Science.gov

Sample records for lipid analogues act

  1. Long-acting lipidated analogue of human pancreatic polypeptide is slowly released into circulation.

    PubMed

    Bellmann-Sickert, Kathrin; Elling, Christian E; Madsen, Andreas N; Little, Paul B; Lundgren, Karsten; Gerlach, Lars-Ole; Bergmann, Ralf; Holst, Birgitte; Schwartz, Thue W; Beck-Sickinger, Annette G

    2011-04-28

    The main disadvantages of peptide pharmaceuticals are their rapid degradation and excretion, their low hydrophilicity, and low shelf lifes. These bottlenecks can be circumvented by acylation with fatty acids (lipidation) or polyethylene glycol (PEGylation). Here, we describe the modification of a human pancreatic polypeptide analogue specific for the human (h)Y(2) and hY(4) receptor with PEGs of different size and palmitic acid. Receptor specificity was demonstrated by competitive binding studies. Modifications had only a small influence on binding affinities and no influence on secondary structure. Both modifications improved pharmacokinetic properties of the hPP analogue in vivo and in vitro, however, lipidation showed a greater resistance to degradation and excretion than PEGylation. Furthermore, the lipidated peptide is taken up and degraded solely by the liver but not the kidneys. Lipidation resulted in prolonged action of the hPP analogue in respect of reducing food intake in mice after subcutaneous administration. Therefore, the lipidated hPP analogue could constitute a potential new therapeutic agent against obesity.

  2. Enzymatic synthesis of lipid II and analogues.

    PubMed

    Huang, Lin-Ya; Huang, Shih-Hsien; Chang, Ya-Chih; Cheng, Wei-Chieh; Cheng, Ting-Jen R; Wong, Chi-Huey

    2014-07-28

    The emergence of antibiotic resistance has prompted active research in the development of antibiotics with new modes of action. Among all essential bacterial proteins, transglycosylase polymerizes lipid II into peptidoglycan and is one of the most favorable targets because of its vital role in peptidoglycan synthesis. Described in this study is a practical enzymatic method for the synthesis of lipid II, coupled with cofactor regeneration, to give the product in a 50-70% yield. This development depends on two key steps: the overexpression of MraY for the synthesis of lipid I and the use of undecaprenol kinase for the preparation of polyprenol phosphates. This method was further applied to the synthesis of lipid II analogues. It was found that MraY and undecaprenol kinase can accept a wide range of lipids containing various lengths and configurations. The activity of lipid II analogues for bacterial transglycolase was also evaluated.

  3. Biosynthesis of A Water-Soluble Lipid I Analogue and A Convenient Assay for Translocase I

    PubMed Central

    Skorupinska-Tudek, Karolina; Swiezewska, Ewa; Kurosu, Michio

    2014-01-01

    Translocase I (MraY/MurX) is an essential enzyme in growth of the vast majority of bacteria that catalyzes the transformation from UDP-MurNAc-pentapeptide (Park’s nucleotide) to prenyl-MurNAc-pentapeptide (lipid I), the first membrane-anchored peptidoglycan precursor. MurX has been received considerable attentions to the development of new TB drugs due to the fact that the MurX inhibitors kill exponentially growing Mycobacterium tuberculosis (Mtb) much faster than clinically used TB drugs. Lipid I isolated from Mtb contains the C50-prenyl unit that shows very poor water-solubility, and thus, this chemical characteristic of lipid I renders MurX enzyme assays impractical for screening and lacks reproducibility of the enzyme assays. We have established a scalable chemical synthesis of Park’s nucleotide-Nε-dansylthiourea 2 that can be used as a MurX enzymatic substrate to form lipid I analogues. In our investigation of minimum structure requirement of the prenyl phosphate in the MraY/MurX-catalyzed lipid I analogue synthesis with 2, we found that neryl phosphate (C10-phosphate) can be recognized by MraY/MurX to generate the water-soluble lipid I analogue in quantitative yield under the optimized conditions. Herein, we report a rapid and robust analytical method for quantifying MraY/MurX inhibitory activity of library molecules. PMID:24939461

  4. Structure-activity investigation on the gene transfection properties of cardiolipin mimicking gemini lipid analogues.

    PubMed

    Bajaj, Avinash; Paul, Bishwajit; Kondaiah, Paturu; Bhattacharya, Santanu

    2008-06-01

    A structure-activity relationship has been explored on the gene transfection efficiencies of cardiolipin mimicking gemini lipid analogues upon variation of length and hydrophilicity of the spacer between the cationic ammonium headgroups and lipid hydrocarbon chain lengths. All the gemini lipids were found to be highly superior in gene transfer abilities as compared to their monomeric lipid and a related commercially available formulation. Pseudoglyceryl gemini lipids bearing an oxyethylene (-CH2-(CH2-O-CH2)m-CH2-) spacer were found to be superior gene transfecting agents as compared to those bearing polymethylene (-CH2)m-) spacers. The major characteristic feature of the present set of gemini lipids is their serum compatibility, which is most often the major hurdle in liposome-mediated gene delivery.

  5. Sansanmycin natural product analogues as potent and selective anti-mycobacterials that inhibit lipid I biosynthesis.

    PubMed

    Tran, Anh T; Watson, Emma E; Pujari, Venugopal; Conroy, Trent; Dowman, Luke J; Giltrap, Andrew M; Pang, Angel; Wong, Weng Ruh; Linington, Roger G; Mahapatra, Sebabrata; Saunders, Jessica; Charman, Susan A; West, Nicholas P; Bugg, Timothy D H; Tod, Julie; Dowson, Christopher G; Roper, David I; Crick, Dean C; Britton, Warwick J; Payne, Richard J

    2017-03-01

    Tuberculosis (TB) is responsible for enormous global morbidity and mortality, and current treatment regimens rely on the use of drugs that have been in use for more than 40 years. Owing to widespread resistance to these therapies, new drugs are desperately needed to control the TB disease burden. Herein, we describe the rapid synthesis of analogues of the sansanmycin uridylpeptide natural products that represent promising new TB drug leads. The compounds exhibit potent and selective inhibition of Mycobacterium tuberculosis, the etiological agent of TB, both in vitro and intracellularly. The natural product analogues are nanomolar inhibitors of Mtb phospho-MurNAc-pentapeptide translocase, the enzyme responsible for the synthesis of lipid I in mycobacteria. This work lays the foundation for the development of uridylpeptide natural product analogues as new TB drug candidates that operate through the inhibition of peptidoglycan biosynthesis.

  6. Sansanmycin natural product analogues as potent and selective anti-mycobacterials that inhibit lipid I biosynthesis

    NASA Astrophysics Data System (ADS)

    Tran, Anh T.; Watson, Emma E.; Pujari, Venugopal; Conroy, Trent; Dowman, Luke J.; Giltrap, Andrew M.; Pang, Angel; Wong, Weng Ruh; Linington, Roger G.; Mahapatra, Sebabrata; Saunders, Jessica; Charman, Susan A.; West, Nicholas P.; Bugg, Timothy D. H.; Tod, Julie; Dowson, Christopher G.; Roper, David I.; Crick, Dean C.; Britton, Warwick J.; Payne, Richard J.

    2017-03-01

    Tuberculosis (TB) is responsible for enormous global morbidity and mortality, and current treatment regimens rely on the use of drugs that have been in use for more than 40 years. Owing to widespread resistance to these therapies, new drugs are desperately needed to control the TB disease burden. Herein, we describe the rapid synthesis of analogues of the sansanmycin uridylpeptide natural products that represent promising new TB drug leads. The compounds exhibit potent and selective inhibition of Mycobacterium tuberculosis, the etiological agent of TB, both in vitro and intracellularly. The natural product analogues are nanomolar inhibitors of Mtb phospho-MurNAc-pentapeptide translocase, the enzyme responsible for the synthesis of lipid I in mycobacteria. This work lays the foundation for the development of uridylpeptide natural product analogues as new TB drug candidates that operate through the inhibition of peptidoglycan biosynthesis.

  7. Sansanmycin natural product analogues as potent and selective anti-mycobacterials that inhibit lipid I biosynthesis

    PubMed Central

    Tran, Anh T.; Watson, Emma E.; Pujari, Venugopal; Conroy, Trent; Dowman, Luke J.; Giltrap, Andrew M.; Pang, Angel; Wong, Weng Ruh; Linington, Roger G.; Mahapatra, Sebabrata; Saunders, Jessica; Charman, Susan A.; West, Nicholas P.; Bugg, Timothy D. H.; Tod, Julie; Dowson, Christopher G.; Roper, David I.; Crick, Dean C.; Britton, Warwick J.; Payne, Richard J.

    2017-01-01

    Tuberculosis (TB) is responsible for enormous global morbidity and mortality, and current treatment regimens rely on the use of drugs that have been in use for more than 40 years. Owing to widespread resistance to these therapies, new drugs are desperately needed to control the TB disease burden. Herein, we describe the rapid synthesis of analogues of the sansanmycin uridylpeptide natural products that represent promising new TB drug leads. The compounds exhibit potent and selective inhibition of Mycobacterium tuberculosis, the etiological agent of TB, both in vitro and intracellularly. The natural product analogues are nanomolar inhibitors of Mtb phospho-MurNAc-pentapeptide translocase, the enzyme responsible for the synthesis of lipid I in mycobacteria. This work lays the foundation for the development of uridylpeptide natural product analogues as new TB drug candidates that operate through the inhibition of peptidoglycan biosynthesis. PMID:28248311

  8. Imidazolium-Based Lipid Analogues and Their Interaction with Phosphatidylcholine Membranes.

    PubMed

    Wang, Da; de Jong, Djurre H; Rühling, Andreas; Lesch, Volker; Shimizu, Karina; Wulff, Stephanie; Heuer, Andreas; Glorius, Frank; Galla, Hans-Joachim

    2016-12-06

    4,5-Dialkylated imidazolium lipid salts are a new class of lipid analogues showing distinct biological activities. The potential effects of the imidazolium lipids on artificial lipid membranes and the corresponding membrane interactions was analyzed. Therefore, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) was employed to create an established lipid monolayer model and a bilayer membrane. Mixed monolayers of DPPC and 4,5-dialkylimidazolium lipids differing by their alkyl chain length (C7, C11, and C15) were characterized by surface pressure-area (π-A) isotherms using a Wilhelmy film balance in combination with epifluorescence microscopy. Monolayer hysteresis for binary mixtures was examined by recording triplicate consecutive compression-expansion cycles. The lipid miscibility and membrane stability of DPPC/imidazolium lipids were subsequently evaluated by the excess mean molecular area (ΔA(ex)) and the excess Gibbs free energy (ΔG(ex)) of mixing. Furthermore, the thermotropic behavior of mixed liposomes of DPPC/imidazolium lipids was investigated by differential scanning calorimetry (DSC). The C15-imidazolium lipid (C15-IMe·HI) forms a thermodynamically favored and kinetically reversible Langmuir monolayer with DPPC and exhibits a rigidification effect on both DPPC monolayer and bilayer structures at low molar fractions (X ≤ 0.3). However, the incorporation of the C11-imidazolium lipid (C11-IMe·HI) causes the formation of an unstable and irreversible Langmuir-Gibbs monolayer with DPPC and disordered DPPC liposomes. The C7-imidazolium lipid (C7-IMe·HI) displays negligible membrane activity. To better understand these results on a molecular level, all-atom molecular dynamics (MD) simulations were performed. The simulations yield two opposing molecular mechanisms governing the different behavior of the three imidazolium lipids: a lateral ordering effect and a free volume/stretching effect. Overall, our study provides the first evidence that the membrane

  9. Budget Impact of Long-Acting Insulin Analogues: The Case in Brazil

    PubMed Central

    da Silva, Everton Nunes; Pereira, Maurício G

    2016-01-01

    Background Long-acting insulin analogues for type 1 diabetes (T1D) treatment have been available on the Brazilian market since 2002. However, the population cannot access the analogues through the public health system. Objective To estimate the incremental budget impact of long-acting insulin analogues coverage for T1D patients in the Brazilian public health system compared to NPH insulin. Methods We performed a budget impact analysis of a five-year period. The eligible population was projected using epidemiological data from the International Diabetes Federation estimates for patients between 0–14 and 20–79 years old. The prevalence of T1D was estimated in children, and the same proportion was applied to the 15-19-year-old group due to a gap in epidemiological information. We considered 4,944 new cases per year and a 34.61/100,000 inhabitants mortality rate. Market share for long-acting insulin analogues was assumed as 20% in the first year, reaching 40% in the fifth year. The mean daily dose was taken from clinical trials. We calculated the bargaining power of the Ministry of Health by dividing the price paid for human insulin in the last purchase by the average regulated price. We performed univariate and multivariate sensitivity analyses. Results The incremental budget impact of long-acting insulin analogues was US$ 28.6 million in the first year, and reached US$ 58.7 million in the fifth year. The total incremental budget impact was US$ 217.9 million over the five-year period. The sensitivity analysis showed that the percentage of T1D among diabetic adults and the insulin analogue price were the main factors that affected the budget impact. Conclusions The cost of the first year of long-acting insulin analogue coverage would correspond to 0.03% of total public health expenditure. The main advantage of this study is that it identifies potential bargaining power because it features more realistic profiles of resource usage, once centralized purchasing is

  10. Reversible inhibition of central precocious puberty with a long acting GnRH analogue.

    PubMed Central

    Ward, P S; Ward, I; McNinch, A W; Savage, D C

    1985-01-01

    A 7 year old girl with precocious puberty was treated with buserelin, a long acting analogue of gonadotrophin releasing hormone. Spontaneous and stimulated gonadotrophin secretion became prepubertal but returned to pubertal values when buserelin was withdrawn, suggesting that normal sexual maturation should follow cessation of treatment. PMID:3931565

  11. Bilayer/cytoskeleton interactions in lipid-symmetric erythrocytes assessed by a photoactivable phospholipid analogue

    SciTech Connect

    Pradhan, D.; Schlegel, R.A. ); Williamson, P. )

    1991-08-06

    Two mechanisms have been proposed for maintenance of transbilayer phospholipid asymmetry in the erythrocyte plasma membrane, one involving specific interactions between the aminophospholipids of the inner leaflet of the bilayer and the cytoskeleton, particularly spectrin, and the other involving the aminophospholipid translocase. If the former mechanism is correct, then erythrocytes which have lost their asymmetric distribution of phospholipids should display altered bilayer/cytoskeleton interactions. To test this possibility, normal erythrocytes, erythrocytes from patients with chronic myelogenous leukemia or sickle disease, and lipid-symmetric and -asymmetric erythrocyte ghosts were labeled with the radioactive photoactivable analogue of phosphatidylethanolamine, 2-(2-azido-4-nitrobenzoyl)-1-acyl-sn-glycero-3-phospho({sup 14}C) ethanolamine (({sup 14}C)AzPE), previously shown to label cytoskeletal proteins from the bilayer. The labeling pattern of cytoskeletal proteins in pathologic erythrocytes and lipid-asymmetric erythrocyte ghosts was indistinguishable from normal erythrocytes, indicating that the probe detects no differences in bilayer/cytoskeleton interactions in these cells. In contrast, in lipid-symmetric erythrocyte ghosts, labeling of bands 4.1 and 4.2 and actin, and to a lesser extent ankyrin, by ({sup 14}C)AzPE was considerably reduced. Significantly, however, labeling of spectrin was unaltered in the lipid-symmetric cells. These results do not support a model in which spectrin is involved in the maintenance of an asymmetric distribution of phospholipids in erythrocytes.

  12. Drug uptake, lipid rafts, and vesicle trafficking modulate resistance to an anticancer lysophosphatidylcholine analogue in yeast.

    PubMed

    Cuesta-Marbán, Álvaro; Botet, Javier; Czyz, Ola; Cacharro, Luis M; Gajate, Consuelo; Hornillos, Valentín; Delgado, Javier; Zhang, Hui; Amat-Guerri, Francisco; Acuña, A Ulises; McMaster, Christopher R; Revuelta, José Luis; Zaremberg, Vanina; Mollinedo, Faustino

    2013-03-22

    The ether-phospholipid edelfosine, a prototype antitumor lipid (ATL), kills yeast cells and selectively kills several cancer cell types. To gain insight into its mechanism of action, we performed chemogenomic screens in the Saccharomyces cerevisiae gene-deletion strain collection, identifying edelfosine-resistant mutants. LEM3, AGP2, and DOC1 genes were required for drug uptake. Edelfosine displaced the essential proton pump Pma1p from rafts, inducing its internalization into the vacuole. Additional ATLs, including miltefosine and perifosine, also displaced Pma1p from rafts to the vacuole, suggesting that this process is a major hallmark of ATL cytotoxicity in yeast. Radioactive and synthetic fluorescent edelfosine analogues accumulated in yeast plasma membrane rafts and subsequently the endoplasmic reticulum. Although both edelfosine and Pma1p were initially located at membrane rafts, internalization of the drug toward endoplasmic reticulum and Pma1p to the vacuole followed different routes. Drug internalization was not dependent on endocytosis and was not critical for yeast cytotoxicity. However, mutants affecting endocytosis, vesicle sorting, or trafficking to the vacuole, including the retromer and ESCRT complexes, prevented Pma1p internalization and were edelfosine-resistant. Our data suggest that edelfosine-induced cytotoxicity involves raft reorganization and retromer- and ESCRT-mediated vesicular transport and degradation of essential raft proteins leading to cell death. Cytotoxicity of ATLs is mainly dependent on the changes they induce in plasma membrane raft-located proteins that lead to their internalization and subsequent degradation. Edelfosine toxicity can be circumvented by inactivating genes that then result in the recycling of internalized cell-surface proteins back to the plasma membrane.

  13. STED microscopy detects and quantifies liquid phase separation in lipid membranes using a new far-red emitting fluorescent phosphoglycerolipid analogue.

    PubMed

    Honigmann, Alf; Mueller, Veronika; Hell, Stefan W; Eggeling, Christian

    2013-01-01

    We have developed a bright, photostable, and far-red emitting fluorescent phosphoglycerolipid analogue to probe diffusion characteristics of lipids in membranes. The lipid analogue consists of a saturated (C18) phosphoethanolamine and a hydrophilic far-red emitting fluorescent dye (KK114) that is tethered to the head group by a long polyethylenglycol linker. In contrast to reported far-red emitting fluorescent lipid analogues, this one partitions predominantly into liquid ordered domains of phase-separated ternary bilayers. We performed fluorescence correlation spectroscopy with a super-resolution STED microscope (STED-FCS) to measure the lateral diffusion of the new lipid analogue in the liquid ordered (Lo) and disordered (Ld) phase. On a mica support, we observed micrometer large phases and found that the lipid analogue diffuses freely on all tested spatial scales (40-250 nm) in both the Ld and Lo phase with diffusion coefficients of 1.8 microm2 s(-1) and 0.7 microm2 s(-1) respectively. This indicates that the tight molecular packing of the Lo phase mainly slows down the diffusion rather than causing anomalous sub-diffusion. The same ternary mixture deposited on acid-cleaned glass forms Lo nanodomains of < 40 nm to 300 nm in diameter as only revealed by STED microscopy, which demonstrates the severe influence of interactions with the substrate on the sizes of domains in membranes. When averaging over different positions, STEd-FCS measurements on such glass supported membranes displayed anomalous sub-diffusion. This anomaly can be attributed to a transient partitioning of the lipid analogue into the nano-domains, where diffusion is slowed down. Our results suggest that STED-FCS in combination with a Lo-partitioning fluorescent lipid analogue can directly probe the presence of Lo nano-domains, which in the future should allow the study of potential lipid rafts in live-cell membranes.

  14. Lipid analogues as potential drugs for the regulation of mitochondrial cell death

    PubMed Central

    Murray, Michael; Dyari, Herryawan Ryadi Eziwar; Allison, Sarah E; Rawling, Tristan

    2014-01-01

    The mitochondrion plays an important role in the production of energy as ATP, the regulation of cell viability and apoptosis, and the biosynthesis of major structural and regulatory molecules, such as lipids. During ATP production, reactive oxygen species are generated that alter the intracellular redox state and activate apoptosis. Mitochondrial dysfunction is a well-recognized component of the pathogenesis of diseases such as cancer. Understanding mitochondrial function, and how this is dysregulated in disease, offers the opportunity for the development of drug molecules to specifically target such defects. Altered energy metabolism in cancer, in which ATP production occurs largely by glycolysis, rather than by oxidative phosphorylation, is attributable in part to the up-regulation of cell survival signalling cascades. These pathways also regulate the balance between pro-and anti-apoptotic factors that may determine the rate of cell death and proliferation. A number of anti-cancer drugs have been developed that target these factors and one of the most promising groups of agents in this regard are the lipid-based molecules that act directly or indirectly at the mitochondrion. These molecules have emerged in part from an understanding of the mitochondrial actions of naturally occurring fatty acids. Some of these agents have already entered clinical trials because they specifically target known mitochondrial defects in the cancer cell. LINKED ARTICLES This article is part of a themed issue on Mitochondrial Pharmacology: Energy, Injury & Beyond. To view the other articles in this issue visit http://dx.doi.org/10.1111/bph.2014.171.issue-8 PMID:24111728

  15. LAPS-FSH: a new and effective long-acting follicle-stimulating hormone analogue for the treatment of infertility.

    PubMed

    Jung, Sunyoung; Park, Youngjin; Kim, YoungHoon; Kim, Yu Yon; Choi, Hyun-Ji; Son, Woo-Chan; Kwon, SeChang

    2014-10-01

    Although several long-acting follicle-stimulating hormone (FSH) therapies have been developed to enhance the ovarian response, a disadvantage of FSH therapy is its relatively short half-life, which requires women to receive one to two injections per day for almost 2 weeks. In the present study, we developed a novel FSH analogue by conjugating recombinant human FSH (rhFSH) and the constant region of the human immunoglobulin G4 fragment via non-peptidyl linkers. The efficacy of the FSH analogue was evaluated in vitro by cAMP level assessments, pharmacokinetic studies and a determination of ovarian weight and by comparing these findings with the results from other FSH analogues. In addition, the total number of antral and Graafian follicles was determined after 7 days of treatment with control, 6µgkg(-1) follitropin β, 6, 12 or 42µgkg(-1) corifollitropin α or 3, 6 or 12µgkg(-1) long acting protein/peptide discovery-follicle-stimulating hormone (LAPS-FSH). As a result, the animals treated with 12µgkg(-1) LAPS-FSH produced additional and larger healthy follicles. These data demonstrate that LAPS-FSH promotes growth and inhibits atresia of the ovarian follicle compared with other available drugs, suggesting that our new drug enhances the efficacy and duration of treatment. It is expected that our new FSH analogue will result in a higher chance of pregnancy in patients who are unresponsive to other drugs.

  16. Effects of long-acting somatostatin analogues on redox systems in rat lens in experimental diabetes

    PubMed Central

    Kunjara, Sirilaksana; Greenbaum, A Leslie; Sochor, Milena; Flyvbjerg, Allan; Grønbaek, Henning; McLean, Patricia

    2014-01-01

    The effects of long-acting somatostatin analogues, angiopeptin (AGP) and Sandostatin (SMS), on the early decline in the lens content of glutathione (GSH), ATP and NADPH and increase in sorbitol were studied in STZ diabetic rats, and comparison was made with the effect of insulin. Three factors prompted this study: (i) the known increase in IGF-1 in ocular tissue in diabetes and antagonistic effect of somatostatins, (ii) the known effect of IGF-1 in increasing lens aldose reductase and (iii) the lack of effect of somatostatins on diabetic hyperglycaemia, the latter enabling a differentiation to be made between effects of hyperglycaemia per se and site(s) of IGF-1/somatostatins. All four metabolites studied showed a significant restoration towards the normal control level after 7 days of treatment with AGP and SMS, and AGP was more effective on levels of GSH and ATP. A significant correlation was found between GSH and ATP across all groups at 7 days treatment. The redox state changes in diabetes include both NADP+/NADPH and NAD+/NADH in the conversion of glucose to sorbitol and via sorbitol dehydrogenase to fructose with a linked decrease in ATP formation via NAD+/NADH regulation of the glycolytic pathway. The interlinked network of change includes the requirement for ATP in the synthesis of GSH. The present study points to possible loci of action of somatostatins in improving metabolic parameters in the diabetic rat lens via effects on aldose reductase and/or glucose transport at GLUT 3. PMID:24602114

  17. Changes in cellular lipid synthesis of normal and neoplastic cells during cytolysis induced by alkyl lysophospholipid analogues.

    PubMed

    Herrmann, D B

    1985-09-01

    Susceptibility of eight different cell types of murine or human origins to alkyl lysophospholipid analogue (ALP)-induced cytolysis correlated well with a selective, dose-dependent inhibition of radiolabeled oleic acid incorporation into phosphatidylcholine (PC) and a concomitant stimulation of incorporation into neutral lipids (NL), mainly triacylglycerols. In resistant cells (murine macrophages, L929S, K562, and rMeth A) a counts per minute NL/counts per minute PC ratio of 0.8-1.0 was observed with 30 micrograms ALP/ml; in sensitive tumor targets (Meth A, HL60, YAC, and ABLS-8.1) values greater than 2.7 were found with 5-10 micrograms ALP/ml. Changes in lipid metabolism preceded cytolysis in Meth A fibrosarcoma cells. In degradation experiments the percentage of total lipid radioactivity in PC was reduced after 24 hours to 47% compared to that in controls in sensitive Meth A with 10 micrograms ALP/ml. The macrophage-PC was unaffected at the same concentration. Sensitivity to ALP was independent of cell proliferation. Resistance was not restricted to normal cells and was inducible in Meth A (and rMeth A).

  18. Incorporation of monodisperse oligoethyleneglycol amino acids into anticonvulsant analogues of galanin and neuropeptide y provides peripherally acting analgesics.

    PubMed

    Zhang, Liuyin; Klein, Brian D; Metcalf, Cameron S; Smith, Misty D; McDougle, Daniel R; Lee, Hee-Kyoung; White, H Steve; Bulaj, Grzegorz

    2013-02-04

    Delivery of neuropeptides into the central and/or peripheral nervous systems supports development of novel neurotherapeutics for the treatment of pain, epilepsy and other neurological diseases. Our previous work showed that the combination of lipidization and cationization applied to anticonvulsant neuropeptides galanin (GAL) and neuropeptide Y (NPY) improved their penetration across the blood-brain barrier yielding potent antiepileptic lead compounds, such as Gal-B2 (NAX 5055) or NPY-B2. To dissect peripheral and central actions of anticonvulsant neuropeptides, we rationally designed, synthesized and characterized GAL and NPY analogues containing monodisperse (discrete) oligoethyleneglycol-lysine (dPEG-Lys). The dPEGylated analogues Gal-B2-dPEG(24), Gal-R2-dPEG(24) and NPY-dPEG(24) displayed analgesic activities following systemic administration, while avoiding penetration into the brain. Gal-B2-dPEG(24) was synthesized by a stepwise deprotection of orthogonal 4-methoxytrityl and allyloxycarbonyl groups, and subsequent on-resin conjugations of dPEG(24) and palmitic acids, respectively. All the dPEGylated analogues exhibited substantially decreased hydrophobicity (expressed as logD values), increased in vitro serum stabilities and pronounced analgesia in the formalin and carrageenan inflammatory pain assays following systemic administration, while lacking apparent antiseizure activities. These results suggest that discrete PEGylation of neuropeptides offers an attractive strategy for developing neurotherapeutics with restricted penetration into the central nervous system.

  19. Large lipid-rich mammary analogue secretory carcinoma of parotid gland: An unusual case.

    PubMed

    Joshi, Prashant; Mridha, Asit Ranjan; Singh, Shuchita; Kinra, Prateek; Ray, Ruma; Thakar, Alok

    2015-01-01

    Mammary analogue secretory carcinoma (MASC) of the salivary gland is a malignant tumor which bears morphologic, immunohistochemical and molecular features similar to those of mammary secretory carcinoma. The tumor is considered as a low-grade malignancy perhaps slightly more aggressive than acinic cell carcinoma. High-grade transformation with recurrences, regional nodal involvement, metastases, and cancer-related death has been reported in a few cases. We report an unusual case of large MASC of the parotid gland in a young patient without regional lymph node involvement. To the best of our knowledge till date such a large MASC of the salivary gland has not been reported in the English literature.

  20. Insulin degludec, a long-acting once-daily basal analogue for type 1 and type 2 diabetes mellitus.

    PubMed

    Berard, Lori; MacNeill, Gail

    2015-02-01

    Here, we discuss certain practical issues related to use of insulin degludec, a new long-acting basal insulin analogue. Degludec provides uniform ("peakless") action that extends over more than 24 hours and is highly consistent from dose to dose. Like the 2 previously available basal analogues (detemir and glargine), degludec is expected to simplify dose adjustment and enable patients to reach their glycemic targets with reduced risk of hypoglycemia. Phase 3 clinical trials involving type 1 and type 2 diabetes have demonstrated that degludec was noninferior to glargine in allowing patients to reach a target glycated hemoglobin (A1C) of 7%, and nocturnal hypoglycemia occurred significantly less frequently with degludec. In addition, when dosing intervals vary substantially from day to day, degludec continues to be effective and to maintain a low rate of nocturnal hypoglycemia. Degludec thus has the potential to reduce risk of nocturnal hypoglycemia, to enhance the flexibility of the dosing schedule and to improve patient and caregiver confidence in the stability of glycemic control. A dedicated injector, the FlexTouch prefilled pen, containing degludec 200 units/mL, will be recommended for most patients with type 2 diabetes. Degludec will also be available as 100 units/mL cartridges, to be used in the NovoPen 4 by patients requiring smaller basal insulin doses, including most patients with type 1 diabetes.

  1. Noncompetitive and irreversible inhibition of xanthine oxidase by benzimidazole analogues acting at the functional flavin adenine dinucleotide cofactor.

    PubMed

    Skibo, E B

    1986-07-29

    Benzimidazole derivatives possessing a leaving group in the 2 alpha-position and either 4,7-dione, 4,7-diol, or 4,7-dimethoxy substituents were examined as inhibitors of buttermilk xanthine oxidase. The quinone and hydroquinone derivatives are not inhibitors of xanthine-oxygen reductase activity, even though the latter is a powerful alkylating agent. The methoxylated hydroquinones are linear noncompetitive inhibitors, the best of which is the 2 alpha-bromo analogue (Ki = 46 microM). During xanthine-oxygen reductase activity, the 2 alpha-bromo analogue irreversibly traps the reduced enzyme. Formation of a C(4a) adduct of the reduced functional FAD cofactor is postulated on the basis of UV-visible spectral evidence and reconstitution of the enzyme after removal of the altered FAD. A probable sequence of events is reversible binding at or near the reduced cofactor followed by adduct formation. It is concluded that potent tight binding inhibitors could be designed that act at the FAD cofactor rather than the purine active site.

  2. The role played by lipids unsaturation upon the membrane interaction of the Helicobacter pylori HP(2-20) antimicrobial peptide analogue HPA3.

    PubMed

    Mereuta, Loredana; Luchian, Tudor; Park, Yoonkynung; Hahm, Kyung-Soo

    2009-02-01

    The HPA3 peptide is an analogue of the linear antimicrobial peptide, HP(2-20), isolated from the N-terminal region of the Helicobacter pylori ribosomal protein, able to interact with zwitterionic lipid membranes and generate pores. Herein we focused on the importance of the degree of unsaturation of lipid acyl chains on HPA3 peptide-membrane interactions. Electrophysiology experiments carried out in reconstituted lipid membranes formed from phosphatidylcholines with one (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine - POPC) and two monounsaturated acyl chains (1,2-dioleoyl-sn-glycero-3-phosphocholine - DOPC) demonstrate that the lesser degree of the packing density of membrane lipids encountered in DOPC-based planar membranes greatly enhances the electric activity of pores created by the HPA3 peptide. Data derived from fluorescence spectroscopy experiments demonstrate that upon interaction with the bilayer, the HPA3 peptide translocates to the trans-side of the membrane. From the same experiments, we demonstrate that in the case of DOPC-based planar membranes, the net amount of HPA3 peptide which passes across the membrane and re-dissolves in the trans solution is almost 22% greater than POPC-based membranes. Such data further emphasize the modulatory role played by lipid acyl chain in determining antimicrobial peptides-lipids interactions, and demonstrate that small differences in unsaturation degree can impose a sizeable influence on HPA3 peptide activity.

  3. Continuous subcutaneous insulin infusion with short-acting insulin analogues or human regular insulin: efficacy, safety, quality of life, and cost-effectiveness.

    PubMed

    Radermecker, Régis Pierre; Scheen, André Jacques

    2004-01-01

    Portable insulin infusion devices are effective and safe insulin delivery systems for managing diabetes mellitus, especially type 1 diabetes. Rapidly absorbed insulin analogues, such as insulin lispro or insulin aspart, may offer an advantage over regular human insulin for insulin pumps. Several open-label randomised crossover trials demonstrated that continuous subcutaneous insulin infusion (CSII) with insulin lispro provided a better control of postprandial hyperglycaemia and a slightly but significantly lower glycated haemoglobin level, with lower daily insulin requirement and similar or even less hypoglycaemic episodes. A CSII study comparing insulin lispro and insulin aspart demonstrated similar results with the two analogues, and better results than those with regular insulin. Because these analogues have a quicker onset and a shorter duration of action than regular insulin, one might expect an earlier and greater metabolic deterioration in case of CSII interruption, but a more rapid correction of metabolic abnormalities after insulin boluses when reactivating the pump. These expectations were confirmed in randomised protocols comparing the metabolic changes occurring during and after CSII interruption of various durations when the pump infused either insulin lispro or regular insulin. The extra cost resulting from the use of CSII and insulin analogues in diabetes management should be compensated for by better metabolic control and quality of life. In conclusion, CSII delivering fast-acting insulin analogues may be considered as one of the best methods to replace insulin in a physiological manner by mimicking meal and basal insulin requirements, without higher risk of hypoglycaemia or ketoacidosis in well-educated diabetic patients.

  4. Single-molecule investigation of the interactions between reconstituted planar lipid membranes and an analogue of the HP(2-20) antimicrobial peptide.

    PubMed

    Mereuta, Loredana; Luchian, Tudor; Park, Yoonkyung; Hahm, Kyung-Soo

    2008-09-05

    In this study, we employed electrophysiology experiments carried out at the single-molecule level to study the mechanism of action of the HPA3 peptide, an analogue of the linear antimicrobial peptide, HP(2-20), isolated from the N-terminal region of the Helicobacter pylori ribosomal protein. Amplitude analysis of currents fluctuations induced by HPA3 peptide at various potentials in zwitterionic lipid membranes reveal the existence of reproducible conductive states in the stochastic behavior of such events, which directly supports the existence of transmembrane pores induced the peptide. From our data recorded both at the single-pore and macroscopic levels, we propose that the HPA3 pore formation is electrophoretically facilitated by trans-negative transmembrane potentials, and HPA3 peptides translocate into the trans monolayers after forming the pores. We present evidence according to which the decrease in the membrane dipole potential of a reconstituted lipid membranes leads to an augmentation of the membrane activity of HPA3 peptides, and propose that a lower electric dipole field of the interfacial region of the membrane caused by phloretin facilitates the surface-bound HPA3 peptides to break free from one leaflet of the membrane, insert into the membrane and contribute to pore formation spanning the entire thickness of the membrane.

  5. Single-molecule investigation of the interactions between reconstituted planar lipid membranes and an analogue of the HP(2-20) antimicrobial peptide

    SciTech Connect

    Mereuta, Loredana; Luchian, Tudor Park, Yoonkyung; Hahm, Kyung-Soo

    2008-09-05

    In this study, we employed electrophysiology experiments carried out at the single-molecule level to study the mechanism of action of the HPA3 peptide, an analogue of the linear antimicrobial peptide, HP(2-20), isolated from the N-terminal region of the Helicobacter pylori ribosomal protein. Amplitude analysis of currents fluctuations induced by HPA3 peptide at various potentials in zwitterionic lipid membranes reveal the existence of reproducible conductive states in the stochastic behavior of such events, which directly supports the existence of transmembrane pores induced the peptide. From our data recorded both at the single-pore and macroscopic levels, we propose that the HPA3 pore formation is electrophoretically facilitated by trans-negative transmembrane potentials, and HPA3 peptides translocate into the trans monolayers after forming the pores. We present evidence according to which the decrease in the membrane dipole potential of a reconstituted lipid membranes leads to an augmentation of the membrane activity of HPA3 peptides, and propose that a lower electric dipole field of the interfacial region of the membrane caused by phloretin facilitates the surface-bound HPA3 peptides to break free from one leaflet of the membrane, insert into the membrane and contribute to pore formation spanning the entire thickness of the membrane.

  6. A novel long-acting glucose-dependent insulinotropic peptide analogue: enhanced efficacy in normal and diabetic rodents

    PubMed Central

    Tatarkiewicz, K; Hargrove, D M; Jodka, C M; Gedulin, B R; Smith, P A; Hoyt, J A; Lwin, A; Collins, L; Mamedova, L; Levy, O E; D’Souza, L; Janssen, S; Srivastava, V; Ghosh, S S; Parkes, D G

    2014-01-01

    Aim Glucose-dependent insulinotropic peptide (GIP) is an incretin hormone that is released from intestinal K cells in response to nutrient ingestion. We aimed to investigate the therapeutic potential of the novel N- and C-terminally modified GIP analogue AC163794. Methods AC163794 was synthesized by solid-phase peptide synthesis. Design involved the substitution of the C-terminus tail region of the dipeptidyl peptidase IV (DPP-IV)-resistant GIP analogue [d-Ala2]GIP(1–42) with the unique nine amino acid tail region of exenatide. The functional activity and binding of AC163794 to the GIP receptor were evaluated in RIN-m5F β-cells. In vitro metabolic stability was tested in human plasma and kidney membrane preparations. Acute insulinotropic effects were investigated in isolated mouse islets and during an intravenous glucose tolerance test in normal and diabetic Zucker fatty diabetic (ZDF) rats. The biological actions of AC163794 were comprehensively assessed in normal, ob/ob and high-fat-fed streptozotocin (STZ)-induced diabetic mice. Acute glucoregulatory effects of AC163794 were tested in diet-induced obese mice treated subchronically with AC3174, the exendatide analogue [Leu14] exenatide. Human GIP or [d-Ala2]GIP(1–42) were used for comparison. Results AC163794 exhibited nanomolar functional GIP receptor potency in vitro similar to GIP and [d-Ala2]GIP(1–42). AC163794 was metabolically more stable in vitro and displayed longer duration of insulinotropic action in vivo versus GIP and [d-Ala2]GIP(1–42). In diabetic mice, AC163794 improved HbA1c through enhanced insulinotropic action, partial restoration of pancreatic insulin content and improved insulin sensitivity with no adverse effects on fat storage and metabolism. AC163794 provided additional baseline glucose-lowering when injected to mice treated with AC3174. Conclusions These studies support the potential use of a novel GIP analogue AC163794 for the treatment of type 2 diabetes. PMID:23859463

  7. 2,3-Dihydro-1-benzofuran-5-ols as analogues of alpha-tocopherol that inhibit in vitro and ex vivo lipid autoxidation and protect mice against central nervous system trauma.

    PubMed

    Grisar, J M; Bolkenius, F N; Petty, M A; Verne, J

    1995-02-03

    A series of alpha-tocopherol analogues was synthesized with potential therapeutic value for such pathological conditions as stroke and trauma. A set of criteria such as the inhibition of in vitro lipid peroxidation, superoxyl radical scavenging, and brain penetration, as measured by ex vivo inhibition of lipid peroxidation, was applied to select the most effective compound. 2,3-Dihydro-2,2,4,6,7-pentamethyl-3-[(4-methylpiperazino)methyl]-1 - benzofuran-5-ol dihydrochloride (22) was selected because of its superior antioxidant properties and better brain penetration. This compound also protected mice against the effects of head injury. The criteria thus turned out to be useful for the characterization of a neuroprotective analogue of alpha-tocopherol.

  8. Lipophorin acts as a shuttle of lipids to the milk gland during tsetse fly pregnancy.

    PubMed

    Benoit, Joshua B; Yang, Guangxiao; Krause, Tyler B; Patrick, Kevin R; Aksoy, Serap; Attardo, Geoffrey M

    2011-11-01

    During pregnancy in the viviparous tsetse fly, lipid mobilization is essential for the production of milk to feed the developing intrauterine larva. Lipophorin (Lp) functions as the major lipid transport protein in insects and closely-related arthropods. In this study, we assessed the role of Lp and the lipophorin receptor (LpR) in the lipid mobilization process during tsetse reproduction. We identified single gene sequences for GmmLp and GmmLpR from the genome of Glossinamorsitansmorsitans, and measured spatial and temporal expression of gmmlp and gmmlpr during the female reproductive cycle. Our results show that expression of gmmlp is specific to the adult fat body and larvae. In the adult female, gmmlp expression is constitutive. However transcript levels increase in the larva as it matures within the mother's uterus, reaching peak expression just prior to parturition. GmmLp was detected in the hemolymph of pregnant females and larvae, but not in the uterine fluid or larval gut contents ruling out the possibility of direct transfer of GmmLp from mother to offspring. Transcripts for gmmlpr were detected in the head, ovaries, midgut, milk gland/fat body, ovaries and developing larva. Levels of gmmlpr remain stable throughout the first and second gonotrophic cycles with a slight dip observed during the first gonotrophic cycle. GmmLpR was detected in multiple tissues, including the midgut, fat body, milk gland, spermatheca and head. Knockdown of gmmlp by RNA interference resulted in reduced hemolymph lipid levels, delayed oocyte development and extended larval gestation. Similar suppresion of gmmlpr did not significantly reduce hemolymph lipid levels or oogenesis duration, but did extend the duration of larval development. Thus, GmmLp function as the primary shuttle for lipids originating from the midgut and fat body to the ovaries and milk gland to supply resources for developing oocytes and larval nourishment, respectively. Once in the milk gland however, lipids

  9. Differential actions of the prostacyclin analogues treprostinil and iloprost and the selexipag metabolite, MRE-269 (ACT-333679) in rat small pulmonary arteries and veins.

    PubMed

    Orie, N N; Ledwozyw, A; Williams, D J; Whittle, B J; Clapp, L H

    2013-10-01

    The prostacyclin (IP) receptor agonists, treprostinil, iloprost and the selexipag metabolite, MRE-269 (ACT-333679) were evaluated in rat distal pulmonary blood vessels. Small pulmonary arteries and veins were pre-contracted with the thromboxane mimetic, U46619 (25 and 100nM, respectively), and relaxation determined with and without IP receptor antagonists, RO1138452 and RO3244794. In arteries, treprostinil was a more potent vasorelaxant than iloprost, while the efficacy of iloprost was greater. In pulmonary arteries, treprostinil-induced relaxation was essentially abolished by both IP antagonists (1μM), while responses to iloprost were partially inhibited. Both treprostinil and iloprost were equipotent, prominently relaxing pulmonary veins with responses being similarly and partially sensitive to IP antagonists. In contrast, RO1138452 failed to inhibit relaxations to MRE-269 in either pulmonary arteries or veins, suggesting no involvement of typical IP receptors. Thus, rat pulmonary tissues cannot be considered appropriate to assess classical IP receptors using the proposed highly selective non-prostanoid agonist MRE-269, contrasting with the IP receptor agonism profile of prostacyclin analogues, iloprost and treprostinil.

  10. LGR4 acts as a link between the peripheral circadian clock and lipid metabolism in liver.

    PubMed

    Wang, Feng; Zhang, Xianfeng; Wang, Jiqiu; Chen, Maopei; Fan, Nengguang; Ma, Qinyun; Liu, Ruixin; Wang, Rui; Li, Xiaoying; Liu, Mingyao; Ning, Guang

    2014-04-01

    The circadian clock plays an important role in the liver by regulating the major aspects of energy metabolism. Currently, it is assumed that the circadian clock regulates metabolism mostly by regulating the expression of liver enzymes at the transcriptional level, but the underlying mechanism is not well understood. In this study, we showed that Lgr4 homozygous mutant (Lgr4(m/m)) mice showed alteration in the rhythms of the respiratory exchange ratio. We further detected impaired plasma triglyceride rhythms in Lgr4(m/m) mice. Although no significant changes in plasma cholesterol rhythms were observed in the Lgr4(m/m) mice, their cholesterol levels were obviously lower. This phenotype was further confirmed in the context of ob/ob mice, in which lack of LGR4 dampened circadian rhythms of triglyceride. We next demonstrated that Lgr4 expression exhibited circadian rhythms in the liver tissue and primary hepatocytes in mice, but we did not detect changes in the expression levels or circadian rhythms of classic clock genes, such as Clock, Bmal1 (Arntl), Pers, Rev-erbs, and Crys, in Lgr4(m/m) mice compared with their littermates. Among the genes related to the lipid metabolism, we found that the diurnal expression pattern of the Mttp gene, which plays an important role in the regulation of plasma lipid levels, was impaired in Lgr4(m/m) mice and primary Lgr4(m/m) hepatocytes. Taken together, our results demonstrate that LGR4 plays an important role in the regulation of plasma lipid rhythms, partially through regulating the expression of microsomal triglyceride transfer protein. These data provide a possible link between the peripheral circadian clock and lipid metabolism.

  11. Analogue Gravity.

    PubMed

    Barceló, Carlos; Liberati, Stefano; Visser, Matt

    2011-01-01

    Analogue gravity is a research programme which investigates analogues of general relativistic gravitational fields within other physical systems, typically but not exclusively condensed matter systems, with the aim of gaining new insights into their corresponding problems. Analogue models of (and for) gravity have a long and distinguished history dating back to the earliest years of general relativity. In this review article we will discuss the history, aims, results, and future prospects for the various analogue models. We start the discussion by presenting a particularly simple example of an analogue model, before exploring the rich history and complex tapestry of models discussed in the literature. The last decade in particular has seen a remarkable and sustained development of analogue gravity ideas, leading to some hundreds of published articles, a workshop, two books, and this review article. Future prospects for the analogue gravity programme also look promising, both on the experimental front (where technology is rapidly advancing) and on the theoretical front (where variants of analogue models can be used as a springboard for radical attacks on the problem of quantum gravity).

  12. Lipid Rafts Act as Specialized Domains for Tetanus Toxin Binding and Internalization into Neurons

    PubMed Central

    Herreros, Judit; Ng, Tony; Schiavo, Giampietro

    2001-01-01

    Tetanus (TeNT) is a zinc protease that blocks neurotransmission by cleaving the synaptic protein vesicle-associated membrane protein/synaptobrevin. Although its intracellular catalytic activity is well established, the mechanism by which this neurotoxin interacts with the neuronal surface is not known. In this study, we characterize p15s, the first plasma membrane TeNT binding proteins and we show that they are glycosylphosphatidylinositol-anchored glycoproteins in nerve growth factor (NGF)-differentiated PC12 cells, spinal cord cells, and purified motor neurons. We identify p15 as neuronal Thy-1 in NGF-differentiated PC12 cells. Fluorescence lifetime imaging microscopy measurements confirm the close association of the binding domain of TeNT and Thy-1 at the plasma membrane. We find that TeNT is recruited to detergent-insoluble lipid microdomains on the surface of neuronal cells. Finally, we show that cholesterol depletion affects a raft subpool and blocks the internalization and intracellular activity of the toxin. Our results indicate that TeNT interacts with target cells by binding to lipid rafts and that cholesterol is required for TeNT internalization and/or trafficking in neurons. PMID:11598183

  13. GnRH antagonists: a new generation of long acting analogues incorporating p-ureido-phenylalanines at positions 5 and 6.

    PubMed

    Jiang, G; Stalewski, J; Galyean, R; Dykert, J; Schteingart, C; Broqua, P; Aebi, A; Aubert, M L; Semple, G; Robson, P; Akinsanya, K; Haigh, R; Riviere, P; Trojnar, J; Junien, J L; Rivier, J E

    2001-02-01

    A series of antagonists of gonadotropin-releasing hormone (GnRH) of the general formula Ac-D2Nal-D4Cpa-D3Pal-Ser-4Aph/4Amf(P)-D4Aph/D4Amf(Q)-Leu-ILys-Pro-DAla-NH2 was synthesized, characterized, and screened for duration of inhibition of luteinizing hormone release in a castrated male rat assay. Selected analogues were tested in a reporter gene assay (IC50 and pA2) and an in vitro histamine release assay. P and Q contain urea/carbamoyl functionalities designed to increase potential intra- and intermolecular hydrogen bonding opportunities for structural stabilization and peptide/receptor interactions, respectively. These substitutions resulted in analogues with increased hydrophilicity and a lesser propensity to form gels in aqueous solution than azaline B [Ac-D2Nal-D4Cpa-D3Pal-Ser-4Aph(Atz)-D4Aph(Atz)-Leu-ILys-Pro-DAla-NH2 with Atz = 3'-amino-1H-1',2',4'-triazol-5'-yl, 5], and in some cases they resulted in a significant increase in duration of action after subcutaneous (s.c.) administration. Ac-D2Nal-D4Cpa-D3Pal-Ser-4Aph(L-hydroorotyl)-D4Aph(carbamoyl)-Leu-ILys-Pro-DAla-NH2 (acetate salt is FE200486) (31) and eight other congeners (20, 35, 37, 39, 41, 45-47) were identified that exhibited significantly longer duration of action than acyline [Ac-D2Nal-D4Cpa-D3Pal-Ser-4Aph(Ac)-D4Aph(Ac)-Leu-ILys-Pro-DAla-NH2] (6) when administered subcutaneously in castrated male rats at a dose of 50 microg in 100 microL of phosphate buffer. No correlation was found between retention times on a C18 reverse phase column using a triethylammonium phosphate buffer at pH 7.0 (a measure of hydrophilicity) or affinity in an in vitro human GnRH report gene assay (pA2) and duration of action. FE200486 was selected for preclinical studies, and some of its properties were compared to those of other clinical candidates. In the intact rat, ganirelix, abarelix, azaline B, and FE200486 inhibited plasma testosterone for 1, 1, 14, and 57 days, respectively, at 2 mg/kg s.c. in 5% mannitol (injection

  14. Nanostructured self-assembly materials from neat and aqueous solutions of C18 lipid pro-drug analogues of Capecitabine—a chemotherapy agent. Focus on nanoparticulate cubosomes™ of the oleyl analogue

    SciTech Connect

    Gong, Xiaojuan; Moghaddam, Minoo J.; Sagnella, Sharon M.; Conn, Charlotte E.; Mulet, Xavier; Danon, Stephen J.; Waddington, Lynne J.; Drummond, Calum J.

    2014-09-24

    A series of prodrug analogues based on the established chemotherapy agent, 5-fluorouracil, have been prepared and characterized. C18 alkyl and alkenyl chains with increasing degree of unsaturation were attached to the N4 position of the 5-fluorocytosine (5-FC) base via a carbamate bond. Physicochemical characterization of the prodrug analogues was carried out using a combination of differential scanning calorimetry, cross-polarized optical microscopy, X-ray diffraction and small-angle X-ray scattering. The presence of a monounsaturated oleyl chain was found to promote lyotropic liquid crystalline phase formation in excess water with a fluid lamellar phase observed at room temperature and one or more bicontinuous cubic phases at 37 °C. The bulk phase was successfully dispersed into liposomes or cubosomes at room and physiological temperature respectively. In vitro toxicity of the nanoparticulate 5-FCOle dispersions was evaluated against several normal and cancer cell types over a 48 h period and exhibited an IC50 of -100 μM against all cell types. The in vivo efficacy of 5-FCOle cubosomes was assessed against the highly aggressive mouse 4T1 breast cancer model and compared to Capecitabine (a water-soluble commercially available 5-FU prodrug) delivered at the same dosages. After 21 days of treatment, the 0.5 mmol 5-FCOle treatment group exhibited a significantly smaller average tumour volume than all other treatment groups including Capecitabine at similar dosage. These results exemplify the potential of self-assembled amphiphile prodrugs for delivery of bioactives in vivo.

  15. Identification and in vivo and in vitro characterization of long acting and melanocortin 4 receptor (MC4-R) selective α-melanocyte-stimulating hormone (α-MSH) analogues.

    PubMed

    Conde-Frieboes, Kilian; Thøgersen, Henning; Lau, Jesper F; Sensfuss, Ulrich; Hansen, Thomas K; Christensen, Leif; Spetzler, Jane; Olsen, Helle B; Nilsson, Cecilia; Raun, Kirsten; Dahl, Kirsten; Hansen, Birgit S; Wulff, Birgitte S

    2012-03-08

    We report in vitro and in vivo data of new α-melanocyte-stimulating hormone (α-MSH) analogues which are N-terminal modified with a long chain fatty acid derivative. While keeping the pharmacophoric motif (d-Phe-Arg-Trp) fixed, we tried to improve selectivity and physicochemical parameters like solubility and stability of these analogues by replacing amino acids further away from the motif. Receptor specific changes in binding affinity to the melanocortin receptors were observed between the acetyl derivatives and the fatty acid analogues. Furthermore, amino acids at the N-terminal of α-MSH (Ser-Tyr-Ser) not considered to be part of the pharmacophore were found to have an influence on the MC4/MC1 receptor selectivity. While the acetyl analogues have an in vivo effect for around 7 h, the long chain fatty acid analogues have an effect up to 48 h in an acute feeding study in male Sprague-Dawley rats after a single subcutaneous administration.

  16. Comparative assessment of the effects of subdermal levonorgestrel implant system and long acting progestogen injection method on lipid metabolism.

    PubMed

    Anwar, M; Soejono, S K; Maruo, T; Abdullah, N

    1994-03-01

    In order to compare the effects of two type of long-acting progestogen contraceptive methods with subdermal levonorgestrel (LNG) implants and depot-medroxyprogesterone acetate (DMPA) injections on lipid metabolism, a clinical cohort study was performed by requiring 25 women in each group adopting either LNG implant or DMPA injection method voluntarily. After 6 months of use, serum levels of triglycerides, total cholesterol, HDL-cholesterol and LDL-cholesterol were determined and compared between the two groups of acceptors. The mean of total cholesterol in LNG implant acceptors was significantly lower than that in DMPA injection acceptors. The mean values of HDL-cholesterol in LNG implant acceptors (41.7 +/- 7.7 mg/dl) and in DMPA injection acceptors (45.0 +/- 9.0 mg/dl) were in the normal range without significant difference between the two groups. The mean value of triglycerides did not differ significantly between LNG implant acceptors (77.6 +/- 25.1 mg/dl) and DMPA injection acceptors (91.0 +/- 30.3 mg/dl). Serum concentrations of lipid fractions such as HDL-cholesterol and LDL-cholesterol in LNG implant acceptors were relatively low compared to those in DMPA injection acceptors. Since there was a comparable reduction in both total-and HDL-cholesterol levels in the LNG implant group, the ratio of total-to HDL-cholesterol, which is thought to be a factor in determining the risk of coronary artery disease, remained in the normal range (2 +/- 4.5). This suggests that the use of these two contraceptive methods with progestogens does not alter the risk of development of coronary artery disease.

  17. The antioxidant behaviour of melatonin and structural analogues during lipid peroxidation depends not only on their functional groups but also on the assay system.

    PubMed

    Fagali, Natalia; Catalá, Angel

    2012-07-13

    There is no general agreement yet on the antioxidant effect of pineal indoles against lipid peroxidation. Accordingly, the main goal of the present work was to study the antioxidant activity of melatonin (MLT), N-acetylserotonin (NAS), 5-HO-tryptophan (5HO-TRP) and 5-methoxytryptamine (5MTP) in two different lipid systems with high content of polyunsaturated fatty acids (PUFAs): triglycerides (rich in 20:5 n-3, 22:6 n-3) dissolved in chloroform and sonicated liposomes made of retinal lipids (rich in 22:6 n-3). In the triglyceride-chloroform-system the peroxidation reaction was initiated by cumene hydroperoxide (CHP) whereas liposomes were peroxidized with Fe(2+). The techniques employed at the present work were: (1) TBARS production, (2) DPPH assay, (3) determination of conjugated dienes production and (4) analysis of fatty acid profile by GC-MS. Butylated hydroxytoluene (BHT) was employed as a reference because of its well known antioxidant capacity. Our results showed that MLT and 5MTP were unable to protect PUFAs against lipid peroxidation in both systems, whereas NAS and 5HO-TRP were better antioxidants that BHT in the triglyceride-system but ineffective in the liposome-system. We conclude that the antioxidant behaviour of pineal indoles depends not only on their functional groups but also on the assay system and could be explained by the polar paradox theory.

  18. Fields of application of continuous subcutaneous insulin infusion in the treatment of diabetes and implications in the use of rapid-acting insulin analogues.

    PubMed

    Pitocco, D; Rizzi, A; Scavone, G; Tanese, L; Zaccardi, F; Manto, A; Ghirlanda, G

    2013-09-01

    In western countries, diabetes mellitus, because of macrovascular and microvascular complications related to it, is still an important cause of death. Patients with type 1 diabetes mellitus (T1DM) have a six-time higher risk of mortality than healthy patients. Since the Diabetes Control and Complications Trial (DCCT) established how an intensive therapy is necessary to prevent diabetes mellitus complications, many studies have been conducted to understand which method is able to reach an optimal metabolic control. In the past 30 years continuous subcutaneous insulin infusion established/introduced as a validate alternative to multiple daily injections. Several trials demonstrated that, when compared to MDI, CSII brings to a better metabolic control, in terms of a reduction of glycated hemoglobin and blood glucose variability, hypoglycemic episodes and improvement in quality of life. Because of their pharmacokinetic and pharmacodynamic characteristics, rapid-action insulin analogues are imposed as best insulin to be used in CSII. The rapid onset and the fast reached peak make them better mimic the way how pancreas secretes insulin. CSII by pump is not free from issues. Catheter occlusions, blockages, clogs can arrest insulin administration. The consequent higher levels of glycemic values, can easily bring to the onset of ketoacidosis, with an high risk for patients' life. Aspart is a rapid analogue obtained by aminoacidic substitution. It is as effective as lispro and glulisine in gaining a good metabolic control and even better in reducing glucose variability. Some studies tried to compare rapid analogues in terms of stability. Obtained data are controversial. An in vivo study evidenced higher stability or glulisine, while studies in vitro highlighted a higher safety of aspart. Nowadays it is not possible to assess which analogues is safer. When the infusion set is changed every 48 hours equivalent rates of occlusions have been observed.

  19. Pharmacology and anti-addiction effects of the novel κ opioid receptor agonist Mesyl Sal B, a potent and long-acting analogue of salvinorin A

    PubMed Central

    Simonson, B; Morani, A S; Ewald, A W M; Walker, L; Kumar, N; Simpson, D; Miller, J H; Prisinzano, T E; Kivell, B M

    2015-01-01

    BACKGROUND AND PURPOSE Acute activation of κ opioid (KOP) receptors results in anticocaine-like effects, but adverse effects, such as dysphoria, aversion, sedation and depression, limit their clinical development. Salvinorin A, isolated from the plant Salvia divinorum, and its semi-synthetic analogues have been shown to have potent KOP receptor agonist activity and may induce a unique response with similar anticocaine addiction effects as the classic KOP receptor agonists, but with a different side effect profile. EXPERIMENTAL APPROACH We evaluated the duration of effects of Mesyl Sal B in vivo utilizing antinociception assays and screened for cocaine-prime induced cocaine-seeking behaviour in self-administering rats to predict anti-addiction effects. Cellular transporter uptake assays and in vitro voltammetry were used to assess modulation of dopamine transporter (DAT) function and to investigate transporter trafficking and kinase signalling pathways modulated by KOP receptor agonists. KEY RESULTS Mesyl Sal B had a longer duration of action than SalA, had anti-addiction properties and increased DAT function in vitro in a KOP receptor-dependent and Pertussis toxin-sensitive manner. These effects on DAT function required ERK1/2 activation. We identified differences between Mesyl Sal B and SalA, with Mesyl Sal B increasing the Vmax of dopamine uptake without altering cell-surface expression of DAT. CONCLUSIONS AND IMPLICATIONS SalA analogues, such as Mesyl Sal B, have potential for development as anticocaine agents. Further tests are warranted to elucidate the mechanisms by which the novel salvinorin-based neoclerodane diterpene KOP receptor ligands produce both anti-addiction and adverse side effects. LINKED ARTICLES This article is part of a themed section on Opioids: New Pathways to Functional Selectivity. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2015.172.issue-2 PMID:24641310

  20. Lamellar crystalline self-assembly behaviour and solid lipid nanoparticles of a palmityl prodrug analogue of Capecitabine—A chemotherapy agent

    SciTech Connect

    Gong, Xiaojuan; Moghaddam, Minoo J.; Sagnella, Sharon M.; Conn, Charlotte E.; Danon, Stephen J.; Waddington, Lynne J.; Drummond, Calum J.

    2014-09-24

    An amphiphile prodrug, 5'-deoxy-5-fluoro-N4-(palmityloxycarbonyl) cytidine or 5'-deoxy-5-fluoro-N4-(hexadecanaloxycarbonyl) cytidine (5-FCPal), consisting of the same head group as the commercially available chemotherapeutic agent Capecitabine, linked to a palmityl hydrocarbon chain via a carbamate bond is reported. Thermal analysis of this prodrug indicates that it melts at ~115 °C followed quickly by degradation beginning at ~120 °C. The neat solid 5-FCPal amphiphile acquires a lamellar crystalline arrangement with a d-spacing of 28.6 ± 0.3 Å, indicating interdigitation of the hydrocarbon chains. Under aqueous conditions, solid 5-FCPal is non-swelling and no lyotropic liquid crystalline phase formation is observed. In order to assess the in vitro toxicity and in vivo efficacy in colloidal form, solid lipid nanoparticles (SLNs) with an average size of ~700 nm were produced via high pressure homogenization. The in vitro toxicity of the 5-FCPal SLNs against several different cancer and normal cell types was assessed over a 48 h period, and IC50 values were comparable to those observed for Capecitabine. The in vivo efficacy of the 5-FCPal SLNs was then assessed against the highly aggressive mouse 4T1 breast cancer model. To do so, the prodrug SLNs were administered orally at 3 different dosages (0.1, 0.25, 0.5 mmol/mouse/day) and compared to Capecitabine delivered at the same dosages. After 21 days of receiving the treatments, the 0.5 mmol dose of 5-FCPal exhibited the smallest average tumour volume. Since 5-FCPal is activated in a similar manner to Capecitabine via a 3 step enzymatic pathway with the final step occurring preferentially at the tumour site, formulation of the prodrug into SLNs combines the advantage of selective, localized activation with the sustained release properties of nanostructured amphiphile self-assembly and multiple payload materials thereby potentially creating a more effective anticancer agent.

  1. Effect of subcutaneous injection of a long-acting analogue of somatostatin (SMS 201-995) on plasma thyroid-stimulating hormone in normal human subjects

    SciTech Connect

    Itoh, S.; Tanaka, K.; Kumagae, M.; Takeda, F.; Morio, K.; Kogure, M.; Hasegawa, M.; Horiuchi, T.; Watabe, T.; Miyabe, S.

    1988-01-01

    SMS 201-995 (SMS), a synthetic analogue of somatostatin (SRIF) has been shown to be effective in the treatment of the hypersecretion of hormones such as in acromegaly. However, little is known about the effects of SMS on the secretion of thyroid-stimulating hormone (TSH) in normal subjects. In this study, plasma TSH was determined with a highly sensitive immunoradiometric assay, in addition to the concentration of SMS in plasma and urine with a radioimmunoassay, following subcutaneous injection of 25, 50, 100 ..mu..g of SMS or a placebo to normal male subjects, at 0900 h after an overnight fast. The plasma concentrations of SMS were dose-responsive and the peak levels were 1.61 +/- 0.09, 4.91 +/- 0.30 and 8.52 +/- 1.18 ng/ml, which were observed at 30, 15 and 45 min after the injection of 25, 50, and 100 ..mu..g of SMS, respectively. Mean plasma disappearance half-time of SMS was estimated to be 110 +/- 3 min. Plasma TSH was suppressed in a dose dependent manner and the suppression lasted for at least 8 hours. At 8 hours after the injection of 25, 50, and 100 ..mu..g of SMS, the plasma TSH levels were 43.8 +/- 19.4, 33.9 +/- 9.4 and 24.9 +/- 3.2%, respectively, of the basal values.

  2. Ascorbate does not act as a pro-oxidant towards lipids and proteins in human plasma exposed to redox-active transition metal ions and hydrogen peroxide.

    PubMed

    Suh, Jung; Zhu, Ben-Zhan; Frei, Balz

    2003-05-15

    The combination of ascorbate, transition metal ions, and hydrogen peroxide (H(2)O(2)) is an efficient hydroxyl radical generating system called "the Udenfriend system." Although the pro-oxidant role of ascorbate in this system has been well characterized in vitro, it is uncertain whether ascorbate also acts as a pro-oxidant under physiological conditions. To address this question, human plasma, used as a representative biological fluid, was either depleted of endogenous ascorbate with ascorbate oxidase, left untreated, or supplemented with 25 microM-1 mM ascorbate. Subsequently, the plasma samples were incubated at 37 degrees C with 50 microM-1 mM iron (from ferrous ammonium sulfate), 60 or 100 microM copper (from cupric sulfate), and/or 200 microM or 1 mM H(2)O(2). Although endogenous and added ascorbate was depleted rapidly in the presence of transition metal ions and H(2)O(2), no cholesterol ester hydroperoxides or malondialdehyde were formed, i.e., ascorbate protected against, rather than promoted, lipid peroxidation. Conversely, depletion of endogenous ascorbate was sufficient to cause lipid peroxidation, the rate and extent of which were enhanced by the addition of metal ions but not H(2)O(2). Ascorbate also did not enhance protein oxidation in plasma exposed to metal ions and H(2)O(2), as assessed by protein carbonyl formation and depletion of reduced thiols. Interestingly, neither the rate nor the extent of endogenous alpha-tocopherol oxidation in plasma was affected by any of the treatments. Our data show that even in the presence of redox-active iron or copper and H(2)O(2), ascorbate acts as an antioxidant that prevents lipid peroxidation and does not promote protein oxidation in human plasma in vitro.

  3. The future of somatostatin analogue therapy.

    PubMed

    Stewart, P M; James, R A

    1999-10-01

    Since its discovery almost 30 years ago, the mode of action and therapeutic applications of somatostatin have been defined. In particular the cloning and characterization of somatostatin receptor subtypes has facilitated the development of high affinity analogues. In the context of pituitary disease, long-acting somatostatin analogues (octreotide, lanreotide) have been used to treat a variety of pituitary tumours but are most efficacious for the treatment of GH and TSH-secreting adenomas. In patients with acromegaly, depot preparations of these analogues are administered intramuscularly every 10-28 days and provide consistent suppression of GH levels to < 5 mU/l in approximately 50-65% of all cases. Even more specific somatostatin receptor analogues are under development. Finally, radiolabelled somatostatin analogue scintigraphy and, in larger doses, therapy, are now established tools in the evaluation and treatment of neuroendocrine tumours.

  4. Muraymycins, novel peptidoglycan biosynthesis inhibitors: synthesis and SAR of their analogues.

    PubMed

    Yamashita, Ayako; Norton, Emily; Petersen, Peter J; Rasmussen, Beth A; Singh, Guy; Yang, Youjin; Mansour, Tarek S; Ho, Douglas M

    2003-10-06

    A series of Muraymycin analogues was synthesized. These analogues showed excellent antimicrobial activity against gram-positive organisms. These analogues also showed excellent inhibitory activity against the target peptidoglycan biosynthesis enzyme MraY, the cell membrane associated transglycosylase responsible for the formation of Lipid II.

  5. Hormonal regulation of lipid metabolism in developing coho salmon, Oncorhynchus kisutch

    SciTech Connect

    Sheridan, M.A.

    1985-01-01

    Lipid metabolism in juvenile coho salmon is characterized, and adaptive changes in lipid mobilization are described in relation to development and hormonal influences. The rates of lipogenesis and lipolysis were determined in selected tissues of juvenile salmon during the period of seawater preadaptive development (smoltification). Neutral lipid (sterol) and fatty acid synthesis in the liver and mesenteric fat was measured by tritium incorporation. Fatty acid synthesis in the liver and mesenteric fat decreased by 88% and 81%, respectively, between late February (parr) and early June (smolt). To assess the role of hormones in smoltification-associated lipid depletion, growth hormone, prolactin, thyroxin and cortisol were administered in vivo early in development (parr) to determine if any of these factors could initiate the metabolic responses normally seen later in development (smolt). Growth hormone stimulated lipid mobilization from coho salmon parr. Prolactin strongly stimulated lipid mobilization in coho parr. Thyroxin and cortisol also stimulated lipid mobilization for coho salmon parr. The direct effect of hormones was studied by in vitro pH-stat incubation of liver slices. These data suggest that norepinephrine stimulates fatty acid release via ..beta..-adrenergic pathways. Somatostatin and its partial analogue from the fish caudal neurosecretory system, urotensin II, also affect lipid mobilization. These results establish the presence of hormone-sensitive lipase in salmon liver and suggest that the regulation of lipid metabolism in salmon involves both long-acting and short-acting hormonal agents.

  6. Synthesis, biological evaluation and molecular modeling study of thiadiazolo[3,2-a][1,3]diazepine analogues of HIE-124 as a new class of short acting hypnotics.

    PubMed

    El-Subbagh, Hussein I; Hassan, Ghada S; El-Taher, Kamal E H; El-Messery, Shahenda M; Al-Azab, Adel S; Abdelaziz, Alaa A-M; Hefnawy, Mohamed M

    2016-11-29

    A new series of 6,7-dihydro-[1,3,4]thiadiazolo[3,2-a][1,3]diazepine analogues were synthesized, and biological evaluated. Compound GS-62 (33) exhibited potent in vivo short acting hypnotic activity with onset time, duration of sleep and therapeutic index of 6.4 ± 0.2, 94.8 ± 5.3 min, 6.62, respectively), in comparison to thiopental sodium (6). Compounds 33 did not show any sign of acute tolerance reported with the maintenance dose of 6. Meanwhile 33 potentiated the in vivo hypnotic effect of 6 in an equimolar amounts (0.06 mmol) combination showing an onset and duration of 7.5 ± 1.3, 62.5 ± 5.9 min, respectively. This combination allowed the use of lower doses of both drugs to avoid the undesirable side effects. Docking studies revealed favorable interactions and binding to BDZ binding site of the GABAA receptor especially with Arg87, Arg149, and Thr151 amino acid residues.

  7. Intranasal infusion of nanostructured lipid carriers (NLC) containing CNS acting drug and estimation in brain and blood.

    PubMed

    Alam, M Intakhab; Baboota, Sanjula; Ahuja, Alka; Ali, Mushir; Ali, Javed; Sahni, Jasjeet K

    2013-08-01

    The present study was aimed to evaluate the nanostrucured lipid carriers (NLC) containing duloxetine (DLX-NLC) for intranasal infusion through the nasal cavity of rat. The in vivo nasal infusion studies were performed using Wistar rats and the amount of DLX permeated and its amount in brain and blood was estimated. The effects on absorption rate and type of drug delivery systems (nanocarriers and drug solution) for nose to brain/blood permeation were assessed. DLX was found to be permeated from the nasal cavity into the body of rat and the permeated amount was found to be more in case of DLX-NLC. Approximately 2.5-times better permeation was exhibited by DLX-NLC than DLX-solution. Appreciable amount of DLX was estimated in blood and brain and the estimated amount was higher in case of DLX-NLC. Thus the administration of NLC containing DLX through intranasal route was found to be potential method for the delivery of DLX for the treatment of depression.

  8. Template polymerization of nucleotide analogues

    NASA Technical Reports Server (NTRS)

    Orgel, L. E.

    1991-01-01

    Recent work on the template-directed reactions of the natural D-nucleotides has made it clear that l-nucleotides and nucleotide-like derivatives of other sugars would strongly inhibit the formation of long oligonucleotides. Consequently, attention is focusing on molecules simpler than nucleotides that might have acted as monomers of an information transfer system. We have begun a general exploration of the template directed reactions of diverse peptide analogues. I will present work by Dr. Taifeng Wu on oxidative oligomerization of phosphorothioates and of Dr. Mary Tohidi on the cyclic polymerization of nucleoside and related cyclic pyrophosphates.

  9. A Long-Acting FGF21 Molecule, PF-05231023, Decreases Body Weight and Improves Lipid Profile in Non-human Primates and Type 2 Diabetic Subjects.

    PubMed

    Talukdar, Saswata; Zhou, Yingjiang; Li, Dongmei; Rossulek, Michelle; Dong, Jennifer; Somayaji, Veena; Weng, Yan; Clark, Ronald; Lanba, Adhiraj; Owen, Bryn M; Brenner, Martin B; Trimmer, Jeffrey K; Gropp, Kathryn E; Chabot, Jeffrey R; Erion, Derek M; Rolph, Timothy P; Goodwin, Bryan; Calle, Roberto A

    2016-03-08

    FGF21 plays a central role in energy, lipid, and glucose homeostasis. To characterize the pharmacologic effects of FGF21, we administered a long-acting FGF21 analog, PF-05231023, to obese cynomolgus monkeys. PF-05231023 caused a marked decrease in food intake that led to reduced body weight. To assess the effects of PF-05231023 in humans, we conducted a placebo-controlled, multiple ascending-dose study in overweight/obese subjects with type 2 diabetes. PF-05231023 treatment resulted in a significant decrease in body weight, improved plasma lipoprotein profile, and increased adiponectin levels. Importantly, there were no significant effects of PF-05231023 on glycemic control. PF-05231023 treatment led to dose-dependent changes in multiple markers of bone formation and resorption and elevated insulin-like growth factor 1. The favorable effects of PF-05231023 on body weight support further evaluation of this molecule for the treatment of obesity. Longer studies are needed to assess potential direct effects of FGF21 on bone in humans.

  10. Survey of Analogue Spacetimes

    NASA Astrophysics Data System (ADS)

    Visser, Matt

    Analogue spacetimes (and more boldly, analogue models both of and for gravity), have attracted significant and increasing attention over the last decade and a half. Perhaps the most straightforward physical example, which serves as a template for most of the others, is Bill Unruh's model for a dumb hole,(mute black hole, acoustic black hole), wherein sound is dragged along by a moving fluid—and can even be trapped behind an acoustic horizon. This and related analogue models for curved spacetimes are useful in many ways: analogue spacetimes provide general relativists with extremely concrete physical models to help focus their thinking, and conversely the techniques of curved spacetime can sometimes help improve our understanding of condensed matter and/or optical systems by providing an unexpected and countervailing viewpoint. In this chapter, I shall provide a few simple examples of analogue spacetimes as general background for the rest of the contributions.

  11. Differential targeting of glucosylceramide and galactosylceramide analogues after synthesis but not during transcytosis in Madin-Darby canine kidney cells

    PubMed Central

    1995-01-01

    A short-chain analogue of galactosylceramide (6-NBD-amino-hexanoyl- galactosylceramide, C6-NBD-GalCer) was inserted into the apical or the basolateral surface of MDCK cells and transcytosis was monitored by depleting the opposite cell surface of the analogue with serum albumin. In MDCK I cells 32% of the analogue from the apical surface and 9% of the analogue from the basolateral surface transcytosed to the opposite surface per hour. These numbers were very similar to the flow of membrane as calculated from published data on the rate of fluid-phase transcytosis in these cells, demonstrating that C6-NBD-GalCer acted as a marker of bulk membrane flow. It was calculated that in MDCK I cells 155 microns membrane transcytosed per cell per hour in each direction. The fourfold higher percentage transported from the apical surface is explained by the apical to basolateral surface area ratio of 1:4. In MDCK II cells, with an apical to basolateral surface ratio of 1:1, transcytosis of C6-NBD-GalCer was 25% per hour in both directions. Similar numbers were obtained from measuring the fraction of endocytosed C6-NBD-GalCer that subsequently transcytosed. Under these conditions lipid leakage across the tight junction could be excluded, and the vesicular nature of lipid transcytosis was confirmed by the observation that the process was blocked at 17 degrees C. After insertion into one surface of MDCK II cells, the glucosylceramide analogue C6-NBD-GlcCer randomly equilibrated over the two surfaces in 8 h. C6-NBD-GalCer and -GlcCer transcytosed with identical kinetics. Thus no lipid selectivity in transcytosis was observed. Whereas the mechanism by which MDCK cells maintain the different lipid compositions of the two surface domains in the absence of lipid sorting along the transcytotic pathway is unclear, newly synthesized C6-NBD-GlcCer was preferentially delivered to the apical surface of MDCK II cells as compared with C6-NBD-GalCer. PMID:7593186

  12. Fluorescent polyene ceramide analogues as membrane probes.

    PubMed

    Nieves, Ingrid; Artetxe, Ibai; Abad, José Luis; Alonso, Alicia; Busto, Jon V; Fajarí, Lluís; Montes, L Ruth; Sot, Jesús; Delgado, Antonio; Goñi, Félix M

    2015-03-03

    Three ceramide analogues have been synthesized, with sphingosine-like chains containing five conjugated double bonds. Pentaene I has an N-palmitoyl acyl chain, while the other two pentaenes contain also a doxyl radical, respectively, at C5 (Penta5dox) and at C16 (Penta16dox) positions of the N-acyl chain. Pentaene I maximum excitation and emission wavelengths in a phospholipid bilayer are 353 and 478 nm, respectively. Pentaene I does not segregate from the other lipids in the way natural ceramide does, but rather mixes with them in a selective way according to the lipid phases involved. Fluorescence confocal microscopy studies show that when lipid domains in different physical states coexist, Pentaene I emission is higher in gel than in fluid domains, and in liquid-ordered than in liquid-disordered areas. Electron paramagnetic resonance of the pentaene doxyl probes confirms that these molecules are sensitive to the physical state of the bilayer. Calorimetric and fluorescence quenching experiments suggest that the lipids under study orient themselves in lipid bilayers with their polar moieties located at the lipid-water interface. The doxyl radical in the N-acyl chain quenches the fluorescence of the pentaene group when in close proximity. Because of this property, Penta16dox can detect gel-fluid transitions in phospholipids. The availability of probes for lipids in the gel phase is important in view of novel evidence for the existence of gel microdomains in cell membranes.

  13. Total body nitrogen and total body carbon as indicators of body protein and body lipids in the melon fly: Effects of methoprene, a juvenile hormone analogue, and of diet supplementation with hydrolyzed yeast

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The application of methoprene and dietary protein enhanced mating success and had no effect on survival in male melon fly Bactrocera cucurbitae Coquillett (Diptera: Tephritidae). .The objective of the present study was to investigate the effect of methoprene and protein on body lipids and protein tu...

  14. Human Subtilisin Kexin Isozyme-1 (SKI-1)/Site-1 Protease (S1P) regulates cytoplasmic lipid droplet abundance: A potential target for indirect-acting anti-dengue virus agents

    PubMed Central

    Hyrina, Anastasia; Meng, Fanrui; McArthur, Steven J.; Eivemark, Sharlene; Nabi, Ivan R.; Jean, François

    2017-01-01

    Viral hijacking and manipulation of host-cell biosynthetic pathways by human enveloped viruses are shared molecular events essential for the viral lifecycle. For Flaviviridae members such as hepatitis C virus and dengue virus (DENV), one of the key subsets of cellular pathways that undergo manipulation is the lipid metabolic pathways, underlining the importance of cellular lipids and, in particular, lipid droplets (LDs) in viral infection. Here, we hypothesize that targeting cellular enzymes that act as key regulators of lipid homeostasis and LD formation could represent a powerful approach to developing a novel class of broad-spectrum antivirals against infection associated with all DENV serotypes (1–4) circulating around the world. Using PF-429242, an active-site-directed inhibitor of SKI-1/S1P, we demonstrate that inhibition of SKI-1/S1P enzymatic activity in human hepatoma Huh-7.5.1 cells results in a robust reduction of the LD numbers and LD-positive areas and provides a means of effectively inhibiting infection by DENV (1–4). Pre-treatment of Huh-7.5.1 cells with PF-429242 results in a dose-dependent inhibition of DENV infection [median inhibitory dose (EC50) = 1.2 microM; median cytotoxic dose (CC50) = 81 microM; selectivity index (SI) = 68)] and a ~3-log decrease in DENV-2 titer with 20 microM of PF-429242. Post-treatment of DENV-2 infected Huh-7.5.1 cells with PF-429242 does not affect viral RNA abundance, but it does compromise the assembly and/or release of infectious virus particles. PF-429242 antiviral activity is reversed by exogenous oleic acid, which acts as an inducer of LD formation in PF-429242-treated and non-treated control cells. Collectively, our results demonstrate that human SKI-1/S1P is a potential target for indirect-acting pan-serotypic anti-DENV agents and reveal new therapeutic opportunities associated with the use of lipid-modulating drugs for controlling DENV infection. PMID:28339489

  15. Comparative lipid composition of heterotrophically and autotrophically grown Sulfolobus acidocaldarius.

    PubMed

    Langworthy, T A

    1977-06-01

    Complex lipids from the thermoacidophilic facultative autotroph Sulfolobus acidocaldarius, as well as a strictly autotrophic isolate, were compared between cells grown on yeast extract and elemental sulfur. Lipids from both organisms grown autotrophically were nearly identical. Each contained about 15% neutral lipids, 35% glycolipids, and 50% acidic lipids. Glycolipids and acidic lipids contained C40H82-76-derived glycerol ether residues. Major glycolipids included the glycerol ether analogues of glucosyl galactosyl diglyceride (5%) and glucosyl polyol diglyceride (75%). Acidic lipids were comprised mainly of the glycerol ether analogues of phosphatidyl inositol (7%), inositolphosphoryl glucosyl polyol diglyceride (72%), and a partially characterized sulfate- and phosphate-containing derivative of glucosyl polyol diglyceride (13%). The lipids from cells grown heterotrophically were similar to those from autotrophically grown cells, except that the partially characterized acidic lipid was absent. In addition, the two glycolipids as well as the respective inositolphosphoryl derivatives were each present in nearly equal proportions.

  16. Comparative lipid composition of heterotrophically and autotrophically grown Sulfolobus acidocaldarius.

    PubMed Central

    Langworthy, T A

    1977-01-01

    Complex lipids from the thermoacidophilic facultative autotroph Sulfolobus acidocaldarius, as well as a strictly autotrophic isolate, were compared between cells grown on yeast extract and elemental sulfur. Lipids from both organisms grown autotrophically were nearly identical. Each contained about 15% neutral lipids, 35% glycolipids, and 50% acidic lipids. Glycolipids and acidic lipids contained C40H82-76-derived glycerol ether residues. Major glycolipids included the glycerol ether analogues of glucosyl galactosyl diglyceride (5%) and glucosyl polyol diglyceride (75%). Acidic lipids were comprised mainly of the glycerol ether analogues of phosphatidyl inositol (7%), inositolphosphoryl glucosyl polyol diglyceride (72%), and a partially characterized sulfate- and phosphate-containing derivative of glucosyl polyol diglyceride (13%). The lipids from cells grown heterotrophically were similar to those from autotrophically grown cells, except that the partially characterized acidic lipid was absent. In addition, the two glycolipids as well as the respective inositolphosphoryl derivatives were each present in nearly equal proportions. Images PMID:863856

  17. Cationic dialkylarylphosphates: a new family of bio-inspired cationic lipids for gene delivery.

    PubMed

    Le Corre, Stéphanie S; Belmadi, Nawal; Berchel, Mathieu; Le Gall, Tony; Haelters, Jean-Pierre; Lehn, Pierre; Montier, Tristan; Jaffrès, Paul-Alain

    2015-01-28

    In this work that aims to synthesize and evaluate new cationic lipids as vectors for gene delivery, we report the synthesis of a series of cationic lipids in which a phosphate functional group acts as a linker to assemble on a molecular scale, two lipid chains and one cationic polar head. The mono or dicationic moiety is connected to the phosphate group by an aryl spacer. In this work, two synthesis strategies were evaluated. The first used the Atherton-Todd coupling reaction to introduce a phenolic derivative to dioleylphosphite. The second strategy used a sequential addition of lipid alcohol and a phenolic derivative on POCl3. The two methods are efficient, but the latter allows larger yields. Different polar head groups were introduced, thus producing amphiphilic compounds possessing either one permanent (N-methyl-imidazolium, pyridinium, trimethylammonium) or two permanent cationic charges. All these cationic lipids were formulated as liposomal solutions and characterized (size and zeta potential). They formed stable liposomal solutions both in water (at pH 7.0) and in a weakly acidic medium (at pH 5.5). Finally, this new generation of cationic lipids was used to deliver DNA into various human-derived epithelial cells cultured in vitro. Compared with Lipofectamine used as a reference commercial lipofection reagent, some cationic dialkylarylphosphates were able to demonstrate potent gene transfer abilities, and noteworthily, monocationic derivatives were much more efficient than dicationic analogues.

  18. Aspartame and Its Analogues

    NASA Astrophysics Data System (ADS)

    Pavlova, L. A.; Komarova, T. V.; Davidovich, Yurii A.; Rogozhin, S. V.

    1981-04-01

    The results of studies on the biochemistry of the sweet taste are briefly reviewed. The methods of synthesis of "aspartame" — a sweet dipeptide — are considered, its structural analogues are described, and quantitative estimates are made of the degree of sweetness relative to sucrose. Attention is concentrated mainly on problems of the relation between the structure of the substance and its taste in the series of aspartyl derivatives. The bibliography includes 118 references.

  19. Quantum analogue computing.

    PubMed

    Kendon, Vivien M; Nemoto, Kae; Munro, William J

    2010-08-13

    We briefly review what a quantum computer is, what it promises to do for us and why it is so hard to build one. Among the first applications anticipated to bear fruit is the quantum simulation of quantum systems. While most quantum computation is an extension of classical digital computation, quantum simulation differs fundamentally in how the data are encoded in the quantum computer. To perform a quantum simulation, the Hilbert space of the system to be simulated is mapped directly onto the Hilbert space of the (logical) qubits in the quantum computer. This type of direct correspondence is how data are encoded in a classical analogue computer. There is no binary encoding, and increasing precision becomes exponentially costly: an extra bit of precision doubles the size of the computer. This has important consequences for both the precision and error-correction requirements of quantum simulation, and significant open questions remain about its practicality. It also means that the quantum version of analogue computers, continuous-variable quantum computers, becomes an equally efficient architecture for quantum simulation. Lessons from past use of classical analogue computers can help us to build better quantum simulators in future.

  20. L-carnosine (beta-alanyl-L-histidine) and carcinine (beta-alanylhistamine) act as natural antioxidants with hydroxyl-radical-scavenging and lipid-peroxidase activities.

    PubMed Central

    Babizhayev, M A; Seguin, M C; Gueyne, J; Evstigneeva, R P; Ageyeva, E A; Zheltukhina, G A

    1994-01-01

    Carnosine (beta-alanyl-L-histidine) and carcinine (beta-alanylhistamine) are natural imidazole-containing compounds found in the non-protein fraction of mammalian tissues. Carcinine was synthesized by an original procedure and characterized. Both carnosine and carcinine (10-25 mM) are capable of inhibiting the catalysis of linoleic acid and phosphatidylcholine liposomal peroxidation (LPO) by the O2(-.)-dependent iron-ascorbate and lipid-peroxyl-radical-generating linoleic acid 13-monohydroperoxide (LOOH)-activated haemoglobin systems, as measured by thiobarbituric-acid-reactive substance. Carcinine and carnosine are good scavengers of OH. radicals, as detected by iron-dependent radical damage to the sugar deoxyribose. This suggests that carnosine and carcinine are able to scavenge free radicals or donate hydrogen ions. The iodometric, conjugated diene and t.l.c. assessments of lipid hydroperoxides (13-monohydroperoxide linoleic acid and phosphatidylcholine hydroperoxide) showed their efficient reduction and deactivation by carnosine and carcinine (10-25 mM) in the liberated and bound-to-artificial-bilayer states. This suggests that the peroxidase activity exceeded that susceptible to direct reduction with glutathione peroxidase. Imidazole, solutions of beta-alanine, or their mixtures with peptide moieties did not show antioxidant potential. Free L-histidine and especially histamine stimulated iron (II) salt-dependent LPO. Due to the combination of weak metal chelating (abolished by EDTA), OH. and lipid peroxyl radicals scavenging, reducing activities to liberated fatty acid and phospholipid hydroperoxides, carnosine and carcinine appear to be physiological antioxidants able to efficiently protect the lipid phase of biological membranes and aqueous environments. PMID:7998987

  1. The TLR2 agonist in polysaccharide-K is a structurally distinct lipid which acts synergistically with the protein-bound β-glucan.

    PubMed

    Quayle, Kenneth; Coy, Catherine; Standish, Leanna; Lu, Hailing

    2015-04-01

    Protein-bound polysaccharide-K (Krestin; PSK) is a hot-water extract of Trametes versicolor with immune stimulatory activity. It has been used for the past 30 years and has demonstrated anti-tumor efficacy in multiple types of cancer. The ability of PSK to activate dendritic cells and T cells is dependent on its ability to stimulate Toll-like receptor 2 (TLR2), yet it remains unknown which structural component within PSK activates TLR2. The purpose of this study was to identify the TLR2 agonist within PSK and understand its role in the overall mechanism of PSK's immunogenic activity. TLR2 activity was eliminated by treatment with lipoprotein lipase but not by trypsin or lyticase. Rapid centrifugation of PSK can separate the fraction with TLR2 agonist activity from the soluble β-glucan fraction. To study the potential interaction between the β-glucan component and the lipid component, we labeled the soluble β-glucan with fluorescein. Uptake of the labeled β-glucan by J774A macrophages and JAWSII dendritic cells was inhibited by anti-Dectin-1 antibody but not by anti-TLR2 antibody, confirming that Dectin-1 is the receptor for β-glucan. Interestingly, pre-treatment of JAWSII cells with the TLR2-active lipid fraction significantly enhanced the uptake of the soluble β-glucan, indicating the synergy between the TLR2 agonist component and the β-glucan component. Altogether, these results present evidence that PSK has two active components-the well-characterized protein-bound β-glucan and a previously unreported lipid-which work synergistically via the Dectin-1 and TLR2 receptors.

  2. Total body nitrogen and total body carbon as indicators of body protein and body lipids in the melon fly Bactrocera cucurbitae: effects of methoprene, a juvenile hormone analogue, and of diet supplementation with hydrolyzed yeast.

    PubMed

    ul Haq, Ihsan; Mayr, Leopold; Teal, P E A; Hendrichs, Jorge; Robinson, Alan S; Stauffer, Christian; Hood-Nowotny, Rebecca

    2010-12-01

    The application of methoprene, and providing access to diet including hydrolyzed yeast, are treatments known to enhance mating success in the male melon fly Bactrocera cucurbitae Coquillett (Diptera: Tephritidae), supporting their use in mass rearing protocols for sterile males in the context of sterile insect technique (SIT) programmes. The objective of the present laboratory study was to investigate the effect of methoprene application and diet supplementation with hydrolyzed yeast (protein) on the turnover of body lipids and protein to confirm the feasibility of their application in melon fly SIT mass-rearing programmes. While females had access to a diet that included hydrolyzed yeast (protein), males were exposed to one of the following treatments: (1) topical application of methoprene and access to diet including protein (M+P+); (2) only diet including protein (M-P+); (3) only methoprene (M+P-) and (4) untreated, only sugar-fed, control males (M-P-). Total body carbon (TBC) and total body nitrogen (TBN) of flies were measured at regular intervals from emergence to 35 days of age for each of the different treatments. Nitrogen assimilation and turnover in the flies were measured using stable isotope ((15)N) dilution techniques. Hydrolyzed yeast incorporation into the diet significantly increased male body weight, TBC and TBN as compared to sugar-fed males. Females had significantly higher body weight, TBC and TBN as compared to all males. TBC and TBN showed age-dependent changes, increasing until the age of sexual maturity and decreasing afterwards in both sexes. Methoprene treatment did not significantly affect TBC or TBN. The progressive increase with age of TBC suggests that lipogenesis occurs in adult male B. cucurbitae, as is the case in other tephritids. Stable isotope dilution was shown to be an effective method for determining N uptake in B. cucurbitae. This technique was used to show that sugar-fed males rely solely on larval N reserves and that the N

  3. Sarcoplasmic reticulum calcium ATPase is inhibited by organic vanadium coordination compounds: pyridine-2,6-dicarboxylatodioxovanadium(V), BMOV, and an amavadine analogue.

    PubMed

    Aureliano, Manuel; Henao, Fernando; Tiago, Teresa; Duarte, Rui O; Moura, J J G; Baruah, Bharat; Crans, Debbie C

    2008-07-07

    The general affinity of the sarcoplasmic reticulum (SR) Ca (2+)-ATPase was examined for three different classes of vanadium coordination complexes including a vanadium(V) compound, pyridine-2,6-dicarboxylatodioxovanadium(V) (PDC-V(V)), and two vanadium(IV) compounds, bis(maltolato)oxovanadium(IV) (BMOV), and an analogue of amavadine, bis( N-hydroxylamidoiminodiacetato)vanadium(IV) (HAIDA-V(IV)). The ability of vanadate to act either as a phosphate analogue or as a transition-state analogue with enzymes' catalysis phosphoryl group transfer suggests that vanadium coordination compounds may reveal mechanistic preferences in these classes of enzymes. Two of these compounds investigated, PDC-V(V) and BMOV, were hydrolytically and oxidatively reactive at neutral pH, and one, HAIDA-V(IV), does not hydrolyze, oxidize, or otherwise decompose to a measurable extent during the enzyme assay. The SR Ca (2+)-ATPase was inhibited by all three of these complexes. The relative order of inhibition was PDC-V(V) > BMOV > vanadate > HAIDA-V(IV), and the IC 50 values were 25, 40, 80, and 325 microM, respectively. Because the observed inhibition is more potent for PDC-V(V) and BMOV than that of oxovanadates, the inhibition cannot be explained by oxovanadate formation during enzyme assays. Furthermore, the hydrolytically and redox stable amavadine analogue HAIDA-V(IV) inhibited the Ca (2+)-ATPase less than oxovanadates. To gauge the importance of the lipid environment, studies of oxidized BMOV in microemulsions were performed and showed that this system remained in the aqueous pool even though PDC-V(V) is able to penetrate lipid interfaces. These findings suggest that the hydrolytic properties of these complexes may be important in the inhibition of the calcium pump. Our results show that two simple coordination complexes with known insulin enhancing effects can invoke a response in calcium homeostasis and the regulation of muscle contraction through the SR Ca (2+)-ATPase.

  4. New rubrolide analogues as inhibitors of photosynthesis light reactions.

    PubMed

    Varejão, Jodieh O S; Barbosa, Luiz C A; Ramos, Gabriela Álvarez; Varejão, Eduardo V V; King-Díaz, Beatriz; Lotina-Hennsen, Blas

    2015-04-01

    Natural products called rubrolides have been investigated as a model for the development of new herbicides that act on the photosynthesis apparatus. This study comprises a comprehensive analysis of the photosynthesis inhibitory ability of 27 new structurally diverse rubrolide analogues. In general, the results revealed that the compounds exhibited efficient inhibition of the photosynthetic process, but in some cases low water solubility may be a limiting factor. To elucidate their mode of action, the effects of the compounds on PSII and PSI, as well as their partial reaction on chloroplasts and the chlorophyll a fluorescence transients were measured. Our results showed that some of the most active rubrolide analogues act as a Hill reaction inhibitors at the QB level by interacting with the D1 protein at the reducing side of PSII. All of the active analogues follow Tice's rule of 5, which indicates that these compounds present physicochemical properties suitable for herbicides.

  5. Analogue-to-Digital and Digital-to-Analogue Conversion.

    ERIC Educational Resources Information Center

    Gregory, Martin

    1997-01-01

    Discusses circuits for three-bit and four-bit analogue digital converters and digital analogue converters. These circuits feature slow operating speeds that enable the circuitry to be used to demonstrate the mode of operation using oscilloscopes and signal generators. (DDR)

  6. Pre-Clinical Testing of New Hydroxybutyrate Analogues

    DTIC Science & Technology

    2011-07-01

    the effects of DHB analogues to ascertain if they are longer-acting compounds than the parent compound. Although obtaining the first and only drug ...useful in the treatment of PD. Body of Work The goal of this study is to fully assess and compare the potency of compounds that are structurally...SARA 313: Carcinogenicity Classification (components present at 0.1% or more): none, unless listed below TSCA (US Toxic Substances Control Act

  7. Mammary Analogue Secretory Carcinoma.

    PubMed

    Stevens, Todd M; Parekh, Vishwas

    2016-09-01

    Mammary analogue secretory carcinoma (MASC) is a recently described salivary gland tumor that shares the same histologic appearance and ETV6 gene (12p13) rearrangement as secretory carcinoma of the breast. Prior to its recognition, MASC cases were commonly labeled acinic cell carcinoma and adenocarcinoma, not otherwise specified. Despite distinctive histologic features, MASC may be difficult to distinguish from other salivary gland tumors, in particular zymogen-poor acinic cell carcinoma and low-grade salivary duct carcinoma. Although characteristic morphologic and immunohistochemical features form the basis of a diagnosis of MASC, the presence of an ETV6-NTRK3 gene fusion is confirmatory. Given its recent recognition the true prognostic import of MASC is not yet clearly defined.

  8. NASA/ESMD Analogue Mission Plans

    NASA Technical Reports Server (NTRS)

    Hoffman, Stephen J.

    2007-01-01

    A viewgraph presentation exploring Earth and its analogues is shown. The topics include: 1) ESMD Goals for the Use of Earth Analogues; 2) Stakeholders Summary; 3) Issues with Current Analogue Situation; 4) Current state of Analogues; 5) External Implementation Plan (Second Step); 6) Recent Progress in Utilizing Analogues; 7) Website Layout Example-Home Page; 8) Website Layout Example-Analogue Site; 9) Website Layout Example-Analogue Mission; 10) Objectives of ARDIG Analog Initiatives; 11) Future Plans; 12) Example: Cold-Trap Sample Return; 13) Example: Site Characterization Matrix; 14) Integrated Analogue Studies-Prerequisites for Human Exploration; and 15) Rating Scale Definitions.

  9. Teduglutide, a glucagon-like peptide 2 analogue: a novel protective agent with anti-apoptotic and anti-oxidant properties in mice with lung injury.

    PubMed

    Arda-Pirincci, Pelin; Oztay, Fusun; Bayrak, Bertan Boran; Yanardag, Refiye; Bolkent, Sehnaz

    2012-12-01

    Teduglutide is a long-acting synthetic analogue of human glucagon-like peptide-2 (GLP-2). GLP-2 regulates cell proliferation and apoptosis as well as normal physiology in the gastrointestinal tract. In the present study, possible cytoprotective and reparative effects of teduglutide were analyzed on a mouse model with lung injury induced by tumor necrosis factor-alpha (TNF-α) and actinomycin D (Act D). BALB/c mice were divided into six groups: control mice (I), mice injected intraperitoneally with 15 μg/kg TNF-α (II), 800 μg/kg Act D (III), Act D 2 min prior to TNF-α administration with the same doses (IV), mice injected subcutaneously with 200 μg/kg teduglutide every 12h for 10 consecutive days (V), and mice given Act D 2 min prior to TNF-α administration on day 11 after receiving teduglutide for 10 days (VI). The TNF-α/Act D administration made the lung a sensitive organ to damage. Mice lung subjected to TNF-α/Act D were characterized by the disruption of alveolar wall, induced pulmonary endothelial/epithelial cell apoptosis and expression of active caspase-3. These mice exhibited an increase in lipid peroxidation, glutathione levels, and activities of myeloperoxidase, superoxide dismutase, catalase, glutathione peroxidase and xanthine oxidase, as well as reduced tissue factor and sodium-potassium/ATPase activities. Teduglutide pretreatment regressed the structural damage, cell apoptosis and oxidative stress by reducing lipid peroxidation in mice received TNF-α/Act D. GLP-2 receptors were present on the cell membrane of type II pneumocytes and interstitial cells. Thus, teduglutide can be suggested as a novel protective agent, which possesses anti-apoptotic and anti-oxidant properties, against lung injury.

  10. Reducible cationic lipids for gene transfer.

    PubMed Central

    Wetzer, B; Byk, G; Frederic, M; Airiau, M; Blanche, F; Pitard, B; Scherman, D

    2001-01-01

    One of the main challenges of gene therapy remains the increase of gene delivery into eukaryotic cells. We tested whether intracellular DNA release, an essential step for gene transfer, could be facilitated by using reducible cationic DNA-delivery vectors. For this purpose, plasmid DNA was complexed with cationic lipids bearing a disulphide bond. This reduction-sensitive linker is expected to be reduced and cleaved in the reducing milieu of the cytoplasm, thus potentially improving DNA release and consequently transfection. The DNA--disulphide-lipid complexation was monitored by ethidium bromide exclusion, and the size of complexes was determined by dynamic light scattering. It was found that the reduction kinetics of disulphide groups in DNA--lipid complexes depended on the position of the disulphide linker within the lipid molecule. Furthermore, the internal structure of DNA--lipid particles was examined by small-angle X-ray scattering before and after lipid reduction. DNA release from lipid complexes was observed after the reduction of disulphide bonds of several lipids. Cell-transfection experiments suggested that complexes formed with selected reducible lipids resulted in up to 1000-fold higher reporter-gene activity, when compared with their analogues without disulphide bonds. In conclusion, reduction-sensitive groups introduced into cationic lipid backbones potentially allow enhanced DNA release from DNA--lipid complexes after intracellular reduction and represent a tool for improved vectorization. PMID:11389682

  11. Reducible cationic lipids for gene transfer.

    PubMed

    Wetzer, B; Byk, G; Frederic, M; Airiau, M; Blanche, F; Pitard, B; Scherman, D

    2001-06-15

    One of the main challenges of gene therapy remains the increase of gene delivery into eukaryotic cells. We tested whether intracellular DNA release, an essential step for gene transfer, could be facilitated by using reducible cationic DNA-delivery vectors. For this purpose, plasmid DNA was complexed with cationic lipids bearing a disulphide bond. This reduction-sensitive linker is expected to be reduced and cleaved in the reducing milieu of the cytoplasm, thus potentially improving DNA release and consequently transfection. The DNA--disulphide-lipid complexation was monitored by ethidium bromide exclusion, and the size of complexes was determined by dynamic light scattering. It was found that the reduction kinetics of disulphide groups in DNA--lipid complexes depended on the position of the disulphide linker within the lipid molecule. Furthermore, the internal structure of DNA--lipid particles was examined by small-angle X-ray scattering before and after lipid reduction. DNA release from lipid complexes was observed after the reduction of disulphide bonds of several lipids. Cell-transfection experiments suggested that complexes formed with selected reducible lipids resulted in up to 1000-fold higher reporter-gene activity, when compared with their analogues without disulphide bonds. In conclusion, reduction-sensitive groups introduced into cationic lipid backbones potentially allow enhanced DNA release from DNA--lipid complexes after intracellular reduction and represent a tool for improved vectorization.

  12. Differential membrane fluidization by active and inactive cannabinoid analogues.

    PubMed

    Mavromoustakos, T; Papahatjis, D; Laggner, P

    2001-06-06

    The effects of the two cannabinomimetic drugs (-)-2-(6a,7,10,10a-tetrahydro-6,6,9-trimethyl-1-hydroxy-6H-dibenzo[b,d]pyranyl-2-(hexyl)-1,3-dithiolane (AMG-3) and its pharmacologically less active 1-methoxy analogue (AMG-18) on the thermotropic and structural properties of dipalmitoyl-sn-glycero-3-phosphorylcholine (DPPC) liposomes have been studied by X-ray diffraction and differential scanning calorimetry (DSC). DSC data revealed that the incorporation of the drugs affect differently the thermotropic properties of DPPC. The presence of the more active drug distinctly broadened and attenuated both the pretransition and main phase transition of DPPC bilayers, while the inactive analogue had only minor effects. Small and wide angle X-ray diffraction data showed that the two cannabinoids have different effects on the lipid phase structures and on the hydrocarbon chain packing. The pharmacologically active analogue, AMG-3, was found to efficiently fluidize domains of the lipids in the L(beta)' gel phase, and to perturb the regular multibilayer lattice. In the liquid crystalline L(alpha) phase, AMG-3 was also found to cause irregularities in packing, suggesting that the drug induces local curvature. At the same concentration, the inactive AMG-18 had only minor structural effects on the lipids. At about 10-fold or higher concentrations, AMG-18 was found to produce similar but still less pronounced effects in comparison to those observed by AMG-3. The dose-dependent, different thermotropic and structural effects by the two cannabinoid analogues suggest that these may be related to their biological activity.

  13. Oral peptide delivery by tetraether lipid liposomes.

    PubMed

    Parmentier, Johannes; Thewes, Bernhard; Gropp, Felix; Fricker, Gert

    2011-08-30

    The aim of this study is to improve of oral peptide delivery by a novel type of liposomes containing tetraether lipids (TELs) derived from archaea bacteria. Liposomes were used for the oral delivery of the somatostatin analogue octreotide. TELs were extracted from Sulfolobus acidocaldarius and subsequently purified to single compounds. Liposomes were prepared by the film method followed by extrusion. Vesicles in size between 130 and 207 nm were obtained as confirmed by photon correlation spectroscopy. The pharmacokinetics of radiolabeled TELs in liposomes was investigated after oral administration to rats. 1.6% of the applied radioactivity in fed and 1.5% in fasted rats was recovered in the blood and inner organs after 2h, while most of the radioactivity remained in the gastro-intestinal tract. After 24h the percentage of radioactivity in inner organs was reduced to 0.6% in fed rats, respectively 1.0% in fasted animals. Several liposomal formulations containing dipalmitoyl phosphatidylcholine (DPPC) and TELs in different ratios were loaded with octreotide and orally administered. Liposomes with 25% TEL could improve the oral bioavailability of octreotide 4.1-fold and one formulation with a cationic TEL derivative 4.6-fold. TEL-liposomes probably act by protecting the peptide in the gastro-intestinal tract.

  14. Unsaturated Analogues of the Neurotransmitter GABA: trans-4-Aminocrotonic, cis-4-Aminocrotonic and 4-Aminotetrolic Acids.

    PubMed

    Johnston, Graham A R

    2016-03-01

    Analogues of the neurotransmitter GABA containing unsaturated bonds are restricted in the conformations they can attain. This review traces three such analogues from their synthesis to their use as neurochemicals. trans-4-Aminocrotonic acid was the first conformationally restricted analogue to be extensively studied. It acts like GABA across a range of macromolecules from receptors to transporters. It acts similarly to GABA on ionotropic receptors. cis-4-Aminocrotonic acid selectively activates bicuculline-insensitive GABAC receptors. 4-Aminotetrolic acid, containing a triple bond, activates bicuculline-sensitive GABAA receptors. These findings indicate that GABA activates GABAA receptors in extended conformations and GABAC receptors in folded conformations. These and related analogues are important for the molecular modelling of ionotropic GABA receptors and to the development of new agents acting selectively on these receptors.

  15. Review of Insulin and its Analogues in Diabetes Mellitus

    PubMed Central

    Mane, Krishnappa; Chaluvaraju, KC; Niranjan, MS; Zaranappa, TR; Manjuthej, TR

    2012-01-01

    Diabetes is a metabolic disorder where in human body does not produce or properly uses insulin, a hormone that is required to convert sugar, starches and other food into energy. Diabetes finally leads to more complications and to prevent these complications insulin and its analogues are used. After more than half a century of treating diabetics with animal insulin’s, recombinant DNA technologies and advanced protein chemistry made human insulin preparations available in the early 1980s. As the next step, over the last decade, insulin analogues were constructed by changing the structure of the native protein with the goal of improving the therapeutic properties of it, because the pharmacokinetic characteristics of rapid, intermediate and long-acting preparations of human insulin make it almost impossible to achieve sustained normoglycemia. The first clinically available insulin analogue, lispro, confirmed the hopes by showing that improved glycaemic control can be achieved without an increase in hypoglycaemic events. Two new insulin analogues, insulin glargine and insulin aspart, have recently been approved for clinical use in the United States and several other analogues are being intensively tested. PMID:24826038

  16. Long-Chain Glycerol Diether and Polyol Dialkyl Glycerol Triether Lipids of Sulfolobus acidocaldarius

    PubMed Central

    Langworthy, Thomas A.; Mayberry, William R.; Smith, Paul F.

    1974-01-01

    Cells of Sulfolobus acidocaldarius contain about 2.5% total lipid on a dry-weight basis. Total lipid was found to contain 10.5% neutral lipid, 67.6% glycolipid, and 21.7% polar lipid. The lipids contained C40H80 isopranol glycerol diethers. Almost no fatty acids were present. The glycolipids were composed of about equal amounts of the glycerol diether analogue of glucosyl galactosyl diglyceride and a glucosyl polyol glycerol diether. The latter compound contained an unidentified polyol attached by an ether bond to the glycerol diether. The polar lipids contained a small amount of sulfolipid, which appeared to be the monosulfate derivative of glucosyl polyol glycerol diether. About 40% of the lipid phosphorus was found in the diether analogue of phosphatidyl inositol. The remaining lipid phosphorus was accounted for by approximately equal amounts of two inositol monophosphate-containing phosphoglycolipids, inositolphosphoryl glucosyl galactosyl glycerol diether and inositolphosphoryl glucosyl polyol glycerol diether. Images PMID:4407015

  17. Long-chain glycerol diether and polyol dialkyl glycerol triether lipids of Sulfolobus acidocaldarius.

    PubMed

    Langworthy, T A; Mayberry, W R; Smith, P F

    1974-07-01

    Cells of Sulfolobus acidocaldarius contain about 2.5% total lipid on a dry-weight basis. Total lipid was found to contain 10.5% neutral lipid, 67.6% glycolipid, and 21.7% polar lipid. The lipids contained C(40)H(80) isopranol glycerol diethers. Almost no fatty acids were present. The glycolipids were composed of about equal amounts of the glycerol diether analogue of glucosyl galactosyl diglyceride and a glucosyl polyol glycerol diether. The latter compound contained an unidentified polyol attached by an ether bond to the glycerol diether. The polar lipids contained a small amount of sulfolipid, which appeared to be the monosulfate derivative of glucosyl polyol glycerol diether. About 40% of the lipid phosphorus was found in the diether analogue of phosphatidyl inositol. The remaining lipid phosphorus was accounted for by approximately equal amounts of two inositol monophosphate-containing phosphoglycolipids, inositolphosphoryl glucosyl galactosyl glycerol diether and inositolphosphoryl glucosyl polyol glycerol diether.

  18. Synthesis of l-lyxo-phytosphingosine and its 1-phosphonate analogue using a threitol acetal synthon.

    PubMed

    Lu, Xuequan; Byun, Hoe-Sup; Bittman, Robert

    2004-08-06

    The first synthesis of an isosteric phosphonate analogue of the aminotriol lipid phytosphingosine (3), together with an improved synthesis of (2S,3S,4S)-phytosphingosine (2), are described. A key intermediate is 3-pentylidene acetal 9, which was prepared in two steps from dimethyl 2,3-O-benzylidene-d-tartrate (7).

  19. Long and Short Lipid Molecules Experience the Same Interleaflet Drag in Lipid Bilayers

    NASA Astrophysics Data System (ADS)

    Horner, Andreas; Akimov, Sergey A.; Pohl, Peter

    2013-06-01

    Membrane interleaflet viscosity ηe affects tether formation, phase separation into domains, cell shape changes, and budding. Contrary to the expected contribution to interleaflet coupling from interdigitation, the slide of lipid patches in opposing monolayers conferred the same value ηe≈3×109Jsm-4 for the friction experienced by the ends of both short and long chain fluorescent lipid analogues. Consistent with the weak dependence of the translational diffusion coefficient on lipid length, the in-layer viscosity was, albeit length dependent, much smaller than ηe.

  20. A Modern Analogue for Proterozoic Inverse Carbon Isotope Signatures

    NASA Astrophysics Data System (ADS)

    Close, H. G.; Diefendorf, A. F.; Freeman, K. H.; Pearson, A.

    2008-12-01

    The carbon isotope distribution preserved in sedimentary lipids changes near the Neoproterozoic-Cambrian boundary. In older samples, n-alkyl lipids contain more 13C than both isoprenoid lipids and kerogen [1]. In younger samples, the opposite prevails. Although extreme heterotrophy has been invoked as a mechanism to explain the enrichment in 13C [2], here we suggest another explanation. The switch may reflect a fundamental transition from an oligotrophic ocean dominated by prokaryotic biomass, to an ocean in which carbon fixation is more intensive and burial is dominated by eukaryotic biomass. An analogue for Proterozoic ordering is found in the modern, oligotrophic Pacific Ocean, where n-alkyl lipids of picoplankton (0.2-0.5 μm particulate matter) contain excess 13C relative to the same lipids found in larger size classes (> 0.5 μm). Picoplanktonic lipids are heavier isotopically (-18 ‰) than both the sterols of eukaryotes (-23 ‰ to -26 ‰) and the total organic matter (-20 ‰; TOM). The 0.2-0.5 μm size class also has a distinct chain-length abundance profile. Although large particles must be the vehicle for total carbon export, paradoxically the lipid component of export production appears to be dominated by the 0.2-0.5 μm source. The picoplanktonic chain lengths and isotopic composition dominate lipids of TOM at 670 meters. When the ratio of prokaryotic to eukaryotic production is high, as in the modern central Pacific Ocean, it appears that exported material has an inverse carbon isotope signature similar to that preserved in Precambrian samples. [1] Logan, G. A. et al., Nature 376:53-56 (1995). [2] Rothman, D. H. et al., PNAS 100:8124-8129 (2003).

  1. Interaction of Daptomycin with Lipid Bilayers: A Lipid Extracting Effect

    PubMed Central

    2015-01-01

    Daptomycin is the first approved member of a new structural class of antibiotics, the cyclic lipopeptides. The peptide interacts with the lipid matrix of cell membranes, inducing permeability of the membrane to ions, but its molecular mechanism has been a puzzle. Unlike the ubiquitous membrane-acting host-defense antimicrobial peptides, daptomycin does not induce pores in the cell membranes. Thus, how it affects the permeability of a membrane to ions is not clear. We studied its interaction with giant unilamellar vesicles (GUVs) and discovered a lipid-extracting phenomenon that correlates with the direct action of daptomycin on bacterial membranes observed in a recent fluorescence microscopy study. Lipid extraction occurred only when the GUV lipid composition included phosphatidylglycerol and in the presence of Ca2+ ions, the same condition found to be necessary for daptomycin to be effective against bacteria. Furthermore, it occurred only when the peptide/lipid ratio exceeded a threshold value, which could be the basis of the minimal inhibitory concentration of daptomycin. In this first publication on the lipid extracting effect, we characterize its dependence on ions and lipid compositions. We also discuss possibilities for connecting the lipid extracting effect to the antibacterial activity of daptomycin. PMID:25093761

  2. Synthesis of daidzin analogues as potential agents for alcohol abuse.

    PubMed

    Gao, Guang-Yao; Li, Dian-Jun; Keung, Wing Ming

    2003-09-01

    Daidzin, the active principle of an herbal remedy for 'alcohol addiction', has been shown to reduce alcohol consumption in all laboratory animals tested to date. Correlation studies using structural analogues of daidzin suggests that it acts by raising the monoamine oxidase (MAO)/mitochondrial aldehyde dehydrogenase (ALDH-2) activity ratio (J. Med. Chem. 2000, 43, 4169). Structure-activity relationship (SAR) studies on the 7-O-substituted analogues of daidzin have revealed structural features important for ALDH-2 and MAO inhibition (J. Med. Chem. 2001, 44, 3320). We here evaluated effects of substitutions at 2, 5, 6, 8, 3' and 4' positions of daidzin on its potencies for ALDH-2 and MAO inhibition. Results show that analogues with 4'-substituents that are small, polar and with hydrogen bonding capacities are most potent ALDH-2 inhibitors, whereas those that are non-polar and with electron withdrawing capacities are potent MAO inhibitors. Analogues with a 5-OH group are less potent ALDH-2 inhibitors but are more potent MAO inhibitors. All the 2-, 6-, 8- and 3'-substituted analogues tested so far do not inhibit ALDH-2 and/or have decreased potencies for MAO inhibition. This, together with the results obtained from previous studies, suggests that a potent antidipsotropic analogue would be a 4',7-disubstituted isoflavone. The 4'-substituent should be small, polar, and with hydrogen bonding capacities such as, -OH and -NH(2); whereas the 7-substituent should be a straight-chain alkyl with a terminal polar function such as -(CH(2))(n)-OH with 2< or =n < or =6, -(CH(2))(n)-COOH with 5< or =n < or =10, or -(CH(2))(n)-NH(2) with n > or =4.

  3. Lipid Nanotechnology

    PubMed Central

    Mashaghi, Samaneh; Jadidi, Tayebeh; Koenderink, Gijsje; Mashaghi, Alireza

    2013-01-01

    Nanotechnology is a multidisciplinary field that covers a vast and diverse array of devices and machines derived from engineering, physics, materials science, chemistry and biology. These devices have found applications in biomedical sciences, such as targeted drug delivery, bio-imaging, sensing and diagnosis of pathologies at early stages. In these applications, nano-devices typically interface with the plasma membrane of cells. On the other hand, naturally occurring nanostructures in biology have been a source of inspiration for new nanotechnological designs and hybrid nanostructures made of biological and non-biological, organic and inorganic building blocks. Lipids, with their amphiphilicity, diversity of head and tail chemistry, and antifouling properties that block nonspecific binding to lipid-coated surfaces, provide a powerful toolbox for nanotechnology. This review discusses the progress in the emerging field of lipid nanotechnology. PMID:23429269

  4. Chemical Synthesis and Molecular Recognition of Phosphatase-Resistant Analogues of Phosphatidylinositol-3-phosphate

    PubMed Central

    Xu, Yong; Lee, Stephanie A.; Kutateladze, Tatiana G.; Sbrissa, Diego; Shisheva, Assia; Prestwich, Glenn D.

    2008-01-01

    The remodeling of phosphatidylinositol polyphosphates in cellular membranes by phosphatases and kinases orchestrates the signaling by these lipids in space and time. In order to provide chemical tools to study of the changes in cell physiology mediated by these lipids, three new metabolically-stabilized (ms) analogues of phosphatidylinositol-3-phosphate (PtdIns(3)P were synthesized. We describe herein the total asymmetric synthesis of 3-methylphosphonate, 3-monofluoromethylphosphonate and 3-phosphorothioate analogues of PtdIns(3)P. From differentially protected D-myo-inositol key intermediates, a versatile phosphoramidite reagent was employed in the synthesis of PtdIns(3)P analogues with diacylglyceryl moieties containing dioleoyl, dipalmitoyl and dibutyryl chains. In addition, we introduce a new phosphorlyation reagent, monofluoromethylphosphonyl chloride, which has general applications for the preparation of “pKa-matched” monofluorophosphonates. These ms-PtdIns(3)P analogues exhibited reduced binding activities with 15N-labelled FYVE and PX domains, as significant 1H and 15N chemical shift changes in the FYVE domain were induced by titrating ms-PtdIns(3)Ps into membrane-mimetic dodecylphosphocholine (DPC) micelles. In addition, the PtdIns(3)P analogues with dioleyl and dipalmitoyl chains were substrates for the 5-kinase enzyme PIKfyve; the corresponding phosphorylated ms-PI(3,5)P2 products were detected by radio-TLC analysis. PMID:16417379

  5. Isolation and analysis of membrane lipids and lipid rafts in common carp (Cyprinus carpio L.).

    PubMed

    Brogden, Graham; Propsting, Marcus; Adamek, Mikolaj; Naim, Hassan Y; Steinhagen, Dieter

    2014-03-01

    Cell membranes act as an interface between the interior of the cell and the exterior environment and facilitate a range of essential functions including cell signalling, cell structure, nutrient uptake and protection. It is composed of a lipid bilayer with integrated proteins, and the inner leaflet of the lipid bilayer comprises of liquid ordered (Lo) and liquid disordered (Ld) domains. Lo microdomains, also named as lipid rafts are enriched in cholesterol, sphingomyelin and certain types of proteins, which facilitate cell signalling and nutrient uptake. Lipid rafts have been extensively researched in mammals and the presence of functional lipid rafts was recently demonstrated in goldfish, but there is currently very little knowledge about their composition and function in fish. Therefore a protocol was established for the analysis of lipid rafts and membranous lipids in common carp (Cyprinus carpio L.) tissues. Twelve lipids were identified and analysed in the Ld domain of the membrane with the most predominant lipids found in all tissues being; triglycerides, cholesterol, phosphoethanolamine and phosphatidylcholine. Four lipids were identified in lipid rafts in all tissues analysed, triglycerides (33-62%) always found in the highest concentration followed by cholesterol (24-32%), phosphatidylcholine and sphingomyelin. Isolation of lipid rafts was confirmed by identifying the presence of the lipid raft associated protein flotillin, present at higher concentrations in the detergent resistant fraction. The data provided here build a lipid library of important carp tissues as a baseline for further studies into virus entry, protein trafficking or environmental stress analysis.

  6. Insulin analogues in pregnancy and specific congenital anomalies: a literature review.

    PubMed

    de Jong, Josta; Garne, Ester; Wender-Ozegowska, Ewa; Morgan, Margery; de Jong-van den Berg, Lolkje T W; Wang, Hao

    2016-05-01

    Insulin analogues are commonly used in pregnant women with diabetes. It is not known if the use of insulin analogues in pregnancy is associated with any higher risk of congenital anomalies in the offspring compared with use of human insulin. We performed a literature search for studies of pregnant women with pregestational diabetes using insulin analogues in the first trimester and information on congenital anomalies. The studies were analysed to compare the congenital anomaly rate among foetuses of mothers using insulin analogues with foetuses of mothers using human insulin. Of 29 studies, we included 1286 foetuses of mothers using short-acting insulin analogues with 1089 references of mothers using human insulin and 768 foetuses of mothers using long-acting insulin analogues with 685 references of mothers using long-acting human insulin (Neutral Protamine Hagedorn). The congenital anomaly rate was 4.84% and 4.29% among the foetuses of mothers using lispro and aspart. For glargine and detemir, the congenital anomaly rate was 2.86% and 3.47%, respectively. No studies on the use of insulin glulisine and degludec in pregnancy were found. There was no statistically significant difference in the congenital anomaly rate among foetuses exposed to insulin analogues (lispro, aspart, glargine or detemir) compared with those exposed to human insulin or Neutral Protamine Hagedorn insulin. The total prevalence of congenital anomalies was not increased for foetuses exposed to insulin analogues. The small samples in the included studies provided insufficient statistical power to identify a moderate increased risk of specific congenital anomalies.

  7. Coupled TLC and MALDI-TOF/MS Analyses of the Lipid Extract of the Hyperthermophilic Archaeon Pyrococcus furiosus

    PubMed Central

    Lobasso, Simona; Lopalco, Patrizia; Angelini, Roberto; Vitale, Rita; Huber, Harald; Müller, Volker; Corcelli, Angela

    2012-01-01

    The lipidome of the marine hyperthermophilic archaeon Pyrococcus furiosus was studied by means of combined thin-layer chromatography and MALDI-TOF/MS analyses of the total lipid extract. 80–90% of the major polar lipids were represented by archaeol lipids (diethers) and the remaining part by caldarchaeol lipids (tetraethers). The direct analysis of lipids on chromatography plate showed the presence of the diphytanylglycerol analogues of phosphatidylinositol and phosphatidylglycerol, the N-acetylglucosamine-diphytanylglycerol phosphate plus some caldarchaeol lipids different from those previously described. In addition, evidence for the presence of the dimeric ether lipid cardiolipin is reported, suggesting that cardiolipins are ubiquitous in archaea. PMID:23193375

  8. Neuronal Analogues of Conditioning Paradigms

    DTIC Science & Technology

    1984-04-24

    Although the mechanisms of interneuronal communication have been well established, the changes underlying most forms of learning have thus far eluded...stimulating electrodes on one of the connectives was adjusted so as to produce a small excitatory postsynaptic potential ( EPSP ) in the impaled cell...two stimuli would constitute a neuronal analogue of conditioning by producing an increased EPSP in response to the test stimulus alone. If so, then

  9. Substrate analogues for isoprenoid enzymes

    SciTech Connect

    Stremler, K.E.

    1987-01-01

    Diphosphonate analogues of geranyl diphosphate, resistant to degradation by phosphatases, were found to be alternate substrates for the reaction with farnesyl diphosphate synthetase isolated from avian liver. The difluoromethane analogue was shown to be the better alternate substrate, in agreement with solvolysis results which indicate that the electronegativity of the difluoromethylene unit more closely approximates that of the normal bridging oxygen. The usefulness of the C/sub 10/ difluoro analogue, for detecting low levels of isoprenoid enzymes in the presence of high levels of phosphatase activity, was demonstrated with a cell-free preparation from lemon peel. A series of C/sub 5/ through C/sub 15/ homoallylic and allylic diphosphonates, as well as two 5'-nucleotide diphosphonates, was prepared in high overall yield using the activation-displacement sequence. Radiolabeled samples of several of the allylic diphosphonates were prepared with tritium located at C1. A series of geraniols, stereospecifically deuterated at C1, was prepared. The enantiomeric purities and absolute configurations were determined by derivatization as the mandelate esters for analysis by /sup 1/H NMR. The stereochemistry of the activation-displacement sequence was examined using C1-deuterated substrates.

  10. 5-Stabilized phosphatidylinositol 3,4,5-trisphosphate analogues bind Grp1 PH, inhibit phosphoinositide phosphatases, and block neutrophil migration.

    PubMed

    Zhang, Honglu; He, Ju; Kutateladze, Tatiana G; Sakai, Takahiro; Sasaki, Takehiko; Markadieu, Nicolas; Erneux, Christophe; Prestwich, Glenn D

    2010-02-15

    Metabolically stabilized analogues of PtdIns(3,4,5)P3 have shown long-lived agonist activity for cellular events and selective inhibition of lipid phosphatase activity. We describe an efficient asymmetric synthesis of two 5-phosphatase-resistant analogues of PtdIns(3,4,5)P3, the 5-methylene phosphonate (MP) and 5-phosphorothioate (PT). Furthermore, we illustrate the biochemical and biological activities of five stabilized PtdIns(3,4,5)P3 analogues in four contexts. First, the relative binding affinities of the 3-MP, 3-PT, 5-MP, 5-PT, and 3,4,5-PT3 analogues to the Grp1 PH domain are shown, as determined by NMR spectroscopy. Second, the enzymology of the five analogues is explored, showing the relative efficiency of inhibition of SHIP1, SHIP2, and phosphatase and tensin homologue deleted on chromosome 10 (PTEN), as well as the greatly reduced ability of these phosphatases to process these analogues as substrates as compared to PtdIns(3,4,5)P3. Third, exogenously delivered analogues severely impair complement factor C5a-mediated polarization and migration of murine neutrophils. Finally, the new analogues show long-lived agonist activity in mimicking insulin action in sodium transport in A6 cells.

  11. Composition of Hydrothermal Vent Microbial Communities as Revealed by Analyses of Signature Lipids, Stable Carbon Isotopes and Aquificales Cultures

    NASA Technical Reports Server (NTRS)

    Jahnke, L. L.; Eder, W.; Huber, Robert; Hinrichs, K-U.; Hayes, J. M.; DesMarais, D. J.; Cady, S. L.; Hope, J. M.; Summons, R. E.

    2001-01-01

    This paper describes a study of lipid biomarker composition and carbon isotopic fractionation in cultured Aquificales and natural analogues from Yellowstone National Park. Additional information is contained in the original extended abstract.

  12. Synthesis and evaluation of a tag-free photoactive phospho-ceramide analogue-1 (PCERA-1) probe to study immunomodulation in macrophages.

    PubMed

    Dandela, Rambabu; Mashiach, Roi; Adepu, Raju; Gregor, Rachel; Athamna, Muhammad; Zecharia, Efrat; Ernst, Orna; Zor, Tsaffrir; Meijler, Michael M

    2017-03-30

    Phospho-ceramide analogue-1 (PCERA-1), a synthetic analogue of ceramide-1-phosphate (C1P), has been previously shown to act as a potent modulator of macrophage activity and inflammation. We have developed an efficient synthesis of PCERA-1 from readily available starting materials, and designed and prepared derivatives of this analogue, including a photoaffinity probe to tag and identify putative proteins that bind PCERA-1.

  13. High-resolution mass spectrometry analysis of tetrodotoxin (TTX) and its analogues in puffer fish and shellfish.

    PubMed

    Bane, Vaishali; Brosnan, Brid; Barnes, Paul; Lehane, Mary; Furey, Ambrose

    2016-09-01

    Tetrodotoxin (TTX) is an emerging toxin in the European marine environment. It has various known structural analogues. It acts as a sodium channel blocker; the ability of each analogue to bind to the sodium channel varies with the particular structure of each analogue. Thus, each analogue will vary in its toxic potential. TTX analogues co-occur in food samples at variable concentrations. An LC-MS method was developed for the identification and quantitation of several analogues of TTX using an LTQ-Orbitrap XL mass spectrometer. The LTQ-Orbitrap XL mass spectrometer facilitates high mass accuracy measurement up to 100,000 full width at half maximum (FWHM). Using high resolution at 100,000 FWHM allows for the identification of TTX and its analogues in various matrices, including puffer fish and molluscan shellfish samples (Δ ppm = 0.28-3.38). The confirmation of characteristic fragment ions of TTX and its analogues was achieved by determining their elemental formulae via high mass accuracy. A quantitative method was then developed and optimised using these characteristic fragment ions. The limit of quantitation (LOQ) of the method was 0.136 µg g(-1) (S/N = 10) and the limit of detection (LOD) was 0.041 µg g(-1) (S/N = 3) spiking TTX standard into TTX-free mackerel fish extracts. The method was applied to naturally contaminated puffer fish and molluscan shellfish samples to confirm the presence of TTX and its analogues.

  14. Ecstasy analogues found in cacti.

    PubMed

    Bruhn, Jan G; El-Seedi, Hesham R; Stephanson, Nikolai; Beck, Olof; Shulgin, Alexander T

    2008-06-01

    Human interest in psychoactive phenethylamines is known from the use of mescaline-containing cacti and designer drugs such as Ecstasy. From the alkaloid composition of cacti we hypothesized that substances resembling Ecstasy might occur naturally. In this article we show that lophophine, homopiperonylamine and lobivine are new minor constituents of two cactus species, Lophophora williamsii (peyote) and Trichocereus pachanoi (San Pedro). This is the first report of putatively psychoactive phenethylamines besides mescaline in these cacti. A search for further biosynthetic analogues may provide new insights into the structure-activity relationships of mescaline. An intriguing question is whether the new natural compounds can be called "designer drugs."

  15. FUNCTION GENERATOR FOR ANALOGUE COMPUTERS

    DOEpatents

    Skramstad, H.K.; Wright, J.H.; Taback, L.

    1961-12-12

    An improved analogue computer is designed which can be used to determine the final ground position of radioactive fallout particles in an atomic cloud. The computer determines the fallout pattern on the basis of known wind velocity and direction at various altitudes, and intensity of radioactivity in the mushroom cloud as a function of particle size and initial height in the cloud. The output is then displayed on a cathode-ray tube so that the average or total luminance of the tube screen at any point represents the intensity of radioactive fallout at the geographical location represented by that point. (AEC)

  16. Choline Analogues in Malaria Chemotherapy

    PubMed Central

    Peyrottes, Suzanne; Caldarelli, Sergio; Wein, Sharon; Périgaud, Christian; Pellet, Alain; Vial, Henri

    2012-01-01

    Emerging resistance against well-established anti-malaria drugs warrants the introduction of new therapeutic agents with original mechanisms of action. Inhibition of membrane-based phospholipid biosynthesis, which is crucial for the parasite, has thus been proposed as a novel and promising therapeutic strategy. This review compiles literature concerning the design and study of choline analogues and related cation derivatives as potential anti-malarials. It covers advances achieved over the last two decades and describes: the concept validation, the design and selection of a clinical candidate (Albitiazolium), back-up derivatives while also providing insight into the development of prodrug approaches. PMID:22607139

  17. Studies on the hypolipdemic and estrogenic activities of 2,8-dibenzylcyclooctanone and its analogues.

    PubMed

    Cayen, M N; Dubuc, J; Givner, M L; Greselin, E; Revesz, C

    1976-07-01

    The effects of 2,8-dibenzylcyclooctanone (DBCO) and a series of its analogues on serum lipids and on estrogenic activity in rats were studied. Assays of the estrogenicity of DBCO showed that although the compound is a very weak estrogen, it exhibited estrogenic activity at doses that were hypolipidemic. Among the analogues, only those containing the dibenzylcyclooctanone system were active. All compounds demonstrating hypocholesterolemic activity, except the weakly active compound 15, also reduced the weights of the seminal vesicles and ventral prostate and increased the weight of the adrenal gland. Compounds containing a benzylidene group or reduced ketone group did not exhibit any activity. It is concluded that the hypocholesterolemic activity of the structural analogues of DBCO is correlated with their estrogenicity.

  18. Privacy Act

    EPA Pesticide Factsheets

    Learn about the Privacy Act of 1974, the Electronic Government Act of 2002, the Federal Information Security Management Act, and other information about the Environmental Protection Agency maintains its records.

  19. Terrestrial research in Mars analogue environments

    NASA Astrophysics Data System (ADS)

    Osipov, G.

    Fatty acids (FA) content was measured by GC-MS SIM technique in Sulfide ores of present day (Mid-Atlantic Ridge and others) and ancient (Ural Paleocene, Russia) black smokers; Early Proterozoic kerites of Volyn; Siberian, Canadian and Antarctic permafrosts and also in rocks of East-European platform Achaean crystalline basement. Analysis was shown presence those and only those fatty acids which are specific to microorganisms. FA with 12 up 19 of carbon atoms are thought to be a bacterial biomass sign. 3-Hydroxy fatty acids also found in samples and are strong specific markers of gram-negative bacteria. Cultivation yield living bacteria in some cases. The East-European platform Achaean crystalline basement rocks opened by Vorotilov Deep Well (VDW) drilled through Puchezh-Katunski impact structure were studied within depths 2575 - 2805 m. 34 microbial lipid markers were detected by GC-MS and 22 species were identified. Bacteria of g. Bacillus reached 6,8 % in subsurface communities. However, members of gg. Clostridium (37,1 - 33,2 %) and Rhodococcus (27,6 - 33,7 %) were absolute dominants within studied depth interval. Some lipid patterns of kerite samples could be assessed to definite genera or, in special cases, to species of contemporary microorganisms. For instance, 2-hydroxylauric acid is specific to Pseudomonas putida group or Acinetobacter spp., and hydroxymyristic together with hydroxypalmitic are specific to P.cepacea and cyanobacteria. 3-hydroxystearic acid was known as component of Acetobacter diazothrophycus and Gloebacter violaceous cyanobacterium. 10-hydroxystearic acid associated with Nocardia spp., which oxidizes oleic acid in organic substrates. 10-methylhexadecanoic (10Me16) acid together with 10Me14, 10Me15 and 10Me17 analogues are markers of actinomycetes. Significant part of Black Smokers organic matter is probably biogenic. Fatty acid features strongly assigns it to bacterial, microeucariotic and planta cells. Par example 3-hydroxy acids are

  20. Conserved Molecular Superlattices in a Series of Homologous Synthetic Mycobacterial Cell-Wall Lipids Forming Interdigitated Bilayers.

    PubMed

    Martin-Bertelsen, Birte; Yaghmur, Anan; Franzyk, Henrik; Justesen, Sarah; Kirkensgaard, Jacob J K; Foged, Camilla

    2016-12-06

    Synthetic analogues of the cell-wall lipid monomycoloyl glycerol (MMG) are promising as next-generation vaccine adjuvants. In the present study, the thermotropic phase behavior of an array of synthetic MMG analogues was examined by using simultaneous small- and wide-angle X-ray scattering under excess water conditions. The MMG analogues differed in the alkyl chain lengths and in the stereochemistry of the polar glycerol headgroup or of the lipid tails (native-like versus alternative compounds). All MMG analogues formed poorly hydrated lamellar phases at low temperatures and inverse hexagonal (H2) phases at higher temperatures prior to melting. MMG analogues with a native-like lipid acid configuration self-assembled into noninterdigitated bilayers whereas the analogues displaying an alternative lipid acid configuration formed interdigitated bilayers in a subgel (Lc') state. This is in contrast to previously described interdigitated phases for other lipids, which are usually in a gel (Lβ) state. All investigated MMG analogues displayed an abrupt direct temperature-induced phase transition from Lc' to H2. This transition is ultimately driven by the lipid chain melting and the accompanying change in molecular shape. No intermediate structures were found, but the entire array of MMG analogues displayed phase coexistence during the lamellar to H2 transition. The structural data also showed that the headgroups of the MMG analogues adopting the alternative lipid acid configuration were ordered and formed a two-dimensional molecular superlattice, which was conserved regardless of the lipid tail length. To our knowledge, the MMG analogues with an alternative lipid acid configuration represent the first example of a lipid system showing both interdigitation and superlattice formation, and as such could serve as an interesting model system for future studies. The MMG analogues are also relevant from a subunit vaccine perspective because they are well-tolerated and display

  1. The role of the substrate lipid in processive glycan polymerization by the peptidoglycan glycosyltransferases.

    PubMed

    Perlstein, Deborah L; Wang, Tsung-Shing Andrew; Doud, Emma H; Kahne, Daniel; Walker, Suzanne

    2010-01-13

    The peptidoglycan glycosyltransferases (PGTs) catalyze the processive polymerization of a C55 lipid-linked disaccharide (Lipid II) to form peptidoglycan, the main component of the bacterial cell wall. Our ability to understand this reaction has been limited due to challenges identifying the appropriate substrate analogues to selectively interrogate the donor (the elongating strand) and acceptor (Lipid II) sites. To address this problem, we have developed an assay using synthetic substrates that can discriminate between the donor and acceptor sites of the PGTs. We have shown that each site has a distinct lipid length preference. We have also established that processive polymerization depends on the length of the lipid attached to the donor.

  2. Electrostatic evaluation of isosteric analogues

    NASA Astrophysics Data System (ADS)

    Sayle, Roger; Nicholls, Anthony

    2006-04-01

    A method is presented for enumerating a large number of isosteric analogues of a ligand from a known protein-ligand complex structure and then rapidly calculating an estimate of their binding energies. This approach takes full advantage of the observed crystal structure, by reusing the atomic co-ordinates determined experimentally for one ligand, to approximate those of similar compounds that have approximately the same shape. By assuming that compounds with similar shapes adopt similar binding poses, and that entropic and protein flexibility effects are approximately constant across such an isosteric series ("the frozen ligand approximation"), it is possible to order their binding affinities relatively accurately. Additionally, the constraint that the atomic coordinates are invariant allows for a dramatic simplification in the Poisson-Boltzmann method used to calculation the electrostatic component of the binding energy. This algorithmic improvement allows for the calculation of tens of thousands of binding energies per second for drug-like molecules, enabling this technique to be used in screening large virtual libraries of isosteric analogues. Most significantly, this procedure is shown to be able to reproduce SAR effects of subtle medicinal chemistry substitutions. Finally, this paper reports the results of the proposed methodology on␣seven model systems; dihydrofolate reductase, Lck␣kinase, ribosome inactivating protein, l-arabinose binding protein, neuraminidase, HIV-1 reverse transcriptase and COX-2.

  3. The Valles natural analogue project

    SciTech Connect

    Stockman, H.; Krumhansl, J.; Ho, C.; McConnell, V.

    1994-12-01

    The contact between an obsidian flow and a steep-walled tuff canyon was examined as an analogue for a highlevel waste repository. The analogue site is located in the Valles Caldera in New Mexico, where a massive obsidian flow filled a paleocanyon in the Battleship Rock tuff. The obsidian flow provided a heat source, analogous to waste panels or an igneous intrusion in a repository, and caused evaporation and migration of water. The tuff and obsidian samples were analyzed for major and trace elements and mineralogy by INAA, XRF, X-ray diffraction; and scanning electron microscopy and electron microprobe. Samples were also analyzed for D/H and {sup 39}Ar/{sup 4O} isotopic composition. Overall,the effects of the heating event seem to have been slight and limited to the tuff nearest the contact. There is some evidence of devitrification and migration of volatiles in the tuff within 10 meters of the contact, but variations in major and trace element chemistry are small and difficult to distinguish from the natural (pre-heating) variability of the rocks.

  4. Heteroatom-Containing Porphyrin Analogues.

    PubMed

    Chatterjee, Tamal; Shetti, Vijayendra S; Sharma, Ritambhara; Ravikanth, Mangalampalli

    2017-02-22

    The heteroatom-containing porphyrin analogues or core-modified porphyrins that resulted from the replacement of one or two pyrrole rings with other five-membered heterocycles such as furan, thiophene, selenophene, tellurophene, indene, phosphole, and silole are highly promising macrocycles and exhibit quite different physicochemical properties compared to regular azaporphyrins. The properties of heteroporphyrins depend on the nature and number of different heterocycle(s) present in place of pyrrole ring(s). The heteroporphyrins provide unique and unprecedented coordination environments for metals. Unlike regular porphyrins, the monoheteroporphyrins are known to stabilize metals in unusual oxidation states such as Cu and Ni in +1 oxidation states. The diheteroporphyrins, which are neutral macrocycles without ionizable protons, also showed interesting coordination chemistry. Thus, significant progress has been made in last few decades on core-modified porphyrins in terms of their synthesis, their use in building multiporphyrin arrays for light-harvesting applications, their use as ligands to form interesting metal complexes, and also their use for several other studies. The synthetic methods available in the literature allow one to prepare mono- and diheteroporphyrins and their functionalized derivatives, which were used extensively to prepare several covalent and noncovalent heteroporphyrin-based multiporphyrin arrays. The methods are also developed to synthesize different hetero analogues of porphyrin derivatives such as heterocorroles, heterochlorins, heterocarbaporphyrinoids, heteroatom-substituted confused porphyrins, and so on. This Review summarizes the key developments that have occurred in heteroporphyrin chemistry over the last four decades.

  5. Mammalian folylpoly-. gamma. -glutamate synthetase. 3. Specificity for folate analogues

    SciTech Connect

    George, S.; Cichowicz, D.J.; Shane, B.

    1987-01-27

    A variety of folate analogues were synthesized to explore the specificity of the folate binding site of hog liver folypolyglutamate synthetase and the requirements for catalysis. Modifications of the internal and terminal glutamate moieties of folate cause large drops in on rates and/or affinity for the protein. The only exceptions are glutamine, homocysteate, and ornithine analogues, indicating a less stringent specificity around the delta-carbon of glutamate. It is proposed that initial folate binding to the enzyme involves low-affinity interactions at a pterin and a glutamate site and that the first glutamate bound is the internal residue adjacent to the benzoyl group. Processive movement of the polyglutamate chain through the glutamate site and a possible conformational change in the protein when the terminal residue is bound would result in tight binding and would position the ..gamma..-carboxyl of the terminal glutamate in the correct position for catalysis. The 4-amino substitution of folate increases the on rate for monoglutamate derivatives but severely impairs catalysis with diglutamate derivatives. Pteroylornithine derivatives are the first potent and specific inhibitors of folylpolyglutamate synthetase to be identified and may act as analogues of reaction intermediates. Other folate derivatives with tetrahedral chemistry replacing the peptide bond, such as pteroyl-..gamma..-glutamyl-(psi,CH/sub 2/-NH)-glutamate, retain affinity for the protein but are considerably less effective inhibitors than the ornithine derivatives. Enzyme activity was assayed using (/sup 14/C)glutamate.

  6. CO2 Capture with Enzyme Synthetic Analogue

    SciTech Connect

    Cordatos, Harry

    2010-11-08

    Overview of an ongoing, 2 year research project partially funded by APRA-E to create a novel, synthetic analogue of carbonic anhydrase and incorporate it into a membrane for removal of CO2 from flue gas in coal power plants. Mechanism background, preliminary feasibility study results, molecular modeling of analogue-CO2 interaction, and program timeline are provided.

  7. Macrolactam analogues of macrolide natural products.

    PubMed

    Hügel, Helmut M; Smith, Andrew T; Rizzacasa, Mark A

    2016-12-07

    The chemical modification of macrolide natural products into aza- or lactam analogues is a strategy employed to improve their metabolic stability and biological activity. The methods for the synthesis of several lactam analogues of macrolide natural products are highlighted and aspects of their biological properties presented.

  8. Continuous analogues of matrix factorizations

    PubMed Central

    Townsend, Alex; Trefethen, Lloyd N.

    2015-01-01

    Analogues of singular value decomposition (SVD), QR, LU and Cholesky factorizations are presented for problems in which the usual discrete matrix is replaced by a ‘quasimatrix’, continuous in one dimension, or a ‘cmatrix’, continuous in both dimensions. Two challenges arise: the generalization of the notions of triangular structure and row and column pivoting to continuous variables (required in all cases except the SVD, and far from obvious), and the convergence of the infinite series that define the cmatrix factorizations. Our generalizations of triangularity and pivoting are based on a new notion of a ‘triangular quasimatrix’. Concerning convergence of the series, we prove theorems asserting convergence provided the functions involved are sufficiently smooth. PMID:25568618

  9. Fully analogue photonic reservoir computer.

    PubMed

    Duport, François; Smerieri, Anteo; Akrout, Akram; Haelterman, Marc; Massar, Serge

    2016-03-03

    Introduced a decade ago, reservoir computing is an efficient approach for signal processing. State of the art capabilities have already been demonstrated with both computer simulations and physical implementations. If photonic reservoir computing appears to be promising a solution for ultrafast nontrivial computing, all the implementations presented up to now require digital pre or post processing, which prevents them from exploiting their full potential, in particular in terms of processing speed. We address here the possibility to get rid simultaneously of both digital pre and post processing. The standalone fully analogue reservoir computer resulting from our endeavour is compared to previous experiments and only exhibits rather limited degradation of performances. Our experiment constitutes a proof of concept for standalone physical reservoir computers.

  10. Fully analogue photonic reservoir computer

    PubMed Central

    Duport, François; Smerieri, Anteo; Akrout, Akram; Haelterman, Marc; Massar, Serge

    2016-01-01

    Introduced a decade ago, reservoir computing is an efficient approach for signal processing. State of the art capabilities have already been demonstrated with both computer simulations and physical implementations. If photonic reservoir computing appears to be promising a solution for ultrafast nontrivial computing, all the implementations presented up to now require digital pre or post processing, which prevents them from exploiting their full potential, in particular in terms of processing speed. We address here the possibility to get rid simultaneously of both digital pre and post processing. The standalone fully analogue reservoir computer resulting from our endeavour is compared to previous experiments and only exhibits rather limited degradation of performances. Our experiment constitutes a proof of concept for standalone physical reservoir computers. PMID:26935166

  11. Surfactin analogues produced by Bacillus subtilis strains grown on rapeseed cake

    NASA Astrophysics Data System (ADS)

    Jajor, Paweł; Piłakowska-Pietras, Dorota; Krasowska, Anna; Łukaszewicz, Marcin

    2016-12-01

    Microbiologically produced surface acting compounds (biosurfactants) have very interesting properties with many potential industrial applications. Lipopeptides is a particularly promising group of biosurfactants in respect to the potentially huge number of various chemical structures. The chemical diversity results from fatty acid moiety (e.g. length, saturation, branching or hydroxylation) and type and sequence of the amino acids in the peptide chain. The limiting factor for the design and analysis of various lipopeptides is the ability of the targeted biosynthesis. Biosynthesis of particular lipopeptides may be potentially achieved by strain selection, culture conditions, or molecular engineering. The well-known lipopeptedes (surfactins, iturins, and fengycins) producer is B. subtilis. The aim of this study was to study targeted surfactin structural analogues biosynthesis in response to culture conditions in view of the design and production of tailor-made lipopeptides. Two B. subtilis strains (KB1 and #309) were tested for surfactin production. Both strains produced a mixture of five major surfactin analogues with the number of carbons in an alkyl chain ranging from 12 to 16. The two strains differed with respect to their oxygen demand for optimal surfactin biosynthesis (lower oxygen demand for KB1). The amount of air influenced the relative ratios of surfactin analogues. Lower oxygen amount decreased the share of C15 analogues while it increased the share of C12 analogues. Thus, the biosynthesis of a desired surfactin analogue may controlled by both strain and culture conditions.

  12. Lipid-lipid and lipid-drug interactions in biological membranes

    NASA Astrophysics Data System (ADS)

    Martynowycz, Michael W.

    Interactions between lipids and drug molecules in biological membranes help govern proper biological function in organisms. The mechanisms responsible for hydrophobic drug permeation remain elusive. Many small molecule drugs are hydrophobic. These drugs inhibit proteins in the cellular interior. The rise of antibiotic resistance in bacteria is thought to be caused by mutations in protein structure, changing drug kinetics to favor growth. However, small molecule drugs have been shown to have different mechanisms depending in the structure of the lipid membrane of the target cell. Biological membranes are investigated using Langmuir monolayers at the air-liquid interface. These offer the highest level of control in the mimetic system and allow them to be investigated using complementary techniques. Langmuir isotherms and insertion assays are used to determine the area occupied by each lipid in the membrane and the change in area caused by the introduction of a drug molecule, respectively. Specular X-ray reflectivity is used to determine the electron density of the monolayer, and grazing incidence X-ray diffraction is used to determine the in-plane order of the monolayer. These methods determine the affinity of the drug and the mechanism of action. Studies are presented on hydrophobic drugs with mammalian membrane mimics using warfarin along with modified analogues, called superwarfarins. Data shows that toxicity of these modified drugs are modulated by the membrane cholesterol content in cells; explaining several previously unexplained effects of the drugs. Membrane mimics of bacteria are investigated along with their interactions with a hydrophobic antibiotic, novobiocin. Data suggests that permeation of the drug is mediated by modifications to the membrane lipids, and completely ceases translocation under certain circumstances. Circumventing deficiencies in small, hydrophobic drugs is approached by using biologically mimetic oligomers. Peptoids, mimetic of host

  13. Flaviviridae viruses use a common molecular mechanism to escape nucleoside analogue inhibitors.

    PubMed

    Valdés, James J; Butterill, Philip T; Růžek, Daniel

    2017-03-18

    The RNA-dependent RNA polymerases of Flaviviridae viruses are crucial for replication. The Flaviviridae polymerase is organized into structural motifs (A-G), with motifs F, A, C and E containing interrogating, priming and catalytic substrate-interacting sites. Modified nucleoside analogues act as antiviral drugs by targeting Flaviviridae polymerases and integrating into the synthesized product causing premature termination. A threonine mutation of a conserved serine residue in motif B of Flaviviridae polymerases renders resistance to 2'-C-methylated nucleoside analogues. The mechanism how this single mutation causes Flaviviridae viruses to escape nucleoside analogues is not yet known. Given the pivotal position of the serine residue in motif B that supports motif F, we hypothesized the threonine mutation causes alterations in nucleoside exploration within the entry tunnel. Implementing a stochastic molecular software showed the all-atom 2'-C-methylated analogue reaction within the active sites of wild type and serine-threonine mutant polymerases from Hepacivirus and Flavivirus. Compared with the wild type, the serine-threonine mutant polymerases caused a significant decrease of analogue contacts with conserved interrogating residues in motif F and a displacement of metal ion cofactors. The simulations significantly showed that during the analogue exploration of the active site the hydrophobic methyl group in the serine-threonine mutant repels water-mediated hydrogen bonds with the 2'-C-methylated analogue, causing a concentration of water-mediated bonds at the substrate-interacting sites. Collectively, the data are an insight into a molecular escape mechanism by Flaviviridae viruses from 2'-C-methylated nucleoside analogue inhibitors.

  14. Liberating Chiral Lipid Mediators, Inflammatory Enzymes, and LIPID MAPS from Biological Grease

    PubMed Central

    Dennis, Edward A.

    2016-01-01

    In 1970, it was well accepted that the central role of lipids was in energy storage and metabolism, and it was assumed that amphipathic lipids simply served a passive structural role as the backbone of biological membranes. As a result, the scientific community was focused on nucleic acids, proteins, and carbohydrates as information-containing molecules. It took considerable effort until scientists accepted that lipids also “encode” specific and unique biological information and play a central role in cell signaling. Along with this realization came the recognition that the enzymes that act on lipid substrates residing in or on membranes and micelles must also have important signaling roles, spurring curiosity into their potentially unique modes of action differing from those acting on water-soluble substrates. This led to the creation of the concept of “surface dilution kinetics” for describing the mechanism of enzymes acting on lipid substrates, as well as the demonstration that lipid enzymes such as phospholipase A2 (PLA2) contain allosteric activator sites for specific phospholipids as well as for membranes. As our understanding of phospholipases advanced, so did the understanding that many of the lipids released by these enzymes are chiral information-containing signaling molecules; for example, PLA2 regulates the generation of precursors for the biosynthesis of eicosanoids and other bioactive lipid mediators of inflammation and resolution underlying disease progression. The creation of the LIPID MAPS initiative in 2003 and the ensuing development of the lipidomics field have revealed that lipid metabolites are central to human metabolism. Today lipids are recognized as key mediators of health and disease as we enter a new era of biomarkers and personalized medicine. This article is my personal “reflection” on these scientific advances. PMID:27555328

  15. Plant Volatile Analogues Strengthen Attractiveness to Insect

    PubMed Central

    Sun, Yufeng; Yu, Hao; Zhou, Jing-Jiang; Pickett, John A.; Wu, Kongming

    2014-01-01

    Green leaf bug Apolygus lucorum (Meyer-Dür) is one of the major pests in agriculture. Management of A. lucorum was largely achieved by using pesticides. However, the increasing population of A. lucorum since growing Bt cotton widely and the increased awareness of ecoenvironment and agricultural product safety makes their population-control very challenging. Therefore this study was conducted to explore a novel ecological approach, synthetic plant volatile analogues, to manage the pest. Here, plant volatile analogues were first designed and synthesized by combining the bioactive components of β-ionone and benzaldehyde. The stabilities of β-ionone, benzaldehyde and analogue 3 g were tested. The electroantennogram (EAG) responses of A. lucorum adult antennae to the analogues were recorded. And the behavior assay and filed experiment were also conducted. In this study, thirteen analogues were acquired. The analogue 3 g was demonstrated to be more stable than β-ionone and benzaldehyde in the environment. Many of the analogues elicited EAG responses, and the EAG response values to 3 g remained unchanged during seven-day period. 3 g was also demonstrated to be attractive to A. lucorum adults in the laboratory behavior experiment and in the field. Its attractiveness persisted longer than β-ionone and benzaldehyde. This indicated that 3 g can strengthen attractiveness to insect and has potential as an attractant. Our results suggest that synthetic plant volatile analogues can strengthen attractiveness to insect. This is the first published study about synthetic plant volatile analogues that have the potential to be used in pest control. Our results will support a new ecological approach to pest control and it will be helpful to ecoenvironment and agricultural product safety. PMID:24911460

  16. Lipid intermediates in the biosynthesis of bacterial peptidoglycan.

    PubMed

    van Heijenoort, Jean

    2007-12-01

    This review is an attempt to bring together and critically evaluate the now-abundant but dispersed data concerning the lipid intermediates of the biosynthesis of bacterial peptidoglycan. Lipid I, lipid II, and their modified forms play a key role not only as the specific link between the intracellular synthesis of the peptidoglycan monomer unit and the extracytoplasmic polymerization reactions but also in the attachment of proteins to the bacterial cell wall and in the mechanisms of action of antibiotics with which they form specific complexes. The survey deals first with their detection, purification, structure, and preparation by chemical and enzymatic methods. The recent important advances in the study of transferases MraY and MurG, responsible for the formation of lipids I and II, are reported. Various modifications undergone by lipids I and II are described, especially those occurring in gram-positive organisms. The following section concerns the cellular location of the lipid intermediates and the translocation of lipid II across the cytoplasmic membrane. The great efforts made since 2000 in the study of the glycosyltransferases catalyzing the glycan chain formation with lipid II or analogues are analyzed in detail. Finally, examples of antibiotics forming complexes with the lipid intermediates are presented.

  17. The emerging roles of lipids in circadian control.

    PubMed

    Adamovich, Yaarit; Aviram, Rona; Asher, Gad

    2015-08-01

    Lipids play vital roles in a wide variety of cellular functions. They act as structural components in cell membranes, serve as a major form of energy storage, and function as key signaling molecules. Mounting evidence points towards a tight interplay between lipids and circadian clocks. In mammals, circadian clocks regulate the daily physiology and metabolism, and disruption of circadian rhythmicity is associated with altered lipid homeostasis and pathologies such as fatty liver and obesity. Concomitantly, emerging evidence suggest that lipids are embedded within the core clock circuitry and participate in circadian control. Recent advances in lipidomics methodologies and their application in chronobiology studies have shed new light on the cross talk between circadian clocks and lipid homeostasis. We review herein the latest literature related to the involvement of lipids in circadian clock's function and highlight the contribution of circadian lipidomics studies to our understanding of circadian rhythmicity and lipid homeostasis. This article is part of a Special Issue entitled Brain Lipids.

  18. Space analogue studies in Antarctica

    NASA Astrophysics Data System (ADS)

    Lugg, D.; Shepanek, M.

    1999-09-01

    Medical research has been carried out on the Australian National Antarctic Research Expeditions (ANARE) for 50 years. As an extension of this program collaborative Australian/United States research on immunology, microbiology, psychology and remote medicine has produced important data and insight on how humans adapt to the stress of extreme isolation, confinement and the harsh environment of Antarctica. An outstanding analogue for the isolation and confinement of space missions (especially planetary outposts), ANARE has been used as an international research platform by Australia and the United States since 1993. Collaborative research has demonstrated a lowered responsiveness of the immune system under the isolation and confinement of Antarctic winter-over; a reduction of almost 50% in T cell proliferation to mltogen phytohaemogglutinin, as well as changes in latent herpesvirus states and the expansion of the polyclonal latent Epstein-Barr virus infected B cell populations. Although no clinically significant disease has been found to result from these immune changes, research is currently assessing the effects of psychological factors on the immune system. This and associated research performed to date and its relevance to both organisations is discussed, and comment made on possible extensions to the program in both medical and other fields.

  19. Condensed matter analogues of cosmology

    NASA Astrophysics Data System (ADS)

    Kibble, Tom; Srivastava, Ajit

    2013-10-01

    It is always exciting when developments in one branch of physics turn out to have relevance in a quite different branch. It would be hard to find two branches farther apart in terms of energy scales than early-universe cosmology and low-temperature condensed matter physics. Nevertheless ideas about the formation of topological defects during rapid phase transitions that originated in the context of the very early universe have proved remarkably fruitful when applied to a variety of condensed matter systems. The mathematical frameworks for describing these systems can be very similar. This interconnection has led to a deeper understanding of the phenomena in condensed matter systems utilizing ideas from cosmology. At the same time, one can view these condensed matter analogues as providing, at least in a limited sense, experimental access to the phenomena of the early universe for which no direct probe is possible. As this special issue well illustrates, this remains a dynamic and exciting field. The basic idea is that when a system goes through a rapid symmetry-breaking phase transition from a symmetric phase into one with spontaneously broken symmetry, the order parameter may make different choices in different regions, creating domains that when they meet can trap defects. The scale of those domains, and hence the density of defects, is constrained by the rate at which the system goes through the transition and the speed with which order parameter information propagates. This is what has come to be known as the Kibble-Zurek mechanism. The resultant scaling laws have now been tested in a considerable variety of different systems. The earliest experiments illustrating the analogy between cosmology and condensed matter were in liquid crystals, in particular on the isotropic-to-nematic transition, primarily because it is very easy to induce the phase transition (typically at room temperature) and to image precisely what is going on. This field remains one of the

  20. Space analogue studies in Antarctica.

    PubMed

    Lugg, D; Shepanek, M

    1999-01-01

    Medical research has been carried out on the Australian National Antarctic Research Expeditions (ANARE) for 50 years. As an extension of this program collaborative Australian/United States research on immunology, microbiology, psychology and remote medicine has produced important data and insight on how humans adapt to the stress of extreme isolation, confinement and the harsh environment of Antarctica. An outstanding analogue for the isolation and confinement of space missions (especially planetary outposts), ANARE has been used as an international research platform by Australia and the United States since 1993. Collaborative research has demonstrated a lowered responsiveness of the immune system under the isolation and confinement of Antarctic winter-over; a reduction of almost 50% in T cell proliferation to mitogen phytohaemogglutinin, as well as changes in latent herpesvirus states and the expansion of the polyclonal latent Epstein-Barr virus infected B cell populations. Although no clinically significant disease has been found to result from these immune changes, research is currently assessing the effects of psychological factors on the immune system. This and associated research performed to date and its relevance to both organisations is discussed, and comment made on possible extensions to the program in both medical and other fields.

  1. Space analogue studies in Antarctica

    NASA Technical Reports Server (NTRS)

    Lugg, D.; Shepanek, M.

    1999-01-01

    Medical research has been carried out on the Australian National Antarctic Research Expeditions (ANARE) for 50 years. As an extension of this program collaborative Australian/United States research on immunology, microbiology, psychology and remote medicine has produced important data and insight on how humans adapt to the stress of extreme isolation, confinement and the harsh environment of Antarctica. An outstanding analogue for the isolation and confinement of space missions (especially planetary outposts), ANARE has been used as an international research platform by Australia and the United States since 1993. Collaborative research has demonstrated a lowered responsiveness of the immune system under the isolation and confinement of Antarctic winter-over; a reduction of almost 50% in T cell proliferation to mitogen phytohaemogglutinin, as well as changes in latent herpesvirus states and the expansion of the polyclonal latent Epstein-Barr virus infected B cell populations. Although no clinically significant disease has been found to result from these immune changes, research is currently assessing the effects of psychological factors on the immune system. This and associated research performed to date and its relevance to both organisations is discussed, and comment made on possible extensions to the program in both medical and other fields.

  2. Fluorinated oxysterol analogues: Synthesis, molecular modelling and LXRβ activity.

    PubMed

    Rodriguez, Cristian R; Alvarez, Lautaro D; Dansey, M Virginia; Paolo, Luciano S; Veleiro, Adriana S; Pecci, Adali; Burton, Gerardo

    2017-01-01

    Liver X receptors (LXRs) are nuclear receptors that play central roles in the transcriptional control of lipid metabolism. The ability of LXRs to integrate metabolic and inflammation signalling makes them attractive targets for intervention in human metabolic diseases. Several oxidized metabolites of cholesterol (oxysterols) are endogenous LXR ligands, that modulate their transcriptional responses. While 25R-cholestenoic acid is an agonist of the LXRs, the synthetic analogue 27-norcholestenoic acid that lacks the 25-methyl is an inverse agonist. This change in the activity profile is triggered by a disruption of a key interaction between residues His435 and Trp457 that destabilizes the H11-H12 region of the receptor and favors the binding of corepressors. The introduction of fluorine atoms on the oxysterol side chain can favor both hydrophobic interactions as well as hydrogen bonds with the fluorine atoms and may thus induce changes in the receptor that may lead to changes in the activity profile. To evaluate these effects we have synthesized two fluorinated 27-nor-steroids, analogues of 27-norcholestenoic acid, the 25,25-difluoroacid and the corresponding 26-alcohol. The key step was a Reformatsky reaction on the C-24 cholenaldehyde, with ethyl bromodifluoroacetate under high intensity ultrasound (HIU) irradiation, followed by a Barton-McCombie type deoxygenation. Activity was evaluated in a luciferase reporter assay in the human HEK293T cells co-transfected with full length human LXRβ expression vector. The 25,25-difluoro-27-norcholestenoic acid was an inverse agonist and antagonist similar to its non-fluorinated analogue while its reduced derivative 25,25-difluoro-27-norcholest-5-ene-3β,26-diol was an agonist. Molecular dynamics simulation of the ligand-receptor complexes showed that the difluoroacid disrupted the His435-Trp457 interaction although the resulting conformational changes were different from those induced by the non-fluorinated analogue. In the

  3. Lipid14: The Amber Lipid Force Field

    PubMed Central

    2015-01-01

    The AMBER lipid force field has been updated to create Lipid14, allowing tensionless simulation of a number of lipid types with the AMBER MD package. The modular nature of this force field allows numerous combinations of head and tail groups to create different lipid types, enabling the easy insertion of new lipid species. The Lennard-Jones and torsion parameters of both the head and tail groups have been revised and updated partial charges calculated. The force field has been validated by simulating bilayers of six different lipid types for a total of 0.5 μs each without applying a surface tension; with favorable comparison to experiment for properties such as area per lipid, volume per lipid, bilayer thickness, NMR order parameters, scattering data, and lipid lateral diffusion. As the derivation of this force field is consistent with the AMBER development philosophy, Lipid14 is compatible with the AMBER protein, nucleic acid, carbohydrate, and small molecule force fields. PMID:24803855

  4. Do lipids influence the allergic sensitization process?

    PubMed

    Bublin, Merima; Eiwegger, Thomas; Breiteneder, Heimo

    2014-09-01

    Allergic sensitization is a multifactorial process that is not only influenced by the allergen and its biological function per se but also by other small molecular compounds, such as lipids, that are directly bound as ligands by the allergen or are present in the allergen source. Several members of major allergen families bind lipid ligands through hydrophobic cavities or electrostatic or hydrophobic interactions. These allergens include certain seed storage proteins, Bet v 1-like and nonspecific lipid transfer proteins from pollens and fruits, certain inhalant allergens from house dust mites and cockroaches, and lipocalins. Lipids from the pollen coat and furry animals and the so-called pollen-associated lipid mediators are codelivered with the allergens and can modulate the immune responses of predisposed subjects by interacting with the innate immune system and invariant natural killer T cells. In addition, lipids originating from bacterial members of the pollen microbiome contribute to the outcome of the sensitization process. Dietary lipids act as adjuvants and might skew the immune response toward a TH2-dominated phenotype. In addition, the association with lipids protects food allergens from gastrointestinal degradation and facilitates their uptake by intestinal cells. These findings will have a major influence on how allergic sensitization will be viewed and studied in the future.

  5. Do lipids influence the allergic sensitization process?

    PubMed Central

    Bublin, Merima; Eiwegger, Thomas; Breiteneder, Heimo

    2014-01-01

    Allergic sensitization is a multifactorial process that is not only influenced by the allergen and its biological function per se but also by other small molecular compounds, such as lipids, that are directly bound as ligands by the allergen or are present in the allergen source. Several members of major allergen families bind lipid ligands through hydrophobic cavities or electrostatic or hydrophobic interactions. These allergens include certain seed storage proteins, Bet v 1–like and nonspecific lipid transfer proteins from pollens and fruits, certain inhalant allergens from house dust mites and cockroaches, and lipocalins. Lipids from the pollen coat and furry animals and the so-called pollen-associated lipid mediators are codelivered with the allergens and can modulate the immune responses of predisposed subjects by interacting with the innate immune system and invariant natural killer T cells. In addition, lipids originating from bacterial members of the pollen microbiome contribute to the outcome of the sensitization process. Dietary lipids act as adjuvants and might skew the immune response toward a TH2-dominated phenotype. In addition, the association with lipids protects food allergens from gastrointestinal degradation and facilitates their uptake by intestinal cells. These findings will have a major influence on how allergic sensitization will be viewed and studied in the future. PMID:24880633

  6. DMSO induces dehydration near lipid membrane surfaces.

    PubMed

    Cheng, Chi-Yuan; Song, Jinsuk; Pas, Jolien; Meijer, Lenny H H; Han, Songi

    2015-07-21

    Dimethyl sulfoxide (DMSO) has been broadly used in biology as a cosolvent, a cryoprotectant, and an enhancer of membrane permeability, leading to the general assumption that DMSO-induced structural changes in cell membranes and their hydration water play important functional roles. Although the effects of DMSO on the membrane structure and the headgroup dehydration have been extensively studied, the mechanism by which DMSO invokes its effect on lipid membranes and the direct role of water in this process are unresolved. By directly probing the translational water diffusivity near unconfined lipid vesicle surfaces, the lipid headgroup mobility, and the repeat distances in multilamellar vesicles, we found that DMSO exclusively weakens the surface water network near the lipid membrane at a bulk DMSO mole fraction (XDMSO) of <0.1, regardless of the lipid composition and the lipid phase. Specifically, DMSO was found to effectively destabilize the hydration water structure at the lipid membrane surface at XDMSO <0.1, lower the energetic barrier to dehydrate this surface water, whose displacement otherwise requires a higher activation energy, consequently yielding compressed interbilayer distances in multilamellar vesicles at equilibrium with unaltered bilayer thicknesses. At XDMSO >0.1, DMSO enters the lipid interface and restricts the lipid headgroup motion. We postulate that DMSO acts as an efficient cryoprotectant even at low concentrations by exclusively disrupting the water network near the lipid membrane surface, weakening the cohesion between water and adhesion of water to the lipid headgroups, and so mitigating the stress induced by the volume change of water during freeze-thaw.

  7. Interaction of lipids with the neurotensin receptor 1.

    PubMed

    Bolivar, Juan H; Muñoz-García, Juan C; Castro-Dopico, Tomas; Dijkman, Patricia M; Stansfeld, Phillip J; Watts, Anthony

    2016-06-01

    Information about lipid-protein interactions for G protein-coupled receptors (GPCRs) is scarce. Here, we use electron spin resonance (ESR) and spin-labelled lipids to study lipid interactions with the rat neurotensin receptor 1 (NTS1). A fusion protein containing rat NTS1 fully able to bind its ligand neurotensin was reconstituted into phosphatidylcholine (PC) bilayers at specific lipid:protein molar ratios. The fraction of motionally restricted lipids in the range of 40:1 to 80:1 lipids per receptor suggested an oligomeric state of the protein, and the result was unaffected by increasing the hydrophobic thickness of the lipid bilayer from C-18 to C-20 or C-22 chain length PC membranes. Comparison of the ESR spectra of different spin-labelled lipids allowed direct measurement of lipid binding constants relative to PC (Kr), with spin-labelled phosphatidylethanolamine (PESL), phosphatidylserine (PSSL), stearic acid (SASL), and a spin labelled cholesterol analogue (CSL) Kr values of 1.05±0.05, 1.92±0.08, 5.20±0.51 and 0.91±0.19, respectively. The results contrast with those from rhodopsin, the only other GPCR studied this way, which has no selectivity for the lipids analysed here. Molecular dynamics simulations of NTS1 in bilayers are in agreement with the ESR data, and point to sites in the receptor where PS could interact with higher affinity. Lipid selectivity could be necessary for regulation of ligand binding, oligomerisation and/or G protein activation processes. Our results provide insight into the potential modulatory mechanisms that lipids can exert on GPCRs.

  8. Loratadine analogues as MAGL inhibitors.

    PubMed

    Patel, Jayendra Z; Ahenkorah, Stephen; Vaara, Miia; Staszewski, Marek; Adams, Yahaya; Laitinen, Tuomo; Navia-Paldanius, Dina; Parkkari, Teija; Savinainen, Juha R; Walczyński, Krzysztof; Laitinen, Jarmo T; Nevalainen, Tapio J

    2015-04-01

    Compound 12a (JZP-361) acted as a potent and reversible inhibitor of human recombinant MAGL (hMAGL, IC50=46 nM), and was found to have almost 150-fold higher selectivity over human recombinant fatty acid amide hydrolase (hFAAH, IC50=7.24 μM) and 35-fold higher selectivity over human α/β-hydrolase-6 (hABHD6, IC50=1.79 μM). Additionally, compound 12a retained H1 antagonistic affinity (pA2=6.81) but did not show cannabinoid receptor activity, when tested at concentrations ⩽ 10 μM. Hence, compound 12a represents a novel dual-acting pharmacological tool possessing both MAGL-inhibitory and antihistaminergic activities.

  9. Recombinant DNA derived monomeric insulin analogue: comparison with soluble human insulin in normal subjects.

    PubMed Central

    Vora, J. P.; Owens, D. R.; Dolben, J.; Atiea, J. A.; Dean, J. D.; Kang, S.; Burch, A.; Brange, J.

    1988-01-01

    OBJECTIVE--To compare the rate of absorption from subcutaneous tissue and the resulting hypoglycaemic effect of iodine-125 labelled soluble human insulin and a monomeric insulin analogue derived by recombinant DNA technology. DESIGN--Single blind randomised comparison of equimolar doses of 125I labelled soluble human insulin and insulin analogue. SETTING--Study in normal people at a diabetes research unit and a university department of medical physics. SUBJECTS--Seven healthy male volunteers aged 20-39 not receiving any other drugs. INTERVENTIONS--After an overnight fast and a basal period of one hour two doses (0.05 and 0.1 U/kg) of 125I labelled soluble human insulin and insulin analogue were injected subcutaneously into the anterior abdominal wall on four separate days. END POINT--To find a fast acting insulin for meal related requirements in insulin dependent diabetics. MEASUREMENTS and main results--Residual radioactivity at the injection site was measured continuously for the first two hours after injection of the 125I labelled preparations and thereafter for five minutes simultaneously with blood sampling. Frequent venous blood samples were obtained over six hours for determination of plasma immunoreactive insulin, insulin analogue, glucose, and glucagon values. Time to 50% of initial radioactivity at the injection site for the insulin analogue compared with soluble insulin was 61 v 135 minutes (p less than 0.05) with 0.05 U/kg and 67 v 145 minutes (p less than 0.001) with 0.1 U/kg. Concentrations in plasma increased faster after the insulin analogue compared with soluble insulin, resulting in higher plasma concentrations between 10 and 150 minutes (0.001 less than p less than 0.05) after 0.05 U/kg and between 40 and 360 minutes (0.001 less than p less than 0.05) after 0.1 U/kg. The hypoglycaemic response to insulin analogue was a plasma glucose nadir at 60 minutes with both doses compared with 90 and 120 minutes with soluble insulin at 0.5 and 0.1 U

  10. Lipid flopping in the liver.

    PubMed

    Linton, Kenneth J

    2015-10-01

    Bile is synthesized in the liver and is essential for the emulsification of dietary lipids and lipid-soluble vitamins. It is a complex mixture of amphiphilic bile acids (BAs; which act as detergent molecules), the membrane phospholipid phosphatidylcholine (PC), cholesterol and a variety of endogenous metabolites and waste products. Over the last 20 years, the combined effort of clinicians, geneticists, physiologists and biochemists has shown that each of these bile components is transported across the canalicular membrane of the hepatocyte by its own specific ATP-binding cassette (ABC) transporter. The bile salt export pump (BSEP) ABCB11 transports the BAs and drives bile flow from the liver, but it is now clear that two lipid transporters, ABCB4 (which flops PC into the bile) and the P-type ATPase ATP8B1/CDC50 (which flips a different phospholipid in the opposite direction) play equally critical roles that protect the biliary tree from the detergent activity of the bile acids. Understanding the interdependency of these lipid floppases and flippases has allowed the development of an assay to measure ABCB4 function. ABCB4 harbours numerous mis-sense mutations which probably reflects the spectrum of liver disease rooted in ABCB4 aetiology. Characterization of the effect of these mutations at the protein level opens the possibility for the development of personalized prognosis and treatment.

  11. Intrinsic lipid preferences and kinetic mechanism of Escherichia coli MurG.

    PubMed

    Chen, Lan; Men, Hongbin; Ha, Sha; Ye, Xiang-Yang; Brunner, Livia; Hu, Yanan; Walker, Suzanne

    2002-05-28

    MurG, the last enzyme involved in the intracellular phase of peptidoglycan synthesis, is a membrane-associated glycosyltransferase that couples N-acetyl glucosamine to the C4 hydroxyl of a lipid-linked N-acetyl muramic acid derivative (lipid I) to form the beta-linked disaccharide (lipid II) that is the minimal subunit of peptidoglycan. Lipid I is anchored to the bacterial membrane by a 55 carbon undecaprenyl chain. Because this long lipid chain impedes kinetic analysis of MurG, we have been investigating alternative substrates containing shortened lipid chains. We now describe the intrinsic lipid preferences of MurG and show that the optimal substrate for MurG in the absence of membranes is not the natural substrate. Thus, while the undecaprenyl carrier lipid may be critical for certain steps in the biosynthetic pathway to peptidoglycan, it is not required-in fact, is not preferred-by MurG. Using synthetic substrate analogues and products containing different length lipid chains, as well as a synthetic dead-end acceptor analogue, we have also shown that MurG follows a compulsory ordered Bi Bi mechanism in which the donor sugar binds first. This information should facilitate obtaining crystals of MurG with substrates bound, an important goal because MurG belongs to a major superfamily of NDP-glycosyltransferases for which no structures containing intact substrates have yet been solved.

  12. Glucagonlike Peptide 2 Analogue Teduglutide

    PubMed Central

    Chaturvedi, Lakshmi S.; Basson, Marc D.

    2015-01-01

    IMPORTANCE Short bowel syndrome occurs when a shortened intestine cannot absorb sufficient nutrients or fluids. Teduglutide is a recombinant analogue of human glucagonlike peptide 2 that reduces dependence on parenteral nutrition in patients with short bowel syndrome by promoting enterocytic proliferation, increasing the absorptive surface area. However, enterocyte function depends not only on the number of cells that are present but also on differentiated features that facilitate nutrient absorption and digestion. OBJECTIVE To test the hypothesis that teduglutide impairs human intestinal epithelial differentiation. DESIGN AND SETTING We investigated the effects of teduglutide in the modulation of proliferation and differentiation in human Caco-2 intestinal epithelial cells at a basic science laboratory. This was an in vitro study using Caco-2 cells, a human-derived intestinal epithelial cell line commonly used to model enterocytic biology. EXPOSURE Cells were exposed to teduglutide or vehicle control. MAINOUTCOMESAND MEASURES We analyzed the cell cycle by bromodeoxyuridine incorporation or propidium iodide staining and flow cytometry and measured cell proliferation by 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay. We used quantitative reverse transcription–polymerase chain reaction to assay the expression of the enterocytic differentiation markers villin, sucrase-isomaltase, glucose transporter 2 (GLUT2), and dipeptidyl peptidase 4 (DPP-4), as well as that of the putative differentiation signals schlafen 12 (SLFN12) and caudal-related homeobox intestine-specific transcription factor (Cdx2). Villin promoter activity was measured by a luciferase-based assay. RESULTS The MTS assay demonstrated that teduglutide increased cell numbers by a mean (SD) of 10% (2%) over untreated controls at a maximal 500nM (n = 6, P < .05). Teduglutide increased bromodeoxyuridine-positive cells vs untreated controls by a mean (SD

  13. Clinical uses of gonadotropin-releasing hormone analogues.

    PubMed Central

    Casper, R F

    1991-01-01

    Gonadotropin-releasing hormone (Gn-RH) analogues are synthetic derivatives of the native hypothalamic peptide with alterations in their chemical structure that result in changes in biologic activity. Several Gn-RH agonists are available for clinical use, and all act through the same mechanism: first to stimulate and then to inhibit gonadotropin and gonadal steroid secretion by downregulating the pituitary Gn-RN receptors. This review should provide clinicians with a working knowledge of the physiologic and pharmacokinetic features of Gn-RH agonists. Although over 2000 articles concerning Gn-RH analogues have been published I chose to review only those that were the first to report a novel clinical application. Gn-RH agonists have proved to be extremely efficacious in treating gonadal steroid-dependent problems such as endometriosis, uterine leiomyoma, precocious puberty and prostate and breast cancers, and they have resulted in very few side effects. Long-term use may, however, lead to skeletal calcium loss in women as a consequence of hypoestrogenism. Further research is needed to prevent this and maintain clinical efficacy. PMID:1986827

  14. On the mechanical analogue of DNA.

    PubMed

    Yakushevich, Ludmila

    2017-03-01

    The creation of mechanical analogues of biological systems is known as a useful instrument that helps to understand better the dynamical mechanisms of the functioning of living organisms. Mechanical analogues of biomolecules are usually constructed for imitation of their internal mobility, which is one of the most important properties of the molecules. Among the different types of internal motions, angular oscillations of nitrous bases are of special interest because they make a substantial contribution to the base pairs opening that in turn is an important element of the process of the DNA-protein recognition. In this paper, we investigate the possibility to construct a mechanical analogue for imitation of angular oscillations of nitrous bases in inhomogeneous DNA. It is shown that the analogue has the form of a mechanical chain of non-identical pendulums that oscillate in the gravitational field of the Earth and coupled by identical springs. The masses and lengths of pendulums, as well as the distances between neighboring pendulums and the rigidity of springs are calculated. To illustrate the approach, we present the result of construction of the mechanical analogue of the fragment of the sequence of bacteriophage T7D.

  15. Analogue Downscaling of Seasonal Rainfall Forecasts

    NASA Astrophysics Data System (ADS)

    Charles, A. N.; Timbal, B.; Hendon, H.

    2010-12-01

    We have taken an existing statistical downscaling model (SDM), based on meteorological analogues that was developed for downscaling climate change projections (Timbal et al 2009), and applied it in the seasonal forecasting context to produce downscaled rainfall hindcasts from a coupled model seasonal forecast system (POAMA). Downscaling of POAMA forecasts is required to provide seasonal climate information at local scales of interest. Analogue downscaling is a simple technique to generate rainfall forecasts appropriate to the local scale by conditioning on the large scale predicted GCM circulation and the local topography and climate. Analogue methods are flexible and have been shown to produce good results when downscaling 20th century South Eastern Australian rainfall output from climate models. A set of re-forecasts for three month rainfall at 170 observing stations in the South Murray Darling region of Australia were generated using predictors from the POAMA re-forecasts as input for the analogue SDM. The predictors were optimised over a number of different GCMS in previous climate change downscaling studies. Downscaling with the analogue SDM results in predicted rainfall with realistic variance while maintaining the modest predictive skill of the dynamical model. Evaluation of the consistency between the large scale mean of downscaled and direct GCM output precipitation is encouraging.

  16. Doxorubicin Lipid Complex Injection

    MedlinePlus

    Doxorubicin lipid complex is used to treat ovarian cancer that has not improved or that has worsened after treatment with other medications. Doxorubicin lipid complex is also used to treat Kaposi's sarcoma ( ...

  17. Daunorubicin Lipid Complex Injection

    MedlinePlus

    Daunorubicin lipid complex is used to treat advanced Kaposi's sarcoma (a type of cancer that causes abnormal tissue to ... body) related to acquired immunodeficiency syndrome (AIDS). Daunorubicin lipid complex is in a class of medications called ...

  18. Irinotecan Lipid Complex Injection

    MedlinePlus

    Irinotecan lipid complex is used in combination with other medications to treat pancreatic cancer that has spread to other ... worsened after treatment with other chemotherapy medications. Irinotecan lipid complex is in a class of antineoplastic medications ...

  19. Vincristine Lipid Complex Injection

    MedlinePlus

    Vincristine lipid complex is used to treat a certain type of acute lymphoblastic leukemia (ALL; a type ... at least two different treatments with other medications. Vincristine lipid complex is in a class of medications ...

  20. Iminosugar C-Glycoside Analogues of α-d-GlcNAc-1-Phosphate: Synthesis and Bacterial Transglycosylase Inhibition

    PubMed Central

    2015-01-01

    We herein describe the first synthesis of iminosugar C-glycosides of α-d-GlcNAc-1-phosphate in 10 steps starting from unprotected d-GlcNAc. A diastereoselective intramolecular iodoamination–cyclization as the key step was employed to construct the central piperidine ring of the iminosugar and the C-glycosidic structure of α-d-GlcNAc. Finally, the iminosugar phosphonate and its elongated phosphate analogue were accessed. These phosphorus-containing iminosugars were coupled efficiently with lipophilic monophosphates to give lipid-linked pyrophosphate derivatives, which are lipid II mimetics endowed with potent inhibitory properties toward bacterial transglycosylases (TGase). PMID:25137529

  1. Global analogue of the Aharonov-Bohm effect

    SciTech Connect

    Navin, R.L.

    1993-12-31

    This thesis deals with a global analogue of the Aharonov-Bohm effect previously pointed out by other authors. The effect was not well understood because the pure Aharonov-Bohm cross section was thought to be merely an approximate low energy limit. This thesis provides a detailed analysis and reveals that in the particular model considered, there is an exact Aharonov-Bohm cross section over the energy range that a mass splitting occurs. At energies slightly above the mass splitting, the effect has completely disappeared and there is effectively no scattering at large distances. This is a curious observation as it was previously thought that a global theory would not act exactly like a local one over an extended range of energies. It begs the heretical speculation that experimentally observed forces modelled with Lagrangians possessing local symmetries may have an underlying global theory.

  2. GABAA Receptor Modulation by Etomidate Analogues

    PubMed Central

    Pejo, Ervin; Santer, Peter; Wang, Lei; Dershwitz, Philip; Husain, S. Shaukat; Raines, Douglas E.

    2015-01-01

    Background Etomidate is a highly potent anesthetic agent that is believed to produce hypnosis by enhancing γ-aminobutyric acid type A (GABAA) receptor function. We characterized the GABAA receptor and hypnotic potencies of etomidate analogues. We then used computational techniques to build statistical and graphical models that relate the potencies of these etomidate analogues to their structures in order to identify the specific molecular determinants of potency. Methods GABAA receptor potencies were defined with voltage-clamp electrophysiology using α1β3γ2 receptors harboring a channel mutation (α1(L264T)) that enhances anesthetic sensitivity (n = 36 – 60 measurements per concentration-response curve). The hypnotic potencies of etomidate analogues were defined using a loss of righting reflexes assay in Sprague Dawley rats (n = 9 – 21 measurements per dose-response curve). Three-dimensional quantitative structure-activity relationships were determined in silico using comparative molecular field analysis. Results The GABAA receptor and hypnotic potencies of etomidate and the etomidate analogues ranged by 91-fold and 53-fold, respectively. These potency measurements were significantly correlated (r2 = 0.72), but neither measurement correlated with drug hydrophobicity (r2 = 0.019 and 0.005, respectively). Statistically significant and predictive comparative molecular field analysis models were generated and a pharmacophore model was built that revealed both the structural elements in etomidate analogues associated with high potency and the interactions that these elements make with the etomidate binding site. Conclusion There are multiple specific structural elements in etomidate and etomidate analogues that mediate GABAA receptor modulation. Modifying any one element can alter receptor potency by an order of magnitude or more. PMID:26691905

  3. Acting Atoms.

    ERIC Educational Resources Information Center

    Farin, Susan Archie

    1997-01-01

    Describes a fun game in which students act as electrons, protons, and neutrons. This activity is designed to help students develop a concrete understanding of the abstract concept of atomic structure. (DKM)

  4. Classical Simulated Annealing Using Quantum Analogues

    NASA Astrophysics Data System (ADS)

    La Cour, Brian R.; Troupe, James E.; Mark, Hans M.

    2016-08-01

    In this paper we consider the use of certain classical analogues to quantum tunneling behavior to improve the performance of simulated annealing on a discrete spin system of the general Ising form. Specifically, we consider the use of multiple simultaneous spin flips at each annealing step as an analogue to quantum spin coherence as well as modifications of the Boltzmann acceptance probability to mimic quantum tunneling. We find that the use of multiple spin flips can indeed be advantageous under certain annealing schedules, but only for long anneal times.

  5. Insulin analogues: action profiles beyond glycaemic control.

    PubMed

    Eckardt, Kristin; Eckel, Jürgen

    2008-02-01

    A variety of studies have documented significant improvements in the treatment of type 1 and 2 diabetes after the introduction of artificial insulins. This review gives an overview of insulin analogues which are currently approved for therapeutical use. Clinical data regarding the efficiency to control blood glucose level as well as improving HbA1c level in comparison to conventional insulin preparations in type 1 and 2 diabetic patients are summarized. Furthermore, special features of insulin analogues regarding their signalling properties are discussed with focus on the proliferative effects of insulin glargine as well as some recent data of insulin detemir.

  6. Mechanistic characterization of the tetraacyldisaccharide-1-phosphate 4'-kinase LpxK involved in lipid A biosynthesis.

    PubMed

    Emptage, Ryan P; Pemble, Charles W; York, John D; Raetz, Christian R H; Zhou, Pei

    2013-04-02

    The sixth step in the lipid A biosynthetic pathway involves phosphorylation of the tetraacyldisaccharide-1-phosphate (DSMP) intermediate by the cytosol-facing inner membrane kinase LpxK, a member of the P-loop-containing nucleoside triphosphate (NTP) hydrolase superfamily. We report the kinetic characterization of LpxK from Aquifex aeolicus and the crystal structures of LpxK in complex with ATP in a precatalytic binding state, the ATP analogue AMP-PCP in the closed catalytically competent conformation, and a chloride anion revealing an inhibitory conformation of the nucleotide-binding P-loop. We demonstrate that LpxK activity in vitro requires the presence of a detergent micelle and formation of a ternary LpxK-ATP/Mg(2+)-DSMP complex. Using steady-state kinetics, we have identified crucial active site residues, leading to the proposal that the interaction of D99 with H261 acts to increase the pKa of the imidazole moiety, which in turn serves as the catalytic base to deprotonate the 4'-hydroxyl of the DSMP substrate. The fact that an analogous mechanism has not yet been observed for other P-loop kinases highlights LpxK as a distinct member of the P-loop kinase family, a notion that is also reflected through its localization at the membrane, lipid substrate, and overall structure.

  7. Synthesis of modified peptidoglycan precursor analogues for the inhibition of glycosyltransferase.

    PubMed

    Dumbre, Shrinivas; Derouaux, Adeline; Lescrinier, Eveline; Piette, André; Joris, Bernard; Terrak, Mohammed; Herdewijn, Piet

    2012-06-06

    The peptidoglycan glycosyltransferases (GTs) are essential enzymes that catalyze the polymerization of glycan chains of the bacterial cell wall from lipid II and thus constitute a validated antibacterial target. Their enzymatic cavity is composed of a donor site for the growing glycan chain (where the inhibitor moenomycin binds) and an acceptor site for lipid II substrate. In order to find lead inhibitors able to fill this large active site, we have synthesized a series of substrate analogues of lipid I and lipid II with variations in the lipid, the pyrophosphate, and the peptide moieties and evaluated their biological effect on the GT activity of E. coli PBP1b and their antibacterial potential. We found several compounds able to inhibit the GT activity in vitro and cause growth defect in Bacillus subtilis . The more active was C16-phosphoglycerate-MurNAc-(L-Ala-D-Glu)-GlcNAc, which also showed antibacterial activity. These molecules are promising leads for the design of new antibacterial GT inhibitors.

  8. Substrate selectivity of Dengue and Zika virus NS5 polymerase towards 2'-modified nucleotide analogues.

    PubMed

    Potisopon, Supanee; Ferron, François; Fattorini, Véronique; Selisko, Barbara; Canard, Bruno

    2017-04-01

    In targeting the essential viral RNA-dependent RNA-polymerase (RdRp), nucleotide analogues play a major role in antiviral therapies. In the Flaviviridae family, the hepatitis C virus (HCV) can be eradicated from chronically infected patients using a combination of drugs which generally include the 2'-modified uridine analogue Sofosbuvir, delivered as nucleotide prodrug. Dengue and Zika viruses are emerging flaviviruses whose RdRp is closely related to that of HCV, yet no nucleoside drug has been clinically approved for these acute infections. We have purified dengue and Zika virus full-length NS5, the viral RdRps, and used them to assemble a stable binary complex made of NS5 and virus-specific RNA primer/templates. The complex was used to assess the selectivity of NS5 towards nucleotide analogues bearing modifications at the 2'-position. We show that dengue and Zika virus RdRps exhibit the same discrimination pattern: 2'-O-Me > 2'-C-Me-2'-F > 2'-C-Me nucleoside analogues, unlike HCV RdRp for which the presence of the 2'-F is beneficial rendering the discrimination pattern 2'-O-Me > 2'-C-Me ≥ 2'-C-Me-2'-F. Both 2'-C-Me and 2'-C-Me-2'-F analogues act as non-obligate RNA chain terminators. The dengue and Zika NS5 nucleotide selectivity towards 2'-modified NTPs mirrors potency of the corresponding analogues in infected cell cultures.

  9. Nutrients and neurodevelopment: lipids.

    PubMed

    González, Horacio F; Visentin, Silvana

    2016-10-01

    Nutrients, lipids in particular, make up the central nervous system structure and play major functional roles: they stimulate development, migration, and nerve cell differentiation. They are part of gray matter, white matter, nerve nuclei, and synaptogenesis. Breast milk contains lipids which are crucial for infant brain development. The lipid profile of breast milk was used as a guideline for the development of breast milk substitutes. However, to date, no substitute has matched it. Complementary feeding should include docosahexaenoic acid, arachidonic acid, other polyunsaturated fatty acids, saturated fatty acids, and complex lipids found in milk fat. The lipid composition of breast milk depends on maternal intake and nutritional status during pregnancy and breast-feeding. It has a great impact on development. Our goal is to review scientific literature regarding the role of lipids on infant brain development and the importance of breast milk lipid composition, maternal diet, and complementary feeding.

  10. Lipids and Prostate Cancer

    PubMed Central

    Suburu, Janel; Chen, Yong Q.

    2012-01-01

    The role of lipid metabolism has gained particular interest in prostate cancer research. A large body of literature has outlined the unique upregulation of de novo lipid synthesis in prostate cancer. Concordant with this lipogenic phenotype is a metabolic shift, in which cancer cells use alternative enzymes and pathways to facilitate the production of fatty acids. These newly synthesized lipids may support a number of cellular processes to promote cancer cell proliferation and survival. Hence, de novo lipogenesis is under intense investigation as a therapeutic target. Epidemiologic studies suggest dietary fat may also contribute to prostate cancer; however, whether dietary lipids and de novo synthesized lipids are differentially metabolized remains unclear. Here, we highlight the lipogenic nature of prostate cancer, especially the promotion of de novo lipid synthesis, and the significance of various dietary lipids in prostate cancer development and progression. PMID:22503963

  11. The CD1 size problem: lipid antigens, ligands, and scaffolds

    PubMed Central

    Ly, Dalam

    2014-01-01

    Whereas research on CD1d has emphasized a few glycosyl ceramides, the broader family of four human CD1 antigen-presenting molecules binds hundreds of distinct self-lipids. Individual lipid types bind within CD1 grooves in different ways, such that they partially fill the groove, match the groove volume, or protrude substantially from the groove. These differing modes of binding can now be connected to differing immunological functions, as individual lipids can act as stimulatory antigens, inhibitory ligands, or space-filling scaffolds. Because each type of CD1 protein folds to produce antigen-binding grooves with differing sizes and shapes, CD1a, CD1b, CD1c, CD1d, and CD1e have distinct mechanisms of capturing self-lipids and exchanging them for foreign lipids. The size discrepancy between endogeneous lipids and groove volume is most pronounced for CD1b. Recent studies show that the large CD1b cavity can simultaneously bind two self-lipids, the antigen, and its scaffold lipid, which can be exchanged for one large bacterial lipid. In this review, we will highlight recent studies showing how cells regulate lipid antigen loading and the roles CD1 groove structures have in control of the presentation of chemically diverse lipids to T cells. PMID:24658584

  12. Dumb holes: analogues for black holes.

    PubMed

    Unruh, W G

    2008-08-28

    The use of sonic analogues to black and white holes, called dumb or deaf holes, to understand the particle production by black holes is reviewed. The results suggest that the black hole particle production is a low-frequency and low-wavenumber process.

  13. CO2 Capture with Enzyme Synthetic Analogue

    SciTech Connect

    Cordatos, Harry

    2010-03-01

    Project overview provides background on carbonic anhydrase transport mechanism for CO2 in the human body and proposed approach for ARPA-E project to create a synthetic enzyme analogue and utilize it in a membrane for CO2 capture from flue gas.

  14. Solanapyrone analogues from a Hawaiian fungicolous fungus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Four new solanayrone analogues (solanapyrones J-M; 1-4) have been isolated from an unidentified fungicolous fungus collected in Hawaii. The structures and relative configurations of these compounds were determined by analysis of ID NMR, 2D NMR, and MS data. Solanapyrone J(1) showed antifungal acti...

  15. Mechanics of Lipid Bilayer Membranes

    NASA Astrophysics Data System (ADS)

    Powers, Thomas R.

    All cells have membranes. The plasma membrane encapsulates the cell's interior, acting as a barrier against the outside world. In cells with nuclei (eukaryotic cells), membranes also form internal compartments (organelles) which carry out specialized tasks, such as protein modification and sorting in the case of the Golgi apparatus, and ATP production in the case of mitochondria. The main components of membranes are lipids and proteins. The proteins can be channels, carriers, receptors, catalysts, signaling molecules, or structural elements, and typically contribute a substantial fraction of the total membrane dry weight. The equilibrium properties of pure lipid membranes are relatively well-understood, and will be the main focus of this article. The framework of elasticity theory and statistical mechanics that we will develop will serve as the foundation for understanding biological phenomena such as the nonequilibrium behavior of membranes laden with ion pumps, the role of membrane elasticity in ion channel gating, and the dynamics of vesicle fission and fusion. Understanding the mechanics of lipid membranes is also important for drug encapsulation and delivery.

  16. Efficacy of the small molecule inhibitor of Lipid II BAS00127538 against Acinetobacter baumannii

    PubMed Central

    de Leeuw, Erik PH

    2014-01-01

    Objective To test the activity of a small molecule compound that targets Lipid II against Acinetobacter baumannii. Methods Susceptibility to small molecule Lipid II inhibitor BAS00127538 was assessed using carbapenem- and colistin-resistant clinical isolates of A. baumannii. In addition, synergy between colisitin and this compound was assessed. Results Small molecule Lipid II inhibitor BAS00127538 potently acts against A. baumannii and acts synergistically with colistin. Conclusion For the first time, a compound that targets Lipid II is described that acts against multi-drug resistant isolates of A. baumannii. The synergy with colistin warrants further lead development of BAS00127538. PMID:25143710

  17. [Dmt(1)]DALDA analogues modified with tyrosine analogues at position 1.

    PubMed

    Cai, Yunxin; Lu, Dandan; Chen, Zhen; Ding, Yi; Chung, Nga N; Li, Tingyou; Schiller, Peter W

    2016-08-01

    Analogues of [Dmt(1)]DALDA (H-Dmt-d-Arg-Phe-Lys-NH2; Dmt=2',6'-dimethyltyrosine), a potent μ opioid agonist peptide with mitochondria-targeted antioxidant activity were prepared by replacing Dmt with various 2',6'-dialkylated Tyr analogues, including 2',4',6'-trimethyltyrosine (Tmt), 2'-ethyl-6'-methyltyrosine (Emt), 2'-isopropyl-6'-methyltyrosine (Imt) and 2',6'-diethyltyrosine (Det). All compounds were selective μ opioid agonists and the Tmt(1)-, Emt(1) and Det(1)-analogues showed subnanomolar μ opioid receptor binding affinities. The Tmt(1)- and Emt(1)-analogues showed improved antioxidant activity compared to the Dmt(1)-parent peptide in the DPPH radical-scavenging capacity assay, and thus are of interest as drug candidates for neuropathic pain treatment.

  18. Discovery of desketoraloxifene analogues as inhibitors of mammalian, Pseudomonas aeruginosa, and NAPE phospholipase D enzymes.

    PubMed

    Scott, Sarah A; Spencer, Cierra T; O'Reilly, Matthew C; Brown, Kyle A; Lavieri, Robert R; Cho, Chul-Hee; Jung, Dai-Il; Larock, Richard C; Brown, H Alex; Lindsley, Craig W

    2015-02-20

    Phospholipase D (PLD) hydrolyses cellular lipids to produce the important lipid second messenger phosphatidic acid. A PLD enzyme expressed by Pseudomonas aeruginosa (PldA) has been shown to be important in bacterial infection, and NAPE-PLD has emerged as being key in the synthesis of endocannabinoids. In order to better understand the biology and therapeutic potential of these less explored PLD enzymes, small molecule tools are required. Selective estrogen receptor modulators (SERMs) have been previously shown to inhibit mammalian PLD (PLD1 and PLD2). By targeted screening of a library of SERM analogues, additional parallel synthesis, and evaluation in multiple PLD assays, we discovered a novel desketoraloxifene-based scaffold that inhibited not only the two mammalian PLDs but also structurally divergent PldA and NAPE-PLD. This finding represents an important first step toward the development of small molecules possessing universal inhibition of divergent PLD enzymes to advance the field.

  19. Epidermal surface lipids.

    PubMed

    Pappas, Apostolos

    2009-03-01

    A layer of lipids, which are of both sebaceous and keratinocyte origin, covers the surface of the skin. The apparent composition of surface lipids varies depending on the selected method of sampling. Lipids produced by the epidermal cells are an insignificant fraction of the total extractable surface lipid on areas rich in sebaceous glands. Due to the holocrine activity of the sebaceous gland, its product of secretion (sebum) is eventually released to the surface of the skin and coats the fur as well. Lipids of epidermal origin fill the spaces between the cells, like mortar or cement. The sebaceous lipids are primarily non polar lipids as triglycerides, wax esters and squalene, while epidermal lipids are a mixture of ceramides, free fatty acids and cholesterol. The composition of the sebaceous lipids is unique and intriguing and elevated sebum excretion is a major factor involved in the pathophysiology of acne. Recent studies have elucidated the roles that epidermal surface lipids have on normal skin functions and acne.

  20. Epidermal surface lipids

    PubMed Central

    2009-01-01

    A layer of lipids, which are of both sebaceous and keratinocyte origin, covers the surface of the skin. The apparent composition of surface lipids varies depending on the selected method of sampling. Lipids produced by the epidermal cells are an insignificant fraction of the total extractable surface lipid on areas rich in sebaceous glands. Due to the holocrine activity of the sebaceous gland, its product of secretion (sebum) is eventually released to the surface of the skin and coats the fur as well. Lipids of epidermal origin fill the spaces between the cells, like mortar or cement. The sebaceous lipids are primarily non polar lipids as triglycerides, wax esters and squalene, while epidermal lipids are a mixture of ceramides, free fatty acids and cholesterol. The composition of the sebaceous lipids is unique and intriguing and elevated sebum excretion is a major factor involved in the pathophysiology of acne. Recent studies have elucidated the roles that epidermal surface lipids have on normal skin functions and acne. PMID:20224687

  1. Tryptophan analogues. 1. Synthesis and antihypertensive activity of positional isomers.

    PubMed

    Safdy, M E; Kurchacova, E; Schut, R N; Vidrio, H; Hong, E

    1982-06-01

    A series of tryptophan analogues having the carboxyl function at the beta-position was synthesized and tested for antihypertensive activity. The 5-methoxy analogue 46 exhibited antihypertensive activity in the rat via the oral route and was much more potent than the normal tryptophan analogue. The methyl ester was found to be a critical structural feature for activity.

  2. Balancing Act

    ERIC Educational Resources Information Center

    Kennedy, Mike

    2007-01-01

    For some administrators and planners, designing and building education facilities may sometimes seem like a circus act--trying to project a persona of competence and confidence while juggling dozens of issues. Meanwhile, the audience--students, staff members and taxpayers--watch and wait with anticipation in hopes of getting what they paid for and…

  3. Functional organization of the HIV lipid envelope

    PubMed Central

    Huarte, Nerea; Carravilla, Pablo; Cruz, Antonio; Lorizate, Maier; Nieto-Garai, Jon A.; Kräusslich, Hans-Georg; Pérez-Gil, Jesús; Requejo-Isidro, Jose; Nieva, José L.

    2016-01-01

    The chemical composition of the human immunodeficiency virus type 1 (HIV-1) membrane is critical for fusion and entry into target cells, suggesting that preservation of a functional lipid bilayer organization may be required for efficient infection. HIV-1 acquires its envelope from the host cell plasma membrane at sites enriched in raft-type lipids. Furthermore, infectious particles display aminophospholipids on their surface, indicative of dissipation of the inter-leaflet lipid asymmetry metabolically generated at cellular membranes. By combining two-photon excited Laurdan fluorescence imaging and atomic force microscopy, we have obtained unprecedented insights into the phase state of membranes reconstituted from viral lipids (i.e., extracted from infectious HIV-1 particles), established the role played by the different specimens in the mixtures, and characterized the effects of membrane-active virucidal agents on membrane organization. In determining the molecular basis underlying lipid packing and lateral heterogeneity of the HIV-1 membrane, our results may help develop compounds with antiviral activity acting by perturbing the functional organization of the lipid envelope. PMID:27678107

  4. Anionic lipids and the maintenance of membrane electrostatics in eukaryotes

    PubMed Central

    Platre, Matthieu Pierre

    2017-01-01

    ABSTRACT A wide range of signaling processes occurs at the cell surface through the reversible association of proteins from the cytosol to the plasma membrane. Some low abundant lipids are enriched at the membrane of specific compartments and thereby contribute to the identity of cell organelles by acting as biochemical landmarks. Lipids also influence membrane biophysical properties, which emerge as an important feature in specifying cellular territories. Such parameters are crucial for signal transduction and include lipid packing, membrane curvature and electrostatics. In particular, membrane electrostatics specifies the identity of the plasma membrane inner leaflet. Membrane surface charges are carried by anionic phospholipids, however the exact nature of the lipid(s) that powers the plasma membrane electrostatic field varies among eukaryotes and has been hotly debated during the last decade. Herein, we discuss the role of anionic lipids in setting up plasma membrane electrostatics and we compare similarities and differences that were found in different eukaryotic cells. PMID:28102755

  5. Inhibition of serine and proline racemases by substrate-product analogues.

    PubMed

    Harty, Matthew; Nagar, Mitesh; Atkinson, Logan; Legay, Christina M; Derksen, Darren J; Bearne, Stephen L

    2014-01-01

    d-Amino acids can play important roles as specific biosynthetic building blocks required by organisms or act as regulatory molecules. Consequently, amino acid racemases that catalyze the formation of d-amino acids are potential therapeutic targets. Serine racemase catalyzes the reversible formation of d-serine (a modulator of neurotransmission) from l-serine, while proline racemase (an essential enzymatic and mitogenic protein in trypanosomes) catalyzes the reversible conversion of l-proline to d-proline. We show the substrate-product analogue α-(hydroxymethyl)serine is a modest, linear mixed-type inhibitor of serine racemase from Schizosaccharomyces pombe (Ki=167±21mM, Ki'=661±81mM, cf. Km=19±2mM). The bicyclic substrate-product analogue of proline, 7-azabicyclo[2.2.1]heptan-7-ium-1-carboxylate is a weak inhibitor of proline racemase from Clostridium sticklandii, giving only 29% inhibition at 142.5mM. However, the more flexible bicyclic substrate-product analogue tetrahydro-1H-pyrrolizine-7a(5H)-carboxylate is a noncompetitive inhibitor of proline racemase from C. sticklandii (Ki=111±15mM, cf. Km=5.7±0.5mM). These results suggest that substrate-product analogue inhibitors of racemases may only be effective when the active site is capacious and/or plastic, or when the inhibitor is sufficiently flexible.

  6. [Treatment effects analysis of preoperative long-acting somatostatin analogs combined trans-sphenoidal endoscopic surgery for patients with growth hormone secreting pituitary macroadenomas].

    PubMed

    Zhang, L Y; Deng, K; Zhang, Y; Yao, Y; Zhu, H J; Jin, Z M; Pan, H

    2017-02-07

    Objective: To evaluate the treatment effects of preoperative long-acting somatostatin analogue (SSA) combined trans-sphenoidal endoscopic surgery for patients with growth hormone (GH)-secreting pituitary macroadenomas. Methods: Retrospective analysis was carried out on 20 patients with GH-secreting pituitary macroadenomas who were treated with preoperative SSA and trans-sphenoidal endoscopic surgery in our apartment from January 2010 to January 2016. We also selected 20 patients with only trans-sphenoidal endoscopic surgery treatment and 20 patients with preoperative SSA and non-trans-sphenoidal endoscopic surgery treatment. The changes of tumor imaging, endocrine and blood pressure before and after treatment were analysed. Results: The Gross total resection (GTR) rate of invasive GH-secreting pituitary macroadenomas of preoperative SSA combined trans-sphenoidal endoscopic surgery group (8/13) were higher than that if only trans-sphenoidal endoscopic surgery group (4/16) and preoperative SSA combined non endoscopic surgery group (1/8) (P<0.05). Meanwhile, preoperative SSA combined trans-sphenoidal endoscopic surgery group had significantly improved the GH levels, blood glucose, lipid metabolism and blood pressure levels (P<0.05). Conclusion: The trans-sphenoidal endoscopic surgery on patients with GH-secreting pituitary macroadenomas has a significant improvement on GH levels, blood glucose, lipid metabolism and blood pressure levels. Through the treatment of preoperative long-acting SSA, the gross total resection rate is higher than other two groups.

  7. Lipids of mitochondria.

    PubMed

    Horvath, Susanne E; Daum, Günther

    2013-10-01

    A unique organelle for studying membrane biochemistry is the mitochondrion whose functionality depends on a coordinated supply of proteins and lipids. Mitochondria are capable of synthesizing several lipids autonomously such as phosphatidylglycerol, cardiolipin and in part phosphatidylethanolamine, phosphatidic acid and CDP-diacylglycerol. Other mitochondrial membrane lipids such as phosphatidylcholine, phosphatidylserine, phosphatidylinositol, sterols and sphingolipids have to be imported. The mitochondrial lipid composition, the biosynthesis and the import of mitochondrial lipids as well as the regulation of these processes will be main issues of this review article. Furthermore, interactions of lipids and mitochondrial proteins which are highly important for various mitochondrial processes will be discussed. Malfunction or loss of enzymes involved in mitochondrial phospholipid biosynthesis lead to dysfunction of cell respiration, affect the assembly and stability of the mitochondrial protein import machinery and cause abnormal mitochondrial morphology or even lethality. Molecular aspects of these processes as well as diseases related to defects in the formation of mitochondrial membranes will be described.

  8. Properties of phosphatidylcholine in the presence of its monofluorinated analogue.

    PubMed

    Smith, Eric A; van Gorkum, Christiaan M; Dea, Phoebe K

    2010-03-01

    In aqueous solution, the monofluorinated phospholipid 1-palmitoyl-2-[16-fluoropalmitoyl]sn-glycero-3-phosphocholine (F-DPPC) interdigitates without the use of inducing agents. To understand the thermal and physical properties of this unique lipid, F-DPPC was combined with the non-fluorinated 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), and 1,2-diarachidoyl-sn-glycero-3-phosphocholine (DAPC). Differential scanning calorimetry (DSC) was used to determine the miscibility and thermotropic phase behavior of these binary lipid mixtures. In addition, the fluorescent probe 1,6-diphenyl-1,3,5-hexatriene (DPH) and a DPH-labeled analogue of DPPC, 2-(3-(diphenylhexatrienyl) propanoyl)-1-hexadecanoyl-sn-glycero-3-phosphocholine (beta-DPH HPC, aka DPH-PC or DPHpPC), were used to detect interdigitation. In F-DPPC, the fluorescence intensity of both probes decreased a similar amount and to a degree that is consistent with an interdigitated system. We also determined that there are two separate effects of increasing the ratio of F-DPPC in the DPPC/F-DPPC system. With low amounts of F-DPPC, there is little evidence that the system is heavily interdigitated. Instead, we hypothesize that the introduction of F-DPPC provides nucleation sites that alter the kinetics, reversibility, and temperature of the main transition (T(m)). At higher mol% of F-DPPC, we propose that interdigitated F-DPPC-rich domains form to create a phase-segregated system. While DPPC/F-DPPC was highly miscible, the DAPC/F-DPPC system was significantly less miscible. Additionally, we observed that DAPC/F-DPPC samples have reduced solubility in water, which affected the acquisition of fluorescence data. However, our DSC results indicate the existence of DAPC-rich and F-DPPC-rich components. Furthermore, this data support that the mixing was disruptive to lipid packing and that the presence of DAPC hinders the interdigitation of F-DPPC.

  9. Sterculic Acid and Its Analogues Are Potent Inhibitors of Toxoplasma gondii

    PubMed Central

    Hao, Pan; Alaraj, Intisar Q. M.; Dulayymi, Juma’a R. Al; Baird, Mark S.; Liu, Jing; Liu, Qun

    2016-01-01

    Toxoplasmosis is a serious disease caused by Toxoplasma gondii, one of the most widespread parasites in the world. Lipid metabolism is important in the intracellular stage of T. gondii. Stearoyl-CoA desaturase (SCD), a key enzyme for the synthesis of unsaturated fatty acid is predicted to exist in T. gondii. Sterculic acid has been shown to specifically inhibit SCD activity. Here, we examined whether sterculic acid and its methyl ester analogues exhibit anti-T. gondii effects in vitro. T. gondii-infected Vero cells were disintegrated at 36 hr because of the propagation and egress of intracellular tachyzoites. All test compounds inhibited tachyzoite propagation and egress, reducing the number of ruptured Vero cells by the parasites. Sterculic acid and the methyl esters also inhibited replication of intracellular tachyzoites in HFF cells. Among the test compounds, sterculic acid showed the most potent activity against T. gondii, with an EC50 value of 36.2 μM, compared with EC50 values of 248-428 μM for the methyl esters. Our study demonstrated that sterculic acid and its analogues are effective in inhibition of T. gondii growth in vitro, suggesting that these compounds or analogues targeting SCD could be effective agents for the treatment of toxoplasmosis. PMID:27180571

  10. Lipid Quality in Infant Nutrition: Current Knowledge and Future Opportunities

    PubMed Central

    Delplanque, Bernadette; Gibson, Robert; Koletzko, Berthold; Lapillonne, Alexandre; Strandvik, Birgitta

    2015-01-01

    Abstract Dietary lipids are key for infants to not only meet their high energy needs but also fulfill numerous metabolic and physiological functions critical to their growth, development, and health. The lipid composition of breast milk varies during lactation and according to the mother's diet, whereas the lipid composition of infant formulae varies according to the blend of different fat sources. This report compares the compositions of lipids in breast milk and infant formulae, and highlights the roles of dietary lipids in term and preterm infants and their potential biological and health effects. The major differences between breast milk and formulae lie in a variety of saturated fatty acids (such as palmitic acid, including its structural position) and unsaturated fatty acids (including arachidonic acid and docosahexaenoic acid), cholesterol, and complex lipids. The functional outcomes of these differences during infancy and for later child and adult life are still largely unknown, and some of them are discussed, but there is consensus that opportunities exist for improvements in the qualitative lipid supply to infants through the mother's diet or infant formulae. Furthermore, research is required in several areas, including the needs of term and preterm infants for long-chain polyunsaturated fatty acids, the sites of action and clinical effects of lipid mediators on immunity and inflammation, the role of lipids on metabolic, neurological, and immunological outcomes, and the mechanisms by which lipids act on short- and long-term health. PMID:25883056

  11. Langmuir-Blodgett films of fluorinated glycolipids and polymerizable lipids and their phase separating behavior.

    PubMed

    Scheibe, Patrick; Schoenhentz, Jerome; Platen, Tobias; Hoffmann-Röder, Anja; Zentel, Rudolf

    2010-12-07

    This paper describes the phase separating behavior of Langmuir monolayers from mixtures of different lipids that (i) either carry already a glycopeptide recognition site or can be easily modified to carry one and (ii) polymerizable lipids. To ensure demixing during compression, we used fluorinated lipids for the biological headgroups and hydrocarbon based lipids as polymerizable lipids. As a representative for a lipid monomer, which can be polymerized in the hydrophilic headgroup, a methacrylic monomer was used. As a monomer, which can be polymerized in the hydrophobic tail, a lipid with a diacetylene unit was used (pentacosadiynoic acid, PDA). The fluorinated lipids were on the one hand a perfluorinated lipid with three chains and on the other hand a partially fluorinated lipid with a T(N)-antigen headgroup. The macroscopic phase separation was observed by Brewster angle microscopy, whereas the phase separation on the nanoscale level was observed by atomic force microscopy. It turned out that all lipid mixtures showed (at least) a partial miscibility of the hydrocarbon compounds in the fluorinated compounds. This is positive for pattern formation, as it allows the formation of small demixed 2D patterned structures during crystallization from the homogeneous phase. For miscibility especially a liquid analogue phase proved to be advantageous. As lipid 3 with three fluorinated lipid chains (very stable monolayer) is miscible with the polymerizable lipids 1 and 2, it was mostly used for further investigations. For all three lipid mixtures, a phase separation on both the micrometer and the nanometer level was observed. The size of the crystalline domains could be controlled not only by varying the surface pressure but also by varying the molar composition of the mixtures. Furthermore, we showed that the binary mixture can be stabilized via UV polymerization. After polymerization and subsequent expansion of the barriers, the locked-in polymerized structures are stable

  12. Optimization of propafenone analogues as antimalarial leads.

    PubMed

    Lowes, David J; Guiguemde, W Armand; Connelly, Michele C; Zhu, Fangyi; Sigal, Martina S; Clark, Julie A; Lemoff, Andrew S; Derisi, Joseph L; Wilson, Emily B; Guy, R Kiplin

    2011-11-10

    Propafenone, a class Ic antiarrythmic drug, inhibits growth of cultured Plasmodium falciparum. While the drug's potency is significant, further development of propafenone as an antimalarial would require divorcing the antimalarial and cardiac activities as well as improving the pharmacokinetic profile of the drug. A small array of propafenone analogues was designed and synthesized to address the cardiac ion channel and PK liabilities. Testing of this array revealed potent inhibitors of the 3D7 (drug sensitive) and K1 (drug resistant) strains of P. falciparum that possessed significantly reduced ion channel effects and improved metabolic stability. Propafenone analogues are unusual among antimalarial leads in that they are more potent against the multidrug resistant K1 strain of P. falciparum compared to the 3D7 strain.

  13. Vitamin E Analogue Improves Rabbit Sperm Quality during the Process of Cryopreservation through Its Antioxidative Action

    PubMed Central

    Zhu, Zhendong; Fan, Xiaoteng; Lv, Yinghua; Zhang, Nan; Fan, Chuning; Zhang, Pengfei; Zeng, Wenxian

    2015-01-01

    The process of cryopreservation results in high concentration of reactive oxygen species which is detrimental to spermatozoa. The aim of this study was to investigate whether addition of vitamin E analogue to freezing extender can facilitate the cryosurvival of spermatozoa in rabbits, and how vitamin E protects spermatozoa against damages during the process of preservation. Freshly ejaculated semen was diluted with Tris-citrate-glucose extender supplemented with different concentrations of Trolox (a vitamin E analogue). The level of radical oxygen species (ROS) in spermatozoa that was exposed to Trolox was significantly lower than that of the control during each step of the process of preservation. The percentage of frozen-thawed spermatozoa with lipid peroxidation in the Trolox treatments was significantly lower than that of the control. The motility, intact acrosome, membrane integrity and mitochondrial potentials of the frozen-thawed spermatozoa in the treatment of 200 μM Trolox were significantly higher than those of the control. These observations suggest that addition of vitamin E to a freezing extender leads to higher integrity of acrosome, plasma membrane and mitochondrial membrane potential as well as higher motility. Vitamin E protects spermatozoa through its capacity to quench ROS accumulation and lipid peroxidation during the process of preservation. Addition of Trolox is recommended to facilitate the improvement of semen preservation for the rabbit breeding industry. PMID:26700473

  14. Lipids and lipid metabolism in eukaryotic algae.

    PubMed

    Guschina, Irina A; Harwood, John L

    2006-03-01

    Eukaryotic algae are a very diverse group of organisms which inhabit a huge range of ecosystems from the Antarctic to deserts. They account for over half the primary productivity at the base of the food chain. In recent years studies on the lipid biochemistry of algae has shifted from experiments with a few model organisms to encompass a much larger number of, often unusual, algae. This has led to the discovery of new compounds, including major membrane components, as well as the elucidation of lipid signalling pathways. A major drive in recent research have been attempts to discover genes that code for expression of the various proteins involved in the production of very long-chain polyunsaturated fatty acids such as arachidonic, eicosapentaenoic and docosahexaenoic acids. Such work is described here together with information about how environmental factors, such as light, temperature or minerals, can change algal lipid metabolism and how adaptation may take place.

  15. Polyamine analogues targeting epigenetic gene regulation.

    PubMed

    Huang, Yi; Marton, Laurence J; Woster, Patrick M; Casero, Robert A

    2009-11-04

    Over the past three decades the metabolism and functions of the polyamines have been actively pursued as targets for antineoplastic therapy. Interactions between cationic polyamines and negatively charged nucleic acids play a pivotal role in DNA stabilization and RNA processing that may affect gene expression, translation and protein activity. Our growing understanding of the unique roles that the polyamines play in chromatin regulation, and the discovery of novel proteins homologous with specific regulatory enzymes in polyamine metabolism, have led to our interest in exploring chromatin remodelling enzymes as potential therapeutic targets for specific polyamine analogues. One of our initial efforts focused on utilizing the strong affinity that the polyamines have for chromatin to create a backbone structure, which could be combined with active-site-directed inhibitor moieties of HDACs (histone deacetylases). Specific PAHAs (polyaminohydroxamic acids) and PABAs (polyaminobenzamides) polyamine analogues have demonstrated potent inhibition of the HDACs, re-expression of p21 and significant inhibition of tumour growth. A second means of targeting the chromatin-remodelling enzymes with polyamine analogues was facilitated by the recent identification of flavin-dependent LSD1 (lysine-specific demethylase 1). The existence of this enzyme demonstrated that histone lysine methylation is a dynamic process similar to other histone post-translational modifications. LSD1 specifically catalyses demethylation of mono- and di-methyl Lys4 of histone 3, key positive chromatin marks associated with transcriptional activation. Structural and catalytic similarities between LSD1 and polyamine oxidases facilitated the identification of biguanide, bisguanidine and oligoamine polyamine analogues that are potent inhibitors of LSD1. Cellular inhibition of LSD1 by these unique compounds led to the re-activation of multiple epigenetically silenced genes important in tumorigenesis. The use of

  16. Benchmarking analogue models of brittle thrust wedges

    NASA Astrophysics Data System (ADS)

    Schreurs, Guido; Buiter, Susanne J. H.; Boutelier, Jennifer; Burberry, Caroline; Callot, Jean-Paul; Cavozzi, Cristian; Cerca, Mariano; Chen, Jian-Hong; Cristallini, Ernesto; Cruden, Alexander R.; Cruz, Leonardo; Daniel, Jean-Marc; Da Poian, Gabriela; Garcia, Victor H.; Gomes, Caroline J. S.; Grall, Céline; Guillot, Yannick; Guzmán, Cecilia; Hidayah, Triyani Nur; Hilley, George; Klinkmüller, Matthias; Koyi, Hemin A.; Lu, Chia-Yu; Maillot, Bertrand; Meriaux, Catherine; Nilfouroushan, Faramarz; Pan, Chang-Chih; Pillot, Daniel; Portillo, Rodrigo; Rosenau, Matthias; Schellart, Wouter P.; Schlische, Roy W.; Take, Andy; Vendeville, Bruno; Vergnaud, Marine; Vettori, Matteo; Wang, Shih-Hsien; Withjack, Martha O.; Yagupsky, Daniel; Yamada, Yasuhiro

    2016-11-01

    We performed a quantitative comparison of brittle thrust wedge experiments to evaluate the variability among analogue models and to appraise the reproducibility and limits of model interpretation. Fifteen analogue modeling laboratories participated in this benchmark initiative. Each laboratory received a shipment of the same type of quartz and corundum sand and all laboratories adhered to a stringent model building protocol and used the same type of foil to cover base and sidewalls of the sandbox. Sieve structure, sifting height, filling rate, and details on off-scraping of excess sand followed prescribed procedures. Our analogue benchmark shows that even for simple plane-strain experiments with prescribed stringent model construction techniques, quantitative model results show variability, most notably for surface slope, thrust spacing and number of forward and backthrusts. One of the sources of the variability in model results is related to slight variations in how sand is deposited in the sandbox. Small changes in sifting height, sifting rate, and scraping will result in slightly heterogeneous material bulk densities, which will affect the mechanical properties of the sand, and will result in lateral and vertical differences in peak and boundary friction angles, as well as cohesion values once the model is constructed. Initial variations in basal friction are inferred to play the most important role in causing model variability. Our comparison shows that the human factor plays a decisive role, and even when one modeler repeats the same experiment, quantitative model results still show variability. Our observations highlight the limits of up-scaling quantitative analogue model results to nature or for making comparisons with numerical models. The frictional behavior of sand is highly sensitive to small variations in material state or experimental set-up, and hence, it will remain difficult to scale quantitative results such as number of thrusts, thrust spacing

  17. Antitumoral cyclic peptide analogues of chlamydocin.

    PubMed

    Bernardi, E; Fauchere, J L; Atassi, G; Viallefont, P; Lazaro, R

    1993-01-01

    A series of cyclic tetrapeptides bearing the bioactive alkylating group on an epsilon-amino-lysyl function have been examined for their antitumoral activity on L1210 and P388 murine leukemia cell lines. One analogue belonging to the chlamydocin family and bearing a beta-chloroethylnitrosourea group was found to be potent at inhibiting L1210 cell proliferation and had a higher therapeutic index than the reference compound bis-beta-chloroethylnitrosourea (BCNU) on the in vivo P388-induced leukemia model.

  18. Synthesis of constrained analogues of tryptophan

    PubMed Central

    Negrato, Marco; Abbiati, Giorgio; Dell’Acqua, Monica

    2015-01-01

    Summary A Lewis acid-catalysed diastereoselective [4 + 2] cycloaddition of vinylindoles and methyl 2-acetamidoacrylate, leading to methyl 3-acetamido-1,2,3,4-tetrahydrocarbazole-3-carboxylate derivatives, is described. Treatment of the obtained cycloadducts under hydrolytic conditions results in the preparation of a small library of compounds bearing the free amino acid function at C-3 and pertaining to the class of constrained tryptophan analogues. PMID:26664620

  19. The Brookhaven electron analogue, 1953--1957

    SciTech Connect

    Plotkin, M.

    1991-12-18

    The following topics are discussed on the Brookhaven electron analogue: L.J. Haworth and E.L. VanHorn letters; Original G.K. Green outline for report; General description; Parameter list; Mechanical Assembly; Alignment; Degaussing; Vacuum System; Injection System; The pulsed inflector; RF System; Ferrite Cavity; Pick-up electrodes and preamplifiers; Radio Frequency power amplifier; Lens supply; Controls and Power; and RF acceleration summary.

  20. Lipid substrate specificity of phosphatidylethanolamine N-methyltransferase of Tetrahymena

    SciTech Connect

    Smith, J.D.

    1986-05-01

    The ciliate protozoan Tetrahymena thermophila forms about 60% of its phosphatidylcholine by methylation of phosphatidylethanolamine with S-adenosylmethionine using the enzyme phosphatidylethanolamine N-methyltransferase. Analogues of ethanolamine or of ethanolamine phosphate are incorporated into the phospholipids of Tetrahymena when cells are cultured in their presence. These compounds, 3-amino-1-propanol, 2-aminoethylphosphonate, 3-aminopropylphosphonate and N,N-dimethylaminoethylphosphonate replace from 50 to 75% of the ethanolamine phosphate in phosphatidylethanolamine. However, analysis of the phospholipids of lipid-altered Tetrahymena showed that none of the phosphatidylethanolamine analogues had been converted to the corresponding phosphatidylcholine analogue. No incorration of (/sup 14/C-CH/sub 3/)methionine into the phosphatidylcholine analogues could be demonstrated in vivo, nor was label from (/sup 3/H-CH/sub 3/)S-adenosylmethionine incorporated in virto. Thus, only phosphatidylethanolamine and its monomethyl and dimethyl derivatives have been found to be substrates for the phosphatidylethanoiamine N-methyltransferase. The enzyme therefore requires a phospholipid substrate containing an ester linkage between the alkylamine and phosphorus, with the amino group required to be ..beta.. to the alcohol.

  1. ACTION OF A HISTIDINE ANALOGUE, 1,2,4-TRIAZOLE-3-ALANINE, IN SALMONELLA TYPHIMURIUM

    PubMed Central

    Levin, Alfred P.; Hartman, Philip E.

    1963-01-01

    Levin, Alfred P. (The Johns Hopkins University, Baltimore, Md.), and Philip E. Hartman. Action of a histidine analogue, 1,2,4-triazole-3-alanine, in Salmonella typhimurium. J. Bacteriol. 86:820–828. 1963.—The effect of the histidine analogue, 1,2,4-triazole-3-alanine (TRA), on growth and enzyme synthesis in histidine auxotrophs of Salmonella typhimurium has been studied. TRA allows an increase of approximately 50% in the amount of protein in a culture but does not allow concomitant synthesis of ribonucleic acid and deoxyribonucleic acid. Although the analogue prevents the formation of active bacteriophage and of enzymatically active inosine 5′-phosphate dehydrogenase, it does not prevent the formation of enzymatically active l-histidinol phosphate phosphatase or of imidazoleacetol phosphate transaminase, two enzymes involved in the biosynthesis of histidine. Of the three known functions of histidine in the cell, TRA mimics two: it is incorporated into protein, and it acts as a repressor material for synthesis of enzymes involved in the formation of histidine. TRA fails to act as a feedback inhibitor of the first step in the formation of histidine. Images PMID:14066480

  2. Structure-activity relationship studies of flavonol analogues on pollen germination.

    PubMed

    Forbes, Alaina M; Meier, G Patrick; Haendiges, Stacey; Taylor, Loverine P

    2014-03-12

    Flavonoids are polyphenolic compounds required in the fertilization process in many, if not all, plants. However, the exact biological mechanism(s) and the interacting proteins are unknown. To determine the characteristics important in activating or inhibiting the pollination sequence, a structure-activity relationship analysis of natural and synthetic flavonols was conducted. Flavonol analogues were synthesized through a modified "one-pot" procedure that utilized a Baker-Venkataraman type rearrangement and a Suzuki-Miyaura cross-coupling of a halo-flavonol with an organotrifluoroborate. Of the flavonols tested, kaempferol was the only compound to act as a full agonist. The other smaller, less sterically hindered flavonols (galangin, kaempferide, and 4'-methyl flavonol) acted as partial agonists. Larger more hydrophobic flavonol analogues (3'- and 4'-benzoyl, 3'- and 4'-phenyl, and 3'- and 4'-iodo flavonols) had minimal or no agonist activity. Competition assays between kaempferol and these minimally activating flavonols showed that these analogues inhibited the action of kaempferol in a manner consistent with noncompetitive antagonism. The results suggest that steric hindrance is the most important factor in determining a good agonist. Hydrogen bonding also had a positive effect as long as the substituent did not cause any steric hindrance.

  3. Thymidine analogues for tracking DNA synthesis.

    PubMed

    Cavanagh, Brenton L; Walker, Tom; Norazit, Anwar; Meedeniya, Adrian C B

    2011-09-15

    Replicating cells undergo DNA synthesis in the highly regulated, S-phase of the cell cycle. Analogues of the pyrimidine deoxynucleoside thymidine may be inserted into replicating DNA, effectively tagging dividing cells allowing their characterisation. Tritiated thymidine, targeted using autoradiography was technically demanding and superseded by 5-bromo-2-deoxyuridine (BrdU) and related halogenated analogues, detected using antibodies. Their detection required the denaturation of DNA, often constraining the outcome of investigations. Despite these limitations BrdU alone has been used to target newly synthesised DNA in over 20,000 reviewed biomedical studies. A recent breakthrough in "tagging DNA synthesis" is the thymidine analogue 5-ethynyl-2'-deoxyuridine (EdU). The alkyne group in EdU is readily detected using a fluorescent azide probe and copper catalysis using 'Huisgen's reaction' (1,3-dipolar cycloaddition or 'click chemistry'). This rapid, two-step biolabelling approach allows the tagging and imaging of DNA within cells whilst preserving the structural and molecular integrity of the cells. The bio-orthogonal detection of EdU allows its application in more experimental assays than previously possible with other "unnatural bases". These include physiological, anatomical and molecular biological experimentation in multiple fields including, stem cell research, cancer biology, and parasitology. The full potential of EdU and related molecules in biomedical research remains to be explored.

  4. Blood Loss Estimation Using Gauze Visual Analogue

    PubMed Central

    Ali Algadiem, Emran; Aleisa, Abdulmohsen Ali; Alsubaie, Huda Ibrahim; Buhlaiqah, Noora Radhi; Algadeeb, Jihad Bagir; Alsneini, Hussain Ali

    2016-01-01

    Background Estimating intraoperative blood loss can be a difficult task, especially when blood is mostly absorbed by gauze. In this study, we have provided an improved method for estimating blood absorbed by gauze. Objectives To develop a guide to estimate blood absorbed by surgical gauze. Materials and Methods A clinical experiment was conducted using aspirated blood and common surgical gauze to create a realistic amount of absorbed blood in the gauze. Different percentages of staining were photographed to create an analogue for the amount of blood absorbed by the gauze. Results A visual analogue scale was created to aid the estimation of blood absorbed by the gauze. The absorptive capacity of different gauze sizes was determined when the gauze was dripping with blood. The amount of reduction in absorption was also determined when the gauze was wetted with normal saline before use. Conclusions The use of a visual analogue may increase the accuracy of blood loss estimation and decrease the consequences related to over or underestimation of blood loss. PMID:27626017

  5. Introduction to membrane lipids.

    PubMed

    Epand, Richard M

    2015-01-01

    Biological membranes are composed largely of lipids and proteins. The most common arrangement of lipids in biological membranes is as a bilayer. This arrangement spontaneously forms a barrier for the passage of polar materials. The bilayer is thin but can have a large area in the dimension perpendicular to its thickness. The physical nature of the bilayer membrane will vary according to the conditions of the environment as well as the chemical structure of the lipid constituents of the bilayer. These physical properties determine the function of the membrane together with specific structural features of the lipids that allow them to have signaling properties. The lipids of the membrane are not uniformly distributed. There is an intrinsic asymmetry between the two monolayers that constitute the bilayer. In addition, some lipids tend to be enriched in particular regions of the membrane, termed domains. There is evidence that certain domains recruit specific proteins into that domain. This has been suggested to be important for allowing interaction among different proteins involved in certain signal transduction pathways. Membrane lipids have important roles in determining the physical properties of the membrane, in modulating the activity of membrane-bound proteins and in certain cases being specific secondary messengers that can interact with specific proteins. A large variety of lipids present in biological membranes result in them possessing many functions.

  6. Lipids in DDGS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Distillers dried grains with soluble (DDGS) are one of the main coproducts of ethanol production from using the dry-grinding process. The lipids from corn or sorghum are not utilized in ethanol production, and are thus concentrated in DDGS. The main lipid components in corn and sorghum DDGS are tr...

  7. Lipids: Absorption and transport

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lipid has long been recognized as an important dietary component. Dietary lipid (fat) is a critical source of metabolic energy and a substrate for the synthesis of metabolically active compounds (essential fatty acids), and serves as a carrier for other nutrients such as the fat-soluble vitamins A, ...

  8. Critical amino acid residues of maurocalcine involved in pharmacology, lipid interaction and cell penetration.

    PubMed

    Mabrouk, Kamel; Ram, Narendra; Boisseau, Sylvie; Strappazzon, Flavie; Rehaim, Amel; Sadoul, Rémy; Darbon, Hervé; Ronjat, Michel; De Waard, Michel

    2007-10-01

    Maurocalcine (MCa) is a 33-amino acid residue peptide that was initially identified in the Tunisian scorpion Scorpio maurus palmatus. This peptide triggers interest for three main reasons. First, it helps unravelling the mechanistic basis of Ca(2+) mobilization from the sarcoplasmic reticulum because of its sequence homology with a calcium channel domain involved in excitation-contraction coupling. Second, it shows potent pharmacological properties because of its ability to activate the ryanodine receptor. Finally, it is of technological value because of its ability to carry cell-impermeable compounds across the plasma membrane. Herein, we characterized the molecular determinants that underlie the pharmacological and cell-penetrating properties of maurocalcine. We identify several key amino acid residues of the peptide that will help the design of cell-penetrating analogues devoid of pharmacological activity and cell toxicity. Close examination of the determinants underlying cell penetration of maurocalcine reveals that basic amino acid residues are required for an interaction with negatively charged lipids of the plasma membrane. Maurocalcine analogues that penetrate better have also stronger interaction with negatively charged lipids. Conversely, less effective analogues present a diminished ability to interact with these lipids. These findings will also help the design of still more potent cell penetrating analogues of maurocalcine.

  9. Idiopathic bilateral lipid keratopathy.

    PubMed Central

    Alfonso, E.; Arrellanes, L.; Boruchoff, S. A.; Ormerod, L. D.; Albert, D. M.

    1988-01-01

    A 52-year-old Mexican man presented with asymptomatic, bilaterally symmetrical lipid infiltrates of the cornea and adjacent limbus. No evidence of previous ocular disease or systemic disorder of lipid metabolism could be detected. Penetrating keratoplasty of the right eye was required. The cornea was rigid and thick, with posterior bulging into the anterior chamber. Light microscopy revealed deep corneal lipid granules, foamy histiocytes, vascularisation, and chronic non-granulomatous inflammation. Transmission electron microscopy showed extracellular lipid spaces and numerous intracytoplasmic lipid vacuoles in histiocytes, keratocytes, conjunctival epithelium, and the endothelium of blood vessels in the corneal stroma and adjacent limbal conjunctiva. Histochemical analysis revealed the presence of neutral fats, free fatty acids, cholesterol, and phospholipids. Images PMID:3395592

  10. Mitochondrial lipids in neurodegeneration.

    PubMed

    Aufschnaiter, Andreas; Kohler, Verena; Diessl, Jutta; Peselj, Carlotta; Carmona-Gutierrez, Didac; Keller, Walter; Büttner, Sabrina

    2017-01-01

    Mitochondrial dysfunction is a common feature of many neurodegenerative diseases, including proteinopathies such as Alzheimer's or Parkinson's disease, which are characterized by the deposition of aggregated proteins in the form of insoluble fibrils or plaques. The distinct molecular processes that eventually result in mitochondrial dysfunction during neurodegeneration are well studied but still not fully understood. However, defects in mitochondrial fission and fusion, mitophagy, oxidative phosphorylation and mitochondrial bioenergetics have been linked to cellular demise. These processes are influenced by the lipid environment within mitochondrial membranes as, besides membrane structure and curvature, recruitment and activity of different proteins also largely depend on the respective lipid composition. Hence, the interaction of neurotoxic proteins with certain lipids and the modification of lipid composition in different cell compartments, in particular mitochondria, decisively impact cell death associated with neurodegeneration. Here, we discuss the relevance of mitochondrial lipids in the pathological alterations that result in neuronal demise, focussing on proteinopathies.

  11. Amygdalin analogues inhibit IFN-γ signalling and reduce the inflammatory response in human epidermal keratinocytes.

    PubMed

    Paoletti, Iole; De Gregorio, Vincenza; Baroni, Adone; Tufano, Maria Antonietta; Donnarumma, Giovanna; Perez, Juan Jesus

    2013-12-01

    Peptide T (PT), an octapeptide fragment located in the V2 region of the HIV-1 gp120-coating protein, appears to be beneficial in the treatment of psoriasis. Our previous investigations suggest that keratinocytes play a key role in conditioning the therapeutic effects of PT in psoriasis. The aim of this study was to explore the effects of PT and the peptidomimetic natural products, Dhurrin and Prunasin, on the expression of the IL-6, IL-8, IL-23, HSP70 and ICAM-1 on IFN-γ and TNF-α-NHEK activated cells. Moreover, we analysed the interference of PT and its analogues through STAT-3 activation. Our results show that the analogues tested exhibit the beneficial biological effects of PT, suggesting the primary role of keratinocytes upon which PT and the peptidomimetics act directly, by reducing proinflammatory responses. Its reduction appears to be important for therapeutic approach in psoriasis pathogenesis.

  12. Aluminofluorides and beryllofluorides as inhibitors of sulphatases. Analogues of hydrogen sulphate?

    PubMed Central

    Roy, A B

    1991-01-01

    The inhibition of fluoride of sulphatase A from ox liver and of the sulphatases of Helix pomatia and Aspergillus oryzae is decreased by EDTA and increased by Al3+ or Be2+, implicating aluminofluorides and beryllofluorides in the reaction. The inhibition, which is reversible, takes several minutes to develop fully and, at least for the sulphatase of H. pomatia, is of a non-linear mixed competitive-non-competitive type. It is suggested that the aluminofluorides and beryllofluorides are acting as analogues of HSO4-. If so, then this behaviour must be considered, as well as their role as analogues of phosphate, in interpreting the effects of these compounds in intact cells. PMID:1953634

  13. Membranes: a meeting point for lipids, proteins and therapies

    PubMed Central

    Escribá, Pablo V; González-Ros, José M; Goñi, Félix M; Kinnunen, Paavo K J; Vigh, Lászlo; Sánchez-Magraner, Lissete; Fernández, Asia M; Busquets, Xavier; Horváth, Ibolya; Barceló-Coblijn, Gwendolyn

    2008-01-01

    Abstract Membranes constitute a meeting point for lipids and proteins. Not only do they define the entity of cells and cytosolic organelles but they also display a wide variety of important functions previously ascribed to the activity of proteins alone. Indeed, lipids have commonly been considered a mere support for the transient or permanent association of membrane proteins, while acting as a selective cell/organelle barrier. However, mounting evidence demonstrates that lipids themselves regulate the location and activity of many membrane proteins, as well as defining membrane microdomains that serve as spatio-temporal platforms for interacting signalling proteins. Membrane lipids are crucial in the fission and fusion of lipid bilayers and they also act as sensors to control environmental or physiological conditions. Lipids and lipid structures participate directly as messengers or regulators of signal transduction. Moreover, their alteration has been associated with the development of numerous diseases. Proteins can interact with membranes through lipid co-/post-translational modifications, and electrostatic and hydrophobic interactions, van der Waals forces and hydrogen bonding are all involved in the associations among membrane proteins and lipids. The present study reviews these interactions from the molecular and biomedical point of view, and the effects of their modulation on the physiological activity of cells, the aetiology of human diseases and the design of clinical drugs. In fact, the influence of lipids on protein function is reflected in the possibility to use these molecular species as targets for therapies against cancer, obesity, neurodegenerative disorders, cardiovascular pathologies and other diseases, using a new approach called membrane-lipid therapy. PMID:18266954

  14. Membranes: a meeting point for lipids, proteins and therapies.

    PubMed

    Escribá, Pablo V; González-Ros, José M; Goñi, Félix M; Kinnunen, Paavo K J; Vigh, Lászlo; Sánchez-Magraner, Lissete; Fernández, Asia M; Busquets, Xavier; Horváth, Ibolya; Barceló-Coblijn, Gwendolyn

    2008-06-01

    Membranes constitute a meeting point for lipids and proteins. Not only do they define the entity of cells and cytosolic organelles but they also display a wide variety of important functions previously ascribed to the activity of proteins alone. Indeed, lipids have commonly been considered a mere support for the transient or permanent association of membrane proteins, while acting as a selective cell/organelle barrier. However, mounting evidence demonstrates that lipids themselves regulate the location and activity of many membrane proteins, as well as defining membrane microdomains that serve as spatio-temporal platforms for interacting signalling proteins. Membrane lipids are crucial in the fission and fusion of lipid bilayers and they also act as sensors to control environmental or physiological conditions. Lipids and lipid structures participate directly as messengers or regulators of signal transduction. Moreover, their alteration has been associated with the development of numerous diseases. Proteins can interact with membranes through lipid co-/post-translational modifications, and electrostatic and hydrophobic interactions, van der Waals forces and hydrogen bonding are all involved in the associations among membrane proteins and lipids. The present study reviews these interactions from the molecular and biomedical point of view, and the effects of their modulation on the physiological activity of cells, the aetiology of human diseases and the design of clinical drugs. In fact, the influence of lipids on protein function is reflected in the possibility to use these molecular species as targets for therapies against cancer, obesity, neurodegenerative disorders, cardiovascular pathologies and other diseases, using a new approach called membrane-lipid therapy.

  15. Analogues of diadenosine 5',5'''-P1,P4-tetraphosphate (Ap4A) as potential anti-platelet-aggregation agents.

    PubMed Central

    Zamecnik, P C; Kim, B; Gao, M J; Taylor, G; Blackburn, G M

    1992-01-01

    Dense granules of platelets contain a high content of diadenosine 5',5'''-P1,P4-tetraphosphate (Ap4A). We have previously demonstrated an antithrombotic effect of this compound in a live rabbit model. In the present study we find that certain synthetic Ap4A analogues are superior to Ap4A in inhibiting ADP-induced aggregation of human platelets. Analogues having a P--C--P bridge located in the P2,P3 position of Ap4A are the most potent inhibitors. These analogues are also resistant to hydrolytic enzymes. Analogues having the above characteristics exhibit competitive inhibition with ADP in the ADP-induced platelet aggregation reaction. These compounds, such as AppCHFppA, may be useful as antithrombotic agents. The analogues ApSppSpA and ApSpCHFpSpA also showed good inhibitory effects on ADP-induced platelet aggregation. In addition, this action of Ap4A and its analogues provides an example of a dinucleotide inducing an antagonistic effect by occupying an extracellular mononucleotide binding site on platelets. It calls attention to the possibility that Ap4A and its analogues may act in a similar way in whole organisms, triggering effector or inhibitory responses in any one of a variety of cells. PMID:1549600

  16. Curvature-induced lipid segregation

    NASA Astrophysics Data System (ADS)

    Zheng, Bin; Meng, Qing-Tian; B. Selinger Robin, L.; V. Selinger, Jonathan; Ye, Fang-Fu

    2015-06-01

    We investigate how an externally imposed curvature influences lipid segregation on two-phase-coexistent membranes. We show that the bending-modulus contrast of the two phases and the curvature act together to yield a reduced effective line tension. On largely curved membranes, a state of multiple domains (or rafts) forms due to a mechanism analogous to that causing magnetic-vortex formation in type-II superconductors. We determine the criterion for such a multi-domain state to occur; we then calculate respectively the size of the domains formed on cylindrically and spherically curved membranes. Project supported by the Hundred-Talent Program of the Chinese Academy of Sciences (FY) and the National Science Foundation of USA via Grant DMR-1106014 (RLBS, JVS).

  17. Peripheral gating of pain signals by endogenous analgesic lipids

    PubMed Central

    Piomelli, Daniele; Sasso, Oscar

    2014-01-01

    Primary sensory afferents and their neighboring host-defense cells are a rich source of lipid-derived mediators that contribute to the sensation of pain caused by tissue damage and inflammation. But an increasing number of lipid molecules have been shown to act in an opposite way, to suppress the inflammatory process, restore homeostasis in damaged tissues and attenuate pain sensitivity by regulating neural pathways that transmit nociceptive signals from the periphery of the body to the central nervous system. PMID:24473264

  18. Effects of insulin and other antihyperglycaemic agents on lipid profiles of patients with diabetes.

    PubMed

    Chaudhuri, A; Dandona, P

    2011-10-01

    Increased morbidity and mortality risk due to diabetes-associated cardiovascular diseases is partly associated with hyperglycaemia as well as dyslipidaemia. Pharmacological treatment of diabetic hyperglycaemia involves the use of the older oral antidiabetic drugs [OADs: biguanides, sulphonylureas (SUs), α-glucosidase inhibitors and thiazolidinediones], insulin (human and analogues) and/or incretin-based therapies (glucagon-like peptide-1 analogues and dipeptidyl peptidase 4 inhibitors). Many of these agents have also been suggested to improve lipid profiles in patients with diabetes. These effects may have benefits on cardiovascular risk beyond glucose-lowering actions. This review discusses the effects of OADs, insulins and incretin-based therapies on lipid variables along with the possible mechanisms and clinical implications of these findings. The effects of intensive versus conventional antihyperglycaemic therapy on cardiovascular outcomes and lipid profiles are also discussed. A major conclusion of this review is that agents within the same class of OADs can have different effects on lipid variables and that contrary to the findings in experimental models, insulin has been shown to have beneficial effects on lipid variables in clinical trials. Further studies are needed to understand the precise effect and the mechanisms of these effects of insulin on lipids.

  19. Lipid binding and membrane penetration of polymyxin B derivatives studied in a biomimetic vesicle system.

    PubMed Central

    Katz, Marina; Tsubery, Haim; Kolusheva, Sofiya; Shames, Alex; Fridkin, Mati; Jelinek, Raz

    2003-01-01

    Understanding membrane interactions and cell-wall permeation of Gram-negative bacteria is of great importance, owing to increasing bacterial resistance to existing drugs and therapeutic treatments. Here we use biomimetic lipid vesicles to analyse membrane association and penetration by synthetic derivatives of polymyxin B (PMB), a potent naturally occurring antibacterial cyclic peptide. The PMB analogues studied were PMB nonapeptide (PMBN), in which the hydrophobic alkyl residue was cleaved, PMBN diastereomer containing D-instead of L-amino acids within the cyclic ring (dPMBN) and PMBN where the hydrophobic alkyl chain was replaced with an Ala6 repeat (Ala6-PMBN). Peptide binding measurements, colorimetric transitions induced within the vesicles, fluorescence quenching experiments and ESR spectroscopy were applied to investigate the structural parameters underlying the different membrane-permeation profiles and biological activities of the analogues. The experiments point to the role of negatively charged lipids in membrane binding and confirm the prominence of lipopolisaccharide (LPS) in promoting membrane association and penetration by the peptides. Examination of the lipid interactions of the PMB derivatives shows that the cyclic moiety of PMB is not only implicated in lipid attachment and LPS binding, but also affects penetration into the inner bilayer core. The addition of the Ala6 peptide moiety, however, does not significantly promote peptide insertion into the hydrophobic lipid environment. The data also indicate that the extent of penetration into the lipid bilayer is not related to the overall affinity of the peptides to the membrane. PMID:12848621

  20. Lake Superior lipids

    EPA Pesticide Factsheets

    Fish chemistry data (d13C, d15N, C:N, lipid content) published in Rapid Commun. Mass Spectrom. 2015, 29, 2069??2077 DOI: 10.1002/rcm.7367This dataset is associated with the following publication:Hoffman , J., M. Sierszen , and A. Cotter. Fish tissue lipid-C:N relationships for correcting ä13C values and estimating lipid content in aquatic food web studies. Rapid Communications in Mass Spectrometry. Wiley InterScience, Silver Spring, MD, USA, 29(21): 2069–2077, (2015).

  1. Lipid-absorbing Polymers

    NASA Technical Reports Server (NTRS)

    Marsh, H. E., Jr.; Wallace, C. J.

    1973-01-01

    The removal of bile acids and cholesterol by polymeric absorption is discussed in terms of micelle-polymer interaction. The results obtained with a polymer composed of 75 parts PEO and 25 parts PB plus curing ingredients show an absorption of 305 to 309%, based on original polymer weight. Particle size effects on absorption rate are analyzed. It is concluded that crosslinked polyethylene oxide polymers will absorb water, crosslinked polybutadiene polymers will absorb lipids; neither polymer will absorb appreciable amounts of lipids from micellar solutions of lipids in water.

  2. [Lipid formulations of amphotericin].

    PubMed

    Botero, Martha C; Puentes-Herrera, Marcela; Cortés, Jorge A

    2014-10-01

    Amphotericin B deoxycholate use has increased during the past years in parallel with the increase in the number of immunosuppressed patients suffering invasive fungal infections. This drug is associated with a high rate of side effects, especially renal toxicity. Lipid formulations (liposomal, lipid complex, colloidal suspension and the Indian liposomal formulation) have been developed, which share the same antifungal spectrum but differ in efficacy and toxicity. A review of amphotericin lipid formulations is presented, focusing on differences in efficacy and, especially renal toxicity. The main problem for use of these formulations in Latin America is their highcost.

  3. Polyamine analogues bind human serum albumin.

    PubMed

    Beauchemin, R; N'soukpoé-Kossi, C N; Thomas, T J; Thomas, T; Carpentier, R; Tajmir-Riahi, H A

    2007-10-01

    Polyamine analogues show antitumor activity in experimental models, and their ability to alter activity of cytotoxic chemotherapeutic agents in breast cancer is well documented. Association of polyamines with nucleic acids and protein is included in their mechanism of action. The aim of this study was to examine the interaction of human serum albumin (HSA) with several polyamine analogues, such as 1,11-diamino-4,8-diazaundecane (333), 3,7,11,15-tetrazaheptadecane.4HCl (BE-333), and 3,7,11,15,19-pentazahenicosane.5HCl (BE-3333), in aqueous solution at physiological conditions using a constant protein concentration and various polyamine contents (microM to mM). FTIR, UV-visible, and CD spectroscopic methods were used to determine the polyamine binding mode and the effects of polyamine complexation on protein stability and secondary structure. Structural analysis showed that polyamines bind nonspecifically (H-bonding) via polypeptide polar groups with binding constants of K333 = 9.30 x 10(3) M(-1), KBE-333 = 5.63 x 10(2) M(-1), and KBE-3333 = 3.66 x 10(2) M(-1). The protein secondary structure showed major alterations with a reduction of alpha-helix from 55% (free protein) to 43-50% and an increase of beta-sheet from 17% (free protein) to 29-36% in the 333, BE-333, and BE-3333 complexes, indicating partial protein unfolding upon polyamine interaction. HSA structure was less perturbed by polyamine analogues compared to those of the biogenic polyamines.

  4. A Lipid Gate for the Peripheral Control of Pain

    PubMed Central

    Hohmann, Andrea G.; Seybold, Virginia; Hammock, Bruce D.

    2014-01-01

    Cells in injured and inflamed tissues produce a number of proalgesic lipid-derived mediators, which excite nociceptive neurons by activating selective G-protein-coupled receptors or ligand-gated ion channels. Recent work has shown that these proalgesic factors are counteracted by a distinct group of lipid molecules that lower nociceptor excitability and attenuate nociception in peripheral tissues. Analgesic lipid mediators include endogenous agonists of cannabinoid receptors (endocannabinoids), lipid-amide agonists of peroxisome proliferator-activated receptor-α, and products of oxidative metabolism of polyunsaturated fatty acids via cytochrome P450 and other enzyme pathways. Evidence indicates that these lipid messengers are produced and act at different stages of inflammation and the response to tissue injury, and may be part of a peripheral gating mechanism that regulates the access of nociceptive information to the spinal cord and the brain. Growing knowledge about this peripheral control system may be used to discover safer medicines for pain. PMID:25392487

  5. Self-segregation of myelin membrane lipids in model membranes.

    PubMed

    Yurlova, Larisa; Kahya, Nicoletta; Aggarwal, Shweta; Kaiser, Hermann-Josef; Chiantia, Salvatore; Bakhti, Mostafa; Pewzner-Jung, Yael; Ben-David, Oshrit; Futerman, Anthony H; Brügger, Britta; Simons, Mikael

    2011-12-07

    Rapid conduction of nerve impulses requires coating of axons by myelin sheaths, which are multilamellar, lipid-rich membranes produced by oligodendrocytes in the central nervous system. To act as an insulator, myelin has to form a stable and firm membrane structure. In this study, we have analyzed the biophysical properties of myelin membranes prepared from wild-type mice and from mouse mutants that are unable to form stable myelin. Using C-Laurdan and fluorescence correlation spectroscopy, we find that lipids are tightly organized and highly ordered in myelin isolated from wild-type mice, but not from shiverer and ceramide synthase 2 null mice. Furthermore, only myelin lipids from wild-type mice laterally segregate into physically distinct lipid phases in giant unilamellar vesicles in a process that requires very long chain glycosphingolipids. Taken together, our findings suggest that oligodendrocytes exploit the potential of lipids to self-segregate to generate a highly ordered membrane for electrical insulation of axons.

  6. New synthetic approaches towards analogues of bedaquiline.

    PubMed

    Priebbenow, Daniel L; Barbaro, Lisa; Baell, Jonathan B

    2016-10-12

    Multi-drug resistant tuberculosis (MDR-TB) is of growing global concern and threatens to undermine increasing efforts to control the worldwide spread of tuberculosis (TB). Bedaquiline has recently emerged as a new drug developed to specifically treat MDR-TB. Despite being highly effective as a result of its unique mode of action, bedaquiline has been associated with significant toxicities and as such, safety concerns are limiting its clinical use. In order to access pharmaceutical agents that exhibit an improved safety profile for the treatment of MDR-TB, new synthetic pathways to facilitate the preparation of bedaquiline and analogues thereof have been discovered.

  7. The Lehmer Matrix and Its Recursive Analogue

    DTIC Science & Technology

    2010-01-01

    for failing to comply with a collection of information if it does not display a currently valid OMB control number . 1. REPORT DATE 2010 2. REPORT...TYPE 3. DATES COVERED 00-00-2010 to 00-00-2010 4. TITLE AND SUBTITLE The Lehmer matrix and its recursive analogue 5a. CONTRACT NUMBER 5b...GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND

  8. U.S. Nuclear Regulatory Commission natural analogue research program

    SciTech Connect

    Kovach, L.A.; Ott, W.R.

    1995-09-01

    This article describes the natural analogue research program of the U.S. Nuclear Regulatory Commission (US NRC). It contains information on the regulatory context and organizational structure of the high-level radioactive waste research program plan. It also includes information on the conditions and processes constraining selection of natural analogues, describes initiatives of the US NRC, and describes the role of analogues in the licensing process.

  9. CO2 Removal using a Synthetic Analogue of Carbonic Anhydrase

    SciTech Connect

    Cordatos, Harry

    2010-09-14

    Project attempts to develop a synthetic analogue for carbonic anhydrase and incorporate it in a membrane for separation of CO2 from coal power plant flue gas. Conference poster presents result of first 9 months of project progress including concept, basic system architecture and membrane properties target, results of molecular modeling for analogue - CO2 interaction, and next steps of testing analogue resistance to flue gas contaminants.

  10. Synthesis of a cyanopeptide-analogue with trypsin activating properties.

    PubMed

    Radau, G; Rauh, D

    2000-04-17

    An efficient synthesis of a peptidic analogue of cyanobacterial metabolites with proposed serine protease inhibitory activity has been developed. Surprisingly, one trypsin activating compound was obtained.

  11. Lipid-Mediated Endocytosis

    PubMed Central

    Ewers, Helge; Helenius, Ari

    2011-01-01

    Receptor-mediated endocytosis is used by a number of viruses and toxins to gain entry into cells. Some have evolved to use specific lipids in the plasma membrane as their receptors. They include bacterial toxins such as Shiga and Cholera toxin and viruses such as mouse polyoma virus and simian virus 40. Through multivalent binding to glycosphingolipids, they induce lipid clustering and changes in membrane properties. Internalization occurs by unusual endocytic mechanisms involving lipid rafts, induction of membrane curvature, trans-bilayer coupling, and activation of signaling pathways. Once delivered to early endosomes, they follow diverse intracellular routes to the lumen of the ER, from which they penetrate into the cytosol. The role of the lipid receptors is central in these well-studied processes. PMID:21576253

  12. Metabolism. Part III: Lipids.

    ERIC Educational Resources Information Center

    Bodner, George M.

    1986-01-01

    Describes the metabolic processes of complex lipids, including saponification, activation and transport, and the beta-oxidation spiral. Discusses fatty acid degradation in regard to biochemical energy and ketone bodies. (TW)

  13. Lipid droplet dynamics during Schizosaccharomyces pombe sporulation and their role in spore survival

    PubMed Central

    Yang, Hui-Ju; Osakada, Hiroko; Kojidani, Tomoko; Haraguchi, Tokuko

    2017-01-01

    ABSTRACT Upon nitrogen starvation, the fission yeast Schizosaccharomyces pombe forms dormant spores; however, the mechanisms by which a spore sustains life without access to exogenous nutrients remain unclear. Lipid droplets are reservoirs of neutral lipids that act as important cellular energy resources. Using live-cell imaging analysis, we found that the lipid droplets of mother cells redistribute to their nascent spores. Notably, this process was actin polymerization-dependent and facilitated by the leading edge proteins of the forespore membrane. Spores lacking triacylglycerol synthesis, which is essential for lipid droplet formation, failed to germinate. Our results suggest that the lipid droplets are important for the sustenance of life in spores. PMID:28011631

  14. Role of Cosmic Dust Analogues in prebiotic chemistry

    NASA Astrophysics Data System (ADS)

    Brucato, J. R.; Strazzulla, G.; Baratta, G. A.; Saladino, R.; di Mauro, E.

    Dust grains could have played an important role in driving the formation of complex molecular compounds relevant for the prebiotic chemistry occurred in the early Earth. Dust and molecular compounds present in space experienced very different environments, with temperatures ranging from few to thousands of Kelvins, and with very harsh conditions due to particle and UV irradiations. Astronomical observations of the interstellar medium, coupled with direct in-situ investigations of solar system bodies performed by space missions and laboratory analyses of extraterrestrial material have shown the presence of large amount of organic molecules. The detection of more than one hundred molecules demonstrates that chemical reactions can proceed successfully in space. However, due to low efficiency, formation of complex molecules in gas phase is not feasible, then an active chemistry has been suggested to take place at cryogenic temperatures (~10 K) on cosmic dust grains acting as catalysts. We will present laboratory results on catalytic effects of Cosmic Dust Analogues (CDAs) with olivine composition, in the synthesis of organic molecules under different physical conditions by using formamide (NH2COH). We will show the important role of CDAs in prebiotic chemistry experiments simulating processes occurring in astronomical environments relevant for the origin of life in the Solar System.

  15. Molecular mechanisms underlying a cellular analogue of operant reward learning

    PubMed Central

    Lorenzetti, Fred D.; Baxter, Douglas A.; Byrne, John H.

    2008-01-01

    SUMMARY Operant conditioning is a ubiquitous but mechanistically poorly understood form of associative learning in which an animal learns the consequences of its behavior. Using a single-cell analogue of operant conditioning in neuron B51 of Aplysia, we examined second-messenger pathways engaged by activity and reward and how they may provide a biochemical association underlying operant learning. Conditioning was blocked by Rp-cAMP, a peptide inhibitor of PKA, a PKC inhibitor and by expressing a dominant negative isoform of Ca2+-dependent PKC (apl-I). Thus, both PKA and PKC were necessary for operant conditioning. Injection of cAMP into B51 mimicked the effects of operant conditioning. Activation of PKC also mimicked conditioning, but was dependent on both cAMP and PKA, suggesting that PKC acted at some point upstream of PKA activation. Our results demonstrate how these molecules can interact to mediate operant conditioning in an individual neuron important for the expression of the conditioned behavior. PMID:18786364

  16. Acyl-Lipid Metabolism

    PubMed Central

    Li-Beisson, Yonghua; Shorrosh, Basil; Beisson, Fred; Andersson, Mats X.; Arondel, Vincent; Bates, Philip D.; Baud, Sébastien; Bird, David; DeBono, Allan; Durrett, Timothy P.; Franke, Rochus B.; Graham, Ian A.; Katayama, Kenta; Kelly, Amélie A.; Larson, Tony; Markham, Jonathan E.; Miquel, Martine; Molina, Isabel; Nishida, Ikuo; Rowland, Owen; Samuels, Lacey; Schmid, Katherine M.; Wada, Hajime; Welti, Ruth; Xu, Changcheng; Zallot, Rémi; Ohlrogge, John

    2010-01-01

    Acyl lipids in Arabidopsis and all other plants have a myriad of diverse functions. These include providing the core diffusion barrier of the membranes that separates cells and subcellular organelles. This function alone involves more than 10 membrane lipid classes, including the phospholipids, galactolipids, and sphingolipids, and within each class the variations in acyl chain composition expand the number of structures to several hundred possible molecular species. Acyl lipids in the form of triacylglycerol account for 35% of the weight of Arabidopsis seeds and represent their major form of carbon and energy storage. A layer of cutin and cuticular waxes that restricts the loss of water and provides protection from invasions by pathogens and other stresses covers the entire aerial surface of Arabidopsis. Similar functions are provided by suberin and its associated waxes that are localized in roots, seed coats, and abscission zones and are produced in response to wounding. This chapter focuses on the metabolic pathways that are associated with the biosynthesis and degradation of the acyl lipids mentioned above. These pathways, enzymes, and genes are also presented in detail in an associated website (ARALIP: http://aralip.plantbiology.msu.edu/). Protocols and methods used for analysis of Arabidopsis lipids are provided. Finally, a detailed summary of the composition of Arabidopsis lipids is provided in three figures and 15 tables. PMID:22303259

  17. Measuring brain lipids.

    PubMed

    Dawson, Glyn

    2015-08-01

    The rapid development of analytical technology has made lipidomics an exciting new area and this review will focus more on modern approaches to lipidomics than on earlier technology. Although not fully comprehensive for all possible brain lipids, the intent is to at least provide a reference for the analysis of classes of lipids found in brain and nervous tissue. We will discuss problems posed by the brain because of its structural and functional heterogeneity, the development changes it undergoes (myelination, aging, pathology etc.) and its cellular heterogeneity (neurons, glia etc.). Section 2 will discuss the various ways in which brain tissue can be extracted to yield lipids for analysis and section 3 will cover a wide range of techniques used to analyze brain lipids such as chromatography and mass-spectrometry. In Section 4 we will discuss ways of analyzing some of the specific biologically active brain lipids found in very small amounts except in pathological conditions and section 5 looks to the future of experimental lipidomic modification in the brain. This article is part of a Special Issue entitled Brain Lipids.

  18. Acyl-Lipid Metabolism

    PubMed Central

    Li-Beisson, Yonghua; Shorrosh, Basil; Beisson, Fred; Andersson, Mats X.; Arondel, Vincent; Bates, Philip D.; Baud, Sébastien; Bird, David; DeBono, Allan; Durrett, Timothy P.; Franke, Rochus B.; Graham, Ian A.; Katayama, Kenta; Kelly, Amélie A.; Larson, Tony; Markham, Jonathan E.; Miquel, Martine; Molina, Isabel; Nishida, Ikuo; Rowland, Owen; Samuels, Lacey; Schmid, Katherine M.; Wada, Hajime; Welti, Ruth; Xu, Changcheng; Zallot, Rémi; Ohlrogge, John

    2013-01-01

    Acyl lipids in Arabidopsis and all other plants have a myriad of diverse functions. These include providing the core diffusion barrier of the membranes that separates cells and subcellular organelles. This function alone involves more than 10 membrane lipid classes, including the phospholipids, galactolipids, and sphingolipids, and within each class the variations in acyl chain composition expand the number of structures to several hundred possible molecular species. Acyl lipids in the form of triacylglycerol account for 35% of the weight of Arabidopsis seeds and represent their major form of carbon and energy storage. A layer of cutin and cuticular waxes that restricts the loss of water and provides protection from invasions by pathogens and other stresses covers the entire aerial surface of Arabidopsis. Similar functions are provided by suberin and its associated waxes that are localized in roots, seed coats, and abscission zones and are produced in response to wounding. This chapter focuses on the metabolic pathways that are associated with the biosynthesis and degradation of the acyl lipids mentioned above. These pathways, enzymes, and genes are also presented in detail in an associated website (ARALIP: http://aralip.plantbiology.msu.edu/). Protocols and methods used for analysis of Arabidopsis lipids are provided. Finally, a detailed summary of the composition of Arabidopsis lipids is provided in three figures and 15 tables. PMID:23505340

  19. Long-term predictions using natural analogues

    SciTech Connect

    Ewing, R.C.

    1995-09-01

    One of the unique and scientifically most challenging aspects of nuclear waste isolation is the extrapolation of short-term laboratory data (hours to years) to the long time periods (10{sup 3}-10{sup 5} years) required by regulatory agencies for performance assessment. The direct validation of these extrapolations is not possible, but methods must be developed to demonstrate compliance with government regulations and to satisfy the lay public that there is a demonstrable and reasonable basis for accepting the long-term extrapolations. Natural systems (e.g., {open_quotes}natural analogues{close_quotes}) provide perhaps the only means of partial {open_quotes}validation,{close_quotes} as well as data that may be used directly in the models that are used in the extrapolation. Natural systems provide data on very large spatial (nm to km) and temporal (10{sup 3}-10{sup 8} years) scales and in highly complex terranes in which unknown synergisms may affect radionuclide migration. This paper reviews the application (and most importantly, the limitations) of data from natural analogue systems to the {open_quotes}validation{close_quotes} of performance assessments.

  20. Self-Powered Analogue Smart Skin.

    PubMed

    Shi, Mayue; Zhang, Jinxin; Chen, Haotian; Han, Mengdi; Shankaregowda, Smitha A; Su, Zongming; Meng, Bo; Cheng, Xiaoliang; Zhang, Haixia

    2016-04-26

    The progress of smart skin technology presents unprecedented opportunities for artificial intelligence. Resolution enhancement and energy conservation are critical to improve the perception and standby time of robots. Here, we present a self-powered analogue smart skin for detecting contact location and velocity of the object, based on a single-electrode contact electrification effect and planar electrostatic induction. Using an analogue localizing method, the resolution of this two-dimensional smart skin can be achieved at 1.9 mm with only four terminals, which notably decreases the terminal number of smart skins. The sensitivity of this smart skin is remarkable, which can even perceive the perturbation of a honey bee. Meanwhile, benefiting from the triboelectric mechanism, extra power supply is unnecessary for this smart skin. Therefore, it solves the problems of batteries and connecting wires for smart skins. With microstructured poly(dimethylsiloxane) films and silver nanowire electrodes, it can be covered on the skin with transparency, flexibility, and high sensitivity.

  1. Phloem proteomics reveals new lipid-binding proteins with a putative role in lipid-mediated signaling

    SciTech Connect

    Barbaglia, Allison M.; Tamot, Banita; Greve, Veronica; Hoffmann-Benning, Susanne

    2016-04-28

    Global climate changes inversely affect our ability to grow the food required for an increasing world population. To combat future crop loss due to abiotic stress, we need to understand the signals responsible for changes in plant development and the resulting adaptations, especially the signaling molecules traveling long-distance through the plant phloem. Using a proteomics approach, we had identified several putative lipid-binding proteins in the phloem exudates. Simultaneously, we identified several complex lipids as well as jasmonates. These findings prompted us to propose that phloem (phospho-) lipids could act as long-distance developmental signals in response to abiotic stress, and that they are released, sensed, and moved by phloem lipid-binding proteins (Benning et al., 2012). Indeed, the proteins we identified include lipases that could release a signaling lipid into the phloem, putative receptor components, and proteins that could mediate lipid-movement. To test this possible protein-based lipid-signaling pathway, three of the proteins, which could potentially act in a relay, are characterized here: (I) a putative GDSL-motif lipase (II) a PIG-P-like protein, with a possible receptor-like function; (III) and PLAFP (phloem lipid-associated family protein), a predicted lipid-binding protein of unknown function. Here we show that all three proteins bind lipids, in particular phosphatidic acid (PtdOH), which is known to participate in intracellular stress signaling. Genes encoding these proteins are expressed in the vasculature, a prerequisite for phloem transport. Cellular localization studies show that the proteins are not retained in the endoplasmic reticulum but surround the cell in a spotted pattern that has been previously observed with receptors and plasmodesmatal proteins. Abiotic signals that induce the production of PtdOH also regulate the expression of GDSL-lipase and PLAFP, albeit in opposite patterns. Our findings suggest that while all three

  2. Phloem proteomics reveals new lipid-binding proteins with a putative role in lipid-mediated signaling

    DOE PAGES

    Barbaglia, Allison M.; Tamot, Banita; Greve, Veronica; ...

    2016-04-28

    Global climate changes inversely affect our ability to grow the food required for an increasing world population. To combat future crop loss due to abiotic stress, we need to understand the signals responsible for changes in plant development and the resulting adaptations, especially the signaling molecules traveling long-distance through the plant phloem. Using a proteomics approach, we had identified several putative lipid-binding proteins in the phloem exudates. Simultaneously, we identified several complex lipids as well as jasmonates. These findings prompted us to propose that phloem (phospho-) lipids could act as long-distance developmental signals in response to abiotic stress, and thatmore » they are released, sensed, and moved by phloem lipid-binding proteins (Benning et al., 2012). Indeed, the proteins we identified include lipases that could release a signaling lipid into the phloem, putative receptor components, and proteins that could mediate lipid-movement. To test this possible protein-based lipid-signaling pathway, three of the proteins, which could potentially act in a relay, are characterized here: (I) a putative GDSL-motif lipase (II) a PIG-P-like protein, with a possible receptor-like function; (III) and PLAFP (phloem lipid-associated family protein), a predicted lipid-binding protein of unknown function. Here we show that all three proteins bind lipids, in particular phosphatidic acid (PtdOH), which is known to participate in intracellular stress signaling. Genes encoding these proteins are expressed in the vasculature, a prerequisite for phloem transport. Cellular localization studies show that the proteins are not retained in the endoplasmic reticulum but surround the cell in a spotted pattern that has been previously observed with receptors and plasmodesmatal proteins. Abiotic signals that induce the production of PtdOH also regulate the expression of GDSL-lipase and PLAFP, albeit in opposite patterns. Our findings suggest that while all

  3. Phloem Proteomics Reveals New Lipid-Binding Proteins with a Putative Role in Lipid-Mediated Signaling

    PubMed Central

    Barbaglia, Allison M.; Tamot, Banita; Greve, Veronica; Hoffmann-Benning, Susanne

    2016-01-01

    Global climate changes inversely affect our ability to grow the food required for an increasing world population. To combat future crop loss due to abiotic stress, we need to understand the signals responsible for changes in plant development and the resulting adaptations, especially the signaling molecules traveling long-distance through the plant phloem. Using a proteomics approach, we had identified several putative lipid-binding proteins in the phloem exudates. Simultaneously, we identified several complex lipids as well as jasmonates. These findings prompted us to propose that phloem (phospho-) lipids could act as long-distance developmental signals in response to abiotic stress, and that they are released, sensed, and moved by phloem lipid-binding proteins (Benning et al., 2012). Indeed, the proteins we identified include lipases that could release a signaling lipid into the phloem, putative receptor components, and proteins that could mediate lipid-movement. To test this possible protein-based lipid-signaling pathway, three of the proteins, which could potentially act in a relay, are characterized here: (I) a putative GDSL-motif lipase (II) a PIG-P-like protein, with a possible receptor-like function; (III) and PLAFP (phloem lipid-associated family protein), a predicted lipid-binding protein of unknown function. Here we show that all three proteins bind lipids, in particular phosphatidic acid (PtdOH), which is known to participate in intracellular stress signaling. Genes encoding these proteins are expressed in the vasculature, a prerequisite for phloem transport. Cellular localization studies show that the proteins are not retained in the endoplasmic reticulum but surround the cell in a spotted pattern that has been previously observed with receptors and plasmodesmatal proteins. Abiotic signals that induce the production of PtdOH also regulate the expression of GDSL-lipase and PLAFP, albeit in opposite patterns. Our findings suggest that while all three

  4. Space Analogue Environments: Are the Populations Comparable?

    NASA Astrophysics Data System (ADS)

    Sandal, G. M.

    Background: Much of our present understanding about psychology in space is based on studies of groups operating in so-called analogue environments where personnel are exposed to many of the same stressors as those experienced by astronauts in space. One possible problem with extrapolating results is that personnel operating in various hazardous and confined environments might differ in characteristics influencing coping, interaction, and performance. The object of this study was to compare the psychological similarity of these populations in order to get a better understanding of whether this extrapolation is justifiable. The samples investigated include polar crossings (N= 22), personnel on Antarctic research stations (N= 183), several military occupations (N= 187), and participants in space simulation studies (N=20). Methods: Personnel in each of these environments were assessed using the Personality Characteristic Inventory (PCI) and Utrecht Coping List (UCL). The PCI is a multidimensional trait assessment battery that measures various aspects of achievement orientation and social competence. The UCL is a questionnaire designed to assess habitual coping strategies when encountering stressful or demanding situations. Results: Only minor differences in use of habitual coping strategies were evident across the different samples. In relation to personality scores, the military subjects and participants in space simulation studies indicated higher competitiveness and negative instrumentality compared to both the personnel on Antarctic research stations and participants in polar expedition. Among the personnel on Antarctic research stations, significant gender differences were found with women scoring lower on competitiveness, negative instrumentality and impatience/irritability. Compared to the other samples, the participants in polar expeditions were found to be more homogeneous in personality and no significant gender differences were evident on the traits that

  5. A nonlinear dynamic analogue model of substorms

    NASA Astrophysics Data System (ADS)

    Klimas, A. J.; Baker, D. N.; Roberts, D. A.; Fairfield, D. H.; Büchner, J.

    Linear prediction filter studies have shown that the magnetospheric response to energy transfer from the solar wind contains both directly driven and unloading components. These studies have also shown that the magnetospheric response is significantly nonlinear and, thus, the linear prediction filtering technique and other correlative techniques which assume a linear magnetospheric response cannot give a complete deacription of that response. Here, the solar wind-magnetosphere interaction is discussed within the framework of deterministic nonlinear dynamics. An earlier dripping faucet mechanical analogue to the magnetosphere is first reviewed and then the plasma physical counterpart to the mechanical model is constructed. A Faraday loop in the magnetotail is considered and the relationship of electric potentials on the loop to changes in the magnetic flux threading the loop is developed. This approach leads to a model of geomagnetic activity which is similar to the earlier mechanical model but described in terms of the geometry and plasma contents of the magnetotail. This Faraday loop response model contains analogues to both the directly driven and the storage-release magnetospheric responses and it includes, in a fundamental way, the inherent nonlinearity of the solar wind-magnetosphere system. It can be chancterized as a nonlinear, damped harmonic oscillator that is driven by the loading-unloading substorm cycle. The model is able to explain many of the features of the linear prediction filter results. In particular, at low geomagnetic activity levels the model exbibits the "regular dripping" response which provides an explanation for the unloading component at 1 hour lag in the linear prediction filters. Further, the model suggests that the disappearance of the unloading component in the linear prediction filters at high geomagnetic activity levels is due to a chaotic transition beyond which the loading-unloading mechanism becomes aperiodic. The model predicts

  6. Synthesis and evaluation of neuroprotective alpha,beta-unsaturated aldehyde scavenger histidyl-containing analogues of carnosine.

    PubMed

    Guiotto, Andrea; Calderan, Andrea; Ruzza, Paolo; Osler, Alessio; Rubini, Chiara; Jo, Dong-Gyu; Mattson, Mark P; Borin, Gianfranco

    2005-09-22

    The synthesis, scavenging activity, and cytoprotective profiles of histidyl-containing carnosine analogues bearing hydrazide or 1,2-diol moieties is reported. Some compounds have demonstrated higher aldehyde-sequestering efficiency than carnosine and were also efficient in protecting SH-SY5Y neuroblastoma cells and rat hippocampal neurons from 4-hydroxy-trans-2,3-nonenal (HNE)-mediated death. The cytoprotective efficacy of these compounds suggests their potential use as therapeutic agents for disorders that involve excessive membrane lipids peroxidation and HNE-mediated neuronal toxicity.

  7. Sebaceous gland lipids

    PubMed Central

    Ottaviani, Monica; Camera, Emanuela; Mastrofrancesco, Arianna

    2009-01-01

    The principal activity of mature sebaceous glands is producing and secreting sebum, which is a complex mixture of lipids. Sebum composition is different among species and this difference is probably due to the function that sebum has to absolve. In human sebum there are unique lipids, such as squalene and wax esters not found anywhere else in the body nor among the epidermal surface lipids. Moreover, they correspond to major components supplying the skin with protection. However, the ultimate role of human sebum, as well the metabolic pathways regulating its composition and secretion rate, are far from a complete understanding. Increased sebum secretion is considered, among all features, the major one involved in the pathophysiology of acne. Along with increased sebum secretion rate, quali- and quantitative modifications of sebum are likely to occur in this pathology. Understanding the factors and mechanisms that regulate sebum production is needed in order to identify new targets that can be addressed to achieve a selective modulation of lipid biosynthesis as a novel therapeutic strategy to correct lipid disregulations in acne and other disorders of the pilosebaceous unit. PMID:20224686

  8. Ribosome-Mediated Incorporation of Dipeptides and Dipeptide Analogues into Proteins in Vitro.

    PubMed

    Maini, Rumit; Dedkova, Larisa M; Paul, Rakesh; Madathil, Manikandadas M; Chowdhury, Sandipan Roy; Chen, Shengxi; Hecht, Sidney M

    2015-09-09

    Plasmids containing 23S rRNA randomized at positions 2057-2063 and 2502-2507 were introduced into Escherichia coli, affording a library of clones which produced modified ribosomes in addition to the pre-existing wild-type ribosomes. These clones were screened with a derivative of puromycin, a natural product which acts as an analogue of the 3'-end of aminoacyl-tRNA and terminates protein synthesis by accepting the growing polypeptide chain, thereby killing bacterial cells. The puromycin derivative in this study contained the dipeptide p-methoxyphenylalanylglycine, implying the ability of the modified ribosomes in clones sensitive to this puromycin analogue to recognize dipeptides. Several clones inhibited by the puromycin derivative were used to make S-30 preparations, and some of these were shown to support the incorporation of dipeptides into proteins. The four incorporated species included two dipeptides (Gly-Phe (2) and Phe-Gly (3)), as well as a thiolated dipeptide analogue (4) and a fluorescent oxazole (5) having amine and carboxyl groups approximately the same distance apart as in a normal dipeptide. A protein containing both thiolated dipeptide 4 and a 7-methoxycoumarin fluorophore was found to undergo fluorescence quenching. Introduction of the oxazole fluorophore 5 into dihydrofolate reductase or green fluorescent protein resulted in quite strong enhancement of its fluorescence emission, and the basis for this enhancement was studied. The aggregate results demonstrate the feasibility of incorporating dipeptides as a single ribosomal event, and illustrate the lack of recognition of the central peptide bond in the dipeptide, potentially enabling the incorporation of a broad variety of structural analogues.

  9. Tren-based analogues of bacillibactin: structure and stability.

    PubMed

    Dertz, Emily A; Xu, Jide; Raymond, Kenneth N

    2006-07-10

    Synthetic analogues were designed to highlight the effect of the glycine moiety of bacillibactin on the overall stability of the ferric complex as compared to synthetic analogues of enterobactin. Insertion of a variety of amino acids to catecholamide analogues based on a Tren (tris(2-aminoethyl)amine) backbone increased the overall acidity of the ligands, causing an enhancement of the stability of the resulting ferric complex as compared to TRENCAM. Solution thermodynamic behavior of these siderophores and their synthetic analogues was investigated through potentiometric and spectrophotometric titrations. X-ray crystallography, circular dichroism, and molecular modeling were used to determine the chirality and geometry of the ferric complexes of bacillibactin and its analogues. In contrast to the Tren scaffold, addition of a glycine to the catechol chelating arms causes an inversion of the trilactone backbone, resulting in opposite chiralities of the two siderophores and a destabilization of the ferric complex of bacillibactin compared to ferric enterobactin.

  10. Analogue Divider by Averaging a Triangular Wave

    NASA Astrophysics Data System (ADS)

    Selvam, Krishnagiri Chinnathambi

    2017-03-01

    A new analogue divider circuit by averaging a triangular wave using operational amplifiers is explained in this paper. The triangle wave averaging analog divider using operational amplifiers is explained here. The reference triangular waveform is shifted from zero voltage level up towards positive power supply voltage level. Its positive portion is obtained by a positive rectifier and its average value is obtained by a low pass filter. The same triangular waveform is shifted from zero voltage level to down towards negative power supply voltage level. Its negative portion is obtained by a negative rectifier and its average value is obtained by another low pass filter. Both the averaged voltages are combined in a summing amplifier and the summed voltage is given to an op-amp as negative input. This op-amp is configured to work in a negative closed environment. The op-amp output is the divider output.

  11. Naturalness in an emergent analogue spacetime.

    PubMed

    Liberati, Stefano; Visser, Matt; Weinfurtner, Silke

    2006-04-21

    Effective field theories (EFTs) have been widely used as a framework in order to place constraints on the Planck suppressed Lorentz violations predicted by various models of quantum gravity. There are, however, technical problems in the EFT framework when it comes to ensuring that small Lorentz violations remain small--this is the essence of the "naturalness" problem. Herein we present an "emergent" spacetime model, based on the "analogue gravity" program, by investigating a specific condensed-matter system. Specifically, we consider the class of two-component BECs subject to laser-induced transitions between the components, and we show that this model is an example for Lorentz invariance violation due to ultraviolet physics. Furthermore, our model explicitly avoids the naturalness problem, and makes specific suggestions regarding how to construct a physically reasonable quantum gravity phenomenology.

  12. Derivatisable Cyanobactin Analogues: A Semisynthetic Approach

    PubMed Central

    Oueis, Emilia; Adamson, Catherine; Mann, Greg; Ludewig, Hannes; Redpath, Philip; Migaud, Marie

    2015-01-01

    Abstract Many natural cyclic peptides have potent and potentially useful biological activities. Their use as therapeutic starting points is often limited by the quantities available, the lack of known biological targets and the practical limits on diversification to fine‐tune their properties. We report the use of enzymes from the cyanobactin family to heterocyclise and macrocyclise chemically synthesised substrates so as to allow larger‐scale syntheses and better control over derivatisation. We have made cyclic peptides containing orthogonal reactive groups, azide or dehydroalanine, that allow chemical diversification, including the use of fluorescent labels that can help in target identification. We show that the enzymes are compatible and efficient with such unnatural substrates. The combination of chemical synthesis and enzymatic transformation could help renew interest in investigating natural cyclic peptides with biological activity, as well as their unnatural analogues, as therapeutics. PMID:26507241

  13. A simple analogue of lung mechanics.

    PubMed

    Sherman, T F

    1993-12-01

    A model of the chest and lungs can be easily constructed from a bottle of water, a balloon, a syringe, a rubber stopper, glass and rubber tubing, and clamps. The model is a more exact analogue of the body than the classic apparatus of Hering in two respects: 1) the pleurae and intrapleural fluid are represented by water rather than air, and 2) the subatmospheric "intrapleural" pressure is created by the elasticity of the "lung" (balloon) rather than by a vacuum pump. With this model, students can readily see how the lung is inflated and deflated by movements of the "diaphragm and chest" (syringe plunger) and how intrapleural pressures change as this is accomplished.

  14. Next generation macrocyclic and acyclic cationic lipids for gene transfer: Synthesis and in vitro evaluation.

    PubMed

    Jubeli, Emile; Maginty, Amanda B; Abdul Khalique, Nada; Raju, Liji; Abdulhai, Mohamad; Nicholson, David G; Larsen, Helge; Pungente, Michael D; Goldring, William P D

    2015-10-01

    Previously we reported the synthesis and in vitro evaluation of four novel, short-chain cationic lipid gene delivery vectors, characterized by acyclic or macrocyclic hydrophobic regions composed of, or derived from, two 7-carbon chains. Herein we describe a revised synthesis of an expanded library of related cationic lipids to include extended chain analogues, their formulation with plasmid DNA (pDNA) and in vitro delivery into Chinese hamster ovarian (CHO-K1) cells. The formulations were evaluated against each other based on structural differences in the hydrophobic domain and headgroup. Structurally the library is divided into four sets based on lipids derived from two 7- or two 11-carbon hydrophobic chains, C7 and C11 respectively, which possess either a dimethylamine or a trimethylamine derived headgroup. Each set includes four cationic lipids based on an acyclic or macrocyclic, saturated or unsaturated hydrophobic domain. All lipids were co-formulated with the commercial cationic lipid 1,2-dimyristoyl-sn-glycero-3-ethylphosphocholine (EPC) in a 1:1 molar ratio, along with one of two distinct neutral co-lipids, cholesterol or 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) in an overall cationic-to-neutral lipid molar ratio of 3:2. Binding of lipid formulations with DNA, and packing morphology associated with the individual lipid-DNA complexes were characterized by gel electrophoresis and small angle X-ray diffraction (SAXD), respectively. As a general trend, lipoplex formulations based on mismatched binary cationic lipids, composed of a shorter C7 lipid and the longer lipid EPC (C14), were generally associated with higher transfection efficiency and lower cytotoxicity than their more closely matched C11/EPC binary lipid formulation counterparts. Furthermore, the cyclic lipids gave transfection levels as high as or greater than their acyclic counterparts, and formulations with cholesterol exhibited higher transfection and lower cytotoxicity than those

  15. Terrestrial Analogues for Lunar Impact Melt Flows

    NASA Technical Reports Server (NTRS)

    Neish, C. D.; Hamilton, C. W.; Hughes, S. S.; Nawotniak, S. Kobs; Garry, W. B.; Skok, J. R.; Elphic, R. C.; Schaefer, E.; Carter, L. M.; Bandfield, J. L.; Osinski, G. R.; Lim, D.; Heldmann, J. L.

    2016-01-01

    Lunar impact melt deposits have unique physical properties. They have among the highest observed radar returns at S-Band (12.6 cm wavelength), implying that they are rough at the decimeter scale. However, they are also observed in high-resolution optical imagery to be quite smooth at the meter scale. These characteristics distinguish them from well-studied terrestrial analogues, such as Hawaiian pahoehoe and ?a ?a lava flows. The morphology of impact melt deposits can be related to their emplacement conditions, so understanding the origin of these unique surface properties will help to inform us as to the circumstances under which they were formed. In this work, we seek to find a terrestrial analogue for well-preserved lunar impact melt flows by examining fresh lava flows on Earth. We compare the radar return and high-resolution topographic variations of impact melt flows to terrestrial lava flows with a range of surface textures. The lava flows examined in this work range from smooth Hawaiian pahoehoe to transitional basaltic flows at Craters of the Moon (COTM) National Monument and Preserve in Idaho to rubbly and spiny pahoehoe-like flows at the recent eruption at Holuhraun in Iceland. The physical properties of lunar impact melt flows appear to differ from those of all the terrestrial lava flows studied in this work. This may be due to (a) differences in post-emplacement modification processes or (b) fundamental differences in the surface texture of the melt flows due to the melts' unique emplacement and/or cooling environment. Information about the surface properties of lunar impact melt deposits will be critical for future landed missions that wish to sample these materials.

  16. Natural analogues of nuclear waste glass corrosion.

    SciTech Connect

    Abrajano, T.A. Jr.; Ebert, W.L.; Luo, J.S.

    1999-01-06

    This report reviews and summarizes studies performed to characterize the products and processes involved in the corrosion of natural glasses. Studies are also reviewed and evaluated on how well the corrosion of natural glasses in natural environments serves as an analogue for the corrosion of high-level radioactive waste glasses in an engineered geologic disposal system. A wide range of natural and experimental corrosion studies has been performed on three major groups of natural glasses: tektite, obsidian, and basalt. Studies of the corrosion of natural glass attempt to characterize both the nature of alteration products and the reaction kinetics. Information available on natural glass was then compared to corresponding information on the corrosion of nuclear waste glasses, specifically to resolve two key questions: (1) whether one or more natural glasses behave similarly to nuclear waste glasses in laboratory tests, and (2) how these similarities can be used to support projections of the long-term corrosion of nuclear waste glasses. The corrosion behavior of basaltic glasses was most similar to that of nuclear waste glasses, but the corrosion of tektite and obsidian glasses involves certain processes that also occur during the corrosion of nuclear waste glasses. The reactions and processes that control basalt glass dissolution are similar to those that are important in nuclear waste glass dissolution. The key reaction of the overall corrosion mechanism is network hydrolysis, which eventually breaks down the glass network structure that remains after the initial ion-exchange and diffusion processes. This review also highlights some unresolved issues related to the application of an analogue approach to predicting long-term behavior of nuclear waste glass corrosion, such as discrepancies between experimental and field-based estimates of kinetic parameters for basaltic glasses.

  17. Terrestrial analogues for lunar impact melt flows

    NASA Astrophysics Data System (ADS)

    Neish, C. D.; Hamilton, C. W.; Hughes, S. S.; Nawotniak, S. Kobs; Garry, W. B.; Skok, J. R.; Elphic, R. C.; Schaefer, E.; Carter, L. M.; Bandfield, J. L.; Osinski, G. R.; Lim, D.; Heldmann, J. L.

    2017-01-01

    Lunar impact melt deposits have unique physical properties. They have among the highest observed radar returns at S-Band (12.6 cm wavelength), implying that they are rough at the decimeter scale. However, they are also observed in high-resolution optical imagery to be quite smooth at the meter scale. These characteristics distinguish them from well-studied terrestrial analogues, such as Hawaiian pāhoehoe and ´a´ā lava flows. The morphology of impact melt deposits can be related to their emplacement conditions, so understanding the origin of these unique surface properties will help to inform us as to the circumstances under which they were formed. In this work, we seek to find a terrestrial analogue for well-preserved lunar impact melt flows by examining fresh lava flows on Earth. We compare the radar return and high-resolution topographic variations of impact melt flows to terrestrial lava flows with a range of surface textures. The lava flows examined in this work range from smooth Hawaiian pāhoehoe to transitional basaltic flows at Craters of the Moon (COTM) National Monument and Preserve in Idaho to rubbly and spiny pāhoehoe-like flows at the recent eruption at Holuhraun in Iceland. The physical properties of lunar impact melt flows appear to differ from those of all the terrestrial lava flows studied in this work. This may be due to (a) differences in post-emplacement modification processes or (b) fundamental differences in the surface texture of the melt flows due to the melts' unique emplacement and/or cooling environment. Information about the surface properties of lunar impact melt deposits will be critical for future landed missions that wish to sample these materials.

  18. Current european regulatory perspectives on insulin analogues

    PubMed Central

    2011-01-01

    Insulin analogues are increasingly considered as an alternative to human insulin in the therapy of diabetes mellitus. Insulin analogues (IAs) are chemically different from human insulin and may have different pharmacokinetic or pharmacodynamic properties. The significance of the modifications of the insulin molecule for the safety profile of IAs must be considered. This review describes the regulatory procedure and the expectations for the scientific content of European marketing authorization applications for innovative IAs submitted to the European Medicines Agency. Particular consideration is given to a potential cancer hazard. Specific regulatory guidance on how to address a possible carcinogenic or tumor promoting effect of innovative IAs in non-clinical studies is available. After marketing authorization, the factual access of patients to the new product will be determined to great extent by health technology assessment bodies, reimbursement decisions and the price. Whereas the marketing authorization is a European decision, pricing and reimbursement are national or regional responsibilities. The assessment of benefit and risk by the European Medicines Agency is expected to influence future decisions on price and reimbursement on a national or regional level. Collaborations between regulatory agencies and health technology assessment bodies have been initiated on European and national level to facilitate the use of the European Medicines Agency's benefit risk assessment as basis on which to build the subsequent health technology assessment. The option for combined or joint scientific advice procedures with regulators and health technology assessment bodies on European level or on a national level in several European Member States may help applicants to optimize their development program and dossier preparation in regard of both European marketing authorization application and reimbursement decisions. PMID:21736748

  19. Lipid Production from Nannochloropsis

    PubMed Central

    Ma, Xiao-Nian; Chen, Tian-Peng; Yang, Bo; Liu, Jin; Chen, Feng

    2016-01-01

    Microalgae are sunlight-driven green cell factories for the production of potential bioactive products and biofuels. Nannochloropsis represents a genus of marine microalgae with high photosynthetic efficiency and can convert carbon dioxide to storage lipids mainly in the form of triacylglycerols and to the ω-3 long-chain polyunsaturated fatty acid eicosapentaenoic acid (EPA). Recently, Nannochloropsis has received ever-increasing interests of both research and public communities. This review aims to provide an overview of biology and biotechnological potential of Nannochloropsis, with the emphasis on lipid production. The path forward for the further exploration of Nannochloropsis for lipid production with respect to both challenges and opportunities is also discussed. PMID:27023568

  20. LM cell growth and membrane lipid adaptation to sterol structure.

    PubMed

    Rujanavech, C; Silbert, D F

    1986-06-05

    Using a sterol auxotroph of the LM cell mouse fibroblast, we demonstrate that relatively few cholesterol analogues can substitute for cholesterol as a growth factor. The auxotroph grows normally on desmosterol and trans-22-dehydrocholesterol and at reduced rates on dihydrocholesterol, campesterol, and 22,23-dihydrobrassicasterol. It does not grow with beta-sitosterol, stigmasterol, ergosterol, or cis-22-dehydrocholesterol when the sterol is present as sole supplement but does grow at normal rates when the analogue is supplied with suboptimal amounts of cholesterol. Two contrasting types of membrane lipid changes are observed in cells grown on cholesterol analogues. In cells grown with dihydrocholesterol, a marked increase in desaturation and elongation of fatty acids is noted. Conversely, when cells are grown with cis-22-dehydrocholesterol, desaturation and elongation of fatty acids are severely curtailed. Cells grown on alkyl sterols respond like cells grown on cis-22-dehydrocholesterol but in a less pronounced fashion. The effects of sterol substitution in mammalian cells versus in lower eukaryotes are compared, and an explanation for the secondary changes in fatty acid composition in terms of phospholipid phase behavior is suggested.

  1. Novel analogues of degarelix incorporating hydroxy-, methoxy- and pegylated-urea moieties at positions 3, 5, 6 and the N-terminus

    PubMed Central

    Samant, Manoj P.; Hong, Doley J.; Croston, Glenn; Rivier, Catherine; Rivier, Jean

    2008-01-01

    Novel degarelix (Fe200486) analogues were screened for antagonism of GnRH-induced response (IC50) in a reporter gene assay. Inhibition of luteinizing hormone release over time was measured in the castrated male rat. Nω-hydroxy- and Nω-methoxy-carbamoylation of Dab and Dap at position 3 (3-6), and Nω-hydroxy-, Nω-methoxy-carbamoylation and pegylation of 4Aph at positions 5 and 6 (7-10, 15-17, 22-25) were carried out. Modulation of hydrophobicity was achieved using different acylating groups at the N-terminus (11-14, 18-21, 26-28). Analogues 8, 15-17, 22 and 23 were equipotent to acyline (IC50 = 0.69 nM) and degarelix (IC50 = 0.58 nM) in vitro. Analogues 7, 17 and 23 were shorter acting than acyline, when 9, 11, 13, 15, 16 and 22 were longer acting. Only 9 and 14 were inactive at releasing histamine. No analogue exhibited a duration of action comparable to that of degarelix. Analogues with shorter and longer retention times on HPLC (a measure of hydrophilicity) than degarelix were identified. PMID:16759096

  2. Analogues of uracil nucleosides with intrinsic fluorescence (NIF-analogues): synthesis and photophysical properties.

    PubMed

    Segal, Meirav; Fischer, Bilha

    2012-02-28

    Uridine cannot be utilized as fluorescent probe due to its extremely low quantum yield. For improving the uracil fluorescence characteristics we extended the natural chromophore at the C5 position by coupling substituted aromatic rings directly or via an alkenyl or alkynyl linker to create fluorophores. Extension of the uracil base was achieved by treating 5-I-uridine with the appropriate boronic acid under the Suzuki coupling conditions. Analogues containing an alkynyl linker were obtained from 5-I-uridine and the suitable boronic acid in a Sonogashira coupling reaction. The uracil fluorescent analogues proposed here were designed to satisfy the following requirements: a minimal chemical modification at a position not involved in base-pairing, resulting in relatively long absorption and emission wavelengths and high quantum yield. 5-((4-Methoxy-phenyl)-trans-vinyl)-2'-deoxy-uridine, 6b, was found to be a promising fluorescent probe. Probe 6b exhibits a quantum yield that is 3000-fold larger than that of the natural chromophore (Φ 0.12), maximum emission (478 nm) which is 170 nm red shifted as compared to uridine, and a Stokes shift of 143 nm. In addition, since probe 6b adopts the anti conformation and S sugar puckering favored by B-DNA, it makes a promising nucleoside analogue to be incorporated in an oligonucleotide probe for detection of genetic material.

  3. A photoactivable phospholipid analogue that specifically labels membrane cytoskeletal proteins of intact erythrocytes

    SciTech Connect

    Pradhan, D.; Williamson, P.; Schlegel, R.A. )

    1989-08-22

    A radioactive photoactivable analogue of phosphatidylethanolamine, 2-(2-azido-4-nitrobenzoyl)-1-acyl-sn-glycero-3-phospho({sup 14}C)ethanolamine(({sup 14}C)AzPE), was synthesized. Upon incubation with erythrocytes in the dark, about 90% of ({sup 14}C)AzPE spontaneously incorporated into the cells; of this fraction, about 90% associated with the membrane, all of it noncovalently. Upon photoactivation, 3-4% of the membrane-associated probe was incorporated into protein. Analysis of this fraction by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, as well as extraction of labeled membranes with alkali or detergent, showed that the probe preferentially labeled cytoskeletal proteins. ({sup 14}C)AzPE appears to be a useful tool for the study of lipid-protein interactions at the cytoplasmic face of the plasma membrane of intact cells.

  4. Immobilized lipid-bilayer materials

    DOEpatents

    Sasaki, Darryl Y.; Loy, Douglas A.; Yamanaka, Stacey A.

    2000-01-01

    A method for preparing encapsulated lipid-bilayer materials in a silica matrix comprising preparing a silica sol, mixing a lipid-bilayer material in the silica sol and allowing the mixture to gel to form the encapsulated lipid-bilayer material. The mild processing conditions allow quantitative entrapment of pre-formed lipid-bilayer materials without modification to the material's spectral characteristics. The method allows for the immobilization of lipid membranes to surfaces. The encapsulated lipid-bilayer materials perform as sensitive optical sensors for the detection of analytes such as heavy metal ions and can be used as drug delivery systems and as separation devices.

  5. Antidiabetic activity of benzopyrone analogues in nicotinamide-streptozotocin induced type 2 diabetes in rats.

    PubMed

    Nayak, Yogendra; Hillemane, Venkatachalam; Daroji, Vijay Kumar; Jayashree, B S; Unnikrishnan, M K

    2014-01-01

    Benzopyrones are proven antidiabetic drug candidate in diabetic drug discovery. In this view novel synthetic benzopyrone analogues were selected for testing in experimental diabetes. Type 2 diabetes (T2D) was induced in Wistar rats by streptozotocin (60 mg/kg, i.p.) followed by nicotinamide (120 mg/kg i.p.). Rats having fasting blood glucose (FBG)>200 mg/dL, 7 days after T2D-induction, are selected for the study. Test compounds and standard treatment were continued for 15 days. FBG, oral glucose tolerance test (OGTT), and insulin tolerance test (ITT) were determined on 21st day after induction of T2D. Plasma lipids and serum insulin were estimated. Homeostatic model assessment (HOMA-IR) was then calculated from serum insulin. Rats were sacrificed and pancreas was isolated for histopathological observations. Oxidative stress markers were estimated in liver homogenate. Quercetin, a natural product with benzopyrone ring, showed significant hypoglycemic activity comparable to glibenclamide. Treatment with test compounds lowered the FBG and insulin resistance was significant alleviated as determined by OGTT, HOMA-IR, and ITT. There was significant normalisation of liver antioxidant enzymes compared to diabetic rats indicating that all the synthesised benzopyrone analogues are beneficial in reducing oxidative stress and are on par with the standard quercetin and glibenclamide in experimental T2D.

  6. Maltose neopentyl glycol-3 (MNG-3) analogues for membrane protein study.

    PubMed

    Cho, Kyung Ho; Husri, Mohd; Amin, Anowarul; Gotfryd, Kamil; Lee, Ho Jin; Go, Juyeon; Kim, Jin Woong; Loland, Claus J; Guan, Lan; Byrne, Bernadette; Chae, Pil Seok

    2015-05-07

    Detergents are typically used to both extract membrane proteins (MPs) from the lipid bilayers and maintain them in solution. However, MPs encapsulated in detergent micelles are often prone to denaturation and aggregation. Thus, the development of novel agents with enhanced stabilization characteristics is necessary to advance MP research. Maltose neopentyl glycol-3 (MNG-3) has contributed to >10 crystal structures including G-protein coupled receptors. Here, we prepared MNG-3 analogues and characterised their properties using selected MPs. Most MNGs were superior to a conventional detergent, n-dodecyl-β-D-maltopyranoside (DDM), in terms of membrane protein stabilization efficacy. Interestingly, optimal stabilization was achieved with different MNG-3 analogues depending on the target MP. The origin for such detergent specificity could be explained by a novel concept: compatibility between detergent hydrophobicity and MP tendency to denature and aggregate. This set of MNGs represents viable alternatives to currently available detergents for handling MPs, and can be also used as tools to estimate MP sensitivity to denaturation and aggregation.

  7. Neoglycolipid analogues of ganglioside G sub M1 as functional receptors of cholera toxin

    SciTech Connect

    Pacuszka, T.; Bradley, R.M.; Fishman, P.H. )

    1991-03-12

    The authors synthesized several lipid analogues of ganglioside G{sub M1} by attaching its oligosaccharide moiety (G{sub M1}OS) to aminophospholipids, aliphatic amines, and cholesteryl hemisuccinate. They incubated G{sub M1}-deficient rat glioma C6 cells with each of the derivatives as well as native G{sub M1} and assayed the cells for their ability to bind and respond to cholera toxin. On the basis of the observed increase in binding of {sup 125}I-labeled cholera toxin, it was apparent that the cells took up and initially incorporated most of the derivatives into the plasma membrane. In the case of the aliphatic amine derivatives, the ability to generate new toxin binding sites was dependent on chain length; whereas the C{sub 10} derivative was ineffective, C{sub 12} and higher analogues were effective. Increased binding was dependent on both the concentration of the neoglycolipid in the medium and the time of exposure. Cells pretreated with the various derivatives accumulated cyclic AMP in response to cholera toxin, but there were differences in their effectiveness. The cholesterol and long-chain aliphatic amine derivatives were more effective than native G{sub M1}, whereas the phospholipid derivatives were less effective. The distance between G{sub M1}OS and the phospholipid also appeared to influence its functional activity. The results indicate that although G{sub M1}OS provides the recognition site for the binding of cholera toxin, the nature of the lipid moiety plays an important role in the action of the toxin.

  8. Chemically-activatable alkyne-tagged probe for imaging microdomains in lipid bilayer membranes

    PubMed Central

    Yamaguchi, Satoshi; Matsushita, Taku; Izuta, Shin; Katada, Sumika; Ura, Manami; Ikeda, Taro; Hayashi, Gosuke; Suzuki, Yuta; Kobayashi, Koya; Tokunaga, Kyoya; Ozeki, Yasuyuki; Okamoto, Akimitsu

    2017-01-01

    A chemically-activatable alkynyl steroid analogue probe has been synthesized for visualizing the lipid raft membrane domains by Raman microscopy. The Raman probe, in which ring A of its steroid backbone is replaced with an alkynyl group, was designed to enable activation of the alkyne signal through the Eschenmoser-Tanabe fragmentation reaction of the oxidized cholesterol precursor in lipid bilayer membranes. The alkynyl steroid analogue was observed to form liquid-ordered raft-like domains on a model giant-liposome system in a similar manner as cholesterol, and the large alkyne signal of the accumulated probe at 2120 cm−1 was mapped on the microdomains with a Raman microscope. The alkyne moiety of the probe was confirmed to be converted from the α,β-epoxy ketone group of its precursor by reaction with p-toluensulfonyl hydrazine under a mild condition. Through the reaction, the alkyne signal of the probe was activated on the lipid bilayer membrane of liposomes. Furthermore, the signal activation of the probe was also detected on living cells by stimulated Raman scattering microscopy. The ring-A-opened alkyne steroid analogue, thus, provides a first chemically-activatable Raman probe as a promising tool for potentially unravelling the intracellular formation and trafficking of cholesterol-rich microdomains. PMID:28117375

  9. Expanding roles for lipid droplets

    PubMed Central

    Welte, Michael A.

    2015-01-01

    Summary Lipid droplets are the intracellular sites for neutral lipid storage. They are critical for lipid metabolism and energy homeostasis, and their dysfunction has been linked to many diseases. Accumulating evidence suggests that the roles lipid droplets play in biology are significantly broader than previously anticipated. Lipid droplets are the source of molecules important in the nucleus: they can sequester transcription factors and chromatin components and generate the lipid ligands for certain nuclear receptors. Lipid droplets have also emerged as important nodes for fatty acid trafficking, both inside the cell and between cells. In immunity, new roles for droplets, not directly linked to lipid metabolism, have been uncovered, as assembly platforms for specific viruses and as reservoirs for proteins that fight intracellular pathogens. Until recently, knowledge about droplets in the nervous system has been minimal, but now there are multiple links between lipid droplets and neurodegeneration: Many candidate genes for Hereditary Spastic Paraplegia also have central roles in lipid-droplet formation and maintenance, and mitochondrial dysfunction in neurons can lead to transient accumulating of lipid droplets in neighboring glial cells, an event that may, in turn, contribute to neuronal damage. As the cell biology and biochemistry of lipid droplets are increasingly well understood, the next few years should yield many new mechanistic insights into these novel functions of lipid droplets. PMID:26035793

  10. Nuclear Lipids in the Nervous System: What they do in Health and Disease.

    PubMed

    Garcia-Gil, Mercedes; Albi, Elisabetta

    2017-02-01

    In the last 20 years it has been widely demonstrated that cell nucleus contains neutral and polar lipids localized in nuclear membranes, nucleoli, nuclear matrix and chromatin. Nuclear lipids may show specific organization forming nuclear lipid microdomains and have both structural and functional roles. Depending on their localization, nuclear lipids play different roles such as the regulation of nuclear membrane and nuclear matrix fluidity but they also can act as platforms for vitamin and hormone function, for active chromatin anchoring, and for the regulation of gene expression, DNA duplication and transcription. Crosstalk among different kinds of lipid signalling pathways influence the physiopathology of numerous cell types. In neural cells the nuclear lipids are involved in cell proliferation, differentiation, inflammation, migration and apoptosis. Abnormal metabolism of nuclear lipids might be closely associated with tumorigenesis and neurodegenerative diseases such as Alzheimer disease and Parkinson disease among others.

  11. Lipid nanocarriers (GeluPearl) containing amphiphilic lipid Gelucire 50/13 as a novel stabilizer: fabrication, characterization and evaluation for oral drug delivery

    NASA Astrophysics Data System (ADS)

    Date, Abhijit A.; Vador, Nimish; Jagtap, Aarti; Nagarsenker, Mangal S.

    2011-07-01

    Purpose. To evaluate the ability of Gelucire 50/13 (an amphiphilic lipid excipient) to act as a stabilizer for lipid nanocarriers such as solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) and to establish the ability of Gelucire 50/13 based lipid nanocarriers to improve oral delivery of hydrophobic drugs using repaglinide (RPG) as a model drug. Methods. The ability of Gelucire 50/13 to nanosize various solid lipids was evaluated. The ability of Gelucire 50/13 to yield NLC was evaluated by using Precirol ATO 5 as a model solid lipid and various liquid lipids (oils). Gelucire 50/13 based NLC (GeluPearl) were evaluated for their ability to improve the efficacy of RPG on oral administration in comparison to RPG tablets. The short term stability of RPG-GeluPearl was evaluated at 25 °C/60% RH. Results. Gelucire 50/13 could successfully yield SLN and NLC of various solid lipids, demonstrating its potential to act as a novel stabilizer. DSC studies indicated that Gelucire 50/13 interacts with Precirol ATO 5 and this interaction suppresses polymorphic transitions of both the components. RPG-GeluPearl exhibited significantly higher anti-diabetic activity compared to marketed RPG tablets. RPG-GeluPearl demonstrated good colloidal and chemical stability at the end of 1 month. Indian patent application number 2167/MUM/2008.

  12. Nitroglycerin enhances the propagation of cortical spreading depression: comparative studies with sumatriptan and novel kynurenic acid analogues

    PubMed Central

    Knapp, Levente; Szita, Bence; Kocsis, Kitti; Vécsei, László; Toldi, József

    2017-01-01

    Background The complex pathophysiology of migraine is not yet clearly understood; therefore, experimental models are essential for the investigation of the processes related to migraine headache, which include cortical spreading depression (CSD) and NO donor-induced neurovascular changes. Data on the assessment of drug efficacy in these models are often limited, which prompted us to investigate a novel combined migraine model in which an effective pharmacon could be more easily identified. Materials and methods In vivo electrophysiological experiments were performed to investigate the effect of nitroglycerin (NTG) on CSD induced by KCl application. In addition, sumatriptan and newly synthesized neuroactive substances (analogues of the neuromodulator kynurenic acid [KYNA]) were also tested. Results The basic parameters of CSDs were unchanged following NTG administration; however, propagation failure was decreased compared to the controls. Sumatriptan decreased the number of CSDs, whereas propagation failure was as minimal as in the NTG group. On the other hand, both of the KYNA analogues restored the ratio of propagation to the control level. Discussion The ratio of propagation appeared to be the indicator of the effect of NTG. This is the first study providing direct evidence that NTG influences CSD; furthermore, we observed different effects of sumatriptan and KYNA analogues. Sumatriptan changed the generation of CSDs, whereas the analogues acted on the propagation of the waves. Our experimental design overlaps with a large spectrum of processes present in migraine pathophysiology, and it can be a useful experimental model for drug screening. PMID:28053504

  13. The 2-methoxy methyl analogue of salvinorin A attenuates cocaine-induced drug seeking and sucrose reinforcements in rats.

    PubMed

    Morani, Aashish S; Ewald, Amy; Prevatt-Smith, Katherine M; Prisinzano, Thomas E; Kivell, Bronwyn M

    2013-11-15

    κ Opioid receptor activation by traditional arylacetamide agonists and the novel neoclerodane diterpene κ opioid receptor agonist Salvinorin A (Sal A) results in attenuation of cocaine-seeking behavior in pre-clinical models of addiction. However, adverse effects such as sedation, depression and aversion limit their clinical utility. The Sal A analogue, 2-methoxy-methyl salvinorin B (MOM Sal B) is a longer acting Sal A analogue with high affinity for κ opioid receptors. In this study, we tested MOM Sal B for its ability to modulate cocaine-seeking behavior in rats. MOM Sal B (0.3mg/kg) successfully attenuated cocaine-seeking but also attenuated sucrose reinforcement. No change in activity was observed in either cocaine-induced hyperactivity or spontaneous open field activity tests but increased immobility and decreased swimming times in the forced swim test were observed. This study indicates that κ opioid receptor activation by more potent Sal A analogues modulates cocaine-seeking behavior non-selectively without causing sedation, suggesting an improved side effects profile. However, pro-depressive effects are seen, which may limit the therapeutic potential of this compound. Future studies with Sal A analogues having affinities at other opioid receptors are warranted as they have the potential to identify compounds having effective anti-addiction properties.

  14. The 2-Methoxy methyl analogue of salvinorin A attenuates cocaine-induced drug seeking and sucrose reinforcements in rats

    PubMed Central

    Morani, Aashish S.; Ewald, Amy; Prevatt-Smith, Katherine M.; Prisinzano, Thomas E.; Kivell, Bronwyn

    2014-01-01

    κ opioid receptor activation by traditional arylacetamide agonists and the novel neoclerodane diterpene κ opioid receptor agonist Salvinorin A (Sal A) results in attenuation of cocaine-seeking behavior in pre-clinical models of addiction. However, adverse effects such as sedation, depression and aversion limit their clinical utility. The Sal A analogue, 2-methoxymethyl salvinorin B (MOM Sal B) is a longer acting Sal A analogue with high affinity for κ opioid receptors. In this study, we tested MOM Sal B for its ability to modulate cocaine-seeking behavior in rats. MOM Sal B (0.3 mg/kg) successfully attenuated cocaine-seeking but also attenuated sucrose reinforcement. No change in activity was observed in either cocaine-induced hyperactivity or spontaneous open field activity tests but increased immobility and decreased swimming times in the forced swim test were observed. This study indicates that κ opioid receptor activation by more potent Sal A analogues modulates cocaine-seeking behavior non-selectively without causing sedation, suggesting an improved side effects profile. However, pro-depressive effects are seen, which may limit the therapeutic potential of this compound. Future studies with Sal A analogues having affinities at other opioid receptors are warranted as they have the potential to identify compounds having effective anti-addiction properties. PMID:24201308

  15. Reversal of methylcholanthrene-induced changes in mouse prostates in vitro by retinoic acid and its analogues.

    PubMed Central

    Lasnitzki, I.

    1976-01-01

    The influence of vitamin A-related compounds on hyperplasia and metaplasia induced by methylcholanthrene was studied in mouse prostate glands in organ culture. Methylcholanthrene was found to cause extensive hyperplasia and squamous metaplasia of the prostatic epithelium which persisted after withdrawal of the carcinogen. The retinoids included retinoic acid and 6 of its structural analogues synthesized in an attempt to enhance the anticarcinogenic action and reduce the toxicity of the parent compound. These where the cyclopentenyl analogus 7699, A2-retinoic acid, 13-cis-alpha-retinoic acid and 3 aromatic analogues. Administration of the compounds following the carcinogen reduced the extent and incidence of hyperplasia significantly and with the exception of one compound reversed the squamous metaplasia. Two of the aromatic analogues, one with a terminal ethylamide group (1430), and the other with a terminal ethylester group (9369), proved to be the most potent inhibitors, followed by compound 7699 and (9369), proved to be the most potent inhibitors, followed by compound 7699 and retinoic acid. A2-retinoic acid and 13-cis-alpha-retinoic acid showed the lowest activity. The inhibition of hyperplasia appeared to be mediated via a reduction of DNA synthesis. It seemed unrelated to either the biological growth-promoting activity of the compounds or their surface-active properties. It is tentatively suggested that vitamin A and its analogues may act as hormones. Images Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 PMID:987794

  16. Design of multi-epitope, analogue-based cancer vaccines.

    PubMed

    Fikes, John D; Sette, Alessandro

    2003-09-01

    The current objective of our cancer programme is to develop an effective vaccine based on rationally designed T cell epitope analogues, for use in the adjuvant setting for non-small cell lung cancer (NSCLC) and colon cancer. Analogue epitopes, enhanced for either human leukocyte antigen (HLA) binding or T cell receptor (TCR) signalling, have been shown to be more effective at breaking immunological tolerance than cognate wild-type epitopes. Although encouraging early-phase clinical data has been obtained by others using a limited number of HLA-A2-restricted epitope analogues, the clinical benefits and immune correlates for vaccines comprised of multiple epitope analogues restricted by multiple HLA supertypes remains to be investigated. Clinical studies are currently being conducted on EP-2101, a prototype vaccine that delivers multiple HLA-A2-restricted analogue epitopes. In parallel, fixed anchor and heteroclitic analogues restricted by three other commonly expressed HLA supertypes are being identified. These analogues will be incorporated into future vaccines including optimised minigenes (epigenes) and tested in preclinical and clinical studies addressing various different cancer indications.

  17. Functionalized Congener Approach to Muscarinic Antagonists: Analogues of Pirenzepine

    PubMed Central

    Karton, Yishai; Bradbury, Barton J.; Baumgold, Jesse; Paek, Robert; Jacobson, Kenneth A.

    2012-01-01

    The M1-selective muscarinic receptor antagonist pirenzepine (5,11-dihydro-11-[(4-methyl-1-piperazinyl)acetyl]-6H-pyrido[2,3-b] [1,4]benzodiazepin-6-one) was derivatized to explore points of attachment of functionalized side chains for the synthesis of receptor probes and ligands for affinity chromatography. The analogues prepared were evaluated in competitive binding assays versus [3H]-N-methylscopolamine at four muscarinic receptor subtypes (m1AChR-m4AChR) in membranes from rat heart tissue and transfected A9L cells. 9-(Hydroxymethyl)pirenzepine, 8-(methylthio)pirenzepine, and a series of 8-aminosulfonyl derivatives were synthesized. Several 5-substituted analogues of pirenzepine also were prepared. An alternate series of analogues substituted on the 4-position of the piperazine ring was prepared by reaction of 4-desmethylpirenzepine with various electrophiles. An N-chloroethyl analogue of pirenzepine was shown to form a reactive aziridine species in aqueous buffer yet failed to affinity label muscarinic receptors. Within a series of aminoalkyl analogues, the affinity increased as the length of the alkyl chain increased. Shorter chain analogues were generally much less potent than pirenzepine, and longer analogues (7–10 carbons) were roughly as potent as pirenzepine at m1 receptors, but were nonselective. Depending on the methylene chain length, acylation or alkyl substitution of the terminal amine also influenced the affinity at muscarinic receptors. PMID:2066986

  18. Structure-activity relationship of tryptamine analogues on the heart of Venus mercenaria.

    PubMed

    GREENBERG, M J

    1960-09-01

    A number of tryptamine analogues and other exciter agents have been tested on the heart of Venus mercenaria. The method of estimation of potency, especially for irreversibly acting compounds, is discussed. Specificity of action with respect to the site of action of 5-hydroxytryptamine is defined experimentally. The specific activity of tyramine and phenethylamine and the non-specific excitatory action of indole and skatole indicate that the indole ring is neither necessary nor sufficient for 5-hydroxytryptamine-like activity. Tryptamine analogues differ in mode of action as well as potency. Congeners without a 5-hydroxyl group tend to act more slowly and irreversibly as well as less strongly than 5-hydroxytryptamine. Methyl substitution also increases the time of action and difficulty of reversal. However, the potency of such compounds may be increased or decreased depending upon the position of substitution and the presence of the 5-hydroxyl group. The relations between structure and potency and mode of action are discussed. Suggestions are made concerning the effective conformation of the 5-hydroxytryptamine molecule and the nature of its receptor.

  19. Studies of inositol 1-phosphate analogues as inhibitors of the phosphatidylinositol phosphate synthase in mycobacteria.

    PubMed

    Morii, Hiroyuki; Okauchi, Tatsuo; Nomiya, Hiroki; Ogawa, Midori; Fukuda, Kazumasa; Taniguchi, Hatsumi

    2013-03-01

    We previously reported a novel pathway for the biosynthesis of phosphatidylinositol in mycobacteria via phosphatidylinositol phosphate (PIP) [Morii H., Ogawa, M., Fukuda, K., Taniguchi, H., and Koga, Y (2010) J. Biochem. 148, 593-602]. PIP synthase in the pathway is a promising target for the development of new anti-mycobacterium drugs. In the present study, we evaluated the characteristics of the PIP synthase of Mycobacterium tuberculosis. Four types of compounds were chemically synthesized based on the assumption that structural homologues of inositol 1-phosphate, a PIP synthase substrate, would act as PIP synthase inhibitors, and the results confirmed that all synthesized compounds inhibited PIP synthase activity. The phosphonate analogue of inositol 1-phosphate (Ino-C-P) had the greatest inhibitory effect among the synthesized compounds examined. Kinetic analysis indicated that Ino-C-P acted as a competitive inhibitor of inositol 1-phosphate. The IC(50) value for Ino-C-P inhibition of the PIP synthase activity was estimated to be 2.0 mM. Interestingly, Ino-C-P was utilized in the same manner as the normal PIP synthase substrate, leading to the synthesis of a phosphonate analogue of PIP (PI-C-P), which had a structure similar to that of the natural product, PIP. In addition, PI-C-P had high inhibitory activity against PIP synthase.

  20. Lipids in cheese

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lipids are present in cheese at levels above 20 percent and are analyzed by several techniques. Scanning electron microscopy and confocal laser scanning microscopy are used to examine the microstructure, gas chromatography is employed to look at fatty acid composition, and differential scanning cal...

  1. Lipid composition of cyanidium.

    PubMed

    Allen, C F; Good, P; Holton, R W

    1970-11-01

    The major lipids in Cyanidium caldarium Geitler are monogalactosyl diglyceride, digalactosyl diglyceride, plant sulfolipid, lecithin, phosphatidyl glycerol, phosphatidyl inositol, and phosphatidyl ethanolamine. Fatty acid composition varies appreciably among the lipids, but the major ones are palmitic acid, oleic acid, linoleic acid, and moderate amounts of stearic acid. Trace amounts of other acids in the C(14) to C(20) range were also present. Moderate amounts of linolenic acid were found in two strains, but not in a third. The proportion of saturated acid is relatively high in all lipids ranging from about a third in monogalactosyl diglyceride to three-fourths in sulfolipid. This may be a result of the high growth temperature. Lipases forming lysosulfolipid, and lysophosphatidyl glycerol are active in ruptured cells; galactolipid is degraded with loss of both acyl residues. Thus the lipid and fatty acid composition of Cyanidium more closely resembles that of green algae than that of the blue-green algae, although there are differences of possible phylogenetic interest.

  2. Human Milk Lipids.

    PubMed

    Koletzko, Berthold

    2016-01-01

    Human milk lipids provide the infant with energy and essential vitamins, polyunsaturated fatty acids, and bioactive components. Adding complex lipids and milk fat globule membranes to vegetable oil-based infant formula has the potential to enhance infant development and reduce infections. Cholesterol provision with breastfeeding modulates infant sterol metabolism and may induce long-term benefits. Some 98-99% of milk lipids are comprised by triacylglycerols, whose properties depend on incorporated fatty acids. Attention has been devoted to the roles of the long-chain polyunsaturated fatty acids docosahexaenoic (DHA) and arachidonic (ARA) acids. Recent studies on gene-diet interaction (Mendelian randomization) show that breastfeeding providing DHA and ARA improves cognitive development and reduces asthma risk at school age particularly in those children with a genetically determined lower activity of DHA and ARA synthesis. It appears prudent to follow the biological model of human milk in the design of infant formula as far as feasible, unless conclusive evidence for the suitability and safety of other choices is available. The recent European Union legislative stipulation of a high formula DHA content without required ARA deviates from this concept, and such a novel formula composition has not been adequately evaluated. Great future opportunities arise with significant methodological progress for example in lipidomic analyses and their bioinformatic evaluation, which should enhance understanding of the biology of human milk lipids. Such knowledge might lead to improved dietary advice to lactating mothers as well as to further opportunities to enhance infant formula composition.

  3. Cytarabine Lipid Complex Injection

    MedlinePlus

    ... used to treat lymphomatous meningitis (a type of cancer in the covering of the spinal cord and brain). Cytarabine lipid complex is in a class of medications called antimetabolites. It works by slowing or stopping the growth of cancer cells in your body.

  4. Asymmetric heat transfer from nanoparticles in lipid bilayers

    NASA Astrophysics Data System (ADS)

    Potdar, Dipti; Sammalkorpi, Maria

    2015-12-01

    Here, we use molecular dynamics simulations to characterize the heat transfer properties of lipid bilayer - gold nanoparticle systems in which the nanoparticle acts as a heat source. The focus is on dipalmitoylphosphatidylcholine (DPPC) lipid bilayers and thiolated alcohol and alkyl functionalized nanoparticles as prototype hydrophilic and hydrophobic nanoparticles. We find hydrophilic nanoparticles which are partly in contact with the surrounding water environment are more efficient in transferring heat to the system than hydrophobic ones which reside surrounded by the membrane. This is because of the hydrogen bonding capability of the hydroxy pentanethiol and the more efficient heat conductivity through water than the lipid bilayer. Additionally, we find the heat conductance is strongly asymmetric and has a discontinuity between the bilayer leaflets. In total, the findings provide understanding on heat transport from localized heat sources in lipid bilayers and could bear significance, e.g., in engineering and controlling photoactivated triggering of liposomal systems.

  5. Amphotericin B Lipid Complex Injection

    MedlinePlus

    Amphotericin B lipid complex injection is used to treat serious, possibly life-threatening fungal infections in people who did ... respond or are unable to tolerate conventional amphotericin B therapy. Amphotericin B lipid complex injection is in ...

  6. A chemoselective and continuous synthesis of m-sulfamoylbenzamide analogues

    PubMed Central

    Verlee, Arno; Heugebaert, Thomas; van der Meer, Tom; Kerchev, Pavel I; Van Breusegem, Frank

    2017-01-01

    For the synthesis of m-sulfamoylbenzamide analogues, small molecules which are known for their bioactivity, a chemoselective procedure has been developed starting from m-(chlorosulfonyl)benzoyl chloride. Although a chemoselective process in batch was already reported, a continuous-flow process reveals an increased selectivity at higher temperatures and without catalysts. In total, 15 analogues were synthesized, using similar conditions, with yields ranging between 65 and 99%. This is the first automated and chemoselective synthesis of m-sulfamoylbenzamide analogues. PMID:28326139

  7. Mars on Earth: soil analogues for future Mars missions

    NASA Astrophysics Data System (ADS)

    Marlow, Jeffrey J.; Martins, Zita; Sephton, Mark A.

    2008-04-01

    Preparations for missions to Mars are a major concern for scientists. Predicting how equipment and experiments will perform on the planet is difficult because tests are restricted to Earth. Mars soil analogues are being used to solve this problem. These terrestrial materials are chemically and physically similar to martian soils and, because they contain unusual minerals and trace amounts of organic matter, are scientifically interesting in their own right. However, no current analogue is appropriate for all necessary tests. Here we describe Mars soil analogues, identify limitations and suggest the need for new Mars simulants.

  8. Synthesis, antiarrhythmic activity, and toxicological evaluation of mexiletine analogues.

    PubMed

    Roselli, Mariagrazia; Carocci, Alessia; Budriesi, Roberta; Micucci, Matteo; Toma, Maddalena; Di Cesare Mannelli, Lorenzo; Lovece, Angelo; Catalano, Alessia; Cavalluzzi, Maria Maddalena; Bruno, Claudio; De Palma, Annalisa; Contino, Marialessandra; Perrone, Maria Grazia; Colabufo, Nicola Antonio; Chiarini, Alberto; Franchini, Carlo; Ghelardini, Carla; Habtemariam, Solomon; Lentini, Giovanni

    2016-10-04

    Four mexiletine analogues have been tested for their antiarrhythmic, inotropic, and chronotropic effects on isolated guinea pig heart tissues and to assess calcium antagonist activity, in comparison with the parent compound mexiletine. All analogues showed from moderate to high antiarrhythmic activity. In particular, three of them (1b,c,e) were more active and potent than the reference drug, while exhibiting only modest or no negative inotropic and chronotropic effects and vasorelaxant activity, thus showing high selectivity of action. All compounds showed no cytotoxicity and 1b,c,d did not impair motor coordination. All in, these new analogues exhibit an interesting cardiovascular profile and deserve further investigation.

  9. Lipid rafts in immune signalling: current progress and future perspective.

    PubMed

    Varshney, Pallavi; Yadav, Vikas; Saini, Neeru

    2016-09-01

    Lipid rafts are dynamic assemblies of proteins and lipids that harbour many receptors and regulatory molecules and so act as a platform for signal transduction. They float freely within the liquid-disordered bilayer of cellular membranes and can cluster to form larger ordered domains. Alterations in lipid rafts are commonly found to be associated with the pathogenesis of several human diseases and recent reports have shown that the raft domains can also be perturbed by targeting raft proteins through microRNAs. Over the last few years, the importance of lipid rafts in modulating both innate and acquired immune responses has been elucidated. Various receptors present on immune cells like B cells, T cells, basophils and mast cells associate with lipid rafts on ligand binding and initiate signalling cascades leading to inflammation. Furthermore, disrupting lipid raft integrity alters lipopolysaccharide-induced cytokine secretion, IgE signalling, and B-cell and T-cell activation. The objective of this review is to summarize the recent progress in understanding the role of lipid rafts in the modulation of immune signalling and its related therapeutic potential for autoimmune diseases and inflammatory disorders.

  10. Lipid partitioning at the nuclear envelope controls membrane biogenesis

    PubMed Central

    Barbosa, Antonio Daniel; Sembongi, Hiroshi; Su, Wen-Min; Abreu, Susana; Reggiori, Fulvio; Carman, George M.; Siniossoglou, Symeon

    2015-01-01

    Partitioning of lipid precursors between membranes and storage is crucial for cell growth, and its disruption underlies pathologies such as cancer, obesity, and type 2 diabetes. However, the mechanisms and signals that regulate this process are largely unknown. In yeast, lipid precursors are mainly used for phospholipid synthesis in nutrient-rich conditions in order to sustain rapid proliferation but are redirected to triacylglycerol (TAG) stored in lipid droplets during starvation. Here we investigate how cells reprogram lipid metabolism in the endoplasmic reticulum. We show that the conserved phosphatidate (PA) phosphatase Pah1, which generates diacylglycerol from PA, targets a nuclear membrane subdomain that is in contact with growing lipid droplets and mediates TAG synthesis. We find that cytosol acidification activates the master regulator of Pah1, the Nem1-Spo7 complex, thus linking Pah1 activity to cellular metabolic status. In the absence of TAG storage capacity, Pah1 still binds the nuclear membrane, but lipid precursors are redirected toward phospholipids, resulting in nuclear deformation and a proliferation of endoplasmic reticulum membrane. We propose that, in response to growth signals, activation of Pah1 at the nuclear envelope acts as a switch to control the balance between membrane biogenesis and lipid storage. PMID:26269581

  11. Lipid nanotube or nanowire sensor

    DOEpatents

    Noy, Aleksandr; Bakajin, Olgica; Letant, Sonia; Stadermann, Michael; Artyukhin, Alexander B.

    2009-06-09

    A sensor apparatus comprising a nanotube or nanowire, a lipid bilayer around the nanotube or nanowire, and a sensing element connected to the lipid bilayer. Also a biosensor apparatus comprising a gate electrode; a source electrode; a drain electrode; a nanotube or nanowire operatively connected to the gate electrode, the source electrode, and the drain electrode; a lipid bilayer around the nanotube or nanowire, and a sensing element connected to the lipid bilayer.

  12. Lipid nanotube or nanowire sensor

    DOEpatents

    Noy, Aleksandr; Bakajin, Olgica; Letant, Sonia; Stadermann, Michael; Artyukhin, Alexander B.

    2010-06-29

    A sensor apparatus comprising a nanotube or nanowire, a lipid bilayer around the nanotube or nanowire, and a sensing element connected to the lipid bilayer. Also a biosensor apparatus comprising a gate electrode; a source electrode; a drain electrode; a nanotube or nanowire operatively connected to the gate electrode, the source electrode, and the drain electrode; a lipid bilayer around the nanotube or nanowire, and a sensing element connected to the lipid bilayer.

  13. Stable oxyntomodulin analogues exert positive effects on hippocampal neurogenesis and gene expression as well as improving glucose homeostasis in high fat fed mice.

    PubMed

    Pathak, N M; Pathak, V; Lynch, A M; Irwin, N; Gault, V A; Flatt, P R

    2015-09-05

    The weight-lowering and gluco-regulatory actions of oxyntomodulin (Oxm) have been well-documented however potential actions of this peptide in brain regions associated with learning and memory have not yet been evaluated. The present study examined the long-term actions of a stable acylated analogue of Oxm, (dS(2))Oxm(K-γ-glu-Pal), together with parent (dS(2))Oxm peptide, on hippocampal neurogenesis, gene expression and metabolic control in high fat (HF) mice. Groups of HF mice (n = 12) received twice-daily injections of Oxm analogues (both at 25 nmol/kg body weight) or saline vehicle (0.9% wt/vol) over 28 days. Hippocampal gene expression and histology were assessed together with evaluation of energy intake, body weight, non-fasting glucose and insulin, glucose tolerance, insulin sensitivity and lipids. Oxm analogues significantly reduced body weight, improved glucose tolerance, glucose-mediated insulin secretion, insulin sensitivity, islet architecture and lipid profile. Analysis of brain histology revealed significant reduction in hippocampal oxidative damage (8-oxoguanine), enhanced hippocampal neurogenesis (doublecortin) and improved hippocampal and cortical synaptogenesis (synaptophysin) following treatment. Furthermore, Oxm analogues up-regulated hippocampal mRNA expression of MASH1, Synaptophysin, SIRT1, GLUT4 and IRS1, and down-regulated expression of LDL-R and GSK3β. These data demonstrate potential of stable Oxm analogues, and particularly (dS(2))Oxm(K-γ-glu-Pal) to improve metabolic function and enhance neurogenesis, synaptic plasticity, insulin signalling and exert protective effects against oxidative damage in hippocampus and cortex brain regions in HF mice.

  14. First cohomology of 𝔞𝔣𝔣(1) and 𝔞𝔣𝔣(1|1) acting on linear differential operators

    NASA Astrophysics Data System (ADS)

    Basdouri, Imed; Boujelben, Maha; Derbali, Ammar

    2016-10-01

    We consider the 𝔞𝔣𝔣(1)-module structure on the spaces of differential operators acting on the spaces of weighted densities. We compute the first differential cohomology of the Lie superalgebra 𝔞𝔣𝔣(1) with coefficients in differential operators acting on the spaces of weighted densities. We study also the super analogue of this problem getting the same results.

  15. Lipid topogenesis--35years on.

    PubMed

    Chauhan, Neha; Farine, Luce; Pandey, Kalpana; Menon, Anant K; Bütikofer, Peter

    2016-08-01

    Glycerophospholipids are the principal fabric of cellular membranes. The pathways by which these lipids are synthesized were elucidated mainly through the work of Kennedy and colleagues in the late 1950s and early 1960s. Subsequently, attention turned to cell biological aspects of lipids: Where in the cell are lipids synthesized? How are lipids integrated into membranes to form a bilayer? How are they sorted and transported from their site of synthesis to other cellular destinations? These topics, collectively termed 'lipid topogenesis', were the subject of a review article in 1981 by Bell, Ballas and Coleman. We now assess what has been learned about early events of lipid topogenesis, i.e. "lipid synthesis, the integration of lipids into membranes, and lipid translocation across membranes", in the 35 years since the publication of this important review. We highlight the recent elucidation of the X-ray structures of key membrane enzymes of glycerophospholipid synthesis, progress on identifying lipid scramblase proteins needed to equilibrate lipids across membranes, and new complexities in the subcellular location and membrane topology of phosphatidylinositol synthesis revealed through a comparison of two unicellular model eukaryotes. This article is part of a Special Issue entitled: The cellular lipid landscape edited by Tim P. Levine and Anant K. Menon.

  16. Lipids, fatty acids, and more

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Energy is the most expensive component in livestock diets. Lipids are concentrated energy sources and are known to affect growth, feed efficiency, feed dust, and diet palatability. A large majority of research evaluating lipids in livestock has utilized lipids of high quality, dealt mainly with anim...

  17. Lipid tubule growth by osmotic pressure

    NASA Astrophysics Data System (ADS)

    Rangamani, Padmini; Zhang, Di; Orster, George; Shen, Amy

    2013-11-01

    We present here a procedure for growing lipid tubules in vitro. This method allows us to grow tubules of consistent shape and structure and thus can be a useful tool for nano-engineering applications. There are three stages during the tubule growth process: initiation, elongation and termination. Balancing the forces that act on the tubule head shows that the growth of tubules during the elongation phase depends on the balance between osmotic pressure and the viscous drag exerted on the membrane from the substrate and the external fluid. Using a combination of mathematical modeling and experiment, we identify the key forces that control tubule growth during the elongation phase.

  18. Mammary analogue secretory carcinoma mimicking salivary adenoma.

    PubMed

    Williams, Lindsay; Chiosea, Simion I

    2013-12-01

    Mammary analogue secretory carcinoma (MASC) is a recently described salivary gland tumor characterized by ETV6 translocation. It appears that prior studies have identified MASC by reviewing salivary gland carcinomas, such as acinic cell carcinoma and adenocarcinoma, not otherwise specified. To address the possibility of MASC mimicking benign salivary neoplasms we reviewed 12 salivary gland (cyst)adenomas diagnosed prior to the discovery of MASC. One encapsulated (cyst)adenoma of the parotid gland demonstrated features of MASC. The diagnosis was confirmed by fluorescence in situ hybridization with an ETV6 break-apart probe. An unusual complex pattern of ETV6 rearrangement with duplication of the telomeric/distal ETV6 probe was identified. This case illustrates that MASC may mimic salivary (cyst)adenomas. To more accurately assess true clinical and morphologic spectrum of MASC, future studies may have to include review of salivary (cyst)adenomas. The differential diagnosis of MASC may have to be expanded to include cases resembling salivary (cyst)adenomas.

  19. Actions of Thyroid Hormone Analogues on Chemokines

    PubMed Central

    Glinsky, Gennadi V.

    2016-01-01

    The extracellular domain of plasma membrane integrin αvβ3 contains a receptor for thyroid hormone (L-thyroxine, T4; 3,5,3′-triiodo-L-thyronine, T3); this receptor also binds tetraiodothyroacetic acid (tetrac), a derivative of T4. Tetrac inhibits the binding of T4 and T3 to the integrin. Fractalkine (CX3CL1) is a chemokine relevant to inflammatory processes in the CNS that are microglia-dependent but also important to normal brain development. Expression of the CX3CL1 gene is downregulated by tetrac, suggesting that T4 and T3 may stimulate fractalkine expression. Independently of its specific receptor (CX3CR1), fractalkine binds to αvβ3 at a site proximal to the thyroid hormone-tetrac receptor and changes the physical state of the integrin. Tetrac also affects expression of the genes for other CNS-relevant chemokines, including CCL20, CCL26, CXCL2, CXCL3, and CXCL10. The chemokine products of these genes are important to vascularity of the brain, particularly of the choroid plexus, to inflammatory processes in the CNS and, in certain cases, to neuroprotection. Thyroid hormones are known to contribute to regulation of each of these CNS functions. We propose that actions of thyroid hormone and hormone analogues on chemokine gene expression contribute to regulation of inflammatory processes in brain and of brain blood vessel formation and maintenance. PMID:27493972

  20. Alteration of cellular lipids and lipid metabolism markers in RTL-W1 cells exposed to model endocrine disrupters.

    PubMed

    Dimastrogiovanni, Giorgio; Córdoba, Marlon; Navarro, Isabel; Jáuregui, Olga; Porte, Cinta

    2015-08-01

    This work investigates the suitability of the rainbow trout liver cell line (RTL-W1) as an in-vitro model to study the ability of model endocrine disrupters, namely TBT, TPT, 4-NP, BPA and DEHP, to act as metabolic disrupters by altering cellular lipids and markers of lipid metabolism. Among the tested compounds, BPA and DEHP significantly increased the intracellular accumulation of triacylglycerols (TAGs), while all the compounds -apart from TPT-, altered membrane lipids - phosphatidylcholines (PCs) and plasmalogen PCs - indicating a strong interaction of the toxicants with cell membranes and cell signaling. RTL-W1 expressed a number of genes involved in lipid metabolism that were modulated by exposure to BPA, TBT and TPT (up-regulation of FATP1 and FAS) and 4-NP and DEHP (down-regulation of FAS and LPL). Multiple and complex modes of action of these chemicals were observed in RTL-W1 cells, both in terms of expression of genes related to lipid metabolism and alteration of cellular lipids. Although further characterization is needed, this might be a useful model for the detection of chemicals leading to steatosis or other diseases associated with lipid metabolism in fish.

  1. Cyclohexanol analogues are positive modulators of GABAA receptor currents and act as general anaesthetics in vivo

    Technology Transfer Automated Retrieval System (TEKTRAN)

    GABAA receptors meet all the pharmacological criteria required to be considered important general anaesthetic targets. In the following study, the modulatory effects of various commercially available and novel cyclohexanol were investigated on recombinant human '-aminobutyric acid (GABAA, a1ß2'2s) r...

  2. Sulphur Spring: Busy Intersection and Possible Martian Analogue

    NASA Technical Reports Server (NTRS)

    Nankivell, A.; Andre, N.; Thomas-Keprta, K.; Allen, C.; McKay, D.

    2000-01-01

    Life in extreme environments exhibiting conditions similar to early Earth and Mars, such as Sulphur Spring, may harbor microbiota serving as both relics from the past as well as present day Martian analogues.

  3. From BPA to its analogues: Is it a safe journey?

    PubMed

    Usman, Afia; Ahmad, Masood

    2016-09-01

    Bisphenol-A (BPA) is one of the most abundant synthetic chemicals in the world due to its uses in plastics. Its widespread exposure vis-a-vis low dose effects led to a reduction in its safety dose and imposition of ban on its use in infant feeding bottles. This restriction paved the way for the gradual market entry of its analogues. However, their structural similarity to BPA has put them under surveillance for endocrine disrupting potential. The application of these analogues is increasing and so are the studies reporting their toxicity. This review highlights the reasons which led to the ban of BPA and also reports the exposure and toxicological data available on its analogues. Hence, this compilation is expected to answer in a better way whether the replacement of BPA by these analogues is safer or more harmful?

  4. Cell-cycle analyses using thymidine analogues in fission yeast.

    PubMed

    Anda, Silje; Boye, Erik; Grallert, Beata

    2014-01-01

    Thymidine analogues are powerful tools when studying DNA synthesis including DNA replication, repair and recombination. However, these analogues have been reported to have severe effects on cell-cycle progression and growth, the very processes being investigated in most of these studies. Here, we have analyzed the effects of 5-ethynyl-2'-deoxyuridine (EdU) and 5-Chloro-2'-deoxyuridine (CldU) using fission yeast cells and optimized the labelling procedure. We find that both analogues affect the cell cycle, but that the effects can be mitigated by using the appropriate analogue, short pulses of labelling and low concentrations. In addition, we report sequential labelling of two consecutive S phases using EdU and 5-bromo-2'-deoxyuridine (BrdU). Furthermore, we show that detection of replicative DNA synthesis is much more sensitive than DNA-measurements by flow cytometry.

  5. Weather and event generators based on analogues of atmospheric circulation

    NASA Astrophysics Data System (ADS)

    Yiou, Pascal

    2015-04-01

    Analogues of atmospheric circulation have had numerous applications on weather prediction, climate reconstructions and detection/attribution analyses. A stochastic weather generator based on circulation analogues was recently proposed by Yiou (2014) to simulate sequences of European temperatures. One of the features of this weather generator is that it preserves the spatial and temporal structures of the climate variables to be simulated. This method is flexible enough to be combined efficiently with a storm detection algorithm in order to generate large catalogues of high impact extra-tropical storms that hit Europe. I will present the gist of the method of circulation analogues and some performances. Two promising applications for weather generators based on this method (ensemble climate prediction and extra-tropical storms) will be tested. References Yiou, P.: AnaWEGE: a weather generator based on analogues of atmospheric circulation, Geosci. Model Dev., 7, 531-543, doi:10.5194/gmd-7-531-2014, 2014.

  6. Effect of glutamate analogues on brain tumor cell lines.

    PubMed

    Campbell, G L; Bartel, R; Freidman, H S; Bigner, D D

    1985-10-01

    Glutamate analogues have been used in many different experimental approaches in neurobiology. A small number of these analogues have been classified as gliotoxic. We have examined the effect of seven glutamate analogues (five gliotoxic and two neurotoxic) on the growth and viability of four human glioma cell lines, one human medulloblastoma cell line, and one human sarcoma cell line. Aminoadipic acid and homocysteic acid predominantly affected the growth of two glioma cell lines in the presence of 4 mM glutamine. Phosphonobutyric acid predominantly affected the other two glioma cell lines and the medulloblastoma cell line in the presence of 4 mM glutamine. In medium containing no glutamine, all three analogues had marked effects on all the cell lines except the sarcoma cell line. These effects were dose dependent. We postulate that these results can in part be explained on the basis of metabolic compartmentalization.

  7. A Non-Verbal Analogue to the Verbal Transformation Effect

    ERIC Educational Resources Information Center

    Lass, Norman J.; And Others

    1973-01-01

    Investigates the effectiveness of non-speech auditory stimuli in eliciting transformations analogous to those reported for speech stimuli to determine if a non-verbal analogue to the verbal transformation effect exists. (DD)

  8. Imaging the Effects of Prostaglandin Analogues on Cultured Trabecular Meshwork Cells by Coherent Anti-Stokes Raman Scattering

    PubMed Central

    Lei, Tim C.; Masihzadeh, Omid; Kahook, Malik Y.; Ammar, David A.

    2013-01-01

    Purpose. The aim of this study was to nondestructively monitor morphological changes to the lipid membranes of primary cultures of living human trabecular meshwork cells (hTMC) without the application of exogenous label. Methods. Live hTMC were imaged using two nonlinear optical techniques: coherent anti-Stokes Raman scattering (CARS) and two-photon autofluorescence (TPAF). The hTMC were treated with a commercial formulation of latanoprost (0.5 μg/mL) for 24 hours before imaging. Untreated cells and cells treated with vehicle containing the preservative benzalkonium chloride (BAK; 2 μg/mL) were imaged as controls. After CARS/TPAF imaging, hTMC were fixed, stained with the fluorescent lipid dye Nile Red, and imaged by conventional confocal microscopy to verify lipid membrane structures. Results. Analysis of CARS/TPAF images of hTMC treated with latanoprost revealed multiple intracellular lipid membranes absent from untreated or BAK-treated hTMC. Treatment of hTMC with sodium fluoride or ouabain, agents shown to cause morphological changes to hTMC, also did not induce formation of intracellular lipid membranes. Conclusions. CARS microscopy detected changes in living hTMC morphology that were validated by subsequent histological stain. Prostaglandin-induced changes to hTMC involved rearrangement of lipid membranes within these cells. These in vitro results identify a novel biological response to a class of antiglaucoma drugs, and further experiments are needed to establish how this effect is involved in the hypotensive action of prostaglandin analogues in vivo. PMID:23900606

  9. Lipid mediators of insulin resistance.

    PubMed

    Holland, William L; Knotts, Trina A; Chavez, Jose A; Wang, Li-Ping; Hoehn, Kyle L; Summers, Scott A

    2007-06-01

    Lipid abnormalities such as obesity, increased circulating free fatty acid levels, and excess intramyocellular lipid accumulation are frequently associated with insulin resistance. These observations have prompted investigators to speculate that the accumulation of lipids in tissues not suited for fat storage (e.g., skeletal muscle and liver) is an underlying component of insulin resistance and the metabolic syndrome. We review the metabolic fates of lipids in insulin-responsive tissues and discuss the roles of specific lipid metabolites (e.g., ceramides, GM3 ganglioside, and diacylglycerol) as antagonists of insulin signaling and action.

  10. Regulating the Size and Stabilization of Lipid Raft-Like Domains and Using Calcium Ions as Their Probe

    NASA Astrophysics Data System (ADS)

    Raviv, Uri; Szekely, Or

    2012-02-01

    In this paper, we apply means to probe, stabilize and control the size of lipid raft-like domains in vitro. In biomembranes the size of lipid rafts is ca. 10 - 30 nm. In vitro, mixing saturated and unsaturated lipids results in micro-domains, which are unstable and coalesce. Using solution X-ray scattering, we studied the structure of binary and ternary lipid mixtures in the presence of calcium ions. Three lipids were used: saturated, unsaturated and a hybrid (1-saturated-2-unsaturated) lipid that is predominant in the phospholipids of cellular membranes. Only membranes composed of the saturated lipid can adsorb calcium ions, become charged and therefore considerably swell. The selective calcium affinity was used to show that binary mixtures, containing the saturated lipid, phase separated into large-scale domains. Our data suggests that by introducing the hybrid lipid to a mixture of the saturated and unsaturated lipids, the size of the domains decreased with the concentration of the hybrid lipid, until the three lipids could completely mix. We attribute this behavior to the tendency of the hybrid lipid to act as a line-active co-surfactant that can easily reside at the interface between the saturated and the unsaturated lipids and reduce the line-tension between them.

  11. D-Ala2-GIP-glu-PAL is neuroprotective in a chronic Parkinson's disease mouse model and increases BNDF expression while reducing neuroinflammation and lipid peroxidation.

    PubMed

    Li, Yanwei; Liu, WeiZhen; Li, Lin; Hölscher, Christian

    2017-02-15

    Type 2 diabetes mellitus (T2DM) is a risk factor for Parkinson's disease (PD). Therefore, treatment to improve insulin resistance in T2DM may be useful for PD patients. Glucose dependent insulinotropic polypeptide (GIP) is a member of the incretin hormone family that can promote insulin release and improve insulin resistance. Several GIP analogues have been developed as potential treatments for T2DM. We had shown previously that D-Ala2-GIP-glu-PAL, a novel long-acting GIP analogue, can play a neuroprotective role in the PD mouse model induced by acute MPTP injection. The drug reduced damage to the dopaminergic neurons and increased CREB-mediated Bcl-2 expression to prevent apoptosis and reduced chronic inflammation in the brain. In the present study, we further tested the effects of chronic treatment by D-Ala2-GIP-glu-PAL in a chronic PD mouse model induced by MPTP (25mg/kg ip.) combination with probenecid (250mg/kg ip.) injection for 5 weeks. The results demonstrated that chronic treatment with D-Ala2-GIP-glu-PAL inhibits MPTP -induced Parkinsonism-like motor disorders in mice, and that the drug prevents dopaminergic neuronal loss in the substantia nigra pars compacta (SNpc). Moreover, D-Ala2-GIP-glu-PAL also inhibited the increased levels of expression of α-synuclein in the SNpc and striatum induced by MPTP. Furthermore, drug treatment reduced chronic neuroinflammation, oxidative stress and lipid peroxidation, and increased the expression of BDNF. These findings show that GIP signaling is neuroprotective and holds promise as a novel treatment of PD.

  12. Iterative Approach to the Discovery of Novel Degarelix Analogues: Substitutions at Positions 3, 7 and 8. Part II

    PubMed Central

    Samant, Manoj P.; Gulyas, Jozsef; Hong, Doley J.; Croston, Glenn; Rivier, Catherine; Rivier, Jean

    2008-01-01

    Degarelix, (FE200486, Ac-d-2Nal1-d-4Cpa2-d-3Pal3-Ser4-4Aph(l-Hor)5-d-4Aph(Cbm)6-Leu7-Ilys8-Pro9-d-Ala10-NH2) is a potent and very long acting antagonist of gonadotropin-releasing hormone (GnRH) after subcutaneous administration in mammals including humans. Analogues of degarelix were synthesized, characterized and screened for the antagonism of GnRH-induced response in a reporter gene assay in HEK-293 cells expressing the human GnRH receptor. The duration of action was also determined in the castrated male rat assay in order to measure the extent (efficacy and duration of action) of inhibition of luteinizing hormone (LH) release. Structurally, this series of analogues has novel substitutions at positions 3, 7, 8 and Nα-methylation at positions 6, 7 and 8 in the structure of degarelix. These substitutions were designed to probe the spatial limitations of the receptors cavity and to map the steric and ionic boundaries. Some functional groups were introduced that were hypothesized to influence the phamacokinetic properties of the analogues like bioavailability, solubility, intra- or inter-molecular hydrogen bond forming capacity and ability to bind carrier proteins. Substitutions at positions 3 ([Nβ-(2-pyridyl-methyl)d-Dap3]degarelix, IC50 = 2.71 nM) (5), 7 ([Pra7]degarelix, IC50 = 2.11 nM) (16), 8 ([Nδ-(IGly)Orn8]degarelix, IC50 = 1.38 nM) (20), and N-methylation ([Nα-methyl-Leu7]degarelix, IC50 = 1.47 nM) (32) yielded analogues that were equipotent to degarelix (2) in vitro (IC50 = 1.64 nM) but shorter acting in vivo. Out of the 33 novel analogues tested for the duration of action in this series, two analogues ([Nε-cyclohexyl-Lys8]degarelix, IC50 = 1.50 nM) (23) and ([Nβ-(IβAla)Dap8]degarelix, IC50 = 1.98 nM) (26) had antagonist potencies and duration of action similar to that of azaline B {inhibited LH (>80%) release for >72 h after sc injection to castrated male rats at a standard dose of 50 µg/rat in 5% mannitol}. Under similar conditions analogues ([N

  13. Amphiphilic Tobramycin Analogues as Antibacterial and Antifungal Agents

    PubMed Central

    Shrestha, Sanjib K.; Fosso, Marina Y.; Green, Keith D.

    2015-01-01

    In this study, we investigated the in vitro antifungal activities, cytotoxicities, and membrane-disruptive actions of amphiphilic tobramycin (TOB) analogues. The antifungal activities were established by determination of MIC values and in time-kill studies. Cytotoxicity was evaluated in mammalian cell lines. The fungal membrane-disruptive action of these analogues was studied by using the membrane-impermeable dye propidium iodide. TOB analogues bearing a linear alkyl chain at their 6″-position in a thioether linkage exhibited chain length-dependent antifungal activities. Analogues with C12 and C14 chains showed promising antifungal activities against tested fungal strains, with MIC values ranging from 1.95 to 62.5 mg/liter and 1.95 to 7.8 mg/liter, respectively. However, C4, C6, and C8 TOB analogues and TOB itself exhibited little to no antifungal activity. Fifty percent inhibitory concentrations (IC50s) for the most potent TOB analogues (C12 and C14) against A549 and Beas 2B cells were 4- to 64-fold and 32- to 64-fold higher, respectively, than their antifungal MIC values against various fungi. Unlike conventional aminoglycoside antibiotics, TOB analogues with alkyl chain lengths of C12 and C14 appear to inhibit fungi by inducing apoptosis and disrupting the fungal membrane as a novel mechanism of action. Amphiphilic TOB analogues showed broad-spectrum antifungal activities with minimal mammalian cell cytotoxicity. This study provides novel lead compounds for the development of antifungal drugs. PMID:26033722

  14. Adjuvant properties of a simplified C32 monomycolyl glycerol analogue.

    PubMed

    Bhowruth, Veemal; Minnikin, David E; Agger, Else Marie; Andersen, Peter; Bramwell, Vincent W; Perrie, Yvonne; Besra, Gurdyal S

    2009-04-01

    A simplified C(32) monomycolyl glycerol (MMG) analogue demonstrated enhanced immunostimulatory activity in a dioctadecyl ammonium bromide (DDA)/Ag85B-ESAT-6 formulation. Elevated levels of IFN-gamma and IL-6 were produced in spleen cells from mice immunised with a C(32) MMG analogue comparable activity to the potent Th1 adjuvant, trehalose 6,6'-di-behenate (TDB).

  15. Semisynthesis of salviandulin E analogues and their antitrypanosomal activity.

    PubMed

    Aoyagi, Yutaka; Fujiwara, Koji; Yamazaki, Akira; Sugawara, Naoko; Yano, Reiko; Fukaya, Haruhiko; Hitotsuyanagi, Yukio; Takeya, Koichi; Ishiyama, Aki; Iwatsuki, Masato; Otoguro, Kazuhiko; Yamada, Haruki; Ōmura, Satoshi

    2014-01-15

    A series of analogues of salviandulin E, a rearranged neoclerodane diterpene originally isolated from Salvia leucantha (Lamiaceae), were prepared and their in vitro activity against Trypanosoma brucei brucei was evaluated with currently used therapeutic drugs as positive controls. One of the 19 compounds prepared and assayed in the present study, butanoyl 3,4-dihydrosalviandulin E analogue was found to be a possible candidate for an antitrypanosomal drug with fairly strong antitrypanosomal activity and lower cytotoxicity.

  16. Catalytic antioxidants: regenerable tellurium analogues of vitamin E.

    PubMed

    Singh, Vijay P; Poon, Jia-fei; Engman, Lars

    2013-12-20

    In an effort to improve the chain-breaking capacity of the natural antioxidants, an octyltelluro group was introduced next to the phenolic moiety in β- and δ-tocopherol. The new vitamin E analogues quenched peroxyl radicals more efficiently than α-tocopherol and were readily regenerable by aqueous N-acetylcysteine in a simple membrane model composed of a stirring chlorobenzene/water two-phase system. The novel tocopherol analogues could also mimic the action of the glutathione peroxidase enzymes.

  17. Analogue and digital linear modulation techniques for mobile satellite

    NASA Technical Reports Server (NTRS)

    Whitmarsh, W. J.; Bateman, A.; Mcgeehan, J. P.

    1990-01-01

    The choice of modulation format for a mobile satellite service is complex. The subjective performance is summarized of candidate schemes and voice coder technologies. It is shown that good performance can be achieved with both analogue and digital voice systems, although the analogue system gives superior performance in fading. The results highlight the need for flexibility in the choice of signaling format. Linear transceiver technology capable of using many forms of narrowband modulation is described.

  18. Stratum Corneum Lipids: Their Role for the Skin Barrier Function in Healthy Subjects and Atopic Dermatitis Patients.

    PubMed

    van Smeden, Jeroen; Bouwstra, Joke A

    2016-01-01

    Human skin acts as a primary barrier between the body and its environment. Crucial for this skin barrier function is the lipid matrix in the outermost layer of the skin, the stratum corneum (SC). Two of its functions are (1) to prevent excessive water loss through the epidermis and (2) to avoid that compounds from the environment permeate into the viable epidermal and dermal layers and thereby provoke an immune response. The composition of the SC lipid matrix is dominated by three lipid classes: cholesterol, free fatty acids and ceramides. These lipids adopt a highly ordered, 3-dimensional structure of stacked densely packed lipid layers (lipid lamellae): the lateral and lamellar lipid organization. The way in which these lipids are ordered depends on the composition of the lipids. One very common skin disease in which the SC lipid barrier is affected is atopic dermatitis (AD). This review addresses the SC lipid composition and organization in healthy skin, and elaborates on how these parameters are changed in lesional and nonlesional skin of AD patients. Concerning the lipid composition, the changes in the three main lipid classes and the importance of the carbon chain lengths of the lipids are discussed. In addition, this review addresses how these changes in lipid composition induce changes in lipid organization and subsequently correlate with an impaired skin barrier function in both lesional and nonlesional skin of these patients. Furthermore, the effect of filaggrin and mutations in the filaggrin gene on the SC lipid composition is critically discussed. Also, the breakdown products of filaggrin, the natural moisturizing factor molecules and its relation to SC-pH is described. Finally, the paper discusses some major changes in epidermal lipid biosynthesis in patients with AD and other related skin diseases, and how inflammation has a deteriorating effect on the SC lipids and SC biosynthesis. The review ends with perspectives on future studies in relation to

  19. The relevance of analogue studies for understanding obsessions and compulsions.

    PubMed

    Abramowitz, Jonathan S; Fabricant, Laura E; Taylor, Steven; Deacon, Brett J; McKay, Dean; Storch, Eric A

    2014-04-01

    Analogue samples are often used to study obsessive-compulsive (OC) symptoms and related phenomena. This approach is based on the hypothesis that results derived from such samples are relevant to understanding OC symptoms in individuals with a diagnosis of obsessive-compulsive disorder (OCD). Two decades ago, Gibbs (1996) reviewed the available literature and found initial support for this hypothesis. Since then there have been many important advances addressing this issue. The purpose of the present review was to synthesize various lines of research examining the assumptions of using analogue samples to draw inferences about people with OCD. We reviewed research on the prevalence of OC symptoms in non-clinical populations, the dimensional (vs. categorical) nature of these symptoms, phenomenology, etiology, and studies on developmental and maintenance factors in clinical and analogue samples. We also considered the relevance of analogue samples in OCD treatment research. The available evidence suggests research with analogue samples is highly relevant for understanding OC symptoms. Guidelines for the appropriate use of analogue designs and samples are suggested.

  20. Cladribine Analogues via O6-(Benzotriazolyl) Derivatives of Guanine Nucleosides

    PubMed Central

    Satishkumar, Sakilam; Vuram, Prasanna K.; Relangi, Siva Subrahmanyam; Gurram, Venkateshwarlu; Zhou, Hong; Kreitman, Robert J.; Montemayor, Michelle M. Martínez; Yang, Lijia; Kaliyaperumal, Muralidharan; Sharma, Somesh; Pottabathini, Narender; Lakshman, Mahesh K.

    2016-01-01

    Cladribine, 2-chloro-2′-deoxyadenosine, is a highly efficacious clinically used nucleoside for the treatment of hairy cell leukemia. It is also being evaluated against other lymphoid malignancies and has been a molecule of interest for well over half a century. In continuation of our interest on the amide bond-activation in purine nucleosides via the use of (benzotriazol-1yl-oxy)tris(dimethylamino)phosphonium hexafluorophosphate, we have evaluated the use of O6-(benzotriazol-1-yl)-2′-deoxyguanosine as a potential precursor to cladribine and its analogues. These compounds, after appropriate deprotection, were assessed for their biological activities and the data are presented herein. Against hairy cell leukemia (HCL), T-cell lymphoma (TCL), and chronic lymphocytic leukemia (CLL) cladribine was the most active against all. The bromo analogue of cladribine showed comparable activity to the ribose analogue of cladribine against HCL, but was more active against TCL and CLL. The bromo ribo analogue of cladribine possessed activity, but was least active among the C6-NH2-containing compounds. Substitution with alkyl groups at the exocyclic amino group appears detrimental to activity, and only the C6 piperidinyl cladribine analogue demonstrated any activity. Against adenocarcinoma MDA-MB-231 cells, only cladribine and its ribose analogue were most active. PMID:26556315

  1. Analogue gravitational phenomena in Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Finazzi, Stefano

    2012-08-01

    Analogue gravity is based on the simple observation that perturbations propagating in several physical systems can be described by a quantum field theory in a curved spacetime. While phenomena like Hawking radiation are hardly detectable in astrophysical black holes, these effects may be experimentally tested in analogue systems. In this Thesis, focusing on Bose-Einstein condensates, we present our recent results about analogue models of gravity from three main perspectives: as laboratory tests of quantum field theory in curved spacetime, for the techniques that they provide to address various issues in general relativity, and as toy models of quantum gravity. The robustness of Hawking-like particle creation is investigated in flows with a single black hole horizon. Furthermore, we find that condensates with two (white and black) horizons develop a dynamical instability known in general relativity as black hole laser effect. Using techniques borrowed from analogue gravity, we also show that warp drives, which are general relativistic spacetimes allowing faster-than-light travel, are unstable. Finally, the cosmological constant issue is investigated from an analogue gravity perspective and relativistic Bose-Einstein condensates are proposed as new analogue systems with novel interesting properties.

  2. Cladribine Analogues via O⁶-(Benzotriazolyl) Derivatives of Guanine Nucleosides.

    PubMed

    Satishkumar, Sakilam; Vuram, Prasanna K; Relangi, Siva Subrahmanyam; Gurram, Venkateshwarlu; Zhou, Hong; Kreitman, Robert J; Montemayor, Michelle M Martínez; Yang, Lijia; Kaliyaperumal, Muralidharan; Sharma, Somesh; Pottabathini, Narender; Lakshman, Mahesh K

    2015-10-09

    Cladribine, 2-chloro-2'-deoxyadenosine, is a highly efficacious, clinically used nucleoside for the treatment of hairy cell leukemia. It is also being evaluated against other lymphoid malignancies and has been a molecule of interest for well over half a century. In continuation of our interest in the amide bond-activation in purine nucleosides via the use of (benzotriazol-1yl-oxy)tris(dimethylamino)phosphonium hexafluorophosphate, we have evaluated the use of O⁶-(benzotriazol-1-yl)-2'-deoxyguanosine as a potential precursor to cladribine and its analogues. These compounds, after appropriate deprotection, were assessed for their biological activities, and the data are presented herein. Against hairy cell leukemia (HCL), T-cell lymphoma (TCL) and chronic lymphocytic leukemia (CLL), cladribine was the most active against all. The bromo analogue of cladribine showed comparable activity to the ribose analogue of cladribine against HCL, but was more active against TCL and CLL. The bromo ribose analogue of cladribine showed activity, but was the least active among the C6-NH₂-containing compounds. Substitution with alkyl groups at the exocyclic amino group appears detrimental to activity, and only the C6 piperidinyl cladribine analogue demonstrated any activity. Against adenocarcinoma MDA-MB-231 cells, cladribine and its ribose analogue were most active.

  3. Lipids and immune function.

    PubMed

    Vitale, J J; Broitman, S A

    1981-09-01

    There is in vitro and in vivo evidence to suggest that dietary lipids play a role in modulating immune function. A review of the current literature on the interrelationships among dietary lipids, blood cholesterol levels, immunosuppression, and tumorigenesis makes for a very strong argument that (a) immunosuppression may be causally related to lymphoproliferative disorders, as well as to tumorigenesis and (b) diets high in polyunsaturated fat, relative to diets high in saturated fat, are more immunosuppressive and are better promotors of tumorigenesis. The effects of dietary fat on immune function seem to be mediated though its component parts, the unsaturated fatty acids, specially linoleic, linolenic, and arachidonic. It is not clear how these components affect immune function. Several studies suggest that one effect is mediated by altering the lipid component of the cell membrane and thus its fluidity; the more fluid the membrane, the less responsive it is. Thus, fluidity of both immune cells and those to be destroyed or protected may be affected. The effects of saturated as well as unsaturated fatty acids may be mediated by modulating serum lipoprotein levels, prostaglandin metabolism, and cholesterol concentrations and metabolism.

  4. Tear Film Lipids

    PubMed Central

    Butovich, Igor A.

    2013-01-01

    Human meibomian gland secretions (MGS, or meibum) are formed from a complex mixture of lipids of different classes such as wax esters, cholesteryl esters, (O-acyl)-ω-hydroxy fatty acids (OAHFA) and their esters, acylglycerols, diacylated diols, free fatty acids, cholesterol, and a smaller amount of other polar and nonpolar lipids, whose chemical nature and the very presence in MGS have been a matter of intense debates. The purpose of this review is to discuss recent results that were obtained using different experimental techniques, estimate limitations of their usability, and discuss their biochemical, biophysical, and physiological implications. To create a lipid map of MGS and tears, the results obtained in the author’s laboratory were integrated with available information on chemical composition of MGS and tears. The most informative approaches that are available today to researchers, such as HPLC-MS, GC-MS, and proton NMR, are discussed in details. A map of the meibomian lipidome (as it is seen in reverse phase liquid chromatography/mass spectrometry experiments) is presented. Directions of future efforts in the area are outlined. PMID:23769846

  5. Analogues to features and processes of a high-level radioactive waste repository proposed for Yucca Mountain, Nevada

    USGS Publications Warehouse

    Simmons, Ardyth M.; Stuckless, John S.; with a Foreword by Abraham Van Luik, U.S. Department of Energy

    2010-01-01

    Natural analogues are defined for this report as naturally occurring or anthropogenic systems in which processes similar to those expected to occur in a nuclear waste repository are thought to have taken place over time periods of decades to millennia and on spatial scales as much as tens of kilometers. Analogues provide an important temporal and spatial dimension that cannot be tested by laboratory or field-scale experiments. Analogues provide one of the multiple lines of evidence intended to increase confidence in the safe geologic disposal of high-level radioactive waste. Although the work in this report was completed specifically for Yucca Mountain, Nevada, as the proposed geologic repository for high-level radioactive waste under the U.S. Nuclear Waste Policy Act, the applicability of the science, analyses, and interpretations is not limited to a specific site. Natural and anthropogenic analogues have provided and can continue to provide value in understanding features and processes of importance across a wide variety of topics in addressing the challenges of geologic isolation of radioactive waste and also as a contribution to scientific investigations unrelated to waste disposal. Isolation of radioactive waste at a mined geologic repository would be through a combination of natural features and engineered barriers. In this report we examine analogues to many of the various components of the Yucca Mountain system, including the preservation of materials in unsaturated environments, flow of water through unsaturated volcanic tuff, seepage into repository drifts, repository drift stability, stability and alteration of waste forms and components of the engineered barrier system, and transport of radionuclides through unsaturated and saturated rock zones.

  6. Direct affinity of dopamine to lipid membranes investigated by Nuclear Magnetic Resonance spectroscopy.

    PubMed

    Matam, Yashasvi; Ray, Bruce D; Petrache, Horia I

    2016-04-08

    Dopamine, a naturally occurring neurotransmitter, plays an important role in the brain's reward system and acts on sensory receptors in the brain. Neurotransmitters are contained in lipid membraned vesicles and are released by exocytosis. All neurotransmitters interact with transport and receptor proteins in glial cells, on neuronal dendrites, and at the axonal button, and also must interact with membrane lipids. However, the extent of direct interaction between lipid membranes in the absence of receptors and transport proteins has not been extensively investigated. In this report, we use UV and NMR spectroscopy to determine the affinity and the orientation of dopamine interacting with lipid vesicles made of either phosphatidylcholine (PC) or phosphatidylserine (PS) lipids which are primary lipid components of synaptic vesicles. We quantify the interaction of dopamine's aromatic ring with lipid membranes using our newly developed method that involves reference spectra in hydrophobic environments. Our measurements show that dopamine interacts with lipid membranes primarily through the aromatic side opposite to the hydroxyl groups, with this aromatic side penetrating deeper into the hydrophobic region of the membrane. Since dopamine's activity involves its release into extracellular space, we have used our method to also investigate dopamine's release from lipid vesicles. We find that dopamine trapped inside PC and PS vesicles is released into the external solution despite its affinity to membranes. This result suggests that dopamine's interaction with lipid membranes is complex and involves both binding as well as permeation through lipid bilayers, a combination that could be an effective trigger for apoptosis of dopamine-generating cells.

  7. Topological regulation of lipid balance in cells.

    PubMed

    Drin, Guillaume

    2014-01-01

    Lipids are unevenly distributed within and between cell membranes, thus defining organelle identity. Such distribution relies on local metabolic branches and mechanisms that move lipids. These processes are regulated by feedback mechanisms that decipher topographical information in organelle membranes and then regulate lipid levels or flows. In the endoplasmic reticulum, the major lipid source, transcriptional regulators and enzymes sense changes in membrane features to modulate lipid production. At the Golgi apparatus, lipid-synthesizing, lipid-flippase, and lipid-transport proteins (LTPs) collaborate to control lipid balance and distribution within the membrane to guarantee remodeling processes crucial for vesicular trafficking. Open questions exist regarding LTPs, which are thought to be lipid sensors that regulate lipid synthesis or carriers that transfer lipids between organelles across long distances or in contact sites. A novel model is that LTPs, by exchanging two different lipids, exploit one lipid gradient between two distinct membranes to build a second lipid gradient.

  8. Molecular Biodynamers: Dynamic Covalent Analogues of Biopolymers.

    PubMed

    Liu, Yun; Lehn, Jean-Marie; Hirsch, Anna K H

    2017-02-21

    Constitutional dynamic chemistry (CDC) features the use of reversible linkages at both molecular and supramolecular levels, including reversible covalent bonds (dynamic covalent chemistry, DCC) and noncovalent interactions (dynamic noncovalent chemistry, DNCC). Due to its inherent reversibility and stimuli-responsiveness, CDC has been widely utilized as a powerful tool for the screening of bioactive compounds, the exploitation of receptors or substrates driven by molecular recognition, and the fabrication of constitutionally dynamic materials. Implementation of CDC in biopolymer science leads to the generation of constitutionally dynamic analogues of biopolymers, biodynamers, at the molecular level (molecular biodynamers) through DCC or at the supramolecular level (supramolecular biodynamers) via DNCC. Therefore, biodynamers are prepared by reversible covalent polymerization or noncovalent polyassociation of biorelevant monomers. In particular, molecular biodynamers, biodynamers of the covalent type whose monomeric units are connected by reversible covalent bonds, are generated by reversible polymerization of bio-based monomers and can be seen as a combination of biopolymers with DCC. Owing to the reversible covalent bonds used in DCC, molecular biodynamers can undergo continuous and spontaneous constitutional modifications via incorporation/decorporation and exchange of biorelevant monomers in response to internal or external stimuli. As a result, they behave as adaptive materials with novel properties, such as self-healing, stimuli-responsiveness, and tunable mechanical and optical character. More specifically, molecular biodynamers combine the biorelevant characters (e.g., biocompatibility, biodegradability, biofunctionality) of bioactive monomers with the dynamic features of reversible covalent bonds (e.g., changeable, tunable, controllable, self-healing, and stimuli-responsive capacities), to realize synergistic properties in one system. In addition, molecular

  9. Molecular Biodynamers: Dynamic Covalent Analogues of Biopolymers

    PubMed Central

    2017-01-01

    Conspectus Constitutional dynamic chemistry (CDC) features the use of reversible linkages at both molecular and supramolecular levels, including reversible covalent bonds (dynamic covalent chemistry, DCC) and noncovalent interactions (dynamic noncovalent chemistry, DNCC). Due to its inherent reversibility and stimuli-responsiveness, CDC has been widely utilized as a powerful tool for the screening of bioactive compounds, the exploitation of receptors or substrates driven by molecular recognition, and the fabrication of constitutionally dynamic materials. Implementation of CDC in biopolymer science leads to the generation of constitutionally dynamic analogues of biopolymers, biodynamers, at the molecular level (molecular biodynamers) through DCC or at the supramolecular level (supramolecular biodynamers) via DNCC. Therefore, biodynamers are prepared by reversible covalent polymerization or noncovalent polyassociation of biorelevant monomers. In particular, molecular biodynamers, biodynamers of the covalent type whose monomeric units are connected by reversible covalent bonds, are generated by reversible polymerization of bio-based monomers and can be seen as a combination of biopolymers with DCC. Owing to the reversible covalent bonds used in DCC, molecular biodynamers can undergo continuous and spontaneous constitutional modifications via incorporation/decorporation and exchange of biorelevant monomers in response to internal or external stimuli. As a result, they behave as adaptive materials with novel properties, such as self-healing, stimuli-responsiveness, and tunable mechanical and optical character. More specifically, molecular biodynamers combine the biorelevant characters (e.g., biocompatibility, biodegradability, biofunctionality) of bioactive monomers with the dynamic features of reversible covalent bonds (e.g., changeable, tunable, controllable, self-healing, and stimuli-responsive capacities), to realize synergistic properties in one system. In addition

  10. Phytic acid inhibits lipid peroxidation in vitro.

    PubMed

    Zajdel, Alicja; Wilczok, Adam; Węglarz, Ludmiła; Dzierżewicz, Zofia

    2013-01-01

    Phytic acid (PA) has been recognized as a potent antioxidant and inhibitor of iron-catalyzed hydroxyl radical formation under in vitro and in vivo conditions. Therefore, the aim of the present study was to investigate, with the use of HPLC/MS/MS, whether PA is capable of inhibiting linoleic acid autoxidation and Fe(II)/ascorbate-induced peroxidation, as well as Fe(II)/ascorbate-induced lipid peroxidation in human colonic epithelial cells. PA at 100 μM and 500 μM effectively inhibited the decay of linoleic acid, both in the absence and presence of Fe(II)/ascorbate. The observed inhibitory effect of PA on Fe(II)/ascorbate-induced lipid peroxidation was lower (10-20%) compared to that of autoxidation. PA did not change linoleic acid hydroperoxides concentration levels after 24 hours of Fe(II)/ascorbate-induced peroxidation. In the absence of Fe(II)/ascorbate, PA at 100 μM and 500 μM significantly suppressed decomposition of linoleic acid hydroperoxides. Moreover, PA at the tested nontoxic concentrations (100 μM and 500 μM) significantly decreased 4-hydroxyalkenal levels in Caco-2 cells which structurally and functionally resemble the small intestinal epithelium. It is concluded that PA inhibits linoleic acid oxidation and reduces the formation of 4-hydroxyalkenals. Acting as an antioxidant it may help to prevent intestinal diseases induced by oxygen radicals and lipid peroxidation products.

  11. Phytic Acid Inhibits Lipid Peroxidation In Vitro

    PubMed Central

    Węglarz, Ludmiła; Dzierżewicz, Zofia

    2013-01-01

    Phytic acid (PA) has been recognized as a potent antioxidant and inhibitor of iron-catalyzed hydroxyl radical formation under in vitro and in vivo conditions. Therefore, the aim of the present study was to investigate, with the use of HPLC/MS/MS, whether PA is capable of inhibiting linoleic acid autoxidation and Fe(II)/ascorbate-induced peroxidation, as well as Fe(II)/ascorbate-induced lipid peroxidation in human colonic epithelial cells. PA at 100 μM and 500 μM effectively inhibited the decay of linoleic acid, both in the absence and presence of Fe(II)/ascorbate. The observed inhibitory effect of PA on Fe(II)/ascorbate-induced lipid peroxidation was lower (10–20%) compared to that of autoxidation. PA did not change linoleic acid hydroperoxides concentration levels after 24 hours of Fe(II)/ascorbate-induced peroxidation. In the absence of Fe(II)/ascorbate, PA at 100 μM and 500 μM significantly suppressed decomposition of linoleic acid hydroperoxides. Moreover, PA at the tested nontoxic concentrations (100 μM and 500 μM) significantly decreased 4-hydroxyalkenal levels in Caco-2 cells which structurally and functionally resemble the small intestinal epithelium. It is concluded that PA inhibits linoleic acid oxidation and reduces the formation of 4-hydroxyalkenals. Acting as an antioxidant it may help to prevent intestinal diseases induced by oxygen radicals and lipid peroxidation products. PMID:24260736

  12. Habitability & Astrobiology Research in Mars Terrestrial Analogues

    NASA Astrophysics Data System (ADS)

    Foing, Bernard

    2014-05-01

    We performed a series of field research campaigns (ILEWG EuroMoonMars) in the extreme Utah desert relevant to Mars environments, and in order to help in the interpretation of Mars missions measurements from orbit (MEX, MRO) or from the surface (MER, MSL), or Moon geochemistry (SMART-1, LRO). We shall give an update on the sample analysis in the context of habitability and astrobiology. Methods & Results: In the frame of ILEWG EuroMoonMars campaigns (2009 to 2013) we deployed at Mars Desert Research station, near Hanksville Utah, a suite of instruments and techniques [A, 1, 2, 9-11] including sample collection, context imaging from remote to local and microscale, drilling, spectrometers and life sensors. We analyzed how geological and geochemical evolution affected local parameters (mineralogy, organics content, environment variations) and the habitability and signature of organics and biota. Among the important findings are the diversity in the composition of soil samples even when collected in close proximity, the low abundances of detectable PAHs and amino acids and the presence of biota of all three domains of life with significant heterogeneity. An extraordinary variety of putative extremophiles was observed [3,4,9]. A dominant factor seems to be soil porosity and lower clay-sized particle content [6-8]. A protocol was developed for sterile sampling, contamination issues, and the diagnostics of biodiversity via PCR and DGGE analysis in soils and rocks samples [10, 11]. We compare the 2009 campaign results [1-9] to new measurements from 2010-2013 campaigns [10-12] relevant to: comparison between remote sensing and in-situ measurements; the study of minerals; the detection of organics and signs of life. Keywords: field analogue research, astrobiology, habitability, life detection, Earth-Moon-Mars, organics References [A] Foing, Stoker & Ehrenfreund (Editors, 2011) "Astrobiology field Research in Moon/Mars Analogue Environments", Special Issue of International

  13. 15(S)-Lipoxygenase-1 associates with neutral lipid droplets in macrophage foam cells: evidence of lipid droplet metabolism

    PubMed Central

    Weibel, Ginny L.; Joshi, Michelle R.; Wei, Cong; Bates, Sandra R.; Blair, Ian A.; Rothblat, George H.

    2009-01-01

    15(S)-lipoxygenase-1 (15-LO-1) was present in the whole-cell homogenate of an acute human monocytic leukemia cell line (THP-1). Additionally, 15-LO-1 was detected on neutral lipid droplets isolated from THP-1 foam cells. To investigate if 15-LO-1 is active on lipid droplets, we used the mouse leukemic monocytic macrophage cell line (RAW 264.7), which are stably transfected with human 15-LO-1. The RAW 15-LO-1 cells were incubated with acetylated low density lipoprotein to generate foam cells. 15(S)-hydroxyeicosatetraenoic acid [15(S)-HETE], the major 15-LO-1 metabolite of arachidonic acid, was produced in the 15-LO-1 RAW but not in the mock transfected cells when incubated with arachidonic acid. Lipid droplets were isolated from the cells and incubated with arachidonic acid, and production of 15(S)-HETE was measured over 2 h. 15(S)-HETE was produced in the incubations with the lipid droplets, and this production was attenuated when the lipid droplet fraction was subjected to enzyme inactivation through heating. Efflux of 15(S)-HETE from cholesteryl ester-enriched 15-LO RAW cells, when lipid droplets are present, was significantly reduced compared with that from cells enriched with free cholesterol (lipid droplets are absent). We propose that 15-LO-1 is present and functional on cytoplasmic neutral lipid droplets in macrophage foam cells, and these droplets may act to accumulate the anti-inflammatory lipid mediator 15(S)-HETE. PMID:19528634

  14. Charge Equilibration Force Fields for Molecular Dynamics Simulations of Lipids, Bilayers, and Integral Membrane Protein Systems

    PubMed Central

    Lucas, Timothy R.; Bauer, Brad A.; Patel, Sandeep

    2014-01-01

    With the continuing advances in computational hardware and novel force fields constructed using quantum mechanics, the outlook for non-additive force fields is promising. Our work in the past several years has demonstrated the utility of polarizable force fields, those based on the charge equilibration formalism, for a broad range of physical and biophysical systems. We have constructed and applied polarizable force fields for lipids and lipid bilayers. In this review of our recent work, we discuss the formalism we have adopted for implementing the charge equilibration (CHEQ) method for lipid molecules. We discuss the methodology, related issues, and briefly discuss results from recent applications of such force fields. Application areas include DPPC-water monolayers, potassium ion permeation free energetics in the gramicidin A bacterial channel, and free energetics of permeation of charged amino acid analogues across the water-bilayer interface. PMID:21967961

  15. Synthesis and evaluation of analogues of HYNIC as bifunctional chelators for technetium.

    PubMed

    Meszaros, Levente K; Dose, Anica; Biagini, Stefano C G; Blower, Philip J

    2011-06-21

    6-Hydrazinonicotinic acid (HYNIC, 1) is a well-established bifunctional technetium-binding ligand often used to synthesise bioconjugates for radiolabelling with Tc-99m. It is capable of efficient capture of technetium at extremely low concentrations, but the structure of the labelled complexes is heterogeneous and incompletely understood. In particular, it is of interest to determine whether, at the no-carrier-added level, it acts in a chelating or non-chelating mode. Here we report two new isomers of HYNIC: 2-hydrazinonicotinic acid (2-HYNIC, 2), which (like 1) is capable of chelation through the mutually ortho hydrazine and pyridine nitrogens and 4-hydrazinonicotinic acid (4-HYNIC, 3), which is not (due to the para-relationship of the hydrazine and pyridine nitrogens). LC-MS shows that the coordination chemistry of 2 with technetium closely parallels that of conventional 1, and no advantages of one over the other in terms of potential labelling efficiency or isomerism were discernable. Both 1 and 2 formed complexes with the loss of 5 protons from the ligand set, whether the co-ligand was tricine or EDDA. Ligand 3, however, failed to complex technetium except at very high ligand concentration: the marked contrast with 1 and 2 suggests that chelation, rather than nonchelating coordination, is a key feature of technetium coordination by HYNIC. Two further new HYNIC analogues, 2-chloro-6-hydrazinonicotinic acid (2-chloro-HYNIC, 4a) and 2,6-dihydrazinonicotinic acid (diHYNIC, 5) were also synthesised. The coordination chemistry of 4a with technetium was broadly parallel to that of 1 and 2 although it was a less efficient chelator, while 5 also behaved as an efficient chelator of technetium, but its coordination chemistry remains poorly defined and requires further investigation before it can sensibly be adopted for (99m)Tc-labelling. The new analogues 4a and 5 present an opportunity to develop trifunctional HYNIC analogues for more complex bioconjugate synthesis.

  16. Lipid rafts as major platforms for signaling regulation in cancer.

    PubMed

    Mollinedo, Faustino; Gajate, Consuelo

    2015-01-01

    Cell signaling does not apparently occur randomly over the cell surface, but it seems to be integrated very often into cholesterol-rich membrane domains, termed lipid rafts. Membrane lipid rafts are highly ordered membrane domains that are enriched in cholesterol, sphingolipids and gangliosides, and behave as major modulators of membrane geometry, lateral movement of molecules, traffic and signal transduction. Because the lipid and protein composition of membrane rafts differs from that of the surrounding membrane, they provide an additional level of compartmentalization, serving as sorting platforms and hubs for signal transduction proteins. A wide number of signal transduction processes related to cell adhesion, migration, as well as to cell survival and proliferation, which play major roles in cancer development and progression, are dependent on lipid rafts. Despite lipid rafts harbor mainly critical survival signaling pathways, including insulin-like growth factor I (IGF-I)/phosphatidylinositol 3-kinase (PI3K)/Akt signaling, recent evidence suggests that these membrane domains can also house death receptor-mediated apoptotic signaling. Recruitment of this death receptor signaling pathway in membrane rafts can be pharmacologically modulated, thus opening up the possibility to regulate cell demise with a therapeutic use. The synthetic ether phospholipid edelfosine shows a high affinity for cholesterol and accumulates in lipid rafts in a number of malignant hematological cells, leading to an efficient in vitro and in vivo antitumor activity by inducing translocation of death receptors and downstream signaling molecules to these membrane domains. Additional antitumor drugs have also been shown to act, at least in part, by recruiting death receptors in lipid rafts. The partition of death receptors together with downstream apoptotic signaling molecules in membrane rafts has led us to postulate the concept of a special liquid-ordered membrane platform coined as

  17. Lipid profiling of polarized human monocyte-derived macrophages.

    PubMed

    Montenegro-Burke, J Rafael; Sutton, Jessica A; Rogers, Lisa M; Milne, Ginger L; McLean, John A; Aronoff, David M

    2016-12-01

    The highly orchestrated transcriptional and metabolic reprogramming during activation drastically transforms the main functions and physiology of human macrophages across the polarization spectrum. Lipids, for example, can modify protein function by acting remotely as signaling molecules but also locally by altering the physical properties of cellular membranes. These changes play key roles in the functions of highly plastic immune cells due to their involvement in inflammation, immune responses, phagocytosis and wound healing processes. We report an analysis of major membrane lipids of distinct phenotypes of resting (M0), classically activated (M1), alternatively activated (M2a) and deactivated (M2c) human monocyte derived macrophages from different donors. Samples were subjected to supercritical fluid chromatography-ion mobility-mass spectrometry analysis, which allowed separations based on lipid class, facilitating the profiling of their fatty acid composition. Different levels of arachidonic acid mobilization as well as other fatty acid changes were observed for different lipid classes in the distinct polarization phenotypes, suggesting the activation of highly orchestrated and specific enzymatic processes in the biosynthesis of lipid signaling molecules and cell membrane remodeling. Thromboxane A2 production appeared to be a specific marker of M1 polarization. These alterations to the global composition of lipid bi-layer membranes in the cell provide a potential methodology for the definition and determination of cellular and tissue activation states.

  18. Lipid nanocarriers: influence of lipids on product development and pharmacokinetics.

    PubMed

    Pathak, Kamla; Keshri, Lav; Shah, Mayank

    2011-01-01

    Lipid nanocarriers are on the forefront of the rapidly developing field of nanotechnology with several potential applications in drug delivery. Owing to their size-dependent properties, lipid nanoparticles offer the possibility for development of new therapeutics and an alternative system to other colloidal counterparts for drug administration. An important point to be considered in the selection of a lipid for the carrier system is its effect on the properties of the nanocarrier and also its intended use, as different types of lipids differ in their nature. Researchers around the globe have tapped the potential of solid lipid nanoparticles (SLNs) in developing formulation(s) that can be administered by various routes such as oral, ocular, parenteral, topical, and pulmonary. Since the start of this millennium, a new generation of lipid nanoparticles, namely nanostructured lipid carriers (NLCs), lipid drug conjugates (LDCs), and pharmacosomes, has evolved that have the potential to overcome the limitations of SLNs. The current review article presents broad considerations on the influence of various types of lipids on the diverse characteristics of nanocarriers, encompassing their physicochemical, formulation, pharmacokinetic, and cytotoxic aspects.

  19. RF Microalgal lipid content characterization

    PubMed Central

    Ahmad, Mahmoud Al; Al-Zuhair, Sulaiman; Taher, Hanifa; Hilal-Alnaqbi, Ali

    2014-01-01

    Most conventional techniques for the determination of microalgae lipid content are time consuming and in most cases are indirect and require excessive sample preparations. This work presents a new technique that utilizes radio frequency (RF) for rapid lipid quantification, without the need for sample preparation. Tests showed that a shift in the resonance frequency of a RF open-ended coaxial resonator and a gradual increase in its resonance magnitude may occur as the lipids content of microalgae cells increases. These response parameters can be then calibrated against actual cellular lipid contents and used for rapid determination of the cellular lipids. The average duration of lipid quantification using the proposed technique was of about 1 minute, which is significantly less than all other conventional techniques, and was achieved without the need for any time consuming treatment steps. PMID:24870372

  20. The life of lipid droplets

    PubMed Central

    Walther, Tobias C.; Farese, Robert V.

    2009-01-01

    Lipid droplets are the least characterized of cellular organelles. Long considered simple lipid storage depots, these dynamic and remarkable organelles have recently been implicated in many biological processes, and we are only now beginning to gain insights into their fascinating lives in cells. Here we examine what we know of the life of lipid droplets. We review emerging data concerning their cellular biology and present our thoughts on some of the most salient questions for investigation. PMID:19041421

  1. Lipids and Membrane Lateral Organization

    PubMed Central

    Sonnino, Sandro; Prinetti, Alessandro

    2010-01-01

    Shortly after the elucidation of the very basic structure and properties of cellular membranes, it became evident that cellular membranes are highly organized structures with multiple and multi-dimensional levels of order. Very early observations suggested that the lipid components of biological membranes might be active players in the creation of these levels of order. In the late 1980s, several different and diverse experimental pieces of evidence coalesced together giving rise to the lipid raft hypothesis. Lipid rafts became enormously (and, in the opinion of these authors, sometimes acritically) popular, surprisingly not just within the lipidologist community (who is supposed to be naturally sensitive to the fascination of lipid rafts). Today, a PubMed search using the key word “lipid rafts” returned a list of 3767 papers, including 690 reviews (as a term of comparison, searching over the same time span for a very hot lipid-related key word, “ceramide” returned 6187 hits with 799 reviews), and a tremendous number of different cellular functions have been described as “lipid raft-dependent.” However, a clear consensus definition of lipid raft has been proposed only in recent times, and the basic properties, the ruling forces, and even the existence of lipid rafts in living cells has been recently matter of intense debate. The scenario that is gradually emerging from the controversies elicited by the lipid raft hypothesis emphasizes multiple roles for membrane lipids in determining membrane order, that encompass their tendency to phase separation but are clearly not limited to this. In this review, we would like to re-focus the attention of the readers on the importance of lipids in organizing the fine structure of cellular membranes. PMID:21423393

  2. Use of Molecular Modeling to Design Selective-NTS2 Neurotensin Analogues.

    PubMed

    Fanelli, Roberto; Floquet, Nicolas; Besserer-Offroy, Élie; Delort, Bartholomé; Vivancos, Mélanie; Longpré, Jean-Michel; Renault, Pedro; Martinez, Jean; Sarret, Philippe; Cavelier, Florine

    2017-04-03

    Neurotensin exerts potent analgesia by acting at both NTS1 and NTS2 receptors, whereas NTS1 activation also results in other physiological effects, such as hypotension and hypothermia. Here, we used molecular modeling approach to design highly-selective NTS2 ligands by investigating the docking of novel NT[8-13] compounds at both NTS1 and NTS2 sites. Molecular dynamics simulations revealed an interaction of the Tyr(11) residue of NT[8-13] with an acidic residue (Glu(179)) located in the ECL2 of hNTS2 or with a basic residue (Arg(212)) at the same position in hNTS1. The importance of the residue at position 11 for NTS1/NTS2 selectivity was further demonstrated by the design of new NT analogues bearing basic (Lys, Orn) or acid (Asp or Glu) function. As predicted by the molecular dynamics simulations, binding of NT[8-13] analogues harboring a Lys(11) exhibited higher affinity toward the hNTS1-R212E mutant receptor, in which Arg(212) was substituted by the negatively charged Glu residue.

  3. Receptor-mediated uptake of boron-rich neuropeptide y analogues for boron neutron capture therapy.

    PubMed

    Ahrens, Verena M; Frank, René; Boehnke, Solveig; Schütz, Christian L; Hampel, Gabriele; Iffland, Dorothée S; Bings, Nicolas H; Hey-Hawkins, Evamarie; Beck-Sickinger, Annette G

    2015-01-01

    Peptidic ligands selectively targeting distinct G protein-coupled receptors that are highly expressed in tumor tissue represent a promising approach in drug delivery. Receptor-preferring analogues of neuropeptide Y (NPY) bind and activate the human Y1 receptor subtype (hY1 receptor), which is found in 90% of breast cancer tissue and in all breast-cancer-derived metastases. Herein, novel highly boron-loaded Y1 -receptor-preferring peptide analogues are described as smart shuttle systems for carbaboranes as (10) B-containing moieties. Various positions in the peptide were screened for their susceptibility to carbaborane modification, and the most promising positions were chosen to create a multi-carbaborane peptide containing 30 boron atoms per peptide with excellent activation and internalization patterns at the hY1 receptor. Boron uptake studies by inductively coupled plasma mass spectrometry revealed successful uptake of the multi-carbaborane peptide into hY1 -receptor-expressing cells, exceeding the required amount of 10(9) boron atoms per cell. This result demonstrates that the NPY/hY receptor system can act as an effective transport system for boron-containing moieties.

  4. Therapeutics of Diabetes Mellitus: Focus on Insulin Analogues and Insulin Pumps

    PubMed Central

    Valla, Vasiliki

    2010-01-01

    Aim. Inadequately controlled diabetes accounts for chronic complications and increases mortality. Its therapeutic management aims in normal HbA1C, prandial and postprandial glucose levels. This review discusses diabetes management focusing on the latest insulin analogues, alternative insulin delivery systems and the artificial pancreas. Results. Intensive insulin therapy with multiple daily injections (MDI) allows better imitation of the physiological rhythm of insulin secretion. Longer-acting, basal insulin analogues provide concomitant improvements in safety, efficacy and variability of glycaemic control, followed by low risks of hypoglycaemia. Continuous subcutaneous insulin infusion (CSII) provides long-term glycaemic control especially in type 1 diabetic patients, while reducing hypoglycaemic episodes and glycaemic variability. Continuous subcutaneous glucose monitoring (CGM) systems provide information on postprandial glucose excursions and nocturnal hypo- and/or hyperglycemias. This information enhances treatment options, provides a useful tool for self-monitoring and allows safer achievement of treatment targets. In the absence of a cure-like pancreas or islets transplants, artificial “closed-loop” systems mimicking the pancreatic activity have been also developed. Conclusions. Individualized treatment plans for insulin initiation and administration mode are critical in achieving target glycaemic levels. Progress in these fields is expected to facilitate and improve the quality of life of diabetic patients. PMID:20589066

  5. Determination of lipid asymmetry in human red cells by resonance energy transfer

    SciTech Connect

    Connor, J.; Schroit, A.J.

    1987-08-11

    This report describes the application of a resonance energy transfer assay to determine the transbilayer distribution of /sup 125/I-labelled 7-nitro-2,1,3-benzoxadiazol-4-yl (NBD)-labelled lipid analogues. The validity of this technique was established by determining the relationship between the distance of separation of lissamine rhodamine B labeled phosphatidylethanolamine (N-Rho-PE) acceptor lipid and NBD-labeled donor lipid and energy transfer efficiency. By determination of the distance between probes at 50% transfer efficiency (R/sub 0/), the distance between fluorophores distributed symmetrically (outer leaflet label) and asymmetrically in artificially generated vesicles was determined. Calculation of the average distance between probes revealed a 14-A difference between NBD-lipid and N-Rho-PE localized in the same leaflet and in opposing leaflets, respectively. Application of this technique to the study of the transbilayer distribution of NBD-lipid in human red blood cells (RBC) showed that exogenously supplied NBD-phosphatidylserine (NBD-PS) was selectively transported to the inner leaflet, whereas NBD-phosphatidylcholine remained in outer leaflet. In contrast, pretreatment of the RBC with diamide (a SH cross-linking reagent) blocked the transport of NBD-PS. The absence or presence of NBD-PS in the outer leaflet was independently verified by employing back-exchange, trinitrobenzenesulfonic acid derivatization, and decarboxylation with PS decarboxylase experiments. These control experiments yielded results which confirmed the lipid distributions determined by the resonance energy transfer assay.

  6. Fluorescent analogues of methotrexate: characterization and interaction with dihydrofolate reductase.

    PubMed

    Kumar, A A; Kempton, R J; Anstead, G M; Freisheim, J H

    1983-01-18

    The dansylated derivatives of lysine and ornithine analogues of methotrexate exhibit fluorescence properties characteristic of the dansyl moiety with an excitation at 328 nm and an emission maximum at 580 nm in aqueous media. As in the case of dansyl amino acids, the fluorescence emission is dependent upon the polarity of the medium. In solvents of low dielectric constant there is an enhancement of the dansyl fluorescence intensity as well as a shift to shorter wavelengths. The dansylated analogues show a reduction in the quantum yields as compared to N epsilon-dansyl-L-lysine and 5-(N,N-dimethylamino)-1-naphthalenesulfonic acid. The absorption spectra of the two dansyl analogues are similar to the spectra of the parent basic amino acid precursors but with reduced molar extinction values. The two fluorescent analogues of methotrexate were found to be potent inhibitors of purified dihydrofolate reductases from Lactobacillus casei and from chicken liver. The binding of these fluorescent analogues to either dihydrofolate reductase resulted in 10-15-nm blue shift of the ligand emission maxima and a 2-5-fold enhancement of the emission. These fluorescent properties of the bound ligands indicate a possible interaction of the dansyl moiety with a region on the enzyme molecule which is more hydrophobic relative to the surrounding solvent.

  7. Theoretical study on absorption and emission spectra of adenine analogues.

    PubMed

    Liu, Hongxia; Song, Qixia; Yang, Yan; Li, Yan; Wang, Haijun

    2014-04-01

    Fluorescent nucleoside analogues have attracted much attention in studying the structure and dynamics of nucleic acids in recent years. In the present work, we use theoretical calculations to investigate the structural and optical properties of four adenine analogues (termed as A1, A2, A3, and A4), and also consider the effects of aqueous solution and base pairing. The results show that the fluorescent adenine analogues can pair with thymine to form stable H-bonded WC base pairs. The excited geometries of both adenine analogues and WC base pairs are similar to the ground geometries. The absorption and emission maxima of adenine analogues are greatly red shifted compared with nature adenine, the oscillator strengths of A1 and A2 are stronger than A3 and A4 in both absorption and emission spectra. The calculated low-energy peaks in the absorption spectra are in good agreement with the experimental data. In general, the aqueous solution and base pairing can slightly red-shift both the absorption and emission maxima, and can increase the oscillator strengths of absorption spectra, but significantly decrease the oscillator strengths of A3 in emission spectra.

  8. Bioluminescent properties of obelin and aequorin with novel coelenterazine analogues.

    PubMed

    Gealageas, Ronan; Malikova, Natalia P; Picaud, Sandrine; Borgdorff, Aren J; Burakova, Ludmila P; Brûlet, Philippe; Vysotski, Eugene S; Dodd, Robert H

    2014-04-01

    The main analytical use of Ca(2+)-regulated photoproteins from luminous coelenterates is for real-time non-invasive visualization of intracellular calcium concentration ([Ca(2+)]i) dynamics in cells and whole organisms. A limitation of this approach for in vivo deep tissue imaging is the fact that blue light emitted by the photoprotein is highly absorbed by tissue. Seven novel coelenterazine analogues were synthesized and their effects on the bioluminescent properties of recombinant obelin from Obelia longissima and aequorin from Aequorea victoria were evaluated. Only analogues having electron-donating groups (m-OCH3 and m-OH) on the C6 phenol moiety or an extended resonance system at the C8 position (1-naphthyl and α-styryl analogues) showed a significant red shift of light emission. Of these, only the α-styryl analogue displayed a sufficiently high light intensity to allow eventual tissue penetration. The possible suitability of this compound for in vivo assays was corroborated by studies with aequorin which allowed the monitoring of [Ca(2+)]i dynamics in cultured CHO cells and in hippocampal brain slices. Thus, the α-styryl coelenterazine analogue might be potentially useful for non-invasive, in vivo bioluminescence imaging in deep tissues of small animals.

  9. Circadian regulation of lipid metabolism.

    PubMed

    Gooley, Joshua J

    2016-11-01

    The circadian system temporally coordinates daily rhythms in feeding behaviour and energy metabolism. The objective of the present paper is to review the mechanisms that underlie circadian regulation of lipid metabolic pathways. Circadian rhythms in behaviour and physiology are generated by master clock neurons in the suprachiasmatic nucleus (SCN). The SCN and its efferent targets in the hypothalamus integrate light and feeding signals to entrain behavioural rhythms as well as clock cells located in peripheral tissues, including the liver, adipose tissue and muscle. Circadian rhythms in gene expression are regulated at the cellular level by a molecular clock comprising a core set of clock genes/proteins. In peripheral tissues, hundreds of genes involved in lipid biosynthesis and fatty acid oxidation are rhythmically activated and repressed by clock proteins, hence providing a direct mechanism for circadian regulation of lipids. Disruption of clock gene function results in abnormal metabolic phenotypes and impaired lipid absorption, demonstrating that the circadian system is essential for normal energy metabolism. The composition and timing of meals influence diurnal regulation of metabolic pathways, with food intake during the usual rest phase associated with dysregulation of lipid metabolism. Recent studies using metabolomics and lipidomics platforms have shown that hundreds of lipid species are circadian-regulated in human plasma, including but not limited to fatty acids, TAG, glycerophospholipids, sterol lipids and sphingolipids. In future work, these lipid profiling approaches can be used to understand better the interaction between diet, mealtimes and circadian rhythms on lipid metabolism and risk for obesity and metabolic diseases.

  10. Structure-activity relationship in cationic lipid mediated gene transfection.

    PubMed

    Niculescu-Duvaz, Dan; Heyes, James; Springer, Caroline J

    2003-07-01

    Non-viral synthetic vectors for gene delivery represent a safer alternative to viral vectors. Their main drawback is the low transfection efficiency, especially in vivo. Among the non-viral vectors currently in use, the cationic liposomes composed of cationic lipids are the most common. This review discusses the physicochemical properties of cationic lipids, the formation, macrostructure and specific parameters of the corresponding formulated liposomes, and the effect of all these parameters on transfection efficiency. The optimisation of liposomal vectors requires both the understanding of the biological variables involved in the transfection process, and the effect of the structural elements of the cationic lipids on these biological variables. The biological barriers relevant for in vitro and in vivo transfection are identified, and solutions to overcome them based on rational design of the cationic lipids are discussed. The review focuses on the relationship between the structure of the cationic lipid and the transfection activity. The structure is analysed in a modular manner. The hydrophobic domain, the cationic head group, the backbone that acts as a scaffold for the other domains, the linkers between backbone, hydrophobic domain and cationic head group, the polyethyleneglycol chains and the targeting moiety are identified as distinct elements of the cationic lipids used in gene therapy. The main chemical functionalities used to built these domains, as well as overall molecular features such as architecture and geometry, are presented. Studies of structure-activity relationships of each cationic lipid domain, including the authors', and the trends identified by these studies, help furthering the understanding of the mechanism governing the formation and behaviour of cationic liposomes in gene delivery, and therefore the rational design of new improved cationic lipids vectors capable of achieving clinical significance.

  11. Shining new light on ancient drugs: preparation and subcellular localisation of novel fluorescent analogues of Cinchona alkaloids in intraerythrocytic Plasmodium falciparum.

    PubMed

    Woodland, John G; Hunter, Roger; Smith, Peter J; Egan, Timothy J

    2017-01-18

    Fluorescent derivatives of the archetypal antimalarial quinine and its diastereomer, quinidine, suitable for cellular imaging have been synthesised by attaching the small extrinsic fluorophore, NBD. Interactions of these derivatives with ferriprotoporphyrin IX were evaluated to verify that insights generated by live-cell imaging were relevant to the parent molecules. These analogues are shown by confocal and super-resolution microscopy to accumulate selectively in Plasmodium falciparum. Localisation to the region corresponding to the digestive vacuole supports the putative primary role of these alkaloids as haemozoin inhibitors. Quantitative analysis revealed minimal accumulation within the nucleus, rejecting the disruption of DNA replication as a possible mode of action. While extensive localisation to phospholipid structures and associated organelles was observed, the analogues did not show evidence of association with neutral lipid bodies.

  12. Lipid hydroperoxides in plants.

    PubMed

    Griffiths, G; Leverentz, M; Silkowski, H; Gill, N; Sánchez-Serrano, J J

    2000-12-01

    Hydroperoxides are the primary oxygenated products of polyunsaturated fatty acids and were determined spectrophotometrically based on their reaction with an excess of Fe2+ at low pH in the presence of the dye Xylenol Orange. Triphenylphosphine-mediated hydroxide formation was used to authenticate the signal generated by the hydroperoxides. The method readily detected lipid peroxidation in a range of plant tissues including Phaseolus hypocotyls (26 +/- 5 nmol.g of fresh weight(-1); mean +/- S.D.), Alstroemeria floral tissues (sepals, 66+/-13 nmol.g of fresh weight(-1); petals, 49+/-6 nmol.g of fresh weight(-1)), potato leaves (334+/-75 nmol.g of fresh weight(-1)), broccoli florets (568+/-68 nmol.g of fresh weight(-1)) and Chlamydomonas cells (602+/-40 nmol.g of wet weight(-1)). Relative to the total fatty acid content of the tissues, the percentage hydroperoxide content was within the range of 0.6-1.7% for all tissue types (photosynthetic and non-photosynthetic) and represents the basal oxidation level of membrane fatty acids in plant cells. Leaves of transgenic potato with the fatty acid hydroperoxide lyase enzyme expressed in the antisense orientation were elevated by 38%, indicating a role for this enzyme in the maintenance of cellular levels of lipid hydroperoxides.

  13. Lipid domains in supported lipid bilayer for atomic force microscopy.

    PubMed

    Lin, Wan-Chen; Blanchette, Craig D; Ratto, Timothy V; Longo, Marjorie L

    2007-01-01

    Phase-separated supported lipid bilayers have been widely used to study the phase behavior of multicomponent lipid mixtures. One of the primary advantages of using supported lipid bilayers is that the two-dimensional platform of this model membrane system readily allows lipid-phase separation to be characterized by high-resolution imaging techniques such as atomic force microscopy (AFM). In addition, when supported lipid bilayers have been functionalized with a specific ligand, protein-membrane interactions can also be imaged and characterized through AFM. It has been recently demonstrated that when the technique of vesicle fusion is used to prepare supported lipid bilayers, the thermal history of the vesicles before deposition and the supported lipid bilayers after formation will have significant effects on the final phase-separated domain structures. In this chapter, three methods of vesicle preparations as well as three deposition conditions will be presented. Also, the techniques and strategies of using AFM to image multicomponent phase-separated supported lipid bilayers and protein binding will be discussed.

  14. Design and synthesis of non-hydrolyzable homoisoprenoid α-monofluorophosphonate inhibitors of PPAPDC family integral membrane lipid phosphatases.

    PubMed

    Subramanian, Thangaiah; Ren, Hongmei; Subramanian, Karunai Leela; Sunkara, Manjula; Onono, Fredrick O; Morris, Andrew J; Spielmann, H Peter

    2014-09-15

    An efficient, diversity oriented synthesis of homoisoprenoid α-monofluorophosphonates utilizing electrophilic fluorination is presented along with their activity as inhibitors of PPAPDC2 family integral membrane lipid phosphatases. These novel phosphatase-resistant analogues of isoprenoid monophosphates are a platform for further structure-activity relationship studies and provide access to other isoprenoid family members where the phosphate ester oxygen is replaced by a α-monofluoromethylene moiety.

  15. Analogue peptides for the immunotherapy of human acute myeloid leukemia.

    PubMed

    Hofmann, Susanne; Mead, Andrew; Malinovskis, Aleksandrs; Hardwick, Nicola R; Guinn, Barbara-Ann

    2015-11-01

    The use of peptide vaccines, enhanced by adjuvants, has shown some efficacy in clinical trials. However, responses are often short-lived and rarely induce notable memory responses. The reason is that self-antigens have already been presented to the immune system as the tumor develops, leading to tolerance or some degree of host tumor cell destruction. To try to break tolerance against self-antigens, one of the methods employed has been to modify peptides at the anchor residues to enhance their ability to bind major histocompatibility complex molecules, extending their exposure to the T-cell receptor. These modified or analogue peptides have been investigated as stimulators of the immune system in patients with different cancers with variable but sometimes notable success. In this review we describe the background and recent developments in the use of analogue peptides for the immunotherapy of acute myeloid leukemia describing knowledge useful for the application of analogue peptide treatments for other malignancies.

  16. Synthesis and antioxidant activity of a procyanidin B3 analogue.

    PubMed

    Mizuno, Mirei; Nakanishi, Ikuo; Matsubayashi, Satoko; Imai, Kohei; Arai, Takuya; Matsumoto, Ken-Ichiro; Fukuhara, Kiyoshi

    2017-02-15

    Proanthocyanidin, an oligomer of catechin, is a natural antioxidant and a potent inhibitor of lectin-like oxidized LDL receptor-1, which is involved in the pathogenesis of arteriosclerosis. We synthesized proanthocyanidin analogue 1, in which the geometry of one catechin molecule in procyanidin B3, a dimer of (+)-catechin, is constrained to be planar. The antioxidant activities of the compounds were evaluated in terms of their capacities to scavenge galvinoxyl radicals, and results demonstrate that while procyanidin was 3.8 times more potent than (+)-catechin, the radical scavenging activity of proanthocyanidin analogue 1 was further increased to 1.9 times that of procyanidin B3. This newly designed proanthocyanidin analogue 1 may be a promising lead compound for the treatment of arteriosclerosis and related cerebrovascular diseases.

  17. Analogue modelling of syntectonic leucosomes in migmatitic schists

    NASA Astrophysics Data System (ADS)

    Druguet, Elena; Carreras, Jordi

    2006-10-01

    Migmatites from the Cap de Creus tectonometamorphic belt display a wide variety of structures, from those formed when the leucosomes were melt-bearing, to those developed during solid-state deformation. The observed field structures have been modelled by means of analogue experiments. The materials used in the models are layered plasticine as a schist analogue, and chocolate as analogue of the crystallizing leucosome. A model for the development of syntectonic migmatites is proposed in which initial melt-bearing patches, preferentially formed within fertile pelitic layers, progressively evolve towards lens-shaped veins. Furthermore, heterogeneous deformation of anisotropic metasediments facilitates formation of extensional sites for further melt accumulation and transport. Melt crystallization implies a rapid increase in effective viscosity of leucosomes producing a reversal in competence contrast with respect to the enclosing schists. During the whole process, deformation localizes around crystallizing veins, giving rise to different and contrasting structures for melt-bearing and for solid-state stages.

  18. Design of novel CSA analogues as potential safeners and fungicides.

    PubMed

    Zheng, Yang; Liu, Bin; Gou, Zhaopin; Li, Yao; Zhang, Xiao; Wang, Yanqing; Yu, Shujing; Li, Yonghong; Sun, Dequn

    2015-02-15

    Study of safeners has been seldom reported in literature. In this work, a series of novel acylsulfamoylbenzamide analogues was designed and synthesized with newly developed safener cyprosulfamide (CSA) as the leading compound. The activity assay against the herbicide thiencarbazone-methyl (TCM) on maize revealed that fifteen compounds showed better protective effect than CSA on the fresh weight of aerial parts, twelve compounds exhibited better activity on the dry weight of aerial parts. Remarkably, two compounds (6Ih, 7II) had protective effect on the four aspects of TCM treated maize. Further antifungal assay showed their excellent activity against Physollospora piricola. The structure-activity relationships of CSA analogues as safeners and fungicides were discussed and it might be valuable for further molecular modification of new CSA analogues.

  19. Conception, synthesis, and biological evaluation of original discodermolide analogues.

    PubMed

    de Lemos, Elsa; Agouridas, Evangelos; Sorin, Geoffroy; Guerreiro, Antonio; Commerçon, Alain; Pancrazi, Ange; Betzer, Jean-François; Lannou, Marie-Isabelle; Ardisson, Janick

    2011-08-29

    Due to its intriguing biological activity profile and potential chemotherapeutic application discodermolide (DDM) proved to be an attractive target. Therefore, notable efforts have been carried out directed toward its total synthesis and toward the production and evaluation of synthetic analogues. Recently, we achieved the total synthesis of DDM. At the present, guided by the knowledge gained during our DDM total synthesis and by the requirement of keeping the bioactive "U" shape conformation, we report the convergent preparation of five original analogues. Three types of changes were realized through modification of the terminal (Z)-diene moiety, of the methyl group at the C14-position, and the lactone region. All analogues were active in the nanomolar range and two of them turned out to be equipotent to DDM.

  20. Migrastatin analogues target fascin to block tumour metastasis.

    PubMed

    Chen, Lin; Yang, Shengyu; Jakoncic, Jean; Zhang, J Jillian; Huang, Xin-Yun

    2010-04-15

    Tumour metastasis is the primary cause of death of cancer patients. Development of new therapeutics preventing tumour metastasis is urgently needed. Migrastatin is a natural product secreted by Streptomyces, and synthesized migrastatin analogues such as macroketone are potent inhibitors of metastatic tumour cell migration, invasion and metastasis. Here we show that these migrastatin analogues target the actin-bundling protein fascin to inhibit its activity. X-ray crystal structural studies reveal that migrastatin analogues bind to one of the actin-binding sites on fascin. Our data demonstrate that actin cytoskeletal proteins such as fascin can be explored as new molecular targets for cancer treatment, in a similar manner to the microtubule protein tubulin.

  1. Largazole Analogues Embodying Radical Changes in the Depsipeptide Ring: Development of a More Selective and Highly Potent Analogue.

    PubMed

    Almaliti, Jehad; Al-Hamashi, Ayad A; Negmeldin, Ahmed T; Hanigan, Christin L; Perera, Lalith; Pflum, Mary Kay H; Casero, Robert A; Tillekeratne, L M Viranga

    2016-12-08

    A number of analogues of the marine-derived histone deacetylase inhibitor largazole incorporating major structural changes in the depsipeptide ring were synthesized. Replacing the thiazole-thiazoline fragment of largazole with a bipyridine group gave analogue 7 with potent cell growth inhibitory activity and an activity profile similar to that of largazole, suggesting that conformational change accompanying switching hybridization from sp(3) to sp(2) at C-7 is well tolerated. Analogue 7 was more class I selective compared to largazole, with at least 464-fold selectivity for class I HDAC proteins over class II HDAC6 compared to a 22-fold selectivity observed with largazole. To our knowledge 7 represents the first example of a potent and highly cytotoxic largazole analogue not containing a thiazoline ring. The elimination of a chiral center derived from the unnatural amino acid R-α-methylcysteine makes the molecule more amenable to chemical synthesis, and coupled with its increased class I selectivity, 7 could serve as a new lead compound for developing selective largazole analogues.

  2. Precocious puberty associated with neurofibromatosis and optic gliomas. Treatment with luteinizing hormone releasing hormone analogue.

    PubMed

    Laue, L; Comite, F; Hench, K; Loriaux, D L; Cutler, G B; Pescovitz, O H

    1985-11-01

    Seven children with central precocious puberty and either neurofibromatosis and/or optic gliomas were referred to the National Institutes of Health, Bethesda, Md, for evaluation and treatment with the long-acting luteinizing hormone releasing hormone analogue (LHRHa) D-Trp6-Pro9-NEt-LHRH. Only six of the seven children chose to receive treatment. Four children presented with neurofibromatosis, three of whom also had optic gliomas; the remaining three children had isolated optic gliomas, without other neurocutaneous stigmas. All had central precocious puberty mediated by activation of the hypothalamic-pituitary-gonadal axis. Six months of LHRHa therapy caused suppression of gonadotropin and sex steroid levels, stabilization or regression of secondary sexual characteristics, and decreases in growth velocity and the rate of bone age maturation. We conclude that LHRHa therapy is effective in the treatment of central precocious puberty secondary to neurofibromatosis and/or optic gliomas.

  3. Phosphoinositides, Major Actors in Membrane Trafficking and Lipid Signaling Pathways

    PubMed Central

    De Craene, Johan-Owen; Bertazzi, Dimitri L.; Bär, Séverine; Friant, Sylvie

    2017-01-01

    Phosphoinositides are lipids involved in the vesicular transport of proteins and lipids between the different compartments of eukaryotic cells. They act by recruiting and/or activating effector proteins and thus are involved in regulating various cellular functions, such as vesicular budding, membrane fusion and cytoskeleton dynamics. Although detected in small concentrations in membranes, their role is essential to cell function, since imbalance in their concentrations is a hallmark of many cancers. Their synthesis involves phosphorylating/dephosphorylating positions D3, D4 and/or D5 of their inositol ring by specific lipid kinases and phosphatases. This process is tightly regulated and specific to the different intracellular membranes. Most enzymes involved in phosphoinositide synthesis are conserved between yeast and human, and their loss of function leads to severe diseases (cancer, myopathy, neuropathy and ciliopathy). PMID:28294977

  4. Analysis of lipid profile in lipid storage myopathy.

    PubMed

    Aguennouz, M'hammed; Beccaria, Marco; Purcaro, Giorgia; Oteri, Marianna; Micalizzi, Giuseppe; Musumesci, Olimpia; Ciranni, Annmaria; Di Giorgio, Rosa Maria; Toscano, Antonio; Dugo, Paola; Mondello, Luigi

    2016-09-01

    Lipid dysmetabolism disease is a condition in which lipids are stored abnormally in organs and tissues throughout the body, causing muscle weakness (myopathy). Usually, the diagnosis of this disease and its characterization goes through dosage of Acyl CoA in plasma accompanied with evidence of droplets of intra-fibrils lipids in the patient muscle biopsy. However, to understand the pathophysiological mechanisms of lipid storage diseases, it is useful to identify the nature of lipids deposited in muscle fiber. In this work fatty acids and triglycerides profile of lipid accumulated in the muscle of people suffering from myopathies syndromes was characterized. In particular, the analyses were carried out on the muscle biopsy of people afflicted by lipid storage myopathy, such as multiple acyl-coenzyme A dehydrogenase deficiency, and neutral lipid storage disease with myopathy, and by the intramitochondrial lipid storage dysfunctions, such as deficiencies of carnitine palmitoyltransferase II enzyme. A single step extraction and derivatization procedure was applied to analyze fatty acids from muscle tissues by gas chromatography with a flame ionization detector and with an electronic impact mass spectrometer. Triglycerides, extracted by using n-hexane, were analyzed by high performance liquid chromatography coupled to mass spectrometer equipped with an atmospheric pressure chemical ionization interface. The most representative fatty acids in all samples were: C16:0 in the 13-24% range, C18:1n9 in the 20-52% range, and C18:2n6 in the 10-25% range. These fatty acids were part of the most representative triglycerides in all samples. The data obtained was statistically elaborated performing a principal component analysis. A satisfactory discrimination was obtained among the different diseases. Using component 1 vs component 3 a 43.3% of total variance was explained. Such results suggest the important role that lipid profile characterization can have in supporting a correct

  5. The Object-analogue approach for probabilistic forecasting

    NASA Astrophysics Data System (ADS)

    Frediani, M. E.; Hopson, T. M.; Anagnostou, E. N.; Hacker, J.

    2015-12-01

    The object-analogue is a new method to estimate forecast uncertainty and to derive probabilistic predictions of gridded forecast fields over larger regions rather than point locations. The method has been developed for improving the forecast of 10-meter wind speed over the northeast US, and it can be extended to other forecast variables, vertical levels, and other regions. The object-analogue approach combines the analog post-processing technique (Hopson 2005; Hamill 2006; Delle Monache 2011) with the Method for Object-based Diagnostic Evaluation (MODE) for forecast verification (Davis et al 2006a, b). Originally, MODE is used to verify mainly precipitation forecasts using features of a forecast region represented by an object. The analog technique is used to reduce the NWP systematic and random errors of a gridded forecast field. In this study we use MODE-derived objects to characterize the wind fields forecasts into attributes such as object area, centroid location, and intensity percentiles, and apply the analogue concept to these objects. The object-analogue method uses a database of objects derived from reforecasts and their respective reanalysis. Given a real-time forecast field, it searches the database and selects the top-ranked objects with the most similar set of attributes using the MODE fuzzy logic algorithm for object matching. The attribute probabilities obtained with the set of selected object-analogues are used to derive a multi-layer probabilistic prediction. The attribute probabilities are combined into three uncertainty layers that address the main concerns of most applications: location, area, and magnitude. The multi-layer uncertainty can be weighted and combined or used independently in such that it provides a more accurate prediction, adjusted according to the application interest. In this study we present preliminary results of the object-analogue method. Using a database with one hundred storms we perform a leave-one-out cross-validation to

  6. Privacy Act Statement

    EPA Pesticide Factsheets

    Any information you provide to the Environmental Protection Agency’s (EPA) Suspension and Debarment Program will be governed by the Privacy Act and will be included in the EPA Debarment and Suspension Files, a Privacy Act system of records.

  7. ACTS data center

    NASA Technical Reports Server (NTRS)

    Syed, Ali; Vogel, Wolfhard J.

    1993-01-01

    Viewgraphs on ACTS Data Center status report are included. Topics covered include: ACTS Data Center Functions; data flow overview; PPD flow; RAW data flow; data compression; PPD distribution; RAW Data Archival; PPD Audit; and data analysis.

  8. Recovery Act Milestones

    ScienceCinema

    Rogers, Matt

    2016-07-12

    Every 100 days, the Department of Energy is held accountable for a progress report on the American Recovery and Reinvestment Act. Update at 200 days, hosted by Matt Rogers, Senior Advisor to Secretary Steven Chu for Recovery Act Implementation.

  9. Autism: Why Act Early?

    MedlinePlus

    ... What's this? Submit Button Past Emails CDC Features Autism: Why Act Early? Language: English Español (Spanish) Recommend ... helped the world make sense." Florida teenager with Autism Spectrum Disorder "Because my parents acted early, I ...

  10. Recovery Act Milestones

    SciTech Connect

    Rogers, Matt

    2009-01-01

    Every 100 days, the Department of Energy is held accountable for a progress report on the American Recovery and Reinvestment Act. Update at 200 days, hosted by Matt Rogers, Senior Advisor to Secretary Steven Chu for Recovery Act Implementation.

  11. The dermatology acting internship.

    PubMed

    Stephens, John B; Raimer, Sharon S; Wagner, Richard F

    2011-07-15

    Acting internships are an important component of modern day medical school curriculum. Several specialties outside of internal medicine now offer acting internship experiences to fourth year medical students. We have found that a dermatology acting internship is a valuable experience for fourth year medical students who are interested in pursuing a residency in dermatology. Our experience with the dermatology acting internship over the 2010-2011 academic year is described.

  12. On slow light as a black hole analogue

    NASA Astrophysics Data System (ADS)

    Unruh, W. G.; Schützhold, R.

    2003-07-01

    Although slow light (electromagnetically induced transparency) would seem an ideal medium in which to institute a “dumb hole” (black hole analogue), it suffers from a number of problems. We show that the high phase velocity in the slow light regime ensures that the system cannot be used as an analogue displaying Hawking radiation. Even though an appropriately designed slow-light setup may simulate classical features of black holes—such as horizon, mode mixing, “Bogoliubov” coefficients, etc.—it does not reproduce the related quantum effects.

  13. Naturally occurring crystalline phases: analogues for radioactive waste forms

    SciTech Connect

    Haaker, R.F.; Ewing, R.C.

    1981-01-01

    Naturally occurring mineral analogues to crystalline phases that are constituents of crystalline radioactive waste forms provide a basis for comparison by which the long-term stability of these phases may be estimated. The crystal structures and the crystal chemistry of the following natural analogues are presented: baddeleyite, hematite, nepheline; pollucite, scheelite;sodalite, spinel, apatite, monazite, uraninite, hollandite-priderite, perovskite, and zirconolite. For each phase in geochemistry, occurrence, alteration and radiation effects are described. A selected bibliography for each phase is included.

  14. Non-natural acetogenin analogues as potent Trypanosoma brucei inhibitors

    PubMed Central

    Florence, Gordon J.; Fraser, Andrew L.; Gould, Eoin R.; King, Elizabeth F.; Menzies, Stefanie K.; Morris, Joanne C.; Tulloch, Lindsay B.; Smith, Terry K.

    2015-01-01

    A series of novel bis-tetrahydropyran 1,4-triazole analogues based on the acetogenin framework display low micromolar trypanocidal activities towards both bloodstream and insect forms of Trypanosoma brucei, the causative agent of African sleeping sickness. A divergent synthetic strategy was adopted for the synthesis of the key tetrahydropyran intermediates to enable rapid access to diastereochemical variation either side of the 1,4-triazole core. The resulting diastereomeric analogues displayed varying degrees of trypanocidal activity and selectivity in structure activity relationship studies. PMID:25145275

  15. Retro-1 Analogues Differentially Affect Oligonucleotide Delivery and Toxin Trafficking.

    PubMed

    Yang, Bing; Ming, Xin; Abdelkafi, Hajer; Pons, Valerie; Michau, Aurelien; Gillet, Daniel; Cintrat, Jean-Christophe; Barbier, Julien; Juliano, Rudy

    2016-11-21

    Retro-1 is a small molecule that displays two important biological activities: First, it blocks the actions of certain toxins by altering their intracellular trafficking. Second, it enhances the activity of oligonucleotides by releasing them from entrapment in endosomes. This raises the question of whether the two actions involve the same cellular target. Herein we report the effects of several Retro-1 analogues on both toxins and oligonucleotides. We found analogues that affect toxins but not oligonucleotides and vice-versa, while Retro-1 is the only compound that affects both. This indicates that the molecular target(s) involved in the two processes are distinct.

  16. Synthesis and evaluation of heterocyclic analogues of bromoxynil.

    PubMed

    Cutulle, Matthew A; Armel, Gregory R; Brosnan, James T; Best, Michael D; Kopsell, Dean A; Bruce, Barry D; Bostic, Heidi E; Layton, Donovan S

    2014-01-15

    One attractive strategy to discover more active and/or crop-selective herbicides is to make structural changes to currently registered compounds. This strategy is especially appealing for those compounds with limited herbicide resistance and whose chemistry is accompanied with transgenic tools to enable herbicide tolerance in crop plants. Bromoxynil is a photosystem II (PSII) inhibitor registered for control of broadleaf weeds in several agronomic and specialty crops. Recently at the University of Tennessee-Knoxville several analogues of bromoxynil were synthesized including a previously synthesized pyridine (2,6-dibromo-5-hydroxypyridine-2-carbonitrile sodium salt), a novel pyrimidine (4,6-dibromo-5-hydroxypyrimidine-2-carbonitrile sodium salt), and a novel pyridine N-oxide (2,6-dibromo-1-oxidopyridin-1-ium-4-carbonitrile). These new analogues of bromoxynil were also evaluated for their herbicidal activity on soybean (Glycine max), cotton (Gossypium hirsutum), redroot pigweed (Amaranthus retroflexus), velvetleaf (Abutilon theophrasti), large crabgrass (Digitaria sanguinalis), and pitted morningglory ( Ipomoea lacunose ) when applied at 0.28 kg ha(-1). A second study was conducted on a glyphosate-resistant weed (Amaranthus palmeri) with the compounds being applied at 0.56 kg ha(-1). Although all compounds were believed to inhibit PSII by binding in the quinone binding pocket of D1, the pyridine and pyridine-N-oxide analogues were clearly more potent than bromoxynil on Amaranthus retroflexus. However, application of the pyrimidine herbicide resulted in the least injury to all species tested. These variations in efficacy were investigated using molecular docking simulations, which indicate that the pyridine analogue may form a stronger hydrogen bond in the pocket of the D1 protein than the original bromoxynil. A pyridine analogue was able to control the glyphosate-resistant Amaranthus palmeri with >80% efficacy. The pyridine analogues of bromoxynil showed potential

  17. Relationship between antimold activity and molecular structure of cinnamaldehyde analogues.

    PubMed

    Zhang, Yuanyuan; Li, Shujun; Kong, Xianchao

    2013-03-01

    A quantitative structure-activity relationship (QSAR) modeling of the antimold activity of cinnamaldehyde analogues against of Aspergillus niger and Paecilomyces variotii was presented. The molecular descriptors of cinnamaldehyde analogues were calculated by the CODESSA program, and these descriptors were selected by best multi-linear regression method (BMLR). Satisfactory multilinear regression models of Aspergillus niger and Paecilomyces variotii were obtained with R(2)=0.9099 and 0.9444, respectively. The models were also satisfactorily validated using internal validation and leave one out validation. The QSAR models provide the guidance for further synthetic work.

  18. Synthesis and antihistamine evaluations of novel loratadine analogues.

    PubMed

    Wang, Yue; Wang, Juan; Lin, Yan; Si-Ma, Li-Feng; Wang, Dong-hua; Chen, Li-Gong; Liu, Deng-Ke

    2011-08-01

    A series of loratadine analogues containing hydroxyl group and chiral center were synthesized. The effect of the synthesized compounds on the histamine-induced contractions of guinea-pig ileum muscles was studied. In addition, the in vivo asthma-relieving effect of the analogues in the histamine induced asthmatic reaction in guinea-pigs was determined. Most of the compounds exhibited definite H(1) antihistamine activity. The S-enantiomers, compounds 2, 4 and 8, are more potent than the R-enantiomers, compounds 1, 3 and 7. Compound 6 was the most active one among the eight synthesized compounds.

  19. Fluorescent diethylcarbamazine analogues: sites of accumulation in Brugia malayi.

    PubMed

    Junnila, Amy; Bohle, D Scott; Prichard, Roger; Perepichka, Inna; Spina, Carla

    2007-01-01

    New fluorescein and rhodamine B-labeled antifilarial drug DEC analogues for use in drug localization studies with confocal microscopy have been prepared by a high-yield three-step synthesis. The resulting beta-amine-substituted DEC analogue has a single ethyl substituent which is beta-aminated to accommodate the fluorophore of either fluorescein isothiocyananate or rhodamine B. Confocal microscopy is used to show that the drug accumulates in the adult filarial worms in the pharynx, esophagus, and near the nerve ring of all adults, as well as in the uteri and vulva and the testes of the females and males.

  20. Lipids in liver transplant recipients

    PubMed Central

    Hüsing, Anna; Kabar, Iyad; Schmidt, Hartmut H

    2016-01-01

    Hyperlipidemia is very common after liver transplantation and can be observed in up to 71% of patients. The etiology of lipid disorders in these patients is multifactorial, with different lipid profiles observed depending on the immunosuppressive agents administered and the presence of additional risk factors, such as obesity, diabetes mellitus and nutrition. Due to recent improvements in survival of liver transplant recipients, the prevention of cardiovascular events has become more important, especially as approximately 64% of liver transplant recipients present with an increased risk of cardiovascular events. Management of dyslipidemia and of other modifiable cardiovascular risk factors, such as hypertension, diabetes and smoking, has therefore become essential in these patients. Treatment of hyperlipidemia after liver transplantation consists of life style modification, modifying the dose or type of immunosuppressive agents and use of lipid lowering agents. At the start of administration of lipid lowering medications, it is important to monitor drug-drug interactions, especially between lipid lowering agents and immunosuppressive drugs. Furthermore, as combinations of various lipid lowering drugs can lead to severe side effects, such as myopathies and rhabdomyolysis, these combinations should therefore be avoided. To our knowledge, there are no current guidelines targeting the management of lipid metabolism disorders in liver transplant recipients. This paper therefore recommends an approach of managing lipid abnormalities occurring after liver transplantation. PMID:27022213

  1. The Flexibility of Ectopic Lipids.

    PubMed

    Loher, Hannah; Kreis, Roland; Boesch, Chris; Christ, Emanuel

    2016-09-14

    In addition to the subcutaneous and the visceral fat tissue, lipids can also be stored in non-adipose tissue such as in hepatocytes (intrahepatocellular lipids; IHCL), skeletal (intramyocellular lipids; IMCL) or cardiac muscle cells (intracardiomyocellular lipids; ICCL). Ectopic lipids are flexible fuel stores that can be depleted by physical exercise and repleted by diet. They are related to obesity and insulin resistance. Quantification of IMCL was initially performed invasively, using muscle biopsies with biochemical and/or histological analysis. ¹H-magnetic resonance spectroscopy (¹H-MRS) is now a validated method that allows for not only quantifying IMCL non-invasively and repeatedly, but also assessing IHCL and ICCL. This review summarizes the current available knowledge on the flexibility of ectopic lipids. The available evidence suggests a complex interplay between quantitative and qualitative diet, fat availability (fat mass), insulin action, and physical exercise, all important factors that influence the flexibility of ectopic lipids. Furthermore, the time frame of the intervention on these parameters (short-term vs. long-term) appears to be critical. Consequently, standardization of physical activity and diet are critical when assessing ectopic lipids in predefined clinical situations.

  2. Roles of Lipids in Photosynthesis.

    PubMed

    Kobayashi, Koichi; Endo, Kaichiro; Wada, Hajime

    2016-01-01

    Thylakoid membranes in cyanobacterial cells and chloroplasts of algae and higher plants are the sites of oxygenic photosynthesis. The lipid composition of the thylakoid membrane is unique and highly conserved among oxygenic photosynthetic organisms. Major lipids in thylakoid membranes are glycolipids, monogalactosyldiacylglycerol, digalactosyldiacylglycerol and sulfoquinovosyldiacylglycerol, and the phospholipid, phosphatidylglycerol. The identification of almost all genes involved in the biosynthesis of each lipid class over the past decade has allowed the generation and isolation of mutants of various photosynthetic organisms incapable of synthesizing specific lipids. Numerous studies using such mutants have revealed that these lipids play important roles not only in the formation of the lipid bilayers of thylakoid membranes but also in the folding and assembly of the protein subunits in photosynthetic complexes. In addition to the studies with the mutants, recent X-ray crystallography studies of photosynthetic complexes in thylakoid membranes have also provided critical information on the association of lipids with photosynthetic complexes and their activities. In this chapter, we summarize our current understanding about the structural and functional involvement of thylakoid lipids in oxygenic photosynthesis.

  3. The Flexibility of Ectopic Lipids

    PubMed Central

    Loher, Hannah; Kreis, Roland; Boesch, Chris; Christ, Emanuel

    2016-01-01

    In addition to the subcutaneous and the visceral fat tissue, lipids can also be stored in non-adipose tissue such as in hepatocytes (intrahepatocellular lipids; IHCL), skeletal (intramyocellular lipids; IMCL) or cardiac muscle cells (intracardiomyocellular lipids; ICCL). Ectopic lipids are flexible fuel stores that can be depleted by physical exercise and repleted by diet. They are related to obesity and insulin resistance. Quantification of IMCL was initially performed invasively, using muscle biopsies with biochemical and/or histological analysis. 1H-magnetic resonance spectroscopy (1H-MRS) is now a validated method that allows for not only quantifying IMCL non-invasively and repeatedly, but also assessing IHCL and ICCL. This review summarizes the current available knowledge on the flexibility of ectopic lipids. The available evidence suggests a complex interplay between quantitative and qualitative diet, fat availability (fat mass), insulin action, and physical exercise, all important factors that influence the flexibility of ectopic lipids. Furthermore, the time frame of the intervention on these parameters (short-term vs. long-term) appears to be critical. Consequently, standardization of physical activity and diet are critical when assessing ectopic lipids in predefined clinical situations. PMID:27649157

  4. Lipid droplets, lipophagy, and beyond.

    PubMed

    Wang, Chao-Wen

    2016-08-01

    Lipids are essential components for life. Their various structural and physical properties influence diverse cellular processes and, thereby, human health. Lipids are not genetically encoded but are synthesized and modified by complex metabolic pathways, supplying energy, membranes, signaling molecules, and hormones to affect growth, physiology, and response to environmental insults. Lipid homeostasis is crucial, such that excess fatty acids (FAs) can be harmful to cells. To prevent such lipotoxicity, cells convert excess FAs into neutral lipids for storage in organelles called lipid droplets (LDs). These organelles do not simply manage lipid storage and metabolism but also are involved in protein quality management, pathogenesis, immune responses, and, potentially, neurodegeneration. In recent years, a major trend in LD biology has centered around the physiology of lipid mobilization via lipophagy of fat stored within LDs. This review summarizes key findings in LD biology and lipophagy, offering novel insights into this rapidly growing field. This article is part of a Special Issue entitled: The cellular lipid landscape edited by Tim P. Levine and Anant K. Menon.

  5. Big, Fat World of Lipids

    MedlinePlus

    ... and proteomics spurred advances in the study of genes and proteins, lipidomics has offered a more quantitative and systematic approach to lipids research. Much of the effort has been led by a research consortium called LIPID MAPS. With funding from the National Institutes of Health, ...

  6. Subconjunctival and episcleral lipid deposits.

    PubMed Central

    Fraunfelder, F. T.; Garner, A.; Barras, T. C.

    1976-01-01

    Biomicroscopical examination of the bulbar conjunctiva and anterior episclera of 1000 randomly selected outpatients showed the presence of multiple discrete lipid globules in 30 per cent. The lipid deposits were asymptomatic. Their prevalence was age-related, while their distribution and composition were consistent with origin from the conjunctival blood vessels. Images PMID:952830

  7. Neuroimaging of Lipid Storage Disorders

    ERIC Educational Resources Information Center

    Rieger, Deborah; Auerbach, Sarah; Robinson, Paul; Gropman, Andrea

    2013-01-01

    Lipid storage diseases, also known as the lipidoses, are a group of inherited metabolic disorders in which there is lipid accumulation in various cell types, including the central nervous system, because of the deficiency of a variety of enzymes. Over time, excessive storage can cause permanent cellular and tissue damage. The brain is particularly…

  8. Effect of chirality and lipophilicity in the functional activity of evodiamine and its analogues at TRPV1 channels

    PubMed Central

    De Petrocellis, Luciano; Schiano Moriello, Aniello; Fontana, Gabriele; Sacchetti, Alessandro; Passarella, Daniele; Appendino, Giovanni; Di Marzo, Vincenzo

    2014-01-01

    Background and Purpose Evodiamine, a racemic quinazolinocarboline alkaloid isolated from the traditional Chinese medicine Evodiae fructus, has been reported to act as an agonist of the transient receptor potential vanilloid type-1 (TRPV1) cation channel both in vitro and in vivo. Evodiamine is structurally different from all known TRPV1 activators, and has significant clinical potential as a thermogenic agent. Nevertheless, the molecular bases for its actions are still poorly understood. Experimental Approach To investigate the structure-activity relationships of evodiamine, the natural racemate was resolved, and a series of 23 synthetic analogues was prepared, using as the end point the intracellular Ca2+ elevation in HEK-293 cells stably overexpressing either the human or the rat recombinant TRPV1. Key Results S-(+) evodiamine was more efficacious and potent than R-(−) evodiamine, and a new potent lead (Evo30) was identified, more potent than the reference TRPV1 agonist, capsaicin. In general, potency and efficacy correlated with the lipophilicity of the analogues. Like other TRPV1 agonists, several synthetic analogues could efficiently desensitize TRPV1 to activation by capsaicin. Conclusions and Implications Evodiamine qualifies as structurally unique lead structure to develop new potent TRPV1 agonists/desensitizers. Linked Articles This article is part of a themed section on the pharmacology of TRP channels. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014.171.issue-10 PMID:23902373

  9. Lipid Mediators in Acne

    PubMed Central

    Ottaviani, Monica; Camera, Emanuela; Picardo, Mauro

    2010-01-01

    Multiple factors are involved in acne pathogenesis, and sebum secretion is one of the main ones. The role sebum plays in acne development has not been completely elucidated yet; however, increasing amounts of data seem to confirm the presence of alterations in sebum from acne patients. Altered ratio between saturated and unsaturated fatty acids has been indicated as an important feature to be considered in addition to the altered amount of specific fatty acids such as linoleic acid. Furthermore, particular attention has been focused on squalene peroxide that seems to be able to induce an inflammatory response beyond cytotoxicity and comedones formation. Moreover, recent data suggest that lipid mediators are able to interfere with sebocytes differentiation and sebogenesis through the activation of pathways related to peroxisome proliferators-activated receptors. Understanding the factors and mechanisms that regulate sebum production is needed in order to identify novel therapeutic strategies for acne treatment. PMID:20871834

  10. Pharmacological efficacy of FGF21 analogue, liraglutide and insulin glargine in treatment of type 2 diabetes.

    PubMed

    Ye, Xianlong; Qi, Jianying; Yu, Dan; Wu, Yunzhou; Zhu, Shenglong; Li, Shujie; Wu, Qiang; Ren, Guiping; Li, Deshan

    2017-04-01

    Fibroblast growth factor 21 (FGF21) is a promising regulator of glucose and lipid metabolism with multiple beneficial effects including hypoglycemic and lipid-lowering. Previous studies have reported that FGF21 is expected to become a new drug for treatment of diabetes. Liraglutide and insulin glargine are the two representative anti-diabetic biological drugs. In the current study, we aim to compare the long-term pharmacological efficacy of mFGF21 (an FGF21 analogue), liraglutide and insulin glargine in type 2 diabetic db/db mice. Db/db mice were initially treated with three kinds of proteins (25nmol/kg/day) by subcutaneous injection once a day for 4weeks, then subsequently be treated with once every two days for next 4weeks. After 8weeks of treatments, the blood glucose levels, body weights, glycosylated hemoglobin levels, fasting insulin levels, serum lipid profiles, hepatic biochemical parameters, oral glucose tolerance tests and hepatic mRNA expression levels of several proteins (GK, G6P, GLUT-1 and GLUT-4) associated with glucose metabolism of the experimental mice were detected. Results demonstrated that three proteins could significantly decrease the fed blood glucose levels of db/db mice. After treatment for 1week, the fed blood glucose levels of db/db mice in liraglutide group were significantly lower than those in mFGF21 and insulin glargine groups. However, after 2weeks of administration, the long-lasting hypoglycemic effect of mFGF21 was superior to liraglutide and insulin glargine up to the end of the experiments. Compared with liraglutide and insulin glargine, mFGF21 significantly reduced the glycosylated hemoglobin levels and improved the ability on glycemic control, insulin resistance, serum lipid and liver function states in db/db mice after 8weeks treatments. In addition, mFGF21 regulated glucose metabolism through increasing the mRNA expression levels of GK and GLUT-1, and decreasing the mRNA expression level of G6P. But liraglutide and insulin

  11. Lipid functionalized biopolymers: A review.

    PubMed

    Qurat-Ul-Ain; Zia, Khalid Mahmood; Zia, Fatima; Ali, Muhammad; Rehman, Saima; Zuber, Mohammad

    2016-12-01

    Lipids are the main source of energy and widely used for various applications. In this review, the modification of lipids by using them in combination with other biomaterials like natural and synthetic polymers is elaborated. These new blends have characteristic features of both polymers and are characterized by different techniques (NMR, DSC, TGA, IR and Raman spectroscopy etc.) to understand their structure, properties and functional behavior. Lipids are hydrophobic, have anti-oxidant and anti-bacterial properties and thus impart hydrophobicity and flexibility to the polymers. While the polymers, on the other hand, make the lipids tougher. Properties of few polymers such as starch, polyethylene protein and chitosan that have brittleness, low combustion rate and hydrophobicity, are improved by incorporation of lipids ultimately increased their flexibility, combustion rate and hydrophobicity respectively. This review article is also focused on emerging fields for the applications of these composite materials. The most notable application of composite materials are in the field of paint industry.

  12. Lipid Microdomains in Cell Nucleus

    PubMed Central

    Cascianelli, Giacomo; Villani, Maristella; Tosti, Marcello; Marini, Francesca; Bartoccini, Elisa; Viola Magni, Mariapia

    2008-01-01

    It is known that nuclear lipids play a role in proliferation, differentiation, and apoptotic process. Cellular nuclei contain high levels of phosphatidylcholine and sphingomyelin, which are partially linked with cholesterol and proteins to form lipid–protein complexes. These lipids are also associated with transcription factors and newly synthesized RNA but, up to date, their organization is still unknown. The aim of the present work was to study if these specific lipid–protein interactions could be nuclear membrane microdomains and to evaluate their possible role. The results obtained demonstrate for the first time the existence of nuclear microdomains characterized by a specific lipid composition similar to that of intranuclear lipid–protein complexes previously described. Nuclear microdomain lipid composition changes during cell proliferation when the content of newly synthesized RNA increases. Because previous data show a correlation between nuclear lipids and transcription process, the role of nuclear microdomains in cellular functions is discussed. PMID:18923143

  13. Lipid Informed Quantitation and Identification

    SciTech Connect

    Kevin Crowell, PNNL

    2014-07-21

    LIQUID (Lipid Informed Quantitation and Identification) is a software program that has been developed to enable users to conduct both informed and high-throughput global liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based lipidomics analysis. This newly designed desktop application can quickly identify and quantify lipids from LC-MS/MS datasets while providing a friendly graphical user interface for users to fully explore the data. Informed data analysis simply involves the user specifying an electrospray ionization mode, lipid common name (i.e. PE(16:0/18:2)), and associated charge carrier. A stemplot of the isotopic profile and a line plot of the extracted ion chromatogram are also provided to show the MS-level evidence of the identified lipid. In addition to plots, other information such as intensity, mass measurement error, and elution time are also provided. Typically, a global analysis for 15,000 lipid targets

  14. Lipids changes in liver cancer*

    PubMed Central

    Jiang, Jing-ting; Xu, Ning; Zhang, Xiao-ying; Wu, Chang-ping

    2007-01-01

    Liver is one of the most important organs in energy metabolism. Most plasma apolipoproteins and endogenous lipids and lipoproteins are synthesized in the liver. It depends on the integrity of liver cellular function, which ensures homeostasis of lipid and lipoprotein metabolism. When liver cancer occurs, these processes are impaired and the plasma lipid and lipoprotein patterns may be changed. Liver cancer is the fifth common malignant tumor worldwide, and is closely related to the infections of hepatitis B virus (HBV) and hepatitis C virus (HCV). HBV and HCV infections are quite common in China and other Southeast Asian countries. In addition, liver cancer is often followed by a procession of chronic hepatitis or cirrhosis, so that hepatic function is damaged obviously on these bases, which may significantly influence lipid and lipoprotein metabolism in vivo. In this review we summarize the clinical significance of lipid and lipoprotein metabolism under liver cancer. PMID:17565510

  15. Lipid profiling in sewage sludge.

    PubMed

    Zhu, Fenfen; Wu, Xuemin; Zhao, Luyao; Liu, Xiaohui; Qi, Juanjuan; Wang, Xueying; Wang, Jiawei

    2017-03-20

    High value-added reutilization of sewage sludge from wastewater treatment plants (WWTPs) is essential in sustainable development in WWTPs. However, despite the advantage of high value reutilization, this process must be based on a detailed study of organics in sludge. We used the methods employed in life sciences to determine the profile of lipids (cellular lipids, free fatty acids (FFAs), and wax/gum) in five sludge samples obtained from three typical WWTPs in Beijing; these samples include one sludge sample from a primary sedimentation tank, two activated sludge samples from two Anaerobic-Anoxic-Oxic (A2/O) tanks, and two activated sludge samples from two membrane bioreactor tanks. The percentage of total raw lipids varied from 2.90% to 12.3%. Sludge from the primary sedimentation tank showed the highest concentrations of lipid, FFA, and wax/gum and the second highest concentration of cellular lipids. All activated sludge contained an abundance of cellular lipids (>54%). Cells in sludge can from plants, animals, microbes and so on in wastewater. Approximately 14 species of cellular lipids were identified, including considerable high value-potential ceramide (9567-38774 mg/kg), coenzyme (937-3897 mg/kg), and some phosphatidylcholine (75-548 mg/kg). The presence of those lipid constituents would thus require a wider range of recovery methods for sludge. Both cellular lipids and FFAs contain an abundance of C16-C18 lipids at high saturation level, and they serve as good resources for biodiesel production.

  16. Study of the effects of the implantable contraceptive Norplant on lipid and lipoprotein metabolism. UN Development Programme/UN Population Fund/WHO/World Bank, Special Programme of Research, Development and Research Training in Human Reproduction, Task Force on Long-Acting Systemic Agents for Fertility Regulation.

    PubMed

    1999-01-01

    A 2-year longitudinal study was undertaken to investigate the effects of the implantable contraceptive Norplant on lipid and lipoprotein metabolism. A group of 177 Norplant implants acceptors was recruited in five centers (Bangkok, Jakarta, Mexico City, Singapore, and Stockholm) and monitored during one baseline menstrual cycle and 3, 5, 11, 16, and 22 months after implant insertion. They were compared with a group of 174 copper intrauterine (IUD) device users who had blood sampling performed at comparable time points. Lipid changes were greatest 3 months after implant insertion and a slow reversal of these trends towards baseline was observed during the next 19 months. The main changes observed at 3 months were a 10% drop in total cholesterol, and an 11% drop in high-density lipoprotein (HDL)-cholesterol and apolipoprotein AI levels, together with a 19% decline in serum triglycerides. Variations in low-density lipoprotein (LDL)-cholesterol and apolipoprotein B levels were not significantly different from those observed in the group of IUD users. There was consistency in these findings between centers in that the changes were in the same direction but of different magnitude in different centers. It is concluded that lipid changes induced by Norplant implants will probably not affect the risk of atherosclerotic disease in women who use this contraceptive method.

  17. Crystallizing Membrane Proteins in Lipidic Mesophases. A Host Lipid Screen

    SciTech Connect

    Li, Dianfan; Lee, Jean; Caffrey, Martin

    2011-11-30

    The default lipid for the bulk of the crystallogenesis studies performed to date using the cubic mesophase method is monoolein. There is no good reason, however, why this 18-carbon, cis-monounsaturated monoacylglycerol should be the preferred lipid for all target membrane proteins. The latter come from an array of biomembrane types with varying properties that include hydrophobic thickness, intrinsic curvature, lateral pressure profile, lipid and protein makeup, and compositional asymmetry. Thus, it seems reasonable that screening for crystallizability based on the identity of the lipid creating the hosting mesophase would be worthwhile. For this, monoacylglycerols with differing acyl chain characteristics, such as length and olefinic bond position, must be available. A lipid synthesis and purification program is in place in the author's laboratory to serve this need. In the current study with the outer membrane sugar transporter, OprB, we demonstrate the utility of host lipid screening as a means for generating diffraction-quality crystals. Host lipid screening is likely to prove a generally useful strategy for mesophase-based crystallization of membrane proteins.

  18. Import of amber and ochre suppressor tRNAs into mammalian cells: A general approach to site-specific insertion of amino acid analogues into proteins

    PubMed Central

    Köhrer, Caroline; Xie, Liang; Kellerer, Susanne; Varshney, Umesh; RajBhandary, Uttam L.

    2001-01-01

    A general approach to site-specific insertion of amino acid analogues into proteins in vivo would be the import into cells of a suppressor tRNA aminoacylated with the analogue of choice. The analogue would be inserted at any site in the protein specified by a stop codon in the mRNA. The only requirement is that the suppressor tRNA must not be a substrate for any of the cellular aminoacyl–tRNA synthetases. Here, we describe conditions for the import of amber and ochre suppressor tRNAs derived from Escherichia coli initiator tRNA into mammalian COS1 cells, and we present evidence for their activity in the specific suppression of amber (UAG) and ochre (UAA) codons, respectively. We show that an aminoacylated amber suppressor tRNA (supF) derived from the E. coli tyrosine tRNA can be imported into COS1 cells and acts as a suppressor of amber codons, whereas the same suppressor tRNA imported without prior aminoacylation does not, suggesting that the supF tRNA is not a substrate for any mammalian aminoacyl–tRNA synthetase. These results open the possibility of using the supF tRNA aminoacylated with an amino acid analogue as a general approach for the site-specific insertion of amino acid analogues into proteins in mammalian cells. We discuss the possibility further of importing a mixture of amber and ochre suppressor tRNAs for the insertion of two different amino acid analogues into a protein and the potential use of suppressor tRNA import for treatment of some of the human genetic diseases caused by nonsense mutations. PMID:11717406

  19. The TULIP superfamily of eukaryotic lipid-binding proteins as a mediator of lipid sensing and transport.

    PubMed

    Alva, Vikram; Lupas, Andrei N

    2016-08-01

    The tubular lipid-binding (TULIP) superfamily has emerged in recent years as a major mediator of lipid sensing and transport in eukaryotes. It currently encompasses three protein families, SMP-like, BPI-like, and Takeout-like, which share a common fold. This fold consists of a long helix wrapped in a highly curved anti-parallel β-sheet, enclosing a central, lipophilic cavity. The SMP-like proteins, which include subunits of the ERMES complex and the extended synaptotagmins (E-Syts), appear to be mainly located at membrane contacts sites (MCSs) between organelles, mediating inter-organelle lipid exchange. The BPI-like proteins, which include the bactericidal/permeability-increasing protein (BPI), the LPS (lipopolysaccharide)-binding protein (LBP), the cholesteryl ester transfer protein (CETP), and the phospholipid transfer protein (PLTP), are either involved in innate immunity against bacteria through their ability to sense lipopolysaccharides, as is the case for BPI and LBP, or in lipid exchange between lipoprotein particles, as is the case for CETP and PLTP. The Takeout-like proteins, which are comprised of insect juvenile hormone-binding proteins and arthropod allergens, transport, where known, lipid hormones to target tissues during insect development. In all cases, the activity of these proteins is underpinned by their ability to bind large, hydrophobic ligands in their central cavity and segregate them away from the aqueous environment. Furthermore, where they are involved in lipid exchange, recent structural studies have highlighted their ability to establish lipophilic, tubular channels, either between organelles in the case of SMP domains or between lipoprotein particles in the case of CETP. Here, we review the current knowledge on the structure, versatile functions, and evolution of the TULIP superfamily. We propose a deep evolutionary split in this superfamily, predating the Last Eukaryotic Common Ancestor, between the SMP-like proteins, which act on

  20. Nitric oxide consumption through lipid peroxidation in brain cell suspensions and homogenates.

    PubMed

    Keynes, Robert G; Griffiths, Charmaine H; Hall, Catherine; Garthwaite, John

    2005-05-01

    Mechanisms which inactivate NO (nitric oxide) are probably important in governing the physiological and pathological effects of this ubiquitous signalling molecule. Cells isolated from the cerebellum, a brain region rich in the NO signalling pathway, consume NO avidly. This property was preserved in brain homogenates and required both particulate and supernatant fractions. A purified fraction of the particulate component was rich in phospholipids, and NO consumption was inhibited by procedures that inhibited lipid peroxidation, namely a transition metal chelator, the vitamin E analogue Trolox and ascorbate oxidase. The requirement for the supernatant was accounted for by its content of ascorbate which catalyses metal-dependent lipid peroxidation. The NO-degrading activity of the homogenate was mimicked by a representative mixture of brain lipids together with ascorbate and, under these conditions, the lipids underwent peroxidation. In a suspension of cerebellar cells, there was a continuous low level of lipid peroxidation, and consumption of NO by the cells was decreased by approx. 50% by lipid-peroxidation inhibitors. Lipid peroxidation was also abolished when NO was supplied at a continuously low rate (approximately 100 nM/min), which explains why NO consumption by this process is saturable. Part of the activity remaining after the inhibition of lipid peroxidation was accounted for by contaminating red blood cells, but there was also another component whose activity was greatly enhanced when the cells were maintained under air-equilibrated conditions. A similar NO-consuming process was present in cerebellar glial cells grown in tissue culture but not in blood platelets or leucocytes, suggesting a specialized mechanism.

  1. Stress Induced Domain Formation in Multilamellar Lipid Bilayers

    NASA Astrophysics Data System (ADS)

    Tayebi, Lobat; Gillmore, Sean; Parikh, Atul

    2010-03-01

    Domain formation in lipid mixtures due to phase separation of the components is a well-known phenomenon that has been studied in mono- and bi-molecular lipid configurations. We report same phenomenon, however, in multilamellar configurations consisting of thousands of lamellae where the domain pattern in each layer is interestingly aligned with the other lamellae. In this process, both dehydration and hydration of lipid cake can act as the driving force to separate two phases of liquid ordered and liquid disordered. In a controlled experiment with a stack lipid saturated with water, mechanical perturbation can induce domain formation too. Series of experiments of this kind reaches us to the conclusion that any sort of stress in special condition may cause domain formation. We use a combination of microscopy tools including AFM, fluorescence confocal and bright-field microscopy to determine the influence of interaction between the line tension and key elastic properties of the lipid bilayers. As a particular interest we studied the dynamics of the domain pattern formation and the interactions between the domains such as long-term fusion.

  2. Missions to Mars: Characterisation of Mars analogue rocks for the International Space Analogue Rockstore (ISAR)

    NASA Astrophysics Data System (ADS)

    Bost, Nicolas; Westall, Frances; Ramboz, Claire; Foucher, Frédéric; Pullan, Derek; Meunier, Alain; Petit, Sabine; Fleischer, Iris; Klingelhöfer, Göstar; Vago, Jorge L.

    2013-07-01

    Instruments for surface missions to extraterrestrial bodies should be cross-calibrated using a common suite of relevant materials. Such work is necessary to improve instrument performance and aids in the interpretation of in-situ measurements. At the CNRS campus in Orléans, the Observatoire des Sciences de l'Univers en région Centre (OSUC) has created a collection of well-characterised rocks and minerals for testing and calibrating instruments to be flown in space missions. The characteristics of the analogue materials are documented in an accompanying online database. In view of the recent and upcoming rover missions to Mars (NASA's 2011 Mars Science Laboratory (MSL) and ESA/Roscosmos' 2018 ExoMars), we are concentrating initially on materials of direct relevance to the red planet. The initial collection consists of 15 well-studied rock and mineral samples, including a variety of basalts (ultramafic, weathered, silicified, primitive), sediments (volcanic sands, chert, and a banded iron formation -BIF-), and the phyllosilicate nontronite (a clay). All the samples were characterised petrographically, petrologically, and geochemically using the types of analyses likely to be performed during in-situ missions, in particular ExoMars: hand specimen description; optical microscopy; mineralogical analysis by XRD, Raman and IR spectrometry; iron phase analysis by Mössbauer spectroscopy (MBS), elemental analysis by Energy-Dispersive X-ray spectroscopy (EDX), microprobe, Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES) and Mass Spectrometry (ICP-MS); and reduced carbon analysis by Raman spectrometry.

  3. Epicuticular lipids induce aggregation in Chagas disease vectors

    PubMed Central

    Figueiras, Alicia N Lorenzo; Girotti, Juan R; Mijailovsky, Sergio J; Juárez, M Patricia

    2009-01-01

    Background The triatomine bugs are vectors of the protozoan parasite Trypanosoma cruzi, the causative agent of Chagas disease. Aggregation behavior plays an important role in their survival by facilitating the location of refuges and cohesion of aggregates, helping to keep them safely assembled into shelters during daylight time, when they are vulnerable to predators. There are evidences that aggregation is mediated by thigmotaxis, by volatile cues from their faeces, and by hexane-extractable contact chemoreceptive signals from their cuticle surface. The epicuticular lipids of Triatoma infestans include a complex mixture of hydrocarbons, free and esterified fatty acids, alcohols, and sterols. Results We analyzed the response of T. infestans fifth instar nymphs after exposure to different amounts either of total epicuticular lipid extracts or individual lipid fractions. Assays were performed in a circular arena, employing a binary choice test with filter papers acting as aggregation attractive sites; papers were either impregnated with a hexane-extract of the total lipids, or lipid fraction; or with the solvent. Insects were significantly aggregated around papers impregnated with the epicuticular lipid extracts. Among the lipid fractions separately tested, only the free fatty acid fraction promoted significant bug aggregation. We also investigated the response to different amounts of selected fatty acid components of this fraction; receptiveness varied with the fatty acid chain length. No response was elicited by hexadecanoic acid (C16:0), the major fatty acid component. Octadecanoic acid (C18:0) showed a significant assembling effect in the concentration range tested (0.1 to 2 insect equivalents). The very long chain hexacosanoic acid (C26:0) was significantly attractant at low doses (≤ 1 equivalent), although a repellent effect was observed at higher doses. Conclusion The detection of contact aggregation pheromones has practical application in Chagas disease

  4. [Oxazaphosphorinane drugs. New analogues, metabolic studies, and therapeutic approaches].

    PubMed

    Misiura, Konrad

    2004-01-01

    Recent studies on oxazaphosphorinane drugs, with the main focus on those carried out in Poland, are briefly reviewed. Research leading to the introduction of the new antitumor drug (S)-(-)-bromofosfamide are presented. The utility of phosphorus nuclear magnetic resonance in studies of ifosfamide metabolism and an application of analogues of the final, active metabolite of this drug in gene therapy are shown.

  5. An Analysis of an Autoclitic Analogue in Pigeons

    ERIC Educational Resources Information Center

    Kuroda, Toshikazu; Lattal, Kennon A.; García-Penagos, Andrés

    2014-01-01

    Using a conditional discrimination procedure, pigeons were exposed to a nonverbal analogue of qualifying autoclitics such as "definitely" and "maybe." It has been suggested that these autoclitics are similar to tacts except that they are under the control of private discriminative stimuli. Instead of the conventional assumption…

  6. A Macroscopic Analogue of the Nuclear Pairing Potential

    ERIC Educational Resources Information Center

    Dunlap, Richard A.

    2013-01-01

    A macroscopic system involving permanent magnets is used as an analogue to nucleons in a nucleus to illustrate the significance of the pairing interaction. This illustrates that the view of the total nuclear energy based only on the nucleon occupancy of the energy levels can yield erroneous results and it is only when the pairing interaction is…

  7. Facile Synthesis of Natural Alkoxynaphthalene Analogues from Plant Alkoxybenzenes.

    PubMed

    Tsyganov, Dmitry V; Krayushkin, Mikhail M; Konyushkin, Leonid D; Strelenko, Yuri A; Semenova, Marina N; Semenov, Victor V

    2016-04-22

    Analogues of the bioactive natural alkoxynaphthalene pycnanthulignene D were synthesized by an efficient method. The starting plant allylalkoxybenzenes (1) are easily available from the plant essential oils of sassafras, dill, and parsley. The target 1-arylalkoxynaphthalenes (5) exhibited antiproliferative activity in a phenotypic sea urchin embryo assay.

  8. A Laboratory Analogue for the Study of Peer Sexual Harassment

    ERIC Educational Resources Information Center

    Mitchell, Damon; Hirschman, Richard; Angelone, D. J.; Lilly, Roy S.

    2004-01-01

    The purpose of this study was to develop a laboratory analogue for the study of peer sexual harassment, and to examine person and situational factors associated with male on female peer sexual harassment. One hundred twenty-two male participants were given the opportunity to tell jokes to a female confederate from a joke list that included…

  9. Interaction of tRNA with antitumor polyamine analogues.

    PubMed

    N'soukpoé-Kossi, C N; Ahmed Ouameur, A; Thomas, T; Thomas, T J; Tajmir-Riahi, H A

    2009-08-01

    We studied the interaction between tRNA and three polyamine analogues (1,11-diamino-4,8-diazaundecane.4HCl (333), 3,7,11,15-tetrazaheptadecane.4HCl (BE-333), and 3,7,11,15,19-pentazahenicosane.5HCl (BE-3333)) using FTIR, UV-visible, and CD spectroscopic methods. Spectroscopic evidence showed that polyamine analogues bound tRNA via guanine N7, adenine, uracil O2, and the backbone phosphate (PO2-) groups, while the most reactive sites for biogenic polyamines were guanine N7/O6, adenine N7, uracil O2, and sugar 2'-OH groups as well as the backbone phosphate group. The binding constants of polyamine analogue-tRNA recognition were lower than those of the biogenic polyamine-tRNA complexes, with K333 = 2.8 (+/-0.5) x 10(4), K(BE-333) = 3.7 (+/-0.7) x 10(4), K(BE-3333) = 4.0 (+/-0.9) x 10(4), K(spm) = 8.7 (+/-0.9) x 10(5), K(spd) = 6.1 (+/-0.7) x 10(5), and K(put) = 1.0 (+/-0.3) x 10(5) mol/L. tRNA remained in the A-family conformation; however, it aggregated at high polyamine analogue concentrations.

  10. Cellular Cations Control Conformational Switching of Inositol Pyrophosphate Analogues.

    PubMed

    Hager, Anastasia; Wu, Mingxuan; Wang, Huanchen; Brown, Nathaniel W; Shears, Stephen B; Veiga, Nicolás; Fiedler, Dorothea

    2016-08-22

    The inositol pyrophosphate messengers (PP-InsPs) are emerging as an important class of cellular regulators. These molecules have been linked to numerous biological processes, including insulin secretion and cancer cell migration, but how they trigger such a wide range of cellular responses has remained unanswered in many cases. Here, we show that the PP-InsPs exhibit complex speciation behaviour and propose that a unique conformational switching mechanism could contribute to their multifunctional effects. We synthesised non-hydrolysable bisphosphonate analogues and crystallised the analogues in complex with mammalian PPIP5K2 kinase. Subsequently, the bisphosphonate analogues were used to investigate the protonation sequence, metal-coordination properties, and conformation in solution. Remarkably, the presence of potassium and magnesium ions enabled the analogues to adopt two different conformations near physiological pH. Understanding how the intrinsic chemical properties of the PP-InsPs can contribute to their complex signalling outputs will be essential to elucidate their regulatory functions.

  11. Fluorescence Studies Of A Cholesterol-Analogue Probe

    NASA Astrophysics Data System (ADS)

    Drew, Jacinta; Szabo, Arthur G.; Morand, Peter

    1988-06-01

    A novel cholesterol-analogue probe1,2 with a diene-(2-naphthyl) fluorophore in the sidechain (Figure 1), hereafter referred to as DN-Chol, has had its steady-state and time-resolved fluorescence properties characterized in solvents and in various viscosity mineral oils.

  12. A new analogue of fatty alcohol from Tamarix hampeana L.

    PubMed

    Aykac, Ahmet; Akgül, Yurdanur

    2010-01-01

    New analogues of a long-chain secondary alcohol (1) and laserine (2) were isolated from the flowers of Tamarix hampeana L. The isolated compounds were identified using 1D and 2D NMR, LCMS/APCI, and chemical methods. Laserine was isolated for the first time from T. hampeana L.

  13. Cyclization of nucleotide analogues as an obstacle to polymerization

    NASA Technical Reports Server (NTRS)

    Hill, A. R. Jr; Nord, L. D.; Orgel, L. E.; Robins, R. K.

    1988-01-01

    Cyclization of activated nucleotide analogues by intramolecular phosphodiester-bond formation is likely to compete very effectively with template-directed condensation except in the cases of ribo- and arabinonucleotides. This could have excluded derivatives of most sugars from growing polyribonucleotide chains and thus reduced chain-termination in prebiotic polynucleotide synthesis.

  14. Synthesis of (+)-crocacin D and simplified bioactive analogues.

    PubMed

    Pasqua, Adele E; Ferrari, Frank D; Crawford, James J; Whittingham, William G; Marquez, Rodolfo

    2015-03-01

    The total synthesis of (+)-crocacin D has been achieved in 15 steps (9 isolated intermediates) and 14% overall yield from commercially available starting materials and using (+)-crocacin C as a key intermediate. A number of simplified analogues and their biological activities are also reported.

  15. Trehalose Analogues: Latest Insights in Properties and Biocatalytic Production

    PubMed Central

    Walmagh, Maarten; Zhao, Renfei; Desmet, Tom

    2015-01-01

    Trehalose (α-d-glucopyranosyl α-d-glucopyranoside) is a non-reducing sugar with unique stabilizing properties due to its symmetrical, low energy structure consisting of two 1,1-anomerically bound glucose moieties. Many applications of this beneficial sugar have been reported in the novel food (nutricals), medical, pharmaceutical and cosmetic industries. Trehalose analogues, like lactotrehalose (α-d-glucopyranosyl α-d-galactopyranoside) or galactotrehalose (α-d-galactopyranosyl α-d-galactopyranoside), offer similar benefits as trehalose, but show additional features such as prebiotic or low-calorie sweetener due to their resistance against hydrolysis during digestion. Unfortunately, large-scale chemical production processes for trehalose analogues are not readily available at the moment due to the lack of efficient synthesis methods. Most of the procedures reported in literature suffer from low yields, elevated costs and are far from environmentally friendly. “Greener” alternatives found in the biocatalysis field, including galactosidases, trehalose phosphorylases and TreT-type trehalose synthases are suggested as primary candidates for trehalose analogue production instead. Significant progress has been made in the last decade to turn these into highly efficient biocatalysts and to broaden the variety of useful donor and acceptor sugars. In this review, we aim to provide an overview of the latest insights and future perspectives in trehalose analogue chemistry, applications and production pathways with emphasis on biocatalysis. PMID:26084050

  16. q-bosons and the q-analogue quantized field

    NASA Technical Reports Server (NTRS)

    Nelson, Charles A.

    1995-01-01

    The q-analogue coherent states are used to identify physical signatures for the presence of a 1-analogue quantized radiation field in the q-CS classical limits where the absolute value of z is large. In this quantum-optics-like limit, the fractional uncertainties of most physical quantities (momentum, position, amplitude, phase) which characterize the quantum field are O(1). They only vanish as O(1/absolute value of z) when q = 1. However, for the number operator, N, and the N-Hamiltonian for a free q-boson gas, H(sub N) = h(omega)(N + 1/2), the fractional uncertainties do still approach zero. A signature for q-boson counting statistics is that (Delta N)(exp 2)/ (N) approaches 0 as the absolute value of z approaches infinity. Except for its O(1) fractional uncertainty, the q-generalization of the Hermitian phase operator of Pegg and Barnett, phi(sub q), still exhibits normal classical behavior. The standard number-phase uncertainty-relation, Delta(N) Delta phi(sub q) = 1/2, and the approximate commutation relation, (N, phi(sub q)) = i, still hold for the single-mode q-analogue quantized field. So, N and phi(sub q) are almost canonically conjugate operators in the q-CS classical limit. The q-analogue CS's minimize this uncertainty relation for moderate (absolute value of z)(exp 2).

  17. Thymidine analogues to assess microperfusion in human tumors

    SciTech Connect

    Janssen, Hilde L.; Ljungkvist, Anna S.; Rijken, Paul F.; Sprong, Debbie; Bussink, Jan; Kogel, Albert J. van der; Haustermans, Karin M.; Begg, Adrian C. . E-mail: a.begg@nki.nl

    2005-07-15

    Purpose: To validate the use of the thymidine analogues as local perfusion markers in human tumors (no labeling indicates no perfusion) by comparison with the well-characterized perfusion marker Hoechst 33342. Methods and Materials: Human tumor xenografts from gliomas and head-and-neck cancers were injected with iododeoxyuridine (IdUrd) or bromodeoxyuridine (BrdUrd) and the fluorescent dye Hoechst 33342. In frozen sections, each blood vessel was scored for the presence of IdUrd/BrdUrd labeling and Hoechst in surrounding cells. The percentage of analogue-negative vessels was compared with the fraction of Hoechst-negative vessels. Collocalization of the two markers was also scored. Results: We found considerable intertumor variation in the fraction of perfused vessels, measured by analogue labeling, both in the human tumor xenografts and in a series of tumor biopsies from head-and-neck cancer patients. There was a significant correlation between the Hoechst-negative and IdUrd/BrdUrd-negative vessels in the xenografts (r 85, p = 0.0004), despite some mismatches on a per-vessel basis. Conclusions: Thymidine analogues can be successfully used to rank tumors according to their fraction of perfused vessels. Whether this fraction correlates with the extent of acute hypoxia needs further confirmation.

  18. Vitamin D analogues: Potential use in cancer treatment.

    PubMed

    Duffy, Michael J; Murray, Alyson; Synnott, Naoise C; O'Donovan, Norma; Crown, John

    2017-04-01

    The vitamin D receptor (VDR) is a member of the thyroid-steroid family of nuclear transcription factors. Following binding of the active form of vitamin D, i.e., 1,25(OH)2D3 (also known as calcitriol) and interaction with co-activators and co-repressors, VDR regulates the expression of several different genes. Although relatively little work has been carried out on VDR in human cancers, several epidemiological studies suggest that low circulating levels of vitamin D are associated with both an increased risk of developing specific cancer types and poor outcome in patients with specific diagnosed cancers. These associations apply especially in colorectal and breast cancer. Consistent with these findings, calcitriol as well as several of its synthetic analogues have been shown to inhibit tumor cell growth in vitro and in diverse animal model systems. Indeed, some of these vitamin D analogues with low calcemic inducing activity (e.g., EB1089, inecalcitol, paricalcitol) have progressed to clinical trials in patients with cancer. Preliminary results from these trials suggest that these vitamin D analogues have minimal toxicity, but clear evidence of efficacy remains to be shown. Although evidence of efficacy for mono-treatment with vitamin D analogues is currently lacking, several studies have reported that supplementation with calcitriol or the presence of high endogenous circulating levels of vitamin D enhances response to standard therapies.

  19. Synthesis of chlorins, bacteriochlorins and their tetraaza analogues

    NASA Astrophysics Data System (ADS)

    Dudkin, S. V.; Makarova, E. A.; Lukyanets, E. A.

    2016-07-01

    The currently known methods for the synthesis of hydrogenated derivatives of synthetic porphyrins — chlorins, bacteriochlorins, isobacteriochlorins and their tetraaza analogues — are considered. Reactions involving quasi-isolated double bonds including reduction, oxidative addition and cycloaddition are presented. Examples of direct synthesis of these macroheterocycles are given. The bibliography includes 168 references.

  20. Lkb1 deletion promotes ectopic lipid accumulation in muscle progenitor cells and mature muscles.

    PubMed

    Shan, Tizhong; Zhang, Pengpeng; Bi, Pengpeng; Kuang, Shihuan

    2015-05-01

    Excessive intramyocellular triglycerides (muscle lipids) are associated with reduced contractile function, insulin resistance, and Type 2 diabetes, but what governs lipid accumulation in muscle is unclear. Here we report a role of Lkb1 in regulating lipid metabolism in muscle stem cells and their descendent mature muscles. We used Myod(Cre) and Lkb1(flox/flox) mice to specifically delete Lkb1 in myogenic cells including stem and differentiated cells, and examined the lipid accumulation and gene expression of myoblasts cultured from muscle stem cells (satellite cells). Genetic deletion of Lkb1 in myogenic progenitors led to elevated expression of lipogenic genes and ectopic lipid accumulation in proliferating myoblasts. Interestingly, the Lkb1-deficient myoblasts differentiated into adipocyte-like cells upon adipogenic induction. However, these adipocyte-like cells maintained myogenic gene expression with reduced ability to form myotubes efficiently. Activation of AMPK by AICAR prevented ectopic lipid formation in the Lkb1-null myoblasts. Notably, Lkb1-deficient muscles accumulated excessive lipids in vivo in response to high-fat diet feeding. These results demonstrate that Lkb1 acts through AMPK to limit lipid deposition in muscle stem cells and their derivative mature muscles, and point to the possibility of controlling muscle lipid content using AMPK activating drugs.

  1. Lipid Biomarkers for a Hypersaline Microbial Mat Community

    NASA Technical Reports Server (NTRS)

    Jahnke, Linda; Orphan, Victoria; Embaye, Tsegereda; Turk, Kendra; Kubo, Mike; Summons, Roger

    2004-01-01

    The use of lipid biomarkers and their carbon isotopic compositions are valuable tools for establishing links to ancient microbial ecosystems. Various lipids associated with specific microbial groups can serve as biomarkers for establishing organism source and function in contemporary microbial ecosystems (membrane lipids), and by analogy, potential relevance to ancient organic-rich sedimentary rocks (geolipids). As witnessed by the stromatolite record, benthic microbial mats grew in shallow water lagoonal environments. Our recent work has focused on lipid biomarker analysis of a potential analogue for such ancient mats growing in a set of hypersaline evaporation ponds at Guerrero Negro, Baja California Sur, Mexico. The aerobic, surface layer of this mat (0 to 1 mm) contained a variety of ester-bound fatty acids (FA) representing a diverse bacterial population including cyanobacteria, sulphate reducers (SRB) and heterotrophs. Biomarkers for microeukaryotes detected in this layer included sterols, C-20 polyunsaturated FA and a highly branched isoprenoid, diagnostic for diatoms. Cyanobacteria were also indicated by the presence of a diagnostic set of mid-chain methylalkanes. C-28, to C-34 wax esters (WXE) present in relatively small amounts in the upper 3 mm of the mat are considered biomarkers for green non-sulphur bacteria. Ether-bound isoprenoids were also identified although in considerably lower abundance than ester-bound FA (approx. 1:l0). These complex ether lipids included archatol, hydroxyarchaeol and a C-40 tetraether, all in small amounts. After ether cleavage with boron tribromide, the major recovered isoprenyl was a C-30:1. This C(sub 30;1) yelded squalane after hydrogenation, a known geobiomarker for hypersaline environments in ancient oils and sediments. In this mat, it represents the dominant Archaeal population. The carbon isotopic composition of biomarker lipids were generally depleted relative to the bulk organic material (delta C-13 TOC -10%). Most

  2. Transition States and transition state analogue interactions with enzymes.

    PubMed

    Schramm, Vern L

    2015-04-21

    Enzymatic transition states have lifetimes of a few femtoseconds (fs). Computational analysis of enzyme motions leading to transition state formation suggests that local catalytic site motions on the fs time scale provide the mechanism to locate transition states. An experimental test of protein fs motion and its relation to transition state formation can be provided by isotopically heavy proteins. Heavy enzymes have predictable mass-altered bond vibration states without altered electrostatic properties, according to the Born-Oppenheimer approximation. On-enzyme chemistry is slowed in most heavy proteins, consistent with altered protein bond frequencies slowing the search for the transition state. In other heavy enzymes, structural changes involved in reactant binding and release are also influenced. Slow protein motions associated with substrate binding and catalytic site preorganization are essential to allow the subsequent fs motions to locate the transition state and to facilitate the efficient release of products. In the catalytically competent geometry, local groups move in stochastic atomic motion on the fs time scale, within transition state-accessible conformations created by slower protein motions. The fs time scale for the transition state motions does not permit thermodynamic equilibrium between the transition state and stable enzyme states. Isotopically heavy enzymes provide a diagnostic tool for fast coupled protein motions to transition state formation and mass-dependent conformational changes. The binding of transition state analogue inhibitors is the opposite in catalytic time scale to formation of the transition state but is related by similar geometries of the enzyme-transition state and enzyme-inhibitor interactions. While enzymatic transition states have lifetimes as short as 10(-15) s, transition state analogues can bind tightly to enzymes with release rates greater than 10(3) s. Tight-binding transition state analogues stabilize the rare but

  3. Non-robust numerical simulations of analogue extension experiments

    NASA Astrophysics Data System (ADS)

    Naliboff, John; Buiter, Susanne

    2016-04-01

    Numerical and analogue models of lithospheric deformation provide significant insight into the tectonic processes that lead to specific structural and geophysical observations. As these two types of models contain distinct assumptions and tradeoffs, investigations drawing conclusions from both can reveal robust links between first-order processes and observations. Recent studies have focused on detailed comparisons between numerical and analogue experiments in both compressional and extensional tectonics, sometimes involving multiple lithospheric deformation codes and analogue setups. While such comparisons often show good agreement on first-order deformation styles, results frequently diverge on second-order structures, such as shear zone dip angles or spacing, and in certain cases even on first-order structures. Here, we present finite-element experiments that are designed to directly reproduce analogue "sandbox" extension experiments at the cm-scale. We use material properties and boundary conditions that are directly taken from analogue experiments and use a Drucker-Prager failure model to simulate shear zone formation in sand. We find that our numerical experiments are highly sensitive to numerous numerical parameters. For example, changes to the numerical resolution, velocity convergence parameters and elemental viscosity averaging commonly produce significant changes in first- and second-order structures accommodating deformation. The sensitivity of the numerical simulations to small parameter changes likely reflects a number of factors, including, but not limited to, high angles of internal friction assigned to sand, complex, unknown interactions between the brittle sand (used as an upper crust equivalent) and viscous silicone (lower crust), highly non-linear strain weakening processes and poor constraints on the cohesion of sand. Our numerical-analogue comparison is hampered by (a) an incomplete knowledge of the fine details of sand failure and sand

  4. Lipid mediators in diabetic nephropathy

    PubMed Central

    2014-01-01

    The implications of lipid lowering drugs in the treatment of diabetic nephropathy have been considered. At the same time, the clinical efficacy of lipid lowering drugs has resulted in improvement in the cardiovascular functions of chronic kidney disease (CKD) patients with or without diabetes, but no remarkable improvement has been observed in the kidney outcome. Earlier lipid mediators have been shown to cause accumulative effects in diabetic nephropathy (DN). Here, we attempt to analyze the involvement of lipid mediators in DN. The hyperglycemia-induced overproduction of diacyglycerol (DAG) is one of the causes for the activation of protein kinase C (PKCs), which is responsible for the activation of pathways, including the production of VEGF, TGFβ1, PAI-1, NADPH oxidases, and NFҟB signaling, accelerating the development of DN. Additionally, current studies on the role of ceramide are one of the major fields of study in DN. Researchers have reported excessive ceramide formation in the pathobiological conditions of DN. There is less report on the effect of lipid lowering drugs on the reduction of PKC activation and ceramide synthesis. Regulating PKC activation and ceramide biosynthesis could be a protective measure in the therapeutic potential of DN. Lipid lowering drugs also upregulate anti-fibrotic microRNAs, which could hint at the effects of lipid lowering drugs in DN. PMID:25206927

  5. Antidiabetic activity of 3-hydroxyflavone analogues in high fructose fed insulin resistant rats

    PubMed Central

    Nayak, Yogendra; Venkatachalam, H.; Daroji, Vijay Kumar; Mathew, Geetha; Jayashree, B.S.; Unnikrishnan, M.K.

    2014-01-01

    Synthetic 3-hydroxyflavone analogues (JY-1, JY-2, JY-3, JY-4), were tested for antidiabetic activity in high-fructose-diet-fed (66 %, for 6 weeks) insulin-resistant Wistar rats (FD-fed rats). The fasting blood glucose, insulin, creatinine and AGEs were decreased to near normal upon treatment with test compounds. Insulin resistance markers such as HOMA-IR, K-ITT, plasma triglycerides, lipids, endogenous antioxidant defense and glycogen were restored in FD-fed rats after treatment with 3-hydroxyflavones. It is known that insulin resistance is partly because of oxidative stress and hence antioxidant activity was determined. They exhibited significant in vitro DPPH and ABTS radical scavenging activity (IC50: 10.66-66.63 µM). Test compounds inhibited ROS and NO production in RAW 264.7 cells (IC50: 10.39–42.63 µM) and they were found as potent as quercetin. Further, the test compounds inhibited lipid peroxidation at low concentrations (IC50: 99.61-217.47 µM). All test compounds at concentrations 100-200 µM protected calf thymus DNA-damage by Fenton reaction. In addition, test compounds inhibited protein glycation in different in vitro antiglycation assays. JY-2 showed maximum potency in all the stages of glycation which was comparable to the standard quercetin and aminoguanidine. Test compounds also enhanced the glucose uptake by L6 myotubes at an EC50 much lower than that of quercetin. Thus the synthetic 3-hydroxyflavones were found to have good antidiabetic activity by pleotropic and multimodal suppression of insulin resistance and enhancement of glucose uptake by skeletal muscles. These compounds are non-toxic at the doses tested. Further, the combined antioxidant and antiglycation activities of these molecules have complementary benefits in management of diabetes. PMID:26417321

  6. Synthetic null-cysteine phospholamban analogue and the corresponding transmembrane domain inhibit the Ca-ATPase.

    PubMed

    Karim, C B; Marquardt, C G; Stamm, J D; Barany, G; Thomas, D D

    2000-09-05

    Chemical synthesis, functional reconstitution, and electron paramagnetic resonance (EPR) have been used to analyze the structure and function of phospholamban (PLB), a 52-residue integral membrane protein that regulates the calcium pump (Ca-ATPase) in cardiac sarcoplasmic reticulum (SR). PLB exists in equilibrium between monomeric and pentameric forms, as observed by SDS-PAGE, EPR, and fluorescence. It has been proposed that inhibition of the pump is due primarily to the monomeric form, with both pentameric stability and inhibition dependent primarily on the transmembrane (TM) domain. To test these hypotheses, we have studied the physical and functional properties of a synthetic null-cysteine PLB analogue that is entirely monomeric on SDS-PAGE, and compared it with the synthetic null-cysteine TM domain (residues 26-52). The TM domain was found to be primarily oligomeric on SDS-PAGE, and boundary lipid spin label analysis in lipid bilayers verified that the isolated TM domain is more oligomeric than the full-length parent molecule. These results indicate that the stability of the PLB pentamer is due primarily to attractive interactions between hydrophobic TM domains, overcoming the repulsive electrostatic interactions between the cationic cytoplasmic domains (residues 1-25). When reconstituted into liposomes containing the Ca-ATPase, the null-cysteine TM domain had the same inhibitory function as that of the full-length parent molecule. We conclude that the TM domain of PLB is sufficient for inhibitory function, the oligomeric stability of PLB does not determine its inhibitory activity, and the three Cys residues in the TM domain are not required for inhibitory function.

  7. Determination of plasma membrane fluidity with a fluorescent analogue of sphingomyelin by FRAP measurement using a standard confocal microscope.

    PubMed

    Klein, Christophe; Pillot, Thierry; Chambaz, Jean; Drouet, Beatrice

    2003-03-01

    Membrane perturbing effects have been described in neurodegenerative process like Alzheimer's disease and prion disorders. For example, non fibrillar amyloid-beta peptides (Abeta) implicated in Alzheimer's disease may exert its toxicity via membrane perturbation. Membrane organisation can be evaluated by its influence on lateral diffusion of lipids, which itself can be measured by FRAP (fluorescence recovery after photobleaching). We used this technique to study the effects of Abeta on membrane fluidity (Pillot et al., manuscript in preparation). We propose here a simple adaptation of FRAP using standard confocal laser scanning microscopy (CLSM). As a test experiment, we analysed the lateral diffusion of a fluorescent analogue of sphingomyelin and were able to demonstrate its increase upon cholesterol depletion induced by methyl-beta-cyclodextrin (cdx).

  8. Chemo-enzymatic synthesis of rac 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine and its analogues.

    PubMed

    Vijeeta, Tadla; Balakrishna, Marrapu; Lakshmi Karuna, Mallampalli Sri; Surya Koppeswara Rao, Bhamidipati Venkata; Narayana Prasad, Rachapudi Badari

    2014-01-01

    The synthesis of rac 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholines (6a-c), blood platelet activating ether lipid analogues has been achieved in a four-step sequence from epichlorohydrin (1). Etherification of epichlorohydrin with different alcohols namely tetradecyl (2a), hexadecyl (2b) and octadecyl (2c) alcohols gave glycidyl ethers (3a-c) with 78-80% yields. The second step involved opening of the epoxide by acetic anhydride to give acetylated products (4a-c, 76-78% yield), which were subsequently hydrolyzed selectively, a key step of the method employing a 1,3 specific lipase to obtain rac 1-O-alkyl-2- acetylglycerol (5a-c) with 45-50% yields. The hydrolyzed products (5a-c) were phosphorylated to obtain rac 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholines (6a-c) in 80-85% yields.

  9. How Lipid Membranes Affect Pore Forming Toxin Activity.

    PubMed

    Rojko, Nejc; Anderluh, Gregor

    2015-12-15

    Pore forming toxins (PFTs) evolved to permeate the plasma membrane of target cells. This is achieved in a multistep mechanism that usually involves binding of soluble protein monomer to the lipid membrane, oligomerization at the plane of the membrane, and insertion of part of the polypeptide chain across the lipid membrane to form a conductive channel. Introduced pores allow uncontrolled transport of solutes across the membrane, inflicting damage to the target cell. PFTs are usually studied from the perspective of structure-function relationships, often neglecting the important role of the bulk membrane properties on the PFT mechanism of action. In this Account, we discuss how membrane lateral heterogeneity, thickness, and fluidity influence the pore forming process of PFTs. In general, lipid molecules are more accessible for binding in fluid membranes due to steric reasons. When PFT specifically binds ordered domains, it usually recognizes a specific lipid distribution pattern, like sphingomyelin (SM) clusters or SM/cholesterol complexes, and not individual lipid species. Lipid domains were also suggested to act as an additional concentration platform facilitating PFT oligomerization, but this is yet to be shown. The last stage in PFT action is the insertion of the transmembrane segment across the membranes to build the transmembrane pore walls. Conformational changes are a spontaneous process, and sufficient free energy has to be available for efficient membrane penetration. Therefore, fluid bilayers are permeabilized more readily in comparison to highly ordered and thicker liquid ordered lipid phase (Lo). Energetically more costly insertion into the Lo phase can be driven by the hydrophobic mismatch between the thinner liquid disordered phase (Ld) and large protein complexes, which are unable to tilt like single transmembrane segments. In the case of proteolipid pores, membrane properties can directly modulate pore size, stability, and even selectivity. Finally

  10. Analogue Sites for Mars Missions - A report from two workshops

    NASA Astrophysics Data System (ADS)

    Hipkin, V.; Voytek, M. A.; Glamoclija, M.

    2014-12-01

    Fieldwork, at terrestrial sites that are analogous in some way to Mars, has a key role in defining questions addressed by Mars missions. For MSL, the question is whether its landing site was habitable, and for Mars 2020, the question is how do we search for and what are signs of life in ancient habitable environments. Implementing these investigations by means of a rover mission on a distant planetary surface has challenges due to a limited set of tools and period of operations. Using this context of planetary missions is important in shaping how analog research can be used to advance planetary science. Following a successful 2010 AGU fall meeting session entitled "Analogue Sites for Mars Missions", two community workshops were held at The Woodlands, TX March 2011 and the Carnegie Institute of Washington in July 2013. These activities represent an ongoing dialogue with the analogue and mission communities. The AGU session solicited presentations of current analogue research relevant to MSL, at which time the landing site selection process was still considering four final sites. The 2011 Woodlands workshop solicited details on representative science questions and analogue sites by means of an abstract template. The output from The Woodlands workshop was an initial metric to assess the utility of analogue sites against specific science questions, as well as recommendations for future activities. The 2013 Carnegie workshop, followed up on some of the recommendations from 2011. Both on-line interactive dialogue and in person discussions targeted broad topics, including 'the advantages and problems of using a great terrestrial analog for field testing', and 'knowing what we currently do about Mars, what would be the best place on the planet to collect the first suite of samples to be returned to Earth? What would be appropriate analog sites on Earth?'. The results and recommendations from both workshops are summarized to publicize and stimulate this ongoing discussion.

  11. Biological evaluation of a novel sorafenib analogue, t-CUPM.

    PubMed

    Wecksler, Aaron T; Hwang, Sung Hee; Liu, Jun-Yan; Wettersten, Hiromi I; Morisseau, Christophe; Wu, Jian; Weiss, Robert H; Hammock, Bruce D

    2015-01-01

    Sorafenib (Nexavar®) is currently the only FDA-approved small molecule targeted therapy for advanced hepatocellular carcinoma. The use of structural analogues and derivatives of sorafenib has enabled the elucidation of critical targets and mechanism(s) of cell death for human cancer lines. We previously performed a structure-activity relationship study on a series of sorafenib analogues designed to investigate the inhibition overlap between the major targets of sorafenib Raf-1 kinase and VEGFR-2, and an enzyme shown to be a potent off-target of sorafenib, soluble epoxide hydrolase. In the current work, we present the biological data on our lead sorafenib analogue, t-CUPM, demonstrating that this analogue retains cytotoxicity similar to sorafenib in various human cancer cell lines and strongly inhibits growth in the NCI-60 cell line panel. Co-treatment with the pan-caspase inhibitor, Z-VAD-FMK, failed to rescue the cell viability responses of both sorafenib and t-CUPM, and immunofluorescence microscopy shows similar mitochondrial depolarization and apoptosis-inducing factor release for both compounds. These data suggest that both compounds induce a similar mechanism of caspase-independent apoptosis in hepatoma cells. In addition, t-CUPM displays anti-proliferative effects comparable to sorafenib as seen by a halt in G0/G1 in cell cycle progression. The structural difference between sorafenib and t-CUPM significantly reduces inhibitory spectrum of kinases by this analogue, and pharmacokinetic characterization demonstrates a 20-fold better oral bioavailability of t-CUPM than sorafenib in mice. Thus, t-CUPM may have the potential to reduce the adverse events observed from the multikinase inhibitory properties and the large dosing regimens of sorafenib.

  12. Sulphamoylated 2-Methoxyestradiol Analogues Induce Apoptosis in Adenocarcinoma Cell Lines

    PubMed Central

    Visagie, Michelle; Theron, Anne; Mqoco, Thandi; Vieira, Warren; Prudent, Renaud; Martinez, Anne; Lafanechère, Laurence; Joubert, Annie

    2013-01-01

    2-Methoxyestradiol (2ME2) is a naturally occurring estradiol metabolite which possesses antiproliferative, antiangiogenic and antitumor properties. However, due to its limited biological accessibility, synthetic analogues have been synthesized and tested in attempt to develop drugs with improved oral bioavailability and efficacy. The aim of this study was to evaluate the antiproliferative effects of three novel in silico-designed sulphamoylated 2ME2 analogues on the HeLa cervical adenocarcinoma cell line and estrogen receptor-negative breast adenocarcinoma MDA-MB-231 cells. A dose-dependent study (0.1–25 μM) was conducted with an exposure time of 24 hours. Results obtained from crystal violet staining indicated that 0.5 μM of all 3 compounds reduced the number of cells to 50%. Lactate dehydrogenase assay was used to assess cytotoxicity, while the mitotracker mitochondrial assay and caspase-6 and -8 activity assays were used to investigate the possible occurrence of apoptosis. Tubulin polymerization assays were conducted to evaluate the influence of these sulphamoylated 2ME2 analogues on tubulin dynamics. Double immunofluorescence microscopy using labeled antibodies specific to tyrosinate and detyrosinated tubulin was conducted to assess the effect of the 2ME2 analogues on tubulin dynamics. An insignificant increase in the level of lactate dehydrogenase release was observed in the compounds-treated cells. These sulphamoylated compounds caused a reduction in mitochondrial membrane potential, cytochrome c release and caspase 3 activation indicating apoptosis induction by means of the intrinsic pathway in HeLa and MDA-MB-231 cells. Microtubule depolymerization was observed after exposure to these three sulphamoylated analogues. PMID:24039728

  13. Neurochemical binding profiles of novel indole and benzofuran MDMA analogues.

    PubMed

    Shimshoni, Jakob A; Winkler, Ilan; Golan, Ezekiel; Nutt, David

    2017-01-01

    3,4-Methylenedioxy-N-methylamphetamine (MDMA) has been shown to be effective in the treatment of post-traumatic stress disorder (PTSD) in numerous clinical trials. In the present study, we have characterized the neurochemical binding profiles of three MDMA-benzofuran analogues (1-(benzofuran-5-yl)-propan-2-amine, 5-APB; 1-(benzofuran-6-yl)-N-methylpropan-2-amine, 6-MAPB; 1-(benzofuran-5-yl)-N-methylpropan-2-amine, 5-MAPB) and one MDMA-indole analogue (1-(1H-indol-5-yl)-2-methylamino-propan-1-ol, 5-IT). These compounds were screened as potential second-generation anti-PTSD drugs, against a battery of human and non-human receptors, transporters, and enzymes, and their potencies as 5-HT2 receptor agonist and monoamine uptake inhibitors determined. All MDMA analogues displayed high binding affinities for 5-HT2a,b,c and NEα2 receptors, as well as significant 5-HT, DA, and NE uptake inhibition. 5-APB revealed significant agonist activity at the 5-HT2a,b,c receptors, while 6-MAPB, 5-MAPB, and 5-IT exhibited significant agonist activity at the 5-HT2c receptor. There was a lack of correlation between the results of functional uptake and the monoamine transporter binding assay. MDMA analogues emerged as potent and selective monoamine oxidase A inhibitors. Based on 6-MAPB favorable pharmacological profile, it was further subjected to IC50 determination for monoamine transporters. Overall, all MDMA analogues displayed higher monoamine receptor/transporter binding affinities and agonist activity at the 5-HT2a,c receptors as compared to MDMA.

  14. Cysteine analogues potentiate glucose-induced insulin release in vitro

    SciTech Connect

    Ammon, H.P.; Hehl, K.H.; Enz, G.; Setiadi-Ranti, A.; Verspohl, E.J.

    1986-12-01

    In rat pancreatic islets, cysteine analogues, including glutathione, acetylcysteine, cysteamine, D-penicillamine, L-cysteine ethyl ester, and cysteine-potentiated glucose (11.1 mM) induced insulin secretion in a concentration-dependent manner. Their maximal effects were similar and occurred at approximately 0.05, 0.05, 0.1, 0.5, 1.0, 1.0 mM, respectively. At substimulatory glucose levels (2.8 mM), insulin release was not affected by these compounds. In contrast, thiol compounds, structurally different from cysteine and its analogues, such as mesna, tiopronin, meso-2,3-dimercaptosuccinic acid (DMSA), dimercaprol (BAL), beta-thio-D-glucose, as well as those cysteine analogues that lack a free-thiol group, including L-cystine, cystamine, D-penicillamine disulfide, S-carbocysteine, and S-carbamoyl-L-cysteine, did not enhance insulin release at stimulatory glucose levels (11.1 mM); cystine (5 mM) was inhibitory. These in vitro data indicate that among the thiols tested here, only cysteine and its analogues potentiate glucose-induced insulin secretion, whereas thiols that are structurally not related to cysteine do not. This suggests that a cysteine moiety in the molecule is necessary for the insulinotropic effect. For their synergistic action to glucose, the availability of a sulfhydryl group is also a prerequisite. The maximal synergistic action is similar for all cysteine analogues tested, whereas the potency of action is different, suggesting similarity in the mechanism of action but differences in the affinity to the secretory system.

  15. Lipid metabolism in Trypanosoma brucei

    PubMed Central

    Smith, Terry K.; Bütikofer, Peter

    2013-01-01

    Trypanosoma brucei membranes consist of all major eukaryotic glycerophospholipid and sphingolipid classes. These are de novo synthesized from precursors obtained either from the host or from catabolised endocytosed lipids. In recent years, substantial progress has been made in the molecular and biochemical characterisation of several of these lipid biosynthetic pathways, using gene knockout or RNA interference strategies or by enzymatic characterization of individual reactions. Together with the completed genome, these studies have highlighted several possible differences between mammalian and trypanosome lipid biosynthesis that could be exploited for the development of drugs against the diseases caused by these parasites. PMID:20382188

  16. Ferroptosis: Death by Lipid Peroxidation.

    PubMed

    Yang, Wan Seok; Stockwell, Brent R

    2016-03-01

    Ferroptosis is a regulated form of cell death driven by loss of activity of the lipid repair enzyme glutathione peroxidase 4 (GPX4) and subsequent accumulation of lipid-based reactive oxygen species (ROS), particularly lipid hydroperoxides. This form of iron-dependent cell death is genetically, biochemically, and morphologically distinct from other cell death modalities, including apoptosis, unregulated necrosis, and necroptosis. Ferroptosis is regulated by specific pathways and is involved in diverse biological contexts. Here we summarize the discovery of ferroptosis, the mechanism of ferroptosis regulation, and its increasingly appreciated relevance to both normal and pathological physiology.

  17. Bioconcentration factors and lipid solubility

    SciTech Connect

    Banerjee, S. ); Baughman, G.L. )

    1991-03-01

    The log-log relationship between bioconcentration and hydrophobicity breaks down for several medium and high molecular weight solutes that bioconcentrate either to a small extent or not at all. Much of the failure is attributed to the relatively low solubility of these compounds in lipid. Inclusion of a term in octanol solubility (in place of lipid solubility, which is generally unavailable) considerably improves the quality of the relationship (r = 0.95). It is speculated that the octanol solubility term compensates for the relatively low solubility of large compounds in lipid.

  18. Lipid Nanoparticles for Gene Delivery

    PubMed Central

    Zhao, Yi; Huang, Leaf

    2016-01-01

    Nonviral vectors which offer a safer and versatile alternative to viral vectors have been developed to overcome problems caused by viral carriers. However, their transfection efficacy or level of expression is substantially lower than viral vectors. Among various nonviral gene vectors, lipid nanoparticles are an ideal platform for the incorporation of safety and efficacy into a single delivery system. In this chapter, we highlight current lipidic vectors that have been developed for gene therapy of tumors and other diseases. The pharmacokinetic, toxic behaviors and clinic trials of some successful lipids particles are also presented. PMID:25409602

  19. Photoaffinity labeling with cholesterol analogues precisely maps a cholesterol-binding site in voltage-dependent anion channel-1.

    PubMed

    Budelier, Melissa M; Cheng, Wayland Wl; Bergdoll, Lucie; Chen, Zi-Wei; Janetka, James W; Abramson, Jeff; Krishnan, Kathiresan; Mydock-McGrane, Laurel; Covey, Douglas F; Whitelegge, Julian P; Evers, Alex S

    2017-04-10

    Voltage-dependent anion channel-1 (VDAC1) is a highly regulated β-barrel membrane protein that mediates transport of ions and metabolites between the mitochondria and cytosol of the cell. VDAC1 co-purifies with cholesterol and is functionally regulated by cholesterol, among other endogenous lipids. Molecular modeling studies based on NMR observations have suggested five cholesterol-binding sites in VDAC1, but direct experimental evidence for these sites is lacking. Here, to determine the sites of cholesterol binding, we photolabeled purified mouse VDAC1 (mVDAC1) with photoactivatable cholesterol analogues and analyzed the photolabeled sites with both top-down mass spectrometry (MS), and bottom-up MS paired with a clickable, stable isotope labeled tag, FLI-tag. Using cholesterol analogues with a diazirine in either the 7 position of the steroid ring (LKM38) or the aliphatic tail (KK174), we mapped a binding pocket in mVDAC1 localized to T83 and E73, respectively. When E73 was mutated to a glutamine, KK174 no longer photolabeled this residue, but instead labeled the nearby Y62 within this same binding pocket. The combination of analytical strategies employed in this work permits detailed molecular mapping of a cholesterol binding site in a protein, including an orientation of the sterol within the site. Our work raises the interesting possibility that cholesterol-mediated regulation of VDAC1 may be facilitated through a specific binding site at the functionally important E73 residue.

  20. Hybrid lipid-based nanostructures

    NASA Astrophysics Data System (ADS)

    Dayani, Yasaman

    Biological membranes serve several important roles, such as structural support of cells and organelles, regulation of ionic and molecular transport, barriers to non-mediated transport, contact between cells within tissues, and accommodation of membrane proteins. Membrane proteins and other vital biomolecules incorporated into the membrane need a lipid membrane to function. Due to importance of lipid bilayers and their vital function in governing many processes in the cell, the development of various models as artificial lipid membranes that can mimic cell membranes has become a subject of great interest. Using different models of artificial lipid membranes, such as liposomes, planar lipid bilayers and supported or tethered lipid bilayers, we are able to study many biophysical processes in biological membranes. The ability of different molecules to interact with and change the structure of lipid membranes can be also investigated in artificial lipid membranes. An important application of lipid bilayer-containing interfaces is characterization of novel membrane proteins for high throughput drug screening studies to investigate receptor-drug interactions and develop biosensor systems. Membrane proteins need a lipid bilayer environment to preserve their stability and functionality. Fabrication of materials that can interact with biomolecules like proteins necessitates the use of lipid bilayers as a mimic of cell membranes. The objective of this research is to develop novel hybrid lipid-based nanostructures mimicking biological membranes. Toward this aim, two hybrid biocompatible structures are introduced: lipid bilayer-coated multi-walled carbon nanotubes (MWCNTs) and hydrogel-anchored liposomes with double-stranded DNA anchors. These structures have potential applications in biosensing, drug targeting, drug delivery, and biophysical studies of cell membranes. In the first developed nanostructure, lipid molecules are covalently attached to the surfaces of MWCNTs, and

  1. Incorporation of a synthetic mycobacterial monomycoloyl glycerol analogue stabilizes dimethyldioctadecylammonium liposomes and potentiates their adjuvant effect in vivo.

    PubMed

    Nordly, Pernille; Korsholm, Karen Smith; Pedersen, Esra Alici; Khilji, Tayba Sajid; Franzyk, Henrik; Jorgensen, Lene; Nielsen, Hanne Mørck; Agger, Else Marie; Foged, Camilla

    2011-01-01

    The combination of delivery systems such as cationic liposomes and immunopotentiating molecules is a promising approach for the rational design of vaccine adjuvants. In this study, a synthetic analogue of the mycobacterial lipid monomycoloyl glycerol (MMG), referred to as MMG-1, was synthesized and combined with the cationic surfactant dimethyldioctadecylammonium (DDA). The purpose of the study was to provide a thorough pharmaceutical characterization of the resulting DDA/MMG-1 binary system and to evaluate how incorporation of MMG-1 affected the adjuvant activity of DDA liposomes. Thermal analyses demonstrated that MMG-1 was incorporated into the DDA lipid bilayers, and cryo-transmission electron microscopy (TEM) confirmed that liposomes were formed. The particles had a polydisperse size distribution and an average diameter of approximately 400 nm. Evaluation of the colloidal stability indicated that at least 18 mol% MMG-1 was required to stabilize the DDA liposomes as the average particle size remained constant during storage for 6 months. The improved colloidal stability is most likely caused by increased hydration of the lipid bilayer. This was demonstrated by studying Langmuir-Blodgett monolayers of DDA and MMG-1 which revealed an increased surface pressure in the presence of high concentrations of MMG-1 when the DDA/MMG-1 monolayers were fully compressed, indicating an increased interaction with water due to enhanced hydration of the lipid head groups. Finally, immunization of mice with the tuberculosis fusion antigen Ag85B-ESAT-6 and DDA/MMG-1 liposomes induced a strong cell-mediated immune response characterized by a mixed Th1/Th17 profile and secretion of IgG1 and IgG2c antibodies. The Th1/Th17-biased immunostimulatory effect was increased in an MMG-1 concentration-dependent manner with maximal observed effect at 31 mol% MMG-1. Thus, incorporation of 31 mol% MMG-1 into DDA liposomes results in an adjuvant system with favorable physical as well as

  2. Dietary lipids and cancer.

    PubMed

    Granados, S; Quiles, J L; Gil, A; Ramírez-Tortosa, M C

    2006-05-01

    Cancer is one of the main causes of death in Western countries. Among the factors that contribute to the appearance of this disease, diet has a fundamental role, and specifically fats are the main component related to the increase in the incidence of cancerous diseases, particularly breast, colon-rectal, and prostate cancer. From dietary lipids, much attention has been given to the beneficial effects of fish oil, rich in polyunsaturated fatty acids n-3 serie, as well as of olive oil, rich in monounsaturated fatty acids--primarily oleic acid. On the contrary, a negative effect has been reported for polyunsaturated fatty acids n-6 serie and for saturated fatty acids. Nutrition constitutes an important aspect of the life of cancer patients. Currently, nutritional formulas are being designed with supplements of polyunsaturated n-3 fatty acids and other components such as arginine, RNA, lysine, etc., with the aim of ameliorating the effects of this pathology. The results demonstrate the lower morbility and therefore improved quality of life, a decline in mortality, and a reduction in related costs.

  3. Quantum Measurement Act as a Speech Act

    NASA Astrophysics Data System (ADS)

    Schneider, Jean

    2005-10-01

    I show that the quantum measurement problem can be understood if the measurement is seen as a "speech act" in the sense of modern language theory. The reduction of the state vector is in this perspective an intersubjective -- or, better, a-subjective -- symbolic process. I then give some perspectives on applications to the "Mind-Body Problem".

  4. Late-Stage C-H Coupling Enables Rapid Identification of HDAC Inhibitors: Synthesis and Evaluation of NCH-31 Analogues.

    PubMed

    Sekizawa, Hiromi; Amaike, Kazuma; Itoh, Yukihiro; Suzuki, Takayoshi; Itami, Kenichiro; Yamaguchi, Junichiro

    2014-05-08

    We previously reported the discovery of NCH-31, a potent histone deacetylase (HDAC) inhibitor. By utilizing our C-H coupling reaction, we rapidly synthesized 16 analogues (IYS-1 through IYS-15 and IYS-Me) of NCH-31 with different aryl groups at the C4-position of 2-aminothiazole core of NCH-31. Subsequent biological testing of these derivatives revealed that 3-fluorophenyl (IYS-10) and 4-fluorophenyl (IYS-15) derivatives act as potent pan-HDAC inhibitor. Additionally, 4-methylphenyl (IYS-1) and 3-fluoro-4-methylphenyl (IYS-14) derivatives acted as HDAC6-insensitive inhibitors. The present work clearly shows the power of the late-stage C-H coupling approach to rapidly identify novel and highly active/selective biofunctional molecules.

  5. A novel fluorescent ceramide analogue for studying membrane traffic in animal cells: accumulation at the Golgi apparatus results in altered spectral properties of the sphingolipid precursor

    PubMed Central

    1991-01-01

    A series of ceramide analogues bearing the fluorophore boron dipyrromethene difluoride (BODIPY) were synthesized and evaluated as vital stains for the Golgi apparatus, and as tools for studying lipid traffic between the Golgi apparatus and the plasma membrane of living cells. Studies of the spectral properties of several of the BODIPY- labeled ceramides in lipid vesicles demonstrated that the fluorescence emission maxima were strongly dependent upon the molar density of the probes in the membrane. This was especially evident using N-[5-(5,7- dimethyl BODIPY)-1-pentanoyl]-D-erythro-sphingosine (C5-DMB-Cer), which exhibited a shift in its emission maximum from green (integral of 515 nm) to red (integral of 620 nm) wavelengths with increasing concentrations. When C5-DMB-Cer was used to label living cells, this property allowed us to differentiate membranes containing high concentrations of the fluorescent lipid and its metabolites (the corresponding analogues of sphingomyelin and glucosylceramide) from other regions of the cell where smaller amounts of the probe were present. Using this approach, prominent red fluorescent labeling of the Golgi apparatus, Golgi apparatus-associated tubulovesicular processes, and putative Golgi apparatus transport vesicles was seen in living human skin fibroblasts, as well as in other cell types. Based on fluorescence ratio imaging microscopy, we estimate that C5-DMB-Cer and its metabolites were present in Golgi apparatus membranes at concentrations up to 5-10 mol %. In addition, the concentration- dependent spectral properties of C5-DMB-Cer were used to monitor the transport of C5-DMB-lipids to the cell surface at 37 degrees C. PMID:2045412

  6. Identification of highly brominated analogues of Q1 in marine mammals.

    PubMed

    Teuten, Emma L; Pedler, Byron E; Hangsterfer, Alexandra N; Reddy, Christopher M

    2006-11-01

    Three novel halogenated organic compounds (HOCs) have been identified in the blubber of marine mammals from coastal New England with the molecular formulae C(9)H(3)N(2)Br(6)Cl, C(9)H(3)N(2)Br(7), and C(9)H(4)N(2)Br(5)Cl. They were identified using high and low resolution gas chromatography mass spectrometry (GCMS) and appear to be highly brominated analogues of Q1, a heptachlorinated HOC suspected to be naturally produced. These compounds were found in Atlantic white sided dolphin (Lagenorhynchus acutus), bottlenose dolphin (Tursiops truncatus), common dolphin (Delphinus delphis), Risso's dolphin (Grampus griseus), harbor porpoise (Phocoena phocoena), beluga whale (Delphinapterus leucas), fin whale (Balaenoptera physalus), grey seal (Halichoerus grypus), harp seal (Phoca groenlandica) and a potential food source (Loligo pealei) with concentrations as high as 2.7 microg/g (lipid weight). The regiospecificity of C(9)H(3)N(2)Br(6)Cl is suggestive of a biogenic origin. Debromination of C(9)H(3)N(2)Br(6)Cl may be significant in the formation of C(9)H(4)N(2)Br(5)Cl.

  7. Cholesterol's location in lipid bilayers

    SciTech Connect

    Marquardt, Drew; Kučerka, Norbert; Wassall, Stephen R.; Harroun, Thad A.; Katsaras, John

    2016-04-04

    It is well known that cholesterol modifies the physical properties of lipid bilayers. For example, the much studied liquid-ordered Lo phase contains rapidly diffusing lipids with their acyl chains in the all trans configuration, similar to gel phase bilayers. Moreover, the Lo phase is commonly associated with cholesterol-enriched lipid rafts, which are thought to serve as platforms for signaling proteins in the plasma membrane. Cholesterol's location in lipid bilayers has been studied extensively, and it has been shown – at least in some bilayers – to align differently from its canonical upright orientation, where its hydroxyl group is in the vicinity of the lipid–water interface. In this study we review recent works describing cholesterol's location in different model membrane systems with emphasis on results obtained from scattering, spectroscopic and molecular dynamics studies.

  8. Cholesterol's location in lipid bilayers

    DOE PAGES

    Marquardt, Drew; Kučerka, Norbert; Wassall, Stephen R.; ...

    2016-04-04

    It is well known that cholesterol modifies the physical properties of lipid bilayers. For example, the much studied liquid-ordered Lo phase contains rapidly diffusing lipids with their acyl chains in the all trans configuration, similar to gel phase bilayers. Moreover, the Lo phase is commonly associated with cholesterol-enriched lipid rafts, which are thought to serve as platforms for signaling proteins in the plasma membrane. Cholesterol's location in lipid bilayers has been studied extensively, and it has been shown – at least in some bilayers – to align differently from its canonical upright orientation, where its hydroxyl group is in themore » vicinity of the lipid–water interface. In this study we review recent works describing cholesterol's location in different model membrane systems with emphasis on results obtained from scattering, spectroscopic and molecular dynamics studies.« less

  9. Electronic polymers in lipid membranes.

    PubMed

    Johansson, Patrik K; Jullesson, David; Elfwing, Anders; Liin, Sara I; Musumeci, Chiara; Zeglio, Erica; Elinder, Fredrik; Solin, Niclas; Inganäs, Olle

    2015-06-10

    Electrical interfaces between biological cells and man-made electrical devices exist in many forms, but it remains a challenge to bridge the different mechanical and chemical environments of electronic conductors (metals, semiconductors) and biosystems. Here we demonstrate soft electrical interfaces, by integrating the metallic polymer PEDOT-S into lipid membranes. By preparing complexes between alkyl-ammonium salts and PEDOT-S we were able to integrate PEDOT-S into both liposomes and in lipid bilayers on solid surfaces. This is a step towards efficient electronic conduction within lipid membranes. We also demonstrate that the PEDOT-S@alkyl-ammonium:lipid hybrid structures created in this work affect ion channels in the membrane of Xenopus oocytes, which shows the possibility to access and control cell membrane structures with conductive polyelectrolytes.

  10. Studies on some specific Ap4A-degrading enzymes with the use of various methylene analogues of P1P4-bis-(5',5'''-adenosyl) tetraphosphate.

    PubMed Central

    Guranowski, A; Starzyńska, E; Taylor, G E; Blackburn, G M

    1989-01-01

    Six new methylenephosphonate analogues of P1P4-bis-(5',5'''-adenosyl) tetraphosphate, Ap4A, having P2-P3 carbon bridges CF2, CCl2 and CH2CH2 or P1-P2 and P3-P4 carbon bridges CF2, CCl2 and CH2CH2 in the tetraphosphate chain, were examined as substrates or inhibitors for two specific Ap4A-degrading enzymes: (asymmetrical) Ap4A hydrolase (EC 3.6.1.17) from yellow-lupin seeds and (symmetrical) Ap4A hydrolase (EC 3.6.1.41) from Escherichia coli. All analogues in which the central oxygen atom was replaced by a stable carbon bridge were hydrolysed by the asymmetrical hydrolase (CF2 greater than CCl2 greater than O greater than CHBr greater than CH2 greater than CH2CH2). As expected, these analogues were not hydrolysed by the symmetrical hydrolase, which was also unable to act on analogues having P1-P2 and P3-P4 carbon bridges. PMID:2554885

  11. Lipid disorders in diabetes.

    PubMed

    Goldberg, R B

    1981-01-01

    Hyperlipidemia is common in diabetic patients. While our understanding of lipid and lipoprotein metabolism in diabetes is incomplete, a pathophysiologic approach to this problem is presented. It is based on the recognition that diabetes is metabolically heterogeneous. Thus the roles of insulin deficiency, insulin resistance, obesity, and genetic factors are discussed in relation to their effects on lipoprotein production and catabolism. The most important defect in insulin-deficient subjects appears to be a deficiency of lipoprotein lipase, which is responsible for the removal of the triglyceride-rich lipoproteins. In non-insulin-dependent subjects there is evidence for a removal defect as well as, in some patients, for overproduction of VLDL-triglyceride. Cholesterol levels may be elevated and it is important to distinguish between VLDL, LDL, and HDL as the causes for these increases. HDL-cholesterol levels may be increased in insulin-dependent subjects, whereas they may be decreased in obese non-insulin-dependent patients. Mild elevations of LDL-cholesterol may occur in inadequately controlled type I and II diabetic patients, while elevated VLDL may raise the serum cholesterol in addition to the triglyceride levels. The rationale for therapy is based on the complications of severe hypertriglyceridemia and the risk of occlusive atherosclerosis. Management is directed at improving glycemic control, altering dietary composition, and reducing calories in obese patients. Improved glycemic control is effective in reducing triglyceride and cholesterol levels in insulin-deficient subjects. The response of the non-insulin-dependent diabetic patient to improved control may be complicated by associated obesity or familial hyperlipidemia. The advantages and disadvantages of fat versus carbohydrate restriction in the diet are discussed. Finally, resistant hyperlipidemia may require drug therapy. Diabetic hyperlipidemia should be viewed as resulting from an interaction between

  12. Synthesis and antioxidant activity of peptide-based ebselen analogues.

    PubMed

    Satheeshkumar, Kandhan; Mugesh, Govindasamy

    2011-04-18

    A series of di- and tripeptide-based ebselen analogues has been synthesized. The compounds were characterized by (1)H, (13)C, and (77)Se NMR spectroscopy and mass spectral techniques. The glutathione peroxidase (GPx)-like antioxidant activity has been studied by using H(2)O(2) , tert-butyl hydroperoxide (tBuOOH), and cumene hydroperoxide (Cum-OOH) as substrates, and glutathione (GSH) as a cosubstrate. Although all the peptide-based compounds have a selenazole ring similar to that of ebselen, the GPx activity of these compounds highly depends on the nature of the peptide moiety attached to the nitrogen atom of the selenazole ring. It was observed that the introduction of a phenylalanine (Phe) amino acid residue in the N-terminal reduces the activity in all three peroxide systems. On the other hand, the introduction of aliphatic amino acid residues such as valine (Val) significantly enhances the GPx activity of the ebselen analogues. The difference in the catalytic activity of dipeptide-based ebselen derivatives can be ascribed mainly to the change in the reactivity of these compounds toward GSH and peroxide. Although the presence of the Val-Ala-CO(2) Me moiety facilitates the formation of a catalytically active selenol species, the reaction of ebselen analogues that has a Phe-Ile-CO(2) Me residue with GSH does not generate the corresponding selenol. To understand the antioxidant activity of the peptide-based ebselen analogues in the absence of GSH, these compounds were studied for their ability to inhibit peroxynitrite (PN)-mediated nitration of bovine serum albumin (BSA) and oxidation of dihydrorhodamine 123. In contrast to the GPx activity, the PN-scavenging activity of the Phe-based peptide analogues was found to be comparable to that of the Val-based compounds. However, the introduction of an additional Phe residue to the ebselen analogue that had a Val-Ala dipeptide significantly reduced the potency of the parent compound in PN-mediated nitration.

  13. An analogue conceptual rainfall-runoff model for educational purposes

    NASA Astrophysics Data System (ADS)

    Herrnegger, Mathew; Riedl, Michael; Schulz, Karsten

    2016-04-01

    Conceptual rainfall-runoff models, in which runoff processes are modelled with a series of connected linear and non-linear reservoirs, remain widely applied tools in science and practice. Additionally, the concept is appreciated in teaching due to its somewhat simplicity in explaining and exploring hydrological processes of catchments. However, when a series of reservoirs are used, the model system becomes highly parametrized and complex and the traceability of the model results becomes more difficult to explain to an audience not accustomed to numerical modelling. Since normally the simulations are performed with a not visible digital code, the results are also not easily comprehensible. This contribution therefore presents a liquid analogue model, in which a conceptual rainfall-runoff model is reproduced by a physical model. This consists of different acrylic glass containers representing different storage components within a catchment, e.g. soil water or groundwater storage. The containers are equipped and connected with pipes, in which water movement represents different flow processes, e.g. surface runoff, percolation or base flow. Water from a storage container is pumped to the upper part of the model and represents effective rainfall input. The water then flows by gravity through the different pipes and storages. Valves are used for controlling the flows within the analogue model, comparable to the parameterization procedure in numerical models. Additionally, an inexpensive microcontroller-based board and sensors are used to measure storage water levels, with online visualization of the states as time series data, building a bridge between the analogue and digital world. The ability to physically witness the different flows and water levels in the storages makes the analogue model attractive to the audience. Hands-on experiments can be performed with students, in which different scenarios or catchment types can be simulated, not only with the analogue but

  14. NMR spectroscopy for evaluation of lipid oxidation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    During storage and use of edible oils and other lipid-containing foods, reactions between lipids and oxygen occur, resulting in lipid oxidation and the subsequent development of off-flavors and odors. Accurate and timely assessment of lipid oxidation is critical for effective quality control of food...

  15. Transferred nuclear Overhauser effect analyses of membrane-bound enkephalin analogues by sup 1 H nuclear magnetic resonance: Correlation between activities and membrane-bound conformations

    SciTech Connect

    Milon, Alain; Miyazawa, Tatsuo; Higashijima, Tsutomu )

    1990-01-09

    Leu-enkephalin, (D-Ala{sup 2})Leu-enkephalin, and (D-Ala{sup 2})Leu-enkephalinamide (agonists) and (L-Ala{sup 2})Leu-enkephalin (inactive analogue) bind to lipid bilayer consisting of phosphatidylcholine and phosphatidylserine. The conformations that these compounds assume, once bound to perdeuterated phospholipid bilayer, have been shown to be unique, as shown by the transferred nuclear Overhauser effect (TRNOE) of {sup 1}H NMR spectroscopy. In addition, their location in the bilayer was analyzed by TRNOE in the presence of spin-labeled phospholipids. These analyses showed a clear relationship between the activity and the peptide-membrane interaction. The three active peptides, when bound to membranes, adopt the same conformation, characterized by a type II{prime} {beta}-turn around Gly{sup 3}-Phe and a {gamma}-turn around Gly{sup 2} (or D-Ala{sup 2}). The inactive analogue, (L-Ala{sup 2})Leu-enkephalin, displayed a completely different TRNOE pattern corresponding to a different conformation in the membrane-bound state. The tyrosine residue of the active compounds is not inserted into the interior of membrane, but it is inserted into the bilayer for the L-Ala{sup 2} analogue. According to these results, (L-Ala{sup 2})Leu-enkephalin may be explained to be inactive because the mode of binding to the membranes is different from that of active compounds.

  16. ACT and College Success

    ERIC Educational Resources Information Center

    Bleyaert, Barbara

    2010-01-01

    What is the relationship between ACT scores and success in college? For decades, admissions policies in colleges and universities across the country have required applicants to submit scores from a college entrance exam, most typically the ACT (American College Testing) or SAT (Scholastic Aptitude Test). This requirement suggests that high school…

  17. Clean Air Act Text

    EPA Pesticide Factsheets

    The Clean Air Act is the law that defines EPA's responsibilities for protecting and improving the nation's air quality and the stratospheric ozone layer. The last major change in the law, the Clean Air Act Amendments of 1990, enacted in 1990 by Congress.

  18. Lipid-Free Antigen B Subunits from Echinococcus granulosus: Oligomerization, Ligand Binding, and Membrane Interaction Properties

    PubMed Central

    Silva-Álvarez, Valeria; Franchini, Gisela R.; Pórfido, Jorge L.; Kennedy, Malcolm W.; Ferreira, Ana M.; Córsico, Betina

    2015-01-01

    Background The hydatid disease parasite Echinococcus granulosus has a restricted lipid metabolism, and needs to harvest essential lipids from the host. Antigen B (EgAgB), an abundant lipoprotein of the larval stage (hydatid cyst), is thought to be important in lipid storage and transport. It contains a wide variety of lipid classes, from highly hydrophobic compounds to phospholipids. Its protein component belongs to the cestode-specific Hydrophobic Ligand Binding Protein family, which includes five 8-kDa isoforms encoded by a multigene family (EgAgB1-EgAgB5). How lipid and protein components are assembled into EgAgB particles remains unknown. EgAgB apolipoproteins self-associate into large oligomers, but the functional contribution of lipids to oligomerization is uncertain. Furthermore, binding of fatty acids to some EgAgB subunits has been reported, but their ability to bind other lipids and transfer them to acceptor membranes has not been studied. Methodology/Principal Findings Lipid-free EgAgB subunits obtained by reverse-phase HPLC were used to analyse their oligomerization, ligand binding and membrane interaction properties. Size exclusion chromatography and cross-linking experiments showed that EgAgB8/2 and EgAgB8/3 can self-associate, suggesting that lipids are not required for oligomerization. Furthermore, using fluorescent probes, both subunits were found to bind fatty acids, but not cholesterol analogues. Analysis of fatty acid transfer to phospholipid vesicles demonstrated that EgAgB8/2 and EgAgB8/3 are potentially capable of transferring fatty acids to membranes, and that the efficiency of transfer is dependent on the surface charge of the vesicles. Conclusions/Significance We show that EgAgB apolipoproteins can oligomerize in the absence of lipids, and can bind and transfer fatty acids to phospholipid membranes. Since imported fatty acids are essential for Echinococcus granulosus, these findings provide a mechanism whereby EgAgB could engage in lipid

  19. Models of lipid droplets growth and fission in adipocyte cells

    SciTech Connect

    Boschi, Federico; Rizzatti, Vanni; Zamboni, Mauro; Sbarbati, Andrea

    2015-08-15

    Lipid droplets (LD) are spherical cellular inclusion devoted to lipids storage. It is well known that excessive accumulation of lipids leads to several human worldwide diseases like obesity, type 2 diabetes, hepatic steatosis and atherosclerosis. LDs' size range from fraction to one hundred of micrometers in adipocytes and is related to the lipid content, but their growth is still a puzzling question. It has been suggested that LDs can grow in size due to the fusion process by which a larger LD is obtained by the merging of two smaller LDs, but these events seems to be rare and difficult to be observed. Many other processes are thought to be involved in the number and growth of LDs, like the de novo formation and the growth through additional neutral lipid deposition in pre-existing droplets. Moreover the number and size of LDs are influenced by the catabolism and the absorption or interaction with other organelles. The comprehension of these processes could help in the confinement of the pathologies related to lipid accumulation. In this study the LDs' size distribution, number and the total volume of immature (n=12), mature (n=12, 10-days differentiated) and lipolytic (n=12) 3T3-L1 adipocytes were considered. More than 11,000 LDs were measured in the 36 cells after Oil Red O staining. In a previous work Monte Carlo simulations were used to mimic the fusion process alone between LDs. We found that, considering the fusion as the only process acting on the LDs, the size distribution in mature adipocytes can be obtained with numerical simulation starting from the size distribution in immature cells provided a very high rate of fusion events. In this paper Monte Carlo simulations were developed to mimic the interaction between LDs taking into account many other processes in addition to fusion (de novo formation and the growth through additional neutral lipid deposition in pre-existing droplets) in order to reproduce the LDs growth and we also simulated the catabolism

  20. Americans With Disabilities Act.

    PubMed

    Walk, E E; Ahn, H C; Lampkin, P M; Nabizadeh, S A; Edlich, R F

    1993-01-01

    The Americans with Disabilities Act gives all Americans with disabilities a chance to achieve the same quality of life that individuals without disabilities enjoy. This act prohibits discrimination on the basis of disabilities in employment, public services, privately operated public accommodations, services, and telecommunications. The Americans with Disabilities Act is divided into five titles. Title I of the act pertains to discrimination against the disabled in the workplace. Title II prevents discrimination against persons with a disability in state and local government services. Title III prohibits discrimination against persons with disabilities in places of public accommodations and commercial facilities. Title IV ensures that companies offering telephone services to the general public provide special services for individuals with hearing and speech impairments. Under the enforcement provisions of the Americans with Disabilities Act, stringent penalties will be implemented for failure to comply with its provisions.

  1. Lipid rafts, KCa/ClCa/Ca2+ channel complexes and EGFR signaling: Novel targets to reduce tumor development by lipids?

    PubMed

    Guéguinou, Maxime; Gambade, Audrey; Félix, Romain; Chantôme, Aurélie; Fourbon, Yann; Bougnoux, Philippe; Weber, Günther; Potier-Cartereau, Marie; Vandier, Christophe

    2015-10-01

    Membrane lipid rafts are distinct plasma membrane nanodomains that are enriched with cholesterol, sphingolipids and gangliosides, with occasional presence of saturated fatty acids and phospholipids containing saturated acyl chains. It is well known that they organize receptors (such as Epithelial Growth Factor Receptor), ion channels and their downstream acting molecules to regulate intracellular signaling pathways. Among them are Ca2+ signaling pathways, which are modified in tumor cells and inhibited upon membrane raft disruption. In addition to protein components, lipids from rafts also contribute to the organization and function of Ca2+ signaling microdomains. This article aims to focus on the lipid raft KCa/ClCa/Ca2+ channel complexes that regulate Ca2+ and EGFR signaling in cancer cells, and discusses the potential modification of these complexes by lipids as a novel therapeutic approach in tumor development. This article is part of a Special Issue entitled: Membrane channels and transporters in cancers.

  2. The effects of humanin and its analogues on male germ cell apoptosis induced by chemotherapeutic drugs.

    PubMed

    Jia, Yue; Ohanyan, Aikoui; Lue, Yan-He; Swerdloff, Ronald S; Liu, Peter Y; Cohen, Pinchas; Wang, Christina

    2015-04-01

    Human (HN) prevents stress-induced apoptosis in many cells/tissues. In this study we showed that HN ameliorated chemotherapy [cyclophosphamide (CP) and Doxorubicin (DOX)]-induced male germ cell apoptosis both ex vivo in seminiferous tubule cultures and in vivo in the testis. HN acts by several putative mechanisms via binding to: an IL-12 like trimeric membrane receptor; BAX; or insulin-like growth factor binding protein-3 (IGFBP-3, a proapoptotic factor). To understand the mechanisms of HN on male germ cell apoptosis, we studied five HN analogues including: HNG (HN-S14G, a potent agonist), HNG-F6A (no binding to IGFBP-3), HN-S7A (no self-dimerization), HN-C8P (no binding to BAX), and HN-L12A (a HN antagonist) on CP-induced male germ cell apoptosis in mice. CP-induced germ cell apoptosis was inhibited by HN, HNG, HNG-F6A, HN-S7A, and HN-C8P (less effective); but not by HN-L12A. HN-L12A, but not HN-S7A or HN-C8P, blocked the protective effect of HN against CP-induced male germ cell apoptosis. HN, HN-S7A, and HN-C8P restored CP-suppressed STAT3 phosphorylation. These results suggest that HN: (1) decreases DOX (ex vivo) and CP (in vivo) induced male germ cell apoptosis; (2) action is mediated by the membrane receptor/STAT3 with minor contribution by BAX-binding pathway; (3) self-dimerization or binding to IGFBP-3 may not be involved in HN's effect in testis. HN is an important molecule in the regulation of germ cell homeostasis after injury and agonistic analogues may be developed for treating male infertility or protection against chemotherapy side effects.

  3. Epoxyeicosatrienoic acid analogue mitigates kidney injury in a rat model of radiation nephropathy.

    PubMed

    Hye Khan, Md Abdul; Fish, Brian; Wahl, Geneva; Sharma, Amit; Falck, John R; Paudyal, Mahesh P; Moulder, John E; Imig, John D; Cohen, Eric P

    2016-04-01

    Arachidonic acid is metabolized to epoxyeicosatrienoic acids (EETs) by CYP epoxygenases, and EETs are kidney protective in multiple pathologies. We determined the ability of an EET analogue, EET-A, to mitigate experimental radiation nephropathy. The kidney expression of the EET producing enzyme CYP2C11 was lower in rats that received total body irradiation (TBI rat) compared with non-irradiated control. At 12 weeks after TBI, the rats had higher systolic blood pressure and impaired renal afferent arteriolar function compared with control, and EET-A or captopril mitigated these abnormalities. The TBI rats had 3-fold higher blood urea nitrogen (BUN) compared with control, and EET-A or captopril decreased BUN by 40-60%. The urine albumin/creatinine ratio was increased 94-fold in TBI rats, and EET-A or captopril attenuated that increase by 60-90%. In TBI rats, nephrinuria was elevated 30-fold and EET-A or captopril decreased it by 50-90%. Renal interstitial fibrosis, tubular and glomerular injury were present in the TBI rats, and each was decreased by EET-A or captopril. We further demonstrated elevated renal parenchymal apoptosis in TBI rats, which was mitigated by EET-A or captopril. Additional studies revealed that captopril or EET-A mitigated renal apoptosis by acting on the p53/Fas/FasL (Fas ligand) apoptotic pathway. The present study demonstrates a novel EET analogue-based strategy for mitigation of experimental radiation nephropathy by improving renal afferent arteriolar function and by decreasing renal apoptosis.

  4. Design, Synthesis, and Evaluation of Genistein Analogues as Anti-Cancer Agents

    PubMed Central

    Xiong, Pahoua; Wang, Rubing; Zhang, Xiaojie; Torre, Eduardo DeLa; Leon, Francisco; Zhang, Qiang; Zheng, Shilong; Wang, Guangdi; Chen, Qiao-Hong

    2016-01-01

    Genistein is a bioactive isoflavone derived from soybeans. The tie-in between the intake of genistein and the decreased incidence of some solid tumors (including prostate cancer) has been demonstrated by epidemiological studies. The potential of genistein in treating prostate cancer has also been displayed by in vitro cell-based and in vivo animal experiments. Genistein has entered clinical trials for both chemoprevention and potential treatment of prostate cancer. Even though the low oral bioavailability has presented the major challenges to genistein’s further clinical development, chemical modulation of genistein holds the promise to generate potential anti-prostate cancer agents with enhanced potency and/or better pharmacokinetic profiles than genistein. As part of our ongoing project to develop natural products-based anti-prostate cancer agents, the current study was undertaken to synthesize eight genistein analogues for cytotoxic evaluation in three prostate cancer cell lines (PC-3, DU-145, LNCaP; both androgen-sensitive and androgen-refractory cell lines), as well as one aggressive cervical cancer cell line (HeLa). Eight genistein analogues have been successfully synthesized with Suzuki-Miyaura coupling reaction as a key step. Their in vitro anti-cancer potential was evaluated by trypan blue exclusion assay and WST-1 cell proliferation assay against a panel of four human cancer cell lines. The acquired data suggest i) that the C-5 and C-7 hydroxyl groups in genistein are very important for the cytotoxicity and anti-proliferative activity; and ii) that 1-alkyl-1H-pyrazol-4-yl and pyridine-3-yl might act as good bioisosteres for the 4'-hydroxyphenyl moiety in genistein. PMID:25991428

  5. The Effects of Humanin and Its Analogues on Male Germ Cell Apoptosis Induced by Chemotherapeutic Drugs

    PubMed Central

    Jia, Yue; Ohanyan, Aikoui; Lue, Yan-He; Swerdloff, Ronald S.; Liu, Peter Y.; Cohen, Pinchas; Wang, Christina

    2015-01-01

    Human (HN) prevents stress-induced apoptosis in many cells/tissues. In this study we showed that HN ameliorated chemotherapy (Cyclophosphamide, CP and Doxorubicin, DOX)-induced male germ cell apoptosis both ex vivo in seminiferous tubule cultures and in vivo in the testis. HN acts by several putative mechanisms via binding to: an IL-12 like trimeric membrane receptor; BAX; or Insulin-Like Growth Factor Binding Protein-3 (IGFBP-3, a proapoptotic factor). To understand the mechanisms of HN on male germ cell apoptosis, we studied five HN analogues including: HNG (HN-S14G, a potent agonist), HNG-F6A (no binding to IGFBP-3), HN-S7A (no self-dimerization), HN-C8P (no binding to BAX), and HN-L12A (a HN antagonist) on CP-induced male germ cell apoptosis in mice. CP-induced germ cell apoptosis was inhibited by HN, HNG, HNG-F6A, HN-S7A, and HN-C8P (less effective); but not by HN-L12A. HN-L12A, but not HN-S7A or HN-C8P, blocked the protective effect of HN against CP-induced male germ cell apoptosis. HN, HN-S7A, and HN-C8P restored CP-suppressed STAT3 phosphorylation. These results suggest that HN: 1) decreases DOX (ex vivo) and CP (in vivo) induced male germ cell apoptosis; 2) action is mediated by the membrane receptor/STAT3 with minor contribution by BAX-binding pathway; 3) self-dimerization or binding to IGFBP-3 may not be involved in HN’s effect in testis. HN is an important molecule in the regulation of germ cell homeostasis after injury and agonistic analogues may be developed for treating male infertility or protection against chemotherapy side effects. PMID:25666707

  6. Lipid bilayers on nano-templates

    DOEpatents

    Noy, Aleksandr; Artyukhin, Alexander B.; Bakajin, Olgica; Stoeve, Pieter

    2009-08-04

    A lipid bilayer on a nano-template comprising a nanotube or nanowire and a lipid bilayer around the nanotube or nanowire. One embodiment provides a method of fabricating a lipid bilayer on a nano-template comprising the steps of providing a nanotube or nanowire and forming a lipid bilayer around the polymer cushion. One embodiment provides a protein pore in the lipid bilayer. In one embodiment the protein pore is sensitive to specific agents

  7. Ether lipid-ester prodrugs of acyclic nucleoside phosphonates: activity against adenovirus replication in vitro.

    PubMed

    Hartline, Caroll B; Gustin, Kortney M; Wan, William B; Ciesla, Stephanie L; Beadle, James R; Hostetler, Karl Y; Kern, Earl R

    2005-02-01

    The acyclic nucleoside phosphonate cidofovir (CDV) and its closely related analogue (S)-9-(3-hydroxy-2-phosphonylmethoxypropyl)-adenine ([S]-HPMPA) have been reported to have activity against many adenovirus (AdV) serotypes. A new series of orally active ether lipid-ester prodrugs of CDV and of (S)-HPMPA that have slight differences in the structure of their lipid esters were evaluated, in tissue-culture cells, for activity against 5 AdV serotypes. The results indicated that, against several AdV serotypes, the most active compounds were 15-2500-fold more active than the unmodified parent compounds and should be evaluated further for their potential to treat AdV infections in humans.

  8. Synthetic silvestrol analogues as potent and selective protein synthesis inhibitors.

    PubMed

    Liu, Tao; Nair, Somarajan J; Lescarbeau, André; Belani, Jitendra; Peluso, Stéphane; Conley, James; Tillotson, Bonnie; O'Hearn, Patrick; Smith, Sherri; Slocum, Kelly; West, Kip; Helble, Joseph; Douglas, Mark; Bahadoor, Adilah; Ali, Janid; McGovern, Karen; Fritz, Christian; Palombella, Vito J; Wylie, Andrew; Castro, Alfredo C; Tremblay, Martin R

    2012-10-25

    Misregulation of protein translation plays a critical role in human cancer pathogenesis at many levels. Silvestrol, a cyclopenta[b]benzofuran natural product, blocks translation at the initiation step by interfering with assembly of the eIF4F translation complex. Silvestrol has a complex chemical structure whose functional group requirements have not been systematically investigated. Moreover, silvestrol has limited development potential due to poor druglike properties. Herein, we sought to develop a practical synthesis of key intermediates of silvestrol and explore structure-activity relationships around the C6 position. The ability of silvestrol and analogues to selectively inhibit the translation of proteins with high requirement on the translation-initiation machinery (i.e., complex 5'-untranslated region UTR) relative to simple 5'UTR was determined by a cellular reporter assay. Simplified analogues of silvestrol such as compounds 74 and 76 were shown to have similar cytotoxic potency and better ADME characteristics relative to those of silvestrol.

  9. Noncommutative analogue Aharonov-Bohm effect and superresonance

    NASA Astrophysics Data System (ADS)

    Anacleto, M. A.; Brito, F. A.; Passos, E.

    2013-06-01

    We consider the idea of modeling a rotating acoustic black hole by an idealized draining bathtub vortex which is a planar circulating flow phenomenon with a sink at the origin. We find the acoustic metric for this phenomenon from a noncommutative Abelian Higgs model. As such the acoustic metric not only describes a rotating acoustic black hole but also inherits the noncommutative characteristic of the spacetime. We address the issues of superresonance and analogue Aharonov-Bohm (AB) effect in this background. We mainly show that the scattering of planar waves by a draining bathtub vortex leads to a modified AB effect and due to spacetime noncommutativity, the phase shift persists even in the limit where the parameters associated with the circulation and draining vanish. Finally, we also find that the analogue AB effect and superresonance are competing phenomena at a noncommutative spacetime.

  10. Neutral Diboron Analogues of Archetypal Aromatic Species by Spontaneous Cycloaddition.

    PubMed

    Arrowsmith, Merle; Böhnke, Julian; Braunschweig, Holger; Celik, Mehmet Ali; Claes, Christina; Ewing, William C; Krummenacher, Ivo; Lubitz, Katharina; Schneider, Christoph

    2016-09-05

    Among the numerous routes organic chemists have developed to synthesize benzene derivatives and heteroaromatic compounds, transition-metal-catalyzed cycloaddition reactions are the most elegant. In contrast, cycloaddition reactions of heavier alkene and alkyne analogues, though limited in scope, proceed uncatalyzed. In this work we present the first spontaneous cycloaddition reactions of lighter alkene and alkyne analogues. Selective addition of unactivated alkynes to boron-boron multiple bonds under ambient conditions yielded diborocarbon equivalents of simple aromatic hydrocarbons, including the first neutral 6 π-aromatic diborabenzene compound, a 2 π-aromatic triplet biradical 1,3-diborete, and a phosphine-stabilized 2 π-homoaromatic 1,3-dihydro-1,3-diborete. DFT calculations suggest that all three compounds are aromatic and show frontier molecular orbitals matching those of the related aromatic hydrocarbons, C6 H6 and C4 H4 (2+) , and homoaromatic C4 H5 (+) .

  11. Highly potent metallopeptide analogues of luteinizing hormone-releasing hormone

    SciTech Connect

    Bajusz, S.; Janaky, T.; Csernus, V.J.; Bokser, L.; Fekete, M.; Srkalovic, G.; Redding, T.W.; Schally, A.V. )

    1989-08-01

    Metal complexes related to the cytotoxic complexes cisplatin (cis-diamminedichloroplatinum(II)) and transbis(salicylaldoximato)copper(II) were incorporated into suitably modified luteinizing hormone-releasing hormone (LH-RH) analogues containing D-lysine at position 6. Some of the metallopeptides thus obtained proved to be highly active LH-RH agonists or antagonists. Most metallopeptide analogues of LH-RH showed high affinities for the membrane receptors of rat pituitary and human breast cancer cells. Some of these metallopeptides had cytotoxic activity against human breast cancer and prostate cancer and prostate cancer cell lines in vitro. Such cytostatic metallopeptides could be envisioned as targeted chemotherapeutic agents in cancers that contain receptors for LH-RH-like peptides.

  12. All-dielectric metasurface analogue of electromagnetically induced transparency.

    PubMed

    Yang, Yuanmu; Kravchenko, Ivan I; Briggs, Dayrl P; Valentine, Jason

    2014-12-16

    Metasurface analogues of electromagnetically induced transparency (EIT) have been a focus of the nanophotonics field in recent years, due to their ability to produce high-quality factor (Q-factor) resonances. Such resonances are expected to be useful for applications such as low-loss slow-light devices and highly sensitive optical sensors. However, ohmic losses limit the achievable Q-factors in conventional plasmonic EIT metasurfaces to values <~10, significantly hampering device performance. Here we experimentally demonstrate a classical analogue of EIT using all-dielectric silicon-based metasurfaces. Due to extremely low absorption loss and coherent interaction of neighbouring meta-atoms, a Q-factor of 483 is observed, leading to a refractive index sensor with a figure-of-merit of 103. Furthermore, we show that the dielectric metasurfaces can be engineered to confine the optical field in either the silicon resonator or the environment, allowing one to tailor light-matter interaction at the nanoscale.

  13. New homoisoflavonoid analogues protect cells by regulating autophagy.

    PubMed

    Gan, Li-She; Zeng, Lin-Wei; Li, Xiang-Rong; Zhou, Chang-Xin; Li, Jie

    2017-03-15

    As a special group of naturally occurring flavonoids, homoisoflavonoids have been discovered as active components of several traditional Chinese medicines for nourishing heart and mind. In this study, twenty homoisoflavonoid analogues, including different substitution groups on rings A and B, as well as heteroaromatic B ring, were synthesized and evaluated for their cardioprotective and neuroprotective activities. In a H2O2-induced H9c2 cardiomyocytes injury assay, nine homoisoflavonoid analogues showed promising activities in the same level as the positive control, diazoxide. Six cardioprotective compounds with representative structure diversities were then evaluated for their neuroprotective effects on MPP+ induced SH-SY5Y cell injury model. Furthermore, autophagy inducing monodansylcadaverine (MDC) fluorescence staining methods and molecular docking studies indicated the action mechanism of these compounds may involve autophagy regulating via class I PI3K signaling pathway.

  14. New selenium-75 labeled radiopharmaceuticals: selenonium analogues of dopamine

    SciTech Connect

    Sadek, S.A.; Basmadjian, G.P.; Hsu, P.M.; Rieger, J.A.

    1983-07-01

    Selenium-75 labeled selenonium analogues of dopamine, (2-(3,4-dimethoxyphenyl)ethyl)dimethylselenonium iodide and its dihydroxy analogue, were prepared by reducing (/sup 75/Se)selenious acid with sodium borohydride at pH 6.0 and reacting the NaSeH produced with 1-(3,4-dimethoxyphenyl)-2-(p-toluenesulfonyloxy)ethane. Tissue distribution studies in rats given the /sup 75/Se-labeled selenonium agents intravenously demonstrated high initial heart uptake. Prolonged adrenal retention and high adrenal to blood ratio of compound 4 were observed. The high uptake and adrenal to blood ratio suggest the potential use of compound 4 as a radiopharmaceutical for the adrenal gland.

  15. Geoscience in Support of a Mars Methane Analogue Mission

    NASA Astrophysics Data System (ADS)

    Boivin, Alexandre

    The Mars Methane Analogue Mission, funded by the Canadian Space Agency through its Analogue Missions program, simulates a Mars rover mission whose purpose is to detect, analyse, and determine the source of methane emissions on the planet's surface. As part of this project, both an electromagnetic induction sounder (EMIS) and a high-resolution triangulation-based 3D laser scanner were tested in the field to demonstrate the benefit of including these instruments on future rover missions. EMIS data was inverted in order to derive information on the conductivity and magnetic susceptibility of the near subsurface. 3D laser scanner data was processed with fracture detection as a goal in order to simplify the search for areas of potential methane seepage. Both instruments were found to be very valuable for future rover missions of this type.

  16. A rationally designed CD4 analogue inhibits experimental allergic encephalomyelitis

    NASA Astrophysics Data System (ADS)

    Jameson, Bradford A.; McDonnell, James M.; Marini, Joseph C.; Korngold, Robert

    1994-04-01

    EXPERIMENTAL allergic encephalomyelitis (EAE) is an acute inflammatory autoimmune disease of the central nervous system that can be elicited in rodents and is the major animal model for the study of multiple sclerosis (MS)1,2. The pathogenesis of both EAE and MS directly involves the CD4+ helper T-cell subset3-5. Anti-CD4 monoclonal antibodies inhibit the development of EAE in rodents6-9, and are currently being used in human clinical trials for MS. We report here that similar therapeutic effects can be achieved in mice using a small (rationally designed) synthetic analogue of the CD4 protein surface. It greatly inhibits both clinical incidence and severity of EAE with a single injection, but does so without depletion of the CD4+ subset and without the inherent immunogenicity of an antibody. Furthermore, this analogue is capable of exerting its effects on disease even after the onset of symptoms.

  17. Optical analogue of relativistic Dirac solitons in binary waveguide arrays

    SciTech Connect

    Tran, Truong X.; Longhi, Stefano; Biancalana, Fabio

    2014-01-15

    We study analytically and numerically an optical analogue of Dirac solitons in binary waveguide arrays in the presence of Kerr nonlinearity. Pseudo-relativistic soliton solutions of the coupled-mode equations describing dynamics in the array are analytically derived. We demonstrate that with the found soliton solutions, the coupled mode equations can be converted into the nonlinear relativistic 1D Dirac equation. This paves the way for using binary waveguide arrays as a classical simulator of quantum nonlinear effects arising from the Dirac equation, something that is thought to be impossible to achieve in conventional (i.e. linear) quantum field theory. -- Highlights: •An optical analogue of Dirac solitons in nonlinear binary waveguide arrays is suggested. •Analytical solutions to pseudo-relativistic solitons are presented. •A correspondence of optical coupled-mode equations with the nonlinear relativistic Dirac equation is established.

  18. Isobaric Analogue States Studied in Mirrored Fragmentation and Knockout Reactions

    SciTech Connect

    Bentley, M.A.; Pritychenko, B.; Paterson,I.; Brown,J.R.; Taylor,M.J.; Digen,C.Aa.; Adrich,P.; Bazin,D.; Cook.J.M.; Gade,A.; Glasmacher,T.; McDaniel,S.; Ratkiewicz,A.; Siwek,K.; D.Weisshaar,D.; Pritychenko,B.; Lenzi,S.M.

    2010-05-21

    A Gamma-ray spectroscopic study of excited states of isobaric multiplets has been performed in recent years, with a view to gaining a quantitative understanding of energy differences between excited states in terms of a range of Coulomb and other isospin breaking phenomena. Recently, the experimental programme has been augmented by a study of isobaric analogue states of mirror nuclei populated in mirrored fragmentation reactions. In this presentation, recent results on the T = 3/2 analogue states in the T{sub z} = {+-} 3/2 mirror pair {sup 53}Ni/{sup 53}Mn will be summarised. In this work, further strong evidence is found for the need to include an anomalous isospin-breaking two-body matrix element for angular-momentum couplings of J = 2, in addition the expected Coulomb contribution, in order to account for the experimental data.

  19. Animal analogues for the study of dental and oral diseases.

    PubMed

    Levy, B M

    1980-01-01

    The usual laboratory animals, such as rats and hamsters, may not fit the criteria for an analogue of human periodontal disease, although they may be useful in the study of dental caries. Rats, hamsters, mice, guinea pigs and rabbits have been the animals of choice in studies relating nutritional deficiencies and excesses to the dental and oral tissues. Gerbils, dogs, cats, horses, cows and fowl are useful in the study of mineralized tissues of teeth and bones. Recently, primate analogues have been developed for the study of periodontal diseaes and dental caries, the two most important dental diseases afflicting man. The use of a wide variety of laboratory animals in basic dental research makes it timely to review some of the guidelines for the selection of specific animals for particular diseases.

  20. Analogue Transformations in Physics and their Application to Acoustics

    PubMed Central

    García-Meca, C.; Carloni, S.; Barceló, C.; Jannes, G.; Sánchez-Dehesa, J.; Martínez, A.

    2013-01-01

    Transformation optics has shaped up a revolutionary electromagnetic design paradigm, enabling scientists to build astonishing devices such as invisibility cloaks. Unfortunately, the application of transformation techniques to other branches of physics is often constrained by the structure of the field equations. We develop here a complete transformation method using the idea of analogue spacetimes. The method is general and could be considered as a new paradigm for controlling waves in different branches of physics, from acoustics in quantum fluids to graphene electronics. As an application, we derive an “analogue transformation acoustics” formalism that naturally allows the use of transformations mixing space and time or involving moving fluids, both of which were impossible with the standard approach. To demonstrate the power of our method, we give explicit designs of a dynamic compressor, a spacetime cloak for acoustic waves and a carpet cloak for a moving aircraft. PMID:23774575

  1. Alligator rivers analogue project an OECD/NEA international project

    SciTech Connect

    Duerden, P.; Airey, P.; Pescatore, C.

    1994-12-31

    The Koongarra uranium deposit in the Alligator Rivers Region of the Northern Territory of Australia was studied as a natural analogue of the far field behaviour of high level waste repositories following groundwater ingress. A number of mathematical modelling approaches were developed for processes as diverse as groundwater transport, host rock weathering, radionuclide sorption, evolution of the uranium dispersion fan and the distribution of uranium series nuclides between mineral assemblages in weathered host rock. Some of these models are relevant to performance assessment at the level of individual processes and subsystem performance. Through the project, new insights into the application of the natural analogue approach to the assessment of potential waste repository sites were obtained.

  2. Neurological Effects of Bisphenol A and its Analogues

    PubMed Central

    Inadera, Hidekuni

    2015-01-01

    The endocrine disrupting chemical bisphenol A (BPA) is widely used in the production of polycarbonate plastics and epoxy resins. The use of BPA-containing products in daily life makes exposure ubiquitous, and the potential human health risks of this chemical are a major public health concern. Although numerous in vitro and in vivo studies have been published on the effects of BPA on biological systems, there is controversy as to whether ordinary levels of exposure can have adverse effects in humans. However, the increasing incidence of developmental disorders is of concern, and accumulating evidence indicates that BPA has detrimental effects on neurological development. Other bisphenol analogues, used as substitutes for BPA, are also suspected of having a broad range of biological actions. The objective of this review is to summarize our current understanding of the neurobiological effects of BPA and its analogues, and to discuss preventive strategies from a public health perspective. PMID:26664253

  3. New Immunosuppressive Sphingoid Base and Ceramide Analogues in Wild Cordyceps

    PubMed Central

    Mi, Jia-Ning; Han, Yuwei; Xu, Yingqiong; Kou, Junping; Wang, Jing-Rong; Jiang, Zhi-Hong

    2016-01-01

    A comprehensive identification of sphingoid bases and ceramides in wild Cordyceps was performed by integrating a sequential chromatographic enrichment procedure and an UHPLC-ultrahigh definition-Q-TOF-MS based sphingolipidomic approach. A total of 43 sphingoid bases and 303 ceramides were identified from wild Cordyceps, including 12 new sphingoid base analogues and 159 new ceramide analogues based on high-resolution MS and MS/MS data, isotope distribution, matching with the comprehensive personal sphingolipid database, confirmation by sphingolipid standards and chromatographic retention time rule. The immunosuppressive bioassay results demonstrated that Cordyceps sphingoid base fraction exhibits more potent immunosuppressive activity than ceramide fraction, elucidating the immunosuppressive ingredients of wild Cordyceps. This study represented the most comprehensive identification of sphingoid bases and ceramides from a natural source. The findings of this study provided an insight into therapeutic application of wild Cordyceps. PMID:27966660

  4. New Immunosuppressive Sphingoid Base and Ceramide Analogues in Wild Cordyceps.

    PubMed

    Mi, Jia-Ning; Han, Yuwei; Xu, Yingqiong; Kou, Junping; Wang, Jing-Rong; Jiang, Zhi-Hong

    2016-12-14

    A comprehensive identification of sphingoid bases and ceramides in wild Cordyceps was performed by integrating a sequential chromatographic enrichment procedure and an UHPLC-ultrahigh definition-Q-TOF-MS based sphingolipidomic approach. A total of 43 sphingoid bases and 303 ceramides were identified from wild Cordyceps, including 12 new sphingoid base analogues and 159 new ceramide analogues based on high-resolution MS and MS/MS data, isotope distribution, matching with the comprehensive personal sphingolipid database, confirmation by sphingolipid standards and chromatographic retention time rule. The immunosuppressive bioassay results demonstrated that Cordyceps sphingoid base fraction exhibits more potent immunosuppressive activity than ceramide fraction, elucidating the immunosuppressive ingredients of wild Cordyceps. This study represented the most comprehensive identification of sphingoid bases and ceramides from a natural source. The findings of this study provided an insight into therapeutic application of wild Cordyceps.

  5. Synthesis of dehydroepiandrosterone analogues modified with phosphatidic acid moiety.

    PubMed

    Smuga, Damian A; Smuga, Małgorzata; Swizdor, Alina; Panek, Anna; Wawrzeńczyk, Czesław

    2010-12-12

    Dehydroepiandrosterone (DHEA) and its metabolite 7α-OH DHEA have many diverse physiological, biological and biochemical effects encompassing various cell types, tissues and organs. In in vitro studies, DHEA analogues have myriad biological actions, but in vivo, especially in oral administration, DHEA produces far more limited clinical effects. One of the possible solutions of this problem is conversion of DHEA to active analogues and/or its transformation into prodrug form. In this article, the studies on the conversion of DHEA and 7α-OH DHEA into their phosphatides by the phosphodiester approach are described. In this esterification, N,N-dicyclohexylcarbodiimide (DCC) was the most efficient coupling agent as well as p-toluenesulphonyl chloride (TsCl).

  6. Lipid nanoparticle interactions and assemblies

    NASA Astrophysics Data System (ADS)

    Preiss, Matthew Ryan

    Novel liposome-nanoparticle assemblies (LNAs) provide a biologically inspired route for designing multifunctional bionanotheranostics. LNAs combine the benefits of lipids and liposomes to encapsulate, transport, and protect hydrophilic and hydrophobic therapeutics with functional nanoparticles. Functional nanoparticles endow LNAs with additional capabilities, including the ability to target diseases, triggered drug release, controlled therapeutic output, and diagnostic capabilities to produce a drug delivery system that can effectively and efficiently deliver therapeutics while reducing side effects. Not only could LNAs make existing drugs better, they could also provide an avenue to allow once promising non-approved drugs (rejected due to harmful side effects, inadequate pharmacokinetics, and poor efficacy) to be safely used through targeted and controlled delivery directly to the diseased site. LNAs have the potential to be stimuli responsive, delivering drugs on command by external (ultrasound, RF heating, etc.) or internal (pH, blood sugar, heart rate, etc.) stimuli. Individually, lipids and nanoparticles have been clinically approved for therapy, such as Doxil (a liposomal doxorubicin for cancer treatment), and diagnosis, such as Feridex (an iron oxide nanoparticle an MRI contrast enhancement agent for liver tumors). In order to engineer these multifunctional LNAs for theranostic applications, the interactions between nanoparticles and lipids must be better understood. This research sought to explore the formation, design, structures, characteristics, and functions of LNAs. To achieve this goal, different types of LNAs were formed, specifically magnetoliposomes, bilayer decorated LNAs (DLNAs), and lipid-coated magnetic nanoparticles (LMNPs). A fluorescent probe was embedded in the lipid bilayer of magnetoliposomes allowing the local temperature and membrane fluidity to be observed. When subjected to an electromagnetic field that heated the encapsulated iron

  7. Active postoperative acromegaly: sustained remission after discontinuation of somatostatin analogues

    PubMed Central

    Cardenas-Salas, Jersy

    2016-01-01

    Summary In patients with active acromegaly after pituitary surgery, somatostatin analogues are effective in controlling the disease and can even be curative in some cases. After treatment discontinuation, the likelihood of disease recurrence is high. However, a small subset of patients remains symptom-free after discontinuation, with normalized growth hormone (GH) and insulin-like growth factor (IGF1) levels. The characteristics of patients most likely to achieve sustained remission after treatment discontinuation are not well understood, although limited evidence suggests that sustained remission is more likely in patients with lower GH and IGF1 levels before treatment withdrawal, in those who respond well to low-dose treatment, in those without evidence of adenoma on an MRI scan and/or in patients who receive long-term treatment. In this report, we describe the case of a 56-year-old female patient treated with lanreotide Autogel for 11 years. Treatment was successfully discontinued, and the patient is currently disease-free on all relevant parameters (clinical, biochemical and tumour status). The successful outcome in this case adds to the small body of literature suggesting that some well-selected patients who receive long-term treatment with somatostatin analogues may achieve sustained remission. Learning points: The probability of disease recurrence is high after discontinuation of treatment with somatostatin analogues. Current data indicate that remission after treatment discontinuation may be more likely in patients with low GH and IGF1 levels before treatment withdrawal, in those who respond well to low-dose treatment, in those without evidence of adenoma on MRI, and/or in patients receiving prolonged treatment. This case report suggests that prolonged treatment with somatostatin analogues can be curative in carefully selected patients. PMID:27933171

  8. OptZyme: Computational Enzyme Redesign Using Transition State Analogues

    PubMed Central

    Grisewood, Matthew J.; Gifford, Nathanael P.; Pantazes, Robert J.; Li, Ye; Cirino, Patrick C.; Janik, Michael J.; Maranas, Costas D.

    2013-01-01

    OptZyme is a new computational procedure for designing improved enzymatic activity (i.e., kcat or kcat/KM) with a novel substrate. The key concept is to use transition state analogue compounds, which are known for many reactions, as proxies for the typically unknown transition state structures. Mutations that minimize the interaction energy of the enzyme with its transition state analogue, rather than with its substrate, are identified that lower the transition state formation energy barrier. Using Escherichia coli β-glucuronidase as a benchmark system, we confirm that KM correlates (R2 = 0.960) with the computed interaction energy between the enzyme and the para-nitrophenyl- β, D-glucuronide substrate, kcat/KM correlates (R2 = 0.864) with the interaction energy of the transition state analogue, 1,5-glucarolactone, and kcat correlates (R2 = 0.854) with a weighted combination of interaction energies with the substrate and transition state analogue. OptZyme is subsequently used to identify mutants with improved KM, kcat, and kcat/KM for a new substrate, para-nitrophenyl- β, D-galactoside. Differences between the three libraries reveal structural differences that underpin improving KM, kcat, or kcat/KM. Mutants predicted to enhance the activity for para-nitrophenyl- β, D-galactoside directly or indirectly create hydrogen bonds with the altered sugar ring conformation or its substituents, namely H162S, L361G, W549R, and N550S. PMID:24116038

  9. Synthesis of a platform to access bistramides and their analogues.

    PubMed

    Commandeur, Malgorzata; Commandeur, Claude; Cossy, Janine

    2011-11-18

    The platform C14-C40, which can be used to prepare bistramide C and 39-oxobistramide K, was synthesized in 19 steps with an overall yield of 6.2%. Furthermore, the chemoselective reduction of the ketone at C-39 was performed giving an easy access to bistramides A, B, D, K, and L. Finally, the versatility of the synthesis of the C14-C40 fragment can allow the preparation of a large variety of stereoisomers to produce bistramide analogues.

  10. Effect of lipophilicity on the pharmacokinetics of radiolabeled spiperone analogues

    SciTech Connect

    Moerlein, S.M.; Laufer, P.; Stocklin, G.

    1985-05-01

    Several radiolabeled analogues of the butyrophenone neuroleptic spiperone exhibit in vivo localization in D/sub 2/ receptor-rich areas of the brain. A series of N-alkylated spiperone analogues and the corresponding p-brominated compounds were synthesized to ascertain the optimum structure for labeling with /sup 18/F or /sup 75/Br. In vivo studies indicated that all analogues had D/sub 2/ receptor-binding affinity within the same order of magnitude (IC/sub 50/=2.6 nM for SP and 3.9 nM for BPSP), whereas the lipophilicity varied greatly (log P=2.7 for SP and 5.2 for BPSP). In vivo studies in the rat using the radiobrominated analogues were done using compounds labeled with n.c.a. /sup 77/Br via in-situ oxidation by dichloramine-T or H/sub 2/O/sub 2//CH/sub 3/COOH. Alkylation of BSP was found to decrease the striatum-to-cerebellum concentration at 6 hr from 8.2 for BSP to 5.2 for BPSP. Unexpectedly, the cerebral uptake did not increase with log P, the striatal concentration dropping from 390% MBC for BSP to 85% MBC for BPSP. This contrasts with previous results for SP and MSP, where the brain uptake increases slightly with log P. Increasing lipophilicity increases blood faster than brain concentrations, and it is concluded that whereas N-alkylation may be beneficial for /sup 18/F-labeld neuroleptics, non-alkylated spiperone is the optimum labeling substrate for /sup 75/Br.

  11. Bis(vinylenedithio)tetrathiafulvalene analogues of BEDT-TTF

    PubMed Central

    Demirtas, İlknur; Ozturk, Turan

    2015-01-01

    Summary This review aims to give an overview of the current status of our research on the synthesis of π-electron donor bis(ethylenedithio)tetrathiafulvalene (BEDT-TTF, ET) analogues prepared from 1,8-diketones via a ring forming reaction. The new synthesized π-electron donors have vinyl moieties producing extended π-electron delocalization over the substituent phenyl rings at the peripheries. PMID:25977714

  12. Dimerization and DNA recognition rules of mithramycin and its analogues

    PubMed Central

    Weidenbach, Stevi; Hou, Caixia; Chen, Jhong-Min; Tsodikov, Oleg V.; Rohr, Jürgen

    2016-01-01

    The antineoplastic and antibiotic natural product mithramycin (MTM) is used against cancer-related hypercalcemia and, experimentally, against Ewing sarcoma and lung cancers. MTM exerts its cytotoxic effect by binding DNA as a divalent metal ion (Me2+)-coordinated dimer and disrupting the function of transcription factors. A precise molecular mechanism of action of MTM, needed to develop MTM analogues selective against desired transcription factors, is lacking. Although it is known that MTM binds G/C-rich DNA, the exact DNA recognition rules that would allow one to map MTM binding sites remain incompletely understood. Towards this goal, we quantitatively investigated dimerization of MTM and several of its analogues, MTM SDK (for Short side chain, DiKeto), MTM SA-Trp (for Short side chain and Acid), MTM SA-Ala, and a biosynthetic precursor premithramycin B (PreMTM B), and measured the binding affinities of these molecules to DNA oligomers of different sequences and structural forms at physiological salt concentrations. We show that MTM and its analogues form stable dimers even in the absence of DNA. All molecules, except for PreMTM B, can bind DNA with the following rank order of affinities (strong to weak): MTM = MTM SDK > MTM SA-Trp > MTM SA-Ala. An X(G/C)(G/C)X motif, where X is any base, is necessary and sufficient for MTM binding to DNA, without a strong dependence on DNA conformation. These recognition rules will aid in mapping MTM sites across different promoters towards development of MTM analogues as useful anticancer agents. PMID:26760230

  13. Synthesis of phosphonate and phostone analogues of ribose-1-phosphates

    PubMed Central

    Nasomjai, Pitak; Slawin, Alexandra M Z

    2009-01-01

    Summary The synthesis of phosphonate analogues of ribose-1-phosphate and 5-fluoro-5-deoxyribose-1-phosphate is described. Preparations of both the α- and β-phosphonate anomers are reported for the ribose and 5-fluoro-5-deoxyribose series and a synthesis of the corresponding cyclic phostones of each α-ribose is also reported. These compounds have been prepared as tools to probe the details of fluorometabolism in S. cattleya. PMID:19777136

  14. Novel ynamide structural analogues and their synthetic transformations

    PubMed Central

    Lu, Ting; Hsung, Richard P.

    2015-01-01

    This Highlight accounts for a recent phenomenon in which a series of novel ynamide structural analogues have emerged and caught the attention of the synthetic community. Preparations and reactions of these de novo ynamide variants are delineated here to demonstrate their accessibility as well as their reactivity. This Highlight should help reveal that these unique N-containing alkynes can become highly versatile building blocks in organic syntheses. PMID:26280027

  15. Evaluation of Anti-HIV-1 Mutagenic Nucleoside Analogues*

    PubMed Central

    Vivet-Boudou, Valérie; Isel, Catherine; El Safadi, Yazan; Smyth, Redmond P.; Laumond, Géraldine; Moog, Christiane; Paillart, Jean-Christophe; Marquet, Roland

    2015-01-01

    Because of their high mutation rates, RNA viruses and retroviruses replicate close to the threshold of viability. Their existence as quasi-species has pioneered the concept of “lethal mutagenesis” that prompted us to synthesize pyrimidine nucleoside analogues with antiviral activity in cell culture consistent with an accumulation of deleterious mutations in the HIV-1 genome. However, testing all potentially mutagenic compounds in cell-based assays is tedious and costly. Here, we describe two simple in vitro biophysical/biochemical assays that allow prediction of the mutagenic potential of deoxyribonucleoside analogues. The first assay compares the thermal stabilities of matched and mismatched base pairs in DNA duplexes containing or not the nucleoside analogues as follows. A promising candidate should display a small destabilization of the matched base pair compared with the natural nucleoside and the smallest gap possible between the stabilities of the matched and mismatched base pairs. From this assay, we predicted that two of our compounds, 5-hydroxymethyl-2′-deoxyuridine and 5-hydroxymethyl-2′-deoxycytidine, should be mutagenic. The second in vitro reverse transcription assay assesses DNA synthesis opposite nucleoside analogues inserted into a template strand and subsequent extension of the newly synthesized base pairs. Once again, only 5-hydroxymethyl-2′-deoxyuridine and 5-hydroxymethyl-2′-deoxycytidine are predicted to be efficient mutagens. The predictive potential of our fast and easy first line screens was confirmed by detailed analysis of the mutation spectrum induced by the compounds in cell culture because only compounds 5-hydroxymethyl-2′-deoxyuridine and 5-hydroxymethyl-2′-deoxycytidine were found to increase the mutation frequency by 3.1- and 3.4-fold, respectively. PMID:25398876

  16. Ungeremine and Its hemisynthesized analogues as bactericides against Flavobacterium columnare.

    PubMed

    Schrader, Kevin K; Avolio, Fabiana; Andolfi, Anna; Cimmino, Alessio; Evidente, Antonio

    2013-02-13

    The Gram-negative bacterium Flavobacterium columnare is the cause of columnaris disease, which can occur in channel catfish ( Ictalurus punctatus ). In a previous study, the betaine-type alkaloid ungeremine, 1, obtained from Pancratium maritimum L. was found to have strong antibacterial activity against F. columnare. In this study, analogues of 1 were evaluated using a rapid bioassay for activity against F. columnare to determine if the analogues might provide greater antibacterial activity and to determine structure-activity relationships of the test compounds. Several ungeremine analogues were prepared by hydrochlorination of the alkaloid and by selenium dioxide oxidation of both lycorine, 7, and pseudolycorine, 8, which yielded the isomer of ungeremine, 3, and zefbetaine, 4, respectively. The treatment of lycorine with phosphorus oxychloride allowed the synthesis of an anhydrolycorine lactam, 5, showing, with respect to 1, the deoxygenation and oxygenation of C-2 and C-7 of the C and B rings, respectively. The results of the structure-activity relationship studies showed that the aromatization of the C ring and the oxidation to an azomethine group of C-7 of the B ring are structural features important for antibacterial activity. In addition, the position of the oxygenation of the C ring as well as the presence of the 1,3-dioxole ring joined to the A ring of the pyrrolo[de]phenanthridine skeleton also plays a significant role in imparting antibacterial activity. On the basis of 24-h 50% inhibition concentration (IC(50)) results, ungeremine hydrochloride, 2, was similar in toxicity to 1, whereas 5 had the lowest activity. Analogue 2 is soluble in water, which may provide the benefit for use as an effective feed additive or therapeutant compared to ungeremine.

  17. The Lipids of Pneumocystis carinii

    PubMed Central

    Kaneshiro, Edna S.

    1998-01-01

    Information about a number of Pneumocystis carinii lipids obtained by the analyses of organisms isolated and purified from infected lungs of corticosteroid-immunosuppressed rats has been reported in recent years. Of the common opportunistic protists associated with AIDS (Cryptosporidium, Toxoplasma, and the microsporidia), more is currently known about the lipids of P. carinii than the others. Lipids that are synthesized by the organism but not by humans are attractive targets for drug development. Thus, the elucidation of Δ7C-24-alykylated sterol and cis-9,10-epoxystearic acid biosyntheses in P. carinii is currently being examined in detail, since these have been identified as P. carinii-specific lipids. The development of low-toxicity drugs that prevent sterol C-24 alkylation and the specific inhibition of the lipoxygenase that forms cis-9,10-epoxystearic acid might prove fruitful. Although humans can synthesize coenzyme Q10, the anti-P. carinii activity and low toxicity of ubiquinone analogs such as atovaquone suggest that the electron transport chain in the pathogen may differ importantly from that in the host. Although resistance to atovaquone has been observed, development of other naphthoquinone drugs would provide a broader armamentarium of drugs to treat patients with P. carinii pneumonia. Studies of bronchoalveolar lavage fluid and of infected lungs have demonstrated that the infection causes a number of chemical abnormalities. Bronchoalveolar lavage fluid obtained after the removal of lung cellular material and the organisms has been shown to contain larger amounts of surfactant proteins and smaller amounts of phospholipids than do comparable samples from P. carinii-free lungs. Increased phospholipase activity, inhibition of surfactant secretion by type II cells, and uptake and catabolism of lipids by the pathogen may explain this phenomenon related to P. carinii pneumonia. Although not yet thoroughly examined, initial studies on the uptake and

  18. Travelling lipid domains in a dynamic model for protein-induced pattern formation in biomembranes

    NASA Astrophysics Data System (ADS)

    John, Karin; Bär, Markus

    2005-06-01

    Cell membranes are composed of a mixture of lipids. Many biological processes require the formation of spatial domains in the lipid distribution of the plasma membrane. We have developed a mathematical model that describes the dynamic spatial distribution of acidic lipids in response to the presence of GMC proteins and regulating enzymes. The model encompasses diffusion of lipids and GMC proteins, electrostatic attraction between acidic lipids and GMC proteins as well as the kinetics of membrane attachment/detachment of GMC proteins. If the lipid-protein interaction is strong enough, phase separation occurs in the membrane as a result of free energy minimization and protein/lipid domains are formed. The picture is changed if a constant activity of enzymes is included into the model. We chose the myristoyl-electrostatic switch as a regulatory module. It consists of a protein kinase C that phosphorylates and removes the GMC proteins from the membrane and a phosphatase that dephosphorylates the proteins and enables them to rebind to the membrane. For sufficiently high enzymatic activity, the phase separation is replaced by travelling domains of acidic lipids and proteins. The latter active process is typical for nonequilibrium systems. It allows for a faster restructuring and polarization of the membrane since it acts on a larger length scale than the passive phase separation. The travelling domains can be pinned by spatial gradients in the activity; thus the membrane is able to detect spatial clues and can adapt its polarity dynamically to changes in the environment.

  19. AFM characterization of solid-supported lipid multilayers prepared by spin-coating.

    PubMed

    Pompeo, G; Girasole, M; Cricenti, A; Cattaruzza, F; Flamini, A; Prosperi, T; Generosi, J; Castellano, A Congiu

    2005-06-15

    Lipids are the principal components of biologically relevant structures as cellular membranes. They have been the subject of many studies due to their biological relevance and their potential applications. Different techniques, such as Langmuir-Blodgett and vesicle-fusion deposition, are available to deposit ordered lipid films on etched surfaces. Recently, a new technique of lipid film deposition has been proposed in which stacks of a small and well-controlled number of bilayers are prepared on a suitable substrate using a spin-coater. We studied the morphological properties of multi-layers made of cationic and neutral lipids (DOTAP and DOPC) and mixtures of them using dynamic mode atomic force microscopy (AFM). After adapting and optimizing, the spin-coating technique to deposit lipids on a chemically etched Silicon (1,0,0) substrate, a morphological nanometer-scale characterization of the aforementioned samples has been provided. The AFM study showed that an initial layer of ordered vesicles is formed and, afterward, depending on details of the spin-coating preparation protocol and to the dimension of the silicon substrate, vesicle fusion and structural rearrangements of the lipid layers may occur. The present data disclose the possibility to control the lipid's structures by acting on spin-coating parameters with promising perspectives for novel applications of lipid films.

  20. Function of lipids − their fate in contact lens wear: an interpretive review.

    PubMed

    Panaser, Amandeep; Tighe, Brian J

    2012-06-01

    Lipids play a vital role in the body at many interfaces. Examples include the lubrication of articulating joints by synovial fluid, the coating of the lung by pulmonary surfactant and the functions of the tear film in the protection of the anterior eye. The role of the lipids is similar at each site - acting as boundary lubricants and reducing surface and interfacial tension. This review focuses on how and why contact lens wear can disrupt the normal function of lipids within the tear film and explains how the otherwise advantageous presence and function of tear lipids can become disadvantageous, causing problems for the wearer. Because the contact lens is some ten times thicker than the tear film, lipids deposited on the anterior surface become immobilised, reducing lipid turnover and thus leading to prolonged exposure to oxygen and light with consequent generation of degradation products. These degraded lipids reduce lens wettability and have additionally been linked to problems of contact lens discomfort and intolerance. Lipid problems are influenced by the thickness of the lens, the material, surface modification, mode of wear and ultimately the subject. The most influential of these variables is frequently the subject.

  1. Natural analogue studies as supplements to biomineralization research

    SciTech Connect

    McNeil, M.B.

    1995-09-01

    Chemical reactions can alter the chemistry and crystal structure of solid objects over archeological or geological times, while preserving external physical shapes. The reactions resulting in these structures offer natural analogues to laboratory experiments in biomineralization and to biologically influenced alteration of nuclear waste packages, and thus, they offer the only available way of validating models that purport waste package behavior over archaeological or geological times. Potential uses of such analogues in the construction and validation of hypothetical mechanisms of microbiological corrosion and biomineralization are reviewed. Evidence from such analogues suggests that biofilms can control materials alteration in ways usually overlooked. The newly hypothesized mechanisms involve control by biofilms of the cation flow near the solid surface and offer plausible mechanisms for the formation of mixed-cation minerals under conditions that would lead to dealloying in abiotic experiments; they also account for the formation of unusual minerals [such as posnjakite, Cu{sub 4}SO{sub 4}(OH){sub 6{center_dot}}H{sub 2}O] and mineral morphologies unusual in corrosion [malachite, Cu{sub 2}CO{sub 3}(OH){sub 2}, rarely forms botryoidally under corrosion conditions and its occasional presence on archaeological objects that appear to have undergone microbiological corrosion may be related to biofilm phenomena].

  2. Analogue Investigations into Magma-Cryosphere Interactions on Mars

    NASA Astrophysics Data System (ADS)

    Tyson, S.; Wilson, L.; Lane, S. J.; Airey, M. W.; Gilbert, J. S.

    2011-12-01

    Many landforms and morphological features thought to have resulted from magma-cryosphere interactions have been identified on Mars. However, few experimental studies have been conducted to investigate the physical and thermal changes that should occur in the subsurface during these interactions. This project aims to begin to address this by conducting a series of laboratory analogue experiments. We introduce a heat source into a block of analogue cryosphere material (a carefully-prepared mixture of solid grains and ice) and record the thermal development within the block using thermocouples. We use these measurements to interpret the physical activity within the block, such as when and where phase changes occur, what sequence of shapes the developing melt region takes, and the extent of convection of any fluid phase H20. Blocks are also dissected after each run and documented photographically to record any physical movement of grains. Results will be used to constrain variables within a heat flow model that we are developing. This model will then be applied to the interpretation of landforms on Mars to help determine what set of processes could have realistically occurred during their formation. A second series of experiments will investigate surface morphological changes on the cryosphere analogue blocks. Resultant morphologies will be recorded and compared with existing martian landforms to again provide insight into formation processes.

  3. The UVB1 Vitamin D analogue inhibits colorectal carcinoma progression.

    PubMed

    Ferronato, María Julia; Alonso, Eliana Noelia; Gandini, Norberto Ariel; Fermento, María Eugenia; Villegas, María Emilia; Quevedo, Mario Alfredo; Arévalo, Julián; López Romero, Alejandro; Rivadulla, Marcos Lois; Gómez, Generosa; Fall, Yagamare; Facchinetti, María Marta; Curino, Alejandro Carlos

    2016-10-01

    Vitamin D has been shown to display a wide variety of antitumour effects, but their therapeutic use is limited by its severe side effects. We have designed and synthesized a Gemini vitamin D analogue of calcitriol (UVB1) which has shown to display antineoplastic effects on different cancer cell lines without causing hypercalcemia. The aim of this work has been to investigate, by employing in silico, in vitro, and in vivo assays, whether UVB1 inhibits human colorectal carcinoma progression. We demonstrated that UVB1 induces apoptotic cell death and retards cellular migration and invasion of HCT116 colorectal carcinoma cells. Moreover, the analogue reduced the tumour volume in vivo, and modulated the expression of Bax, E-cadherin and nuclear β-catenin in tumour animal tissues without producing toxic effects. In silico analysis showed that UVB1 exhibits greater affinity for the ligand binding domain of vitamin D receptor than calcitriol, and that several characteristics in the three-dimensional conformation of VDR may influence the biological effects. These results demonstrate that the Gemini vitamin D analogue affects the growth of the colorectal cancer and suggest that UVB1 is a potential chemotherapeutic agent for treatment of this disease.

  4. Design and synthesis of biotin analogues reversibly binding with streptavidin.

    PubMed

    Yamamoto, Tomohiro; Aoki, Kiyoshi; Sugiyama, Akira; Doi, Hirofumi; Kodama, Tatsuhiko; Shimizu, Yohei; Kanai, Motomu

    2015-04-01

    Two new biotin analogues, biotin carbonate 5 and biotin carbamate 6, have been synthesized. These molecules were designed to reversibly bind with streptavidin by replacing the hydrogen-bond donor NH group(s) of biotin's cyclic urea moiety with oxygen. Biotin carbonate 5 was synthesized from L-arabinose (7), which furnishes the desired stereochemistry at the 3,4-cis-dihydroxy groups, in 11% overall yield (over 10 steps). Synthesis of biotin carbamate 6 was accomplished from L-cysteine-derived chiral aldehyde 33 in 11% overall yield (over 7 steps). Surface plasmon resonance analysis of water-soluble biotin carbonate analogue 46 and biotin carbamate analogue 47 revealed that KD values of these compounds for binding to streptavidin were 6.7×10(-6)  M and 1.7×10(-10)  M, respectively. These values were remarkably greater than that of biotin (KD =10(-15)  M), and thus indicate the importance of the nitrogen atoms for the strong binding between biotin and streptavidin.

  5. Transdermal delivery of a melanotropic peptide hormone analogue

    SciTech Connect

    Dawson, B.V.; Hadley, M.E.; Kreutzfeld, K.; Dorr, R.T.; Hruby, V.J.; Al-Obeidi, F.; Don, S.

    1988-01-01

    We previously reported that topical application of (Nl3/sup 4/,D-Phe/sup 7/)alpha-MSH, a superpotent analogue of alpha-melanocyte stimulating hormone, to mice induces a darkening of follicular melanocytes throughout the skin. We now report that the melanotropin analogue can be delivered across mouse but not rat skin in an in vitro model system. Passage of the analogue from the topically applied vehicle (polyethylene glycol) across the skin into a subcutaneous receiving vessel was demonstrated by both bioassay as well as by radioimmunoassay. The bioassay data demonstrate that percutaneous absorption of the melanotropin did not result in loss of biological activity of the peptide. The differential penetration of the peptide across rodent skin reveals that one cannot predict percutaneous absorption of a substance across the stratum corneum from studies on a single species. The present results are the first to demonstrate, by direct quantitative measurements, that a bioactive peptide can be delivered across the vertebrate integument in vitro. These studies point out the potential of a topically applied melanotropin for tanning of the skin and possibly for treatment of certain hypopigmentary disorders.

  6. Contact zones and hydrothermal systems as analogues to repository conditions

    SciTech Connect

    Wollenberg, H.A.; Flexser, S.

    1984-10-01

    Radioactive waste isolation efforts in the US are currently focused on examining basalt, tuff, salt, and crystalline rock as candidate rock types to encompass waste repositories. As analogues to near-field conditions, the distributions of radio- and trace-elements have been examined across contacts between these rocks and dikes and stocks that have intruded them. The intensive study of the Stripa quartz monzonite has also offered the opportunity to observe the distribution of uranium and its daughters in groundwater and its relationship to U associated with fracture-filling and alteration minerals. Investigations of intrusive contact zones to date have included (1) a tertiary stock into Precambrian gneiss, (2) a stock into ash flow tuff, (3) a rhyodacite dike into Columbia River basalt, and (4) a kimberlite dike into salt. With respect to temperature and pressure, these contact zones may be considered "worst-case scenario" analogues. Results indicate that there has been no appreciable migration of radioelements from the more radioactive intrusives into the less radioactive country rocks, either in response to the intrusions or in the fracture-controlled hydrological systems that developed following emplacement. In many cases, the radioelements are locked up in accessory minerals, suggesting that artificial analogues to these would make ideal waste forms. Emphasis should now shift to examination of active hydrothermal systems, studying the distribution of key elements in water, fractures, and alteration minerals under pressure and temperature conditions most similar to those expected in the near-field environment of a repository. 14 refs.

  7. THE PENA BLANCA NATURAL ANALOGUE PERFORMANCE ASSESSMENT MODEL

    SciTech Connect

    G. Saulnier and W. Statham

    2006-04-16

    The Nopal I uranium mine in the Sierra Pena Blanca, Chihuahua, Mexico serves as a natural analogue to the Yucca Mountain repository. The Pena Blanca Natural Analogue Performance Assessment Model simulates the mobilization and transport of radionuclides that are released from the mine and transported to the saturated zone. The Pena Blanca Natural Analogue Performance Assessment Model uses probabilistic simulations of hydrogeologic processes that are analogous to the processes that occur at the Yucca Mountain site. The Nopal I uranium deposit lies in fractured, welded, and altered rhyolitic ash-flow tuffs that overlie carbonate rocks, a setting analogous to the geologic formations at the Yucca Mountain site. The Nopal I mine site has the following analogous characteristics as compared to the Yucca Mountain repository site: (1) Analogous source--UO{sub 2} uranium ore deposit = spent nuclear fuel in the repository; (2) Analogous geology--(i.e. fractured, welded, and altered rhyolitic ash-flow tuffs); (3) Analogous climate--Semiarid to arid; (4) Analogous setting--Volcanic tuffs overlie carbonate rocks; and (5) Analogous geochemistry--Oxidizing conditions Analogous hydrogeology: The ore deposit lies in the unsaturated zone above the water table.

  8. An adenosine nucleoside analogue NITD008 inhibits EV71 proliferation.

    PubMed

    Shang, Luqing; Wang, Yaxin; Qing, Jie; Shu, Bo; Cao, Lin; Lou, Zhiyong; Gong, Peng; Sun, Yuna; Yin, Zheng

    2014-12-01

    Enterovirus 71 (EV71), one of the major causative agents of Hand-Foot-Mouth Disease (HFMD), causes severe pandemics and hundreds of deaths in the Asia-Pacific region annually and is an enormous public health threat. However, effective therapeutic antiviral drugs against EV71 are rare. Nucleoside analogues have been successfully used in the clinic for the treatment of various viral infections. We evaluated a total of 27 nucleoside analogues and discovered that an adenosine nucleoside analogue NITD008, which has been reported to be an antiviral reagent that specifically inhibits flaviviruses, effectively suppressed the propagation of different strains of EV71 in RD, 293T and Vero cells with a relatively high selectivity index. Triphosphorylated NITD008 (ppp-NITD008) functions as a chain terminator to directly inhibit the RNA-dependent RNA polymerase activity of EV71, and it does not affect the EV71 VPg uridylylation process. A significant synergistic anti-EV71 effect of NITD008 with rupintrivir (AG7088) (a protease inhibitor) was documented, supporting the potential combination therapy of NITD008 with other inhibitors for the treatment of EV71 infections.

  9. Stereochemical Assignment of Strigolactone Analogues Confirms Their Selective Biological Activity.

    PubMed

    Artuso, Emma; Ghibaudi, Elena; Lace, Beatrice; Marabello, Domenica; Vinciguerra, Daniele; Lombardi, Chiara; Koltai, Hinanit; Kapulnik, Yoram; Novero, Mara; Occhiato, Ernesto G; Scarpi, Dina; Parisotto, Stefano; Deagostino, Annamaria; Venturello, Paolo; Mayzlish-Gati, Einav; Bier, Ariel; Prandi, Cristina

    2015-11-25

    Strigolactones (SLs) are new plant hormones with various developmental functions. They are also soil signaling chemicals that are required for establishing beneficial mycorrhizal plant/fungus symbiosis. In addition, SLs play an essential role in inducing seed germination in root-parasitic weeds, which are one of the seven most serious biological threats to food security. There are around 20 natural SLs that are produced by plants in very low quantities. Therefore, most of the knowledge on SL signal transduction and associated molecular events is based on the application of synthetic analogues. Stereochemistry plays a crucial role in the structure-activity relationship of SLs, as compounds with an unnatural D-ring configuration may induce biological effects that are unrelated to SLs. We have synthesized a series of strigolactone analogues, whose absolute configuration has been elucidated and related with their biological activity, thus confirming the high specificity of the response. Analogues bearing the R-configured butenolide moiety showed enhanced biological activity, which highlights the importance of this stereochemical motif.

  10. TREATMENT OF TYPE 2 DIABETES WITH BIPHASIC INSULIN ANALOGUES

    PubMed Central

    Rizvi, Ali A.

    2016-01-01

    The majority of patients with Type 2 diabetes require insulin therapy for treating hyperglycaemia. There are several regimens available for insulin initiation and maintenance. Insulin analogues have been developed to mimic normal physiology as closely as possible. Biphasic analogues can target both fasting and postprandial hyperglycaemia, with the added advantage of being premixed and thus convenient for the patient. A practical and feasible option is to initiate insulin with one or more biphasic preparations at mealtimes, thus providing both basal and prandial coverage. Individual titration of dose and frequency of daily injections with biphasic insulin preparations has the potential for improving glycaemic control with a high degree of patient acceptance. Drawbacks include a more rigid regimen, a relative lack of flexibility, and a somewhat higher degree of glycaemic variability and hypoglycaemia when compared to multiple daily basal-bolus injections. Awareness of the advantages and limitations of biphasic insulin analogues can assist clinicians in their appropriate use for the treatment of patients with Type 2 diabetes. PMID:27918600

  11. Do film soundtracks contain nonlinear analogues to influence emotion?

    PubMed Central

    Blumstein, Daniel T.; Davitian, Richard; Kaye, Peter D.

    2010-01-01

    A variety of vertebrates produce nonlinear vocalizations when they are under duress. By their very nature, vocalizations containing nonlinearities may sound harsh and are somewhat unpredictable; observations that are consistent with them being particularly evocative to those hearing them. We tested the hypothesis that humans capitalize on this seemingly widespread vertebrate response by creating nonlinear analogues in film soundtracks to evoke particular emotions. We used lists of highly regarded films to generate a set of highly ranked action/adventure, dramatic, horror and war films. We then scored the presence of a variety of nonlinear analogues in these film soundtracks. Dramatic films suppressed noise of all types, contained more abrupt frequency transitions and musical sidebands, and fewer noisy screams than expected. Horror films suppressed abrupt frequency transitions and musical sidebands, but had more non-musical sidebands, and noisy screams than expected. Adventure films had more male screams than expected. Together, our results suggest that film-makers manipulate sounds to create nonlinear analogues in order to manipulate our emotional responses. PMID:20504815

  12. Do film soundtracks contain nonlinear analogues to influence emotion?

    PubMed

    Blumstein, Daniel T; Davitian, Richard; Kaye, Peter D

    2010-12-23

    A variety of vertebrates produce nonlinear vocalizations when they are under duress. By their very nature, vocalizations containing nonlinearities may sound harsh and are somewhat unpredictable; observations that are consistent with them being particularly evocative to those hearing them. We tested the hypothesis that humans capitalize on this seemingly widespread vertebrate response by creating nonlinear analogues in film soundtracks to evoke particular emotions. We used lists of highly regarded films to generate a set of highly ranked action/adventure, dramatic, horror and war films. We then scored the presence of a variety of nonlinear analogues in these film soundtracks. Dramatic films suppressed noise of all types, contained more abrupt frequency transitions and musical sidebands, and fewer noisy screams than expected. Horror films suppressed abrupt frequency transitions and musical sidebands, but had more non-musical sidebands, and noisy screams than expected. Adventure films had more male screams than expected. Together, our results suggest that film-makers manipulate sounds to create nonlinear analogues in order to manipulate our emotional responses.

  13. Noble gas encapsulation: clathrate hydrates and their HF doped analogues.

    PubMed

    Mondal, Sukanta; Chattaraj, Pratim Kumar

    2014-09-07

    The significance of clathrate hydrates lies in their ability to encapsulate a vast range of inert gases. Although the natural abundance of a few noble gases (Kr and Xe) is poor their hydrates are generally abundant. It has already been reported that HF doping enhances the stability of hydrogen hydrates and methane hydrates, which prompted us to perform a model study on helium, neon and argon hydrates with their HF doped analogues. For this purpose 5(12), 5(12)6(8) and their HF doped analogues are taken as the model clathrate hydrates, which are among the building blocks of sI, sII and sH types of clathrate hydrate crystals. We use the dispersion corrected and gradient corrected hybrid density functional theory for the calculation of thermodynamic parameters as well as conceptual density functional theory based reactivity descriptors. The method of the ab initio molecular dynamics (AIMD) simulation is used through atom centered density matrix propagation (ADMP) techniques to envisage the structural behaviour of different noble gas hydrates on a 500 fs timescale. Electron density analysis is carried out to understand the nature of Ng-OH2, Ng-FH and Ng-Ng interactions. The current results noticeably demonstrate that the noble gas (He, Ne, and Ar) encapsulation ability of 5(12), 5(12)6(8) and their HF doped analogues is thermodynamically favourable.

  14. Spin Alignment in Analogues of The Local Sheet

    NASA Astrophysics Data System (ADS)

    Conidis, George J.

    2016-10-01

    Tidal torque theory and simulations of large scale structure predict spin vectors of massive galaxies should be coplanar with sheets in the cosmic web. Recently demonstrated, the giants (K s <= -22.5 mag) in the Local Volume beyond the Local Sheet have spin vectors directed close to the plane of the Local Supercluster, supporting the predictions of Tidal Torque Theory. However, the giants in the Local Sheet encircling the Local Group display a distinctly different arrangement, suggesting that the mass asymmetry of the Local Group or its progenitor torqued them from their primordial spin directions. To investigate the origin of the spin alignment of giants locally, analogues of the Local Sheet were identified in the SDSS DR9. Similar to the Local Sheet, analogues have an interacting pair of disk galaxies isolated from the remaining sheet members. Modified sheets in which there is no interacting pair of disk galaxies were identified as a control sample. Galaxies in face-on control sheets do not display axis ratios predominantly weighted toward low values, contrary to the expectation of tidal torque theory. For face-on and edge-on sheets, the distribution of axis ratios for galaxies in analogues is distinct from that in controls with a confidence of 97.6% & 96.9%, respectively. This corroborates the hypothesis that an interacting pair can affect spin directions of neighbouring galaxies.

  15. Four-quadrant analogue multiplier using operational amplifier

    NASA Astrophysics Data System (ADS)

    Riewruja, Vanchai; Rerkratn, Apinai

    2011-04-01

    A method to realise a four-quadrant analogue multiplier using general-purpose operational amplifiers (opamps) as only the active elements is described in this article. The realisation method is based on the quarter-square technique, which utilises the inherent square-law characteristic of class AB output stage of the opamp. The multiplier can be achieved from the proposed structure with using either bipolar or complementary metal-oxide-semiconductor (CMOS) opamps. The operation principle of the proposed multiplier has been confirmed by PSPICE analogue simulation program. Simulation results reveal that the principle of proposed scheme provides an adequate performance for a four-quadrant analogue multiplier. Experimental implementations of the proposed multiplier using bipolar and CMOS opamps are performed to verify the circuit performances. Measured results of the experimental proposed schemes based on the use of bipolar and CMOS opamps with supply voltage ±2.4 V show the worst-case relative errors of 0.32% and 0.47%, and the total harmonic distortions of 0.47% and 0.98%, respectively.

  16. Bilateral Choroidal Metastases from Endobronchial Carcinoid Treated with Somatostatin Analogues

    PubMed Central

    De Bruyn, Deborah; Lamont, Jan; Vanderstraeten, Erik; Van Belle, Simon; Platteau, Elise; De Zaeytijd, Julie; Hoornaert, Kristien P.

    2016-01-01

    Objective: To describe a patient with bilateral multifocal choroidal metastases from an endobronchial carcinoid treated with a somatostatin analogue. Method: A 60-year-old woman presenting with photopsia in the left eye underwent an extensive ophthalmic examination, including fluorescein angiography, OCT and ultrasound. Results: Fundoscopy revealed a small retinal tear in the left eye, for which she received laser treatment. In addition, choroidal masses were detected in both eyes. Her medical history of a pneumectomy for a bronchial carcinoid six years earlier together with recent elevated chromogranin A blood levels prompted a diagnosis of choroidal metastases. Subsequently, a Gallium-68 DOTANOC positron emitting tomography/computer tomography scan revealed a spinal cord metastasis and mediastinal as well as mesenterial lymph node invasion. Systemic treatment with Sandostatin®, a somatostatin analogue was started. Up until two years after the initial presentation and treatment, these choroidal lesions remained stable without any signs of growth. Conclusion: Endobronchial carcinoid tumors have an indolent nature and long-term follow-up is recommended for early detection of metastases. Although treatment with somatostatin analogues rarely induces complete tumor regression, tumor stabilization and prevention of symptoms related to hormone secretion is achieved. This well-tolerated systemic treatment provides a worthy alternative treatment for choroidal metastasis compared to classic radiotherapy without any risk of radiation or laser-related visual loss. PMID:27843513

  17. Engineering the push and pull of lipid biosynthesis in oleaginous yeast Yarrowia lipolytica for biofuel production.

    PubMed

    Tai, Mitchell; Stephanopoulos, Gregory

    2013-01-01

    Microbial oil production by heterotrophic organisms is a promising path for the cost-effective production of biofuels from renewable resources provided high conversion yields can be achieved. To this end, we have engineered the oleaginous yeast Yarrowia lipolytica. We first established an expression platform for high expression using an intron-containing translation elongation factor-1α (TEF) promoter and showed that this expression system is capable of increasing gene expression 17-fold over the intronless TEF promoter. We then used this platform for the overexpression of diacylglycerol acyltransferase (DGA1), the final step of the triglyceride (TAG) synthesis pathway, which yielded a 4-fold increase in lipid production over control, to a lipid content of 33.8% of dry cell weight (DCW). We also show that the overexpression of acetyl-CoA carboxylase (ACC1), the first committed step of fatty acid synthesis, increased lipid content 2-fold over control, or 17.9% lipid content. Next we combined the two genes in a tandem gene construct for the simultaneous coexpression of ACC1 and DGA1, which further increased lipid content to 41.4%, demonstrating synergistic effects of ACC1+DGA1 coexpression. The lipid production characteristics of the ACC1+DGA1 transformant were explored in a 2-L bioreactor fermentation, achieving 61.7% lipid content after 120h. The overall yield and productivity were 0.195g/g and 0.143g/L/h, respectively, while the maximum yield and productivity were 0.270g/g and 0.253g/L/h during the lipid accumulation phase of the fermentation. This work demonstrates the excellent capacity for lipid production by the oleaginous yeast Y. lipolytica and the effects of metabolic engineering of two important steps of the lipid synthesis pathway, which acts to divert flux towards the lipid synthesis and creates driving force for TAG synthesis.

  18. Acts of kindness and acts of novelty affect life satisfaction.

    PubMed

    Buchanan, Kathryn E; Bardi, Anat

    2010-01-01

    The present experiment was designed to establish the effects of acts of kindness and acts of novelty on life satisfaction. Participants aged 18-60 took part on a voluntary basis. They were randomly assigned to perform either acts of kindness, acts of novelty, or no acts on a daily basis for 10 days. Their life satisfaction was measured before and after the 10-day experiment. As expected, performing acts of kindness or acts of novelty resulted in an increase in life satisfaction.

  19. Draconian dress act repealed.

    PubMed

    Mhone, C

    1994-01-01

    The Dress Act was put into place in Malawi by the government of President Kamuzu Banda after the long period of direct colonialism. The act made it illegal for women in Malawi to be seen publicly wearing dresses which did not completely cover their knees or wearing pants; men had to wear their hair short. Police officers even scrutinized women's attire at private house parties and in homes. The autocratic political structure established by Banda, however, was voted out in a referendum June 14, 1993. Pressure by opposition forces such as the United Democratic Front forced a repeal of the act on November 16 of the same year. The repeal was vigorously attacked by female Parliament members as a move which would result in moral degradation and an increase in the level of sexual harassment against women. Other citizens and tourists have generally detested the act. The act has most certainly kept many potential visitors from vacationing in Malawi. Some expert observers think that repeals of the Dress Act, the Forfeiture Act, and legislation which allowed the government to detain opposition figures without trial were done to garner support from the Paris Club for the resumption of balance of payments support suspended due to the country's poor human rights record.

  20. Nitrogen-Deprivation Elevates Lipid Levels in Symbiodinium spp. by Lipid Droplet Accumulation: Morphological and Compositional Analyses

    PubMed Central

    Jiang, Pei-Luen; Pasaribu, Buntora; Chen, Chii-Shiarng

    2014-01-01

    Stable cnidarian-dinoflagellate (genus Symbiodinium) endosymbioses depend on the regulation of nutrient transport between Symbiodinium populations and their hosts. It has been previously shown that the host cytosol is a nitrogen-deficient environment for the intracellular Symbiodinium and may act to limit growth rates of symbionts during the symbiotic association. This study aimed to investigate the cell proliferation, as well as ultrastructural and lipid compositional changes, in free-living Symbiodinium spp. (clade B) upon nitrogen (N)-deprivation. The cell proliferation of the N-deprived cells decreased significantly. Furthermore, staining with a fluorescent probe, boron dipyrromethane 493/503 (BODIPY 493/503), indicated that lipid contents progressively accumulated in the N-deprived cells. Lipid analyses further showed that both triacylglycerol (TAG) and cholesterol ester (CE) were drastically enriched, with polyunsaturated fatty acids (PUFA; i.e., docosahexaenoic acid, heneicosapentaenoic acid, and oleic acid) became more abundant. Ultrastructural examinations showed that the increase in concentration of these lipid species was due to the accumulation of lipid droplets (LDs), a cellular feature that have previously shown to be pivotal in the maintenance of intact endosymbioses. Integrity of these stable LDs was maintained via electronegative repulsion and steric hindrance possibly provided by their surface proteins. Proteomic analyses of these LDs identified proteins putatively involved in lipid metabolism, signaling, stress response and energy metabolism. These results suggest that LDs production may be an adaptive response that enables Symbiodinium to maintain sufficient cellular energy stores for survival under the N-deprived conditions in the host cytoplasm. PMID:24475285