Science.gov

Sample records for lipase lpl single

  1. Inactive lipoprotein lipase (LPL) alone increases selective cholesterol ester uptake in vivo, whereas in the presence of active LPL it also increases triglyceride hydrolysis and whole particle lipoprotein uptake.

    PubMed

    Merkel, Martin; Heeren, Jörg; Dudeck, Wiebke; Rinninger, Franz; Radner, Herbert; Breslow, Jan L; Goldberg, Ira J; Zechner, Rudolf; Greten, Heiner

    2002-03-01

    We have previously shown that transgenic expression of catalytically inactive lipoprotein lipase (LPL) in muscle (Mck-N-LPL) enhances triglyceride hydrolysis as well as whole particle lipoprotein and selective cholesterol ester uptake. In the current study, we have examined whether these functions can be performed by inactive LPL alone or require the presence of active LPL expressed in the same tissue. To study inactive LPL in the presence of active LPL in the same tissue, the Mck-N-LPL transgene was bred onto the heterozygous LPL-deficient (LPL1) background. At 18 h of age, Mck-N-LPL reduced triglycerides by 35% and markedly increased muscle lipid droplets. In adult mice, it reduced triglycerides by 40% and increased lipoprotein particle uptake into muscle by 60% and cholesterol ester uptake by 110%. To study inactive LPL alone, the Mck-N-LPL transgene was bred onto the LPL-deficient (LPL0) background. These mice die at approximately 24 h of age. At 18 h of age, in the absence of active LPL, inactive LPL expression did not diminish triglycerides nor did it result in the accumulation of muscle lipid droplets. To study inactive LPL in the absence of active LPL in the same tissue in adult animals, the Mck-N-LPL transgene was bred onto mice that only expressed active LPL in the heart (LPL0/He-LPL). In this case, Mck-N-LPL did not reduce triglycerides or increase the uptake of lipoprotein particles but did increase muscle uptake of chylomicron and very low density lipoprotein cholesterol ester by 40%. Thus, in the presence of active LPL in the same tissue, inactive LPL augments triglyceride hydrolysis and increases whole particle triglyceride-rich lipoprotein and selective cholesterol ester uptake. In the absence of active LPL in the same tissue, inactive LPL only mediates selective cholesterol ester uptake.

  2. Characterization of the human lipoprotein lipase (LPL) promoter: evidence of two cis-regulatory regions, LP-alpha and LP-beta, of importance for the differentiation-linked induction of the LPL gene during adipogenesis.

    PubMed Central

    Enerbäck, S; Ohlsson, B G; Samuelsson, L; Bjursell, G

    1992-01-01

    When preadipocytes differentiate into adipocytes, several differentiation-linked genes are activated. Lipoprotein lipase (LPL) is one of the first genes induced during this process. To investigate early events in adipocyte development, we have focused on the transcriptional activation of the LPL gene. For this purpose, we have cloned and fused different parts of intragenic and flanking sequences with a chloramphenicol acetyltransferase reporter gene. Transient transfection experiments and DNase I hypersensitivity assays indicate that several positive as well as negative elements contribute to transcriptional regulation of the LPL gene. When reporter gene constructs were stably introduced into preadipocytes, we were able to monitor and compare the activation patterns of different promoter deletion mutants at selected time points representing the process of adipocyte development. We could delimit two cis-regulatory elements important for gradual activation of the LPL gene during adipocyte development in vitro. These elements, LP-alpha (-702 to -666) and LP-beta (-468 to -430), contain a striking similarity to a consensus sequence known to bind the transcription factors HNF-3 and fork head. Results of gel mobility shift assays and DNase I and exonuclease III in vitro protection assays indicate that factors with DNA-binding properties similar to those of the HNF-3/fork head family of transcription factors are present in adipocytes and interact with LP-alpha and LP-beta. We also demonstrate that LP-alpha and LP-beta were both capable of conferring a differentiation-linked expression pattern to a heterolog promoter, thus mimicking the expression of the endogenous LPL gene during adipocyte differentiation. These findings indicate that interactions with LP-alpha and LP-beta could be a part of a differentiation switch governing induction of the LPL gene during adipocyte differentiation. Images PMID:1406652

  3. Identification of a New Functional Domain in Angiopoietin-like 3 (ANGPTL3) and Angiopoietin-like 4 (ANGPTL4) Involved in Binding and Inhibition of Lipoprotein Lipase (LPL)S⃞

    PubMed Central

    Lee, E-Chiang; Desai, Urvi; Gololobov, Gennady; Hong, Seokjoo; Feng, Xiao; Yu, Xuan-Chuan; Gay, Jason; Wilganowski, Nat; Gao, Cuihua; Du, Ling-Ling; Chen, Joan; Hu, Yi; Zhao, Sharon; Kirkpatrick, Laura; Schneider, Matthias; Zambrowicz, Brian P.; Landes, Greg; Powell, David R.; Sonnenburg, William K.

    2009-01-01

    Angiopoietin-like 3 (ANGPTL3) and angiopoietin-like 4 (ANGPTL4) are secreted proteins that regulate triglyceride (TG) metabolism in part by inhibiting lipoprotein lipase (LPL). Recently, we showed that treatment of wild-type mice with monoclonal antibody (mAb) 14D12, specific for ANGPTL4, recapitulated the Angptl4 knock-out (-/-) mouse phenotype of reduced serum TG levels. In the present study, we mapped the region of mouse ANGPTL4 recognized by mAb 14D12 to amino acids Gln29–His53, which we designate as specific epitope 1 (SE1). The 14D12 mAb prevented binding of ANGPTL4 with LPL, consistent with its ability to neutralize the LPL-inhibitory activity of ANGPTL4. Alignment of all angiopoietin family members revealed that a sequence similar to ANGPTL4 SE1 was present only in ANGPTL3, corresponding to amino acids Glu32–His55. We produced a mouse mAb against this SE1-like region in ANGPTL3. This mAb, designated 5.50.3, inhibited the binding of ANGPTL3 to LPL and neutralized ANGPTL3-mediated inhibition of LPL activity in vitro. Treatment of wild-type as well as hyperlipidemic mice with mAb 5.50.3 resulted in reduced serum TG levels, recapitulating the lipid phenotype found in Angptl3-/- mice. These results show that the SE1 region of ANGPTL3 and ANGPTL4 functions as a domain important for binding LPL and inhibiting its activity in vitro and in vivo. Moreover, these results demonstrate that therapeutic antibodies that neutralize ANGPTL4 and ANGPTL3 may be useful for treatment of some forms of hyperlipidemia. PMID:19318355

  4. Identification of a new functional domain in angiopoietin-like 3 (ANGPTL3) and angiopoietin-like 4 (ANGPTL4) involved in binding and inhibition of lipoprotein lipase (LPL).

    PubMed

    Lee, E-Chiang; Desai, Urvi; Gololobov, Gennady; Hong, Seokjoo; Feng, Xiao; Yu, Xuan-Chuan; Gay, Jason; Wilganowski, Nat; Gao, Cuihua; Du, Ling-Ling; Chen, Joan; Hu, Yi; Zhao, Sharon; Kirkpatrick, Laura; Schneider, Matthias; Zambrowicz, Brian P; Landes, Greg; Powell, David R; Sonnenburg, William K

    2009-05-15

    Angiopoietin-like 3 (ANGPTL3) and angiopoietin-like 4 (ANGPTL4) are secreted proteins that regulate triglyceride (TG) metabolism in part by inhibiting lipoprotein lipase (LPL). Recently, we showed that treatment of wild-type mice with monoclonal antibody (mAb) 14D12, specific for ANGPTL4, recapitulated the Angptl4 knock-out (-/-) mouse phenotype of reduced serum TG levels. In the present study, we mapped the region of mouse ANGPTL4 recognized by mAb 14D12 to amino acids Gln(29)-His(53), which we designate as specific epitope 1 (SE1). The 14D12 mAb prevented binding of ANGPTL4 with LPL, consistent with its ability to neutralize the LPL-inhibitory activity of ANGPTL4. Alignment of all angiopoietin family members revealed that a sequence similar to ANGPTL4 SE1 was present only in ANGPTL3, corresponding to amino acids Glu(32)-His(55). We produced a mouse mAb against this SE1-like region in ANGPTL3. This mAb, designated 5.50.3, inhibited the binding of ANGPTL3 to LPL and neutralized ANGPTL3-mediated inhibition of LPL activity in vitro. Treatment of wild-type as well as hyperlipidemic mice with mAb 5.50.3 resulted in reduced serum TG levels, recapitulating the lipid phenotype found in Angptl3(-/-) mice. These results show that the SE1 region of ANGPTL3 and ANGPTL4 functions as a domain important for binding LPL and inhibiting its activity in vitro and in vivo. Moreover, these results demonstrate that therapeutic antibodies that neutralize ANGPTL4 and ANGPTL3 may be useful for treatment of some forms of hyperlipidemia.

  5. Lipoprotein lipase variants interact with polyunsaturated fatty acids to modulate obesity traits in Puerto Ricans

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lipoprotein lipase (LPL) is a candidate gene for obesity based on its role in triglyceride hydrolysis and the partitioning of fatty acids towards storage or oxidation. Whether dietary fatty acids modify LPL associated obesity risk is unknown. We examined five single nucleotide polymorphisms (SNPs) (...

  6. Expression Levels of GABA-A Receptor Subunit Alpha 3, Gabra3 and Lipoprotein Lipase, Lpl Are Associated with the Susceptibility to Acetaminophen-Induced Hepatotoxicity

    PubMed Central

    Kim, Minjeong; Yun, Jun-Won; Shin, Kyeho; Cho, Yejin; Yang, Mijeong; Nam, Ki Taek; Lim, Kyung-Min

    2017-01-01

    Drug-induced liver injury (DILI) is the serious and fatal drug-associated adverse effect, but its incidence is very low and individual variation in severity is substantial. Acetaminophen (APAP)-induced liver injury accounts for >50% of reported DILI cases but little is known for the cause of individual variations in the severity. Intrinsic genetic variation is considered a key element but the identity of the genes was not well-established. Here, pre-biopsy method and microarray technique was applied to uncover the key genes for APAP-induced liver injury in mice, and a cause and effect experiment employing quantitative real-time PCR was conducted to confirm the correlation between the uncovered genes and APAP-induced hepatotoxicity. We identified the innately and differentially expressed genes of mice susceptible to APAP-induced hepatotoxicity in the pre-biopsied liver tissue before APAP treatment through microarray analysis of the global gene expression profiles (Affymetrix GeneChip® Mouse Gene 1.0 ST for 28,853 genes). Expression of 16 genes including Gdap10, Lpl, Gabra3 and Ccrn4l were significantly different (t-test: FDR <10%) more than 1.5 fold in the susceptible animals than resistant. To confirm the association with the susceptibility to APAP-induced hepatotoxicity, another set of animals were measured for the expression level of selected 4 genes (higher two and lower two genes) in the liver pre-biopsy and their sensitivity to APAP-induced hepatotoxicity was evaluated by post hoc. Notably, the expressions of Gabra3 and Lpl were significantly correlated with the severity of liver injury (p<0.05) demonstrating that these genes may be linked to the susceptibility to APAP-induced hepatotoxicity. PMID:27530116

  7. [Research advances in the effects of excise and diet on LPL and its mechanism].

    PubMed

    Liu, Gui; Wang, Xiao-Hui

    2014-04-01

    Lipoprotein lipase (LPL) plays a major role in the metabolism and transport of lipids by hydrolyzing core triglycerides (TG) in chylomicrons and very low density lipoprotein. LPL is mainly synthesized and secreted by fat cells, myocardial cells and skeletal muscle cells. The expression and activity of LPL are regulated by multiple factors, such as hormones, nutrition, exercise, PPARgamma, apolipoproteins, glycosylphosphatidylinositol-anchored high-density lipoprotein-binding protein 1 (GPIHBP1) and angiopoietin-like proteins (ANGPTL). After introducing advance in LPL structure and regulation, we review the effects of exercise and diet intervention on the expression and activity of LPL and its possible mechanism.

  8. Apolipoprotein A5 and lipoprotein lipase interact to modulate anthropometric measures in Hispanics of Caribbean origin

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Apolipoprotein A5 (APOA5) and lipoprotein lipase (LPL) proteins interact functionally to regulate lipid metabolism, and single nucleotide polymorphisms (SNPs) for each gene have also been associated independently with obesity risk. Evaluating gene combinations may be more effective than single SNP a...

  9. Lipase

    MedlinePlus

    ... Lipase is used for indigestion, heartburn, allergy to gluten in wheat products (celiac disease), Crohn's disease, and ... that is associated with cystic fibrosis.Allergy to gluten in wheat products (celiac disease). Crohn's disease. Indigestion. ...

  10. Correction of feline lipoprotein lipase deficiency with adeno-associated virus serotype 1-mediated gene transfer of the lipoprotein lipase S447X beneficial mutation.

    PubMed

    Ross, Colin J D; Twisk, Jaap; Bakker, Andrew C; Miao, Fudan; Verbart, Dennis; Rip, Jaap; Godbey, Tamara; Dijkhuizen, Paul; Hermens, Wim T J M C; Kastelein, John J P; Kuivenhoven, Jan Albert; Meulenberg, Janneke M; Hayden, Michael R

    2006-05-01

    Human lipoprotein lipase (hLPL) deficiency, for which there currently exists no adequate treatment, leads to excessive plasma triglycerides (TGs), recurrent abdominal pain, and life-threatening pancreatitis. We have shown that a single intramuscular administration of adeno-associated virus (AAV) serotype 1 vector, encoding the human LPL(S447X) variant, results in complete, long-term normalization of dyslipidemia in LPL(/) mice. As a prelude to gene therapy for human LPL deficiency, we tested the efficacy of AAV1-LPL(S447X) in LPL(/) cats, which demonstrate hypertriglyceridemia (plasma TGs, >10,000 mg/dl) and clinical symptoms similar to LPL deficiency in humans, including pancreatitis. Male LPL(/) cats were injected intramuscularly with saline or AAV1-LPL(S447X) (1 x 10(11)-1.7 x 10(12) genome copies [GC]/kg), combined with oral doses of cyclophosphamide (0-200 mg/m(2) per week) to inhibit an immune response against hLPL. Within 3-7 days after administration of >or=5 x 10(11) GC of AAV1-LPL(S447X) per kilogram, the visible plasma lipemia was completely resolved and plasma TG levels were reduced by >99% to normal levels (10-20 mg/dl); intermediate efficacy (95% reduction) was achieved with 1 x 10(11) GC/kg. Injection in two sites, greatly limiting the amount of transduced muscle, was sufficient to completely correct the dyslipidemia. By varying the dose per site, linear LPL expression was demonstrated over a wide range of local doses (4 x 10(10)-1 x 10(12) GC/site). However, efficacy was transient, because of an anti-hLPL immune response blunting LPL expression. The level and duration of efficacy were significantly improved with cyclophosphamide immunosuppression. We conclude that AAV1-mediated delivery of LPL(S447X) in muscle is an effective means to correct the hypertriglyceridemia associated with feline LPL deficiency.

  11. Aberrant LPL Expression, Driven by STAT3, Mediates Free Fatty Acid Metabolism in CLL Cells

    PubMed Central

    Rozovski, Uri; Grgurevic, Srdana; Bueso-Ramos, Carlos; Harris, David M.; Li, Ping; Liu, Zhiming; Wu, Ji Yuan; Jain, Preetesh; Wierda, William; Burger, Jan; O’Brien, Susan; Jain, Nitin; Ferrajoli, Alessandra; Keating, Michael J.; Estrov, Zeev

    2015-01-01

    While reviewing chronic lymphocytic leukemia (CLL) bone marrow slides we identified cytoplasmic lipid vacuoles in CLL cells but not in normal B cells. Because lipoprotein lipase (LPL), which catalyzes hydrolysis of triglycerides into free fatty acids (FFAs), is aberrantly expressed in CLL, we investigated whether LPL regulates the oxidative metabolic capacity of CLL cells. We found that unlike normal B cells, CLL cells metabolize FFAs. Because STAT3 is constitutively activated in CLL cells and because we identified putative STAT3 binding sites in the LPL promoter, we sought to determine whether STAT3 drives the aberrant expression of LPL. Transfection of luciferase reporter gene constructs driven by LPL promoter fragments into MM1 cells revealed that STAT3 activates the LPL promoter. In addition, chromatin immunoprecipitation (ChIP) confirmed that STAT3 binds to the LPL promoter. Furthermore, transfection of CLL cells with STAT3-shRNA downregulated LPL transcripts and protein levels, confirming that STAT3 activates the LPL gene. Finally, transfection of CLL cells with LPL-siRNAs decreased the capacity of CLL cells to oxidize FFAs and reduced cell viability. PMID:25733697

  12. Severe hypertriglyceridemia, reduced high density lipoprotein, and neonatal death in lipoprotein lipase knockout mice. Mild hypertriglyceridemia with impaired very low density lipoprotein clearance in heterozygotes.

    PubMed Central

    Weinstock, P H; Bisgaier, C L; Aalto-Setälä, K; Radner, H; Ramakrishnan, R; Levak-Frank, S; Essenburg, A D; Zechner, R; Breslow, J L

    1995-01-01

    Lipoprotein lipase (LPL)-deficient mice have been created by gene targeting in embryonic stem cells. At birth, homozygous knockout pups have threefold higher triglycerides and sevenfold higher VLDL cholesterol levels than controls. When permitted to suckle, LPL-deficient mice become pale, then cyanotic, and finally die at approximately 18 h of age. Before death, triglyceride levels are severely elevated (15,087 +/- 3,805 vs 188 +/- 71 mg/dl in controls). Capillaries in tissues of homozygous knockout mice are engorged with chylomicrons. This is especially significant in the lung where marginated chylomicrons prevent red cell contact with the endothelium, a phenomenon which is presumably the cause of cyanosis and death in these mice. Homozygous knockout mice also have diminished adipose tissue stores as well as decreased intracellular fat droplets. By crossbreeding with transgenic mice expressing human LPL driven by a muscle-specific promoter, mouse lines were generated that express LPL exclusively in muscle but not in any other tissue. This tissue-specific LPL expression rescued the LPL knockout mice and normalized their lipoprotein pattern. This supports the contention that hypertriglyceridemia caused the death of these mice and that LPL expression in a single tissue was sufficient for rescue. Heterozygous LPL knockout mice survive to adulthood and have mild hypertriglyceridemia, with 1.5-2-fold elevated triglyceride levels compared with controls in both the fed and fasted states on chow, Western-type, or 10% sucrose diets. In vivo turnover studies revealed that heterozygous knockout mice had impaired VLDL clearance (fractional catabolic rate) but no increase in transport rate. In summary, total LPL deficiency in the mouse prevents triglyceride removal from plasma, causing death in the neonatal period, and expression of LPL in a single tissue alleviates this problem. Furthermore, half-normal levels of LPL cause a decrease in VLDL fractional catabolic rate and mild

  13. Lipoprotein lipase gene sequencing and plasma lipid profile[S

    PubMed Central

    Pirim, Dilek; Wang, Xingbin; Radwan, Zaheda H.; Niemsiri, Vipavee; Hokanson, John E.; Hamman, Richard F.; Barmada, M. Michael; Demirci, F. Yesim; Kamboh, M. Ilyas

    2014-01-01

    Lipoprotein lipase (LPL) plays a crucial role in lipid metabolism by hydrolyzing triglyceride (TG)-rich particles and affecting HDL cholesterol (HDL-C) levels. In this study, the entire LPL gene plus flanking regions were resequenced in individuals with extreme HDL-C/TG levels (n = 95), selected from a population-based sample of 623 US non-Hispanic White (NHW) individuals. A total of 176 sequencing variants were identified, including 28 novel variants. A subset of 64 variants [common tag single nucleotide polymorphisms (tagSNP) and selected rare variants] were genotyped in the total sample, followed by association analyses with major lipid traits. A gene-based association test including all genotyped variants revealed significant association with HDL-C (P = 0.024) and TG (P = 0.006). Our single-site analysis revealed seven independent signals (P < 0.05; r2 < 0.40) with either HDL-C or TG. The most significant association was for the SNP rs295 exerting opposite effects on TG and HDL-C levels with P values of 7.5.10−4 and 0.002, respectively. Our work highlights some common variants and haplotypes in LPL with significant associations with lipid traits; however, the analysis of rare variants using burden tests and SKAT-O method revealed negligible effects on lipid traits. Comprehensive resequencing of LPL in larger samples is warranted to further test the role of rare variants in affecting plasma lipid levels. PMID:24212298

  14. Angiopoietin-like protein 3 inhibits lipoprotein lipase activity through enhancing its cleavage by proprotein convertases.

    PubMed

    Liu, Jun; Afroza, Huq; Rader, Daniel J; Jin, Weijun

    2010-09-03

    Lipoprotein lipase (LPL)-mediated lipolysis of triglycerides is the first and rate-limiting step in chylomicron/very low density lipoprotein clearance at the luminal surface of the capillaries. Angiopoietin-like protein 3 (ANGPTL3) is shown to inhibit LPL activity and plays important roles in modulating lipoprotein metabolism in vivo. However, the mechanism by which it inhibits LPL activity remains poorly understood. Using cell-based analysis of the interaction between ANGPTL3, furin, proprotein convertase subtilisin/kexin type 5 (PCSK5), paired amino acid converting enzyme-4 (PACE4), and LPL, we demonstrated that the cleavage of LPL by proprotein convertases is an inactivation process, similar to that seen for endothelial lipase cleavage. At physiological concentrations and in the presence of cells, ANGPTL3 is a potent inhibitor of LPL. This action is due to the fact that ANGPTL3 can enhance LPL cleavage by endogenous furin and PACE4 but not by PCSK5. This effect is specific to LPL but not endothelial lipase. Both N- and C-terminal domains of LPL are required for ANGPTL3-enhanced cleavage, and the N-terminal domain of ANGPTL3 is sufficient to exert its effect on LPL cleavage. Moreover, ANGPTL3 enhances LPL cleavage in the presence of either heparan sulfate proteoglycans or glycosylphosphatidylinositol-anchored high density lipoprotein-binding protein 1 (GPIHBP1). By enhancing LPL cleavage, ANGPTL3 dissociates LPL from the cell surface, inhibiting both the catalytic and noncatalytic functions of LPL. Taken together, our data provide a molecular connection between ANGPTL3, LPL, and proprotein convertases, which may represent a rapid signal communication among different metabolically active tissues to maintain energy homeostasis. These novel findings provide a new paradigm of specific protease-substrate interaction and further improve our knowledge of LPL biology.

  15. Substrate specificity of lipoprotein lipase and endothelial lipase: studies of lid chimeras.

    PubMed

    Griffon, Nathalie; Budreck, Elaine C; Long, Christopher J; Broedl, Uli C; Marchadier, Dawn H L; Glick, Jane M; Rader, Daniel J

    2006-08-01

    The triglyceride (TG) lipase gene subfamily, consisting of LPL, HL, and endothelial lipase (EL), plays a central role in plasma lipoprotein metabolism. Compared with LPL and HL, EL is relatively more active as a phospholipase than as a TG lipase. The amino acid loop or "lid" covering the catalytic site has been implicated as the basis for the difference in substrate specificity between HL and LPL. To determine the role of the lid in the substrate specificity of EL, we studied EL in comparison with LPL by mutating specific residues of the EL lid and exchanging their lids. Mutation studies showed that amphipathic properties of the lid contribute to substrate specificity. Exchanging lids between LPL and EL only partially shifted the substrate specificity of the enzymes. Studies of a double chimera possessing both the lid and the C-terminal domain (C-domain) of EL in the LPL backbone showed that the role of the lid in determining substrate specificity does not depend on the nature of the C-domain of the lipase. Using a kinetic assay, we showed an additive effect of the EL lid on the apparent affinity for HDL(3) in the presence of the EL C-domain.

  16. Parathyroid hormone is not an inhibitor of lipoprotein lipase activity.

    PubMed

    Arnadottir, M; Nilsson-Ehle, P

    1994-01-01

    The reduced lipoprotein lipase (LPL) activities in uraemia are reflected by increased serum triglyceride concentrations and reduced HDL cholesterol concentrations. Both hyperparathyroidism and circulating inhibitor(s) of LPL have been associated with the disturbances of lipid metabolism in uraemia. The aim of the present study was to investigate if parathyroid hormone (PTH) had an inhibitory effect on LPL activity. Plasma post-heparin LPL activities, plasma LPL inhibitory activities, serum PTHintact and serum PTHC-terminal concentrations were analysed in 20 patients on haemodialysis and 20 healthy controls. The effects of purified, human PTHintact and a carboxyterminal fragment of PTH (PTH39-84) on LPL activities in post-heparin plasma from healthy individuals and on the enzyme activity of purified, bovine milk LPL, activated with apolipoprotein CII, were studied. Patients had significantly higher plasma LPL inhibitory activities than controls, but there was no correlation between plasma LPL inhibitory activities and serum PTH concentrations. Neither PTHintact nor PTH39-84 had a significant effect on LPL activities in vitro. Thus there was no evidence of a direct inhibition of LPL activity by PTH under the present in-vivo or in-vitro conditions.

  17. Skeletal muscle damage and impaired regeneration due to LPL-mediated lipotoxicity

    PubMed Central

    Tamilarasan, K P; Temmel, H; Das, S K; Al Zoughbi, W; Schauer, S; Vesely, P W; Hoefler, G

    2012-01-01

    According to the concept of lipotoxicity, ectopic accumulation of lipids in non-adipose tissue induces pathological changes. The most prominent effects are seen in fatty liver disease, lipid cardiomyopathy, non-insulin-dependent diabetes mellitus, insulin resistance and skeletal muscle myopathy. We used the MCK(m)-hLPL mouse distinguished by skeletal and cardiac muscle-specific human lipoprotein lipase (hLPL) overexpression to investigate effects of lipid overload in skeletal muscle. We were intrigued to find that ectopic lipid accumulation induced proteasomal activity, apoptosis and skeletal muscle damage. In line with these findings we observed reduced Musculus gastrocnemius and Musculus quadriceps mass in transgenic animals, accompanied by severely impaired physical endurance. We suggest that muscle loss was aggravated by impaired muscle regeneration as evidenced by reduced cross-sectional area of regenerating myofibers after cardiotoxin-induced injury in MCK(m)-hLPL mice. Similarly, an almost complete loss of myogenic potential was observed in C2C12 murine myoblasts upon overexpression of LPL. Our findings directly link lipid overload to muscle damage, impaired regeneration and loss of performance. These findings support the concept of lipotoxicity and are a further step to explain pathological effects seen in muscle of obese patients, patients with the metabolic syndrome and patients with cancer-associated cachexia. PMID:22825472

  18. ShRNA-mediated gene silencing of lipoprotein lipase improves insulin sensitivity in L6 skeletal muscle cells.

    PubMed

    Jan, Majib; Medh, Jheem D

    2015-06-19

    In previous studies, we demonstrated that down-regulation of lipoprotein lipase in L6 muscle cells increased insulin-stimulated glucose uptake. In the current study, we used RNA interference technology to silence the LPL gene in L6 cells and generate a LPL-knock-down (LPL-KD) cell line. ShRNA transfected cells showed a 88% reduction in the level of LPL expression. The metabolic response to insulin was compared in wild-type (WT) and LPL-KD cells. Insulin-stimulated glycogen synthesis and glucose oxidation were respectively, 2.4-fold and 2.6-fold greater in LPL-KD cells compared to WT cells. Oxidation of oleic acid was reduced by 50% in LPL-KD cells compared to WT cells even in the absence of insulin. The contribution of LPL in regulating fuel metabolism was confirmed by adding back purified LPL to the culture media of LPL-KD cells. The presence of 10 μg/mL LPL resulted in LPL-KD cells reverting back to lower glycogen synthesis and glucose oxidation and increased fatty acid oxidation. Thus, LPL depletion appeared to mimic the action of insulin. These finding suggests an inverse correlation between muscle LPL levels and insulin-stimulated fuel homeostasis.

  19. Nanobioconjugates of Candida antarctica lipase B and single-walled carbon nanotubes in biodiesel production.

    PubMed

    Bencze, László Csaba; Bartha-Vári, Judith H; Katona, Gabriel; Toşa, Monica Ioana; Paizs, Csaba; Irimie, Florin-Dan

    2016-01-01

    Carboxylated single-walled carbon nanotubes (SWCNTCOOH) were used as support for covalent immobilization of Candida antarctica lipase B (CaL-B) using linkers with different lengths. The obtained nanostructured biocatalysts with low diffusional limitation were tested in batch mode in the ethanolysis of the sunflower oil. SWCNTCOOH-CaL-B proved to be a highly efficient and stable biocatalyst in acetonitrile (83.4% conversion after 4h at 35°C, retaining >90% of original activity after 10 cycles).

  20. Endothelial cells respond to hyperglycemia by increasing the LPL transporter GPIHBP1.

    PubMed

    Pei-Ling Chiu, Amy; Wang, Fulong; Lal, Nathaniel; Wang, Ying; Zhang, Dahai; Hussein, Bahira; Wan, Andrea; Vlodavsky, Israel; Rodrigues, Brian

    2014-06-01

    In diabetes, when glucose uptake and oxidation are impaired, the heart is compelled to use fatty acid (FA) almost exclusively for ATP. The vascular content of lipoprotein lipase (LPL), the rate-limiting enzyme that determines circulating triglyceride clearance, is largely responsible for this FA delivery and increases following diabetes. Glycosylphosphatidylinositol-anchored high-density lipoprotein-binding protein [GPIHBP1; a protein expressed abundantly in the heart in endothelial cells (EC)] collects LPL from the interstitial space and transfers it across ECs onto the luminal binding sites of these cells, where the enzyme is functional. We tested whether ECs respond to hyperglycemia by increasing GPIHBP1. Streptozotocin diabetes increased cardiac LPL activity and GPIHBP1 gene and protein expression. The increased LPL and GPIHBP1 were located at the capillary lumen. In vitro, passaging EC caused a loss of GPIHBP1, which could be induced on exposure to increasing concentrations of glucose. The high-glucose-induced GPIHBP1 increased LPL shuttling across EC monolayers. GPIHBP1 expression was linked to the EC content of heparanase. Moreover, active heparanase increased GPIHBP1 gene and protein expression. Both ECs and myocyte heparan sulfate proteoglycan-bound platelet-derived growth factor (PDGF) released by heparanase caused augmentation of GPIHBP1. Overall, our data suggest that this protein "ensemble" (heparanase-PDGF-GPIHBP1) cooperates in the diabetic heart to regulate FA delivery and utilization by the cardiomyocytes. Interrupting this axis may be a novel therapeutic strategy to restore metabolic equilibrium, curb lipotoxicity, and help prevent or delay heart dysfunction that is characteristic of diabetes.

  1. Undaria pinnatifida soluble fiber regulates Angptl3-LPL pathway to lessen hyperlipidemia in mice.

    PubMed

    Xiao, Hong-Bo; Lu, Xiang-Yang; Zhang, Heng-Bo; Sun, Zhi-Liang; Fang, Jun

    2013-12-01

    Angiopoietin-like protein 3 (Angptl3)-lipoprotein lipase (LPL) pathway may be a useful pharmacologic target for hyperlipidemia. The present study was conducted to test the effect of soluble fiber extracted from Undaria pinnatifida (UP), on hyperlipidemia in apolipoprotein E-deficient (ApoE(-/-)) mice. Forty mice were divided into four groups (n = 10): control group (C57BL/6J mice), ApoE(-/-) mice group, and two groups of ApoE(-/-) mice treated with UP fiber (5 or 10 % per day). UP soluble fiber treatment significantly decreased plasma and hepatic total cholesterol, triglycerides levels, plasma low-density lipoprotein cholesterol, and malondialdehyde concentrations and increased plasma high-density lipoprotein cholesterol level and downregulated protein expression of Angptl3 concomitantly with upregulated protein expression of LPL. In addition, T0901317 caused elevated expression of hepatic Angptl3 protein, and the effect of T0901317 was also abrogated by UP soluble fiber in C57BL/6J mice. The present results suggest that the UP soluble fiber regulates Angptl3-LPL pathway to lessen hyperlipidemia in mice.

  2. Water-in-oil microemulsion doped with gold nanoparticle decorated single walled carbon nanotube: scaffold for enhancing lipase activity.

    PubMed

    Mandal, Deep; Ghosh, Moumita; Maiti, Subhabrata; Das, Krishnendu; Das, Prasanta Kumar

    2014-01-01

    The present work reports the development of water-in-oil (w/o) microemulsion doped with newly designed nanocomposite comprising of gold nanoparticle (GNP) decorated single walled carbon nanotube (SWNT). This nanocomposite included cationic reverse micelle was used to boost the catalytic activity of a surface-active enzyme, Chromobacterium viscosum lipase (CV lipase). SWNT was non-covalently dispersed using cetyltrimethylammonium bromide (CTAB), cetylalaninetrimethylammonium chloride (CATAC) while GNP was synthesized by reduction of HAuCl4 with reducing/stabilizing agent trisodium citrate. Counterion exchange between cationic SWNT dispersing agent and anionic capping agent of GNP led to the formation of GNP decorated SWNT (SWNT-GNP) nanocomposite. This newly developed SWNT-GNP included CTAB reverse micelle was characterized by several microscopic and spectroscopic techniques. Interfacially located SWNT-GNP included w/o microemulsion (confirmed from biphasic and fluorescence experiment) was used as a proficient host for enhancing the catalytic activity of lipase. Lipase activity within this self-assembled soft nanocomposite improved up to 3.9-fold (second order rate constant, k2=1694±16 cm(3) g(-1) s(-1)) compared to standard CTAB reverse micelle (k2=433±7 cm(3) g(-1) s(-1)). In case of cetyltripropyl ammonium bromide (CTPAB) based reverse micelle, the observed lipase activity improved to k2=2036±11 cm(3) g(-1) s(-1) in the presence of SWNT-GNP composite. Notably, this catalytic activity of lipase within SWNT-GNP included reverse micelle was till date the highest activity found in any w/o microemulsion. The attainment of flexibility in enzyme conformation at the augmented interface was verified using circular dichroism (CD) spectroscopy.

  3. Inactivation of lipoprotein lipase occurs on the surface of THP-1 macrophages where oligomers of angiopoietin-like protein 4 are formed

    SciTech Connect

    Makoveichuk, Elena; Sukonina, Valentina; Kroupa, Olessia; Thulin, Petra; Ehrenborg, Ewa; Olivecrona, Thomas; Olivecrona, Gunilla

    2012-08-24

    Highlights: Black-Right-Pointing-Pointer Lipoprotein lipase (LPL) activity is controlled by ANGPTL4 in THP-1 macrophages. Black-Right-Pointing-Pointer Both LPL and ANGPTL4 bind to THP-1 macrophages in a heparin-releasable fashion. Black-Right-Pointing-Pointer Only monomers of ANGPTL4 are present within THP-1 macrophages. Black-Right-Pointing-Pointer Covalent oligomers of ANGPTL4 appear on cell surface and in medium. Black-Right-Pointing-Pointer Inactivation of LPL coincide with ANGPTL4 oligomer formation on cell surfaces. -- Abstract: Lipoprotein lipase (LPL) hydrolyzes triglycerides in plasma lipoproteins causing release of fatty acids for metabolic purposes in muscles and adipose tissue. LPL in macrophages in the artery wall may, however, promote foam cell formation and atherosclerosis. Angiopoietin-like protein (ANGPTL) 4 inactivates LPL and ANGPTL4 expression is controlled by peroxisome proliferator-activated receptors (PPAR). The mechanisms for inactivation of LPL by ANGPTL4 was studied in THP-1 macrophages where active LPL is associated with cell surfaces in a heparin-releasable form, while LPL in the culture medium is mostly inactive. The PPAR{delta} agonist GW501516 had no effect on LPL mRNA, but increased ANGPTL4 mRNA and caused a marked reduction of the heparin-releasable LPL activity concomitantly with accumulation of inactive, monomeric LPL in the medium. Intracellular ANGPTL4 was monomeric, while dimers and tetramers of ANGPTL4 were present in the heparin-releasable fraction and medium. GW501516 caused an increase in the amount of ANGPTL4 oligomers on the cell surface that paralleled the decrease in LPL activity. Actinomycin D blocked the effects of GW501516 on ANGPTL4 oligomer formation and prevented the inactivation of LPL. Antibodies against ANGPTL4 interfered with the inactivation of LPL. We conclude that inactivation of LPL in THP-1 macrophages primarily occurs on the cell surface where oligomers of ANGPTL4 are formed.

  4. Lipoprotein Lipase as a Prognostic Marker in Chronic Lymphocytic Leukemia.

    PubMed

    Mátrai, Zoltán; Andrikovics, Hajnalka; Szilvási, Anikó; Bors, András; Kozma, András; Ádám, Emma; Halm, Gabriella; Karászi, Éva; Tordai, Attila; Masszi, Tamás

    2017-01-01

    The marked clinical heterogeneity of CLL makes early prognosis assessment important. Lipoprotein lipase (LPL) has been shown to confer adverse prognosis in CLL, recent data indicating it might also contribute to CLL cell survival and metabolism. We determined LPL mRNA expression in unselected peripheral blood of 84 CLL patients by RT PCR. Results were correlated with other prognostic markers and outcome. 30/84 (40 %) of cases were LPL positive based on the cutoff established by ROC analysis. In LPL positive patients significantly shorter median survival (136 vs 258 months, p < 0.0001) and time to first treatment intervals (36 vs 144 months, p < 0.002) were documented. LPL values correlated with male gender, higher stages, more treatment requirement, CD38 positivity and unmutated IgVH genes. Among cases with 13q deletion, LPL positivity identified a subcohort with poor outcome (median survival 108 months vs NR, p < 0.0001). In multivariate analysis, cytogenetic aberrations and LPL had significant impact on survival. Our results confirm that LPL is a strong predictor of outcome in CLL, able to improve prognostic accuracy in good risk cytogenetic subgroups. The relationship between its prognostic and functional role in CLL needs to be explored further.

  5. Macrophages and smooth muscle cells express lipoprotein lipase in human and rabbit atherosclerotic lesions.

    PubMed Central

    Ylä-Herttuala, S; Lipton, B A; Rosenfeld, M E; Goldberg, I J; Steinberg, D; Witztum, J L

    1991-01-01

    Lipoprotein lipase (LPL; EC 3.1.1.34) may promote atherogenesis by producing remnant lipoproteins on the endothelial surface and by acting on lipoproteins in the artery wall. In vitro, smooth muscle cells and macrophages synthesize LPL, but in human carotid lesions only a few smooth muscle cells were reported to contain LPL protein. Endothelial cells do not synthesize LPL in vitro, but in normal arteries intense immunostaining for LPL is present on the endothelium. We used Northern blot analysis, in situ hybridization, and immunocytochemistry of human and rabbit arteries to determine cellular distribution and the site of the synthesis of LPL in atherosclerotic lesions. Northern blot analysis showed that LPL mRNA was detectable in macrophage-derived foam cells isolated from arterial lesions of "ballooned" cholesterol-fed rabbits. In situ hybridization studies of atherosclerotic lesions with an antisense riboprobe showed a strong hybridization signal for LPL mRNA in some, but not all, lesion macrophages, which were mostly located in the subendothelial and edge areas of the lesions. Also, some smooth muscle cells in lesion areas also expressed LPL mRNA. Immunocytochemistry of frozen sections of rabbit lesions with a monoclonal antibody to human milk LPL showed intense staining for LPL protein in macrophage-rich intimal lesions. The results suggest that lesion macrophages and macrophage-derived foam cells express LPL mRNA and protein. Some smooth muscle cells in the lesion areas also synthesize LPL. These data are consistent with an important role for LPL in atherogenesis. Images PMID:1719546

  6. Characterization and identification of a lipoprotein lipase from Manduca sexta flight muscle.

    PubMed

    Van Heusden, M C

    1993-10-01

    Lipoprotein lipase (LpL) activity in Manduca sexta flight muscle tissue was measured using in vivo radiolabeled lipophorin as a substrate. LpL hydrolyses diacylglycerol in the low density lipophorin (that occurs during flight) at a higher rate than diacylglycerol in the high density lipophorin (present in the resting insect). LpL has a pH-optimum of 7.5 and is less sensitive to NaCl than mammalian LpL. LpL is inhibited by bovine albumin and chicken ovalbumin. LpL is inhibited by the serine protease inhibitors diisopropylfluorophosphate (DFP) and phenylmethanesulfonyl fluoride (PMSF), which indicates the presence of an active site serine similar to mammalian LpL. Flight muscle LpL shows affinity for immobilized copper as well as for immobilized heparin. Using radiolabeled DFP, a protein of 37 kDa was identified (after SDS-PAGE) as the DFP-binding protein in a partially purified preparation of LpL. This 37 kDa protein is proposed to be the LpL or a subunit thereof.

  7. Streptozotocin-Induced Diabetes Decreases Mammary Gland Lipoprotein Lipase Activity and Messenger Ribonucleic Acid in Pregnant and Nonpregnant Rats

    PubMed Central

    Blanco-Dolado, Laura; Martín-Hidalgo, Antonia; Herrera, Emilio

    2002-01-01

    Diabetes mellitus is associated with a reduction of lipoprotein lipase (LPL) activity in adipose tissue and development of hypertriglyceridemia. To determine how a condition of severe insulin deficiency affects mammary gland LPL activity and mRNA expression during late pregnancy, streptozotocin (STZ) treated (40 mg/kg) and non-treated (control) virgin and 20 day pregnant rats were studied. In control rats, both LPL activity and mRNA were higher in pregnant than in virgin rats. When compared to control rats, STZ-treated rats, either pregnant or virgin, showed decreased LPL activity and mRNA content. Furthermore, mammary gland LPL activity was linearly correlated with mRNA content, and either variable was linearly correlated with plasma insulin levels. Thus, insulin deficiency impairs the expression of LPL in mammary glands, revealing the role of insulin as a modulator of the enzyme at the mRNA expression level. PMID:11900280

  8. Lipoprotein lipase deficiency leads to α-synuclein aggregation and ubiquitin C-terminal hydrolase L1 reduction.

    PubMed

    Yang, H; Zhou, T; Wang, H; Liu, T; Ueda, K; Zhan, R; Zhao, L; Tong, Y; Tian, X; Zhang, T; Jin, Y; Han, X; Li, Z; Zhao, Y; Guo, X; Xiao, W; Fan, D; Liu, G; Chui, D

    2015-04-02

    We have previously reported that presynaptic dysfunction and cognitive decline have been found in lipoprotein lipase (LPL) deficient mice, but the mechanism remains to be elucidated. Accumulating evidence supported that α-synuclein (α-syn) and ubiquitin C-terminal hydrolase L1 (UCHL1) are required for normal synaptic and cognitive function. In this study, we found that α-syn aggregated and the expression of UCHL1 decreased in the brain of LPL deficient mice. Reduction of UCHL1 was resulted from nuclear retention of DNA cytosine-5-methyltransferase 1 in LPL knockout mice. Reverse changes were found in cultured cells overexpressing LPL. Furthermore, deficiency of LPL increased ubiquitination of α-syn. These results indicated that aggregation of α-syn and reduction of UCHL1 expression in LPL-deficient mice may affect synaptic function.

  9. Lipoprotein lipase is synthesized by macrophage-derived foam cells in human coronary atherosclerotic plaques.

    PubMed Central

    O'Brien, K D; Gordon, D; Deeb, S; Ferguson, M; Chait, A

    1992-01-01

    Lipoprotein lipase (LPL), hydrolyzes the core triglycerides of lipoproteins, thereby playing a role in their maturation. LPL may be important in the metabolic pathways that lead to atherosclerosis, since it is secreted in vitro by both of the predominant cell types of the atherosclerotic plaque, i.e., macrophages and smooth muscle cells. Because of uncertainty concerning the primary cellular source of LPL in atherosclerotic lesions, in situ hybridization assays for LPL mRNA were performed on 12 coronary arteries obtained from six cardiac allograft recipients. Macrophages and smooth muscle cells were identified on adjacent sections with cell-specific antibodies and foam cells were identified morphologically. LPL protein was localized using a polyclonal antibody. LPL mRNA was produced by a proportion of plaque macrophages, particularly macrophage-derived foam cells, but was not detected in association with any intimal or medial smooth muscle cells. These findings were confirmed by combined immunocytochemistry and in situ hybridization on the same tissue sections. LPL protein was detected in association with macrophage-derived foam cells, endothelial cells, adventitial adipocytes, and medial smooth muscle cells, and, to a lesser extent, in intimal smooth muscle cells and media underlying well-developed plaque. These results indicate that macrophage-derived foam cells are the primary source of LPL in atherosclerotic plaques and are consistent with a role for LPL in the pathogenesis of atherosclerosis. Images PMID:1569193

  10. Momilactone B Inhibits Ketosis In Vitro by Regulating the ANGPTL3-LPL Pathway and Inhibiting HMGCS2.

    PubMed

    Kang, Dong Young; S P, Nipin; Darvin, Pramod; Joung, Youn Hee; Byun, Hyo Joo; Do, Chang Hee; Park, Kyung Do; Park, Mi Na; Cho, Kwang Hyun; Yang, Young Mok

    2016-11-22

    Ketogenesis is the production of ketone bodies, which provide energy when the body lacks glucose. Under ketogenic conditions, the body switches from primarily carbohydrate to fat metabolism to maintain energy balance. However, accumulation of high levels of ketone bodies in the blood results in ketosis. Treating ketosis with natural substances is preferable, because they are unlikely to cause side-effects. Momilactone B is an active compound isolated from Korean rice. Based on previous studies, we hypothesized that momilactone B could inhibit ketosis. We constructed an in vitro ketosis model by glucose starvation. We used this model to test the anti-ketosis effects of momilactone B. A primary target for treating ketosis is angiopoietin-like-3 (ANGPTL3), which modulates lipoprotein metabolism by inhibiting lipoprotein lipase (LPL), a multifunctional enzyme that breaks down stored fat to produce triglycerides. We showed that momilactone B could regulate the ANGPTL3-LPL pathway. However, a strong anti-ketosis candidate drug should also inhibit ketogenesis. Ketogenesis can be suppressed by inhibiting the expression of 3-hydroxy-3-methylglutaryl-CoA synthase-2 (HMGCS2), a mitochondrial enzyme that converts acetyl-CoA to ketone bodies. We found that momilactone B suppressed the expression of HMGCS2 through the increased expression of STAT5b. We also elucidated the relationship of STAT5b to ANGPTL3 and LPL expression.

  11. Release of endothelial cell lipoprotein lipase by plasma lipoproteins and free fatty acids

    SciTech Connect

    Saxena, U.; Witte, L.D.; Goldberg, I.J.

    1989-03-15

    Lipoprotein lipase (LPL) bound to the lumenal surface of vascular endothelial cells is responsible for the hydrolysis of triglycerides in plasma lipoproteins. Studies were performed to investigate whether human plasma lipoproteins and/or free fatty acids would release LPL which was bound to endothelial cells. Purified bovine milk LPL was incubated with cultured porcine aortic endothelial cells resulting in the association of enzyme activity with the cells. When the cells were then incubated with media containing chylomicrons or very low density lipoproteins (VLDL), a concentration-dependent decrease in the cell-associated LPL enzymatic activity was observed. In contrast, incubation with media containing low density lipoproteins or high density lipoproteins produced a much smaller decrease in the cell-associated enzymatic activity. The addition of increasing molar ratios of oleic acid:bovine serum albumin to the media also reduced enzyme activity associated with the endothelial cells. To determine whether the decrease in LPL activity was due to release of the enzyme from the cells or inactivation of the enzyme, studies were performed utilizing radioiodinated bovine LPL. Radiolabeled LPL protein was released from endothelial cells by chylomicrons, VLDL, and by free fatty acids (i.e. oleic acid bound to bovine serum albumin). The release of radiolabeled LPL by VLDL correlated with the generation of free fatty acids from the hydrolysis of VLDL triglyceride by LPL bound to the cells. Inhibition of LPL enzymatic activity by use of a specific monoclonal antibody, reduced the extent of release of /sup 125/I-LPL from the endothelial cells by the added VLDL. These results demonstrated that LPL enzymatic activity and protein were removed from endothelial cells by triglyceride-rich lipoproteins (chylomicrons and VLDL) and oleic acid.

  12. Familial lipoprotein lipase deficiency: a case of compound heterozygosity of a novel duplication (R44Kfs*4) and a common mutation (N291S) in the lipoprotein lipase gene.

    PubMed

    Overgaard, Martin; Brasen, Claus Lohman; Svaneby, Dea; Feddersen, Søren; Nybo, Mads

    2013-07-01

    Familial lipoprotein lipase (LPL) deficiency (FLLD) is a rare autosomal recessive genetic disorder caused by homozygous or compound heterozygous mutations in the LPL gene. FLLD individuals usually express an impaired or non-functional LPL enzyme with low or absent triglyceride (TG) hydrolysis activity causing severe hypertriglyceridaemia. Here we report a case of FLLD in a 29-year-old man, who initially presented with eruptive cutaneous xanthomata, elevated plasma TG concentration but no other co-morbidities. Subsequent genetic testing of the patient revealed compound heterozygosity of a novel duplication (p.R44Kfs*4) leading to a premature stop codon in exon 2 and a known mutation (N291S) in exon 5 of the LPL gene. Further biochemical analysis of the patient's postheparin plasma confirmed a reduction of total lipase activity compared with his heterozygous father carrying the common N291S mutation and to a healthy control. Also the patient showed increased (1.85-fold) activity of hepatic lipase (HL), indicating a functional link between HL and LPL. In summary, we report a case of FLLD caused by compound heterozygosity of a new duplication and a common mutation in the LPL gene, resulting in residual LPL activity. With such mutations, individuals may not receive a diagnosis before classical FLLD symptoms appear later in adulthood. Nevertheless, early diagnosis and lipid-lowering treatment may favour a reduced risk of premature cardiovascular disease or acute pancreatitis in such individuals.

  13. Lipase Test

    MedlinePlus

    ... known as: LPS Formal name: Lipase Related tests: Amylase , Trypsin , Trypsinogen At a Glance Test Sample The ... lipase is most often used, along with an amylase test , to help diagnose and monitor acute pancreatitis . ...

  14. Lipoprotein lipase regulates Fc receptor-mediated phagocytosis by macrophages maintained in glucose-deficient medium.

    PubMed Central

    Yin, B; Loike, J D; Kako, Y; Weinstock, P H; Breslow, J L; Silverstein, S C; Goldberg, I J

    1997-01-01

    During periods of intense activity such as phagocytosis, macrophages are thought to derive most of their energy from glucose metabolism under both aerobic and anaerobic conditions. To determine whether fatty acids released from lipoproteins by macrophage lipoprotein lipase (LPL) could substitute for glucose as a source of energy for phagocytosis, we cultured peritoneal macrophages from normal and LPL knockout (LPL-KO) mice that had been rescued from neonatal demise by expression of human LPL via the muscle creatine kinase promoter. Normal and LPL-KO macrophages were cultured in medium containing normal (5 mM) or low (1 mM) glucose, and were tested for their capacity to phagocytose IgG-opsonized sheep erythrocytes. LPL-KO macrophages maintained in 1 and 5 mM glucose phagocytosed 67 and 79% fewer IgG-opsonized erythrocytes, respectively, than macrophages from normal mice. Addition of VLDL to LPL-expressing macrophages maintained in 1 mM glucose enhanced the macrophages' phagocytosis of IgG-opsonized erythrocytes, but did not stimulate phagocytosis by LPL-KO macrophages. Inhibition of secreted LPL with a monoclonal anti-LPL antibody or with tetrahydrolipstatin blocked the ability of VLDL to enhance phagocytosis by LPL-expressing macrophages maintained in 1 mM glucose. Addition of oleic acid significantly enhanced phagocytosis by both LPL-expressing and LPL-KO macrophages maintained in 1 mM glucose. Moreover, oleic acid stimulated phagocytosis in cells cultured in non-glucose-containing medium, and increased the intracellular stores of creatine phosphate. Inhibition of oxidative phosphorylation, but not of glycolysis, blocked the capacity of oleic acid to stimulate phagocytosis. Receptor-mediated endocytosis of acetyl LDL by macrophages from LPL-expressing and LPL-KO mice was similar whether the cells were maintained in 5 or 1 mM glucose, and was not augmented by VLDL. We postulate that fatty acids derived from macrophage LPL-catalyzed hydrolysis of triglycerides and

  15. Reduced LPL and subcutaneous lipid storage capacity are associated with metabolic syndrome in postmenopausal women with obesity

    PubMed Central

    Ryan, A. S.; Goldberg, A. P.

    2016-01-01

    Sumary Objectives This study examines the hypothesis that lower adipose tissue lipoprotein lipase (LPL) activity and a limited capacity for subcutaneous adipocyte expansion will be associated with metabolic syndrome (MSyn) in postmenopausal women who are overweight and obese. Methods Women (N = 150; age 60 ± 1 year; BMI: 31.5 ± 0.3 kg m−2; mean ± standard errors of the means [SEM]) with and without MSyn had dual‐energy X‐ray absorptiometry scans for total body fat, CT scans for visceral and subcutaneous abdominal adipose tissue areas, lipid and glucose metabolic profiles, and abdominal and gluteal fat aspirations for subcutaneous fat cell weight (FCW; N = 150) and LPL activity (N = 100). Results Women with MSyn had similar total body fat, but 15% larger abdominal and 11% larger gluteal FCWs and more visceral fat (179 ± 7 vs. 134 ± 6 cm2) than women without MSyn (P's < 0.05). Abdominal LPL activity was 13% (P = 0.18) lower in women with than without MSyn and correlated with abdominal FCW (r = 0.49, P < 0.01) only in those without MSyn. Visceral fat and abdominal and gluteal FCWs correlated with MSyn components, and subcutaneous adipose tissue correlated with abdominal FCW (r = 0.43, P < 0.01) and LPL activity (r = 0.18, P < 0.05), independent of total body fat. Conclusions These results show that women with MSyn have lower LPL activity, limited capacity for subcutaneous adipocyte lipid storage and greater ectopic fat accumulation in viscera than women without MSyn of comparable obesity. This suggests that the development of novel therapies that would enhance adipocyte expandability might prevent the accumulation of ectopic fat and reduce the risk for MSyn in postmenopausal women with obesity.

  16. Unusual metabolic characteristics in skeletal muscles of transgenic rabbits for human lipoprotein lipase

    PubMed Central

    Gondret, Florence; Jadhao, Sanjay B; Damon, Marie; Herpin, Patrick; Viglietta, Céline; Houdebine, Louis-Marie; Hocquette, Jean-François

    2004-01-01

    Background The lipoprotein lipase (LPL) hydrolyses circulating triacylglycerol-rich lipoproteins. Thereby, LPL acts as a metabolic gate-keeper for fatty acids partitioning between adipose tissue for storage and skeletal muscle primarily for energy use. Transgenic mice that markedly over-express LPL exclusively in muscle, show increases not only in LPL activity, but also in oxidative enzyme activities and in number of mitochondria, together with an impaired glucose tolerance. However, the role of LPL in intracellular nutrient pathways remains uncertain. To examine differences in muscle nutrient uptake and fatty acid oxidative pattern, transgenic rabbits harboring a DNA fragment of the human LPL gene (hLPL) and their wild-type littermates were compared for two muscles of different metabolic type, and for perirenal fat. Results Analyses of skeletal muscles and adipose tissue showed the expression of the hLPL DNA fragment in tissues of the hLPL group only. Unexpectedly, the activity level of LPL in both tissues was similar in the two groups. Nevertheless, mitochondrial fatty acid oxidation rate, measured ex vivo using [1-14C]oleate as substrate, was lower in hLPL rabbits than in wild-type rabbits for the two muscles under study. Both insulin-sensitive glucose transporter GLUT4 and muscle fatty acid binding protein (H-FABP) contents were higher in hLPL rabbits than in wild-type littermates for the pure oxidative semimembranosus proprius muscle, but differences between groups did not reach significance when considering the fast-twitch glycolytic longissimus muscle. Variations in both glucose uptake potential, intra-cytoplasmic binding of fatty acids, and lipid oxidation rate observed in hLPL rabbits compared with their wild-type littermates, were not followed by any modifications in tissue lipid content, body fat, and plasma levels in energy-yielding metabolites. Conclusions Expression of intracellular binding proteins for both fatty acids and glucose, and their

  17. Atorvastatin and pitavastatin enhance lipoprotein lipase production in L6 skeletal muscle cells through activation of adenosine monophosphate-activated protein kinase.

    PubMed

    Ohira, Masahiro; Endo, Kei; Saiki, Atsuhito; Miyashita, Yoh; Terai, Kensuke; Murano, Takeyoshi; Watanabe, Fusako; Tatsuno, Ichiro; Shirai, Kohji

    2012-10-01

    Pravastatin and atorvastatin increase the serum level of lipoprotein lipase (LPL) mass in vivo but do not increase LPL activity in 3T3-L1 preadipocytes in vitro. LPL is mainly produced by adipose tissue and skeletal muscle cells. Metformin enhances LPL in skeletal muscle through adenosine monophosphate-activated protein kinase (AMPK) activation but not in adipocytes. This study aimed to examine the effect of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors (statins) on LPL production and to investigate the mechanism by which statins enhance skeletal muscle cell LPL production. L6 skeletal muscle cells were incubated with pravastatin, simvastatin, atorvastatin or pitavastatin. LPL activity, protein levels and mRNA expression were measured. Atorvastatin and pitavastatin significantly increased LPL activity, protein levels and mRNA expression in L6 skeletal muscle cells at 1 μmol/L, but neither statin had an effect at 10 μmol/L. We measured AMPK to clarify the mechanism by which statins increase LPL production in skeletal muscle cells. At 1 μmol/L, both atorvastatin and pitavastatin enhanced AMPK activity, but this enhancement was abolished when AMPK signaling was blocked by compound C. The increased expressions of LPL protein and mRNA by atorvastatin and pitavastatin were reduced by compound C. In addition, mevalonic acid abolished atorvastatin- and pitavastatin-induced AMPK activation and LPL expression. These results suggest that atorvastatin and pitavastatin increase LPL activity, protein levels and LPL mRNA expression by activating AMPK in skeletal muscle cells.

  18. Genetic variation in MDR1, LPL and eNOS genes and the response to atorvastatin treatment in ischemic stroke.

    PubMed

    Munshi, Anjana

    2012-11-01

    Statins reduce the risk of cardiovascular events by lowering the blood cholesterol. Many genes involved in the pharmacodynamic pathway of statins have been part of pharmacogenetic research in patients with hypercholesterolemia, with an emphasis on genes involved in the cholesterol pathway. The present study was carried out with an aim to evaluate the association between the genetic variants of lipoprotein lipase gene [HindIII (+/+)/HindIII (-/-)], multiple drug resistance gene (C3435T) and endothelial nitric oxide synthase gene (4a/4b) with clinical outcome including an increased risk of recurrent stroke or death in ischemic stroke patients on atorvastatin therapy. 525 stroke patients and 500 healthy controls were involved in the study. Follow-up telephone interviews were conducted with patients post-event to determine stroke outcome. Blood samples were collected and genotypes determined by polymerase chain reaction-restriction digestion technique. A significant association of MDR1 and LPL gene variants with bad outcome in stroke patients on atorvastatin therapy was found. However, there was no significant association of 27 bp VNTR polymorphism of eNOS gene with outcome. MDR analysis was carried out to analyze gene-gene interaction involving these gene variants contributing to clinical outcome of patients on stratin therapy but no significant interaction between these variants was observed. In conclusion the individuals with HindIII (-/-) genotype of LPL and CC genotype of MDR1 gene would benefit more from atorvastatin therapy.

  19. Impaired synaptic vesicle recycling contributes to presynaptic dysfunction in lipoprotein lipase-deficient mice.

    PubMed

    Liu, X; Zhang, B; Yang, H; Wang, H; Liu, Y; Huang, A; Liu, T; Tian, X; Tong, Y; Zhou, T; Zhang, T; Xing, G; Xiao, W; Guo, X; Fan, D; Han, X; Liu, G; Zhou, Z; Chui, D

    2014-11-07

    Lipoprotein lipase (LPL) is expressed at high levels in hippocampal neurons, although its function is unclear. We previously reported that LPL-deficient mice have learning and memory impairment and fewer synaptic vesicles in hippocampal neurons, but properties of synaptic activity in LPL-deficient neurons remain unexplored. In this study, we found reduced frequency of miniature excitatory postsynaptic currents (mEPSCs) and readily releasable pool (RRP) size in LPL-deficient neurons, which led to presynaptic dysfunction and plasticity impairment without altering postsynaptic activity. We demonstrated that synaptic vesicle recycling, which is known to play an important role in maintaining the RRP size in active synapses, is impaired in LPL-deficient neurons. Moreover, lipid assay revealed deficient docosahexaenoic acid (DHA) and arachidonic acid (AA) in the hippocampus of LPL-deficient mice; exogenous DHA or AA supplement partially restored synaptic vesicle recycling capability. These results suggest that impaired synaptic vesicle recycling results from deficient DHA and AA and contributes to the presynaptic dysfunction and plasticity impairment in LPL-deficient neurons.

  20. LIPOPROTEIN LIPASE RELEASES ESTERIFIED OXYLIPINS FROM VERY LOW-DENSITY LIPOPROTEINS.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Defects in lipoprotein metabolism alter the lipoprotein distribution of oxidized PUFAs, and we speculate that lipoprotein lipase (LpL) is a determinant in the release of VLDL-associated oxylipins. Here, using 12 wk old normolipidemic (lean) and hyperlipidemic (obese) Zucker-rats, we measured PUFA al...

  1. Brefeldin A enables synthesis of active lipoprotein lipase in cld/cld and castanospermine-treated mouse brown adipocytes via translocation of Golgi components to endoplasmic reticulum.

    PubMed Central

    Park, J W; Blanchette-Mackie, E J; Scow, R O

    1996-01-01

    Brown adipocytes cultured from newborn combined-lipase-deficient (cld/cld) mice and castanospermine (CST)-treated 3T3-L1 adipocytes synthesize lipoprotein lipase (LPL) which is inactive and retained in the endoplasmic reticulum (ER) [Masuno, Blanchette-Mackie, Chernick and Scow (1990) J.Biol. Chem. 265, 1628-1638; Masuno, Blanchette-Mackie, Schultz, Spaeth, Scow and Okuda (1992) J.Lipid Res.33, 1343-1349]. Brefeldin A (BFA), which is known to block protein transport from ER and translocate Golgi components to ER, was used here to study the effect of translocated Golgi enzymes on LPL retained in ER of cld/cld and CST-treated mouse brown adipocytes. Brown adipocytes cultured from newborn normal mice contained 3000-5000 m-units of LPL activity/mg of DNA and secreted 35 m-units of LPL activity/mg of DNA per h. BFA at 10 micrograms/ml doubled LPL activity in normal cells within 2 h as it stopped completely secretion of active LPL. LPL in mouse cells has two N-oligosaccharide chains per subunit. Analyses with SDS/PAGE and immunoblotting showed that about one-third of LPL subunits in untreated normal cells were totally endo-beta-N-acetylglucosaminidase (endo H)-resistant, one-third were partially endo H-resistant, and one-third were totally endo H-sensitive. BFA decreased to zero the proportion of subunits which were totally endo H-resistant, while it increased the proportion which were partially endo H-resistant. Thus, BFA blocked processing of one oligosaccharide chain per subunit to endo H-resistance. Sucrose-gradient centrifugation studies showed that BFA increased the proportion of LPL subunits in normal cells which were present as active dimers. LPL activity in cld/cld adipocytes was 120 m-units/mg of DNA and that in normal adipocytes treated with CST was 430 m-units/mg of DNA. Most LPL subunits in such cells were totally endo H-sensitive and some were partially endo H-resistant, but none were totally endo H-resistant. Some of the subunits, in both cld/cld and CST

  2. Apolipoprotein AV accelerates plasma hydrolysis of triglyceride-rich lipoproteins by interaction with proteoglycan-bound lipoprotein lipase.

    PubMed

    Merkel, Martin; Loeffler, Britta; Kluger, Malte; Fabig, Nathalie; Geppert, Gesa; Pennacchio, Len A; Laatsch, Alexander; Heeren, Joerg

    2005-06-03

    Apolipoprotein A5 (APOA5) is associated with differences in triglyceride levels and familial combined hyperlipidemia. In genetically engineered mice, apoAV plasma levels are inversely correlated with plasma triglycerides. To elucidate the mechanism by which apoAV influences plasma triglycerides, metabolic studies and in vitro assays resembling physiological conditions were performed. In human APOA5 transgenic mice (hAPOA5tr), catabolism of chylomicrons and very low density lipoprotein (VLDL) was accelerated due to a faster plasma hydrolysis of triglycerides by lipoprotein lipase (LPL). Hepatic VLDL and intestinal chylomicron production were not affected. The functional interplay between apoAV and LPL was further investigated by cross-breeding a human LPL transgene with the apoa5 knock-out and the hAPOA5tr to an lpl-deficient background. Increased LPL activity completely normalized hypertriglyceridemia of apoa5-deficient mice; however, overexpression of human apoAV modulated triglyceride levels only slightly when LPL was reduced. To reflect the physiological situation in which LPL is bound to cell surface proteoglycans, we examined hydrolysis in the presence or absence of proteoglycans. Without proteoglycans, apoAV derived either from triglyceride-rich lipoproteins, hAPOA5tr high density lipoprotein, or a recombinant source did not alter the LPL hydrolysis rate. In the presence of proteoglycans, however, apoAV led to a significant and dose-dependent increase in LPL-mediated hydrolysis of VLDL triglycerides. These results were confirmed in cell culture using a proteoglycan-deficient cell line. A direct interaction between LPL and apoAV was found by ligand blotting. It is proposed, that apoAV reduces triglyceride levels by guiding VLDL and chylomicrons to proteoglycan-bound LPL for lipolysis.

  3. Lipoprotein lipase and phospholipid transfer protein overexpression in human glioma cells and their effect on cell growth, apoptosis, and migration.

    PubMed

    Dong, Weijiang; Gong, Huilin; Zhang, Guanjun; Vuletic, Simona; Albers, John; Zhang, Jiaojiao; Liang, Hua; Sui, Yanxia; Zheng, Jin

    2017-01-01

    Glioma is one of the common tumors in brain. The expression level of lipoprotein lipase (LPL) or phospholipid transfer protein (PLTP) may influence glioma progression and its relationship with clinical and pathological parameters. The clinical significance of LPL or PLTP expression in glioma has not been established. In the present study, the LPL and PLTP levels in glioma tumors were investigated and the relationship between the LPL and PLTP level and the grade of malignant glioma was analyzed, with the aim to provide new ideas for the diagnosis and treatment of gliomas in clinical and basic research settings. LPL and PLTP mRNA and protein levels were significantly higher in Grade IV glioma than those in the lower grade tumors (P < 0.01). Double immunofluorescent staining showed that the levels of LPL and PLTP were significantly associated with the pathological grade of glioma (P = 0.005). The levels of LPL and PLTP were increased with the shortened survival of glioma patients (P < 0.001). Knockdown of LPL and PLTP led to decreased cell growth and migration but increased apoptosis in vitro Additionally, cell cycle-related cyclins and their partners were found to be down-regulated while cyclin-dependent kinase inhibitors p16, p21, and Rb were up-regulated. Furthermore, knockdown of LPL or PLTP resulted in the up-regulation of pro-apoptotic molecules and the down-regulation of anti-apoptotic molecules. Ablation of LPL or PLTP in U251 cells resulted in the down-regulation of epithelial mesenchymal transition markers and invasion molecules matrix metalloproteinases. LPL and PLTP appear to be novel glioma-associated proteins and play a role in the progression of human glioma.

  4. Apolipoprotein AV Accelerates Plasma Hydrolysis OfTriglyceride-Rich Lipoproteins By Interaction With Proteoglycan BoundLipoprotein Lipase

    SciTech Connect

    Merkel, Martin; Loeffler, Britta; Kluger, Malte; Fabig, Nathalie; Geppert, Gesa; Pennacchio, Len A.; Laatsch, Alexander; Heeren, Joerg

    2005-02-22

    Apolipoprotein A5 (APOA5) is associated with differences intriglyceride levels and familial combined hyperlipidemia. In genetically engineered mice, apoAV plasma levels are inversely correlated with plasmatriglycerides. To elucidate the mechanism by which apoAV influences plasma triglycerides, metabolic studies and in vitro assays resembling physiological conditions were performed. In hAPOA5 transgenic mice(hAPOA5tr), catabolism of chylomicrons and VLDL was accelerated due to a faster plasma hydrolysis of triglycerides by lipoprotein lipase (LPL).Hepatic VLDL and intestinal chylomicron production were not affected. The functional interplay between apoAV and LPL was further investigated by crossbreeding a human LPL transgene with the apoa5 knockout, and the hAPOA5tr to an LPL deficient background. Increased LPL activity completely normalized hypertriglyceridemia of apoa5 deficient mice,however, over expression of human apoAV modulated triglyceride levels only slightly when LPL was reduced. To reflect the physiological situation in which LPL is bound to cell surface proteoglycans, we examined hydrolysis in the presence or absence of proteoglycans. Without proteoglycans, apoAV derived either from triglyceride-rich lipoproteins, hAPOA5tr HDL, or a recombinant source did not alter the LPL hydrolysis rate. In the presence of proteoglycans, however, apoAV led to a significant and dose-dependent increase in LPL mediated hydrolysis of VLDL triglycerides. These results were confirmed in cell culture using a proteoglycan-deficient cell line.A direct interaction between LPL and apoAV was found by ligand blotting.It is proposed, that apoAV reduces triglyceride levels by guiding VLDL and chylomicrons to proteoglycans bound LPL for lipolysis.

  5. Linkage of low-density lipoprotein size to the lipoprotein lipase gene in heterozygous lipoprotein lipase deficiency.

    PubMed Central

    Hokanson, J E; Brunzell, J D; Jarvik, G P; Wijsman, E M; Austin, M A

    1999-01-01

    Small low-density lipoprotein (LDL) particles are a genetically influenced coronary disease risk factor. Lipoprotein lipase (LpL) is a rate-limiting enzyme in the formation of LDL particles. The current study examined genetic linkage of LDL particle size to the LpL gene in five families with structural mutations in the LpL gene. LDL particle size was smaller among the heterozygous subjects, compared with controls. Among heterozygous subjects, 44% were classified as affected by LDL subclass phenotype B, compared with 8% of normal family members. Plasma triglyceride levels were significantly higher, and high-density lipoprotein cholesterol (HDL-C) levels were lower, in heterozygous subjects, compared with normal subjects, after age and sex adjustment. A highly significant LOD score of 6.24 at straight theta=0 was obtained for linkage of LDL particle size to the LpL gene, after adjustment of LDL particle size for within-genotype variance resulting from triglyceride and HDL-C. Failure to adjust for this variance led to only a modest positive LOD score of 1.54 at straight theta=0. Classifying small LDL particles as a qualitative trait (LDL subclass phenotype B) provided only suggestive evidence for linkage to the LpL gene (LOD=1. 65 at straight theta=0). Thus, use of the quantitative trait adjusted for within-genotype variance, resulting from physiologic covariates, was crucial for detection of significant evidence of linkage in this study. These results indicate that heterozygous LpL deficiency may be one cause of small LDL particles and may provide a potential mechanism for the increase in coronary disease seen in heterozygous LpL deficiency. This study also demonstrates a successful strategy of genotypic specific adjustment of complex traits in mapping a quantitative trait locus. PMID:9973300

  6. Enhanced bridging function and augmented monocyte adhesion by lipoprotein lipase N9: insights into increased risk of coronary artery disease in N9 carriers.

    PubMed

    Fisher, Rachel M; Benhizia, Ferdaous; Schreiber, Renate; Makoveichuk, Elena; Putt, Wendy; Al-Haideri, Maysoon; Deckelbaum, Richard J; Olivecrona, Gunilla; Humphries, Steve E; Talmud, Philippa J

    2003-02-01

    Lipoprotein lipase (LPL) is central to triacylglycerol (TG) metabolism, having both hydrolytic and bridging functions. The common LPL gene variant D9N is associated with raised TG, reduced HDL-cholesterol concentrations and increased risk of coronary artery disease (CAD). To investigate the functional basis for the phenotype in N9 carriers, CHO K1 cells were stably transfected with wild type (D9) or mutant (N9) LPL cDNA. LPL RNA expression levels, monomer-to-dimer ratios, and dimer specific activities were similar in D9 and N9 cells. Significantly enhanced binding (4.6-fold) and internalisation (2.6-fold) of 125I-LDL by N9 compared with D9 cells was eradicated by pre-treatment with either heparin or heparinase, confirming involvement of LPL and cell surface proteoglycans. N9 cells bound and internalised 3.8- and 4.4-fold more oxidised 125I-LDL, respectively, than D9 cells (both P<0.0001). Binding of monocytes was 7-fold greater to plates coated with purified LPL-N9 dimer compared with LPL-D9 (P<=0.005). Thus once on the cell surface, LPL-N9 enhances bridging, as assessed both by LDL binding and internalisation, and monocyte adhesion. This augmented LPL-N9 bridging provides a mechanism for the reported increased CAD risk in N9 carriers.

  7. Increasing adipocyte lipoprotein lipase improves glucose metabolism in high fat diet-induced obesity.

    PubMed

    Walton, R Grace; Zhu, Beibei; Unal, Resat; Spencer, Michael; Sunkara, Manjula; Morris, Andrew J; Charnigo, Richard; Katz, Wendy S; Daugherty, Alan; Howatt, Deborah A; Kern, Philip A; Finlin, Brian S

    2015-05-01

    Lipid accumulation in liver and skeletal muscle contributes to co-morbidities associated with diabetes and obesity. We made a transgenic mouse in which the adiponectin (Adipoq) promoter drives expression of lipoprotein lipase (LPL) in adipocytes to potentially increase adipose tissue lipid storage. These mice (Adipoq-LPL) have improved glucose and insulin tolerance as well as increased energy expenditure when challenged with a high fat diet (HFD). To identify the mechanism(s) involved, we determined whether the Adipoq-LPL mice diverted dietary lipid to adipose tissue to reduce peripheral lipotoxicity, but we found no evidence for this. Instead, characterization of the adipose tissue of the male mice after HFD challenge revealed that the mRNA levels of peroxisome proliferator-activated receptor-γ (PPARγ) and a number of PPARγ-regulated genes were higher in the epididymal fat pads of Adipoq-LPL mice than control mice. This included adiponectin, whose mRNA levels were increased, leading to increased adiponectin serum levels in the Adipoq-LPL mice. In many respects, the adipose phenotype of these animals resembles thiazolidinedione treatment except for one important difference, the Adipoq-LPL mice did not gain more fat mass on HFD than control mice and did not have increased expression of genes in adipose such as glycerol kinase, which are induced by high affinity PPAR agonists. Rather, there was selective induction of PPARγ-regulated genes such as adiponectin in the adipose of the Adipoq-LPL mice, suggesting that increasing adipose tissue LPL improves glucose metabolism in diet-induced obesity by improving the adipose tissue phenotype. Adipoq-LPL mice also have increased energy expenditure.

  8. Lipase test

    MedlinePlus

    ... cholecystitis Chronic pancreatitis Enzyme Familial lipoprotein lipase deficiency Pancreatic cancer Triglyceride level Review Date 2/4/2015 Updated ... team. Related MedlinePlus Health Topics Gastroenteritis Genetic Disorders Pancreatic Cancer Pancreatic Diseases Pancreatitis Browse the Encyclopedia A.D. ...

  9. RNA/DNA ratio and LPL and MyoD mRNA expressions in muscle of Oreochromis niloticus fed with elevated levels of palm oil

    NASA Astrophysics Data System (ADS)

    Ayisi, Christian Larbi; Zhao, Jinliang

    2016-02-01

    Palm oil is of great potential as one of the sustainable alternatives to fish oil (FO) in aquafeeds. In this present study, five isonitrogenous diets (32% crude protein) with elevated palm oil levels of 0%, 2%, 4%, 6% and 8% were used during an 8-week feeding trial to evaluate its effects on RNA/DNA ratio and lipoprotein lipase (LPL) and MyoD mRNA expressions in muscle of Oreochromis niloticus. The results showed that RNA, DNA content as well as ratio of RNA to DNA were significantly affected ( P < 0.05), in each case the highest was recorded in fish group subjected to 6% palm oil level. There was a strong positive correlation between nucleic acid concentration (RNA concentration and RNA: DNA ratio) and specific growth rate (SGR), protein efficiency ratio (PER), while a negative correlation existed between nucleic acid concentration (RNA concentration and RNA: DNA ratio) and feed conversion ratio (FCR). The mRNA expressions of LPL and MyoD in muscle were not significantly affected by the different palm oil levels, although the highest expression was observed in fish fed with 6% palm oil level. There also existed a strong positive correlation between the mRNA expression of LPL, MyoD and SGR, PER, while their correlation with FCR was negative. In conclusion, elevated palm oil affected the RNA, DNA concentration as well as RNA/DNA ratio significantly, although the mRNA expression of LPL and MyoD were not affected significantly by elevated palm oil levels.

  10. Association of the Hindiii and S447X Polymorphisms in Lpl Gene with Hypertension and Type 2 Diabetes in Mexican Families

    PubMed Central

    Muñoz-Barrios, Salvador; Guzmán-Guzmán, Iris Paola; Muñoz-Valle, José Francisco; Salgado-Bernabé, Aralia Berenice; Salgado-Goytia, Lorenzo; Parra-Rojas, Isela

    2012-01-01

    Lipoprotein lipase (LPL) is a key enzyme in lipid metabolismand is associatedwith obesity, dyslipidemias, hypertension (HTN) and type 2 diabetes mellitus (T2DM). LPL gene polymorphisms can be related with the development of cardiovascular risk factors. The present study was conducted to analyze the relationship of the HindIII and S447X polymorphisms in LPL gene with cardiovascular risk factors in Mexican families. The study population comprised ninety members of 30 Mexican families, in which an index case had obesity, were included in the study. We evaluated the body composition by bioelectrical impedance. Peripheral blood samples were collected to determine biochemical parameters. Screening for both polymorphisms was made by PCR-RFLPs. In the parents, both polymorphisms were in Hardy-Weinberg’s equilibrium. We found that the genotype T/T of HindIII was associated with diastolic blood pressure ≧ 85 mmHg (OR = 1.1; p = 0.011), whereas the genotype C/C of S447X was associated with systolic blood pressure ≧ 130 mmHg (OR = 1.2; p < 0.001), diastolic blood pressure ≧ 85 mmHg (OR = 1.3; p < 0.001), T2DM (OR = 1.3; p < 0.001) and with increase of total cholesterol (β = 23.6 mg/mL; p = 0.03). These data suggest that the HindIII and S447X LPL gene polymorphisms can confer susceptibility for the development of hypertension and T2DM in Mexican families. PMID:23089926

  11. Fatty acid alcohol ester-synthesizing activity of lipoprotein lipase.

    PubMed

    Tsujita, T; Sumiyoshi, M; Okuda, H

    1999-12-01

    The fatty acid alcohol ester-synthesizing activity of lipoprotein lipase (LPL) was characterized using bovine milk LPL. Synthesizing activities were determined in an aqueous medium using oleic acid or trioleylglycerol as the acyl donor and equimolar amounts of long-chain alcohols as the acyl acceptor. When oleic acid and hexadecanol emulsified with gum arabic were incubated with LPL, palmityl oleate was synthesized, in a time- and dose-dependent manner. Apo-very low density lipoprotein (apoVLDL) stimulated LPL-catalyzed palmityl oleate synthesis. The apparent equilibrium ratio of fatty acid alcohol ester/oleic acid was estimated using a high concentration of LPL and a long (20 h) incubation period. The equilibrium ratio was affected by the incubation pH and the alcohol chain length. When the incubation pH was below pH 7.0 and long chain fatty acyl alcohols were used as substrates, the fatty acid alcohol ester/free fatty acid equilibrium ratio favored ester formation, with an apparent equilibrium ratio of fatty acid alcohol ester/fatty acid of about 0.9/0.1. The equilibrium ratio decreased sharply at alkaline pH (above pH 8.0). The ratio also decreased when fatty alcohols with acyl chains shorter than dodecanol were used. When a trioleoylglycerol/fatty acyl alcohol emulsion was incubated with LPL, fatty acid alcohol esters were synthesized in a dose- and time-dependent fashion. Fatty acid alcohol esters were easily synthesized from trioleoylglycerol when fatty alcohols with acyl chains longer than dodecanol were used, but synthesis was decreased with fatty alcohols with acyl chain lengths shorter than decanol, and little synthesizing activity was detected with shorter-chain fatty alcohols such as butanol or ethanol.

  12. Lipoprotein lipase activity and chylomicron clearance in rats fed a high fat diet

    SciTech Connect

    Brown, C.M.; Layman, D.K.

    1988-11-01

    The relationships of tissue and plasma lipoprotein lipase (LPL) activities to tissue uptake and plasma clearance of UC-labeled chylomicron-triglyceride ( UC-CM-TG) were studied in female rats fed isoenergetic and isonitrogenous control (12% kJ from fat) or high fat diets (72% kJ from fat) for 8 wk. Animals fed the high-fat diet had higher levels of fasting plasma triglycerides and lower LPL activities in heart, renal adipose tissue and post-heparin plasma. Changes in LPL activities of skeletal muscles varied among muscles with higher values in the soleus and plantaris (32-61%) and no differences in the gastrocnemius. The lower LPL activity in renal adipose tissue was associated with lower uptake of fatty acids from UC-CM-TG by adipose. Fatty-acid uptake from labeled TG was not associated with tissue LPL activity in other tissues. Clearance of UC-CM-TG from plasma and the half-lives of UC-CM-TG were similar in both dietary groups. These data indicate that tissue and plasma LPL activities are not a direct index of uptake of fatty acids by tissues or clearance of chylomicron triglycerides.

  13. Triacylglycerol kinetics in endotoxic rats with suppressed lipoprotein lipase activity

    SciTech Connect

    Bagby, G.J.; Corll, C.B.; Martinez, R.R.

    1987-07-01

    Hypertriglyceridemia observed in animals after bacterial endotoxin administration and some forms of sepsis can result from increased hepatic triacylglycerol (TG) output or decreased TG clearance by extrahepatic tissues. To differentiate between these two possibilities, TG and free fatty acid (FFA) kinetics were determined in control and endotoxin-injected rats 18 h after treatment. Plasma TG and FFA kinetics were assessed by a constant intravenous infusion with (9,10-/sup 3/H)palmitate-labeled very low-density lipoprotein and (1-/sup 14/C)palmitate bound to albumin, respectively. In addition, lipoprotein lipase (LPL) activity was determined in heart, skeletal muscle, and adipose tissue as well as in postheparin plasma of functionally hepatectomized, adrenalectomized, and gonadectomized rats. Plasma FFA acid concentrations were slightly increased in endotoxin-treated rats but their turnover did not differ from control. Endotoxin-treated rats had a threefold increase in plasma TG concentrations and decreased heart, skeletal muscle, and post-heparin plasma LPL activity. Plasma TG turnover was decreased, indicating that hypertriglyceridemia was not due to an increased TG output by the liver. Instead, the endotoxin-induced increase in plasma TG concentration was consequence of the 80% reduction in TG metabolic clearance rate. Thus, suppression of LPL activity in endotoxic animals impairs TG clearance resulting in hypertriglyceridemia. Furthermore, endotoxin administration reduced the delivery of TG-FFA to extrahepatic tissues because hepatic synthesis and secretion of TG from plasma FFA was decreased and LPL activity was suppressed.

  14. Maternal undernutrition leads to elevated hepatic triglycerides in male rat offspring due to increased expression of lipoprotein lipase.

    PubMed

    Zhu, Wei-Fen; Zhu, Jian-Fang; Liang, Li; Shen, Zheng; Wang, Ying-Min

    2016-05-01

    Small for gestational age (SGA) at birth increases the risk of developing metabolic syndrome, which encompasses various symptoms including hypertriglyceridemia. The aim of the present study was to determine whether maternal undernutrition during pregnancy may lead to alterations in hepatic triglyceride content and the gene expression levels of hepatic lipoprotein lipase (LPL) in SGA male offspring. The present study focused on the male offspring in order to prevent confounding factors, such as estrus cycle and hormone profile. Female Sprague Dawley rats were arbitrarily assigned to receive an ad libitum chow diet or 50% food restricted diet from pregnancy day 1 until parturition. Reverse transcription quantitative polymerase chain reaction and western blot analysis were used to measure the gene expression levels of hepatic LPL at day 1 and upon completion of the third week of age. Chromatin immunoprecipitation quantified the binding activity of liver X receptor‑α (LXR‑α) gene to the LXR response elements (LXRE) on LPL promoter and LPL epigenetic characteristics. At 3 weeks of age, SGA male offspring exhibited significantly elevated levels of hepatic triglycerides, which was concomitant with increased expression levels of LPL. Since LPL is regulated by LXR‑α, the expression levels of LXR‑α were detected in appropriate for gestational age and SGA male offspring. Maternal undernutrition during pregnancy led to an increase in the hepatic expression levels of LXR‑α, and enriched binding to the putative LXR response elements in the LPL promoter regions in 3‑week‑old male offspring. In addition, enhanced acetylation of histone H3 [H3 lysine (K)9 and H3K14] was detected surrounding the LPL promoter. The results of the present study indicated that maternal undernutrition during pregnancy may lead to an increase in hepatic triglycerides, via alterations in the transcriptional and epigenetic regulation of the LPL gene.

  15. Down-regulation of lipoprotein lipase increases glucose uptake in L6 muscle cells

    SciTech Connect

    Lopez, Veronica; Saraff, Kumuda; Medh, Jheem D.

    2009-11-06

    Thiazolidinediones (TZDs) are synthetic hypoglycemic agents used to treat type 2 diabetes. TZDs target the peroxisome proliferator activated receptor-gamma (PPAR-{gamma}) and improve systemic insulin sensitivity. The contributions of specific tissues to TZD action, or the downstream effects of PPAR-{gamma} activation, are not very clear. We have used a rat skeletal muscle cell line (L6 cells) to demonstrate that TZDs directly target PPAR-{gamma} in muscle cells. TZD treatment resulted in a significant repression of lipoprotein lipase (LPL) expression in L6 cells. This repression correlated with an increase in glucose uptake. Down-regulation of LPL message and protein levels using siRNA resulted in a similar increase in insulin-dependent glucose uptake. Thus, LPL down-regulation improved insulin sensitivity independent of TZDs. This finding provides a novel method for the management of insulin resistance.

  16. [TOTAL PARENTERAL NUTRITION IN A PREGNANT PATIENT WITH ACUTE PANCREATITIS AND LIPOPROTEIN LIPASE DEFICIENCY].

    PubMed

    Contreras-Bolívar, Victoria; González-Molero, Inmaculada; Valdivieso, Pedro; Olveira, Gabriel

    2015-10-01

    We present a case of severe acute pancreatitis induced by hypertriglyceridemia secondary to lipoprotein lipase (LPL) deficiency in a pregnant patient with gestational diabetes, initially maneged with diet but it was later necessary to carry out artificial nutricional support measures: total parenteral nutrition. LPL deficiency might cause severe hypertriglyceridemia, repetition acute pancreatitis which is an unwieldy and severe situation during pregnancy. Acute familial hypertriglyceridemia pancreatitis accounts for 5% of cases, including LPL deficiency. The goal of treatment is to reach triglycerides levels below 500 mg/dl, being very low fat diet the treatment of choice, drugs or plasmapheresis techniques can also be associated. TPN enriched in ω3 fatty acids and glutamine was safe and effective in our patient with significant decrease in triglyceride levels.

  17. Staphylococcus aureus Lpl Lipoproteins Delay G2/M Phase Transition in HeLa Cells

    PubMed Central

    Nguyen, Minh-Thu; Deplanche, Martine; Nega, Mulugeta; Le Loir, Yves; Peisl, Loulou; Götz, Friedrich; Berkova, Nadia

    2016-01-01

    The cell cycle is an ordered set of events, leading to cell growth and division into two daughter cells. The eukaryotic cell cycle consists of interphase (G1, S, and G2 phases), followed by the mitotic phase and G0 phase. Many bacterial pathogens secrete cyclomodulins that interfere with the host cell cycle. In Staphylococcus aureus four cyclomodulins have been described so far that all represent toxins and are secreted into the culture supernatant. Here we show that the membrane-anchored lipoprotein-like proteins (Lpl), encoded on a genomic island called νSaα, interact with the cell cycle of HeLa cells. By comparing wild type and lpl deletion mutant it turned out that the lpl cluster is causative for the G2/M phase transition delay and also contributes to increased invasion frequency. The lipoprotein Lpl1, a representative of the lpl cluster, also caused G2/M phase transition delay. Interestingly, the lipid modification, which is essential for TLR2 signaling and activation of the immune system, is not necessary for cyclomodulin activity. Unlike the other staphylococcal cyclomodulins Lpl1 shows no cytotoxicity even at high concentrations. As all Lpl proteins are highly conserved there might be a common function that is accentuated by their multiplicity in a tandem gene cluster. The cell surface localized Lpls' suggests a correlation between G2/M phase transition delay and host cell invasion. PMID:28083519

  18. Cholesterol efflux from THP-1 macrophages is impaired by the fatty acid component from lipoprotein hydrolysis by lipoprotein lipase

    SciTech Connect

    Yang, Yanbo; Thyagarajan, Narmadaa; Coady, Breanne M.; Brown, Robert J.

    2014-09-05

    Highlights: • Lipoprotein hydrolysis products were produced by lipoprotein lipase. • Hydrolysis products lowers expression of macrophage cholesterol transporters. • Hydrolysis products reduces expression of select nuclear receptors. • Fatty acid products lowers cholesterol transporters and select nuclear receptors. • Fatty acid products reduces cholesterol efflux from macrophages. - Abstract: Lipoprotein lipase (LPL) is an extracellular lipase that primarily hydrolyzes triglycerides within circulating lipoproteins. Macrophage LPL contributes to atherogenesis, but the mechanisms behind it are poorly understood. We hypothesized that the products of lipoprotein hydrolysis generated by LPL promote atherogenesis by inhibiting the cholesterol efflux ability by macrophages. To test this hypothesis, we treated human THP-1 macrophages with total lipoproteins that were hydrolyzed by LPL and we found significantly reduced transcript levels for the cholesterol transporters ATP binding cassette transporter A1 (ABCA1), ABCG1, and scavenger receptor BI. These decreases were likely due to significant reductions for the nuclear receptors liver-X-receptor-α, peroxisome proliferator activated receptor (PPAR)-α, and PPAR-γ. We prepared a mixture of free fatty acids (FFA) that represented the ratios of FFA species within lipoprotein hydrolysis products, and we found that the FFA mixture also significantly reduced cholesterol transporters and nuclear receptors. Finally, we tested the efflux of cholesterol from THP-1 macrophages to apolipoprotein A-I, and we found that the treatment of THP-1 macrophages with the FFA mixture significantly attenuated cholesterol efflux. Overall, these data show that the FFA component of lipoprotein hydrolysis products generated by LPL may promote atherogenesis by inhibiting cholesterol efflux, which partially explains the pro-atherogenic role of macrophage LPL.

  19. Wedelolactone Regulates Lipid Metabolism and Improves Hepatic Steatosis Partly by AMPK Activation and Up-Regulation of Expression of PPARα/LPL and LDLR

    PubMed Central

    Yang, Li-chao; Xu, Xu-dong; Li, Wei-jie; Luo, Xiu-mei; Jin, Xin

    2015-01-01

    Hyperlipidemia is considered one of the greatest risk factors of cardiovascular diseases. We investigated the anti-hyperlipidemic effect and the underlying mechanism of wedelolactone, a plant-derived coumestan, in HepG2 cells and high-fat diet (HFD)−induced hyperlipidemic hamsters. We showed that in cultured HepG2 cells, wedelolactone up-regulated protein levels of adenosine monophosphate activated protein kinase (AMPK) and peroxisome proliferator-activated receptor-alpha (PPARα) as well as the gene expression of AMPK, PPARα, lipoprotein lipase (LPL), and the low-density lipoprotein receptor (LDLR). Meanwhile, administration of wedelolactone for 4 weeks decreased the lipid profiles of plasma and liver in HFD−induced hyperlipidemic hamsters, including total cholesterol (TC), triglycerides (TG), and low-density lipoprotein-cholesterol (LDL-C). The activation of AMPK and up-regulation of PPARα was also observed with wedelolactone treatment. Furthermore, wedelolactone also increased the activities of superoxidase dismutase (SOD) and glutathione peroxidase (GSH-Px) and decreased the level of the lipid peroxidation product malondialdehyde (MDA) in the liver, therefore decreasing the activity of alanine aminotransferase (ALT). In conclusion, we provide novel experimental evidence that wedelolactone possesses lipid-lowering and steatosis-improving effects, and the underlying mechanism is, at least in part, mediated by the activation of AMPK and the up-regulation of PPARα/LPL and LDLR. PMID:26168156

  20. Feeding a High Concentrate Diet Down-Regulates Expression of ACACA, LPL and SCD and Modifies Milk Composition in Lactating Goats.

    PubMed

    Tao, Hui; Chang, Guangjun; Xu, Tianle; Zhao, Huajian; Zhang, Kai; Shen, Xiangzhen

    2015-01-01

    High concentrate diets are fed to early and mid-lactation stages dairy ruminants to meet the energy demands for high milk production in modern milk industry. The present study evaluated the effects of a high concentrate diet on milk fat and milk composition, especially, cis-9, trans-11 CLA content in milk and gene expression of lactating goats. Eight mid-lactating goats with rumen fistula were randomly assigned into a high concentrate diet (HCD) group and low concentrate diet (LCD) group. High concentrate diet feeding significantly increased lipopolysaccharides (LPS) in plasma and decreased milk fat content, vaccenic acid (VA) and cis-9, trans-11 CLA in milk of the lactating goats. The mRNA expression levels of sterol regulatory element binding protein B 1c (SREBP1c), lipoprotein lipase (LPL), fatty acid synthetase (FASN) and acetyl-CoA carboxylase α (ACACA, ACCα) involving in lipid metabolism were analyzed, and ACACA and LPL all decreased in their expression level in the mammary glands of goats fed a high concentrate diet. DNA methylation rate of stearoyl-CoA desaturase (SCD) was elevated and decreased, and SCD mRNA and protein expression was reduced significantly in the mammary glands of goats fed a high concentrate diet. In conclusion, feeding a high concentrate diet to lactating goats decreases milk fat and reduced expression of SCD in the mammary gland, which finally induced cis-9, trans-11 CLA content in milk.

  1. Gain-of-function Lipoprotein Lipase variant rs13702 modulates lipid traits through disruption of a microRNA-410 seed site

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genome wide association studies (GWAS) have identified hundreds of genetic variants that are associated with lipid phenotypes. However, data supporting a functional role for these variants in the context of lipid metabolism are scarce. We investigated the association of the Lipoprotein Lipase (LPL...

  2. Lipoprotein lipase activity and mass, apolipoprotein C-II mass and polymorphisms of apolipoproteins E and A5 in subjects with prior acute hypertriglyceridaemic pancreatitis

    PubMed Central

    2009-01-01

    Background Severe hypertriglyceridaemia due to chylomicronemia may trigger an acute pancreatitis. However, the basic underlying mechanism is usually not well understood. We decided to analyze some proteins involved in the catabolism of triglyceride-rich lipoproteins in patients with severe hypertriglyceridaemia. Methods Twenty-four survivors of acute hypertriglyceridaemic pancreatitis (cases) and 31 patients with severe hypertriglyceridaemia (controls) were included. Clinical and anthropometrical data, chylomicronaemia, lipoprotein profile, postheparin lipoprotein lipase mass and activity, hepatic lipase activity, apolipoprotein C II and CIII mass, apo E and A5 polymorphisms were assessed. Results Only five cases were found to have LPL mass and activity deficiency, all of them thin and having the first episode in childhood. No cases had apolipoprotein CII deficiency. No significant differences were found between the non-deficient LPL cases and the controls in terms of obesity, diabetes, alcohol consumption, drug therapy, gender distribution, evidence of fasting chylomicronaemia, lipid levels, LPL activity and mass, hepatic lipase activity, CII and CIII mass or apo E polymorphisms. However, the SNP S19W of apo A5 tended to be more prevalent in cases than controls (40% vs. 23%, NS). Conclusion Primary defects in LPL and C-II are rare in survivors of acute hypertriglyceridaemic pancreatitis; lipase activity measurements should be restricted to those having their first episode during chilhood. PMID:19534808

  3. Identification of a small molecule that stabilizes lipoprotein lipase in vitro and lowers triglycerides in vivo.

    PubMed

    Larsson, Mikael; Caraballo, Rémi; Ericsson, Madelene; Lookene, Aivar; Enquist, Per-Anders; Elofsson, Mikael; Nilsson, Stefan K; Olivecrona, Gunilla

    2014-07-25

    Patients at increased cardiovascular risk commonly display high levels of plasma triglycerides (TGs), elevated LDL cholesterol, small dense LDL particles and low levels of HDL-cholesterol. Many remain at high risk even after successful statin therapy, presumably because TG levels remain high. Lipoprotein lipase (LPL) maintains TG homeostasis in blood by hydrolysis of TG-rich lipoproteins. Efficient clearance of TGs is accompanied by increased levels of HDL-cholesterol and decreased levels of small dense LDL. Given the central role of LPL in lipid metabolism we sought to find small molecules that could increase LPL activity and serve as starting points for drug development efforts against cardiovascular disease. Using a small molecule screening approach we have identified small molecules that can protect LPL from inactivation by the controller protein angiopoietin-like protein 4 during incubations in vitro. One of the selected compounds, 50F10, was directly shown to preserve the active homodimer structure of LPL, as demonstrated by heparin-Sepharose chromatography. On injection to hypertriglyceridemic apolipoprotein A-V deficient mice the compound ameliorated the postprandial response after an olive oil gavage. This is a potential lead compound for the development of drugs that could reduce the residual risk associated with elevated plasma TGs in dyslipidemia.

  4. Lipoprotein lipase deficiency and CETP in streptozotocin-treated apoB-expressing mice.

    PubMed

    Kako, Yuko; Massé, Maureen; Huang, Li-Shin; Tall, Alan R; Goldberg, Ira J

    2002-06-01

    Both hyperglycemia and hyperlipidemia have been postulated to increase atherosclerosis in patients with diabetes mellitus. To study the effects of diabetes on lipoprotein profiles and atherosclerosis in a rodent model, we crossed mice that express human apolipoprotein B (HuB), mice that have a heterozygous deletion of lipoprotein lipase (LPL1), and transgenic mice expressing human cholesteryl ester transfer protein (CETP). Lipoprotein profiles due to each genetic modification were assessed while mice were consuming a Western type diet. Fast-protein liquid chromatography analysis of plasma samples showed that HuB/LPL1 mice had increased VLDL triglyceride, and HuB/LPL1/CETP mice had decreased HDL and increased VLDL and IDL/LDL. All strains of mice were made diabetic using streptozotocin (STZ); diabetes did not alter lipid profiles or atherosclerosis in HuB or HuB/LPL1/CETP mice. In contrast, STZ-treated HuB/LPL1 mice were more diabetic, severely hyperlipidemic due to increased cholesterol and triglyceride in VLDL and IDL/LDL, and had more atherosclerosis.

  5. Structural characterization of ANGPTL8 (betatrophin) with its interacting partner lipoprotein lipase.

    PubMed

    Siddiqa, Amnah; Ahmad, Jamil; Ali, Amjad; Paracha, Rehan Zafar; Bibi, Zurah; Aslam, Babar

    2016-04-01

    Angiopoietin-like protein 8 (ANGPTL8) (also known as betatrophin) is a newly identified secretory protein with a potential role in autophagy, lipid metabolism and pancreatic beta-cell proliferation. Its structural characterization is required to enhance our current understanding of its mechanism of action which could help in identifying its receptor and/or other binding partners. Based on the physiological significance and necessity of exploring structural features of ANGPTL8, the present study is conducted with a specific aim to model the structure of ANGPTL8 and study its possible interactions with Lipoprotein Lipase (LPL). To the best of our knowledge, this is the first attempt to predict 3-dimensional (3D) structure of ANGPTL8. Three different approaches were used for modeling of ANGPTL8 including homology modeling, de-novo structure prediction and their amalgam which is then proceeded by structure verification using ERRATT, PROSA, Qmean and Ramachandran plot scores. The selected models of ANGPTL8 were further evaluated for protein-protein interaction (PPI) analysis with LPL using CPORT and HADDOCK server. Our results have shown that the crystal structure of iSH2 domain of Phosphatidylinositol 3-kinase (PI3K) p85β subunit (PDB entry: 3mtt) is a good candidate for homology modeling of ANGPTL8. Analysis of inter-molecular interactions between the structure of ANGPTL8 and LPL revealed existence of several non-covalent interactions. The residues of LPL involved in these interactions belong from its lid region, thrombospondin (TSP) region and heparin binding site which is suggestive of a possible role of ANGPTL8 in regulating the proteolysis, motility and localization of LPL. Besides, the conserved residues of SE1 region of ANGPTL8 formed interactions with the residues around the hinge region of LPL. Overall, our results support a model of inhibition of LPL by ANGPTL8 through the steric block of its catalytic site which will be further explored using wet lab

  6. Coding Variation in ANGPTL4, LPL, and SVEP1 and the Risk of Coronary Disease

    PubMed Central

    2016-01-01

    BACKGROUND The discovery of low-frequency coding variants affecting the risk of coronary artery disease has facilitated the identification of therapeutic targets. METHODS Through DNA genotyping, we tested 54,003 coding-sequence variants covering 13,715 human genes in up to 72,868 patients with coronary artery disease and 120,770 controls who did not have coronary artery disease. Through DNA sequencing, we studied the effects of loss-of-function mutations in selected genes. RESULTS We confirmed previously observed significant associations between coronary artery disease and low-frequency missense variants in the genes LPA and PCSK9. We also found significant associations between coronary artery disease and low-frequency missense variants in the genes SVEP1 (p.D2702G; minor-allele frequency, 3.60%; odds ratio for disease, 1.14; P = 4.2×10−10) and ANGPTL4 (p.E40K; minor-allele frequency, 2.01%; odds ratio, 0.86; P = 4.0×10−8), which encodes angiopoietin-like 4. Through sequencing of ANGPTL4, we identified 9 carriers of loss-of-function mutations among 6924 patients with myocardial infarction, as compared with 19 carriers among 6834 controls (odds ratio, 0.47; P = 0.04); carriers of ANGPTL4 loss-of-function alleles had triglyceride levels that were 35% lower than the levels among persons who did not carry a loss-of-function allele (P = 0.003). ANGPTL4 inhibits lipoprotein lipase; we therefore searched for mutations in LPL and identified a loss-of-function variant that was associated with an increased risk of coronary artery disease (p.D36N; minor-allele frequency, 1.9%; odds ratio, 1.13; P = 2.0×10−4) and a gain-of-function variant that was associated with protection from coronary artery disease (p.S447⋆; minor-allele frequency, 9.9%; odds ratio, 0.94; P = 2.5×10−7). CONCLUSIONS We found that carriers of loss-of-function mutations in ANGPTL4 had triglyceride levels that were lower than those among noncarriers; these mutations were also associated with

  7. Substrate Selectivity of Lysophospholipid Transporter LplT Involved in Membrane Phospholipid Remodeling in Escherichia coli*

    PubMed Central

    Lin, Yibin; Bogdanov, Mikhail; Tong, Shuilong; Guan, Ziqiang; Zheng, Lei

    2016-01-01

    Lysophospholipid transporter (LplT) was previously found to be primarily involved in 2-acyl lysophosphatidylethanolamine (lyso-PE) recycling in Gram-negative bacteria. This work identifies the potent role of LplT in maintaining membrane stability and integrity in the Escherichia coli envelope. Here we demonstrate the involvement of LplT in the recycling of three major bacterial phospholipids using a combination of an in vitro lysophospholipid binding assay using purified protein and transport assays with E. coli spheroplasts. Our results show that lyso-PE and lysophosphatidylglycerol, but not lysophosphatidylcholine, are taken up by LplT for reacylation by acyltransferase/acyl-acyl carrier protein synthetase on the inner leaflet of the membrane. We also found a novel cardiolipin hydrolysis reaction by phospholipase A2 to form diacylated cardiolipin progressing to the completely deacylated headgroup. These two distinct cardiolipin derivatives were both translocated with comparable efficiency to generate triacylated cardiolipin by acyltransferase/acyl-acyl carrier protein synthetase, demonstrating the first evidence of cardiolipin remodeling in bacteria. These findings support that a fatty acid chain is not required for LplT transport. We found that LplT cannot transport lysophosphatidic acid, and its substrate binding was not inhibited by either orthophosphate or glycerol 3-phosphate, indicating that either a glycerol or ethanolamine headgroup is the chemical determinant for substrate recognition. Diacyl forms of PE, phosphatidylglycerol, or the tetra-acylated form of cardiolipin could not serve as a competitive inhibitor in vitro. Based on an evolutionary structural model, we propose a “sideways sliding” mechanism to explain how a conserved membrane-embedded α-helical interface excludes diacylphospholipids from the LplT binding site to facilitate efficient flipping of lysophospholipid across the cell membrane. PMID:26613781

  8. Molecular cloning and transcript expression of genes encoding two types of lipoprotein lipase in the ovary of cutthroat trout, Oncorhynchus clarki.

    PubMed

    Ryu, Yong-Woon; Tanaka, Ricako; Kasahara, Ayumi; Ito, Yuta; Hiramatsu, Naoshi; Todo, Takashi; Sullivan, Craig V; Hara, Akihiko

    2013-03-01

    Large amounts of neutral lipids (NLs) are stored as lipid droplets in the ooplasm of fish oocytes, providing an essential energy resource for developing embryos and larvae. However, little is known about the origin of such lipids or about mechanisms underlying their uptake and accumulation in oocytes. We have proposed a model for this lipidation of teleost oocytes, as follows: very low density lipoprotein (Vldl) is metabolized by lipoprotein lipase (Lpl) outside and/or inside of the oocyte and the resulting fatty acids (FAs) are then utilized for de novo biosynthesis of NLs. As a first step toward verification of this model, cDNAs for genes encoding two types of Lpl, lpl and lpl2, were cloned from the ovary of cutthroat trout, Oncorhynchus clarki. Examination of Lpl polypeptide sequences deduced from the cDNAs revealed features similar to LPLs/Lpls in other species, including several conserved structural and functional domains. Both types of lpl mRNA were highly expressed in lipid storage tissues (e.g., adipose tissue, muscle, and ovary) and were predominantly expressed in the granulosa cells of ovarian follicles. Ovarian lpl1 mRNA levels showed a remarkable peak in April (early oocyte lipid droplet stage) and then decreased to low values sustained until November (mid-vitellogenesis), after which time a small peak in lpl1 gene expression was observed in December (late vitellogenesis). The mRNA levels of lpl2 also were elevated in April and were highest in June (late lipid droplet stage), but did not show other pronounced changes. These results suggest that, in the cutthroat trout, Vldl is metabolized by the action of Lpls in the granulosa cell layer to generate free FAs for uptake and biosynthesis of neutral lipids by growing oocytes.

  9. Is there a relationship between the kinetics of lipoprotein lipase activity after a meal and the susceptibility to hepatic steatosis development in ducks?

    PubMed

    Saez, G; Baéza, E; Bernadet, M D; Davail, S

    2010-11-01

    The difference in the ability of Pekin and Muscovy ducks to develop hepatic steatosis could result from a different peripheral lipoprotein lipase (LPL) activity, which hydrolyses triacylglycerol secreted by the liver. We studied the kinetics of plasma LPL activity in response to a meal at different ages in Pekin and Muscovy ducks. For that purpose, blood samples were taken at 5, 9, 12, 13, and 14 wk of age just before and 1, 2, 4, and 8 h after a meal. To release LPL into general circulation, an i.v. injection of heparin (400 IU/kg of BW) was administered 10 min before blood collection. For that reason, different ducks per genotype were used for each point of measurement (n = 6). Plasma LPL activity measured before the meal was negatively correlated with the weight of the fatty liver measured in the same ducks at 14 wk of age (r = -0.58, P < 0.001). Plasma triacylglycerol level measured before the meal was negatively correlated with plasma LPL activity measured in the same ducks (r = -0.31, P = 0.025) and was negatively correlated with plasma LPL activity measured in the same ducks for each age and each timing (r = -0.39, P < 0.001). At 14 wk of age for Muscovy and Pekin ducks, we observed that a high plasma LPL activity (>200 IU/L of plasma) corresponded to a relatively low development of fatty liver (190 g) induced by overfeeding, whereas a low plasma LPL activity (<150 IU/L of plasma) corresponded to a high propensity to develop fatty liver (470 g). In conclusion, plasma LPL activity measured just before the meal during the rearing period could be used as a marker of hepatic steatosis development during the overfeeding period.

  10. Severe hypertriglyceridemia in a patient heterozygous for a lipoprotein lipase gene allele with two novel missense variants.

    PubMed

    Kassner, Ursula; Salewsky, Bastian; Wühle-Demuth, Marion; Szijarto, Istvan Andras; Grenkowitz, Thomas; Binner, Priska; März, Winfried; Steinhagen-Thiessen, Elisabeth; Demuth, Ilja

    2015-09-01

    Rare monogenic hyperchylomicronemia is caused by loss-of-function mutations in genes involved in the catabolism of triglyceride-rich lipoproteins, including the lipoprotein lipase gene, LPL. Clinical hallmarks of this condition are eruptive xanthomas, recurrent pancreatitis and abdominal pain. Patients with LPL deficiency and severe or recurrent pancreatitis are eligible for the first gene therapy treatment approved by the European Union. Therefore the precise molecular diagnosis of familial hyperchylomicronemia may affect treatment decisions. We present a 57-year-old male patient with excessive hypertriglyceridemia despite intensive lipid-lowering therapy. Abdominal sonography showed signs of chronic pancreatitis. Direct DNA sequencing and cloning revealed two novel missense variants, c.1302A>T and c.1306G>A, in exon 8 of the LPL gene coexisting on the same allele. The variants result in the amino-acid exchanges p.(Lys434Asn) and p.(Gly436Arg). They are located in the carboxy-terminal domain of lipoprotein lipase that interacts with the glycosylphosphatidylinositol-anchored HDL-binding protein (GPIHBP1) and are likely of functional relevance. No further relevant mutations were found by direct sequencing of the genes for APOA5, APOC2, LMF1 and GPIHBP1. We conclude that heterozygosity for damaging mutations of LPL may be sufficient to produce severe hypertriglyceridemia and that chylomicronemia may be transmitted in a dominant manner, at least in some families.

  11. Purification of extracellular lipase from Pseudomonas aeruginosa.

    PubMed Central

    Stuer, W; Jaeger, K E; Winkler, U K

    1986-01-01

    Lipase (triacylglycerol acylhydrolase, EC 3.1.1.3) was excreted by Pseudomonas aeruginosa PAC1R during the late logarithmic growth phase. Characterization of cell-free culture supernatants by sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed the presence of significant amounts of lipopolysaccharide, part of which seemed to be tightly bound to lipase. After concentration of culture supernatants by ultrafiltration, lipase-lipopolysaccharide complexes were dissociated by treatment with EDTA-Tris buffer and subsequent sonication in the presence of the zwitterionic detergent 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate. The solubilized lipase was purified by isoelectric focusing in an agarose gel containing the same detergent; the lipase activity appeared in a single peak corresponding to a distinct band in the silver-stained gel. The isoelectric point was 5.8. Analysis of purified lipase by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and scanning revealed an apparent molecular weight of 29,000 and a specific activity of 760 mu kat/mg of protein. Estimations based on these data showed that a single P. aeruginosa cell excreted about 200 molecules of lipase, each having a molecular activity of 2.2 X 10(4) per s. Images PMID:3096967

  12. The angiopoietin-like protein ANGPTL4 catalyzes unfolding of the hydrolase domain in lipoprotein lipase and the endothelial membrane protein GPIHBP1 counteracts this unfolding

    PubMed Central

    Mysling, Simon; Kristensen, Kristian Kølby; Larsson, Mikael; Kovrov, Oleg; Bensadouen, André; Jørgensen, Thomas JD; Olivecrona, Gunilla; Young, Stephen G; Ploug, Michael

    2016-01-01

    Lipoprotein lipase (LPL) undergoes spontaneous inactivation via global unfolding and this unfolding is prevented by GPIHBP1 (Mysling et al., 2016). We now show: (1) that ANGPTL4 inactivates LPL by catalyzing the unfolding of its hydrolase domain; (2) that binding to GPIHBP1 renders LPL largely refractory to this inhibition; and (3) that both the LU domain and the intrinsically disordered acidic domain of GPIHBP1 are required for this protective effect. Genetic studies have found that a common polymorphic variant in ANGPTL4 results in lower plasma triglyceride levels. We now report: (1) that this ANGPTL4 variant is less efficient in catalyzing the unfolding of LPL; and (2) that its Glu-to-Lys substitution destabilizes its N-terminal α-helix. Our work elucidates the molecular basis for regulation of LPL activity by ANGPTL4, highlights the physiological relevance of the inherent instability of LPL, and sheds light on the molecular defects in a clinically relevant variant of ANGPTL4. DOI: http://dx.doi.org/10.7554/eLife.20958.001 PMID:27929370

  13. The acidic domain of the endothelial membrane protein GPIHBP1 stabilizes lipoprotein lipase activity by preventing unfolding of its catalytic domain.

    PubMed

    Mysling, Simon; Kristensen, Kristian Kølby; Larsson, Mikael; Beigneux, Anne P; Gårdsvoll, Henrik; Fong, Loren G; Bensadouen, André; Jørgensen, Thomas Jd; Young, Stephen G; Ploug, Michael

    2016-01-03

    GPIHBP1 is a glycolipid-anchored membrane protein of capillary endothelial cells that binds lipoprotein lipase (LPL) within the interstitial space and shuttles it to the capillary lumen. The LPL•GPIHBP1 complex is responsible for margination of triglyceride-rich lipoproteins along capillaries and their lipolytic processing. The current work conceptualizes a model for the GPIHBP1•LPL interaction based on biophysical measurements with hydrogen-deuterium exchange/mass spectrometry, surface plasmon resonance, and zero-length cross-linking. According to this model, GPIHBP1 comprises two functionally distinct domains: (1) an intrinsically disordered acidic N-terminal domain; and (2) a folded C-terminal domain that tethers GPIHBP1 to the cell membrane by glycosylphosphatidylinositol. We demonstrate that these domains serve different roles in regulating the kinetics of LPL binding. Importantly, the acidic domain stabilizes LPL catalytic activity by mitigating the global unfolding of LPL's catalytic domain. This study provides a conceptual framework for understanding intravascular lipolysis and GPIHBP1 and LPL mutations causing familial chylomicronemia.

  14. Acid Lipase Disease

    MedlinePlus

    ... Page You are here Home » Disorders » All Disorders Acid Lipase Disease Information Page Acid Lipase Disease Information Page What research is being ... research to understand lipid storage diseases such as acid lipase deficiency. Additional research studies hope to identify ...

  15. [Lack of association between the S447X variant of the lipoprotein lipase gene and plasma lipids. A preliminary study].

    PubMed

    Zambrano Morales, Mariana; Fernández Salgado, Erika; Balzán Urdaneta, Ligia; Labastidas, Neila; Aranguren-Méndez, José; Connell, Lissette; Molero Paredes, Tania; Rojas, Alicia; Panunzio, Amelia

    2014-06-01

    The increase in lipid plasma values is an important cardiovascular risk factor. Lipoprotein lipase (LPL) plays an important role in the lipoprotein metabolism and metabolic and genetic factors may influence its levels and functions. The S447X variant of the lipoprotein lipase gene is associated with changes in plasma lipids in different populations. The objective of this research was to analyze the S447X variant of the LPL gene and its relation with plasma lipids of individuals in Zulia state, Venezuela. With this purpose, we studied 75 individuals (34 men and 41 women) between 20 and 60 years of age. Each subject had a medical history which included family history, anthropometric characteristics, nutritional status evaluation and biochemical tests. Genomic DNA was extracted for the molecular study and the polymerase chain reaction was used, followed by enzyme digestion, for restriction fragments length polymorphisms using the Hinf I enzyme. The individuals studied had normal levels of blood glucose, triglycerides, total cholesterol and low density lipoproteins (LDL-C) and slightly decreased levels of high density lipoproteins (HDL-C). The genotypic distribution of the LPL gene S447X variant in the studied population was 90.6% for the homozygous genotype SS447 and 9.4% for the heterozygote SX447. The genotype 447XX was not identified. The population was found in Hardy Weinberg genetic equilibrium. No association between the S447X polymorphism of lipoprotein lipase gene and plasma lipids was observed.

  16. Associations between HDL-cholesterol and polymorphisms in hepatic lipase and lipoprotein lipase genes are modified by dietary fat intake in African American and White adults.

    PubMed

    Nettleton, Jennifer A; Steffen, Lyn M; Ballantyne, Christie M; Boerwinkle, Eric; Folsom, Aaron R

    2007-10-01

    Polymorphisms in genes involved in HDL-cholesterol (HDL-C) metabolism influence plasma HDL-C concentrations. We examined whether dietary fat intake modified relations between HDL-C and polymorphisms in hepatic lipase (LIPC-514C-->T), cholesteryl ester transfer protein (CETP TaqIB), and lipoprotein lipase (LPL S447X) genes. Diet (food frequency questionnaire), plasma lipids, and LIPC, CETP, and LPL genotypes were assessed in approximately 12,000 White and African American adults. In both races and all genotypes studied, minor allele homozygotes had highest HDL-C concentrations compared to the other genotypes (P<0.001). However, main effects were modified by usual dietary fat intake. In African Americans - women somewhat more strongly than men -LIPC TT homozygotes with fat intake >or=33.2% of energy had approximately 3-4 mg/dL higher HDL-C concentrations than CC and CT genotypes. In contrast, when fat intake was <33.2% of energy, TT homozygotes had HDL-C concentrations approximately 3.5mg/dL greater than those with the CC genotype but not different from those with the CT genotype (P(interaction)=0.013). In Whites, LPLGG homozygotes had greatest HDL-C at lower total, saturated, and monounsaturated fat intakes but lowest HDL-C at higher intakes of these fats (P(interaction)LPL, and CETP genotypes. In the case of LIPC and LPL, data suggest dietary fat modifies these relations.

  17. Modulation of adipocyte lipoprotein lipase expression as a strategy for preventing or treating visceral obesity.

    PubMed

    McCarty, M F

    2001-08-01

    As compared to subcutaneous adipocytes, visceral adipocytes have high basal lipolysis, are highly sensitive to catecholamines, and are poorly sensitive to insulin; these traits are amplified when visceral adipocytes hypertrophy. As a result, enlarged visceral fat stores tend to flood the portal circulation with free fatty acids at metabolically inappropriate times when fatty acids are unlikely to be oxidized, thus exposing tissues to excessive free fatty acid levels and giving rise to the insulin resistance syndrome. A logical approach to preventing or correcting visceral obesity is to down-regulate the lipoprotein lipase (LPL) activity of visceral adipocytes relative to that expressed in subcutaneous adipocytes and skeletal muscle. IGF-I activity appears to be a primary determinant of visceral LPL activity in humans; systemic IGF-I activity is decreased when diurnal insulin secretion is low, when hepatocytes detect a relative paucity of certain essential amino acids, and when estrogens are administered orally. The ability of alpha-glucosidase inhibitor therapy to selectively reduce visceral adiposity suggests that down-regulation of diurnal insulin secretion and/or IGF-I activity may indeed have a greater impact on LPL activity in visceral fat than in subcutaneous fat. Thus, low-glycemic-index, vegan, high-protein, or hypocaloric diets can be expected to decrease visceral LPL activity, as can postmenopausal estrogen therapy. Furthermore, estrogen enhances the LPL activity of non-pathogenic gluteofemoral fat cells, whereas testosterone decreases visceral LPL activity in men; this may explain why sex hormone replacement in middle-aged people of both sexes has a favorable impact on visceral fat and insulin sensitivity. Beta-adrenergic activity suppresses transcription of LPL in adipocytes; this phenomenon may contribute to the favorable impact of exercise training on visceral obesity; conceivably, preadministration of safe drugs that boost catecholamine activity

  18. Effect of long-term treatment of 3T3-L1 adipocytes with chlorate on the synthesis, glycosylation, intracellular transport and secretion of lipoprotein lipase.

    PubMed

    Masuno, H; Sakayama, K; Okuda, H

    1998-02-01

    Lipoprotein lipase (LPL) is synthesized and glycosylated in the endoplasmic reticulum (ER), transported through the Golgi to the cell surface, and finally secreted. To examine the role of heparan sulphate proteoglycans (HSPG) in the synthesis, activity, intracellular transport and secretion of LPL, 3T3-L1 adipocytes were cultured for 7 days in the presence of 20 mM chlorate, an inhibitor of sulphation of HSPG. Treatment of cells with 20 mM chlorate for 7 days caused a 55% decrease in LPL activity in the intracellular compartment and a 79% decrease in the cell-surface compartment. The synthetic rate of LPL in chlorate-treated cells was identical with that in control cells as determined by biosynthetic labelling. The study with endoglycosidase H (endo H) showed that the treatment with chlorate increased the proportion of LPL subunits which were totally endo H-sensitive. The study with a heparin-Sepharose column showed that 3T3-L1 adipocytes contained three forms of LPL. The first form, accounting for 35% of the LPL, did not bind to the heparin-Sepharose column and had little or no activity; the second form, accounting for 32%, bound to the column and was eluted with 0.4-0.75 M NaCl but had no activity; the third form, accounting for 33%, bound to the column and was eluted with 0.8-1.2 M NaCl and had activity. In chlorate-treated cells, the first form accounted for 66% of the LPL, the second form 15% and the third form 19%. When cells were incubated for 1 h with brefeldin A, which translocates Golgi proteins to the ER [J. Lippincott-Schwartz, L.C. Yuan, J.S. Banifacino and R.D. Klausner (1989) Cell 56, 801-813; J. Lippincott-Schwartz, J. Glickman, J.E. Donaldson, J. Robbins, T.E. Kreis, K.B. Seamon, M.P. Sheetz and R.D. Klausner (1991) J. Cell Biol. 112, 567-577], the chlorate-induced decrease in cellular LPL activity was restored. These findings indicate that LPL synthesized in chlorate-treated cells can be processed to be fully active, but chlorate-treated cells are

  19. Lipoprotein lipase, LDL receptors and apo-lipoproteins in human fetal membranes at term.

    PubMed

    Huter, O; Wolf, H J; Schnetzer, A; Pfaller, K

    1997-11-01

    Ultrastructurally, all cells of human fetal membranes strongly exhibit a large amount of lipid deposits throughout pregnancy. Their origin and function is still unknown. The aim of this study was to investigate the localization of key components of lipid metabolism in this tissue. Using immunohistochemical techniques, the distribution of lipoprotein lipase (LPL), low density lipoprotein receptors (LDL receptors), and apo-lipoprotein B and E was investigated in 20 human fetal membranes at term. In addition, electron microscopy was used to study the intracellular localization of lipoprotein-sized particles. Amnionic epithelium and trophoblast cells reacted strongly for LPL. LDL receptors and apo-lipoproteins were present in amnionic epithelium and fibroblasts of the amnion. In none of the investigated cells were lipoprotein-sized particles identified. Similar results were obtained in all 20 cases. The findings indicate that lipoprotein from the amniotic fluid or from the maternal circulation may serve as substrate for lipids in human fetal membranes.

  20. A Pressure-dependent Model for the Regulation of Lipoprotein Lipase by Apolipoprotein C-II*

    PubMed Central

    Meyers, Nathan L.; Larsson, Mikael; Olivecrona, Gunilla; Small, Donald M.

    2015-01-01

    Apolipoprotein C-II (apoC-II) is the co-factor for lipoprotein lipase (LPL) at the surface of triacylglycerol-rich lipoproteins. LPL hydrolyzes triacylglycerol, which increases local surface pressure as surface area decreases and amphipathic products transiently accumulate at the lipoprotein surface. To understand how apoC-II adapts to these pressure changes, we characterized the behavior of apoC-II at multiple lipid/water interfaces. ApoC-II adsorption to a triacylglycerol/water interface resulted in large increases in surface pressure. ApoC-II was exchangeable at this interface and desorbed on interfacial compressions. These compressions increase surface pressure and mimic the action of LPL. Analysis of gradual compressions showed that apoC-II undergoes a two-step desorption, which indicates that lipid-bound apoC-II can exhibit at least two conformations. We characterized apoC-II at phospholipid/triacylglycerol/water interfaces, which more closely mimic lipoprotein surfaces. ApoC-II had a large exclusion pressure, similar to that of apoC-I and apoC-III. However, apoC-II desorbed at retention pressures higher than those seen with the other apoCs. This suggests that it is unlikely that apoC-I and apoC-III inhibit LPL via displacement of apoC-II from the lipoprotein surface. Upon rapid compressions and re-expansions, re-adsorption of apoC-II increased pressure by lower amounts than its initial adsorption. This indicates that apoC-II removed phospholipid from the interface upon desorption. These results suggest that apoC-II regulates the activity of LPL in a pressure-dependent manner. ApoC-II is provided as a component of triacylglycerol-rich lipoproteins and is the co-factor for LPL as pressure increases. Above its retention pressure, apoC-II desorbs and removes phospholipid. This triggers release of LPL from lipoproteins. PMID:26026161

  1. Hemorheological abnormalities in lipoprotein lipase deficient mice with severe hypertriglyceridemia

    SciTech Connect

    Zhao Tieqiang; Guo Jun; Li Hui; Huang Wei; Xian Xunde; Ross, Colin J.D.; Hayden, Michael R.; Wen Zongyao . E-mail: rheol@bjmu.edu.cn; Liu George . E-mail: vangeorgeliu@gmail.com

    2006-03-24

    Severe hypertriglyceridemia (HTG) is a metabolic disturbance often seen in clinical practice. It is known to induce life-threatening acute pancreatitis, but its role in atherogenesis remains elusive. Hemorheological abnormality was thought to play an important role in pathogenesis of both pancreatitis and atherosclerosis. However, hemorheology in severe HTG was not well investigated. Recently, we established a severe HTG mouse model deficient in lipoprotein lipase (LPL) in which severe HTG was observed to cause a significant increase in plasma viscosity. Disturbances of erythrocytes were also documented, including decreased deformability, electrophoresis rate, and membrane fluidity, and increased osmotic fragility. Scanning electron microscopy demonstrated that most erythrocytes of LPL deficient mice deformed with protrusions, irregular appearances or indistinct concaves. Analysis of erythrocyte membrane lipids showed decreased cholesterol (Ch) and phospholipid (PL) contents but unaltered Ch/PL ratio. The changes of membrane lipids may be partially responsible for the hemorheological and morphologic abnormalities of erythrocytes. This study indicated that severe HTG could lead to significant impairment of hemorheology and this model may be useful in delineating the role of severe HTG in the pathogenesis of hyperlipidemic pancreatitis and atherosclerosis.

  2. Serum lipoprotein composition, lecithin cholesterol acyltransferase and tissue lipase activities in pregnant diabetic rats and their offspring receiving enriched n-3 PUFA diet.

    PubMed

    Soulimane-Mokhtari, N A; Guermouche, B; Saker, M; Merzouk, S; Merzouk, H; Hichami, A; Madani, S; Khan, N A; Prost, J

    2008-03-01

    The effects of dietary n-3 polyunsaturated fatty acids on lipoprotein concentrations and on lipoprotein lipase (LPL), hepatic triglyceride lipase (HTGL) and lecithin cholesterol acyltransferase (LCAT) activities were studied in streptozotocin-induced diabetic rats during pregnancy and in their macrosomic offspring from birth to adulthood. Pregnant diabetic and control rats were fed Isio-4 diet (vegetable oil) or EPAX diet (concentrated marine omega-3 EPA/DHA oil), the same diets were consumed by pups at weaning. Compared with control rats, diabetic rats showed, during pregnancy, a significant elevation in very low density lipoprotein (VLDL) and low and high density lipoprotein (LDL-HDL(1))-triglyceride, cholesterol and apoprotein B100 concentrations and a reduction in apoprotein A-I levels. HTGL activity was high while LPL and LCAT activities were low in these rats. The macrosomic pups of Isio-4-fed diabetic rats showed a significant enhancement in triglyceride and cholesterol levels at birth and during adulthood with a concomitant increase in lipase and LCAT activities. EPAX diet induces a significant diminution of VLDL and LDL-HDL(1) in mothers and in their macrosomic pups, accompanied by an increase in cholesterol and apoprotein A-I levels in HDL(2-3) fraction. It also restores LPL, HTGL and LCAT activities to normal range. EPAX diet ameliorates considerably lipoprotein disorders in diabetic mothers and in their macrosomic offspring.

  3. Effect of Low-Power Laser (LPL) and Light-Emitting Diode (LED) on Inflammatory Response in Burn Wound Healing.

    PubMed

    Silveira, Paulo C L; Ferreira, Karina B; da Rocha, Franciani R; Pieri, Bruno L S; Pedroso, Giulia S; De Souza, Claudio T; Nesi, Renata T; Pinho, Ricardo A

    2016-08-01

    The aim of the study was to investigate the biochemical and molecular changes in the process of epidermal healing of burn injuries after therapeutic treatment with low-power laser (LPL) and light-emitting diode (LED). Rats were divided into six groups: skin without injury (Sham), burn wounds (BWs), BW + 660-nm LPL, BW + 904-nm LPL, BW + 632-nm LED, and BW + 850-nm LED. The burn wound model was performed using a 100 °C copper plate, with 10 s of contact in the skin. The irradiations started 24 h after the lesion and were performed daily for 7 days. The burn wound groups showed an increase in the superoxide production, dichlorofluorescein, nitrites, and high protein oxidative damage. The activities of glutathione peroxidase and catalase were also increased, and a significant reduction in glutathione levels was observed compared to the control group. However, treatments with 660-nm LPL and 850-nm LED promoted protection against to oxidative stress, and similar results were also observed in the IL-6 and pERK1/2 expression. Taken together, these results suggest that LPL 660 nm and LED 850 nm appear reduced in the inflammatory response and oxidative stress parameters, thus decreasing dermal necrosis and increasing granulation tissue formation, in fact accelerating the repair of burn wounds.

  4. Cladistic structure within the human Lipoprotein lipase gene and its implications for phenotypic association studies.

    PubMed Central

    Templeton, A R; Weiss, K M; Nickerson, D A; Boerwinkle, E; Sing, C F

    2000-01-01

    Haplotype variation in 9.7 kb of genomic DNA sequence from the human lipoprotein lipase (LPL) gene was scored in three populations: African-Americans from Jackson, Mississippi (24 individuals), Finns from North Karelia, Finland (24), and non-Hispanic whites from Rochester, Minnesota (23). Earlier analyses had indicated that recombination was common but concentrated into a hotspot and that recurrent mutations at multiple sites may have occurred. We show that much evolutionary structure exists in the haplotype variation on either side of the recombinational hotspot. By peeling off significant recombination events from a tree estimated under the null hypothesis of no recombination, we also reveal some cladistic structure not disrupted by recombination during the time to coalescence of this variation. Additional cladistic structure is estimated to have emerged after recombination. Many apparent multiple mutational events at sites still remain after removing the effects of the detected recombination/gene conversion events. These apparent multiple events are found primarily at sites identified as highly mutable by previous studies, strengthening the conclusion that they are true multiple events. This analysis portrays the complexity of the interplay among many recombinational and mutational events that would be needed to explain the patterns of haplotype diversity in this gene. The cladistic structure in this region is used to identify four to six single-nucleotide polymorphisms (SNPs) that would provide disequilibrium coverage over much of this region. These sites may be useful in identifying phenotypic associations with variable sites in this gene. Evolutionary considerations also imply that the SNPs in the 3' region should have general utility in most human populations, but the 5' SNPs may be more population specific. Choosing SNPs at random would generally not provide adequate disequilibrium coverage of the sequenced region. PMID:11063700

  5. Nutritional status induces divergent variations of GLUT4 protein content, but not lipoprotein lipase activity, between adipose tissues and muscles in adult cattle.

    PubMed

    Bonnet, Muriel; Faulconnier, Yannick; Hocquette, Jean-François; Bocquier, François; Leroux, Christine; Martin, Patrice; Chilliard, Yves

    2004-10-01

    Metabolic adaptations to variations in food supply are incompletely understood in ruminant animal adipose tissue (AT) and muscle. To explore this, we studied lipid metabolism and glucose transport potential in one internal and one external AT, as well as in one oxidative and one glycolytic muscle from control, 7 d underfed and 21 d refed adult cows. Refeeding increased (+79 to +307 %) the activities of enzymes involved in de novo lipogenesis (fatty acid synthase, malic enzyme, glucose-6-phosphate dehydrogenase) in perirenal and subcutaneous AT; underfeeding did not modify these variables. Underfeeding decreased the activities of lipoprotein lipase (LPL) in perirenal AT (-70 %) and cardiac muscle (-67 %), but did not modify the activities in subcutaneous AT and longissimus thoracis. Refeeding increased LPL activities in all tissues (+40 to +553 %) to levels comparable with (cardiac muscle) or greater than (AT, longissimus thoracis) those observed in control cows. Such variations in perirenal and cardiac muscle LPL activities did not result from variations in LPL mRNA levels, but suggest a post-transcriptional regulation of LPL in these nutritional conditions. Underfeeding did not modify GLUT4 contents in perirenal AT and muscles, while refeeding increased it only in perirenal AT (+250 %). Our present results contrast with previous results in rats, where LPL is regulated in opposite directions in AT and muscles, and GLUT4 is generally increased by fasting and decreased by refeeding in skeletal muscles. The present results highlight the bovine specificity of the response, which probably arises in part from peculiarities of ruminant animals for nutrient digestion and absorption.

  6. Lipase activity of Mucor pusillus.

    PubMed

    Somkuti, G A; Babel, F J

    1968-04-01

    Two strains of Mucor pusillus were examined for their ability to synthesize lipase in a complex medium used in the production of milk-clotting protease. Lipase activity of both strains reached maximal after 6 days of incubation under submerged conditions at 35 C. Lipase secreted into the medium hydrolyzed butterfat and vegetable lipids, as well as selected synthetic triglycerides. About 50% of lipase activity was destroyed after a 45-min heat treatment at 58 C.

  7. Irisin in goldfish (Carassius auratus): Effects of irisin injections on feeding behavior and expression of appetite regulators, uncoupling proteins and lipoprotein lipase, and fasting-induced changes in FNDC5 expression.

    PubMed

    Butt, Zahndra Diann; Hackett, Jessica Dalton; Volkoff, Hélène

    2017-04-01

    Irisin is a peptide cleaved from the fibronectin type III domain containing protein 5 (FNDC5) gene that is secreted predominantly by muscle cells but also by other tissues including brain and intestine. In mammals, irisin has been shown to have thermogenic actions via the modulation of uncoupling proteins (UCPs) and to affect feeding and energy homeostasis via actions in brain, adipose tissue, liver, muscle and gastrointestinal tract. To examine the role of irisin on feeding and metabolism in fish, the effects of peripheral (intraperitoneal) injections of irisin on feeding behavior, glucose levels and the mRNA expressions of appetite regulators (cocaine and amphetamine regulated transcript CART, agouti related protein AgRP, orexin), UCPs and lipoprotein lipase LPL and brain factors (brain-derived neurotrophic factor , BDNF and tyrosine hydroxylase TH) were assessed in brain, white muscle and intestine. Irisin injections (100ng/g) induced a decrease in food intake and increases in brain orexin, CART1 and CART2, UCP2, BDNF, muscle UCP2 and intestine LPL mRNA expressions but did not affect blood glucose levels, brain AgRP, TH, UCP1, UCP3 and LPL or muscle UCP1, UCP3 and LPL expressions. A partial goldfish FNDC5 cDNA was isolated and the expressions of FDNC5, UCPs, LPL and BDNF were also compared between fed and fasted fish. Fasting induced decreases FNDC5 mRNA expression in the brain and intestine, but not in muscle. Fasting also induced increases in brain BDNF and LPL expressions and increases in UCP1, UCP2, UCP3 and LPL expressions in muscle. Our result suggest that irisin is an anorexigenic factor in fish and its actions might be in part mediated by appetite-regulating factors such as CART and orexins as well as UCP2 and brain factors such as BDNF.

  8. Knockout of a difficult-to-remove CHO host cell protein, lipoprotein lipase, for improved polysorbate stability in monoclonal antibody formulations.

    PubMed

    Chiu, Josephine; Valente, Kristin N; Levy, Nicholas E; Min, Lie; Lenhoff, Abraham M; Lee, Kelvin H

    2016-12-12

    While the majority of host cell protein (HCP) impurities are effectively removed in typical downstream purification processes, a small population of HCPs are particularly challenging. Previous studies have identified HCPs that are challenging for a variety of reasons. Lipoprotein lipase (LPL)-a Chinese hamster ovary (CHO) HCP that functions to hydrolyze esters in triglycerides-was one of ten HCPs identified in previous studies as being susceptible to retention in downstream processing. LPL may degrade polysorbate 80 (PS-80) and polysorbate 20 (PS-20) in final product formulations due to the structural similarity between polysorbates and triglycerides. In this work, recombinant LPL was found to have enzymatic activity against PS-80 and PS-20 in a range of solution conditions that are typical of mAb formulations. LPL knockout CHO cells were created with CRISPR and TALEN technologies and resulting cell culture harvest fluid demonstrated significantly reduced polysorbate degradation without significant impact on cell viability when compared to wild-type samples. Biotechnol. Bioeng. 2016;9999: 1-10. © 2016 Wiley Periodicals, Inc.

  9. Differences in lipid distribution and expression of peroxisome proliferator-activated receptor gamma and lipoprotein lipase genes in torafugu and red seabream.

    PubMed

    Kaneko, Gen; Yamada, Toshihiro; Han, Yuna; Hirano, Yuki; Khieokhajonkhet, Anurak; Shirakami, Hirohito; Nagasaka, Reiko; Kondo, Hidehiro; Hirono, Ikuo; Ushio, Hideki; Watabe, Shugo

    2013-04-01

    Lipid content is one of the major determinants of the meat quality in fish. However, the mechanisms underlying the species-specific distribution of lipid are still poorly understood. The present study was undertaken to investigate the mechanisms associated with lipid accumulation in two species of fish: torafugu (a puffer fish) and red seabream. The lipid content of liver and carcass were 67.0% and 0.8% for torafugu, respectively, and 8.8% and 7.3% for red seabream, respectively. Visceral adipose tissue was only apparent in the red seabream and accounted for 73.3% of its total lipid content. Oil red O staining confirmed this species-specific lipid distribution, and further demonstrated that the lipid in the skeletal muscle of the red seabream was mainly localized in the myosepta. We subsequently cloned cDNAs from torafugu encoding lipoprotein lipase 1 (LPL1) and LPL2, important enzymes for the uptake of lipids from blood circulation system into various tissues. The relative mRNA levels of peroxisome proliferator-activated receptor gamma (PPARγ) and the LPLs of torafugu were determined by quantitative real-time PCR together with their counterparts in red seabream previously reported. The relative mRNA levels of PPARγ and LPL1 correlated closely to the lipid distribution of both fish, being significantly higher in liver than skeletal muscle in torafugu, whereas the highest in the adipose tissue, followed by liver and skeletal muscle in red seabream. However, the relative mRNA levels of LPL2 were tenfold lower than LPL1 in both species and only correlated to lipid distribution in torafugu, suggesting that LPL2 has only a minor role in lipid accumulation. In situ hybridization revealed that the transcripts of LPL1 co-localized with lipids in the adipocytes located along the myosepta of the skeletal muscle of red seabream. These results suggest that the transcriptional regulation of PPARγ and LPL1 is responsible for the species-specific lipid distribution of torafugu

  10. Additive effects of LPL, APOA5 and APOE variant combinations on triglyceride levels and hypertriglyceridemia: results of the ICARIA genetic sub-study

    PubMed Central

    2010-01-01

    Background Hypertriglyceridemia (HTG) is a well-established independent risk factor for cardiovascular disease and the influence of several genetic variants in genes related with triglyceride (TG) metabolism has been described, including LPL, APOA5 and APOE. The combined analysis of these polymorphisms could produce clinically meaningful complementary information. Methods A subgroup of the ICARIA study comprising 1825 Spanish subjects (80% men, mean age 36 years) was genotyped for the LPL-HindIII (rs320), S447X (rs328), D9N (rs1801177) and N291S (rs268) polymorphisms, the APOA5-S19W (rs3135506) and -1131T/C (rs662799) variants, and the APOE polymorphism (rs429358; rs7412) using PCR and restriction analysis and TaqMan assays. We used regression analyses to examine their combined effects on TG levels (with the log-transformed variable) and the association of variant combinations with TG levels and hypertriglyceridemia (TG ≥ 1.69 mmol/L), including the covariates: gender, age, waist circumference, blood glucose, blood pressure, smoking and alcohol consumption. Results We found a significant lowering effect of the LPL-HindIII and S447X polymorphisms (p < 0.0001). In addition, the D9N, N291S, S19W and -1131T/C variants and the APOE-ε4 allele were significantly associated with an independent additive TG-raising effect (p < 0.05, p < 0.01, p < 0.001, p < 0.0001 and p < 0.001, respectively). Grouping individuals according to the presence of TG-lowering or TG-raising polymorphisms showed significant differences in TG levels (p < 0.0001), with the lowest levels exhibited by carriers of two lowering variants (10.2% reduction in TG geometric mean with respect to individuals who were homozygous for the frequent alleles of all the variants), and the highest levels in carriers of raising combinations (25.1% mean TG increase). Thus, carrying two lowering variants was protective against HTG (OR = 0.62; 95% CI, 0.39-0.98; p = 0.042) and having one single raising polymorphism (OR

  11. Genetics Home Reference: lysosomal acid lipase deficiency

    MedlinePlus

    ... Home Health Conditions lysosomal acid lipase deficiency lysosomal acid lipase deficiency Enable Javascript to view the expand/ ... Download PDF Open All Close All Description Lysosomal acid lipase deficiency is an inherited condition characterized by ...

  12. Cholesterol induces lipoprotein lipase expression in a tree shrew (Tupaia belangeri chinensis) model of non-alcoholic fatty liver disease.

    PubMed

    Zhang, Linqiang; Zhang, Zhiguo; Li, Yunhai; Liao, Shasha; Wu, Xiaoyun; Chang, Qing; Liang, Bin

    2015-11-02

    Animal models are indispensible to investigate the pathogenesis and treatments of non-alcoholic fatty liver diseases (NAFLD). Altered cholesterol metabolism has been implicated into the pathogenesis of NAFLD. Here, using high fat, cholesterol and cholate diet (HFHC), we generated a novel tree shrew (Tupaia belangeri chinensis) model of NAFLD, which displayed dyslipidemia with increased levels of plasma alanine aminotransferase (ALT) and aspartate aminotransferase (AST), total cholesterol (TC), low density lipoprotein-cholesterol (LDL-c) and high density lipoprotein-cholesterol (HDL-c), but decreased level of triglycerides (TG). Liver histopathology and genes expression indicated that HFHC diet successfully induced liver steatosis to inflammation and fibrosis progressively within 10 weeks. Moreover, HFHC induced the transcriptional expression of lipoprotein lipase (lpl) in the liver, but repressed the expression of LDL receptor, and the endogenous synthesis pathway and excretion of cholesterol. Notably, Poloxamer 407 (P-407) inhibition of LPL improved the severity of steatosis and reduced inflammation. These results illustrated that LPL plays an important role in cholesterol metabolism in NAFLD, and the tree shrew may be a valuable animal model for further research into NAFLD.

  13. Plant lipases: partial purification of Carica papaya lipase.

    PubMed

    Rivera, Ivanna; Mateos-Díaz, Juan Carlos; Sandoval, Georgina

    2012-01-01

    Lipases from plants have very interesting features for application in different fields. This chapter provides an overview on some of the most important aspects of plant lipases, such as sources, applications, physiological functions, and specificities. Lipases from laticifers and particularly Carica papaya lipase (CPL) have emerged as a versatile autoimmobilized biocatalyst. However, to get a better understanding of CPL biocatalytic properties, the isolation and purification of individual C. papaya lipolytic enzymes become necessary. In this chapter, a practical protocol for partial purification of the latex-associated lipolytic activity from C. papaya is given.

  14. Lipase applications in oil hydrolysis with a case study on castor oil: a review.

    PubMed

    Goswami, Debajyoti; Basu, Jayanta Kumar; De, Sirshendu

    2013-03-01

    Lipase (triacylglycerol acylhydrolase) is a unique enzyme which can catalyze various types of reactions such as hydrolysis, esterification, alcoholysis etc. In particular, hydrolysis of vegetable oil with lipase as a catalyst is widely studied. Free lipase, lipase immobilized on suitable support, lipase encapsulated in a reverse micelle and lipase immobilized on a suitable membrane to be used in membrane reactor are the most common ways of employing lipase in oil hydrolysis. Castor oil is a unique vegetable oil as it contains high amounts (90%) of a hydroxy monounsaturated fatty acid named ricinoleic acid. This industrially important acid can be obtained by hydrolysis of castor oil. Different conventional hydrolysis processes have certain disadvantages which can be avoided by a lipase-catalyzed process. The degree of hydrolysis varies widely for different lipases depending on the operating range of process variables such as temperature, pH and enzyme loading. Immobilization of lipase on a suitable support can enhance hydrolysis by suppressing thermal inactivation and estolide formation. The presence of metal ions also affects lipase-catalyzed hydrolysis of castor oil. Even a particular ion has different effects on the activity of different lipases. Hydrophobic organic solvents perform better than hydrophilic solvents during the reaction. Sonication considerably increases hydrolysis in case of lipolase. The effects of additives on the same lipase vary with their types. Nonionic surfactants enhance hydrolysis whereas cationic and anionic surfactants decrease it. A single variable optimization method is used to obtain optimum conditions. In order to eliminate its disadvantages, a statistical optimization method is used in recent studies. Statistical optimization shows that interactions between any two of the following pH, enzyme concentration and buffer concentration become significant in presence of a nonionic surfactant named Span 80.

  15. Biodiesel production from Jatropha oil catalyzed by immobilized Burkholderia cepacia lipase on modified attapulgite.

    PubMed

    You, Qinghong; Yin, Xiulian; Zhao, Yuping; Zhang, Yan

    2013-11-01

    Lipase from Burkholderia cepacia was immobilized on modified attapulgite by cross-linking reaction for biodiesel production with jatropha oil as feedstock. Effects of various factors on biodiesel production were studied by single-factor experiment. Results indicated that the best conditions for biodiesel preparation were: 10 g jatropha oil, 2.4 g methanol (molar ratio of oil to methanol is 1:6.6) being added at 3h intervals, 7 wt% water, 10 wt% immobilized lipase, temperature 35°C, and time 24h. Under these conditions, the maximum biodiesel yield reached 94%. The immobilized lipase retained 95% of its relative activity during the ten repeated batch reactions. The half-life time of the immobilized lipase is 731 h. Kinetics was studied and the Vmax of the immobilized lipases were 6.823 mmol L(-1). This immobilized lipase catalyzed process has potential industrial use for biodiesel production to replace chemical-catalyzed method.

  16. The νSaα Specific Lipoprotein Like Cluster (lpl) of S. aureus USA300 Contributes to Immune Stimulation and Invasion in Human Cells.

    PubMed

    Nguyen, Minh Thu; Kraft, Beatrice; Yu, Wenqi; Demircioglu, Dogan Doruk; Demicrioglu, Dogan Doruk; Hertlein, Tobias; Burian, Marc; Schmaler, Mathias; Boller, Klaus; Bekeredjian-Ding, Isabelle; Ohlsen, Knut; Schittek, Birgit; Götz, Friedrich

    2015-06-01

    All Staphylococcus aureus genomes contain a genomic island, which is termed νSaα and characterized by two clusters of tandem repeat sequences, i.e. the exotoxin (set) and 'lipoprotein-like' genes (lpl). Based on their structural similarities the νSaα islands have been classified as type I to IV. The genomes of highly pathogenic and particularly epidemic S. aureus strains (USA300, N315, Mu50, NCTC8325, Newman, COL, JH1 or JH9) belonging to the clonal complexes CC5 and CC8 bear a type I νSaα island. Since the contribution of the lpl gene cluster encoded in the νSaα island to virulence is unclear to date, we deleted the entire lpl gene cluster in S. aureus USA300. The results showed that the mutant was deficient in the stimulation of pro-inflammatory cytokines in human monocytes, macrophages and keratinocytes. Purified lipoprotein Lpl1 was further shown to elicit a TLR2-dependent response. Furthermore, heterologous expression of the USA300 lpl cluster in other S. aureus strains enhanced their immune stimulatory activity. Most importantly, the lpl cluster contributed to invasion of S. aureus into human keratinocytes and mouse skin and the non-invasive S. carnosus expressing the lpl gene cluster became invasive. Additionally, in a murine kidney abscess model the bacterial burden in the kidneys was higher in wild type than in mutant mice. In this infection model the lpl cluster, thus, contributes to virulence. The present report is one of the first studies addressing the role of the νSaα encoded lpl gene cluster in staphylococcal virulence. The finding that the lpl gene cluster contributes to internalization into non-professional antigen presenting cells such as keratinocytes highlights the lpl as a new cell surface component that triggers host cell invasion by S. aureus. Increased invasion in murine skin and an increased bacterial burden in a murine kidney abscess model suggest that the lpl gene cluster serves as an important virulence factor.

  17. The νSaα Specific Lipoprotein Like Cluster (lpl) of S. aureus USA300 Contributes to Immune Stimulation and Invasion in Human Cells

    PubMed Central

    Nguyen, Minh Thu; Kraft, Beatrice; Yu, Wenqi; Demicrioglu, Dogan Doruk; Hertlein, Tobias; Burian, Marc; Schmaler, Mathias; Boller, Klaus; Bekeredjian-Ding, Isabelle; Ohlsen, Knut; Schittek, Birgit; Götz, Friedrich

    2015-01-01

    All Staphylococcus aureus genomes contain a genomic island, which is termed νSaα and characterized by two clusters of tandem repeat sequences, i.e. the exotoxin (set) and 'lipoprotein-like' genes (lpl). Based on their structural similarities the νSaα islands have been classified as type I to IV. The genomes of highly pathogenic and particularly epidemic S. aureus strains (USA300, N315, Mu50, NCTC8325, Newman, COL, JH1 or JH9) belonging to the clonal complexes CC5 and CC8 bear a type I νSaα island. Since the contribution of the lpl gene cluster encoded in the νSaα island to virulence is unclear to date, we deleted the entire lpl gene cluster in S. aureus USA300. The results showed that the mutant was deficient in the stimulation of pro-inflammatory cytokines in human monocytes, macrophages and keratinocytes. Purified lipoprotein Lpl1 was further shown to elicit a TLR2-dependent response. Furthermore, heterologous expression of the USA300 lpl cluster in other S. aureus strains enhanced their immune stimulatory activity. Most importantly, the lpl cluster contributed to invasion of S. aureus into human keratinocytes and mouse skin and the non-invasive S. carnosus expressing the lpl gene cluster became invasive. Additionally, in a murine kidney abscess model the bacterial burden in the kidneys was higher in wild type than in mutant mice. In this infection model the lpl cluster, thus, contributes to virulence. The present report is one of the first studies addressing the role of the νSaα encoded lpl gene cluster in staphylococcal virulence. The finding that the lpl gene cluster contributes to internalization into non-professional antigen presenting cells such as keratinocytes highlights the lpl as a new cell surface component that triggers host cell invasion by S. aureus. Increased invasion in murine skin and an increased bacterial burden in a murine kidney abscess model suggest that the lpl gene cluster serves as an important virulence factor. PMID:26083414

  18. trans-10,cis-12 Conjugated linoleic acid inhibits lipoprotein lipase but increases the activity of lipogenic enzymes in adipose tissue from hamsters fed an atherogenic diet.

    PubMed

    Zabala, Amaia; Churruca, Itziar; Fernández-Quintela, Alfredo; Rodríguez, Víctor M; Macarulla, M Teresa; Martínez, J Alfredo; Portillo, María P

    2006-06-01

    The aim of the present work was to investigate the effects of trans-10,cis-12 conjugated linoleic acid (CLA) on the activity and expression of lipogenic enzymes and lipoprotein lipase (LPL), as well as on the expression of transcriptional factors controlling these enzymes, in adipose tissue from hamsters, and to evaluate the involvement of these changes in the body fat-reducing effect of this CLA isomer. Thirty male hamsters were divided into three groups and fed atherogenic diets supplemented with 0 (linoleic group), 5 or 10 g trans-10,cis-12 CLA/kg diet, for 6 weeks. Body and adipose tissue weights, food intake and serum insulin were measured. Total and heparin-releasable LPL and lipogenic enzyme activities (acetyl-CoA carboxylase (ACC); fatty acid synthase (FAS); glucose-6-phosphate dehydrogenase (G6PDH); and malic enzyme (ME)) were assessed. ACC, FAS, LPL, sterol regulatory element-binding proteins (SREBP-1a), SREBP-1c and PPARgamma mRNA levels were also determined by real-time PCR. CLA did not modify food intake, body weight and serum insulin level. CLA feeding reduced adipose tissue weight, LPL activity and expression, and increased lipogenic enzyme activities, despite a significant reduction in ACC and FAS mRNA levels. The expression of the three transcriptional factors analysed (SREBP-1a, SREBP-1c and PPARgamma) was also reduced. These results appear to provide a framework for partially understanding the reduction in body fat induced by CLA. Inhibition of LPL activity seems to be an important mechanism underlying body fat reduction in hamsters. Further research is needed to better characterize the effects of CLA on lipogenesis and the role of these effects in CLA action.

  19. Psychrophilic Lipase from Arctic Bacterium

    PubMed Central

    Ramle, Zakiah; Rahim, Rashidah Abdul

    2016-01-01

    A lipase producer psychrophilic microorganism isolated from Arctic sample was studied. The genomic DNA of the isolate was extracted using modified CTAB method. Identification of the isolate by morphological and 16S rRNA sequence analysis revealed that the isolate is closely related to Arthrobacter gangotriensis (97% similarity). A. gangotriensis was determined as positive lipase producer based on the plate screening using specific and sensitive plate assay of Rhodamine B. The PCR result using Arthrobacter sp.’s full lipase gene sequence as the template primers emphasised a possible lipase gene at 900 bp band size. The gene is further cloned in a suitable vector system for expression of lipase. PMID:27965754

  20. Cold-adapted organic solvent tolerant alkalophilic family I.3 lipase from an Antarctic Pseudomonas.

    PubMed

    Ganasen, Menega; Yaacob, Norhayati; Rahman, Raja Noor Zaliha Raja Abd; Leow, Adam Thean Chor; Basri, Mahiran; Salleh, Abu Bakar; Ali, Mohd Shukuri Mohamad

    2016-11-01

    Lipolytic enzymes with cold adaptation are gaining increasing interest due to their biotechnological prospective. Previously, a cold adapted family I.3 lipase (AMS8 lipase) was isolated from an Antarctic Pseudomonas. AMS8 lipase was largely expressed in insoluble form. The refolded His-tagged recombinant AMS8 lipase was purified with 23.0% total recovery and purification factor of 9.7. The purified AMS8 lipase migrated as a single band with a molecular weight approximately 65kDa via electrophoresis. AMS8 lipase was highly active at 30°C at pH 10. The half-life of AMS8 lipase was reported at 4 and 2h under the incubation of 30 and 40°C, respectively. The lipase was stable over a broad range of pH. It showed enhancement effect in its relative activity under the presence of Li(+), Na(+), K(+), Rb(+) and Cs(+) after 30min treatment. Heavy metal ions such as Cu(2+), Fe(3+) and Zn(2+) inhibited AMS8 activity. This cold adapted alkalophilic AMS lipase was also active in various organic solvent of different polarity. These unique properties of this biological macromolecule will provide considerable potential for many biotechnological applications and organic synthesis at low temperature.

  1. The rs2070895 (-250G/A) Single Nucleotide Polymorphism in Hepatic Lipase (HL) Gene and the Risk of Coronary Artery Disease in North Indian Population: A Case-Control Study

    PubMed Central

    Verma, Dileep Kumar; Sethi, Rishi; Singh, Shraddha; Krishna, Akhilesh

    2016-01-01

    Introduction Several Single Nucleotide Polymorphisms (SNPs) in lipid transport genes have been shown to be associated with Coronary Artery Disease (CAD). The Hepatic Lipase (HL)glycoprotein is a key component that catalyzes the hydrolysis of triglycerides and phospholipids in all major classes of lipoproteins. Aim We studied whether the HL gene-250G/A polymorphism affect blood lipid level and the CAD in a North Indian population. Materials and Methods A total number of 477 subjects were enrolled in the study after approval of the Institutional Ethics Committee. Out of 477 subjects, 233 were with coronary artery disease as study group and 244 subjects without coronary artery disease as control group. All subjects recruited with matched ethnicity in age group of 40-70 years. Blood samples were collected in EDTA vials and genomic DNA was extracted from blood using the phenol-chloroform method. Lipid profile was estimated by using a commercially available kit. Polymorphisms in the HL (-250 G/A) gene were analysed by using restriction fragment length polymorphism-polymerase chain reaction (PCR-RFLP) method. The effect of this polymorphism on plasma lipids, lipoproteins and coronary artery disease was determined. Results In Human Hepatic Lipase (LIPC)-250G/A genotype, the frequencies of GG, GA and AA genotype in CAD group was 80.69%, 15.45% and 3.86%, respectively; in the control group, the corresponding frequencies were 90.16%, 9.02% and 0.82%, respectively. A significant difference was found in the genotype (LIPC-250G/A) distribution between the two groups. Further logistic regression analysis indicated that the GA and AA genotypes in SNP-250G/A were significantly associated with CAD in all genetic models (In codominant model- GA vs. GG, OR=1.91, 95% CI=1. 09-3.37, p=0. 03 and AA vs. GG, OR= 5.26, 95% CI= 1.10-24.60, p=0.04; in dominant model- GA+AA vs. GG, OR=2.19, p=0.004 and in recessive model- AA vs. GG+GA, OR=5.26, p=0.04 whereas, A allele at nucleotide -250G/A in

  2. Haplotype structure and population genetic inferences from nucleotide-sequence variation in human lipoprotein lipase.

    PubMed Central

    Clark, A G; Weiss, K M; Nickerson, D A; Taylor, S L; Buchanan, A; Stengård, J; Salomaa, V; Vartiainen, E; Perola, M; Boerwinkle, E; Sing, C F

    1998-01-01

    Allelic variation in 9.7 kb of genomic DNA sequence from the human lipoprotein lipase gene (LPL) was scored in 71 healthy individuals (142 chromosomes) from three populations: African Americans (24) from Jackson, MS; Finns (24) from North Karelia, Finland; and non-Hispanic Whites (23) from Rochester, MN. The sequences had a total of 88 variable sites, with a nucleotide diversity (site-specific heterozygosity) of .002+/-.001 across this 9.7-kb region. The frequency spectrum of nucleotide variation exhibited a slight excess of heterozygosity, but, in general, the data fit expectations of the infinite-sites model of mutation and genetic drift. Allele-specific PCR helped resolve linkage phases, and a total of 88 distinct haplotypes were identified. For 1,410 (64%) of the 2,211 site pairs, all four possible gametes were present in these haplotypes, reflecting a rich history of past recombination. Despite the strong evidence for recombination, extensive linkage disequilibrium was observed. The number of haplotypes generally is much greater than the number expected under the infinite-sites model, but there was sufficient multisite linkage disequilibrium to reveal two major clades, which appear to be very old. Variation in this region of LPL may depart from the variation expected under a simple, neutral model, owing to complex historical patterns of population founding, drift, selection, and recombination. These data suggest that the design and interpretation of disease-association studies may not be as straightforward as often is assumed. PMID:9683608

  3. 21 CFR 862.1465 - Lipase test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Lipase test system. (a) Identification. A lipase test system is a device intended to measure the activity of the enzymes lipase in serum. Lipase measurements are used in diagnosis and treatment of...

  4. 21 CFR 862.1465 - Lipase test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Lipase test system. (a) Identification. A lipase test system is a device intended to measure the activity of the enzymes lipase in serum. Lipase measurements are used in diagnosis and treatment of...

  5. 21 CFR 862.1465 - Lipase test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Lipase test system. (a) Identification. A lipase test system is a device intended to measure the activity of the enzymes lipase in serum. Lipase measurements are used in diagnosis and treatment of...

  6. 21 CFR 862.1465 - Lipase test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... Lipase test system. (a) Identification. A lipase test system is a device intended to measure the activity of the enzymes lipase in serum. Lipase measurements are used in diagnosis and treatment of...

  7. 21 CFR 862.1465 - Lipase test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... Lipase test system. (a) Identification. A lipase test system is a device intended to measure the activity of the enzymes lipase in serum. Lipase measurements are used in diagnosis and treatment of...

  8. Biodiesel production with immobilized lipase: A review.

    PubMed

    Tan, Tianwei; Lu, Jike; Nie, Kaili; Deng, Li; Wang, Fang

    2010-01-01

    Fatty acid alkyl esters, also called biodiesel, are environmentally friendly and show great potential as an alternative liquid fuel. Biodiesel is produced by transesterification of oils or fats with chemical catalysts or lipase. Immobilized lipase as the biocatalyst draws high attention because that process is "greener". This article reviews the current status of biodiesel production with immobilized lipase, including various lipases, immobilization methods, various feedstocks, lipase inactivation caused by short chain alcohols and large scale industrialization. Adsorption is still the most widely employed method for lipase immobilization. There are two kinds of lipase used most frequently especially for large scale industrialization. One is Candida antartica lipase immobilized on acrylic resin, and the other is Candida sp. 99-125 lipase immobilized on inexpensive textile membranes. However, to further reduce the cost of biodiesel production, new immobilization techniques with higher activity and stability still need to be explored.

  9. Lipases in Medicine: An Overview.

    PubMed

    Loli, Heni; Narwal, Sunil Kumar; Saun, Nitin Kumar; Gupta, Reena

    2015-01-01

    Lipases are part of the family of hydrolases that act on carboxylic ester bonds. They are involved in catalyzing the hydrolysis of triglycerides (TG) into chylomicrons and very low density lipoprotein (VLDL) particles. Uses of lipases are evolving rapidly and currently they are reported to show high potential in medicine. Intensive study and investigations have led researchers to explore lipases for their use in substitution therapy, where in enzyme deficiency during diseased conditions is compensated by their external administration. In our body, they are used to break down fats present in food so that they can be absorbed in the intestine and deficiency of lipases leads to malabsorption of fats and fat-soluble vitamins. Lipases help a person who has cystic fibrosis, Alzheimer's disease, atherosclerosis and act as a candidate target for cancer prevention and therapy. They act as diagnostic tool and their presence or increasing levels can indicate certain infection or disease. Obesity causes metabolic disease and is a serious health problem around the world. Thus inhibiting digestive lipase to reduce fat absorption has become the main pharmacological approach to the treatment of obesity in recent years.

  10. Sex-associated effect of CETP and LPL polymorphisms on postprandial lipids in familial hypercholesterolaemia

    PubMed Central

    Anagnostopoulou, Katherine K; Kolovou, Genovefa D; Kostakou, Peggy M; Mihas, Constantinos; Hatzigeorgiou, Georgios; Marvaki, Christina; Degiannis, Dimitrios; Mikhailidis, Dimitri P; Cokkinos, Dennis V

    2009-01-01

    Background This study assessed the gender-specific influence of the cholesteryl ester transfer protein (TaqIB, I405V) and lipoprotein lipase (S447X) polymorphisms on the response to an oral fat tolerance test in heterozygotes for familial hypercholesterolaemia. Methods We selected and genotyped 80 men and postmenopausal women heterozygous for familial hypercholesterolaemia (main group) as well as 11 healthy control subjects. Patients were subgrouped based on their response to oral fat tolerance test. The oral fat tolerance test was defined as pathological when postprandial triglyceride concentration was higher than the highest triglyceride concentration observed in healthy subjects (220 mg/dl) at any time (2, 4, 6 or 8 h). Results In the pathological subgroup, men had significantly higher incremental area under the curve after oral fat tolerance test than postmenopausal women. Furthermore, multivariate analysis revealed a gender association of TaqIB and I405V influence on postprandial lipaemia in this subgroup. Conclusion In conclusion, it seems that gender and TaqIB polymorphism of the cholesteryl ester transfer protein gene were both associated with the distribution of triglyceride values after oral fat tolerance test, only in subjects with a pathological response to oral fat tolerance test. Specifically, men carrying the B2 allele of the TaqIB polymorphism showed a higher postprandial triglyceride peak and a delayed return to basal values compared with women carrying B2. However, further investigations in larger populations are required to replicate and confirm these findings. PMID:19558660

  11. QSAR study and the hydrolysis activity prediction of three alkaline lipases from different lipase-producing microorganisms.

    PubMed

    Wang, Haikuan; Wang, Xiaojie; Li, Xiaolu; Zhang, Yehong; Dai, Yujie; Guo, Changlu; Zheng, Heng

    2012-09-28

    The hydrolysis activities of three alkaline lipases, L-A1, L-A2 and L-A3 secreted by different lipase-producing microorganisms isolated from the Bay of Bohai, P. R. China were characterized with 16 kinds of esters. It was found that all the lipases have the ability to catalyze the hydrolysis of the glycerides, methyl esters, ethyl esters, especially for triglycerides, which shows that they have broad substrate spectra, and this property is very important for them to be used in detergent industry. Three QSAR models were built for L-A1, L-A2 and L-A3 respectively with GFA using Discovery studio 2.1. The models equations 1, 2 and 3 can explain 95.80%, 97.45% and 97.09% of the variances (R(2)(adj)) respectively while they could predict 95.44%, 89.61% and 93.41% of the variances (R(2)(cv)) respectively. With these models the hydrolysis activities of these lipases to mixed esters were predicted and the result showed that the predicted values are in good agreement with the measured values, which indicates that this method can be used as a simple tool to predict the lipase activities for single or mixed esters.

  12. High LPL Activity and Adipocyte Hypertrophy Reduce Visceral Fat and Metabolic Risk in Obese, Older Women

    PubMed Central

    Serra, Monica C.; Ryan, Alice S.; Sorkin, John D.; Favors, Knachelle H.; Goldberg, Andrew P.

    2014-01-01

    Objective To determine if higher subcutaneous adipose tissue lipoprotein lipase activity (AT-LPLA) is associated with greater triglyceride (TG) storage in subcutaneous adipose tissue (SAT), thereby reducing visceral adipose tissue (VAT) accumulation and metabolic dysfunction. Design and Method Obese postmenopausal women (60±1 yrs; mean±SEM; N=101) had body composition by DXA and CT, fat aspirations for fat-cell weight (FCW) and AT-LPLA. Women were ranked by visceral to total abdominal fat ratio (VAT/TAF), and the lowest and highest groups (n=24) matched for % fat and age. Results The prevalence of metabolic dysfunction was 7–10 fold higher in women with high VAT/TAF (P’s<0.01). Women with low VAT/TAF had 11% and 6% lower abdominal and gluteal FCWs, but 28% and 54% higher AT-LPLA/106 cells in abdominal and gluteal fat, respectively. Abdominal FCW correlated with AT-LPLA in women with low (r=0.63, P<0.01), but not high (r=0.14, P=0.52) VAT/TAF, and these lines differed in slope (P<0.05) and intercept (P<0.01), suggesting greater capacity for TG storage with low VAT/TAF. There were no relationships between gluteal FCW and AT-LPLA. The relationship between SAT and abdominal AT-LPLA (r=0.39, P<0.01) suggests that higher AT-LPLA promotes TG storage. Conclusions These results suggest that higher AT-LPLA is associated with SAT adipocyte hypertrophy, which reduces visceral adiposity and metabolic risk in obese, older women. PMID:25612068

  13. Cooling causes changes in the distribution of lipoprotein lipase and milk fat globule membrane proteins between the skim milk and cream phase.

    PubMed

    Dickow, J A; Larsen, L B; Hammershøj, M; Wiking, L

    2011-02-01

    Lipoprotein lipase (LPL) activity and free fatty acid levels were studied in freshly milked, uncooled milk from individual Danish Holstein or Jersey cows, or after storage for up to 24h at either a cooling temperature (4°C) or at the milking temperature (31°C). Upon cooling for up to 24h, LPL activity increased in the cream phase, whereas the activity in the skim milk was steady, as observed for Jersey cows, or increased, as seen for the Holsteins. Storage at 31°C decreased the LPL activity in both the cream phase and the skim milk phase. The increase in free fatty acid levels was found to depend on LPL activity, incubation temperature, substrate availability, and incubation time. Furthermore, the migration of milk proteins between the skim milk phase and the cream phase upon cooling of milk from Jersey cows or from Danish Holstein cows was studied using proteomic methods involving 2-dimensional gel electrophoresis and mass spectrometry. Proteins associated with the milk fat globules were isolated from all milk fractions and analyzed. Major changes in the distributions of proteins between the skim milk phase and the cream phase were observed after cooling at 4°C for 4h, where a total of 29 proteins between the 2 breeds was found to change their association with the milk fat globule membrane (MFGM) significantly. Among these, the MFGM proteins adipophilin, fatty acid-binding protein, and lactadherin, as well as the non-MFGM proteins β-casein, lactoferrin, and heat shock protein-71, were identified. Adipophilin, lactadherin, and lactoferrin were quantitatively more associated with the MFGM upon cold storage at 4°C, whereas β-casein, fatty acid-binding protein, and heat shock protein-71 were found to be less associated with the MFGM upon cold storage.

  14. Intermittent hypoxia inhibits clearance of triglyceride-rich lipoproteins and inactivates adipose lipoprotein lipase in a mouse model of sleep apnoea

    PubMed Central

    Drager, Luciano F.; Li, Jianguo; Shin, Mi-Kyung; Reinke, Christian; Aggarwal, Neil R.; Jun, Jonathan C.; Bevans-Fonti, Shannon; Sztalryd, Carole; O'Byrne, Sheila M.; Kroupa, Olessia; Olivecrona, Gunilla; Blaner, William S.; Polotsky, Vsevolod Y.

    2012-01-01

    Aims Delayed lipoprotein clearance is associated with atherosclerosis. This study examined whether chronic intermittent hypoxia (CIH), a hallmark of obstructive sleep apnoea (OSA), can lead to hyperlipidaemia by inhibiting clearance of triglyceride rich lipoproteins (TRLP). Methods and results Male C57BL/6J mice on high-cholesterol diet were exposed to 4 weeks of CIH or chronic intermittent air (control). FIO2 was decreased to 6.5% once per minute during the 12 h light phase in the CIH group. After the exposure, we measured fasting lipid profile. TRLP clearance was assessed by oral gavage of retinyl palmitate followed by serum retinyl esters (REs) measurements at 0, 1, 2, 4, 10, and 24 h. Activity of lipoprotein lipase (LpL), a key enzyme of lipoprotein clearance, and levels of angiopoietin-like protein 4 (Angptl4), a potent inhibitor of the LpL activity, were determined in the epididymal fat pads, skeletal muscles, and heart. Chronic intermittent hypoxia induced significant increases in levels of total cholesterol and triglycerides, which occurred in TRLP and LDL fractions (P< 0.05 for each comparison). Compared with control mice, animals exposed to CIH showed increases in REs throughout first 10 h after oral gavage of retinyl palmitate (P< 0.05), indicating that CIH inhibited TRLP clearance. CIH induced a >5-fold decrease in LpL activity (P< 0.01) and an 80% increase in Angptl4 mRNA and protein levels in the epididymal fat, but not in the skeletal muscle or heart. Conclusions CIH decreases TRLP clearance and inhibits LpL activity in adipose tissue, which may contribute to atherogenesis observed in OSA. PMID:21478490

  15. Glycyrrhizic acid improved lipoprotein lipase expression, insulin sensitivity, serum lipid and lipid deposition in high-fat diet-induced obese rats

    PubMed Central

    2010-01-01

    Background The metabolic syndrome, known also as the insulin resistance syndrome, refers to the clustering of several risk factors for atherosclerotic cardiovascular disease. Dyslipidaemia is a hallmark of the syndrome and is associated with a whole body reduction in the activity of lipoprotein lipase (LPL), an enzyme under the regulation of the class of nuclear receptors known as peroxisome proliferator-activated receptor (PPAR). Glycyrrhizic acid (GA), a triterpenoid saponin, is the primary bioactive constituent of the roots of the shrub Glycyrrhiza glabra. Studies have indicated that triterpenoids could act as PPAR agonists and GA is therefore postulated to restore LPL expression in the insulin resistant state. Results Oral administration of 100 mg/kg of GA to high-fat diet-induced obese rats for 28 days led to significant reduction in blood glucose concentration and improvement in insulin sensitivity as indicated by the homeostasis model assessment of insulin resistance (HOMA-IR) (p < 0.05). LPL expression was up-regulated in the kidney, heart, quadriceps femoris, abdominal muscle and the visceral and subcutaneous adipose tissues but down-regulated in the liver - a condition in reverse to that seen in high-fat diet-induced obese rats without GA. With regard to lipid metabolism, GA administration led to significant hypotriglyceridemic and HDL-raising effects (p < 0.05), with a consistent reduction in serum free fatty acid, total cholesterol and LDL cholesterol and significant decrease in tissue lipid deposition across all studied tissue (p < 0.01). Conclusion In conclusion, GA may be a potential compound in improving dyslipidaemia by selectively inducing LPL expression in non-hepatic tissues. Such up-regulation was accompanied by a GA-mediated improvement in insulin sensitivity, which may be associated with a decrease in tissue lipid deposition. The HDL-raising effect of GA suggests the antiatherosclerotic properties of GA. PMID:20670429

  16. Impact of Lipoprotein Lipase Gene Polymorphism, S447X, on Postprandial Triacylglycerol and Glucose Response to Sequential Meal Ingestion

    PubMed Central

    Shatwan, Israa M.; Minihane, Anne-Marie; Williams, Christine M.; Lovegrove, Julie A.; Jackson, Kim G.; Vimaleswaran, Karani S.

    2016-01-01

    Lipoprotein lipase (LPL) is a key rate-limiting enzyme for the hydrolysis of triacylglycerol (TAG) in chylomicrons and very low-density lipoprotein. Given that postprandial assessment of lipoprotein metabolism may provide a more physiological perspective of disturbances in lipoprotein homeostasis compared to assessment in the fasting state, we have investigated the influence of two commonly studied LPL polymorphisms (rs320, HindIII; rs328, S447X) on postprandial lipaemia, in 261 participants using a standard sequential meal challenge. S447 homozygotes had lower fasting HDL-C (p = 0.015) and a trend for higher fasting TAG (p = 0.057) concentrations relative to the 447X allele carriers. In the postprandial state, there was an association of the S447X polymorphism with postprandial TAG and glucose, where S447 homozygotes had 12% higher TAG area under the curve (AUC) (p = 0.037), 8.4% higher glucose-AUC (p = 0.006) and 22% higher glucose-incremental area under the curve (IAUC) (p = 0.042). A significant gene–gender interaction was observed for fasting TAG (p = 0.004), TAG-AUC (Pinteraction = 0.004) and TAG-IAUC (Pinteraction = 0.016), where associations were only evident in men. In conclusion, our study provides novel findings of an effect of LPL S447X polymorphism on the postprandial glucose and gender-specific impact of the polymorphism on fasting and postprandial TAG concentrations in response to sequential meal challenge in healthy participants. PMID:26999119

  17. Polymorphisms in the LPL and CETP Genes and Haplotype in the ESR1 Gene Are Associated with Metabolic Syndrome in Women from Southwestern Mexico

    PubMed Central

    Cahua-Pablo, José Ángel; Cruz, Miguel; Méndez-Palacios, Abigail; Antúnez-Ortiz, Diana Lizzete; Vences-Velázquez, Amalia; del Carmen Alarcón-Romero, Luz; Parra, Esteban Juan; Tello-Flores, Vianet Argelia; Leyva-Vázquez, Marco Antonio; Valladares-Salgado, Adán; Pérez-Macedonio, Claudia Paola; Flores-Alfaro, Eugenia

    2015-01-01

    Metabolic syndrome (MetS) is a combination of metabolic disorders associated with an increased risk for cardiovascular disease (CVD). Studies in women reported associations between polymorphisms in ESR1, LPL and CETP genes and MetS. Our aim was to evaluate the association between variants in ESR1, LPL and CETP genes with MetS and its components. Four hundred and eighty women were analyzed, anthropometric features and biochemical profiles were evaluated, and genotyping was performed by real-time PCR. We found an association with elevated glucose levels (odds ratio (OR) = 2.9; p = 0.013) in carrying the AA genotype of rs1884051 in the ESR1 gene compared with the GG genotype, and the CC genotype of rs328 in the LPL gene was associated with MetS compared to the CG or GG genotype (OR = 2.8; p = 0.04). Moreover, the GA genotype of rs708272 in the CETP gene is associated with MetS compared to the GG or AA genotype (OR = 1.8; p = 0.006). In addition the ACTCCG haplotype in the ESR1 gene is associated with a decrease in the risk of MetS (OR = 0.02; p < 0.001). In conclusion, our results show the involvement of the variants of ESR1, LPL and CETP genes in metabolic events related to MetS or some of its features. PMID:26370976

  18. Triglyceride kinetics, tissue lipoprotein lipase, and liver lipogenesis in septic rats

    SciTech Connect

    Lanza-Jacoby, S.; Tabares, A. )

    1990-04-01

    The mechanism for the development of hypertriglyceridemia during gram-negative sepsis was studied by examining liver production and clearance of very-low-density lipoprotein (VLDL) triglyceride (TG). To assess liver output and peripheral clearance the kinetics of VLDL-TG were determined by a constant iv infusion of (2-3H)glycerol-labeled VLDL. Clearance of VLDL-TG was also evaluated by measuring activities of lipoprotein lipase (LPL) in heart, soleus muscle, and adipose tissue from fasted control, fasted E. coli-treated, fed control, and fed E. coli-treated rats. Lewis inbred rats, 275-300 g, were made septic with 8 x 10(7) live E. coli colonies per 100 g body wt. Twenty-four hours after E. coli injection, serum TG, free fatty acids (FFA), and cholesterol of fasted E. coli-treated rats were elevated by 170, 76, and 16%, respectively. The elevation of serum TG may be attributed to the 67% decrease in clearance rate of VLDL-TG in fasted E. coli-treated rats compared with their fasted controls. The suppressed activities of LPL in adipose tissue, skeletal muscle, and heart were consistent with reduced clearance of TG. Secretion of VLDL-TG declined by 31% in livers of fasted E. coli-treated rats, which was accompanied by a twofold increase in the composition of liver TG. Rates of in vivo TG synthesis in livers of the fasted E. coli-treated rats were twofold higher than in those of fasted control rats. Decreased rate of TG appearance along with the increase in liver synthesis of TG contributed to the elevation of liver lipids in the fasted E. coli-treated rats.

  19. Lipase-catalyzed ring-opening polymerization of lactones to polyesters and its mechanistic aspects.

    PubMed

    Namekawa, S; Suda, S; Uyama, H; Kobayashi, S

    1999-01-01

    Lipase catalysis induced a ring-opening polymerization of lactones with different ring-sizes. Small-size (four-membered) and medium-size lactones (six- and seven-membered) as well as macrolides (12-, 13-, 16-, and 17-membered) were subjected to lipase-catalyzed polymerization. The polymerization behaviors depended primarily on the lipase origin and the monomer structure. The macrolides showing much lower anionic polymerizability were enzymatically polymerized faster than epsilon-caprolactone. The granular immobilized lipase derived from Candida antartica showed extremely efficient catalysis in the polymerization of epsilon-caprolactone. Single-step terminal functionalization of the polyester was achieved by initiator and terminator methods. The enzymatic polymerizability of lactones was quantitatively evaluated by Michaelis-Menten kinetics.

  20. The Saccharomyces cerevisiae YLL012/YEH1, YLR020/YEH2, and TGL1 genes encode a novel family of membrane-anchored lipases that are required for steryl ester hydrolysis.

    PubMed

    Köffel, René; Tiwari, Rashi; Falquet, Laurent; Schneiter, Roger

    2005-03-01

    Sterol homeostasis in eukaryotic cells relies on the reciprocal interconversion of free sterols and steryl esters. The formation of steryl esters is well characterized, but the mechanisms that control steryl ester mobilization upon cellular demand are less well understood. We have identified a family of three lipases of Saccharomyces cerevisiae that are required for efficient steryl ester mobilization. These lipases, encoded by YLL012/YEH1, YLR020/YEH2, and TGL1, are paralogues of the mammalian acid lipase family, which is composed of the lysosomal acid lipase, the gastric lipase, and four novel as yet uncharacterized human open reading frames. Lipase triple-mutant yeast cells are completely blocked in steryl ester hydrolysis but do not affect the mobilization of triacylglycerols, indicating that the three lipases are required for steryl ester mobilization in vivo. Lipase single mutants mobilize steryl esters to various degrees, indicating partial functional redundancy of the three gene products. Lipase double-mutant cells in which the third lipase is expressed from the inducible GAL1 promoter have greatly reduced steady-state levels of steryl esters, indicating that overexpression of any of the three lipases is sufficient for steryl ester mobilization in vivo. The three yeast enzymes constitute a novel class of membrane-anchored lipases that differ in topology and subcellular localization.

  1. Triton WR1339, an inhibitor of lipoprotein lipase, decreases vitamin E concentration in some tissues of rats by inhibiting its transport to liver.

    PubMed

    Abe, Chisato; Ikeda, Saiko; Uchida, Tomono; Yamashita, Kanae; Ichikawa, Tomio

    2007-02-01

    The aim of this experiment was to clarify the contribution of the alpha-tocopherol transfer activity of lipoprotein lipase (LPL) to vitamin E transport to tissues in vivo. We studied the effect of Triton WR1339, which prevents the catabolism of triacylglycerol-rich lipoproteins by LPL on vitamin E distribution in rats. Vitamin E-deficient rats fed a vitamin E-free diet for 4 wk were injected with Triton WR1339 and administered by oral gavage an emulsion containing 10 mg of alpha-tocopherol, 10 mg of gamma-tocopherol, or 29.5 mg of a tocotrienol mixture with 200 mg of sodium taurocholate, 200 mg of triolein, and 50 mg of albumin. alpha-Tocopherol was detected in the serum and other tissues of the vitamin E-deficient rats, but gamma-tocopherol, alpha- and gamma-tocotrienol were not detected. Triton WR1339 injection elevated (P<0.05) the serum alpha-tocopherol concentration and inhibited (P<0.05) the elevation of alpha-tocopherol concentration in the liver, adrenal gland, and spleen due to the oral administration of alpha-tocopherol. Neither alpha-tocopherol administration nor Triton WR1339 injection affected (P>or=0.05) the alpha-tocopherol concentration in the perirenal adipose tissue, epididymal fat, and soleus muscle despite a high expression of LPL in the adipose tissue and muscle. These data show that alpha-tocopherol transfer activity of LPL in adipose tissue and muscle is not important for alpha-tocopherol transport to the tissue after alpha-tocopherol intake or that the amount transferred is small relative to the tissue concentration. Furthermore, Triton WR1339 injection tended to elevate the serum gamma-tocopherol (P=0.071) and alpha-tocotrienol (P=0.053) concentrations and lowered them (P<0.05) in the liver and adrenal gland of rats administered gamma-tocopherol or alpha-tocotrienol. These data suggest that lipolysis of triacylglycerol-rich chylomicron by LPL is necessary for postprandial vitamin E transport to the liver and subsequent transport to the

  2. Expression of lipases and lipid receptors in sperm storage tubules and possible role of fatty acids in sperm survival in the hen oviduct.

    PubMed

    Huang, A; Isobe, N; Obitsu, T; Yoshimura, Y

    2016-04-15

    The aim of this study was to determine the role of fatty acids for sperm survival in the sperm storage tubules (SSTs) of the hen oviduct. The mucosa tissues of uterovaginal junction (UVJ) of White Leghorn laying hens with or without artificial insemination using semen from Barred Plymouth Rock roosters were collected. The lipid density in the epithelium of UVJ and SST was analyzed by Sudan black B staining. The expressions of genes encoding lipid receptors and lipases were assayed by polymerase chain reaction in UVJ mucosa and SST cells isolated by laser microdissection. Fatty acid composition was analyzed by gas chromatography, and sperm were cultured with or without the identified predominant fatty acids for 24 hours to examine their effect on sperm viability. The lipid droplets were localized in the epithelium of UVJ mucosa and SSTs. The expression of genes encoding very low-density lipoprotein receptor(VLDLR), low-density lipoprotein receptor (LDLR), and fatty acid translocase (FAT/CD36) were found in SST cells. Expression of genes encoding endothelial lipase (EL), lipase H (LIPH), adipose triglyceride lipase (ATGL), and lipoprotein lipase (LPL) were found in UVJ. In contrast, only ATGL was found in SST cells, and its expression was significantly upregulated after artificial insemination. In UVJ mucosal tissues, five fatty acids, namely myristic acid (C14), palmitic acid (C16), stearic acid (C18), oleic acid (C18:1n9), and linoleic acid (C18:2n6), were identified as predominant fatty acids. The viability of sperm cultured with 1 mM oleic acid or linoleic acid was significantly higher than the sperm in the control culture without fatty acids. These results suggest that lipids in the SST cells may be degraded by ATGL, and fatty acids including oleic acid and linoleic acid may be released into the SST lumen to support sperm survival.

  3. Organic Solvent Tolerant Lipases and Applications

    PubMed Central

    Kanwar, Shamsher S.

    2014-01-01

    Lipases are a group of enzymes naturally endowed with the property of performing reactions in aqueous as well as organic solvents. The esterification reactions using lipase(s) could be performed in water-restricted organic media as organic solvent(s) not only improve(s) the solubility of substrate and reactant in reaction mixture but also permit(s) the reaction in the reverse direction, and often it is easy to recover the product in organic phase in two-phase equilibrium systems. The use of organic solvent tolerant lipase in organic media has exhibited many advantages: increased activity and stability, regiospecificity and stereoselectivity, higher solubility of substrate, ease of products recovery, and ability to shift the reaction equilibrium toward synthetic direction. Therefore the search for organic solvent tolerant enzymes has been an extensive area of research. A variety of fatty acid esters are now being produced commercially using immobilized lipase in nonaqueous solvents. This review describes the organic tolerance and industrial application of lipases. The main emphasis is to study the nature of organic solvent tolerant lipases. Also, the potential industrial applications that make lipases the biocatalysts of choice for the present and future have been presented. PMID:24672342

  4. 21 CFR 184.1415 - Animal lipase.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ....1415 Animal lipase. (a) Animal lipase (CAS Reg. No. 9001-62-1) is an enzyme preparation obtained from edible forestomach tissue of calves, kids, or lambs, or from animal pancreatic tissue. The enzyme preparation may be produced as a tissue preparation or as an aqueous extract. Its characterizing...

  5. 21 CFR 184.1415 - Animal lipase.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Substances Affirmed as GRAS § 184.1415 Animal lipase. (a) Animal lipase (CAS Reg. No. 9001-62-1) is an enzyme... tissue. The enzyme preparation may be produced as a tissue preparation or as an aqueous extract. Its characterizing enzyme activity is that of a triacylglycerol hydrolase (EC 3.1.1.3). (b) The ingredient meets...

  6. 21 CFR 184.1415 - Animal lipase.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Substances Affirmed as GRAS § 184.1415 Animal lipase. (a) Animal lipase (CAS Reg. No. 9001-62-1) is an enzyme... tissue. The enzyme preparation may be produced as a tissue preparation or as an aqueous extract. Its characterizing enzyme activity is that of a triacylglycerol hydrolase (EC 3.1.1.3). (b) The ingredient meets...

  7. 21 CFR 184.1415 - Animal lipase.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Substances Affirmed as GRAS § 184.1415 Animal lipase. (a) Animal lipase (CAS Reg. No. 9001-62-1) is an enzyme... tissue. The enzyme preparation may be produced as a tissue preparation or as an aqueous extract. Its characterizing enzyme activity is that of a triacylglycerol hydrolase (EC 3.1.1.3). (b) The ingredient meets...

  8. 21 CFR 184.1415 - Animal lipase.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... Substances Affirmed as GRAS § 184.1415 Animal lipase. (a) Animal lipase (CAS Reg. No. 9001-62-1) is an enzyme... tissue. The enzyme preparation may be produced as a tissue preparation or as an aqueous extract. Its characterizing enzyme activity is that of a triacylglycerol hydrolase (EC 3.1.1.3). (b) The ingredient meets...

  9. ApoAV reduces plasma triglycerides by inhibiting very low density lipoprotein-triglyceride (VLDL-TG) production and stimulating lipoprotein lipase-mediated VLDL-TG hydrolysis.

    PubMed

    Schaap, Frank G; Rensen, Patrick C N; Voshol, Peter J; Vrins, Carlos; van der Vliet, Hendrik N; Chamuleau, Robert A F M; Havekes, Louis M; Groen, Albert K; van Dijk, Ko Willems

    2004-07-02

    ApoAV has been discovered recently as a novel modifier of triglyceride (TG) metabolism, but the pathways involved are currently unknown. To gain insight into the function of apoAV, adenovirus-mediated gene transfer of murine apoa5 to C57Bl/6 mice was employed. The injection of low doses of Ad-apoa5 (1-5 x 10(8) plaqueforming units/mouse) dose-dependently reduced plasma very low density lipoprotein (VLDL)-TG levels. First, we evaluated whether a reduced hepatic VLDL production contributed to the TG-lowering effect. Ad-apoa5 treatment dose-dependently diminished (29-37%) the VLDL-TG production rate without affecting VLDL particle production, suggesting that apoAV impairs the lipidation of apoB. Second, Ad-apoa5 treatment dose-dependently reduced (68-88%) the postprandial hypertriglyceridemia following an intragastric fat load, suggesting that apoAV also stimulates the lipoprotein lipase (LPL)-dependent clearance of TG-rich lipoproteins. Indeed, recombinant apoAV was found to dose-dependently stimulate LPL activity up to 2.3-fold in vitro. Accordingly, intravenously injected VLDL-like TG-rich emulsions were cleared at an accelerated rate concomitant with the increased uptake of emulsion TG-derived fatty acids by skeletal muscle and white adipose tissue in Ad-apoa5-treated mice. From these data, we conclude that apoAV is a potent stimulator of LPL activity. Thus, apoAV lowers plasma TG by both reducing the hepatic VLDL-TG production rate and by enhancing the lipolytic conversion of TG-rich lipoproteins.

  10. In vitro stability evaluation of coated lipase

    PubMed Central

    Liu, Lu Jie; Zhu, Jia; Wang, Bin; Cheng, Chu; Du, Yong Jie; Wang, Min Qi

    2017-01-01

    Objective The study was conducted to evaluate the stability of commercial coated lipase (CT-LIP) in vitro. Methods The capsules were tested under different conditions with a range of temperature, pH, dry heat treatment and steaming treatment, simulated gastric fluid (SGF) and simulated intestinal fluid (SIF) in this work, respectively. Free lipase (uncoated lipase, UC-LIP) was the control group. Lipase relative activities measured in various treatments were used as a reference frame to characterize the stability. Results The lipase activities were decreased with increasing temperatures (p<0.05), and there was a markedly decline (p<0.01) in lipase comparative activities of UC-LIP at 80°C compared with CT-LIP group. Higher relative activities of lipase were observed in CT-LIP group compared with the free one under acidic ambient (pH 3 to 7) and an alkaline medium (pH 8 to 12). Residual lipase activities of CT-LIP group were increased (p<0.05) by 5.67% and 35.60% in dry heat and hydrothermal treatments, respectively. The lipase relative activity profile of CT-LIP was raised at first and dropped subsequently (p<0.05) compared with constantly reduced tendency of UC-LIP exposed to both SGF and SIF. Conclusion The results suggest that the CT-LIP possesses relatively higher stability in comparison with the UC-LIP in vitro. The CT-LIP could retain the potential property to provide sustained release of lipase and thus improved its bioavailability in the gastrointestinal tract. PMID:27507179

  11. Advances in lipase-catalyzed esterification reactions.

    PubMed

    Stergiou, Panagiota-Yiolanda; Foukis, Athanasios; Filippou, Michalis; Koukouritaki, Maria; Parapouli, Maria; Theodorou, Leonidas G; Hatziloukas, Efstathios; Afendra, Amalia; Pandey, Ashok; Papamichael, Emmanuel M

    2013-12-01

    Lipase-catalyzed esterification reactions are among the most significant chemical and biochemical processes of industrial relevance. Lipases catalyze hydrolysis as well as esterification reactions. Enzyme-catalyzed esterification has acquired increasing attention in many applications, due to the significance of the derived products. More specifically, the lipase-catalyzed esterification reactions attracted research interest during the past decade, due to an increased use of organic esters in biotechnology and the chemical industry. Lipases, as hydrolyzing agents are active in environments, which contain a minimum of two distinct phases, where all reactants are partitioned between these phases, although their distribution is not fixed and changes as the reaction proceeds. The kinetics of the lipase-catalyzed reactions is governed by a number of factors. This article presents a thorough and descriptive evaluation of the applied trends and perspectives concerning the enzymatic esterification, mainly for biofuel production; an emphasis is given on essential factors, which affect the lipase-catalyzed esterification reaction. Moreover, the art of using bacterial and/or fungal strains for whole cell biocatalysis purposes, as well as carrying out catalysis by various forms of purified lipases from bacterial and fungal sources is also reviewed.

  12. Organization of the human lipoprotein lipase gene and evolution of the lipase gene family.

    PubMed Central

    Kirchgessner, T G; Chuat, J C; Heinzmann, C; Etienne, J; Guilhot, S; Svenson, K; Ameis, D; Pilon, C; d'Auriol, L; Andalibi, A

    1989-01-01

    The human lipoprotein lipase gene was cloned and characterized. It is composed of 10 exons spanning approximately equal to 30 kilobases. The first exon encodes the 5'-untranslated region, the signal peptide plus the first two amino acids of the mature protein. The next eight exons encode the remaining 446 amino acids, and the tenth exon encodes the long 3'-untranslated region of 1948 nucleotides. The lipoprotein lipase transcription start site and the sequence of the 5'-flanking region were also determined. We compared the organization of genes for lipoprotein lipase, hepatic lipase, pancreatic lipase, and Drosophila yolk protein 1, which are members of a family of related genes. A model for the evolution of the lipase gene family is presented that involves multiple rounds of gene duplication plus exon-shuffling and intron-loss events. Images PMID:2602366

  13. Synthesis of hepatic lipase in liver and extrahepatic tissues

    SciTech Connect

    Doolittle, M.H.; Wong, H.; Davis, R.C.; Schotz, M.C.

    1987-11-01

    Immunoprecipitations of hepatic lipase from pulse-labeled rat liver have demonstrated that hepatic lipase is synthesized in two distinct molecular weight forms, HL-I (Mr = 51,000) and HL-II (Mr = 53,000). Both forms are immunologically related to purified hepatic lipase, but not to lipoprotein lipase. HL-I and HL-II are also kinetically related and represent different stages of intracellular processing. Glycosidase experiments suggest that HL-I is the high mannose microsomal form of the mature, sialylated HL-II enzyme. Hepatic lipase activity was detected in liver and adrenal gland but was absent in brain, heart, kidney, testes, small intestine, lung, and spleen. The adrenal and liver lipase activities were inhibited in a similar dose-dependent manner by hepatic lipase antiserum. Immunoblot analysis of partially purified adrenal lipase showed an immunoreactive band co-migrating with HL-II at 53,000 daltons which was absent in a control blot treated with preimmune serum. Adrenal lipase and authentic hepatic lipase yielded similar peptide maps, confirming the presence of the lipase in adrenal gland. However, incorporation of L-(/sup 35/S)methionine into immunoprecipitable hepatic lipase was not detected in this tissue. In addition, Northern blot analysis showed the presence of hepatic lipase mRNA in liver but not adrenal gland. The presence of hepatic lipase in adrenal gland in the absence of detectable synthesis or messenger suggests that hepatic lipase originates in liver and is transported to this extrahepatic site.

  14. Long-Term Retrospective Analysis of Gene Therapy with Alipogene Tiparvovec and Its Effect on Lipoprotein Lipase Deficiency-Induced Pancreatitis.

    PubMed

    Gaudet, Daniel; Stroes, Erik S; Méthot, Julie; Brisson, Diane; Tremblay, Karine; Bernelot Moens, Sophie J; Iotti, Giorgio; Rastelletti, Irene; Ardigo, Diego; Corzo, Deyanira; Meyer, Christian; Andersen, Marc; Ruszniewski, Philippe; Deakin, Mark; Bruno, Marco J

    2016-11-01

    Alipogene tiparvovec (Glybera) is a gene therapy product approved in Europe under the "exceptional circumstances" pathway as a treatment for lipoprotein lipase deficiency (LPLD), a rare genetic disease resulting in chylomicronemia and a concomitantly increased risk of acute and recurrent pancreatitis, with potentially lethal outcome. This retrospective study analyzed the frequency and severity of pancreatitis in 19 patients with LPLD up to 6 years after a single treatment with alipogene tiparvovec. An independent adjudication board of three pancreas experts, blinded to patient identification and to pre- or post-gene therapy period, performed a retrospective review of data extracted from the patients' medical records and categorized LPLD-related acute abdominal pain events requiring hospital visits and/or hospitalizations based on the adapted 2012 Atlanta diagnostic criteria for pancreatitis. Both entire disease time period data and data from an equal time period before and after gene therapy were analyzed. Events with available medical record information meeting the Atlanta diagnostic criteria were categorized as definite pancreatitis; events treated as pancreatitis but with variable levels of laboratory and imaging data were categorized as probable pancreatitis or acute abdominal pain events. A reduction of approximately 50% was observed in all three categories of the adjudicated post-gene therapy events. Notably, no severe pancreatitis and only one intensive care unit admission was observed in the post-alipogene tiparvovec period. However, important inter- and intraindividual variations in the pre- and post-gene therapy incidence of events were observed. There was no relationship between the posttreatment incidence of events and the number of LPL gene copies injected, the administration of immunosuppressive regimen or the percent triglyceride decrease achieved at 12 weeks (primary end point in the prospective clinical studies). Although a causal relationship

  15. Relevant pH and lipase for in vitro models of gastric digestion.

    PubMed

    Sams, Laura; Paume, Julie; Giallo, Jacqueline; Carrière, Frédéric

    2016-01-01

    The development of in vitro digestion models relies on the availability of in vivo data such as digestive enzyme levels and pH values recorded in the course of meal digestion. The variations of these parameters along the GI tract are important for designing dynamic digestion models but also static models for which the choice of representative conditions of the gastric and intestinal conditions is critical. Simulating gastric digestion with a static model and a single set of parameters is particularly challenging because the variations in pH and enzyme concentration occurring in the stomach are much broader than those occurring in the small intestine. A review of the literature on this topic reveals that most models of gastric digestion use very low pH values that are not representative of the fed conditions. This is illustrated here by showing the variations in gastric pH as a function of meal gastric emptying instead of time. This representation highlights those pH values that are the most relevant for testing meal digestion in the stomach. Gastric lipolysis is still largely ignored or is performed with microbial lipases. In vivo data on gastric lipase and lipolysis have however been collected in humans and dogs during test meals. The biochemical characterization of gastric lipase has shown that this enzyme is rather unique among lipases: (i) stability and activity in the pH range 2 to 7 with an optimum at pH 4-5.4; (ii) high tensioactivity that allows resistance to bile salts and penetration into phospholipid layers covering TAG droplets; (iii) sn-3 stereospecificity for TAG hydrolysis; and (iv) resistance to pepsin. Most of these properties have been known for more than two decades and should provide a rational basis for the replacement of gastric lipase by other lipases when gastric lipase is not available.

  16. Neutrophil chemotaxis by Propionibacterium acnes lipase and its inhibition.

    PubMed Central

    Lee, W L; Shalita, A R; Suntharalingam, K; Fikrig, S M

    1982-01-01

    The chemoattraction of Propionibacterium acnes lipase for neutrophils and the effect of lipase inhibitor and two antibiotic agents on the chemotaxis were evaluated. Of the various fractions tested, partially purified lipase (fraction 2c) was the most active cytotaxin produced by P. acnes. Serum mediators were not required for the generation of chemotaxis by lipase in vitro. Diisopropyl phosphofluoridate at low concentration (10(-4) mM) completely inhibited lipase activity as well as polymorphonuclear leukocyte chemotaxis generated by lipase. Tetracycline hydrochloride and erythromycin base at concentrations of 10(-1) mM and 1 mM, respectively, caused 100% inhibition of PMN migration toward lipase or zymosan-activated serum. The inhibiting activity of the antibiotics was directed against cells independently of any effect on lipase. Chemotaxis by P. acnes lipase suggests a wider role for this enzyme in the inflammatory process and the pathogenesis of acne vulgaris. Images PMID:7054130

  17. Lipase catalyzed synthesis of silicone polyesters.

    PubMed

    Poojari, Yadagiri; Clarson, Stephen J

    2009-11-28

    Immobilized Candida antarctica lipase B (CALB) was successfully employed as a catalyst to synthesize silicone aromatic polyesters by the transesterification of dimethyl terephthalate with alpha,omega-bis(hydroxyalkyl)-terminated poly(dimethylsiloxane) in toluene under mild reaction conditions.

  18. Lipase and phospholipase biosensors: a review.

    PubMed

    Herrera-López, Enrique J

    2012-01-01

    Recent advances in the field of biology, electronics, and nanotechnology have improved the development of biosensors. A biosensor is a device composed of a biological recognition element and a sensor element. Biosensor applications are becoming increasingly important in areas such as biotechnology, pharmaceutics, food, and environment. Lipases and phospholipases are enzymes which have been used widely in food industry, oleochemical industry, biodegradable polymers, detergents, and other applications. In the medical industry, lipases and phospholipases are used as diagnostic tools to detect triglycerides, cholesterol, and phospholipids levels in blood samples. Therefore, the development of lipase and phospholipase biosensors is of paramount importance in the clinical area. This chapter introduces the reader into the preliminaries of biosensor and reviews recent developments of lipase and phospholipase biosensors.

  19. Lipolytic degradation of human very low density lipoproteins by human milk lipoprotein lipase: the identification of lipoprotein B as the main lipoprotein degradation product.

    PubMed

    Alaupovic, P; Wang, C S; McConathy, W J; Weiser, D; Downs, D

    1986-01-01

    Although the direct conversion of very low density lipoproteins (VLDL) into low density (LDL) and high density (HDL) lipoproteins only requires lipoprotein lipase (LPL) as a catalyst and albumin as the fatty acid acceptor, the in vitro-formed LDL and HDL differ chemically from their native counterparts. To investigate the reason(s) for these differences, VLDL were treated with human milk LPL in the presence of albumin, and the LPL-generated LDL1-, LDL2-, and HDL-like particles were characterized by lipid and apolipoprotein composition. Results showed that the removal of apolipoproteins B, C, and E from VLDL was proportional to the degree of triglyceride hydrolysis with LDL2 particles as the major and LDL1 and HDL + VHDL particles as the minor products of a complete in vitro lipolysis of VLDL. In comparison with native counterparts, the in vitro-formed LDL2 and HDL + VHDL were characterized by lower levels of triglyceride and cholesterol ester and higher levels of free cholesterol and lipid phosphorus. The characterization of lipoprotein particles present in the in vitro-produced LDL2 showed that, as in plasma LDL2, lipoprotein B (LP-B) was the major apolipoprotein B-containing lipoprotein accounting for over 90% of the total apolipoprotein B. Other, minor species of apolipoprotein B-containing lipoproteins included LP-B:C-I:E and LP-B:C-I:C-II:C-III. The lipid composition of in vitro-formed LP-B closely resembled that of plasma LP-B. The major parts of apolipoproteins C and E present in VLDL were released to HDL + VHDL as simple, cholesterol/phospholipid-rich lipoproteins including LP-C-I, LP-C-II, LP-C-III, and LP-E. However, some of these same simple lipoprotein particles were present after ultracentrifugation in the LDL2 density segment because of their hydrated density and/or because they formed, in the absence of naturally occurring acceptors (LP-A-I:A-II), weak associations with LP-B. Thus, the presence of varying amounts of these cholesterol

  20. Lipoprotein Lipase is an Important Modulator of Lipid Uptake and Storage in Hypothalamic Neurons

    PubMed Central

    Libby, Andrew E.; Wang, Hong; Mittal, Richa; Sungelo, Mitchell; Potma, Eric; Eckel, Robert H.

    2015-01-01

    LPL is the rate-limiting enzyme for uptake of TG-derived FFA in peripheral tissues, and the enzyme is expressed in the brain and CNS. We previously created a mouse which lacks neuronal LPL. This animal becomes obese on a standard chow, and we observed reduced lipid uptake in the hypothalamus at 3 months preceding obesity. In our present study, we replicated the animal phenotype in an immortalized mouse hypothalamic cell line (N41) to examine how LPL affects expression of AgRP as well as entry and storage of lipids into neurons. We show that LPL is able to modulate levels of the orexigenic peptide AgRP. LPL also exerts effects on lipid uptake into culture neurons, and that uptake of neutral lipid can be enhanced even by mutant LPL lacking catalytic activity. N41 cells also accumulate neutral lipid in droplets, and this is at least in part regulated by LPL. These data in addition to those published in mice with neuron-specific deletion of LPL suggest that neuronal LPL is an important regulator of lipid homeostasis in neurons and that alterations in LPL levels may have important effects on systemic metabolism and neuronal lipid biology. PMID:26265042

  1. Lipase-catalysed hydrolysis of short-chain substrates in solution and in emulsion: a kinetic study.

    PubMed

    Nini, L; Sarda, L; Comeau, L C; Boitard, E; Dubès, J P; Chahinian, H

    2001-11-30

    interaction with single substrate molecules at the catalytic site of the enzyme but also on physico-chemical parameters related to the state of association of the substrate dispersed in the aqueous phase. It is assumed that the interaction of lipase with soluble multimolecular aggregates of tripropionin or short-chain vinyl esters or the formation of enzyme-substrate mixed micelles with ester bound to lipase, might represent a crucial step that triggers the structural transition to the open enzyme conformation by displacement of the lid.

  2. Recent Advances in Lipase-Mediated Preparation of Pharmaceuticals and Their Intermediates

    PubMed Central

    Carvalho, Ana Caroline Lustosa de Melo; Fonseca, Thiago de Sousa; de Mattos, Marcos Carlos; de Oliveira, Maria da Conceição Ferreira; de Lemos, Telma Leda Gomes; Molinari, Francesco; Romano, Diego; Serra, Immacolata

    2015-01-01

    Biocatalysis offers an alternative approach to conventional chemical processes for the production of single-isomer chiral drugs. Lipases are one of the most used enzymes in the synthesis of enantiomerically pure intermediates. The use of this type of enzyme is mainly due to the characteristics of their regio-, chemo- and enantioselectivity in the resolution process of racemates, without the use of cofactors. Moreover, this class of enzymes has generally excellent stability in the presence of organic solvents, facilitating the solubility of the organic substrate to be modified. Further improvements and new applications have been achieved in the syntheses of biologically active compounds catalyzed by lipases. This review critically reports and discusses examples from recent literature (2007 to mid-2015), concerning the synthesis of enantiomerically pure active pharmaceutical ingredients (APIs) and their intermediates in which the key step involves the action of a lipase. PMID:26690428

  3. A lipase with broad solvent stability from Burkholderia cepacia RQ3: isolation, characteristics and application for chiral resolution of 1-phenylethanol.

    PubMed

    Xie, Chengjia; Wu, Bin; Qin, Song; He, Bingfang

    2016-01-01

    Using both polar and low polar organic solvents (DMSO and toluene) as screening stress, a solvent-stable bacterium Burkholderia cepacia RQ3 was newly isolated. An organic solvent-stable lipase from strain RQ3 was purified in a single step with 50.1% recovery by hydrophobic chromatography. The purified lipase was homogenous on SDS-PAGE and had an apparent molecular mass of 33 kDa. The gene of lipase RQ3 with an open reading frame of 1095 bp encoding 364-amino acid residues was cloned. The optimal pH and temperature for lipase activity were 9.0 and 40 °C. The lipase was stable in a wide pH range of 6.0-10.0 and at temperature below 50 °C. Strikingly, all the tested hydrophilic and hydrophobic organic solvents significantly extended the half-life of lipase RQ3 compared with that in a solvent-free system, which indicated that lipase RQ3 showed a broad solvent tolerance to various organic solvents. The lipase demonstrated excellent enantioselective transesterification toward the (S)-1-phenylethanol with a theoretical conversion yield of 50% and ee p of 99.9%, which made it an exploitable biocatalyst for organic synthesis and pharmaceutical industries.

  4. Smart conjugated polymer nanocarrier for healthy weight loss by negative feedback regulation of lipase activity

    NASA Astrophysics Data System (ADS)

    Chen, Yu-Lei; Zhu, Sha; Zhang, Lei; Feng, Pei-Jian; Yao, Xi-Kuang; Qian, Cheng-Gen; Zhang, Can; Jiang, Xi-Qun; Shen, Qun-Dong

    2016-02-01

    Healthy weight loss represents a real challenge when obesity is increasing in prevalence. Herein, we report a conjugated polymer nanocarrier for smart deactivation of lipase and thus balancing calorie intake. After oral administration, the nanocarrier is sensitive to lipase in the digestive tract and releases orlistat, which deactivates the enzyme and inhibits fat digestion. It also creates negative feedback to control the release of itself. The nanocarrier smartly regulates activity of the lipase cyclically varied between high and low levels. In spite of high fat diet intervention, obese mice receiving a single dose of the nanocarrier lose weight over eight days, whereas a control group continues the tendency to gain weight. Daily intragastric administration of the nanocarrier leads to lower weight of livers or fat pads, smaller adipocyte size, and lower total cholesterol level than that of the control group. Near-infrared fluorescence of the nanocarrier reveals its biodistribution.Healthy weight loss represents a real challenge when obesity is increasing in prevalence. Herein, we report a conjugated polymer nanocarrier for smart deactivation of lipase and thus balancing calorie intake. After oral administration, the nanocarrier is sensitive to lipase in the digestive tract and releases orlistat, which deactivates the enzyme and inhibits fat digestion. It also creates negative feedback to control the release of itself. The nanocarrier smartly regulates activity of the lipase cyclically varied between high and low levels. In spite of high fat diet intervention, obese mice receiving a single dose of the nanocarrier lose weight over eight days, whereas a control group continues the tendency to gain weight. Daily intragastric administration of the nanocarrier leads to lower weight of livers or fat pads, smaller adipocyte size, and lower total cholesterol level than that of the control group. Near-infrared fluorescence of the nanocarrier reveals its biodistribution

  5. Thermally denatured state determines refolding in lipase: mutational analysis.

    PubMed

    Ahmad, Shoeb; Rao, Nalam Madhusudhana

    2009-06-01

    Irreversibility of thermally denatured proteins due to aggregation limits thermodynamic characterization of proteins and also confounds the identification of thermostable mutants in protein populations. Identification of mutations that prevent the aggregation of unfolded proteins provides insights into folding pathways. In a lipase from Bacillus subtilis, evolved by directed evolution procedures, the irreversibility due to temperature-mediated aggregation was completely prevented by a single mutation, M137P. Though the parent and the mutants unfold completely on heating, mutants having substitutions M137P, along with M134E and S163P, completely or partially prevent the formation of aggregation-prone intermediate(s) at 75 degrees C. The three mutants show only a marginal increase in free energy of unfolding (DeltaG(H(2)O)), however, the profiles of the residual activity with temperature shows remarkable shift to higher temperature compared to parent. The intermediate(s) were characterized by enhanced binding of bis-ANS, a probe to titrate surface hydrophobicity, aggregation profiles and by estimation of soluble protein. Inclusion of salt in the refolding conditions prevents the reversibility of mutant having charge substitution, while the reversibility of mutant with the introduction of proline was unaffected, indicating the role of charge mediated interaction in M134E in preventing aggregation. Partial prevention of thermal aggregation in wild-type lipase with single substitution, M137P, incorporated by site-directed mutagenesis, suggests that the affect of M137P is independent of the intrinsic thermostability of lipase. Various effects of the mutations suggest their role is in prevention of the formation of aggregation prone intermediate(s). These mutations, describe yet another strategy to enhance the thermotolerance of proteins, where their influence is observed only on the denatured ensemble.

  6. Association between two common polymorphisms (single nucleotide polymorphism -250G/A and -514C/T) of the hepatic lipase gene and coronary artery disease in type 2 diabetic patients

    PubMed Central

    Mohammadzadeh, Ghorban; Ghaffari, Mohammad-Ali; Bazyar, Mohammad; Kheirollah, Alireza

    2016-01-01

    Background: Variations in the hepatic lipase (HL) gene are the potential candidate for coronary artery disease (CAD) especially in type 2 diabetes mellitus (T2DM) in diverse populations. We assessed the association of -514C/T and -250G/A polymorphisms in HL (LIPC) gene with CAD risk in Iranian population with type 2 diabetes. Materials and Methods: We evaluated 322 type 2 diabetic patients, 166 patients with normal angiograms as controls and 156 patients those identified with CAD undergoing their first coronary angiography as CAD cases. Genotyping of -514C/T and -250G/A polymorphisms in the promoter of the LIPC gene were studied by polymerase chain reaction (PCR)-restriction fragment length polymorphism technique. Results: Genotype distributions in CAD cases (73.7%, 20.5%, and 5.8% for −250G/A) and (62.2%, 32.7%, and 5.1% for -514C/T) were significantly different from those in controls (60.8%, 37.4%, and 1.8% for -250G/A) and (51.2%, 48.2%, and 0.6% for -514C/T). CAD cases had lower A-allele frequency than controls (0.131 vs. 0.196, P = 0.028). The odds ratio for the presence of -250 (GG + GA) genotype and A allele in CAD cases were 2.206 (95% confidence interval [CI] =1.33–3.65, P = 0.002) and 1.609 (95% CI = 1.051 −2.463, P = 0.029) respectively. Haplotype analysis demonstrated a significant association between especially LIPC double mutant (−250 A/-514 T) haplotype and presence of CAD. Conclusion: Our findings indicated that -250 G/A polymorphism rather than -514 C/T polymorphism of LIPC gene is more associated with the increased risk of CAD particularly in women with T2DM. PMID:27014654

  7. Marine invertebrate lipases: Comparative and functional genomic analysis.

    PubMed

    Rivera-Perez, Crisalejandra

    2015-09-01

    Lipases are key enzymes involved in lipid digestion, storage and mobilization of reserves during fasting or heightened metabolic demand. This is a highly conserved process, essential for survival. The genomes of five marine invertebrate species with distinctive digestive system were screened for the six major lipase families. The two most common families in marine invertebrates, the neutral an acid lipases, are also the main families in mammals and insects. The number of lipases varies two-fold across analyzed genomes. A high degree of orthology with mammalian lipases was observed. Interestingly, 19% of the marine invertebrate lipases have lost motifs required for catalysis. Analysis of the lid and loop regions of the neutral lipases suggests that many marine invertebrates have a functional triacylglycerol hydrolytic activity as well as some acid lipases. A revision of the expression profiles and functional activity on sequences in databases and scientific literature provided information regarding the function of these families of enzymes in marine invertebrates.

  8. Toluene promotes lid 2 interfacial activation of cold active solvent tolerant lipase from Pseudomonas fluorescens strain AMS8.

    PubMed

    Yaacob, Norhayati; Mohamad Ali, Mohd Shukuri; Salleh, Abu Bakar; Rahman, Raja Noor Zaliha Raja Abdul; Leow, Adam Thean Chor

    2016-07-01

    The utilization of cold active lipases in organic solvents proves an excellent approach for chiral synthesis and modification of fats and oil due to the inherent flexibility of lipases under low water conditions. In order to verify whether this lipase can function as a valuable synthetic catalyst, the mechanism concerning activation of the lid and interacting solvent residues in the presence of organic solvent must be well understood. A new alkaline cold-adapted lipase, AMS8, from Pseudomonas fluorescens was studied for its structural adaptation and flexibility prior to its exposure to non-polar, polar aprotic and protic solvents. Solvents such as ethanol, toluene, DMSO and 2-propanol showed to have good interactions with active sites. Asparagine (Asn) and tyrosine (Tyr) were key residues attracted to solvents because they could form hydrogen bonds. Unlike in other solvents, Phe-18, Tyr-236 and Tyr-318 were predicted to have aromatic-aromatic side-chain interactions with toluene. Non-polar solvent also was found to possess highest energy binding compared to polar solvents. Due to this circumstance, the interaction of toluene and AMS8 lipase was primarily based on hydrophobicity and molecular recognition. The molecular dynamic simulation showed that lid 2 (residues 148-167) was very flexible in toluene and Ca(2+). As a result, lid 2 moves away from the catalytic areas, leaving an opening for better substrate accessibility which promotes protein activation. Only a single lid (lid 2) showed the movement following interactions with toluene, although AMS8 lipase displayed double lids. The secondary conformation of AMS8 lipase that was affected by toluene observed a reduction of helical strands and increased coil structure. Overall, this work shows that cold active lipase, AMS8 exhibits distinguish interfacial activation and stability in the presence of polar and non-polar solvents.

  9. Monoacylglycerol Lipase Regulates Fever Response.

    PubMed

    Sanchez-Alavez, Manuel; Nguyen, William; Mori, Simone; Moroncini, Gianluca; Viader, Andreu; Nomura, Daniel K; Cravatt, Benjamin F; Conti, Bruno

    2015-01-01

    Cyclooxygenase inhibitors such as ibuprofen have been used for decades to control fever through reducing the levels of the pyrogenic lipid transmitter prostaglandin E2 (PGE2). Historically, phospholipases have been considered to be the primary generator of the arachidonic acid (AA) precursor pool for generating PGE2 and other eicosanoids. However, recent studies have demonstrated that monoacyglycerol lipase (MAGL), through hydrolysis of the endocannabinoid 2-arachidonoylglycerol, provides a major source of AA for PGE2 synthesis in the mammalian brain under basal and neuroinflammatory states. We show here that either genetic or pharmacological ablation of MAGL leads to significantly reduced fever responses in both centrally or peripherally-administered lipopolysaccharide or interleukin-1β-induced fever models in mice. We also show that a cannabinoid CB1 receptor antagonist does not attenuate these anti-pyrogenic effects of MAGL inhibitors. Thus, much like traditional nonsteroidal anti-inflammatory drugs, MAGL inhibitors can control fever, but appear to do so through restricted control over prostaglandin production in the nervous system.

  10. Pancreatic lipase inhibitory activity of taraxacum officinale in vitro and in vivo.

    PubMed

    Zhang, Jian; Kang, Min-Jung; Kim, Myung-Jin; Kim, Mi-Eun; Song, Ji-Hyun; Lee, Young-Min; Kim, Jung-In

    2008-01-01

    Obesity has become a worldwide health problem. Orlistat, an inhibitor of pancreatic lipase, is currently approved as an anti-obesity drug. However, gastrointestinal side effects caused by Orlistat may limit its use. In this study the inhibitory activities of dandelion (Taraxacum officinale) against pancreatic lipase in vitro and in vivo were measured to determine its possible use as a natural anti-obesity agent. The inhibitory activities of the 95% ethanol extract of T. officinale and Orlistat were measured using 4-methylumbelliferyl oleate (4-MU oleate) as a substrate at concentrations of 250, 125, 100, 25, 12.5 and 4 microg/ml. To determine pancreatic lipase inhibitory activity in vivo, mice (n=16) were orally administered with corn oil emulsion (5 ml/kg) alone or with the 95% ethanol extract of T. officinale (400 mg/kg) following an overnight fast. Plasma triglyceride levels were measured at 0, 90, 180, and 240 min after treatment and incremental areas under the response curves (AUC) were calculated. The 95% ethanol extract of T. officinale and Orlistat, inhibited, porcine pancreatic lipase activity by 86.3% and 95.7% at a concentration of 250 microg/ml, respectively. T. officinale extract showed dose-dependent inhibition with the IC(50) of 78.2 microg/ml. A single oral dose of the extract significantly inhibited increases in plasma triglyceride levels at 90 and 180 min and reduced AUC of plasma triglyceride response curve (p<0.05). The results indicate that T. officinale exhibits inhibitory activities against pancreatic lipase in vitro and in vivo. Further studies to elucidate anti-obesity effects of chronic consumption of T. officinale and to identify the active components responsible for inhibitory activity against pancreatic lipase are necessary.

  11. Thermostable, alkaline and detergent-tolerant lipase from a newly isolated thermophilic Bacillus stearothermophilus.

    PubMed

    Ben Bacha, Abir; Moubayed, Nadine M S; Abid, Islam

    2015-04-01

    Lipases are the enzymes of choice for laundry detergent industries, owing to their triglyceride removing ability from the soiled fabric, which eventually reduces the usage of phosphate-based chemical cleansers in the detergent formulation. In this study, a novel thermo-alkaline lipase-producing strain identified as Bacillus stearothermophilus was isolated from the soil samples of olive oil mill. Enhanced lipase production was observed at 55 degrees C, pH 11 and after 48 h of incubation. Among the substrates tested, xylose (a carbon source), peptone (a nitrogen source) and olive oil at a concentration of 1% were suitable substrates for enhancing lipase production. MgSO4 and Tween-80 were suitable substrates for maximizing lipase production. The enzyme was purified to homogeneity by a single CM-Sephadex column chromatography and revealed molecular mass of 67 kDa. The enzyme (BL1) was active over a wide range of pH from 9.0 to 13.0, with an optimum at pH 11.0, exhibited maximal activity at 55 degreesC and retained more than 70% of its activity after incubation at 70 degrees C or pH 13 for 0.5 h or 24 h, respectively. The enzyme hydrolyzed both short and long-chain triacylglycerols at comparable rates. BL1 was studied in a preliminary evaluation for use in detergent formulation solutions. This novel lipase showed extreme stability towards non-ionic and anionic surfactants after pre-incubation for 1 h at 40 degrees C, and good stability towards oxidizing agents. Additionally, the enzyme showed excellent stability and compatibility with various commercial detergents, suggesting its potential as an additive in detergent formulations.

  12. An analytical method for determining relative specificities for sequential reactions catalyzed by the same enzyme: application to the hydrolysis of triacylglycerols by lipases.

    PubMed

    Mitchell, David Alexander; Rodriguez, Jorge A; Carrière, Frédéric; Baratti, Jacques; Krieger, Nadia

    2008-02-01

    We propose a model for the sequential hydrolysis of ester bonds of triacylglycerols by lipases and use it as the basis for an analytical method for determining the relative specificity of the lipase for the various substrates with which it can react, when the substrates occur simultaneously in a single reaction system. We then apply the method to our own data and literature data involving the hydrolysis of triacylglycerols by lipases. Our model is able to fit well to most of the reaction profiles, enabling the estimation of relative specificities. We discuss the limitations and potential applications of our method.

  13. A double blind lipase for lipase comparison of a high lipase and standard pancreatic enzyme preparation in cystic fibrosis.

    PubMed Central

    Bowler, I M; Wolfe, S P; Owens, H M; Sheldon, T A; Littlewood, J M; Walters, M P

    1993-01-01

    A standard acid resistant microsphere pancreatic enzyme preparation was compared with identical capsules half filled with mini-tablets of a new high lipase preparation in a randomised double blind crossover study in children with cystic fibrosis. Each patient received his/her usual number of capsules and the same dose of lipase during each period of the study. Eighteen patients completed the study. There were fewer gastrointestinal symptoms when pancreatic enzyme was supplied as the high lipase preparation. There was also a significant improvement in fat absorption (17%, 95% confidence interval (CI) 6 to 27), reduction in faecal fat output (15.8 g/day, 95% CI 6.4 to 22.5), and faecal energy loss (789 kJ/day, 95% CI 211 to 1384). It is concluded that half filled capsules of the new high lipase preparation are more effective than the standard preparation and it is likely that filled capsules would allow patients to use fewer than half the number of pancreatic enzyme capsules. PMID:7683190

  14. Use of a fluorescent radiolabeled triacylglycerol as a substrate for lipoprotein lipase and hepatic triglyceride lipase

    SciTech Connect

    Dousset, N.; Negre, A.; Salvayre, R.; Rogalle, P.; Dang, Q.Q.; Douste-Blazy, L.

    1988-06-01

    A fluorescent radiolabeled triacylglycerol has been synthesized by using a fluorescent fatty acid (pyrene decanoic acid) and a radiolabeled oleic acid. This analog of the natural substrate, 1(3)pyrene decanoic-2,3 (1,2)-dioleoyl-sn-glycerol, has been tested as substrate for determining lipoprotein lipase and hepatic triacylglycerol lipase activities in post-heparin plasma. Optimal conditions for the determination of the two post-heparin plasma lipases were similar to those using radiolabeled triolein. Using this substrate, both post-heparin lipases exhibited their characteristic properties (pH optimum and effect of inhibitors) and attacked external ester bonds (1 or 3) containing pyrene decanoic and oleic acids at a similar rate.

  15. LPL gene mutation as the cause of severe hypertriglyceridemia in the course of ketoacidosis in a patient with newly diagnosed type 1 diabetes mellitus.

    PubMed

    Nocoń-Bohusz, Julita; Wikiera, Beata; Basiak, Aleksander; Śmigiel, Robert; Noczyńska, Anna

    2016-02-18

    Wstęp. Ciężka hipertrójglicerydemia to stan, w którym stężenie trójglicerydów (TG) przekracza 1000 mg/dl. Za zaburzenie to mogą odpowiadać mutacje w genie lipazy lipoproteinowej (LPL), apolipoproteiny C2 (APOC2) i apolipoproteiny A5 (APOA5) dziedziczone w sposób autosomalnie recesywny. Cel. W pracy przedstawiamy pacjenta, u którego manifestacji klinicznej cukrzycy towarzyszyła kwasica metaboliczna oraz skrajna hiperlipidemia. Opis pacjenta. 2,5 letni chłopiec przyjęty został do szpitala z kwasicą ketonową (pH – 7,0, BE -20 mmol/l , HCO3 10 mmol/l), stężeniem glukozy 850 mg%, hiponatremią (Na 100 mmol/l) oraz hiperlipidemią (trójglicerydy (TG) 13493 mg/dl, cholesterol całkowity (TC) 734 mg/dl). Zastosowano leczenie, uzyskując prawidłowe glikemie oraz normalizację zaburzeń lipidowych. U dziecka rozpoznano heterozygotyczną mutację genu LPL. Intensywna insulinoterapia i prawidłowe wyrównanie metaboliczne cukrzycy typu 1 gwarantują prawidłowy lipidogram u pacjenta do chwili obecnej. Wniosek. Rozpoznając skrajną hipertrójglicerydemię w kwasicy ketonowej w przebiegu cukrzycy typu 1, należy ostrożnie interpretować wyniki badań laboratoryjnych oraz dążyć do wykonania badania genetycznego u pacjenta, także u najbliższych jego krewnych.

  16. Diet quality determines lipase gene expression and lipase/esterase activity in Daphnia pulex

    PubMed Central

    Schwarzenberger, Anke; Wacker, Alexander

    2017-01-01

    ABSTRACT We studied the short- (12 h) and long-term (144 h) response of Daphnia pulex lipases to quality shifts in diets consisting of different mixtures of the green alga Scenedesmus with the cyanobacterium Synechococcus, two species with contrasting lipid compositions. The lipase/esterase activity in both the gut and the body tissues had fast responses to the diet shift and increased with higher dietary contributions of Synechococcus. When screening the Daphnia genome for TAG lipases, we discovered a large gene-family expansion of these enzymes. We used a subset of eight genes for mRNA expression analyses and distinguished between influences of time and diet on the observed gene expression patterns. We identified five diet-responsive lipases of which three showed a sophisticated short- and long-term pattern of expression in response to small changes in food-quality. Furthermore, the gene expression of one of the lipases was strongly correlated to lipase/esterase activity in the gut suggesting its potentially major role in digestion. These findings demonstrate that the lipid-related enzymatic machinery of D. pulex is finely tuned to diet and might constitute an important mechanism of physiological adaptation in nutritionally complex environments. PMID:28069588

  17. Genetic data on 11 STRs (CSF1PO, TPOX, TH01, F13A01, FESFPS, vWA, D16S539, D7S820, D13S317, F13B, LPL) in an Argentine northeast population.

    PubMed

    Martínez, Gustavo; Vázquez, Estefanía; Schaller, Cecilia; Quevedo, Natalia

    2003-05-05

    Allele frequencies for 11 short tandem repeats (STRs) loci (CSF1PO, TPOX, TH01, F13A01, FESFPS, vWA, D16S539, D7S820, D13S317, F13B and LPL) were obtained from a sample of 225 unrelated individuals born in the Entre Ríos state of Argentina.

  18. New Extremophilic Lipases and Esterases from Metagenomics

    PubMed Central

    López-López, Olalla; Cerdán, Maria E; González Siso, Maria I

    2014-01-01

    Lipolytic enzymes catalyze the hydrolysis of ester bonds in the presence of water. In media with low water content or in organic solvents, they can catalyze synthetic reactions such as esterification and transesterification. Lipases and esterases, in particular those from extremophilic origin, are robust enzymes, functional under the harsh conditions of industrial processes owing to their inherent thermostability and resistance towards organic solvents, which combined with their high chemo-, regio- and enantioselectivity make them very attractive biocatalysts for a variety of industrial applications. Likewise, enzymes from extremophile sources can provide additional features such as activity at extreme temperatures, extreme pH values or high salinity levels, which could be interesting for certain purposes. New lipases and esterases have traditionally been discovered by the isolation of microbial strains producing lipolytic activity. The Genome Projects Era allowed genome mining, exploiting homology with known lipases and esterases, to be used in the search for new enzymes. The Metagenomic Era meant a step forward in this field with the study of the metagenome, the pool of genomes in an environmental microbial community. Current molecular biology techniques make it possible to construct total environmental DNA libraries, including the genomes of unculturable organisms, opening a new window to a vast field of unknown enzymes with new and unique properties. Here, we review the latest advances and findings from research into new extremophilic lipases and esterases, using metagenomic approaches, and their potential industrial and biotechnological applications. PMID:24588890

  19. Polyphenolic Compounds as Pancreatic Lipase Inhibitors.

    PubMed

    Buchholz, Tina; Melzig, Matthias F

    2015-07-01

    Obesity and its associated diseases such as diabetes mellitus and coronary heart diseases are a major challenge for our society. An important target for the treatment of obesity includes the development of inhibitors of nutrient digestion and absorption. Inhibition of pancreatic lipase and the associated reduction of lipid absorption is an attractive approach for the discovery of potent agents. Currently, the only clinically approved pharmacologic agent as pancreatic lipase inhibitor is Orlistat. However, its usage is compromised by unpleasant gastrointestinal adverse reactions (oily stools, oily spotting, flatulence). The use of botanical materials as a potential source of new drugs is of increasing importance and application. Natural products that are interesting for obesity treatment are generally considered to have less toxic and side effects than totally synthetic drugs. One of the most important sources of potential pancreatic lipase inhibitors represents the class of polyphenols. This article summarizes most studied subclasses of polyphenols including flavonoids, hydroxycinnamic acids, hydroxybenzoic acids and lignans with pancreatic lipase inhibitory effects. A structural comparison of potent inhibitors shows an increased inhibitory effect depending on number and position of phenolic hydroxyl groups, degree of polymerization and elimination of glycosylation during digestion.

  20. Gastric lipase secretion in children with gastritis.

    PubMed

    Tomasik, Przemyslaw J; Wędrychowicz, Andrzej; Rogatko, Iwona; Zając, Andrzej; Fyderek, Krzysztof; Sztefko, Krystyna

    2013-07-29

    Gastric lipase is one of the prepancreatic lipases found in some mammalian species and in humans. Our knowledge of the hormonal regulation of gastric lipase secretion in children and adolescents is still very limited. The aim of this study was to compare the activity of human gastric lipase (HGL) in gastric juice in healthy adolescents and in patients with gastritis. The adolescents were allocated to three groups: the first including patients with Helicobacter pylori gastritis (HPG; n = 10), the second including patients with superficial gastritis caused by pathogens other than H. pylori (non-HPG; n = 14) and the control group including healthy adolescents (n = 14). Activity of HGL was measured in gastric juice collected during endoscopy. Plasma concentrations of cholecystokinin (CCK), glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic peptide (GIP) were measured in all adolescents. Activity of HGL in the non-HPG group was significantly lower than in the HPG group (p < 0.005) and the control group (p < 0.005). Mean plasma GIP levels in the control group were lower than in the non-HPG group (p < 0.003) and the HPG group (p < 0.01). We conclude that the regulation of HGL secretion by GLP-1 and CCK is altered in patients with gastritis. Moreover, GIP is a potent controller of HGL activity, both in healthy subjects and in patients with gastritis.

  1. Structural characterization of MAPLE deposited lipase biofilm

    NASA Astrophysics Data System (ADS)

    Aronne, Antonio; Ausanio, Giovanni; Bloisi, Francesco; Calabria, Raffaela; Califano, Valeria; Fanelli, Esther; Massoli, Patrizio; Vicari, Luciano R. M.

    2014-11-01

    Lipases (triacylglycerol ester hydrolases) are enzymes used in several industrial applications. Enzymes immobilization can be used to address key issues limiting widespread application at industrial level. Immobilization efficiency is related to the ability to preserve the native conformation of the enzyme. MAPLE (Matrix Assisted Pulsed Laser Evaporation) technique, a laser deposition procedure for treating organic/polymeric/biomaterials, was applied for the deposition of lipase enzyme in an ice matrix, using near infrared laser radiation. Microscopy analysis showed that the deposition occurred in micrometric and submicrometric clusters with a wide size distribution. AFM imaging showed that inter-cluster regions are uniformly covered with smaller aggregates of nanometric size. Fourier transform infrared spectroscopy was used for both recognizing the deposited material and analyzing its secondary structure. Results showed that the protein underwent reversible self-association during the deposition process. Actually, preliminary tests of MAPLE deposited lipase used for soybean oil transesterification with isopropyl alcohol followed by gas chromatography-mass spectrometry gave results consistent with undamaged deposition of lipase.

  2. Simultaneous production of alkaline lipase and protease by antibiotic and heavy metal tolerant Pseudomonas aeruginosa.

    PubMed

    Bisht, Deepali; Yadav, Santosh Kumar; Gautam, Pallavi; Darmwal, Nandan Singh

    2013-09-01

    An efficient bacterial strain capable of simultaneous production of lipase and protease in a single production medium was isolated. Thirty six bacterial strains, isolated from diverse habitats, were screened for their lipolytic and proteolytic activity. Of these, only one bacterial strain was found to be lipase and protease producer. The 16S rDNA sequencing and phylogenetic analyses revealed that strain (NSD-09) was in close identity to Pseudomonas aeruginosa. The maximum lipase (221.4 U/ml) and protease (187.9 U/ml) activities were obtained after 28 and 24 h of incubation, respectively at pH 9.0 and 37 °C. Castor oil and wheat bran were found to be the best substrate for lipase and protease production, respectively. The strain also exhibited high tolerance to lead (1450 µg/ml) and chromium (1000 µg/ml) in agar plates. It also showed tolerance to other heavy metals, such as Co(+2) , Zn(+2) , Hg(+2) , Ni(+2) and Cd(+2) . Therefore, this strain has scope for tailing bioremediation. Presumably, this is the first attempt on P. aeruginosa to explore its potential for both industrial and environmental applications.

  3. Efficient biocatalyst by encapsulating lipase into nanoporous gold

    NASA Astrophysics Data System (ADS)

    Du, Xiaoyu; Liu, Xueying; Li, Yufei; Wu, Chao; Wang, Xia; Xu, Ping

    2013-04-01

    Lipases are one of the most important biocatalysts for biotechnological applications. Immobilization is an efficient method to increase the stability and reusability of lipases. In this study, nanoporous gold (NPG), a new kind of nanoporous material with tunable porosity and excellent biocompatibility, was employed as an effective support for lipase immobilization. The pore size of NPG and adsorption time played key roles in the construction of lipase-NPG biocomposites. The morphology and composition of NPG before and after lipase loading are verified using a scanning electron microscope, equipped with an energy-dispersive X-ray spectrometer. The resulting lipase-NPG biocomposites exhibited excellent catalytic activity and remarkable reusability. The catalytic activity of the lipase-NPG biocomposite with a pore size of 35 nm had no decrease after ten recycles. Besides, the lipase-NPG biocomposite exhibited high catalytic activity in a broader pH range and higher temperature than that of free lipase. In addition, the leaching of lipase from NPG could be prevented by matching the protein's diameter and pore size. Thus, the encapsulation of enzymes within NPG is quite useful for establishing new functions and will have wide applications for different chemical processes.

  4. Direct transesterification of gases by "dry" immobilized lipase.

    PubMed

    Cameron, Paula A; Davison, Brian H; Frymier, Paul D; Barton, John W

    2002-05-05

    Several different reactor configurations, including single pass, continuous recycle, and batch reactor modes, were used to investigate the effects of temperature and water activity, or relative humidity, on lipase-catalyzed, gas-phase transesterifications. Temperature and relative humidity were controlled both inside reactors and throughout the course of the reaction to account for and optimize their effects. Results indicated that, at low relative humidity, reaction rates increased with temperature up to 60 degrees C. However, when relative humidity was increased, a similar increase in temperature resulted in the loss of nearly all enzyme activity. These results are consistent with the idea that enzymes without free water are more thermally stable. Furthermore, at constant ambient temperatures, production increased dramatically with an increase in relative humidity, confirming the idea that an increase in water activity increases catalytic activity. A mass balance performed on reactors at higher relative humidity revealed that hydrolysis (rather than transesterification) of the ester substrate could significantly decrease product yields.

  5. Biochemical Diversity of Carboxyl Esterases and Lipases from Lake Arreo (Spain): a Metagenomic Approach

    PubMed Central

    Martínez-Martínez, Mónica; Alcaide, María; Tchigvintsev, Anatoli; Reva, Oleg; Polaina, Julio; Bargiela, Rafael; Guazzaroni, María-Eugenia; Chicote, Álvaro; Canet, Albert; Valero, Francisco; Rico Eguizabal, Eugenio; Guerrero, María del Carmen; Yakunin, Alexander F.

    2013-01-01

    The esterases and lipases from the α/β hydrolase superfamily exhibit an enormous sequence diversity, fold plasticity, and activities. Here, we present the comprehensive sequence and biochemical analyses of seven distinct esterases and lipases from the metagenome of Lake Arreo, an evaporite karstic lake in Spain (42°46′N, 2°59′W; altitude, 655 m). Together with oligonucleotide usage patterns and BLASTP analysis, our study of esterases/lipases mined from Lake Arreo suggests that its sediment contains moderately halophilic and cold-adapted proteobacteria containing DNA fragments of distantly related plasmids or chromosomal genomic islands of plasmid and phage origins. This metagenome encodes esterases/lipases with broad substrate profiles (tested over a set of 101 structurally diverse esters) and habitat-specific characteristics, as they exhibit maximal activity at alkaline pH (8.0 to 8.5) and temperature of 16 to 40°C, and they are stimulated (1.5 to 2.2 times) by chloride ions (0.1 to 1.2 M), reflecting an adaptation to environmental conditions. Our work provides further insights into the potential significance of the Lake Arreo esterases/lipases for biotechnology processes (i.e., production of enantiomers and sugar esters), because these enzymes are salt tolerant and are active at low temperatures and against a broad range of substrates. As an example, the ability of a single protein to hydrolyze triacylglycerols, (non)halogenated alkyl and aryl esters, cinnamoyl and carbohydrate esters, lactones, and chiral epoxides to a similar extent was demonstrated. PMID:23542620

  6. Identification and localization of a lipase-like acyltransferase in phenylpropanoid metabolism of tomato (Solanum lycopersicum).

    PubMed

    Teutschbein, Jenny; Gross, Wiltrud; Nimtz, Manfred; Milkowski, Carsten; Hause, Bettina; Strack, Dieter

    2010-12-03

    We have isolated an enzyme classified as chlorogenate: glucarate caffeoyltransferase (CGT) from seedlings of tomato (Solanum lycopersicum) that catalyzes the formation of caffeoylglucarate and caffeoylgalactarate using chlorogenate (5-O-caffeoylquinate) as acyl donor. Peptide sequences obtained by trypsin digestion and spectrometric sequencing were used to isolate the SlCGT cDNA encoding a protein of 380 amino acids with a putative targeting signal of 24 amino acids indicating an entry of the SlCGT into the secretory pathway. Immunogold electron microscopy revealed the localization of the enzyme in the apoplastic space of tomato leaves. Southern blot analysis of genomic cDNA suggests that SlCGT is encoded by a single-copy gene. The SlCGT cDNA was functionally expressed in Nicotiana benthamiana leaves and proved to confer chlorogenate-dependent caffeoyltransferase activity in the presence of glucarate. Sequence comparison of the deduced amino acid sequence identified the protein unexpectedly as a GDSL lipase-like protein, representing a new member of the SGNH protein superfamily. Lipases of this family employ a catalytic triad of Ser-Asp-His with Ser as nucleophile of the GDSL motif. Site-directed mutagenesis of each residue of the assumed respective SlCGT catalytic triad, however, indicated that the catalytic triad of the GDSL lipase is not essential for SlCGT enzymatic activity. SlCGT is therefore the first example of a GDSL lipase-like protein that lost hydrolytic activity and has acquired a completely new function in plant metabolism, functioning in secondary metabolism as acyltransferase in synthesis of hydroxycinnamate esters by employing amino acid residues different from the lipase catalytic triad.

  7. Carboxyl ester lipase from either mother's milk or the pancreas is required for efficient dietary triglyceride digestion in suckling mice.

    PubMed

    Miller, Rita; Lowe, Mark E

    2008-05-01

    Because dietary fats provide an important source of energy in the newborn, the efficient digestion of dietary fats is critical to their well-being. Despite the importance of dietary fat digestion, newborns have a deficiency of pancreatic triglyceride lipase, the predominant digestive lipase in adults. The efficient dietary fat digestion in newborns suggests that other lipases must compensate for the lack of pancreatic triglyceride lipase. In this study, we test the hypothesis that breast milk, pancreatic carboxyl ester lipase (CEL), or both contribute to dietary fat digestion in the newborn. To test this hypothesis, we determined the amount and composition of fecal fat in wild-type and CEL-deficient newborns nursed by either wild-type or CEL-deficient dams. We tested all genetic permutations of the nursing pairs. An interaction between the genotype of the dam and of the pup determined the amount of fecal fat (P < 0.001). Fecal fat was highest in CEL-deficient pups nursed by CEL-deficient dams. Furthermore, only the feces from the CEL-deficient pups nursed by CEL-deficient dams contained undigested lipids. Even with increased fecal fats, the CEL-deficient pups had normal weight gain. Our results demonstrate that CEL contributes significantly to dietary triglyceride digestion whether it originates from mother's milk or pancreatic secretions. However, only the absence of both mother's milk and pancreatic CEL produces fat maldigestion. The absence of a single CEL source makes no difference in the efficiency of dietary fat absorption.

  8. Gastric lipase: localization of the enzyme in the stomach

    SciTech Connect

    DeNigris, S.J.; Hamosh, M.; Hamosh, P.; Kasbekar, D.K.

    1986-03-05

    Isolated gastric glands prepared from human and rabbit stomach secrete lipase in response to secretagogues. They have investigated the localization of this enzyme in three species (rabbit, baboon, guinea pig). Gastric mucosa was sampled from the cardia (C), fundus-smooth (FS), fundus-ruggae (FR) and the antral area (A). Lipase activity was measured in mucosal homogenates using /sup 3/H-triolein as substrate and is expressed in units (U) = nmols free fatty acid released/min/mg wet weight. The localization of lipase is compared with that of pepsin (measured by hydrolysis of 2% hemoglobin at pH 1.8 and expressed in I.U.). Lipase is localized in a well defined area in the rabbit and is diffusely distributed in both guinea pig and baboon. The distribution of lipase and pepsin containing cells differs in all three species. The cellular origin of gastric lipase remains to be determined.

  9. A spectrophotometric assay for lipase activity utilizing immobilized triacylglycerols.

    PubMed

    Safarík, I

    1991-01-01

    New substrates for the determination of lipase activity have been developed. Triacylglycerols were immobilized by adsorption on an appropriate carrier or adsorbent yielding a lipase substrate in a powder form. The adsorbed triacylglycerols were easily hydrolyzed by lipases present in a reaction mixture. The released fatty acids were extracted with benzene and converted to the corresponding Cu (II) salts (copper soaps) which were measured spectrophotometrically.

  10. New tools for exploring "old friends-microbial lipases".

    PubMed

    Nagarajan, Saisubramanian

    2012-11-01

    Fat-splitting enzymes (lipases), due to their natural, industrial, and medical relevance, attract enough attention as fats do in our lives. Starting from the paper that we write, cheese and oil that we consume, detergent that we use to remove oil stains, biodiesel that we use as transportation fuel, to the enantiopure drugs that we use in therapeutics, all these applications are facilitated directly or indirectly by lipases. Due to their uniqueness, versatility, and dexterity, decades of research work have been carried out on microbial lipases. The hunt for novel lipases and strategies to improve them continues unabated as evidenced by new families of microbial lipases that are still being discovered mostly by metagenomic approaches. A separate database for true lipases termed LIPABASE has been created recently which provides taxonomic, structural, biochemical information about true lipases from various species. The present review attempts to summarize new approaches that are employed in various aspects of microbial lipase research, viz., screening, isolation, production, purification, improvement by protein engineering, and surface display. Finally, novel applications facilitated by microbial lipases are also presented.

  11. Endothelial lipase is a major determinant of HDL level

    SciTech Connect

    Ishida, Tatsuro; Choi, Sungshin; Kundu, Ramendra K.; Hirata, Ken-Ichi; Rubin, Edward M.; Cooper, Allen D.; Quertermous, Thomas

    2003-01-30

    For the past three decades, epidemiologic studies have consistently demonstrated an inverse relationship between plasma HDL cholesterol (HDL-C) concentrations and coronary heart disease (CHD). Population-based studies have provided compelling evidence that low HDL-C levels are a risk factor for CHD, and several clinical interventions that increased plasma levels of HDL-C were associated with a reduction in CHD risk. These findings have stimulated extensive investigation into the determinants of plasma HDL-C levels. Turnover studies using radiolabeled apolipoprotein A-I, the major protein component of HDL, suggest that plasma HDL-C concentrations are highly correlated with the rate of clearance of apolipoprotein AI. However, the metabolic mechanisms by which HDL are catabolized have not been fully defined. Previous studies in humans with genetic deficiency of cholesteryl ester transfer protein, and in mice lacking the scavenger receptor BI (SR-BI), have demonstrated that these proteins participate in the removal of cholesterol from HDL, while observations in individuals with mutations in hepatic lipase indicate that this enzyme hydrolyzes HDL triglycerides. In this issue of the JCI, reports from laboratories of Tom Quertermous and Dan Rader now indicate that endothelial lipase (LIPG), a newly identified member of the lipase family, catalyzes the hydrolysis of HDL phospholipids and facilitates the clearance of HDL from the circulation. Endothelial lipase was initially cloned by both of these laboratories using entirely different strategies. Quertermous and his colleagues identified endothelial lipase as a transcript that was upregulated in cultured human umbilical vein endothelial cells undergoing tube formation, whereas the Rader group cloned endothelial lipase as a transcript that was upregulated in the human macrophage-like cell line THP-1 exposed to oxidized LDL. Database searches revealed that endothelial lipase shows strong sequence similarity to lipoprotein

  12. Comparative and functional genomics of lipases in holometabolous insects.

    PubMed

    Horne, Irene; Haritos, Victoria S; Oakeshott, John G

    2009-08-01

    Lipases have key roles in insect lipid acquisition, storage and mobilisation and are also fundamental to many physiological processes underpinning insect reproduction, development, defence from pathogens and oxidative stress, and pheromone signalling. We have screened the recently sequenced genomes of five species from four orders of holometabolous insects, the dipterans Drosophila melanogaster and Anopheles gambiae, the hymenopteran Apis mellifera, the moth Bombyx mori and the beetle Tribolium castaneum, for the six major lipase families that are also found in other organisms. The two most numerous families in the insects, the neutral and acid lipases, are also the main families in mammals, albeit not in Caenorhabditis elegans, plants or microbes. Total numbers of the lipases vary two-fold across the five insect species, from numbers similar to those in mammals up to numbers comparable to those seen in C. elegans. Whilst there is a high degree of orthology with mammalian lipases in the other four families, the great majority of the insect neutral and acid lipases have arisen since the insect orders themselves diverged. Intriguingly, about 10% of the insect neutral and acid lipases have lost motifs critical for catalytic function. Examination of the length of lid and loop regions of the neutral lipase sequences suggest that most of the insect lipases lack triacylglycerol (TAG) hydrolysis activity, although the acid lipases all have intact cap domains required for TAG hydrolysis. We have also reviewed the sequence databases and scientific literature for insights into the expression profiles and functions of the insect neutral and acid lipases and the orthologues of the mammalian adipose triglyceride lipase which has a pivotal role in lipid mobilisation. These data suggest that some of the acid and neutral lipase diversity may be due to a requirement for rapid accumulation of dietary lipids. The different roles required of lipases at the four discrete life stages of

  13. Resveratrol regulates lipolysis via adipose triglyceride lipase.

    PubMed

    Lasa, Arrate; Schweiger, Martina; Kotzbeck, Petra; Churruca, Itziar; Simón, Edurne; Zechner, Rudolf; Portillo, María del Puy

    2012-04-01

    Resveratrol has been reported to increase adrenaline-induced lipolysis in 3T3-L1 adipocytes. The general aim of the present work was to gain more insight concerning the effects of trans-resveratrol on lipid mobilization. The specific purpose was to assess the involvement of the two main lipases: adipose triglyceride lipase (ATGL) and hormone-sensitive lipase (HSL), in the activation of lipolysis induced by this molecule. For lipolysis experiments, 3T3-L1 and human SGBS adipocytes as well as adipose tissue from wild-type, ATGL knockout and HSL knockout mice were used. Moreover, gene and protein expressions of these lipases were analyzed. Resveratrol-induced free fatty acids release but not glycerol release in 3T3-L1 under basal and isoproterenol-stimulating conditions and under isoproterenol-stimulating conditions in SGBS adipocytes. When HSL was blocked by compound 76-0079, free fatty acid release was still induced by resveratrol. By contrast, in the presence of the compound C, an inhibitor of adenosine monophosphate-activated protein kinase, resveratrol effect was totally blunted. Resveratrol increased ATGL gene and protein expressions, an effect that was not observed for HSL. Resveratrol increased fatty acids release in epididymal adipose tissue from wild-type and HSL knockout mice but not in that adipose tissue from ATGL knockout mice. Taking as a whole, the present results provide novel evidence that resveratrol regulates lipolytic activity in human and murine adipocytes, as well as in white adipose tissue from mice, acting mainly on ATGL at transcriptional and posttranscriptional levels. Enzyme activation seems to be induced via adenosine monophosphate-activated protein kinase.

  14. Biodiesel production by transesterification using immobilized lipase.

    PubMed

    Narwal, Sunil Kumar; Gupta, Reena

    2013-04-01

    Biodiesel can be produced by transesterification of vegetable or waste oil catalysed by lipases. Biodiesel is an alternative energy source to conventional fuel. It combines environmental friendliness with biodegradability, low toxicity and renewability. Biodiesel transesterification reactions can be broadly classified into two categories: chemical and enzymatic. The production of biodiesel using the enzymatic route eliminates the reactions catalysed under acid or alkali conditions by yielding product of very high purity. The modification of lipases can improve their stability, activity and tolerance to alcohol. The cost of lipases and the relatively slower reaction rate remain the major obstacles for enzymatic production of biodiesel. However, this problem can be solved by immobilizing the enzyme on a suitable matrix or support, which increases the chances of re-usability. The main factors affecting biodiesel production are composition of fatty acids, catalyst, solvents, molar ratio of alcohol and oil, temperature, water content, type of alcohol and reactor configuration. Optimization of these parameters is necessary to reduce the cost of biodiesel production.

  15. Immobilization of a Commercial Lipase from Penicillium camembertii (Lipase G) by Different Strategies

    PubMed Central

    Mendes, Adriano A.; Freitas, Larissa; de Carvalho, Ana Karine F.; de Oliveira, Pedro C.; de Castro, Heizir F.

    2011-01-01

    The objective of this work was to select the most suitable procedure to immobilize lipase from Penicillium camembertii (Lipase G). Different techniques and supports were evaluated, including physical adsorption on hydrophobic supports octyl-agarose, poly(hydroxybutyrate) and Amberlite resin XAD-4; ionic adsorption on the anionic exchange resin MANAE-agarose and covalent attachment on glyoxyl-agarose, MANAE-agarose cross-linked with glutaraldehyde, MANAE-agarose-glutaraldehyde, and epoxy-silica-polyvinyl alcohol composite. Among the tested protocols, the highest hydrolytic activity (128.2 ± 8.10 IU·g−1 of support) was achieved when the lipase was immobilized on epoxy-SiO2-PVA using hexane as coupling medium. Lipase immobilized by ionic adsorption on MANAE-agarose also gave satisfactory result, attaining 55.6 ± 2.60 IU·g−1 of support. In this procedure, the maximum loading of immobilized enzyme was 9.3 mg·g−1 of gel, and the highest activity (68.8 ± 2.70 IU·g−1 of support) was obtained when 20 mg of protein·g−1 was offered. Immobilization carried out in aqueous medium by physical adsorption on hydrophobic supports and covalent attachment on MANAE-agarose-glutaraldehyde and glyoxyl-agarose was shown to be unfeasible for Lipase G. Thermal stability tests revealed that the immobilized derivative on epoxy-SiO2-PVA composite using hexane as coupling medium had a slight higher thermal stability than the free lipase. PMID:21811674

  16. Enhancing functional production of a chaperone-dependent lipase in Escherichia coli using the dual expression cassette plasmid

    PubMed Central

    2012-01-01

    Abstracts Background The lipase subfamilies I.1 and I.2 show more than 33% homology in the amino acid sequences and most members share another common property that their genes are clustered with the secondary genes whose protein products are required for folding the lipase into an active conformation and secretion into the culture medium. In previous studies, the lipase (LipA) and its chaperone (LipB) from Ralstonia sp. M1 were overexpressed in E. coli and the lipase was successfully refolded in vitro. The purpose of this study was to enhance the production of the active lipase LipA from Ralstonia sp. M1 in the heterologous host E. coli without in vitro refolding process, using two-plasmid co-expression systems and dual expression cassette plasmid systems. Results To produce more active lipase from Ralstonia sp. M1 in E. coli without in vitro refolding process but with the help of overexpression of the chaperone (LipB1 and LipB3 corresponding to 56-aa truncated and 26-aa truncated chaperone LipB), six different expression systems including 2 two-plasmid co-expression systems (E. coli BL21/pELipABa + pELipB1k and BL21/pELipABa + pELipB3k) and 4 dual expression cassette plasmid systems (BL21/pELipAB-LipB1a, BL21/pELipAB-LipB3a, BL21/pELipA-LipB1a, and BL21/pELipA-LipB3a) were constructed. The two-plasmid co-expression systems (E. coli BL21/pELipABa + pELipB1k and BL21/pELipABa + pELipB3k) produced the active lipase at a level of 4 times as high as the single expression cassette plasmid system E. coli BL21/pELipABa did. For the first time, the dual expression cassette plasmid systems BL21/pELipAB-LipB1a and BL21/pELipAB-LipB3a yielded 29- and 19-fold production of the active lipase in comparison with the single expression cassette plasmid system E. coli BL21/pELipABa, respectively. Although the lipase amount was equally expressed in all these expression systems (40% of total cellular protein) and only a small fraction of the overexpressed lipase was folded in vivo

  17. Residue Val237 is critical for the enantioselectivity of Penicillium expansum lipase.

    PubMed

    Tang, Lianghua; Su, Min; Chi, Liying; Zhang, Junling; Zhang, Huihui; Zhu, Ling

    2014-03-01

    The shape of the hydrophobic tunnel leading to the active site of Penicillium expansum lipase (PEL) was redesigned by single-point mutations, in order to better understand enzyme enantioselectivity towards naproxen. A variant with a valine-to-glycine substitution at residue 237 exhibited almost no enantioselectivity (E = 1.1) compared with that (E = 104) of wild-type PEL. The function of the residue, Val237, in the hydrophobic tunnel was further analyzed by site-directed mutagenesis. For each of these variants a significant decrease of enantioselectivity (E < 7) was observed compared with that of wild-type enzyme. Further docking result showed that Val237 plays the most important role in stabilizing the correct orientation of (R)-naproxen. Overall, these results indicate that the residue Val237 is the key amino acid residue maintaining the enantioselectivity of the lipase.

  18. One-pot lipase-catalyzed aldol reaction combination of in situ formed acetaldehyde.

    PubMed

    Wang, Na; Zhang, Wei; Zhou, Long-Hua; Deng, Qing-Feng; Xie, Zong-Bo; Yu, Xiao-Qi

    2013-12-01

    A facile tandem route to α,β-unsaturated aldehydes was developed by combining the two catalytic activities of the same enzyme in a one-pot strategy for the aldol reaction and in situ generation of acetaldehyde. Lipase from Mucor miehei was found to have conventional and promiscuous catalytic activities for the hydrolysis of vinyl acetate and aldol condensation with in situ formed acetaldehyde. The first reaction continuously provided material for the second reaction, which effectively reduced the volatilization loss, oxidation, and polymerization of acetaldehyde, as well as avoided a negative effect on the enzyme of excessive amounts of acetaldehyde. After optimizing the process, several substrates participated in the reaction and provided the target products in moderate to high yields using this single lipase-catalyzed one-pot biotransformation.

  19. Isolation and biochemical characterization of Bacillus pumilus lipases from the Antarctic.

    PubMed

    Arifin, Arild Ranlym; Kim, Soon-Ja; Yim, Joung Han; Suwanto, Antonius; Kim, Hyung Kwoun

    2013-05-01

    Lipase-producing bacterial strains were isolated from Antarctic soil samples using the tricaprylin agar plate method. Seven strains with relatively strong lipase activities were selected. All of them turned out to be Bacillus pumilus strains by the 16S rRNA gene sequence analysis. Their corresponding lipase genes were cloned, sequenced, and compared. Finally, three different Bacillus pumilus lipases (BPL1, BPL2, and BPL3) were chosen. Their amino acid sequence identities were in the range of 92-98% with the previous Bacillus pumilus lipases. Their optimum temperatures and pHs were measured to be 40 degrees C and pH 9. Lipase BPL1 and lipase BPL2 were stable up to 30 degrees C, whereas lipase BPL3 was stable up to 20 degrees C. Lipase BPL2 was stable within a pH range of 6-10, whereas lipase BPL1 and lipase BPL3 were stable within a pH range of 5-11, showing strong alkaline tolerance. All these lipases exhibited high hydrolytic activity toward pnitrophenyl caprylate (C8). In addition, lipase BPL1 showed high hydrolytic activity toward tributyrin, whereas lipase BPL2 and lipase BPL3 hydrolyzed tricaprylin and castor oil preferentially. These results demonstrated that the three Antarctic Bacillus lipases were alkaliphilic and had a substrate preference toward short- and mediumchain triglycerides. These Antarctic Bacillus lipases might be used in detergent and food industries.

  20. Detergent compatible alkaline lipase produced by marine Bacillus smithii BTMS 11.

    PubMed

    Lailaja, V P; Chandrasekaran, M

    2013-08-01

    Bacillus smithii BTMS 11, isolated from marine sediment, produced alkaline and thermostable lipase. The enzyme was purified to homogeneity by ammonium sulfate precipitation and ion exchange chromatography which resulted in 0.51 % final yield and a 4.33 fold of purification. The purified enzyme was found to have a specific activity of 360 IU/mg protein. SDS-PAGE analyses, under non-reducing and reducing conditions, yielded a single band of 45 kDa indicating the single polypeptide nature of the enzyme and zymogram analysis using methylumbelliferyl butyrate as substrate confirmed the lipolytic activity of the protein band. The enzyme was found to have 50 °C and pH 8.0 as optimum conditions for maximal activity. However, the enzyme was active over wide range of temperatures (30-80 °C) and pH (7.0-10.0). Effect of a number of metal salts, solvents, surfactants, and other typical enzyme inhibitors on lipase activity was studied to determine the novel characteristics of the enzyme. More than 90 % of the enzyme activity was observed even after 3 h of incubation in the presence of commercial detergents Surf, Sunlight, Ariel, Henko, Tide and Ujala indicating the detergent compatibility of B. smithii lipase. The enzyme was also found to be efficient in stain removal from cotton cloths. Further it was observed that the enzyme could catalyse ester synthesis between fatty acids of varying carbon chain lengths and methanol with high preference for medium to long chain fatty acids showing 70 % of esterification. Results of the study indicated scope for application of this marine bacterial lipase in various industries.

  1. Activation of a bacterial lipase by its chaperone.

    PubMed Central

    Hobson, A H; Buckley, C M; Aamand, J L; Jørgensen, S T; Diderichsen, B; McConnell, D J

    1993-01-01

    The gene lipA of Pseudomonas cepacia DSM 3959 encodes a prelipase from which a signal peptide is cleaved during secretion, producing a mature extracellular lipase. Expression of lipase in several heterologous hosts depends on the presence of another gene, limA, in cis or in trans. Lipase protein has been overproduced in Escherichia coli in the presence and absence of the lipase modulator gene limA. Therefore, limA is not required for the transcription of lipA or for the translation of the lipA mRNA. However, no lipase activity is observed in the absence of limA. limA has been overexpressed and encodes a 33-kDa protein, Lim. If lipase protein is denatured in 8 M urea and the urea is removed by dialysis, lipase activity is quantitatively recovered provided Lim protein is present during renaturation. Lip and Lim proteins form a complex precipitable either by an anti-lipase or anti-Lim antibody. The Lim protein has therefore the properties of a chaperone. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:7685908

  2. Surfactant-activated lipase hybrid nanoflowers with enhanced enzymatic performance

    PubMed Central

    Cui, Jiandong; Zhao, Yamin; Liu, Ronglin; Zhong, Cheng; Jia, Shiru

    2016-01-01

    Increasing numbers of materials have been extensively used as platforms for enzyme immobilization to improve catalytic performance. However, activity of the most of the enzymes was declined after immobilization. Here, we develop a surfactant-activated lipase-inorganic flowerlike hybrid nanomaterials with rational design based on interfacial activation and self-assembly. The resulting surfactant-activated lipase-inorganic hybird nanoflower (activated hNF-lipase) exhibited 460% and 200% higher activity than native lipase and conventional lipase-inorganic hybird nanoflower (hNF-lipase). Furthermore, the activated hNF-lipase displayed good reusability due to its monodispersity and mechanical properties, and had excellent long-time stability. The superior catalytic performances were attributed to both the conformational modulation of surfactants and hierarchical structure of nanoflowers, which not only anchored lipases in an active form, but also decreased the enzyme-support negative interaction and mass-transfer limitations. This new biocatalytic system is promising to find widespread use in applications related to biomedicine, biosensor, and biodiesel. PMID:27297609

  3. Lipase-catalyzed synthesis of ascorbyl oleate in acetone: optimization of reaction conditions and lipase reusability.

    PubMed

    Stojanović, Marija; Velićković, Dušan; Dimitrijević, Aleksandra; Milosavić, Nenad; Knežević-Jugović, Zorica; Bezbradica, Dejan

    2013-01-01

    Lipase-catalyzed ascorbyl oleate synthesis is eco-friendly and selective way of production of liposoluble biocompatible antioxidants, but still not present on an industrial level due to the high biocatalyst costs. In this study, response surface methodology was applied in order to estimate influence of individual experimental factors, identify interactions among them, and to determine optimum conditions for enzymatic synthesis of ascorbyl oleate in acetone, in terms of limiting substrate conversion, product yield, and yield per mass of consumed enzyme. As a biocatalyst, commercial immobilized preparation of lipase B from Candida antarctica, Novozym 435, was used. In order to develop cost-effective process, at reaction conditions at which maximum amount of product per mass of biocatalyst was produced (60°C, 0.018 % (v/v) of water, 0.135 M of vitamin C, substrates molar ratio 1:8, and 0.2 % (w/v) of lipase), possibilities for further increase of ester yield were investigated. Addition of molecular sieves at 4(th) hour of reaction enabled increase of yield from 16.7 mmol g⁻¹ to 19.3 mmol g⁻¹. Operational stability study revealed that after ten reaction cycles enzyme retained 48 % of its initial activity. Optimized synthesis with well-timed molecular sieves addition and repeated use of lipase provided production of 153 mmol per gram of enzyme. Further improvement of productivity was achieved using procedure for the enzyme reactivation.

  4. Monoolein production by triglycerides hydrolysis using immobilized Rhizopus oryzae lipase.

    PubMed

    Ghattas, Nesrine; Abidi, Ferid; Galai, Said; Marzouki, M Nejib; Salah, Abderraouf Ben

    2014-07-01

    Lipase extracted from Rhizopus oryzae was immobilized in alginate gel beads. The effects of the immobilization conditions, such as, alginate concentration, CaCl2 concentration and amount of initial enzyme on retained activity (specific activity ratio of entrapped active lipase to free lipase) were investigated. The optimal conditions for lipase entrapment were determined: 2% (w/v) alginate concentration, 100mM CaCl2 and enzyme ratio of 2000IU/mL.In such conditions, immobilized lipase by inclusion in alginate showed a highest stability and activity, on olive oil hydrolysis reaction where it could be reused for 10 cycles. After 15min of hydrolysis reaction, the mass composition of monoolein, diolein and triolein were about 78%, 10% and 12%. Hydrolysis' products purification by column chromatography lead to a successful separation of reaction compounds and provide a pure fraction of monoolein which is considered as the widest used emulsifier in food and pharmaceutical industries.

  5. Inhibitory activity of benzophenones from Anemarrhena asphodeloides on pancreatic lipase.

    PubMed

    Jo, Yang Hee; Kim, Seon Beom; Ahn, Jong Hoon; Liu, Qing; Hwang, Bang Yeon; Lee, Mi Kyeong

    2013-04-01

    Pancreatic lipase is a key enzyme for lipid absorption by hydrolysis of total dietary fats. Therefore, inhibition of pancreatic lipase is suggested to be an effective therapy in the regulation of obesity. The EtOAc-soluble fraction of Anemarrhena asphodeloides rhizomes significantly inhibited pancreatic lipase activity as assessed using porcine pancreatic lipase as an in vitro assay system. Further fractionation of the EtOAc-soluble fraction of A. asphodeloides led to the isolation of a new benzophenone glycoside, zimoside A (1), together with the eleven known compounds iriflophenone (2), 2,4',6-trihydroxy-4-methoxybenzophenone (3), foliamangiferoside A (4), (2,3-dihydroxy-4-methoxyphenyl)(4-hydroxyphenyl)-methanone (5), 1,4,5,6,-tetrahydroxyxanthone (6), isosakuranetin (7), 4-hydroxybenzoic acid (8), 4-hydroxyacetophenone (9), vanillic acid (10), tyrosol (11) and 5-hydroxymethyl-2-furaldehyde (12). Among the isolated compounds, 3, 5 and 10 showed significant inhibition of pancreatic lipase activity.

  6. Mechanism of acetaldehyde-induced deactivation of microbial lipases

    PubMed Central

    2011-01-01

    Background Microbial lipases represent the most important class of biocatalysts used for a wealth of applications in organic synthesis. An often applied reaction is the lipase-catalyzed transesterification of vinyl esters and alcohols resulting in the formation of acetaldehyde which is known to deactivate microbial lipases, presumably by structural changes caused by initial Schiff-base formation at solvent accessible lysine residues. Previous studies showed that several lipases were sensitive toward acetaldehyde deactivation whereas others were insensitive; however, a general explanation of the acetaldehyde-induced inactivation mechanism is missing. Results Based on five microbial lipases from Candida rugosa, Rhizopus oryzae, Pseudomonas fluorescens and Bacillus subtilis we demonstrate that the protonation state of lysine ε-amino groups is decisive for their sensitivity toward acetaldehyde. Analysis of the diverse modification products of Bacillus subtilis lipases in the presence of acetaldehyde revealed several stable products such as α,β-unsaturated polyenals, which result from base and/or amino acid catalyzed aldol condensation of acetaldehyde. Our studies indicate that these products induce the formation of stable Michael-adducts at solvent-accessible amino acids and thus lead to enzyme deactivation. Further, our results indicate Schiff-base formation with acetaldehyde to be involved in crosslinking of lipase molecules. Conclusions Differences in stability observed with various commercially available microbial lipases most probably result from different purification procedures carried out by the respective manufacturers. We observed that the pH of the buffer used prior to lyophilization of the enzyme sample is of utmost importance. The mechanism of acetaldehyde-induced deactivation of microbial lipases involves the generation of α,β-unsaturated polyenals from acetaldehyde which subsequently form stable Michael-adducts with the enzymes. Lyophilization of

  7. 21 CFR 184.1420 - Lipase enzyme preparation derived from Rhizopus niveus.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Lipase enzyme preparation derived from Rhizopus... GENERALLY RECOGNIZED AS SAFE Listing of Specific Substances Affirmed as GRAS § 184.1420 Lipase enzyme preparation derived from Rhizopus niveus. (a) Lipase enzyme preparation contains lipase enzyme (CAS Reg....

  8. 21 CFR 184.1420 - Lipase enzyme preparation derived from Rhizopus niveus.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Lipase enzyme preparation derived from Rhizopus... GENERALLY RECOGNIZED AS SAFE Listing of Specific Substances Affirmed as GRAS § 184.1420 Lipase enzyme preparation derived from Rhizopus niveus. (a) Lipase enzyme preparation contains lipase enzyme (CAS Reg....

  9. 21 CFR 184.1420 - Lipase enzyme preparation derived from Rhizopus niveus.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Lipase enzyme preparation derived from Rhizopus... GENERALLY RECOGNIZED AS SAFE Listing of Specific Substances Affirmed as GRAS § 184.1420 Lipase enzyme preparation derived from Rhizopus niveus. (a) Lipase enzyme preparation contains lipase enzyme (CAS Reg....

  10. 21 CFR 184.1420 - Lipase enzyme preparation derived from Rhizopus niveus.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Lipase enzyme preparation derived from Rhizopus... GENERALLY RECOGNIZED AS SAFE Listing of Specific Substances Affirmed as GRAS § 184.1420 Lipase enzyme preparation derived from Rhizopus niveus. (a) Lipase enzyme preparation contains lipase enzyme (CAS Reg....

  11. 21 CFR 184.1420 - Lipase enzyme preparation derived from Rhizopus niveus.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Lipase enzyme preparation derived from Rhizopus... Specific Substances Affirmed as GRAS § 184.1420 Lipase enzyme preparation derived from Rhizopus niveus. (a) Lipase enzyme preparation contains lipase enzyme (CAS Reg. No. 9001-62-1), which is obtained from...

  12. A rare entity in ED: Normal lipase level in acute pancreatitis.

    PubMed

    Limon, Onder; Sahin, Erkan; Kantar, Funda Ugur; Oray, Deniz; Ugurhan, Asli Aydinoglu

    2016-03-01

    Acute pancreatitis can have a variable presentation and diagnosis is based on clinical presentation, serum amylase and lipase levels and computed tomography. Negative predictive value of serum lipase in diagnosing acute pancreatitis is approximately to 100 percent and a normal blood lipase level in acute pancreatitis is an extremely rare condition. Here we reported two cases with normal serum amylase and lipase levels.

  13. Molecular characterization of a proteolysis-resistant lipase from Bacillus pumilus SG2.

    PubMed

    Sangeetha, R; Arulpandi, I; Geetha, A

    2014-01-01

    Proteolysis-resistant lipases can be well exploited by industrial processes which employ both lipase and protease as biocatalysts. A proteolysis resistant lipase from Bacillus pumilus SG2 was isolated, purified and characterized earlier. The lipase was resistant to native and commercial proteases. In the present work, we have characterized the lip gene which encodes the proteolysis-resistant lipase from Bacillus pumilus SG2. The parameters and structural details of lipase were analysed. The lip gene consisted of 650 bp. The experimental molecular weight of SG2 lipase was nearly double that of its theoretical molecular weight, thus suggesting the existence of the functional lipase as a covalent dimer. The proteolytic cleavage sites of the lipase would have been made inaccessible by dimerisation, thus rendering the lipase resistant to protease.

  14. Clean synthesis of biolubricant range esters using novel liquid lipase enzyme in solvent free medium.

    PubMed

    Trivedi, Jayati; Aila, Mounika; Sharma, Chandra Dutt; Gupta, Piyush; Kaul, Savita

    2015-01-01

    In view of the rising global problems of environment pollution and degradation, the present process provides a 'green solution' to the synthesis of higher esters of lubricant range, more specifically in the range C12-C36, using different combinations of acids and alcohols, in a single step reaction. The esters produced are biodegradable in nature and have a plethora of uses, such as in additives, as lubricating oils and other hydraulic fluids. The enzymatic esterification was performed using liquid (non-immobilized or free) lipase enzyme, without any additional organic solvent. Soluble lipase proves to be superior to immobilized enzymes as it is more cost effective and provides a faster process for the production of higher esters of lubricant range. An interesting finding was, that the lipase enzyme showed higher conversion rates with increasing carbon number of straight chain alcohols and acids. Reactions were carried out for the optimization of initial water concentration, temperature, pH of the substrate mixture and the chain length of the substrates. Under optimized conditions, the method was suitable to achieve ~ 99% conversion. Thus, the process provides an environment friendly, enzymatic alternative to the chemical route which is currently used in the industrial synthesis of lubricant components.

  15. Chemiluminescence assay of lipase activity using a synthetic substrate as proenhancer for luminol chemiluminescence reaction.

    PubMed

    Ichibangase, Tomoko; Ohba, Yoshihito; Kishikawa, Naoya; Nakashima, Kenichiro; Kuroda, Naotaka

    2004-01-01

    A novel chemiluminescence (CL) assay method for lipase (triacylglycerol lipase, E.C.3.1.1.3) activity was developed by using the lauric acid ester of 2-(4-hydroxyphenyl)-4,5-diphenylimidazole (HDI) as a substrate. The method is based on the enhanced CL reaction of luminol-hydrogen peroxide-horseradish peroxidase (HRP) with HDI that is liberated from the substrate by enzymatic hydrolysis. To simplify the assay procedure, both the hydrolysis of the substrate and the enhanced CL reaction were performed in the same reaction mixture. Lipases from Candida cylindracea and porcine pancreas were successfully determined with the detection limits (blank signal + 3 SD) of 0.05 and 50.0 mU/tube, respectively. The method is simple and rapid, permitting the completion of single assay within 5 min. The reproducibilities obtained with replicate assays were relative standard deviations (RSDs) of <=> 4.7% for within-day and <=> 6.0% for between-day assays.

  16. Different Candida parapsilosis clinical isolates and lipase deficient strain trigger an altered cellular immune response

    PubMed Central

    Tóth, Renáta; Alonso, Maria F.; Bain, Judith M.; Vágvölgyi, Csaba; Erwig, Lars-Peter; Gácser, Attila

    2015-01-01

    Numerous human diseases can be associated with fungal infections either as potential causative agents or as a result of changed immune status due to a primary disease. Fungal infections caused by Candida species can vary from mild to severe dependent upon the site of infection, length of exposure, and past medical history. Patients with impaired immune status are at increased risk for chronic fungal infections. Recent epidemiologic studies have revealed the increasing incidence of candidiasis caused by non-albicans species such as Candida parapsilosis. Due to its increasing relevance we chose two distinct C. parapsilosis strains, to describe the cellular innate immune response toward this species. In the first section of our study we compared the interaction of CLIB 214 and GA1 cells with murine and human macrophages. Both strains are commonly used to investigate C. parapsilosis virulence properties. CLIB 214 is a rapidly pseudohyphae-forming strain and GA1 is an isolate that mainly exists in a yeast form. Our results showed, that the phagocyte response was similar in terms of overall uptake, however differences were observed in macrophage migration and engulfment of fungal cells. As C. parapsilosis releases extracellular lipases in order to promote host invasion we further investigated the role of these secreted components during the distinct stages of the phagocytic process. Using a secreted lipase deficient mutant strain and the parental strain GA1 individually and simultaneously, we confirmed that fungal secreted lipases influence the fungi's virulence by detecting altered innate cellular responses. In this study we report that two isolates of a single species can trigger markedly distinct host responses and that lipase secretion plays a role on the cellular level of host–pathogen interactions. PMID:26528256

  17. Production of lipases by four anoxygenic purple non-sulphur phototrophic bacteria.

    PubMed

    Munjam, Srinivas; Girisham, S; Reddy, S M

    Production of lipases by Rhodopseudomonas palustris, Rhodobacter sphaeroides, Rhodocyclus gelatinosus and Rhodocyclus tenuis in different synthetic media was investigated. Rc. gelatinosus followed by Rb. sphaeroides were good producers of lipases, while Rps. palustris and Rc. tenuis were poor in lipase secretion. Lipase secretion by Rc. gelatinosus was adaptive in nature, while other three bacterial behavior was inconsistent. No positive correlation could be observed between growth and lipase production.

  18. Lipase-catalyzed aza-Michael reaction on acrylate derivatives.

    PubMed

    Steunenberg, Peter; Sijm, Maarten; Zuilhof, Han; Sanders, Johan P M; Scott, Elinor L; Franssen, Maurice C R

    2013-04-19

    A methodology has been developed for an efficient and selective lipase-catalyzed aza-Michael reaction of various amines (primary and secondary) with a series of acrylates and alkylacrylates. Reaction parameters were tuned, and under the optimal conditions it was found that Pseudomonas stutzeri lipase and Chromobacterium viscosum lipase showed the highest selectivity for the aza-Michael addition to substituted alkyl acrylates. For the first time also, some CLEAs were examined that showed a comparable or higher selectivity and yield than the free enzymes and other formulations.

  19. Obtaining lipases from byproducts of orange juice processing.

    PubMed

    Okino-Delgado, Clarissa Hamaio; Fleuri, Luciana Francisco

    2014-11-15

    The presence of lipases was observed in three byproducts of orange juice processing: peel, core and frit. The enzymes were characterised biochemically over a wide pH range from neutral (6-7) to alkaline (8-9). The optimal temperature for the activity of these byproducts showed wide range at 20°C to 70°C, indicating fairly high thermostability. The activities were monitored on p-NP-butyrate, p-NP-laurate and p-NP-palmitate. For the first time, lipase activity was detected in these residues, reaching 68.5 lipase U/g for the crude extract from fractions called frit.

  20. Controlled lid-opening in Thermomyces lanuginosus lipase- An engineered switch for studying lipase function.

    PubMed

    Skjold-Jørgensen, Jakob; Vind, Jesper; Moroz, Olga V; Blagova, Elena; Bhatia, Vikram K; Svendsen, Allan; Wilson, Keith S; Bjerrum, Morten J

    2017-01-01

    Here, we present a lipase mutant containing a biochemical switch allowing a controlled opening and closing of the lid independent of the environment. The closed form of the TlL mutant shows low binding to hydrophobic surfaces compared to the binding observed after activating the controlled switch inducing lid-opening. We directly show that lipid binding of this mutant is connected to an open lid conformation demonstrating the impact of the exposed amino acid residues and their participation in binding at the water-lipid interface. The switch was created by introducing two cysteine residues into the protein backbone at sites 86 and 255. The crystal structure of the mutant shows the successful formation of a disulfide bond between C86 and C255 which causes strained closure of the lid-domain. Control of enzymatic activity and binding was demonstrated on substrate emulsions and natural lipid layers. The locked form displayed low enzymatic activity (~10%) compared to wild-type. Upon release of the lock, enzymatic activity was fully restored. Only 10% binding to natural lipid substrates was observed for the locked lipase compared to wild-type, but binding was restored upon adding reducing agent. QCM-D measurements revealed a seven-fold increase in binding rate for the unlocked lipase. The TlL_locked mutant shows structural changes across the protein important for understanding the mechanism of lid-opening and closing. Our experimental results reveal sites of interest for future mutagenesis studies aimed at altering the activation mechanism of TlL and create perspectives for generating tunable lipases that activate under controlled conditions.

  1. Immobilization of Yarrowia lipolytica Lipase on Macroporous Resin Using Different Methods: Characterization of the Biocatalysts in Hydrolysis Reaction

    PubMed Central

    Sun, Jingjing; Chen, Yiling; Sheng, Jun; Sun, Mi

    2015-01-01

    To improve the reusability and organic solvent tolerance of microbial lipase and expand the application of lipase (hydrolysis, esterification, and transesterification), we immobilized marine microbial lipase using different methods and determined the properties of immobilized lipases. Considering the activity and cost of immobilized lipase, the concentration of lipase was fixed at 2 mg/mL. The optimal temperature of immobilized lipases was 40°C and 5°C higher than free lipase. The activities of immobilized lipases were much higher than free lipase at alkaline pH (more than 50% at pH 12). The free lipase lost most activity (35.3%) and immobilized lipases retained more than 46.4% of their initial activity after 3 h heat treatment at 70°C. At alkaline pH, immobilized lipases were more stable than free lipase (more than 60% residue activity at pH 11 for 3 h). Immobilized lipases retained 80% of their activity after 5 cycles and increased enzyme activity (more than 108.7%) after 3 h treatment in tert-butanol. Immobilization of lipase which improved reusability of lipase and provided a chance to expand the application of marine microbial lipase in organic system expanded the application range of lipase to catalyze hydrolysis and esterification in harsh condition. PMID:26240816

  2. Tetracycline Inhibition of a Lipase from Corynebacterium acnes

    PubMed Central

    Weaber, K.; Freedman, R.; Eudy, W. W.

    1971-01-01

    A lipase which hydrolyzes triglycerides (tricaprylin and trilaurin) and naphthyl laurate was obtained from the broth of Corynebacterium acnes cultures by ammonium sulfate fractionation. Ca2+ and sodium taurocholate stimulated activity of the enzyme. Ethylenediaminetetraacetic acid (EDTA) did not inhibit activity of the Ca2+-activated enzyme, but lipolytic activity was inhibited by EDTA in the absence of Ca2+. Tetracycline (10−4m) produced a slight inhibition of the lipase activity with 5 × 10−5m or less showing no effect on the lipase activity. However, complete inhibition by tetracycline at 10−4m was observed for Ca2+-activated enzyme. Tetracycline inhibition of the C. acnes lipase could be demonstrated at concentrations as low as 10−6m. PMID:4252558

  3. Lipase Activity among Bacteria Isolated from Amazonian Soils

    PubMed Central

    Willerding, André Luis; de Oliveira, Luiz Antonio; Moreira, Francisco Wesen; Germano, Mariana Gomes; Chagas, Aloísio Freitas

    2011-01-01

    The objective of this study was to select lipase-producing bacteria collected from different counties of the Amazon region. Of the 440 bacteria strains, 181 were selected for the lipase assay in qualitative tests at Petri dishes, being 75 (41%) lipase positive. The enzymatic index was determined during fifteen days at different temperatures (30°, 35°, 40°, and 45°C). The highest lipase activity was observed within 72 hours at 30°C. Twelve bacteria strains presented an index equal to or greater than the standard used like reference, demonstrating the potential of microbial resource. After the bioassay in Petri dishes, the selected bacteria strains were analyzed in quantitative tests on p-nitrophenyl palmitate (p-NPP). A group of the strains was selected for other phases of study with the use in oleaginous substrates of the Amazonian flora, aiming for the application in processes like oil biotransformation. PMID:22007294

  4. Lipase-catalyzed ethanolysis of borage oil: a kinetic study.

    PubMed

    Torres, Carlos F; Hill, Charles G; Otero, Cristina

    2004-01-01

    Ethanolysis of borage oil catalyzed by two commercial lipases (from Pseudomonas cepacia and Candida antarctica) was studied using two different methodologies. Multiresponse models derived from a generalized Michaelis-Menten mechanism were utilized to describe the rates of formation of ethyl esters of the primary fatty acids present in the precursor oil. The relative rate constants determined for each of the fatty acid residues indicated that both lipases discriminate against release of gamma-linolenic acid residues under the reaction conditions studied. However, both lipases also released some of the residues located at the sn-2 position, indicating that for the experimental conditions studied, both lipases are nonspecific. Moreover, inactivation of Novozym 435 was rapid. Because the half-life of this enzyme (ca. 2.2 h) is comparable to the half-life of the reaction, the intrinsic reaction rate and enzyme deactivation must both be considered in modeling the kinetics.

  5. Discrimination of thermostable and thermophilic lipases using support vector machines.

    PubMed

    Zhao, Wei; Wang, Xunzhang; Deng, Riqiang; Wang, Jinwen; Zhou, Hongbo

    2011-07-01

    Discriminating thermophilic lipases from their similar thermostable counterparts is a challenging task and it would help to design stable proteins. In this study, the distributions of N (N=2, 3) neighboring amino acids and the non-adjacent di-residue coupling patterns in the sequences of 65 thermostable and 77 thermophilic lipases had been systematically analyzed. It was found that the hydrophobic residues Leu, Pro, Met, Phe, Trp, as well as the polar residue Tyr had higher occurrence in thermophilic lipases than thermostable ones. The occurrence frequencies of KC EE KE RE, VE, YI, EK, VK, EV, YV, EY, KY, VY and YY in thermophilic proteins were significantly higher, while the occurrence frequencies of QC, QH, QN, HQ, MQ, NQ, QQ, TQ, QS and QT were significantly lower. CXP or CPX showed significantly positive to lipase thermostability, while XXQ or QXX showed significantly negative to lipase thermostability. Non-adjacent di-residue coupling patterns of PR14, RY32, YR47, LE53, LE64, PP64, RP70 and PP101 were significantly different in thermophilic lipases and their thermostable counterparts. The composition of dipeptide, tripeptide and non-adjacent di-residue patterns contained more information than amino acid composition. A statistical method based on support vector machines (SVMs) was developed for discriminating thermophilic and thermostable lipases. The accuracy of this method for the training dataset was 97.17?. Furthermore, the highest accuracy of the method for testing datasets was 98.41?. The influence of some specific patterns on lipase thermostability was also discussed.

  6. Novel strategy of using methyl esters as slow release methanol source during lipase expression by mut+ Pichia pastoris X33.

    PubMed

    Kumari, Arti; Gupta, Rani

    2014-01-01

    One of the major issues with heterologous production of proteins in Pichia pastoris X33 under AOX1 promoter is repeated methanol induction. To obviate repeated methanol induction, methyl esters were used as a slow release source of methanol in lipase expressing mut+ recombinant. Experimental design was based on the strategy that in presence of lipase, methyl esters can be hydrolysed to release their products as methanol and fatty acid. Hence, upon break down of methyl esters by lipase, first methanol will be used as a carbon source and inducer. Then P. pastoris can switch over to fatty acid as a carbon source for multiplication and biomass maintenance till further induction by methyl esters. We validated this strategy using recombinant P. pastoris expressing Lip A, Lip C from Trichosporon asahii and Lip11 from Yarrowia lipolytica. We found that the optimum lipase yield under repeated methanol induction after 120 h was 32866 U/L, 28271 U/L and 21978 U/L for Lip C, Lip A and Lip 11 respectively. In addition, we found that a single dose of methyl ester supported higher production than repeated methanol induction. Among various methyl esters tested, methyl oleate (0.5%) caused 1.2 fold higher yield for LipA and LipC and 1.4 fold for Lip11 after 120 h of induction. Sequential utilization of methanol and oleic acid by P. pastoris was observed and was supported by differential peroxisome proliferation studies by transmission electron microscopy. Our study identifies a novel strategy of using methyl esters as slow release methanol source during lipase expression.

  7. Expression and characterization of thermotolerant lipase with broad pH profiles isolated from an Antarctic Pseudomonas sp strain AMS3

    PubMed Central

    2016-01-01

    A gene encoding a thermotolerant lipase with broad pH was isolated from an Antarctic Pseudomonas strain AMS3. The recombinant lipase AMS3 was purified by single-step purification using affinity chromatography, yielding a purification fold of approximately 1.52 and a recovery of 50%. The molecular weight was approximately ∼60 kDa including the strep and affinity tags. Interestingly, the purified Antarctic AMS3 lipase exhibited broad temperature profile from 10–70 °C and stable over a broad pH range from 5.0 to pH 10.0. Various mono and divalent metal ions increased the activity of the AMS3 lipase, but Ni2+ decreased its activity. The purified lipase exhibited the highest activity in the presence of sunflower oil. In addition, the enzyme activity in 25% v/v solvents at 50 °C particularly to n-hexane, DMSO and methanol could be useful for catalysis reaction in organic solvent and at broad temperature. PMID:27781152

  8. Lipases at interfaces: unique interfacial properties as globular proteins.

    PubMed

    Reis, P; Miller, R; Krägel, J; Leser, M; Fainerman, V B; Watzke, H; Holmberg, K

    2008-06-01

    The adsorption behavior of two globular proteins, lipase from Rhizomucor miehei and beta-lactoglobulin, at inert oil/water and air/water interfaces was studied by the pendant drop technique. The kinetics and adsorption isotherms were interpreted for both proteins in different environments. It was found that the adopted mathematical models well describe the adsorption behavior of the proteins at the studied interfaces. One of the main findings is that unique interfacial properties were observed for lipase as compared to the reference beta-lactoglobulin. A folded drop with a "skinlike" film was formed for the two proteins after aging followed by compression. This behavior is normally associated with protein unfolding and covalent cross-linking at the interface. Despite this, the lipase activity was not suppressed. By highlighting the unique interfacial properties of lipases, we believe that the presented work contributes to a better understanding of lipase interfacial activation and the mechanisms regulating lipolysis. The results indicate that the understanding of the physical properties of lipases can lead to novel approaches to regulate their activity.

  9. Role of the lid hydrophobicity pattern in pancreatic lipase activity.

    PubMed

    Thomas, Annick; Allouche, Maya; Basyn, Frédéric; Brasseur, Robert; Kerfelec, Brigitte

    2005-12-02

    Pancreatic lipase is a soluble globular protein that must undergo structural modifications before it can hydrolyze oil droplets coated with bile salts. The binding of colipase and movement of the lipase lid open access to the active site. Mechanisms triggering lid mobility are unclear. The *KNILSQIVDIDGI* fragment of the lid of the human pancreatic lipase is predicted by molecular modeling to be a tilted peptide. Tilted peptides are hydrophobicity motifs involved in membrane fusion and more globally in perturbations of hydrophobic/hydrophilic interfaces. Analysis of this lid fragment predicts no clear consensus of secondary structure that suggests that its structure is not strongly sequence determined and could vary with environment. Point mutations were designed to modify the hydrophobicity profile of the [240-252] fragment and their consequences on the lipase-mediated catalysis were tested. Two mutants, in which the tilted peptide motif was lost, also have poor activity on bile salt-coated oil droplets and cannot be reactivated by colipase. Conversely, one mutant in which a different tilted peptide is created retains colipase dependence. These results suggest that the tilted hydrophobicity pattern of the [240-252] fragment is neither important for colipase binding to lipase, nor for interfacial binding but is important to trigger the maximal catalytic efficiency of lipase in the presence of bile salt.

  10. Gene cloning and characterization of a novel highly organic solvent tolerant lipase from Proteus sp. SW1 and its application for biodiesel production.

    PubMed

    Whangsuk, Wirongrong; Sungkeeree, Pareenart; Thiengmag, Sirinthra; Kerdwong, Jarunee; Sallabhan, Ratiboot; Mongkolsuk, Skorn; Loprasert, Suvit

    2013-01-01

    Proteus sp. SW1 was found to produce an extracellular solvent tolerant lipase. The gene, lipA, encoding a bacterial lipase, was cloned from total Proteus sp. SW1 DNA. lipA was predicted to encode a 287 amino acid protein of 31.2 kDa belonging to the Group I proteobacterial lipases. Purified His-tagged LipA exhibited optimal activity at pH 10.0 and 55°C. It was highly stable in organic solvents retaining 112% of its activity in 100% isopropanol after 24 h, and exhibited more than 200% of its initial activity upon exposure to 60% acetone, ethanol, and hexane for 18 h. Biodiesel synthesis reactions, using a single step addition of 13% an acyl acceptor ethanol, showed that LipA was highly effective at converting palm oil into biodiesel.

  11. Screening of lipase inhibitors from Scutellaria baicalensis extract using lipase immobilized on magnetic nanoparticles and study on the inhibitory mechanism.

    PubMed

    Wan, Li-Hong; Jiang, Xiao-Lan; Liu, Yi-Ming; Hu, Jin-Jie; Liang, Jian; Liao, Xun

    2016-03-01

    Scutellaria baicalensis is a traditional Chinese medicinal plant possessing a wide variety of biological activities. In this work, lipase immobilized on magnetic nanoparticles (LMNPs) was used as solid phase extract absorbent for screening of lipase inhibitors from this plant. Three flavonoids were found to bind to LMNPs and were identified as baicalin, wogonin, and oroxylin A by liquid chromatography-mass spectrometry (HPLC-MS). Their IC50 values were determined to be 229.22 ± 12.67, 153.71 ± 9.21, and 56.07 ± 4.90 μM, respectively. Fluorescence spectroscopy and molecular docking were used to probe the interactions between these flavonoids and lipase. All the flavonoids quenched the fluorescence of lipase statically by forming new complexes, implying their affinities with the enzyme. The thermodynamic analysis suggested that van der Waals force and hydrogen bond were the main forces between wogonin and lipase, while hydrophobic force was the main force for the other two flavonoids. The results from a molecular docking study further revealed that all of them could insert into the pocket of lipase binding to a couple of amino acid residues.

  12. Biochemical characterization of the surface-associated lipase of Staphylococcus saprophyticus.

    PubMed

    Sakinç, Türkân; Kleine, Britta; Gatermann, Sören G

    2007-09-01

    Staphylococcus saprophyticus, an important cause of urinary tract infections, produces a surface-associated lipase, Ssp. In contrast to other lipases, Ssp is a protein that is present in high amounts on the surface of the bacteria and it was shown that it is a true lipase. Characterization of S. saprophyticus lipase (Ssp) showed that it is more similar to Staphylococcus aureus lipase and Staphylococcus epidermidis lipase than to Staphylococcus hyicus lipase and Staphylococcus simulans lipase. Ssp showed an optimum of lipolytic activity at pH 6 and lost its activity at pH>8 or pH<5. The present results show that Ssp activity is dependent on Ca(2+). Consequently, activity increased c. 10-fold in the presence of 2 mM Ca(2+). Optimal activity was reached at 30 degrees C. It was also observed that the enzymatic activity of Ssp depends strongly on the acyl chain length of the substrate molecule.

  13. Immobilizing Yarrowia lipolytica Lipase Lip2 via Improvement of Microspheres by Gelatin Modification.

    PubMed

    Xie, Rong; Cui, Caixia; Chen, Biqiang; Tan, Tianwei

    2015-10-01

    The purpose of this study was to investigate the feasibility of immobilizing Yarrowia lipolytica lipase lip2 on epoxy microspheres with or without gelatin modifications. The activity of lipase immobilized on gelatin-modified supports was twofold higher than those immobilized on native supports. There was no significant difference in the Michaelis-Menten constant (K M ) between the two immobilized lipases. However, lipase immobilized on gelatin modified supports showed an approximately fourfold higher V max than lipase immobilized on native supports. Lipase immobilization on the gelatin-modified support exhibited a significantly improved operational stability in an esterification system. After it was reused for a total of 35 batches, the ester conversion of lipase immobilized on gelatin-modified and native microspheres was 83 and 60 %, respectively. Furthermore, the immobilized lipase could be stored at 4 °C for 12 months without any loss of activity.

  14. Combining phospholipases and a liquid lipase for one-step biodiesel production using crude oils

    PubMed Central

    2014-01-01

    Background Enzymatic biodiesel is becoming an increasingly popular topic in bioenergy literature because of its potential to overcome the problems posed by chemical processes. However, the high cost of the enzymatic process still remains the main drawback for its industrial application, mostly because of the high price of refined oils. Unfortunately, low cost substrates, such as crude soybean oil, often release a product that hardly accomplishes the final required biodiesel specifications and need an additional pretreatment for gums removal. In order to reduce costs and to make the enzymatic process more efficient, we developed an innovative system for enzymatic biodiesel production involving a combination of a lipase and two phospholipases. This allows performing the enzymatic degumming and transesterification in a single step, using crude soybean oil as feedstock, and converting part of the phospholipids into biodiesel. Since the two processes have never been studied together, an accurate analysis of the different reaction components and conditions was carried out. Results Crude soybean oil, used as low cost feedstock, is characterized by a high content of phospholipids (900 ppm of phosphorus). However, after the combined activity of different phospholipases and liquid lipase Callera Trans L, a complete transformation into fatty acid methyl esters (FAMEs >95%) and a good reduction of phosphorus (P <5 ppm) was achieved. The combination of enzymes allowed avoidance of the acid treatment required for gums removal, the consequent caustic neutralization, and the high temperature commonly used in degumming systems, making the overall process more eco-friendly and with higher yield. Once the conditions were established, the process was also tested with different vegetable oils with variable phosphorus contents. Conclusions Use of liquid lipase Callera Trans L in biodiesel production can provide numerous and sustainable benefits. Besides reducing the costs derived from

  15. Immobilization of active lipase B from Candida antarctica on the surface of polyhydroxyalkanoate inclusions.

    PubMed

    Jahns, Anika C; Rehm, Bernd H A

    2015-04-01

    Polyhydroxyalkanoate (PHA) beads, recombinantly produced in Escherichia coli, were functionalized to display lipase B from Candida antarctica as translational protein fusion. The respective beads were characterized in respect to protein content, functionality, long term storage capacity and re-usability. The direct fusion of the PHA synthase, PhaC, to lipase B yielded active PHA lipase beads capable of hydrolyzing glycerol tributyrate. Lipase B beads showed stable activity over several weeks and re-usability without loss of function.

  16. Biodiesel production in packed-bed reactors using lipase-nanoparticle biocomposite.

    PubMed

    Wang, Xia; Liu, Xueying; Zhao, Chuanming; Ding, Yi; Xu, Ping

    2011-05-01

    The development of appropriate reactors is crucial for the production of biodiesel. In this study, a packed-bed reactor system using lipase-Fe(3)O(4) nanoparticle biocomposite catalyst was successfully developed for biodiesel production based on soybean oil methanolysis. Emulsification before methanolysis improved the reaction rate. The lipase-nanoparticle biocomposite showed high activity and stability in the single-packed-bed reactor at an optimal flow rate (0.25 mL min(-1)). After 240 h of reaction, the conversion rate was sustained as high as 45%. The conversion rate and stability achieved using the four-packed-bed reactor were much higher than those achieved using the single-packed-bed reactor. The conversion of biodiesel was maintained at a high rate of over 88% for 192 h, and it only slightly declined to approximately 75% after 240 h of reaction. The packed-bed reactor system, therefore, has a great potential for achieving the design and operation of enzymatic biodiesel production on the industrial scale.

  17. Endothelial dysfunction in adipose triglyceride lipase deficiency

    PubMed Central

    Schrammel, Astrid; Mussbacher, Marion; Wölkart, Gerald; Stessel, Heike; Pail, Karoline; Winkler, Sarah; Schweiger, Martina; Haemmerle, Guenter; Al Zoughbi, Wael; Höfler, Gerald; Lametschwandtner, Alois; Zechner, Rudolf; Mayer, Bernd

    2014-01-01

    Systemic knockout of adipose triglyceride lipase (ATGL), the pivotal enzyme of triglyceride lipolysis, results in a murine phenotype that is characterized by progredient cardiac steatosis and severe heart failure. Since cardiac and vascular dysfunction have been closely related in numerous studies we investigated endothelium-dependent and -independent vessel function of ATGL knockout mice. Aortic relaxation studies and Langendorff perfusion experiments of isolated hearts showed that ATGL knockout mice suffer from pronounced micro- and macrovascular endothelial dysfunction. Experiments with agonists directly targeting vascular smooth muscle cells revealed the functional integrity of the smooth muscle cell layer. Loss of vascular reactivity was restored ~ 50% upon treatment of ATGL knockout mice with the PPARα agonist Wy14,643, indicating that this phenomenon is partly a consequence of impaired cardiac contractility. Biochemical analysis revealed that aortic endothelial NO synthase expression and activity were significantly reduced in ATGL deficiency. Enzyme activity was fully restored in ATGL mice treated with the PPARα agonist. Biochemical analysis of perivascular adipose tissue demonstrated that ATGL knockout mice suffer from perivascular inflammatory oxidative stress which occurs independent of cardiac dysfunction and might contribute to vascular defects. Our results reveal a hitherto unrecognized link between disturbed lipid metabolism, obesity and cardiovascular disease. PMID:24657704

  18. Estolides synthesis catalyzed by immobilized lipases.

    PubMed

    Aguieiras, Erika C G; Veloso, Cláudia O; Bevilaqua, Juliana V; Rosas, Danielle O; da Silva, Mônica A P; Langone, Marta A P

    2011-01-01

    Estolides are vegetable-oil-based lubricants obtained from oleic acid or any source of hydroxy fatty acids. In this work, the estolides synthesis from oleic acid and methyl ricinoleate (biodiesel from castor oil), using immobilized commercial lipases (Novozym 435, Lipozyme RM-IM, and Lipozyme TL-IM) in a solvent-free medium was investigated. Acid value was used to monitor the reaction progress by determining the consumption of acid present in the medium. Novozym 435 showed the best performance. Water removal improved the conversion. Novozym 435 was more active at atmospheric pressure. Novozym 435 was reused four times with conversion reaching 15% after the fourth reaction at 80°C. Estolides produced under the reaction conditions used in this work presented good properties, such as, low temperature properties as pour point (-24°C), viscosity (23.9 cSt at 40°C and 5.2 cSt at 100°C), and viscosity index (153).

  19. Estolides Synthesis Catalyzed by Immobilized Lipases

    PubMed Central

    Aguieiras, Erika C. G.; Veloso, Cláudia O.; Bevilaqua, Juliana V.; Rosas, Danielle O.; da Silva, Mônica A. P.; Langone, Marta A. P.

    2011-01-01

    Estolides are vegetable-oil-based lubricants obtained from oleic acid or any source of hydroxy fatty acids. In this work, the estolides synthesis from oleic acid and methyl ricinoleate (biodiesel from castor oil), using immobilized commercial lipases (Novozym 435, Lipozyme RM-IM, and Lipozyme TL-IM) in a solvent-free medium was investigated. Acid value was used to monitor the reaction progress by determining the consumption of acid present in the medium. Novozym 435 showed the best performance. Water removal improved the conversion. Novozym 435 was more active at atmospheric pressure. Novozym 435 was reused four times with conversion reaching 15% after the fourth reaction at 80°C. Estolides produced under the reaction conditions used in this work presented good properties, such as, low temperature properties as pour point (−24°C), viscosity (23.9 cSt at 40°C and 5.2 cSt at 100°C), and viscosity index (153). PMID:21755040

  20. Crowding enhances lipase turnover rate on surface-immobilized substrates.

    PubMed

    Balevicius, Zigmas; Ignatjeva, Dalia; Niaura, Gediminas; Ignatjev, Ilja; Vaicikauskas, Viktoras; Babonas, Gintautas Jurgis; Valincius, Gintaras

    2015-07-01

    Utilizing surface-immobilized synthetic lipid substrates containing the redox-active ferrocene groups, the enzymatic activity of lipase from Thermomyces lanuginosus was measured by the cyclic voltammetry method. The activity was correlated with the surface density of the protein by the ATR-IR spectroscopy and the total internal reflection ellipsometry. It was found that the lipase turnover rate significantly increases with its surface density. Despite expected hindrance effects due to the crowding of the enzyme molecules in the near surface-saturation range of concentrations, the turnover rate was consistently higher compared with the values measured at low concentrations. The effect was explained by the change in the surface arrangement of the enzyme. In the low concentration range, lipase adsorbs onto a surface adopting a predominantly horizontal position. At high concentrations, as the surface density approaches saturation, the enzyme molecules due to crowding are forced into the predominantly vertical position, which is more favorable for the activation of the lipase through the interaction between the "hydrophobic lid" of the lipase and the hydrophobic adsorbate surface.

  1. Lipase-catalyzed polyester synthesis – A green polymer chemistry

    PubMed Central

    Kobayashi, Shiro

    2010-01-01

    This article is a short comprehensive review describing in vitro polyester synthesis catalyzed by a hydrolysis enzyme of lipase, most of which has been developed for these two decades. Polyesters are prepared by repeated ester bond-formation reactions; they include two major modes, ring-opening polymerization (ROP) of cyclic monomers such as cyclic esters (lactones) and condensation polymerization via the reaction between a carboxylic acid or its ester group and an alcohol group. Polyester synthesis is, therefore, a reaction in reverse way of in vivo lipase catalysis of ester bond-cleavage with hydrolysis. The lipase-catalyzed polymerizations show very high chemo-, regio-, and enantio-selectivities and involve various advantageous characteristics. Lipase is robust and compatible with other chemical catalysts, which allows novel chemo-enzymatic processes. New syntheses of a variety of functional polyesters and a plausible reaction mechanism of lipase catalysis are mentioned. The polymerization characteristics are of green nature currently demanded for sustainable society, and hence, desirable for conducting ‘green polymer chemistry’. PMID:20431260

  2. Exploring the Conformational States and Rearrangements of Yarrowia lipolytica Lipase

    PubMed Central

    Bordes, Florence; Barbe, Sophie; Escalier, Pierre; Mourey, Lionel; André, Isabelle; Marty, Alain; Tranier, Samuel

    2010-01-01

    We report the 1.7 Å resolution crystal structure of the Lip2 lipase from Yarrowia lipolytica in its closed conformation. The Lip2 structure is highly homologous to known structures of the fungal lipase family (Thermomyces lanuginosa, Rhizopus niveus, and Rhizomucor miehei lipases). However, it also presents some unique features that are described and discussed here in detail. Structural differences, in particular in the conformation adopted by the so-called lid subdomain, suggest that the opening mechanism of Lip2 may differ from that of other fungal lipases. Because the catalytic activity of lipases is strongly dependent on structural rearrangement of this mobile subdomain, we focused on elucidating the molecular mechanism of lid motion. Using the x-ray structure of Lip2, we carried out extensive molecular-dynamics simulations in explicit solvent environments (water and water/octane interface) to characterize the major structural rearrangements that the lid undergoes under the influence of solvent or upon substrate binding. Overall, our results suggest a two-step opening mechanism that gives rise first to a semi-open conformation upon adsorption of the protein at the water/organic solvent interface, followed by a further opening of the lid upon substrate binding. PMID:20923657

  3. High milk lipase activity associated with breast milk jaundice.

    PubMed

    Poland, R L; Schultz, G E; Garg, G

    1980-12-01

    Human milk samples that inhibit bilirubin-UDP-glucuronyl transferase (UDPGT) activity in vitro have been associated with prolonged unconjugated hyperbilirubinemia in newborn infants. We measured the concentration of nonesterified fatty acids (total and individual fatty acids), total fat and protein, and lipase activities (with and without bile salt stimulation) in milk samples from two groups of women. Women whose infants had prolonged unconjugated hyperbilirubinemia and whose milk inhibited the activity of UDPGT were in the first group (N = 9). Volunteers with healthy infants acted as controls. Inhibitory milk contained significantly more nonesterified fatty acids (total, palmitic, and oleic) than did controls. Fat and protein concentrations and bile salt-stimulated lipase activities were similar in the two groups. Unstimulated lipase activity was higher in the inhibitory milks (11.9 +/- 0.8 mM x min-1 x ml-1) than in the controls (6.0 +/- 0.1 mM x min-1 x ml-1) (P less than 0.01). The specific activity (mM x min-1 x mg protein) of unstimulated lipase was also significantly higher in the inhibitory milks (P less than 0.0001). The high nonesterified fatty acid levels in inhibitory milks is accounted for by the elevated unstimulated lipase activities. How these circumstances lead to jaundice in the infants remains to be shown.

  4. Influence of cosolvents on the hydrophobic surface immobilization topography of Candida antarctica lipase B

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The presence of cosolvents and co-solutes during the immobilization of lipases on hydrophobic supports may influence the extent of lipase immobilization and the long-term catalytic stability of the biocatalyst. Candida antarctica B lipase immobilization was examined on a hydrophobic surface, i.e., ...

  5. Purification and partial characterization of nonspecific lipase from rat pancreas.

    PubMed

    Albron, P W; Corbett, B J; Latimer, A D

    1976-03-26

    Nonspecific lipase (also referred to as micelle lipase and secondary ester hydrolase) has been purified to electrophoretic homogeneity starting from acetone powder of rat pancreas. The purified enzyme is found to have a molecular weight (gel filtration) of 64 000 +/- 2000, and an equivalent weight (titration with E-600) of 65 000. Nonspecific lipase is seen to be very sensitive to inhibition by organophosphates but resistant to quinine. Evidence for the presence of sulfhydryl and imidazole groups essential for activity is presented, and some observations on substrate specificity are made. The purified enzyme appears to lack phosphate groups and lipids, and is unstable under conditions of low ionic strength and/or exposure to 2-mercaptoethanol.

  6. Lipoprotein metabolism and lipoprotein lipase in severe cystic acne.

    PubMed

    Pigatto, P; Altomare, G F; Negri, M; Finzi, A F; Vigotti, G; Vergani, C

    1985-01-01

    In severe cystic acne we found low levels of high density lipoprotein-cholesterol (HDL-C) and apolipoprotein A (Apo-A) in the presence of normal total lipids. In a larger number of patients, we always observed significantly lower levels of HDL-C and Apo-A than in either age-matched controls or subjects with acne vulgaris. Since lipoprotein lipase is one major determinant of HDL concentration, we assayed the lipase activity in liver and extra-hepatic tissues by the method of Krauss et al. There was highly significant less total and hepatic lipase activity than in age-matched controls. HDL distribution was examined by zonal ultracentrifugation and a decrease in the HDL2 subclass was discovered. Since HDL are inversely correlated to atherosclerosis, cystic acne is one risk factor for atherosclerosis. The linkage between low HDL levels and severe cystic acne should be further investigated.

  7. Biodiesel production from microalgae oil catalyzed by a recombinant lipase.

    PubMed

    Huang, Jinjin; Xia, Ji; Jiang, Wei; Li, Ying; Li, Jilun

    2015-03-01

    A recombinant Rhizomucor miehei lipase was constructed and expressed in Pichia pastoris. The target enzyme was termed Lipase GH2 and it can be used as a free enzyme for catalytic conversion of microalgae oil mixed with methanol or ethanol for biodiesel production in an n-hexane solvent system. Conversion rates of two major types of biodiesel, fatty acid methyl ester (FAME) and fatty acid ethyl ester (FAEE), reached maximal values (>90%) after 24h. The process of FAME production is generally more simple and economical than that of FAEE production, even though the two processes show similar conversion rates. In spite of the damaging effect of ethanol on enzyme activity, we successfully obtained ethyl ester by the enzymatic method. Our findings indicate that Lipase GH2 is a useful catalyst for conversion of microalgae oil to FAME or FAEE, and this system provides efficiency and reduced costs in biodiesel production.

  8. Lactobacillus sps. lipase mediated poly (ε-caprolactone) degradation.

    PubMed

    Khan, Imran; Ray Dutta, Jayati; Ganesan, Ramakrishnan

    2017-02-01

    Polymer degradation through lipase appears to be an enthralling alternative to bulk chemical routes. Poly (ε-caprolactone) (PCL) is an artificial polyester that can be degraded by microbes and enzymes like lipases and esterases. The environmental degradation of PCL is dependent on the activity of bacteria that characterization techniques such as thermogravimetric analysis, differential thermal are widely present in the ecosystem. In this study, three different lipases derived from Lactobacillus brevis, Lactobacillus plantarum and their co-culture have been utilized to explore their efficiency towards PCL enzymatic degradation. The effect of parameters such as enzyme loading and degradation time has been explored to understand the efficiency of the enzymes used in this study. Various analysis, scanning electron microscopy and Fourier transform infrared spectroscopy have been employed to study the enzymatic degradation and its possible mechanistic insight.

  9. [Structure and Activity of Fungal Lipases in Bile Salt Solutions].

    PubMed

    Bogdanova, L R; Bakirova, D R; Valiullina, Yu A; Idiyatullin, B Z; Faizullin, D A; Zueva, O S; Zuev, Yu F

    2016-01-01

    The changes in structure and catalytic properties of fungal lipases (Candida rugosa, Rhizomucor miehei, Mucor javanicus) were investigated in micellar solutions of bile salts that differ in hydrophilic-lypophilic balance and reaction medium properties. The methods of circular dichroism and tryptophan fluorescence were applied to estimate the changes in peptide structure within complexes with bile salt micelles. Bile salts do not exert a significant influence on the structure of the enzymes under study: in Rh. miehei and M. javanicus lipases the alpha helix content slightly decreased, the influence of bile salts on the C. rugosa structure was not revealed. Despite negligible structural modifications in the enzymes, in bile salt solutions a considerable change in their catalytic properties was observed: an abrupt decrease in catalytic effectiveness. Substrate-bile salts micelles complex formation was demonstrated by the NMR self-diffusion method. The model of a regulation of fungal lipase activity was proposed.

  10. The immobilization of lipase on PVDF-co-HFP membrane

    NASA Astrophysics Data System (ADS)

    Kayhan, Naciye; Eyüpoǧlu, Volkan; Adem, Şevki

    2016-04-01

    Lipase is an enzyme having a lot of different industrial applications such as biodiesel production, biopolymer synthesis, enantiopure pharmaceutical productions, agrochemicals, etc. Its immobilized form on different substances is more conventional and useful than its free form. Supporting material was prepared using PVDF-co-HFP in laboratory conditions and attached 1,4-diaminobutane (DA) and epichlorohydrin (EPI) ligands to the membrane to immobilize lipase enzyme. The immobilization conditions such as enzyme amount, pH, the concentration of salt, thermal stability and activity were stabilized for our experimental setup. Then, biochemical characterizations were performed on immobilized lipase PVDF-co-HFP regarding optimal pH activity, temperature and thermal stability. Also, the desorption ratios of immobilized enzyme in two different pathway were investigated to confirm immobilization stability for 24 hours.

  11. A comparison of currently used serum lipase and amylase procedures in the serial detection of enzyme elevations in acute pancreatitis.

    PubMed

    Hathaway, J A; Kitt, D; Wingate, B

    1983-10-14

    Twenty-eight patients having acute pancreatitis were followed during convalescence with serum amylase and lipase determinations. Starch and p-nitrophenyl-oligosaccharide substrates were used for amylase. Dimercaptotributyrate and triolein were employed for lipase. The extreme sensitivity of the lipase procedure using the tributyrate detected a persistent elevation of lipase when other parameters of measurement had returned to normal.

  12. Enzymatic Synthesis of Structured Lipids using a Novel Cold-Active Lipase from Pichia lynferdii NRRL Y-7723

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Structured lipids (SL) were synthesized by the acidolysis of borage oil with caprylic acid using lipases. Six commercial lipases from different sources and a novel lipase from Pichia lynferdii NRRL Y-7723 were screened for their acidolysis activities and Lipozyme RM IM and NRRL Y-7723 lipase were s...

  13. Comparison of immunoreactive serum trypsinogen and lipase in Cystic Fibrosis

    SciTech Connect

    Lloyd-Still, J.D.; Weiss, S.; Wessel, H.; Fong, L.; Conway, J.J.

    1984-01-01

    The incidence of Cystic Fibrosis (CF) is 1 in 2,000. Early detection and treatment of CF may necessitate newborn screening with a reliable and cost-effective test. Serum immunoreactive trypsinogen (IRT) an enzyme produced by the pancreas, is detectable by radioimmunoassay (RIA) techniques. Recently, it has been shown that IRT is elevated in CF infants for the first few months of life and levels become subnormal as pancreatic insufficiency progresses. Other enzymes produced by the pancreas, such as lipase, are also elevated during this time. The author's earlier work confirmed previous reports of elevated IRT levels in CF infants. The development of a new RIA for lipase (nuclipase) has enabled comparison of these 2 pancreatic enzymes in C.F. Serum IRT and lipase determinations were performed on 2 groups of CF patients; infants under 1 year of age, and children between 1 and 18 years of age. Control populations of the same age groups were included. The results showed that both trypsin (161 +- 92 ng/ml, range 20 to 400) and lipase (167 +- 151 ng/ml, range 29 to 500) are elevated in CF in the majority of infants. Control infants had values of IRT ranging from 20 to 29.5 ng/ml and lipase values ranging from 23 to 34 ng/ml. IRT becomes subnormal in most CF patients by 8 years of age as pancreatic function insufficiency increases. Lipase levels and IRT levels correlate well in infancy, but IRT is a more sensitive indicator of pancreatic insufficiency in older patients with CF.

  14. Integrated lipase production and in situ biodiesel synthesis in a recombinant Pichia pastoris yeast: an efficient dual biocatalytic system composed of cell free enzymes and whole cell catalysts

    PubMed Central

    2014-01-01

    . This integrated system couples lipase production to lipase-catalyzed biodiesel synthesis in one pot. The proof-of-concept was established through construction of a recombinant P. pastoris yeast strain that was able to grow, overexpress T. lanuginosus lipase, and efficiently catalyze biodiesel production from fed waste cooking oils and methanol simultaneously. This simplified single-step process represents a significant advance toward achieving economical production of biodiesel at industrial scale via a ‘green’ biocatalytic route. PMID:24713071

  15. Lipase inactivation in wheat germ by gamma irradiation

    NASA Astrophysics Data System (ADS)

    Jha, Pankaj Kumar; Kudachikar, V. B.; Kumar, Sourav

    2013-05-01

    An attempt was made to improve the shelf life of wheat germ by optimizing processing conditions involving γ-irradiation. Studies were carried out to investigate the effect of γ-irradiation (0-30 kGy doses) on the chemical composition of wheat germ with respect to variation in moisture, total ash, crude fat, free fatty acid, protein and lipase activity. The results demonstrate that shelf stability of wheat germ was achieved by inactivation of lipase at doses of γ-irradiation greater than 12 kGy.

  16. JCL Roundtable: Hypertriglyceridemia due to defects in lipoprotein lipase function.

    PubMed

    Brown, W Virgil; Goldberg, Ira J; Young, Stephen G

    2015-01-01

    In this Roundtable, our intent is to discuss those rare genetic disorders that impair the function of lipoprotein lipase. These cause severe hypertriglyceridemia that appears in early childhood with Mendelian inheritance and usually with full penetrance in a recessive pattern. Dr Ira Goldberg from New York University School of Medicine and Dr Stephen Young from the University of California, Los Angeles have agreed to answer my questions about this topic. Both have done fundamental work in recent years that has markedly altered our views on lipoprotein lipase function. I am going to start by asking them to give us a brief history of this enzyme system as a clinical entity.

  17. Genomic organization of the human lysosomal acid lipase gene (LIPA)

    SciTech Connect

    Aslandis, C.; Klima, H.; Lackner, K.J.; Schmitz, G. )

    1994-03-15

    Defects in the human lysosomal acid lipase gene are responsible for cholesteryl ester storage disease (CESD) and Wolman disease. Exon skipping as the cause for CESD has been demonstrated. The authors present here a summary of the exon structure of the entire human lysosomal acid lipase gene consisting of 10 exons, together with the sizes of genomic EcoRI and SacI fragments hybridizing to each exon. In addition, the DNA sequence of the putative promoter region is presented. The EMBL accession numbers for adjacent intron sequences are given. 7 refs., 2 figs., 1 tab.

  18. Effect of starvation on lipoprotein lipase activity in different tissues during gestation in the rat.

    PubMed

    López-Luna, P; Olea, J; Herrera, E

    1994-12-08

    This study was addressed to determine whether the tissue-specific LPL activity response to fasting differs between nonpregnant and pregnant rats over the course of pregnancy. Fed and 24-h fasted rats were studied at days 12, 15 or 20 of gestation and were compared to virgin controls. In fed rats at days 15 and 20 of gestation LPL activity decreased in lumbar adipose tissue and the heart and liver, and increased in mammary gland tissue. Fasting decreased LPL activity in lumbar adipose tissue in 12 day pregnant and virgin rats and in mammary gland tissue in pregnant rats at 15 and 20 days of gestation and in virgin rats, whereas it increased LPL activity in heart tissue in rats at day 15 and 20 and in liver at day 20 of gestation. Plasma triacylglycerols were higher in 20 day pregnant rats than in the other groups when fed and this difference was even more noticeable in the fasting condition where the plasma beta-hydroxybutyrate level also reached the highest value in the 20 day pregnant rats. Since tissue LPL activity controls the hydrolysis and uptake of circulating triacylgylcerols, the present results indicate that in fed rats after the 15th day of gestation circulating triacylglycerols are preferentially taken up by the mammary gland instead of being taken up by adipose tissue and heart. However, after fasting, circulating triacylglycerols are driven to the heart and liver in the late pregnant rat, and become a major source for fatty acid oxidation, an effect that seems to be specially evident in the liver of the 20 day pregnant rat where there is an intense increase in LPL activity and the triacylglycerols become preferential substrates for ketone body production.

  19. Regulation of adipose triglyceride lipase by rosiglitazone

    PubMed Central

    Liu, L.-F.; Purushotham, A.; Wendel, A. A.; Koba, K.; DeIuliis, J.; Lee, K.; Belury, M. A.

    2013-01-01

    Aim To elucidate the mechanism by which rosiglitazone regulates adipose triglyceride lipase (ATGL). Methods Male C57Bl/6 mice were treated with rosiglitazone daily (10 mg/kg body weight), and adipose tissues were weighed and preserved for mRNA and protein analysis of ATGL. In parallel, preadipocyte (3T3-L1) cells were differentiated with insulin/dexamethasone/3-isobutyl-1-methlxanthine cocktail or rosiglitazone, and ATGL levels were measured with real-time PCR, western blotting and immunohistochemistry. Results Rosiglitazone concomitantly promoted differentiation of pre-adipocytes to functional adipocytes and induced mRNA levels of ATGL. The peroxisome proliferator-activated receptor-γ (PPARγ) antagonist bisphenol A diglycidyl ether significantly abrogated the induction of mRNA, but not protein levels of ATGL by rosiglitazone in differentiated 3T3-L1 adipocytes. In the presence of epinephrine rosiglitazone stimulated free fatty acid release and increased diacylglycerol acyltransferase-1 (DGAT-1) mRNA suggest that ATGL and DGAT-1 may be cooperatively involved in rosiglitazone-stimulated triglyceride hydrolysis and fatty acid re-esterification in 3T3-L1 adipocytes. Treatment of 3T3-L1 adipocytes with rosiglitazone or insulin did not appear to alter localization of ATGL staining surrounding lipid droplets. Finally, we found that rosiglitazone increased ATGL mRNA levels in 3T3-L1 adipocytes in the presence of cycloheximide, an inhibitor of protein synthesis, suggesting that rosiglitazone regulation of ATGL occurs at the transcriptional level. Conclusions Rosiglitazone directly regulates transcription of ATGL, likely through a PPARγ-mediated mechanism. PMID:18643838

  20. Therapeutic potential of monoacylglycerol lipase inhibitors.

    PubMed

    Mulvihill, Melinda M; Nomura, Daniel K

    2013-03-19

    Marijuana and aspirin have been used for millennia to treat a wide range of maladies including pain and inflammation. Both cannabinoids, like marijuana, that exert anti-inflammatory action through stimulating cannabinoid receptors, and cyclooxygenase (COX) inhibitors, like aspirin, that suppress pro-inflammatory eicosanoid production have shown beneficial outcomes in mouse models of neurodegenerative diseases and cancer. Both cannabinoids and COX inhibitors, however, have untoward effects that discourage their chronic usage, including cognitive deficits and gastrointestinal toxicity, respectively. Recent studies have uncovered that the serine hydrolase monoacylglycerol lipase (MAGL) links the endocannabinoid and eicosanoid systems together through hydrolysis of the endocannabinoid 2-arachidonoylglycerol (2-AG) to provide the major arachidonic acid (AA) precursor pools for pro-inflammatory eicosanoid synthesis in specific tissues. Studies in recent years have shown that MAGL inhibitors elicit anti-nociceptive, anxiolytic, and anti-emetic responses and attenuate precipitated withdrawal symptoms in addiction paradigms through enhancing endocannabinoid signaling. MAGL inhibitors have also been shown to exert anti-inflammatory action in the brain and protect against neurodegeneration through lowering eicosanoid production. In cancer, MAGL inhibitors have been shown to have anti-cancer properties not only through modulating the endocannabinoid-eicosanoid network, but also by controlling fatty acid release for the synthesis of protumorigenic signaling lipids. Thus, MAGL serves as a critical node in simultaneously coordinating multiple lipid signaling pathways in both physiological and disease contexts. This review will discuss the diverse (patho)physiological roles of MAGL and the therapeutic potential of MAGL inhibitors in treating a vast array of complex human diseases.

  1. Clinical Features of Lysosomal Acid Lipase Deficiency

    PubMed Central

    Burton, Barbara K.; Deegan, Patrick B.; Enns, Gregory M.; Guardamagna, Ornella; Horslen, Simon; Hovingh, Gerard K.; Lobritto, Steve J.; Malinova, Vera; McLin, Valerie A.; Raiman, Julian; Di Rocco, Maja; Santra, Saikat; Sharma, Reena; Sykut-Cegielska, Jolanta; Whitley, Chester B.; Eckert, Stephen; Valayannopoulos, Vassili; Quinn, Anthony G.

    2015-01-01

    Abstract Objective: The aim of this study was to characterize key clinical manifestations of lysosomal acid lipase deficiency (LAL D) in children and adults. Methods: Investigators reviewed medical records of LAL D patients ages ≥5 years, extracted historical data, and obtained prospective laboratory and imaging data on living patients to develop a longitudinal dataset. Results: A total of 49 patients were enrolled; 48 had confirmed LAL D. Mean age at first disease-related abnormality was 9.0 years (range 0–42); mean age at diagnosis was 15.2 years (range 1–46). Twenty-nine (60%) were male patients, and 27 (56%) were <20 years of age at the time of consent/assent. Serum transaminases were elevated in most patients with 458 of 499 (92%) of alanine aminotransferase values and 265 of 448 (59%) of aspartate aminotransferase values above the upper limit of normal. Most patients had elevated low-density lipoprotein (64% patients) and total cholesterol (63%) at baseline despite most being on lipid-lowering therapies, and 44% had high-density lipoprotein levels below the lower limit of normal. More than half of the patients with liver biopsies (n = 31, mean age 13 years) had documented evidence of steatosis (87%) and/or fibrosis (52%). Imaging assessments revealed that the median liver volume was ∼1.15 multiples of normal (MN) and median spleen volume was ∼2.2 MN. Six (13%) patients had undergone a liver transplant (ages 9–43.5 years). Conclusion: This study provides the largest longitudinal case review of patients with LAL D and confirms that LAL D is predominantly a pediatric disease causing early and progressive hepatic dysfunction associated with dyslipidemia that often leads to liver failure and transplantation. PMID:26252914

  2. Enzymatic biodiesel synthesis from yeast oil using immobilized recombinant Rhizopus oryzae lipase.

    PubMed

    Duarte, Susan Hartwig; Hernández, Gonzalo Lázaro del Peso; Canet, Albert; Benaiges, Maria Dolors; Maugeri, Francisco; Valero, Francisco

    2015-05-01

    The recombinant Rhizopus oryzae lipase (1-3 positional selective), immobilized on Relizyme OD403, has been applied to the production of biodiesel using single cell oil from Candida sp. LEB-M3 growing on glycerol from biodiesel process. The composition of microbial oil is quite similar in terms of saponifiable lipids than olive oil, although with a higher amount of saturated fatty acids. The reaction was carried out in a solvent system, and n-hexane showed the best performance in terms of yield and easy recovery. The strategy selected for acyl acceptor addition was a stepwise methanol addition using crude and neutralized single cell oil, olive oil and oleic acid as substrates. A FAMEs yield of 40.6% was obtained with microbial oils lower than olive oil 54.3%. Finally in terms of stability, only a lost about 30% after 6 reutilizations were achieved.

  3. Exploring the protein stability landscape: Bacillus subtilis lipase A as a model for detergent tolerance.

    PubMed

    Fulton, Alexander; Frauenkron-Machedjou, Victorine Josiane; Skoczinski, Pia; Wilhelm, Susanne; Zhu, Leilei; Schwaneberg, Ulrich; Jaeger, Karl-Erich

    2015-04-13

    A systematic study was conducted with Bacillus subtilis lipase A (BSLA) to determine the effect of every single amino acid substitution on detergent tolerance. BSLA is a minimal α/β-hydrolase of 181 amino acids with a known crystal structure. It can be expressed in Escherichia coli and is biochemically well characterized. Site saturation mutagenesis resulted in a library of 3439 variants, each with a single amino acid exchange as confirmed by DNA sequencing. The library was tested against four detergents, namely SDS, CTAB, Tween 80, and sulfobetaine. Surface remodeling emerged as an effective engineering strategy to increase tolerance towards detergents. Amino acid residues that significantly affect the tolerance for each of the four detergents were identified. In summary, this systematic analysis provides an experimental dataset to help derive novel protein engineering strategies as well as to direct modeling efforts.

  4. SOA genes encode proteins controlling lipase expression in response to triacylglycerol utilization in the yeast Yarrowia lipolytica.

    PubMed

    Desfougères, Thomas; Haddouche, Ramdane; Fudalej, Franck; Neuvéglise, Cécile; Nicaud, Jean-Marc

    2010-02-01

    The oleaginous yeast Yarrowia lipolytica efficiently metabolizes hydrophobic substrates such as alkanes, fatty acids or triacylglycerol. This yeast has been identified in oil-polluted water and in lipid-rich food. The enzymes involved in lipid breakdown, for use as a carbon source, are known, but the molecular mechanisms controlling the expression of the genes encoding these enzymes are still poorly understood. The study of mRNAs obtained from cells grown on oleic acid identified a new group of genes called SOA genes (specific for oleic acid). SOA1 and SOA2 are two small genes coding for proteins with no known homologs. Single- and double-disrupted strains were constructed. Wild-type and mutant strains were grown on dextrose, oleic acid and triacylglycerols. The double mutant presents a clear phenotype consisting of a growth defect on tributyrin and triolein, but not on dextrose or oleic acid media. Lipase activity was 50-fold lower in this mutant than in the wild-type strain. The impact of SOA deletion on the expression of the main extracellular lipase gene (LIP2) was monitored using a LIP2-beta-galactosidase promoter fusion protein. These data suggest that Soa proteins are components of a molecular mechanism controlling lipase gene expression in response to extracellular triacylglycerol.

  5. Fluorescence spectroscopic analysis of the structure and dynamics of Bacillus subtilis lipase A governing its activity profile under alkaline conditions.

    PubMed

    Kübler, Daniel; Ingenbosch, Kim N; Bergmann, Anna; Weidmann, Monika; Hoffmann-Jacobsen, Kerstin

    2015-12-01

    Because of their vast diversity of substrate specificity and reaction conditions, lipases are versatile materials for biocatalysis. Lipase A from Bacillus subtilis (BSLA) is the smallest lipase yet discovered. It has the typical α/β hydrolase fold but lacks a lid covering the substrate cleft. In this study, the pH-dependence of the activity, stability, structure, and dynamics of BSLA was investigated by fluorescence spectroscopy. By use of a fluorogenic substrate it was revealed that the optimum pH for BSLA activity is 8.5 whereas thermodynamic and kinetic stability are maximum at pH 10. The origin of this behavior was clarified by investigation of ANS (8-anilino-1-naphthalenesulfonic acid) binding and fluorescence quenching of the two single tryptophan mutants W31F and W42F. Variations in segmental dynamics were investigated by use of time-resolved fluorescence anisotropy. This analysis showed that the activity maximum is governed by high surface hydrophobicity and high segmental mobility of surface loops whereas the stability optimum is a result of low segmental mobility and surface hydrophobicity.

  6. SECRETION OF LIPASES IN THE DIGESTIVE TRACT OF THE CRICKET Gryllus bimaculatus.

    PubMed

    Weidlich, Sandy; Hoffmann, Klaus H; Woodring, Joseph

    2015-12-01

    Little is known concerning the sites and the ratios of the lipase secretions in insects, therefore we undertook an examination of the lipase secretion of fed and unfed adult female Gryllus bimaculatus. The ratio of triacylglyceride lipase, diacylglyceride lipase, and phosphatidylcholine lipase secreted by fed females in the caecum and ventriculus is 1:1.4:0.4. These activities decrease in the caecum by 30-40% in unfed females. The total lipase activity (TLA) in the caecum is about 10 times that in the ventriculus. Minimal lipase secretion occurs before and during the final moult, and remains at this level in unfed crickets, indicating a basal secretion rate. In 2-day-old fed females, about 10% of the TLA in the entire gut is found in the crop, about 70% in the caecum, 20% in the ventriculus, and 3% in the ileum. Lipases in the ventriculus are recycled back to the caecum and little is lost in the feces. Oleic acid stimulated in vitro lipase secretion, but lipids did not. Feeding stimulated lipase secretion, starvation reduced lipase secretion, but this does not prove a direct prandal regulation of secretion, because feeding also induced a size and volume increase of the caecum.

  7. Polymorphisms of the lipoprotein lipase gene as genetic markers for stroke in colombian population: a case control study

    PubMed Central

    Vargas Castellanos, Clara Inés; Silva Sieger, Federico Arturo

    2016-01-01

    Abstract Objective: To analyze if there is an association between the presence of polymorphisms in the LPL gene (rs320, rs285 and rs328) with development of acute ischemic stroke in Colombian population. Methods: In a case control design, 133 acute ischemic stroke patients (clinical diagnosis and x-ray CT) and 269 subjects without stroke as controls were studied. PCR -RFLP technique was used to detect rs320, rs285 and rs328 polymorphisms in the LPL gene. Results: In the present research was not found any association between any of the LPL gene polymorphism and acute ischemic stroke in the population studied; the allele and genotypic frequencies of the studied polymorphisms were similar in cases and controls and followed the Hardy-Weinberg equilibrium. The study was approved by the IRB and each subject signed the informed consent. Conclusion: LPL gene polymorphisms are not genetic markers for the development of stroke in the Colombian sample used. PMID:28293042

  8. Competition of Thermomyces lanuginosus lipase with its hydrolysis products at the oil-water interface.

    PubMed

    Muth, Marco; Rothkötter, Stefanie; Paprosch, Steven; Schmid, Reiner P; Schnitzlein, Klaus

    2017-01-01

    Lipase-catalyzed hydrolysis of triglycerides yields glycerol and free fatty-acids, provided that the enzyme is non-regioselective. For an Sn-1,3 regioselective enzyme, such as lipase from Thermomyces lanuginosus, the final product is no longer glycerol but Sn-2 monoglyceride instead. However, surface active molecules generated by lipolysis may have a detrimental effect on the interfacial biocatalysis since it is known that low molecular weight surfactants can displace proteins from interfaces. By using drop profile analysis tensiometry, we evaluated the interfacial properties of the lipase-generated molecules and their competitive effect on the adsorption behavior of the lipase and on the proceeding lipolysis. Our results show that even at concentration ratios of 8.64×10(-4)M (Sn-2 monoglyceride) to 2.5×10(-7)M (lipase), the final interfacial pressure values are very similar as for the system containing the lipase alone (i.e. ∼26 mN/m). This is a strong indication that monoglycerides, as the most interfacially active products generated during regioselective lipolysis, are expelled from the oil-water interface by the lipase. We attribute this effect to intermolecular lipase-lipase interactions, resulting in a low desorption probability of the lipase. For low oleic acid concentrations, the interfacial tension is solely determined by the lipase, while for higher concentrations, lipase and oleic acid both contribute to the tension values. We propose a hypothesis based on the preferential interaction of oleic acid molecules with hydrophobic sites on the lipase. The pH dependence of the adsorption rate and the interfacial activity of the lipase were also investigated.

  9. Molecular characterisation of tumour necrosis factor alpha and its potential connection with lipoprotein lipase and peroxisome proliferator-activated receptors in blunt snout bream (Megalobrama amblycephala).

    PubMed

    Zhou, Man; Mi, Hai-Feng; Liu, Wen-Bin; Wu, Ye-Yang; Wang, Kai-Zhou; Jiang, Guang-Zhen

    2017-02-13

    Tumour necrosis factor alpha (TNF-α) is one kind of cytokines which is related to inflammation and lipid metabolism. TNF-α cDNA was cloned from the liver of blunt snout bream (Megalobrama amblycephala) through real-time polymerase chain reaction (PCR) and rapid amplification of cDNA ends (RACE) methods. The full-length cDNA of TNF-α covered 1467 bp, with an open reading frame (ORF) of 723 bp, which encodes 240 amino acids. It possessed the TNF family signature IIIPDDGIYFVYSQ. After the lipopolysaccharide (LPS) challenge test, a graded tissue-specific expression pattern of TNF-α was observed and there was high expression abundance in the kidney, brain and liver. After 8 weeks feeding trial, liver samples, two groups fed with 6% and 11% lipid levels, were collected. The results showed that, for fish fed with high-fat diet, the triglyceride of serum and lipid content of liver were elevated. Furthermore, TNF-α and peroxisome proliferator-activated receptors (PPARα, β) mRNA expression of fish fed 11% lipid diet were significantly up-regulated (p < 0.05). Lipoprotein lipase (LPL) and PPARγ mRNA expression of fish fed 11% lipid lever diet were significantly decreased compared to those of fish fed 6% (p < 0.05). The differences between the various expression of related genes in the high and low fat groups demonstrated that TNF-α played a key role in lipid metabolism, which may have an influence on fat metabolism through reducing fat synthesis and strengthening the β-oxidation of fatty acid. These discrepancies warrant further research.

  10. Microplate Bioassay for Determining Substrate Selectivity of "Candida rugosa" Lipase

    ERIC Educational Resources Information Center

    Wang, Shi-zhen; Fang, Bai-shan

    2012-01-01

    Substrate selectivity of "Candida rugosa" lipase was tested using "p"-nitrophenyl esters of increasing chain length (C[subscript 1], C[subscript 7], C[subscript 15]) using the high-throughput screening method. A fast and easy 96-well microplate bioassay was developed to help students learn and practice biotechnological specificity screen. The…

  11. Tuning Lipase Reaction for Production of Fatty Acids from Oil.

    PubMed

    Odaneth, Annamma A; Vadgama, Rajeshkumar N; Bhat, Anuradha D; Lali, Arvind M

    2016-10-01

    Fats or oils are split partially or completely to obtain fatty acids that find wide applications in oleo-chemical industries. Lipase-mediated complete splitting (hydrolysis) of oils is a green process having great potential to replace the traditional methods of oil splitting. However, cost of lipases, mechanistic kinetic equilibrium and associated operational limitations prove to be deterrents for scale up of the enzymatic oil splitting process. In the present study, we demonstrate the use of immobilised 1,3-regioselective lipase (HyLIP) for complete hydrolysis of oil in monophasic reaction medium. Incorporation of a polar organic solvent (tert-butanol, 1:5, v/v) homogenises the oil-water mixture and contributes positively towards complete hydrolysis. The monophasic oil hydrolysis reaction with optimised water concentration (0.05 %, v/v) gave Free Fatty Acid (FFA) yield of 88 % (HyLIP and Novozym-435) and 66 % (TLIM and RMIM). Smart reaction engineering and modification of the reaction intermediates to favourable substrate lead to ∼99 % degree of hydrolysis of triglycerides with ∼90 % FFA yield using 1,3-regioselective lipase. The present work becomes basic platform for developing technologies for synthesis of fatty acids, monoglycerides, diglycerides and glycerol.

  12. Safety evaluation of a lipase expressed in Aspergillus oryzae.

    PubMed

    Greenough, R J; Perry, C J; Stavnsbjerg, M

    1996-02-01

    A programme of studies was conducted to establish the safety of a lipase artificially expressed in Aspergillus oryzae to be used in the detergent industry and as a processing aid in the baking industry. Laboratory animal studies were used to assess general and inhalation toxicity, skin sensitization, and skin and eye irritation. Its potential to cause mutagenicity and chromosomal aberrations was assessed in microbial and tissue culture in vitro studies. The pathogenicity of A. oryzae, the organism used to produce the lipase, was also assessed in laboratory animals. Basic ecotoxicity in a variety of test species was studied. General and inhalation toxicity was low. There was evidence of mild skin irritation. There was no evidence of eye irritation, skin sensitization, mutagenic potential, chromosomal aberrations, exotoxicity or notable pathogenicity. Comparison of these results with human exposure levels and previously published data indicates that the lipase appears safe for consumers in the given applications, requires no special occupational health precautions in manufacture and is of low environmental impact. Furthermore, the organism used in production of the lipase hs no notable pathogenicity.

  13. Study of microwave effects on the lipase-catalyzed hydrolysis.

    PubMed

    Chen, Chia-Chen; Reddy, P Muralidhar; Devi, C Shobha; Chang, Po-Chi; Ho, Yen-Peng

    2016-01-01

    The effect of microwave heating on lipase-catalyzed reaction remains controversial. It is not clear whether the reaction rate enhancements are purely due to thermal/heating effects or to non-thermal effects. Therefore, quantitative mass spectrometry was used to conduct accurate kinetic analysis of lipase-catalyzed hydrolysis of triolein by microwave and conventional heating. Commercial lipases from Candida rugosa (CRL), Porcine Pancreas (PPL), and Burkholderia cepacia (BCL) were used. Hydrolysis reactions were performed at various temperatures and pH levels, along with various amounts of buffer and enzymes. Hydrolysis product yields at each time point using an internal-standard method showed no significant difference between microwave and conventional heating conditions when the reaction was carried out at the same temperature. CRL showed optimum catalytic activity at 37 °C, while PPL and BCL had better activities at 50 °C. The phosphate buffer was found to give a better hydrolysis yield than the Tris-HCl buffer. Overall results prove that a non-thermal effect does not exist in microwave-assisted lipase hydrolysis of triolein. Therefore, conventional heating at high temperatures (e.g., 50 °C) can be also used to accelerate hydrolysis reactions.

  14. Lipase-catalyzed synthesis of partial acylglycerols of acetoacetate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A commercially available immobilized preparation of Rhizomucor miehei lipase (Lipozyme RMIM) has been employed in the synthesis of partial glycerides of acetoacetate. Due to the chemical reactivitity of the acetoacetyl group, these glycerides could have novel uses in e.g. polymer formation. Both 1...

  15. Burkholderia cepacia lipase is a promising biocatalyst for biofuel production.

    PubMed

    Sasso, Francesco; Natalello, Antonino; Castoldi, Simone; Lotti, Marina; Santambrogio, Carlo; Grandori, Rita

    2016-07-01

    Lipases resistant to inhibition and denaturation by methanol are valuable tools for biotechnological applications, in particular for biofuel production. Microbial lipases have attracted a great deal of interest because of their stability at high concentrations of organic solvents. Burkholderia cepacia lipase (BCL) is tested here for robustness towards methanol in terms of conformational stability and catalytic activity in transesterification assays. This lipase turns out to be even more tolerant than the homologous and better characterized enzyme from Burkholderia glumae. BCL unfolding transition, as monitored by far-UV circular dichroism (CD) and intrinsic fluorescence, displays a Tm above 60°C in the presence of 50% methanol. The protein unfolds at low pH, and the organic solvent affects the nature of the denatured state under acidic conditions. The protein performs well in transesterification assays upon prolonged incubations at high methanol concentrations. BCL is highly tolerant to methanol and displays particularly high conformational stability under conditions employed for transesterification reactions. These features depict BCL as a promising enzyme for biofuel industry.

  16. Medium-chain versus long-chain triacylglycerol emulsion hydrolysis by lipoprotein lipase and hepatic lipase: Implications for the mechanisms of lipase action

    SciTech Connect

    Deckelbaum, R.J. ); Hamilton, J.A.; Butbul, E.; Gutman, A. ); Moser, A. ); Bengtsson-Olivecrona, G.; Olivecrona, T. ); Carpentier, Y.A. )

    1990-02-06

    To explore how enzyme affinities and enzyme activities regulate hydrolysis of water-insoluble substrates, the authors compared hydrolysis of phospholipid-stabilized emulsions of medium-chain (MCT) versus long-chain triacylglycerols (LCT). Because substrate solubility at the emulsion surface might modulate rates of hydrolysis, the ability of egg yolk phosphatidylcholine to solubilize MCT was examined by NMR spectroscopy. Chemical shift measurements showed that 11 mol % of ({sup 13}C)carbonyl enriched trioctanoin was incorporated into phospholipid vesicles as a surface component. Line widths of trioctanoin surface peaks were half that of LCT, and relaxation times, T{sub 1}, were also shorter for trioctanoin, showing greater mobility for MCT in phospholipid. In assessing the effects of these differences in solubility on lipolysis, they found that both purified bovine milk lipoprotein lipase and human hepatic lipase hydrolyzed MCT at rates at least 2-fold higher than for LCT. Differences in affinity were also demonstrated in mixed incubations where increasing amounts of LCT emulsion resulted in decreased hydrolysis of MCT emulsions. These results suggest that despite lower enzyme affinity for MCT emulsions, shorter chain triacylglycerols are more readily hydrolyzed by lipoprotein and hepatic lipases than long-chain triacylglycerols because of greater MCT solubility and mobility at the emulsion-water interface.

  17. Fabrication of enzyme-immobilized halloysite nanotubes for affinity enrichment of lipase inhibitors from complex mixtures.

    PubMed

    Wang, Haibo; Zhao, Xiaoping; Wang, Shufang; Tao, Shan; Ai, Ni; Wang, Yi

    2015-05-01

    Lipase is the key enzyme for catalyzing triglyceride hydrolysis in vivo, and lipase inhibitors have been used in the management of obesity. We present the first report on the use of lipase-adsorbed halloysite nanotubes as an efficient medium for the selective enrichment of lipase inhibitors from natural products. A simple and rapid approach was proposed to fabricate lipase-adsorbed nanotubes through electrostatic interaction. Results showed that more than 85% lipase was adsorbed into nanotubes in 90 min, and approximately 80% of the catalytic activity was maintained compared with free lipase. The specificity and reproducibility of the proposed approach were validated by screening a known lipase inhibitor (i.e., orlistat) from a mixture that contains active and inactive compounds. Moreover, we applied this approach with high performance liquid chromatography-mass spectrometry technique to screen lipase inhibitors from the Magnoliae cortex extract, a medicinal plant used for treating obesity. Two novel biphenyl-type natural lipase inhibitors magnotriol A and magnaldehyde B were identified, and their IC50 values were determined as 213.03 and 96.96 μM, respectively. The ligand-enzyme interactions of magnaldehyde B were further investigated by molecular docking. Our findings proved that enzyme-adsorbed nanotube could be used as a feasible and selective affinity medium for the rapid screening of enzyme inhibitors from complex mixtures.

  18. Solvent-induced lid opening in lipases: a molecular dynamics study.

    PubMed

    Rehm, Sascha; Trodler, Peter; Pleiss, Jürgen

    2010-11-01

    In most lipases, a mobile lid covers the substrate binding site. In this closed structure, the lipase is assumed to be inactive. Upon activation of the lipase by contact with a hydrophobic solvent or at a hydrophobic interface, the lid opens. In its open structure, the substrate binding site is accessible and the lipase is active. The molecular mechanism of this interfacial activation was studied for three lipases (from Candida rugosa, Rhizomucor miehei, and Thermomyces lanuginosa) by multiple molecular dynamics simulations for 25 ns without applying restraints or external forces. As initial structures of the simulations, the closed and open structures of the lipases were used. Both the closed and the open structure were simulated in water and in an organic solvent, toluene. In simulations of the closed lipases in water, no conformational transition was observed. However, in three independent simulations of the closed lipases in toluene the lid gradually opened. Thus, pathways of the conformational transitions were investigated and possible kinetic bottlenecks were suggested. The open structures in toluene were stable, but in water the lid of all three lipases moved towards the closed structure and partially unfolded. Thus, in all three lipases opening and closing was driven by the solvent and independent of a bound substrate molecule.

  19. Pancreatic lipase and pancreatic lipase-related protein 2, but not pancreatic lipase-related protein 1, hydrolyze retinyl palmitate in physiological conditions.

    PubMed

    Reboul, Emmanuelle; Berton, Amélie; Moussa, Myriam; Kreuzer, Corinne; Crenon, Isabelle; Borel, Patrick

    2006-01-01

    The major sources of vitamin A in the human diet are retinyl esters (mainly retinyl palmitate) and provitamin A carotenoids. It has been shown that classical pancreatic lipase (PL) is involved in the luminal hydrolysis of retinyl palmitate (RP), but it is not known whether pancreatic lipase-related proteins 1 (PLRP1) and 2 (PLRP2), two other lipases recovered in the human pancreatic juice, are also involved. The aim of this study was to assess whether RP acts a substrate for these lipase-related proteins. Pure horse PL, horse PLRP2 and dog PLRP1 were incubated with RP solubilized in its physiological vehicles, i.e., triglyceride-rich lipid droplets, mixed micelles and vesicles. High performance liquid chromatography (HPLC) was used to assess RP hydrolysis by the free retinol released in the incubation medium. Incubation of RP-containing emulsions with horse PL and colipase resulted in RP hydrolysis (0.051+/-0.01 micromol/min/mg). This hydrolysis was abolished when colipase was not added to the medium. PLRP2 and PLRP1 were unable to hydrolyze RP solubilized in emulsions, regardless of whether colipase was added to the medium. PL hydrolyzed RP solubilized in mixed micelles as well (0.074+/-0.014 micromol/min/mg). Again, this hydrolysis was abolished in the absence of colipase. PLRP2 hydrolyzed RP solubilized in micelles but less efficiently than PL (0.023+/-0.005 micromol/min/mg). Colipase had no effect on this hydrolysis. PLRP1 was unable to hydrolyze RP solubilized in micelles, regardless of whether colipase was present or absent. Both PL and PLRP2 hydrolyzed RP solubilized in a vesicle rich-solution, and a synergic phenomenon between the two lipases was enlighten. Taken together, these results show that (1) PL hydrolyzes RP whether RP is solubilized in emulsions or in mixed micelles, (2) PLRP2 hydrolyzes RP only when RP is solubilized in mixed micelles, and (3) PLRP1 is unable to hydrolyze RP regardless of whether RP is solubilized in emulsions or in mixed

  20. Cloning and Expression of a Subfamily 1.4 Lipase from Bacillus licheniformis IBRL-CHS2.

    PubMed

    Reddy, Nidyaletchmy Subba; Rahim, Rashidah Abdul; Ibrahim, Darah; Kumar, K Sudesh

    2016-11-01

    We report on the cloning of the lipase gene from Bacillus licheniformis IBRL-CHS2 and the expression of the recombinant lipase. DNA sequencing analysis of the cloned lipase gene showed that it shares 99% identity with the lipase gene from B. licheniformis ATCC 14580 and belongs to subfamily 1.4 of true lipases based on amino acid sequence alignment of various Bacillus lipases. The 612 bp lipase gene was then cloned into the pET-15b(+) expression vector and the construct was transformed into E. coli BL21 (DE3) for bulk expression of the lipase. Expression was analysed by SDS-PAGE where the lipase was found to have a molecular weight of about 23 kDa.

  1. Cloning and Expression of a Subfamily 1.4 Lipase from Bacillus licheniformis IBRL-CHS2

    PubMed Central

    Reddy, Nidyaletchmy Subba; Rahim, Rashidah Abdul; Ibrahim, Darah; Kumar, K. Sudesh

    2016-01-01

    We report on the cloning of the lipase gene from Bacillus licheniformis IBRL-CHS2 and the expression of the recombinant lipase. DNA sequencing analysis of the cloned lipase gene showed that it shares 99% identity with the lipase gene from B. licheniformis ATCC 14580 and belongs to subfamily 1.4 of true lipases based on amino acid sequence alignment of various Bacillus lipases. The 612 bp lipase gene was then cloned into the pET-15b(+) expression vector and the construct was transformed into E. coli BL21 (DE3) for bulk expression of the lipase. Expression was analysed by SDS-PAGE where the lipase was found to have a molecular weight of about 23 kDa. PMID:27965753

  2. Identification of lipase encoding genes from Antarctic seawater bacteria using degenerate primers: expression of a cold-active lipase with high specific activity.

    PubMed

    Parra, Loreto P; Espina, Giannina; Devia, Javier; Salazar, Oriana; Andrews, Barbara; Asenjo, Juan A

    2015-01-01

    Cold-active enzymes are valuable catalysts showing high activity at low and moderate temperatures and low thermostability. Among cold-active enzymes, lipases offer a great potential in detergent, cosmetic, biofuel and food or feed industries. In this paper we describe the identification of novel lipase coding genes and the expression of a lipase with high activity at low temperatures. The genomic DNA from Antarctic seawater bacteria showing lipolytic activity at 4°C was used to amplify five DNA fragments that partially encode novel lipases using specifically designed COnsensus-DEgenerate Hybrid Oligonucleotide Primers (CODEHOP). All the fragments were found to have a high identity with an α/β-hydrolase domain-containing protein identified by the sequencing of the complete genome of Shewanella frigidimarina NCIMB 400. The complete sequence of one of the lipase-coding gene fragments, lipE13, was obtained by genome walking. Considering that the other fragments had a high identity to the putative lipase from S. frigidimarina NCIMB 400, the complete lipase genes were amplified using oligonucleotide primers designed based on the 5' and 3' regions of the coding sequence of the related protein. This strategy allowed the amplification of 3 lipase-encoding genes of which one was expressed in the periplasm using the Escherichia coli BL21(DE3)/pET-22b(+) expression system. The recombinant protein was obtained with activity toward p-nitrophenyl caproate showing a high specific activity between 15 and 25°C.

  3. Cloning and expression of gene, and activation of an organic solvent-stable lipase from Pseudomonas aeruginosa LST-03.

    PubMed

    Ogino, Hiroyasu; Katou, Yoshikazu; Akagi, Rieko; Mimitsuka, Takashi; Hiroshima, Shinichi; Gemba, Yuichi; Doukyu, Noriyuki; Yasuda, Masahiro; Ishimi, Kosaku; Ishikawa, Haruo

    2007-11-01

    Organic solvent-tolerant Pseudomonas aeruginosa LST-03 secretes an organic solvent-stable lipase, LST-03 lipase. The gene of the LST-03 lipase (Lip9) and the gene of the lipase-specific foldase (Lif9) were cloned and expressed in Escherichia coli. In the cloned 2.6 kbps DNA fragment, two open reading frames, Lip9 consisting of 933 nucleotides which encoded 311 amino acids and Lif9 consisting of 1,020 nucleotides which encoded 340 amino acids, were found. The overexpression of the lipase gene (lip9) was achieved when T7 promoter was used and the signal peptide of the lipase was deleted. The expressed amount of the lipase was greatly increased and overexpressed lipase formed inclusion body in E. coli cell. The collected inclusion body of the lipase from the cell was easily solubilized by urea and activated by using lipase-specific foldase of which 52 or 58 amino acids of N-terminal were deleted. Especially, the N-terminal methionine of the lipase of which the signal peptide was deleted was released in E. coli and the amino acid sequence was in agreement with that of the originally-produced lipase by P. aeruginosa LST-03. Furthermore, the overexpressed and solubilized lipase of which the signal peptide was deleted was more effectively activated by lipase-specific foldase.

  4. Analysis of Comparative Sequence and Genomic Data to Verify Phylogenetic Relationship and Explore a New Subfamily of Bacterial Lipases

    PubMed Central

    Salleh, Abu Bakar; Basri, Mahiran

    2016-01-01

    Thermostable and organic solvent-tolerant enzymes have significant potential in a wide range of synthetic reactions in industry due to their inherent stability at high temperatures and their ability to endure harsh organic solvents. In this study, a novel gene encoding a true lipase was isolated by construction of a genomic DNA library of thermophilic Aneurinibacillus thermoaerophilus strain HZ into Escherichia coli plasmid vector. Sequence analysis revealed that HZ lipase had 62% identity to putative lipase from Bacillus pseudomycoides. The closely characterized lipases to the HZ lipase gene are from thermostable Bacillus and Geobacillus lipases belonging to the subfamily I.5 with ≤ 57% identity. The amino acid sequence analysis of HZ lipase determined a conserved pentapeptide containing the active serine, GHSMG and a Ca2+-binding motif, GCYGSD in the enzyme. Protein structure modeling showed that HZ lipase consisted of an α/β hydrolase fold and a lid domain. Protein sequence alignment, conserved regions analysis, clustal distance matrix and amino acid composition illustrated differences between HZ lipase and other thermostable lipases. Phylogenetic analysis revealed that this lipase represented a new subfamily of family I of bacterial true lipases, classified as family I.9. The HZ lipase was expressed under promoter Plac using IPTG and was characterized. The recombinant enzyme showed optimal activity at 65°C and retained ≥ 97% activity after incubation at 50°C for 1h. The HZ lipase was stable in various polar and non-polar organic solvents. PMID:26934700

  5. Direct epoxidation in Candida antarctica lipase B studied by experiment and theory.

    PubMed

    Svedendahl, Maria; Carlqvist, Peter; Branneby, Cecilia; Allnér, Olof; Frise, Anton; Hult, Karl; Berglund, Per; Brinck, Tore

    2008-10-13

    Candida antarctica lipase B (CALB) is a promiscuous serine hydrolase that, besides its native function, catalyzes different side reactions, such as direct epoxidation. A single-point mutant of CALB demonstrated a direct epoxidation reaction mechanism for the epoxidation of alpha,beta-unsaturated aldehydes by hydrogen peroxide in aqueous and organic solution. Mutation of the catalytically active Ser105 to alanine made the previously assumed indirect epoxidation reaction mechanism impossible. Gibbs free energies, activation parameters, and substrate selectivities were determined both computationally and experimentally. The energetics and mechanism for the direct epoxidation in CALB Ser105Ala were investigated by density functional theory calculations, and it was demonstrated that the reaction proceeds through a two step-mechanism with formation of an oxyanionic intermediate. The active-site residue His224 functions as a general acid-base catalyst with support from Asp187. Oxyanion stabilization is facilitated by two hydrogen bonds from Thr40.

  6. [Role of metabolic lipases and lipotoxicity in the development of non-alcoholic steatosis and non-alcoholic steatohepatitis].

    PubMed

    Berlanga, Alba; Guiu-Jurado, Esther; Porras, José Antonio; Aragonès, Gemma; Auguet, Teresa

    2016-01-01

    Non-alcoholic fatty liver disease (NAFLD) has become the most common liver disease in developed countries, covering a spectrum of pathological conditions ranging from single steatosis to non-alcoholic steatohepatitis, cirrhosis and hepatocellular carcinoma. Its pathogenesis has been often interpreted by the "double-hit" hypothesis, where the lipid accumulation in the liver is followed by proinflammatory mediators inducing inflammation, hepatocellular injury and fibrosis. Nowadays, a more complex model suggests that free fatty acids and their metabolites could be the true lipotoxic agents that contribute to the development of NAFLD and hepatic insulin resistance, suggesting a central role for metabolic lipases in that process.

  7. The β5-Loop and Lid Domain Contribute to the Substrate Specificity of Pancreatic Lipase-related Protein 2 (PNLIPRP2).

    PubMed

    Xiao, Xunjun; Lowe, Mark E

    2015-11-27

    Pancreatic triglyceride lipase (PNLIP) is essential for dietary fat digestion in children and adults, whereas a homolog, pancreatic lipase-related protein 2 (PNLIPRP2), is critical in newborns. The two lipases are structurally similar, yet they have different substrate specificities. PNLIP only cleaves neutral fats. PNLIPRP2 cleaves neutral and polar fats. To test the hypothesis that the differences in activity between PNLIP and PNLIPRP2 are governed by surface loops around the active site, we created multiple chimeras of both lipases by exchanging the surface loops singly or in combination. The chimeras were expressed, purified, and tested for activity against various substrates. The structural determinants of PNLIPRP2 galactolipase activity were contained in the N-terminal domain. Of the surface loops tested, the lid domain and the β5-loop influenced activity against triglycerides and galactolipids. Any chimera on PNLIP with the PNLIPRP2 lid domain or β5-loop had decreased triglyceride lipase activity similar to that of PNLIPRP2. The corresponding chimeras of PNLIPRP2 did not increase activity against neutral lipids. Galactolipase activity was abolished by the PNLIP β5-loop and decreased by the PNLIP lid domain. The source of the β9-loop had minimal effect on activity. We conclude that the lid domain and β5-loop contribute to substrate specificity but do not completely account for the differing activities of PNLIP and PNLIPRP2. Other regions in the N-terminal domain must contribute to the galactolipase activity of PNLIPRP2 through direct interactions with the substrate or by altering the conformation of the residues surrounding the hydrophilic cavity in PNLIPRP2.

  8. Lipase production by yeasts from extra virgin olive oil.

    PubMed

    Ciafardini, G; Zullo, B A; Iride, A

    2006-02-01

    Newly produced olive oil has an opalescent appearance due to the presence of solid particles and micro-drops of vegetation water from the fruits. Some of our recent microbiological research has shown that a rich micro-flora is present in the suspended fraction of the freshly produced olive oil capable of improving the quality of the oil through the hydrolysis of the oleuropein. Present research however has, for the first time, demonstrated the presence of lipase-positive yeasts in some samples of extra virgin olive oil which can lower the quality of the oil through the hydrolysis of the triglycerides. The tests performed with yeasts of our collection, previously isolated from olive oil, demonstrated that two lipase-producing yeast strains named Saccharomyces cerevisiae 1525 and Williopsis californica 1639 were able to hydrolyse different specific synthetic substrates represented by p-nitrophenyl stearate, 4-nitrophenyl palmitate, tripalmitin and triolein as well as olive oil triglycerides. The lipase activity in S. cerevisiae 1525 was confined to the whole cells, whereas in W. californica 1639 it was also detected in the extracellular fraction. The enzyme activity in both yeasts was influenced by the ratio of the aqueous to the organic phase reaching its maximum value in S. cerevisiae 1525 when the water added to the olive oil was present in a ratio of 0.25% (v/v), whereas in W. californica 1639 the optimal ratio was 1% (v/v). Furthermore, the free fatty acids of olive oil proved to be good inducers of lipase activity in both yeasts. The microbiological analysis carried out on commercial extra virgin olive oil, produced in four different geographic areas, demonstrated that the presence of lipase-producing yeast varied from zero to 56% of the total yeasts detected, according to the source of oil samples. The discovery of lipase-positive yeasts in some extra virgin olive oils leads us to believe that yeasts are able to contribute in a positive or negative way towards

  9. Effects of methanol on lipases: molecular, kinetic and process issues in the production of biodiesel.

    PubMed

    Lotti, Marina; Pleiss, Jürgen; Valero, Francisco; Ferrer, Pau

    2015-01-01

    The biotechnological production of biodiesel is based on transesterification/esterification reactions between a source of fatty acids and a short-chain alcohol, usually methanol, catalysed by enzymes belonging to the class known as lipases. Several lipases used in industrial processes, although stable in the presence of other organic solvents, are inactivated by methanol at or below the concentration optimal for biodiesel production, making it necessary to use stepwise methanol feeding or pre-treatment of the enzyme. In this review article we focus on what is currently know about methanol inactivation of lipases, a phenomenon which is not common to all lipase enzymes, with the goal of improving the biocatalytic process. We suggest that different mechanisms can lead to inactivation of different lipases, in particular substrate inhibition and protein unfolding. Attempts to improve the performances of methanol sensitive lipases by mutagenesis as well as process engineering approaches are also summarized.

  10. Dry fermented sausages elaborated with lipase from Candida cylindracea. Comparison with traditional formulations.

    PubMed

    Zalacain, I; Zapelena, M J; Astiasarán, I; Bello, J

    1995-01-01

    The addition of microbial lipase to fermented sausages was studied. A sausage with lipase from Candida cylindracea and a control sausage with starter (Lactobacillus plantarum and Staphylococcus carnosus) were produced in a pilot plant. The acidity value and the amounts of the different free fatty acids (FFA) showed a higher intensity of lipolytic activity in sausages with lipase than in sausages with starter. In sausages with lipase, the percentage of saturated FFA was greater and that of polyunsaturated FFA was lower than in sausage with starter. Mono-unsaturated FFA percentage was similar in both sausages. TBA and peroxide values indicated that the increase of FFA produced by lipase action did not increase the rancidity. A slight increase in acetic, propionic and butyric acids was observed in sausage with lipase but this was not sufficient to develop excessive acidity in the product.

  11. Covalent immobilization of lipases on monodisperse magnetic microspheres modified with PAMAM-dendrimer

    NASA Astrophysics Data System (ADS)

    Zhu, Weiwei; Zhang, Yimei; Hou, Chen; Pan, Duo; He, Jianjun; Zhu, Hao

    2016-02-01

    This paper reported an immobilization of Candida rugosa lipase (CRL) onto PAMAM-dendrimer-grafted magnetic nanoparticles synthesized by a modified solvothermal reduction method. The dendritic magnetic nanoparticles were amply characterized by several instrumental measurements, and the CRL was covalently anchored on the three generation supports with glutaraldehyde as coupling reagent. The amount of immobilized enzyme was up to 150 mg/g support and the factors related with the enzyme activity were investigated. The immobilization of lipase improved their performance in wider ranges of pH and temperature. The immobilized lipase exhibited excellent thermal stability and reusability in comparison with free enzyme and can be reused 10 cycles with the enzymatic activity remained above 90 %. The properties of lipase improved obviously after being immobilized on the dendritic supports. The inactive immobilized lipase could be regenerated with glutaraldehyde and Cu2+, respectively. This synthetic strategy was facile and eco-friendly for applications in lipase immobilization.

  12. Development of a bioautographic method for the detection of lipase inhibitors.

    PubMed

    Bayineni, Venkata Krishna; Suresh, Sukrutha; Singh, Gurmeet; Kadeppagari, Ravi-Kumar

    2014-10-31

    An autobiographic method based on the thin layer chromatogram was developed by using the chemical system that comprises p-Nitrophenyl butyrate and bromothymol blue for detecting the lipase inhibitor. Lipase inhibitory zones were visualized as blue spots against the greenish yellow background. This method could able to detect the well known lipase inhibitor, orlistat up to the concentration of 1ng which is better than the earlier method. This method could also able to detect the lipase inhibition activities from the un-explored species of Streptomyces. The developed method can be used not only for the screening of unknown samples for the lipase inhibitors but also for the purification of the lipase inhibitors from the unknown samples.

  13. Novel magnetic cross-linked lipase aggregates for improving the resolution of (R, S)-2-octanol.

    PubMed

    Liu, Ying; Guo, Chen; Liu, Chun-Zhao

    2015-03-01

    Novel magnetic cross-linked lipase aggregates were fabricated by immobilizing the cross-linked lipase aggregates onto magnetic particles with a high number of -NH2 terminal groups using p-benzoquinone as the cross-linking agent. At the optimal fabrication conditions, 100% of immobilization efficiency and 139% of activity recovery of the magnetic cross-linked lipase aggregates were achieved. The magnetic cross-linked lipase aggregates were able to efficiently resolve (R, S)-2-octanol, and retained 100% activity and 100% enantioselectivity after 10 cycles of reuse, whereas the cross-linked lipase aggregates only retained about 50% activity and 70% enantioselectivity due to insufficient cross-linking. These results provide a great potential for industrial applications of the magnetic cross-linked lipase aggregates.

  14. Lipase entrapment in PVA/Chitosan biodegradable film for reactor coatings.

    PubMed

    Batista, Karla A; Lopes, Flavio Marques; Yamashita, Fabio; Fernandes, Kátia Flávia

    2013-04-01

    This study reports the development and characterization of novel biodegradable film, based on chitosan and polyvinyl alcohol containing lipase entrapped. The films showed a thickness of 70.4 and 79 μm to PVA/Chitosan and PVA/Chitosan/Lipase, respectively. The entrapment of lipase in PVA/Chitosan film resulted in increasing of 69.4% tensile strength (TS), and 52.4% of elongation. SEM images showed the formation of a continuous film, without pores or cracks. The lipase entrapment efficiency was estimated in 92% and the films were repeatedly used for 25 hydrolytic cycles, maintaining 62% of initial activity. The PVA/Chitosan/Lipase film was used for olive oil hydrolysis of high performance. These results indicate that PVA/Chitosan/Lipase is a promising material for biotechnology applications such as triacylglycerol hydrolysis and biodiesel production.

  15. Collagen-Immobilized Lipases Show Good Activity and Reusability for Butyl Butyrate Synthesis.

    PubMed

    Dewei, Song; Min, Chen; Haiming, Cheng

    2016-11-01

    Candida rugosa lipases were immobilized onto collagen fibers through glutaraldehyde cross-linking method. The immobilization process has been optimized. Under the optimal immobilization conditions, the activity of the collagen-immobilized lipase reached 340 U/g. The activity was recovered of 28.3 % by immobilization. The operational stability of the obtained collagen-immobilized lipase for hydrolysis of olive oil emulsion was determined. The collagen-immobilized lipase showed good tolerance to temperature and pH variations in comparison to free lipase. The collagen-immobilized lipase was also applied as biocatalyst for synthesis of butyl butyrate from butyric acid and 1-butanol in n-hexane. The conversion yield was 94 % at the optimal conditions. Of its initial activity, 64 % was retained after 5 cycles for synthesizing butyl butyrate in n-hexane.

  16. Amylase and Lipase Detection in Hemorrhaged Animals Treated with HBOC-201

    DTIC Science & Technology

    2011-01-01

    4184 online DOl: 10.3109/10731199.2010.516260 inform a healthcare Amylase and Lipase Detection in Hemorrhaged Animals Treated with HBOC-201 Fran...Health Sciences, Bethesda, MD, USA Abstract: HBOC-201 may alter lipase and amylase detection on chemistry analyzers using optical methods and affect...pancreatic function after trauma. Amylase and lipase measurements were correlated against HBOC-201 to evaluate interference on samples spiked with

  17. New member of the hormone-sensitive lipase family from the permafrost microbial community.

    PubMed

    Petrovskaya, Lada E; Novototskaya-Vlasova, Ksenia A; Gapizov, Sultan Sh; Spirina, Elena V; Durdenko, Ekaterina V; Rivkina, Elizaveta M

    2016-10-18

    Siberian permafrost is a unique environment inhabited with diverse groups of microorganisms. Among them, there are numerous producers of biotechnologically relevant enzymes including lipases and esterases. Recently, we have constructed a metagenomic library from a permafrost sample and identified in it several genes coding for potential lipolytic enzymes. In the current work, properties of the recombinant esterases obtained from this library are compared with the previously characterized lipase from Psychrobacter cryohalolentis and other representatives of the hormone-sensitive lipase family.

  18. Biodiesel production with special emphasis on lipase-catalyzed transesterification.

    PubMed

    Bisen, Prakash S; Sanodiya, Bhagwan S; Thakur, Gulab S; Baghel, Rakesh K; Prasad, G B K S

    2010-08-01

    The production of biodiesel by transesterification employing acid or base catalyst has been industrially accepted for its high conversion and reaction rates. Downstream processing costs and environmental problems associated with biodiesel production and byproducts recovery have led to the search for alternative production methods. Recently, enzymatic transesterification involving lipases has attracted attention for biodiesel production as it produces high purity product and enables easy separation from the byproduct, glycerol. The use of immobilized lipases and immobilized whole cells may lower the overall cost, while presenting less downstream processing problems, to biodiesel production. The present review gives an overview on biodiesel production technology and analyzes the factors/methods of enzymatic approach reported in the literature and also suggests suitable method on the basis of evidence for industrial production of biodiesel.

  19. Cell-bound lipase and esterase of Brevibacterium linens.

    PubMed

    Sorhaug, T; Ordal, Z J

    1974-03-01

    The activities of glycerol ester hydrolase, lipase (EC 3.1.1.3) and carboxylesterase, and esterase (EC 3.1.1.1) were determined for whole cell preparations of Brevibacterium linens by using the pH-stat assay. The culture growth liquors were inactive against the three substrates, tributyrin emulsion, triacetin, and methyl butyrate. Cells washed in water had less activity than cells washed in 5% NaCl; the ratio of activities was close to 1:2 for all strains using tributyrin emulsion as the substrate. For the esterase substrates, this relationship varied widely and was strain dependent. The ability to hydrolyze the two esterase substrates varied independently of the level of lipase activity.

  20. Enzymatic modification of cassava starch by bacterial lipase.

    PubMed

    Rajan, Akhila; Abraham, T Emilia

    2006-06-01

    Enzymatic modification of starch using long chain fatty acid makes it thermoplastic suitable for a myriad of industrial applications. An industrial lipase preparation produced by Burkholderia cepacia (lipase PS) was used for modification of cassava starch with two acyl donors, lauric acid and palmitic acid. Reactions performed with palmitic acid by liquid-state and microwave esterification gave a degree of substitution (DS) of 62.08% (DS 1.45) and 42.06% (DS 0.98), respectively. Thermogravimetric analysis showed that onset of decomposition is at a higher temperature (above 600 degrees Celsius) for modified starch than the unmodified starch (280 degrees Celsius). Modified starch showed reduction in alpha-amylase digestibility compared to native starch (76.5-18%). Swelling power lowered for modified starch as esterification renders starch more hydrophobic, making it suitable for biomedical applications as materials for bone fixation and replacements, carriers for controlled release of drugs and bioactive agents. Thus enzymatic esterification is ecofriendly.

  1. Covalent immobilization of Pseudomonas cepacia lipase on semiconducting materials

    NASA Astrophysics Data System (ADS)

    Fernandez, Renny Edwin; Bhattacharya, Enakshi; Chadha, Anju

    2008-05-01

    Lipase from Pseudomonas cepacia was covalently immobilized on crystalline silicon, porous silicon and silicon nitride surfaces. The various stages of immobilization were characterized using FTIR (Fourier transform infrared) spectroscopy. The surface topography of the enzyme immobilized surfaces was investigated using scanning electron microscopy (SEM). The quantity of the immobilized active enzyme was estimated by the para-nitrophenyl palmitate (pNPP) assay. The immobilized lipase was used for triglyceride hydrolysis and the acid produced was detected by a pH sensitive silicon nitride surface as a shift in the C- V (capacitance-voltage) characteristics of an electrolyte-insulator-semiconductor capacitor (EISCAP) thus validating the immobilization method for use as a biosensor.

  2. A novel thermostable lipase from basidiomycete Bjerkandera adusta R59: characterisation and esterification studies.

    PubMed

    Bancerz, Renata; Ginalska, Grazyna

    2007-08-01

    Microbial lipases are widely diversified in their enzymatic properties and substrate specificities, which make them very attractive for industrial application. Partially purified lipase from Bjerkandera adusta R59 was immobilized on controlled porous glass (CPG) and its properties were compared with those of the free enzyme. The free and immobilized lipases showed optimal activities at 45 and 50 degrees C, respectively. Both enzyme forms were highly thermostable up to 60 degrees C. The enzymes were stable at pH from 6.0 to 9.0 and their optimal pH for activity was 7.0. The free lipase was more thermostable in n-hexane than in aqueous environment. Both lipase preparations had good stabilities in non-polar solvents and were capable of hydrolysing a variety of synthetic and natural fats. Non-immobilized lipase activity was inhibited by disulphide bond reagents, serine and thiol inhibitors, while EDTA and eserine had no effect on enzyme activity. All anionic detergents tested in experiments inhibited lipase activity. The free lipase showed good stability in the presence of commercial detergents at laundry pH and temperatures. Applications of free and immobilized lipases for esterification were also presented.

  3. Lipase cocktail for efficient conversion of oils containing phospholipids to biodiesel.

    PubMed

    Amoah, Jerome; Ho, Shih-Hsin; Hama, Shinji; Yoshida, Ayumi; Nakanishi, Akihito; Hasunuma, Tomohisa; Ogino, Chiaki; Kondo, Akihiko

    2016-07-01

    The presence of phospholipid has been a challenge in liquid enzymatic biodiesel production. Among six lipases that were screened, lipase AY had the highest hydrolysis activity and a competitive transesterification activity. However, it yielded only 21.1% FAME from oil containing phospholipids. By replacing portions of these lipases with a more robust bioFAME lipase, CalT, the combination of lipase AY-CalT gave the highest FAME yield with the least amounts of free fatty acids and partial glycerides. A higher methanol addition rate reduced FAME yields for lipase DF-CalT and A10D-CalT combinations while that of lipase AY-CalT combination improved. Optimizing the methanol addition rate for lipase AY-CalT resulted in a FAME yield of 88.1% at 2h and more than 95% at 6h. This effective use of lipases could be applied for the rapid and economic conversion of unrefined oils to biodiesel.

  4. Acid lipase from Candida viswanathii: production, biochemical properties, and potential application.

    PubMed

    de Almeida, Alex Fernando; Tauk-Tornisielo, Sâmia Maria; Carmona, Eleonora Cano

    2013-01-01

    Influences of environmental variables and emulsifiers on lipase production of a Candida viswanathii strain were investigated. The highest lipase activity (101.1 U) was observed at 210 rpm, pH 6.0, and 27.5°C. Other fermentation parameters analyzed showed considerable rates of biomass yield (Y L/S = 1.381 g/g), lipase yield (Y L/S = 6.892 U/g), and biomass productivity (P X = 0.282 g/h). Addition of soybean lecithin increased lipase production in 1.45-fold, presenting lipase yield (Y L/S ) of 10.061 U/g. Crude lipase presented optimal activity at acid pH of 3.5, suggesting a new lipolytic enzyme for this genus and yeast in general. In addition, crude lipase presented high stability in acid conditions and temperature between 40 and 45°C, after 24 h of incubation in these temperatures. Lipase remained active in the presence of organic solvents maintaining above 80% activity in DMSO, methanol, acetonitrile, ethanol, acetone, 1-propanol, isopropanol, and 2-propanol. Effectiveness for the hydrolysis of a wide range of natural triglycerides suggests that this new acid lipase has high potential application in the oleochemical and food industries for hydrolysis and/or modification of triacylglycerols to improve the nutritional properties.

  5. Lipases production by solid-state fermentation: the case of Rhizopus homothallicus in perlite.

    PubMed

    Velasco-Lozano, Susana; Volke-Sepulveda, Tania; Favela-Torres, Ernesto

    2012-01-01

    Lipases are widely used in the industry for different purposes. Although these enzymes are mainly produced by submerged fermentation, lipase production by solid-state fermentation (SSF) has been gaining interest due to the advantages of this type of culture. Major advantages are higher production titers and productivity, less catabolite repression, and use of the dried fermented material as biocatalyst. This chapter describes a traditional methodology to produce fungal (Rhizopus homothallicus) lipases by SSF using perlite as inert support. The use of different devices (glass columns or Erlenmeyer flasks) and type of inoculum (spores or growing mycelium) is considered so that lipase production by SSF could be easily performed in any laboratory.

  6. Role of lipase in Burkholderia cepacia complex (Bcc) invasion of lung epithelial cells.

    PubMed

    Mullen, T; Markey, K; Murphy, P; McClean, S; Callaghan, M

    2007-12-01

    The Burkholderia cepacia complex (Bcc) is a group of ten closely related species associated with life-threatening infection in cystic fibrosis (CF). These bacteria are highly antibiotic resistant, with some strains transmissible, and in a subgroup of patients, they can cause a rapid and fatal necrotising pneumonia. The Bcc organisms produce a range of exoproducts with virulence potential, including exopolysaccharide, proteases and lipases. Many members of the Bcc are also capable of epithelial cell invasion, although the mechanism(s) involved are poorly understood. This study investigates a role for Bcc lipase in epithelial cell invasion by Bcc strains. Lipase activity was measured in eight species of the Bcc. Strains that produced high levels of lipase were predominantly from the B. multivorans and B. cenocepacia species. Pre-treatment of two epithelial cell lines with Bcc lipase significantly increased invasion by two B. multivorans strains and one B. cenocepacia strain and did not affect either plasma membrane or tight junction integrity. Inhibition of Bcc lipase production by the lipase inhibitor Orlistat significantly decreased invasion by both B. multivorans and B. cenocepacia strains in a concentration-dependent manner. This study demonstrates the extent of lipase production across the Bcc and establishes a potential role for lipase in Bcc epithelial cell invasion.

  7. Acid Lipase from Candida viswanathii: Production, Biochemical Properties, and Potential Application

    PubMed Central

    de Almeida, Alex Fernando; Carmona, Eleonora Cano

    2013-01-01

    Influences of environmental variables and emulsifiers on lipase production of a Candida viswanathii strain were investigated. The highest lipase activity (101.1 U) was observed at 210 rpm, pH 6.0, and 27.5°C. Other fermentation parameters analyzed showed considerable rates of biomass yield (YL/S = 1.381 g/g), lipase yield (YL/S = 6.892 U/g), and biomass productivity (PX = 0.282 g/h). Addition of soybean lecithin increased lipase production in 1.45-fold, presenting lipase yield (YL/S) of 10.061 U/g. Crude lipase presented optimal activity at acid pH of 3.5, suggesting a new lipolytic enzyme for this genus and yeast in general. In addition, crude lipase presented high stability in acid conditions and temperature between 40 and 45°C, after 24 h of incubation in these temperatures. Lipase remained active in the presence of organic solvents maintaining above 80% activity in DMSO, methanol, acetonitrile, ethanol, acetone, 1-propanol, isopropanol, and 2-propanol. Effectiveness for the hydrolysis of a wide range of natural triglycerides suggests that this new acid lipase has high potential application in the oleochemical and food industries for hydrolysis and/or modification of triacylglycerols to improve the nutritional properties. PMID:24350270

  8. Characterization of biotechnologically relevant extracellular lipase produced by Aspergillus terreus NCFT 4269.10.

    PubMed

    Sethi, Bijay Kumar; Nanda, Prativa Kumari; Sahoo, Santilata

    2016-01-01

    Enzyme production by Aspergillus terreus NCFT 4269.10 was studied under liquid static surface and solid-state fermentation using mustard oil cake as a substrate. The maximum lipase biosynthesis was observed after incubation at 30°C for 96h. Among the domestic oils tested, the maximum lipase biosynthesis was achieved using palm oil. The crude lipase was purified 2.56-fold to electrophoretic homogeneity, with a yield of 8.44%, and the protein had a molecular weight of 46.3kDa as determined by SDS-PAGE. Enzyme characterization confirmed that the purified lipase was most active at pH 6.0, temperature of 50°C, and substrate concentration of 1.5%. The enzyme was thermostable at 60°C for 1h, and the optimum enzyme-substrate reaction time was 30min. Sodium dodecyl sulfate and commercial detergents did not significantly affect lipase activity during 30-min incubation at 30°C. Among the metal ions tested, the maximum lipase activity was attained in the presence of Zn(2+), followed by Mg(2+) and Fe(2+). Lipase activity was not significantly affected in the presence of ethylenediaminetetraacetic acid, sodium lauryl sulfate and Triton X-100. Phenylmethylsulfonyl fluoride (1mM) and the reducing, β-mercaptoethanol significantly inhibited lipase activity. The remarkable stability in the presence of detergents, additives, inhibitors and metal ions makes this lipase unique and a potential candidate for significant biotechnological exploitation.

  9. Lingual lipase activity in the orosensory detection of fat by humans.

    PubMed

    Kulkarni, Bhushan V; Mattes, Richard D

    2014-06-15

    Lingual lipase generates nonesterified fatty acids (NEFA) from dietary fats during oral processing by lipolysis. Lingual lipase in rodents has strong lipolytic activity and plays a critical role in oral detection of fats. The functional activity of lingual lipase during oral processing of high-fat foods in humans remains poorly characterized. Five commonly consumed high-fat foods varying in physical states and fatty acid composition (almond, almond butter, olive oil, walnut, and coconut) were masticated by 15 healthy human subjects at the rate of one chew per second with and without lipase inhibitor orlistat. Salivary NEFA concentrations were measured. To determine the role of lingual lipase in oral fat detection, sensory ratings were obtained from the same 15 human subjects for almond butter with and without orlistat. Lingual lipase was active during oral processing of almond and coconut. No activity of lingual lipase was detected during processing of almond butter. There was only weak evidence lingual lipase is a determinant of oral fat detection. Lingual lipase may only contribute to NEFA generation and oral fat detection of fatty foods that require stronger oral processing effort.

  10. Lingual lipase activity in the orosensory detection of fat by humans

    PubMed Central

    Kulkarni, Bhushan V.

    2014-01-01

    Lingual lipase generates nonesterified fatty acids (NEFA) from dietary fats during oral processing by lipolysis. Lingual lipase in rodents has strong lipolytic activity and plays a critical role in oral detection of fats. The functional activity of lingual lipase during oral processing of high-fat foods in humans remains poorly characterized. Five commonly consumed high-fat foods varying in physical states and fatty acid composition (almond, almond butter, olive oil, walnut, and coconut) were masticated by 15 healthy human subjects at the rate of one chew per second with and without lipase inhibitor orlistat. Salivary NEFA concentrations were measured. To determine the role of lingual lipase in oral fat detection, sensory ratings were obtained from the same 15 human subjects for almond butter with and without orlistat. Lingual lipase was active during oral processing of almond and coconut. No activity of lingual lipase was detected during processing of almond butter. There was only weak evidence lingual lipase is a determinant of oral fat detection. Lingual lipase may only contribute to NEFA generation and oral fat detection of fatty foods that require stronger oral processing effort. PMID:24694384

  11. Molecular and functional diversity of yeast and fungal lipases: their role in biotechnology and cellular physiology.

    PubMed

    Gupta, Rani; Kumari, Arti; Syal, Poonam; Singh, Yogesh

    2015-01-01

    Lipase catalyzes hydrolysis of fats in lipid water interphase and perform variety of biotransformation reactions under micro aqueous conditions. The major sources include microbial lipases; among these yeast and fungal lipases are of special interest because they can carry out various stereoselective reactions. These lipases are highly diverse and are categorized into three classes on the basis of oxyanion hole: GX, GGGX and Y. The detailed phylogenetic analysis showed that GX family is more diverse than GGGX and Y family. Sequence and structural comparisons revealed that lipases are conserved only in the signature sequence region. Their characteristic structural determinants viz. lid, binding pocket and oxyanion hole are hotspots for mutagenesis. Few examples are cited in this review to highlight the multidisciplinary approaches for designing novel enzyme variants with improved thermo stability and substrate specificity. In addition, we present a brief account on biotechnological applications of lipases. Lipases have also gained attention as virulence factors, therefore, we surveyed the role of lipases in yeast physiology related to colonization, adhesion, biofilm formation and pathogenesis. The new genomic era has opened numerous possibilities to genetically manipulate lipases for food, fuel and pharmaceuticals.

  12. High-throughput screening method for lipases/esterases.

    PubMed

    Mateos-Díaz, Eduardo; Rodríguez, Jorge Alberto; de Los Ángeles Camacho-Ruiz, María; Mateos-Díaz, Juan Carlos

    2012-01-01

    High-throughput screening (HTS) methods for lipases and esterases are generally performed by using synthetic chromogenic substrates (e.g., p-nitrophenyl, resorufin, and umbelliferyl esters) which may be misleading since they are not their natural substrates (e.g., partially or insoluble triglycerides). In previous works, we have shown that soluble nonchromogenic substrates and p-nitrophenol (as a pH indicator) can be used to quantify the hydrolysis and estimate the substrate selectivity of lipases and esterases from several sources. However, in order to implement a spectrophotometric HTS method using partially or insoluble triglycerides, it is necessary to find particular conditions which allow a quantitative detection of the enzymatic activity. In this work, we used Triton X-100, CHAPS, and N-lauroyl sarcosine as emulsifiers, β-cyclodextrin as a fatty acid captor, and two substrate concentrations, 1 mM of tributyrin (TC4) and 5 mM of trioctanoin (TC8), to improve the test conditions. To demonstrate the utility of this method, we screened 12 enzymes (commercial preparations and culture broth extracts) for the hydrolysis of TC4 and TC8, which are both classical substrates for lipases and esterases (for esterases, only TC4 may be hydrolyzed). Subsequent pH-stat experiments were performed to confirm the preference of substrate hydrolysis with the hydrolases tested. We have shown that this method is very useful for screening a high number of lipases (hydrolysis of TC4 and TC8) or esterases (only hydrolysis of TC4) from wild isolates or variants generated by directed evolution using nonchromogenic triglycerides directly in the test.

  13. Lipase-catalyzed hydrolysis of TG containing acetylenic FA.

    PubMed

    Jie, Marcel S F Lie Ken; Fua, Xun; Lau, Maureen M L; Chye, M L

    2002-10-01

    Hydrolysis of symmetrical acetylenic TG of type AAA [viz., glycerol tri-(4-decynoate), glycerol tri-(6-octadecynoate), glycerol tri-(9-octadecynoate), glycerol tri-(10-undecynoate), and glycerol tri-(13-docosynoate)] in the presence of eight microbial lipases was studied. Novozyme 435 (Candida antarctica), an efficient enzyme for esterification, showed a significant resistance in the hydrolysis of glycerol tri-(9-octadecynoate) and glycerol tri-(13-docosynoate). Hydrolysis of acetylenic TG with Lipolase 100T (Humicola lanuginosa) was rapidly accomplished. Lipase PS-D (Pseudomonas cepacia) showed a fair resistance toward the hydrolysis of glycerol tri-(6-octadecynoate) only, which reflected its ability to recognize the delta6 positional isomer of 18:1. Lipase CCL (Candida cylindracea, syn. C. rugosa) and AY-30 (C. rugosa) were able to catalyze the release of 10-undecynoic acid and 9-octadecynoic acid from the corresponding TG, but less readily the 13-docosynoic acid in the case of glycerol tri-(13-docosynoate). The two lipases CCL and AY-30 were able to distinguish the small difference in structure of fatty acyl moieties in the TG substrate. To confirm this trend, three regioisomers of mixed acetylenic TG of type ABC (containing one each of delta6, delta9, and delta13 acetylenic FA in various positions) were prepared and hydrolyzed with CCL and AY-40. The results reconfirmed the observation that AY-30 and CCL were able to distinguish the slight differences in the molecular structure (position of the acetylenic bond and chain length) of the acyl groups in the TG during the hydrolysis of such TG substrates.

  14. Iodine-125-labeled lipoprotein lipase as a tool to detect and study spontaneous lipolysis in bovine milk

    SciTech Connect

    Sundheim, G.; Bengtsson-Olivecrona, G.

    1986-07-01

    The distribution of lipoprotein lipase among cream, casein, and milk serum can be evaluated by addition of a trace amount of /sup 125/I-labeled lipoprotein lipase to milk. Radioactive lipase was distributed in parallel to endogenous lipase under several conditions. In some milk samples, binding of lipase to cream increased when the milk was cooled. Correlation was good between bound labeled lipase and degree of cold-induced lipolysis in corresponding milk samples. Binding of lipase to cream or to casein was not saturable by addition of two-to threefold more lipase than is normally present in milk. In milk with a relatively high fraction of lipase bound to cream, a correspondingly lower fraction was associated with casein, whereas the fraction of lipase in milk serum was similar in all milk samples. Cold-induced binding of lipoprotein lipase to cream was not fully reversed when the milk was warmed again. Heparin released lipase from casein and increased the amount of lipase bound to cream after cooling.

  15. Specificity in lipases: A computational study of transesterification of sucrose

    PubMed Central

    Fuentes, Gloria; Ballesteros, Anthonio; Verma, Chandra S.

    2004-01-01

    Computational conformational searches of putative transition states of the reaction of sucrose with vinyl laurate catalyzed by lipases from Candida antarctica B and Thermomyces lanuginosus have been carried out. The dielectric of the media have been varied to understand the role of protein plasticity in modulating the observed regioselective transesterification. The binding pocket of lipase from Candida adapts to the conformational variability of the various substates of the substrates by small, local adjustments within the binding pocket. In contrast, the more constrained pocket of the lipase from Thermomyces adapts by adjusting through concerted global motions between subdomains. This leads to the identification of one large pocket in Candida that accommodates both the sucrose and the lauroyl moieties of the transition state, whereas in Thermomyces the binding pocket is smaller, leading to the localization of the two moieties in two distinct pockets; this partly rationalizes the broader specificity of the former relative to the latter. Mutations have been suggested to exploit the differences towards changing the observed selectivities. PMID:15557256

  16. Preliminary studies on immobilization of lipase using chicken eggshell

    NASA Astrophysics Data System (ADS)

    Salleh, S.; Serri, N. A.; Hena, S.; Tajarudin, H. A.

    2016-06-01

    A few advantages of enzyme immobilization are reusability of expensive enzyme, improvement of stability and activity compared to crude enzyme. Various organic components can be used as carrier for enzyme immobilization such as chicken eggshell. It can be used as a carrier for immobilization as its mineral component mostly contains of calcium carbonate. In the present study, Tributyrin method was used to test enzyme activity of Rhizomucour Miehei, Candida Antarctica and Candida Rugosa. Rhizomucour Miehei shows the highest enzyme activity (360.8 mol/min/mL lipase) and was used in further experiment. Experiment was continued to study incubation time for lipase immobilization on eggshell (1-4 hours) and reaction time of esterification of sugar ester (0-72 hours). Two hours incubation time for lipase immobilization was observed and gives the highest yield of sugar ester (78.13%). Fructose and stearic acid as substrate was used for the production of sugar ester. The highest percentage of sugar ester production was shown at 36 hours of reaction time.

  17. Tumor promoting phorbol diesters: substrates for diacylglycerol lipase

    SciTech Connect

    Cabot, M.C.

    1984-08-30

    Enzyme activity in rat serum was examined utilizing the potent tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA) and various glycerolipids as substrates. The serum activity was specific for hydrolysis of the long chain tetradecanoate moiety of TPA, hydrolyzed mono- and diacylglycerols, but was not effective against triacylglycerols, cholesterylesters, or phospholipids. Heating the enzyme preparation at 56/sup 0/C for 1 min was dually effective in reducing the hydrolysis of both TPA and dioleoylglycerol by 83-86% of control levels. The potent diacylglycerol lipase inhibitor, RHC 80267, inhibited the hydrolysis of TPA in the 0.2-1.0 ..mu..M range and was also a potent blocker of monoacyl- and diacylglycerol hydrolysis. In substrate competition studies, exogenous unlabeled TPA was added to the (/sup 14/C)dioleoylglycerol-containing reaction mixture, however, this produced an approximate 3-fold stimulation of (/sup 14/)dioleoylglycerol hydrolysis. Although we have not established whether the hydrolysis of TPA and diacylglycerol is the work of one enzyme, the effectiveness of the specific lipase inhibitor, RHC 80267, demonstrates that diacylglycerol lipase can utilize TPA as substrate, a finding never before documented. This point is of interest in light of the theory that phorbol esters act by mimicry of the natural lipid mediator, diacylglycerols. 44 references, 3 figures, 1 table.

  18. Isolation and characterization of novel thermophilic lipase-secreting bacteria.

    PubMed

    Rabbani, Mohammed; Bagherinejad, Mohammad Reza; Sadeghi, Hamid MirMohammad; Shariat, Ziaedin Samsam; Etemadifar, Zahra; Moazen, Fatemeh; Rahbari, Manizheh; Mafakher, Ladan; Zaghian, Saeideh

    2013-12-01

    The purpose of the present study was to screen and identify the lipase-producing microorganisms from various regions of Iran. Samples collected from hot spring, Persian Gulf, desert area and oil-contaminated soil, were analyzed for thermophilic extracellular-lipase producing organisms. Six strains with high activity on rhodamine B plates were selected for chemical identification and further study. Among these isolated bacteria, four strains show higher activity in pH-Stat method at 55 °C. These strains were identified by PCR amplification of 16s rRNA genes using universal primers. Fermentation increased the activity up to 50%. The growth medium, designed for lipase production, increased the activity up to 4.55 folds. The crude supernatant of ZR-5 after fermentation and separation the cells, was lyophilized and the activity was measured. Total activity of this strain was 12 kU/g that shows its potential for industrial uses. Further study is required for purification of enzyme and calculation its specific activity. Immobilization is another approach should be considered.

  19. Lipase assay in soils by copper soap colorimetry.

    PubMed

    Saisuburamaniyan, N; Krithika, L; Dileena, K P; Sivasubramanian, S; Puvanakrishnan, R

    2004-07-01

    A simple and sensitive method for the estimation of lipase activity in soils is reported. In this method, 50mg of soil is incubated with emulsified substrate, the fatty acids liberated are treated with cupric acetate-pyridine reagent, and the color developed is measured at 715 nm. Use of olive oil in this protocol leads to an estimation of true lipase activity in soils. The problem of released fatty acids getting adsorbed onto the soil colloids is obviated by the use of isooctane, and separate standards for different soils need not be developed. Among the various surfactants used for emulsification, polyvinyl alcohol is found to be the most effective. Incubation time of 20 min, soil concentration of 50 mg, pH 6.5, and incubation temperature of 37 degrees C were found to be the most suitable conditions for this assay. During the process of enrichment of the soils with oil, interference by the added oil is avoided by the maintenance of a suitable control, wherein 50 mg of soil is added after stopping the reaction. This assay is sensitive and it could be adopted to screen for lipase producers from enriched soils and oil-contaminated soils before resorting to isolation of the microbes by classical screening methods.

  20. Isolation and characterization of novel thermophilic lipase-secreting bacteria

    PubMed Central

    Rabbani, Mohammed; Bagherinejad, Mohammad Reza; Sadeghi, Hamid MirMohammad; Shariat, Ziaedin Samsam; Etemadifar, Zahra; Moazen, Fatemeh; Rahbari, Manizheh; Mafakher, Ladan; Zaghian, Saeideh

    2013-01-01

    The purpose of the present study was to screen and identify the lipase-producing microorganisms from various regions of Iran. Samples collected from hot spring, Persian Gulf, desert area and oil-contaminated soil, were analyzed for thermophilic extracellular-lipase producing organisms. Six strains with high activity on rhodamine B plates were selected for chemical identification and further study. Among these isolated bacteria, four strains show higher activity in pH-Stat method at 55 °C. These strains were identified by PCR amplification of 16s rRNA genes using universal primers. Fermentation increased the activity up to 50%. The growth medium, designed for lipase production, increased the activity up to 4.55 folds. The crude supernatant of ZR-5 after fermentation and separation the cells, was lyophilized and the activity was measured. Total activity of this strain was 12 kU/g that shows its potential for industrial uses. Further study is required for purification of enzyme and calculation its specific activity. Immobilization is another approach should be considered. PMID:24688500

  1. Synthesis of naringin 6"-ricinoleate using immobilized lipase

    PubMed Central

    2012-01-01

    Abstract Background Naringin is an important flavanone with several biological activities, including antioxidant action. However, this compound shows low solubility in lipophilic preparations, such as is used in the cosmetic and food industries. One way to solve this problem is to add fatty acids to the flavonoid sugar unit using immobilized lipase. However, there is limited research regarding hydroxylation of unsaturated fatty acids as an answer to the low solubility challenge. In this work, we describe the reaction of naringin with castor oil containing ricinoleic acid, castor oil's major fatty acid component, using immobilized lipase from Candida antarctica. Analysis of the 1H and 13 C NMR (1D and 2D) spectra and literature comparison were used to characterise the obtained acyl derivative. Results After allowing the reaction to continue for 120 hours (in acetone media, 50°C), the major product obtained was naringin 6″-ricinoleate. In this reaction, either castor oil or pure ricinoleic acid was used as the acylating agent, providing a 33% or 24% yield, respectively. The chemical structure of naringin 6″-ricinoleate was determined using NMR analysis, including bidimensional (2D) experiments. Conclusion Using immobilized lipase from C. antarctica, the best conversion reaction was observed using castor oil containing ricinoleic acid as the acylating agent rather than an isolated fatty acid. Graphical abstract PMID:22578215

  2. Rhodococcus sp. Strain CR-53 LipR, the First Member of a New Bacterial Lipase Family (Family X) Displaying an Unusual Y-Type Oxyanion Hole, Similar to the Candida antarctica Lipase Clan

    PubMed Central

    Bassegoda, Arnau; Pastor, F. I. Javier

    2012-01-01

    Bacterial lipases constitute the most important group of biocatalysts for synthetic organic chemistry. Accordingly, there is substantial interest in developing new valuable lipases. Considering the lack of information concerning the lipases of the genus Rhodococcus and taking into account the interest raised by the enzymes produced by actinomycetes, a search for putative lipase-encoding genes from Rhodococcus sp. strain CR-53 was performed. We isolated, cloned, purified, and characterized LipR, the first lipase described from the genus Rhodococcus. LipR is a mesophilic enzyme showing preference for medium-chain-length acyl groups without showing interfacial activation. It displays good long-term stability and high tolerance for the presence of ions and chemical agents in the reaction mixture. Amino acid sequence analysis of LipR revealed that it displays four unique amino acid sequence motifs that clearly separate it from any other previously described family of bacterial lipases. Using bioinformatics tools, LipR could be related only to several uncharacterized putative lipases from different bacterial origins, all of which display the four blocks of consensus amino acid sequence motifs that contribute to define a new family of bacterial lipases, namely, family X. Therefore, LipR is the first characterized member of the new bacterial lipase family X. Further confirmation of this new family of lipases was performed after cloning Burkholderia cenocepacia putative lipase, bearing the same conserved motifs and clustering in family X. Interestingly, all lipases grouping in the new bacterial lipase family X display a Y-type oxyanion hole, a motif conserved in the Candida antarctica lipase clan but never found among bacterial lipases. This observation contributes to confirm that LipR and its homologs belong to a new family of bacterial lipases. PMID:22226953

  3. Optimization of culture conditions for production of a novel cold-active lipase from Pichia lynferdii NRRL Y-7723

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lipases with abnormal properties such as thermo stability, alkalinity, acidity and cold-activity receive industrial attention because of their usability under restricted reaction conditions. Most microbial cold-active lipases originate from psychrotrophic and psychrophilic microorganisms found in An...

  4. Effect of poly(vinyl acetate-acrylamide) microspheres properties and steric hindrance on the immobilization of Candida rugosa lipase.

    PubMed

    Zhang, Dong-Hao; Yuwen, Li-Xia; Li, Chao; Li, Ya-Qiong

    2012-11-01

    Poly(vinyl acetate-acrylamide) microspheres were synthesized in the absence or presence of isooctane via suspension polymerization and utilized as carriers to immobilize Candida rugosa lipase. When the hydrophobic/hydrophilic surface characteristics of the microspheres were modified by changing the ratio of vinyl acetate (hydrophobic monomer) to acrylamide (hydrophilic monomer) from 50:50 to 86:24, the immobilization ratio changed from 45% to 92% and the activity of the immobilized lipase increased from 202.5 to 598.0 U/g microsphere. Excessive lipase loading caused intermolecular steric hindrance, which resulted in a decline in lipase activity. The maximum specific activity of the immobilized lipase (4.65 U/mg lipase) was higher than that of free lipase (3.00 U/mg lipase), indicating a high activity recovery during immobilization.

  5. New finding and optimal production of a novel extracellular alkaline lipase from Yarrowia lipolytica NRRL Y-2178

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lipases are industrially and useful versatile enzymes that catalyze numerous different reactions including hydrolysis of triglycerides, transesterification, and chiral synthesis of esters under natural conditions. Although lipases from various sources have been widely used in industrial application...

  6. Adipose Triglyceride Lipase, Not Hormone-Sensitive Lipase, Is the Primary Lipolytic Enzyme in Fasting Elephant Seals (Mirounga angustirostris).

    PubMed

    Fowler, Melinda A; Costa, Daniel P; Crocker, Daniel E; Shen, Wen-Jun; Kraemer, Fredric B

    2015-01-01

    Little is known about the mechanisms that allow capital breeders to rapidly mobilize large amounts of body reserves. Northern elephant seals (Mirounga angustirostris) utilize fat reserves for maternal metabolism and to create high fat milk for the pup. Hormone-sensitive lipase (HSL) has been hypothesized to be an important lipolytic enzyme in fasting seals, but the activity of HSL and adipose triglyceride lipase (ATGL) has not been quantified in fasting adult seals, nor has their relationship to milk lipid content been assessed. Blubber and milk samples were obtained from 18 early lactation and 19 late lactation females, as well as blubber from five early and five late molting female seals. Blubber lipolytic activity was assessed with radiometric assays. HSL activity was negligible in seal blubber at all fasting stages. Total triglyceride lipase activity was stable among early and late lactation and early molt but increased in late molting seals. Relative abundance of ATGL protein increased across fasting, but neither activity nor relative protein levels were related to circulating nonesterified fatty acids or milk lipid content, suggesting the possibility of other regulatory pathways between lipolytic activity and milk lipid content. These results demonstrate that HSL is not the primary lipolytic enzyme in fasting adult female seals and that ATGL contributes more to lipolysis than HSL.

  7. Isolation and identification of a novel, lipase-producing bacterium, Pseudomnas aeruginosa KM110

    PubMed Central

    Mobarak-Qamsari, E; Kasra-Kermanshahi, R; Moosavi-nejad, Z

    2011-01-01

    Background and Objectives Lipases are particularly important due to the fact that they specifically hydrolyze acyl glycerol, oils and greases, which is of great interest for different industrial applications. Materialst and Methods In this study, several lipase-producing bacteria were isolated from wastewater of an oil processing plant. The strain possessing the highest lipase activity was identified both biochemically and sequencing of 16S rRNA gene. Then we increase lipase activity by improving conditions of production medium. Also, lipase from this strain was preliminarily characterized for use in industrial application. Results The 16S rRNA sequensing revealed it as a new strain of Pseudomonas aeruginosa and the type strain was KM110. An overall 3-fold enhanced lipase production (0.76 U mL−1) was achieved after improving conditions of production medium. The olive oil and peptone was found to be the most suitable substrate for maximum enzyme production. Also the enzyme exhibited maximum lipolytic activity at 45°C where it was also stably maintained. At pH 8.0, the lipase had the highest stability but no activity. It was active over a pH range of 7.0–10.0. The lipase activity was inhibited by Zn2+ & Cu2+ (32 and 27%, respectively) at 1mM. The enzyme lost 29% of its initial activity in 1.0% SDS concentration, whereas, Triton X-100, Tween-80 & DMSO did not significantly inhibit lipase activity. Conclusions Based on the findings of present study, lipase of P. aeruginosa KM110 is a potential alkaline lipase and a candidate for industrial applications such as detergent, leather and fine chemical industries. PMID:22347589

  8. Application of Rigidity Theory to the Thermostabilization of Lipase A from Bacillus subtilis

    PubMed Central

    Rathi, Prakash Chandra; Fulton, Alexander; Jaeger, Karl-Erich; Gohlke, Holger

    2016-01-01

    Protein thermostability is a crucial factor for biotechnological enzyme applications. Protein engineering studies aimed at improving thermostability have successfully applied both directed evolution and rational design. However, for rational approaches, the major challenge remains the prediction of mutation sites and optimal amino acid substitutions. Recently, we showed that such mutation sites can be identified as structural weak spots by rigidity theory-based thermal unfolding simulations of proteins. Here, we describe and validate a unique, ensemble-based, yet highly efficient strategy to predict optimal amino acid substitutions at structural weak spots for improving a protein’s thermostability. For this, we exploit the fact that in the majority of cases an increased structural rigidity of the folded state has been found as the cause for thermostability. When applied prospectively to lipase A from Bacillus subtilis, we achieved both a high success rate (25% over all experimentally tested mutations, which raises to 60% if small-to-large residue mutations and mutations in the active site are excluded) in predicting significantly thermostabilized lipase variants and a remarkably large increase in those variants’ thermostability (up to 6.6°C) based on single amino acid mutations. When considering negative controls in addition and evaluating the performance of our approach as a binary classifier, the accuracy is 63% and increases to 83% if small-to-large residue mutations and mutations in the active site are excluded. The gain in precision (predictive value for increased thermostability) over random classification is 1.6-fold (2.4-fold). Furthermore, an increase in thermostability predicted by our approach significantly points to increased experimental thermostability (p < 0.05). These results suggest that our strategy is a valuable complement to existing methods for rational protein design aimed at improving thermostability. PMID:27003415

  9. Lipase-catalyzed synthesis of acetylated EGCG and antioxidant properties of the acetylated derivatives

    Technology Transfer Automated Retrieval System (TEKTRAN)

    (-)-Epigallocatechin-3-O-gallate (EGCG) acetylated derivatives were prepared by lipase catalyzed acylation of EGCG with vinyl acetate to improve its lipophilicity and expand its application in lipophilic media. The immobilized lipase, Lipozyme RM IM, was found to be the optimum catalyst. The optimiz...

  10. Effect of membranes with various hydrophobic/hydrophilic properties on lipase immobilized activity and stability.

    PubMed

    Chen, Guan-Jie; Kuo, Chia-Hung; Chen, Chih-I; Yu, Chung-Cheng; Shieh, Chwen-Jen; Liu, Yung-Chuan

    2012-02-01

    In this study, three membranes: regenerated cellulose (RC), glass fiber (GF) and polyvinylidene fluoride (PVDF), were grafted with 1,4-diaminobutane (DA) and activated with glutaraldehyde (GA) for lipase covalent immobilization. The efficiencies of lipases immobilized on these membranes with different hydrophobic/hydrophilic properties were compared. The lipase immobilized on hydrophobic PVDF-DA-GA membrane exhibited more than an 11-fold increase in activity compared to its immobilization on a hydrophilic RC-DA-GA membrane. The relationship between surface hydrophobicity and immobilized efficiencies was investigated using hydrophobic/hydrophilic GF membranes which were prepared by grafting a different ratio of n-butylamine/1,4-diaminobutane (BA/DA). The immobilized lipase activity on the GF membrane increased with the increased BA/DA ratio. This means that lipase activity was exhibited more on the hydrophobic surface. Moreover, the modified PVDF-DA membrane was grafted with GA, epichlorohydrin (EPI) and cyanuric chloride (CC), respectively. The lipase immobilized on the PVDF-DA-EPI membrane displayed the highest specific activity compared to other membranes. This immobilized lipase exhibited more significant stability on pH, thermal, reuse, and storage than did the free enzyme. The results exhibited that the EPI modified PVDF is a promising support for lipase immobilization.

  11. The Effect of Storage at Three Different Temperatures on the Activity of Lipase Solution.

    ERIC Educational Resources Information Center

    Bradley, Karen; Mathewman, David

    1984-01-01

    Presented are procedures used to assay the activity of lipase during storage at three different temperatures. Since lipase solutions can decay even when refrigerated, it is recommended that the enzyme be freshly prepared prior to laboratory sessions in which they are used. (JN)

  12. Screening and characterization of a thermostable lipase from marine Streptomyces sp. strain W007.

    PubMed

    Yuan, Dongjuan; Lan, Dongming; Xin, Ruipu; Yang, Bo; Wang, Yonghua

    2016-01-01

    A screening method along with the combination of genome sequence of microorganism, pairwise alignment, and lipase classification was used to search the thermostable lipase. Then, a potential thermostable lipase (named MAS1) from marine Streptomyces sp. strain W007 was expressed in Pichia pastoris X-33, and the biochemical properties were characterized. Lipase MAS1 belongs to the subfamily I.7, and it has 38% identity to the well-characterized Bacillus subtilis thermostable lipases in the subfamily I.4. The purified enzyme was estimated to be 29 kDa. The enzyme showed optimal temperature at 40 °C, and retained more than 80% of initial activity after 1 H incubation at 60 °C, suggesting that MAS1 was a thermostable lipase. MAS1 was an alkaline enzyme with optimal pH value at 7.0 and had stable activity for 12 H of incubation at pH 6.0-9.0. It was stable and retained about 90% of initial activity in the presence of Cu(2+) , Ca(2+) , Ni(2+) , and Mg(2+) , whereas 89.05% of the initial activity was retained when ethylene diamine tetraacetic acid was added. MAS1 showed the tolerance to organic solvents, but was inhibited by various surfactants. MAS1 was verified to be a triglyceride lipase and could hydrolyze triacylglycerol and diacylglycerol. The result represents a good example for researchers to discover thermostable lipase for industrial application.

  13. Differences in hydrolytic abilities of two crude lipases from Geotrichum candidum 4013.

    PubMed

    Brabcová, Jana; Zarevúcka, Marie; Macková, Martina

    2010-12-01

    The fungus Geotrichum candidum 4013 produces two types of lipases (extracellular and cell-bound). Both enzymes were tested for their hydrolytic ability to p-nitrophenyl esters and compounds having a structure similar to the original substrate (triacylglycerols). Higher lipolytic activity of extracellular lipase was observed when triacylglycerols of medium- (C12) and long- (C18) chain fatty acids were used as substrates. Cell-bound lipase preferentially hydrolysed trimyristate (C14). The differences in the abilities of these two enzymes to hydrolyse p-nitrophenyl esters were observed as well. The order of extracellular lipase hydrolysis relation velocity was as follows: p-nitrophenyl decanoate > p-nitrophenyl caprylate > p-nitrophenyl laurate > p-nitrophenyl palmitate > p-nitrophenyl stearate. The cell-bound lipase indicates preference for p-nitrophenyl palmitate. The most striking differences in the ratios between the activity of both lipases (extracellular : cell-bound) towards different fatty acid methyl esters were 2.2 towards methyl hexanoate and 0.46 towards methyl stearate (C18). The Michaelis constant (K(m) ) and maximum reaction rate (V(max) ) for p-nitrophenyl palmitate hydrolysis of cell-bound lipase were significantly higher (K(m) 2.462 mM and V(max) 0.210 U/g/min) than those of extracellular lipase (K(m) 0.406 mM and V(max) 0.006 U/g/min).

  14. [Cloning and expression of organic solvent tolerant lipase gene from Staphylococcus saprophyticus M36].

    PubMed

    Tang, Yanchong; Lu, Yaping; Lü, Fengxia; Bie, Xiaomei; Guo, Yao; Lu, Zhaoxin

    2009-12-01

    Lipases are important biocatalysts that are widely used in food processing and bio-diesel production. However, organic solvents could inactivate some lipases during applications. Therefore, the efficient cloning and expression of the organic solvent-tolerant lipase is important to its application. In this work, we first found out an organic solvent-tolerant lipase from Staphylococcus saprophyticus M36 and amplified the 741 bp Lipase gene lip3 (GenBank Accession No. FJ979867), by PCR, which encoded a 31.6 kD polypeptide of 247 amino acid residues. But the lipase shared 83% identity with tentative lip3 gene of Staphylococcus saprophyticus (GenBank Accession No. AP008934). We connected the gene with expression vector pET-DsbA, transformed it into Escherichia coli BL21 (DE3), and obtained the recombinant pET-DsbA-lip3. With the induction by 0.4 mmol/L of isopropyl beta-D-thiogalactopyranoside at pH 8.0, OD600 1.0, 25 degrees C for 12 h, the lipase activity reached up to 25.8 U/mL. The lipase expressed was stable in the presence of methanol, n-hexane, and isooctane, n-heptane.

  15. 21 CFR 173.140 - Esterase-lipase derived from Mucor miehei.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... HUMAN CONSUMPTION Enzyme Preparations and Microorganisms § 173.140 Esterase-lipase derived from Mucor miehei. Esterase-lipase enzyme, consisting of enzyme derived from Mucor miehei var. Cooney et Emerson by... Emerson is nonpathogenic and nontoxic in man or other animals. (c) The enzyme is produced by a...

  16. 21 CFR 173.140 - Esterase-lipase derived from Mucor miehei.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... HUMAN CONSUMPTION Enzyme Preparations and Microorganisms § 173.140 Esterase-lipase derived from Mucor miehei. Esterase-lipase enzyme, consisting of enzyme derived from Mucor miehei var. Cooney et Emerson by... Emerson is nonpathogenic and nontoxic in man or other animals. (c) The enzyme is produced by a...

  17. 21 CFR 173.140 - Esterase-lipase derived from Mucor miehei.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... (CONTINUED) SECONDARY DIRECT FOOD ADDITIVES PERMITTED IN FOOD FOR HUMAN CONSUMPTION Enzyme Preparations and Microorganisms § 173.140 Esterase-lipase derived from Mucor miehei. Esterase-lipase enzyme, consisting of enzyme... animals. (c) The enzyme is produced by a process which completely removes the organism Mucor miehei...

  18. 21 CFR 173.140 - Esterase-lipase derived from Mucor miehei.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... HUMAN CONSUMPTION Enzyme Preparations and Microorganisms § 173.140 Esterase-lipase derived from Mucor miehei. Esterase-lipase enzyme, consisting of enzyme derived from Mucor miehei var. Cooney et Emerson by... Emerson is nonpathogenic and nontoxic in man or other animals. (c) The enzyme is produced by a...

  19. 21 CFR 173.140 - Esterase-lipase derived from Mucor miehei.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... HUMAN CONSUMPTION Enzyme Preparations and Microorganisms § 173.140 Esterase-lipase derived from Mucor miehei. Esterase-lipase enzyme, consisting of enzyme derived from Mucor miehei var. Cooney et Emerson by... Emerson is nonpathogenic and nontoxic in man or other animals. (c) The enzyme is produced by a...

  20. Coconut oil induced production of a surfactant-compatible lipase from Aspergillus tamarii under submerged fermentation.

    PubMed

    Das, Arijit; Bhattacharya, Sourav; Shivakumar, Srividya; Shakya, Sujina; Sogane, Swathi Shankar

    2017-02-01

    Filamentous fungi are efficient producers of lipases. The present study focuses on identification of a potent lipolytic fungus and enhancement of lipase production through optimization of nutritional and cultural conditions under submerged fermentation. Molecular characterization of the fungus by 18S rDNA sequencing revealed its identity as Aspergillus tamarii with 98% homology. Maximum lipase production was noted in mineral salts medium supplemented with coconut oil (2.5%, v/v). A combination of ammonium chloride (2%, w/v) and tryptone (2%, w/v) facilitated maximum lipase production at pH 5 of the production medium. A carbon: nitrogen ratio of 1:4 led to significant (p < 0.00008) increase in the enzyme production in the presence of surfactant cetyltrimethylammonium bromide (0.5%, w/v). Maximum lipase activity (2,32,500 ± 192 U/ml/min) was recorded after 7 days of incubation at 25 °C on a rotary shaker at 120 rpm. A 9.8-fold increase in lipase activity was recorded after optimization of the process parameters. Addition of crude lipase enhanced the oil stain removal activity of a commercially available detergent by 2.2-fold. The current findings suggest the potentiality of this fungal lipase to be used in detergent formulation.

  1. Kinetics of Detergent-Induced Activation and Inhibition of a Minimal Lipase.

    PubMed

    Kübler, Daniel; Bergmann, Anna; Weger, Lukas; Ingenbosch, Kim N; Hoffmann-Jacobsen, Kerstin

    2017-02-16

    Detergents are commonly applied in lipase assays to solubilize sparingly soluble model substrates. However, detergents affect lipases as well as substrates in multiple ways. The effect of detergents on lipase activity is commonly attributed to conformational changes in the lid region. This study deals with the effect of the nonionic detergent, poly(ethylene glycol) dodecyl ether, on a lipase that does not contain a lid sequence, lipase A from Bacillus subtilis (BSLA). We show that BSLA activity depends strongly on the detergent concentration and the dependency profile changes with pH. The interaction of BSLA with detergent monomers and micelles is studied using fluorescence correlation spectroscopy, time-resolved anisotropy decay, and temperature-induced unfolding. Detergent-dependent hydrolysis kinetics of two different substrates at two pH values are fitted with a microkinetic model. This analysis shows that the mechanism of interfacial lipase catalysis is strongly affected by the detergent. It reveals an activation mechanism by monomeric detergent that does not result from structural changes of the lipase. Instead, we propose that interfacial diffusion of the lipase is enhanced by detergent binding.

  2. Cloning, sequencing and characterization of lipase genes from a polyhydroxyalkanoate- (PHA-) synthesizing Pseudomonas resinovorans

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lipase (lip) and lipase-specific foldase (lif) genes of a biodegradable polyhydroxyalkanoate- (PHA-) synthesizing Pseudomonas resinovorans NRRL B-2649 were cloned using primers based on consensus sequences, followed by PCR-based genome walking. Sequence analyses showed a putative Lip gene-product (...

  3. Enhancing activity and stability of Burkholderia cepacia lipase by immobilization on surface-functionalized mesoporous silicates.

    PubMed

    Kato, Katsuya; Seelan, Sindhu

    2010-06-01

    Burkholderia cepacia lipase was immobilized on various types of phenyl-functionalized mesoporous silicates (MPS). MPS, anchored with a phenyl group on the silica wall and with three dimensional (3D) mesoporosity, showed highest lipase adsorption capacity and best activities both in aqueous and organic reagents.

  4. Active-site titration analysis of surface influence on immobilized Candida antarctica Lipase B activity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Matrix morphology and surface polarity effects were investigated for Candida antarctica lipase B immobilization. Measurements of the amount of lipase immobilized (bicinchoninic acid method) and the catalyst’s tributyrin hydrolysis activity, coupled with a determination of the lipase’s functional fr...

  5. Choline acetate enhanced the catalytic performance of Candida rogusa lipase in AOT reverse micelles.

    PubMed

    Xue, Luyan; Zhao, Yin; Yu, Lijie; Sun, Yanwen; Yan, Keqian; Li, Ying; Huang, Xirong; Qu, Yinbo

    2013-05-01

    Choline acetate is an ionic liquid composed of a kosmotropic anion and a chaotropic cation. According to Hofmeister series, a kosmotropic anion and/or a chaotropic cation could stabilize an enzyme, thereby facilitating the retention of the catalytic activity of the enzyme. In this work, we first report the influence of choline acetate on the activity and stability of lipase in AOT/water/isooctane reverse micelles. The indicator reaction is the lipase-catalyzed hydrolysis of 4-nitrophenyl butyrate. The results show that a low level of choline acetate does not affect the microstructure of the AOT reverse micelles, but the ionic liquid can improve the catalytic efficiency of lipase. Fluorescence spectra show that a high level of choline acetate has an impact on the conformation of lipase, so the activation is mainly due to the influence of choline acetate on the nucleophilicity of water. Infrared spectra demonstrate that choline acetate can form stronger hydrogen bonds with water surrounding lipase, and therefore enhance the nucleophilicity of the water, which makes it easier to attack the acyl enzyme intermediate, thereby increasing the activity of the lipase-catalyzed hydrolysis of the ester. A study on the stability of lipase in AOT reverse micelles indicates that the ionic liquid is able to maintain the activity of lipase to a certain extent. The effect of choline acetate is consistent with that predicted based on Hofmeister series.

  6. Evaluation of a new lipase from Staphylococcus sp. for detergent additive capability.

    PubMed

    Chauhan, Mamta; Chauhan, Rajinder Singh; Garlapati, Vijay Kumar

    2013-01-01

    Lipases are the enzymes of choice for laundry detergent industries owing to their triglyceride removing ability from the soiled fabric which eventually reduces the usage of phosphate-based chemical cleansers in the detergent formulation. In the present study, a partially purified bacterial lipase from Staphylococcus arlettae JPBW-1 isolated from the rock salt mine has been assessed for its triglyceride removing ability by developing a presoak solution so as to use lipase as an additive in laundry detergent formulations. The effects of selected surfactants, commercial detergents, and oxidizing agents on lipase stability were studied in a preliminary evaluation for its further usage in the industrial environment. Partially purified lipase has shown good stability in presence of surfactants, commercial detergents, and oxidizing agents. Washing efficiency has been found to be enhanced while using lipase with 0.5% nonionic detergent than the anioinic detergent. The wash performance using 0.5% wheel with 40 U lipase at 40°C in 45 min results in maximum oil removal (62%) from the soiled cotton fabric. Hence, the present study opens the new era in enzyme-based detergent sector for formulation of chemical-free detergent using alkaline bacterial lipase.

  7. Development of a lipase fermentation process that uses a recombinant Pseudomonas alcaligenes strain.

    PubMed

    Gerritse, G; Hommes, R W; Quax, W J

    1998-07-01

    Pseudomonas alcaligenes M-1 secretes an alkaline lipase, which has excellent characteristics for the removal of fatty stains under modern washing conditions. A fed-batch fermentation process based on the secretion of the alkaline lipase from P. alcaligenes was developed. Due to the inability of P. alcaligenes to grow on glucose, citric acid and soybean oil were applied as substrates in the batch phase and feed phase, respectively. The gene encoding the high-alkaline lipase from P. alcaligenes was isolated and characterized. Amplification of lipase gene copies in P. alcaligenes with the aid of low- and high-copy-number plasmids resulted in an increase of lipase expression that was apparently colinear with the gene copy number. It was found that overexpression of the lipase helper gene, lipB, produced a stimulating effect in strains with high copy numbers (> 20) of the lipase structural gene, lipA. In strains with lipA on a low-copy-number vector, the lipB gene did not show any effect, suggesting that LipB is required in a low ratio to LipA only. During scaling up of the fermentation process to 100 m3, severe losses in lipase productivity were observed. Simulations have identified an increased level of dissolved carbon dioxide as the most probable cause for the scale-up losses. A large-scale fermentation protocol with a reduced dissolved carbon dioxide concentration resulted in a substantial elimination of the scale-up loss.

  8. Production of Cold-Active Bacterial Lipases through Semisolid State Fermentation Using Oil Cakes.

    PubMed

    Joseph, Babu; Upadhyaya, Supriya; Ramteke, Pramod

    2011-01-01

    Production of cold active lipase by semisolid state fermentation involves the use of agroindustrial residues. In the present study, semisolid state fermentation was carried out for the production of cold active lipase using Micrococcus roseus, isolated from soil samples of Gangotri glaciers, Western Himalayas. Among various substrate tested, groundnut oil cake (GOC) favored maximal yield of lipases at 15 ± 1°C within 48 h. Supplementation of glucose 1% (w/v) as additional carbon source and ammonium nitrate 2% (w/v) as additional nitrogen source enhanced production of lipase. Addition of triglycerides 0.5% (v/v) tends to repress the lipase production. Further mixed preparation of groundnut oil cake (GOC) along with mustard oil cake (MOC) in the ratio of 1 : 1, and its optimization resulted in improved production of cold active lipase. The enzyme exhibited maximum activity at 10-15°C and was stable at temperatures lower than 30°C. The lipase exhibited optimum activity at pH 8 and showed more than 60% stability at pH 9. Semisolid state fermentation process by utilizing agroindustrial wastes will direct to large-scale commercialization of lipase catalyzed process in cost-effective systems.

  9. Rheology, microstructure and baking characteristics of frozen dough containing Rhizopus chinensis lipase and transglutaminase

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The beneficial effects of a new recombinant lipase (Rhizopus chinensis lipase, RCL) and transglutaminase (TG) were investigated on frozen dough systems and their breadmaking quality. Rheological properties and microstructure of doughs were measured using a dynamic rheometer, rheofermentometer F3, an...

  10. Probing Conformational Changes and Interfacial Recognition Site of Lipases With Surfactants and Inhibitors.

    PubMed

    Mateos-Diaz, E; Amara, S; Roussel, A; Longhi, S; Cambillau, C; Carrière, F

    2017-01-01

    Structural studies on lipases by X-ray crystallography have revealed conformational changes occurring in the presence of surfactants/inhibitors and the pivotal role played by a molecular "lid" of variable size and structure depending on the enzyme. Besides controlling the access to the enzyme active site, the lid is involved in lipase activation, formation of the interfacial recognition site (IRS), and substrate docking within the active site. The combined use of surfactants and inhibitors has been critical for a better understanding of lipase structure-function relationships. An overview of crystal structures of lipases in complex with surfactants and inhibitors reveals common structural features and shows how surfactants monomers interact with the lid in its open conformation. The location of surfactants, inhibitors, and hydrophobic residues exposed upon lid opening provides insights into the IRS of lipases. The mechanism by which surfactants promote the lid opening can be further investigated in solution by site-directed spin labeling of lipase coupled to electron paramagnetic resonance spectroscopy. These experimental approaches are illustrated here by results obtained with mammalian digestive lipases, fungal lipases, and cutinases.

  11. Evaluation of a New Lipase from Staphylococcus sp. for Detergent Additive Capability

    PubMed Central

    Chauhan, Mamta; Chauhan, Rajinder Singh; Garlapati, Vijay Kumar

    2013-01-01

    Lipases are the enzymes of choice for laundry detergent industries owing to their triglyceride removing ability from the soiled fabric which eventually reduces the usage of phosphate-based chemical cleansers in the detergent formulation. In the present study, a partially purified bacterial lipase from Staphylococcus arlettae JPBW-1 isolated from the rock salt mine has been assessed for its triglyceride removing ability by developing a presoak solution so as to use lipase as an additive in laundry detergent formulations. The effects of selected surfactants, commercial detergents, and oxidizing agents on lipase stability were studied in a preliminary evaluation for its further usage in the industrial environment. Partially purified lipase has shown good stability in presence of surfactants, commercial detergents, and oxidizing agents. Washing efficiency has been found to be enhanced while using lipase with 0.5% nonionic detergent than the anioinic detergent. The wash performance using 0.5% wheel with 40 U lipase at 40°C in 45 min results in maximum oil removal (62%) from the soiled cotton fabric. Hence, the present study opens the new era in enzyme-based detergent sector for formulation of chemical-free detergent using alkaline bacterial lipase. PMID:24106703

  12. Inhibition of Propionibacterium acnes lipase by extracts of Indian medicinal plants.

    PubMed

    Patil, V; Bandivadekar, A; Debjani, D

    2012-06-01

    Lipases play an important role in pathogenesis of acne by hydrolysing sebum triglycerides and releasing irritating free fatty acids in the pilosebaceous follicles. Lipase is a strong chemotactic and proinflammatory antigen. Therefore, lipase has generated a high interest as a pharmacological target for antiacne drugs. The aim of this study was to identify inhibitory effects of plant extracts on the lipase activity of Propionibacterium acnes. Colorimetric microassay was used to determine lipase activity. Extracts from Terminalia chebula and Embelia ribes showed lower IC(50) value (1 μg mL(-1) ) for lipase inhibition as compared to Vitex negundo and Picrorhiza kurroa (19 and 47 μg mL(-1) , respectively). The active component responsible for lipase inhibition was isolated. This study reports for the first time the novel antilipase activity of chebulagic acid (IC(50) : 60 μmol L(-1) ) with minimum inhibitory concentration value of 12.5 μg mL(-1) against P. acnes. The inhibitory potential of plant extracts was further confirmed by plate assay. The organism was grown in the presence of subinhibitory concentrations of extracts from P. kurroa, V. negundo, T. chebula, E. ribes and antibiotics such as clindamycin and tetracycline. Extract from T. chebula showed significant inhibition of lipase activity and number of P. acnes.

  13. Lipase catalyzed transesterification of castor oil by straight chain higher alcohols.

    PubMed

    Malhotra, Deepika; Mukherjee, Joyeeta; Gupta, Munishwar N

    2015-03-01

    Biolubricants from Castor oil were produced enzymatically by transesterification with higher alcohols using a lipase mixture of immobilized Mucor miehei (RMIM) and immobilized Candida antarctica lipase B (Novozym 435) under low water conditions. The conversions were in the range of 80-95% under the optimized conditions.

  14. Cloning and functional characterization of the ovine Hormone Sensitive Lipase (HSL) full-length cDNAs: an integrated approach.

    PubMed

    Lampidonis, Antonis D; Argyrokastritis, Alexandros; Stravopodis, Dimitrios J; Voutsinas, Gerassimos E; Ntouroupi, Triantafyllia G; Margaritis, Lukas H; Bizelis, Iosif; Rogdakis, Emmanuel

    2008-06-15

    Hormone Sensitive Lipase (HSL) is a highly regulated enzyme that mediates lipolysis in adipocytes. HSL enzymatic activity is increased by adrenergic agonists, such as catecholamines and glucagons, which induce cyclic AMP (cAMP) intracellular production, subsequently followed by the activation of Protein Kinase A (PKA) and its downstream signalling cascade reactions. Since HSL constitutes the key enzyme in the regulation of lipid stores and the only enzyme being subjected to hormonal regulation [in terms of the recently identified Adipose Triglyceride Lipase (ATGL)], the ovine Hormone Sensitive Lipase (ovHSL) full-length cDNA clones were isolated, using a Polymerase Chain Reaction-based (PCR) strategy. The two isolated isoforms ovHSL-A and ovHSL-B contain two highly homologous Open Reading Frame (ORF) regions of 2.089 Kb and 2.086 Kb, respectively, the latter having been missed the 688th triplet coding for glutamine (DeltaQ(688)). The putative 695 and 694 amino acid respective sequences bear strong homologies with other HSL protein family members. Southern blotting analysis revealed that HSL is represented as a single copy gene in the ovine genome, while Reverse Transcription-PCR (RT-PCR) approaches unambiguously dictated its variable transcriptional expression profile in the different tissues examined. Interestingly, as undoubtedly corroborated by both RT-PCR and Western blotting analysis, ovHSL gene expression is notably enhanced in the adipose tissue during the fasting period, when lipolysis is highly increased in ruminant species. Based on the crystal structure of an Archaeoglobus fulgidus enzyme, a three-dimensional (3D) molecular model of the ovHSL putative catalytic domain was constructed, thus providing an inchoative insight into understanding the enzymatic activity and functional regulation mechanisms of the ruminant HSL gene product(s).

  15. Strategies to Characterize Fungal Lipases for Applications in Medicine and Dairy Industry

    PubMed Central

    Gopinath, Subash C. B.; Anbu, Periasamy; Lakshmipriya, Thangavel; Hilda, Azariah

    2013-01-01

    Lipases are water-soluble enzymes that act on insoluble substrates and catalyze the hydrolysis of long-chain triglycerides. Lipases play a vital role in the food, detergent, chemical, and pharmaceutical industries. In the past, fungal lipases gained significant attention in the industries due to their substrate specificity and stability under varied chemical and physical conditions. Fungal enzymes are extracellular in nature, and they can be extracted easily, which significantly reduces the cost and makes this source preferable over bacteria. Soil contaminated with spillage from the products of oil and dairy harbors fungal species, which have the potential to secrete lipases to degrade fats and oils. Herein, the strategies involved in the characterization of fungal lipases, capable of degrading fatty substances, are narrated with a focus on further applications. PMID:23865040

  16. Strategies to characterize fungal lipases for applications in medicine and dairy industry.

    PubMed

    Gopinath, Subash C B; Anbu, Periasamy; Lakshmipriya, Thangavel; Hilda, Azariah

    2013-01-01

    Lipases are water-soluble enzymes that act on insoluble substrates and catalyze the hydrolysis of long-chain triglycerides. Lipases play a vital role in the food, detergent, chemical, and pharmaceutical industries. In the past, fungal lipases gained significant attention in the industries due to their substrate specificity and stability under varied chemical and physical conditions. Fungal enzymes are extracellular in nature, and they can be extracted easily, which significantly reduces the cost and makes this source preferable over bacteria. Soil contaminated with spillage from the products of oil and dairy harbors fungal species, which have the potential to secrete lipases to degrade fats and oils. Herein, the strategies involved in the characterization of fungal lipases, capable of degrading fatty substances, are narrated with a focus on further applications.

  17. Improving palm oil quality through identification and mapping of the lipase gene causing oil deterioration.

    PubMed

    Morcillo, F; Cros, D; Billotte, N; Ngando-Ebongue, G-F; Domonhédo, H; Pizot, M; Cuéllar, T; Espéout, S; Dhouib, R; Bourgis, F; Claverol, S; Tranbarger, T J; Nouy, B; Arondel, V

    2013-01-01

    The oil palm fruit mesocarp contains high lipase activity that increases free fatty acids and necessitates post-harvest inactivation by heat treatment of fruit bunches. Even before heat treatment the mesocarp lipase activity causes consequential oil losses and requires costly measures to limit free fatty acids quantities. Here we demonstrate that elite low-lipase lines yield oil with substantially less free fatty acids than standard genotypes, allowing more flexibility for post-harvest fruit processing and extended ripening for increased yields. We identify the lipase and its gene cosegregates with the low-/high-lipase trait, providing breeders a marker to rapidly identify potent elite genitors and introgress the trait into major cultivars. Overall, economic gains brought by wide adoption of this material could represent up to one billion dollars per year. Expected benefits concern all planters but are likely to be highest for African smallholders who would be more able to produce oil that meets international quality standards.

  18. Lipase immobilized catalytically active membrane for synthesis of lauryl stearate in a pervaporation membrane reactor.

    PubMed

    Zhang, Weidong; Qing, Weihua; Ren, Zhongqi; Li, Wei; Chen, Jiangrong

    2014-11-01

    A composite catalytically active membrane immobilized with Candida rugosa lipase has been prepared by immersion phase inversion technique for enzymatic synthesis of lauryl stearate in a pervaporation membrane reactor. SEM images showed that a "sandwich-like" membrane structure with a porous lipase-PVA catalytic layer uniformly coated on a polyvinyl alcohol (PVA)/polyethersulfone (PES) bilayer was obtained. Optimum conditions for lipase immobilization in the catalytic layer were determined. The membrane was proved to exhibit superior thermal stability, pH stability and reusability than free lipase under similar conditions. In the case of pervaporation coupled synthesis of lauryl stearate, benefited from in-situ water removal by the membrane, a conversion enhancement of approximately 40% was achieved in comparison to the equilibrium conversion obtained in batch reactors. In addition to conversion enhancement, it was also found that excess water removal by the catalytically active membrane appears to improve activity of the lipase immobilized.

  19. Lipase-catalyzed hydrolysis of linseed oil: optimization using response surface methodology.

    PubMed

    Chen, Weiwei; Sun, Shangde; Liang, Shaohua; Peng, Le; Wang, Yadong; Shen, Mi

    2014-01-01

    Lipase-catalyzed hydrolysis of linseed oil was investigated. Four commercially available microbial lipases of Lipase AY, Lipozyme RMIM, Lipozyme TLIM, and Novozym 435 were used. Among these tested lipases, Lipase AY exhibited the best hydrolysis effeciency to linseed oil. The effect of reaction variables was also evaluated and optimized using response surface methodology. A second-order regression for the Box-Behken design was used to study the effect of five independent variables, such as, temperature, pH, oil-aqueous phase ratio, enzyme load, and reaction time, on the hydrolysis of linseed oil. The optimal conditions were as follows: temperature 33°C, pH 5.80, oil-aqueous phase ratio 0.90 (w/w), enzyme load 1.20% (relative to the weight of total substrates), and reaction time 3.33 h. Under these conditions, the hydrolysis ratio of linseed oil was 93.92±0.54%.

  20. Lid mobility in lipase SMG1 validated using a thiol/disulfide redox potential probe.

    PubMed

    Guo, Shaohua; Popowicz, Grzegorz Maria; Li, Daoming; Yuan, Dongjuan; Wang, Yonghua

    2016-05-01

    Most lipases possess a lid domain above the catalytic site that is responsible for their activation. Lipase SMG1 from Malassezia globose CBS 7966 (Malassezia globosa LIP1), is a mono- and diacylglycerol lipase with an atypical loop-like lid domain. Activation of SMG1 was proposed to be solely through a gating mechanism involving two residues (F278 and N102). However, through disulfide bond cross-linking of the lid, this study shows that full activation also requires mobility of the lid domain, contrary to a previous proposal. The newly introduced disulfide bond makes lipase SMG1 eligible as a ratiometric thiol/disulfide redox potential probe, when it is coupled with chromogenic substrates. This redox-switch lipase could also be of potential use in cascade biocatalysis.

  1. Immobilization of Lipase by Adsorption Onto Magnetic Nanoparticles in Organic Solvents.

    PubMed

    Shi, Ying; Liu, Wei; Tao, Qing-Lan; Jiang, Xiao-Ping; Liu, Cai-Hong; Zeng, Sha; Zhang, Ye-Wang

    2016-01-01

    In order to improve the performance of lipase in organic solvents, a simple immobilization method was developed by adsorption of lipase onto Fe₃O₄@ SiO₂magnetic nanoparticles in organic solvent. Among the solvents tested, toluene was found to be the most effective solvent for the immobilization. A maximum immobilization yield of 97% and relative activity of 124% were achieved in toluene at 30 °C. The optimal temperature, enzyme loading and water activity were 30 °C, 1.25 mg/mg support and 0.48 aw, respectively. The residual activity of immobilized lipase was 67% after 10 cycles of use. The advantages of the immobilized lipase including easy recovery, high stability, and enhanced activity of immobilized lipase in organic solvents show potential industrial applications in anhydrous solvents.

  2. Catalytic activity of lipase immobilized onto ultrathin films of cellulose esters.

    PubMed

    Kosaka, P M; Kawano, Y; El Seoud, O A; Petri, D F S

    2007-11-20

    Ultrathin (approximately 2.0 nm) films of cellulose acetate (CA), cellulose acetate propionate (CAP), and cellulose acetate butyrate (CAB) supported on Si wafers have been prepared by adsorption and characterized by means of ellipsometry, atomic force microscopy (AFM), and contact angle measurements. CA, CAP, and CAB ultrathin films were characterized in air just after their formation and after annealing under reduced pressure at temperature higher than the corresponding melt temperature. Upon annealing, CA, CAP, and CAB ultrathin films became smoother and more hydrophobic, evidencing molecular reorientation at the solid-air interface. CA, CAP, and CAB films were used as supports for the immobilization of lipase. The adsorption of lipase onto annealed films was more pronounced than that onto untreated films, showing the strong affinity of lipase for the more hydrophobic substrates. Enzymatic activity was evaluated by a standard procedure, namely, (spectrophotometric) measurement of p-nitrophenol, the product formed from the hydrolysis of p-nitrophenyl dodecanoate (p-NPD). Lipase immobilized onto hydrophobic films exhibited higher activity than that of free lipase and could be recycled three times while retaining relatively high activity (loss of ca. 30% of original enzymatic activity). The effect of storing time on the activity of immobilized lipase was studied. Compared with free lipase, that immobilized onto more hydrophobic films retained 70% activity after 1 month. More importantly, the latter level of activity is similar to that of free lipase. However, lipase immobilized onto more hydrophilic films retained 50% and 30% activity after 20 and 30 days, respectively. These results are explained in terms of surface wettability and the contribution of the interactions between the polar residues of lipase and the glucopyranosyl moieties of cellulose ester to maintain the natural conformation of immobilized enzyme.

  3. Lipase expression in Pseudomonas alcaligenes is under the control of a two-component regulatory system.

    PubMed

    Krzeslak, Joanna; Gerritse, Gijs; van Merkerk, Ronald; Cool, Robbert H; Quax, Wim J

    2008-03-01

    Preliminary observations in a large-scale fermentation process suggested that the lipase expression of Pseudomonas alcaligenes can be switched on by the addition of certain medium components, such as soybean oil. In an attempt to elucidate the mechanism of induction of lipase expression, we have set up a search method for genes controlling lipase expression by use of a cosmid library containing fragments of P. alcaligenes genomic DNA. A screen for lipase hyperproduction resulted in the selection of multiple transformants, of which the best-producing strains comprised cosmids that shared an overlapping genomic fragment. Within this fragment, two previously unidentified genes were found and named lipQ and lipR. Their encoded proteins belong to the NtrBC family of regulators that regulate gene expression via binding to a specific upstream activator sequence (UAS). Such an NtrC-like UAS was identified in a previous study in the P. alcaligenes lipase promoter, strongly suggesting that LipR acts as a positive regulator of lipase expression. The regulating role could be confirmed by down-regulated lipase expression in a strain with an inactivated lipR gene and a threefold increase in lipase yield in a large-scale fermentation when expressing the lipQR operon from the multicopy plasmid pLAFR3. Finally, cell extracts of a LipR-overexpressing strain caused a retardation of the lipase promoter fragment in a band shift assay. Our results indicate that lipase expression in Pseudomonas alcaligenes is under the control of the LipQR two-component system.

  4. Lipase-catalyzed synthesis of monoacylglycerol in a homogeneous system.

    PubMed

    Monteiro, Julieta B; Nascimento, Maria G; Ninow, Jorge L

    2003-04-01

    The 1,3-regiospecifique lipase, Lipozyme IM, catalyzed the esterification of lauric acid and glycerol in a homogeneous system. To overcome the drawback of the insolubility of glycerol in hexane, which is extensively used in enzymatic synthesis, a mixture of n-hexane/tert-butanol (1:1, v/v) was used leading to a monophasic system. The conversion of lauric acid into monolaurin was 65% in 8 h, when a molar ratio of glycerol to fatty acid (5:1) was used with the fatty acid at 0.1 M, and the phenomenon of acyl migration was minimized.

  5. Molecular and enzymatic characterization of alkaline lipase from Bacillus amyloliquefaciens E1PA isolated from lipid-rich food waste.

    PubMed

    Saengsanga, Thanakorn; Siripornadulsil, Wilailak; Siripornadulsil, Surasak

    2016-01-01

    Bacillus amyloliquefaciens E1PA is a lipase-producing strain that was originally isolated from lipid-rich food waste, and the production of its lipase was found to be induced by vegetable oils. The E1PA lipase was successfully expressed and secreted in a heterologous Escherichia coli host and was ultimately purified. The conserved pentapeptide motif Ala-His-Ser-Met-Gly was observed at positions 108-112. The purified recombinant lipase was stable over a pH range of 4.0-11.0 at 40 °C and exhibited maximal activity at pH 10. The recombinant E1PA lipase hydrolyzed a wide range of acyl esters (C4-C18). However, the highest activity (3.5 units mg(-1)) was observed when the p-nitrophenyl ester of myristate (C14) was used as a substrate. Compared to the lipases produced by Bacillus spp., the E1PA lipase displayed a structural molecular mass excluding the leader sequence (19.22 kDa) and a pI (9.82) that were similar to those reported for B. amyloliquefaciens lipases and lipase subfamily I.4 but that were quite distinct from those of lipase subfamily I.5 (approximately 43 kDa, pI 6). These results suggested that Bacillus lipases are closely related. Although the recombinant E1PA lipase digested only certain oils, the wild-type E1PA lipase degraded a variety of oils, including blended and re-used cooking oils. The recombinant and wild-type forms of the E1PA lipase were able to digest heterogeneous lipid-rich food waste at similar levels; this result suggests that this lipase can function even when it solely consists of its structural enzyme component. The enzyme exhibited lipid hydrolysis ability as either an intracellular domain of the recombinant protein or an extracellular domain secreted by the E1PA strain. However, the recombinant lipase showed higher activity than the wild-type E1PA lipase, indicating that the recombinant protein from E. coli possessed effective lipase activity. Thus, the inducible alkaline E1PA lipase exhibited the ability to act on a broad spectrum

  6. Enantioselective esterification of racemic ibuprofen in isooctane by immobilized lipase on cellulose acetate-titanium iso-propoxide gel fiber.

    PubMed

    Ikeda, Yuko; Kurokawa, Youichi

    2002-01-01

    Lipase (Candida rugosa) was entrap-immobilized on cellulose acetate-titanium iso-propoxide gel fiber by the sol-gel method. The immobilized lipase was used for the direct synthesis of (S)-ibuprofen ester from racemic ibuprofen using propyl alcohol as an acyl acceptor in isooctane. The activity of the immobilized lipase was decreased to about 10-20% that of native lipase. However, the reaction was more enantioselective compared to that with native lipase. The stability for repeated use was improved by immobilization.

  7. Biochemical properties of a new cold-active mono- and diacylglycerol lipase from marine member Janibacter sp. strain HTCC2649.

    PubMed

    Yuan, Dongjuan; Lan, Dongming; Xin, Ruipu; Yang, Bo; Wang, Yonghua

    2014-06-12

    Mono- and di-acylglycerol lipase has been applied to industrial usage in oil modification for its special substrate selectivity. Until now, the reported mono- and di-acylglycerol lipases from microorganism are limited, and there is no report on the mono- and di-acylglycerol lipase from bacteria. A predicted lipase (named MAJ1) from marine Janibacter sp. strain HTCC2649 was purified and biochemical characterized. MAJ1 was clustered in the family I.7 of esterase/lipase. The optimum activity of the purified MAJ1 occurred at pH 7.0 and 30 °C. The enzyme retained 50% of the optimum activity at 5 °C, indicating that MAJ1 is a cold-active lipase. The enzyme activity was stable in the presence of various metal ions, and inhibited in EDTA. MAJ1 was resistant to detergents. MAJ1 preferentially hydrolyzed mono- and di-acylglycerols, but did not show activity to triacylglycerols of camellia oil substrates. Further, MAJ1 is low homologous to that of the reported fungal diacylglycerol lipases, including Malassezia globosa lipase 1 (SMG1), Penicillium camembertii lipase U-150 (PCL), and Aspergillus oryzae lipase (AOL). Thus, we identified a novel cold-active bacterial lipase with a sn-1/3 preference towards mono- and di-acylglycerides for the first time. Moreover, it has the potential, in oil modification, for special substrate selectivity.

  8. Lipase from marine strain using cooked sunflower oil waste: production optimization and application for hydrolysis and thermodynamic studies.

    PubMed

    Ramani, K; Saranya, P; Jain, S Chandan; Sekaran, G

    2013-03-01

    The marine strain Pseudomonas otitidis was isolated to hydrolyze the cooked sunflower oil (CSO) followed by the production of lipase. The optimum culture conditions for the maximum lipase production were determined using Plackett-Burman design and response surface methodology. The maximum lipase production, 1,980 U/ml was achieved at the optimum culture conditions. After purification, an 8.4-fold purity of lipase with specific activity of 5,647 U/mg protein and molecular mass of 39 kDa was obtained. The purified lipase was stable at pH 5.0-9.0 and temperature 30-80 °C. Ca(2+) and Triton X-100 showed stimulatory effect on the lipase activity. The purified lipase was highly stable in the non-polar solvents. The functional groups of the lipase were determined by Fourier transform-infrared (FT-IR) spectroscopy. The purified lipase showed higher hydrolytic activity towards CSO over the other cooked oil wastes. About 92.3 % of the CSO hydrolysis was observed by the lipase at the optimum time 3 h, pH 7.5 and temperature 35 °C. The hydrolysis of CSO obeyed pseudo first order rate kinetic model. The thermodynamic properties of the lipase hydrolysis were studied using the classical Van't Hoff equation. The hydrolysis of CSO was confirmed by FT-IR studies.

  9. A computational search for lipases that can preferentially hydrolyze long-chain omega-3 fatty acids from fish oil triacylglycerols.

    PubMed

    Kamal, Md Zahid; Barrow, Colin J; Rao, Nalam Madhusudhana

    2015-04-15

    Consumption of long-chain omega-3 fatty acids is known to decrease the risk of major cardiovascular events. Lipases, a class of triacylglycerol hydrolases, have been extensively tested to concentrate omega-3 fatty acids from fish oils, under mild enzymatic conditions. However, no lipases with preference for omega-3 fatty acids selectivity have yet been discovered or developed. In this study we performed an exhaustive computational study of substrate-lipase interactions by docking, both covalent and non-covalent, for 38 lipases with a large number of structured triacylglycerols containing omega-3 fatty acids. We identified some lipases that have potential to preferentially hydrolyze omega-3 fatty acids from structured triacylglycerols. However omega-3 fatty acid preferences were found to be modest. Our study provides an explanation for absence of reports of lipases with omega-3 fatty acid hydrolyzing ability and suggests methods for developing these selective lipases.

  10. X-ray structure of Candida antarctica lipase A shows a novel lid structure and a likely mode of interfacial activation.

    PubMed

    Ericsson, Daniel J; Kasrayan, Alex; Johansson, Patrik; Bergfors, Terese; Sandström, Anders G; Bäckvall, Jan-E; Mowbray, Sherry L

    2008-02-08

    In nature, lipases (EC 3.1.1.3) catalyze the hydrolysis of triglycerides to form glycerol and fatty acids. Under the appropriate conditions, the reaction is reversible, and so biotechnological applications commonly make use of their capacity for esterification as well as for hydrolysis of a wide variety of compounds. In the present paper, we report the X-ray structure of lipase A from Candida antarctica, solved by single isomorphous replacement with anomalous scattering, and refined to 2.2-A resolution. The structure is the first from a novel family of lipases. Contrary to previous predictions, the fold includes a well-defined lid as well as a classic alpha/beta hydrolase domain. The catalytic triad is identified as Ser184, Asp334 and His366, which follow the sequential order considered to be characteristic of lipases; the serine lies within a typical nucleophilic elbow. Computer docking studies, as well as comparisons to related structures, place the carboxylate group of a fatty acid product near the serine nucleophile, with the long lipid tail closely following the path through the lid that is marked by a fortuitously bound molecule of polyethylene glycol. For an ester substrate to bind in an equivalent fashion, loop movements near Phe431 will be required, suggesting the primary focus of the conformational changes required for interfacial activation. Such movements will provide virtually unlimited access to solvent for the alcohol moiety of an ester substrate. The structure thus provides a basis for understanding the enzyme's preference for acyl moieties with long, straight tails, and for its highly promiscuous acceptance of widely different alcohol and amine moieties. An unconventional oxyanion hole is observed in the present structure, although the situation may change during interfacial activation.

  11. Concentration, characterization and application of lipases from Sporidiobolus pararoseus strain

    PubMed Central

    Smaniotto, Alessandra; Skovronski, Aline; Rigo, Elisandra; Tsai, Siu Mui; Durrer, Ademir; Foltran, Lillian Liva; Paroul, Natália; Di Luccio, Marco; Oliveira, J. Vladimir; de Oliveira, Débora; Treichel, Helen

    2014-01-01

    Lipases produced by a newly isolated Sporidiobolus pararoseus strain have potential catalytic ability for esterification reactions. After production, the enzymatic extracts (conventional crude and precipitated, ‘CC’ and ‘CP’, and industrial crude and precipitated, ‘IC’ e ‘IP’) were partially characterized. The enzymes presented, in general, higher specificity for short chain alcohols and fatty acids. The precipitated extract showed a good thermal stability, higher than that for crude enzymatic extracts. The ‘CC’ and ‘CP’ enzymes presented high activities after exposure to pH 6.5 and 40 °C. On the other hand, the ‘IC’ and ‘IP’ extracts kept their activities in a wide range of pH memory but presented preference for higher reaction temperatures. Preliminary studies of application of the crude lipase extract in the enzymatic production of geranyl propionate using geraniol and propionic acid as substrates in solvent-free system led to a reaction conversion of 42 ± 1.5%. PMID:24948948

  12. Lipoprotein electrostatic properties regulate hepatic lipase association and activity.

    PubMed

    Boucher, Jonathan G; Nguyen, Trang; Sparks, Daniel L

    2007-12-01

    The effect of lipoprotein electrostatic properties on the catalytic regulation of hepatic lipase (HL) was investigated. Enrichment of serum or very low density lipoprotein (VLDL) with oleic acid increased lipoprotein negative charge and stimulated lipid hydrolysis by HL. Similarly, enrichment of serum or isolated lipoproteins with the anionic phospholipids phosphatidylinositol (PI), phosphatidic acid, or phosphatidylserine also increased lipoprotein negative charge and stimulated hydrolysis by HL. Anionic lipids had a small effect on phospholipid hydrolysis, but significantly stimulated triacylglyceride (TG) hydrolysis. High density lipoprotein (HDL) charge appears to have a specific effect on lipolysis. Enrichment of HDL with PI significantly stimulated VLDL-TG hydrolysis by HL. To determine whether HDL charge affects the association of HL with HDL and VLDL, HL-lipoprotein interactions were probed immunochemically. Under normal circumstances, HL associates with HDL particles, and only small amounts bind to VLDL. PI enrichment of HDL blocked the binding of HL with HDL. These data indicate that increasing the negative charge of HDL stimulates VLDL-TG hydrolysis by reducing the association of HL with HDL. Therefore, HDL controls the hydrolysis of VLDL by affecting the interlipoprotein association of HL. Lipoprotein electrostatic properties regulate lipase association and are an important regulator of the binding and activity of lipolytic enzymes.

  13. Molecular recognition between pancreatic lipase and natural and synthetic inhibitors.

    PubMed

    Bello, Martiniano; Basilio-Antonio, Lucia; Fragoso-Vázquez, Jonathan; Avalos-Soriano, Anaguiven; Correa-Basurto, José

    2017-05-01

    Pancreatic lipase (PL) is a primary lipase critical for triacylglyceride digestion in humans and is considered as a promising target for the treatment of obesity. Although the current synthetic drugs available for treating obesity have been demonstrated to be effective in inhibiting PL, their prolonged usage results in severe side effects. Based on this argument, in this study, we evaluated the structural and energetic features linked to molecular recognition between two well-known PL inhibitors, orlistat (ORL, synthetic inhibitor) and (-)-epigallocatechin gallate (EGCG, natural inhibitor) and PL through molecular dynamics simulations and free energy calculations of ORL and EGCG at the PL binding site when it is isolated (PL) from the heterodimer complex, forming the heterodimer complex with colipase (PLCL) and lacking structural calcium. Our study showed that the binding free energy of ORL and EGCG to the target correlates with their experimental affinity tendency. The presence of the heterodimer PLCL state, the presence of structural calcium and the type of inhibitor resulted in differences in structural stability and in the map of protein-ligand and protein-protein interactions. Overall, our results suggest that the heterodimer complex and structural calcium are linked to the binding properties of PL.

  14. Bioprospecting hot spring metagenome: lipase for the production of biodiesel.

    PubMed

    Sahoo, Rajesh Kumar; Kumar, Mohit; Sukla, Lala Behari; Subudhi, Enketeswara

    2017-02-01

    Screening of metagenomic library from Taptapani Hot Spring (Odisha) yielded a positive lipase clone (pUC-lip479). Sequence analysis showed an ORF (RK-lip479) of 416 amino acid residues which was overexpressed in Escherichia coli BL21 (DE3). Optimum pH and temperature of purified lipase RK-lip479 were 8.0 and 65 °C, respectively, and found to be stable over a pH range of 7.0-9.0 and temperatures 55-75 °C. RK-lip479 could hydrolyse a wide range of 4-nitrophenyl esters (4-nitrophenyoctanoate, 4-nitrophenyldodecanoate, 4-nitrophenylpalmitate, 4-nitrophenylmyristate and 4-nitrophenylstearate), and maximum activity was observed with 4-nitrophenyldodecanoate. RK-lip479 was resistant to many organic solvents, especially isopropanol, DMSO, methanol, DMF, ethanol, dichloromethane, acetone, glycerol and ethyl acetate. RK-lip479 also showed activity in the presence of monovalent (Na(+) and K(+)), divalent (Mg(2+), Mn(2+), Ca(2+), Hg(2+), Cu(2+), Co(2+), Zn(2+) and Ag(2+) ) and trivalent cations (Fe(3+) and Al(3+)). Yield of biodiesel production was in the range of 40-76% using various waste oils with RK-Lip479 under optimized conditions.

  15. Purification and specificity of lipases fromGeotrichum candidum.

    PubMed

    Baillargeon, M W

    1990-12-01

    A crude, commercialGeotrichum candidum lipase (EC 3.1.1.3) preparation (Amano GC-20) was purified by hydrophobic interaction chromatography on Octyl Sepharose. The purified enzyme is a microheterogeneous glycoprotein containing isozymes varying in molecular weight, pI and specificity. It consists of 64, 62 and 59 kDa species as determined by denaturing polyacrylamide gel electrophoresis. Five isozymes (pI 4.40, 4.47, 4.58, 4.67 and 4.72) are detected by isoelectric focusing using both silver and activity stains. Chromatofocusing was used to separate the isozymes according to pI. Although all the isozymes are specific for oleatevs stearate esters, one isozyme (pI 4.72) is also specific for oleatevs palmitate. The number of isozymes is reduced to two (pI 4.67 and 4.72) after carbohydrate removal using endoglycosidase F/N-glycosidase. These isozymes may be products of two lipase genes.

  16. Lipase biofilm deposited by Matrix Assisted Pulsed Laser Evaporation technique

    NASA Astrophysics Data System (ADS)

    Aronne, Antonio; Bloisi, Francesco; Calabria, Raffaela; Califano, Valeria; Depero, Laura E.; Fanelli, Esther; Federici, Stefania; Massoli, Patrizio; Vicari, Luciano R. M.

    2015-05-01

    Lipase is an enzyme that finds application in biodiesel production and for detection of esters and triglycerides in biosensors. Matrix Assisted Pulsed Laser Evaporation (MAPLE), a technique derived from Pulsed Laser Deposition (PLD) for deposition of undamaged biomolecules or polymers, is characterized by the use of a frozen target obtained from a solution/suspension of the guest material (to be deposited) in a volatile matrix (solvent). The presence of the solvent avoids or at least reduces the potential damage of guest molecules by laser radiation but only the guest material reaches the substrate in an essentially solvent-free deposition. MAPLE can be used for enzymes immobilization, essential for industrial application, allowing the development of continuous processes, an easier separation of products, the reuse of the catalyst and, in some cases, enhancing enzyme properties (pH, temperature stability, etc.) and catalytic activity in non-aqueous media. Here we show that MAPLE technique can be used to deposit undamaged lipase and that the complex structure (due to droplets generated during extraction from target) of the deposited material can be controlled by changing the laser beam fluence.

  17. Synthesis and evaluation of fluorogenic triglycerides as lipase assay substrates.

    PubMed

    Andersen, Rokhsana J; Brask, Jesper

    2016-06-01

    Three racemic fluorogenic triglycerides are synthesized and evaluated as lipase assay substrates. The presented synthesis route goes through a key triglyceride intermediate which can be chemoselectively functionalized with a wide range of different probes. Hence the substrate can be tailor-made for a specific assay, or focus can be on low cost in larger scale for applications in high-throughput screening (HTS) assays. In the specific examples, TG-ED, TG-FD and TG-F2 are assembled with the Edans-Dabcyl or the fluorescein-Dabcyl FRET pair, or relying on fluorescein self-quenching, respectively. Proof-of-concept assays allowed determination of 1st order kinetic parameters (kcat/KM) of 460s(-1)M(-1), 59s(-1)M(-1) and 346s(-1)M(-1), respectively, for the three substrates. Commercially available EnzChek lipase substrate provided 204s(-1)M(-1). Substrate concentration was identified as a critical parameter, with measured reaction rates decreasing at higher concentrations when intermolecular quenching becomes significant.

  18. The galactolipase activity of Fusarium solani (phospho)lipase.

    PubMed

    Jallouli, Raida; Othman, Houcemeddine; Amara, Sawsan; Parsiegla, Goetz; Carriere, Frédéric; Srairi-Abid, Najet; Gargouri, Youssef; Bezzine, Sofiane

    2015-03-01

    The purified (phospho)lipase of Fusarium solani (FSL), was known to be active on both triglycerides and phospholipids. This study aimed at assessing the potential of this enzyme in hydrolyzing galactolipids. FSL was found to hydrolyze at high rates of synthetic medium chains monogalactosyldiacylglycerol (4658±146U/mg on DiC8-MGDG) and digalactosyldiacylglycerol (3785±83U/mg on DiC8-DGDG) and natural long chain monogalactosyldiacylglycerol extracted from leek leaves (991±85U/mg). It is the microbial enzyme with the highest activity on galactolipids identified so far with a level of activity comparable to that of pancreatic lipase-related protein 2. FSL maximum activity on galactolipids was measured at pH8. The analysis of the hydrolysis product of natural MGDG from leek showed that FSL hydrolyzes preferentially the ester bond at the sn-1 position of galactolipids. To investigate the structure-activity relationships of FSL, a 3D model of this enzyme was built. In silico docking of medium chains MGDG and DGDG and phospholipid in the active site of FSL reveals structural solutions which are in concordance with in vitro tests.

  19. Surfactant enhanced ricinoleic acid production using Candida rugosa lipase.

    PubMed

    Goswami, Debajyoti; Sen, Ramkrishna; Basu, Jayanta Kumar; De, Sirshendu

    2010-01-01

    In this study, ricinoleic acid was produced on surfactant enhanced castor oil hydrolysis using Candida rugosa lipase. The most effective surfactant was Span 80. Employing fractional factorial design, the most suitable temperature and surfactant concentration were found to be 31 degrees C and 0.257% (w/w in buffer) respectively whereas pH, enzyme concentration, buffer concentration and agitation were identified as the most significant independent variables. A 2(4) full factorial central composite design was applied and the optimal conditions were found to be pH 7.0, enzyme concentration 7.42 mg/g oil, buffer concentration 0.20 g/g oil and agitation 1400 rpm with the maximum response of 76% in 4 h. The most important variable was pH, whereas enzyme and buffer concentrations also showed pronounced effect on response. This is the first report on the application of response surface methodology for optimizing surfactant enhanced ricinoleic acid production using C. rugosa lipase.

  20. A newly high alkaline lipase: an ideal choice for application in detergent formulations

    PubMed Central

    2011-01-01

    Background Bacterial lipases received much attention for their substrate specificity and their ability to function in extreme environments (pH, temperature...). Many staphylococci produced lipases which were released into the culture medium. Reports of thermostable lipases from Staphylococcus sp. and active in alkaline conditions are not previously described. Results A newly soil-isolated Staphylococcus sp. strain ESW secretes an induced lipase in the culture medium. The effects of temperature, pH and various components in a detergent on the activity and stability of Staphylococcus sp. lipase (SL1) were studied in a preliminary evaluation for use in detergent formulation solutions. The enzyme was highly active over a wide range of pH from 9.0 to 13.0, with an optimum at pH 12.0. The relative activity at pH 13.0 was about 60% of that obtained at pH 12.0. It exhibited maximal activity at 60°C. This novel lipase, showed extreme stability towards non-ionic and anionic surfactants after pre-incubation for 1 h at 40°C, and relative stability towards oxidizing agents. Additionally, the crude enzyme showed excellent stability and compatibility with various commercial solid and liquid detergents. Conclusions These properties added to the high activity in high alkaline pH make this novel lipase an ideal choice for application in detergent formulations. PMID:22123072

  1. Screening, gene sequencing and characterising of lipase for methanolysis of crude palm oil.

    PubMed

    Ratnaningsih, Enny; Handayani, Dewi; Khairunnisa, Fatiha; Ihsanawati; Kurniasih, Sari Dewi; Mangindaan, Bill; Rismayani, Sinta; Kasipah, Cica; Nurachman, Zeily

    2013-05-01

    Staphylococcus sp. WL1 lipase (LipFWS) was investigated for methanolysis of crude palm oil (CPO) at moderate temperatures. Experiments were conducted in the following order: searching for the suitable bacterium for producing lipase from activated sludge, sequencing lipase gene, identifying lipase activity, then synthesising CPO biodiesel using the enzyme. From bacterial screening, one isolated specimen which consistently showed the highest extracellular lipase activity was identified as Staphylococcus sp. WL1 possessing lipFWS (lipase gene of 2,244 bp). The LipFWS deduced was a protein of 747 amino acid residues containing an α/β hydrolase core domain with predicted triad catalytic residues to be Ser474, His704 and Asp665. Optimal conditions for the LipFWS activity were found to be at 55 °C and pH 7.0 (in phosphate buffer but not in Tris buffer). The lipase had a K(M) of 0.75 mM and a V(max) of 0.33 mMmin(-1) on p-nitrophenyl palmitate substrate. The lyophilised crude LipFWS performed as good as the commonly used catalyst potassium hydroxide for methanolysis of CPO. ESI-IT-MS spectra indicated that the CPO was converted into biodiesel, suggesting that free LipFWS is a worthy alternative for CPO biodiesel synthesis.

  2. Electrospun polylactic acid and polyvinyl alcohol fibers as efficient and stable nanomaterials for immobilization of lipases.

    PubMed

    Sóti, Péter Lajos; Weiser, Diana; Vigh, Tamás; Nagy, Zsombor Kristóf; Poppe, László; Marosi, György

    2016-03-01

    Electrospinning was applied to create easy-to-handle and high-surface-area membranes from continuous nanofibers of polyvinyl alcohol (PVA) or polylactic acid (PLA). Lipase PS from Burkholderia cepacia and Lipase B from Candida antarctica (CaLB) could be immobilized effectively by adsorption onto the fibrous material as well as by entrapment within the electrospun nanofibers. The biocatalytic performance of the resulting membrane biocatalysts was evaluated in the kinetic resolution of racemic 1-phenylethanol (rac-1) and 1-phenylethyl acetate (rac-2). Fine dispersion of the enzymes in the polymer matrix and large surface area of the nanofibers resulted in an enormous increase in the activity of the membrane biocatalyst compared to the non-immobilized crude powder forms of the lipases. PLA as fiber-forming polymer for lipase immobilization performed better than PVA in all aspects. Recycling studies with the various forms of electrospun membrane biocatalysts in ten cycles of the acylation and hydrolysis reactions indicated excellent stability of this forms of immobilized lipases. PLA-entrapped lipases could preserve lipase activity and enantiomer selectivity much better than the PVA-entrapped forms. The electrospun membrane forms of CaLB showed high mechanical stability in the repeated acylations and hydrolyses than commercial forms of CaLB immobilized on polyacrylamide beads (Novozyme 435 and IMMCALB-T2-150).

  3. Valorization of Palm Oil Industrial Waste as Feedstock for Lipase Production.

    PubMed

    Silveira, Erick A; Tardioli, Paulo W; Farinas, Cristiane S

    2016-06-01

    The use of residues from the industrial processing of palm oil as carbon source and inducer for microbial lipase production can be a way to add value to such residues and to contribute to reduced enzyme costs. The aim of this work was to investigate the feasibility of using palm oil industrial waste as feedstock for lipase production in different cultivation systems. Evaluation was made of lipase production by a selected strain of Aspergillus niger cultivated under solid-state (SSF) and submerged fermentation (SmF). Lipase activity levels up to 15.41 IU/mL were achieved under SSF. The effects of pH and temperature on the lipase activity of the SSF extract were evaluated using statistical design methodology, and maximum activities were obtained between pH 4.0 and 6.5 and at temperatures between 37 and 55 °C. This lipase presented good thermal stability up to 60 °C and higher specificity towards long carbon chain substrates. The results demonstrate the potential application of palm oil industrial residues for lipase production and contribute to the technological advances needed to develop processes for industrial enzymes production.

  4. Comparison of covalent and physical immobilization of lipase in gigaporous polymeric microspheres.

    PubMed

    Wang, Weichen; Zhou, Weiqing; Li, Juan; Hao, Dongxia; Su, Zhiguo; Ma, Guanghui

    2015-11-01

    Lipase (EC 3.1.1.3) is a versatile enzyme which has been widely used in ester-reaction industries. We have previously discovered that gigaporous polystyrene (PST) microspheres can be used as a novel immobilization carrier for lipase. In this work, a series of gigaporous microspheres with different densities of epoxy group including poly(glycidyl methacrylate) (PGMA) and poly(styrene-co-glycidyl methacrylate) [P(ST-GMA)] were evaluated as lipase immobilization carriers, which were also compared with gigaporous PST microspheres and the commercial immobilized lipase Novozym 435. Lipase immobilized in gigaporous PGMA microspheres showed the highest activity yield, reusability, and stability as well as the best affinity for the substrate. The characterizations of adsorption curves, the change of epoxy group amounts, and hydrophobic-hydrophilic properties of the microspheres were carried out to investigate the interaction between lipase molecules and carriers. It was found that covalent binding played a key role in improving the properties of lipase immobilized in gigaporous PGMA microspheres.

  5. Insights into lid movements of Burkholderia cepacia lipase inferred from molecular dynamics simulations.

    PubMed

    Barbe, Sophie; Lafaquière, Vincent; Guieysse, David; Monsan, Pierre; Remaud-Siméon, Magali; André, Isabelle

    2009-11-15

    The interfacial activation of many lipases at water/lipid interface is mediated by large conformational changes of a so-called lid subdomain that covers up the enzyme active site. Here we investigated using molecular dynamic simulations in different explicit solvent environments (water, octane and water/octane interface) the molecular mechanism by which the lid motion of Burkholderia cepacia lipase might operate. Although B. cepacia lipase has so far only been crystallized in open conformation, this study reveals for the first time the major conformational rearrangements that the enzyme undergoes under the influence of the solvent, which either exposes or shields the active site from the substrate. In aqueous media, the lid switches from an open to a closed conformation while the reverse motion occurs in organic environment. In particular, the role of a subdomain facing the lid on B. cepacia lipase conformational rearrangements was investigated using position-restrained MD simulations. Our conclusions indicate that the sole mobility of alpha9 helix side-chains of B. cepacia lipase is required for the full completion of the lid conformational change which is essentially driven by alpha5 helix movement. The role of selected alpha5 hydrophobic residues on the lid movement was further examined. In silico mutations of two residues, V138 and F142, were shown to drastically modify the conformational behavior of B. cepacia lipase. Overall, our results provide valuable insight into the role played by the surrounding environment on the lid conformational rearrangement and the activation of B. cepacia lipase.

  6. The Lid Domain in Lipases: Structural and Functional Determinant of Enzymatic Properties

    PubMed Central

    Khan, Faez Iqbal; Lan, Dongming; Durrani, Rabia; Huan, Weiqian; Zhao, Zexin; Wang, Yonghua

    2017-01-01

    Lipases are important industrial enzymes. Most of the lipases operate at lipid–water interfaces enabled by a mobile lid domain located over the active site. Lid protects the active site and hence responsible for catalytic activity. In pure aqueous media, the lid is predominantly closed, whereas in the presence of a hydrophobic layer, it is partially opened. Hence, the lid controls the enzyme activity. In the present review, we have classified lipases into different groups based on the structure of lid domains. It has been observed that thermostable lipases contain larger lid domains with two or more helices, whereas mesophilic lipases tend to have smaller lids in the form of a loop or a helix. Recent developments in lipase engineering addressing the lid regions are critically reviewed here. After on, the dramatic changes in substrate selectivity, activity, and thermostability have been reported. Furthermore, improved computational models can now rationalize these observations by relating it to the mobility of the lid domain. In this contribution, we summarized and critically evaluated the most recent developments in experimental and computational research on lipase lids. PMID:28337436

  7. Synthetic activity enhancement of membrane-bound lipase from Rhizopus chinensis by pretreatment with isooctane.

    PubMed

    Wang, Dong; Xu, Yan; Teng, Yun

    2007-05-01

    The cell-bound lipase from Rhizopus chinensis CCTCC M201021 with high catalysis ability for ester synthesis was located as a membrane-bound lipase by the treatments of Yatalase firstly. In order to improve its synthetic activity in non-aqueous phase, the pretreatments of this enzyme with various organic solvents were investigated. The pretreatment with isooctane improved evidently the lipase synthetic activity, resulting in about 139% in relative synthetic activity and 115% in activity recovery. The morphological changes of mycelia caused by organic solvent pretreatments could influence the exposure of the membrane-bound enzyme from mycelia and the exhibition of the lipase activity. The pretreatment conditions with isooctane and acetone were further investigated, and the optimum effect was obtained by the isooctane pretreatment at 4 degrees C for 1 h, resulting in 156% in relative synthetic activity and 126% in activity recovery. When the pretreated lipases were employed as catalysts for the esterification production of ethyl hexanoate in heptane, higher initial reaction rate and higher final molar conversion were obtained using the lipase pretreated with isooctane, compared with the untreated lyophilized one. This result suggested that the pretreatment of the membrane-bound lipase with isooctane could be an effective method to substitute the lyophilization for preparing biocatalysts used in non-aqueous phase reactions.

  8. Overexpression and characterization in Bacillus subtilis of a positionally nonspecific lipase from Proteus vulgaris.

    PubMed

    Lu, Yaping; Lin, Qian; Wang, Jin; Wu, Yufan; Bao, Wuyundalai; Lv, Fengxia; Lu, Zhaoxin

    2010-09-01

    A Proteus vulgaris strain named T6 which produced lipase (PVL) with nonpositional specificity had been isolated in our laboratory. To produce the lipase in large quantities, we cloned its gene, which had an opening reading frame of 864 base pairs and encoded a deduced 287-amino-acid protein. The PVL gene was inserted into the Escherichia coli expression vector pET-DsbA, and active lipase was expressed in E. coli BL21 cells. The secretive expression of PVL gene in Bacillus subtilis was examined. Three vectors, i.e., pMM1525 (xylose-inducible), pMMP43 (constitutive vector, derivative of pMM1525), and pHPQ (sucrose-inducible, constructed based on pHB201), were used to produce lipase in B. subtilis. Recombinant B. subtilis WB800 cells harboring the pHPQ-PVL plasmid could synthesize and secrete the PVL protein in high yield. The lipase activity reached 356.8 U/mL after induction with sucrose for 72 h in shake-flask culture, representing a 12-fold increase over the native lipase activity in P. vulgaris. The characteristics of the heterologously expressed lipase were identical to those of the native one.

  9. Purification and Characterization of a Novel Cold-Active Lipase from the Yeast Candida zeylanoides.

    PubMed

    Čanak, Iva; Berkics, Adrienn; Bajcsi, Nikolett; Kovacs, Monika; Belak, Agnes; Teparić, Renata; Maraz, Anna; Mrša, Vladimir

    2015-01-01

    Cold-active lipases have attracted attention in recent years due to their potential applications in reactions requiring lower temperatures. Both bacterial and fungal lipases have been investigated, each having distinct advantages for particular applications. Among yeasts, cold-active lipases from the genera Candida, Yarrowia, Rhodotorula, and Pichia have been reported. In this paper, biosynthesis and properties of a novel cold-active lipase from Candida zeylanoides isolated from refrigerated poultry meat are described. Heat-sterilized olive oil was found to be the best lipase biosynthesis inducer, while nonionic detergents were not effective. The enzyme was purified to homogeneity using hydrophobic chromatography and its enzymatic properties were tested. Pure enzyme activity at 7 °C was about 60% of the maximal activity at 27 °C. The enzyme had rather good activity at higher temperatures, as well. Optimal pH of pure lipase was between 7.3 and 8.2, while the enzyme from the crude extract had an optimum pH of about 9.0. The enzyme was sensitive to high ionic strength and lost most of its activity at high salt concentrations. Due to the described properties, cold-active C. zeylanoides lipase has comparative advantages to most similar enzymes with technological applications and may have potential to become an industrially important enzyme.

  10. The Lid Domain in Lipases: Structural and Functional Determinant of Enzymatic Properties.

    PubMed

    Khan, Faez Iqbal; Lan, Dongming; Durrani, Rabia; Huan, Weiqian; Zhao, Zexin; Wang, Yonghua

    2017-01-01

    Lipases are important industrial enzymes. Most of the lipases operate at lipid-water interfaces enabled by a mobile lid domain located over the active site. Lid protects the active site and hence responsible for catalytic activity. In pure aqueous media, the lid is predominantly closed, whereas in the presence of a hydrophobic layer, it is partially opened. Hence, the lid controls the enzyme activity. In the present review, we have classified lipases into different groups based on the structure of lid domains. It has been observed that thermostable lipases contain larger lid domains with two or more helices, whereas mesophilic lipases tend to have smaller lids in the form of a loop or a helix. Recent developments in lipase engineering addressing the lid regions are critically reviewed here. After on, the dramatic changes in substrate selectivity, activity, and thermostability have been reported. Furthermore, improved computational models can now rationalize these observations by relating it to the mobility of the lid domain. In this contribution, we summarized and critically evaluated the most recent developments in experimental and computational research on lipase lids.

  11. Conversion of a Rhizopus chinensis lipase into an esterase by lid swapping.

    PubMed

    Yu, Xiao-Wei; Zhu, Shan-Shan; Xiao, Rong; Xu, Yan

    2014-06-01

    In an effort to explore the feasibility of converting a lipase into an esterase by modifying the lid region, we designed and characterized two novel Rhizopus chinensis lipase variants by lid swapping. The substrate specificity of an R. chinensis lipase was successfully modified toward water-soluble substrates, that is, turned into an esterase, by replacing the hydrophobic lid with a hydrophilic lid from ferulic acid esterase from Aspergillus niger Meanwhile, as a comparison, the lid of R. chinensis lipase was replaced by a hydrophobic lid from Rhizomucor miehei lipase, which did not alter its substrate specificity but led to a 5.4-fold higher catalytic efficiency (k*cat/K*m) toward p-nitrophenyl laurate. Based on the analysis of structure-function relationships, it suggests that the amphipathic nature of the lid is very important for the substrate specificity. This study provides new insight into the structural basis of lipase specificities and a way to tune the substrate preference of lipases.

  12. Role of Met93 and Thr96 in the lid hinge region of Rhizopus chinensis lipase.

    PubMed

    Zhu, Shan-Shan; Li, Ming; Yu, Xiaowei; Xu, Yan

    2013-05-01

    We engineered Rhizopus chinensis lipase to study its critical amino acid role in catalytic properties. Based on the amino acid sequence and three-dimensional model of the lipase, residues located in its lid hinge region (Met93 and Thr96) were replaced with corresponding amino acid residues (Ile93 and Asn96) found in the lid hinge region of Rhizopus oryzae lipase. The substitutions in the lid hinge region affected not only substrate specificity but also the thermostability of the lipase. Both lipases preferred p-nitrophenyl laurate and glyceryl trilaurate (C12). However, the variant S4-3O showed a slight decline in activity toward long-chain fatty acid (C16-C18). When enzymes activities decreased by half, the temperature of the variant (45 °C) was 22 °C lower than the parent (67 °C), probably substantially destabilized the structure of the lid region. The interfacial kinetic analysis of S4-3O suggested that the lower catalytic efficiency was due to a higher K m* value. According to the lipase structure investigated, Ile93Met played a role of narrowing the size of the hydrophobic patch, which affected the substrate binding affinity, and Asn96Thr destabilized the structure of the lipase by disrupting the H-bond interaction in the lid region.

  13. Amplification of thermostable lipase genes fragment from thermogenic phase of domestic waste composting process

    NASA Astrophysics Data System (ADS)

    Nurhasanah, Nurbaiti, Santi; Madayanti, Fida; Akhmaloka

    2015-09-01

    Lipases are lipolytic enzymes, catalyze the hydrolysis of fatty acid ester bonds of triglycerides to produce free fatty acids and glycerol. The enzyme is widely used in various fields of biotechnological industry. Hence, lipases with unique properties (e.g.thermostable lipase) are still being explored by variation methods. One of the strategy is by using metagenomic approach to amplify the gene directly from environmental sample. This research was focused on amplification of lipase gene fragment directly from the thermogenic phase of domestic waste composting in aerated trenches. We used domestic waste compost from waste treatment at SABUGA, ITB for the sample. Total chromosomal DNA were directly extracted from several stages at thermogenic phase of compost. The DNA was then directly used as a template for amplification of thermostable lipase gene fragments using a set of internal primers namely Flip-1a and Rlip-1a that has been affixed with a GC clamp in reverse primer. The results showed that the primers amplified the gene from four stages of thermogenic phase with the size of lipase gene fragment of approximately 570 base pairs (bp). These results were further used for Denaturing Gradient Gel Electrophoresis (DGGE) analysis to determine diversity of thermostable lipase gene fragments.

  14. Deciphering the toxicity of bisphenol a to Candida rugosa lipase through spectrophotometric methods.

    PubMed

    Zhang, Rui; Zhao, Lining; Liu, Rutao

    2016-10-01

    Bisphenol A is widely used in the manufacture of food packaging and beverage containers and can invade our food and cause contamination. Candida rugose lipase has been a versatile enzyme for biocatalysis and biotransformations to produce useful materials for food, pharmaceutical and flavor. The interactions between bisphenol A and Candida rugosa lipase in vitro were studied by UV-vis, steady-state fluorescence, circular dichroism, synchronous fluorescence, light scattering spectra, molecular docking and enzyme activity assay to better understand the toxicity and toxic mechanisms of bisphenol A. The intrinsic fluorescence of the tryptophan amino acid residue and the secondary structure of the globular protein candida rugose lipase were made use of to thoroughly investigate the structural changes caused by bisphenol A. The results of the fluorescence indicated that bisphenol A interacted with candida rugose lipase and made tryptophan be exposed to a hydrophobic environment. Multi-spectroscopic measurements showed that the addition of bisphenol A increased the intrinsic fluorescence of Candida rugosa lipase, loosened its skeleton structure and changed its secondary structure. Also, the increased activity of Candida rugosa lipase revealed that the position or the structure of the catalytic triad of Candida rugosa lipase may be changed. The molecular docking results showed that bisphenol A bound with the residue Serine 209 which could be another reason for the increased activity of Candida rugosa lipase. Moreover, as can be seen from the results of resonance light scattering and dynamic light scattering, the volume of the Candida rugosa lipase was decreased and the lid may be stripped.

  15. Synthesis of structured triacylglycerols enriched in n-3 fatty acids by immobilized microbial lipase.

    PubMed

    Araújo, Maria Elisa Melo Branco de; Campos, Paula Renata Bueno; Alberto, Thiago Grando; Contesini, Fabiano Jares; Carvalho, Patrícia de Oliveira

    The search for new biocatalysts has aroused great interest due to the variety of micro-organisms and their role as enzyme producers. Native lipases from Aspergillus niger and Rhizopus javanicus were used to enrich the n-3 long-chain polyunsaturated fatty acids content in the triacylglycerols of soybean oil by acidolysis with free fatty acids from sardine oil in solvent-free media. For the immobilization process, the best lipase/support ratios were 1:3 (w/w) for Aspergillus niger lipase and 1:5 (w/w) for Rhizopus javanicus lipase using Amberlite MB-1. Both lipases maintained constant activity for 6 months at 4°C. Reaction time, sardine-free fatty acids:soybean oil mole ratio and initial water content of the lipase were investigated to determine their effects on n-3 long-chain polyunsaturated fatty acids incorporation into soybean oil. Structured triacylglycerols with 11.7 and 7.2% of eicosapentaenoic acid+docosahexaenoic acid were obtained using Aspergillus niger lipase and Rhizopus javanicus lipase, decreasing the n-6/n-3 fatty acids ratio of soybean oil (11:1 to 3.5:1 and 4.7:1, respectively). The best reaction conditions were: initial water content of lipase of 0.86% (w/w), sardine-free faty acids:soybean oil mole ratio of 3:1 and reaction time of 36h, at 40°C. The significant factors for the acidolysis reaction were the sardine-free fatty acids:soybean oil mole ratio and reaction time. The characterization of structured triacylglycerols was obtained using easy ambient sonic-spray ionization mass spectrometry. The enzymatic reaction led to the formation of many structured triacylglycerols containing eicosapentaenoic acid, docosahexaenoic acid or both polyunsaturated fatty acids.

  16. The genotypic diversity and lipase production of some thermophilic bacilli from different genera

    PubMed Central

    Koc, Melih; Cokmus, Cumhur; Cihan, Arzu Coleri

    2015-01-01

    Abstract Thermophilic 32 isolates and 20 reference bacilli were subjected to Rep-PCR and ITS-PCR fingerprinting for determination of their genotypic diversity, before screening lipase activities. By these methods, all the isolates and references could easily be differentiated up to subspecies level from each other. In screening assay, 11 isolates and 7 references were found to be lipase producing. Their extracellular lipase activities were measured quantitatively by incubating in both tributyrin and olive oil broths at 60 °C and pH 7.0. During the 24, 48 and 72-h period of incubation, the changes in the lipase activities, culture absorbance, wet weight of biomass and pH were all measured. The activity was determined by using pNPB in 50 mM phosphate buffer at pH 7.0 at 60 °C. The lipase production of the isolates in olive oil broths varied between 0.008 and 0.052, whereas these values were found to be 0.002-0.019 (U/mL) in the case of tyributyrin. For comparison, an index was established by dividing the lipase activities to cell biomass (U/mg). The maximum thermostable lipase production was achieved by the isolates F84a, F84b, and G. thermodenitrificans DSM 465T (0.009, 0.008 and 0.008 U/mg) within olive oil broth, whereas G. stearothermophilus A113 displayed the highest lipase activity than its type strain in tyributyrin. Therefore, as some of these isolates displayed higher activities in comparison to references, new lipase producing bacilli were determined by presenting their genotypic diversity with DNA fingerprinting techniques. PMID:26691464

  17. Effect of the physicochemical properties of binary ionic liquids on lipase activity and stability.

    PubMed

    Yao, Peipei; Yu, Xinxin; Huang, Xirong

    2015-01-01

    In the present study, the lipase-catalyzed hydrolysis of p-nitrophenyl butyrate is used as a model reaction to determine the activity and stability of Candida rugosa lipase in binary ionic liquids (ILs). The binary ILs consist of hydrophobic 1-butyl-3-methylimidazolium hexafluorophosphate ([Bmim]PF6) and a small amount of hydrophilic 1-butyl-3-methylimidazolium nitrate ([Bmim]NO3) or 1-butyl-3-methylimidazolium trifluoromethanesulfonate ([Bmim]CF3SO3) or 1-butyl-3-methylimidazolium tetrafluoroborate ([Bmim]BF4). The activity and the stability of lipase are first correlated with the physicochemical properties of the binary ILs. In the three binary IL systems, both the hydrophilicity and the polarity of the systems increase with the increase of the content of hydrophilic ILs (HILs). At a fixed concentration of HIL, they vary in a descending order of [Bmim]PF6/[Bmim]NO3>[Bmim]PF6/[Bmim]CF3SO3>[Bmim]PF6/[Bmim]BF4. This order is in contrast with the order of the lipase conformation stability, i.e., the higher the polarity of ILs, the more unstable the lipase conformation. However, both the activity and the stability of lipase depend on the type and the content of the HIL in binary ILs, showing a complex dependency. Analysis shows that the catalytic performance of lipase in the binary ILs is affected not only by the direct influence of the ILs on lipase conformation, but also through their indirect influence on the physicochemical properties of water. The present study helps to explore binary IL mixtures suitable for lipase-based biocatalysis.

  18. Characterization of biotechnologically relevant extracellular lipase produced by Aspergillus terreus NCFT 4269.10

    PubMed Central

    Sethi, Bijay Kumar; Nanda, Prativa Kumari; Sahoo, Santilata

    2016-01-01

    Enzyme production by Aspergillus terreus NCFT 4269.10 was studied under liquid static surface and solid-state fermentation using mustard oil cake as a substrate. The maximum lipase biosynthesis was observed after incubation at 30 °C for 96 h. Among the domestic oils tested, the maximum lipase biosynthesis was achieved using palm oil. The crude lipase was purified 2.56-fold to electrophoretic homogeneity, with a yield of 8.44%, and the protein had a molecular weight of 46.3 kDa as determined by SDS-PAGE. Enzyme characterization confirmed that the purified lipase was most active at pH 6.0, temperature of 50 °C, and substrate concentration of 1.5%. The enzyme was thermostable at 60 °C for 1 h, and the optimum enzyme–substrate reaction time was 30 min. Sodium dodecyl sulfate and commercial detergents did not significantly affect lipase activity during 30-min incubation at 30 °C. Among the metal ions tested, the maximum lipase activity was attained in the presence of Zn2+, followed by Mg2+ and Fe2+. Lipase activity was not significantly affected in the presence of ethylenediaminetetraacetic acid, sodium lauryl sulfate and Triton X-100. Phenylmethylsulfonyl fluoride (1 mM) and the reducing, β-mercaptoethanol significantly inhibited lipase activity. The remarkable stability in the presence of detergents, additives, inhibitors and metal ions makes this lipase unique and a potential candidate for significant biotechnological exploitation. PMID:26887237

  19. Hydrolysis of bovine and caprine milk fat globules by lipoprotein lipase. Effects of heparin and skim milk on lipase distribution and on lipolysis

    SciTech Connect

    Sundheim, G.; Bengtsson-Olivecrona, G.

    1987-12-01

    Heparin can dissociate lipoprotein lipase from casein micelles, and addition of heparin enhances lipolysis in bovine but not in caprine milk. Heparin shortened the lag-time for binding of lipoprotein lipase to milk fat globules and for lipolysis. Heparin counteracted the inhibitory effects of skim milk on binding of lipase and on lipolysis. Heparin stimulated lipolysis in all bovine milk samples when added before cooling and in spontaneously lipolytic milk samples also when added after cooling. Heparin enhanced lipolysis of isolated milk fat globules. Hence, its effect is not solely due to dissociation of lipoprotein lipase from the casein micelles. Cooling of goat milk caused more marked changes in the distribution of lipase than cooling of bovine milk; the fraction of added /sup 125/I-labeled lipase that bound to cream increased from about 8 to 60%. In addition, caprine skim milk caused less inhibition of lipolysis than bovine skim milk. These observations provide an explanation for the high degree of cold storage lipolysis in goat milk. Heparin had only small effects on the distribution of lipoprotein lipase in caprine milk, which explains why heparin has so little effect on lipolysis in caprine milk. The distribution of /sup 35/S-labeled heparin in bovine milk was studied. In warm milk less than 10% bound to the cream fraction, but when milk was cooled, binding of heparin to cream increased to 45%. These results suggest that there exists in the skim fraction a relatively small amount of a heparin-binding protein, which on cooling of milk adsorbs to the milk fat, or suggests that cooling induces a conformational change in a membrane protein such that its affinity for heparin increases.

  20. Analysis of a reactive extraction process for biodiesel production using a lipase immobilized on magnetic nanostructures.

    PubMed

    Dussan, K J; Cardona, C A; Giraldo, O H; Gutiérrez, L F; Pérez, V H

    2010-12-01

    Magnetic nanoparticles were prepared by coprecipitating Fe(2+) and Fe(3+) ions in a sodium hydroxide solution and used as support for lipase. The lipase-coated particles were applied in a reactive extraction process that allowed separation of the products formed during transesterification. Kinetics data for triolein and ethanol consumption during biodiesel (ethyl oleate) synthesis together with a thermodynamic phase equilibrium model (liquid-liquid) were used for simulation of batch and continuous processes. The analysis demonstrated the possibility of applying this biocatalytic system in the reactive zone using external magnetic fields. This approach implies new advantages in efficient location and use of lipases in column reactors for producing biodiesel.

  1. Production and Characterization of Biodiesel Using Nonedible Castor Oil by Immobilized Lipase from Bacillus aerius

    PubMed Central

    Narwal, Sunil Kumar; Saun, Nitin Kumar; Dogra, Priyanka; Chauhan, Ghanshyam

    2015-01-01

    A novel thermotolerant lipase from Bacillus aerius was immobilized on inexpensive silica gel matrix. The immobilized lipase was used for the synthesis of biodiesel using castor oil as a substrate in a solvent free system at 55°C under shaking in a chemical reactor. Several crucial parameters affecting biodiesel yield such as incubation time, temperature, substrate molar ratio, and amount of lipase were optimized. Under the optimized conditions, the highest biodiesel yield was up to 78.13%. The characterization of synthesized biodiesel was done through FTIR spectroscopy, 1H NMR spectra, and gas chromatography. PMID:25874205

  2. A plasmonic nanosensor for lipase activity based on enzyme-controlled gold nanoparticles growth in situ

    NASA Astrophysics Data System (ADS)

    Tang, Yan; Zhang, Wei; Liu, Jia; Zhang, Lei; Huang, Wei; Huo, Fengwei; Tian, Danbi

    2015-03-01

    A plasmonic nanosensor for lipase activity was developed based on one-pot nanoparticle growth. Tween 80 was selected not only as the substrate for lipase recognition but also as the reducing and stabilizing agent for the sensor fabrication. The different molecular groups in Tween 80 could have different roles in the fabrication procedure; the H2O2 produced by the autoxidation of the ethylene oxide subunits in Tween 80 could reduce the AuCl4- ions to Au atoms, meanwhile, the lipase could hydrolyze its carboxyl ester bond, which could, in turn, control the rate of nucleation of the gold nanoparticles (AuNPs) and tailor the localized surface plasmon resonance (LSPR) of the AuNP transducers. The color changes, which depend on the absence or presence of the lipase, could be used to sense the lipase activity. A linear response ranging from 0.025 to 4 mg mL-1 and a detection limit of the lipase as low as 3.47 μg mL-1 were achieved. This strategy circumvents the problems encountered by general enzyme assays that require sophisticated instruments and complicated assembling steps. The methodology can benefit the assays of heterogeneous-catalyzed enzymes.A plasmonic nanosensor for lipase activity was developed based on one-pot nanoparticle growth. Tween 80 was selected not only as the substrate for lipase recognition but also as the reducing and stabilizing agent for the sensor fabrication. The different molecular groups in Tween 80 could have different roles in the fabrication procedure; the H2O2 produced by the autoxidation of the ethylene oxide subunits in Tween 80 could reduce the AuCl4- ions to Au atoms, meanwhile, the lipase could hydrolyze its carboxyl ester bond, which could, in turn, control the rate of nucleation of the gold nanoparticles (AuNPs) and tailor the localized surface plasmon resonance (LSPR) of the AuNP transducers. The color changes, which depend on the absence or presence of the lipase, could be used to sense the lipase activity. A linear response

  3. Effect of temperature on Candida antartica lipase B activity in the kinetic resolution of acebutolol

    NASA Astrophysics Data System (ADS)

    Rajin, Mariani; Kamaruddin, A. H.

    2016-06-01

    Thermodynamic studies of free Candida antartica lipase B in kinetic resolution of acebutolol have been carried out to characterize the temperature effects towards enzyme stability and activity. A decreased in reaction rate was observed in temperature above 40oC. Thermodynamic studies on lipase deactivation exhibited a first-order kinetic pattern. The activation and deactivation energies were 39.63 kJ/mol and 54.90 kJ/mol, respectively. The enthalpy and entropy of the lipase deactivation were found to be 52.12 kJ/mol and -0.18 kJ/mol, respectively.

  4. Production and characterization of biodiesel using nonedible castor oil by immobilized lipase from Bacillus aerius.

    PubMed

    Narwal, Sunil Kumar; Saun, Nitin Kumar; Dogra, Priyanka; Chauhan, Ghanshyam; Gupta, Reena

    2015-01-01

    A novel thermotolerant lipase from Bacillus aerius was immobilized on inexpensive silica gel matrix. The immobilized lipase was used for the synthesis of biodiesel using castor oil as a substrate in a solvent free system at 55°C under shaking in a chemical reactor. Several crucial parameters affecting biodiesel yield such as incubation time, temperature, substrate molar ratio, and amount of lipase were optimized. Under the optimized conditions, the highest biodiesel yield was up to 78.13%. The characterization of synthesized biodiesel was done through FTIR spectroscopy, (1)H NMR spectra, and gas chromatography.

  5. Rational design of K173A substitution enhances thermostability coupled with catalytic activity of Enterobacter sp. Bn12 lipase.

    PubMed

    Farrokh, Parisa; Yakhchali, Bagher; Karkhane, Ali Asghar

    2014-01-01

    ELBn12 is a lipase isolated from Enterobacter sp. Bn12 with potential application in biotechnology. Homology modeling and rational design were applied to improve thermal stability of the lipase. K173A substitution introduced an AXXXA motif on the lipase model and it may have role in dimerization and thermostability of the protein. Site-directed mutagenesis was performed to construct the lipase variant. The mutated lipase was expressed in Escherichia coli pLysS and partially purified. Thermostability of the mutated lipase after 1 h of incubation at 70°C was twice that of wild-type lipase under the same conditions. Catalytic activity of the variant was about 1.5-fold towards tricaprylin at 60°C and pH 8.0; moreover, the lipase variant preserved its stability within the pH range of 7.0-11.0. Substitution of superficial hydrophilic Lys with hydrophobic Ala residue increased stability of the mutated lipase in the presence of nonionic surfactants, but this substitution caused lower stability towards polar solvents. Analysis of circular dichroism spectroscopy showed that the K173A mutation altered the secondary structure of the lipase into a more helical one. In conclusion, results of this study demonstrate the positive role of generation of a stabilizing protein motif through rational protein engineering that improves the enzyme characteristics.

  6. Preparation of Biodiesel with Liquid Synergetic Lipases from Rapeseed Oil Deodorizer Distillate.

    PubMed

    Zeng, Leping; He, Yaojia; Jiao, Liangcheng; Li, Kai; Yan, Yunjun

    2017-03-29

    To reduce industrial production cost, cheap and easily available rapeseed oil deodorizer distillates were used as feedstock to prepare biodiesel in this study. As a result, liquid forms of Candida rugosa lipase and Rhizopus oryzae lipase (ROL) were functioned as new and effective catalysts with biodiesel yield of 92.63% for 30 h and 94.36% for 9 h, respectively. Furthermore, the synergetic effect between the two lipases was employed to enhance biodiesel yield with a result of 98.16% in 6 h under optimized conditions via response surface methodology. The obtained conversion rate surpassed both yields of the individual two lipases and markedly shortened the reaction time. The resultant optimal conditions were ROL ratio 0.84, water content 46 wt% (w/w), reaction temperature 34 °C, and reaction time 6 h.

  7. Production and characterization of a mesophilic lipase isolated from Bacillus stearothermophilus AB-1.

    PubMed

    Abada, Emad Abd El-Moniem

    2008-04-15

    Using Bacillus stearothermophilus AB-1 isolated from air, the production of lipase was attempted along with its purification and characterization studies. When different carbon and nitrogen sources were supplemented in the culture medium, xylose, tryptophan, alanine, phenylalanine and potassium nitrate were found to be the best. During cultivation, the strain secreted most of its lipase content after 48 h. In particular, the lipase produced in the culture broth showed 300 U mL(-1) when cultivated at optimal temperature and pH of 35 degrees C and 7.5, respectively. The enzyme was purified using 60% ammonium sulfate precipitation and sephadex G200 column chromatography. The enzyme was stable up to 40 degrees C and in the range of pH 7-8. This research reports for the first time the characterization of mesophilic lipase from Bacillus stearothermophilus AB-1 isolated from air.

  8. Gold nanorod in reverse micelles: a fitting fusion to catapult lipase activity.

    PubMed

    Maiti, Subhabrata; Ghosh, Moumita; Das, Prasanta Kumar

    2011-09-21

    Lipase solubilized within gold nanorod doped CTAB reverse micelles exhibited remarkable improvement in its activity mainly due to the enhanced interfacial domain of newly developed self-assembled nanocomposites.

  9. Affinity purification lipase from wheat germ: comparison of hydrophobic and metal chelation effect.

    PubMed

    Köse, Kazım; Erol, Kadir; Ali Köse, Dursun; Evcı, Emre; Uzun, Lokman

    2017-05-01

    Cryogels are used quite a lot nowadays for adsorption studies as synthetic adsorbents. In this study, lipase enzyme (obtained from Candida cylindracea) adsorption capacity of poly(2-hydroxyethyl methacrylate-N-methacryloyl-L-tryptophan), poly(HEMA-MATrp), and Cu(II) ions immobilized poly(HEMA-MATrp), poly(HEMA-MATrp)-Cu(II), cryogel membranes were synthesized to determine and compare the adsorption behavior of lipase enzyme. In this regard, the effect of pH, interaction time, lipase initial concentration, temperature and ionic strength on the adsorption capacity of these membranes was investigated. Maximum lipase enzyme adsorption capacities of poly(HEMA-MATrp) and poly(HEMA-MATrp)-Cu(II) cryogel membranes were determined as 166.4 mg/g and 196.4 mg/g, respectively.

  10. Catalytic properties of mycelium-bound lipases from Aspergillus niger MYA 135.

    PubMed

    Romero, Cintia M; Baigori, Mario D; Pera, Licia M

    2007-09-01

    A constitutive level of a mycelium-bound lipolytic activity from Aspergillus niger MYA 135 was strongly increased by 97% in medium supplemented with 2% olive oil. The constitutive lipase showed an optimal activity in the pH range of 3.0-6.5, while the mycelium-bound lipase activity produced in the presence of olive oil had two pH optima at pH 4 and 7. Interestingly, both lipolytic sources were cold-active showing high catalytic activities in the temperature range of 4-8 degrees C. These mycelium-bound lipase activities were also very stable in reaction mixtures containing methanol and ethanol. In fact, the constitutive lipase maintained almost 100% of its activity after exposure by 1 h at 37 degrees C in ethanol. A simple methodology to evaluate suitable transesterification activities in organic solvents was also reported.

  11. Determination of the quantitative stereoselectivity fingerprint of lipases during hydrolysis of a prochiral triacylglycerol.

    PubMed

    Mitchell, David Alexander; Rodriguez, Jorge A; Carrière, Frederic; Krieger, Nadia

    2008-06-01

    We propose a method for characterizing quantitatively the stereoselectivity of lipases during hydrolysis of triacylglycerols. Although it is of general applicability, we demonstrate it specifically for sn-1,3-regiospecific lipases. In this case the method generates a "stereoselectivity fingerprint" that consists of ratios of the specificity constants for the various reactions that produce and consume the 1,2-sn- and 2,3-sn-diacylglycerols. We use the method to determine the stereoselectivity fingerprint of several lipases during the hydrolysis of the prochiral substrate triolein. Our method opens up the possibility of correlating quantitative fingerprints with structural information, in the quest to elucidate the mechanisms underlying the stereoselectivity of lipases.

  12. Addition of lipase from Candida cylindracea to a traditional formulation of a dry fermented sausage.

    PubMed

    Zalacain, I; Zapelena, M J; Astiasaran, I; Bello, J

    1996-01-01

    The objective of this work was to study the manufacture of sausage containing a traditional starter culture (Lactobacillus plantarum and Staphylococcus carnosus) together with an enzyme lipase from Candida cylindracea as compared with that of a sausage with only starter. The acidity value showed more intense lipolysis in the sausage with lipase with this increase being especially important in the second week of drying. In spite of this, there was no significant (p > 0.05) increase in the oxidative rancidity processes in this sausage. The analysis of short chain fatty acids suggested the enzyme and starter together produced a greater amount of such acids than did the enzyme or the starter separately. Almost all free fatty acids showed significantly higher values in the sausage with lipase with the exception of linolenic acid. The addition of enzyme lipase produced a higher proportion of free saturated acids and a lower proportion of polyunsaturated acids during the drying of the sausage.

  13. An organic soluble lipase for water-free synthesis of biodiesel.

    PubMed

    Zhao, Xueyan; El-Zahab, Bilal; Brosnahan, Ryan; Perry, Justin; Wang, Ping

    2007-12-01

    Lipase AK was modified with short alkyl chains to form a highly organic soluble enzyme and was used to catalyze the synthesis of biodiesel from soybean oil in organic media. The effects of several key factors including water content, temperature, and solvent were examined for the solubilized enzyme in comparison with several other commercially available lipases. Whereas native lipases showed no activity in the absence of water, the organic soluble lipase demonstrated reaction rates of up to 33 g-product/g-enzyme h. The biocatalyst remains soluble in the biodiesel product, and therefore, there is no need to be removed because it is expected to be burned along with the diesel in combustion engines. This provides a promising one-pot mix-and-use strategy for biodiesel production.

  14. The role of lipases in the removal of dormancy in apple seeds.

    PubMed

    Zarska-Maciejewska, B; St Lewak

    1976-01-01

    It was found that the temperature optimum for apple (Malus domestica Borb.) seed acid lipase is the same as that for seed after-ripening process. The activity of the enzyme occurs between the 40th and 70th days of stratification, whereas the activity of alkaline lipase very low at that time appears about 20 days later. The changes of both enzyme activities were also studied during dark and light culture of embryos isolated from seeds after different times of stratification. Only the alkaline enzyme activity is under the control of light. It was concluded that essentially the same process, i.e. the hydrolysis of reserve fats is catalysed by two different enzymes: acid lipase acting during the cold-mediated breaking of embryo dormancy and alkaline lipase acting during the germination of dormant embryos, thus being under light control.

  15. The surfactant-induced conformational and activity alterations in Rhizopus niveus lipase.

    PubMed

    Alam, Parvez; Rabbani, Gulam; Badr, Gamal; Badr, Badr Mohamed; Khan, Rizwan Hasan

    2015-03-01

    In this study, we have reported the effect of nonionic, anionic, cationic, and zwitterionic detergents on the enzymatic activity and structural stability of Rhizopus niveus lipase. Secondary structural changes were monitored by Far-UV CD which shows that surfactant induces helicity in the Rhizopus niveus lipase protein which was maximum in case of CTAB followed by SDS, CHAPS, and Brij-35. Similarly, tertiary structural changes were monitored by tryptophan fluorescence. We also carried out enzyme kinetics assays which showed that activity was enhanced by 1.5- and 1.1-fold in the presence of CHAPS and Brij-35, respectively. Furthermore, there was a decline in activity by 20 and 30 % in case of SDS and CTAB, respectively. These studies may be helpful in understanding detergent-lipase interaction in greater detail as lipases are used in many industrial processes.

  16. Isolation, identification and optimization of a new extracellular lipase producing strain of Rhizopus sp.

    PubMed

    Kantak, Jayshree B; Bagade, Aditi V; Mahajan, Siddharth A; Pawar, Shrikant P; Shouche, Yogesh S; Prabhune, Asmita Ashutosh

    2011-08-01

    A lipolytic mesophilic fungus which produces lipase extracellularly was isolated from soil. Based on ITS1-5.8S-ITS4 region sequences of ribosomal RNA, it was concluded that the isolate JK-1 belongs to genus Rhizopus and clades with Rhizopus oryzae. The present paper reports the screening, isolation, identification, and optimization of fermentation conditions for the production of lipase (EC 3.1.1.3). Culture conditions were optimized, and the highest lipase production was observed in basal medium with corn steep liquor as nitrogen source and glucose as carbon source. Maximum lipase production was observed at 72 h, which is about 870 U/ml. Optimization of fermentation conditions resulted in 16-fold enhancement in enzyme production.

  17. Chemoenzymatic dynamic kinetic resolution of primary amines using a recyclable palladium nanoparticle catalyst together with lipases.

    PubMed

    Gustafson, Karl P J; Lihammar, Richard; Verho, Oscar; Engström, Karin; Bäckvall, Jan-E

    2014-05-02

    A catalyst consisting of palladium nanoparticles supported on amino-functionalized siliceous mesocellular foam (Pd-AmP-MCF) was used in chemoenzymatic dynamic kinetic resolution (DKR) to convert primary amines to amides in high yields and excellent ee's. The efficiency of the nanocatalyst at temperatures below 70 °C enables reaction conditions that are more suitable for enzymes. In the present study, this is exemplified by subjecting 1-phenylethylamine (1a) and analogous benzylic amines to DKR reactions using two commercially available lipases, Novozyme-435 (Candida antartica Lipase B) and Amano Lipase PS-C1 (lipase from Burkholderia cepacia) as biocatalysts. The latter enzyme has not previously been used in the DKR of amines because of its low stability at temperatures over 60 °C. The viability of the heterogeneous Pd-AmP-MCF was further demonstrated in a recycling study, which shows that the catalyst can be reused up to five times.

  18. Utilization of coconut oil cake for the production of lipase using Bacillus coagulans VKL1.

    PubMed

    Gowthami, Palanisamy; Muthukumar, Karuppan; Velan, Manickam

    2015-01-01

    The overproduction of enzymes was performed by manipulating the medium components. In our study, solvent-tolerant thermophilic lipase-producing Bacillus coagulans was isolated from soil samples and a stepwise optimization strategy was employed to increase the lipase production using coconut oil cake basal medium. In the first step, the influence of pH, temperature, carbon source, nitrogen source and inducers on lipase activity was investigated by the One-Factor-At-A-Time (OFAT) method. In the second step, the three significant factors resulted from OFAT were optimized by the statistical approach (CCD).The optimum values of olive oil (0.5%), Tween 80 (0.6%) and FeSO4 (0.05%) was found to be responsible for a 3.2-fold increase in the lipase production identified by Central Composite Design.

  19. Breast milk jaundice; the role of lipoprotein lipase and the free fatty acids.

    PubMed

    Constantopoulos, A; Messaritakis, J; Matsaniotis, N

    1980-06-01

    Lipoprotein lipase activity and free fatty acid concentrations were measured in samples of milk collected from mothers of infants without and with prolonged neonatal jaundice. The lipoprotein lipase and free fatty acid values in the milk from mothers of infants without jaundice were found to increase with the duration of breast-feeding until the 12th post-partum day, and then to fall to the original levels. In the group of mothers with jaundiced infants both lipoprotein lipase and free fatty acid values were found within normal limits when measured between 15th and 37th days post-partum. These findings indicate that increased values of lipoprotein lipase and free fatty acids in the milk are not responsible for the development of breast-milk jaundice.

  20. Stabilization of Candida rugosa lipase during transacetylation with vinyl acetate.

    PubMed

    Majumder, Abir B; Gupta, Munishwar N

    2010-04-01

    An optimally prepared Candida rugosa lipase aggregate cross-linked with bovine serum albumin, was found to overcome acetaldehyde deactivation during transacetylation of a series of benzyl alcohols with vinyl acetate. The formulation, under the same reaction conditions, exhibited 4-30x enhancement in the reaction rate as compared to the celite immobilized lyophilized formulation and 25-133x enhancement as compared to the free lyophilized enzyme depending upon the alcohol chosen. The racemic 1-phenylethanol, taken as one of the alcohols, underwent a more efficient enantioselective transacetylation giving 80% enantiomeric excess of the product, (R)-1-phenylethyl acetate, at 38% conversion (E = 15) within 24h while the enzyme immobilized on celite gave 83% enantiomeric excess at 18% conversion (E = 13) during the same period of time.

  1. Ultrasonic enhancement of lipase-catalysed transesterification for biodiesel synthesis.

    PubMed

    Bhangu, Sukhvir Kaur; Gupta, Shweta; Ashokkumar, Muthupandian

    2017-01-01

    The production of biodiesel was carried out from canola oil and methanol catalysed by lipase from Candida rugosa under different ultrasonic experimental conditions using horn (20kHz) and plate (22, 44, 98 and 300kHz) transducers. The effects of experimental conditions such as horn tip diameter, ultrasonic power, ultrasonic frequency and enzyme concentrations on biodiesel yield were investigated. The results showed that the application of ultrasound decreased the reaction time from 22-24h to 1.5h with the use of 3.5cm ultrasonic horn, an applied power of 40W, methanol to oil molar ratio of 5:1 and enzyme concentration of 0.23wt/wt% of oil. Low intensity ultrasound is efficient and a promising tool for the enzyme catalysed biodiesel synthesis as higher intensities tend to inactivate the enzyme and reduce its efficiency.

  2. Refined homology model of monoacylglycerol lipase: toward a selective inhibitor

    NASA Astrophysics Data System (ADS)

    Bowman, Anna L.; Makriyannis, Alexandros

    2009-11-01

    Monoacylglycerol lipase (MGL) is primarily responsible for the hydrolysis of 2-arachidonoylglycerol (2-AG), an endocannabinoid with full agonist activity at both cannabinoid receptors. Increased tissue 2-AG levels consequent to MGL inhibition are considered therapeutic against pain, inflammation, and neurodegenerative disorders. However, the lack of MGL structural information has hindered the development of MGL-selective inhibitors. Here, we detail a fully refined homology model of MGL which preferentially identifies MGL inhibitors over druglike noninhibitors. We include for the first time insight into the active-site geometry and potential hydrogen-bonding interactions along with molecular dynamics simulations describing the opening and closing of the MGL helical-domain lid. Docked poses of both the natural substrate and known inhibitors are detailed. A comparison of the MGL active-site to that of the other principal endocannabinoid metabolizing enzyme, fatty acid amide hydrolase, demonstrates key differences which provide crucial insight toward the design of selective MGL inhibitors as potential drugs.

  3. Pancreatic lipase inhibitors from natural sources: unexplored potential.

    PubMed

    Birari, Rahul B; Bhutani, Kamlesh K

    2007-10-01

    The prevalence of obesity is increasing at an alarming rate, but, unfortunately, only a few medications are currently on the market. Obesity is primarily regarded as a disorder of lipid metabolism and the enzymes involved in this process could be selectively targeted to develop antiobesity drugs. Recently, newer approaches for the treatment of obesity have involved inhibition of dietary triglyceride absorption via inhibition of pancreatic lipase (PL) as this is the major source of excess calories. Natural products provide a vast pool of PL inhibitors that can possibly be developed into clinical products. This article reviews various extracts and secondary metabolites from plants and microbial origin with PL inhibitory activity that can be focused for drug development programs.

  4. Immobilization of Burkholderia sp. lipase on a ferric silica nanocomposite for biodiesel production.

    PubMed

    Tran, Dang-Thuan; Chen, Ching-Lung; Chang, Jo-Shu

    2012-04-15

    In this work, lipase produced from an isolated strain Burkholderia sp. C20 was immobilized on magnetic nanoparticles to catalyze biodiesel synthesis. Core-shell nanoparticles were synthesized by coating Fe(3)O(4) core with silica shell. The nanoparticles treated with dimethyl octadecyl [3-(trimethoxysilyl) propyl] ammonium chloride were used as immobilization supporters. The Burkholderia lipase was then bound to the synthesized nanoparticles for immobilization. The protein binding efficiency on alkyl-functionalized Fe(3)O(4)-SiO(2) was estimated as 97%, while the efficiency was only 76% on non-modified Fe(3)O(4)-SiO(2). Maximum adsorption capacity of lipase on alkyl-functionalized Fe(3)O(4)-SiO(2) was estimated as 29.45 mg g(-1) based on Langmuir isotherm. The hydrolytic kinetics (using olive oil as substrate) of the lipase immobilized on alkyl-grafted Fe(3)O(4)-SiO(2) followed Michaelis-Menten model with a maximum reaction rate and a Michaelis constant of 6251 Ug(-1) and 3.65 mM, respectively. Physical and chemical properties of the nanoparticles and the immobilized lipase were characterized by Brunauer-Emmett-Teller (BET) analysis, scanning electron microscope (SEM), and Fourier transform infrared spectroscopy (FT-IR). Moreover, the immobilized lipase was used to catalyze the transesterification of olive oil with methanol to produce fatty acid methyl esters (FAMEs), attaining a FAMEs conversion of over 90% within 30 h in batch operation when 11 wt% immobilized lipase was employed. The immobilized lipase could be used for ten cycles without significant loss in its transesterification activity.

  5. Screening for hydrolytic enzymes reveals Ayr1p as a novel triacylglycerol lipase in Saccharomyces cerevisiae.

    PubMed

    Ploier, Birgit; Scharwey, Melanie; Koch, Barbara; Schmidt, Claudia; Schatte, Jessica; Rechberger, Gerald; Kollroser, Manfred; Hermetter, Albin; Daum, Günther

    2013-12-13

    Saccharomyces cerevisiae, as well as other eukaryotes, preserves fatty acids and sterols in a biologically inert form, as triacylglycerols and steryl esters. The major triacylglycerol lipases of the yeast S. cerevisiae identified so far are Tgl3p, Tgl4p, and Tgl5p (Athenstaedt, K., and Daum, G. (2003) YMR313c/TGL3 encodes a novel triacylglycerol lipase located in lipid particles of Saccharomyces cerevisiae. J. Biol. Chem. 278, 23317-23323; Athenstaedt, K., and Daum, G. (2005) Tgl4p and Tgl5p, two triacylglycerol lipases of the yeast Saccharomyces cerevisiae, are localized to lipid particles. J. Biol. Chem. 280, 37301-37309). We observed that upon cultivation on oleic acid, triacylglycerol mobilization did not come to a halt in a yeast strain deficient in all currently known triacylglycerol lipases, indicating the presence of additional not yet characterized lipases/esterases. Functional proteome analysis using lipase and esterase inhibitors revealed a subset of candidate genes for yet unknown hydrolytic enzymes on peroxisomes and lipid droplets. Based on the conserved GXSXG lipase motif, putative functions, and subcellular localizations, a selected number of candidates were characterized by enzyme assays in vitro, gene expression analysis, non-polar lipid analysis, and in vivo triacylglycerol mobilization assays. These investigations led to the identification of Ayr1p as a novel triacylglycerol lipase of yeast lipid droplets and confirmed the hydrolytic potential of the peroxisomal Lpx1p in vivo. Based on these results, we discuss a possible link between lipid storage, lipid mobilization, and peroxisomal utilization of fatty acids as a carbon source.

  6. Phosphonium alkyl PEG sulfate ionic liquids as coating materials for activation of Burkholderia cepacia lipase.

    PubMed

    Matsubara, Yui; Kadotani, Shiho; Nishihara, Takashi; Hikino, Yoshichika; Fukaya, Yukinobu; Nokami, Toshiki; Itoh, Toshiyuki

    2015-12-01

    Lipases are among the most widely used enzymes applicable for various substrates; however, the slow reactions or poor enantioselective reactions are sometimes obtained. To develop ionic liquid type activating agents for lipase, four types of phosphonium cetyl(PEG)10 sulfate ionic liquids have been synthesized and used as coating materials of Burkholderia cepacia lipase (Lipase PS) through the lyophilization process. Tributyl ([2-methoxy]ethoxymethyl)phosphonium cetyl(PEG)10 sulfate ([P444MEM ][C16 (PEG)10 SO4 ]) (PL1) worked best among them, and PL1-coated lipase PS displayed high reactivity in transesterification of broad types of secondary alcohols using vinyl acetate as an acylating reagent with perfect enantioselectivity (E > 200). The substrate preference of PL1-PS differs from that of commercial lipase PS or [bdmim] [C16 (PEG)10 SO4 ]-coated lipase (IL1-PS); PL1-PS displayed excellent enantioselectivity in the reaction of 2-chloro-1-phenylethanol with E > 200, though insufficient E values were recorded for lipase PS (E = 12) and IL1-PS (E = 123) for this alcohol. PL1-PS also showed perfect enantioselectivity (E > 200) for the reaction of 1-(pyridin-2-yl)ethanol, while IL1-PS showed E = 130 for this compound. We further succeeded in demonstrating the recyclable use of PL1-PS five times in tributyl(3-methoxypropyl)phosphonium bis(trifluoromethylsulfonyl)amide ([P444PM ][Tf2 N]) as a solvent. Since PL1-PS is easily applicable to 10-20 gram-scaled reactions, it is expected that the IL-coated enzyme might be useful for practical preparation of a wide variety of chiral secondary alcohols.

  7. Significant improvement of Serratia marcescens lipase fermentation, by optimizing medium, induction, and oxygen supply.

    PubMed

    Long, Zhang-De; Xu, Jian-He; Pan, Jiang

    2007-08-01

    Production of an extracellular lipase from Serratia marcescens ECU1010, which is an industrially important biocatalyst for the stereospecific synthesis of Diltiazem precursor, was carefully optimized in both shake flasks and a fermenter, using Tween-80 as the enzyme inducer. Dextrin and beef extract combined with ammonium sulfate were indicated to be the best carbon and nitrogen sources, respectively. With the increase of Tween-80 from 0 to 10 g l-1, the lipase production was greatly enhanced from merely 250 U l-1 to a maximum of 3,340 U l-1, giving the highest lipase yield of ca 640 U g-1 dry cell mass (DCW), although the maximum biomass (6.0 g DCW l-1) was achieved at 15 g l-1 of Tween-80. When the medium loading in shake flasks was reduced from 20 to 10% (v / v), the lipase production was significantly enhanced. The increase in shaking speed also resulted in an improvement of the lipase production, although the cell growth was slightly repressed, suggesting that the increase of dissolved oxygen (DO) concentration contributed to the enhancements of lipase yield. When the lipase fermentation was carried out in a 5-l fermenter, the lipase production reached a new maximum of 11,060 U l-1 by simply raising the aeration rate from 0.5 to 1.0 vvm, while keeping the dissolved oxygen above 20% saturation via intermittent adjustment of the agitation speed (> or =400 rpm), in the presence of a relatively low concentration (2 g l-1) of Tween-80 to prevent a potential foaming problem, which is easy to occur in the intensively aerated fermenter.

  8. Lipase-catalyzed highly enantioselective kinetic resolution of boron-containing chiral alcohols.

    PubMed

    Andrade, Leandro H; Barcellos, Thiago

    2009-07-16

    The first application of enzymes as catalysts to obtain optically pure boron compounds is described. The kinetic resolution of boron-containing chiral alcohols via enantioselective transesterification catalyzed by lipases was studied. Aromatic, allylic, and aliphatic secondary alcohols containing a boronate ester or boronic acid group were resolved by lipase from Candida antartica (CALB), and excellent E values (E > 200) and high enantiomeric excesses (up to >99%) of both remaining substrates and acetylated product were obtained.

  9. Dieselzymes: development of a stable and methanol tolerant lipase for biodiesel production by directed evolution

    PubMed Central

    2013-01-01

    Background Biodiesels are methyl esters of fatty acids that are usually produced by base catalyzed transesterification of triacylglyerol with methanol. Some lipase enzymes are effective catalysts for biodiesel synthesis and have many potential advantages over traditional base or acid catalyzed transesterification. Natural lipases are often rapidly inactivated by the high methanol concentrations used for biodiesel synthesis, however, limiting their practical use. The lipase from Proteus mirabilis is a particularly promising catalyst for biodiesel synthesis as it produces high yields of methyl esters even in the presence of large amounts of water and expresses very well in Escherichia coli. However, since the Proteus mirabilis lipase is only moderately stable and methanol tolerant, these properties need to be improved before the enzyme can be used industrially. Results We employed directed evolution, resulting in a Proteus mirabilis lipase variant with 13 mutations, which we call Dieselzyme 4. Dieselzyme 4 has greatly improved thermal stability, with a 30-fold increase in the half-inactivation time at 50°C relative to the wild-type enzyme. The evolved enzyme also has dramatically increased methanol tolerance, showing a 50-fold longer half-inactivation time in 50% aqueous methanol. The immobilized Dieselzyme 4 enzyme retains the ability to synthesize biodiesel and has improved longevity over wild-type or the industrially used Brukholderia cepacia lipase during many cycles of biodiesel synthesis. A crystal structure of Dieselzyme 4 reveals additional hydrogen bonds and salt bridges in Dieselzyme 4 compared to the wild-type enzyme, suggesting that polar interactions may become particularly stabilizing in the reduced dielectric environment of the oil and methanol mixture used for biodiesel synthesis. Conclusions Directed evolution was used to produce a stable lipase, Dieselzyme 4, which could be immobilized and re-used for biodiesel synthesis. Dieselzyme 4 outperforms

  10. Hydrolytic pretreatment of oily wastewater by immobilized lipase.

    PubMed

    Jeganathan, Jeganaesan; Nakhla, George; Bassi, Amarjeet

    2007-06-25

    The purpose of this study was to evaluate the hydrolysis of wastewater with high oil and grease (O&G) concentration from a pet food industry using immobilized lipase (IL) as a pretreatment step for anaerobic treatment through batch and continuous-flow experiments. The intrinsic Michaelis constant (K(m)) and maximum reaction rate (V(max)) were estimated experimentally and the K(m) value of IL (22.5g O&G/L) was six-folds higher than that of the free lipase (FL) (3.6gO&G/L), whereas V(max) of both FL (31.3mM/gmin) and IL (33.1mM/gmin) were similar. Preliminary batch anaerobic respirometric experiments showed that chemical oxygen demand (COD) and O&G reduction were 49 and 45% without pretreatment and 65 and 64% with IL pretreatment respectively, while the maximum growth rate (micromax) for pretreated wastewater (0.17d(-1)) was 3.4-folds higher than that of raw wastewater (0.05d(-1)) with similar Monod half-saturation constants (K(s) approximately 2.7gCOD/L). The continuous-flow experimental study showed the feasibility of employing the hybrid packed bed reactor (PBR)-upflow anaerobic sludge blanket (UASB) system for the treatment of high-strength oily wastewater, as reflected by its ability to operate at an oil loading rate (LR) of 4.9kgO&G/m(3)d (to the PBR) without any problems for a period of 100days. During pseudo-steady-state conditions, the hybrid UASB produced relatively higher biogas compared to the control UASB, The effluent COD and O&G concentrations of hybrid system were 100mg/L lower than that of the control UASB reactor and no foam production was observed in the hybrid UASB compared to the control UASB reactor.

  11. [Intermediate-density lipoproteins and liver lipase in postmenopausal women].

    PubMed

    Halperin, H; Berg, G; Aisemberg, L; Brites, F; Siseles, N; Wikinski, R

    1992-01-01

    In order to evaluate atherogenic lipoproteins in post-menopause, we studied 73 healthy women, 49 to 65 years old (Post-menopausal Group), with 1 to 10 years of amenorrhea and body mass index below 27 Kg/m2, and 20 young women (Control Group). We have determined plasma cholesterol concentration in the lipoproteins of intermediate density in addition to the classical lipoprotein parameters: total cholesterol, LDL-cholesterol, HDL-cholesterol, triglycerides and fractionation of lipoproteins by electrophoresis. In 63 women from the Post-menopausal Group and 16 from the Control Group we studied the activity of hepatic lipase. Among these patients we selected at random 25 post-menopausal women and 13 controls to add measurements of triglycerides in the lipoproteins of intermediate density. Table 1 shows that the average plasma concentration of total cholesterol in the Post-menopausal Group was higher than that of the Controls (p < 0.001). The same was found for LDL-cholesterol (p < 0.001) and for triglycerides (p < 0.001) whereas the average concentration of HDL-cholesterol did not show significant differences. The Post-menopausal Group had high values of plasma lipoproteins of intermediate density, even with normal phenotypes (Table 2). Cholesterol but also triglycerides (Fig. 1) were responsible for this increase. A triglyceride rich lipoprotein subspecies of intermediate density was predominant in 73% of Post-menopausal women vs 23% of the Controls (p < 0.01, Table 3). No differences in hepatic lipase activity were seen between the two groups (Table 4), and non statistic correlation between the enzyme activity and IDL-triglycerides or HDL-cholesterol.(ABSTRACT TRUNCATED AT 250 WORDS)

  12. Scale-up synthesis of lipase-catalyzed palm esters in stirred-tank reactor.

    PubMed

    Keng, P S; Basri, M; Ariff, A B; Abdul Rahman, M B; Abdul Rahman, R N Z; Salleh, A B

    2008-09-01

    Lipase-catalyzed production of palm esters by alcoholysis of palm oil with oleyl alcohol in n-hexane was performed in 2L stirred-tank reactor (STR). Investigation on the performance of reactor operation was carried out in batch mode STR with single impeller mounted on the centrally located shaft. Rushton turbine (RT) impellers provide the highest reaction yield (95.8%) at lower agitation speed as compared to AL-hydrofoil (AL-H) and 2-bladed elephant ear (EE) impellers. Homogenous enzyme particles suspension was obtained at 250 rpm by using RT impeller. At higher impeller speed, the shear effect on the enzyme particles caused by agitation has decreased the reaction performance. Palm esters reaction mixture in STR follows Newtons' law due to the linear relation between the shear stress (tau) and shear rate (dupsilon/dy). High stability of Lipozyme RM IM was observed as shown by its ability to be repeatedly used to give high percentage yield (79%) of palm esters even after 15 cycles of reaction. The process was successfully scale-up to 75 L STR (50 L working volume) based on a constant impeller tip speed approach, which gave the yield of 97.2% after 5h reaction time.

  13. Optimization of Lipase-Mediated Synthesis of 1-Nonene Oxide Using Phenylacetic Acid and Hydrogen Peroxide

    PubMed Central

    Abdulmalek, Emilia; Arumugam, Mahashanon; Basri, Mahiran; Rahman, Mohd Basyaruddin Abdul

    2012-01-01

    Herein, an efficient epoxidation of 1-nonene is described. In a simple epoxidation system, commercially available Novozym 435, an immobilized Candida antarctica lipase B, and hydrogen peroxide (H2O2) were utilized to facilitate the in situ oxidation of phenylacetic acid to the corresponding peroxy acid which then reacted with 1-nonene to give 1-nonene oxide with high yield and selectivity. The aliphatic terminal alkene was epoxidised efficiently in chloroform to give an excellent yield (97%–99%) under the optimum reaction conditions, including temperature (35 °C), initial H2O2 concentration (30%), H2O2 amount (4.4 mmol), H2O2 addition rate (one step), acid amount (8.8 mmol), and stirring speed (250 rpm). Interestingly, the enzyme was stable under the single-step addition of H2O2 with a catalytic activity of 190.0 Ug−1. The entire epoxidation process was carried out within 12 h using a conventional water bath shaker. PMID:23202943

  14. Effects of APOA5 S19W polymorphism on growth, insulin sensitivity and lipoproteins in normoweight neonates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Apolipoprotein (Apo) A5 is a protein involved in the activation of lipoprotein lipase (LPL) and the metabolism of triglyceride (TG)-rich lipoproteins. LPL plays a major role in the metabolism of TG-rich lipoproteins, and placental LPL activity is known to correlate positively with foetal fat deposit...

  15. Measurement of feline lipase activity using a dry-chemistry assay with a triolein substrate and comparison with pancreas-specific lipase (Spec fPLTM)

    PubMed Central

    OISHI, Mariko; OHNO, Koichi; SATO, Toru; TAMAMOTO, Takashi; KANEMOTO, Hideyuki; FUKUSHIMA, Kenjiro; TSUJIMOTO, Hajime

    2015-01-01

    Pancreatic lipase immunoreactivity (Spec fPL) is currently considered to be the most accurate blood test for the diagnosis of feline pancreatitis. In this study, we measured lipase activity in cats using a newer catalytic lipase assay of dry-chemistry system (FDC-v-LIP) to determine the reference range and compared the results with those for Spec fPL. Based on the results of healthy cats, the reference range of FDC-v-LIP was determined to be less than 30 U/l. FDC-v-lip did not show a strong correlation with Spec fPL in cats with various diseases, which resulted in the low sensitivity and positive predictive value. However, the relatively high (>90%) specificity and negative predictive value indicated that FDC-v-LIP could be a useful patient-side screening test for the exclusion of feline pancreatitis. PMID:26050751

  16. Dodecenyl succinylated alginate as a novel material for encapsulation and hyperactivation of lipases.

    PubMed

    Falkeborg, Mia; Paitaid, Pattarapon; Shu, Allen Ndonwi; Pérez, Bianca; Guo, Zheng

    2015-11-20

    Alginate was modified with dodecenyl succinic anhydride (SAC12) in an aqueous reaction medium at neutral pH. The highest degree of succinylation (33.9±3.5%) was obtained after 4h at 30°C, using four mole SAC12 per mol alginate monomer. Alginate was modified with succinic anhydride (SAC0) for comparison, and the structures and thermal properties of alg-SAC0 and alg-SAC12 were evaluated using FTIR, (1)H NMR, and DSC. Calcium-hydrogel beads were formed from native and modified alginates, in which lipases were encapsulated with a load of averagely 76μg lipase per mg alginate, irrespective of the type of alginate. Lipases with a "lid", which usually are dependent on interfacial activation, showed a 3-fold increase in specific activity toward water-soluble substrates when encapsulated in alg-SAC12, compared to the free lipase. Such hyperactivation was not observed for lipases independent of interfacial activation, or for lipases encapsulated in native alginate or alg-SAC0 hydrogels.

  17. Recombinant Lipases and Phospholipases and Their Use as Biocatalysts for Industrial Applications.

    PubMed

    Borrelli, Grazia M; Trono, Daniela

    2015-09-01

    Lipases and phospholipases are interfacial enzymes that hydrolyze hydrophobic ester linkages of triacylglycerols and phospholipids, respectively. In addition to their role as esterases, these enzymes catalyze a plethora of other reactions; indeed, lipases also catalyze esterification, transesterification and interesterification reactions, and phospholipases also show acyltransferase, transacylase and transphosphatidylation activities. Thus, lipases and phospholipases represent versatile biocatalysts that are widely used in various industrial applications, such as for biodiesels, food, nutraceuticals, oil degumming and detergents; minor applications also include bioremediation, agriculture, cosmetics, leather and paper industries. These enzymes are ubiquitous in most living organisms, across animals, plants, yeasts, fungi and bacteria. For their greater availability and their ease of production, microbial lipases and phospholipases are preferred to those derived from animals and plants. Nevertheless, traditional purification strategies from microbe cultures have a number of disadvantages, which include non-reproducibility and low yields. Moreover, native microbial enzymes are not always suitable for biocatalytic processes. The development of molecular techniques for the production of recombinant heterologous proteins in a host system has overcome these constraints, as this allows high-level protein expression and production of new redesigned enzymes with improved catalytic properties. These can meet the requirements of specific industrial process better than the native enzymes. The purpose of this review is to give an overview of the structural and functional features of lipases and phospholipases, to describe the recent advances in optimization of the production of recombinant lipases and phospholipases, and to summarize the information available relating to their major applications in industrial processes.

  18. Ultrasound-assisted hydrolysis of waste cooking oil catalyzed by homemade lipases.

    PubMed

    Mulinari, J; Venturin, B; Sbardelotto, M; Dall Agnol, A; Scapini, T; Camargo, A F; Baldissarelli, D P; Modkovski, T A; Rossetto, V; Dalla Rosa, C; Reichert, F W; Golunski, S M; Vieitez, I; Vargas, G D L P; Dalla Rosa, C; Mossi, A J; Treichel, H

    2017-03-01

    This study aimed to evaluate the waste cooking oil (WCO) hydrolysis in ultrasonic system using lipase as catalyst. Lipase was produced by the fungus Aspergillus niger via solid state fermentation (SSF) using canola meal as substrate. Prior to the hydrolysis reaction, the lipase behavior when subjected to ultrasound was evaluated by varying the temperature of the ultrasonic bath, the exposure time and the equipment power. Having optimized the treatment on ultrasound, the WCO hydrolysis reaction was carried out by evaluating the oil:water ratio and the lipase concentration. For a greater homogenization of the reaction medium, a mechanical stirrer at 170rpm was used. All steps were analyzed by experimental design technique. The lipase treatment in ultrasound generated an increase of about 320% in its hydrolytic activity using 50% of ultrasonic power for 25min. at 45°C. The results of the experimental design conducted for ultrasound-assisted hydrolysis showed that the best condition was using an oil:water ratio of 1:3 (v:v) and enzyme concentration of 15% (v/v), generating 62.67μmol/mL of free fatty acids (FFA) in 12h of reaction. Thus, the use of Aspergillus niger lipase as a catalyst for hydrolysis reaction of WCO can be considered as a possible pretreatment technique of the oil in order to accelerate its degradation.

  19. LEADER 3—Lipase and Amylase Activity in Subjects With Type 2 Diabetes

    PubMed Central

    Steinberg, William M.; Nauck, Michael A.; Zinman, Bernard; Daniels, Gilbert H.; Bergenstal, Richard M.; Mann, Johannes F.E.; Steen Ravn, Lasse; Moses, Alan C.; Stockner, Mette; Baeres, Florian M.M.; Marso, Steven P.; Buse, John B.

    2014-01-01

    Objectives This report from the LEADER (Liraglutide Effect and Action in Diabetes: Evaluation of Cardiovascular Outcome Results) trial describes baseline lipase and amylase activity in type 2 diabetic subjects without acute pancreatitis symptoms before randomization to the glucagonlike peptide analog liraglutide or placebo. Methods The LEADER is an international randomized placebo-controlled trial evaluating the cardiovascular safety of liraglutide in 9340 type 2 diabetic patients at high cardiovascular risk. Fasting lipase and amylase activity was assessed at baseline, before receiving liraglutide or placebo, using a commercial assay (Roche) with upper limit of normal values of 63 U/L for lipase and 100 U/L for amylase. Results Either or both enzymes were above the upper limit of normal in 22.7% of subjects; 16.6% (n = 1540) had an elevated lipase level (including 1.2% >3-fold elevated), and 11.8% (n = 1094) had an elevated amylase level (including 0.2% >3-fold elevated). In multivariable regression models, severely reduced kidney function was associated with the largest effect on increasing activity of both. However, even among subjects with normal kidney function, 12.2% and 7.7% had elevated lipase and amylase levels. Conclusions In this large study of type 2 diabetic patients, nearly 25% had elevated lipase or amylase levels without symptoms of acute pancreatitis. The clinician must take these data into account when evaluating abdominal symptoms in type 2 diabetic patients. PMID:25275271

  20. Production of Thermoalkaliphilic Lipase from Geobacillus thermoleovorans DA2 and Application in Leather Industry

    PubMed Central

    Abol Fotouh, Deyaa M.; Bayoumi, Reda A.; Hassan, Mohamed A.

    2016-01-01

    Thermophilic and alkaliphilic lipases are meeting a growing global attention as their increased importance in several industrial fields. Over 23 bacterial strains, novel strain with high lipolytic activity was isolated from Southern Sinai, Egypt, and it was identified as Geobacillus thermoleovorans DA2 using 16S rRNA as well as morphological and biochemical features. The lipase was produced in presence of fatty restaurant wastes as an inducing substrate. The optimized conditions for lipase production were recorded to be temperature 60°C, pH 10, and incubation time for 48 hrs. Enzymatic production increased when the organism was grown in a medium containing galactose as carbon source and ammonium phosphate as nitrogen source at concentrations of 1 and 0.5% (w/v), respectively. Moreover, the optimum conditions for lipase production such as substrate concentration, inoculum size, and agitation rate were found to be 10% (w/v), 4% (v/v), and 120 rpm, respectively. The TA lipase with Triton X-100 had the best degreasing agent by lowering the total lipid content to 2.6% as compared to kerosene (7.5%) or the sole crude enzyme (8.9%). It can be concluded that the chemical leather process can be substituted with TA lipase for boosting the quality of leather and reducing the environmental hazards. PMID:26881066

  1. Significant elevations of serum lipase not caused by pancreatitis: a systematic review

    PubMed Central

    Hameed, Ahmer M; Lam, Vincent W T; Pleass, Henry C

    2015-01-01

    Background Many authors advocate lipase as the preferred serological test for the diagnosis of pancreatitis and a cut-off level of three or more times the upper limit of normal (ULN) is often quoted. The literature contains no systematic review that explores alternative causes of a lipase level over three times as high as the ULN. Such a review was therefore the objective of this study. Methods The EMBASE and MEDLINE databases (1985 to August 2013) were searched for all eligible articles. Predetermined data were extracted and independently analysed by two reviewers. Results In total, data from 58 studies were included in the final analysis. The following causes other than pancreatitis of lipase levels exceeding three times the ULN were found: reduced clearance of lipase caused by renal impairment or macrolipase formation; other hepatobiliary, gastroduodenal, intestinal and neoplastic causes; critical illness, including neurosurgical pathology; alternative pancreatic diagnoses, such as non-pathological pancreatic hyperenzymaemia, and miscellaneous causes such as diabetes, drugs and infections. Conclusions A series of differential diagnoses for significant serum lipase elevations (i.e. exceeding three times the ULN) has been provided by this study. Clinicians should utilize this knowledge in the interpretation and management of patients who have lipase levels over three times as high as the ULN, remaining vigilant for an alternative diagnosis to pancreatitis. The medical officer should be aware of the possibility of incorrect diagnosis in the asymptomatic patient. PMID:24888393

  2. Application of lipase from Burkholderia cepacia in the degradation of agro-industrial effluent.

    PubMed

    Mello Bueno, Pabline Rafaella; de Oliveira, Tatianne Ferreira; Castiglioni, Gabriel Luis; Soares Júnior, Manoel Soares; Ulhoa, Cirano Jose

    2015-01-01

    This study aimed to analyze the physical and chemical characteristics of Amano PS commercial lipase - Burkholderia cepacia and lipase produced by Burkholderia cepacia strain ATCC 25416, in addition to studying the hydrolysis of agro-industrial effluent collected in a fried potato industry. The optimum temperature for increasing lipase activity was 37 °C. The temperature increase caused a decrease in thermostability of lipase, and the commercial lipase was less stable, with values of 10.5, 4.6 and 4.9%, respectively, lower than those obtained by lipase from strain ATCC 25416, at temperatures of 40, 50 and 60 °C. The enzymatic activity was higher in alkaline conditions, achieving better results at pH 8.0. The pH was the variable that most influenced the hydrolysis of triacylglycerides of the agro-industrial effluent, followed by enzyme concentration, and volume of gum arabic used in the reaction medium. Thus, it can be observed that the enzymatic hydrolytic process of the studied effluent presents a premising contribution to reduction of environmental impacts of potato chip processing industries.

  3. Effect of lipase addition on hydrolysis and biomethane production of Chinese food waste.

    PubMed

    Meng, Ying; Li, Sang; Yuan, Hairong; Zou, Dexun; Liu, Yanping; Zhu, Baoning; Li, Xiujin

    2015-03-01

    The lipase obtained from Aspergillums niger was applied to promote the hydrolysis of food waste for achieving high biomethane production. Two strategies of lipase additions were investigated. One (Group A) was to pre-treat food waste to pre-decompose lipid to fatty acids before anaerobic digestion, and another one (Group B) was to add lipase to anaerobic digester directly to degrade lipid inside digester. The lipase was used at the concentrations of 0.1%, 0.5%, and 1.0% (w/v). The results showed that Group A achieved higher biomethane production, TS and VS reductions than those of Group B. At 0.5% lipase concentration, Group A obtained experimental biomethane yield of 500.1 mL/g VS(added), 4.97-26.50% higher than that of Group B. The maximum Bd of 73.8% was also achieved in Group A. Therefore, lipase pre-treatment strategy is recommended. This might provide one of alternatives for efficient biomethane production from food waste and mitigating environmental impact associated.

  4. Recombinant Lipases and Phospholipases and Their Use as Biocatalysts for Industrial Applications

    PubMed Central

    Borrelli, Grazia M.; Trono, Daniela

    2015-01-01

    Lipases and phospholipases are interfacial enzymes that hydrolyze hydrophobic ester linkages of triacylglycerols and phospholipids, respectively. In addition to their role as esterases, these enzymes catalyze a plethora of other reactions; indeed, lipases also catalyze esterification, transesterification and interesterification reactions, and phospholipases also show acyltransferase, transacylase and transphosphatidylation activities. Thus, lipases and phospholipases represent versatile biocatalysts that are widely used in various industrial applications, such as for biodiesels, food, nutraceuticals, oil degumming and detergents; minor applications also include bioremediation, agriculture, cosmetics, leather and paper industries. These enzymes are ubiquitous in most living organisms, across animals, plants, yeasts, fungi and bacteria. For their greater availability and their ease of production, microbial lipases and phospholipases are preferred to those derived from animals and plants. Nevertheless, traditional purification strategies from microbe cultures have a number of disadvantages, which include non-reproducibility and low yields. Moreover, native microbial enzymes are not always suitable for biocatalytic processes. The development of molecular techniques for the production of recombinant heterologous proteins in a host system has overcome these constraints, as this allows high-level protein expression and production of new redesigned enzymes with improved catalytic properties. These can meet the requirements of specific industrial process better than the native enzymes. The purpose of this review is to give an overview of the structural and functional features of lipases and phospholipases, to describe the recent advances in optimization of the production of recombinant lipases and phospholipases, and to summarize the information available relating to their major applications in industrial processes. PMID:26340621

  5. Interfacial activation of Candida antarctica lipase B: combined evidence from experiment and simulation

    PubMed Central

    Zisis, Themistoklis; Freddolino, Peter L.; Turunen, Petri; van Teeseling, Muriel C. F.

    2015-01-01

    Lipase immobilization is frequently used for altering the catalytic properties of these industrially used enzymes. Many lipases bind strongly to hydrophobic surfaces where they undergo interfacial activation. Candida antarctica lipase B (CalB), one of the most commonly used biocatalysts, is frequently discussed as an atypical lipase lacking interfacial activation. Here we show that CalB displays an enhanced catalytic rate for large, bulky substrates when adsorbed to a hydrophobic interface composed of densely packed alkyl chains. We attribute this increased activity of more than 7-fold to a conformational change that yields a more open active site. This hypothesis is supported by molecular dynamics simulations that show a high mobility for a small ‘lid’ (helix α5) close to the active site. Molecular docking calculations confirm that a highly open conformation of this helix is required for binding large, bulky substrates and that this conformation is favored in a hydrophobic environment. Taken together, our combined approach provides clear evidence for the interfacial activation of CalB on highly hydrophobic surfaces. In contrast to other lipases, however, the conformational change only affects large, bulky substrates, leading to the conclusion that CalB acts like an esterase for small substrates and as a lipase for substrates with large alcohol substituents. PMID:26346632

  6. Improved expression and immobilization of Geobacillus thermoleovorans CCR11 thermostable recombinant lipase.

    PubMed

    Badillo-Zeferino, Giselle-Lilian; Ruiz-López, Irving-Israel; Oliart-Ros, Rosamaŕıa; Sánchez-Otero, María-Guadalupe

    2017-01-01

    Production of recombinant thermo-alkali-stable lipase LipMatCCR11, expressed in Escherichia coli BL21 (DE3), was investigated via response surface methodology by using a face-centered design with three levels of each factor. Additionally, improvement of the catalytic performance of expressed lipase was assessed by immobilization on microporous polypropylene. Results showed that inducer (isopropyl β-d-1-thiogalactopyranoside [IPTG]) concentration and temperature were found to be the significant factors (P < 0.05). The maximum lipase expression was obtained at IPTG 0.6 mM, 16 °C, and 18 H, with a specific lipase activity of 7.29 × 10(6)  U/mg, which was 36.4 times higher (over 1,300-fold increase) than lipase activity measured under nonoptimized conditions. On the other hand, immobilized lipase showed a high biocatalytic activity, particularly in the synthesis of aroma esters.

  7. [Prediction of lipases types by different scale pseudo-amino acid composition].

    PubMed

    Zhang, Guangya; Li, Hongchun; Gao, Jiaqiang; Fang, Baishan

    2008-11-01

    Lipases are widely used enzymes in biotechnology. Although they catalyze the same reaction, their sequences vary. Therefore, it is highly desired to develop a fast and reliable method to identify the types of lipases according to their sequences, or even just to confirm whether they are lipases or not. By proposing two scales based pseudo amino acid composition approaches to extract the features of the sequences, a powerful predictor based on k-nearest neighbor was introduced to address the problems. The overall success rates thus obtained by the 10-fold cross-validation test were shown as below: for predicting lipases and nonlipase, the success rates were 92.8%, 91.4% and 91.3%, respectively. For lipase types, the success rates were 92.3%, 90.3% and 89.7%, respectively. Among them, the Z scales based pseudo amino acid composition was the best, T scales was the second. They outperformed significantly than 6 other frequently used sequence feature extraction methods. The high success rates yielded for such a stringent dataset indicate predicting the types of lipases is feasible and the different scales pseudo amino acid composition might be a useful tool for extracting the features of protein sequences, or at lease can play a complementary role to many of the other existing approaches.

  8. Application of a statistically enhanced, novel, organic solvent stable lipase from Bacillus safensis DVL-43.

    PubMed

    Kumar, Davender; Parshad, Rajinder; Gupta, Vijay Kumar

    2014-05-01

    This paper presents the molecular identification of a newly isolated bacterial strain producing a novel and organic solvent stable lipase, statistical optimization of fermentation medium, and its application in the synthesis of ethyl laurate. On the basis of nucleotide homology and phylogenetic analysis of 16S rDNA sequence, the strain was identified as Bacillus safensis DVL-43 (Gen-bank accession number KC156603). Optimization of fermentation medium using Plackett-Burman design and response surface methodology led to 11.4-fold increase in lipase production. The lipase from B. safensis DVL-43 exhibited excellent stability in various organic solvents. The enzyme retained 100% activity after 24h incubation in xylene, DMSO and toluene, each solvent being used at a concentration of 25% (v/v). The use of partially purified DVL-43 lipase as catalyst in the synthesis of ethyl laurate, an esterification product of lauric acid and ethanol, resulted in 80% esterification in 12h under optimized conditions. The formation of ethyl laurate was confirmed using TLC and (1)H NMR. Organic solvent stable lipases exhibiting potential application in enzymatic esterification are in great demand in flavor, fine chemicals and pharma industries. We could not find any report on lipase production from B. safensis strain and its application in esterification.

  9. Lipase-nanoporous gold biocomposite modified electrode for reliable detection of triglycerides.

    PubMed

    Wu, Chao; Liu, Xueying; Li, Yufei; Du, Xiaoyu; Wang, Xia; Xu, Ping

    2014-03-15

    For triglycerides biosensor design, protein immobilization is necessary to create the interface between the enzyme and the electrode. In this study, a glassy carbon electrode (GCE) was modified with lipase-nanoporous gold (NPG) biocomposite (denoted as lipase/NPG/GCE). Due to highly conductive, porous, and biocompatible three-dimensional structure, NPG is suitable for enzyme immobilization. In cyclic voltammetry experiments, the lipase/NPG/GCE bioelectrode displayed surface-confined reaction in a phosphate buffer solution. Linear responses were obtained for tributyrin concentrations ranging from 50 to 250 mg dl(-1) and olive oil concentrations ranging from 10 to 200 mg dl(-1). The value of apparent Michaelis-Menten constant for tributyrin was 10.67 mg dl(-1) and the detection limit was 2.68 mg dl(-1). Further, the lipase/NPG/GCE bioelectrode had strong anti-interference ability against urea, glucose, cholesterol, and uric acid as well as a long shelf-life. For the detection of triglycerides in human serum, the values given by the lipase/NPG/GCE bioelectrode were in good agreement with those of an automatic biochemical analyzer. These properties along with a long self-life make the lipase/NPG/GCE bioelectrode an excellent choice for the construction of triglycerides biosensor.

  10. Hydrolysis of carotenoid esters from Tagetes erecta by the action of lipases from Yarrowia lipolytica.

    PubMed

    Abdala, Abraham Figueiras; Gallardo, Alfonso Pérez; Olvera, Lorenzo Guevara; Silva, Eleazar Máximo Escamilla

    2017-01-01

    The present study was conducted to evaluate the feasibility of enzymatic hydrolysis of carotenoid esters from Tagetes erecta using lipases from the yeast of Yarrowia lipolytica, with the aim of obtaining free lutein. The optimal concentrations of seven nutrients, considering the production of lipases relative to biomass (Yp/x) as the response variable, were determined in flask fermentations. In addition, we studied the effect on hydrolysis of growing Y. lipolytica in the presence of the oleoresin of the marigold flower in flask and stirred tank. Furthermore, hydrolysis of the oleoresin using the lipases from this microorganism was compared with the hydrolysis using lipases from Rhizopus oryzae. Cultured in the presence of marigold oleoresin, Y. lipolytica showed an increase in free carotenoids of 12.41% in flask and 8.8% in stirred tank, representing a fourfold and a threefold increase compared to the initial value in the fermentation, respectively. When lipases from the supernatant from both microorganisms were used for only 14 h hydrolysis experiments, a slight increase was achieved compared to a blank. We concluded that carotenoid esters of the oleoresin could not be completely hydrolyzed in 14 h by these lipases, but that growing Y. lipolytica in the presence of marigold oleoresin gives until fourfold production of free carotenoids in 72 h fermentations.

  11. Optimization of lipase-catalyzed transesterification of lard for biodiesel production using response surface methodology.

    PubMed

    Huang, Ying; Zheng, Hai; Yan, Yunjun

    2010-01-01

    Biodiesel, an alternative diesel fuel made from renewable biological resources, has become more and more attractive recently. Combined use of two immobilized lipases with complementary position specificity instead of one lipase is a potential way to significantly reduce cost of lipase-catalyzed biodiesel production. In this study, the process of biodiesel production from lard catalyzed by the combined use of Novozym435 (non-specific) and Lipozyme TLIM (1,3-specific) was optimized by response surface methodology. The optimal reaction conditions were 0.04 of amount of lipase/oil (w/w), 0.49 of proportion of Novozym435/total lipases (w/w), 0.55 of quantity of tert-butanol/oil (v/v), 5.12 of quantity of methanol/oil (mol/mol), and 20 h of reaction time, by which 97.2% of methyl ester (ME) yield was attained, very close to the predicted value (97.6%). This optimal reaction condition could be true of other similar reactions with plant and animal oil resources; their ME yield could be higher than 95%. The lipases regenerated by washing with organic solvent after each reaction cycle could be continuously reused for 20 cycles without any loss of activity, exhibiting very high manipulation stability.

  12. Preparation of magnetic Fe3O4@SiO2 nanoparticles for immobilization of lipase.

    PubMed

    Liu, Wei; Zhou, Fang; Zhang, Xiao-Yun; Li, Yue; Wang, Xiang-Yu; Xu, Xi-Ming; Zhang, Ye-Wang

    2014-04-01

    Magnetic Fe3O4 nanoparticles were prepared with coprecipitatation method and covered with SiO2 to form the core-shell Fe3O4@SiO2 nanoparticles. Then the nanoparticles were modified with glutaradehyde for functionalization of the surface to aldehyde groups. The transmission electron microscopy confirmed the core-shell structure and revealed that the size of the nanoparticles was around 10 nm. It was observed that the lipase was immobilized on the nanoparticles successfully from the Fourier transform infrared spectra. The immobilized lipase on Fe3O4@SiO2 nanoparticles was characterized and compared to free enzyme. There are no significant differences observed in the optimal pH, temperature and Km before and after immobilization. However, the immobilized lipase displayed higher relative activity in the range of pH from 7.0 to 9.5. Compare with the free enzyme, the immobilized one showed higher thermal stability at temperature range from 30 to 70 degrees C, especially at high temperature. The relative activity of immobilized enzyme was 5.8 fold of the free lipase at 70 degrees C after 10 h incubation. Thus, the prepared lipase was proved to have the advantages like higher relative activity, better stability, broader pH range and easy to recovery. These results suggest that immobilization of lipase on Fe3O4@SiO2 nanoparticles has the potential industrial applications.

  13. Gene cloning, expression, and characterization of the Bacillus amyloliquefaciens PS35 lipase

    PubMed Central

    Kanmani, Palanisamy; Kumaresan, Kuppamuthu; Aravind, Jeyaseelan

    2015-01-01

    Abstract Lipases are enzymes of immense industrial relevance, and, therefore, are being intensely investigated. In an attempt to characterize lipases at molecular level from novel sources, a lipase gene from Bacillus amyloliquefaciens PS35 was cloned, heterologously expressed in Escherichia coli DH5α cells and sequenced. It showed up to 98% homology with other lipase sequences in the NCBI database. The recombinant enzyme was then purified from E. coli culture, resulting in a 19.41-fold purification with 9.7% yield. It displayed a preference for long-chain para-nitrophenyl esters, a characteristic that is typical of true lipases. Its optimum pH and temperature were determined to be 8.0 and 40 °C, respectively. The half-lives were 2.0, 1.0 and 0.5 h at 50 °C, 60 °C and 70 °C, respectively. The metal ions K+ and Fe3+ enhanced the enzyme activity. The enzyme displayed substantial residual activity in the presence of various tested chemical modifiers, and interestingly, the organic solvents, such as n-hexane and toluene, also favored the enzyme activity. Thus, this study involves characterization of B. amyloliquefaciens lipase at molecular level. The key outcomes are novelty of the bacterial source and purification of the enzyme with desirable properties for industrial applications. PMID:26691486

  14. Immobilization of Mucor miehei Lipase onto Macroporous Aminated Polyethersulfone Membrane for Enzymatic Reactions

    PubMed Central

    Handayani, Nurrahmi; Loos, Katja; Wahyuningrum, Deana; Buchari; Zulfikar, Muhammad Ali

    2012-01-01

    Immobilization of enzymes is one of the most promising methods in enzyme performance enhancement, including stability, recovery, and reusability. However, investigation of suitable solid support in enzyme immobilization is still a scientific challenge. Polyethersulfone (PES) and aminated PES (PES–NH2) were successfully synthesized as novel materials for immobilization. Membranes with various pore sizes (from 10–600 nm) based on synthesized PES and PES–NH2 polymers were successfully fabricated to be applied as bioreactors to increase the immobilized lipase performances. The influence of pore sizes, concentration of additives, and the functional groups that are attached on the PES backbone on enzyme loading and enzyme activity was studied. The largest enzyme loading was obtained by Mucor miehei lipase immobilized onto a PES–NH2 membrane composed of 10% of PES–NH2, 8% of dibutyl phthalate (DBP), and 5% of polyethylene glycol (PEG) (872.62 µg/cm2). Hydrolytic activity of the immobilized lipases indicated that the activities of biocatalysts are not significantly decreased by immobilization. From the reusability test, the lipase immobilized onto PES–NH2 showed a better constancy than the lipase immobilized onto PES (the percent recovery of the activity of the lipases immobilized onto PES–NH2 and PES are 97.16% and 95.37%, respectively), which indicates that this novel material has the potential to be developed as a bioreactor for enzymatic reactions. PMID:24958172

  15. Anti- and pro-lipase activity of selected medicinal, herbal and aquatic plants, and structure elucidation of an anti-lipase compound.

    PubMed

    Ado, Muhammad Abubakar; Abas, Faridah; Mohammed, Abdulkarim Sabo; Ghazali, Hasanah M

    2013-11-26

    Plants that help in slowing down the digestion of triacylglycerols (TAGs) in the pancreas and small intestine of humans play an important role in the reduction of obesity. On the other hand, there may be plants or plant parts that stimulate intestinal lipolytic activity, thus contributing to greater TAG assimilation. The aim of this study was to evaluate the aqueous methanolic extracts of ninety eight (98) medicinal, herbal and aquatic plant materials from Malaysia for their effect on porcine pancreatic lipase (PPL) activity and to identify the structure of an anti-lipase compound from one of the sources. The degree of inhibition was also quantified as relative to orlistat activity against PPL (orlistat equivalents). Results revealed that while 19.4% of the extracts were found to have anti-lipase activity ≥80%, 12% were actually found to promote PPL activity. Twenty two percent (22.4%) exhibited moderate inhibition (41%-80%) and 2% were neutral toward PPL activity. The ripe fruit of Averrhoa carambola and the leaves of Archidendron jiringa (Jack) I.C Nielsen L. (jering), Cynometra cauliflora (nam-nam) and Aleurites moluccana (L.) Willd (candle nut/buah keras) had the highest (100%) anti-lipase activity and are equivalent to 0.11 µg orlistat/mL. Plants that stimulated lipase activity included Pimpinella anisum L. (aniseed/jintan manis), activating the enzyme by 186.5%. Kaempferol 3-O-rhamnoside was isolated from the ethyl acetate fraction of C. cauliflora leaves and found to be an active lipase inhibitor. The structure was elucidated using 1H-NMR, 13C-NMR and 2D-NMR analyses.

  16. Crystal structure of a triacylglycerol lipase from Penicillium expansum at 1.3 A determined by sulfur SAD

    SciTech Connect

    Bian, Chuanbing; Yuan, Cai; Chen, Liqing; Meehan, Edward J.; Jiang, Longguang; Huang, Zixiang; Lin, Lin; Huang, Mingdong

    2010-04-05

    Triacylglycerol lipases (EC 3.1.1.3) are present in many different organisms including animals, plants, and microbes. Lipases catalyze the hydrolysis of long-chain triglycerides into fatty acids and glycerol at the interface between the water insoluble substrate and the aqueous phase. Lipases can also catalyze the reverse esterification reaction to form glycerides under certain conditions. Lipases of microbial origin are of considerable commercial interest for wide variety of biotechnological applications in industries, including detergent, food, cosmetic, pharmaceutical, fine chemicals, and biodiesel. Nowadays, microbial lipases have become one of the most important industrial enzymes. PEL (Penicillium expansum lipase) is a fungal lipase from Penicillium expansum strain PF898 isolated from Chinese soil that has been subjected to several generations of mutagenesis to increase its enzymatic activity. PEL belongs to the triacylglycerol lipases family, and its catalytic characteristics have been studied. The enzyme has been used in Chinese laundry detergent industry for several years (http://www.leveking.com). However, the poor thermal stability of the enzyme limits its application. To further study and improve this enzyme, PEL was cloned and sequenced. Furthermore, it was overexpressed in Pichia pastoris. PEL contains GHSLG sequence, which is the lipase consensus sequence Gly-X1-Ser-X2-Gly, but has a low amino acid sequence identities to other lipases. The most similar lipases are Rhizomucor miehei (PML) and Rhizopus niveus (PNL) with a 21% and 20% sequence identities to PEL, respectively. Interestingly, the similarity of PEL with the known esterases is somewhat higher with 24% sequence identity to feruloyl esterase A. Here, we report the 1.3 {angstrom} resolution crystal structure of PEL determined by sulfur SAD phasing. This structure not only presents a new lipase structure at high resolution, but also provides a structural platform to analyze the published

  17. [Gene cloning, expression and characterization of two cold-adapted lipases from Penicillium sp. XMZ-9].

    PubMed

    Zheng, Xiaomei; Wu, Ningfeng; Fan, Yunliu

    2012-04-01

    Cold-adapted lipases are attractive biocatalysts that can be used at low temperatures as additives in food products, laundry detergents, and the organic synthesis of chiral intermediates. Cold-adapted lipases are normally found in microorganisms that survive at low temperatures. A fungi strain XMZ-9 exhibiting lipolytic activity was isolated from the soil of glaciers in Xinjiang by the screening plates using 1% tributyrin as the substrate and Victoria blue as an indicator. Based on morphological characteristics and phylogenetic comparisons of its 18S rDNA, the strain was identified as Penicillium sp. The partial nucleotide sequences of these two lipase related genes, LipA and LipB, were obtained by touchdown PCR using the degenerate primers designed according to the conservative domains of lipase. The full-length sequences of two genes were obtained by genome walking. The gene lipA contained 1 014 nucleotides, without any intron, comprising one open reading frame encoding a polypeptide of 337 amino acids. The gene lipB comprised two introns (61 bp and 49 bp) and a coding region sequence of 1 122 bp encoding a polypeptide of 373 amino acids, cDNA sequences of both lipA and lipB were cloned and expressed in Escherichia coli BL21 (DE3). The recombinant LipA was mostly expressed as inclusion bodies, and recovered lipase activity at low temperature after in vitro refolded by dilution. Differently, the recombinant LipB was expressed in the soluble form and then purified by Ni-NTA affinity chromatography Column. It showed high lipase activity at low temperature. These results indicated that they were cold-adapted enzymes. This study paves the way for the further research of these cold-adapted lipases for application in the industry.

  18. Cloning and characterization of newly isolated lipase from Enterobacter sp. Bn12.

    PubMed

    Farrokh, Parisa; Yakhchali, Bagher; Karkhane, Ali Asghar

    2014-01-01

    A mesophilic Enterobacter sp. Bn12 producing an alkaline thermostable lipase was isolated from soil in Tehran, Iran. The lipase gene (ELBn12) was identified from a genomic library. Sequence analysis of the DNA fragment revealed an open reading frame of 879 bp encoding a lipase with a molecular mass of 31.3 kDa. The deduced amino acid sequence showed 96% identity with a lipase of Enterobacter sp. Ag1 and the identity of their DNA sequences was 88.9%. ELBn12 belongs to the lipase subfamily I.1 and its catalytic triad consists of Ser82, Asp237 and His259. The lipase was expressed in Escherichia coli (BL21) pLysS and partially purified by anion exchange chromatography. The maximum activity of ELBn12 was obtained at temperature of 60 °C and pH 8.0 towards tricaprylin (C8) and its specific activity was around 2900 U/mg. ELBn12 was stable within a broad pH range from 6.0 to 11.0. The enzyme showed high stability in both polar and nonpolar organic solvents at 50% (v/v). The lipase activity was enhanced in the presence of 10 mM of Ca(2+), Mg(2+) and K(+), while heavy metals (Fe(3+) and Zn(2+)) had strong inhibitory effect. ELBn12 showed high activity in the presence of 1% (w/v) nonionic surfactants, however ionic surfactants inhibited the lipolytic activity. ELBn12 characteristics show that it has a potential to be used in various industrial processes.

  19. Cloning and characterization of newly isolated lipase from Enterobacter sp. Bn12

    PubMed Central

    Farrokh, Parisa; Yakhchali, Bagher; Karkhane, Ali Asghar

    2014-01-01

    A mesophilic Enterobacter sp. Bn12 producing an alkaline thermostable lipase was isolated from soil in Tehran, Iran. The lipase gene (ELBn12) was identified from a genomic library. Sequence analysis of the DNA fragment revealed an open reading frame of 879 bp encoding a lipase with a molecular mass of 31.3 kDa. The deduced amino acid sequence showed 96% identity with a lipase of Enterobacter sp. Ag1 and the identity of their DNA sequences was 88.9%. ELBn12 belongs to the lipase subfamily I.1 and its catalytic triad consists of Ser82, Asp237 and His259. The lipase was expressed in Escherichia coli (BL21) pLysS and partially purified by anion exchange chromatography. The maximum activity of ELBn12 was obtained at temperature of 60 °C and pH 8.0 towards tricaprylin (C8) and its specific activity was around 2900 U/mg. ELBn12 was stable within a broad pH range from 6.0 to 11.0. The enzyme showed high stability in both polar and nonpolar organic solvents at 50% (v/v). The lipase activity was enhanced in the presence of 10 mM of Ca2+, Mg2+ and K+, while heavy metals (Fe3+ and Zn2+) had strong inhibitory effect. ELBn12 showed high activity in the presence of 1% (w/v) nonionic surfactants, however ionic surfactants inhibited the lipolytic activity. ELBn12 characteristics show that it has a potential to be used in various industrial processes. PMID:25242958

  20. The production and characterization of a new active lipase from Acremonium alcalophilum using a plant bioreactor

    PubMed Central

    2013-01-01

    Background Microorganisms are the most proficient decomposers in nature, using secreted enzymes in the hydrolysis of lignocellulose. As such, they present the most abundant source for discovery of new enzymes. Acremonium alcalophilum is the only known cellulolytic fungus that thrives in alkaline conditions and can be cultured readily in the laboratory. Its optimal conditions for growth are 30°C and pH 9.0-9.2. The genome sequence of Acremonium alcalophilum has revealed a large number of genes encoding biomass-degrading enzymes. Among these enzymes, lipases are interesting because of several industrial applications including biofuels, detergent, food processing and textile industries. Results We identified a lipA gene in the genome sequence of Acremonium alcalophilum, encoding a protein with a predicted lipase domain with weak sequence identity to characterized enzymes. Unusually, the predicted lipase displays ≈ 30% amino acid sequence identity to both feruloyl esterase and lipase of Aspergillus niger. LipA, when transiently produced in Nicotiana benthamiana, accumulated to over 9% of total soluble protein. Plant-produced recombinant LipA is active towards p-nitrophenol esters of various carbon chain lengths with peak activity on medium-chain fatty acid (C8). The enzyme is also highly active on xylose tetra-acetate and oat spelt xylan. These results suggests that LipA is a novel lipolytic enzyme that possesses both lipase and acetylxylan esterase activity. We determined that LipA is a glycoprotein with pH and temperature optima at 8.0 and 40°C, respectively. Conclusion Besides being the first heterologous expression and characterization of a gene coding for a lipase from A. alcalophilum, this report shows that LipA is very versatile exhibiting both acetylxylan esterase and lipase activities potentially useful for diverse industry sectors, and that tobacco is a suitable bioreactor for producing fungal proteins. PMID:23915965

  1. Fast identification of lipase inhibitors in oolong tea by using lipase functionalised Fe3O4 magnetic nanoparticles coupled with UPLC-MS/MS.

    PubMed

    Zhu, Yuan-Ting; Ren, Xiao-Yun; Yuan, Li; Liu, Yi-Ming; Liang, Jian; Liao, Xun

    2015-04-15

    Oolong tea is an important member in tea family, which claims for various health benefits such as preventing obesity and improving lipid metabolism. In this work, using pancreatic lipase (PL) functionalised magnetic nanoparticles (PL-MNPs) as solid phase extraction absorbent in combination with ultra-high performance liquid chromatography-mass spectrometry (UPLC-MS), we developed a method for rapid screening and identification of lipase inhibitors from oolong tea. Three PL ligands were selectively extracted and identified as (-)-epigallocatechin-3-O-gallate (EGCG), (-)-gallocatechin-3-O-gallate (GCG) and (-)-epicatechin-3-O-gallate (ECG). Their lipase inhibitory activities were significantly higher than those non-ligands. Structure-activity analysis revealed that the presence of a galloyl moiety in the structure was required for binding to PL-MNPs, and therefore, exhibiting a strong inhibition on the enzyme. Taking advantages of the specificity in enzyme binding and the convenience of magnetic separation, this method has great potential for fast screening of lipase inhibitors from natural resources.

  2. Production of biodiesel by transesterification of corn and soybean oils with ethanol or butanol using resin-bound truncated Candida antarctica lipase B

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Enzymatic catalysts, such as lipases, have advantages over chemical catalysts for transesterification of triglycerides to produce biodiesel. A gene encoding a synthetic truncated Candida antarctica lipase B (CALB) was generated via automated PCR and expressed in Saccharomyces cerevisiae. Western b...

  3. Adsorption of Candida rugosa lipase at water-polymer interface: The case of poly( DL)lactide

    NASA Astrophysics Data System (ADS)

    Kamel, Gihan; Bordi, Federico; Chronopoulou, Laura; Lupi, Stefano; Palocci, Cleofe; Sennato, Simona; Verdes, Pedro V.

    2011-12-01

    Insights into the interactions between biological macromolecules and polymeric surfaces are of great interest because of potential uses in developing biotechnologies. In this study we focused on the adsorption of a model lipolytic enzyme, Candida rugosa lipase (CRL), on poly-(D,L)-lactic acid (PDLLA) polymer with the aim to gain deeper insights into the interactions between the enzyme and the carrier. Such studies are of particular relevance in order to establish the optimal conditions for enzyme immobilization and its applications. We employed two different approaches; by analyzing the influence of adsorbed CRL molecules on the thermodynamic behavior of Langmuir films of PDLLA deposited at air-water interface, we gained interesting information on the molecular interactions between the protein and the polymer. Successively, by a systematic analysis of the adsorption of CRL on PDLLA nanoparticles, we showed that the adsorption of a model lipase, CRL, on PDLLA is described in terms of a Langmuir-type adsorption behavior. In this model, only monomolecular adsorption takes place (i.e. only a single layer of the protein adsorbs on the support) and the interactions between adsorbed molecules and surface are short ranged. Moreover, both the adsorption and desorption are activated processes, and the heat of adsorption (the difference between the activation energy for adsorption and desorption) is independent from the surface coverage of the adsorbing species. Finally, we obtained an estimate of the number of molecules of the protein adsorbed per surface unit on the particles, a parameter of a practical relevance for applications in biocatalysis, and a semi-quantitative estimate of the energies (heat of adsorption) involved in the adsorption process.

  4. Hydrolysis of fluorescent pyrenetriacylglycerols by lipases from human stomach and gastric juice.

    PubMed

    Nègre, A; Salvayre, R; Dousset, N; Rogalle, P; Dang, Q Q; Douste-Blazy, L

    1988-11-25

    Fluorescent triacylglycerols containing pyrenedecanoic (P10) and pyrenebutanoic (P4) acids were synthesized and their hydrolysis by lipases from human gastric juice and stomach homogenate was investigated. The existence in stomach homogenate of four different lipolytic enzymes hydrolyzing fluorescent triacylglycerols is suggested by the comparison of various enzymatic properties: acyl chain length specificity, heat inactivation and effect of detergents (Triton X-100 and taurocholate), serum albumin, diethyl-para-nitrophenyl phosphate (E600) and other inhibitors. (1) The acid pH4-lipase hydrolyzes P10-triacylglycerols but not P4-triacylglycerol and exhibited the characteristic properties of the lysosomal lipase: the maximal activating effect of detergents occurs at relatively high concentrations (the substrate/detergent optimal molar ratios were 1:5 and 1:25 for triacylglycerols/taurocholate and triacylglycerols/Triton X-100, respectively); its activity was strongly inhibited by para-chloromercuribenzoate (2.5 mmol/l), but was not significantly affected by serum albumin and E600 (10(-2) mmol/l). (2) The neutral pH7-lipase hydrolyzes P10-triacylglycerols but not P4-triacylglycerol. It is resistant to E600 and heat-stable, similarly to the acid pH4-lipase, but it is well discriminated from the acid enzyme by its substrate/detergent optimal molar ratios (1:2 and 1:3 for triacylglycerols/taurocholate and triacylglycerols/Triton X-100, respectively), whereas higher detergent concentrations, optimal for the acid lipase, are strongly inhibitory for the neutral enzyme. (3) The pH5-lipase present in gastric juice as well as in stomach homogenate exhibited properties obviously discriminating it from the other lipolytic enzymes from stomach homogenate: broad substrate specificity for P10- as well as P4-triacylglycerols, activation by low concentrations of amphiphiles (with optimal ratios triacylglycerols/taurocholate, triacylglycerols/taurocholate and triacylglycerols

  5. Rat Hormone Sensitive Lipase Inhibition by Cyclipostins and Their Analogs

    PubMed Central

    Vasilieva, Elena; Dutta, Supratik; Malla, Raj K.; Martin, Benjamin P.; Spilling, Christopher D.; Dupureur, Cynthia M.

    2015-01-01

    Cyclipostins are bicyclic lipophilic phosphate natural products. We report here that synthesized individual diastereomers of cyclipostins P and R have nanomolar IC50s toward hormone sensitive lipase (HSL). The less potent diastereomers of these compounds have 10-fold weaker IC50s. The monocyclic phosphate analog of cyclipostin P is nearly as potent as the bicyclic natural product. Bicyclic phosphonate analogs of both cyclipostins exhibit IC50s similar to those of the weaker diastereomer phosphates (about 400 nM). The monocyclic phosphonate analog of cyclipostin P has similar potency. A series of monocyclic phosphonate analogs in which a hydrophobic tail extends from the lactone side of the ring are considerably poorer inhibitors, with IC50s around 50 μM. Finally cyclophostin, a related natural product inhibitor of acetylcholinesterase (AChE) that lacks the hydrocarbon tail of cyclipostins, is not active against HSL. These results indicate a critical SAR for these compounds, the hydrophobic tail. The smaller lactone ring is not critical to activity, a similarity shared with cyclophostin and AChE. The HSL kinetics of inhibition for the cyclipostin P trans diastereomer were examined in detail. The reaction is irreversible with a KI of 40 nM and a rate constant for inactivation of 0.2 min−1. These results are similar to those observed for cyclophostin and AChE. PMID:25678014

  6. Effects of cannabinoids on the activities of mouse brain lipases.

    PubMed

    Hunter, S A; Burstein, S; Renzulli, L

    1986-09-01

    Cannabinoids were found to augment phospholipase activities and modify lipid levels of mouse brain synaptosomes, myelin and mitochondria. Delta-1-tetra-hydrocannabinol (delta 1-THC) and several of its metabolites induced a dose-dependent (0.32-16 microM) stimulation of phospholipase A2 (PLA2) activity resulting in the increased release of free arachidonic acid from exogenous [1-14C]phosphatidylcholine (PC). The potencies of the cannabinoids in modulating PLA2 activity were approximately of the order: 7-OH-delta 1-THC greater than delta 1-THC greater than 7-oxo-delta 1-THC greater than delta 1-THC-7-oic acid = 6 alpha OH-delta 1-THC much greater than 6 beta-OH-delta 1-THC. The hydrolysis of phosphatidylinositol (PI) by synaptosomal phospholipase C (PLC) was enhanced significantly by delta 1-THC and promoted diacylglyceride levels by greater than 100 percent compared to control values. In contrast, arachidonate was the major product resulting from phospholipase activities of a 20,000 g pellet. Synaptosomal diacylglyceride lipase activity was inhibited by delta 1-THC. [1-14C]Arachidonic acid was readily incorporated into subcellular membrane phospholipids and after exposure to cannabinoids led to diminished phosphoglyceride levels and concomitant increases in released neutral lipid products. These data suggest that cannabinoids control phospholipid turnover and metabolism in mouse brain preparations by the activation of phospholipases and, through this mechanism, may exert some of their effects.

  7. Regulation of hepatic lipase activity by sphingomyelin in plasma lipoproteins.

    PubMed

    Yang, Peng; Subbaiah, Papasani V

    2015-10-01

    Hepatic lipase (HL) is an important enzyme in the clearance of triacylglycerol (TAG) from the circulation, and has been proposed to have pro-atherogenic as well as anti-atherogenic properties. It hydrolyzes both phospholipids and TAG of lipoproteins, and its activity is negatively correlated with HDL levels. Although it is known that HL acts preferentially on HDL lipids, the basis for this specificity is not known, since it does not require any specific apoprotein for activity. In this study, we tested the hypothesis that sphingomyelin (SM), whose concentration is much higher in VLDL and LDL compared to HDL, is an inhibitor of HL, and that this could explain the lipoprotein specificity of the enzyme. The results presented show that the depletion of SM from normal lipoproteins activated the HL roughly in proportion to their SM content. SM depletion stimulated the hydrolysis of both phosphatidylcholine (PC) and TAG, although the PC hydrolysis was stimulated more. In the native lipoproteins, HL showed specificity for PC species containing polyunsaturated fatty acids at sn-2 position, and produced more unsaturated lyso PC species. The enzyme also showed preferential hydrolysis of certain TAG species over others. SM depletion affected the specificity of the enzyme towards PC and TAG species modestly. These results show that SM is a physiological inhibitor of HL activity in lipoproteins and that the specificity of the enzyme towards HDL is at least partly due to its low SM content.

  8. Efficient phagocytosis requires triacylglycerol hydrolysis by adipose triglyceride lipase.

    PubMed

    Chandak, Prakash G; Radovic, Branislav; Aflaki, Elma; Kolb, Dagmar; Buchebner, Marlene; Fröhlich, Eleonore; Magnes, Christoph; Sinner, Frank; Haemmerle, Guenter; Zechner, Rudolf; Tabas, Ira; Levak-Frank, Sanja; Kratky, Dagmar

    2010-06-25

    Macrophage phagocytosis is an essential biological process in host defense and requires large amounts of energy. To date, glucose is believed to represent the prime substrate for ATP production in macrophages. To investigate the relative contribution of free fatty acids (FFAs) in this process, we determined the phagocytosis rates in normal mouse macrophages and macrophages of adipose triglyceride lipase (ATGL)-deficient mice. ATGL was shown to be the rate-limiting enzyme for the hydrolysis of lipid droplet-associated triacylglycerol (TG) in many tissues. Here, we demonstrate that Atgl(-/-) macrophages fail to efficiently hydrolyze cellular TG stores leading to decreased cellular FFA concentrations and concomitant accumulation of lipid droplets, even in the absence of exogenous lipid loading. The reduced availability of FFAs results in decreased cellular ATP concentrations and impaired phagocytosis suggesting that fatty acids must first go through a cycle of esterification and re-hydrolysis before they are available as energy substrate. Exogenously added glucose cannot fully compensate for the phagocytotic defect in Atgl(-/-) macrophages. Hence, phagocytosis was also decreased in vivo when Atgl(-/-) mice were challenged with bacterial particles. These findings imply that phagocytosis in macrophages depends on the availability of FFAs and that ATGL is required for their hydrolytic release from cellular TG stores. This novel mechanism links ATGL-mediated lipolysis to macrophage function in host defense and opens the way to explore possible roles of ATGL in immune response, inflammation, and atherosclerosis.

  9. Regulation of hepatic lipase activity by sphingomyelin in plasma lipoproteins

    PubMed Central

    Yang, Peng; Subbaiah, Papasani V.

    2015-01-01

    Hepatic lipase (HL) is an important enzyme in the clearance of triacylglycerol (TAG) from the circulation, and has been proposed to have pro-atherogenic as well as anti-atherogenic properties. It hydrolyzes both phospholipids and TAG of lipoproteins, and its activity is negatively correlated with HDL levels. Although it is known that HL acts preferentially on HDL lipids, the basis for this specificity is not known, since it does not require any specific apoprotein for activity. In this study, we tested the hypothesis that sphingomyelin (SM), whose concentration is much higher in VLDL and LDL compared to HDL, is an inhibitor of HL, and that this could explain the lipoprotein specificity of the enzyme. The results presented show that the depletion of SM from normal lipoproteins activated the HL roughly in proportion to their SM content. SM depletion stimulated the hydrolysis of both phosphatidylcholine (PC) and TAG, although the PC hydrolysis was stimulated more. In the native lipoproteins, HL showed specificity for PC species containing polyunsaturated fatty acids at sn-2 position, and produced more unsaturated lyso PC species. The enzyme also showed preferential hydrolysis of certain TAG species over others. SM depletion affected the specificity of the enzyme towards PC and TAG species modestly. These results show that SM is a physiological inhibitor of HL activity in lipoproteins and that the specificity of the enzyme towards HDL is at least partly due to its low SM content. PMID:26193433

  10. Enzyme therapy for lysosomal acid lipase deficiency in the mouse.

    PubMed

    Du, H; Schiavi, S; Levine, M; Mishra, J; Heur, M; Grabowski, G A

    2001-08-01

    Lysosomal acid lipase (LAL) is the critical enzyme for the hydrolysis of the triglycerides (TG) and cholesteryl esters (CE) delivered to lysosomes. Its deficiency produces two human phenotypes, Wolman disease (WD) and cholesteryl ester storage disease (CESD). A targeted disruption of the LAL locus produced a null (lal( -/-)) mouse model that mimics human WD/CESD. The potential for enzyme therapy was tested using mannose terminated human LAL expressed in Pichia pastoris (phLAL), purified, and administered by tail vein injections to lal( -/-) mice. Mannose receptor (MR)-dependent uptake and lysosomal targeting of phLAL were evidenced ex vivo using competitive assays with MR-positive J774E cells, a murine monocyte/macrophage line, immunofluorescence and western blots. Following (bolus) IV injection, phLAL was detected in Kupffer cells, lung macrophages and intestinal macrophages in lal( -/-) mice. Two-month-old lal( -/-) mice received phLAL (1.5 U/dose) or saline injections once every 3 days for 30 days (10 doses). The treated lal( -/-) mice showed nearly complete resolution of hepatic yellow coloration; hepatic weight decreased by approximately 36% compared to PBS-treated lal( -/-) mice. Histologic analyses of numerous tissues from phLAL-treated mice showed reductions in macrophage lipid storage. TG and cholesterol levels decreased by approximately 50% in liver, 69% in spleen and 50% in small intestine. These studies provide feasibility for LAL enzyme therapy in human WD and CESD.

  11. Diacylglycerol lipase disinhibits VTA dopamine neurons during chronic nicotine exposure

    PubMed Central

    Buczynski, Matthew W.; Herman, Melissa A.; Natividad, Luis A.; Irimia, Cristina; Polis, Ilham Y.; Pugh, Holly; Chang, Jae Won; Niphakis, Micah J.; Cravatt, Benjamin F.; Roberto, Marisa; Parsons, Loren H.

    2016-01-01

    Chronic nicotine exposure (CNE) alters synaptic transmission in the ventral tegmental area (VTA) in a manner that enhances dopaminergic signaling and promotes nicotine use. The present experiments identify a correlation between enhanced production of the endogenous cannabinoid 2-arachidonoylglycerol (2-AG) and diminished release of the inhibitory neurotransmitter GABA in the VTA following CNE. To study the functional role of on-demand 2-AG signaling in GABAergic synapses, we used 1,2,3-triazole urea compounds to selectively inhibit 2-AG biosynthesis by diacylglycerol lipase (DAGL). The potency and selectivity of these inhibitors were established in rats in vitro (rat brain proteome), ex vivo (brain slices), and in vivo (intracerebroventricular administration) using activity-based protein profiling and targeted metabolomics analyses. Inhibition of DAGL (2-AG biosynthesis) rescues nicotine-induced VTA GABA signaling following CNE. Conversely, enhancement of 2-AG signaling in naïve rats by inhibiting 2-AG degradation recapitulates the loss of nicotine-induced GABA signaling evident following CNE. DAGL inhibition reduces nicotine self-administration without disrupting operant responding for a nondrug reinforcer or motor activity. Collectively, these findings provide a detailed characterization of selective inhibitors of rat brain DAGL and demonstrate that excessive 2-AG signaling contributes to a loss of inhibitory GABAergic constraint of VTA excitability following CNE. PMID:26755579

  12. Diacylglycerol lipase disinhibits VTA dopamine neurons during chronic nicotine exposure.

    PubMed

    Buczynski, Matthew W; Herman, Melissa A; Hsu, Ku-Lung; Natividad, Luis A; Irimia, Cristina; Polis, Ilham Y; Pugh, Holly; Chang, Jae Won; Niphakis, Micah J; Cravatt, Benjamin F; Roberto, Marisa; Parsons, Loren H

    2016-01-26

    Chronic nicotine exposure (CNE) alters synaptic transmission in the ventral tegmental area (VTA) in a manner that enhances dopaminergic signaling and promotes nicotine use. The present experiments identify a correlation between enhanced production of the endogenous cannabinoid 2-arachidonoylglycerol (2-AG) and diminished release of the inhibitory neurotransmitter GABA in the VTA following CNE. To study the functional role of on-demand 2-AG signaling in GABAergic synapses, we used 1,2,3-triazole urea compounds to selectively inhibit 2-AG biosynthesis by diacylglycerol lipase (DAGL). The potency and selectivity of these inhibitors were established in rats in vitro (rat brain proteome), ex vivo (brain slices), and in vivo (intracerebroventricular administration) using activity-based protein profiling and targeted metabolomics analyses. Inhibition of DAGL (2-AG biosynthesis) rescues nicotine-induced VTA GABA signaling following CNE. Conversely, enhancement of 2-AG signaling in naïve rats by inhibiting 2-AG degradation recapitulates the loss of nicotine-induced GABA signaling evident following CNE. DAGL inhibition reduces nicotine self-administration without disrupting operant responding for a nondrug reinforcer or motor activity. Collectively, these findings provide a detailed characterization of selective inhibitors of rat brain DAGL and demonstrate that excessive 2-AG signaling contributes to a loss of inhibitory GABAergic constraint of VTA excitability following CNE.

  13. Production and characterization of an extracellular lipase from Candida guilliermondii

    PubMed Central

    Oliveira, Anne Caroline Defranceschi; Fernandes, Maria Luiza; Mariano, André Bellin

    2014-01-01

    Extracellular lipases from the endophytic yeast Candida guilliermondii isolated from castor leaves (Ricinus communis L.) were produced using low-cost raw materials such as agro-industrial residues and applying them in the esterification of oleic acid for evaluating their potential use in biodiesel production. After partial purification using ammonium sulfate, the enzyme was characterized and presented higher activity (26.8 ± 1.5 U mL−1) in the presence of 5 mmol L−1 NaCl at 30 °C and pH 6.5. The production through submerged fermentation was formerly performed in 150 mL erlenmeyer flasks and, once the enzyme production was verified, assays in a 14 L bioreactor were conducted, obtaining 18 ± 1.4 U mL−1. The produced enzyme was applied in the oleic acid esterification under different solvents: hexane, cyclohexane or cyclohexanone) and different acid:alcohol molar ratios. Higher ester conversion rate (81%) was obtained using hexane and the molar ratio of 1:9 was the best conditions using methanol. The results suggest the potential for development of endophytic yeast in the production of biocatalyst through submerged fermentation using agroindustrial residues as culture medium. PMID:25763060

  14. Lysosomal Acid Lipase Hydrolyzes Retinyl Ester and Affects Retinoid Turnover.

    PubMed

    Grumet, Lukas; Eichmann, Thomas O; Taschler, Ulrike; Zierler, Kathrin A; Leopold, Christina; Moustafa, Tarek; Radovic, Branislav; Romauch, Matthias; Yan, Cong; Du, Hong; Haemmerle, Guenter; Zechner, Rudolf; Fickert, Peter; Kratky, Dagmar; Zimmermann, Robert; Lass, Achim

    2016-08-19

    Lysosomal acid lipase (LAL) is essential for the clearance of endocytosed cholesteryl ester and triglyceride-rich chylomicron remnants. Humans and mice with defective or absent LAL activity accumulate large amounts of cholesteryl esters and triglycerides in multiple tissues. Although chylomicrons also contain retinyl esters (REs), a role of LAL in the clearance of endocytosed REs has not been reported. In this study, we found that murine LAL exhibits RE hydrolase activity. Pharmacological inhibition of LAL in the human hepatocyte cell line HepG2, incubated with chylomicrons, led to increased accumulation of REs in endosomal/lysosomal fractions. Furthermore, pharmacological inhibition or genetic ablation of LAL in murine liver largely reduced in vitro acid RE hydrolase activity. Interestingly, LAL-deficient mice exhibited increased RE content in the duodenum and jejunum but decreased RE content in the liver. Furthermore, LAL-deficient mice challenged with RE gavage exhibited largely reduced post-prandial circulating RE content, indicating that LAL is required for efficient nutritional vitamin A availability. In summary, our results indicate that LAL is the major acid RE hydrolase and required for functional retinoid homeostasis.

  15. Lysosomal Acid Lipase Hydrolyzes Retinyl Ester and Affects Retinoid Turnover*

    PubMed Central

    Grumet, Lukas; Eichmann, Thomas O.; Zierler, Kathrin A.; Leopold, Christina; Moustafa, Tarek; Radovic, Branislav; Romauch, Matthias; Yan, Cong; Haemmerle, Guenter; Zechner, Rudolf; Fickert, Peter; Lass, Achim

    2016-01-01

    Lysosomal acid lipase (LAL) is essential for the clearance of endocytosed cholesteryl ester and triglyceride-rich chylomicron remnants. Humans and mice with defective or absent LAL activity accumulate large amounts of cholesteryl esters and triglycerides in multiple tissues. Although chylomicrons also contain retinyl esters (REs), a role of LAL in the clearance of endocytosed REs has not been reported. In this study, we found that murine LAL exhibits RE hydrolase activity. Pharmacological inhibition of LAL in the human hepatocyte cell line HepG2, incubated with chylomicrons, led to increased accumulation of REs in endosomal/lysosomal fractions. Furthermore, pharmacological inhibition or genetic ablation of LAL in murine liver largely reduced in vitro acid RE hydrolase activity. Interestingly, LAL-deficient mice exhibited increased RE content in the duodenum and jejunum but decreased RE content in the liver. Furthermore, LAL-deficient mice challenged with RE gavage exhibited largely reduced post-prandial circulating RE content, indicating that LAL is required for efficient nutritional vitamin A availability. In summary, our results indicate that LAL is the major acid RE hydrolase and required for functional retinoid homeostasis. PMID:27354281

  16. Isolation and characterization of novel lipases/esterases from a bovine rumen metagenome.

    PubMed

    Privé, Florence; Newbold, C Jamie; Kaderbhai, Naheed N; Girdwood, Susan G; Golyshina, Olga V; Golyshin, Peter N; Scollan, Nigel D; Huws, Sharon A

    2015-07-01

    Improving the health beneficial fatty acid content of meat and milk is a major challenge requiring an increased understanding of rumen lipid metabolism. In this study, we isolated and characterized rumen bacterial lipases/esterases using functional metagenomics. Metagenomic libraries were constructed from DNA extracted from strained rumen fluid (SRF), solid-attached bacteria (SAB) and liquid-associated rumen bacteria (LAB), ligated into a fosmid vector and subsequently transformed into an Escherichia coli host. Fosmid libraries consisted of 7,744; 8,448; and 7,680 clones with an average insert size of 30 to 35 kbp for SRF, SAB and LAB, respectively. Transformants were screened on spirit blue agar plates containing tributyrin for lipase/esterase activity. Five SAB and four LAB clones exhibited lipolytic activity, and no positive clones were found in the SRF library. Fosmids from positive clones were pyrosequenced and twelve putative lipase/esterase genes and two phospholipase genes retrieved. Although the derived proteins clustered into diverse esterase and lipase families, a degree of novelty was seen, with homology ranging from 40 to 78% following BlastP searches. Isolated lipases/esterases exhibited activity against mostly short- to medium-chain substrates across a range of temperatures and pH. The function of these novel enzymes recovered in ruminal metabolism needs further investigation, alongside their potential industrial uses.

  17. A gene encoding a new cold-active lipase from an Antarctic isolate of Penicillium expansum.

    PubMed

    Mohammed, Suja; Te'o, Junior; Nevalainen, Helena

    2013-08-01

    Cold-active lipases are of significant interest as biocatalysts in industrial processes. We have identified a lipase that displayed activity towards long carbon-chain-p-nitrophenyl substrates (C12-C18) at 25 °C from the culture supernatant of an Antarctic Penicillium expansum strain assigned P. expansum SM3. Zymography revealed a protein band of around 30 kDa with activity towards olive oil. DNA fragments of a lipase gene designated as lipPE were isolated from the genomic DNA of P. expansum SM3 by genomic walking PCR. Subsequently, the complete genomic lipPE gene was amplified using gene-specific primers designed from the 5'- and 3'-regions. Reverse transcription PCR was used to amplify the lipPE cDNA. The deduced amino acid sequence consisted of 285 residues that included a predicted signal peptide. Three peptides identified by LC/MS/MS analysis of the proteins in the culture supernatant of P. expansum were also present in the deduced amino acid sequence of the lipPE gene suggesting that this gene encoded the lipase identified by initial zymogram activity analysis. Full analysis of the nucleotide and the deduced amino acid sequences indicated that the lipPE gene encodes a novel P. expansum lipase. The lipPE gene was expressed in E. coli for further characterization of the enzyme with a view of assessing its suitability for industrial applications.

  18. Efficacy of lipase from Aspergillus niger as an additive in detergent formulations: a statistical approach.

    PubMed

    Saisubramanian, N; Edwinoliver, N G; Nandakumar, N; Kamini, N R; Puvanakrishnan, R

    2006-08-01

    The efficacy of lipase from Aspergillus niger MTCC 2594 as an additive in laundry detergent formulations was assessed using response surface methodology (RSM). A five-level four-factorial central composite design was chosen to explain the washing protocol with four critical factors, viz. detergent concentration, lipase concentration, buffer pH and washing temperature. The model suggested that all the factors chosen had a significant impact on oil removal and the optimal conditions for the removal of olive oil from cotton fabric were 1.0% detergent, 75 U of lipase, buffer pH of 9.5 and washing temperature of 25 degrees C. Under optimal conditions, the removal of olive oil from cotton fabric was 33 and 17.1% at 25 and 49 degrees C, respectively, in the presence of lipase over treatment with detergent alone. Hence, lipase from A. niger could be effectively used as an additive in detergent formulation for the removal of triglyceride soil both in cold and warm wash conditions.

  19. [Identification of catalytically active groups of wheat (Triticum aestivum L.) germ lipase].

    PubMed

    Korneeva, O S; Popova, T N; Kapranchikov, V S; Motina, E A

    2008-01-01

    The active site of wheat germ lipase was studied by the Dixon method and chemical modification. The profile of curve logV = f(pH), pK and ionization heat values, lipase photoinactivation, and lipase inactivation with diethylpyrocarbonate and dicyclohexylcarbodiimide led us to assume that the active site of the enzyme comprises the carboxylic group of aspartic or glutamic acid and the imidazole group of histidine. Apparently, the OH-group of serine plays a key role in catalysis: as a result of incubation for 1 h in the presence of phenylmethylsulfonyl fluoride, the enzyme activity decreased by more than 70%. It is shown that ethylenediamine tetraacetate is a noncompetitive inhibitor of lipase. Wheat germs are very healthful because they are rich in vitamins, essential amino acids, and proteins. For this reason, wheat germs are widely used in food, medical, and feed mill industries [1-3]. However, their use is limited by instability during storage, which is largely determined by the effect of hydrolytic and redox enzymes. Representative enzymes of this group are lipase (glycerol ester hydrolase, EC 3.1.1.3), which hydrolyzes triglycerides of higher fatty acids, and lipoxygenase (EC 1.13.11.13), which oxidizes polyunsaturated higher fatty acids.

  20. Lipase immobilization on epoxy-activated poly(vinyl acetate-acrylamide) microspheres.

    PubMed

    Zhang, Dong-Hao; Peng, Li-Juan; Wang, Yun; Li, Ya-Qiong

    2015-05-01

    Poly(vinyl acetate-acrylamide) microspheres with an average diameter of 2-4μm were successfully prepared and characterized via SEM and FTIR. Then the microspheres were modified with epoxy groups through reacting with epichlorohydrin and used as carriers to covalently immobilize Candida rugosa lipase. The results revealed that agitation played an important role on epoxy activation and the immobilization ratio increased with the increase of the epoxy density. On the other hand, the specific activity of the immobilized lipase as well as the activity recovery declined gradually with the increase in the immobilization ratio from 72% to 93%, which were attributed to the steric hindrance effects caused by enzyme overloading. When epoxy density was 76μmol/g microsphere, the activity recovery reached the maximum at 47.5%, and the activity of the immobilized lipase was 261.3U/g microsphere. Moreover, the thermal stability of the immobilized lipase was much better than that of the free one, which indicated potential applications of the immobilized lipase.

  1. Novel chromatographic resolution of chiral diacylglycerols and analysis of the stereoselective hydrolysis of triacylglycerols by lipases.

    PubMed

    Rodriguez, J A; Mendoza, L D; Pezzotti, F; Vanthuyne, N; Leclaire, J; Verger, R; Buono, G; Carriere, F; Fotiadu, F

    2008-04-15

    In the present study, we propose a general and accessible method for the resolution of enantiomeric 1,2-sn- and 2,3-sn-diacylglycerols based on derivatization by isocyanates, which can be easily used routinely by biochemists to evaluate the stereopreferences of lipases in a time course of triacylglycerol (TAG) hydrolysis. Diacylglycerol (DAG) enantiomers were transformed into carbamates using achiral and commercially available reagents. Excellent separation and resolution factors were obtained for diacylglycerols present in lipolysis reaction mixtures. This analytical method was then applied to investigate the stereoselectivity of three model lipases (porcine pancreatic lipase, PPL; lipase from Rhizomucor miehei, MML; and recombinant dog gastric lipase, rDGL) in the time course of hydrolysis of prochiral triolein as a substrate. From the measurements of the diglyceride enantiomeric excess it was confirmed that PPL was not stereospecific (position sn-1 vs sn-3 of triolein), whereas MML and rDGL preferentially hydrolyzed the ester bond at position sn-1 and sn-3, respectively. The enantiomeric excess of DAGs was not constant with time, decreasing with the course of hydrolysis. This was due to the fact that DAGs can be products of the stereospecific hydrolysis of TAGs and substrates for stereospecific hydrolysis into monoacylglycerols.

  2. Heterologous Expression of an Alkali and Thermotolerant Lipase from Talaromyces thermophilus in Trichoderma reesei.

    PubMed

    Zhang, Xu; Li, Xueqi; Xia, Liming

    2015-07-01

    To heterologously express a Talaromyces thermophilus lipase gene in Trichoderma reesei, an efficient binary vector pChph-pCBH1sigpro-ttl which includes a newly designed cbh1 promoter and hygromycin-resistant marker was constructed. This plasmid was then transformed into T. reesei via improved Agrobacterium EHA 105-mediated transformation. After modification of co-culture conditions and enzymolysis treatment of conidia, 258 transformants were produced. A two-step screening method based on antibiotic resistance and capacity to utilize lactose and tributyrin was introduced to further select promising candidates, which would be additionally verified by PCR analysis, sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), and lipase activity assay. Lipase production was carried out in shaking flasks, and the activity reached 241 IU/mL (7415.4 IU/mg) after 84-h fermentation. It was found that this lipase performed high alkali and thermostable tolerance with the optimal pH 9.5 and temperature 60 °C, and it could retain more than 70 % activity after being disposed in pH 11 or 70 °C for 1 h. This study herein would benefit the genetic engineering of T. reesei and the industrial application of this important fungal lipase.

  3. Beauveria bassiana Lipase A expressed in Komagataella (Pichia) pastoris with potential for biodiesel catalysis.

    PubMed

    Vici, Ana C; da Cruz, Andrezza F; Facchini, Fernanda D A; de Carvalho, Caio C; Pereira, Marita G; Fonseca-Maldonado, Raquel; Ward, Richard J; Pessela, Benevides C; Fernandez-Lorente, Gloria; Torres, Fernando A G; Jorge, João A; Polizeli, Maria L T M

    2015-01-01

    Lipases (EC 3.1.1.3) comprise a biotechnologically important group of enzymes because they are able to catalyze both hydrolysis and synthesis reactions, depending on the amount of water in the system. One of the most interesting applications of lipase is in the biofuel industry for biodiesel production by oil and ethanol (or methanol) transesterification. Entomopathogenic fungi, which are potential source of lipases, are still poorly explored in biotechnological processes. The present work reports the heterologous expression and biochemical characterization of a novel Beauveria bassiana lipase with potential for biodiesel production. The His-tagged B. bassiana lipase A (BbLA) was produced in Komagataella pastoris in buffered methanol medium (BMM) induced with 1% methanol at 30°C. Purified BbLA was activated with 0.05% Triton X-100 and presented optimum activity at pH 6.0 and 50°C. N-glycosylation of the recombinant BbLA accounts for 31.5% of its molecular weight. Circular dichroism and molecular modeling confirmed a structure composed of α-helix and β-sheet, similar to α/β hydrolases. Immobilized BbLA was able to promote transesterification reactions in fish oil, demonstrating potential for biodiesel production. BbLA was successfully produced in K. pastoris and shows potential use for biodiesel production by the ethanolysis reaction.

  4. From Structure to Catalysis: Recent Developments in the Biotechnological Applications of Lipases

    PubMed Central

    Anobom, Cristiane D.; Pinheiro, Anderson S.; De-Andrade, Rafael A.; Aguieiras, Erika C. G.; Andrade, Guilherme C.; Moura, Marcelo V.; Almeida, Rodrigo V.; Freire, Denise M.

    2014-01-01

    Microbial lipases are highly appreciated as biocatalysts due to their peculiar characteristics such as the ability to utilize a wide range of substrates, high activity and stability in organic solvents, and regio- and/or enantioselectivity. These enzymes are currently being applied in a variety of biotechnological processes, including detergent preparation, cosmetics and paper production, food processing, biodiesel and biopolymer synthesis, and the biocatalytic resolution of pharmaceutical derivatives, esters, and amino acids. However, in certain segments of industry, the use of lipases is still limited by their high cost. Thus, there is a great interest in obtaining low-cost, highly active, and stable lipases that can be applied in several different industrial branches. Currently, the design of specific enzymes for each type of process has been used as an important tool to address the limitations of natural enzymes. Nowadays, it is possible to “order” a “customized” enzyme that has ideal properties for the development of the desired bioprocess. This review aims to compile recent advances in the biotechnological application of lipases focusing on various methods of enzyme improvement, such as protein engineering (directed evolution and rational design), as well as the use of structural data for rational modification of lipases in order to create higher active and selective biocatalysts. PMID:24783219

  5. Mixed reverse micelles facilitated downstream processing of lipase involving water-oil-water liquid emulsion membrane.

    PubMed

    Bhowal, Saibal; Priyanka, B S; Rastogi, Navin K

    2014-01-01

    Our earlier work for the first time demonstrated that liquid emulsion membrane (LEM) containing reverse micelles could be successfully used for the downstream processing of lipase from Aspergillus niger. In the present work, we have attempted to increase the extraction and purification fold of lipase by using mixed reverse micelles (MRM) consisting of cationic and nonionic surfactants in LEM. It was basically prepared by addition of the internal aqueous phase solution to the organic phase followed by the redispersion of the emulsion in the feed phase containing enzyme, which resulted in globules of water-oil-water (WOW) emulsion for the extraction of lipase. The optimum conditions for maximum lipase recovery (100%) and purification fold (17.0-fold) were CTAB concentration 0.075 M, Tween 80 concentration 0.012 M, at stirring speed of 500 rpm, contact time 15 min, internal aqueous phase pH 7, feed pH 9, KCl concentration 1 M, NaCl concentration 0.1 M, and ratio of membrane emulsion to feed volume 1:1. Incorporation of the nonionic surfactant (e.g., Tween 80) resulted in remarkable improvement in the purification fold (3.1-17.0) of the lipase. LEM containing a mixture of nonionic and cationic surfactants can be successfully used for the enhancement in the activity recovery and purification fold during downstream processing of enzymes/proteins.

  6. A comparative analysis of microgravity and earth grown thermostable T1 lipase crystals using HDPCG apparatus.

    PubMed

    Abd Rahman, Raja N Z R; Ali, Mohd S Mohamad; Sugiyama, Shigeru; Leow, Adam T C; Inoue, Tsuyoshi; Basri, Mahiran; Salleh, Abu B; Matsumura, Hiroyoshi

    2015-01-01

    Geobacillus zalihae sp. nov., which produces a putative thermostable lipase, represents a novel species, with type strain T1. The characterisation of this intrinsically thermostable T1 lipase either physicochemically or structurally is an important task. The crystallisation of T1lipase in space was carried out using a High-Density Protein Crystal Growth (HDPCG) apparatus with the vapour diffusion method, and X-ray diffraction data were collected. The microgravity environment has improved the size and quality of the crystals as compared to earth grown crystal. The effect of microgravity on the crystallisation of T1 lipase was clearly evidenced by the finer atomic details at 1.35 A resolution. Better electron densities were observed overall compared with the Earth-grown crystals, and comparison shows the subtle but distinct conformations around Na(+) ion binding site stabilized via cation-π interactions. This approach could be useful for solving structure and function of lipases towards exploiting its potentials to various industrial applications.

  7. Are Lipases Still Important Biocatalysts? A Study of Scientific Publications and Patents for Technological Forecasting

    PubMed Central

    Daiha, Karina de Godoy; Angeli, Renata; de Oliveira, Sabrina Dias; Almeida, Rodrigo Volcan

    2015-01-01

    The great potential of lipases is known since 1930 when the work of J. B. S. Haldane was published. After eighty-five years of studies and developments, are lipases still important biocatalysts? For answering this question the present work investigated the technological development of four important industrial sectors where lipases are applied: production of detergent formulations; organic synthesis, focusing on kinetic resolution, production of biodiesel, and production of food and feed products. The analysis was made based on research publications and patent applications, working as scientific and technological indicators, respectively. Their evolution, interaction, the major players of each sector and the main subject matters disclosed in patent documents were discussed. Applying the concept of technology life cycle, S-curves were built by plotting cumulative patent data over time to monitor the attractiveness of each technology for investment. The results lead to a conclusion that the use of lipases as biocatalysts is still a relevant topic for the industrial sector, but developments are still needed for lipase biocatalysis to reach its full potential, which are expected to be achieved within the third, and present, wave of biocatalysis. PMID:26111144

  8. Immobilization of Lipase on Silver Nanoparticles via Adhesive Polydopamine for Biodiesel Production

    PubMed Central

    Dumri, Kanchana; Hung Anh, Dau

    2014-01-01

    Biodiesel production technology is competitive in terms of low cost and alternative source of energy which should be not only sustainable but also environmentally friendly. Designing of the lipase immobilization for biodiesel production has a remarkable impact and is still challenging. In this work, biodiesel production from soybean oil was enhanced and facilitated by using a novel biocatalyst consisting of commercial lipase (EC 3.1.1.3), silver nanoparticles, and polydopamine. Silver nanoparticles (AgNPs) were synthesized with a size range of 10–20 nm. Polydopamine (PD) was delivered by the self-polymerization of dopamine in 10 mM Tris-HCl pH 8.5 and simultaneously coated the AgNPs to form a PD/AgNPs complex. Lipase was immobilized on the PD/AgNPs complex surface via covalent bonds to form a tailor-made biocatalyst consisting of immobilized lipase/PD/AgNPs complex (LPA). The formation and morphology of each composition were characterized by UV-Vis spectroscopy and scanning electron microscope (SEM). Significantly, gas chromatography analysis showed a remarkable biodiesel production yield of 95% by using the LPA complex at 40°C for 6-hours reaction time, whereas the yield was 86% when using free lyophilized lipase. The LPA complex was apparently reusable after 7 batches and the latter conversion rate of soybean oil was decreased by only 27%. PMID:25328685

  9. Chitosan-functionalized poly(methyl methacrylate) particles by spinning disk processing for lipase immobilization.

    PubMed

    Jenjob, Somkieath; Sunintaboon, Panya; Inprakhon, Pranee; Anantachoke, Natthinee; Reutrakul, Vichai

    2012-07-01

    Chitosan-functionalized poly(methyl methacrylate) (PMMA-CH) particles were prepared by complexation between the negatively charged PMMA particles and the positively charged chitosan via a spinning disk processing. Processing parameters; feed rate and spinning speed, were optimized, which were traced by size distribution profiles of the formed PMMA-CH particles. Their sizes and net surface charges were found to be affected by MWs of chitosan (45, 100, and 230 kDa) used. Microscopic evidences were used to confirm their core-shell morphology. Chemical characteristics and thermal stability of such particles were determined by FTIR and TGA, respectively. Then, their ability to immobilize lipase (EC 3.1.1.3) was conducted and followed through zeta potential measurement. The percentage of lipase adsorption capacity increased with increasing lipase content, but the value decreased when the size of PMMA-CH particles increased. Also, the activity of lipase attached on PMMA-CH particles' surface was preserved and increased with lipase loading.

  10. Beauveria bassiana Lipase A expressed in Komagataella (Pichia) pastoris with potential for biodiesel catalysis

    PubMed Central

    Vici, Ana C.; da Cruz, Andrezza F.; Facchini, Fernanda D. A.; de Carvalho, Caio C.; Pereira, Marita G.; Fonseca-Maldonado, Raquel; Ward, Richard J.; Pessela, Benevides C.; Fernandez-Lorente, Gloria; Torres, Fernando A. G.; Jorge, João A.; Polizeli, Maria L. T. M.

    2015-01-01

    Lipases (EC 3.1.1.3) comprise a biotechnologically important group of enzymes because they are able to catalyze both hydrolysis and synthesis reactions, depending on the amount of water in the system. One of the most interesting applications of lipase is in the biofuel industry for biodiesel production by oil and ethanol (or methanol) transesterification. Entomopathogenic fungi, which are potential source of lipases, are still poorly explored in biotechnological processes. The present work reports the heterologous expression and biochemical characterization of a novel Beauveria bassiana lipase with potential for biodiesel production. The His-tagged B. bassiana lipase A (BbLA) was produced in Komagataella pastoris in buffered methanol medium (BMM) induced with 1% methanol at 30°C. Purified BbLA was activated with 0.05% Triton X-100 and presented optimum activity at pH 6.0 and 50°C. N-glycosylation of the recombinant BbLA accounts for 31.5% of its molecular weight. Circular dichroism and molecular modeling confirmed a structure composed of α-helix and β-sheet, similar to α/β hydrolases. Immobilized BbLA was able to promote transesterification reactions in fish oil, demonstrating potential for biodiesel production. BbLA was successfully produced in K. pastoris and shows potential use for biodiesel production by the ethanolysis reaction. PMID:26500628

  11. Discrimination against diacylglycerol ethers in lipase-catalysed ethanolysis of shark liver oil.

    PubMed

    Fernández, Óscar; Vázquez, Luis; Reglero, Guillermo; Torres, Carlos F

    2013-01-15

    Lipase-catalysed ethanolysis of squalene-free shark liver oil was investigated. The mentioned shark liver oil was comprised mainly of diacylglycerol ether and triacylglycerols. In order to test discrimination against diacylglycerol ether, up to 10 different lipases were compared. The ratio of oil to ethanol and lipase stability were also evaluated. Surprisingly, lipase from Pseudomonas stutzeri was the fastest biocatalyst among all assayed, although poor discrimination against diacylglycerol ether was observed. The best results in terms of selectivity and stability were obtained with immobilised lipase from Candida antarctica (Novozym 435). Ethanolysis reaction after 24h in the presence of Novozym 435 produced total disappearance of triacylglycerol and a final reaction mixture comprised mainly of diacylglycerol ethers (10.6%), monoacylglycerol ethers (32.9%) and fatty acid ethyl esters (46.0%). In addition, when an excess of ethanol was used, diacylglycerol ethers completely disappeared after 15 h, giving a final product mainly composed of monoacylglycerol ethers (36.6%) and fatty acid ethyl esters (46.4%).

  12. Spectroscopic studies on the inhibitory effects of ionic liquids on lipase activity.

    PubMed

    Fan, Yunchang; Dong, Xing; Li, Xiaojing; Zhong, Yingying; Kong, Jichuan; Hua, Shaofeng; Miao, Juan; Li, Yan

    2016-04-15

    The effects of ionic liquids (ILs) on the lipase activity were studied by UV-Vis spectroscopy and the IL-lipase interaction mechanism at the molecular level was investigated by fluorescence technique. Experimental results indicated that the lipase activity was inhibited by ILs and the degree of inhibition highly depended on the chemical structures of ILs. The inhibitory ability of the Cl(-)- and Br(-)-based ILs increased with increasing the alkyl chain length in the IL cation. Thermodynamic parameters, enthalpy change (ΔH) and entropy change (ΔS) were obtained by analyzing the fluorescence behavior of lipase with the addition of ILs. Both ΔH and ΔS were positive suggesting hydrophobicity was the major driven force for the Cl(-)- and Br(-)-based ILs. For the BF4(-)-, CF3SO3(-)-, ClO4(-)- and N(CN)2(-)-based ILs, hydrogen bonding was the main driven force. For a more comprehensive understanding of the effects of ILs on lipase activity, the roles of hydrophobicity and hydrogen bonding must be considered simultaneously. A regression-based equation was developed to describe the relationship of the inhibitory ability of ILs and their hydrophobicity and hydrogen bonding ability.

  13. Characterization of Proteus vulgaris K80 lipase immobilized on amine-terminated magnetic microparticles.

    PubMed

    Natalia, Agnes; Kristiani, Lidya; Kim, Hyung Kwoun

    2014-10-01

    Proteus vulgaris K80 lipase was expressed in Escherichia coli BL21 (DE3) cells and immobilized on amine-terminated magnetic microparticles (Mag-MPs). The immobilization yield and activity retention were 84.15% and 7.87%, respectively. A homology model of lipase K80 was constructed using P. mirabilis lipase as the template. Many lysine residues were located on the protein surface, remote from active sites. The biochemical characteristics of immobilized lipase K80 were compared with the soluble free form of lipase K80. The optimum temperature of K80-Mag-MPs was 60°C, which was 20°C higher than that of the soluble form. K80-Mag-MPs also tended to be more stable than the soluble form at elevated temperatures and a broad range of pH. K80-Mag-MP maintained its stable form at up to 40°C and in a pH range of 5.0- 10.0, whereas soluble K80 maintained its activity up to 35°C and pH 6.0-10.0. K80-Mag-MPs had broader substrate specificity compared with that of soluble K80. K80-Mag-MPs showed about 80% residual relative activity after five recovery trials. These results indicate the potential benefit of K80-Mag-MPs as a biocatalyst in various industries.

  14. Evaluation of Expression of Lipases and Phospholipases of Malassezia restricta in Patients with Seborrheic Dermatitis

    PubMed Central

    Lee, Yang Won; Lee, Shin Yung; Lee, Younghoon

    2013-01-01

    Background Malassezia species (spp.) are cutaneous opportunistic pathogens and associated with various dermatological diseases including seborrheic dermatitis, dandruff and atopic dermatitis. Almost all Malassezia spp. are obligatorily lipid-dependent, which might be caused by lack of the myristic acid synthesis. Recent genome analysis of M. restricta and M. globosa suggested that the absence of a gene encoding fatty acid synthesis might be compensated by abundant genes encoding hydrolases, which produce fatty acids, and that lipases and phospholipases may play a role in virulence of the fungus. Objective The current study aimed to investigate the contribution of lipases and phospholipases in virulence of the M. restricta as being the most frequently isolated Malassezia spp. from the human skin. Methods Swap samples of two different body sites of at least 18 patients with seborrheic dermatitis were obtained and in vivo expression of lipases and phospholipases of M. restricta was analyzed by the gene specific two-step nested RT-PCR. Results The results of the current study suggest that majority of the patients display expression of lipase RES_0242. Conclusion These data imply a possible role of lipase in the host environment to produce free fatty acids for the fungus. PMID:24003273

  15. Expression of an Organic Solvent Stable Lipase from Staphylococcus epidermidis AT2

    PubMed Central

    Rahman, Raja Noor Zaliha Raja Abd.; Kamarudin, Nor Hafizah Ahmad; Yunus, Jalimah; Salleh, Abu Bakar; Basri, Mahiran

    2010-01-01

    An organic solvent tolerant lipase gene from Staphylococcus epidermidis AT2 was successfully cloned and expressed with pTrcHis2 in E. coli TOP10. Sequence analysis revealed an open reading frame (ORF) of 1,933 bp in length which coded for a polypeptide of 643 amino acid residues. The polypeptide comprised of a signal peptide (37 amino acids), pro-peptide and a mature protein of 390 amino acids. Expression of AT2 lipase resulted in an 18-fold increase in activity, upon the induction of 0.6 mM IPTG after a 10 h incubation period. Interestingly, this lipase was stable in various organic solvents (25% (v/v), mainly toluene, octanol, p-xylene and n-hexane). Literature shows that most of the organic solvent stable bacterial lipases were produced by Pseudomonas sp. and Bacillus sp., but very few from Staphylococcus sp. This lipase demonstrates great potential to be employed in various industrial applications. PMID:20957088

  16. Cultivation conditions and properties of extracellular crude lipase from the psychrotrophic fungus Penicillium chrysogenum 9'.

    PubMed

    Bancerz, R; Ginalska, G; Fiedurek, J; Gromada, A

    2005-06-01

    Among 97 fungal strains isolated from soil collected in the arctic tundra (Spitsbergen), Penicillium chrysogenum 9' was found to be the best lipase producer. The maximum lipase activity was 68 units mL(-1) culture medium on the fifth day of incubation at pH 6.0 and 20 degrees C. Therefore, P. chrysogenum 9' was classified as a psychrotrophic microorganism. The non-specific extracellular lipase showed a maximum activity at 30 degrees C and pH 5.0 for natural oils or at pH 7.0 for synthetic substrates. Tributyrin was found to be the best substrate for lipase, among those tested. The Km and Vmax were calculated to be 2.33 mM and 22.1 units mL(-1), respectively, with tributyrin as substrate. The enzyme was inhibited more by EDTA than by phenylmethylsulfonyl fluoride and was reactivated by Ca2+. The P. chrysogenum 9' lipase was very stable in the presence of hexane and 1,4-dioxane at a concentration of 50%, whereas it was unstable in presence of xylene.

  17. Biodiesel production using lipase immobilized on epoxychloropropane-modified Fe3O4 sub-microspheres.

    PubMed

    Zhang, Qian; Zheng, Zhong; Liu, Changxia; Liu, Chunqiao; Tan, Tianwei

    2016-04-01

    Superparamagnetic Fe3O4 sub-microspheres with diameters of approximately 200 nm were prepared via a solvothermal method, and then modified with epoxychloropropane. Lipase was immobilized on the modified sub-microspheres. The immobilized lipase was used in the production of biodiesel fatty acid methyl esters (FAMEs) from acidified waste cooking oil (AWCO). The effects of the reaction conditions on the biodiesel yield were investigated using a combination of response surface methodology and three-level/three-factor Box-Behnken design (BBD). The optimum synthetic conditions, which were identified using Ridge max analysis, were as follows: immobilized lipase:AWCO mass ratio 0.02:1, fatty acid:methanol molar ratio 1:1.10, hexane:AWCO ratio 1.33:1 (mL/g), and temperature 40 °C. A 97.11% yield was obtained under these conditions. The BBD and experimental data showed that the immobilized lipase could generate biodiesel over a wide temperature range, from 0 to 40 °C. Consistently high FAME yields, in excess of 80%, were obtained when the immobilized lipase was reused in six replicate trials at 10 and 20 °C.

  18. Rigorous kinetic model considering positional specificity of lipase for enzymatic stepwise hydrolysis of triolein in biphasic oil-water system.

    PubMed

    Hermansyah, Heri; Wijanarko, Anondho; Kubo, Masaki; Shibasaki-Kitakawa, Naomi; Yonemoto, Toshikuni

    2010-09-01

    A rigorous kinetic model describing the stepwise triglyceride hydrolysis at the oil-water interface, based on the Ping Pong Bi Bi mechanism using suspended lipase having positional specificity, was constructed. The preference of the enzyme to cleave to the ester bonds at the edge and the center of the glycerol backbone of the substrates (tri-, di- or monoglyceride) was incorporated in the model. This model was applied to the experimental results for triolein hydrolysis using suspended Porcine pancreatic lipase (an sn-1,3 specific lipase) and Candida rugosa lipase (a non-specific lipase) in a biphasic oil-water system under various operating conditions. In order to discuss the model's advantages, other models that do not consider the positional specificity of the lipase were also applied to our experimental results. The model considering the positional specificity of the lipase gave results which fit better with the experimental data and described the effect of the initial enzyme concentration, the interfacial area, and the initial concentrations of triolein on the entire process of the stepwise triolein hydrolysis. This model also gives a good representation of the rate for cleaving the respective ester bonds of each substrate by each type of lipase.

  19. Purification and characterization of a cold-active lipase from Pichia lynferdii Y-7723: pH-dependant activity deviation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lipases with abnormal functionalities such as high thermostability and optimal activity at extreme conditions gain special attentions because of their applicability in the restricted reaction conditions. In particular, cold-active lipases have gained special attentions in various industrial fields s...

  20. Lipolysis of Visceral Adipocyte Triglyceride by Pancreatic Lipases Converts Mild Acute Pancreatitis to Severe Pancreatitis Independent of Necrosis and Inflammation

    PubMed Central

    Patel, Krutika; Trivedi, Ram N.; Durgampudi, Chandra; Noel, Pawan; Cline, Rachel A.; DeLany, James P.; Navina, Sarah; Singh, Vijay P.

    2016-01-01

    Visceral fat necrosis has been associated with severe acute pancreatitis (SAP) for over 100 years; however, its pathogenesis and role in SAP outcomes are poorly understood. Based on recent work suggesting that pancreatic fat lipolysis plays an important role in SAP, we evaluated the role of pancreatic lipases in SAP-associated visceral fat necrosis, the inflammatory response, local injury, and outcomes of acute pancreatitis (AP). For this, cerulein pancreatitis was induced in lean and obese mice, alone or with the lipase inhibitor orlistat and parameters of AP induction (serum amylase and lipase), fat necrosis, pancreatic necrosis, and multisystem organ failure, and inflammatory response were assessed. Pancreatic lipases were measured in fat necrosis and were overexpressed in 3T3-L1 cells. We noted obesity to convert mild cerulein AP to SAP with greater cytokines, unsaturated fatty acids (UFAs), and multisystem organ failure, and 100% mortality without affecting AP induction or pancreatic necrosis. Increased pancreatic lipase amounts and activity were noted in the extensive visceral fat necrosis of dying obese mice. Lipase inhibition reduced fat necrosis, UFAs, organ failure, and mortality but not the parameters of AP induction. Pancreatic lipase expression increased lipolysis in 3T3-L1 cells. We conclude that UFAs generated via lipolysis of visceral fat by pancreatic lipases convert mild AP to SAP independent of pancreatic necrosis and the inflammatory response. PMID:25579844

  1. A Calcium-Ion-Stabilized Lipase from Pseudomonas stutzeri ZS04 and its Application in Resolution of Chiral Aryl Alcohols.

    PubMed

    Qin, Song; Zhao, Yangyang; Wu, Bin; He, Bingfang

    2016-12-01

    An extracellular organic solvent-tolerant lipase-producing bacterium was isolated from oil-contaminated soil samples and was identified taxonomically as Pseudomonas stutzeri, from which the lipase was purified and exhibited maximal activity at temperature of 50 °C and pH of 9.0. Meanwhile, the lipase was stable below or at 30 °C and over an alkaline pH range (7.5-11.0). Ca(2+) could significantly improve the lipase thermal stability which prompts a promising application in biocatalysis through convenient medium engineering. The lipase demonstrated striking features such as distinct stability to the most tested hydrophilic and hydrophobic solvents (25 %, v/v), and DMSO could activate the lipase dramatically. In the enzyme-catalyzed resolution, lipase ZS04 manifested excellent enantioselective esterification toward the (R)-1-(4-methoxyphenyl)-ethanol (MOPE), a crucial chiral intermediate in pharmaceuticals as well as in other analogs with strict substrate specificity and theoretical highest conversion yield. This strong advantage over other related schemes made lipase ZS04 a promising biocatalyst in organic synthesis and pharmaceutical applications.

  2. Lipase-Secreting Bacillus Species in an Oil-Contaminated Habitat: Promising Strains to Alleviate Oil Pollution.

    PubMed

    Lee, Li Pin; Karbul, Hudzaifah Mohamed; Citartan, Marimuthu; Gopinath, Subash C B; Lakshmipriya, Thangavel; Tang, Thean-Hock

    2015-01-01

    Lipases are of great interest for different industrial applications due to their diversity and versatility. Among different lipases, microbial lipases are preferable due to their broad substrate specificity, and higher stability with lower production costs compared to the lipases from plants and animals. In the past, a vast number of bacterial species have been reported as potential lipases producers. In this study, the lipases-producing bacterial species were isolated from an oil spillage area in the conventional night market. Isolated species were identified as Bacillus species by biochemical tests which indicate their predominant establishment, and further screened on the agar solid surfaces using lipid and gelatin as the substrates. Out of the ten strains tested, four potential strains were subjected to comparison analysis of the lipolytic versus proteolytic activities. Strain 10 exhibited the highest lipolytic and proteolytic activity. In all the strains, the proteolytic activity is higher than the lipolytic activity except for strain 8, suggesting the possibility for substrate-based extracellular gene induction. The simultaneous secretion of both the lipase and protease is a mean of survival. The isolated bacterial species which harbour both lipase and protease enzymes could render potential industrial-based applications and solve environmental issues.

  3. Lipase-Secreting Bacillus Species in an Oil-Contaminated Habitat: Promising Strains to Alleviate Oil Pollution

    PubMed Central

    Lee, Li Pin; Karbul, Hudzaifah Mohamed; Citartan, Marimuthu; Gopinath, Subash C. B.; Lakshmipriya, Thangavel; Tang, Thean-Hock

    2015-01-01

    Lipases are of great interest for different industrial applications due to their diversity and versatility. Among different lipases, microbial lipases are preferable due to their broad substrate specificity, and higher stability with lower production costs compared to the lipases from plants and animals. In the past, a vast number of bacterial species have been reported as potential lipases producers. In this study, the lipases-producing bacterial species were isolated from an oil spillage area in the conventional night market. Isolated species were identified as Bacillus species by biochemical tests which indicate their predominant establishment, and further screened on the agar solid surfaces using lipid and gelatin as the substrates. Out of the ten strains tested, four potential strains were subjected to comparison analysis of the lipolytic versus proteolytic activities. Strain 10 exhibited the highest lipolytic and proteolytic activity. In all the strains, the proteolytic activity is higher than the lipolytic activity except for strain 8, suggesting the possibility for substrate-based extracellular gene induction. The simultaneous secretion of both the lipase and protease is a mean of survival. The isolated bacterial species which harbour both lipase and protease enzymes could render potential industrial-based applications and solve environmental issues. PMID:26180812

  4. Biochemical Characterization and Molecular Modeling of Pancreatic Lipase from a Cartilaginous Fish, the Common Stingray (Dasyatis pastinaca).

    PubMed

    Bouchaâla, Emna; BouAli, Madiha; Ben Ali, Yassine; Miled, Nabil; Gargouri, Youssef; Fendri, Ahmed

    2015-05-01

    In order to identify fish enzymes displaying novel biochemical properties, we have chosen the common stingray (Dasyatis pastinaca), one of the most primitive living jawed aquatic vertebrates as a starting biological material to purify a lipase. A stingray pancreatic lipase (SPL) was purified from delipidated pancreatic powder. The SPL molecular weight was around 55 kDa which is slightly higher than that of known classical pancreatic lipases (50 kDa). This increase in the molecular weight was due to glycosylation. Like classic pancreatic lipases, SPL was found to be much more active on short-chain triacylglycerols than on long-chain ones. Natural detergents act as inhibitors of the SPL activity. This inhibition can be reversed by the addition of stingray colipase. Starting from total pancreatic messenger RNAs (mRNAs), partial stingray pancreatic lipase complementary DNA (cDNA) was synthesized by reverse transcriptase-polymerase chain reaction (RT-PCR) and cloned into the PGEM-T vector. Partial amino acid sequence of the SPL was homologous to that of Japanese eel, porcine, and human pancreatic lipases. A 3