N; Yurchenko, Yuri A; Gladyshev, Michail I; Belevich, Olga E; Kalachova, Galina S; Kolmakova, Angelika A

    2013-10-01

    Emerging aquatic insects, including mosquitoes, are known to transfer to terrestrial ecosystems specific essential biochemicals, such as polyunsaturated fatty acids (PUFA). We studied fatty acid (FA) composition and contents of dominant mosquito populations (Diptera: Culicidae), that is, Anopheles messeae, Ochlerotatus caspius, Oc. flavescens, Oc. euedes, Oc. subdiversus, Oc. cataphylla, and Aedes cinereus, inhabited a steppe wetland of a temperate climate zone to fill up the gap in their lipid knowledge. The polar lipid and triacylglycerol fractions of larvae and adults were compared. In most studied mosquito species, we first found and identified a number of short-chain PUFA, for example, prominent 14:2n-6 and 14:3n-3, which were not earlier documented in living organisms. These PUFA, although occurred in low levels in adult mosquitoes, can be potentially used as markers of mosquito biomass in terrestrial food webs. We hypothesize that these acids might be synthesized (or retroconverted) by the mosquitoes. Using FA trophic markers accumulated in triacylglycerols, trophic relations of the mosquitoes were accessed. The larval diet comprised green algae, cryptophytes, and dinoflagellates and provided the mosquitoes with essential n-3 PUFA, linolenic, and eicosapentaenoic acids. As a result, both larvae and adults of the studied mosquitoes had comparatively high content of the essential PUFA. Comparison of FA proportions in polar lipids versus storage lipids shown that during mosquito metamorphosis transfer of essential eicosapentaenoic and arachidonic acids from the reserve in storage lipids of larvae to functional polar lipids in adults occurred.

  1. Effects of aerosol formulation to amino acids and fatty acids contents in Haruan extract.

    PubMed

    Febriyenti; Bai-Baie, Saringat Bin; Laila, Lia

    2012-01-01

    Haruan (Channa striatus) extract was formulated to aerosol for wound and burn treatment. Haruan extract is containing amino acids and fatty acids that important for wound healing process. The purpose of this study is to observe the effect of formulation and other excipients in the formula to amino acids and fatty acids content in Haruan extract before and after formulated into aerosol. Precolumn derivatization with 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate (AQC) method is used for amino acids analysis. Fatty acids in Haruan extract were esterified using transesterification method to form FAMEs before analyzed using GC. Boron trifluoride-methanol reagent is used for transesterification. Tyrosine and methionine concentrations were different after formulated. The concentrations were decrease. There are six fatty acids have amount that significantly different after formulated into concentrate and aerosol. Contents of these fatty acids were increase. Generally, fatty acids which had content increased after formulated were the long-chain fatty acids. This might be happen because of chain extension process. Saponification and decarboxylation would give the chain extended product. Therefore contents of long-chain fatty acids were increase. Generally, the aerosol formulation did not affect the amino acids concentrations in Haruan extract while some long-chain fatty acids concentrations were increase after formulated into concentrate and aerosol.

  2. Effects of dietary gamma-linolenic acid-rich borage oil combined with marine fish oils on tissue phospholipid fatty acid composition and production of prostaglandins E and F of the 1-, 2- and 3-series in a marine fish deficient in delta5 fatty acyl desaturase.

    PubMed

    Tocher, D R; Bell, J G; Farndale, B M; Sargent, J R

    1997-08-01

    The effects of gamma-linolenic acid-rich borage oil (BO), in combination with different marine oils, namely an eicosapentaenoic acid (EPA) rich oil (MO) or a DHA-rich oil (TO), on tissue fatty acid composition and prostaglandin production were investigated in turbot, a species which lacks appreciable delta5 fatty acyl desaturase activity. The juvenile turbot grew well on the experimental diets and there were no significant differences in final weights between dietary treatments. Irrespective of the marine oil component, both the BO-containing diets increased tissue phospholipid levels of 18:2n-6 and 18:3n-6, and their respective elongation products, 20:2n-6 and 20:3n-6, compared to fish fed a control diet containing a standard Northern hemisphere fish oil. Both the BO-containing diets increased the production of 1-series prostaglandins (PG), this being observed across all tissues investigated with PGF and especially PGE. The BO/MO diet also reduced 20:4n-6 in tissue phospholipids without affecting 20:5n-3, whereas the BO/TO combination decreased 20:5n-3 but increased 20:4n-6. The production of 2-series and 3-series PGs was also altered by the dietary treatments but the changes were less dependent upon the tissue levels of their respective precursor fatty acids, 20:4n-6 and 20:5n-3. The BO-containing diets had very significant effects on gross fatty acid compositions of the phospholipids including increased proportions of saturated fatty acids and n-6 polyunsaturated fatty acids (PUFA) and decreased proportions of monounsaturated fatty acids and n-3 PUFA. Overall, this study shows that eicosanoid production in turbot tissues can be influenced by dietary fatty acids, not only by changes in the absolute and relative levels of specific eicosanoid precursor PUFA in tissue phospholipids, but also by general effects on membrane composition, structure and function induced by gross fatty acid compositional changes.

  3. Reverse cholesterol transport is regulated by varying fatty acyl chain saturation and sphingomyelin content in reconstituted high density lipoproteins

    PubMed Central

    Marmillot, Philippe; Patel, Sanket; Lakshman, M. Raj

    2007-01-01

    Because phospholipid composition of HDL plays a vital role in its reverse cholesterol transport (RCT) function, we studied RCT in vitro (uptake and efflux) with reconstituted HDLs (rHDLs) containing phosphatidylcholine with fatty acids of increasing saturation levels (stearic, oleic, linoleic, linolenic), and without or with sphingomyelin. Uptake significantly increased from basal value when phosphatidylcholine component included up to 50% (%mol) of oleic or linolenic acid, but did not change with linoleic acid. Increasing oleic and linoleic acids to 100% (%mol) significantly decreased uptake, but increasing linolenic acid to the same value did not affect it. Sphingomyelin in rHDL significantly decreased uptake, but only with phosphatidylcholine containing unsaturated fatty acids, and not with saturated fatty acid. Efflux was not affected in a dose-dependent manner when oleic or linoleic acid content was increased, but was significantly increased with levels of linolenic acid up to 25% (%mol) in phosphatidylcholine, and was dramatically lowered with higher levels. Sphingomyelin in rHDL (phosphatidylcholine:sphingomyelin, 20:80, mol:mol) significantly increased efflux only with oleic or linoleic acid-containing rHDLs, compared to efflux without sphingomyelin. In conclusion, enrichment of phosphatidylcholine component up to 25% (%mol) as linolenic acid has a beneficial effect on RCT, while a higher percentage of it or other unsaturated fatty acids seems to be detrimental. Also, high sphingomyelin content decreases uptake with rHDL containing unsaturated fatty acids, whereas it increases efflux for rHDL containing oleic or linoleic acid. These results show for the first time the importance of sphingomyelin in RCT in a well-defined in vitro system. PMID:17224341

  4. Growth Conditions To Reduce Oxalic Acid Content of Spinach

    NASA Technical Reports Server (NTRS)

    Johnson-Rutzke, Corinne

    2003-01-01

    A controlled-environment agricultural (CEA) technique to increase the nutritive value of spinach has been developed. This technique makes it possible to reduce the concentration of oxalic acid in spinach leaves. It is desirable to reduce the oxalic acid content because oxalic acid acts as an anti-nutritive calcium-binding component. More than 30 years ago, an enzyme (an oxidase) that breaks down oxalic acid into CO2 and H2O2 was discovered and found to be naturally present in spinach leaves. However, nitrate, which can also be present because of the use of common nitratebased fertilizers, inactivates the enzyme. In the CEA technique, one cuts off the supply of nitrate and keeps the spinach plants cool while providing sufficient oxygen. This technique provides the precise environment that enables the enzyme to naturally break down oxalate. The result of application of this technique is that the oxalate content is reduced by 2/3 in one week.

  5. GLC analysis of Indian rapeseed-mustard to study the variability of fatty acid composition.

    PubMed

    Kaushik, N; Agnihotri, A

    2000-12-01

    Rapeseed-mustard is one of the most economically important oilseed crops in India. Speciality oils having high amounts of a specific fatty acid are of immense importance for both nutritional and industrial purposes. Oil high in oleic acid has demand in commercial food-service applications due to a long shelf-life and cholesterol-reducing properties. Both linoleic and linolenic acids are essential fatty acids; however, less than 3% linolenic acid is preferred for oil stability. High erucic acid content is beneficial for the polymer industry, whereas low erucic acid is recommended for food purposes. Therefore, it is important to undertake systematic characterization of the available gene pool for its variable fatty acid profile to be utilized for specific purposes. In the present study the Indian rapeseed-mustard germplasm and some newly developed low-erucic-acid strains were analysed by GLC to study the fatty acid composition in these lines. The GLC analysis revealed that the rapeseed-mustard varieties being commonly grown in India are characterized by high erucic acid content (30-51%) in the oil with low levels of oleic acid (13-23%). However, from among the recently developed low-erucic-acid strains, several lines were identified with comparatively high oleic acid (60-70%), moderate to high linoleic acid (13-40%) and low linolenic acid (< 10%) contents. Work is in progress at TERI (New Delhi, India) to utilize these lines for development of strains with particular fatty acid compositions for specific purposes.

  6. Direct acid methylation for extraction of fatty acid content from microalgae cells.

    PubMed

    Frigo-Vaz, Benjamin D; Wang, Ping

    2014-08-01

    Direct acid methylation was examined as a means for both analysis of fatty acid content in microalgal cells and biodiesel production without pretreatment. Microalgal cells of Chlamydomonas reinhardtii and Dunaliella tertiolecta were prepared and examined. It appeared that direct acid methylation extracted higher fatty acid content than the solvent-based Soxhlet extraction process. It also revealed that the latter was prone to extract a significant amount of nonlipid hydrophobic impurities, including hydrophobic proteins and phytol-type compounds, while direct methylation produces essentially pure ester product. This work demonstrates that direct acid methylation provides superior fatty acid extraction, promising an efficient process for either quantification of lipid content or production of biodiesel. PMID:24838798

  7. Salicylic acid content of spices and its implications.

    PubMed

    Paterson, John R; Srivastava, Rajeev; Baxter, Gwen J; Graham, Alan B; Lawrence, James R

    2006-04-19

    This work was done to determine the salicylate content of a variety of commonly used spices and to assess whether this potential dietary source of salicylate was bioavailable. Spices, Indian cooked dishes, and blood and urine samples taken after ingestion of a test meal were investigated for their salicylate content using high-performance liquid chromatography with electrochemical detection. The serum salicylic acid concentrations in samples from villagers in southern India were also measured and have been compared with typical European values. Salicylic acid was determined in all spices (up to 1.5 wt %) and cooked dishes. The salicylate content of blood and urine was shown to increase following consumption of the meal, indicating that this dietary source of salicylic acid was bioavailable. Salicylic acid levels in the serum from rural Indians were significantly (median almost 3-fold) higher than values previously measured in Western vegetarians. Chemoprotective aspirin is rapidly hydrolyzed to salicylic acid, and this phytochemical may contribute to the low cancer incidence in rural India.

  8. Effect of feeding hemp seed and hemp seed oil on laying hen performance and egg yolk fatty acid content: evidence of their safety and efficacy for laying hen diets.

    PubMed

    Gakhar, N; Goldberg, E; Jing, M; Gibson, R; House, J D

    2012-03-01

    Forty-eight 19-wk-old Bovan White laying hens were fed 1 of 5 diets containing either hemp seed (HS) or hemp seed oil (HO). The level of HO was 4, 8, or 12%, whereas the level was 10 or 20% for the HS. A set of 8 birds fed wheat-, barley-, and corn oil-based diets served as the control. Performance was monitored over 12 wk. Average hen-day egg production was not affected upon feeding of either HS or HO diets. Egg weight was higher than that of the controls for hens consuming the 20% HS diet (P < 0.05). Feed intake was lower than that of the controls for birds consuming the 4% HO diet but similar across other treatments. Final BW were not affected by diet, with the exception of being lower than that of the controls (P < 0.05) in hens consuming the 12% HO diet. The total egg yolk n-3 fatty acid content increased linearly (P < 0.05) with increasing dietary α-linolenic acid provision with the HS- or HO-based diets. A quadratic response (P < 0.05) was observed for docosahexaenoic acid levels in egg yolk in response to increasing dietary α-linolenic acid supply. The expression of hepatic fatty acid desaturase 1 and 2, key genes for the desaturation of long-chain polyunsaturated fatty acids, was significantly decreased (50-60% of controls; P < 0.05) as a result of feeding HS or HO diets. Based on the results from the current study, the inclusion of the hemp products HS or HO in the diets of laying hens up to a maximum level of 20 and 12%, respectively, does not adversely effect the performance of laying hens and leads to the enrichment of the n-3 fatty acid content of eggs.

  9. Abscisic acid and pyrabactin improve vitamin C contents in raspberries.

    PubMed

    Miret, Javier A; Munné-Bosch, Sergi

    2016-07-15

    Abscisic acid (ABA) is a plant growth regulator with roles in senescence, fruit ripening and environmental stress responses. ABA and pyrabactin (a non-photosensitive ABA agonist) effects on red raspberry (Rubus idaeus L.) fruit development (including ripening) were studied, with a focus on vitamin and antioxidant composition. Application of ABA and/or pyrabactin just after fruit set did not affect the temporal pattern of fruit development and ripening; neither provitamin A (carotenoids) nor vitamin E contents were modified. In contrast, ABA and pyrabactin altered the vitamin C redox state at early stages of fruit development and more than doubled vitamin C contents at the end of fruit ripening. These were partially explained by changes in ascorbate oxidation and recycling. Therefore, ABA and pyrabactin applications may be used to increase vitamin C content of ripe fruits, increasing fruit quality and value. However, treatments containing pyrabactin-combined with ABA or alone-diminished protein content, thus partially limiting its potential applicability.

  10. Thiamine and fatty acid content of Lake Michigan Chinook salmon

    USGS Publications Warehouse

    Honeyfield, D.C.; Peters, A.K.; Jones, M.L.

    2008-01-01

    Nutritional status of Lake Michigan Chinook salmon (Oncorhynchus tshawytscha) is inadequately documented. An investigation was conducted to determine muscle and liver thiamine content and whole body fatty acid composition in small, medium and large Chinook salmon. Muscle and liver thiamine concentrations were highest in small salmon, and tended to decrease with increasing fish size. Muscle thiamine was higher in fall than spring in large salmon. The high percentage of Chinook salmon (24-32% in fall and 58-71% in spring) with muscle thiamine concentration below 500 pmol/g, which has been associated with loss of equilibrium and death in other Great Lake salmonines, suggest that Chinook appear to rely less on thiamine than other Great Lakes species for which such low concentrations would be associated with thiamine deficiency (Brown et al. 2005b). A positive correlation was observed between liver total thiamine and percent liver lipids (r = 0.53, P < 0.0001, n = 119). In medium and large salmon, liver lipids were observed to be low in fish with less than 4,000 pmol/g liver total thiamine. In individuals with greater than 4,000 pmol/g liver thiamine, liver lipid increased with thiamine concentration. Individual fatty acids declined between fall and spring. Essential omega-3 fatty acids appear to be conserved as lipid content declined. Arachidonic acid (C20:4n6), an essential omega-6 fatty acid was not different between fall and spring, although the sum of omega-6 (Sw6) fatty acids declined over winter. Elevated concentrations of saturated fatty acids (sum) were observed in whole body tissue lipid. In summary, thiamine, a dietary essential vitamin, and individual fatty acids were found to vary in Lake Michigan Chinook salmon by fish size and season of the year.

  11. Amino acid, fatty acid, and carbohydrate content of Artocarpus altilis (breadfruit).

    PubMed

    Golden, K D; Williams, O J

    2001-06-01

    A study is conducted to determine the amino acid, fatty acid, and carbohydrate content of breadfruit using high-performance liquid chromatography (HPLC) and gas chromatography (GC). An HPLC method is used for the determination of amino acids and fatty acids in breadfruit. Representative amino acid samples are derivatized with phenylisothiocianate and the resulting phenylthiocarbamyl derivatives are separated on a reversed-phase column by gradient elution with a 0.05M ammonium acetate buffer and 0.01M ammonium acetate in acetonitrile-methanol-water (44:10:46, v/v). Representative fatty acid samples are derivatized with phenacyl bromide and the resulting fatty acid phenacyl esters are separated on a reversed-phase column by gradient elution with acetonitrile and water. Amino acid and fatty acid derivatives are detected by ultraviolet detection at 254 nm. The analysis of the carbohydrates in breadfruit employs a GC method. Carbohydrates are derivatized using trimethylchlorosilane and hexamethyldisilazane to form trimethylsilyl ethers. Compounds in the samples are separated by the temperature programming of a GC using nitrogen as the carrier gas. Percent recoveries of amino acids, fatty acids, and carbohydrates are 72.5%, 68.2%, and 81.4%, respectively. The starch content of the breadfruit is 15.52 g/100 g fresh weight.

  12. Comparative researches on two direct transmethylation without prior extraction methods for fatty acids analysis in vegetal matrix with low fat content

    PubMed Central

    2012-01-01

    Background The aim of our work was to compare two methods, both based on direct transmethylation with different reagents, BF3/MeOH (boron trifluoride in methanol) or HCl/MeOH (hydrochloride acid in methanol), in acid catalysis, without prior extraction, to find the fast, non-expensive but enough precise method for 9 principal fatty acids (lauric, myristic, palmitic, stearic, oleic, linoleic, linolenic, arahidic and behenic acids) analysis in vegetal matrix with low fat content (forage from grassland), for nutrition and agrochemical studies. Results Comparatively, between the average values obtained for all analysed fatty acids by the two methods based on direct transmethylation without prior extraction no significantly difference was identified (p > 0.05). The results of fatty acids for the same forage sample were more closely to their average value, being more homogenous for BF3/MeOH than HCl/MeOH, because of the better accuracy and repeatability of this method. Method that uses BF3/MeOH reagent produces small amounts of interfering compounds than the method using HCl/MeOH reagent, results reflected by the better statistical parameters. Conclusion The fast and non-expensive BF3/methanol method was applied with good accuracy and sensitivity for the determination of free or combined fatty acids (saturated and unsaturated) in forage matrix with low fat content from grassland. Also, the final extract obtained by this method, poorer in interfering compounds, is safer to protect the injector and column from contamination with heavy or non-volatile compounds formed by transmethylation reactions. PMID:22269394

  13. A high-fat, high-oleic diet, but not a high-fat, saturated diet, reduces hepatic n3 fatty acid content in mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    While considerable research has centered upon the role of linoleic acid (LNA; 18:2n6) as a competitive inhibitor of alpha-linolenic (ALA; 18:3n3) metabolism, a growing literature indicates that the amount of fat consumed can reduce the elongation and desaturation process. However, little data exist ...

  14. A low α-linolenic intake during early life increases adiposity in the adult guinea pig

    PubMed Central

    2010-01-01

    Background The composition of dietary fatty acids (FA) during early life may impact adult adipose tissue (AT) development. We investigated the effects of α-linolenic acid (ALA) intake during the suckling/weaning period on AT development and metabolic markers in the guinea pig (GP). Methods Newborn GP were fed a 27%-fat diet (w/w %) with high (10%-ALA group), moderate (2.4%-ALA group) or low (0.8%-ALA group) ALA content (w/w % as total FA) until they were 21 days old (d21). Then all animals were switched to a 15%-fat diet containing 2% ALA (as total FA) until 136 days of age (d136). Results ALA and docosapentaenoic acid measured in plasma triglycerides (TG) at d21 decreased with decreasing ALA intake. Total body fat mass was not different between groups at d21. Adipose tissue TG synthesis rates and proliferation rate of total adipose cells, as assessed by 2H2O labelling, were unchanged between groups at d21, while hepatic de novo lipogenesis was significantly 2-fold increased in the 0.8%-ALA group. In older GP, the 0.8%-ALA group showed a significant 15-%-increased total fat mass (d79 and d107, p < 0.01) and epididymal AT weight (d136) and tended to show higher insulinemia compared to the 10%-ALA group. In addition, proliferation rate of cells in the subcutaneous AT was higher in the 0.8%-ALA (15.2 ± 1.3% new cells/5d) than in the 10%-ALA group (8.6 ± 1.7% new cells/5d, p = 0.021) at d136. AT eicosanoid profiles were not associated with the increase of AT cell proliferation. Conclusion A low ALA intake during early postnatal life promotes an increased adiposity in the adult GP. PMID:20205840

  15. Environmental Lead (Pb) Exposure Versus Fatty Acid Content in Blood and Milk of the Mother and in the Blood of Newborn Children.

    PubMed

    Baranowska-Bosiacka, Irena; Kosińska, Ida; Jamioł, Dominika; Gutowska, Izabela; Prokopowicz, Adam; Rębacz-Maron, Ewa; Goschorska, Marta; Olszowski, Tomasz; Chlubek, Dariusz

    2016-04-01

    Significant progress in understanding the effects of the neurotoxic action of lead (Pb) in young organisms had led to reduction of "safe" level in the blood (Pb-B) to 5 μg/dL in children and pregnant women. Prolonged exposure to relatively low levels of Pb, generally asymptomatic and subclinical (i.e., microintoxication), is currently the dominant form of environmental poisoning, and its negative effects on health may appear after many years, e.g., secondary contamination from Pb bone deposits released in pregnancy. Therefore, the aim of this study was to investigate the effect of environmental exposure (urban areas) of mothers to Pb, on its levels in their milk and blood and in the blood of newborns. Moreover, the aim was to determine the fatty acid profile in the mothers' blood and milk and in the blood of newborns. We also wanted to find if infant birth weight depends on Pb blood levels, as well as on Pb and fatty acid levels in the blood and milk of the mothers. Finally, we examined if the mothers' weight and body mass index (BMI) before pregnancy influenced the concentration of Pb and fatty acid profile in the blood and milk of mothers and in the blood of their children. Analysis of fatty acids elaidic (C18:1, 9t), oleic (C18:1, 9c), vaccenic (C18:1, 11t), cis-vaccenic (C18:1, 11c), linoleic (C18:2, cis), γ-linolenic (C18:3, n-6), α-linolenic (C18:3, n-3), arachidonic (C20:4, n-6), eicosapentaenoic (C20:5, n-3), and docosahexaenoic (C22:6, n-3) was conducted by gas chromatography. The concentration of Pb in the whole blood and milk were determined by atomic absorption spectrometry with graphite furnace atomization and Zeeman correction. Our study established a significant and strong correlation between the content of Pb in the blood of the mother and the child. This supports the assumption that the transport of Pb through the placenta is neither regulated nor selective. Environmental maternal exposure to lead resulting in Pb-B levels considered safe for

  16. Abscisic acid and pyrabactin improve vitamin C contents in raspberries.

    PubMed

    Miret, Javier A; Munné-Bosch, Sergi

    2016-07-15

    Abscisic acid (ABA) is a plant growth regulator with roles in senescence, fruit ripening and environmental stress responses. ABA and pyrabactin (a non-photosensitive ABA agonist) effects on red raspberry (Rubus idaeus L.) fruit development (including ripening) were studied, with a focus on vitamin and antioxidant composition. Application of ABA and/or pyrabactin just after fruit set did not affect the temporal pattern of fruit development and ripening; neither provitamin A (carotenoids) nor vitamin E contents were modified. In contrast, ABA and pyrabactin altered the vitamin C redox state at early stages of fruit development and more than doubled vitamin C contents at the end of fruit ripening. These were partially explained by changes in ascorbate oxidation and recycling. Therefore, ABA and pyrabactin applications may be used to increase vitamin C content of ripe fruits, increasing fruit quality and value. However, treatments containing pyrabactin-combined with ABA or alone-diminished protein content, thus partially limiting its potential applicability. PMID:26948608

  17. Cytometry of deoxyribonuclei acid content and morphology of mammalian sperm

    SciTech Connect

    Gledhill, B.L.

    1983-01-01

    Because spermatogenesis is exquisitely sensitive to external influences, sperm can serve as a biological dosimeter. Advances in interpreting induced sperm abnormalities require a better understanding of sperm characteristics. This report reviews the application of several methods for automated, quantitative detection of shape changes, methods that are faster and more sensitive than conventional subjective technqiues. Variability of sperm deoxyribonucleic acid content as a bioassay of genetic damage is explored, and limitations of the bioassay are discussed. New flow cytometric techniques that could lead to sexing mammalian sperm are examined.

  18. Is it possible to increase the n-3 fatty acid content of eggs without affecting their technological and/or sensorial quality and the laying performance of hens?

    PubMed

    Baeza, E; Chartrin, P; Lessire, M; Meteau, K; Chesneau, G; Guillevic, M; Mourot, J

    2015-01-01

    The aim of this study was to increase the n-3 fatty acid (n-3 FA) content of eggs without affecting their sensorial and/or technological properties or the laying performance of hens. Laying hens from line 477 were divided into 5 groups corresponding to 5 different diets over the laying period: control diet (C) and diets containing extruded linseed with a high level of fibre (ELHF), extruded linseed with a low level of fibre (ELLF), microalgae, or a combination of 75% ELLF and 25% MA (ELLF+MA). Dietary enrichment with n-3 FA had no effect on the laying performance, hen body weight or egg white viscosity. The egg yolks produced by hens fed the diet containing microalgae were redder than egg yolks from the other groups, suggesting the presence of red pigments in the microalgae preparation. However, the colour difference was low and not perceptible to the human eye. Moreover, colour measurement of egg yolks by sensorial analysis panellists using the Roche colour fan did not reveal a diet effect on this parameter. Egg yolk lipid content was not affected by diet. The egg yolk of hens fed on diets containing linseed and/or microalgae had greater n-3 FA content (×2.5 to 2.9 compared to group C). Linseed mainly increased the linolenic acid content (×3.0 to 3.4 compared to group C) and the microalgae increased the LC n-3 FA content (×4.1 compared to group C). Dietary enrichment with n-3 FA had no effect on the sensorial quality of shell cooked eggs except for the "unusual flavour" criterion for which the score was higher for the MA group compared to the other groups and corresponded to a fishy flavour.

  19. Chemical characteristics, fatty acid composition and conjugated linoleic acid (CLA) content of traditional Greek yogurts.

    PubMed

    Serafeimidou, Amalia; Zlatanos, Spiros; Laskaridis, Kostas; Sagredos, Angelos

    2012-10-15

    Many studies with conjugated linoleic acid (CLA) indicate that it has a protective effect against mammary cancer. Because dairy products are the most important dietary sources of CLA, we have investigated the CLA concentrations and additionally the fatty acid profiles and chemical composition of several commercial, traditional, Greek yogurts from different geographical origin. The fat content of yogurts was in the order of goatcontent on lipid basis compared to full-fat yogurts. Samples from mountain areas showed average c-9, t-11 CLA content higher than those from prairie districts. The highest amounts of saturated fatty acids (SFA) were found in low-fat yogurts, of monounsaturated fatty acids (MUFA) in sheep milk yogurts and of polyunsaturated fatty acid (PUFA) in low-fat cow milk yogurts. PMID:23442628

  20. Chemical characteristics, fatty acid composition and conjugated linoleic acid (CLA) content of traditional Greek yogurts.

    PubMed

    Serafeimidou, Amalia; Zlatanos, Spiros; Laskaridis, Kostas; Sagredos, Angelos

    2012-10-15

    Many studies with conjugated linoleic acid (CLA) indicate that it has a protective effect against mammary cancer. Because dairy products are the most important dietary sources of CLA, we have investigated the CLA concentrations and additionally the fatty acid profiles and chemical composition of several commercial, traditional, Greek yogurts from different geographical origin. The fat content of yogurts was in the order of goatcontent on lipid basis compared to full-fat yogurts. Samples from mountain areas showed average c-9, t-11 CLA content higher than those from prairie districts. The highest amounts of saturated fatty acids (SFA) were found in low-fat yogurts, of monounsaturated fatty acids (MUFA) in sheep milk yogurts and of polyunsaturated fatty acid (PUFA) in low-fat cow milk yogurts.

  1. Presence and content of kynurenic acid in animal feed.

    PubMed

    Turski, M P; Zgrajka, W; Siwicki, A K; Paluszkiewicz, P

    2015-02-01

    Kynurenic acid (KYNA) was found to be an antagonist of iontropic glutamate receptors and alpha7 nicotinic acetylcholine receptors. Furthermore, it was documented that KYNA is an agonist of G-protein coupled GPR35 receptors which are mainly present in the gastrointestinal tract. It was also found that KYNA is present in the gastrointestinal tract and that its concentration gradually increases along it. The origin of KYNA in the gastrointestinal tract is not known. Both might be synthesized from tryptophan in it or absorbed from food and other dietary products. Therefore, the aim of the study was to investigate the concentration of KYNA in animal feed. The results indicate that the highest concentration of KYNA was found in animal feeds intended for livestock. The lower amount of KYNA was detected in animal feeds for fish. Interestingly, the lowest amount of KYNA was found in dog and cat feeds. Furthermore, an analysis of KYNA content in animal food ingredients was conducted. The concentration of KYNA found in one of the ingredients – rapeseed meal – was several times higher in comparison to animal feeds studied. The content of KYNA in the remaining feed ingredients tested was significantly lower. This is the first report on the concentration of KYNA in animal feeds. There is a need for further detailed analysis leading to establishing a set of guidelines for animal feeding.

  2. Regulation of L-ascorbic acid content in strawberry fruits

    PubMed Central

    Cruz-Rus, Eduardo; Amaya, Iraida; Sánchez-Sevilla, José F.; Botella, Miguel A.; Valpuesta, Victoriano

    2011-01-01

    Plants have several L-ascorbic acid (AsA) biosynthetic pathways, but the contribution of each one to the synthesis of AsA varyies between different species, organs, and developmental stages. Strawberry (Fragaria×ananassa) fruits are rich in AsA. The pathway that uses D-galacturonate as the initial substrate is functional in ripe fruits, but the contribution of other pathways to AsA biosynthesis has not been studied. The transcription of genes encoding biosynthetic enzymes such as D-galacturonate reductase (FaGalUR) and myo-inositol oxygenase (FaMIOX), and the AsA recycling enzyme monodehydroascorbate reductase (FaMDHAR) were positively correlated with the increase in AsA during fruit ripening. Fruit storage for 72 h in a cold room reduced the AsA content by 30%. Under an ozone atmosphere, this reduction was 15%. Ozone treatment increased the expression of the FaGalUR, FaMIOX, and L-galactose-1-phosphate phosphatase (FaGIPP) genes, and transcription of the L-galactono-1,4-lactone dehydrogenase (FaGLDH) and FAMDHAR genes was higher in the ozone-stored than in the air-stored fruits. Analysis of AsA content in a segregating population from two strawberry cultivars showed high variability, which did not correlate with the transcription of any of the genes studied. Study of GalUR protein in diverse cultivars of strawberry and different Fragaria species showed that a correlation between GalUR and AsA content was apparent in most cases, but it was not general. Three alleles were identified in strawberry, but any sequence effect on the AsA variability was eliminated by analysis of the allele-specific expression. Taken together, these results indicate that FaGalUR shares the control of AsA levels with other enzymes and regulatory elements in strawberry fruit. PMID:21561953

  3. Plasma fatty acid profile and alternative nutrition.

    PubMed

    Krajcovicová-Kudlácková, M; Simoncic, R; Béderová, A; Klvanová, J

    1997-01-01

    Plasma profile of fatty acids was examined in a group of children consisting of 7 vegans, 15 lactoovovegetarians and 10 semivegetarians. The children were 11-15 years old and the average period of alternative nutrition was 3.4 years. The results were compared with a group of 19 omnivores that constituted an average sample with respect to biochemical and hematological parameters from a larger study of health and nutritional status of children in Slovakia. Alternative nutrition groups had significantly lower values of saturated fatty acids. The content of oleic acid was identical to omnivores. A significant increase was observed for linoleic and alpha-linolenic (n-3) acids. The dihomo-gamma-linolenic (n-6) acid and arachidonic (n-6) acid values were comparable to omnivores for all alternative nutrition groups. Values of n-3 polyunsaturated fatty acids in lactoovovegetarians were identical to those of omnivores whereas they were significantly increased in semivegetarians consuming fish twice a week. Due to the total exclusion of animal fats from the diet, vegans had significantly reduced values of palmitoleic acid as well as eicosapentaenoic (n-3) acid and docosahexaenoic (n-3) acid resulting in an increased n-6/n-3 ratio. Values of plasma fatty acids found in alternative nutrition groups can be explained by the higher intake of common vegetable oils (high content of linoleic acid), oils rich in alpha-linolenic acid (cereal germs, soybean oil, walnuts), as well as in n-3 polyunsaturated fatty acids (fish). The results of fatty acids (except n-3 in vegans) and other lipid parameters confirm the beneficial effect of vegetarian nutrition in the prevention of cardiovascular diseases.

  4. Effects of Rice Bran, Flax Seed, and Sunflower Seed on Growth Performance, Carcass Characteristics, Fatty Acid Composition, Free Amino Acid and Peptide Contents, and Sensory Evaluations of Native Korean Cattle (Hanwoo).

    PubMed

    Choi, Chang Bon; Kwon, Hana; Kim, Sung Il; Yang, Un Mok; Lee, Ju Hwan; Park, Eun Kyu

    2016-02-01

    This study was conducted to evaluate the effect of dietary supplementation with rice bran, flax seed, or sunflower seed to finishing native Korean cattle (Hanwoo) on growth performances, carcass characteristics, fatty acid composition, free amino acid and peptide contents, and sensory evaluations of Longissimus muscle (LM). A total of 39 Hanwoo steers (average age of 22.2 mo and average body weight (BW) of 552.2 kg) were randomly divided into Control, rice bran (RB), flax seed (FS), or Sunflower seed (SS) groups. The steers were group fed for 273 d until they reached an average age of 31.2 mo. Final BW was 768.2, 785.8, 786.2, and 789.0 kg, and average daily gain was 0.79, 0.85, 0.82, and 0.84 kg for the Control, RS, FS, and SS groups, respectively (p>0.05). Fat thickness of the FS group (19.8 mm) was greater (p<0.05) than that of the other groups. Final yield grade converted into numerical values was 2.0 for the RB group, 1.7 for the Control and SS groups, and 1.4 for the FS group. Marbling degrees for the Control, SS, RB, and FS groups were 5.3, 5.1, 4.7, and 4.6, respectively. Percentages of palmitic acid (C16:0), stearic acid (C18:0), and arachidic acid (C20:0) in the LM were not different among the groups. Palmitoleic (C16:1) acid was higher (p<0.05) in the SS group. The concentration of oleic acid was highest (p<0.05) in the Control group (47.73%). The level of linolenic acid (C18:3) was 2.3 times higher (p<0.05) in the FS group compared to the other groups. Methionine concentration was (p<0.05) higher in FS (1.7 mg/100 g) and SS (1.2 mg/100 g) steers than in the Control or RB groups. Glutamic acid and α-aminoadipic acid (α-AAA) contents were (p<0.05) higher in the FS group compared to the other groups. LM from the FS group had numerically higher (p>0.05) scores for flavor, umami, and overall palatability in sensory evaluations. In conclusion, supplementation of flax seed to diets of finishing Hanwoo steers improved sensory evaluations which might have been

  5. Effects of Rice Bran, Flax Seed, and Sunflower Seed on Growth Performance, Carcass Characteristics, Fatty Acid Composition, Free Amino Acid and Peptide Contents, and Sensory Evaluations of Native Korean Cattle (Hanwoo)

    PubMed Central

    Choi, Chang Bon; Kwon, Hana; Kim, Sung Il; Yang, Un Mok; Lee, Ju Hwan; Park, Eun Kyu

    2016-01-01

    This study was conducted to evaluate the effect of dietary supplementation with rice bran, flax seed, or sunflower seed to finishing native Korean cattle (Hanwoo) on growth performances, carcass characteristics, fatty acid composition, free amino acid and peptide contents, and sensory evaluations of Longissimus muscle (LM). A total of 39 Hanwoo steers (average age of 22.2 mo and average body weight (BW) of 552.2 kg) were randomly divided into Control, rice bran (RB), flax seed (FS), or Sunflower seed (SS) groups. The steers were group fed for 273 d until they reached an average age of 31.2 mo. Final BW was 768.2, 785.8, 786.2, and 789.0 kg, and average daily gain was 0.79, 0.85, 0.82, and 0.84 kg for the Control, RS, FS, and SS groups, respectively (p>0.05). Fat thickness of the FS group (19.8 mm) was greater (p<0.05) than that of the other groups. Final yield grade converted into numerical values was 2.0 for the RB group, 1.7 for the Control and SS groups, and 1.4 for the FS group. Marbling degrees for the Control, SS, RB, and FS groups were 5.3, 5.1, 4.7, and 4.6, respectively. Percentages of palmitic acid (C16:0), stearic acid (C18:0), and arachidic acid (C20:0) in the LM were not different among the groups. Palmitoleic (C16:1) acid was higher (p<0.05) in the SS group. The concentration of oleic acid was highest (p<0.05) in the Control group (47.73%). The level of linolenic acid (C18:3) was 2.3 times higher (p<0.05) in the FS group compared to the other groups. Methionine concentration was (p<0.05) higher in FS (1.7 mg/100 g) and SS (1.2 mg/100 g) steers than in the Control or RB groups. Glutamic acid and α-aminoadipic acid (α-AAA) contents were (p<0.05) higher in the FS group compared to the other groups. LM from the FS group had numerically higher (p>0.05) scores for flavor, umami, and overall palatability in sensory evaluations. In conclusion, supplementation of flax seed to diets of finishing Hanwoo steers improved sensory evaluations which might have been

  6. Gamma-linolenate reduces weight regain in formerly obese humans.

    PubMed

    Schirmer, Marie A; Phinney, Stephen D

    2007-06-01

    The purpose of this study was to determine whether gamma-linolenate (GLA) supplementation would suppress weight regain following major weight loss. Fifty formerly obese humans were randomized into a double-blind study and given either 890 mg/d of GLA (5 g/d borage oil) or 5 g/d olive oil (controls) for 1 y. Body weight and composition and adipose fatty acids of fasting subjects were assessed at 0, 3, 12, and 33 mo. After 12 subjects in each group had completed 1 y of supplementation, weight regain differed between the GLA (2.17 +/- 1.78 kg) and control (8.78 +/- 2.78 kg) groups (P < 0.03). The initial study was terminated, and all remaining subjects were assessed over a 6-wk period. Unblinding revealed weight regains of 1.8 +/- 1.6 kg in the GLA group and 7.6 +/- 2.1 kg in controls for the 13 and 17 subjects, respectively, who completed a minimum of 50 wk in the study. Weight regain did not differ in the remaining 10 GLA and 5 control subjects who completed <50 wk in the study. In a follow-up study, a subgroup from both the original GLA (GLA-GLA, n = 9) and the original control (Control-GLA, n = 14) populations either continued or crossed over to GLA supplementation for an additional 21 mo. Interim weight regains between 15 and 33 mo were 6.48 +/- 1.79 kg and 6.04 +/- 2.52 kg for the GLA-GLA and Control-GLA groups, respectively. Adipose triglyceride GLA levels increased 152% (P < 0.0001) in the GLA group at 12 mo, but did not increase further after 33 mo of GLA administration. In conclusion, GLA reduced weight regain in humans following major weight loss, suggesting a role for essential fatty acids in fuel partitioning in humans prone to obesity. PMID:17513402

  7. 21 CFR 101.62 - Nutrient content claims for fat, fatty acid, and cholesterol content of foods.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Nutrient content claims for fat, fatty acid, and... foods. (a) General requirements. A claim about the level of fat, fatty acid, and cholesterol in a food... product or main dish product, less than 0.5 g of fat per labeled serving; and (ii) The food contains...

  8. Heritability of Oleic Acid Seed Content in Soybean Oil and its Genetic Correlation with Fatty Acid and Agronomic Traits

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Oleic acid seed content is an important determinant of the nutritional value and the oxidative stability of soybean oil. Breeding for higher oleate content mandates the estimation of the heritability and the genetic correlations between oleate and fatty acid traits and between oleate and agronomic t...

  9. Increasing dietary linoleic acid does not increase tissue arachidonic acid content in adults consuming Western-type diets: a systematic review

    PubMed Central

    2011-01-01

    Background Linoleic acid, with a DRI of 12-17 g/d, is the most highly consumed polyunsaturated fatty acid in the Western diet and is found in virtually all commonly consumed foods. The concern with dietary linoleic acid, being the metabolic precursor of arachidonic acid, is its consumption may enrich tissues with arachidonic acid and contribute to chronic and overproduction of bioactive eicosanoids. However, no systematic review of human trials regarding linoleic acid consumption and subsequent changes in tissue levels of arachidonic acid has been undertaken. Objective In this study, we reviewed the human literature that reported changes in dietary linoleic acid and its subsequent impact on changing tissue arachidonic acid in erythrocytes and plasma/serum phospholipids. Design We identified, reviewed, and evaluated all peer-reviewed published literature presenting data outlining changes in dietary linoleic acid in adult human clinical trials that reported changes in phospholipid fatty acid composition (specifically arachidonic acid) in plasma/serum and erythrocytes within the parameters of our inclusion/exclusion criteria. Results Decreasing dietary linoleic acid by up to 90% was not significantly correlated with changes in arachidonic acid levels in the phospholipid pool of plasma/serum (p = 0.39). Similarly, when dietary linoleic acid levels were increased up to six fold, no significant correlations with arachidonic acid levels were observed (p = 0.72). However, there was a positive relationship between dietary gamma-linolenic acid and dietary arachidonic acid on changes in arachidonic levels in plasma/serum phospholipids. Conclusions Our results do not support the concept that modifying current intakes of dietary linoleic acid has an effect on changing levels of arachidonic acid in plasma/serum or erythrocytes in adults consuming Western-type diets. PMID:21663641

  10. Combining NMR Spectroscopy and Gas-Liquid Chromatography for Analysis of the Fatty Acid Composition of Fenugreek Seed Oil (Trigonella foenum graecum L.)

    NASA Astrophysics Data System (ADS)

    Skakovskii, E. D.; Tychinskaya, L. Yu.; Mauchanava, V. A.; Karankevich, E. G.; Lamotkin, S. A.; Ahabalayeva, A. D.; Reshetnikov, V. N.

    2013-11-01

    1H and 13C NMR spectroscopy established that fenugreek seed oil consists mainly of triacylglycerides. Oleic and linoleic acids are found preferentially in the 2 position and α-linolenic acid is found preferentially in the 1,3 positions of the glycerol backbone. By combining NMR and gas-liquid chromatography, we have shown that fenugreek seeds contain 5.5 %-6.8 % oil, consisting mainly of unsaturated fatty acids (68.2 %-82.1 %): linoleic (31.3 %-46.8 %), α-linolenic (15.1 %-36.6 %), and oleic (11.6 %-21.3 %). The highest unsaturated fatty acid content is found in the cultivars D-19, Ovary Gold, Blidet, Ovary 4 and the lowest fatty acid content is found in the Metha cultivar. The percentage of polyunsaturated fatty acids is higher in oils of fenugreek cultivars from northern regions (Belarus, Hungary, France).

  11. Effect of methyl jasmonate application to grapevine leaves on grape amino acid content.

    PubMed

    Garde-Cerdán, Teresa; Portu, Javier; López, Rosa; Santamaría, Pilar

    2016-07-15

    Over the last few years, considerable attention has been paid to the application of elicitors to vineyard. However, research about the effect of elicitors on grape amino acid content is scarce. Therefore, the aim of this study was to evaluate the influence of foliar application of methyl jasmonate on must amino acid content. Results revealed that total amino acid content was not modified by the application of methyl jasmonate. However, the individual content of certain amino acids was increased as consequence of methyl jasmonate foliar application, i.e., histidine, serine, tryptophan, phenylalanine, tyrosine, asparagine, methionine, and lysine. Among them, phenylalanine content was considerably increased; this amino acid is precursor of phenolic and aromatic compounds. In conclusion, foliar application of methyl jasmonate improved must nitrogen composition. This finding suggests that methyl jasmonate treatment might be conducive to obtain wines of higher quality since must amino acid composition could affect the wine volatile composition and the fermentation kinetics.

  12. Effect of methyl jasmonate application to grapevine leaves on grape amino acid content.

    PubMed

    Garde-Cerdán, Teresa; Portu, Javier; López, Rosa; Santamaría, Pilar

    2016-07-15

    Over the last few years, considerable attention has been paid to the application of elicitors to vineyard. However, research about the effect of elicitors on grape amino acid content is scarce. Therefore, the aim of this study was to evaluate the influence of foliar application of methyl jasmonate on must amino acid content. Results revealed that total amino acid content was not modified by the application of methyl jasmonate. However, the individual content of certain amino acids was increased as consequence of methyl jasmonate foliar application, i.e., histidine, serine, tryptophan, phenylalanine, tyrosine, asparagine, methionine, and lysine. Among them, phenylalanine content was considerably increased; this amino acid is precursor of phenolic and aromatic compounds. In conclusion, foliar application of methyl jasmonate improved must nitrogen composition. This finding suggests that methyl jasmonate treatment might be conducive to obtain wines of higher quality since must amino acid composition could affect the wine volatile composition and the fermentation kinetics. PMID:26948648

  13. Fatty Acid and Phytosterol Content of Commercial Saw Palmetto Supplements

    PubMed Central

    Penugonda, Kavitha; Lindshield, Brian L.

    2013-01-01

    Saw palmetto supplements are one of the most commonly consumed supplements by men with prostate cancer and/or benign prostatic hyperplasia (BPH). Some studies have found significant improvements in BPH and lower urinary tract symptoms (LUTS) with saw palmetto supplementation, whereas others found no benefits. The variation in the efficacy in these trials may be a result of differences in the putative active components, fatty acids and phytosterols, of the saw palmetto supplements. To this end, we quantified the major fatty acids (laurate, myristate, palmitate, stearate, oleate, linoleate) and phytosterols (campesterol, stigmasterol, β-sitosterol) in 20 commercially available saw palmetto supplements using GC-FID and GC-MS, respectively. Samples were classified into liquids, powders, dried berries, and tinctures. Liquid saw palmetto supplements contained significantly higher (p < 0.05) concentrations of total fatty acids (908.5 mg/g), individual fatty acids, total phytosterols (2.04 mg/g), and individual phytosterols, than the other supplement categories. Powders contained significantly higher (p < 0.05) concentrations of total fatty acids than tinctures, which contain negligible amounts of fatty acids (46.3 mg/g) and phytosterols (0.10 mg/g). Our findings suggest that liquid saw palmetto supplements may be the best choice for individuals who want to take a saw palmetto supplement with the highest concentrations of both fatty acids and phytosterols. PMID:24067389

  14. Organic acid contents in onion cultivars (Allium cepa L.).

    PubMed

    Rodríguez Galdón, Beatriz; Tascón Rodríguez, Catalina; Rodríguez Rodríguez, Elena; Díaz Romero, Carlos

    2008-08-13

    The following organic acids (glutamic, oxalic, pyruvic, malic, tartaric, citric, and fumaric), pungency, Brix degree, acidity, and pH were determined in onion cultivars (Texas, Guayonje, San Juan de la Rambla, Carrizal Alto, Carrizal Bajo, and Masca) harvested in the same agroclimatic conditions. Glutamic acid was the most abundant organic acid (325 +/- 133 mg/100 g) followed by citric acid (48.5 +/- 24.1 mg/100 g) and malic acid (43.6 +/- 10.4 mg/100 g). There were significant differences between the onion cultivars in the mean concentrations of all of the analyzed parameters. The San Juan de la Rambla and Masca cultivars presented, in general, higher concentrations of the organic acids than the other cultivars. Significant differences in most of the analyzed parameters were observed between the two seed origins for the Masca and San Juan de la Rambla cultivars. The onion samples tended to be classified according to the cultivar and, in the case of San Juan de la Rambla cultivar, according to the precedence of the seeds after applying discriminant analysis. PMID:18616262

  15. Fatty acid and phytosterol content of commercial saw palmetto supplements.

    PubMed

    Penugonda, Kavitha; Lindshield, Brian L

    2013-09-13

    Saw palmetto supplements are one of the most commonly consumed supplements by men with prostate cancer and/or benign prostatic hyperplasia (BPH). Some studies have found significant improvements in BPH and lower urinary tract symptoms (LUTS) with saw palmetto supplementation, whereas others found no benefits. The variation in the efficacy in these trials may be a result of differences in the putative active components, fatty acids and phytosterols, of the saw palmetto supplements. To this end, we quantified the major fatty acids (laurate, myristate, palmitate, stearate, oleate, linoleate) and phytosterols (campesterol, stigmasterol, β-sitosterol) in 20 commercially available saw palmetto supplements using GC-FID and GC-MS, respectively. Samples were classified into liquids, powders, dried berries, and tinctures. Liquid saw palmetto supplements contained significantly higher (p < 0.05) concentrations of total fatty acids (908.5 mg/g), individual fatty acids, total phytosterols (2.04 mg/g), and individual phytosterols, than the other supplement categories. Powders contained significantly higher (p < 0.05) concentrations of total fatty acids than tinctures, which contain negligible amounts of fatty acids (46.3 mg/g) and phytosterols (0.10 mg/g). Our findings suggest that liquid saw palmetto supplements may be the best choice for individuals who want to take a saw palmetto supplement with the highest concentrations of both fatty acids and phytosterols.

  16. Effect of omega-3 fatty acids on the modification of erythrocyte membrane fatty acid content including oleic acid in peritoneal dialysis patients.

    PubMed

    An, W S; Lee, S M; Son, Y K; Kim, S E; Kim, K H; Han, J Y; Bae, H R; Park, Y

    2012-01-01

    Erythrocyte membrane fatty acids (FA), such as oleic acid, are related to acute coronary syndrome. There is no report about the effect of omega-3 FA on oleic acid in peritoneal dialysis (PD) patients. We hypothesized that omega-3 FA can modify erythrocyte membrane FA, including oleic acid, in PD patients. In a double-blind, randomized, placebo-controlled study, 18 patients who were treated with PD for at least 6 months were randomized to treatment for 12 weeks with omega-3 FA or placebo. Erythrocyte membrane FA content was measured by gas chromatography at baseline and after 12 weeks. The erythrocyte membrane content of eicosapentaenoic acid and docosahexaenoic acid was significantly increased and saturated FA and oleic acid were significantly decreased in the omega-3 FA supplementation group after 12 weeks compared to baseline. In conclusion, erythrocyte membrane FA content, including oleic acid, was significantly modified by omega-3 FA supplementation for 12 weeks in PD patients.

  17. [Intake of folic acid in the total daily diet--effect of food preparation on its folic acid content].

    PubMed

    Müller, H

    1995-03-01

    The folic acid content of total daily diet was determined by means of high-performance liquid chromatography (HPLC). The contents of tetrahydrofolic acid (THF), 5-methyl-THF and 5-formyl-THF were differentiated. The mean of the folic acid content of the total daily diet samples determined analytically was 205 +/- 60 micrograms and the mean of the individual ingredients of the samples was 401 +/- 78 micrograms, which implies that about 50% of folic acid is destroyed by common household food preparation methods. If the contents of pteroylglutamic acid (PteGlu) and 10-formyl-PteGlu (which cannot be determined analytically) are added, it can be assumed that the folic acid content with only be reduced by about 40%. THF and 5-methyl-THF proved to be less stable than 5-formyl-THF. The monoglutamate portion of the total folat content was higher in the total diet samples than in the individual foodstuffs as a consequence of the action of the enzyme "deconjugase" which is released when the matrix of food-stuffs is destroyed.

  18. Biosynthesis of Essential Polyunsaturated Fatty Acids in Wheat Triggered by Expression of Artificial Gene.

    PubMed

    Mihálik, Daniel; Klčová, Lenka; Ondreičková, Katarína; Hudcovicová, Martina; Gubišová, Marcela; Klempová, Tatiana; Čertík, Milan; Pauk, János; Kraic, Ján

    2015-12-16

    The artificial gene D6D encoding the enzyme ∆⁶desaturase was designed and synthesized using the sequence of the same gene from the fungus Thamnidium elegans. The original start codon was replaced by the signal sequence derived from the wheat gene for high-molecular-weight glutenin subunit and the codon usage was completely changed for optimal expression in wheat. Synthesized artificial D6D gene was delivered into plants of the spring wheat line CY-45 and the gene itself, as well as transcribed D6D mRNA were confirmed in plants of T₀ and T₁ generations. The desired product of the wheat genetic modification by artificial D6D gene was the γ-linolenic acid. Its presence was confirmed in mature grains of transgenic wheat plants in the amount 0.04%-0.32% (v/v) of the total amount of fatty acids. Both newly synthesized γ-linolenic acid and stearidonic acid have been detected also in leaves, stems, roots, awns, paleas, rachillas, and immature grains of the T₁ generation as well as in immature and mature grains of the T₂ generation. Contents of γ-linolenic acid and stearidonic acid varied in range 0%-1.40% (v/v) and 0%-1.53% (v/v) from the total amount of fatty acids, respectively. This approach has opened the pathway of desaturation of fatty acids and production of essential polyunsaturated fatty acids in wheat.

  19. Biosynthesis of Essential Polyunsaturated Fatty Acids in Wheat Triggered by Expression of Artificial Gene

    PubMed Central

    Mihálik, Daniel; Klčová, Lenka; Ondreičková, Katarína; Hudcovicová, Martina; Gubišová, Marcela; Klempová, Tatiana; Čertík, Milan; Pauk, János; Kraic, Ján

    2015-01-01

    The artificial gene D6D encoding the enzyme ∆6desaturase was designed and synthesized using the sequence of the same gene from the fungus Thamnidium elegans. The original start codon was replaced by the signal sequence derived from the wheat gene for high-molecular-weight glutenin subunit and the codon usage was completely changed for optimal expression in wheat. Synthesized artificial D6D gene was delivered into plants of the spring wheat line CY-45 and the gene itself, as well as transcribed D6D mRNA were confirmed in plants of T0 and T1 generations. The desired product of the wheat genetic modification by artificial D6D gene was the γ-linolenic acid. Its presence was confirmed in mature grains of transgenic wheat plants in the amount 0.04%–0.32% (v/v) of the total amount of fatty acids. Both newly synthesized γ-linolenic acid and stearidonic acid have been detected also in leaves, stems, roots, awns, paleas, rachillas, and immature grains of the T1 generation as well as in immature and mature grains of the T2 generation. Contents of γ-linolenic acid and stearidonic acid varied in range 0%–1.40% (v/v) and 0%–1.53% (v/v) from the total amount of fatty acids, respectively. This approach has opened the pathway of desaturation of fatty acids and production of essential polyunsaturated fatty acids in wheat. PMID:26694368

  20. Antioxidant capacity, phenolic acids and caffeine contents of some commercial coffees available on the Romanian market.

    PubMed

    Trandafir, Ion; Nour, Violeta; Ionica, Mira Elena

    2013-03-01

    In the present study a simple and highly sensitive RP-HPLC method has been established for simultaneous determination of chlorogenic acid, caffeic acid, vanillic acid and caffeine in coffee samples. The method has been applied to eight different coffees available on the Romanian market which were previously analysed concerning the total polyphenols content and antioxidant capacity. Reduction of the DPPH radical was used to determine the antioxidant capacity of the coffee extracts while the total polyphenols content was determined by spectrophotometry (Folin Ciocalteu's method). The total polyphenols content ranged from 1.98 g GAE/100 g to 4.19 g GAE/100 g while the caffeine content ranged from 1.89 g/100 g to 3.05 g/100 g. A large variability was observed in chlorogenic acid content of the investigated coffee samples which ranged between 0.6 and 2.32 g/100 g.

  1. Consumption of Buglossoides arvensis seed oil is safe and increases tissue long-chain n-3 fatty acid content more than flax seed oil - results of a phase I randomised clinical trial.

    PubMed

    Lefort, Natalie; LeBlanc, Rémi; Giroux, Marie-Andrée; Surette, Marc E

    2016-01-01

    Enrichment of tissues with ≥20-carbon n-3 PUFA like EPA is associated with positive cardiovascular outcomes. Stearidonic acid (SDA; 18 : 4n-3) and α-linolenic acid (ALA; 18 : 3n-3) are plant-derived dietary n-3 PUFA; however, direct comparisons of their impact on tissue n-3 PUFA content are lacking. Ahiflower(®) oil extracted from Buglossoides arvensis seeds is the richest known non-genetically modified source of dietary SDA. To investigate the safety and efficacy of dietary Ahiflower oil, a parallel-group, randomised, double-blind, comparator-controlled phase I clinical trial was performed. Diets of healthy subjects (n 40) were supplemented for 28 d with 9·1 g/d of Ahiflower (46 % ALA, 20 % SDA) or flax seed oil (59 % ALA). Blood and urine chemistries, blood lipid profiles, hepatic and renal function tests and haematology were measured as safety parameters. The fatty acid composition of fasting plasma, erythrocytes, polymorphonuclear cells and mononuclear cells were measured at baseline and after 14 and 28 d of supplementation. No clinically significant changes in safety parameters were measured in either group. Tissue ALA and EPA content increased in both groups compared with baseline, but EPA accrual in plasma and in all cell types was greater in the Ahiflower group (time × treatment interactions, P ≤ 0·01). Plasma and mononuclear cell eicosatetraenoic acid (20 : 4n-3) and docosapentaenoic acid (22 : 5n-3) content also increased significantly in the Ahiflower group compared with the flax group. In conclusion, the consumption of Ahiflower oil is safe and is more effective for the enrichment of tissues with 20- and 22-carbon n-3 PUFA than flax seed oil. PMID:26793308

  2. Ultrasonic-Assisted Extraction of Raspberry Seed Oil and Evaluation of Its Physicochemical Properties, Fatty Acid Compositions and Antioxidant Activities.

    PubMed

    Teng, Hui; Chen, Lei; Huang, Qun; Wang, Jinli; Lin, Qiyang; Liu, Mingxin; Lee, Won Young; Song, Hongbo

    2016-01-01

    Ultrasonic-assisted extraction was employed for highly efficient separation of aroma oil from raspberry seeds. A central composite design with two variables and five levels was employed and effects of process variables of sonication time and extraction temperature on oil recovery and quality were investigated. Optimal conditions predicted by response surface methodology were sonication time of 37 min and extraction temperature of 54°C. Specifically, ultrasonic-assisted extraction (UAE) was able to provide a higher content of beneficial unsaturated fatty acids, whereas conventional Soxhlet extraction (SE) resulted in a higher amount of saturated fatty acids. Moreover, raspberry seed oil contained abundant amounts of edible linoleic acid and linolenic acid, which suggest raspberry seeds could be valuable edible sources of natural γ-linolenic acid products. In comparison with SE, UAE exerted higher free radical scavenging capacities. In addition, UAE significantly blocked H2O2-induced intracellular reactive oxygen species (ROS) generation. PMID:27120053

  3. Ultrasonic-Assisted Extraction of Raspberry Seed Oil and Evaluation of Its Physicochemical Properties, Fatty Acid Compositions and Antioxidant Activities

    PubMed Central

    Huang, Qun; Wang, Jinli; Lin, Qiyang; Liu, Mingxin; Lee, Won Young; Song, Hongbo

    2016-01-01

    Ultrasonic-assisted extraction was employed for highly efficient separation of aroma oil from raspberry seeds. A central composite design with two variables and five levels was employed and effects of process variables of sonication time and extraction temperature on oil recovery and quality were investigated. Optimal conditions predicted by response surface methodology were sonication time of 37 min and extraction temperature of 54°C. Specifically, ultrasonic-assisted extraction (UAE) was able to provide a higher content of beneficial unsaturated fatty acids, whereas conventional Soxhlet extraction (SE) resulted in a higher amount of saturated fatty acids. Moreover, raspberry seed oil contained abundant amounts of edible linoleic acid and linolenic acid, which suggest raspberry seeds could be valuable edible sources of natural γ-linolenic acid products. In comparison with SE, UAE exerted higher free radical scavenging capacities. In addition, UAE significantly blocked H2O2-induced intracellular reactive oxygen species (ROS) generation. PMID:27120053

  4. Protein content and amino acids profile of pseudocereals.

    PubMed

    Mota, Carla; Santos, Mariana; Mauro, Raul; Samman, Norma; Matos, Ana Sofia; Torres, Duarte; Castanheira, Isabel

    2016-02-15

    Quinoa (Chenopodium quinoa), amaranth (Amaranthus caudatus) and buckwheat (Fagopyrum esculentum) represent the main protein source in several diets, although these pseudocereals are not currently present in the FCDB nutrient profile information. The aim of this work is to characterise the AA profile of these pseudocereals and compare them with rice. Total protein content revealed to vary from 16.3g/100g (quinoa Salta) to 13.1g/100g (buckwheat) and lower values were found in rice samples (6.7g/100g). For pseudocereals the most abundant essential AA was leucine. Quinoa-Salta evidences the highest leucine content (1013mg/100g) and the minor methionine content (199mg/100g). Buckwheat was the cereal with the highest phenylalanine content (862mg/100g). Rice (Oryza sativa) presents the lowest content for all AA. Results showed pseudocereals as the best source of AA. EuroFIR guidelines where strictly followed and proved to be a crucial tool to guarantee data interchangeability and comparability. PMID:26433287

  5. Content of essential polyunsaturated fatty acids in three canned fish species.

    PubMed

    Gladyshev, Michail I; Sushchik, Nadezhda N; Makhutova, Olesia N; Kalachova, Galina S

    2009-05-01

    Three canned fish species--Pacific saury (Cololabis saira), Pacific herring (Clupea harengus) and Baltic sprat (Sprattus sprattus)--most common and popular in Russia, were analyzed for fatty acids. Special attention was paid to long-chain essential polyunsaturated fatty acids: eicosapentaenoic acid (20:5omega3) and docosahexaenoic acid (22:6omega3). Sums of eicosapentaenoic acid and docosahexaenoic acid in saury, herring and sprat were, on average, 2.42, 1.80 and 1.43 g/100 g product, respectively. Contents of these essential acids in all the canned fish species were found to be very high compared with many other fish reported in the available literature. All the canned fish appeared to be highly valuable products for human nutrition concerning the content of eicosapentaenoic and docosahexaenoic acids. PMID:18608541

  6. Perflourocarboxylic Acid Content in 116 Articles of Commerce

    EPA Science Inventory

    Several recent studies have found elevated levels of perfluorocarboxylic acids (PFCAs) in house dust, suggesting strongly the presence of indoor sources of these compounds. The main goal of this study was to identify and rank potentially important indoor sources by determining th...

  7. Evolution in Caffeoylquinic Acid Content and Histolocalization During Coffea canephora Leaf Development

    PubMed Central

    MONDOLOT, LAURENCE; LA FISCA, PHILIPPE; BUATOIS, BRUNO; TALANSIER, EMELINE; DE KOCHKO, ALEXANDRE; CAMPA, CLAUDINE

    2006-01-01

    • Background and Aims Caffeoylquinic acids are cinnamate conjugates derived from the phenylpropanoid pathway. They are generally involved in plant responses to biotic and abiotic stress and one of them, chlorogenic acid (5-O-caffeoylquinic acid, 5-CQA), is an intermediate in the lignin biosynthesis pathway. Caffeoylquinic acids, and particularly 5-CQA, are accumulated in coffee beans, where they can form vacuolar complexes with caffeine. Coffea canephora beans are known to have high caffeoylquinic acid content, but little is known about the content and diversity of these compounds in other plant parts. To gain new insights into the caffeoylquinic acid metabolism of C. canephora, caffeoylquinic acid content and in situ localization were assessed in leaves at different growth stages. • Methods HPLC analyses of caffeoylquinic acid content of leaves was conducted in conjunction with detailed histochemical and microspectrofluorometrical analysis. • Key Results and Conclusions HPLC analyses revealed that caffeoylquinic acid content was 10-fold lower in adult than in juvenile leaves. The most abundant cinnamate conjugate was 5-CQA, but dicaffeoylquinic acids (particularly in juvenile leaves) and feruloylquinic acids were also present. Using specific reagents, histochemical and microspectrofluorometrical analysis showed that caffeoylquinic acids (mono- and di-esters) were closely associated with chloroplasts in very young leaves. During leaf ageing, they were found to first accumulate intensively in specific chlorenchymatous bundle sheath cells and then in phloem sclerenchyma cells. The association with chloroplasts suggests that caffeoylquinic acids have a protective role against light damage. In older tissues, their presence in the leaf vascular system indicates that they are transported via phloem and confirms their involvement in lignification processes. In accordance with the hypothesis of a complex formation with caffeine, similar tissue distribution was

  8. The effects of probiotics and prebiotics on the fatty acid profile and conjugated linoleic acid content of fermented cow milk.

    PubMed

    Manzo, Nadia; Pizzolongo, Fabiana; Montefusco, Immacolata; Aponte, Maria; Blaiotta, Giuseppe; Romano, Raffaele

    2015-05-01

    The ability of probiotic bacteria (Lactobacillus acidophilus La5 and Bifidobacterium animalis Bb12), to produce conjugated linoleic acid (CLA) in association with Streptococcus thermophilus and Lb. bulgaricus during milk fermentation has been evaluated in this study. Pasteurized cow milk and infant formula were used. Infant formula was selected for its high linoleic acid content, for being a source of CLA and for its prebiotic compounds, e.g. galacto-oligosaccharides. The microorganisms were not able to increase the CLA content of the fermented products under the given experimental conditions. No statistically significant differences (p > 0.05) occurred between the CLA content in milk and the fermented samples. The CLA contents of 10 commercial fermented milk products were determined. The highest CLA content was observed in fermented milk containing only Str. thermophilus and Lb. bulgaricus. PMID:25657101

  9. Urea, sugar, nonesterified fatty acid and cholesterol content of the blood in prolonged weightlessness

    NASA Technical Reports Server (NTRS)

    Balakhovskiy, I. S.; Orlova, T. A.

    1975-01-01

    Biochemical blood composition studies on astronauts during weightlessness flight simulation tests and during actual space flights showed some disturbances of metabolic processes. Increases in blood sugar, fatty acid and cholesterol, and urea content are noted.

  10. Transcript and metabolite alterations increase ganoderic acid content in Ganoderma lucidum using acetic acid as an inducer.

    PubMed

    Ren, Ang; Li, Xiong-Biao; Miao, Zhi-Gang; Shi, Liang; Jaing, Ai-Liang; Zhao, Ming-Wen

    2014-12-01

    Acetic acid at 5-8 mM increased ganoderic acid (GA) accumulation in Ganoderma lucidum. After optimization by the response surface methodology, the GA content reached 5.5/100 mg dry weight, an increase of 105% compared with the control. The intermediate metabolites of GA biosynthesis, lanosterol and squalene also increased to 47 and 15.8 μg/g dry weight, respectively, in response to acetic acid. Acetic acid significantly induced transcription levels of sqs, lano, hmgs and cyp51 in the GA biosynthesis pathway. An acetic acid-unregulated acetyl coenzyme A synthase (acs) gene was selected from ten candidate homologous acs genes. The results indicate that acetic acid alters the expression of genes related to acetic acid assimilation and increases GA biosynthesis and the metabolic levels of lanosterol, squalene and GA-a, thereby resulting in GA accumulation.

  11. Determination of the Fatty Acid content of pumpkin seed, pygeum, and saw palmetto.

    PubMed

    Ganzera, M; Croom, E M; Khan, I A

    1999-01-01

    Fatty acids are major components of many plants, foods and medicines, including pumpkin seeds (Cucubita pepo), pygeum bark (Prunus africana) and saw palmetto (Serenoa repens). With the gas chromatography methods reported here, free fatty acids of these species can be quantified as their trimethylsilyl derivatives. Because of their different fatty acid contents and composition, the gas chromatography method can distinguish which of three plant species was extracted, and, in the case of S. repens, the method of extraction. Although phytosterols can be separated by this method, their content is too low to be assigned directly. The total fatty acid content can be determined through formation of the methyl esters. This is helpful for estimation of the kind and percentage of fatty acids that are present as triglyceride esters in the plant material and for standardization of the products.

  12. Effects of high fat diet on fecal contents of bile acids in rats.

    PubMed

    Sato, Y; Furihata, C; Matsushima, T

    1987-11-01

    The effects of dietary oils and fats used in Japan on the fecal contents of bile acids in rats were studied. F344/Du Crj female rats (8 weeks old) were fed on diet containing 20% corn oil, rape seed oil, sesame oil, soybean oil, lard, or tallow as high oil or fat diets or on 0.2% linoleic acid diet as a low fatty acid diet for 4 weeks, and then their feces were collected. Bile acids in the feces were partially purified and analyzed by high-performance liquid chromatography. Analyses showed that lard or tallow in the diet resulted in significant increases in the contents of bile acids in the feces, whereas sesame oil in the diet resulted in significant decreases in their contents. PMID:3121554

  13. Effect of dietary canola oil on long-chain omega-3 fatty acid content in broiler hearts.

    PubMed

    Gregory, M K; Geier, M S; Gibson, R A; James, M J

    2014-04-01

    Young and healthy broilers are susceptible to sudden death syndrome (SDS), which is caused by cardiac arrhythmia. The long-chain 'fish-type' omega-3 fatty acids, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), have cardioprotective anti-arrhythmic effects in animals and humans. Raising the cardiac level of EPA and DHA in chickens may protect against SDS. However, fish oil as a source of EPA and DHA in poultry feed is costly and introduces undesirable properties to the meat. Whilst omega-3 vegetable oils, such as canola oil, are cheaper and do not have a strong odour, they contain the short-chain fatty acid α-linolenic acid, which requires conversion to EPA and DHA after ingestion. We investigated the capacity for dietary canola oil to elevate cardiac EPA and DHA in broilers. Broilers were fed with diets containing either 3% canola oil or tallow, which is currently used in some commercial feeds. Upon completion of a 42 day feeding trial, canola oil significantly increased EPA and EPA + DHA in heart phospholipids relative to tallow. The elevation in cardiac EPA and EPA + DHA may provide anti-arrhythmic effects and protect against SDS in poultry. This proof-of-concept biochemical study suggests that a larger study to assess the clinical outcome of SDS may be warranted.

  14. Rosmarinic acid content in antidiabetic aqueous extract of Ocimum canum Sims grown in Ghana

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rosmarinic acid (RA) is an important polyphenol that is found in a variety of herbs including Ocimum canum sims (locally called eme or akokobesa in Ghana). Aqueous extracts from the leaves of O.canum are used as an antidiabetic herbal medicine in Ghana. Interestingly, rosmarinic acid content and p...

  15. Genotype x environment interactions in eggplant for fruit phenolic acid content

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Eggplant fruit are a rich source of phenolic acids that contribute to fruit nutritive value and influence culinary quality. We evaluated the influence of production environment on eggplant fruit phenolic acid content. Ten Solanum melongena accessions including five F1 hybrid cultivars, three open-...

  16. The biohydrogenation of α-linoleic acid and oleic acid by rumen micro-organisms

    PubMed Central

    Wilde, P. F.; Dawson, R. M. C.

    1966-01-01

    1. α-[U-14C]Linolenic acid was incubated with the rumen contents of sheep and the metabolic products were characterized by thin-layer chromatography, gas–liquid chromatography and absorption spectroscopy in the ultraviolet and infrared. 2. A tentative scheme for the biohydrogenation route to stearic acid is presented. The main pathway is through diconjugated cis–cis–cis-octadecatrienoic acid, non-conjugated trans–cis (cis–trans)-octadecadienoic acid and trans-octadecenoic acid, but other pathways are apparent. 3. Washed rumen micro-organisms possessed only a limited capacity to hydrogenate α-linolenic acid and oleic acid but the rate was greatly stimulated by a factor(s) present in the supernatant rumen liquor. 4. Pure cultures of Clostridium perfringens, Streptococcus faecalis, Escherichia coli and a coliform organism isolated from sheep faeces possessed negligible ability to hydrogenate unsaturated fatty acids compared with a mixed population of rumen micro-organisms. Butyrivibrio fibrisolvens slowly converted linoleic acid into octadecenoic acid. ImagesFig. 1.Fig. 2.Fig. 3. PMID:4287407

  17. Effect of repeated harvesting on the content of caffeic acid and seven species of caffeoylquinic acids in sweet potato leaves.

    PubMed

    Sasaki, Kazunori; Oki, Tomoyuki; Kai, Yumi; Nishiba, Yoichi; Okuno, Shigenori

    2015-01-01

    The purpose of this study was to investigate the effect of repeated harvesting on the content of caffeic acid (CA) and seven species of caffeoylquinic acids (CQAs) in sweet potato leaves using a newly developed high-performance liquid chromatography method. Six cultivars and two breeding lines were used in this study. Leaves were collected at monthly intervals from 1st harvest (May) to 4th harvest (August) in 2011 and 2012. ANOVA analysis revealed that the contents of CQAs were significantly different among all cultivars and breeding lines, but no significant differences were found for CA. No annual variation was confirmed in CA and CQAs. Repeated harvest of sweet potato leaves affected the content of only 4-CQA and 5-CQA. Post-hoc comparisons using Tukey's method indicated that the contents of 4-CQA and 5-CQA in sweet potato leaves harvested at first time were significantly higher compared to those at the other harvest times.

  18. Fatty Acid Composition and Conjugated Linoleic Acid Content in Different Carcass parts of Dağlıç Lambs

    PubMed Central

    Karabacak, Ali; Boztepe, Saim

    2014-01-01

    This study was conducted to compare fatty acid composition and content of conjugated linoleic acid (CLA) in different regions of sheep carcasses. Lambs of the Dağlıç breed were used for this purpose. Subsequent to a 68-day period of intensive fattening, fatty acids were examined in samples taken from the legs, shoulders, breasts, and ribs of lamb carcasses. According to the analysis, in leg, shoulder, breast, and rib, respectively, total saturated fatty acids (SFA) were found to be 40.38, 42.69, 42.56, and 40.27%, unsaturated fatty acids (MUFA) were found to be 40.38, 44.17, 46.17, and 49.50%, polyunsaturated fatty acids (PUFA) were found to be 4.79, 4.29, 3.80, and 3.72%, and CLAs were found to be 1.49, 1.69, 1.53, and 1.59%. PMID:24523647

  19. Nutrient content of carob pod (Ceratonia siliqua L.) flour prepared commercially and domestically.

    PubMed

    Ayaz, Faik A; Torun, Hülya; Glew, Robert H; Bak, Zehra D; Chuang, Luther T; Presley, Jack M; Andrews, Ronnie

    2009-12-01

    Although the fruit of the carob tree (Ceratonia siliqua L. Fabaceae) is nutritious and widely available in Turkey, especially in West and South Anatolia, much remains to be learned about its nutrient composition. The main goal of our study was to determine if there are differences in the content of certain nutrients in commercially-prepared carob flour (CPCP) and domestic or home-prepared carob powder (HPCP). Sucrose was the main sugar in CPCP and HPCP. Total protein was 40% lower in CPCP than HPCP due mainly to decreases in the content of several essential amino acids. However, except for lysine in CPCP, HPCP and CPCP compared favourably to a WHO protein standard. There were large differences in terms of their content of the two essential fatty acids, linoleic and alpha-linolenic acid, and the linoleic acid/alpha-linolenic acid ratio was 3.6 for CPCP, and 6.1 for HPCP. Manganese and iron were 2.5-fold higher in HPCP than CPCP. This study demonstrates that carob flour prepared in either the household or industrially is a good source of many, but not all essential nutrients, and that commercial processing of carob fruit into flour seems to affect its content of several important nutrients.

  20. [Effects of abscisic acid on chemical components content and color of Glycyrrhiza uralensis].

    PubMed

    Xiang, Yu; Liu, Chun-sheng; Liu, Yong; Song, Xiao-na; Gu, Xuan

    2015-05-01

    An experiment was conducted using cultivated Glycyrrhiza uralensis in age of one year to study the effects of abscisic acid (ABA) on chemical components content and color of G. uralensis. By using different concentrations of ABA spraying on leaves, the change of the chemical component content was analyzed within 45 d after ABA stimulation, and the effects on quality were studied combined with colorimetric analysis data. It turned out that in some sense the content of glycyrrhizic acid and liquiritin had increased within 45 d, especially for liquiritin. After high concentrations of ABA (3.96 mg · L(-1)) stimulating, the content of glycyrrhizic acid rose 52% while liquiritin up 392% within 30 d. Then they both showed a decline in the content of glycyrrhizic acid and liquiritin on 45 d. Color index values of a* and b* were all significantly higher than that of the control group within 45 d, which meant the color of powders turned toward red and yellow. The conclusion was that ABA (3.96 mg · L(-1)) stimulating could not only improve the quality in the traditional sense through the color of G. uralensis, but also in the modern sense by improving the content of glycyrrhizic acid and liquiritin. PMID:26323130

  1. [Effects of abscisic acid on chemical components content and color of Glycyrrhiza uralensis].

    PubMed

    Xiang, Yu; Liu, Chun-sheng; Liu, Yong; Song, Xiao-na; Gu, Xuan

    2015-05-01

    An experiment was conducted using cultivated Glycyrrhiza uralensis in age of one year to study the effects of abscisic acid (ABA) on chemical components content and color of G. uralensis. By using different concentrations of ABA spraying on leaves, the change of the chemical component content was analyzed within 45 d after ABA stimulation, and the effects on quality were studied combined with colorimetric analysis data. It turned out that in some sense the content of glycyrrhizic acid and liquiritin had increased within 45 d, especially for liquiritin. After high concentrations of ABA (3.96 mg · L(-1)) stimulating, the content of glycyrrhizic acid rose 52% while liquiritin up 392% within 30 d. Then they both showed a decline in the content of glycyrrhizic acid and liquiritin on 45 d. Color index values of a* and b* were all significantly higher than that of the control group within 45 d, which meant the color of powders turned toward red and yellow. The conclusion was that ABA (3.96 mg · L(-1)) stimulating could not only improve the quality in the traditional sense through the color of G. uralensis, but also in the modern sense by improving the content of glycyrrhizic acid and liquiritin.

  2. Oil and fatty acid contents in seed of Citrullus lanatus Schrad.

    PubMed

    Jarret, Robert L; Levy, Irvin J

    2012-05-23

    Intact seed of 475 genebank accessions of Citrullus ( C. lanatus var. lanatus and C. lanatus var. citroides) were analyzed for percent oil content using TD-NMR. Extracts from whole seed of 96 accessions of C. lanatus (30 var. citroides, 33 var. lanatus, and 33 egusi), C. colocynthis (n = 3), C. ecirrhosus (n = 1), C. rehmii (n = 1), and Benincasa fistulosa (n = 3) were also analyzed for their fatty acids content. Among the materials analyzed, seed oil content varied from 14.8 to 43.5%. Mean seed oil content in egusi types of C. lanatus was significantly higher (mean = 35.6%) than that of either var. lanatus (mean = 23.2%) or var. citroides (mean = 22.6%). Egusi types of C. lanatus had a significantly lower hull/kernel ratio when compared to other C. lanatus var. lanatus or C. lanatus var. citroides. The principal fatty acid in all C. lanatus materials examined was linoleic acid (43.6-73%). High levels of linoleic acid were also present in the materials of C. colocynthis (71%), C. ecirrhosus (62.7%), C. rehmii (75.8%), and B. fistulosa (73.2%), which were included for comparative purposes. Most all samples contained traces (<0.5%) of arachidonic acid. The data presented provide novel information on the range in oil content and variability in the concentrations of individual fatty acids present in a diverse array of C. lanatus, and its related species, germplasm.

  3. Correlation between Chlorophyll and Chlorogenic Acid Content in Tobacco Leaves 1

    PubMed Central

    Sheen, S. J.

    1973-01-01

    A positive correlation (r = 0.75, P < 0.01) was obtained between chlorophyll and chlorogenic acid content in the seedling leaves of burley and dark tobaccos. The dark tobaccos contained significantly higher concentrations of both constituents than the burleys. Such a correlation also occurred in a cytoplasmic mutant of chlorophyll-variegated tobacco when the green and yellow laminae were compared. In addition, the activity of phenylalanine ammonia-lyase and polyphenol-oxidase was higher in the green lamina than in the yellow tissue, which coincided with quantitative distribution of chlorogenic acid. Chlorophyll deficiency induced by streptomycin in tobacco seedlings resulted in a progressive decrease in chlorogenic acid content. However, an interruption of streptomycin treatment provoked accumulation of the two compounds. Dark-grown seedlings showed an increase in the content of chlorophyll and chlorogenic acid upon illumination. Incorporation of l-phenylalanine-U-14C into chlorogenic acid during leaf greening was drastically reduced owing to the presence of phenylpyruvate; the latter compound is a possible by-product of chlorophyll biosynthesis. This phenomenon was also evident with light-grown leaves. Results suggest that in addition to phenylalanine ammonia-lyase as a key enzyme regulating chlorogenic acid biosynthesis, an alternative pathway involving the conversion of phenylpyruvate to cinnamate may be functional in tobacco leaves. This pathway may bear importance as to higher chlorogenic acid content in dark tobaccos than in burleys. PMID:16658575

  4. Regulation of tissue LC-PUFA contents, Δ6 fatty acyl desaturase (FADS2) gene expression and the methylation of the putative FADS2 gene promoter by different dietary fatty acid profiles in Japanese seabass (Lateolabrax japonicus).

    PubMed

    Xu, Houguo; Dong, Xiaojing; Ai, Qinghui; Mai, Kangsen; Xu, Wei; Zhang, Yanjiao; Zuo, Rantao

    2014-01-01

    The present study was conducted to evaluate the influences of different dietary fatty acid profiles on the tissue content and biosynthesis of LC-PUFA in a euryhaline species Japanese seabass reared in seawater. Six diets were prepared, each with a characteristic fatty acid: Diet PA: Palmitic acid (C16:0); Diet SA: Stearic acid (C18:0); Diet OA: Oleic acid (C18:1n-9); Diet LNA: α-linolenic acid (C18:3n-3); Diet N-3 LC-PUFA: n-3 LC-PUFA (DHA+EPA); Diet FO: the fish oil control. A 10-week feeding trial was conducted using juvenile fish (29.53 ± 0.86 g). The results showed that Japanese seabass had limited capacity to synthesize LC-PUFA and fish fed PA, SA, OA and LNA showed significantly lower tissue n-3 LC-PUFA contents compared to fish fed N-3 LC-PUFA and FO. The putative gene promoter and full-length cDNA of FADS2 was cloned and characterized. The protein sequence was confirmed to be homologous to FADS2s of marine teleosts and possessed all the characteristic features of microsomal fatty acid desaturases. The FADS2 transcript levels in liver of fish fed N-3 LC-PUFA and FO were significantly lower than those in fish fed other diets except LNA while Diet PA significantly up-regulated the FADS2 gene expression compared to Diet LNA, N-3 LC-PUFA and FO. Inversely, fish fed N-3 LC-PUFA and FO showed significantly higher promoter methylation rates of FADS2 gene compared to fish fed the LC-PUFA deficient diets. These results suggested that Japanese seabass had low LC-PUFA synthesis capacity and LC-PUFA deficient diets caused significantly reduced tissue n-3 LC-PUFA contents. The liver gene expression of FADS2 was up-regulated in groups enriched in C16:0, C18:0 and C18:1n-9 respectively but not in the group enriched in C18:3n-3 compared to groups with high n-3 LC-PUFA contents. The FADS2 gene expression regulated by dietary fatty acids was significantly negatively correlated with the methylation rate of putative FADS2 gene promoter.

  5. Regulation of Tissue LC-PUFA Contents, Δ6 Fatty Acyl Desaturase (FADS2) Gene Expression and the Methylation of the Putative FADS2 Gene Promoter by Different Dietary Fatty Acid Profiles in Japanese Seabass (Lateolabrax japonicus)

    PubMed Central

    Ai, Qinghui; Mai, Kangsen; Xu, Wei; Zhang, Yanjiao; Zuo, Rantao

    2014-01-01

    The present study was conducted to evaluate the influences of different dietary fatty acid profiles on the tissue content and biosynthesis of LC-PUFA in a euryhaline species Japanese seabass reared in seawater. Six diets were prepared, each with a characteristic fatty acid: Diet PA: Palmitic acid (C16:0); Diet SA: Stearic acid (C18:0); Diet OA: Oleic acid (C18:1n-9); Diet LNA: α-linolenic acid (C18:3n-3); Diet N-3 LC-PUFA: n-3 LC-PUFA (DHA+EPA); Diet FO: the fish oil control. A 10-week feeding trial was conducted using juvenile fish (29.53±0.86 g). The results showed that Japanese seabass had limited capacity to synthesize LC-PUFA and fish fed PA, SA, OA and LNA showed significantly lower tissue n-3 LC-PUFA contents compared to fish fed N-3 LC-PUFA and FO. The putative gene promoter and full-length cDNA of FADS2 was cloned and characterized. The protein sequence was confirmed to be homologous to FADS2s of marine teleosts and possessed all the characteristic features of microsomal fatty acid desaturases. The FADS2 transcript levels in liver of fish fed N-3 LC-PUFA and FO were significantly lower than those in fish fed other diets except LNA while Diet PA significantly up-regulated the FADS2 gene expression compared to Diet LNA, N-3 LC-PUFA and FO. Inversely, fish fed N-3 LC-PUFA and FO showed significantly higher promoter methylation rates of FADS2 gene compared to fish fed the LC-PUFA deficient diets. These results suggested that Japanese seabass had low LC-PUFA synthesis capacity and LC-PUFA deficient diets caused significantly reduced tissue n-3 LC-PUFA contents. The liver gene expression of FADS2 was up-regulated in groups enriched in C16:0, C18:0 and C18:1n-9 respectively but not in the group enriched in C18:3n-3 compared to groups with high n-3 LC-PUFA contents. The FADS2 gene expression regulated by dietary fatty acids was significantly negatively correlated with the methylation rate of putative FADS2 gene promoter. PMID:24498178

  6. Evaluation of Acid Digestion Procedures to Estimate Mineral Contents in Materials from Animal Trials

    PubMed Central

    Palma, M. N. N.; Rocha, G. C.; Valadares Filho, S. C.; Detmann, E.

    2015-01-01

    Rigorously standardized laboratory protocols are essential for meaningful comparison of data from multiple sites. Considering that interactions of minerals with organic matrices may vary depending on the material nature, there could be peculiar demands for each material with respect to digestion procedure. Acid digestion procedures were evaluated using different nitric to perchloric acid ratios and one- or two-step digestion to estimate the concentration of calcium, phosphorus, magnesium, and zinc in samples of carcass, bone, excreta, concentrate, forage, and feces. Six procedures were evaluated: ratio of nitric to perchloric acid at 2:1, 3:1, and 4:1 v/v in a one- or two-step digestion. There were no direct or interaction effects (p>0.01) of nitric to perchloric acid ratio or number of digestion steps on magnesium and zinc contents. Calcium and phosphorus contents presented a significant (p<0.01) interaction between sample type and nitric to perchloric acid ratio. Digestion solution of 2:1 v/v provided greater (p<0.01) recovery of calcium and phosphorus from bone samples than 3:1 and 4:1 v/v ratio. Different acid ratios did not affect (p>0.01) calcium or phosphorus contents in carcass, excreta, concentrate, forage, and feces. Number of digestion steps did not affect mineral content (p>0.01). Estimated concentration of calcium, phosphorus, magnesium, and zinc in carcass, excreta, concentrated, forage, and feces samples can be performed using digestion solution of nitric to perchloric acid 4:1 v/v in a one-step digestion. However, samples of bones demand a stronger digestion solution to analyze the mineral contents, which is represented by an increased proportion of perchloric acid, being recommended a digestion solution of nitric to perchloric acid 2:1 v/v in a one-step digestion. PMID:26333671

  7. Linolenate 9R-dioxygenase and allene oxide synthase activities of Lasiodiplodia theobromae.

    PubMed

    Jernerén, Fredrik; Eng, Felipe; Hamberg, Mats; Oliw, Ernst H

    2012-01-01

    Jasmonic acid (JA) is synthesized from linolenic acid (18:3n-3) by sequential action of 13-lipoxygenase, allene oxide synthase (AOS), and allene oxide cyclase. The fungus Lasiodiplodia theobromae can produce large amounts of JA and was recently reported to form the JA precursor 12-oxophytodienoic acid. The objective of our study was to characterize the fatty acid dioxygenase activities of this fungus. Two strains of L. theobromae with low JA secretion (~0.2 mg/L medium) oxygenated 18:3n-3 to 5,8-dihydroxy-9Z,12Z,15Z-octadecatrienoic acid as well as 9R-hydroperoxy-10E,12Z,15Z-octadecatrienoic acid, which was metabolized by an AOS activity into 9-hydroxy-10-oxo-12Z,15Z-octadecadienoic acid. Analogous conversions were observed with linoleic acid (18:2n-6). Studies using [11S-(2)H]18:2n-6 revealed that the putative 9R-dioxygenase catalyzed stereospecific removal of the 11R hydrogen followed by suprafacial attack of dioxygen at C-9. Mycelia from these strains of L. theobromae contained 18:2n-6 as the major polyunsaturated acid but lacked 18:3n-3. A third strain with a high secretion of JA (~200 mg/L) contained 18:3n-3 as a major fatty acid and produced 5,8-dihydroxy-9Z,12Z,15Z-octadecatrienoic acid from added 18:3n-3. This strain also lacked the JA biosynthetic enzymes present in higher plants. PMID:22048860

  8. Phytosterol content and fatty acid pattern of ten different nut types.

    PubMed

    Kornsteiner-Krenn, Margit; Wagner, Karl-Heinz; Elmadfa, Ibrahim

    2013-01-01

    Ten different nut kinds (almonds, Brazil nuts, cashews, hazelnuts, macadamias, peanuts, pecans, pine nuts, pistachios, and walnuts) were evaluated for their total oil and phytosterol content as well as their fatty acid composition. The total oil content was the predominant component; mean values oscillated between 45.2 % (cashews) and 74.7 % (macadamias). Mean total phytosterol content ranged from 71.7 mg (Brazil nuts) to 271.9 mg (pistachios) per 100 g oil. ß-sitosterol was the major sterol (mean >71.7 mg/100 g oil) followed by minor contents of campesterol, ergosterol, and stigmasterol. Almonds, cashews, hazelnuts, macadamias, and pistachios were high in monounsaturated fatty acids (MUFA; > 55 %). MUFA- and polyunsaturated fatty acid (PUFA)-rich nuts were peanuts and pecans, whereas Brazil nuts, pine nuts, and walnuts had the highest PUFA content (> 50 %); the high unsaturated/saturated fatty acid ratio ranged from 4.5 to 11.8. However, the fatty acid pattern of every nut is unique.

  9. Phytosterol content and fatty acid pattern of ten different nut types.

    PubMed

    Kornsteiner-Krenn, Margit; Wagner, Karl-Heinz; Elmadfa, Ibrahim

    2013-01-01

    Ten different nut kinds (almonds, Brazil nuts, cashews, hazelnuts, macadamias, peanuts, pecans, pine nuts, pistachios, and walnuts) were evaluated for their total oil and phytosterol content as well as their fatty acid composition. The total oil content was the predominant component; mean values oscillated between 45.2 % (cashews) and 74.7 % (macadamias). Mean total phytosterol content ranged from 71.7 mg (Brazil nuts) to 271.9 mg (pistachios) per 100 g oil. ß-sitosterol was the major sterol (mean >71.7 mg/100 g oil) followed by minor contents of campesterol, ergosterol, and stigmasterol. Almonds, cashews, hazelnuts, macadamias, and pistachios were high in monounsaturated fatty acids (MUFA; > 55 %). MUFA- and polyunsaturated fatty acid (PUFA)-rich nuts were peanuts and pecans, whereas Brazil nuts, pine nuts, and walnuts had the highest PUFA content (> 50 %); the high unsaturated/saturated fatty acid ratio ranged from 4.5 to 11.8. However, the fatty acid pattern of every nut is unique. PMID:25305221

  10. Fatty acid mobilization and comparison to milk fatty acid content in northern elephant seals.

    PubMed

    Fowler, Melinda A; Debier, Cathy; Mignolet, Eric; Linard, Clementine; Crocker, Daniel E; Costa, Daniel P

    2014-01-01

    A fundamental feature of the life history of true seals, bears and baleen whales is lactation while fasting. This study examined the mobilization of fatty acids from blubber and their subsequent partitioning into maternal metabolism and milk production in northern elephant seals (Mirounga angustirostris). The fatty acid composition of blubber and milk was measured in both early and late lactation. Proportions of fatty acids in milk and blubber were found to display a high degree of similarity both early and late in lactation. Seals mobilized an enormous amount of lipid (~66 kg in 17 days), but thermoregulatory fatty acids, those that remain fluid at low temperatures, were relatively conserved in the outer blubber layer. Despite the stratification, the pattern of mobilization of specific fatty acids conforms to biochemical predictions. Long chain (>20C) monounsaturated fatty acids (MUFAs) were the least mobilized from blubber and the only class of fatty acids that showed a proportional increase in milk in late lactation. Polyunsaturated fatty acids (PUFAs) and saturated fatty acids (SFAs) were more mobilized from the blubber, but neither proportion increased in milk at late lactation. These data suggest that of the long chain MUFA mobilized, the majority is directed to milk synthesis. The mother may preferentially use PUFA and SFA for her own metabolism, decreasing the availability for deposition into milk. The potential impacts of milk fatty acid delivery on pup diving development and thermoregulation are exciting avenues for exploration.

  11. Fatty acid mobilization and comparison to milk fatty acid content in northern elephant seals.

    PubMed

    Fowler, Melinda A; Debier, Cathy; Mignolet, Eric; Linard, Clementine; Crocker, Daniel E; Costa, Daniel P

    2014-01-01

    A fundamental feature of the life history of true seals, bears and baleen whales is lactation while fasting. This study examined the mobilization of fatty acids from blubber and their subsequent partitioning into maternal metabolism and milk production in northern elephant seals (Mirounga angustirostris). The fatty acid composition of blubber and milk was measured in both early and late lactation. Proportions of fatty acids in milk and blubber were found to display a high degree of similarity both early and late in lactation. Seals mobilized an enormous amount of lipid (~66 kg in 17 days), but thermoregulatory fatty acids, those that remain fluid at low temperatures, were relatively conserved in the outer blubber layer. Despite the stratification, the pattern of mobilization of specific fatty acids conforms to biochemical predictions. Long chain (>20C) monounsaturated fatty acids (MUFAs) were the least mobilized from blubber and the only class of fatty acids that showed a proportional increase in milk in late lactation. Polyunsaturated fatty acids (PUFAs) and saturated fatty acids (SFAs) were more mobilized from the blubber, but neither proportion increased in milk at late lactation. These data suggest that of the long chain MUFA mobilized, the majority is directed to milk synthesis. The mother may preferentially use PUFA and SFA for her own metabolism, decreasing the availability for deposition into milk. The potential impacts of milk fatty acid delivery on pup diving development and thermoregulation are exciting avenues for exploration. PMID:24126964

  12. An 11-bp Insertion in Zea mays fatb Reduces the Palmitic Acid Content of Fatty Acids in Maize Grain

    PubMed Central

    Li, Qing; Yang, Xiaohong; Zheng, Debo; Warburton, Marilyn; Chai, Yuchao; Zhang, Pan; Guo, Yuqiu; Yan, Jianbing; Li, Jiansheng

    2011-01-01

    The ratio of saturated to unsaturated fatty acids in maize kernels strongly impacts human and livestock health, but is a complex trait that is difficult to select based on phenotype. Map-based cloning of quantitative trait loci (QTL) is a powerful but time-consuming method for the dissection of complex traits. Here, we combine linkage and association analyses to fine map QTL-Pal9, a QTL influencing levels of palmitic acid, an important class of saturated fatty acid. QTL-Pal9 was mapped to a 90-kb region, in which we identified a candidate gene, Zea mays fatb (Zmfatb), which encodes acyl-ACP thioesterase. An 11-bp insertion in the last exon of Zmfatb decreases palmitic acid content and concentration, leading to an optimization of the ratio of saturated to unsaturated fatty acids while having no effect on total oil content. We used three-dimensional structure analysis to explain the functional mechanism of the ZmFATB protein and confirmed the proposed model in vitro and in vivo. We measured the genetic effect of the functional site in 15 different genetic backgrounds and found a maximum change of 4.57 mg/g palmitic acid content, which accounts for ∼20–60% of the variation in the ratio of saturated to unsaturated fatty acids. A PCR-based marker for QTL-Pal9 was developed for marker-assisted selection of nutritionally healthier maize lines. The method presented here provides a new, efficient way to clone QTL, and the cloned palmitic acid QTL sheds lights on the genetic mechanism of oil biosynthesis and targeted maize molecular breeding. PMID:21931818

  13. Conjugated linoleic acid content of milk and cheese from cows fed extruded oilseeds.

    PubMed

    Dhiman, T R; Helmink, E D; McMahon, D J; Fife, R L; Pariza, M W

    1999-02-01

    Extruded oilseeds were fed to 24 dairy cows to study the influence on the conjugated linoleic acid content of milk and cheese. Cows were fed one of three diets that contained forage and grain in a ratio of 47:53. A control diet containing 13.5% soybean meal was compared with diets containing 12% full fat extruded soybeans or 12% full fat extruded cottonseed. The control, extruded soybean, and extruded cottonseed diets contained 2.73, 4.89, and 4.56% fatty acids, respectively. Measurements were made during the last 5 wk of the 8-wk experiment. The DM intakes and 3.5% fat-corrected milk yields were higher for cows fed the extruded soybean and extruded cottonseed diets than for cows fed the control diet. A tendency for lower fat and protein contents in the milk of cows fed the extruded soybean and extruded cottonseed diets was detected. Most of the C18 fatty acids were increased in the milk and cheese when extruded soybeans and cottonseeds were fed. The conjugated linoleic acid content in milk and cheese increased a mean of 109% when full fat extruded soybeans were fed and increased 77% when cottonseeds were fed compared with the conjugated linoleic acid content when the control diet was fed. Processing the milk into cheese did not alter the conjugated linoleic acid content. The conjugated linoleic acid content of milk and cheese can be increased by the inclusion of full fat extruded soybeans and full fat extruded cottonseeds in the diets of dairy cows.

  14. Minerals, phytic acid and tannin contents of 18 fruits from the Brazilian savanna.

    PubMed

    Marin, Alinne M F; Siqueira, Egle M A; Arruda, Sandra F

    2009-01-01

    The present study evaluated the nutritious potential of 18 fruits, all native of the Brazilian Cerrado biome. Mineral contents were determined by inductively coupled plasma atomic emission; phytic acid and tannin contents by a colorimetric and titrimetric method, respectively; and the potential mineral bioavailability by the molar ratio of phytic acid/mineral. Baru nut showed the highest zinc, copper, iron, phosphorus and magnesium content, and, together with macaúba, showed also the highest calcium content and caloric value. Macaúba, pitomba, ingá and murici fruits were classified as a source of iron. The jatoba and baru nut had the highest concentration of phytic acid and tannins. The [phytic acid]/[iron] and [phytic acid]/[zinc] molar ratios were higher than the critical values (14 and 10, respectively) only in the baru nuts, which suggests that iron and zinc bioavailability is low in this nut. The [phytic acid]/[calcium] molar ratios were lower than the critical value (1.56) in all analyzed fruits, which suggests that calcium is bioavailable in the fruits.

  15. [Dynamic change of four triterpenic acids contents in different organs of loquat (Eriobotrya japonica) and phenology].

    PubMed

    Li, Ji-yang; Xie, Xiao-mei; Li, Qian-wen; Zhang, Qi; Chen, Sheng-lin; Wang, He-qun; Yu, Wen-xia; Yang, Mo

    2015-03-01

    The loquat is widely cultivated in China, its succulent fruits, leaves and flower are used as a traditional medicine for the treatment of many diseases. The study is aimed to analyse the content of the four triterpene compounds ( ursolic acid, corosolic acid, maslinic acid, oleanolic acid) in different organs, and investigate the dynamic changes in different phenological period. The triterpenic acids content in the samples was measured by HPLC based on the plant phenological observations. The results showed that order of four triterpenic acids content in different organs from high to low was defoliation (23.2 mg x g(-1)) > mature leaves (21.7 mg x g(-1)) > young leaves (17.5 mg x g(-1)) > fruits (7.36 mg x g(-1)) > flowers (6.40 mg x g(-1)). The triterpenic acids were not detected in the seeds. The total amount of the four triterpenic acids in the loquat leaves collected in the different phenological stages of sprout, flower bud, blossom and fruit varied between 17.8 and 26.2 mg x g(-1) (defoliation), 16.5 and 23.5 mg x g(-1) (mature leaves), 14.7 and 21.5 mg x g(-1) (young leaves), respectively. The content increased progressively with the leaf development, maturation and aging. There was a higher level of the dry material and triterpenic acids accumulation in the mature leaves during fruit enlargement. This paper attempts to present the case for medicinal plants of a broad geographical distribution to study on the secondary metabolites and harvesting time.

  16. Content of chalconaringenin and chlorogenic acid in cherry tomatoes is strongly reduced during postharvest ripening.

    PubMed

    Slimestad, Rune; Verheul, Michèl J

    2005-09-01

    The contents of chalconaringenin, chlorogenic acid, rutin, ascorbic acid, lycopene, and beta-carotene were analyzed during postharvest and vine ripening of cherry tomatoes (Lycopersicon esculentumMill.) (cv. Jennita) produced in a greenhouse. A remarkable decrease in the content of chalconaringenin took place during postharvest ripening. The tomatoes were found to contain 15.26 mg 100 g(-1) fresh weight (FW) at harvest but held only 0.41 mg after 3 weeks at 20 degrees C in darkness. Chalconaringenin did not convert into naringenin. The content of chlorogenic acid fell from 0.51 to 0.06 mg 100 g(-1) FW at the same conditions. The content of rutin and that of total phenolics remained stable during postharvest ripening. The amounts of lycopene as well as beta-carotene and ascorbic acid increased during postharvest ripening. No significant change in the amount of methanol soluble antioxidants or total soluble solids was found during postharvest ripening of the tomato fruits. During vine ripening, the total amount of phenolics and that of soluble solids (% Brix) increased. The content of phenolics correlated well with the content of methanol soluble antioxidants (p < 0.001). The amount of ascorbic acid increased from 9.7 mg in green-yellow tomatoes to 17.1 mg 100 g(-1) FW in red tomatoes. The amount of chalconaringenin decreased to 8.16 mg 100 g(-1) FW, whereas no significant change was observed for chlorogenic acid or rutin. Possible causes for the decrease in chalconaringenin are discussed.

  17. Quantitative analysis of cyclic dimer fatty acid content in the dimerization product by proton NMR spectroscopy.

    PubMed

    Park, Kyun Joo; Kim, Minyoung; Seok, Seunghwan; Kim, Young-Wun; Kim, Do Hyun

    2015-01-01

    In this work, (1)H NMR is utilized for the quantitative analysis of a specific cyclic dimer fatty acid in a dimer acid mixture using the pseudo-standard material of mesitylene on the basis of its structural similarity. Mesitylene and cyclic dimer acid levels were determined using the signal of the proton on the cyclic ring (δ=6.8) referenced to the signal of maleic acid (δ=6.2). The content of the cyclic dimer fatty acid was successfully determined through the standard curve of mesitylene and the reported equation. Using the linearity of the mesitylene curve, the cyclic dimer fatty acid in the oil mixture was quantified. The results suggest that the proposed method can be used to quantify cyclic compounds in mixtures to optimize the dimerization process.

  18. [Determination of Acid-Insoluble Aluminum Content in Steel by Laser-Induced Breakdown Spectroscopy].

    PubMed

    Yang, Chun; Jia, Yun-hai; Zhang, Yong

    2015-03-01

    Laser-induced breakdown spectroscopy (LIBS) has become a very attractive and popular chemical analysis technique in material science for its advantage of rapid analysis, non-contact measurement, micro surface analysis and online analysis. In this paper, LIBS were used to determine insoluble aluminum content by analyzing the scanning data on massive steel samples. Abnormal data were discarded by Nalimov criterion, and the remaining data was used to calculate the average and the standard deviation. The threshold to distinguish acid-insoluble aluminum and soluble aluminum was identified as the average value plus triple standard deviation. Two different mathematical models were proposed to calculate insoluble aluminum content, respectively according to the ratio of the total acid-insoluble aluminium signal strength to total aluminum signal strength and acid-insoluble signal number to total aluminum signal number. The total aluminum content was determined by the calibration curve. Insoluble aluminum content of certified reference materials and plate blank samples obtained by mathematical model is coincident to chemical wet method results. The result according to total acid-insoluble aluminium signal strength is much better. LIBS can be used as a rapid analysis method to characterize insoluble aluminum content in steel samples.

  19. Comparison of polyunsaturated fatty acids content in filets of anadromous and landlocked sockeye salmon Oncorhynchus nerka.

    PubMed

    Gladyshev, Michail I; Lepskaya, Ekaterina V; Sushchik, Nadezhda N; Makhutova, Olesia N; Kalachova, Galina S; Malyshevskaya, Kseniya K; Markevich, Grigory N

    2012-12-01

    Fatty acid composition and content of 2 forms of sockeye salmon Oncorhynchus nerka from lakes in Kamchatka Peninsula (Russia) were compared. One form of sockeye salmon was anadromous ("marine"), that is, adult fish migrated in ocean to feed and grow and than return in the lake to breed. Fish of another form, kokanee, never migrate in the ocean. Per cent levels of the main indicators of nutritive value, eicosapentaenoic acid (EPA, 20:5n-3), and docosahexaenoic acid (DHA, 22:6n-3), were significantly higher in the landlocked O. nerka. However, concentrations of EPA and DHA per wet weight of filets were higher in the marine form, because of the relatively higher content of sum of fatty acids in their muscle tissue. As concluded, fish fed in marine environment had higher contents of long-chain n-3 fatty acids per wet weight than fish of the same species, fed in fresh waters. In general, both the anadromous sockeye salmon and the landlocked kokanee salmon can be recommended for human diet as a valuable product concerning contents of EPA and DHA. PMID:23240970

  20. (n-7) and (n-9) cis-Monounsaturated fatty acid contents of 12 Brassica species.

    PubMed

    Barthet, Véronique J

    2008-01-01

    cis-Vaccenic acid or cis-11-octadecenoic acid, a C18:1 (n-7) isomer of oleic acid (C18:1 (n-9)) has been found in several oilseeds. It is synthesized from palmitic acid (C16:0) via production of C16:1 (n-7) by a Delta9 desaturase and elongation by an elongase giving C18:1 (n-7). In this study, the fatty acid composition of 12 Brassica species was analyzed by GC-FID and confirmed by GC-MS. All species contained C18:1 (n-7), C20:1 (n-7) and C22:1 (n-7) fatty acid isomers, suggesting that C18:1 (n-7) was elongated. The levels of these fatty acids varied according to the species. C18:1(n-7)) represented from 0.4% to 3.3% of the total relative fatty acid contents of the seeds. The contents of C20:1(n-7) and C22:1(n-7) levels were lower than C18:1(n-7) contents; the relative fatty acid composition varied from 0.02% to 1.3% and from below the limit of detection to 1.3% for C20:1 (n-7) and C22:1 (n-7), respectively. The ratios of (n-7)/(n-9) ranged from 2.8% to 16.7%, 0.6% to 29.5% and 0% to 2.6% for C18:1, C20:1 and C22:2, respectively. Using statistical similarities or differences of the C18:1 (n-7)/(n-9) ratios for chemotaxonomy, the surveyed species could be arranged into three groups. The first group would include Brassica napus, B. rapa, and B. tournefortii with Eruca sativa branching only related to B. napus. The second group would include B. tournefortii, Raphanus sativus and Sinapis alba. The last group would include B. juncea, B. carinata and B. nigra with no similarity/relationship between them and between the other species. Results suggested that the level of C20:1 (n-7) influenced the levels of all monounsaturated fatty acids with chain length higher than 20 carbons. On the other hand, palmitoleic acid (C16:1) levels, C16:1 being the parent of all (n-7) fatty acids, had no statistically significant correlation with the content of any of the fatty acids of the (n-7) or (n-9) family.

  1. Glucose supplementation-induced changes in the Auxenochlorella protothecoides fatty acid composition suitable for biodiesel production.

    PubMed

    Krzemińska, Izabela; Oleszek, Marta

    2016-10-01

    This study evaluates the effect of different concentrations of glucose supplementation on growth, lipid accumulation, and the fatty acid profile in the Auxenochlorella protothecoides. Addition of glucose promoted the growth rate and decreased the chlorophyll content. Compared with photoautotrophic cells, an increase in the lipid content was observed in mixotrophic cells. The glucose addition induced changes in the fatty acid profile. Higher content of saturated fatty acids was found in the case of cells growing in the glucose-free medium. Oleic acid was the predominant component in mixotrophic cells supplemented with 5gL(-1) glucose, while linoleic acids dominated in cultures supplemented with both 1 and 3gL(-1) glucose. The use of glucose was associated with decreased levels of linolenic acid and PUFA. The changes in the fatty acid profile in mixotrophic cells are favourable for biodiesel production.

  2. Glucose supplementation-induced changes in the Auxenochlorella protothecoides fatty acid composition suitable for biodiesel production.

    PubMed

    Krzemińska, Izabela; Oleszek, Marta

    2016-10-01

    This study evaluates the effect of different concentrations of glucose supplementation on growth, lipid accumulation, and the fatty acid profile in the Auxenochlorella protothecoides. Addition of glucose promoted the growth rate and decreased the chlorophyll content. Compared with photoautotrophic cells, an increase in the lipid content was observed in mixotrophic cells. The glucose addition induced changes in the fatty acid profile. Higher content of saturated fatty acids was found in the case of cells growing in the glucose-free medium. Oleic acid was the predominant component in mixotrophic cells supplemented with 5gL(-1) glucose, while linoleic acids dominated in cultures supplemented with both 1 and 3gL(-1) glucose. The use of glucose was associated with decreased levels of linolenic acid and PUFA. The changes in the fatty acid profile in mixotrophic cells are favourable for biodiesel production. PMID:27485282

  3. Seed oil and fatty acid content in okra (Abelmoschus esculentus) and related species.

    PubMed

    Jarret, Robert L; Wang, Ming Li; Levy, Irvin J

    2011-04-27

    Approximately 1100 genebank accessions of okra (Abelmoschus esculentus) and 540 additional accessions that included six of its related species-A. caillei, A. crinitis, A. esculentus, A. ficulneus, A. manihot, A. moschatus and A. tuberculatus-were evaluated for seed oil content using time domain NMR (TD-NMR). Oil content in seed of A. caillei, A. esculentus, A. ficulneus, A. manihot, A. moschatus and A. tuberculatus was in the ranges 2.51-13.61%, 12.36-21.56%, 6.62-16.7%, 16.1-22.0%, 10.3-19.8% and 10.8-23.2%, respectively. Accession PI639680 (A. tuberculatus) had the highest seed oil content (∼23%). Accessions of A. esculentus with high seed oil content included PI nos. PI274350 (21.5%), PI538082 (20.9%) and PI538097 (20.9%). Values for the three accessions of A. manihot with the highest seed oil content were PI nos. PI639673 (20.4%), PI639674 (20.9%) and PI639675 (21.9%), all representing var. tetraphyllus. Average percent seed oil in materials of A. esculentus from Turkey and Sudan (17.35% and 17.36%, respectively) exceeded the averages of materials from other locations. Ninety-eight accessions (total of six species) were also examined for fatty acid composition. Values of linoleic acid ranged from 23.6-50.65% in A. esculentus. However, mean linoleic acid concentrations were highest in A. tuberculatus and A. ficulneus. Concentrations of palmitic acid were significantly higher in A. esculentus (range of 10.3-36.35%) when compared to that of other species, and reached a maximum in PI489800 Concentrations of palmitic acid were also high in A. caillei (mean = ∼30%). Levels of oleic acid were highest in A. manihot, A. manihot var. tetraphyllus and A. moschatus.

  4. Effects of ground flaxseed in swine diets on pig performance and on physical and sensory characteristics and omega-3 fatty acid content of pork: I. Dietary level of flaxseed.

    PubMed

    Romans, J R; Johnson, R C; Wulf, D M; Libal, G W; Costello, W J

    1995-07-01

    Forty-eight barrows and gilts were fed diets containing 0 (CO), 5, 10, or 15% ground flaxseed (FS) for the final 25 d before slaughter. Flaxseed treatments did not affect any production or carcass traits (P > .10). No pork processing problems due to lack of firmness were encountered. Amounts (milligrams/gram of tissue) of alpha-linolenic acid (ALA [18:3n-3]) and eicosapentaenoic acid (EPA [20:5n-3]) increased (P < .01) in both backfat layers and ALA increased (P < .01) in kidney (leaf) fat after FS. Alpha-linolenic acid and EPA increased (P < .001) in the raw belly in response to FS; the effect was maintained throughout processing (P < .01) to microwaved bacon. Alpha-linolenic acid and EPA increased (P < .01, P < .05, respectively) with amount of FS in longissimus thoracis and liver. In the brain, DHA decreased (P < .05) with amount of FS. Trained panelists in triangle tests were able to identify bacon from pigs fed 10 and 15% flaxseed. Panelists could not identify various treatments in the loin tests.

  5. Characterization of stearidonic acid soybean oil enriched with palmitic acid produced by solvent-free enzymatic interesterification.

    PubMed

    Teichert, Sarah A; Akoh, Casimir C

    2011-09-14

    Stearidonic acid soybean oil (SDASO) is a plant source of n-3 polyunsaturated fatty acids (n-3 PUFAs). Solvent-free enzymatic interesterification was used to produce structured lipids (SLs) in a 1 L stir-batch reactor with a 1:2 substrate mole ratio of SDASO to tripalmitin, at 65 °C for 18 h. Two SLs were synthesized using immobilized lipases, Novozym 435 and Lipozyme TL IM. Free fatty acids (FFAs) were removed by short-path distillation. SLs were characterized by analyzing FFA and FA (total and positional) contents, iodine and saponification values, melting and crystallization profiles, tocopherols, and oxidative stability. The SLs contained 8.15 and 8.38% total stearidonic acid and 60.84 and 60.63% palmitic acid at the sn-2 position for Novozym 435 SL and Lipozyme TL IM SL, respectively. The SLs were less oxidatively stable than SDASO due to a decrease in tocopherol content after purification of the SLs. The saponification values of the SLs were slightly higher than that of the SDASO. The melting profiles of the SLs were similar, but crystallization profiles differed. The triacylglycerol (TAG) molecular species of the SLs were similar to each other, with tripalmitin being the major TAG. SDASO's major TAG species comprised stearidonic and oleic acids or stearidonic, α-linolenic, and γ-linolenic acids. PMID:21830790

  6. Chia (Salvia hispanica L.) seed as an n-3 fatty acid source for finishing pigs: effects on fatty acid composition and fat stability of the meat and internal fat, growth performance, and meat sensory characteristics.

    PubMed

    Coates, W; Ayerza, R

    2009-11-01

    Coronary heart disease is caused by arteriosclerosis, which is triggered by an unbalanced fatty acid profile in the body. Today, Western diets are typically low in n-3 fatty acids and high in SFA and n-6 fatty acids; consequently, healthier foods are needed. Chia seed (Salvia hispanica L.), which contains the greatest known plant source of n-3 alpha-linolenic acid, was fed at the rate of 10 and 20% to finishing pigs, with the goal to determine if this new crop would increase the n-3 content of the meat as has been reported for other n-3 fatty acid-rich crops. The effects of chia on fatty acid composition of the meat, internal fats, growth performance, and meat sensory characteristics were determined. Productive performance was unaffected by dietary treatment. Chia seed modified the fatty acid composition of the meat fat, but not of the internal fat. Significantly (P < 0.05) less palmitic, stearic, and arachidic acids were found with both chia treatments. This is different than trials in which flaxseed, another plant based source of omega-3 fatty acid, has been fed. Alpha-linolenic acid content increased with increasing chia content of the diet; however, only the effect of the 20% ration was significantly (P < 0.05) different from that of the control. Chia seed increased panel member preferences for aroma and flavor of the meat. This study tends to show that chia seems to be a viable feed that can produce healthier pork for human consumption.

  7. Fatty acid profiles, tocopherol contents, and antioxidant activities of heartnut (Juglans ailanthifolia Var. cordiformis) and Persian walnut (Juglans regia L.).

    PubMed

    Li, Li; Tsao, Rong; Yang, Raymond; Kramer, John K G; Hernandez, Marta

    2007-02-21

    The fatty acid and tocopherol compositions of three heartnut (Juglans ailanthifolia var. cordiformis) varieties (Imshu, Campbell CW1, and Campbell CW3) were examined and compared with those of two Persian walnut (Juglans regia L.) varieties (Combe and Lake). The major fatty acids found in heartnuts and walnuts were identified by gas chromatography as linoleic (18:2n-6), alpha-linolenic (18:3n-3), oleic (18:1n-9), palmitic (16:0), and stearic acid (18:0). Polyunsaturated fatty acids were the main group of fatty acids found in both heartnut and walnut, ranging from 73.07 to 80.98%, and were significantly higher in heartnut than in Persian walnuts (P < 0.001). In addition, heartnuts had significantly higher levels of 18:2n-6 and lower levels of 18:3n-3 compared to the Persian walnuts. gamma-Tocopherol was the main tocopherol homologue present in both types of nuts, followed by delta- and alpha-tocopherol. The highest concentration of gamma-tocopherol was found in Combe Persian walnut at 267.87 mug/g, followed by Lake Persian walnut and Imshu, Campbell CW1, and CW3 heartnut at 205.45, 187.33, 161.84, and 126.46 mug/g, respectively. Tocopherols, particularly the gamma-tocopherol, were found to contribute the most to the strong total antioxidant activities of both walnut and heartnut oils using either the free radical 2,2-diphenyl-1-picrylhydrazyl assay or the photochemiluminescence method.

  8. Variation in oil content, fatty acid and phytosterols profile of Onopordum acanthium L. during seed development.

    PubMed

    Arfaoui, Moufida Oueslati; Renaud, Justin; Ghazghazi, Hanen; Boukhchina, Sadok; Mayer, Paul

    2014-01-01

    This study has determined oil, fatty acid (FA) and phytosterols content during the ripening of the Tunisian Onopordum acanthium L. seeds. In total, nine FAs and six phytosterols were identified. The main FAs were linoleic acid (0.18-8.06 mg/g of seed) followed by oleic acid (0.051-2.45 mg/g of seed), palmitic acid and stearic acid. Pentadecanoic acid was detected, for the first time, in unripe fruits and the two last stages of development were characterised by a relative abundance of erucic acid. Overall, β-sitosterol (34.5-77.79% of total sterols) was the major 4-desmethylsterols during maturation. The first episodes of growth were characterised by the best amounts of stigmasterol and campesterol, while stigmastanol and Δ7 sitosterol had quoted the semi-ripe and fully ripe fruits; however, cholesterol was absent. These findings are useful in understanding a potential new source of important natural compounds (Phytosterols and USFA) found in this fruit and when harvest should be undertaken to optimise desired FA and phytosterols content.

  9. Experienced Teachers' Pedagogical Content Knowledge of Teaching Acid-Base Chemistry

    ERIC Educational Resources Information Center

    Drechsler, Michal; Van Driel, Jan

    2008-01-01

    We investigated the pedagogical content knowledge (PCK) of nine experienced chemistry teachers. The teachers took part in a teacher training course on students' difficulties and the use of models in teaching acid-base chemistry, electrochemistry, and redox reactions. Two years after the course, the teachers were interviewed about their PCK of (1)…

  10. Xenia effects on oil content and fatty acid and tocopherol concentrations in autogamous almond cultivars.

    PubMed

    Kodad, Ossama; Estopañán, Gloria; Juan, Teresa; Socias i Company, Rafel

    2009-11-25

    The increasing utilization of self-compatible almond cultivars in solid plantings of a single genotype has raised the question of the effect of the pollen source on the kernel quality of these new autogamous cultivars. Thus, the effect of two different pollen sources, in addition to their own pollen, on the oil content and fatty acid and tocopherol concentrations was studied in four autogamous almond genotypes. The oil content was not affected by the pollination treatment, but self-pollination resulted in significantly higher values for oleic acid. For the tocopherol homologues, the alpha-tocopherol content of the self-pollinated kernels was intermediate between those obtained after cross-pollination with the two foreign pollens, but the self-pollinated kernels had higher values of delta-tocopherol than the cross-pollinated kernels. Thus, the effect of the pollen source was shown to have a clear effect on the fatty acid composition but not on the oil or tocopherol contents of the almond kernels, with an increased quality of the kernels produced after self-pollination because of a higher oleic/linoleic acid ratio.

  11. Effect of deep-fat frying on ascorbic acid, carotenoids and potassium contents of plantain cylinders.

    PubMed

    Rojas-Gonzalez, Juan A; Avallone, Sylvie; Brat, Pierre; Trystram, Gilles; Bohuon, Philippe

    2006-01-01

    The influence of thermal treatment (frying of plantain) on the micronutrients ascorbic acid, potassium and carotenoids is evaluated. Cylinders (diameter 30 mm, thickness 10 mm) of plantain (Musa AAB 'barraganete') were fried at four thermal treatments (120-180 degrees C and from 24 to 4 min) to obtain products with approximately the same water content (approximately 0.8+/-0.02 kg/kg1) and fat content (approximately 0.15+/-0.06 kg/kg). The thermal study used the cook value and the mean cook value as indicators of the effect of several different treatment temperatures and times on quality. Deep-fat frying had no significant effect on carotenoid contents at any frying conditions, and on potassium content, except at 120 degrees C and 24 min (loss acid. The process with the greatest effect was low temperature and long time (120 degrees C/24 min), as observed for potassium and ascorbic acid. These results are in agreement with other studies that demonstrated short thermal treatments at high temperatures protect food nutritional quality, as shown by the cook value and the mean cook value. In our work, deep-fat frying of plantain preserved most of the micronutrient contents that were evaluated.

  12. Utilization of extruded linseed to modify fatty composition of intensively-reared lamb meat: effect of associated cereals (wheat vs. corn) and linoleic acid content of the diet.

    PubMed

    Berthelot, V; Bas, P; Schmidely, P

    2010-01-01

    Sixty male lambs were used in two trials to study the efficiency of transfer and elongation of linolenic acid (ALA) in muscle and caudal adipose tissue and to assess factors affecting this process and related changes in fatty acid (FA) profile. In experiment 1, lambs were fed a control diet or extruded linseed (L) diet either with wheat (W, rapid starch) or corn (C, slow starch). In experiment 2, lambs were fed L with "normal" rapeseed, or high-oleic rapeseed, or soybean. In experiment 1, L increased ALA proportion and total n-3 PUFA in muscle and adipose tissue. In adipose tissue but not in muscle, LC lambs had higher proportion of ALA than LW lambs. In experiment 2, increasing linoleic acid (LA) intake increased LA proportion in muscle and adipose tissue but did not modify ALA proportion. Moreover, in muscle, it did not change the desaturation and elongation processes of ALA to long-chain n-3 PUFA.

  13. Combined Effects of Ocean Warming and Acidification on Copepod Abundance, Body Size and Fatty Acid Content.

    PubMed

    Garzke, Jessica; Hansen, Thomas; Ismar, Stefanie M H; Sommer, Ulrich

    2016-01-01

    Concerns about increasing atmospheric CO2 concentrations and global warming have initiated studies on the consequences of multiple-stressor interactions on marine organisms and ecosystems. We present a fully-crossed factorial mesocosm study and assess how warming and acidification affect the abundance, body size, and fatty acid composition of copepods as a measure of nutritional quality. The experimental set-up allowed us to determine whether the effects of warming and acidification act additively, synergistically, or antagonistically on the abundance, body size, and fatty acid content of copepods, a major group of lower level consumers in marine food webs. Copepodite (developmental stages 1-5) and nauplii abundance were antagonistically affected by warming and acidification. Higher temperature decreased copepodite and nauplii abundance, while acidification partially compensated for the temperature effect. The abundance of adult copepods was negatively affected by warming. The prosome length of copepods was significantly reduced by warming, and the interaction of warming and CO2 antagonistically affected prosome length. Fatty acid composition was also significantly affected by warming. The content of saturated fatty acids increased, and the ratios of the polyunsaturated essential fatty acids docosahexaenoic- (DHA) and arachidonic acid (ARA) to total fatty acid content increased with higher temperatures. Additionally, here was a significant additive interaction effect of both parameters on arachidonic acid. Our results indicate that in a future ocean scenario, acidification might partially counteract some observed effects of increased temperature on zooplankton, while adding to others. These may be results of a fertilizing effect on phytoplankton as a copepod food source. In summary, copepod populations will be more strongly affected by warming rather than by acidifying oceans, but ocean acidification effects can modify some temperature impacts. PMID:27224476

  14. Combined Effects of Ocean Warming and Acidification on Copepod Abundance, Body Size and Fatty Acid Content.

    PubMed

    Garzke, Jessica; Hansen, Thomas; Ismar, Stefanie M H; Sommer, Ulrich

    2016-01-01

    Concerns about increasing atmospheric CO2 concentrations and global warming have initiated studies on the consequences of multiple-stressor interactions on marine organisms and ecosystems. We present a fully-crossed factorial mesocosm study and assess how warming and acidification affect the abundance, body size, and fatty acid composition of copepods as a measure of nutritional quality. The experimental set-up allowed us to determine whether the effects of warming and acidification act additively, synergistically, or antagonistically on the abundance, body size, and fatty acid content of copepods, a major group of lower level consumers in marine food webs. Copepodite (developmental stages 1-5) and nauplii abundance were antagonistically affected by warming and acidification. Higher temperature decreased copepodite and nauplii abundance, while acidification partially compensated for the temperature effect. The abundance of adult copepods was negatively affected by warming. The prosome length of copepods was significantly reduced by warming, and the interaction of warming and CO2 antagonistically affected prosome length. Fatty acid composition was also significantly affected by warming. The content of saturated fatty acids increased, and the ratios of the polyunsaturated essential fatty acids docosahexaenoic- (DHA) and arachidonic acid (ARA) to total fatty acid content increased with higher temperatures. Additionally, here was a significant additive interaction effect of both parameters on arachidonic acid. Our results indicate that in a future ocean scenario, acidification might partially counteract some observed effects of increased temperature on zooplankton, while adding to others. These may be results of a fertilizing effect on phytoplankton as a copepod food source. In summary, copepod populations will be more strongly affected by warming rather than by acidifying oceans, but ocean acidification effects can modify some temperature impacts.

  15. Combined Effects of Ocean Warming and Acidification on Copepod Abundance, Body Size and Fatty Acid Content

    PubMed Central

    Hansen, Thomas; Ismar, Stefanie M. H.; Sommer, Ulrich

    2016-01-01

    Concerns about increasing atmospheric CO2 concentrations and global warming have initiated studies on the consequences of multiple-stressor interactions on marine organisms and ecosystems. We present a fully-crossed factorial mesocosm study and assess how warming and acidification affect the abundance, body size, and fatty acid composition of copepods as a measure of nutritional quality. The experimental set-up allowed us to determine whether the effects of warming and acidification act additively, synergistically, or antagonistically on the abundance, body size, and fatty acid content of copepods, a major group of lower level consumers in marine food webs. Copepodite (developmental stages 1–5) and nauplii abundance were antagonistically affected by warming and acidification. Higher temperature decreased copepodite and nauplii abundance, while acidification partially compensated for the temperature effect. The abundance of adult copepods was negatively affected by warming. The prosome length of copepods was significantly reduced by warming, and the interaction of warming and CO2 antagonistically affected prosome length. Fatty acid composition was also significantly affected by warming. The content of saturated fatty acids increased, and the ratios of the polyunsaturated essential fatty acids docosahexaenoic- (DHA) and arachidonic acid (ARA) to total fatty acid content increased with higher temperatures. Additionally, here was a significant additive interaction effect of both parameters on arachidonic acid. Our results indicate that in a future ocean scenario, acidification might partially counteract some observed effects of increased temperature on zooplankton, while adding to others. These may be results of a fertilizing effect on phytoplankton as a copepod food source. In summary, copepod populations will be more strongly affected by warming rather than by acidifying oceans, but ocean acidification effects can modify some temperature impacts. PMID:27224476

  16. Amino acid contents and transport of fixed N in nodules of Leucaena leucocephala variety K-8

    SciTech Connect

    DuBois, J.D.

    1987-04-01

    Seedlings of Leucaena leucocephala var. K-8 were grown with a N-free fertilizer or fertilizer containing /sup 15/N-depleted (NH/sub 4/)/sub 2/SO/sub 4/ (0.01 atom /sup 15/N; 10 ppm). The nodules of 5 month old trees grown on N-free media were used for /sup 15/N-enriched treatment and as controls. Nodules from plants grown on /sup 15/N-depleted media were also used. Nodules were extracted with 0.5% aqueous toluene and aliquots were analyzed with a Beckman 120B Amino Acid Analyzer. Samples were separated into free ammonium, Asp-N, Glu-N, Asn and Gln amide- and amino-N, and remaining amino acids. Fractions were then analyzed for /sup 15/N content. Asn (27.3 umol/gfw) represented 56% of the total free amino acid pool in the nodules. Asn (amide-N and amino-N) also represented approximately 77% of the total N fixed during the one hour /sup 15/N-enriched N/sub 2/ and the /sup 15/N-depleted treatments. Based on these findings and the fact that the ureide fraction is barely detectable in the nodules (0.25 ..mu..mol/gfw), the authors considers L. leucocephala an amide transporter of fixed N. Additional information will be presented on the amino acid contents of tissues, as well as a time course of amino acid content from seed through nodulation.

  17. Contents of total fat, fatty acids, starch, sugars and dietary fibre in Swedish market basket diets.

    PubMed

    Becker, W; Eriksson, A; Haglund, M; Wretling, S

    2015-05-14

    The typical dietary supply of total fat, fatty acids, starch, sugars, polyols and dietary fibre in Sweden was assessed from analyses of market baskets (MB) purchased in 2005 and 2010. MB were based on food balance sheets, with each basket comprising about 130 foods, which represented more than 90% of annual dietary supply. Foods were divided into ten to twelve categories. In 2010, total fat contributed 34% of energy (E%), SFA 14.3 E%, MUFA 12.8 E%, PUFA 4.6 E%, n-6 fatty acids 3.6 E%, n-3 fatty acids 1.0 E% and trans-fatty acids (TFA) 0.5 E%. Glycaemic carbohydrates contributed 47 E%, monosaccharides 9 E%, sucrose 11 E%, disaccharides 15 E% and total sugars 24 E%. Added sugars contributed about 15 E%. Dietary fibre content was about 1.7 g/MJ in the 2010 MB. Compared with the 2005 MB, the dietary supply of TFA and dietary fibre was lower, otherwise differences were small. The present MB survey shows that the content of SFA and added sugars was higher than the current Nordic Nutrition Recommendations, while the content of PUFA and especially dietary fibre was lower. TFA levels decreased and dietary supply was well below the recommendations of the WHO. These results emphasise a focus on quality and food sources of fat and carbohydrates, limiting foods rich in SFA and added sugars and replacing them with foods rich in dietary fibre and cis-unsaturated fatty acids.

  18. The functional impact of Pgm amino acid polymorphism on glycogen content in Drosophila melanogaster.

    PubMed Central

    Verrelli, B C; Eanes, W F

    2001-01-01

    Earlier studies of the common PGM allozymes in Drosophila melanogaster reported no in vitro activity differences. However, our study of nucleotide variation observed that PGM allozymes are a heterogeneous mixture of amino acid polymorphisms. In this study, we analyze 10 PGM protein haplotypes with respect to PGM activity, thermostability, and adult glycogen content. We find a twofold difference in activity among PGM protein haplotypes that is associated with a threefold difference in glycogen content. The latitudinal clines for several Pgm amino acid polymorphisms show that high PGM activity, and apparently higher flux to glycogen synthesis, parallel the low activity clines at G6PD for reduced pentose shunt flux in northern latitudes. This suggests that amino acid polymorphism is under selection at this branch point and may be favored for increased metabolic storage associated with stress resistance and adaptation to temperate regions. PMID:11560897

  19. Apolipoprotein E4 allele is associated with substantial changes in the plasma lipids and hyaluronic acid content in patients with nonalcoholic fatty liver disease.

    PubMed

    Stachowska, E; Maciejewska, D; Ossowski, P; Drozd, A; Ryterska, K; Banaszczak, M; Milkiewicz, M; Raszeja-Wyszomirska, J; Slebioda, M; Milkiewicz, P; Jelen, H

    2013-12-01

    Fat may affect progression of liver damage in patients with non-alcoholic fatty liver disease (NAFLD). In this study we characterize the state of lipid metabolism in 22 patients with NAFLD and different Apo-E variants. Total concentration of plasma total fatty acids was quantified by gas chromatography, while their derivatives by liquid chromatography/tandem mass spectrometry (LC ESI MS/MS). The ratio of plasma saturated fatty acid to monounsaturated fatty acid increased, whereas the ratio of polyunsaturated fatty acids to saturated fatty acids was reduced in Apo-E4 carriers. Simultaneously, the levels of individual plasma linoleic, arachidonic, and alpha linolenic acids significantly increased in subjects with the Apo-E4 allele. The 15-lipoxygenase metabolite, 13-hydroxyoctadecadienoic acid, was significantly higher in Apo-E3 carriers (p<0.006). 5-oxo-6,8,11,14-eicosatetraenoic acid was significantly elevated in Apo-E4 carriers (p<0.009). A significant difference in hyaluronic acid concentration (p<0.0016) as well as predicted advanced fibrosis (using the BARD scoring system) was found in Apo-E4 carriers (p<0.01). We suggest that a distinct mechanism of fibrosis between Apo E alleles. In Apo-E4 carriers, an elevation in 5-oxo-6,8,11,14-eicosatetraenoic acid synthesis and fatty acid dysfunction may induce fibrosis, while an inflammatory process may be the main cause of fibrosis in Apo-E3 carriers.

  20. Metabolomic analysis reveals decreased skeletal muscle amino acid content and altered fatty acid handling in obese humans

    PubMed Central

    Koves, Timothy R.; Ilkayeva, Olga R.; Muoio, Deborah M.; Houmard, Joseph A.; Friedman, Jacob E.

    2015-01-01

    Objective Investigate the effects of obesity and high fat diet (HFD) exposure on fatty acid oxidation and TCA cycle intermediates and amino acids in skeletal muscle to better characterize energy metabolism. Design and Methods Plasma and skeletal muscle metabolomic profiles were measured from lean and obese males before and after a 5 day HFD in the 4h post-prandial condition. Results At both time points, plasma short-chain acylcarnitine species (SCAC) were higher in the obese subjects, while the amino acids glycine, histidine, methionine, and citrulline were lower in skeletal muscle of obese subjects. Skeletal muscle medium-chain acylcarnitines (MCAC) C6, C8, C10:2, C10:1, C10, and C12:1 increased in obese subjects, but decreased in lean subjects, from Pre- to Post-HFD. Plasma content of C10:1 was also decreased in lean, but increased in the obese subjects from Pre- to Post-HFD. CD36 increased from Pre- to Post-HFD in obese but not lean subjects. Conclusions Lower skeletal muscle amino acid content and accumulation of plasma SCAC in obese subjects could reflect increased anaplerosis for TCA cycle intermediates, while accumulation of MCAC suggests limitations in β-oxidation. These measures may be important markers of or contributors to dysregulated metabolism observed in skeletal muscle of obese humans. PMID:25864501

  1. Dietary gamma-linolenate attenuates tumor growth in a rodent model of prostatic adenocarcinoma via suppression of elevated generation of PGE(2) and 5S-HETE.

    PubMed

    Pham, Hung; Vang, Kao; Ziboh, Vincent A

    2006-04-01

    Prostate cancer poses considerable threat to the aging male population as it has become a leading cause of cancer death to this group. Due to the complexity of this age-related disease, the mechanism(s) and factors resulting in prostate cancer remain unclear. Reports showing an increase risk in prostatic cancer with increasing dietary fat are contrasted by other studies suggesting the beneficial effects of certain polyunsaturated fatty acid (PUFA) in the modulation of tumor development. The n-6 PUFA, gamma-linolenic acid (GLA), has been shown to suppress tumor growth in vitro. Therefore, using the Lobund-Wistar (L-W) rat model of prostate cancer, we tested the hypothesis whether dietary supplementation of GLA could suppress tumor growth and development in vivo. Prostatic adenocarcinomas were induced in two groups of L-W rats, the experimental group (N-nitroso-N-methylurea, NMU/testosterone propionate, TP) and the GLA group (NMU/TP/GLA fed) undergoing similar treatment but fed a purified diet supplemented with GLA. Our findings revealed a decrease in prostate growth in the NMU/TP/GLA-fed group as determined by weight, tissue size, DNA content and prostate-specific antigen (tumor marker of prostate cancer). Comparison between the two groups showed a significant increase in 5S-hydroxyeicosatetraenoic acid and prostaglandin E(2) in the NMU/TP group. These increases paralleled the increased protein expression and activity of cyclooxygenase-2 as well as increased activity of 5-lipoxygenase. Taken together, the findings showed that intake of GLA-enriched diet does reduce prostatic cancer development in L-W rats and could serve as a non-toxic adjunct in management of human prostatic cancer. PMID:16567086

  2. Fatty acid profile, tocopherol, squalene and phytosterol content of brazil, pecan, pine, pistachio and cashew nuts.

    PubMed

    Ryan, E; Galvin, K; O'Connor, T P; Maguire, A R; O'Brien, N M

    2006-01-01

    Nuts contain bioactive constituents that elicit cardio-protective effects including phytosterols, tocopherols and squalene. The objective of the present study was to determine the total oil content, peroxide value, fatty acid composition and levels of tocopherols, squalene and phytosterols in oil extracted from freshly ground brazil, pecan, pine, pistachio and cashew nuts. The total oil content of the nuts ranged from 40.4 to 60.8% (w/w) while the peroxide values ranged from 0.14 to 0.22 mEq O2/kg oil. The most abundant monounsaturated fatty acid was oleic acid (C18:1), while linoleic acid (C18:2) was the most prevalent polyunsaturated fatty acid. The levels of total tocopherols ranged from 60.8 to 291.0 mg/g. Squalene ranged from 39.5 mg/g oil in the pine nut to 1377.8 mg/g oil in the brazil nut. beta-Sitosterol was the most prevalent phytosterol, ranging in concentration from 1325.4 to 4685.9 mg/g oil. In conclusion, the present data indicate that nuts are a good dietary source of unsaturated fatty acids, tocopherols, squalene and phytosterols.

  3. Thiamine and fatty acid content of walleye tissue from three southern U.S. reservoirs

    USGS Publications Warehouse

    Honeyfield, D.C.; Vandergoot, C.S.; Bettoli, P.W.; Hinterkopf, J.P.; Zajicek, J.L.

    2007-01-01

    We determined the thiamine concentration in egg, muscle, and liver tissues of walleyes Sander vitreus and the fatty acid content of walleye eggs from three southern U.S. reservoirs. In two Tennessee reservoirs (Dale Hollow and Center Hill), in which there were alewives Alosa pseudoharengus in the forage base, natural recruitment of walleyes was not occurring; by contrast in Lake James Reservoir, North Carolina, where there were no alewives, the walleye population was sustained via natural recruitment. Female walleye tissues were collected and assayed for thiamine (vitamin B1) and fatty acid content. Thiamine pyrophosphate was found to be the predominant form of thiamine in walleye eggs. In 2000, mean total egg thiamine concentrations were similar among Center Hill, Dale Hollow, and Lake James reservoirs (2.13, 3.14, and 2.77 nmol thiamine/g, respectively). Egg thiamine concentration increased as maternal muscle (r 2 = 0.73) and liver (r2 = 0.68) thiamine concentration increased. Walleye egg thiamine does not appear to be connected to poor natural reproduction in Tennessee walleyes. Threadfin shad Dorosoma petenense, which are found in all three reservoirs, had higher thiaminase activity than alewives. Six fatty acids differed among the walleye eggs for the three reservoirs. Two were physiologically important fatty acids, arachidonic acid (20:4[n-6]) and docosahexaenoic acid (22:6[n-3]), which are important eicosanoid precursors involved in the regulation of biological functions, such as immune response and reproduction. ?? Copyright by the American Fisheries Society 2007.

  4. Fatty acid profile, tocopherol, squalene and phytosterol content of brazil, pecan, pine, pistachio and cashew nuts.

    PubMed

    Ryan, E; Galvin, K; O'Connor, T P; Maguire, A R; O'Brien, N M

    2006-01-01

    Nuts contain bioactive constituents that elicit cardio-protective effects including phytosterols, tocopherols and squalene. The objective of the present study was to determine the total oil content, peroxide value, fatty acid composition and levels of tocopherols, squalene and phytosterols in oil extracted from freshly ground brazil, pecan, pine, pistachio and cashew nuts. The total oil content of the nuts ranged from 40.4 to 60.8% (w/w) while the peroxide values ranged from 0.14 to 0.22 mEq O2/kg oil. The most abundant monounsaturated fatty acid was oleic acid (C18:1), while linoleic acid (C18:2) was the most prevalent polyunsaturated fatty acid. The levels of total tocopherols ranged from 60.8 to 291.0 mg/g. Squalene ranged from 39.5 mg/g oil in the pine nut to 1377.8 mg/g oil in the brazil nut. beta-Sitosterol was the most prevalent phytosterol, ranging in concentration from 1325.4 to 4685.9 mg/g oil. In conclusion, the present data indicate that nuts are a good dietary source of unsaturated fatty acids, tocopherols, squalene and phytosterols. PMID:17127473

  5. Docosahexaenoic acid content is significantly higher in ghrita prepared by traditional Ayurvedic method

    PubMed Central

    Joshi, Kalpana S.

    2014-01-01

    Background: Ghee (clarified butter) also known as ghrita, has been utilized for thousands of years in Ayurveda. Ghee is mostly prepared by traditional method in Indian households or by direct cream method at industry level. Ayurvedic classics mention that ghrita made from cow milk is superior. However, there is no scientific comparison available on preparation methods and essential fatty acids content of ghrita. Objective: To investigate fatty acid composition of ghrita prepared by traditional/Ayurvedic method and commercial method (direct cream method). Materials and Methods: Fatty Acid Methyl Esters (FAME) extracted from ghrita samples were analysed on Gas Chromatography (GC) Shimadzu B using capillary column BPX70 (0.32 mm*60 m, ID of 0.25 mm). The fatty acids in the samples were identified by comparing peaks with the external standard 68A (Nu-Chek-Prep, Inc.USA). Significant differences between the experimental groups were assessed by analysis of variance. Results: Distribution of fatty acids was compared in ghrita samples prepared by traditional method and direct cream method which is commercially used. Saturated fatty acids were predominant in both the groups. Mono unsaturated fatty acids and poly unsaturated fatty acids were in the range of 17-18% and 3-6% respectively. DHA content was significantly higher in ghee prepared by traditional method using curd starter fermentation. Conclusion: The findings suggested that ghrita prepared by traditional ayurvedic methods contains higher amount of DHA; Omega-3 long-chain polyunsaturated fatty acids, which is a major component of retinal and brain tissues and remains important in prevention of various diseases. PMID:24948858

  6. Probing Phosphorus Efficient Low Phytic Acid Content Soybean Genotypes with Phosphorus Starvation in Hydroponics Growth System.

    PubMed

    Kumar, Varun; Singh, Tiratha Raj; Hada, Alkesh; Jolly, Monica; Ganapathi, Andy; Sachdev, Archana

    2015-10-01

    Phosphorus is an essential nutrient required for soybean growth but is bound in phytic acid which causes negative effects on both the environment as well as the animal nutrition. Lowering of phytic acid levels is associated with reduced agronomic characteristics, and relatively little information is available on the response of soybean plants to phosphorus (P) starvation. In this study, we evaluated the effects of different P starvation concentrations on the phytic acid content, growth, and yield of seven mutant genotypes along with the unirradiated control, JS-335, in a hydroponics growth system. The low phytic acid containing mutant genotypes, IR-JS-101, IR-DS-118, and IR-V-101, showed a relatively high growth rate in low P concentration containing nutrient solution (2 μM), whereas the high P concentration (50 μM) favored the growth of IR-DS-111 and IR-DS-115 mutant genotypes containing moderate phytate levels. The mutant genotypes with high phytic acid content, IR-DS-122, IR-DS-114, and JS-335, responded well under P starvation and did not have any significant effect on the growth and yield of plants. Moreover, the reduction of P concentration in nutrient solution from 50 to 2 μM also reduced the phytic acid content in the seeds of all the soybean genotypes under study. The desirable agronomic performance of low phytic acid containing mutant genotype IR-DS-118 reported in this study suggested it to be a P-efficient genotype which could be considered for agricultural practices under P limiting soils. PMID:26239443

  7. Probing Phosphorus Efficient Low Phytic Acid Content Soybean Genotypes with Phosphorus Starvation in Hydroponics Growth System.

    PubMed

    Kumar, Varun; Singh, Tiratha Raj; Hada, Alkesh; Jolly, Monica; Ganapathi, Andy; Sachdev, Archana

    2015-10-01

    Phosphorus is an essential nutrient required for soybean growth but is bound in phytic acid which causes negative effects on both the environment as well as the animal nutrition. Lowering of phytic acid levels is associated with reduced agronomic characteristics, and relatively little information is available on the response of soybean plants to phosphorus (P) starvation. In this study, we evaluated the effects of different P starvation concentrations on the phytic acid content, growth, and yield of seven mutant genotypes along with the unirradiated control, JS-335, in a hydroponics growth system. The low phytic acid containing mutant genotypes, IR-JS-101, IR-DS-118, and IR-V-101, showed a relatively high growth rate in low P concentration containing nutrient solution (2 μM), whereas the high P concentration (50 μM) favored the growth of IR-DS-111 and IR-DS-115 mutant genotypes containing moderate phytate levels. The mutant genotypes with high phytic acid content, IR-DS-122, IR-DS-114, and JS-335, responded well under P starvation and did not have any significant effect on the growth and yield of plants. Moreover, the reduction of P concentration in nutrient solution from 50 to 2 μM also reduced the phytic acid content in the seeds of all the soybean genotypes under study. The desirable agronomic performance of low phytic acid containing mutant genotype IR-DS-118 reported in this study suggested it to be a P-efficient genotype which could be considered for agricultural practices under P limiting soils.

  8. Decreased Polyunsaturated Fatty Acid Content Contributes to Increased Survival in Human Colon Cancer

    PubMed Central

    Oraldi, Manuela; Trombetta, Antonella; Biasi, Fiorella; Canuto, Rosa A.; Maggiora, Marina; Muzio, Giuliana

    2009-01-01

    Among diet components, some fatty acids are known to affect several stages of colon carcinogenesis, whereas others are probably helpful in preventing tumors. In light of this, our aim was to determine the composition of fatty acids and the possible correlation with apoptosis in human colon carcinoma specimens at different Duke's stages and to evaluate the effect of enriching human colon cancer cell line with the possible reduced fatty acid(s). Specimens of carcinoma were compared with the corresponding non-neoplastic mucosa: a significant decrease of arachidonic acid, PPARα, Bad, and Bax and a significant increase of COX-2, Bcl-2, and pBad were found. The importance of arachidonic acid in apoptosis was demonstrated by enriching a Caco-2 cell line with this fatty acid. It induced apoptosis in a dose- and time-dependent manner via induction of PPARα that, in turn, decreased COX-2. In conclusion, the reduced content of arachidonic acid is likely related to carcinogenic process decreasing the susceptibility of cancer cells to apoptosis. PMID:19841681

  9. Sialic acid content of infant saliva: comparison of breast fed with formula fed infants

    PubMed Central

    Tram, T; Miller, J; McNeil, Y; McVeagh, P

    1997-01-01

    

 Sialic acid is found in especially high concentrations in brain gangliosides, and supplementary sialic acid is associated with increased learning behaviour in animals. It was hypothesised that breast fed infants may have higher concentrations of sialic acid in body fluids and tissues because human milk is a rich source of sialylated oligosaccharides, while formulas contain very little. The aim therefore was to compare the sialic acid content of saliva collected from full term infants who were either solely breast fed or formula fed until weaning at 3-5 months of age. Thirty three infants, 18 breast fed and 15 formula fed, were studied at a mean (SD) age of 5 (2) months. The breast fed infants, when compared with formula fed infants, were found to have almost two times more free sialic acid in saliva (mean (SE) 16.0 (2.7) v 8.2 (2.1) mg/l, p < 0.036) and nearly 50% more total sialic acid (47.3 (3.9) v 32.2 (4.4) mg/l, p<0.014). The findings provide a preliminary indication that an exogenous source of sialic acids derived from human milk may contribute to higher concentrations of sialic acid in body fluids. There are important implications for the formulation of human milk substitutes.

 PMID:9389234

  10. Free amino Acid contents of stem and phylloxera gall tissue cultures of grape.

    PubMed

    Warick, R P; Hildebrandt, A C

    1966-04-01

    Free amino acid constituents were determined of grape stem and Phylloxera leaf gall callus in tissue culture. Fast, medium and slow growing single cell clones of, respectively, stem and gall origins were grown on a mineral salt-sucrose medium supplemented with coconut milk and alpha-naphthaleneacetic acid. Stem and gall clones showed qualitative similarities and quantitative variations in the amino acids and nitrogenous constituents. Nineteen amino acids, glucosamine, ethanolamine, sarcosine, methionine sulfoxides and ammonia were identified. Two free polypeptides accounted for over 30% of the amino compounds in the stem and gall callus tissues which were not found in the intact plant parts. Stem clones of different growth rates grown on agar showed generally an excess of amino acid constituents over gall tissues of similar growth rates, except for the free polypeptides. Fast growing stem clones grown on agar medium contained lower amounts of certain amino acids than the fast growing gall clones, but when grown in liquid medium they contained higher amounts of these acids than the gall clones. The total and nonsoluble nitrogen of stem clones were higher than in the gall clones. Tissue cultures differed from the original plant parts with respect to their free polypeptides and high amino acid contents. PMID:16656290

  11. Whole body cholesterol, fat, and fatty acid concentrations of mice (Mus domesticus) used as a food source.

    PubMed

    Crissey, S D; Slifka, K A; Lintzenich, B A

    1999-06-01

    The concentrations of dry matter, cholesterol, saturated fat, monounsaturated fat, and 29 fatty acids were measured in four size categories of whole mice (Mus domesticus) that are commonly fed to zoo animals. Dry matter increased with age/size of mice, whereas cholesterol decreased with age/size. Significant differences in fatty acid content were found among mice categories with capric, lauric, and myristic acids. Mice categories had similar levels of palmitic, palmitoleic, heptadecenoic, stearic, oleic, linoleic, gamma linolenic, alpha linolenic, eicosenoic, eicosadienoic, arachidonic, docosahexaenoic, and lignoceric acids. Analyzed lipid content of mice exceeded domestic carnivorous animal requirements for linoleic and arachidonic acids. The fatty acid levels in mice were high, falling between published values in beef and fish. Generally, mice contained higher levels of polyunsaturated fatty acids, including the omega-3 fatty acids, and lower levels of saturated fatty acids than beef. Although fatty acid levels met or exceeded some dietary requirements for carnivores and omnivores, a possibility of excessive levels exists that could lead to eye and tissue abnormalities. Furthermore, as the intake of dietary polyunsaturated fatty acids increases, the dietary requirement for vitamin E increases. Thus, it is important that lipid profiles of feeder mice be known and considered when examining captive animal diets.

  12. Evaluation of fatty acid and amino acid compositions in okra (Abelmoschus esculentus) grown in different geographical locations.

    PubMed

    Sami, Rokayya; Lianzhou, Jiang; Yang, Li; Ma, Ying; Jing, Jing

    2013-01-01

    Okra has different uses as a food and a remedy in traditional medicine. Since it produces many seeds, distribution of the plant is also quite easy. Although seed oil yield is low (4.7%), since the linoleic acid composition of the seed oil is quiet high (67.5%), it can still be used as a source of (UNSAT) unsaturated fatty acids. In this study, samples of okra grown in four different locations were analyzed to measure fatty acid and amino acid compositions. The content of the lipid extraction ranged from 4.34% to 4.52% on a dry weight basis. Quantitatively, the main okra fatty acids were palmitic acid (29.18-43.26%), linoleic acid (32.22-43.07%), linolenic acid (6.79-12.34%), stearic acid (6.36-7.73%), oleic acid (4.31-6.98%), arachidic acid (ND-3.48%), margaric acid (1.44-2.16%), pentadecylic acid (0.63-0.92%), and myristic acid (0.21-0.49%). Aspartic acid, proline, and glutamic acids were the main amino acids in okra pods, while cysteine and tyrosine were the minor amino acids. Statistical methods revealed how the fatty acid and amino acid contents in okra may be affected by the sampling location.

  13. Evaluation of fatty acid and amino acid compositions in okra (Abelmoschus esculentus) grown in different geographical locations.

    PubMed

    Sami, Rokayya; Lianzhou, Jiang; Yang, Li; Ma, Ying; Jing, Jing

    2013-01-01

    Okra has different uses as a food and a remedy in traditional medicine. Since it produces many seeds, distribution of the plant is also quite easy. Although seed oil yield is low (4.7%), since the linoleic acid composition of the seed oil is quiet high (67.5%), it can still be used as a source of (UNSAT) unsaturated fatty acids. In this study, samples of okra grown in four different locations were analyzed to measure fatty acid and amino acid compositions. The content of the lipid extraction ranged from 4.34% to 4.52% on a dry weight basis. Quantitatively, the main okra fatty acids were palmitic acid (29.18-43.26%), linoleic acid (32.22-43.07%), linolenic acid (6.79-12.34%), stearic acid (6.36-7.73%), oleic acid (4.31-6.98%), arachidic acid (ND-3.48%), margaric acid (1.44-2.16%), pentadecylic acid (0.63-0.92%), and myristic acid (0.21-0.49%). Aspartic acid, proline, and glutamic acids were the main amino acids in okra pods, while cysteine and tyrosine were the minor amino acids. Statistical methods revealed how the fatty acid and amino acid contents in okra may be affected by the sampling location. PMID:24171167

  14. Effects of selenite on chlorophyll fluorescence, starch content and fatty acid in the duckweed Landoltia punctata.

    PubMed

    Zhong, Yu; Li, Yang; Cheng, Jay J

    2016-09-01

    Developing a Se-enriched feed for animal has become a considerable effort. In this study, Landoltia punctata 7449 was grown over a 12 day period under concentrations of selenite (Na2SeO3) from 0 to 80 μmol L(-1). The growth rate, the chlorophyll fluorescence, the starch content and fatty acid were measured. Se at low concentrations of ≤20 μmol L(-1) had positive effects also on growth rate, fatty acid content and yield of the L. punctata. The appropriate Se treatment enhanced the activity of the photosynthetic system by increasing Fv, Fm, Fv/Fm and Fv/Fo and decreasing Fo. However, negative impact to the L. punctata was observed when the duckweed was exposed to high Se concentrations (≥40 μmol L(-1)). Significant increases in starch content in the duckweed were observed after Se application. The present study suggests that the changes in growth rate, the photosynthetic system, the starch content and the fatty acid were closely associated with the application of Se. An increased Se concentration (0-20 μmol L(-1)) in duckweed could positively induce photosynthesis, thereby increasing the yield of L. punctata and could be a resource for high nutritive quality Se-enrich feed.

  15. Assessment of magnesium influence on fatty acid content in isolated rat hepatocytes subjected to incubation.

    PubMed

    Całyniuk, B; Grochowska-Niedworok, E; Kardas, M; Muc-Wierzgoń, M; Nowakowska-Zajdel, E

    2016-01-01

    Magnesium salts are components of many dietary supplements used in treatment or prevention of magnesium deficiency. Hypomagnesemia usually results from an improper lifestyle, including unbalanced diet. Isolated hepatocytes of animals or humans are the preferred model used to study the in vitro effects of exogenous factors on cellular metabolic changes. The aim of this study was to evaluate the content of saturated, monounsaturated and polyunsaturated fatty acids and their esters in isolated rat hepatocytes influenced by different magnesium concentrations. The isolated rat hepatocytes were used as the test material. Hepatocytes were prepared in culture medium (Hepatocyte Medium) + MgCl(2) solution to concentrations of 2 mM/dm(3) MgCl(2), 4 mM/dm(3) MgCl(2). After incubation with different concentrations of magnesium ions, changes in the content of fatty acids and their esters were found for the whole hepatocytes and hepatocyte membranes. Despite changes in the fatty acid content in the whole hepatocytes and their membranes, there were no changes in the coefficient of degree of saturation of fatty acids when different concentrations of MgCl2 were used.

  16. Caffeoylquinic acids in leaves of selected Apocynaceae species: Their isolation and content

    PubMed Central

    Wong, Siu Kuin; Lim, Yau Yan; Ling, Sui Kiong; Chan, Eric Wei Chiang

    2014-01-01

    Background: Three compounds isolated from the methanol (MeOH) leaf extract of Vallaris glabra (Apocynaceae) were those of caffeoylquinic acids (CQAs). This prompted a quantitative analysis of their contents in leaves of V. glabra in comparison with those of five other Apocynaceae species (Alstonia angustiloba, Dyera costulata, Kopsia fruticosa, Nerium oleander, and Plumeria obtusa), including flowers of Lonicera japonica (Japanese honeysuckle), the commercial source of chlorogenic acid (CGA). Materials and Methods: Compound were isolated by column chromatography, and identified by NMR and MS analyses. CQA content of leaf extracts was determined using reversed-phase HPLC. Results: From the MeOH leaf extract of V. glabra, 3-CQA, 4-CQA, and 5-CQA or CGA were isolated. Content of 5-CQA of V. glabra was two times higher than flowers of L. japonica, while 3-CQA and 4-CQA content was 16 times higher. Conclusion: With much higher CQA content than the commercial source, leaves of V. glabra can serve as a promising alternative source. PMID:24497746

  17. Changes in Oleic Acid Content of Transgenic Soybeans by Antisense RNA Mediated Posttranscriptional Gene Silencing

    PubMed Central

    Zhang, Ling; Yang, Xiang-dong; Zhang, Yuan-yu; Yang, Jing; Qi, Guang-xun; Guo, Dong-quan; Xing, Guo-jie; Yao, Yao; Xu, Wen-jing; Li, Hai-yun; Li, Qi-yun; Dong, Ying-shan

    2014-01-01

    The Delta-12 oleate desaturase gene (FAD2-1), which converts oleic acid into linoleic acid, is the key enzyme determining the fatty acid composition of seed oil. In this study, we inhibited the expression of endogenous Delta-12 oleate desaturase GmFad2-1b gene by using antisense RNA in soybean Williams 82. By employing the soybean cotyledonary-node method, a part of the cDNA of soybean GmFad2-1b 801 bp was cloned for the construction of a pCAMBIA3300 vector under the soybean seed promoter BCSP. Leaf painting, LibertyLink strip, PCR, Southern blot, qRT-PCR, and fatty acid analysis were used to detect the insertion and expression of GmFad2-1b in the transgenic soybean lines. The results indicate that the metabolically engineered plants exhibited a significant increase in oleic acid (up to 51.71%) and a reduction in palmitic acid (to <3%) in their seed oil content. No structural differences were observed between the fatty acids of the transgenic and the nontransgenic oil extracts. PMID:25197629

  18. Changes in oleic Acid content of transgenic soybeans by antisense RNA mediated posttranscriptional gene silencing.

    PubMed

    Zhang, Ling; Yang, Xiang-Dong; Zhang, Yuan-Yu; Yang, Jing; Qi, Guang-Xun; Guo, Dong-Quan; Xing, Guo-Jie; Yao, Yao; Xu, Wen-Jing; Li, Hai-Yun; Li, Qi-Yun; Dong, Ying-Shan

    2014-01-01

    The Delta-12 oleate desaturase gene (FAD2-1), which converts oleic acid into linoleic acid, is the key enzyme determining the fatty acid composition of seed oil. In this study, we inhibited the expression of endogenous Delta-12 oleate desaturase GmFad2-1b gene by using antisense RNA in soybean Williams 82. By employing the soybean cotyledonary-node method, a part of the cDNA of soybean GmFad2-1b 801 bp was cloned for the construction of a pCAMBIA3300 vector under the soybean seed promoter BCSP. Leaf painting, LibertyLink strip, PCR, Southern blot, qRT-PCR, and fatty acid analysis were used to detect the insertion and expression of GmFad2-1b in the transgenic soybean lines. The results indicate that the metabolically engineered plants exhibited a significant increase in oleic acid (up to 51.71%) and a reduction in palmitic acid (to <3%) in their seed oil content. No structural differences were observed between the fatty acids of the transgenic and the nontransgenic oil extracts.

  19. Virulent Hessian fly larvae manipulate the free amino acid content of host wheat plants.

    PubMed

    Saltzmann, Kurt D; Giovanini, Marcelo P; Zheng, Cheng; Williams, Christie E

    2008-11-01

    Gall-forming insects induce host plants to form specialized structures (galls) that provide immature life stages of the insect access to host plant nutrients and protection from natural enemies. Feeding by larvae of the Hessian fly (Mayetiola destructor Say) causes susceptible host wheat plants to produce a gall-like nutritive tissue that supports larval growth and development. To determine if changes in host plant free amino acid levels are associated with virulent Biotype L Hessian fly larval feeding, we quantified free amino acid levels in crown tissues of susceptible Newton wheat plants 1, 4, and 7 days after Hessian fly egg hatch. Hessian fly-infested susceptible plants were more responsive than resistant plants or uninfested controls, showing higher concentrations of alanine, glutamic acid, glycine, phenylalanine, proline, and serine 4 days after egg hatch. This 4-day post-hatch time point corresponds to the maturation of nutritive tissue cells in susceptible plants and the onset of rapid larval growth. By 7 days after egg hatch, when virulent second instars are actively feeding on the contents of nutritive tissue cells, the aromatic amino acids phenylalanine and tyrosine were more abundant compared to uninfested controls, but the levels of other free amino acids were no longer elevated. Changes in free amino acid abundance described in this report were associated with increased levels of mRNA encoded by wheat genes involved in amino acid synthesis and transport.

  20. Influence of dissolved organic carbon content on modelling natural organic matter acid-base properties.

    PubMed

    Garnier, Cédric; Mounier, Stéphane; Benaïm, Jean Yves

    2004-10-01

    Natural organic matter (NOM) behaviour towards proton is an important parameter to understand NOM fate in the environment. Moreover, it is necessary to determine NOM acid-base properties before investigating trace metals complexation by natural organic matter. This work focuses on the possibility to determine these acid-base properties by accurate and simple titrations, even at low organic matter concentrations. So, the experiments were conducted on concentrated and diluted solutions of extracted humic and fulvic acid from Laurentian River, on concentrated and diluted model solutions of well-known simple molecules (acetic and phenolic acids), and on natural samples from the Seine river (France) which are not pre-concentrated. Titration experiments were modelled by a 6 acidic-sites discrete model, except for the model solutions. The modelling software used, called PROSECE (Programme d'Optimisation et de SpEciation Chimique dans l'Environnement), has been developed in our laboratory, is based on the mass balance equilibrium resolution. The results obtained on extracted organic matter and model solutions point out a threshold value for a confident determination of the studied organic matter acid-base properties. They also show an aberrant decreasing carboxylic/phenolic ratio with increasing sample dilution. This shift is neither due to any conformational effect, since it is also observed on model solutions, nor to ionic strength variations which is controlled during all experiments. On the other hand, it could be the result of an electrode troubleshooting occurring at basic pH values, which effect is amplified at low total concentration of acidic sites. So, in our conditions, the limit for a correct modelling of NOM acid-base properties is defined as 0.04 meq of total analysed acidic sites concentration. As for the analysed natural samples, due to their high acidic sites content, it is possible to model their behaviour despite the low organic carbon concentration.

  1. Variability in seed oil content and fatty acid composition, phenotypic traits and self-incompatibility among selected niger germplasm accessions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Niger (Guizotia abyssinica, L.) is a desirable oilseed crop for birdseed, especially for finches (Spinus spp.) because of its high ratio of unsaturated to saturated fatty acids and relatively high oil content. In 2012, phenotypic traits, seed oil and fatty acid content measurements were made on 14 p...

  2. Unsaturated fatty acids in alkane solution: adsorption to steel surfaces.

    PubMed

    Lundgren, Sarah M; Persson, Karin; Mueller, Gregor; Kronberg, Bengt; Clarke, Jim; Chtaib, Mohammed; Claesson, Per M

    2007-10-01

    The adsorption of the unsaturated fatty acids oleic, linoleic, and linolenic acid on steel surfaces has been investigated by means of a quartz crystal microbalance (QCM). Two different solvents were used, n-hexadecane and its highly branched isomer, viz., 2,2,4,4,6,8,8-heptamethylnonane. The area occupied per molecule of oleic acid at 1 wt % corresponds to what is needed for adsorption parallel to the surface. At the same concentration, the adsorbed amount of linoleic acid and linolenic acid indicates that they adsorb in multilayers. The chemisorbed amount estimated from static secondary ion mass spectroscopy (SIMS) measurements was found to be similar for the three unsaturated fatty acids. In the case of linolenic acid, it was found that the presence of water significantly alters the adsorption, most likely because of the precipitation of fatty acid/water aggregates. Furthermore, static SIMS results indicate that the amount of water used here inhibits the chemisorption of linolenic acid.

  3. Effects of mechanical stress or abscisic acid on growth, water status and leaf abscisic acid content of eggplant seedlings

    NASA Technical Reports Server (NTRS)

    Latimer, J. G.; Mitchell, C. A.

    1988-01-01

    Container-grown eggplant (Solanum melongena L. var esculentum Nees. 'Burpee's Black Beauty') seedlings were conditioned with brief, periodic mechanical stress or abscisic acid (ABA) in a greenhouse prior to outdoor exposure. Mechanical stress consisted of seismic (shaking) or thigmic (stem flexing) treatment. Exogenous ABA (10(-3) or 10(-4)M) was applied as a soil drench 3 days prior to outdoor transfer. During conditioning, only thigmic stress reduced stem elongation and only 10(-3) M ABA reduced relative growth rate (RGR). Both conditioning treatments increased leaf specific chlorophyll content, but mechanical stress did not affect leaf ABA content. Outdoor exposure of unconditioned eggplant seedlings decreased RGR and leaf-specific chlorophyll content, but tended to increase leaf ABA content relative to that of plants maintained in the greenhouse. Conditioning did not affect RGR of plants subsequently transferred outdoors, but did reduce stem growth. Seismic stress applied in the greenhouse reduced dry weight gain by plants subsequently transferred outdoors. Mechanical stress treatments increased leaf water potential by 18-25% relative to that of untreated plants.

  4. The effects of growing conditions on oil content, fatty acid composition and tocopherol content of some sunflower varieties produced in Turkey.

    PubMed

    Alpaslan, M; Gündüz, H

    2000-12-01

    The properties of some extensively cultivated sunflower seed varieties in Turkey and their oils were investigated. 1991-1992 crop year sunflower varieties harvested from Trakya University, Tekirdag Agricultural Faculty, Experiment field of Crop Science Department were used as research materials. The oil content, fatty acid composition and tocopherol content of sunflower seeds in 1991 and 1992 crop years were determined as 44.2-51.2% (on dry weight basis), 43.0-51.5% (on dry weight basis); oleic acid 14.8-18.5%, 32.9-40.1%; linoleic acid 69.5-74.5%, 49.7-55.7% and tocopherol content (as alpha-tocopherol) 648-860 mg/kg, 524-880 mg/kg, respectively. It was determined that the growing conditions significantly affected the fatty acid compositions of sunflower varieties studied. While the oleic acid content of the 1992 crop increased, the linoleic acid content of the same crop decreased compared to the 1991 crop.

  5. Identification of Quantitative Trait Loci for the Phenolic Acid Contents and Their Association with Agronomic Traits in Tibetan Wild Barley.

    PubMed

    Cai, Shengguan; Han, Zhigang; Huang, Yuqing; Hu, Hongliang; Dai, Fei; Zhang, Guoping

    2016-02-01

    Phenolic acids have been of considerable interest in human nutrition because of their strong antioxidative properties. However, even in a widely grown crop, such as barley, their genetic architecture is still unclear. In this study, genetic control of two main phenolic acids, ferulic acid (FA) and p-coumaric acid (p-CA), and their associations with agronomic traits were investigated among 134 Tibetan wild barley accessions. A genome-wide association study (GWAS) identified three DArT markers (bpb-2723, bpb-7199, and bpb-7273) associated with p-CA content and one marker (bpb-3653) associated with FA content in 2 consecutive years. The contents of the two phenolic acids were positively correlated with some agronomic traits, such as the first internode length, plant height, and some grain color parameters, and negatively correlated with the thousand-grain weight (TGW). This study provides DNA markers for barley breeding programs to improve the contents of phenolic acids.

  6. Modulation of organic acids and sugar content in tomato fruits by an abscisic acid-regulated transcription factor.

    PubMed

    Bastías, Adriana; López-Climent, María; Valcárcel, Mercedes; Rosello, Salvador; Gómez-Cadenas, Aurelio; Casaretto, José A

    2011-03-01

    Growing evidence suggests that the phytohormone abscisic acid (ABA) plays a role in fruit development. ABA signaling components of developmental programs and responses to stress conditions include the group of basic leucine zipper transcriptional activators known as ABA-response element binding factors (AREBs/ABFs). AREB transcription factors mediate ABA-regulated gene expression involved in desiccation tolerance and are expressed mainly in seeds and in vegetative tissues under stress; however, they are also expressed in some fruits such as tomato. In order to get an insight into the role of ABA signaling in fruit development, the expression of two AREB-like factors were investigated during different developmental stages. In addition, tomato transgenic lines that overexpress and downregulate one AREB-like transcription factor, SlAREB1, were used to determine its effect on the levels of some metabolites determining fruit quality. Higher levels of citric acid, malic acid, glutamic acid, glucose and fructose were observed in SlAREB1-overexpressing lines compared with those in antisense suppression lines in red mature fruit pericarp. The higher hexose concentration correlated with increased expression of genes encoding a vacuolar invertase (EC 3.2.1.26) and a sucrose synthase (EC 2.4.1.13). No significant changes were found in ethylene content which agrees with the normal ripening phenotype observed in transgenic fruits. These results suggest that an AREB-mediated ABA signal affects the metabolism of these compounds during the fruit developmental program.

  7. Dietary fibre, mineral, vitamin, amino acid and fatty acid content of seagrasses from Tuticorin Bay, southeast coast of India.

    PubMed

    Jeevitha, M; Athiperumalsami, T; Kumar, Venkataraman

    2013-06-01

    The amount of dietary fibre, mineral and vitamin were determined in root, rhizome and leaf of four commonly-available seagrasses, Cymodocea serrulata, Syringodium isoetifolium, Halophila ovalis and Halodule pinifolia at a station off Hare Island, Tuticorin (8°45' N, 78°12' E) in the Gulf of Mannar Biosphere region during premonsoon (July-September), monsoon (October-December) and postmonsoon (January-March) seasons of 2010-2011 and 2011-2012 study period. The entire tissues from each seagrass were subjected to HPLC and GC analysis for determining amino acid and fatty acid profiles respectively. The rhizomes of H. ovalis possessed highest amount of dietary fibre during monsoon. C. serrulata showed maximum content of K in rhizome during monsoon. Highest amount of Ca and Mg was recorded in the rhizome and leaf of H. pinifolia in postmonsoon. S. isoetifolium exhibited peak value for Na in its rhizome during monsoon. Highest amounts of Vitamin A, C and E were registered in the rhizome/root of Cymodocea during postmonsoon. Vitamin B3 was maximum in the root of Syringodium in monsoon. Eighteen of the twenty amino acids detected in seagrasses were found to the maximum level in Halodule. Syriingodium showed the highest amount of six of the seven fatty acids recorded. PMID:23510655

  8. Dietary fibre, mineral, vitamin, amino acid and fatty acid content of seagrasses from Tuticorin Bay, southeast coast of India.

    PubMed

    Jeevitha, M; Athiperumalsami, T; Kumar, Venkataraman

    2013-06-01

    The amount of dietary fibre, mineral and vitamin were determined in root, rhizome and leaf of four commonly-available seagrasses, Cymodocea serrulata, Syringodium isoetifolium, Halophila ovalis and Halodule pinifolia at a station off Hare Island, Tuticorin (8°45' N, 78°12' E) in the Gulf of Mannar Biosphere region during premonsoon (July-September), monsoon (October-December) and postmonsoon (January-March) seasons of 2010-2011 and 2011-2012 study period. The entire tissues from each seagrass were subjected to HPLC and GC analysis for determining amino acid and fatty acid profiles respectively. The rhizomes of H. ovalis possessed highest amount of dietary fibre during monsoon. C. serrulata showed maximum content of K in rhizome during monsoon. Highest amount of Ca and Mg was recorded in the rhizome and leaf of H. pinifolia in postmonsoon. S. isoetifolium exhibited peak value for Na in its rhizome during monsoon. Highest amounts of Vitamin A, C and E were registered in the rhizome/root of Cymodocea during postmonsoon. Vitamin B3 was maximum in the root of Syringodium in monsoon. Eighteen of the twenty amino acids detected in seagrasses were found to the maximum level in Halodule. Syriingodium showed the highest amount of six of the seven fatty acids recorded.

  9. Assessment of rosmarinic acid content in six Lamiaceae species extracts and their antioxidant and antimicrobial potential.

    PubMed

    Benedec, Daniela; Hanganu, Daniela; Oniga, Ilioara; Tiperciuc, Brindusa; Olah, Neli-Kinga; Raita, Oana; Bischin, Cristina; Silaghi-Dumitrescu, Radu; Vlase, Laurian

    2015-11-01

    In the present study, six indigenous species of Lamiaceae family (Origanum vulgare L., Melissa officinalis L., Rosmarinus officinalis L., Ocimum basilicum L., Salvia officinalis L. and Hyssopus officinalis L.), have been analyzed to assess the rosmarinic acid, phenyl propane derivatives and polyphenolic contents and their antioxidant and antimicrobial potential. HPLC-MS method has been used for the analysis ofrosmarinicacid. The phenyl propane derivatives and total phenolic contents were determined using spectrophotometric method. The ethanolic extracts were screened for antioxidant activities by DPPH radical scavenging, HAPX (hemoglobin ascorbate per oxidase activity inhibition), and EPR (electron paramagnetic resonance) methods. The ethanolic extracts revealed the presence of rosmarinic acid in the largest amount in O. vulgare (12.40mg/g) and in the lowest in R. officinalis (1.33 mg/g). O. vulgare extracts exhibited the highest antioxidant capacity, in line with the rosmarinic acid and polyphenolic contents. The antimicrobial testing showed a significant activity against L. monocytogenes, S. aureus and C. albicans for all six extracts.

  10. Assessment of rosmarinic acid content in six Lamiaceae species extracts and their antioxidant and antimicrobial potential.

    PubMed

    Benedec, Daniela; Hanganu, Daniela; Oniga, Ilioara; Tiperciuc, Brindusa; Olah, Neli-Kinga; Raita, Oana; Bischin, Cristina; Silaghi-Dumitrescu, Radu; Vlase, Laurian

    2015-11-01

    In the present study, six indigenous species of Lamiaceae family (Origanum vulgare L., Melissa officinalis L., Rosmarinus officinalis L., Ocimum basilicum L., Salvia officinalis L. and Hyssopus officinalis L.), have been analyzed to assess the rosmarinic acid, phenyl propane derivatives and polyphenolic contents and their antioxidant and antimicrobial potential. HPLC-MS method has been used for the analysis ofrosmarinicacid. The phenyl propane derivatives and total phenolic contents were determined using spectrophotometric method. The ethanolic extracts were screened for antioxidant activities by DPPH radical scavenging, HAPX (hemoglobin ascorbate per oxidase activity inhibition), and EPR (electron paramagnetic resonance) methods. The ethanolic extracts revealed the presence of rosmarinic acid in the largest amount in O. vulgare (12.40mg/g) and in the lowest in R. officinalis (1.33 mg/g). O. vulgare extracts exhibited the highest antioxidant capacity, in line with the rosmarinic acid and polyphenolic contents. The antimicrobial testing showed a significant activity against L. monocytogenes, S. aureus and C. albicans for all six extracts. PMID:26687747

  11. Nicotinic acid increases the lipid content of rat brain synaptosomes. [Ethanol effects

    SciTech Connect

    Basilio, C.; Flores, M.

    1989-02-09

    Chronic administration of nicotinic acid (NA) increase hepatic lipids and potentiates a similar effect induced by ethanol. The amethystic properties of NA promoted us to study its effects on the lipid content of brain synaptosomes of native and ethanol treated rats. Groups of 10 Sprague-Dawley female rats received i.p. either saline, ethanol (4g/kg), NA (50mg/kg), or a mixture of both compounds once a week during 3 weeks. The sleeping time (ST) of the animals receiving ethanol was recorded, brain synaptosomes of all groups were prepared and total lipids (TL) and cholesterol (Chol) content were determined. NA, ethanol and ethanol + NA markedly increased both TL and Chol of synaptosomes. Animals treated with ethanol or ethanol + NA developed tolerance. The group treated with ethanol-NA showed the highest Chol content and slept significantly less than the one treated with ethanol alone indicating that the changes induced by NA favored the appearance of tolerance.

  12. The Effect of Copper And Zinc Nanoparticles on the Growth Parameters, Contents of Ascorbic Acid, and Qualitative Composition of Amino Acids and Acylcarnitines in Pistia stratiotes L. (Araceae)

    NASA Astrophysics Data System (ADS)

    Olkhovych, Olga; Volkogon, Mykola; Taran, Nataliya; Batsmanova, Lyudmyla; Kravchenko, Inna

    2016-04-01

    The paper covers the research of copper and zinc nanoparticle effect on the content of ascorbic acid, and quantitative and qualitative composition of amino acids and acylcarnitines in Pistia stratiotes L. plants. Plant exposition to copper nanoparticles led to the decrease in (1) the amount of ascorbic acid, (2) the total content of amino acids (by 25 %), and (3) the amount of all studied amino acids except for the glycine amino acid. At this, the amount of 5-oxoproline, arginine, leucine, ornithine, phenylalanine, proline, serine, and tyrosine was two times lower than in control plants. The reduction of the contents of 8 out of 12 investigated acylcarnitines (namely C0, C2, C3, C5, C6, C8, C16, C18:1) was observed in plants under the influence of copper nanoparticles. The result of plants incubation with zinc nanoparticles was the decrease in (1) the amount of ascorbic acid, (2) the total content of amino acids (by 15 %), (3) the content of leucine, methionine, phenylalanine, proline, and tyrosine (more than twice), and (4) the content of 10 acylcarnitines (C0, C2, C3, C4, C5, C10, C16, C18, C18:1, C18:2). The observed reduction in amino acid contents may negatively affect plants adaptive reactions associated with de novo synthesis of stress proteins. At the same time, the decrease in the content of acylcarnitines, responsible for fatty acid transportation, may lead to the changes in the activity and direction of lipid metabolism in plants and reduce plant's ability to use free fatty acids as the oxidation substrate for cell reparation.

  13. The Effect of Copper And Zinc Nanoparticles on the Growth Parameters, Contents of Ascorbic Acid, and Qualitative Composition of Amino Acids and Acylcarnitines in Pistia stratiotes L. (Araceae).

    PubMed

    Olkhovych, Olga; Volkogon, Mykola; Taran, Nataliya; Batsmanova, Lyudmyla; Kravchenko, Inna

    2016-12-01

    The paper covers the research of copper and zinc nanoparticle effect on the content of ascorbic acid, and quantitative and qualitative composition of amino acids and acylcarnitines in Pistia stratiotes L. plants. Plant exposition to copper nanoparticles led to the decrease in (1) the amount of ascorbic acid, (2) the total content of amino acids (by 25 %), and (3) the amount of all studied amino acids except for the glycine amino acid. At this, the amount of 5-oxoproline, arginine, leucine, ornithine, phenylalanine, proline, serine, and tyrosine was two times lower than in control plants. The reduction of the contents of 8 out of 12 investigated acylcarnitines (namely C0, C2, C3, C5, C6, C8, C16, C18:1) was observed in plants under the influence of copper nanoparticles. The result of plants incubation with zinc nanoparticles was the decrease in (1) the amount of ascorbic acid, (2) the total content of amino acids (by 15 %), (3) the content of leucine, methionine, phenylalanine, proline, and tyrosine (more than twice), and (4) the content of 10 acylcarnitines (C0, C2, C3, C4, C5, C10, C16, C18, C18:1, C18:2). The observed reduction in amino acid contents may negatively affect plants adaptive reactions associated with de novo synthesis of stress proteins. At the same time, the decrease in the content of acylcarnitines, responsible for fatty acid transportation, may lead to the changes in the activity and direction of lipid metabolism in plants and reduce plant's ability to use free fatty acids as the oxidation substrate for cell reparation. PMID:27107771

  14. The Effect of Copper And Zinc Nanoparticles on the Growth Parameters, Contents of Ascorbic Acid, and Qualitative Composition of Amino Acids and Acylcarnitines in Pistia stratiotes L. (Araceae).

    PubMed

    Olkhovych, Olga; Volkogon, Mykola; Taran, Nataliya; Batsmanova, Lyudmyla; Kravchenko, Inna

    2016-12-01

    The paper covers the research of copper and zinc nanoparticle effect on the content of ascorbic acid, and quantitative and qualitative composition of amino acids and acylcarnitines in Pistia stratiotes L. plants. Plant exposition to copper nanoparticles led to the decrease in (1) the amount of ascorbic acid, (2) the total content of amino acids (by 25 %), and (3) the amount of all studied amino acids except for the glycine amino acid. At this, the amount of 5-oxoproline, arginine, leucine, ornithine, phenylalanine, proline, serine, and tyrosine was two times lower than in control plants. The reduction of the contents of 8 out of 12 investigated acylcarnitines (namely C0, C2, C3, C5, C6, C8, C16, C18:1) was observed in plants under the influence of copper nanoparticles. The result of plants incubation with zinc nanoparticles was the decrease in (1) the amount of ascorbic acid, (2) the total content of amino acids (by 15 %), (3) the content of leucine, methionine, phenylalanine, proline, and tyrosine (more than twice), and (4) the content of 10 acylcarnitines (C0, C2, C3, C4, C5, C10, C16, C18, C18:1, C18:2). The observed reduction in amino acid contents may negatively affect plants adaptive reactions associated with de novo synthesis of stress proteins. At the same time, the decrease in the content of acylcarnitines, responsible for fatty acid transportation, may lead to the changes in the activity and direction of lipid metabolism in plants and reduce plant's ability to use free fatty acids as the oxidation substrate for cell reparation.

  15. Experienced Teachers' Pedagogical Content Knowledge of Teaching Acid-base Chemistry

    NASA Astrophysics Data System (ADS)

    Drechsler, Michal; van Driel, Jan

    2008-11-01

    We investigated the pedagogical content knowledge (PCK) of nine experienced chemistry teachers. The teachers took part in a teacher training course on students’ difficulties and the use of models in teaching acid-base chemistry, electrochemistry, and redox reactions. Two years after the course, the teachers were interviewed about their PCK of (1) students’ difficulties in understanding acid-base chemistry and (2) models of acids and bases in their teaching practice. In the interviews, the teachers were asked to comment on authentic student responses collected in a previous study that included student interviews about their understanding of acids and bases. Further, the teachers drew story-lines representing their level of satisfaction with their acid-base teaching. The results show that, although all teachers recognised some of the students’ difficulties as confusion between models, only a few chose to emphasise the different models of acids and bases. Most of the teachers thought it was sufficient to distinguish clearly between the phenomenological level and the particle level. The ways the teachers reflected on their teaching, in order to improve it, also differed. Some teachers reflected more on students’ difficulties; others were more concerned about their own performance. Implications for chemistry (teacher) education are discussed.

  16. The effect of processing on chlorogenic acid content of commercially available coffee.

    PubMed

    Mills, Charlotte E; Oruna-Concha, Maria Jose; Mottram, Donald S; Gibson, Glenn R; Spencer, Jeremy P E

    2013-12-15

    Chlorogenic acids (CGA) are a class of polyphenols noted for their health benefits. These compounds were identified and quantified, using LC-MS and HPLC, in commercially available coffees which varied in processing conditions. Analysis of ground and instant coffees indicated the presence of caffeoylquinic acids (CQA), feruloylquinic acids (FQA) and dicaffeoylquinic acids (diCQA) in all 18 samples tested. 5-CQA was present at the highest levels, between 25 and 30% of total CGA; subsequent relative quantities were: 4-CQA>3-CQA>5-FQA>4-FQA>diCQA (sum of 3,4, 3,5 and 4,5-diCQA). CGA content varied greatly (27.33-121.25mg/200 ml coffee brew), driven primarily by the degree of coffee bean roasting (a high amount of roasting had a detrimental effect on CGA content). These results highlight the broad range of CGA quantity in commercial coffee and demonstrate that coffee choice is important in delivering optimum CGA intake to consumers.

  17. Chromatographic method for determination of the free amino acid content of chamomile flowers

    PubMed Central

    Ma, Xiaoli; Zhao, Dongsheng; Li, Xinxia; Meng, Lei

    2015-01-01

    Objective: To determine the free amino acid contents of chamomile flowers using reverse-phase high-performance column chromatography preceded by pre-column derivatization with 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate (AQC), and to determine the reliability of this method. Materials and Methods: Derivatization with reconstituted AQC was used to prepare the samples and standards for injection into the chromatography column. The peaks were analyzed by fluorescence detection (λ excitation, 250 nm; λ emission, 395 nm. Results: Alanine, proline, and leucine were the most abundant amino acids, whereas tyrosine and methionine were the least abundant. The linearity of the method was found to be good with amino acid concentrations of 0.012-0.36 μM. The precision was 0.05-1.36%; average recovery, 91.12-129.41%; and limit of detection, 0.006-0.058 μM. Conclusion: The method is reliable for determining the free amino acid content of different types of chamomile flowers. PMID:25709230

  18. The effect of processing on chlorogenic acid content of commercially available coffee.

    PubMed

    Mills, Charlotte E; Oruna-Concha, Maria Jose; Mottram, Donald S; Gibson, Glenn R; Spencer, Jeremy P E

    2013-12-15

    Chlorogenic acids (CGA) are a class of polyphenols noted for their health benefits. These compounds were identified and quantified, using LC-MS and HPLC, in commercially available coffees which varied in processing conditions. Analysis of ground and instant coffees indicated the presence of caffeoylquinic acids (CQA), feruloylquinic acids (FQA) and dicaffeoylquinic acids (diCQA) in all 18 samples tested. 5-CQA was present at the highest levels, between 25 and 30% of total CGA; subsequent relative quantities were: 4-CQA>3-CQA>5-FQA>4-FQA>diCQA (sum of 3,4, 3,5 and 4,5-diCQA). CGA content varied greatly (27.33-121.25mg/200 ml coffee brew), driven primarily by the degree of coffee bean roasting (a high amount of roasting had a detrimental effect on CGA content). These results highlight the broad range of CGA quantity in commercial coffee and demonstrate that coffee choice is important in delivering optimum CGA intake to consumers. PMID:23993490

  19. Measurement of sialic acid content is insufficient to assess bioactivity of recombinant human erythropoietin.

    PubMed

    Yanagihara, Shigehiro; Taniguchi, Yuya; Hosono, Mareto; Yoshioka, Eiji; Ishikawa, Rika; Shimada, Yoshihiro; Kadoya, Toshihiko; Kutsukake, Kazuhiro

    2010-01-01

    Assessment of biological potency and its comparison with clinical effects are important in the quality control of therapeutic glycoproteins. Animal models are usually used for evaluating bioactivity of these compounds. However, alternative methods are required to simplify the bioassay and avoid ethical issues associated with animal studies. Negatively charged sialic acid residues are known to be critical for in vivo bioactivity of recombinant human erythropoietin (rhEPO). In this study, we used capillary zone electrophoresis, a charge-based separation method, to estimate the sialic acid content for predicting in vivo bioactivity of rhEPO. In vivo bioactivities of rhEPO subfractions were measured and compared with sialylation levels. The results obtained indicated that in vivo bioactivity of rhEPO is not simply correlated with the sialylation level, which suggests that it is difficult to predict biological potency from the sialic acid content alone. N-Glycan moieties as well as sialic acid residues may have a significant impact on in vivo bioactivity of rhEPO. PMID:20823580

  20. Branched Chain Fatty Acid (BCFA) Content of Foods and Estimated Intake in the United States

    PubMed Central

    Bae, SangEun; Lawrence, Peter; Wang, Dong Hao

    2015-01-01

    Branched chain fatty acids (BCFA) are bioactive food components that constitute about 2% of fatty acids in cow’s milk fat. Little systematic information on the BCFA content of other foods is available to estimate dietary intakes. We report BCFA distribution and content of fresh and processed foods representing the major foods of Americans and estimate BCFA intake. BCFA are primarily components of dairy and ruminant foods, and were absent from chicken, pork, and salmon. Dairy and beef delivered most of the 500 mg per day mean intake; in comparison, intake of the widely studied long chain polyunsaturates eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) is estimated to average 100 mg per day. Common adjustments in diet can double BCFA daily intake. The fermented foods sauerkraut and miso had appreciable fractions of BCFA but overall are low fat foods providing very small amounts in the diet, and other fermented foods did not contain BCFA as might have been expected from microbial exposure. These data support the quantitative importance of BCFA delivered primarily from dairy and beef and highlight the need for research into their health effects. PMID:24830474

  1. Amino acid contents along the visual and equatorial axes of a pig lens by Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Medina-Gutiérrez, C.; Frausto-Reyes, C.; Quintanar-Stephano, J. L.; Sato-Berrú, R.

    2004-08-01

    Using near infrared Raman microspectroscopy with laser light of 830 nm, the distribution of amino acids along the visual and equatorial axes of a normal pig lens was studied. The classification of pig lens Raman spectra in these axes was performed using principal component analysis and linear discriminant analysis. The analysis of the scattered light selectively collected from point to point, along the visual axis, indicated that the tyrosine and tryptophan increases and then, at ˜4 mm position, decreases. Moreover, in the equatorial plane, the nuclear part has the highest concentration of these amino acids. However, the phenylalanine content increases from anterior to posterior cortex of the lens as long as in the equatorial axis it slightly increases and then at ˜2-2.3 mm position, decreases. The changes in amino acid conformation along the visual axis, similarly to the changes in protein conformation, may explain the refractive gradient of the lens.

  2. Amino acid contents along the visual and equatorial axes of a pig lens by Raman spectroscopy.

    PubMed

    Medina-Gutiérrez, C; Frausto-Reyes, C; Quintanar-Stephano, J L; Sato-Berrú, R

    2004-08-01

    Using near infrared Raman microspectroscopy with laser light of 830 nm, the distribution of amino acids along the visual and equatorial axes of a normal pig lens was studied. The classification of pig lens Raman spectra in these axes was performed using principal component analysis and linear discriminant analysis. The analysis of the scattered light selectively collected from point to point, along the visual axis, indicated that the tyrosine and tryptophan increases and then, at approximately 4 mm position, decreases. Moreover, in the equatorial plane, the nuclear part has the highest concentration of these amino acids. However, the phenylalanine content increases from anterior to posterior cortex of the lens as long as in the equatorial axis it slightly increases and then at approximately 2-2.3 mm position, decreases. The changes in amino acid conformation along the visual axis, similarly to the changes in protein conformation, may explain the refractive gradient of the lens.

  3. Reduction of polyphenol and phytic acid content of pearl millet grains by malting and blanching.

    PubMed

    Archana; Sehgal, S; Kawatra, A

    1999-01-01

    This work was undertaken to evaluate the changes in polyphenol and phytic acid content in malted and blanched pearl millet grains. For malting, grains were steeped for 16 hours, germinated for 48 or 72 hours and then kilned at 50 degrees C for 24 hours. Blanching was done for 30 seconds in boiling water at 98 degrees C. Results indicated that blanching resulted in significant reduction in polyphenol (28%) and phytic acids (38%). Destruction of polyphenols (38 to 48%) and phytic acid (46 to 50%) was significantly higher in grains subjected to malting than blanching: The overall results suggested that malting with 72 hours of germination was most effective in reducing the antinutrient levels of pearl millet grains.

  4. Development of gluten-free bread using tartary buckwheat and chia flour rich in flavonoids and omega-3 fatty acids as ingredients.

    PubMed

    Costantini, Lara; Lukšič, Lea; Molinari, Romina; Kreft, Ivan; Bonafaccia, Giovanni; Manzi, Laura; Merendino, Nicolò

    2014-12-15

    In this study, chia seed flour, which is rich in omega-3 alpha-linolenic acid, and common and tartary buckwheat flour, which has a high antioxidant activity, were integrated into different types of bread with the aim of improving their nutritional value and healthy features. Our results indicate that bread made with chia and tartary buckwheat flour was more acceptable in many nutritional aspects compared to the control (common wheat bread); it contained a higher amount of protein (20%), insoluble dietary fibres (74%), ash (51%), and alpha-linolenic acid (67.4%). Moreover, this bread possessed lower energy (14%) and carbohydrate contents (24%) compared to the control. Tartary buckwheat also improved the total antioxidant capacity of the bread (about 75%) and provided a considerable amount of flavonoids, which are healthy non-nutritional compounds. Overall, chia and tartary buckwheat represent excellent raw materials for the formulation of gluten-free bread with high nutritional value.

  5. Ribonucleic Acid, Deoxyribonucleic Acid, and Protein Content of Cells of Different Ages of Mycobacterium tuberculosis and the Relationship to Immunogenicity

    PubMed Central

    Youmans, Anne S.; Youmans, Guy P.

    1968-01-01

    The amount of ribonucleic acid (RNA), protein, and deoxyribonucleic acid (DNA) was determined in pellicle cultures of different ages of the H37Ra strain of Mycobacterium tuberculosis, grown on a synthetic medium. We found that the highest content of RNA and protein was present in 2-week-old cultures, indicating that these cells were in the logarithmic phase of growth. DNA content was highest at 1 and 2 weeks. The amount of all three compounds then decreased about 50% during the following 6 weeks. Two-week-old cells should therefore be used for preparation of the immunogenic ribosomal fraction. The optimal concentration of zinc chloride increased RNA and protein synthesis, and also improved the appearance of the pellicle growth. Two-week-old cells, which contained the largest amount of RNA and protein, immunized mice significantly better than older cells. Since protein and DNA are not involved in the production of immunity, a correlation could be made between amount of RNA and the capacity of viable H37Ra cells to immunize mice. The immunizing capacity of these cells was not affected by ribonuclease, probably because the ribonuclease did not penetrate into the whole cells. PMID:4966539

  6. Supplementation with Cashew Nut and Cottonseed Meal to Modify Fatty Acid Content in Lamb Meat.

    PubMed

    Pereira, Elzania S; Mizubuti, Ivone Y; Oliveira, Ronaldo L; Pinto, Andréa P; Ribeiro, Edson L A; Gadelha, Carla R F; Campos, Ana C N; Pereira, Marília F; Carneiro, Maria S S; Arruda, Paulo C; Silva, Luciano P

    2016-09-01

    This study evaluates the effect of cashew nut meal (CNM), whole cottonseed (WCS), and calcium salts of long-chain fatty acids (Ca-LCFA) on the fatty acid profiles of meat from hair lambs. Thirty-five 60-d-old, male, noncastrated Santa Ines lambs with an initial average body weight of 13.00 ± 1.80 kg were used in a randomized complete-block design with 7 blocks and 5 treatments. The experimental treatments consisted of a control diet (CON) without supplemental lipids and 4 test diets with different lipid supplements that were selected according to the degree of protection from ruminal hydrogenation and their polyunsaturated fatty acid richness. The tests diets included the following modifications: supplementation with WCS, supplementation with CNM, supplementation with both cottonseed and CNM (CSCNM), and supplementation with Ca-LCFA. The C18:1n9c content was highest in the meat of the animals fed the CNM diet (42.00%). The meat from lambs fed the WCS and Ca-LCFA diets had higher C18:0 contents (25.23 and 22.80%, respectively). The C16:1 content was higher in the meat from the animals fed the CNM and CON diets (1.54 and 1.49%, respectively). C18:2c9t11 concentration was higher in the meat from the animals fed the Ca-LCFA and CNM diets. The estimated enzyme activity of Δ9-desaturase C18 was highest in the muscles of the lambs fed the CON, CNM, and CSCNM diets. The use of cashew nuts in the diet resulted in an increase in the C18:2c9t11 content of the lamb meat, which improved the nutritional characteristics of the fat.

  7. Supplementation with Cashew Nut and Cottonseed Meal to Modify Fatty Acid Content in Lamb Meat.

    PubMed

    Pereira, Elzania S; Mizubuti, Ivone Y; Oliveira, Ronaldo L; Pinto, Andréa P; Ribeiro, Edson L A; Gadelha, Carla R F; Campos, Ana C N; Pereira, Marília F; Carneiro, Maria S S; Arruda, Paulo C; Silva, Luciano P

    2016-09-01

    This study evaluates the effect of cashew nut meal (CNM), whole cottonseed (WCS), and calcium salts of long-chain fatty acids (Ca-LCFA) on the fatty acid profiles of meat from hair lambs. Thirty-five 60-d-old, male, noncastrated Santa Ines lambs with an initial average body weight of 13.00 ± 1.80 kg were used in a randomized complete-block design with 7 blocks and 5 treatments. The experimental treatments consisted of a control diet (CON) without supplemental lipids and 4 test diets with different lipid supplements that were selected according to the degree of protection from ruminal hydrogenation and their polyunsaturated fatty acid richness. The tests diets included the following modifications: supplementation with WCS, supplementation with CNM, supplementation with both cottonseed and CNM (CSCNM), and supplementation with Ca-LCFA. The C18:1n9c content was highest in the meat of the animals fed the CNM diet (42.00%). The meat from lambs fed the WCS and Ca-LCFA diets had higher C18:0 contents (25.23 and 22.80%, respectively). The C16:1 content was higher in the meat from the animals fed the CNM and CON diets (1.54 and 1.49%, respectively). C18:2c9t11 concentration was higher in the meat from the animals fed the Ca-LCFA and CNM diets. The estimated enzyme activity of Δ9-desaturase C18 was highest in the muscles of the lambs fed the CON, CNM, and CSCNM diets. The use of cashew nuts in the diet resulted in an increase in the C18:2c9t11 content of the lamb meat, which improved the nutritional characteristics of the fat. PMID:27472154

  8. Reducing Capacity, Chlorogenic Acid Content and Biological Activity in a Collection of Scarlet (Solanum aethiopicum) and Gboma (S. macrocarpon) Eggplants

    PubMed Central

    Plazas, Mariola; Prohens, Jaime; Cuñat, Amparo Noelia; Vilanova, Santiago; Gramazio, Pietro; Herraiz, Francisco Javier; Andújar, Isabel

    2014-01-01

    Scarlet (Solanum aethiopicum) and gboma (S. macrocarpon) eggplants are important vegetables in Sub-Saharan Africa. Few studies have been made on these crops regarding the diversity of phenolic content and their biological activity. We have studied the reducing activity, the chlorogenic acid and other phenolic acid contents in a collection of 56 accessions of scarlet eggplant, including the four cultivated groups (Aculeatum, Gilo, Kumba, Shum) and the weedy intermediate S. aethiopicum-S. anguivi types, as well as in eight accessions of gboma eggplant, including the cultivated S. macrocarpon and its wild ancestor, S. dasyphyllum. A sample of the accessions evaluated in this collection has been tested for inhibition of nitric oxide (NO) using macrophage cell cultures. The results show that there is a great diversity in both crops for reducing activity, chlorogenic acid content and chlorogenic acid peak area (% of total phenolic acids). Heritability (H2) for these traits was intermediate to high in both crops. In all samples, chlorogenic acid was the major phenolic acid and accounted for more than 50% of the chromatogram peak area. Considerable differences were found among and within groups for these traits, but the greatest values for total phenolics and chlorogenic acid content were found in S. dasyphyllum. In most groups, reducing activity was positively correlated (with values of up to 0.904 in the Aculeatum group) with chlorogenic acid content. Inhibition of NO was greatest in samples having a high chlorogenic acid content. The results show that both crops are a relevant source of chlorogenic acid and other phenolic acids. The high diversity found also indicates that there are good prospects for breeding new scarlet and gboma eggplant cultivars with improved content in phenolics and bioactive properties. PMID:25264739

  9. Effects of liming on forage availability and nutrient content in a forest impacted by acid rain.

    PubMed

    Pabian, Sarah E; Ermer, Nathan M; Tzilkowski, Walter M; Brittingham, Margaret C

    2012-01-01

    Acidic deposition and subsequent forest soil acidification and nutrient depletion can affect negatively the growth, health and nutrient content of vegetation, potentially limiting the availability and nutrient content of forage for white-tailed deer (Odocoileus virginianus) and other forest herbivores. Liming is a mitigation technique that can be used to restore forest health in acidified areas, but little is known about how it affects the growth or nutrient content of deer forage. We examined the effects of dolomitic limestone application on the growth and chemical composition of understory plants in an acidified forest in central Pennsylvania, with a focus on vegetative groups included as white-tailed deer forage. We used a Before-After-Control-Impact study design with observations 1 year before liming and up to 5 years post-liming on 2 treated and 2 untreated 100-ha sites. Before liming, forage availability and several nutrients were below levels considered optimal for white-tailed deer, and many vegetative characteristics were related to soil chemistry. We observed a positive effect of liming on forb biomass, with a 2.7 fold increase on limed sites, but no biomass response in other vegetation groups. We observed positive effects of liming on calcium and magnesium content and negative effects on aluminum and manganese content of several plant groups. Responses to liming by forbs and plant nutrients show promise for improving vegetation health and forage quality and quantity for deer.

  10. Effects of Liming on Forage Availability and Nutrient Content in a Forest Impacted by Acid Rain

    PubMed Central

    Pabian, Sarah E.; Ermer, Nathan M.; Tzilkowski, Walter M.; Brittingham, Margaret C.

    2012-01-01

    Acidic deposition and subsequent forest soil acidification and nutrient depletion can affect negatively the growth, health and nutrient content of vegetation, potentially limiting the availability and nutrient content of forage for white-tailed deer (Odocoileus virginianus) and other forest herbivores. Liming is a mitigation technique that can be used to restore forest health in acidified areas, but little is known about how it affects the growth or nutrient content of deer forage. We examined the effects of dolomitic limestone application on the growth and chemical composition of understory plants in an acidified forest in central Pennsylvania, with a focus on vegetative groups included as white-tailed deer forage. We used a Before-After-Control-Impact study design with observations 1 year before liming and up to 5 years post-liming on 2 treated and 2 untreated 100-ha sites. Before liming, forage availability and several nutrients were below levels considered optimal for white-tailed deer, and many vegetative characteristics were related to soil chemistry. We observed a positive effect of liming on forb biomass, with a 2.7 fold increase on limed sites, but no biomass response in other vegetation groups. We observed positive effects of liming on calcium and magnesium content and negative effects on aluminum and manganese content of several plant groups. Responses to liming by forbs and plant nutrients show promise for improving vegetation health and forage quality and quantity for deer. PMID:22761890

  11. Effects of liming on forage availability and nutrient content in a forest impacted by acid rain.

    PubMed

    Pabian, Sarah E; Ermer, Nathan M; Tzilkowski, Walter M; Brittingham, Margaret C

    2012-01-01

    Acidic deposition and subsequent forest soil acidification and nutrient depletion can affect negatively the growth, health and nutrient content of vegetation, potentially limiting the availability and nutrient content of forage for white-tailed deer (Odocoileus virginianus) and other forest herbivores. Liming is a mitigation technique that can be used to restore forest health in acidified areas, but little is known about how it affects the growth or nutrient content of deer forage. We examined the effects of dolomitic limestone application on the growth and chemical composition of understory plants in an acidified forest in central Pennsylvania, with a focus on vegetative groups included as white-tailed deer forage. We used a Before-After-Control-Impact study design with observations 1 year before liming and up to 5 years post-liming on 2 treated and 2 untreated 100-ha sites. Before liming, forage availability and several nutrients were below levels considered optimal for white-tailed deer, and many vegetative characteristics were related to soil chemistry. We observed a positive effect of liming on forb biomass, with a 2.7 fold increase on limed sites, but no biomass response in other vegetation groups. We observed positive effects of liming on calcium and magnesium content and negative effects on aluminum and manganese content of several plant groups. Responses to liming by forbs and plant nutrients show promise for improving vegetation health and forage quality and quantity for deer. PMID:22761890

  12. Experimental Warming Decreases the Average Size and Nucleic Acid Content of Marine Bacterial Communities

    PubMed Central

    Huete-Stauffer, Tamara M.; Arandia-Gorostidi, Nestor; Alonso-Sáez, Laura; Morán, Xosé Anxelu G.

    2016-01-01

    Organism size reduction with increasing temperature has been suggested as a universal response to global warming. Since genome size is usually correlated to cell size, reduction of genome size in unicells could be a parallel outcome of warming at ecological and evolutionary time scales. In this study, the short-term response of cell size and nucleic acid content of coastal marine prokaryotic communities to temperature was studied over a full annual cycle at a NE Atlantic temperate site. We used flow cytometry and experimental warming incubations, spanning a 6°C range, to analyze the hypothesized reduction with temperature in the size of the widespread flow cytometric bacterial groups of high and low nucleic acid content (HNA and LNA bacteria, respectively). Our results showed decreases in size in response to experimental warming, which were more marked in 0.8 μm pre-filtered treatment rather than in the whole community treatment, thus excluding the role of protistan grazers in our findings. Interestingly, a significant effect of temperature on reducing the average nucleic acid content (NAC) of prokaryotic cells in the communities was also observed. Cell size and nucleic acid decrease with temperature were correlated, showing a common mean decrease of 0.4% per °C. The usually larger HNA bacteria consistently showed a greater reduction in cell and NAC compared with their LNA counterparts, especially during the spring phytoplankton bloom period associated to maximum bacterial growth rates in response to nutrient availability. Our results show that the already smallest planktonic microbes, yet with key roles in global biogeochemical cycling, are likely undergoing important structural shrinkage in response to rising temperatures. PMID:27242747

  13. Experimental Warming Decreases the Average Size and Nucleic Acid Content of Marine Bacterial Communities.

    PubMed

    Huete-Stauffer, Tamara M; Arandia-Gorostidi, Nestor; Alonso-Sáez, Laura; Morán, Xosé Anxelu G

    2016-01-01

    Organism size reduction with increasing temperature has been suggested as a universal response to global warming. Since genome size is usually correlated to cell size, reduction of genome size in unicells could be a parallel outcome of warming at ecological and evolutionary time scales. In this study, the short-term response of cell size and nucleic acid content of coastal marine prokaryotic communities to temperature was studied over a full annual cycle at a NE Atlantic temperate site. We used flow cytometry and experimental warming incubations, spanning a 6°C range, to analyze the hypothesized reduction with temperature in the size of the widespread flow cytometric bacterial groups of high and low nucleic acid content (HNA and LNA bacteria, respectively). Our results showed decreases in size in response to experimental warming, which were more marked in 0.8 μm pre-filtered treatment rather than in the whole community treatment, thus excluding the role of protistan grazers in our findings. Interestingly, a significant effect of temperature on reducing the average nucleic acid content (NAC) of prokaryotic cells in the communities was also observed. Cell size and nucleic acid decrease with temperature were correlated, showing a common mean decrease of 0.4% per °C. The usually larger HNA bacteria consistently showed a greater reduction in cell and NAC compared with their LNA counterparts, especially during the spring phytoplankton bloom period associated to maximum bacterial growth rates in response to nutrient availability. Our results show that the already smallest planktonic microbes, yet with key roles in global biogeochemical cycling, are likely undergoing important structural shrinkage in response to rising temperatures. PMID:27242747

  14. Experimental Warming Decreases the Average Size and Nucleic Acid Content of Marine Bacterial Communities.

    PubMed

    Huete-Stauffer, Tamara M; Arandia-Gorostidi, Nestor; Alonso-Sáez, Laura; Morán, Xosé Anxelu G

    2016-01-01

    Organism size reduction with increasing temperature has been suggested as a universal response to global warming. Since genome size is usually correlated to cell size, reduction of genome size in unicells could be a parallel outcome of warming at ecological and evolutionary time scales. In this study, the short-term response of cell size and nucleic acid content of coastal marine prokaryotic communities to temperature was studied over a full annual cycle at a NE Atlantic temperate site. We used flow cytometry and experimental warming incubations, spanning a 6°C range, to analyze the hypothesized reduction with temperature in the size of the widespread flow cytometric bacterial groups of high and low nucleic acid content (HNA and LNA bacteria, respectively). Our results showed decreases in size in response to experimental warming, which were more marked in 0.8 μm pre-filtered treatment rather than in the whole community treatment, thus excluding the role of protistan grazers in our findings. Interestingly, a significant effect of temperature on reducing the average nucleic acid content (NAC) of prokaryotic cells in the communities was also observed. Cell size and nucleic acid decrease with temperature were correlated, showing a common mean decrease of 0.4% per °C. The usually larger HNA bacteria consistently showed a greater reduction in cell and NAC compared with their LNA counterparts, especially during the spring phytoplankton bloom period associated to maximum bacterial growth rates in response to nutrient availability. Our results show that the already smallest planktonic microbes, yet with key roles in global biogeochemical cycling, are likely undergoing important structural shrinkage in response to rising temperatures.

  15. Influence of Fatty acids on foaming properties of cider.

    PubMed

    Margolles Cabrales, Inmaculada; Arias Abrodo, Pilar; Blanco-Gomis, Domingo

    2003-10-01

    Seventy-seven ciders from four consecutive harvests, which were produced at industrial scale by cider-makers from the region of Asturias (northern Spain), were analyzed to evaluate their foam capacity. The Bikerman method for the evaluation of foaming characteristics was adapted to ciders. In foaming, there are two parameters, foam formation and foam stability, which are found to be related to each other. To determine the relationship between fatty acid content and foaming properties of cider, the multivariate analysis technique of canonical correlation analysis was applied. Foam stability is positively related to the content of caprylic acid. Foam height is positively related to linolenic, pentadecanoic, and palmitic acid and negatively related to stearic and linoleic acid. PMID:14518961

  16. Nucleic Acid Content in Crustacean Zooplankton: Bridging Metabolic and Stoichiometric Predictions

    PubMed Central

    Bullejos, Francisco José; Carrillo, Presentación; Gorokhova, Elena; Medina-Sánchez, Juan Manuel; Villar-Argaiz, Manuel

    2014-01-01

    Metabolic and stoichiometric theories of ecology have provided broad complementary principles to understand ecosystem processes across different levels of biological organization. We tested several of their cornerstone hypotheses by measuring the nucleic acid (NA) and phosphorus (P) content of crustacean zooplankton species in 22 high mountain lakes (Sierra Nevada and the Pyrenees mountains, Spain). The P-allocation hypothesis (PAH) proposes that the genome size is smaller in cladocerans than in copepods as a result of selection for fast growth towards P-allocation from DNA to RNA under P limitation. Consistent with the PAH, the RNA:DNA ratio was >8-fold higher in cladocerans than in copepods, although ‘fast-growth’ cladocerans did not always exhibit higher RNA and lower DNA contents in comparison to ‘slow-growth’ copepods. We also showed strong associations among growth rate, RNA, and total P content supporting the growth rate hypothesis, which predicts that fast-growing organisms have high P content because of the preferential allocation to P-rich ribosomal RNA. In addition, we found that ontogenetic variability in NA content of the copepod Mixodiaptomus laciniatus (intra- and interstage variability) was comparable to the interspecific variability across other zooplankton species. Further, according to the metabolic theory of ecology, temperature should enhance growth rate and hence RNA demands. RNA content in zooplankton was correlated with temperature, but the relationships were nutrient-dependent, with a positive correlation in nutrient-rich ecosystems and a negative one in those with scarce nutrients. Overall our results illustrate the mechanistic connections among organismal NA content, growth rate, nutrients and temperature, contributing to the conceptual unification of metabolic and stoichiometric theories. PMID:24466118

  17. Dietary unsaturated fatty acids differently affect catecholamine handling by adrenal chromaffin cells.

    PubMed

    Gomes, Andreia; Correia, Gustavo; Coelho, Marisa; Araújo, João Ricardo; Pinho, Maria João; Teixeira, Ana Luisa; Medeiros, Rui; Ribeiro, Laura

    2015-05-01

    Catecholamines (CA) play an important role in cardiovascular (CDV) disease risk. Namely, noradrenaline (NA) levels positively correlate whereas adrenaline (AD) levels negatively correlate with obesity and/or CDV disease. Western diets, which are tipically rich in Ω-6 fatty acids (FAs) and deficient in Ω-3 FAs, may contribute to the development of obesity, type 2 diabetes and/or coronary artery disease. Taking this into consideration and the fact that our group has already described that saturated FAs affect catecholamine handling by adrenal chromaffin cells, this work aimed to investigate the effect of unsaturated FAs upon catecholamine handling in the same model. Our results showed that chronic exposure to unsaturated FAs differently modulated CA cellular content and release, regardless of both FA series and number of carbon atoms. Namely, the Ω-6 arachidonic and linoleic acids, based on their effect on CA release and cellular content, seemed to impair NA and AD vesicular transport, whereas γ-linolenic acid selectively impaired AD synthesis and release. Within the Ω-9 FAs, oleic acid was devoid of effect, and elaidic acid behaved similarly to γ-linolenic acid. Eicosapentaenoic and docosahexaenoic acids (Ω-3 series) impaired the synthesis and release of both NA and AD. These results deserve attention and future development, namely, in what concerns the mechanisms involved and correlative effects in vivo. PMID:25727966

  18. Development of SSR Markers Linked to Low Hydrocyanic Acid Content in Sorghum-Sudan Grass Hybrid Based on BSA Method.

    PubMed

    Xiao-Xia, Yu; Zhi-Hua, Liu; Zhuo, Yu; Yue, Shi; Xiao-Yu, Li

    2016-01-01

    Sorghum-Sudan grass hybrid containing high hydrocyanic acid content can cause hydrocyanic acid poisoning to the livestock and limit the popularization of this forage crop. Molecular markers associated with low hydrocyanic acid content can speed up the process of identification of genotypes with low hydrocyanic acid content. In the present study, 11 polymorphic SSR primers were screened and used for bulked segregant analysis and single marker analysis. Three SSR markers Xtxp7230, Xtxp7375 and Bnlg667960 associated with low hydrocyanic acid content were rapidly identified by BSA. In single marker analysis, six markers Xtxp7230, Xtxp7375, Bnlg667960, Xtxp67-11, Xtxp295-7 and Xtxp12-9 were linked to low hydrocyanic acid content, which explained the proportion of phenotypic variation from 7.6 % to 41.2 %. The markers identified by BSA were also verified by single marker analysis. The three SSR marker bands were then cloned and sequenced for sequence homology analysis in NCBI. It is the first report on the development of molecular markers associated with low hydrocyanic acid content in sorghum- Sudan grass hybrid. These markers will be useful for genetic improvement of low hydrocyanic acid sorghum-Sudan grass hybrid by marker-assisted breeding. PMID:27001403

  19. Development of SSR Markers Linked to Low Hydrocyanic Acid Content in Sorghum-Sudan Grass Hybrid Based on BSA Method.

    PubMed

    Xiao-Xia, Yu; Zhi-Hua, Liu; Zhuo, Yu; Yue, Shi; Xiao-Yu, Li

    2016-01-01

    Sorghum-Sudan grass hybrid containing high hydrocyanic acid content can cause hydrocyanic acid poisoning to the livestock and limit the popularization of this forage crop. Molecular markers associated with low hydrocyanic acid content can speed up the process of identification of genotypes with low hydrocyanic acid content. In the present study, 11 polymorphic SSR primers were screened and used for bulked segregant analysis and single marker analysis. Three SSR markers Xtxp7230, Xtxp7375 and Bnlg667960 associated with low hydrocyanic acid content were rapidly identified by BSA. In single marker analysis, six markers Xtxp7230, Xtxp7375, Bnlg667960, Xtxp67-11, Xtxp295-7 and Xtxp12-9 were linked to low hydrocyanic acid content, which explained the proportion of phenotypic variation from 7.6 % to 41.2 %. The markers identified by BSA were also verified by single marker analysis. The three SSR marker bands were then cloned and sequenced for sequence homology analysis in NCBI. It is the first report on the development of molecular markers associated with low hydrocyanic acid content in sorghum- Sudan grass hybrid. These markers will be useful for genetic improvement of low hydrocyanic acid sorghum-Sudan grass hybrid by marker-assisted breeding.

  20. Chemical profile and seasonal variation of phenolic acid content in bastard balm (Melittis melissophyllum L., Lamiaceae).

    PubMed

    Skrzypczak-Pietraszek, Ewa; Pietraszek, Jacek

    2012-07-01

    Melittis melissophyllum L. is an old medicinal plant. Nowadays it is only used in the folk medicine but formerly it has been applied in the official medicine as a natural product described in French Pharmacopoeia. M. melissophyllum herbs used in our studies were collected from two localities in Poland in May and September. Methanolic plant extracts were purified by means of solid-phase extraction and then analysed by HPLC-DAD for their phenolic acid profile. Eleven compounds were identified in all plant samples and quantitatively analysed as: protocatechuic, chlorogenic, p-hydroxybenzoic, vanillic, caffeic, syringic, p-coumaric, ferulic, sinapic, o-coumaric and cinnamic acid. Plant materials contained free and bound phenolic acids. The main compounds were: p-hydroxybenzoic acid (30.21-54.16 mg/100 g dw and 37.04-56.75 mg/100 g dw, free and bound, respectively) and p-coumaric acid (40.48-80.55 mg/100 g dw and 28.09-40.85 mg/100 g dw, free and bound, respectively). The highest amounts of the investigated compounds were found in all samples collected in September, e.g. p-hydroxybenzoic acid (September 51.72-54.16 mg/100 g dw vs. May 30.21-34.07 mg/100 g dw), p-coumaric acid (September 77.14-80.55 mg/100 g dw vs. May 40.48-43.2 5mg/100 g dw). Multivariate statistical and data mining techniques, such as cluster analysis (CA) and principal component analysis (PCA), were used to characterize the sample populations according to the geographical localities, vegetation period and compound form (free or bound). To the best of our knowledge we report for the first time the results of quantitative analysis of M. melissophyllum phenolic acids and seasonal variation of their content. Plant herbs are usually collected at flowering for plant derived medical preparations. Our results show that it is not always the optimal time for the highest contents of active compounds. PMID:22513117

  1. The effects of antioxidants on the content of polyunsaturated fatty acids in the hen's egg.

    PubMed

    Kassab, A; Abrams, J T; Sainsbury, D W

    1979-01-01

    In experiments to see whether, in the possible interests of human health, the polyunsaturated fatty acid (PUFA) content of the chicken's egg can be increased by nutritional means, three strains of hen, light, medium, and heavy, each at the peak of lay, were first fed a basal, commercial, low-fat diet. The hens were then transferred to one of the following diets: basal + safflower oil (SO); basal + SO + butylated hydroxytoluene; or basal + SO + dl-a-toco-pheryl acetate. The diets were designated "Blank", "BHT", and "Vitamin E", respectively, the second and third containing the added antioxidants. The eggs produced were weighed, and their yolks weighed and analysed for lipid components. Additional of SO (7.5%) to the basal diet led to the PUFA content of the yolk lipids rising by 15.4% (linoleic acid, 14.1%), the magnitude of the increases being unaffected by the antioxidants. Diet "BHT" produced larger eggs and yolks than the other diets, but the proportion of yolk was the same on the three types of feed. The total cholesterol content of egg yolks was significantly affected neither by diet, nor by strain or age of hen. The implications of these results are discussed. PMID:468476

  2. Phenylketonuria: protein content and amino acids profile of dishes for phenylketonuric patients. The relevance of phenylalanine.

    PubMed

    Pimentel, Filipa B; Alves, Rita C; Costa, Anabela S G; Torres, Duarte; Almeida, Manuela F; Oliveira, M Beatriz P P

    2014-04-15

    Phenylketonuria is an inborn error of metabolism, involving, in most cases, a deficient activity of phenylalanine hydroxylase. Neonatal diagnosis and a prompt special diet (low phenylalanine and natural-protein restricted diets) are essential to the treatment. The lack of data concerning phenylalanine contents of processed foodstuffs is an additional limitation for an already very restrictive diet. Our goals were to quantify protein (Kjeldahl method) and amino acid (18) content (HPLC/fluorescence) in 16 dishes specifically conceived for phenylketonuric patients, and compare the most relevant results with those of several international food composition databases. As might be expected, all the meals contained low protein levels (0.67-3.15 g/100 g) with the highest ones occurring in boiled rice and potatoes. These foods also contained the highest amounts of phenylalanine (158.51 and 62.65 mg/100 g, respectively). In contrast to the other amino acids, it was possible to predict phenylalanine content based on protein alone. Slight deviations were observed when comparing results with the different food composition databases.

  3. Chlorogenic acid content, essential oil compositions, and in vitro antioxidant activities of Chromolaena odorata leaves.

    PubMed

    Pitakpawasutthi, Yamon; Thitikornpong, Worathat; Palanuvej, Chanida; Ruangrungsi, Nijsiri

    2016-01-01

    Chromolaena odorata (L.) R. M. King and H. Rob. is a Thai medicinal plant used for the treatment of wounds, rashes, diabetes, and insect repellent. The leaves of C. odorata were collected from 10 different sources throughout Thailand. The chemical constituents of essential oils were hydro-distilled from the leaves and were analyzed by gas chromatography-mass spectrometry. Chlorogenic acid contents were determined by thin-layer chromatography (TLC) - densitometry with winCATS software and TLC image analysis with ImageJ software. The TLC plate was developed in the mobile phase that consisted of ethyl acetate:water:formic acid (17:3:2). Antioxidant activities were examined by 1,1-diphenyl-2-picryl hydrazyl (DPPH) radical scavenging and β-carotene bleaching assays. C. odorata essential oil has shown the major components of pregeijerene, dauca-5, 8-diene, (E)-caryophyllene, β-pinene, and α-pinene. The chlorogenic acid content of C. odorata leaves was determined by TLC-densitometry and TLC image analysis. Results have shown that TLC-densitometry and TLC image analysis method were not statistically significantly different. DPPH radical scavenging and β-carotene bleaching assays of ethanolic extract of C. odorata leaves showed its antioxidant potential.

  4. Two-step in situ biodiesel production from microalgae with high free fatty acid content.

    PubMed

    Dong, Tao; Wang, Jun; Miao, Chao; Zheng, Yubin; Chen, Shulin

    2013-05-01

    The yield of fatty acid methyl ester (FAME) from microalgae biomass is generally low via traditional extraction-conversion route due to the deficient solvent extraction. In this study a two-step in situ process was investigated to obtain a high FAME yield from microalgae biomass that had high free fatty acids (FFA) content. This was accomplished with a pre-esterification process using heterogeneous catalyst to reduce FFA content prior to the base-catalyzed transesterification. The two-step in situ process resulted in a total FAME recovery up to 94.87±0.86%, which was much higher than that obtained by a one-step acid or base catalytic in situ process. The heterogeneous catalyst, Amberlyst-15, could be used for 8 cycles without significant loss in activity. This process have the potential to reduce the production cost of microalgae-derived FAME and be more environmental compatible due to the higher FAME yield with reduced catalyst consumption. PMID:23548399

  5. Chlorogenic acid content, essential oil compositions, and in vitro antioxidant activities of Chromolaena odorata leaves

    PubMed Central

    Pitakpawasutthi, Yamon; Thitikornpong, Worathat; Palanuvej, Chanida; Ruangrungsi, Nijsiri

    2016-01-01

    Chromolaena odorata (L.) R. M. King and H. Rob. is a Thai medicinal plant used for the treatment of wounds, rashes, diabetes, and insect repellent. The leaves of C. odorata were collected from 10 different sources throughout Thailand. The chemical constituents of essential oils were hydro-distilled from the leaves and were analyzed by gas chromatography-mass spectrometry. Chlorogenic acid contents were determined by thin-layer chromatography (TLC) - densitometry with winCATS software and TLC image analysis with ImageJ software. The TLC plate was developed in the mobile phase that consisted of ethyl acetate:water:formic acid (17:3:2). Antioxidant activities were examined by 1,1-diphenyl-2-picryl hydrazyl (DPPH) radical scavenging and β-carotene bleaching assays. C. odorata essential oil has shown the major components of pregeijerene, dauca-5, 8-diene, (E)-caryophyllene, β-pinene, and α-pinene. The chlorogenic acid content of C. odorata leaves was determined by TLC-densitometry and TLC image analysis. Results have shown that TLC-densitometry and TLC image analysis method were not statistically significantly different. DPPH radical scavenging and β-carotene bleaching assays of ethanolic extract of C. odorata leaves showed its antioxidant potential. PMID:27144150

  6. Chlorogenic acid content, essential oil compositions, and in vitro antioxidant activities of Chromolaena odorata leaves.

    PubMed

    Pitakpawasutthi, Yamon; Thitikornpong, Worathat; Palanuvej, Chanida; Ruangrungsi, Nijsiri

    2016-01-01

    Chromolaena odorata (L.) R. M. King and H. Rob. is a Thai medicinal plant used for the treatment of wounds, rashes, diabetes, and insect repellent. The leaves of C. odorata were collected from 10 different sources throughout Thailand. The chemical constituents of essential oils were hydro-distilled from the leaves and were analyzed by gas chromatography-mass spectrometry. Chlorogenic acid contents were determined by thin-layer chromatography (TLC) - densitometry with winCATS software and TLC image analysis with ImageJ software. The TLC plate was developed in the mobile phase that consisted of ethyl acetate:water:formic acid (17:3:2). Antioxidant activities were examined by 1,1-diphenyl-2-picryl hydrazyl (DPPH) radical scavenging and β-carotene bleaching assays. C. odorata essential oil has shown the major components of pregeijerene, dauca-5, 8-diene, (E)-caryophyllene, β-pinene, and α-pinene. The chlorogenic acid content of C. odorata leaves was determined by TLC-densitometry and TLC image analysis. Results have shown that TLC-densitometry and TLC image analysis method were not statistically significantly different. DPPH radical scavenging and β-carotene bleaching assays of ethanolic extract of C. odorata leaves showed its antioxidant potential. PMID:27144150

  7. Coffee component 3-caffeoylquinic acid increases antioxidant capacity but not polyphenol content in experimental cerebral infarction.

    PubMed

    Ruiz-Crespo, Silvia; Trejo-Gabriel-Galan, Jose M; Cavia-Saiz, Monica; Muñiz, Pilar

    2012-05-01

    Although coffee has antioxidant capacity, it is not known which of its bioactive compounds is responsible for it, nor has it been analyzed in experimental cerebral infarction. We studied the effect one of its compounds, 3-caffeoylquinic acid (3-CQA), at doses of 4, 25 and 100 μg on plasma antioxidant capacity and plasma polyphenol content, measuring the differences before and after inducing a cerebral infarction in an experimental rat model. We compared them with 3-caffeoylquinic-free controls. The increase in total antioxidant capacity was only higher than in controls in 3-CQA treated animals with the highest dose. This increase in antioxidant capacity was not due to an increase in polyphenols. No differences between the experimental and control group were found regarding polyphenol content and cerebral infarction volume. In conclusion, this increase in antioxidant capacity in the group that received the highest dose of 3-CQA was not able to reduce experimental cerebral infarction.

  8. Effect of Pre-Harvest Foliar Application of Citric Acid and Malic Acid on Chlorophyll Content and Post-Harvest Vase Life of Lilium cv. Brunello.

    PubMed

    Darandeh, Nafiseh; Hadavi, Ebrahim

    2011-01-01

    Citric acid is a regular ingredient in many vase solution formulations but pre-harvest use of citric acid is a novel method in vase life extension of cut flowers, which is reported on tuberose earlier. In order to verify previous result, and check for possible substitution of citric acid by malic acid, the current research was designed. Citric acid (0, 0.075, 0.15% w/v) and malic acid (0, 0.075, 0.15% w/v) were used in a factorial design with three replications. Foliar sprays were applied two times during growth period of Lilium plants. The results point out that 0.15% citric acid alone had increased vase life from 11.8 in control treatment to 14 days (α < 0.05). The interesting finding was the effect of citric acid on bulbil weight, which was decreased from 9 g in control to 1.5 g in treatment containing combination of 0.075% citric acid and 0.075% malic acid. Malic acid while having no direct effect on pre-mentioned traits surprisingly increased the chlorophyll content significantly. The interaction effect between citric acid and malic acid on vase life and chlorophyll content proved significant and was evident in results, both as antagonistic and synergistic in various traits.

  9. Fatty acid profile of gamma-irradiated and cooked African oil bean seed (Pentaclethra macrophylla Benth)

    PubMed Central

    Olotu, Ifeoluwa; Enujiugha, Victor; Obadina, Adewale; Owolabi, Kikelomo

    2014-01-01

    The safety and shelf-life of food products can be, respectively, ensured and extended with important food-processing technologies such as irradiation. The joint effect of cooking and 10 kGy gamma irradiation on the fatty acid composition of the oil of Pentaclethra macrophylla Benth was evaluated. Oils from the raw seed, cooked seeds, irradiated seeds (10 kGy), cooked, and irradiated seeds (10 kGy) were extracted and analyzed for their fatty acid content. An omega-6-fatty acid (linoleic acid) was the principal unsaturated fatty acid in the bean seed oil (24.6%). Cooking significantly (P < 0.05) increased Erucic acid by 3.3% and Linolenic acid by 23.0%. Combined treatment significantly (P < 0.05) increased C18:2, C6:0, C20:2, C18:3, C20:3, C24:0, and C22:6 being linoleic, caproic, eicosadienoic, linolenic, eicosatrienoic, ligoceric, and docosahexaenoic acid, respectively, and this increase made the oil sample to have the highest total fatty acid content (154.9%), unsaturated to saturated fatty acid ratio (109.6), and unsaturated fatty acid content (153.9%). 10 kGy irradiation induces the formation of C20:5 (eicosapentaenoic), while cooking induced the formation of C20:4 (arachidic acid), C22:6 (Heneicosanoic acid), and C22:2 (docosadienoic acid). Combined 10 kGy cooking and irradiation increased the susceptibility of the oil of the African oil bean to rancidity. PMID:25493197

  10. Fatty acid profile of gamma-irradiated and cooked African oil bean seed (Pentaclethra macrophylla Benth).

    PubMed

    Olotu, Ifeoluwa; Enujiugha, Victor; Obadina, Adewale; Owolabi, Kikelomo

    2014-11-01

    The safety and shelf-life of food products can be, respectively, ensured and extended with important food-processing technologies such as irradiation. The joint effect of cooking and 10 kGy gamma irradiation on the fatty acid composition of the oil of Pentaclethra macrophylla Benth was evaluated. Oils from the raw seed, cooked seeds, irradiated seeds (10 kGy), cooked, and irradiated seeds (10 kGy) were extracted and analyzed for their fatty acid content. An omega-6-fatty acid (linoleic acid) was the principal unsaturated fatty acid in the bean seed oil (24.6%). Cooking significantly (P < 0.05) increased Erucic acid by 3.3% and Linolenic acid by 23.0%. Combined treatment significantly (P < 0.05) increased C18:2, C6:0, C20:2, C18:3, C20:3, C24:0, and C22:6 being linoleic, caproic, eicosadienoic, linolenic, eicosatrienoic, ligoceric, and docosahexaenoic acid, respectively, and this increase made the oil sample to have the highest total fatty acid content (154.9%), unsaturated to saturated fatty acid ratio (109.6), and unsaturated fatty acid content (153.9%). 10 kGy irradiation induces the formation of C20:5 (eicosapentaenoic), while cooking induced the formation of C20:4 (arachidic acid), C22:6 (Heneicosanoic acid), and C22:2 (docosadienoic acid). Combined 10 kGy cooking and irradiation increased the susceptibility of the oil of the African oil bean to rancidity.

  11. Cardiolipin linoleic acid content and mitochondrial cytochrome c oxidase activity are associated in rat skeletal muscle.

    PubMed

    Fajardo, Val Andrew; McMeekin, Lauren; Saint, Caitlin; LeBlanc, Paul J

    2015-04-01

    Cardiolipin (CL) is an inner-mitochondrial membrane phospholipid that is important for optimal mitochondrial function. Specifically, CL and CL linoleic (18:2ω6) content are known to be positively associated with cytochrome c oxidase (COX) activity. However, this association has not been examined in skeletal muscle. In this study, rats were fed high-fat diets with a naturally occurring gradient in linoleic acid (coconut oil [CO], 5.8%; flaxseed oil [FO], 13.2%; safflower oil [SO], 75.1%) in an attempt to alter both mitochondrial CL fatty acyl composition and COX activity in rat mixed hind-limb muscle. In general, mitochondrial membrane lipid composition was fairly resistant to dietary treatments as only modest changes in fatty acyl composition were detected in CL and other major mitochondrial phospholipids such as phosphatidylcholine (PC) and phosphatidylethanolamine (PE). As a result of this resistance, CL 18:2ω6 content was not different between the dietary groups. Consistent with the lack of changes in CL 18:2ω6 content, mitochondrial COX activity was also not different between the dietary groups. However, correlational analysis using data obtained from rats across the dietary groups showed a significant relationship (p = 0.009, R(2) = 0.21). Specifically, our results suggest that CL 18:2ω6 content may positively influence mitochondrial COX activity thereby making this lipid molecule a potential factor related to mitochondrial health and function in skeletal muscle.

  12. Hydroxamic acid content and toxicity of rye at selected growth stages.

    PubMed

    Rice, Clifford P; Park, Yong Bong; Adam, Frédérick; Abdul-Baki, Aref A; Teasdale, John R

    2005-08-01

    Rye (Secale cereale L.) is an important cover crop that provides many benefits to cropping systems including weed and pest suppression resulting from allelopathic substances. Hydroxamic acids have been identified as allelopathic compounds in rye. This research was conducted to improve the methodology for quantifying hydroxamic acids and to determine the relationship between hydroxamic acid content and phytotoxicity of extracts of rye root and shoot tissue harvested at selected growth stages. Detection limits for an LC/MS-MS method for analysis of hydroxamic acids from crude aqueous extracts were better than have been reported previously. (2R)-2-beta-D-Glucopyranosyloxy-4-hydroxy-(2H)-1,4-benzoxazin-3(4H)-one (DIBOA-G), 2,4-dihydroxy-(2H)-1,4-benzoxazin-3(4H)-one (DIBOA), benzoxazolin-2(3H)-one (BOA), and the methoxy-substituted form of these compounds, (2R)-2-beta-D-glucopyranosyloxy-4-hydroxy-7-methoxy-(2H)-1,4-benzoxazin-3(4H)-one (DIMBOA glucose), 2,4-hydroxy-7-methoxy-(2H)-1,4-benzoxazin-3(4H)-one (DIMBOA), and 6-methoxy-benzoxazolin-2(3H)-one (MBOA), were all detected in rye tissue. DIBOA and BOA were prevalent in shoot tissue, whereas the methoxy-substituted compounds, DIMBOA glucose and MBOA, were prevalent in root tissue. Total hydroxamic acid concentration in rye tissue generally declined with age. Aqueous crude extracts of rye shoot tissue were more toxic than extracts of root tissue to lettuce (Lactuca sativa L.) and tomato (Lycopersicon esculentum Mill.) root length. Extracts of rye seedlings (Feekes growth stage 2) were most phytotoxic, but there was no pattern to the phytotoxicity of extracts of rye sampled at growth stages 4 to 10.5.4, and no correlation of hydroxamic acid content and phytotoxicity (I50 values). Analysis of dose-response model slope coefficients indicated a lack of parallelism among models for rye extracts from different growth stages, suggesting that phytotoxicity may be attributed to compounds with different modes of action at

  13. Investigation of Phenolic, Flavonoid, and Vitamin Contents in Different Parts of Korean Ginseng (Panax ginseng C.A. Meyer)

    PubMed Central

    Kim, Ji-Sang

    2016-01-01

    This study investigated the phenolic, flavonoid, and vitamin constituents in the main root, root hair, and leaf of ginseng. The total individual phenolic and flavonoid contents were the highest in the leaf, followed by the main root and root hair. Ferulic acid and m-coumaric acid were found to be the major phenolics in the main root and root hair, while p-coumaric acid and m-coumaric acid were the major phenolics in the leaf. Catechin was the major flavonoid component in the main root and root hair, while catechin and kaempferol were the major flavonoid components in the leaf. Pantothenic acid was detected in the highest quantity in the non-leaf parts of ginseng, followed by thiamine and cobalamin. Linolenic acid and menadione were the major components in all parts of ginseng. PMID:27752503

  14. [Effects of exogenous nitric oxide, salicylic acid and hydrogen peroxide on free amino acid and soluble protein contents in tobacco leaves].

    PubMed

    Wei, Xiao-Hong; Wang, Li-Min; Long, Rui-Jun; Wang, Gen-Xuan

    2006-04-01

    The work focused on the effects of signal molecules of nitric oxide (NO), salicylic acid (SA) and hydrogen peroxide (H(2)O(2)) on compounds of nitric metabolites of free amino acid, soluble protein and proline in tobacco. The results indicated that NO, SA and H(2)O(2) were able to regulate the proline, free amino acid and soluble protein content in tobacco. Lower concentration of NO and H(2)O(2) raised the level of proline; while higher concentration of NO and H(2)O(2) lowered the proline, free amino acid content in tobacco. The above three signal molecules also showed similar effects on proline, free amino acid and soluble protein content in tobacco.

  15. [Composition and content of biologically active substances in rose hips].

    PubMed

    Dubtsova, G N; Negmatulloeva, R N; Bessonov, V V; Baĭkov, V G; Sheviakova, L V; Makhova, N N; Perederiaev, O I; Bogachuk, M N; Baĭgarin, E K

    2012-01-01

    The paper studies the chemical composition of the powders obtained from the pulp with the skins and seeds of fruits of wild rose hips. Research results have shown that the main fraction of the powder is dietary fiber, powder of seeds of insoluble fiber in 1,6 and 2,3 higher than in the powder of the fruit with a thin skin and pulp, respectively. The greatest amount of carbohydrates and protein found in powders and pulp of the fruit with a thin skin, and lipids predominate in the powder from the seeds. Found that the lipid powder rosehip richest in oleic, linoleic and linolenic acids, the share of oleic acid has 6,4-19,2%, linoleic and linolenic 19,7-45,8 and 23,3-33,9% of the amount of fatty acids. Lipids powders of hips and seeds of rose have higher levels of essential linoleic acid and powder from the pulp with the skins - linolenic acid. In the study established the presence of sterols 7 fractions, the predominant of which is the beta-sitosterol. In the powder from the pulp with the skins found the greatest amount of ascorbic acid, carotenoids, and the powder of seeds - vitamin E. Carotenoids in powders are beta-carotene and lycopene. The high content of ascorbic acid, vitamin E and carotenoids in powder from wild rose hips makes them a good source of antioxidants. Therefore, we studied the possibility of using vegetable powders obtained from hips of wild rose, to enrich biologically active substances such as vitamins C, E and carotenoids, food supply, particularly of health care use. Rosehip powder from the pulp with the skins had the highest antioxidant activity, antioxidant activity of hips powders was 74% of the activity of powder from the pulp with the skins, the lowest antioxidant activity was observed in the powder from the wild rose seeds. That's way, based on the analysis of the chemical composition of rose hip powder found high levels they ascorbic acid, carotenoids, flavonoids,found their high antioxidant activity. It allows to recommend powders

  16. Establishing safe and potentially efficacious fortification contents for folic acid and vitamin B12.

    PubMed

    Dary, Omar

    2008-06-01

    Determining the micronutrient contents infortified foods depends not only on the health goal (additional intake to complement the diet), but also on ensuring that fortification does not raise micronutrient intakes beyond the Tolerable Upper Intake Level (UL), i.e., the safe limit. Technological incompatibility and cost may also restrict the fortification contents. For folic acid, the limiting factor is safety, while for vitamin B12, it is cost. However, adequate fortification contents that are both safe and efficacious can be estimated for both nutrients. In order to obtain the maximum benefit from the fortification programs, three different formulas responding to three categories of consumption, as specified by the median and 95th percentile of consumption, are proposed. The model presented is based on the estimation of a Feasible Fortification Level (FFL), which then is used to determine the average, minimum, and maximum contents of the nutrients during production, taking into consideration the acceptable variation of the fortification process. Finally, the regulatory parameters, which support standards and enforcement, are calculated by reducing the proportion of the nutrient that is degraded during the usual marketing process of the fortified food. It is expected that this model will establish a common standard for food fortification, and improve the reliability and enforcement procedures of these programs. The model was applied to flours as vehicles for folic acid in the United States, Guatemala, and Chile. Analysis of the data revealed that, with the exception of Chile, where wheat flour consumption is very high and probably within a narrow range, supplementation with folic acid is still needed to cover individuals at the low end of consumption. This is especially true when the difference in flour consumption is too wide, as in the case of Guatemala, where the proportional difference between consumption at the 95th percentile of the nonpoor group is as high

  17. DHA and EPA Content and Fatty Acid Profile of 39 Food Fishes from India

    PubMed Central

    Mahanty, Arabinda; Sankar, T. V.; Anandan, R.; Paul, B. N.; Sarma, Debajit; Syama Dayal, J.; Venkateshwarlu, G.; Mathew, Suseela; Karunakaran, D.; Chanda, Soumen; Shahi, Neetu; Das, Puspita; Das, Partha; Akhtar, Md Shahbaz; Vijayagopal, P.; Sridhar, N.

    2016-01-01

    Docosahexaenoic acid (DHA) is the principal constituent of a variety of cells especially the brain neurons and retinal cells and plays important role in fetal brain development, development of motor skills, and visual acuity in infants, lipid metabolism, and cognitive support and along with eicosapentaenoic acid (EPA) it plays important role in preventing atherosclerosis, dementia, rheumatoid arthritis, Alzheimer's disease, and so forth. Being an essential nutrient, it is to be obtained through diet and therefore searching for affordable sources of these ω-3 polyunsaturated fatty acids (PUFA) is important for consumer guidance and dietary counseling. Fish is an important source of PUFA and has unique advantage that there are many food fish species available and consumers have a wide choice owing to availability and affordability. The Indian subcontinent harbors a rich fish biodiversity which markedly varies in their nutrient composition. Here we report the DHA and EPA content and fatty acid profile of 39 important food fishes (including finfishes, shellfishes, and edible molluscs from both marine water and freshwater) from India. The study showed that fishes Tenualosa ilisha, Sardinella longiceps, Nemipterus japonicus, and Anabas testudineus are rich sources of DHA and EPA. Promotion of these species as DHA rich species would enhance their utility in public health nutrition. PMID:27579313

  18. DHA and EPA Content and Fatty Acid Profile of 39 Food Fishes from India.

    PubMed

    Mohanty, Bimal Prasanna; Ganguly, Satabdi; Mahanty, Arabinda; Sankar, T V; Anandan, R; Chakraborty, Kajal; Paul, B N; Sarma, Debajit; Syama Dayal, J; Venkateshwarlu, G; Mathew, Suseela; Asha, K K; Karunakaran, D; Mitra, Tandrima; Chanda, Soumen; Shahi, Neetu; Das, Puspita; Das, Partha; Akhtar, Md Shahbaz; Vijayagopal, P; Sridhar, N

    2016-01-01

    Docosahexaenoic acid (DHA) is the principal constituent of a variety of cells especially the brain neurons and retinal cells and plays important role in fetal brain development, development of motor skills, and visual acuity in infants, lipid metabolism, and cognitive support and along with eicosapentaenoic acid (EPA) it plays important role in preventing atherosclerosis, dementia, rheumatoid arthritis, Alzheimer's disease, and so forth. Being an essential nutrient, it is to be obtained through diet and therefore searching for affordable sources of these ω-3 polyunsaturated fatty acids (PUFA) is important for consumer guidance and dietary counseling. Fish is an important source of PUFA and has unique advantage that there are many food fish species available and consumers have a wide choice owing to availability and affordability. The Indian subcontinent harbors a rich fish biodiversity which markedly varies in their nutrient composition. Here we report the DHA and EPA content and fatty acid profile of 39 important food fishes (including finfishes, shellfishes, and edible molluscs from both marine water and freshwater) from India. The study showed that fishes Tenualosa ilisha, Sardinella longiceps, Nemipterus japonicus, and Anabas testudineus are rich sources of DHA and EPA. Promotion of these species as DHA rich species would enhance their utility in public health nutrition.

  19. DHA and EPA Content and Fatty Acid Profile of 39 Food Fishes from India.

    PubMed

    Mohanty, Bimal Prasanna; Ganguly, Satabdi; Mahanty, Arabinda; Sankar, T V; Anandan, R; Chakraborty, Kajal; Paul, B N; Sarma, Debajit; Syama Dayal, J; Venkateshwarlu, G; Mathew, Suseela; Asha, K K; Karunakaran, D; Mitra, Tandrima; Chanda, Soumen; Shahi, Neetu; Das, Puspita; Das, Partha; Akhtar, Md Shahbaz; Vijayagopal, P; Sridhar, N

    2016-01-01

    Docosahexaenoic acid (DHA) is the principal constituent of a variety of cells especially the brain neurons and retinal cells and plays important role in fetal brain development, development of motor skills, and visual acuity in infants, lipid metabolism, and cognitive support and along with eicosapentaenoic acid (EPA) it plays important role in preventing atherosclerosis, dementia, rheumatoid arthritis, Alzheimer's disease, and so forth. Being an essential nutrient, it is to be obtained through diet and therefore searching for affordable sources of these ω-3 polyunsaturated fatty acids (PUFA) is important for consumer guidance and dietary counseling. Fish is an important source of PUFA and has unique advantage that there are many food fish species available and consumers have a wide choice owing to availability and affordability. The Indian subcontinent harbors a rich fish biodiversity which markedly varies in their nutrient composition. Here we report the DHA and EPA content and fatty acid profile of 39 important food fishes (including finfishes, shellfishes, and edible molluscs from both marine water and freshwater) from India. The study showed that fishes Tenualosa ilisha, Sardinella longiceps, Nemipterus japonicus, and Anabas testudineus are rich sources of DHA and EPA. Promotion of these species as DHA rich species would enhance their utility in public health nutrition. PMID:27579313

  20. Phytosterol, squalene, tocopherol content and fatty acid profile of selected seeds, grains, and legumes.

    PubMed

    Ryan, E; Galvin, K; O'Connor, T P; Maguire, A R; O'Brien, N M

    2007-09-01

    The unsaponifiable lipid fraction of plant-based foods is a potential source of bioactive components such as phytosterols, squalene, and tocopherols. The objective of the present study was to determine the levels of phytosterols, and squalene, as well as tocopherols (alpha and beta + gamma) in selected grains, seeds, and legumes. The method comprised acid hydrolysis and lipid extraction followed by alkaline saponification, prior to analysis by HPLC. In addition, the fatty acid profile of the foods was determined via total lipid extraction, fatty acid derivitisation and GC analysis. In general, beta-sitosterol was the most prevalent phytosterol, ranging in concentration from 24.9 mg/100 g in pumpkin seed to 191.4 mg/100 g in peas. Squalene identified in all foods examined in this study, was particularly abundant in pumpkin seed (89.0 mg/100 g). The sum of alpha- and beta+ gamma-tocopherols ranged from 0.1 mg/100 g in rye to 15.9 mg/100 g in pumpkin seeds. Total oil content ranged from 0.9% (w/w) in butter beans to 42.3% (w/w) in pumpkin seed and the type of fat, in all foods examined, was predominantly unsaturated. In conclusion, seeds, grains, and legumes are a rich natural source of phytosterols. Additionally, they contain noticeable amounts of squalene and tocopherols, and in general, their fatty acid profile is favorable. PMID:17594521

  1. Hierarchically structured meso-macroporous aluminosilicates with high tetrahedral aluminium content in acid catalysed esterification of fatty acids.

    PubMed

    Lemaire, Arnaud; Wang, Quan-Yi; Wei, Yingxu; Liu, Zhongmin; Su, Bao-Lian

    2011-11-15

    A simple synthesis pathway has been developed for the design of hierarchically structured spongy or spherical voids assembled meso-macroporous aluminosilicates with high tetrahedral aluminium content on the basis of the aqueous polymerisation of new stabilized alkoxy-bridged single molecular precursors. The intimate mixing of an aluminosilicate ester (sec-BuO)(2)-Al-O-Si(OEt)(3) and a silica co-reactant (tetramethoxysilane, TMOS) with variable ratios and the use of alkaline solutions (pH 13.0 and 13.5) improve significantly the heterocondensation rates between the highly reactive aluminium alkoxide part of the single precursor and added silica co-reactant, leading to aluminosilicate materials with high intra-framework aluminium content and low Si/Al ratios. The spherically-shaped meso-macroporosity was spontaneously generated by the release of high amount of liquid by-products (water/alcohol molecules) produced during the rapid hydrolysis and condensation processes of this double alkoxide and the TMOS co-reactant. It has been observed that both pH value and Al-Si/TMOS molar ratio can strongly affect the macroporous structure formation. Increasing pH value, even slightly from 13 to 13.5, can significantly favour the incorporation of Al atoms in tetrahedral position of the framework. After the total ionic exchange of Na(+) compensating cations, catalytic tests of obtained materials were realised in the esterification reaction of high free fatty acid (FFA) oils, showing their higher catalytic activity compared to commercial Bentonite clay, and their potential applications as catalyst supports in acid catalysed reactions.

  2. Studies on the growth and indole-3-acetic acid and abscisic acid content of Zea mays seedlings grown in microgravity

    NASA Technical Reports Server (NTRS)

    Schulze, A.; Jensen, P. J.; Desrosiers, M.; Buta, J. G.; Bandurski, R. S.

    1992-01-01

    Measurements were made of the fresh weight, dry weight, dry weight-fresh weight ratio, free and conjugated indole-3-acetic acid, and free and conjugated abscisic acid in seedlings of Zea mays grown in darkness in microgravity and on earth. Imbibition of the dry kernels was 17 h prior to launch. Growth was for 5 d at ambient orbiter temperature and at a chronic accelerational force of the order of 3 x 10(-5) times earth gravity. Weights and hormone content of the microgravity seedlings were, with minor exceptions, not statistically different from seedlings grown in normal gravity. The tissues of the shuttle-grown plants appeared normal and the seedlings differed only in the lack of orientation of roots and shoots. These findings, based upon 5 d of growth in microgravity, cannot be extrapolated to growth in microgravity for weeks, months, and years, as might occur on a space station. Nonetheless, it is encouraging, for prospects of bioregeneration of the atmosphere and food production in a space station, that no pronounced differences in the parameters measured were apparent during the 5 d of plant seedling growth in microgravity.

  3. Functional properties and fatty acids profile of different beans varieties.

    PubMed

    Lo Turco, Vincenzo; Potortì, Angela Giorgia; Rando, Rossana; Ravenda, Pietro; Dugo, Giacomo; Di Bella, Giuseppa

    2016-10-01

    Dried seeds of four varieties of Phaseolus vulgaris, three of Vigna unguiculata ssp. unguiculata and two of Vigna angularis grown and marketed in Italy, Mexico, India, Japan, Ghana and Ivory Coast were analysed for fatty acids content. In oils from seeds of P. vulgaris, the main fatty acids were linolenic (34.7-41.5%) and linoleic (30.7-40.3%), followed by palmitic (10.7-16.8%). The first three aforementioned fatty acids in the lipid fraction of V. unguiculata varieties were 28.4, 28.7 and 26.2%, respectively; while in V. angularis varieties, main fatty acids were linoleic (36.4-39.1%) and palmitic (26.9-33.3%), followed by linolenic (17.9-22.2%). Statistical analyses indicate that botanical species play a rule in bean fatty acids distribution, while the same was not verified for geographical origin. Furthermore, the atherogenic index (AI) and the thrombogenic index (TI) were investigated for health and nutritional information. The results showed that these wide spread legumes have functional features to human health.

  4. Functional properties and fatty acids profile of different beans varieties.

    PubMed

    Lo Turco, Vincenzo; Potortì, Angela Giorgia; Rando, Rossana; Ravenda, Pietro; Dugo, Giacomo; Di Bella, Giuseppa

    2016-10-01

    Dried seeds of four varieties of Phaseolus vulgaris, three of Vigna unguiculata ssp. unguiculata and two of Vigna angularis grown and marketed in Italy, Mexico, India, Japan, Ghana and Ivory Coast were analysed for fatty acids content. In oils from seeds of P. vulgaris, the main fatty acids were linolenic (34.7-41.5%) and linoleic (30.7-40.3%), followed by palmitic (10.7-16.8%). The first three aforementioned fatty acids in the lipid fraction of V. unguiculata varieties were 28.4, 28.7 and 26.2%, respectively; while in V. angularis varieties, main fatty acids were linoleic (36.4-39.1%) and palmitic (26.9-33.3%), followed by linolenic (17.9-22.2%). Statistical analyses indicate that botanical species play a rule in bean fatty acids distribution, while the same was not verified for geographical origin. Furthermore, the atherogenic index (AI) and the thrombogenic index (TI) were investigated for health and nutritional information. The results showed that these wide spread legumes have functional features to human health. PMID:26949141

  5. Oleic acid content is responsible for the reduction in blood pressure induced by olive oil.

    PubMed

    Terés, S; Barceló-Coblijn, G; Benet, M; Alvarez, R; Bressani, R; Halver, J E; Escribá, P V

    2008-09-16

    Numerous studies have shown that high olive oil intake reduces blood pressure (BP). These positive effects of olive oil have frequently been ascribed to its minor components, such as alpha-tocopherol, polyphenols, and other phenolic compounds that are not present in other oils. However, in this study we demonstrate that the hypotensive effect of olive oil is caused by its high oleic acid (OA) content (approximately 70-80%). We propose that olive oil intake increases OA levels in membranes, which regulates membrane lipid structure (H(II) phase propensity) in such a way as to control G protein-mediated signaling, causing a reduction in BP. This effect is in part caused by its regulatory action on G protein-associated cascades that regulate adenylyl cyclase and phospholipase C. In turn, the OA analogues, elaidic and stearic acids, had no hypotensive activity, indicating that the molecular mechanisms that link membrane lipid structure and BP regulation are very specific. Similarly, soybean oil (with low OA content) did not reduce BP. This study demonstrates that olive oil induces its hypotensive effects through the action of OA.

  6. Prolonged swimming exercise does not affect contents and fatty acids composition of rat muscle triacylglycerol.

    PubMed

    Ochiai, Masaru; Matsuo, Tatsuhiro

    2009-01-01

    The present study investigated whether or not muscle triacylglycerol (MTG) contributed as a main energy source and MTG level and utilized fatty acid (FA) composition decreased during a 4-hour swimming exercise in rats fed a normal diet or a high-fat diet (HFD). Sixty male Wistar rats aged 5 weeks were fed a normal diet (CE-2, n = 25, experiment A) or HFD (n = 35, experiment B) for 22 days. On the final day, rats in both experiments were killed either without exercise or 1, 2, 3, or 4 hours after beginning the swimming exercise. MTG accumulation was higher in rats fed the HFD than those fed the CE-2 in both slow- and fast-typed muscles. Serum concentrations of free fatty acids (FFA) and glucose were increased and muscle glycogen contents were decreased with the continuance of swimming exercise, especially in rats fed the CE-2. The prolonged swimming did not influence MTG contents and FA compositions of MTG in either the experiment. These results might indicate that specific FA of MTG was not oxidized and MTG did not contribute as a main energy source during the prolonged swimming exercise in rats; instead, serum FFA, glucose, and muscle glycogen were mainly used.

  7. Biochemical composition and fatty acid content of zooplankton from tropical lagoon for larval rearing.

    PubMed

    Lokman, H S

    1993-01-01

    Zooplankton samples were collected from the indigenous tropical brackish water lagoon during the wet monsoon (January and February 1990) and the dry monsoon (April and May 1990). The dominant copepod species in the zooplankton community comprising of Oithona sp (especially O. nana and O. robusta) accounted for more than 70% of the zooplankton in January and was gradually replaced by other zooplanktonic species later in the dry season. The lipid contents in zooplankton varied from 0.18 to 1.04% wet weight or 1.14 to 5.92% dry weight respectively. The major fatty acid contents of the zooplankton showed high concentration of 14:0, 16:0, 18:1, 20:5 omega 3 and 22:6 omega 3 especially in the wet season. It also contained high omega-3 highly unsaturated fatty acid series necessary for the growth of commercial fish larvae. It has a better food value than the normally use food organism, brine shrimp; thus reflecting its potential use as food organism for fish larval rearing. PMID:7508281

  8. Dietary levels of chia: influence on yolk cholesterol, lipid content and fatty acid composition for two strains of hens.

    PubMed

    Ayerza, R; Coates, W

    2000-05-01

    Four hundred fifty H&N laying hens, half white and half brown, were fed for 90 d to compare a control diet to diets containing 7, 14, 21, and 28% chia (Salvia hispanica L.) seed. Cholesterol content, total fat content, and fatty acid composition of the yolks were determined 30, 43, 58, 72, and 90 d from the start of the trial. Significantly less cholesterol was found in the egg yolks produced by the hens fed the diets with 14, 21, and 28% chia compared with the control, except at Day 90. Palmitic fatty acid content and total saturated fatty acid content decreased as chia percentage increased and as the trial progressed. Total omega-3 fatty acid content was significantly greater (P < 0.05) for both strains for all chia diets compared with the control diet. Total polyunsaturated fatty acid (PUFA) content of the yolks from the chia diets was significantly greater (P < 0.05) than from the control diet. Generally, total PUFA content tended to be highest in the yolks of the white hens. PMID:10824962

  9. Dietary levels of chia: influence on yolk cholesterol, lipid content and fatty acid composition for two strains of hens.

    PubMed

    Ayerza, R; Coates, W

    2000-05-01

    Four hundred fifty H&N laying hens, half white and half brown, were fed for 90 d to compare a control diet to diets containing 7, 14, 21, and 28% chia (Salvia hispanica L.) seed. Cholesterol content, total fat content, and fatty acid composition of the yolks