Science.gov

Sample records for lipid binding site

  1. Lipid A binding sites in membranes of macrophage tumor cells

    SciTech Connect

    Hampton, R.Y.; Golenbock, D.T.; Raetz, C.R.

    1988-10-15

    Lipopolysaccharide affects a variety of eukaryotic cells and mammalian organisms. These actions are involved in the pathogenesis of Gram-negative septicemia. Many of the actions of lipopolysaccharide are believed to be caused by its active moiety, lipid A. Our laboratory has previously identified a bioactive lipid A precursor, termed lipid IVA, which can be labeled with 32P of high specific activity and purified. In this work we have used the labeled probe, 4'-32P-lipid IVA, to develop a novel assay for the specific binding of lipid IVA to whole cells. We have also demonstrated its use in a ligand blotting assay of immobilized cellular proteins. Using the whole cell assay, we show that 4'-32P-lipid IVA specifically binds to RAW 264.7 macrophage-like cultured cells. The binding is saturable, is inhibited with excess unlabeled lipid IVA, and is proteinase K-sensitive. It displays cellular and pharmacological specificity. Using the ligand blotting assay, we show that several RAW 264.7 cell proteins can bind 4'-32P-lipid IVA. The two principal binding proteins have Mr values of 31 and 95 kDa, as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Fractionation studies indicate that the 31-kDa protein is enriched in the nuclear fraction and may be a histone, whereas the 95-kDa protein is enriched in the membrane fraction. The binding assays that we have developed should lead to a clearer understanding of lipid A/animal cell interactions.

  2. Lipid binding to the carotenoid binding site in photosynthetic reaction centers.

    PubMed

    Deshmukh, Sasmit S; Tang, Kai; Kálmán, László

    2011-10-12

    Lipid binding to the carotenoid binding site near the inactive bacteriochlorophyll monomer was probed in the reaction centers of carotenoid-less mutant, R-26 from Rhodobacter sphaeroides. Recently, a marked light-induced change of the local dielectric constant in the vicinity of the inactive bacteriochlorophyll monomer was reported in wild type that was attributed to structural changes that ultimately lengthened the lifetime of the charge-separated state by 3 orders of magnitude (Deshmukh, S. S.; Williams, J. C.; Allen, J. P.; Kalman, L. Biochemistry 2011, 50, 340). Here in the R-26 reaction centers, the combination of light-induced structural changes and lipid binding resulted in a 5 orders of magnitude increase in the lifetime of the charge-separated state involving the oxidized dimer and the reduced primary quinone in proteoliposomes. Only saturated phospholipids with fatty acid chains of 12 and 14 carbon atoms long were bound successfully at 8 °C by cooling the reaction center protein slowly from room temperature. In addition to reporting a dramatic increase of the lifetime of the charge-separated state at physiologically relevant temperatures, this study reveals a novel lipid binding site in photosynthetic reaction center. These results shed light on a new potential application of the reaction center in energy storage as a light-driven biocapacitor since the charges separated by ∼30 Å in a low-dielectric medium can be prevented from recombination for hours.

  3. Site-directed lipid modification of IgG-binding protein by intracellular bacterial lipoprotein process.

    PubMed

    Shigematsu, H; Ebihara, T; Yanagida, Y; Haruyama, T; Kobatake, E; Aizawa, M

    1999-09-24

    IgG-binding protein was genetically expressed and lipid-modified in a site-directed manner in Escherichia coli. The DNA sequence encoding the signal peptide and the nine N-terminal amino acid residues of the major lipoprotein of E. coli (lpp) was fused to the sequence of B-domain which was one of the IgG binding domains of Staphylococcal Protein A (SpA). The N-terminal cysteine residue of the resulting protein was enzymatically linked with lipids in the bacterial membrane. The lipid-modified protein was translocated at the bacterial membrane in a manner similar to native bacterial lipoprotein, and it was purified with IgG-Sepharose by affinity chromatography. The lipid modified proteins (lppB1 and lppB5) showed a similar IgG binding activity to unmodified proteins, which was estimated by competitive ELISA. Proteoliposomes of lipid modified proteins were prepared in an elegant fashion so that the IgG binding site should be properly oriented on the surface of an individual liposome by anchoring the lipid-tail into the hydrophobic layer of the liposome membrane. As compared with the unmodified one, the lipid modified protein incorporated into the proteoliposome exhibited higher IgG binding activity.

  4. Does distant homology with Evf reveal a lipid binding site in Bacillus thuringiensis cytolytic toxins?

    PubMed

    Rigden, Daniel J

    2009-05-19

    The Cry and Cyt classes of insecticidal toxins derived from the sporulating bacterium Bacillus thuringiensis are valuable substitutes for synthetic pesticides in agricultural contexts. Crystal structures and many biochemical data have provided insights into their molecular mechanisms, generally thought to involve oligomerization and pore formation, but have not localised the site on Cyt toxins responsible for selective binding of phospholipids containing unsaturated fatty acids. Here, distant homology between the structure of Cyt toxins and Erwinia virulence factor (Evf) is demonstrated which, along with sequence conservation analysis, allows a putative lipid binding site to be localised in the toxins.

  5. Hedgehog Pathway Modulation by Multiple Lipid Binding Sites on the Smoothened Effector of Signal Response

    PubMed Central

    Myers, Benjamin R.; Sever, Navdar; Chong, Yong Chun; Kim, James; Belani, Jitendra D.; Rychnovsky, Scott; Bazan, J. Fernando; Beachy, Philip A.

    2014-01-01

    Summary Hedgehog (Hh) signaling during development and in postembryonic tissues requires activation of the 7TM oncoprotein Smoothened (Smo), by mechanisms that may involve endogenous lipidic modulators. Exogenous Smo ligands previously identified include the plant sterol cyclopamine (and its therapeutically useful synthetic mimics) and hydroxylated cholesterol derivatives (oxysterols); Smo is also highly sensitive to cellular sterol levels. The relationships between these effects are unclear because the relevant Smo structural determinants are unknown. We identify the conserved extracellular cysteine rich domain (CRD) as the site of action for oxysterols on Smo, involving residues structurally analogous to those contacting the Wnt lipid adduct in the homologous Frizzled CRD; this modulatory effect is distinct from that of cyclopamine mimics, from Hh-mediated regulation, and from the permissive action of cellular sterol pools. These results imply that Hh pathway activity is sensitive to lipid binding at several Smo sites, suggesting mechanisms for tuning by multiple physiological inputs. PMID:23954590

  6. Sigma-1 receptors (sigma(1) binding sites) form raft-like microdomains and target lipid droplets on the endoplasmic reticulum: roles in endoplasmic reticulum lipid compartmentalization and export.

    PubMed

    Hayashi, Teruo; Su, Tsung-Ping

    2003-08-01

    The brain sigma-1 receptors can bind neurosteroids and psychotropic drugs, including neuroleptics and cocaine and are implicated in schizophrenia, depression, and drug dependence. In this study, we found that sigma-1 receptors specifically target lipid storage sites (lipid droplets) on the endoplasmic reticulum by forming a distinct class of lipid microdomains. Both endogenously expressing sigma-1 receptors and transfected C-terminally enhanced yellow fluorescent protein (EYFP)-tagged sigma-1 receptors (Sig-1R-EYFP) target unique "ring-like" structures associated with endoplasmic reticulum reticular networks in NG108-15 cells. The ring-like structures contain neutral lipids and are enlarged by the oleate treatment, indicating that they are endoplasmic reticulum-associated lipid droplets (ER-LDs). sigma-1 receptors colocalize with caveolin-2, a cholesterol-binding protein in lipid rafts on the ER-LDs, but not with adipocyte differentiation-related protein (ADRP), a cytosolic lipid droplet (c-LD)-specific protein. When the double-arginine ER retention signal on the N terminus of sigma-1 receptors is truncated, sigma-1 receptors no longer exist on ER-LDs, but predominantly target c-LDs, which contain ADRP. sigma-1 receptors on ER-LDs form detergent-resistant raft-like lipid microdomains, the buoyancy of which is different from that of plasma membrane lipid rafts. (+)-Pentazocine causes sigma-1 receptors to disappear from the microdomains. N-Terminally EYFP-tagged sigma-1 receptors (EYFP-Sig-1R) failed to target ER-LDs. EYFP-Sig-1R-transfected cells showed an unrestricted distribution of neutral lipids all over the endoplasmic reticulum network, decreases in c-LDs and cholesterol in plasma membranes, and the bulbous aggregation of endoplasmic reticulum. Thus, sigma-1 receptors are unique endoplasmic reticulum proteins that regulate the compartmentalization of lipids on the endoplasmic reticulum and their export from the endoplasmic reticulum to plasma membrane and c-LDs.

  7. Polymorphisms in lipid metabolism related miRNA binding sites and risk of metabolic syndrome.

    PubMed

    Ye, Qing; Zhao, Xu; Xu, Kang; Li, Qian; Cheng, Jinluo; Gao, Yanqin; Du, Juan; Shi, Hui; Zhou, Ling

    2013-10-10

    MicroRNAs (miRNAs) regulate posttranscriptional gene expression usually by binding to 3'-untranslated regions (3'UTRs) of target message RNAs (mRNAs). Previous studies have demonstrated that SNPs within miRNA target sites could modulate miRNA-mRNA interaction to affect the regulation of target genes and the individual's diseases. So far, little is known about the relationship of miRNA binding site polymorphisms with the risk of metabolic syndrome (MetS) in the general population. Therefore, we conducted a case-control study in Chinese Han population to evaluate the association between SNPs within miRNA binding sites and risk of MetS. 8 SNPs in miRNA binding sites with a minor allele frequency (MAF) of ≥ 0.05 in the Chinese Han population were selected by bioinformatics software. TaqMan ®assay was performed to test the genotypes in MetS patients (n=1026) and normal controls (n=1032). We found rs5750146 (adjusted odds ratio (OR)=1.24 for GA/AA, P=0.023, compared with GG), rs5999924 (adjusted OR=1.22 for AT/TT, P=0.038, compared with AA) in the APOL6 3'UTR were identified to correlate with MetS in the total sample and females. Rs11724758 (adjusted OR=0.65 for AA, P=0.002, compared with GG) in the FABP2 3'UTR was found to correlate with MetS in the total sample and males. Correlations between FABP2 rs11724758 polymorphisms and components of MetS reveal that high-density lipoprotein cholesterol (HDL-c) levels are significantly higher in FABP2 rs11724758 AA genotype carrier compared with noncarriers, whereas triglycerides (TG) and fasting plasma glucose (FG) were to be significantly lower in the AA genotype carrier. These findings indicate that these three polymorphisms which located at the predicted miRNAs binding sites were identified to contribute to susceptibility to MetS in the Chinese Han population.

  8. Key Amino Acid Residues of Ankyrin-Sensitive Phosphatidylethanolamine/Phosphatidylcholine-Lipid Binding Site of βI-Spectrin

    PubMed Central

    Wolny, Marcin; Grzybek, Michał; Bok, Ewa; Chorzalska, Anna; Lenoir, Marc; Czogalla, Aleksander; Adamczyk, Klaudia; Kolondra, Adam; Diakowski, Witold; Overduin, Michael; Sikorski, Aleksander F.

    2011-01-01

    It was shown previously that an ankyrin-sensitive, phosphatidylethanolamine/phosphatidylcholine (PE/PC) binding site maps to the N-terminal part of the ankyrin-binding domain of β-spectrin (ankBDn). Here we have identified the amino acid residues within this domain which are responsible for recognizing monolayers and bilayers composed of PE/PC mixtures. In vitro binding studies revealed that a quadruple mutant with substituted hydrophobic residues W1771, L1775, M1778 and W1779 not only failed to effectively bind PE/PC, but its residual PE/PC-binding activity was insensitive to inhibition with ankyrin. Structure prediction and analysis, supported by in vitro experiments, suggests that “opening” of the coiled-coil structure underlies the mechanism of this interaction. Experiments on red blood cells and HeLa cells supported the conclusions derived from the model and in vitro lipid-protein interaction results, and showed the potential physiological role of this binding. We postulate that direct interactions between spectrin ankBDn and PE-rich domains play an important role in stabilizing the structure of the spectrin-based membrane skeleton. PMID:21738695

  9. Proposed Carrier Lipid-binding Site of Undecaprenyl Pyrophosphate Phosphatase from Escherichia coli*

    PubMed Central

    Chang, Hsin-Yang; Chou, Chia-Cheng; Hsu, Min-Feng; Wang, Andrew H. J.

    2014-01-01

    Undecaprenyl pyrophosphate phosphatase (UppP), an integral membrane protein, catalyzes the dephosphorylation of undecaprenyl pyrophosphate to undecaprenyl phosphate, which is an essential carrier lipid in the bacterial cell wall synthesis. Sequence alignment reveals two consensus regions, containing glutamate-rich (E/Q)XXXE plus PGXSRSXXT motifs and a histidine residue, specific to the bacterial UppP enzymes. The predicted topological model suggests that both of these regions are localized near the aqueous interface of UppP and face the periplasm, implicating that its enzymatic function is on the outer side of the plasma membrane. The mutagenesis analysis demonstrates that most of the mutations (E17A/E21A, H30A, S173A, R174A, and T178A) within the consensus regions are completely inactive, indicating that the catalytic site of UppP is constituted by these two regions. Enzymatic analysis also shows an absolute requirement of magnesium or calcium ions in enzyme activity. The three-dimensional structural model and molecular dynamics simulation studies have shown a plausible structure of the catalytic site of UppP and thus provides insights into the molecular basis of the enzyme-substrate interaction in membrane bilayers. PMID:24855653

  10. Identification of trapped and boundary lipid binding sites in M13 coat protein/lipid complexes by deuterium NMR spectroscopy

    SciTech Connect

    Van Gorkom, L.C.; Horvath, L.I.; Hemminga, M.A.; Sternberg, B.; Watts, A. )

    1990-04-24

    The major coat protein of M13 bacteriophage has been incorporated into bilayers of 1,2-dimyristoyl-sn-glycero-3-phosphocholine, deuterated in the trimethyl segments of the choline headgroup (DMPC-d9). Two-component deuterium and phosphorus-31 NMR spectra have been observed from bilayer complexes containing the coat protein, indicating slow exchange (on the deuterium quadrupole anisotropy and phosphorus-31 chemical shift averaging time scales) of lipid molecules of less than 10(3) Hz between two motionally distinct environments in the complexes. The fraction of the isotropic spectral component increases with increasing M13 protein concentration, and this component is attributed to lipid headgroups, which are disordered relative to their order in protein-free bilayers. The activation energy of the fast local motions of the trimethyl groups of the choline residue in the headgroup decreases from 23 kJ mol-1 in the pure lipid bilayers to 20 kJ mol-1 for the protein-associated lipid headgroups. The chemical exchange rate of lipid molecules between the two motionally distinct environments has been estimated to be 20-50 Hz by steady-state line-shape simulations of the deuterium spectra of DMPC-d9/M13 coat protein complexes using exchange-coupled modified Bloch equations. The off-rate was, as expected from one-to-one exchange, independent of the L/P ratio; tau off -1 = 0.23 kHz. It is suggested that the protein-associated lipid may be trapped between closely packed parallel aggregates of M13 coat protein and that the high local concentration of protein in a one-dimensional arrangement in lipid bilayers may be required for the fast reassembly of phage particles before release from an infected cell.

  11. Strong association of lipid metabolism related microRNA binding sites polymorphisms with the risk of late onset Alzheimer's disease.

    PubMed

    Tan, Lin; Zhao, Da-Long; Sun, Fu-Rong; Tan, Meng-Shan; Wan, Yu; Tan, Chen-Chen; Zhang, Wei; Miao, Dan; Yu, Jin-Tai; Tan, Lan

    2016-10-27

    Although altered lipid metabolism has been extensively implicated in the pathogenesis of late onset Alzheimer's disease (LOAD) through cell biological and epidemiological studies, genetic studies linking lipid metabolism and LOAD are still not well understood. MicroRNAs (miRNAs) exert post-transcriptional down-regulation and their target sequence on the 3' untranslated regions (3'UTR) may be altered by single nucleotide polymorphisms (SNPs). We therefore explore whether the six loci in Clusterin gene (CLU) (rs9331949), Lipoprotein lipase gene (LPL) (rs1059507, rs3200218, rs3208305, rs3735964) and Low-density lipoprotein receptor related protein 6 (LRP6) (rs2160525) could modulate LOAD risk through the alteration of miRNA binding sites. We performed a case-control study of 2338 unrelated subjects (984 cases and 1354 age- and gender-matched controls) in Northern Han Chinese. We found that the minor C allele in rs9331949 was significantly increased the risk of LOAD (P<0.001, OR=1.31, 95% CI=1.14-1.51), even after adjusting for multiple testing. Logistic analysis identified the rs9331949 polymorphism was still strongly associated with LOAD, even in Apolipoprotein E (APOE) ε4 allele noncarrier subgroups. However, the other five loci were not significantly associated with LOAD after Bonferroni adjustment. In conclusion, we have identified that the locus (rs9331949) located in the binding site of 3' UTR of CLU has a strong association with LOAD rather than loci in LPL and LRP6. However, additional independent replication is required for further validation.

  12. NMR structure of rALF-Pm3, an anti-lipopolysaccharide factor from shrimp: model of the possible lipid A-binding site.

    PubMed

    Yang, Yinshan; Boze, Hélène; Chemardin, Patrick; Padilla, André; Moulin, Guy; Tassanakajon, Anchalee; Pugnière, Martine; Roquet, Françoise; Destoumieux-Garzón, Delphine; Gueguen, Yannick; Bachère, Evelyne; Aumelas, André

    2009-03-01

    The anti-lipopolysaccharide factor ALF-Pm3 is a 98-residue protein identified in hemocytes from the black tiger shrimp Penaeus monodon. It was expressed in Pichia pastoris from the constitutive glyceraldehyde-3-phosphate dehydrogenase promoter as a folded and (15)N uniformly labeled rALF-Pm3 protein. Its 3D structure was established by NMR and consists of three alpha-helices packed against a four-stranded beta-sheet. The C(34)-C(55) disulfide bond was shown to be essential for the structure stability. By using surface plasmon resonance, we demonstrated that rALF-Pm3 binds to LPS, lipid A and to OM-174, a soluble analogue of lipid A. Biophysical studies of rALF-Pm3/LPS and rALF-Pm3/OM-174 complexes indicated rather high molecular sized aggregates, which prevented us to experimentally determine by NMR the binding mode of these lipids to rALF-Pm3. However, on the basis of striking structural similarities to the FhuA/LPS complex, we designed an original model of the possible lipid A-binding site of ALF-Pm3. Such a binding site, located on the ALF-Pm3 beta-sheet and involving seven charged residues, is well conserved in ALF-L from Limulus polyphemus and in ALF-T from Tachypleus tridentatus. In addition, our model is in agreement with experiments showing that beta-hairpin synthetic peptides corresponding to ALF-L beta-sheet bind to LPS. Delineating lipid A-binding site of ALFs will help go further in the de novo design of new antibacterial or LPS-neutralizing drugs. (c) 2008 Wiley Periodicals, Inc.

  13. Lipid binding capacity of spider hemocyanin.

    PubMed

    Cunningham, M; Gómez, C; Pollero, R

    1999-09-01

    The spider hemocyanin capacity to bind different lipid classes was evaluated by measuring some binding kinetic parameters. A very high lipoprotein (VHDL) which contains hemocyanin, was isolated from Polybetes pythagoricus hemolymph plasma and delipidated. Hemocyanin was bound separately to labelled palmitic acid, phosphatidylcholine, cholesterol, and triolein resulting in several artificial lipoprotein structures. It was possible to corroborate in vitro the lipid-hemocyanin interactions which had been previously observed and, consequently, the apolipoprotein role played by the respiratory pigment of spiders. Lipoproteins were analysed by gel filtration chromatography, and three subfractions with different hemocyanin structures were obtained. The four lipid classes were only bound to the hexameric structure (420 Kda), possibly to low polarity sites. Upon radioactivity measurements of the protein-associated lipids, maximal binding ratios (Mr), dissociation constants (Kd), and the maximal binding effectiveness at low lipid concentrations (Eo) were calculated. Lipid/protein ratios were increased proportionally to each available lipid concentration, following a hyperbolic binding model. Values of saturation, affinity, and maximal binding efficiency to hemocyanin were found to be different for each lipid class assayed. The highest lipid/protein ratio (41.5) was obtained with the free fatty acid and the lowest (7.2) with triolein. Phosphatidylcholine and cholesterol showed the highest relative affinities for hemocyanin (Kd = 63 x 10(-5) M and 74 x 10(-5) M, respectively). Phosphatidylcholine at low concentrations, similar to the physiological ones, presented the highest Eo value. Maximal lipid/protein ratios reached in vitro, were greater than those in P. pythagoricus VHDL, pointing out that hemocyanin could play the apolipoprotein role even under physiological conditions with a very high plasma lipid concentration. J. Exp. Zool. 284:368-373, 1999.

  14. Guanyl nucleotide interactions with dopaminergic binding sites labeled by (/sup 3/H)spiroperidol in human caudate and putamen: guanyl nucleotides enhance ascorbate-induced lipid peroxidation and cause an apparent loss of high affinity binding sites

    SciTech Connect

    Andorn, A.C.; Bacon, B.R.; Nguyen-Hunh, A.T.; Parlato, S.J.; Stitts, J.A.

    1988-02-01

    The human caudate and putamen contain two high affinity binding sites for (/sup 3/H)spiroperidol. Both of these affinity states exhibit dopaminergic selectivity. Ascorbic acid, at 0.1 mM, induces a slow loss of the low affinity component of (/sup 3/H)spiroperidol binding in these tissues. The addition of guanyl nucleotides to the ascorbate produces a more rapid loss of (/sup 3/H)spiroperidol binding which includes a loss of the highest affinity state for (/sup 3/H)spiroperidol. Ascorbate induces lipid peroxidation in human caudate and putamen, an effect that is further enhanced by guanyl and inosine nucleotides. In the absence of ascorbate, guanyl nucleotides have no effect on (/sup 3/H)spiroperidol binding but do decrease the affinity of dopamine at each affinity state greater than 60-fold. In the absence of ascorbate, guanyl nucleotides apparently decrease agonist affinity at human brain dopamine2-binding sites without causing an interconversion of agonist affinity states.

  15. Crystal Structure of Phosphatidylglycerophosphatase (PGPase), a Putative Membrane-Bound Lipid Phosphatase, Reveals a Novel Binuclear Metal Binding Site and Two Proton Wires

    SciTech Connect

    Kumaran,D.; Bonnano, J.; Burley, S.; Swaminathan, S.

    2006-01-01

    Phosphatidylglycerophosphatase (PGPase), an enzyme involved in lipid metabolism, catalyzes formation of phosphatidylglycerol from phosphatidylglycerophosphate. Phosphatidylglycerol is a multifunctional phospholipid, found in the biological membranes of many organisms. Here, we report the crystal structure of Listeria monocytogenes PGPase at 1.8 Angstroms resolution. PGPase, an all-helical molecule, forms a homotetramer. Each protomer contains an independent active site with two metal ions, Ca{sup 2+} and Mg{sup 2+}, forming a hetero-binuclear center located in a hydrophilic cavity near the surface of the molecule. The binuclear center, conserved ligands, metal-bound water molecules, and an Asp-His dyad form the active site. The catalytic mechanism of this enzyme is likely to proceed via binuclear metal activated nucleophilic water. The binuclear metal-binding active-site environment of this structure should provide insights into substrate binding and metal-dependent catalysis. A long channel with inter-linked linear water chains, termed 'proton wires', is observed at the tetramer interface. Comparison of similar water chain structures in photosynthetic reaction centers (RCs), Cytochrome f, gramicidin, and bacteriorhodopsin, suggests that PGPase may conduct protons via proton wires.

  16. Actin binding to lipid-inserted alpha-actinin.

    PubMed Central

    Fritz, M; Zimmermann, R M; Bärmann, M; Gaub, H E

    1993-01-01

    The interaction of alpha-actinin with lipid films and actin filaments was investigated. First alpha-actinin was incorporated in lipid films at the air/water interface. Injection of alpha-actinin into the subphase of a lipid monolayer led to a significant increase of the surface pressure only for lipid films consisting of a mixture of a negatively charged lipid with a high proportion of diacylglycerol. These alpha-actinin-containing films were transferred onto silanized quartz slides. Photobleaching experiments in the evanescent field allowed quantification of the lateral number density of the lipid-bound alpha-actinin. In combination with the area increase from the monolayer experiments, the photobleaching measurements suggest that alpha-actinin is incorporated into the lipid film in such a way that actin binding sites are accessible from the bulk phase. Binding experiments confirmed that the alpha-actinin selectively binds actin filaments in this configuration. We also showed that, in contrast to actin filaments which are adsorbed directly onto planar surfaces, the alpha-actinin-bound actin filaments are recognized and cleaved by the actin-severing protein gelsolin. Thus we have constructed an in vitro system which opens new ways for investigations of membrane-associated actin-binding proteins and of the physical behavior of actin filaments in the close neighborhood to membranes. Images FIGURE 1 FIGURE 3 PMID:8298017

  17. Lipid binding proteins from parasitic platyhelminthes.

    PubMed

    Alvite, Gabriela; Esteves, Adriana

    2012-01-01

    TWO MAIN FAMILIES OF LIPID BINDING PROTEINS HAVE BEEN IDENTIFIED IN PARASITIC PLATYHELMINTHES: hydrophobic ligand binding proteins (HLBPs) and fatty acid binding proteins (FABPs). Members of the former family of proteins are specific to the Cestoda class, while FABPs are conserved across a wide range of animal species. Because Platyhelminthes are unable to synthesize their own lipids, these lipid-binding proteins are important molecules in these organisms. HLBPs are a high molecular mass complex of proteins and lipids. They are composed of subunits of low molecular mass proteins and a wide array of lipid molecules ranging from CoA esters to cholesterol. These proteins are excretory-secretory molecules and are key serological tools for diagnosis of diseases caused by cestodes. FABPs are mainly intracellular proteins of low molecular weight. They are also vaccine candidates. Despite that the knowledge of their function is scarce, the differences in their molecular organization, ligand preferences, intra/extracellular localization, evolution, and phylogenetic distribution, suggest that platyhelminths HLBPs and FABPs should play different functions. FABPs might be involved in the removal of fatty acids from the inner surface of the cell membrane and in their subsequent targeting to specific cellular destinations. In contrast, HLBPs might be involved in fatty acid uptake from the host environment.

  18. Lipid binding proteins from parasitic platyhelminthes

    PubMed Central

    Alvite, Gabriela; Esteves, Adriana

    2012-01-01

    Two main families of lipid binding proteins have been identified in parasitic Platyhelminthes: hydrophobic ligand binding proteins (HLBPs) and fatty acid binding proteins (FABPs). Members of the former family of proteins are specific to the Cestoda class, while FABPs are conserved across a wide range of animal species. Because Platyhelminthes are unable to synthesize their own lipids, these lipid-binding proteins are important molecules in these organisms. HLBPs are a high molecular mass complex of proteins and lipids. They are composed of subunits of low molecular mass proteins and a wide array of lipid molecules ranging from CoA esters to cholesterol. These proteins are excretory-secretory molecules and are key serological tools for diagnosis of diseases caused by cestodes. FABPs are mainly intracellular proteins of low molecular weight. They are also vaccine candidates. Despite that the knowledge of their function is scarce, the differences in their molecular organization, ligand preferences, intra/extracellular localization, evolution, and phylogenetic distribution, suggest that platyhelminths HLBPs and FABPs should play different functions. FABPs might be involved in the removal of fatty acids from the inner surface of the cell membrane and in their subsequent targeting to specific cellular destinations. In contrast, HLBPs might be involved in fatty acid uptake from the host environment. PMID:22988444

  19. Salt modulates the stability and lipid binding affinity of the adipocyte lipid-binding proteins

    NASA Technical Reports Server (NTRS)

    Schoeffler, Allyn J.; Ruiz, Carmen R.; Joubert, Allison M.; Yang, Xuemei; LiCata, Vince J.

    2003-01-01

    Adipocyte lipid-binding protein (ALBP or aP2) is an intracellular fatty acid-binding protein that is found in adipocytes and macrophages and binds a large variety of intracellular lipids with high affinity. Although intracellular lipids are frequently charged, biochemical studies of lipid-binding proteins and their interactions often focus most heavily on the hydrophobic aspects of these proteins and their interactions. In this study, we have characterized the effects of KCl on the stability and lipid binding properties of ALBP. We find that added salt dramatically stabilizes ALBP, increasing its Delta G of unfolding by 3-5 kcal/mol. At 37 degrees C salt can more than double the stability of the protein. At the same time, salt inhibits the binding of the fluorescent lipid 1-anilinonaphthalene-8-sulfonate (ANS) to the protein and induces direct displacement of the lipid from the protein. Thermodynamic linkage analysis of the salt inhibition of ANS binding shows a nearly 1:1 reciprocal linkage: i.e. one ion is released from ALBP when ANS binds, and vice versa. Kinetic experiments show that salt reduces the rate of association between ANS and ALBP while simultaneously increasing the dissociation rate of ANS from the protein. We depict and discuss the thermodynamic linkages among stability, lipid binding, and salt effects for ALBP, including the use of these linkages to calculate the affinity of ANS for the denatured state of ALBP and its dependence on salt concentration. We also discuss the potential molecular origins and potential intracellular consequences of the demonstrated salt linkages to stability and lipid binding in ALBP.

  20. Salt modulates the stability and lipid binding affinity of the adipocyte lipid-binding proteins

    NASA Technical Reports Server (NTRS)

    Schoeffler, Allyn J.; Ruiz, Carmen R.; Joubert, Allison M.; Yang, Xuemei; LiCata, Vince J.

    2003-01-01

    Adipocyte lipid-binding protein (ALBP or aP2) is an intracellular fatty acid-binding protein that is found in adipocytes and macrophages and binds a large variety of intracellular lipids with high affinity. Although intracellular lipids are frequently charged, biochemical studies of lipid-binding proteins and their interactions often focus most heavily on the hydrophobic aspects of these proteins and their interactions. In this study, we have characterized the effects of KCl on the stability and lipid binding properties of ALBP. We find that added salt dramatically stabilizes ALBP, increasing its Delta G of unfolding by 3-5 kcal/mol. At 37 degrees C salt can more than double the stability of the protein. At the same time, salt inhibits the binding of the fluorescent lipid 1-anilinonaphthalene-8-sulfonate (ANS) to the protein and induces direct displacement of the lipid from the protein. Thermodynamic linkage analysis of the salt inhibition of ANS binding shows a nearly 1:1 reciprocal linkage: i.e. one ion is released from ALBP when ANS binds, and vice versa. Kinetic experiments show that salt reduces the rate of association between ANS and ALBP while simultaneously increasing the dissociation rate of ANS from the protein. We depict and discuss the thermodynamic linkages among stability, lipid binding, and salt effects for ALBP, including the use of these linkages to calculate the affinity of ANS for the denatured state of ALBP and its dependence on salt concentration. We also discuss the potential molecular origins and potential intracellular consequences of the demonstrated salt linkages to stability and lipid binding in ALBP.

  1. Determining Membrane Protein-Lipid Binding Thermodynamics Using Native Mass Spectrometry.

    PubMed

    Cong, Xiao; Liu, Yang; Liu, Wen; Liang, Xiaowen; Russell, David H; Laganowsky, Arthur

    2016-04-06

    Membrane proteins are embedded in the biological membrane where the chemically diverse lipid environment can modulate their structure and function. However, the thermodynamics governing the molecular recognition and interaction of lipids with membrane proteins is poorly understood. Here, we report a method using native mass spectrometry (MS), to determine thermodynamics of individual ligand binding events to proteins. Unlike conventional methods, native MS can resolve individual ligand binding events and, coupled with an apparatus to control the temperature, determine binding thermodynamic parameters, such as for protein-lipid interactions. We validated our approach using three soluble protein-ligand systems (maltose binding protein, lysozyme, and nitrogen regulatory protein) and obtained similar results to those using isothermal titration calorimetry and surface plasmon resonance. We also determined for the first time the thermodynamics of individual lipid binding to the ammonia channel (AmtB), an integral membrane protein from Escherichia coli. Remarkably, we observed distinct thermodynamic signatures for the binding of different lipids and entropy-enthalpy compensation for binding lipids of variable chain length. Additionally, using a mutant form of AmtB that abolishes a specific phosphatidylglycerol (PG) binding site, we observed distinct changes in the thermodynamic signatures for binding PG, implying these signatures can identify key residues involved in specific lipid binding and potentially differentiate between specific lipid binding sites.

  2. Lipid A binding proteins in macrophages detected by ligand blotting

    SciTech Connect

    Hampton, R.Y.; Golenbock, D.T.; Raetz, C.R.H.

    1987-05-01

    Endotoxin (LPS) stimulates a variety of eukaryotic cells. These actions are involved in the pathogenesis of Gram-negative septicemia. The site of action of the LPS toxic moiety, lipid A (LA), is unclear. Their laboratory has previously identified a bioactive LA precursor lipid IV/sub A/, which can be enzymatically labeled with /sup 32/P/sub i/ (10/sup 9/ dpm/nmole) and purified (99%). They now show that this ligand binds to specific proteins immobilized on nitrocellulose (NC) from LPS-sensitive RAW 264.7 cultured macrophages. NC blots were incubated with (/sup 32/P)-IV/sub A/ in a buffer containing BSA, NaCl, polyethylene glycol, and azide. Binding was assessed using autoradiography or scintillation counting. Dot blot binding of the radioligand was inhibited by excess cold IV/sub A/, LA, or ReLPS but not by phosphatidylcholine, cardiolipin, phosphatidylinositol, or phosphatidic acid. Binding was trypsin-sensitive and dependent on protein concentration. Particulate macrophage proteins were subjected to SDS-PAGE and then electroblotted onto NC. Several discrete binding proteins were observed. Identical treatment of fetal bovine serum or molecular weight standards revealed no detectable binding. By avoiding high nonspecific binding of intact membranes, this ligand blotting assay may be useful in elucidating the molecular actions of LPS.

  3. Data of protein-RNA binding sites.

    PubMed

    Lee, Wook; Park, Byungkyu; Choi, Daesik; Han, Kyungsook

    2017-02-01

    Despite the increasing number of protein-RNA complexes in structure databases, few data resources have been made available which can be readily used in developing or testing a method for predicting either protein-binding sites in RNA sequences or RNA-binding sites in protein sequences. The problem of predicting protein-binding sites in RNA has received much less attention than the problem of predicting RNA-binding sites in protein. The data presented in this paper are related to the article entitled "PRIdictor: Protein-RNA Interaction predictor" (Tuvshinjargal et al. 2016) [1]. PRIdictor can predict protein-binding sites in RNA as well as RNA-binding sites in protein at the nucleotide- and residue-levels. This paper presents four datasets that were used to test four prediction models of PRIdictor: (1) model RP for predicting protein-binding sites in RNA from protein and RNA sequences, (2) model RaP for predicting protein-binding sites in RNA from RNA sequence alone, (3) model PR for predicting RNA-binding sites in protein from protein and RNA sequences, and (4) model PaR for predicting RNA-binding sites in protein from protein sequence alone. The datasets supplied in this article can be used as a valuable resource to evaluate and compare different methods for predicting protein-RNA binding sites.

  4. Binding sites associated with inhibition of photosystem II

    SciTech Connect

    Shipman, L.L.

    1981-01-01

    A variety of experimental and theoretical evidence has been integrated into coherent molecular mechanisms for the action of photosystem II herbicides. Photosystem II herbicides act by inhibiting electron transfers between the first and second plastoquinones on the reducing side of photosystem II. Each herbicide molecule must have a flat polar component with hydrophobic substituents to be active. The hydrophobic substituents serve to partition the molecule into lipid regions of the cell and to fit the hydrophobic region of the herbicide binding site. The flat polar portion of the herbicide is used for electrostatic binding to the polar region of the herbicide binding site. Theoretical calculations have been carried out to investigate the binding of herbicides to model proteinaceous binding sites.

  5. A sliding selectivity scale for lipid binding to membrane proteins

    PubMed Central

    Landreh, Michael; Marty, Michael T.; Gault, Joseph; Robinson, Carol V.

    2017-01-01

    Biological membranes form barriers that are essential for cellular integrity and compartmentalisation. Proteins that reside in the membrane have co-evolved with their hydrophobic lipid environment which serves as a solvent for proteins with very diverse requirements. As a result, membrane protein-lipid interactions range from completely non-selective to highly discriminating. Mass spectrometry (MS), in combination with X-ray crystallography and molecular dynamics simulations, enables us to monitor how lipids interact with intact membrane protein complexes and assess their effects on structure and dynamics. Recent studies illustrate the ability to differentiate specific lipid binding, preferential interactions with lipid subsets, and nonselective annular contacts. In this review, we consider the biological implications of different lipid-binding scenarios and propose that binding occurs on a sliding selectivity scale, in line with the view of biological membranes as facilitators of dynamic protein and lipid organization. PMID:27155089

  6. Thioredoxin binding site of phosphoribulokinase overlaps the catalytic site. [R

    SciTech Connect

    Porter, M.A.; Hartman, F.C.

    1986-01-01

    The ATP-regulatory binding site of phosphoribulokinase was studied using bromoacetylethanolamine phosphate (BrAcNHEtOP). BrAcNHEtOP binds to the active-regulatory binding site of the protein. Following trypsin degradation of the labeled protein, fragments were separated by HPLC and sequenced. (DT)

  7. Bilirubin Binding to PPARα Inhibits Lipid Accumulation.

    PubMed

    Stec, David E; John, Kezia; Trabbic, Christopher J; Luniwal, Amarjit; Hankins, Michael W; Baum, Justin; Hinds, Terry D

    2016-01-01

    Numerous clinical and population studies have demonstrated that increased serum bilirubin levels protect against cardiovascular and metabolic diseases such as obesity and diabetes. Bilirubin is a potent antioxidant, and the beneficial actions of moderate increases in plasma bilirubin have been thought to be due to the antioxidant effects of this bile pigment. In the present study, we found that bilirubin has a new function as a ligand for PPARα. We show that bilirubin can bind directly to PPARα and increase transcriptional activity. When we compared biliverdin, the precursor to bilirubin, on PPARα transcriptional activation to known PPARα ligands, WY 14,643 and fenofibrate, it showed that fenofibrate and biliverdin have similar activation properties. Treatment of 3T3-L1 adipocytes with biliverdin suppressed lipid accumulation and upregulated PPARα target genes. We treated wild-type and PPARα KO mice on a high fat diet with fenofibrate or bilirubin for seven days and found that both signal through PPARα dependent mechanisms. Furthermore, the effect of bilirubin on lowering glucose and reducing body fat percentage was blunted in PPARα KO mice. These data demonstrate a new function for bilirubin as an agonist of PPARα, which mediates the protection from adiposity afforded by moderate increases in bilirubin.

  8. Bilirubin Binding to PPARα Inhibits Lipid Accumulation

    PubMed Central

    Stec, David E.; John, Kezia; Trabbic, Christopher J.; Luniwal, Amarjit; Hankins, Michael W.; Baum, Justin

    2016-01-01

    Numerous clinical and population studies have demonstrated that increased serum bilirubin levels protect against cardiovascular and metabolic diseases such as obesity and diabetes. Bilirubin is a potent antioxidant, and the beneficial actions of moderate increases in plasma bilirubin have been thought to be due to the antioxidant effects of this bile pigment. In the present study, we found that bilirubin has a new function as a ligand for PPARα. We show that bilirubin can bind directly to PPARα and increase transcriptional activity. When we compared biliverdin, the precursor to bilirubin, on PPARα transcriptional activation to known PPARα ligands, WY 14,643 and fenofibrate, it showed that fenofibrate and biliverdin have similar activation properties. Treatment of 3T3-L1 adipocytes with biliverdin suppressed lipid accumulation and upregulated PPARα target genes. We treated wild-type and PPARα KO mice on a high fat diet with fenofibrate or bilirubin for seven days and found that both signal through PPARα dependent mechanisms. Furthermore, the effect of bilirubin on lowering glucose and reducing body fat percentage was blunted in PPARα KO mice. These data demonstrate a new function for bilirubin as an agonist of PPARα, which mediates the protection from adiposity afforded by moderate increases in bilirubin. PMID:27071062

  9. An alternate binding site for PPARγ ligands

    PubMed Central

    Hughes, Travis S.; Giri, Pankaj Kumar; de Vera, Ian Mitchelle S.; Marciano, David P.; Kuruvilla, Dana S.; Shin, Youseung; Blayo, Anne-Laure; Kamenecka, Theodore M.; Burris, Thomas P.; Griffin, Patrick R.; Kojetin, Douglas J.

    2014-01-01

    PPARγ is a target for insulin sensitizing drugs such as glitazones, which improve plasma glucose maintenance in patients with diabetes. Synthetic ligands have been designed to mimic endogenous ligand binding to a canonical ligand-binding pocket to hyperactivate PPARγ. Here we reveal that synthetic PPARγ ligands also bind to an alternate site, leading to unique receptor conformational changes that impact coregulator binding, transactivation and target gene expression. Using structure-function studies we show that alternate site binding occurs at pharmacologically relevant ligand concentrations, and is neither blocked by covalently bound synthetic antagonists nor by endogenous ligands indicating non-overlapping binding with the canonical pocket. Alternate site binding likely contributes to PPARγ hyperactivation in vivo, perhaps explaining why PPARγ full and partial or weak agonists display similar adverse effects. These findings expand our understanding of PPARγ activation by ligands and suggest that allosteric modulators could be designed to fine tune PPARγ activity without competing with endogenous ligands. PMID:24705063

  10. LIBRA: LIgand Binding site Recognition Application.

    PubMed

    Hung, Le Viet; Caprari, Silvia; Bizai, Massimiliano; Toti, Daniele; Polticelli, Fabio

    2015-12-15

    In recent years, structural genomics and ab initio molecular modeling activities are leading to the availability of a large number of structural models of proteins whose biochemical function is not known. The aim of this study was the development of a novel software tool that, given a protein's structural model, predicts the presence and identity of active sites and/or ligand binding sites. The algorithm implemented by ligand binding site recognition application (LIBRA) is based on a graph theory approach to find the largest subset of similar residues between an input protein and a collection of known functional sites. The algorithm makes use of two predefined databases for active sites and ligand binding sites, respectively, derived from the Catalytic Site Atlas and the Protein Data Bank. Tests indicate that LIBRA is able to identify the correct binding/active site in 90% of the cases analyzed, 90% of which feature the identified site as ranking first. As far as ligand binding site recognition is concerned, LIBRA outperforms other structure-based ligand binding sites detection tools with which it has been compared. The application, developed in Java SE 7 with a Swing GUI embedding a JMol applet, can be run on any OS equipped with a suitable Java Virtual Machine (JVM), and is available at the following URL: http://www.computationalbiology.it/software/LIBRAv1.zip. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  11. Structural Analysis of Papain-Like NlpC/P60 Superfamily Enzymes with a Circularly Permuted Topology Reveals Potential Lipid Binding Sites

    SciTech Connect

    Xu, Qingping; Rawlings, Neil D.; Chiu, Hsiu-Ju; Jaroszewski, Lukasz; Klock, Heath E.; Knuth, Mark W.; Miller, Mitchell D.; Elsliger, Marc-Andre; Deacon, Ashley M.; Godzik, Adam; Lesley, Scott A.; Wilson, Ian A.

    2012-07-11

    NlpC/P60 superfamily papain-like enzymes play important roles in all kingdoms of life. Two members of this superfamily, LRAT-like and YaeF/YiiX-like families, were predicted to contain a catalytic domain that is circularly permuted such that the catalytic cysteine is located near the C-terminus, instead of at the N-terminus. These permuted enzymes are widespread in virus, pathogenic bacteria, and eukaryotes. We determined the crystal structure of a member of the YaeF/YiiX-like family from Bacillus cereus in complex with lysine. The structure, which adopts a ligand-induced, 'closed' conformation, confirms the circular permutation of catalytic residues. A comparative analysis of other related protein structures within the NlpC/P60 superfamily is presented. Permutated NlpC/P60 enzymes contain a similar conserved core and arrangement of catalytic residues, including a Cys/His-containing triad and an additional conserved tyrosine. More surprisingly, permuted enzymes have a hydrophobic S1 binding pocket that is distinct from previously characterized enzymes in the family, indicative of novel substrate specificity. Further analysis of a structural homolog, YiiX (PDB 2if6) identified a fatty acid in the conserved hydrophobic pocket, thus providing additional insights into possible function of these novel enzymes.

  12. Structural Analysis of Papain-Like NlpC/P60 Superfamily Enzymes with a Circularly Permuted Topology Reveals Potential Lipid Binding Sites

    PubMed Central

    Xu, Qingping; Rawlings, Neil D.; Chiu, Hsiu-Ju; Jaroszewski, Lukasz; Klock, Heath E.; Knuth, Mark W.; Miller, Mitchell D.; Elsliger, Marc-Andre; Deacon, Ashley M.; Godzik, Adam; Lesley, Scott A.; Wilson, Ian A.

    2011-01-01

    NlpC/P60 superfamily papain-like enzymes play important roles in all kingdoms of life. Two members of this superfamily, LRAT-like and YaeF/YiiX-like families, were predicted to contain a catalytic domain that is circularly permuted such that the catalytic cysteine is located near the C-terminus, instead of at the N-terminus. These permuted enzymes are widespread in virus, pathogenic bacteria, and eukaryotes. We determined the crystal structure of a member of the YaeF/YiiX-like family from Bacillus cereus in complex with lysine. The structure, which adopts a ligand-induced, “closed” conformation, confirms the circular permutation of catalytic residues. A comparative analysis of other related protein structures within the NlpC/P60 superfamily is presented. Permutated NlpC/P60 enzymes contain a similar conserved core and arrangement of catalytic residues, including a Cys/His-containing triad and an additional conserved tyrosine. More surprisingly, permuted enzymes have a hydrophobic S1 binding pocket that is distinct from previously characterized enzymes in the family, indicative of novel substrate specificity. Further analysis of a structural homolog, YiiX (PDB 2if6) identified a fatty acid in the conserved hydrophobic pocket, thus providing additional insights into possible function of these novel enzymes. PMID:21799766

  13. Polypharmacology within CXCR4: Multiple binding sites and allosteric behavior

    NASA Astrophysics Data System (ADS)

    Planesas, Jesús M.; Pérez-Nueno, Violeta I.; Borrell, José I.; Teixidó, Jordi

    2014-10-01

    CXCR4 is a promiscuous receptor, which binds multiple diverse ligands. As usual in promiscuous proteins, CXCR4 has a large binding site, with multiple subsites, and high flexibility. Hence, it is not surprising that it is involved in the phenomenon of allosteric modulation. However, incomplete knowledge of allosteric ligand-binding sites has hampered an in-depth molecular understanding of how these inhibitors work. For example, it is known that lipidated fragments of intracellular GPCR loops, so called pepducins, such as pepducin ATI-2341, modulate CXCR4 activity using an agonist allosteric mechanism. Nevertheless, there are also examples of small organic molecules, such as AMD11070 and GSK812397, which may act as antagonist allosteric modulators. Here, we give new insights into this issue by proposing the binding interactions between the CXCR4 receptor and the above-mentioned allosteric modulators. We propose that CXCR4 has minimum two topographically different allosteric binding sites. One allosteric site would be in the intracellular loop 1 (ICL1) where pepducin ATI-2341 would bind to CXCR4, and the second one, in the extracellular side of CXCR4 in a subsite into the main orthosteric binding pocket, delimited by extracellular loops n° 1, 2, and the N-terminal end, where antagonists AMD11070 and GSK812397 would bind. Prediction of allosteric interactions between CXCR4 and pepducin ATI-2341 were studied first by rotational blind docking to determine the main binding region and a subsequent refinement of the best pose was performed using flexible docking methods and molecular dynamics. For the antagonists AMD11070 and GSK812397, the entire CXCR4 protein surface was explored by blind docking to define the binding region. A second docking analysis by subsites of the identified binding region was performed to refine the allosteric interactions. Finally, we identified the binding residues that appear to be essential for CXCR4 (agonists and antagonists) allosteric

  14. (/sup 3/)tetrahydrotrazodone binding. Association with serotonin binding sites

    SciTech Connect

    Kendall, D.A.; Taylor, D.P.; Enna, S.J.

    1983-05-01

    High (17 nM) and low (603 nM) affinity binding sites for (/sup 3/)tetrahydrotrazodone ((/sup 3/) THT), a biologically active analogue of trazodone, have been identified in rat brain membranes. The substrate specificity, concentration, and subcellular and regional distributions of these sites suggest that they may represent a component of the serotonin transmitter system. Pharmacological analysis of (/sup 3/)THT binding, coupled with brain lesion and drug treatment experiments, revealed that, unlike other antidepressants, (/sup 3/) THT does not attach to either a biogenic amine transporter or serotonin binding sites. Rather, it would appear that (/sup 3/)THT may be an antagonist ligand for the serotonin binding site. This probe may prove of value in defining the mechanism of action of trazodone and in further characterizing serotonin receptors.

  15. Ethylene binding site affinity in ripening apples

    SciTech Connect

    Blankenship, S.M. . Dept. of Horticultural Science); Sisler, E.C. )

    1993-09-01

    Scatchard plots for ethylene binding in apples (Malus domestica Borkh.), which were harvested weekly for 5 weeks to include the ethylene climacteric rise, showed C[sub 50] values (concentration of ethylene needed to occupy 50% of the ethylene binding sites) of 0.10, 0.11, 0.34, 0.40, and 0.57 [mu]l ethylene/liter[sup [minus]1], respectively, for each of the 5 weeks. Higher ethylene concentrations were required to saturate the binding sites during the climacteric rise than at other times. Diffusion of [sup 14]C-ethylene from the binding sites was curvilinear and did not show any indication of multiple binding sites. Ethylene was not metabolized by apple tissue.

  16. Membrane proteins bind lipids selectively to modulate their structure and function

    PubMed Central

    Allison, Timothy M.; Ulmschneider, Martin B.; Degiacomi, Matteo T.; Baldwin, Andrew J.; Robinson, Carol V.

    2014-01-01

    Previous studies have established that the folding, structure and function of membrane proteins are influenced by their lipid environments1-7 and that lipids can bind to specific sites, for example in potassium channels8. Fundamental questions remain however regarding the extent of membrane protein selectivity toward lipids. Here we report a mass spectrometry (MS) approach designed to determine the selectivity of lipid binding to membrane protein complexes. We investigate the mechanosensitive channel of large conductance (MscL), aquaporin Z (AqpZ), and the ammonia channel (AmtB) using ion mobility MS (IM-MS), which reports gas-phase collision cross sections. We demonstrate that folded conformations of membrane protein complexes can exist in the gas-phase. By resolving lipid-bound states we then rank bound lipids based on their ability to resist gas phase unfolding and thereby stabilize membrane protein structure. Results show that lipids bind non-selectively and with high avidity to MscL, all imparting comparable stability, the highest-ranking lipid however is phosphatidylinositol phosphate, in line with its proposed functional role in mechanosensation9. AqpZ is also stabilized by many lipids with cardiolipin imparting the most significant resistance to unfolding. Subsequently, through functional assays, we discover that cardiolipin modulates AqpZ function. Analogous experiments identify AmtB as being highly selective for phosphatidylglycerol prompting us to obtain an X-ray structure in this lipid membrane-like environment. The 2.3Å resolution structure, when compared with others obtained without lipid bound, reveals distinct conformational changes that reposition AmtB residues to interact with the lipid bilayer. Overall our results demonstrate that resistance to unfolding correlates with specific lipid-binding events enabling distinction of lipids that merely bind from those that modulate membrane protein structure and/or function. We anticipate that these

  17. Localization of the chaperone binding site

    NASA Technical Reports Server (NTRS)

    Boyle, D.; Gopalakrishnan, S.; Takemoto, L.; Spooner, B. S. (Principal Investigator)

    1993-01-01

    The hypothesis derived from models of the multi-oligomeric chaperone complex suggests that partially denatured proteins bind in a central cavity in the aggregate. To test this hypothesis, the molecular chaperone, alpha crystallin, was bound to partially denatured forms of gamma crystallin, and the binding site was visualized by immunogold localization. In an alternative approach, gold particles were directly complexed with gamma crystallin, followed by binding to the alpha crystallin aggregate. In both cases, binding was localized to the central region of the aggregate, confirming for the first time that partially denatured proteins do indeed bind to a central region of the molecular chaperone aggregate.

  18. A citrate-binding site in calmodulin.

    PubMed

    Neufeld, T; Eisenstein, M; Muszkat, K A; Fleminger, G

    1998-01-01

    Calmodulin (CaM) is a major Ca2+ messenger which, upon Ca2+ activation, binds and activates a number of target enzymes involved in crucial cellular processes. The dependence on Ca2+ ion concentration suggests that CaM activation may be modulated by low-affinity Ca2+ chelators. The effect on CaM structure and function of citrate ion, a Ca2+ chelator commonly found in the cytosol and the mitochondria, was therefore investigated. A series of structural and biochemical methods, including tryptic mapping, immunological recognition by specific monoclonal antibodies, CIDNP-NMR, binding to specific ligands and association with radiolabeled citrate, showed that citrate induces conformational modifications in CaM which affect the shape and activity of the protein. These changes were shown to be associated with the C-terminal lobe of the molecule and involve actual binding of citrate to CaM. Analyzing X-ray structures of several citrate-binding proteins by computerized molecular graphics enabled us to identify a putative citrate-binding site (CBS) on the CaM molecule around residues Arg106-His107. Owing to the tight proximity of this site to the third Ca(2+)-binding loop of CaM, binding of citrate is presumably translated into changes in Ca2+ binding to site III (and indirectly to site IV). These changes apparently affect the structural and biochemical properties of the conformation-sensitive protein.

  19. Identification of lipids and lipid-binding proteins in phloem exudates from Arabidopsis thaliana.

    PubMed

    Guelette, Brandon S; Benning, Urs F; Hoffmann-Benning, Susanne

    2012-06-01

    The phloem plays a crucial role in assimilate and nutrient transport, pathogen response, and plant growth and development. Yet, few species have yielded pure phloem exudate and, if proteins need to be analysed, those species may not have sequenced genomes, making identification difficult. The enrichment of Arabidopsis thaliana phloem exudate in amounts large enough to allow for metabolite and protein analysis is described. Using this method, it was possible to identify 65 proteins present in the Arabidopsis phloem exudate. The majority of these proteins could be grouped by response to pathogens, stress, or hormones, carbon metabolism, protein interaction, modification, and turnover, and transcription factors. It was also possible to detect 11 proteins that play a role in lipid/fatty acid metabolism (aspartic protease, putative 3-β-hydroxysteroid dehydrogenase, UDP-sulphoquinovose synthase/SQD1, lipase, PIG-P-like protein: phosphatidylinositol-N-acetylglucosaminyltransferase), storage (glycine-rich protein), binding (annexin, lipid-associated family protein, GRP17/oleosin), and/or signalling (annexin, putative lipase, PIG-P-like protein). Along with putative lipid-binding proteins, several lipids and fatty acids could be identified. Only a few examples exist of lipids (jasmonic acid, oxylipins) or lipid-binding proteins (DIR1, acyl-CoA-binding protein) in the phloem. Finding hydrophobic compounds in an aqueous environment is not without precedence in biological systems: human blood contains a variety of lipids, many of which play a significant role in human health. In blood, lipids are transported while bound to proteins. The present findings of lipids and lipid-binding proteins in phloem exudates suggest that a similar long-distance lipid signalling exists in plants and may play an important role in plant growth and development.

  20. Release of 11-cis-retinal from cellular retinaldehyde-binding protein by acidic lipids.

    PubMed

    Saari, John C; Nawrot, Maria; Stenkamp, Ronald E; Teller, David C; Garwin, Gregory G

    2009-01-01

    To determine molecular mechanisms for the release of 11-cis-retinal from the binding pocket of cellular retinaldehyde-binding protein (CRALBP). Binding of CRALBP to lipid surfaces was assessed with a lipid-immunoblot assay. Lipids were presented to CRALBP as small unilamellar vesicles (SUVs) consisting of phosphatidylcholine (PC) plus other lipids. Release of 9-cis-retinal or 11-cis-retinal from CRALBP was measured with spectral and high performance liquid chromatography (HPLC) assays based on the protection of the protein-bound retinal carbonyl group from reaction with NH(2)OH. The electrostatic surface potential of CRALBP was calculated from a model of its structure using the program CCP4mg. Incubation of CRALBP.11-cis-retinal with lipids absorbed on nitrocellulose revealed binding to the acidic lipids, phosphatidic acid (PA)>phosphatidylinositol 3,4,5-trisphosphate [PI(3,4,5)P(3)]>phosphatidylserine (PS)> PI(4,5)P(2) and little or no binding to PC, phosphatidylethanolamine (PE), or PI(4)P. 11-cis-retinal was released during incubation of CRALBP with SUVs consisting of PC plus 50 mol% PA but not during incubation with those composed of 100 mol% PC. The efficacy of release of 9-cis-retinal or 11-cis-retinal from CRALBP by phospholipid-containing SUVs generally paralleled that of the binding of CRALBP to the lipids (PA>PS>PI>PC). Examination of the electrostatic surface potential of the protein structure revealed a basic recess on one face of the protein, which may bind acidic lipids. Our results identify the first physiologic substances that release 11-cis-retinal from CRALBP. PA and PS are relatively minor membrane lipids that can be generated in the cytoplasmic leaflet of the plasma membrane in response to various signal transduction pathways, where they could interact with cytosolic CRALBP. The mechanism for release of retinal from CRALBP by acidic lipids remains to be determined but could involve binding of the acidic lipid in the 11-cis-retinal binding site

  1. Release of 11-cis-retinal from cellular retinaldehyde-binding protein by acidic lipids

    PubMed Central

    Nawrot, Maria; Stenkamp, Ronald E.; Teller, David C.; Garwin, Gregory G.

    2009-01-01

    Purpose To determine molecular mechanisms for the release of 11-cis-retinal from the binding pocket of cellular retinaldehyde-binding protein (CRALBP). Methods Binding of CRALBP to lipid surfaces was assessed with a lipid-immunoblot assay. Lipids were presented to CRALBP as small unilamellar vesicles (SUVs) consisting of phosphatidylcholine (PC) plus other lipids. Release of 9-cis-retinal or 11-cis-retinal from CRALBP was measured with spectral and high performance liquid chromatography (HPLC) assays based on the protection of the protein-bound retinal carbonyl group from reaction with NH2OH. The electrostatic surface potential of CRALBP was calculated from a model of its structure using the program CCP4mg. Results Incubation of CRALBP·11-cis-retinal with lipids absorbed on nitrocellulose revealed binding to the acidic lipids, phosphatidic acid (PA)>phosphatidylinositol 3,4,5-trisphosphate [PI(3,4,5)P3]>phosphatidylserine (PS)> PI(4,5)P2 and little or no binding to PC, phosphatidylethanolamine (PE), or PI(4)P. 11-cis-retinal was released during incubation of CRALBP with SUVs consisting of PC plus 50 mol% PA but not during incubation with those composed of 100 mol% PC. The efficacy of release of 9-cis-retinal or 11-cis-retinal from CRALBP by phospholipid-containing SUVs generally paralleled that of the binding of CRALBP to the lipids (PA>PS>PI>>PC). Examination of the electrostatic surface potential of the protein structure revealed a basic recess on one face of the protein, which may bind acidic lipids. Conclusions Our results identify the first physiologic substances that release 11-cis-retinal from CRALBP. PA and PS are relatively minor membrane lipids that can be generated in the cytoplasmic leaflet of the plasma membrane in response to various signal transduction pathways, where they could interact with cytosolic CRALBP. The mechanism for release of retinal from CRALBP by acidic lipids remains to be determined but could involve binding of the acidic lipid in

  2. Serotonin binding sites of human blood platelets

    SciTech Connect

    Kim, B.K.; Steiner, M.; Baldini, M.G.

    1980-07-15

    The possible use of formaldehyde-fixed platelets to characterize and enumerate the specific receptor sites for 5-hydroxytryptamine was investigated. Equilibrium, pH-dependent capacity and specificity of 5-hydroxytryptamine binding by formaldehyde-fixed platelets were demonstrated. Analysis of binding data revealed two different sites: (1) high affinity with low capacity, and (2) low affinity with high capacity. The results of binding studies using nonfixed control platelets were comparable with those of formaldehyde-fixed platelets. The versatility of formaldehyde fixation for studies of surface receptors was also shown by demonstrating nearly equal binding affinity for PGE/sub 1/ in control and formaldehyde-treated platelets. Our results indicate that formaldehyde fixation is a useful tool for the study of membrane receptor sites especially when active transport of the ligand such as serotonin is a problem.

  3. Role of carboxyl residues and membrane lipids in cation binding to bacteriorhodopsin.

    PubMed

    Hrabeta-Robinson, E; Semadeni, M; Packer, L

    1989-03-01

    To investigate the site specificity of cation binding to bacteriorhodopsin, carboxyl groups were chemically modified in purple membrane preparations from Halobacterium halobium. Cation binding followed by EPR and visible spectroscopy has led us to the conclusion that two cations bind to the surface regions and that at least one cation binds to carboxyl groups in the protein interior. Conformational freedom is necessary for the cooperative conversion of deionized blue species to cation-reconstituted purple species. Studies of white membranes from the JW-5 strain showed that a higher content of charged lipids results in the binding of approximately 100 more color-regulating cations and in negative cooperativity in the blue-to-purple species conversion. A greater dependence of protein structure on these bound cations suggests a role for cations in the modulation of opsin-lipid interaction.

  4. Identification of consensus binding sites clarifies FMRP binding determinants.

    PubMed

    Anderson, Bart R; Chopra, Pankaj; Suhl, Joshua A; Warren, Stephen T; Bassell, Gary J

    2016-08-19

    Fragile X mental retardation protein (FMRP) is a multifunctional RNA-binding protein with crucial roles in neuronal development and function. Efforts aimed at elucidating how FMRP target mRNAs are selected have produced divergent sets of target mRNA and putative FMRP-bound motifs, and a clear understanding of FMRP's binding determinants has been lacking. To clarify FMRP's binding to its target mRNAs, we produced a shared dataset of FMRP consensus binding sequences (FCBS), which were reproducibly identified in two published FMRP CLIP sequencing datasets. This comparative dataset revealed that of the various sequence and structural motifs that have been proposed to specify FMRP binding, the short sequence motifs TGGA and GAC were corroborated, and a novel TAY motif was identified. In addition, the distribution of the FCBS set demonstrates that FMRP preferentially binds to the coding region of its targets but also revealed binding along 3' UTRs in a subset of target mRNAs. Beyond probing these putative motifs, the FCBS dataset of reproducibly identified FMRP binding sites is a valuable tool for investigating FMRP targets and function. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  5. Predicted metal binding sites for phytoremediation.

    PubMed

    Sharma, Ashok; Roy, Sudeep; Tripathi, Kumar Parijat; Roy, Pratibha; Mishra, Manoj; Khan, Feroz; Meena, Abha

    2009-09-05

    Metal ion binding domains are found in proteins that mediate transport, buffering or detoxification of metal ions. The objective of the study is to design and analyze metal binding motifs against the genes involved in phytoremediation. This is being done on the basis of certain pre-requisite amino-acid residues known to bind metal ions/metal complexes in medicinal and aromatic plants (MAP's). Earlier work on MAP's have shown that heavy metals accumulated by aromatic and medicinal plants do not appear in the essential oil and that some of these species are able to grow in metal contaminated sites. A pattern search against the UniProtKB/Swiss-Prot and UniProtKB/TrEMBL databases yielded true positives in each case showing the high specificity of the motifs designed for the ions of nickel, lead, molybdenum, manganese, cadmium, zinc, iron, cobalt and xenobiotic compounds. Motifs were also studied against PDB structures. Results of the study suggested the presence of binding sites on the surface of protein molecules involved. PDB structures of proteins were finally predicted for the binding sites functionality in their respective phytoremediation usage. This was further validated through CASTp server to study its physico-chemical properties. Bioinformatics implications would help in designing strategy for developing transgenic plants with increased metal binding capacity. These metal binding factors can be used to restrict metal update by plants. This helps in reducing the possibility of metal movement into the food chain.

  6. Predicting Ca(2+)-binding sites in proteins.

    PubMed

    Nayal, M; Di Cera, E

    1994-01-18

    The coordination shell of Ca2+ ions in proteins contains almost exclusively oxygen atoms supported by an outer shell of carbon atoms. The bond-strength contribution of each ligating oxygen in the inner shell can be evaluated by using an empirical expression successfully applied in the analysis of crystals of metal oxides. The sum of such contributions closely approximates the valence of the bound cation. When a protein is embedded in a very fine grid of points and an algorithm is used to calculate the valence of each point representing a potential Ca(2+)-binding site, a typical distribution of valence values peaked around 0.4 is obtained. In 32 documented Ca(2+)-binding proteins, containing a total of 62 Ca(2+)-binding sites, a very small fraction of points in the distribution has a valence close to that of Ca2+. Only 0.06% of the points have a valence > or = 1.4. These points share the remarkable tendency to cluster around documented Ca2+ ions. A high enough value of the valence is both necessary (58 out of 62 Ca(2+)-binding sites have a valence > or = 1.4) and sufficient (87% of the grid points with a valence > or = 1.4 are within 1.0 A from a documented Ca2+ ion) to predict the location of bound Ca2+ ions. The algorithm can also be used for the analysis of other cations and predicts the location of Mg(2+)- and Na(+)-binding sites in a number of proteins. The valence is, therefore, a tool of pinpoint accuracy for locating cation-binding sites, which can also be exploited in engineering high-affinity binding sites and characterizing the linkage between structural components and functional energetics for molecular recognition of metal ions by proteins.

  7. Electrostatic Steering at Acetylcholine Binding Sites

    PubMed Central

    Meltzer, Robert H.; Thompson, Errol; Soman, Kizhake V.; Song, Xing-Zhi; Ebalunode, Jerry O.; Wensel, Theodore G.; Briggs, James M.; Pedersen, Steen E.

    2006-01-01

    The electrostatic environments near the acetylcholine binding sites on the nicotinic acetylcholine receptor (nAChR) and acetylcholinesterase were measured by diffusion-enhanced fluorescence energy transfer (DEFET) to determine the influence of long-range electrostatic interactions on ligand binding kinetics and net binding energy. Changes in DEFET from variously charged Tb3+-chelates revealed net potentials of −20 mV at the nAChR agonist sites and −14 mV at the entrance to the AChE active site, in physiological ionic strength conditions. The potential at the αδ-binding site of the nAChR was determined independently in the presence of d-tubocurarine to be −14 mV; the calculated potential at the αγ-site was approximately threefold stronger than at the αδ-site. By determining the local potential in increasing ionic strength, Debye-Hückel theory predicted that the potentials near the nAChR agonist binding sites are constituted by one to three charges in close proximity to the binding site. Examination of the binding kinetics of the fluorescent acetylcholine analog dansyl-C6-choline at ionic strengths from 12.5 to 400 mM revealed a twofold decrease in association rate. Debye-Hückel analysis of the kinetics revealed a similar charge distribution as seen by changes in the potentials. To determine whether the experimentally determined potentials are reflected by continuum electrostatics calculations, solutions to the nonlinear Poisson-Boltzmann equation were used to compute the potentials expected from DEFET measurements from high-resolution models of the nAChR and AChE. These calculations are in good agreement with the DEFET measurements for AChE and for the αγ-site of the nAChR. We conclude that long-range electrostatic interactions contribute −0.3 and −1 kcal/mol to the binding energy at the nAChR αδ- and αγ-sites due to an increase in association rates. PMID:16751247

  8. Electrostatic steering at acetylcholine binding sites.

    PubMed

    Meltzer, Robert H; Thompson, Errol; Soman, Kizhake V; Song, Xing-Zhi; Ebalunode, Jerry O; Wensel, Theodore G; Briggs, James M; Pedersen, Steen E

    2006-08-15

    The electrostatic environments near the acetylcholine binding sites on the nicotinic acetylcholine receptor (nAChR) and acetylcholinesterase were measured by diffusion-enhanced fluorescence energy transfer (DEFET) to determine the influence of long-range electrostatic interactions on ligand binding kinetics and net binding energy. Changes in DEFET from variously charged Tb3+ -chelates revealed net potentials of -20 mV at the nAChR agonist sites and -14 mV at the entrance to the AChE active site, in physiological ionic strength conditions. The potential at the alphadelta-binding site of the nAChR was determined independently in the presence of d-tubocurarine to be -14 mV; the calculated potential at the alphagamma-site was approximately threefold stronger than at the alphadelta-site. By determining the local potential in increasing ionic strength, Debye-Hückel theory predicted that the potentials near the nAChR agonist binding sites are constituted by one to three charges in close proximity to the binding site. Examination of the binding kinetics of the fluorescent acetylcholine analog dansyl-C6-choline at ionic strengths from 12.5 to 400 mM revealed a twofold decrease in association rate. Debye-Hückel analysis of the kinetics revealed a similar charge distribution as seen by changes in the potentials. To determine whether the experimentally determined potentials are reflected by continuum electrostatics calculations, solutions to the nonlinear Poisson-Boltzmann equation were used to compute the potentials expected from DEFET measurements from high-resolution models of the nAChR and AChE. These calculations are in good agreement with the DEFET measurements for AChE and for the alphagamma-site of the nAChR. We conclude that long-range electrostatic interactions contribute -0.3 and -1 kcal/mol to the binding energy at the nAChR alphadelta- and alphagamma-sites due to an increase in association rates.

  9. Allosteric binding sites on muscarinic acetylcholine receptors.

    PubMed

    Wess, Jürgen

    2005-12-01

    In this issue of Molecular Pharmacology, Tränkle et al. (p. 1597) present new findings regarding the existence of a second allosteric site on the M2 muscarinic acetylcholine receptor (M2 mAChR). The M2 mAChR is a prototypic class A G protein-coupled receptor (GPCR) that has proven to be a very useful model system to study the molecular mechanisms involved in the binding of allosteric GPCR ligands. Previous studies have identified several allosteric muscarinic ligands, including the acetylcholinesterase inhibitor tacrine and the bis-pyridinium derivative 4,4'-bis-[(2,6-dichloro-benzyloxy-imino)-methyl]-1,1'-propane-1,3-diyl-bis-pyridinium dibromide (Duo3), which, in contrast to conventional allosteric muscarinic ligands, display concentration-effect curves with slope factors >1. By analyzing the interactions of tacrine and Duo3 with other allosteric muscarinic agents predicted to bind to the previously identified ;common' allosteric binding site, Tränkle et al. provide evidence suggesting that two allosteric agents and one orthosteric ligand may be able to bind to the M2 mAChR simultaneously. Moreover, studies with mutant mAChRs indicated that the M2 receptor epitopes involved in the binding of tacrine and Duo3 may not be identical. Molecular modeling and ligand docking studies suggested that the additional allosteric site probably represents a subdomain of the receptor's allosteric binding cleft. Because allosteric binding sites have been found on many other GPCRs and drugs interacting with these sites are thought to have great therapeutic potential, the study by Tränkle et al. should be of considerable general interest.

  10. Bridging lectin binding sites by multivalent carbohydrates.

    PubMed

    Wittmann, Valentin; Pieters, Roland J

    2013-05-21

    Carbohydrate-protein interactions are involved in a multitude of biological recognition processes. Since individual protein-carbohydrate interactions are usually weak, multivalency is often required to achieve biologically relevant binding affinities and selectivities. Among the possible mechanisms responsible for binding enhancement by multivalency, the simultaneous attachment of a multivalent ligand to several binding sites of a multivalent receptor (i.e. chelation) has been proven to have a strong impact. This article summarizes recent examples of chelating lectin ligands of different size. Covered lectins include the Shiga-like toxin, where the shortest distance between binding sites is ca. 9 Å, wheat germ agglutinin (WGA) (shortest distance between binding sites 13-14 Å), LecA from Pseudomonas aeruginosa (shortest distance 26 Å), cholera toxin and heat-labile enterotoxin (shortest distance 31 Å), anti-HIV antibody 2G12 (shortest distance 31 Å), concanavalin A (ConA) (shortest distance 72 Å), RCA120 (shortest distance 100 Å), and Erythrina cristagalli (ECL) (shortest distance 100 Å). While chelating binding of the discussed ligands is likely, experimental proof, for example by X-ray crystallography, is limited to only a few cases.

  11. The HIV-1 Nucleocapsid Protein Recruits Negatively Charged Lipids To Ensure Its Optimal Binding to Lipid Membranes

    PubMed Central

    Kempf, Noémie; Postupalenko, Viktoriia; Bora, Saurabh; Didier, Pascal; Arntz, Youri; de Rocquigny, Hugues

    2014-01-01

    ABSTRACT The HIV-1 Gag polyprotein precursor composed of the matrix (MA), capsid (CA), nucleocapsid (NC), and p6 domains orchestrates virus assembly via interactions between MA and the cell plasma membrane (PM) on one hand and NC and the genomic RNA on the other hand. As the Gag precursor can adopt a bent conformation, a potential interaction of the NC domain with the PM cannot be excluded during Gag assembly at the PM. To investigate the possible interaction of NC with lipid membranes in the absence of any interference from the other domains of Gag, we quantitatively characterized by fluorescence spectroscopy the binding of the mature NC protein to large unilamellar vesicles (LUVs) used as membrane models. We found that NC, either in its free form or bound to an oligonucleotide, was binding with high affinity (∼107 M−1) to negatively charged LUVs. The number of NC binding sites, but not the binding constant, was observed to decrease with the percentage of negatively charged lipids in the LUV composition, suggesting that NC and NC/oligonucleotide complexes were able to recruit negatively charged lipids to ensure optimal binding. However, in contrast to MA, NC did not exhibit a preference for phosphatidylinositol-(4,5)-bisphosphate. These results lead us to propose a modified Gag assembly model where the NC domain contributes to the initial binding of the bent form of Gag to the PM. IMPORTANCE The NC protein is a highly conserved nucleic acid binding protein that plays numerous key roles in HIV-1 replication. While accumulating evidence shows that NC either as a mature protein or as a domain of the Gag precursor also interacts with host proteins, only a few data are available on the possible interaction of NC with lipid membranes. Interestingly, during HIV-1 assembly, the Gag precursor is thought to adopt a bent conformation where the NC domain may interact with the plasma membrane. In this context, we quantitatively characterized the binding of NC, as a free

  12. Phosphate binding sites identification in protein structures

    PubMed Central

    Parca, Luca; Gherardini, Pier Federico; Helmer-Citterich, Manuela; Ausiello, Gabriele

    2011-01-01

    Nearly half of known protein structures interact with phosphate-containing ligands, such as nucleotides and other cofactors. Many methods have been developed for the identification of metal ions-binding sites and some for bigger ligands such as carbohydrates, but none is yet available for the prediction of phosphate-binding sites. Here we describe Pfinder, a method that predicts binding sites for phosphate groups, both in the form of ions or as parts of other non-peptide ligands, in proteins of known structure. Pfinder uses the Query3D local structural comparison algorithm to scan a protein structure for the presence of a number of structural motifs identified for their ability to bind the phosphate chemical group. Pfinder has been tested on a data set of 52 proteins for which both the apo and holo forms were available. We obtained at least one correct prediction in 63% of the holo structures and in 62% of the apo. The ability of Pfinder to recognize a phosphate-binding site in unbound protein structures makes it an ideal tool for functional annotation and for complementing docking and drug design methods. The Pfinder program is available at http://pdbfun.uniroma2.it/pfinder. PMID:20974634

  13. Membrane binding of the bacterial signal recognition particle receptor involves two distinct binding sites

    PubMed Central

    Angelini, Sandra; Boy, Diana; Schiltz, Emile; Koch, Hans-Georg

    2006-01-01

    Cotranslational protein targeting in bacteria is mediated by the signal recognition particle (SRP) and FtsY, the bacterial SRP receptor (SR). FtsY is homologous to the SRα subunit of eukaryotes, which is tethered to the membrane via its interaction with the membrane-integral SRβ subunit. Despite the lack of a membrane-anchoring subunit, 30% of FtsY in Escherichia coli are found stably associated with the cytoplasmic membrane. However, the mechanisms that are involved in this membrane association are only poorly understood. Our data indicate that membrane association of FtsY involves two distinct binding sites and that binding to both sites is stabilized by blocking its GTPase activity. Binding to the first site requires only the NG-domain of FtsY and confers protease protection to FtsY. Importantly, the SecY translocon provides the second binding site, to which FtsY binds to form a carbonate-resistant 400-kD FtsY–SecY translocon complex. This interaction is stabilized by the N-terminal A-domain of FtsY, which probably serves as a transient lipid anchor. PMID:16923832

  14. Inhibition of cell-cell binding by lipid assemblies

    DOEpatents

    Nagy, Jon O.; Bargatze, Robert F.

    2001-05-22

    This invention relates generally to the field of therapeutic compounds designed to interfere between the binding of ligands and their receptors on cell surface. More specifically, it provides products and methods for inhibiting cell migration and activation using lipid assemblies with surface recognition elements that are specific for the receptors involved in cell migration and activation.

  15. The TULIP superfamily of eukaryotic lipid-binding proteins as a mediator of lipid sensing and transport.

    PubMed

    Alva, Vikram; Lupas, Andrei N

    2016-08-01

    The tubular lipid-binding (TULIP) superfamily has emerged in recent years as a major mediator of lipid sensing and transport in eukaryotes. It currently encompasses three protein families, SMP-like, BPI-like, and Takeout-like, which share a common fold. This fold consists of a long helix wrapped in a highly curved anti-parallel β-sheet, enclosing a central, lipophilic cavity. The SMP-like proteins, which include subunits of the ERMES complex and the extended synaptotagmins (E-Syts), appear to be mainly located at membrane contacts sites (MCSs) between organelles, mediating inter-organelle lipid exchange. The BPI-like proteins, which include the bactericidal/permeability-increasing protein (BPI), the LPS (lipopolysaccharide)-binding protein (LBP), the cholesteryl ester transfer protein (CETP), and the phospholipid transfer protein (PLTP), are either involved in innate immunity against bacteria through their ability to sense lipopolysaccharides, as is the case for BPI and LBP, or in lipid exchange between lipoprotein particles, as is the case for CETP and PLTP. The Takeout-like proteins, which are comprised of insect juvenile hormone-binding proteins and arthropod allergens, transport, where known, lipid hormones to target tissues during insect development. In all cases, the activity of these proteins is underpinned by their ability to bind large, hydrophobic ligands in their central cavity and segregate them away from the aqueous environment. Furthermore, where they are involved in lipid exchange, recent structural studies have highlighted their ability to establish lipophilic, tubular channels, either between organelles in the case of SMP domains or between lipoprotein particles in the case of CETP. Here, we review the current knowledge on the structure, versatile functions, and evolution of the TULIP superfamily. We propose a deep evolutionary split in this superfamily, predating the Last Eukaryotic Common Ancestor, between the SMP-like proteins, which act on

  16. Polyphosphoinositide binding domains: Key to inositol lipid biology.

    PubMed

    Hammond, Gerald R V; Balla, Tamas

    2015-06-01

    Polyphosphoinositides (PPIn) are an important family of phospholipids located on the cytoplasmic leaflet of eukaryotic cell membranes. Collectively, they are critical for the regulation of many aspects of membrane homeostasis and signaling, with notable relevance to human physiology and disease. This regulation is achieved through the selective interaction of these lipids with hundreds of cellular proteins, and thus the capability to study these localized interactions is crucial to understanding their functions. In this review, we discuss current knowledge of the principle types of PPIn-protein interactions, focusing on specific lipid-binding domains. We then discuss how these domains have been re-tasked by biologists as molecular probes for these lipids in living cells. Finally, we describe how the knowledge gained with these probes, when combined with other techniques, has led to the current view of the lipids' localization and function in eukaryotes, focusing mainly on animal cells. This article is part of a Special Issue entitled Phosphoinositides.

  17. The helix bundle: A reversible lipid binding motif

    PubMed Central

    Narayanaswami, Vasanthy; Kiss, Robert S.; Weers, Paul M.M.

    2009-01-01

    Apolipoproteins are the protein components of lipoproteins that have the innate ability to inter convert between a lipid-free and a lipid-bound form in a facile manner, a remarkable property conferred by the helix bundle motif. Composed of a series of four or five amphipathic α-helices that fold to form a helix bundle, this motif allows the en face orientation of the hydrophobic faces of the α-helices in the protein interior in the lipid-free state. A conformational switch then permits helix-helix interactions to be substituted by helix-lipid interactions upon lipid binding interaction. This review compares the apolipoprotein high resolution structures and the factors that trigger this switch in insect apolipophorin III and the mammalian apolipoproteins, apolipoprotein E and apolipoprotein A-I, pointing out the commonalities and key differences in the mode of lipid interaction. Further insights into the lipid bound conformation of apolipoproteins are required to fully understand their functional role under physiological conditions. PMID:19770066

  18. Binding of Hemagglutinin and Influenza Virus to a Peptide-Conjugated Lipid Membrane

    PubMed Central

    Matsubara, Teruhiko; Shibata, Rabi; Sato, Toshinori

    2016-01-01

    Hemagglutinin (HA) plays an important role in the first step of influenza virus (IFV) infection because it initiates the binding of the virus to the sialylgalactose linkages of the receptors on the host cells. We herein demonstrate that a HA-binding peptide immobilized on a solid support is available to bind to HA and IFV. We previously obtained a HA-binding pentapeptide (Ala-Arg-Leu-Pro-Arg), which was identified by phage-display selection against HAs from random peptide libraries. This peptide binds to the receptor-binding site of HA by mimicking sialic acid. A peptide-conjugated lipid (pep-PE) was chemically synthesized from the peptide and a saturated phospholipid. A lipid bilayer composed of pep-PE and an unsaturated phospholipid (DOPC) was immobilized on a mica plate; and the interaction between HA and the pep-PE/DOPC membrane was investigated using atomic force microscopy. The binding of IFV to the pep-PE/DOPC membrane was detected by an enzyme-linked immunosorbent assay and real-time reverse transcription PCR. Our results indicate that peptide-conjugated lipids are a useful molecular device for the detection of HA and IFV. PMID:27092124

  19. Radiation inactivation reveals discrete cation binding sites that modulate dihydropyridine binding sites

    SciTech Connect

    Bolger, G.T.; Skolnick, P.; Kempner, E.S. )

    1989-08-01

    In low ionic strength buffer (5 mM Tris.HCl), the binding of (3H) nitrendipine to dihydropyridine calcium antagonist binding sites of mouse forebrain membranes is increased by both Na{sup +} and Ca{sup 2+}. Radiation inactivation was used to determine the target size of ({sup 3}H)nitrendipine binding sites in 5 mM Tris.HCl buffer, in the presence and absence of these cations. After irradiation, ({sup 3}H) nitrendipine binding in buffer with or without Na+ was diminished, due to a loss of binding sites and also to an increase in Kd. After accounting for radiation effects on the dissociation constant, the target size for the nitrendipine binding site in buffer was 160-170 kDa and was 170-180 kDa in the presence of sodium. In the presence of calcium ions, ({sup 3}H)nitrendipine binding showed no radiation effects on Kd and yielded a target size of 150-170 kDa. These findings suggest, as in the case of opioid receptors, the presence of high molecular weight membrane components that modulate cation-induced alterations in radioligand binding to dihydropyridine binding sites.

  20. Computational Prediction of RNA-Binding Proteins and Binding Sites

    PubMed Central

    Si, Jingna; Cui, Jing; Cheng, Jin; Wu, Rongling

    2015-01-01

    Proteins and RNA interaction have vital roles in many cellular processes such as protein synthesis, sequence encoding, RNA transfer, and gene regulation at the transcriptional and post-transcriptional levels. Approximately 6%–8% of all proteins are RNA-binding proteins (RBPs). Distinguishing these RBPs or their binding residues is a major aim of structural biology. Previously, a number of experimental methods were developed for the determination of protein–RNA interactions. However, these experimental methods are expensive, time-consuming, and labor-intensive. Alternatively, researchers have developed many computational approaches to predict RBPs and protein–RNA binding sites, by combining various machine learning methods and abundant sequence and/or structural features. There are three kinds of computational approaches, which are prediction from protein sequence, prediction from protein structure, and protein-RNA docking. In this paper, we review all existing studies of predictions of RNA-binding sites and RBPs and complexes, including data sets used in different approaches, sequence and structural features used in several predictors, prediction method classifications, performance comparisons, evaluation methods, and future directions. PMID:26540053

  1. OSBP-Related Protein Family: Mediators of Lipid Transport and Signaling at Membrane Contact Sites.

    PubMed

    Kentala, Henriikka; Weber-Boyvat, Marion; Olkkonen, Vesa M

    2016-01-01

    Oxysterol-binding protein (OSBP) and its related protein homologs, ORPs, constitute a conserved family of lipid-binding/transfer proteins (LTPs) expressed ubiquitously in eukaryotes. The ligand-binding domain of ORPs accommodates cholesterol and oxysterols, but also glycerophospholipids, particularly phosphatidylinositol-4-phosphate (PI4P). ORPs have been implicated as intracellular lipid sensors or transporters. Most ORPs carry targeting determinants for the endoplasmic reticulum (ER) and non-ER organelle membrane. ORPs are located and function at membrane contact sites (MCSs), at which ER is closely apposed with other organelle limiting membranes. Such sites have roles in lipid transport and metabolism, control of Ca(2+) fluxes, and signaling events. ORPs are postulated either to transport lipids over MCSs to maintain the distinct lipid compositions of organelle membranes, or to control the activity of enzymes/protein complexes with functions in signaling and lipid metabolism. ORPs may transfer PI4P and another lipid class bidirectionally. Transport of PI4P followed by its hydrolysis would in this model provide the energy for transfer of the other lipid against its concentration gradient. Control of organelle lipid compositions by OSBP/ORPs is important for the life cycles of several pathogenic viruses. Targeting ORPs with small-molecular antagonists is proposed as a new strategy to combat viral infections. Several ORPs are reported to modulate vesicle transport along the secretory or endocytic pathways. Moreover, antagonists of certain ORPs inhibit cancer cell proliferation. Thus, ORPs are LTPs, which mediate interorganelle lipid transport and coordinate lipid signals with a variety of cellular regimes. Copyright © 2016. Published by Elsevier Inc.

  2. Sigma-1 receptors bind cholesterol and remodel lipid rafts in breast cancer cell lines.

    PubMed

    Palmer, Christopher P; Mahen, Robert; Schnell, Eva; Djamgoz, Mustafa B A; Aydar, Ebru

    2007-12-01

    Lipid rafts are membrane platforms that spatially organize molecules for specific signaling pathways that regulate various cellular functions. Cholesterol is critical for liquid-ordered raft formation by serving as a spacer between the hydrocarbon chains of sphingolipids, and alterations in the cholesterol contents of the plasma membrane causes disruption of rafts. The role that sigma receptors play in cancer is not clear, although it is frequently up-regulated in human cancer cells and tissues and sigma receptors inhibit proliferation in carcinoma and melanoma cell lines, induce apoptosis in colon and mammary carcinoma cell lines, and reduce cellular adhesion in mammary carcinoma cell lines. In this study, we provide molecular and functional evidence for the involvement of the enigmatic sigma 1 receptors in lipid raft modeling by sigma 1 receptor-mediated cholesterol alteration of lipid rafts in breast cancer cell lines. Cholesterol binds to cholesterol recognition domains in the COOH terminus of the sigma 1 receptor. This binding is blocked by sigma receptor drugs because the cholesterol-binding domains form part of the sigma receptor drug-binding site, mutations of which abolish cholesterol binding. Furthermore, we outline a hypothetical functional model to explain the myriad of biological processes, including cancer, in which these mysterious receptors are involved. The findings of this study provide a biological basis for the potential therapeutic applications of lipid raft cholesterol regulation in cancer therapy using sigma receptor drugs.

  3. Role of beer lipid-binding proteins in preventing lipid destabilization of foam.

    PubMed

    Cooper, D J; Husband, F A; Mills, E N C; Wilde, P J

    2002-12-18

    The negative effect of fatty acids on the foam stability of beer has been assessed. Long-chain fatty acids are far more damaging than short-chain fatty acids on the foam stability of beer at the concentrations employed. Polypeptides have been isolated from an all malt beer by hydrophobic interaction chromatography. Using this technique five groups of polypeptides were isolated, group 1 being the least hydrophobic and group 5 the most hydrophobic, all of which exhibited similar polypeptide compositions by SDS-PAGE. All five hydrophobic polypeptide groups bound [(14)C]linoleic acid; however, group 5, the most hydrophobic group, bound the most linoleic acid. Groups 1 and 5 were titrated with cis-parinaric acid (CPA) to produce binding curves, which were compared with a binding curve obtained for bovine serum albumin (BSA). Groups 1 and 5 both produced binding curves that saturated at approximately 5.5 microM and 4 microM CPA and had association constants (K(a)) of 6.27 x 10(7) and 1.62 x 10(7) M(-1), respectively. In comparison, BSA produced a binding curve that saturated at 6 microM CPA and had a K(a) of 3.95 x 10(7) M(-1). Further investigation has shown that group 1 is pH sensitive and group 5 pH insensitive with respect to lipid binding. The lipid-binding activity of group 5 was also shown to be unaffected by ethanol concentration. Linoleic acid (5 microM) when added to beer resulted in unstable foam. Group 5 was added to the lipid-damaged beer and was shown to restore the foam stability to values that were obtained for the control beer. It has therefore been demonstrated that proteins isolated from beer have a lipid-binding capacity and that they can convey a degree of protection against lipid-induced foam destabilization.

  4. Preferred Metal Binding Site of Aniline

    NASA Astrophysics Data System (ADS)

    Kumari, Sudesh; Sohnlein, Brad; Yang, Dong-Sheng

    2012-06-01

    Group III metal-aniline complexes, M-aniline (M = Sc, Y, and La), were produced by interactions between laser-vaporized metal atoms and aniline vapor in a pulsed molecular beam source, identified by photoionization time-of-flight mass spectrometry, and studied by pulsed-field ionization zero electron kinetic energy (ZEKE) spectroscopy and density functional theory calculations. Adiabatic ionization energies and several vibrational intervals were measured from the ZEKE spectra. Metal binding sites and electronic states were determined by combining the ZEKE measurements and theoretical calculations. Although aniline has various possible sites for metal coordination, the preferred site was determined to be phenyl ring. The metal binding with the phenyl ring yields syn and anti conformers. In these conformers, the neutral complexes are in doublet ground states and the corresponding singly charged cations in singlet states.

  5. Mechanisms of membrane deformation by lipid-binding domains.

    PubMed

    Itoh, Toshiki; Takenawa, Tadaomi

    2009-09-01

    Among an increasing number of lipid-binding domains, a group that not only binds to membrane lipids but also changes the shape of the membrane has been found. These domains are characterized by their strong ability to transform globular liposomes as well as flat plasma membranes into elongated membrane tubules both in vitro and in vivo. Biochemical studies on the structures of these proteins have revealed the importance of the amphipathic helix, which potentially intercalates into the lipid bilayer to induce and/or sense membrane curvature. Among such membrane-deforming domains, BAR and F-BAR/EFC domains form crescent-shaped dimers, suggesting a preference for a curved membrane, which is important for curvature sensing. Bioinformatics in combination with structural analyses has been identifying an increasing number of novel families of lipid-binding domains. This review attempts to summarize the evidence obtained by recent studies in order to gain general insights into the roles of membrane-deforming domains in a variety of biological events.

  6. Snake Cytotoxins Bind to Membranes via Interactions with Phosphatidylserine Head Groups of Lipids

    PubMed Central

    Konshina, Anastasia G.; Boldyrev, Ivan A.; Utkin, Yuri N.; Omel'kov, Anton V.; Efremov, Roman G.

    2011-01-01

    The major representatives of Elapidae snake venom, cytotoxins (CTs), share similar three-fingered fold and exert diverse range of biological activities against various cell types. CT-induced cell death starts from the membrane recognition process, whose molecular details remain unclear. It is known, however, that the presence of anionic lipids in cell membranes is one of the important factors determining CT-membrane binding. In this work, we therefore investigated specific interactions between one of the most abundant of such lipids, phosphatidylserine (PS), and CT 4 of Naja kaouthia using a combined, experimental and modeling, approach. It was shown that incorporation of PS into zwitterionic liposomes greatly increased the membrane-damaging activity of CT 4 measured by the release of the liposome-entrapped calcein fluorescent dye. The CT-induced leakage rate depends on the PS concentration with a maximum at approximately 20% PS. Interestingly, the effects observed for PS were much more pronounced than those measured for another anionic lipid, sulfatide. To delineate the potential PS binding sites on CT 4 and estimate their relative affinities, a series of computer simulations was performed for the systems containing the head group of PS and different spatial models of CT 4 in aqueous solution and in an implicit membrane. This was done using an original hybrid computational protocol implementing docking, Monte Carlo and molecular dynamics simulations. As a result, at least three putative PS-binding sites with different affinities to PS molecule were delineated. Being located in different parts of the CT molecule, these anion-binding sites can potentially facilitate and modulate the multi-step process of the toxin insertion into lipid bilayers. This feature together with the diverse binding affinities of the sites to a wide variety of anionic targets on the membrane surface appears to be functionally meaningful and may adjust CT action against different types of

  7. DBSI: DNA-binding site identifier

    PubMed Central

    Zhu, Xiaolei; Ericksen, Spencer S.; Mitchell, Julie C.

    2013-01-01

    In this study, we present the DNA-Binding Site Identifier (DBSI), a new structure-based method for predicting protein interaction sites for DNA binding. DBSI was trained and validated on a data set of 263 proteins (TRAIN-263), tested on an independent set of protein-DNA complexes (TEST-206) and data sets of 29 unbound (APO-29) and 30 bound (HOLO-30) protein structures distinct from the training data. We computed 480 candidate features for identifying protein residues that bind DNA, including new features that capture the electrostatic microenvironment within shells near the protein surface. Our iterative feature selection process identified features important in other models, as well as features unique to the DBSI model, such as a banded electrostatic feature with spatial separation comparable with the canonical width of the DNA minor groove. Validations and comparisons with established methods using a range of performance metrics clearly demonstrate the predictive advantage of DBSI, and its comparable performance on unbound (APO-29) and bound (HOLO-30) conformations demonstrates robustness to binding-induced protein conformational changes. Finally, we offer our feature data table to others for integration into their own models or for testing improved feature selection and model training strategies based on DBSI. PMID:23873960

  8. DBSI: DNA-binding site identifier.

    PubMed

    Zhu, Xiaolei; Ericksen, Spencer S; Mitchell, Julie C

    2013-09-01

    In this study, we present the DNA-Binding Site Identifier (DBSI), a new structure-based method for predicting protein interaction sites for DNA binding. DBSI was trained and validated on a data set of 263 proteins (TRAIN-263), tested on an independent set of protein-DNA complexes (TEST-206) and data sets of 29 unbound (APO-29) and 30 bound (HOLO-30) protein structures distinct from the training data. We computed 480 candidate features for identifying protein residues that bind DNA, including new features that capture the electrostatic microenvironment within shells near the protein surface. Our iterative feature selection process identified features important in other models, as well as features unique to the DBSI model, such as a banded electrostatic feature with spatial separation comparable with the canonical width of the DNA minor groove. Validations and comparisons with established methods using a range of performance metrics clearly demonstrate the predictive advantage of DBSI, and its comparable performance on unbound (APO-29) and bound (HOLO-30) conformations demonstrates robustness to binding-induced protein conformational changes. Finally, we offer our feature data table to others for integration into their own models or for testing improved feature selection and model training strategies based on DBSI.

  9. Carotenoid binding to proteins: Modeling pigment transport to lipid membranes.

    PubMed

    Reszczynska, Emilia; Welc, Renata; Grudzinski, Wojciech; Trebacz, Kazimierz; Gruszecki, Wieslaw I

    2015-10-15

    Carotenoid pigments play numerous important physiological functions in human organism. Very special is a role of lutein and zeaxanthin in the retina of an eye and in particular in its central part, the macula lutea. In the retina, carotenoids can be directly present in the lipid phase of the membranes or remain bound to the protein-pigment complexes. In this work we address a problem of binding of carotenoids to proteins and possible role of such structures in pigment transport to lipid membranes. Interaction of three carotenoids, beta-carotene, lutein and zeaxanthin with two proteins: bovine serum albumin and glutathione S-transferase (GST) was investigated with application of molecular spectroscopy techniques: UV-Vis absorption, circular dichroism and Fourier transform infrared spectroscopy (FTIR). Interaction of pigment-protein complexes with model lipid bilayers formed with egg yolk phosphatidylcholine was investigated with application of FTIR, Raman imaging of liposomes and electrophysiological technique, in the planar lipid bilayer models. The results show that in all the cases of protein and pigment studied, carotenoids bind to protein and that the complexes formed can interact with membranes. This means that protein-carotenoid complexes are capable of playing physiological role in pigment transport to biomembranes.

  10. Predicting tissue specific transcription factor binding sites

    PubMed Central

    2013-01-01

    Background Studies of gene regulation often utilize genome-wide predictions of transcription factor (TF) binding sites. Most existing prediction methods are based on sequence information alone, ignoring biological contexts such as developmental stages and tissue types. Experimental methods to study in vivo binding, including ChIP-chip and ChIP-seq, can only study one transcription factor in a single cell type and under a specific condition in each experiment, and therefore cannot scale to determine the full set of regulatory interactions in mammalian transcriptional regulatory networks. Results We developed a new computational approach, PIPES, for predicting tissue-specific TF binding. PIPES integrates in vitro protein binding microarrays (PBMs), sequence conservation and tissue-specific epigenetic (DNase I hypersensitivity) information. We demonstrate that PIPES improves over existing methods on distinguishing between in vivo bound and unbound sequences using ChIP-seq data for 11 mouse TFs. In addition, our predictions are in good agreement with current knowledge of tissue-specific TF regulation. Conclusions We provide a systematic map of computationally predicted tissue-specific binding targets for 284 mouse TFs across 55 tissue/cell types. Such comprehensive resource is useful for researchers studying gene regulation. PMID:24238150

  11. Disulfide bridge regulates ligand-binding site selectivity in liver bile acid-binding proteins.

    PubMed

    Cogliati, Clelia; Tomaselli, Simona; Assfalg, Michael; Pedò, Massimo; Ferranti, Pasquale; Zetta, Lucia; Molinari, Henriette; Ragona, Laura

    2009-10-01

    Bile acid-binding proteins (BABPs) are cytosolic lipid chaperones that play central roles in driving bile flow, as well as in the adaptation to various pathological conditions, contributing to the maintenance of bile acid homeostasis and functional distribution within the cell. Understanding the mode of binding of bile acids with their cytoplasmic transporters is a key issue in providing a model for the mechanism of their transfer from the cytoplasm to the nucleus, for delivery to nuclear receptors. A number of factors have been shown to modulate bile salt selectivity, stoichiometry, and affinity of binding to BABPs, e.g. chemistry of the ligand, protein plasticity and, possibly, the formation of disulfide bridges. Here, the effects of the presence of a naturally occurring disulfide bridge on liver BABP ligand-binding properties and backbone dynamics have been investigated by NMR. Interestingly, the disulfide bridge does not modify the protein-binding stoichiometry, but has a key role in modulating recognition at both sites, inducing site selectivity for glycocholic and glycochenodeoxycholic acid. Protein conformational changes following the introduction of a disulfide bridge are small and located around the inner binding site, whereas significant changes in backbone motions are observed for several residues distributed over the entire protein, both in the apo form and in the holo form. Site selectivity appears, therefore, to be dependent on protein mobility rather than being governed by steric factors. The detected properties further establish a parallelism with the behaviour of human ileal BABP, substantiating the proposal that BABPs have parallel functions in hepatocytes and enterocytes.

  12. A lipid binding domain in sphingosine kinase 2

    SciTech Connect

    Don, Anthony S.; Rosen, Hugh

    2009-02-27

    The lipid second messenger sphingosine 1-phosphate (S1P) is a critical mediator of cellular proliferation and survival signals, and is essential for vasculogenesis and neurogenesis. S1P formation is catalysed by sphingosine kinases 1 and 2 (Sphk1 and Sphk2). We have found that the endogenous glycolipid sulfatide (3-O-sulfogalactosylceramide) binds to and inhibits the activity of Sphk2 and the closely related ceramide kinase (Cerk), but not Sphk1. Using sulfatide as a probe, we mapped the lipid binding domain to the N-terminus of Sphk2 (residues 1-175), a region of sequence that is absent in Sphk1, but aligns with a pleckstrin homology domain in Cerk. Accordingly, Sphk2 bound to phosphatidylinositol monophosphates but not to abundant cellular phospholipids. Deleting the N-terminal domain reduced Sphk2 membrane localisation in cells. We have therefore identified a lipid binding domain in Sphk2 that is important for the enzyme's sub-cellular localisation.

  13. Nucleotides of transcription factor binding sites exert interdependent effects on the binding affinities of transcription factors

    PubMed Central

    Bulyk, Martha L.; Johnson, Philip L. F.; Church, George M.

    2002-01-01

    We can determine the effects of many possible sequence variations in transcription factor binding sites using microarray binding experiments. Analysis of wild-type and mutant Zif268 (Egr1) zinc fingers bound to microarrays containing all possible central 3 bp triplet binding sites indicates that the nucleotides of transcription factor binding sites cannot be treated independently. This indicates that the current practice of characterizing transcription factor binding sites by mutating individual positions of binding sites one base pair at a time does not provide a true picture of the sequence specificity. Similarly, current bioinformatic practices using either just a consensus sequence, or even mononucleotide frequency weight matrices to provide more complete descriptions of transcription factor binding sites, are not accurate in depicting the true binding site specificities, since these methods rely upon the assumption that the nucleotides of binding sites exert independent effects on binding affinity. Our results stress the importance of complete reference tables of all possible binding sites for comparing protein binding preferences for various DNA sequences. We also show results suggesting that microarray binding data using particular subsets of all possible binding sites can be used to extrapolate the relative binding affinities of all possible full-length binding sites, given a known binding site for use as a starting sequence for site preference refinement. PMID:11861919

  14. Lipid trafficking at endoplasmic reticulum-chloroplast membrane contact sites.

    PubMed

    Block, Maryse A; Jouhet, Juliette

    2015-08-01

    Glycerolipid synthesis in plant cells is characterized by an intense trafficking of lipids between the endoplasmic reticulum (ER) and chloroplasts. Initially, fatty acids are synthesized within chloroplasts and are exported to the ER where they are used to build up phospholipids and triacylglycerol. Ultimately, derivatives of these phospholipids return to chloroplasts to form galactolipids, monogalactosyldiacylglycerol and digalactosyldiacylglycerol, the main and essential lipids of photosynthetic membranes. Lipid trafficking was proposed to transit through membrane contact sites (MCSs) connecting both organelles. Here, we review recent insights into ER-chloroplast MCSs and lipid trafficking between chloroplasts and the ER.

  15. Oxytocin binding sites in bovine mammary tissue

    SciTech Connect

    Zhao, Xin.

    1989-01-01

    Oxytocin binding sites were identified and characterized in bovine mammary tissue. ({sup 3}H)-oxytocin binding reached equilibrium by 50 min at 20{degree}C and by 8 hr at 4{degree}C. The half-time of displacement at 20{degree}C was approximately 1 hr. Thyrotropin releasing hormone, adrenocorticotropin, angiotensin I, angiotensin II, pentagastrin, bradykinin, xenopsin and L-valyl-histidyl-L-leucyl-L-threonyl-L-prolyl-L-valyl-L-glutamyl-L-lysine were not competitive. In the presence of 10 nM LiCl, addition of oxytocin to dispersed bovine mammary cells, in which phosphatidylinositol was pre-labelled, caused a time and dose-dependent increase in radioactive inositiol monophosphate incorporation. The possibility that there are distinct vasopressin receptors in bovine mammary tissue was investigated. ({sup 3}H)-vasopressin binding reached equilibrium by 40 min at 20{degree}. The half-time of displacement at 20{degree}C was approximately 1 hr. The ability of the peptides to inhibit ({sup 3}H)-vasopressin binding was: (Thr{sup 4},Gly{sup 7})-oxytocin > Arg{sup 8}-vasopressin > (lys{sup 8})-vasopressin > (Deamino{sup 1},D-arg{sup 8})-vasopressin > oxytocin > d (CH{sub 2}){sub 5}Tyr(Me)AVP.

  16. Structural basis of nSH2 regulation and lipid binding in PI3Kα

    PubMed Central

    Miller, Michelle S.; Schmidt-Kittler, Oleg; Bolduc, David M.; Brower, Evan T.; Chaves-Moreira, Daniele; Allaire, Marc; Kinzler, Kenneth W.; Jennings, Ian G.; Thompson, Philip E.; Cole, Philip A.; Amzel, L. Mario; Vogelstein, Bert; Gabelli, Sandra B.

    2014-01-01

    We report two crystal structures of the wild-type phosphatidylinositol 3-kinase α (PI3Kα) heterodimer refined to 2.9 Å and 3.4 Å resolution: the first as the free enzyme, the second in complex with the lipid substrate, diC4-PIP2, respectively. The first structure shows key interactions of the N-terminal SH2 domain (nSH2) and iSH2 with the activation loop that suggest a mechanism by which the enzyme is inhibited in its basal state. In the second structure, the lipid substrate binds in a positively charged pocket adjacent to the ATP-binding site, bordered by the P-loop, the activation loop and the iSH2 domain. An additional lipid-binding site was identified at the interface of the ABD, iSH2 and kinase domains. The ability of PI3Kα to bind an additional PIP2 molecule was confirmed in vitro by fluorescence quenching experiments. The crystal structures reveal key differences in the way the nSH2 domain interacts with wild-type p110α and with the oncogenic mutant p110αH1047R. Increased buried surface area and two unique salt-bridges observed only in the wild-type structure suggest tighter inhibition in the wild-type PI3Kα than in the oncogenic mutant. These differences may be partially responsible for the increased basal lipid kinase activity and increased membrane binding of the oncogenic mutant. PMID:25105564

  17. Structural basis of nSH2 regulation and lipid binding in PI3Kα.

    PubMed

    Miller, Michelle S; Schmidt-Kittler, Oleg; Bolduc, David M; Brower, Evan T; Chaves-Moreira, Daniele; Allaire, Marc; Kinzler, Kenneth W; Jennings, Ian G; Thompson, Philip E; Cole, Philip A; Amzel, L Mario; Vogelstein, Bert; Gabelli, Sandra B

    2014-07-30

    We report two crystal structures of the wild-type phosphatidylinositol 3-kinase α (PI3Kα) heterodimer refined to 2.9 Å and 3.4 Å resolution: the first as the free enzyme, the second in complex with the lipid substrate, diC4-PIP₂, respectively. The first structure shows key interactions of the N-terminal SH2 domain (nSH2) and iSH2 with the activation loop that suggest a mechanism by which the enzyme is inhibited in its basal state. In the second structure, the lipid substrate binds in a positively charged pocket adjacent to the ATP-binding site, bordered by the P-loop, the activation loop and the iSH2 domain. An additional lipid-binding site was identified at the interface of the ABD, iSH2 and kinase domains. The ability of PI3Kα to bind an additional PIP₂ molecule was confirmed in vitro by fluorescence quenching experiments. The crystal structures reveal key differences in the way the nSH2 domain interacts with wild-type p110α and with the oncogenic mutant p110αH1047R. Increased buried surface area and two unique salt-bridges observed only in the wild-type structure suggest tighter inhibition in the wild-type PI3Kα than in the oncogenic mutant. These differences may be partially responsible for the increased basal lipid kinase activity and increased membrane binding of the oncogenic mutant.

  18. Influence of lipid environment on insulin binding in cultured hepatoma cells.

    PubMed

    Bruneau, C; Staedel-Flaig, C; Crémel, G; Leray, C; Beck, J P; Hubert, P

    1987-05-18

    The influence of alterations of plasma membrane physico-chemical properties on insulin binding have been characterized in an insulin-sensitive rat hepatoma cell line adapted to grow for several generations in culture medium enriched with linoleic acid (18:2) or with 25-hydroxycholesterol. The cells took up 18:2 and 25-hydroxycholesterol added to the culture medium, without exhibiting any sign of intolerance or intoxication. These compounds respectively increased and decreased membrane fluidity at 37 degrees C. The cells demonstrated extensive changes in insulin binding parameters in response to experimental modifications of their membrane lipid composition. When determined at 4 degrees C, insulin receptors were present in the control cells at 136,000 sites/cell but this fell to 111,000 (P less than 0.05) in cells enriched in 18:2, and rose to 176,000 (P less than 0.001) in hydroxysterol-grown cells. According to a two-site model, the main effect of 18:2 was a significant increase of the number of high-affinity sites with a concomitant decrease of low-affinity sites. The hydroxysterol had the opposite effects on these parameters. The high-affinity insulin binding capacity of the hepatoma cells was affected by lipid supplementation in a similar way, whether it was determined at 4 degrees C or at 37 degrees C. Assuming a negative cooperativity model, 18:2 enhanced the degree of negative cooperativity among the sites, while 25-hydroxycholesterol reduced it. The time-course of insulin-induced receptor down-regulation was accelerated in the cells enriched in polyunsaturated fatty acids, but reduced in cells exposed to 25-hydroxycholesterol. These insulin-binding alterations cannot be directly related to modifications of cellular growth rate, receptor internalization or membrane fluidity per se, and are discussed as being more likely due to membrane lipid composition than to overall cell metabolism modifications.

  19. Effects of acylation on the structure, lipid binding, and transfer activity of wheat lipid transfer protein.

    PubMed

    Pato, Christine; Tran, Vinh; Marion, Didier; Douliez, Jean Paul

    2002-03-01

    Study of the effect of protein chemical acylation on their functional properties or activity often brings valuable information regarding structure-function relationships. We performed such work on wheat lipid transfer protein, LTP1, to investigate the role of grafted acyl chains on the lipid binding and transfer properties. LTP1 was acylated by using anhydride derivatives of various chain lengths from C2 to C6. Only the chemical modifications with hexanoic acid yielded a marked effect on the tertiary structure and a slight change in the secondary structure. The affinity of the modified proteins for myristoyl-lysophosphatidylcholine was similar to that of the native protein accompanied by a slight decrease in stoichiometry. Interestingly, the acylation of LTP1 enhanced the lipid transfer activity by at least a factor of 10 for hexanoic chain length. Finally, the grafting of acyl chains was investigated by means of molecular modelling, and an attempt is made to correlate with our experimental data.

  20. Being a binding site: characterizing residue composition of binding sites on proteins.

    PubMed

    Iván, Gábor; Szabadka, Zoltán; Grolmusz, Vince

    2007-12-30

    The Protein Data Bank contains the description of more than 45,000 three-dimensional protein and nucleic-acid structures today. Started to exist as the computer-readable depository of crystallographic data complementing printed articles, the proper interpretation of the content of the individual files in the PDB still frequently needs the detailed information found in the citing publication. This fact implies that the fully automatic processing of the whole PDB is a very hard task. We first cleaned and re-structured the PDB data, then analyzed the residue composition of the binding sites in the whole PDB for frequency and for hidden association rules. Main results of the paper: (i) the cleaning and repairing algorithm (ii) redundancy elimination from the data (iii) application of association rule mining to the cleaned non-redundant data set. We have found numerous significant relations of the residue-composition of the ligand binding sites on protein surfaces, summarized in two figures. One of the classical data-mining methods for exploring implication-rules, the association-rule mining, is capable to find previously unknown residue-set preferences of bind ligands on protein surfaces. Since protein-ligand binding is a key step in enzymatic mechanisms and in drug discovery, these uncovered preferences in the study of more than 19,500 binding sites may help in identifying new binding protein-ligand pairs.

  1. Anionic Lipids: Determinants of Binding Cytotoxins from Snake Venom on the Surface of Cell Membranes

    PubMed Central

    Boldyrev, I.A.; Omelkov, A.V.; Utkin, Yu.N.; Efremov, R.G.

    2010-01-01

    The cytotoxic properties of cytotoxins (CTs) from snake venom are mediated by their interaction with the cell membrane. The hydrophobic pattern containing the tips of loops I–III and flanked by polar residues is known to be a membrane–binding motif of CTs. However, this is not enough to explain the difference in activity among various CTs which are similar in sequence and in 3D structure. The mechanism of further CT–membrane interaction leading to pore formation and cell death still remains unknown. Published experimental data on the specific interaction between CT and low molecular weight anionic components (sulphatide) of the bilayer point to the existence of corresponding ligand binding sites on the surface of toxin molecules. In this work we study the membrane–lytic properties of CT I, CT II (Naja oxiana), and Ct 4 (Naja kaouthia), which belong to different structural and functional types (P– and S–type) of CTs, by measuring the intensity of a fluorescent dye, calcein released from liposomes containing a phosphatidylserine (PS) lipid as an anionic component. Using molecular docking simulations, we find and characterize three sites in CT molecules that can potentially bind the PS polar head. Based on the data obtained, we suggest a hypothesis that CTs can specifically interact with one or more of the anionic lipids (in particular, with PS) contained in the membrane, thus facilitating the interaction between CTs and the lipid bilayer of a cell membrane. PMID:22649646

  2. An Experimentally Based Computer Search Identifies Unstructured Membrane-binding Sites in Proteins

    PubMed Central

    Brzeska, Hanna; Guag, Jake; Remmert, Kirsten; Chacko, Susan; Korn, Edward D.

    2010-01-01

    Programs exist for searching protein sequences for potential membrane-penetrating segments (hydrophobic regions) and for lipid-binding sites with highly defined tertiary structures, such as PH, FERM, C2, ENTH, and other domains. However, a rapidly growing number of membrane-associated proteins (including cytoskeletal proteins, kinases, GTP-binding proteins, and their effectors) bind lipids through less structured regions. Here, we describe the development and testing of a simple computer search program that identifies unstructured potential membrane-binding sites. Initially, we found that both basic and hydrophobic amino acids, irrespective of sequence, contribute to the binding to acidic phospholipid vesicles of synthetic peptides that correspond to the putative membrane-binding domains of Acanthamoeba class I myosins. Based on these results, we modified a hydrophobicity scale giving Arg- and Lys-positive, rather than negative, values. Using this basic and hydrophobic scale with a standard search algorithm, we successfully identified previously determined unstructured membrane-binding sites in all 16 proteins tested. Importantly, basic and hydrophobic searches identified previously unknown potential membrane-binding sites in class I myosins, PAKs and CARMIL (capping protein, Arp2/3, myosin I linker; a membrane-associated cytoskeletal scaffold protein), and synthetic peptides and protein domains containing these newly identified sites bound to acidic phospholipids in vitro. PMID:20018884

  3. Chloride binding site of neurotransmitter sodium symporters

    PubMed Central

    Kantcheva, Adriana K.; Quick, Matthias; Shi, Lei; Winther, Anne-Marie Lund; Stolzenberg, Sebastian; Weinstein, Harel; Javitch, Jonathan A.; Nissen, Poul

    2013-01-01

    Neurotransmitter:sodium symporters (NSSs) play a critical role in signaling by reuptake of neurotransmitters. Eukaryotic NSSs are chloride-dependent, whereas prokaryotic NSS homologs like LeuT are chloride-independent but contain an acidic residue (Glu290 in LeuT) at a site where eukaryotic NSSs have a serine. The LeuT-E290S mutant displays chloride-dependent activity. We show that, in LeuT-E290S cocrystallized with bromide or chloride, the anion is coordinated by side chain hydroxyls from Tyr47, Ser290, and Thr254 and the side chain amide of Gln250. The bound anion and the nearby sodium ion in the Na1 site organize a connection between their coordinating residues and the extracellular gate of LeuT through a continuous H-bond network. The specific insights from the structures, combined with results from substrate binding studies and molecular dynamics simulations, reveal an anion-dependent occlusion mechanism for NSS and shed light on the functional role of chloride binding. PMID:23641004

  4. Chloride binding site of neurotransmitter sodium symporters.

    PubMed

    Kantcheva, Adriana K; Quick, Matthias; Shi, Lei; Winther, Anne-Marie Lund; Stolzenberg, Sebastian; Weinstein, Harel; Javitch, Jonathan A; Nissen, Poul

    2013-05-21

    Neurotransmitter:sodium symporters (NSSs) play a critical role in signaling by reuptake of neurotransmitters. Eukaryotic NSSs are chloride-dependent, whereas prokaryotic NSS homologs like LeuT are chloride-independent but contain an acidic residue (Glu290 in LeuT) at a site where eukaryotic NSSs have a serine. The LeuT-E290S mutant displays chloride-dependent activity. We show that, in LeuT-E290S cocrystallized with bromide or chloride, the anion is coordinated by side chain hydroxyls from Tyr47, Ser290, and Thr254 and the side chain amide of Gln250. The bound anion and the nearby sodium ion in the Na1 site organize a connection between their coordinating residues and the extracellular gate of LeuT through a continuous H-bond network. The specific insights from the structures, combined with results from substrate binding studies and molecular dynamics simulations, reveal an anion-dependent occlusion mechanism for NSS and shed light on the functional role of chloride binding.

  5. Chloroplast targeting factor AKR2 evolved from an ankyrin repeat domain coincidentally binds two chloroplast lipids

    PubMed Central

    Kim, Dae Heon; Park, Mi-Jeong; Gwon, Gwang Hyeon; Silkov, Antonina; Xu, Zheng-Yi; Yang, Eun Chan; Song, Seohyeon; Song, Kyungyoung; Kim, Younghyun; Yoon, Hwan Su; Honig, Barry; Cho, Wonhwa; Cho, Yunje; Hwang, Inhwan

    2014-01-01

    SUMMARY In organellogenesis of the chloroplast from endosymbiotic cyanobacterium, the establishment of protein targeting mechanisms to the chloroplast should have been pivotal. However, it is still mysterious how these mechanisms were established and how they work in plant cells. Here, we show that AKR2A, the cytosolic targeting factor for chloroplast outer membrane (COM) proteins, evolved from the ankyrin repeat domain (ARD) of the host cell by stepwise extensions of its N-terminal domain, and two lipids monogalactosyldiacylglycerol (MGDG) and phosphatidylglycerol (PG) of the endosymbiont were selected to function as the AKR2A receptor. Structural analysis, molecular modeling and mutational analysis of the ARD identified two adjacent sites for coincidental and synergistic binding of MGDG and PG. Based on these findings, we propose that the targeting mechanism of COM proteins was established using components from both the endosymbiont and host cell through a modification of the protein-protein interacting ARD into a lipid binding domain. PMID:25203210

  6. Receptor-Like Function of Heparin in the Binding and Uptake of Neutral Lipids

    NASA Astrophysics Data System (ADS)

    Bosner, Matthew S.; Gulick, Tod; Riley, D. J. S.; Spilburg, Curtis A.; Lange, Louis G.

    1988-10-01

    Molecular mechanisms regulating the binding, amphipathic stabilization, and metabolism of the major neutral lipids (e.g., cholesteryl esters, triglycerides, and fatty acids) are well studied, but the details of their movement from a binding compartment to a metabolic compartment deserve further attention. Since all neutral lipids must cross hydrophilic segments of plasma membranes during such movement, we postulate that a critical receptor-like site exists on the plasma membrane to mediate a step between binding and metabolism and that membrane-associated heparin is a key part of this mediator. For example, intestinal brush border membranes containing heparin bind homogeneous human pancreatic 125I-labeled cholesterol esterase (100 kDa) and 125I-labeled triglyceride lipase (52 kDa). This interaction is enzyme concentration-dependent, specific, and saturable and is reversed upon addition of soluble heparin. Scatchard analysis demonstrates a single class of receptors with a Kd of 100 nM and a Bmax of approximately 50-60 pmol per mg of vesicle protein. In contrast, enzymes associated with the hydrolysis of hydrophilic compounds such as amylase, phospholipase A2, and deoxyribonuclease do not bind to intestinal membranes in this manner. Human pancreatic cholesterol esterase also binds specifically and saturably to cultured intestinal epithelial cells (CaCo-2), and soluble heparin significantly diminishes the cellular uptake of the resultant hydrophobic reaction products (cholesterol and free fatty acids). We conclude that a physiological role for intestinal heparin is that of a mediator to bind neutral lipolytic enzymes at the brush border and thus promote absorption of the subsequent hydrolyzed nutrients in the intestine. This mechanism may be a generalizable pathway for transport of neutral lipids into endothelial and other cells.

  7. Structure and lipid-binding properties of the kindlin-3 pleckstrin homology domain.

    PubMed

    Ni, Tao; Kalli, Antreas C; Naughton, Fiona B; Yates, Luke A; Naneh, Omar; Kozorog, Mirijam; Anderluh, Gregor; Sansom, Mark S P; Gilbert, Robert J C

    2017-02-15

    Kindlins co-activate integrins alongside talin. They possess, like talin, a FERM domain (4.1-erythrin-radixin-moiesin domain) comprising F0-F3 subdomains, but with a pleckstrin homology (PH) domain inserted in the F2 subdomain that enables membrane association. We present the crystal structure of murine kindlin-3 PH domain determined at a resolution of 2.23 Å and characterise its lipid binding using biophysical and computational approaches. Molecular dynamics simulations suggest flexibility in the PH domain loops connecting β-strands forming the putative phosphatidylinositol phosphate (PtdInsP)-binding site. Simulations with PtdInsP-containing bilayers reveal that the PH domain associates with PtdInsP molecules mainly via the positively charged surface presented by the β1-β2 loop and that it binds with somewhat higher affinity to PtdIns(3,4,5)P3 compared with PtdIns(4,5)P2 Surface plasmon resonance (SPR) with lipid headgroups immobilised and the PH domain as an analyte indicate affinities of 300 µM for PtdIns(3,4,5)P3 and 1 mM for PtdIns(4,5)P2 In contrast, SPR studies with an immobilised PH domain and lipid nanodiscs as the analyte show affinities of 0.40 µM for PtdIns(3,4,5)P3 and no affinity for PtdIns(4,5)P2 when the inositol phosphate constitutes 5% of the total lipids (∼5 molecules per nanodisc). Reducing the PtdIns(3,4,5)P3 composition to 1% abolishes nanodisc binding to the PH domain, as does site-directed mutagenesis of two lysines within the β1-β2 loop. Binding of PtdIns(3,4,5)P3 by a canonical PH domain, Grp1, is not similarly influenced by SPR experimental design. These data suggest a role for PtdIns(3,4,5)P3 clustering in the binding of some PH domains and not others, highlighting the importance of lipid mobility and clustering for the biophysical assessment of protein-membrane interactions. © 2017 The Author(s).

  8. Structure and lipid-binding properties of the kindlin-3 pleckstrin homology domain

    PubMed Central

    Ni, Tao; Kalli, Antreas C.; Naughton, Fiona B.; Yates, Luke A.; Naneh, Omar; Kozorog, Mirijam; Anderluh, Gregor

    2017-01-01

    Kindlins co-activate integrins alongside talin. They possess, like talin, a FERM domain (4.1-erythrin–radixin–moiesin domain) comprising F0–F3 subdomains, but with a pleckstrin homology (PH) domain inserted in the F2 subdomain that enables membrane association. We present the crystal structure of murine kindlin-3 PH domain determined at a resolution of 2.23 Å and characterise its lipid binding using biophysical and computational approaches. Molecular dynamics simulations suggest flexibility in the PH domain loops connecting β-strands forming the putative phosphatidylinositol phosphate (PtdInsP)-binding site. Simulations with PtdInsP-containing bilayers reveal that the PH domain associates with PtdInsP molecules mainly via the positively charged surface presented by the β1–β2 loop and that it binds with somewhat higher affinity to PtdIns(3,4,5)P3 compared with PtdIns(4,5)P2. Surface plasmon resonance (SPR) with lipid headgroups immobilised and the PH domain as an analyte indicate affinities of 300 µM for PtdIns(3,4,5)P3 and 1 mM for PtdIns(4,5)P2. In contrast, SPR studies with an immobilised PH domain and lipid nanodiscs as the analyte show affinities of 0.40 µM for PtdIns(3,4,5)P3 and no affinity for PtdIns(4,5)P2 when the inositol phosphate constitutes 5% of the total lipids (∼5 molecules per nanodisc). Reducing the PtdIns(3,4,5)P3 composition to 1% abolishes nanodisc binding to the PH domain, as does site-directed mutagenesis of two lysines within the β1–β2 loop. Binding of PtdIns(3,4,5)P3 by a canonical PH domain, Grp1, is not similarly influenced by SPR experimental design. These data suggest a role for PtdIns(3,4,5)P3 clustering in the binding of some PH domains and not others, highlighting the importance of lipid mobility and clustering for the biophysical assessment of protein–membrane interactions. PMID:27974389

  9. A molecular model of the folate binding site of Pneumocystis carinii dihydrofolate reductase

    NASA Astrophysics Data System (ADS)

    Southerland, William M.

    1994-04-01

    The inhibition of Pneumocystis carinii dihydrofolate reductase (DHFR) continues to be the major treatment strategy for P. carinii pneumonia (PCP). The design of new anti-pneumocystis agents would be significantly enhanced by the availability of a 3D model of the methotrexate (MTX) binding site of the P. carinii DHFR. However, an X-ray crystal structure of the P. carinii DHFR is not yet available. Alignment of the amino acid sequences of P. carinii and Lactobacillus casei DHFRs indicates that the two proteins show approximately 80% homology among MTX binding-site residues. This high level of homology suggests that the L. casei DHFR MTX binding-site structure could serve as a structural template in developing a model of the P. carinii DHFR MTX binding site. Therefore, the X-ray crystal structure of L. casei DHFR was used to develop a 3D model of the methotrexate binding site of P. carinii DHFR. The molecular modeling and dynamics software QUANTA/CHARMm was used. Amino acid residue mutations and deletions were performed using QUANTA and macromolecular minimizations were achieved with CHARMm. The MTX binding-site residues of L. casei DHFR were mutated to the corresponding residues of the P. carinii DHFR sequence. The resulting structure was extensively minimized. The resulting P. carinii MTX binding-site model showed significant differences in hydrogen-bonding patterns from the L. casei MTX binding site. Also, the P. carinii site is more hydrophobic than the corresponding L. casei site. Analysis of atom-to-atom close contacts between methotrexate and protein binding-site residues indicates that the P. carinii MTX binding-site complex is primarily stabilized by hydrophobic interactions, while the L. casei complex is mostly stabilized by electrostatic interactions. The model is consistent with the observed increased sensitivity of P. carinii DHFR to lipid-soluble inhibitors and provides a rational basis for the design of new anti-pneumocystis agents.

  10. Characterization of Naphthaleneacetic Acid Binding to Receptor Sites on Cellular Membranes of Maize Coleoptile Tissue 1

    PubMed Central

    Ray, Peter M.; Dohrmann, Ulrike; Hertel, Rainer

    1977-01-01

    Characteristics of and optimum conditions for saturable (“specific”) binding of [14C]naphthaleneacetic acid to sites located on membranous particles from maize (Zea mays L.) coleoptiles are described. Most, if not all, of the specific binding appears to be due to a single kinetic class of binding sites having a KD of 5 to 7 × 10−7m for naphthalene-1-acetic acid (NAA). Binding of NAA is insensitive to high monovalent salt concentrations, indicating that binding is not primarily ionic. However, specific binding is inhibited by Mg2+ or Ca2+ above 5 mm. Specific binding is improved by organic acids, especially citrate. Binding is heat-labile and is sensitive to agents that act either on proteins or on lipids. Specific binding is reversibly inactivated by reducing agents such as dithioerythritol; a reducible group, possibly a disulfide group, may be located at the binding site and required for its function. The affinity of the specific binding sites for auxins is modified by an unidentified dialyzable, heat-stable, apparently amphoteric, organic factor (“supernatant factor”) found in maize tissue. PMID:16659851

  11. Resolving protein structure-function-binding site relationships from a binding site similarity network perspective.

    PubMed

    Mudgal, Richa; Srinivasan, Narayanaswamy; Chandra, Nagasuma

    2017-03-25

    Functional annotation is seldom straightforward with complexities arising due to functional divergence in protein families or functional convergence between non-homologous protein families, leading to mis-annotations. An enzyme may contain multiple domains and not all domains may be involved in a given function, adding to the complexity in function annotation. To address this, we use binding site information from bound cognate ligands and catalytic residues, since it can help in resolving fold-function relationships at a finer level and with higher confidence. A comprehensive database of 2,020 fold-function-binding site relationships has been systematically generated. A network-based approach is employed to capture the complexity in these relationships, from which different types of associations are deciphered, that identify versatile protein folds performing diverse functions, same function associated with multiple folds and one-to-one relationships. Binding site similarity networks integrated with fold, function and ligand similarity information are generated to understand the depth of these relationships. Apart from the observed continuity in the functional site space, network properties of these revealed versatile families with topologically different or dissimilar binding sites and structural families that perform very similar functions. As a case study, subtle changes in the active site of a set of evolutionarily related superfamilies are studied using these networks. Tracing of such similarities in evolutionarily related proteins provide clues into the transition and evolution of protein functions. Insights from this study will be helpful in accurate and reliable functional annotations of uncharacterized proteins, poly-pharmacology and designing enzymes with new functional capabilities. This article is protected by copyright. All rights reserved.

  12. Detection of secondary binding sites in proteins using fragment screening

    PubMed Central

    Ludlow, R. Frederick; Verdonk, Marcel L.; Saini, Harpreet K.; Tickle, Ian J.; Jhoti, Harren

    2015-01-01

    Proteins need to be tightly regulated as they control biological processes in most normal cellular functions. The precise mechanisms of regulation are rarely completely understood but can involve binding of endogenous ligands and/or partner proteins at specific locations on a protein that can modulate function. Often, these additional secondary binding sites appear separate to the primary binding site, which, for example for an enzyme, may bind a substrate. In previous work, we have uncovered several examples in which secondary binding sites were discovered on proteins using fragment screening approaches. In each case, we were able to establish that the newly identified secondary binding site was biologically relevant as it was able to modulate function by the binding of a small molecule. In this study, we investigate how often secondary binding sites are located on proteins by analyzing 24 protein targets for which we have performed a fragment screen using X-ray crystallography. Our analysis shows that, surprisingly, the majority of proteins contain secondary binding sites based on their ability to bind fragments. Furthermore, sequence analysis of these previously unknown sites indicate high conservation, which suggests that they may have a biological function, perhaps via an allosteric mechanism. Comparing the physicochemical properties of the secondary sites with known primary ligand binding sites also shows broad similarities indicating that many of the secondary sites may be druggable in nature with small molecules that could provide new opportunities to modulate potential therapeutic targets. PMID:26655740

  13. The seipin complex Fld1/Ldb16 stabilizes ER–lipid droplet contact sites

    PubMed Central

    Grippa, Alexandra; Buxó, Laura; Mora, Gabriel; Funaya, Charlotta; Idrissi, Fatima-Zahra; Mancuso, Francesco; Gomez, Raul; Muntanyà, Júlia; Sabidó, Eduard

    2015-01-01

    Lipid droplets (LDs) are storage organelles consisting of a neutral lipid core surrounded by a phospholipid monolayer and a set of LD-specific proteins. Most LD components are synthesized in the endoplasmic reticulum (ER), an organelle that is often physically connected with LDs. How LD identity is established while maintaining biochemical and physical connections with the ER is not known. Here, we show that the yeast seipin Fld1, in complex with the ER membrane protein Ldb16, prevents equilibration of ER and LD surface components by stabilizing the contact sites between the two organelles. In the absence of the Fld1/Ldb16 complex, assembly of LDs results in phospholipid packing defects leading to aberrant distribution of lipid-binding proteins and abnormal LDs. We propose that the Fld1/Ldb16 complex facilitates the establishment of LD identity by acting as a diffusion barrier at the ER–LD contact sites. PMID:26572621

  14. Extended synaptotagmins are Ca2+-dependent lipid transfer proteins at membrane contact sites

    PubMed Central

    Yu, Haijia; Liu, Yinghui; Gulbranson, Daniel R.; Paine, Alex; Rathore, Shailendra S.; Shen, Jingshi

    2016-01-01

    Organelles are in constant communication with each other through exchange of proteins (mediated by trafficking vesicles) and lipids [mediated by both trafficking vesicles and lipid transfer proteins (LTPs)]. It has long been known that vesicle trafficking can be tightly regulated by the second messenger Ca2+, allowing membrane protein transport to be adjusted according to physiological demands. However, it remains unclear whether LTP-mediated lipid transport can also be regulated by Ca2+. In this work, we show that extended synaptotagmins (E-Syts), poorly understood membrane proteins at endoplasmic reticulum–plasma membrane contact sites, are Ca2+-dependent LTPs. Using both recombinant and endogenous mammalian proteins, we discovered that E-Syts transfer glycerophospholipids between membrane bilayers in the presence of Ca2+. E-Syts use their lipid-accommodating synaptotagmin-like mitochondrial lipid binding protein (SMP) domains to transfer lipids. However, the SMP domains themselves cannot transport lipids unless the two membranes are tightly tethered by Ca2+-bound C2 domains. Strikingly, the Ca2+-regulated lipid transfer activity of E-Syts was fully recapitulated when the SMP domain was fused to the cytosolic domain of synaptotagmin-1, the Ca2+ sensor in synaptic vesicle fusion, indicating that a common mechanism of membrane tethering governs the Ca2+ regulation of lipid transfer and vesicle fusion. Finally, we showed that microsomal vesicles isolated from mammalian cells contained robust Ca2+-dependent lipid transfer activities, which were mediated by E-Syts. These findings established E-Syts as a novel class of LTPs and showed that LTP-mediated lipid trafficking, like vesicular transport, can be subject to tight Ca2+ regulation. PMID:27044075

  15. Extended synaptotagmins are Ca2+-dependent lipid transfer proteins at membrane contact sites.

    PubMed

    Yu, Haijia; Liu, Yinghui; Gulbranson, Daniel R; Paine, Alex; Rathore, Shailendra S; Shen, Jingshi

    2016-04-19

    Organelles are in constant communication with each other through exchange of proteins (mediated by trafficking vesicles) and lipids [mediated by both trafficking vesicles and lipid transfer proteins (LTPs)]. It has long been known that vesicle trafficking can be tightly regulated by the second messenger Ca(2+), allowing membrane protein transport to be adjusted according to physiological demands. However, it remains unclear whether LTP-mediated lipid transport can also be regulated by Ca(2+) In this work, we show that extended synaptotagmins (E-Syts), poorly understood membrane proteins at endoplasmic reticulum-plasma membrane contact sites, are Ca(2+)-dependent LTPs. Using both recombinant and endogenous mammalian proteins, we discovered that E-Syts transfer glycerophospholipids between membrane bilayers in the presence of Ca(2+) E-Syts use their lipid-accommodating synaptotagmin-like mitochondrial lipid binding protein (SMP) domains to transfer lipids. However, the SMP domains themselves cannot transport lipids unless the two membranes are tightly tethered by Ca(2+)-bound C2 domains. Strikingly, the Ca(2+)-regulated lipid transfer activity of E-Syts was fully recapitulated when the SMP domain was fused to the cytosolic domain of synaptotagmin-1, the Ca(2+)sensor in synaptic vesicle fusion, indicating that a common mechanism of membrane tethering governs the Ca(2+)regulation of lipid transfer and vesicle fusion. Finally, we showed that microsomal vesicles isolated from mammalian cells contained robust Ca(2+)-dependent lipid transfer activities, which were mediated by E-Syts. These findings established E-Syts as a novel class of LTPs and showed that LTP-mediated lipid trafficking, like vesicular transport, can be subject to tight Ca(2+)regulation.

  16. A novel lipid-binding protein from the cestode Moniezia expansa.

    PubMed Central

    Janssen, D; Barrett, J

    1995-01-01

    A lipid-binding protein (LBP) has been purified from the cytosol of the cestode Moniezia expansa. The native LBP was found to be an oligomer of approx. 250 kDa, consisting of 11 kDa monomers. The LBP bound saturated and unsaturated fatty acids, but not their CoA derivatives, with KD values in the range 0.68-7.8 microM. Cholesterol, dihydroergosterol, bilirubin and retinoids were also bound, but alpha-tocopherol, bile acids, alk-2-enals and alka-2,4-dienals were not. Evidence suggests that there are two binding sites per subunit, each with different specificities. The fluorescent fatty acid 11-[(5-dimethylaminonaphthalene-1-sulphonyl)amino]undecanoic acid (DAUDA) and retinol both showed an additional high-affinity binding site with a density of approximately 0.1 per subunit, suggesting specific binding to the oligomer. The amino acid composition of Moniezia LBP was distinct from that of previously characterized fatty acid-binding proteins (FABPs). The protein was not N-terminally blocked and yielded a unique amino acid sequence, unrelated to that of any known FABP; there was also evidence of microheterogeneity. Polyclonal antibodies raised to the Moniezia protein did not cross-react with mammalian, nematode or digenean FABP. The Gibbs free energy for protein folding (13.02 kJ/mol; 3.1 kcal/mol), determined by urea denaturation, was identical for both the native and ligand-bound Moniezia LBP. CD spectra showed that the Moniezia protein contained 36% alpha-helix and that the secondary structure underwent only minor changes on ligand binding. Moniezia LBP binds a range of anthelmintics, with KD values again in the range 0.66-7.3 microM. It is possible that, in helminths, binding proteins may play a role in determining the specificity and site of action of anthelmintics. Images Figure 2 Figure 10 PMID:7575480

  17. Structural insights into nonvesicular lipid transport by the oxysterol binding protein homologue family.

    PubMed

    Tong, Junsen; Manik, Mohammad Kawsar; Yang, Huiseon; Im, Young Jun

    2016-08-01

    Sterols such as cholesterol in mammals and ergosterol in fungi are essential membrane components and play a key role in membrane function and in cell signaling. The intracellular distribution and processing of sterols and other phospholipids are in part carried out by oxysterol binding protein-related proteins (ORPs) in eukaryotes. Seven ORPs (Osh1-Osh7 proteins) in yeast have distinct functions in maintaining distribution, metabolism and signaling of intracellular lipids but they share at least one essential function. Significant progress has been made in understanding the ligand specificity and mechanism of non-vesicular lipid transport by ORPs. The unique structural features of Osh proteins explain the diversity and specificity of functions in PI(4)P-coupled lipid transport optimized in membrane contact sites. This review discusses the current advances in structural biology regarding this protein family and its potential functions, introducing them as the key players in the novel pathways of phosphoinositide-coupled directional transport of various lipids. This article is part of a Special Issue entitled: The cellular lipid landscape edited by Tim P. Levine and Anant K. Menon.

  18. Predicting Ca2+-binding Sites Using Refined Carbon Clusters

    PubMed Central

    Zhao, Kun; Wang, Xue; Wong, Hing C.; Wohlhueter, Robert; Kirberger, Michael P.; Chen, Guantao; Yang, Jenny J.

    2012-01-01

    Identifying Ca2+-binding sites in proteins is the first step towards understanding the molecular basis of diseases related to Ca2+-binding proteins. Currently, these sites are identified in structures either through X-ray crystallography or NMR analysis. However, Ca2+-binding sites are not always visible in X-ray structures due to flexibility in the binding region or low occupancy in a Ca2+-binding site. Similarly, both Ca2+ and its ligand oxygens are not directly observed in NMR structures. To improve our ability to predict Ca2+-binding sites in both X-ray and NMR structures, we report a new graph theory algorithm (MUGC) to predict Ca2+-binding sites. Using carbon atoms covalently bonded to the chelating oxygen atoms, and without explicit reference to side-chain oxygen ligand coordinates, MUGC is able to achieve 94% sensitivity with 76% selectivity on a dataset of X-ray structures comprised of 43 Ca2+-binding proteins. Additionally, prediction of Ca2+-binding sites in NMR structures were obtained by MUGC using a different set of parameters determined by analysis of both Ca2+-constrained and unconstrained Ca2+-loaded structures derived from NMR data. MUGC identified 20 out of 21 Ca2+-binding sites in NMR structures inferred without the use of Ca2+ constraints. MUGC predictions are also highly-selective for Ca2+-binding sites as analyses of binding sites for Mg2+, Zn2+, and Pb2+ were not identified as Ca2+-binding sites. These results indicate that the geometric arrangement of the second-shell carbon cluster is sufficient for both accurate identification of Ca2+-binding sites in NMR and X-ray structures, and for selective differentiation between Ca2+ and other relevant divalent cations. PMID:22821762

  19. Mu opioid receptor binding sites in human brain

    SciTech Connect

    Pilapil, C.; Welner, S.; Magnan, J.; Zamir, N.; Quirion, R.

    1986-01-01

    Our experiments focused on the examination of the distribution of mu opioid receptor binding sites in normal human brain using the highly selective ligand (/sup 3/H)DAGO, in both membrane binding assay and in vitro receptor autoradiography. Mu opioid binding sites are very discretely distributed in human brain with high densities of sites found in the posterior amygdala, caudate, putamen, hypothalamus and certain cortical areas. Moreover the autoradiographic distribution of (/sup 3/H)DAGO binding sites clearly reveals the discrete lamination (layers I and III-IV) of mu sites in cortical areas.

  20. PIP(2)-binding site in Kir channels: definition by multiscale biomolecular simulations.

    PubMed

    Stansfeld, Phillip J; Hopkinson, Richard; Ashcroft, Frances M; Sansom, Mark S P

    2009-11-24

    Phosphatidylinositol bisphosphate (PIP(2)) is an activator of mammalian inwardly rectifying potassium (Kir) channels. Multiscale simulations, via a sequential combination of coarse-grained and atomistic molecular dynamics, enabled exploration of the interactions of PIP(2) molecules within the inner leaflet of a lipid bilayer membrane with possible binding sites on Kir channels. Three Kir channel structures were investigated: X-ray structures of KirBac1.1 and of a Kir3.1-KirBac1.3 chimera and a homology model of Kir6.2. Coarse-grained simulations of the Kir channels in PIP(2)-containing lipid bilayers identified the PIP(2)-binding site on each channel. These models of the PIP(2)-channel complexes were refined by conversion to an atomistic representation followed by molecular dynamics simulation in a lipid bilayer. All three channels were revealed to contain a conserved binding site at the N-terminal end of the slide (M0) helix, at the interface between adjacent subunits of the channel. This binding site agrees with mutagenesis data and is in the proximity of the site occupied by a detergent molecule in the Kir chimera channel crystal. Polar contacts in the coarse-grained simulations corresponded to long-lived electrostatic and H-bonding interactions between the channel and PIP(2) in the atomistic simulations, enabling identification of key side chains.

  1. M-ORBIS: mapping of molecular binding sites and surfaces.

    PubMed

    Albou, Laurent-Philippe; Poch, Olivier; Moras, Dino

    2011-01-01

    M-ORBIS is a Molecular Cartography approach that performs integrative high-throughput analysis of structural data to localize all types of binding sites and associated partners by homology and to characterize their properties and behaviors in a systemic way. The robustness of our binding site inferences was compared to four curated datasets corresponding to protein heterodimers and homodimers and protein-DNA/RNA assemblies. The Molecular Cartographies of structurally well-detailed proteins shows that 44% of their surfaces interact with non-solvent partners. Residue contact frequencies with water suggest that ∼86% of their surfaces are transiently solvated, whereas only 15% are specifically solvated. Our analysis also reveals the existence of two major binding site families: specific binding sites which can only bind one type of molecule (protein, DNA, RNA, etc.) and polyvalent binding sites that can bind several distinct types of molecule. Specific homodimer binding sites are for instance nearly twice as hydrophobic than previously described and more closely resemble the protein core, while polyvalent binding sites able to form homo and heterodimers more closely resemble the surfaces involved in crystal packing. Similarly, the regions able to bind DNA and to alternatively form homodimers, are more hydrophobic and less polar than previously described DNA binding sites.

  2. Ligand binding to an allergenic lipid transfer protein enhances conformational flexibility resulting in an increase in susceptibility to gastroduodenal proteolysis

    SciTech Connect

    Abdullah, Syed Umer; Alexeev, Yuri; Johnson, Philip E.; Rigby, Neil M.; Mackie, Alan R.; Dhaliwal, Balvinder; Mills, E. N. Clare

    2016-07-26

    Non-specific lipid transfer proteins (LTPs) are a family of lipid-binding molecules that are widely distributed across flowering plant species, many of which have been identified as allergens. They are highly resistant to simulated gastroduodenal proteolysis, a property that may play a role in determining their allergenicity and it has been suggested that lipid binding may further increase stability to proteolysis. It is demonstrated that LTPs from wheat and peach bind a range of lipids in a variety of conditions, including those found in the gastroduodenal tract. Both LTPs are initially cleaved during gastroduodenal proteolysis at three major sites between residues 39–40, 56–57 and 79–80, with wheat LTP being more resistant to cleavage than its peach ortholog. The susceptibility of wheat LTP to proteolyic cleavage increases significantly upon lipid binding. This enhanced digestibility is likely to be due to the displacement of Tyr79 and surrounding residues from the internal hydrophobic cavity upon ligand binding to the solvent exposed exterior of the LTP, facilitating proteolysis. As a result, such knowledge contributes to our understanding as to how resistance to digestion can be used in allergenicity risk assessment of novel food proteins, including GMOs.

  3. Ligand binding to an Allergenic Lipid Transfer Protein Enhances Conformational Flexibility resulting in an Increase in Susceptibility to Gastroduodenal Proteolysis

    PubMed Central

    Abdullah, Syed Umer; Alexeev, Yuri; Johnson, Philip E.; Rigby, Neil M.; Mackie, Alan R.; Dhaliwal, Balvinder; Mills, E. N. Clare

    2016-01-01

    Non-specific lipid transfer proteins (LTPs) are a family of lipid-binding molecules that are widely distributed across flowering plant species, many of which have been identified as allergens. They are highly resistant to simulated gastroduodenal proteolysis, a property that may play a role in determining their allergenicity and it has been suggested that lipid binding may further increase stability to proteolysis. It is demonstrated that LTPs from wheat and peach bind a range of lipids in a variety of conditions, including those found in the gastroduodenal tract. Both LTPs are initially cleaved during gastroduodenal proteolysis at three major sites between residues 39–40, 56–57 and 79–80, with wheat LTP being more resistant to cleavage than its peach ortholog. The susceptibility of wheat LTP to proteolyic cleavage increases significantly upon lipid binding. This enhanced digestibility is likely to be due to the displacement of Tyr79 and surrounding residues from the internal hydrophobic cavity upon ligand binding to the solvent exposed exterior of the LTP, facilitating proteolysis. Such knowledge contributes to our understanding as to how resistance to digestion can be used in allergenicity risk assessment of novel food proteins, including GMOs. PMID:27458082

  4. Ligand binding to an Allergenic Lipid Transfer Protein Enhances Conformational Flexibility resulting in an Increase in Susceptibility to Gastroduodenal Proteolysis

    NASA Astrophysics Data System (ADS)

    Abdullah, Syed Umer; Alexeev, Yuri; Johnson, Philip E.; Rigby, Neil M.; Mackie, Alan R.; Dhaliwal, Balvinder; Mills, E. N. Clare

    2016-07-01

    Non-specific lipid transfer proteins (LTPs) are a family of lipid-binding molecules that are widely distributed across flowering plant species, many of which have been identified as allergens. They are highly resistant to simulated gastroduodenal proteolysis, a property that may play a role in determining their allergenicity and it has been suggested that lipid binding may further increase stability to proteolysis. It is demonstrated that LTPs from wheat and peach bind a range of lipids in a variety of conditions, including those found in the gastroduodenal tract. Both LTPs are initially cleaved during gastroduodenal proteolysis at three major sites between residues 39–40, 56–57 and 79–80, with wheat LTP being more resistant to cleavage than its peach ortholog. The susceptibility of wheat LTP to proteolyic cleavage increases significantly upon lipid binding. This enhanced digestibility is likely to be due to the displacement of Tyr79 and surrounding residues from the internal hydrophobic cavity upon ligand binding to the solvent exposed exterior of the LTP, facilitating proteolysis. Such knowledge contributes to our understanding as to how resistance to digestion can be used in allergenicity risk assessment of novel food proteins, including GMOs.

  5. Ligand binding to an allergenic lipid transfer protein enhances conformational flexibility resulting in an increase in susceptibility to gastroduodenal proteolysis

    DOE PAGES

    Abdullah, Syed Umer; Alexeev, Yuri; Johnson, Philip E.; ...

    2016-07-26

    Non-specific lipid transfer proteins (LTPs) are a family of lipid-binding molecules that are widely distributed across flowering plant species, many of which have been identified as allergens. They are highly resistant to simulated gastroduodenal proteolysis, a property that may play a role in determining their allergenicity and it has been suggested that lipid binding may further increase stability to proteolysis. It is demonstrated that LTPs from wheat and peach bind a range of lipids in a variety of conditions, including those found in the gastroduodenal tract. Both LTPs are initially cleaved during gastroduodenal proteolysis at three major sites between residuesmore » 39–40, 56–57 and 79–80, with wheat LTP being more resistant to cleavage than its peach ortholog. The susceptibility of wheat LTP to proteolyic cleavage increases significantly upon lipid binding. This enhanced digestibility is likely to be due to the displacement of Tyr79 and surrounding residues from the internal hydrophobic cavity upon ligand binding to the solvent exposed exterior of the LTP, facilitating proteolysis. As a result, such knowledge contributes to our understanding as to how resistance to digestion can be used in allergenicity risk assessment of novel food proteins, including GMOs.« less

  6. Ligand binding to an Allergenic Lipid Transfer Protein Enhances Conformational Flexibility resulting in an Increase in Susceptibility to Gastroduodenal Proteolysis.

    PubMed

    Abdullah, Syed Umer; Alexeev, Yuri; Johnson, Philip E; Rigby, Neil M; Mackie, Alan R; Dhaliwal, Balvinder; Mills, E N Clare

    2016-07-26

    Non-specific lipid transfer proteins (LTPs) are a family of lipid-binding molecules that are widely distributed across flowering plant species, many of which have been identified as allergens. They are highly resistant to simulated gastroduodenal proteolysis, a property that may play a role in determining their allergenicity and it has been suggested that lipid binding may further increase stability to proteolysis. It is demonstrated that LTPs from wheat and peach bind a range of lipids in a variety of conditions, including those found in the gastroduodenal tract. Both LTPs are initially cleaved during gastroduodenal proteolysis at three major sites between residues 39-40, 56-57 and 79-80, with wheat LTP being more resistant to cleavage than its peach ortholog. The susceptibility of wheat LTP to proteolyic cleavage increases significantly upon lipid binding. This enhanced digestibility is likely to be due to the displacement of Tyr79 and surrounding residues from the internal hydrophobic cavity upon ligand binding to the solvent exposed exterior of the LTP, facilitating proteolysis. Such knowledge contributes to our understanding as to how resistance to digestion can be used in allergenicity risk assessment of novel food proteins, including GMOs.

  7. Substrate and drug binding sites in LeuT.

    PubMed

    Nyola, Ajeeta; Karpowich, Nathan K; Zhen, Juan; Marden, Jennifer; Reith, Maarten E; Wang, Da-Neng

    2010-08-01

    LeuT is a member of the neurotransmitter/sodium symporter family, which includes the neuronal transporters for serotonin, norepinephrine, and dopamine. The original crystal structure of LeuT shows a primary leucine-binding site at the center of the protein. LeuT is inhibited by different classes of antidepressants that act as potent inhibitors of the serotonin transporter. The newly determined crystal structures of LeuT-antidepressant complexes provide opportunities to probe drug binding in the serotonin transporter, of which the exact position remains controversial. Structure of a LeuT-tryptophan complex shows an overlapping binding site with the primary substrate site. A secondary substrate binding site was recently identified, where the binding of a leucine triggers the cytoplasmic release of the primary substrate. This two binding site model presents opportunities for a better understanding of drug binding and the mechanism of inhibition for mammalian transporters.

  8. Specific binding of GM1-binding peptides to high-density GM1 in lipid membranes.

    PubMed

    Matsubara, Teruhiko; Iijima, Kazutoshi; Nakamura, Miwa; Taki, Takao; Okahata, Yoshio; Sato, Toshinori

    2007-01-16

    The ganglioside Galbeta1-3GalNAcbeta1-4(Neu5Acalpha2-3)Galbeta1-4Glcbeta1-1'Cer (GM1) is an important receptor. We have previously identified GM1-binding peptides based on affinity selection from a random peptide library. In the present study, we determined the amino acids essential for binding GM1 and investigated the specific interaction with GM1 in the lipid membrane. Arginines and aromatic amino acids in the consensus sequence (W/F)RxL(xP/Px)xFxx(Rx/xR)xP contributed to the ability of the peptides to bind GM1. The peptide p3, VWRLLAPPFSNRLLP, having the consensus sequence, showed high affinity for GM1 with a dissociation constant of 1.2 microM. Furthermore, the density-dependent binding of p3 was investigated using mixed monolayers of GM1 and Glcbeta1-1'Cer (GlcCer). p3 binds preferentially to high-density GM1, and its interaction with GM1 was found to be cooperative based on a Hill plot. These results indicated that a lateral assembly of GM1 molecules was required for the recognition of carbohydrates by p3. The GM1-binding peptide played a role as a unique anti-GM1 probe differing from the cholera toxin B subunit or antibodies.

  9. Tight binding of NAP-22 with acidic membrane lipids.

    PubMed

    Maekawa, Shohei; Kobayashi, Yuumi; Morita, Mitsuhiro; Suzaki, Toshinobu

    2015-07-23

    Recovery of various signal transduction molecules in the detergent-resistant membrane microdomain (DRM) fraction suggests the importance of this region in cellular functions. Insolubility of the outer leaflet of DRM to the non-ionic detergent is ascribed to the tight association of cholesterol and sphingolipid. Since, poor localization of sphingolipid is observed in the inner leaflet, the physicochemical background of the insolubility of the inner leaflet is hence still an enigma. NAP-22 (also called BASP1 or CAP-23) is a neuron-enriched calmodulin-binding protein and one of the major proteins in the DRM of the neuronal cell membrane. A previous study showed the presence of several lipids in a NAP-22 fraction after the process of extraction and column chromatography. In this study, the effect of lipid extraction on NAP-22 was studied through native-gel electrophoresis, ultracentrifugation, and electron microscopic observation. The mobility of NAP-22 in native-PAGE was shifted from low to high after delipidation. Delipidated NAP-22 bound phosphatidylserine (PS), phosphatidylinosotol, and ganglioside. Some part of the mixture of PS and NAP-22 was recovered in the insoluble fraction after Triton X-100 treatment and the addition of cholesterol enhanced the amount of NAP-22 in the insoluble fraction.

  10. Single Molecule Kinetics of ENTH Binding to Lipid Membranes

    SciTech Connect

    Rozovsky, Sharon; Forstner, Martin B.; Sondermann, Holger; Groves, Jay T.

    2012-04-03

    Transient recruitment of proteins to membranes is a fundamental mechanism by which the cell exerts spatial and temporal control over proteins’ localization and interactions. Thus, the specificity and the kinetics of peripheral proteins’ membrane residence are an attribute of their function. In this article, we describe the membrane interactions of the interfacial epsin N-terminal homology (ENTH) domain with its target lipid phosphatidylinositol (4,5)-bisphosphate (PtdIns(4,5)P2). The direct visualization and quantification of interactions of single ENTH molecules with supported lipid bilayers is achieved using total internal reflection fluorescence microscopy (TIRFM) with a time resolution of 13 ms. This enables the recording of the kinetic behavior of ENTH interacting with membranes with physiologically relevant concentrations of PtdIns(4,5)P2 despite the low effective binding affinity. Subsequent single fluorophore tracking permits us to build up distributions of residence times and to measure ENTH dissociation rates as a function of membrane composition. In addition, due to the high time resolution, we are able to resolve details of the motion of ENTH associated with a simple, homogeneous membrane. In this case ENTH’s diffusive transport appears to be the result of at least three different diffusion processes.

  11. A different kind of love - lipid droplet contact sites.

    PubMed

    Schuldiner, Maya; Bohnert, Maria

    2017-10-01

    Lipid droplets (LDs) store lipids and hence serve as energy reservoir and as a source for building-blocks for the organelle membrane systems. LD biology therefore depends on tight communication with other organelles. The unique architecture of LDs, consisting of a neutral lipid core shielded by a phospholipid-monolayer, is however an obstacle to bulk-exchange of bilayer-bounded vesicles with other organelles. In recent years, it is emerging that contact sites, places where two organelles are positioned in close proximity allowing vesicle-independent communication, are an important way to integrate LDs into the organellar landscape. However, few LD contact sites have been studied in depth and our understanding of their structure, extent and function is only starting to emerge. Here, we highlight recent findings on the functions of LD contact sites and on the proteins involved in their formation and hypothesize about the unique characteristics of the contact sites formed by these intriguing organelles. This article is part of a Special Issue entitled: Recent Advances in Lipid Droplet Biology edited by Rosalind Coleman and Matthijs Hesselink. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  12. The enigmatic drug binding site for sodium channel inhibitors.

    PubMed

    Mike, Arpad; Lukacs, Peter

    2010-11-01

    Local anesthetics have been in clinical use since 1884, and different aspects of the local anesthetic binding site have been studied in enormous detail. In spite of all these efforts, some of the most fundamental questions--such as which exact residues constitute the binding site, how many binding sites exist, do local anesthetics share their binding site(s) with other sodium channel inhibitors, and what are the mechanisms of inhibition--are still largely unanswered. We review accumulated data on the "local anesthetic receptor"and discuss controversial points, such as possible mechanisms of inhibition, the possibility of additional binding sites, the orientation of S6 helices, and the internal vs. external position of the anticonvulsant binding site. We describe the four following specific groups of functionally important residues: i) conserved asparagines six residues below the hinge residues; we propose that they are oriented toward the external surface of S6 helices, and have a critical role in the coupling of voltage sensors to gating, ii) residues lining the inner vestibule and constructing the "orthodox" binding site, iii) residues around the outer vestibule, which have been proposed to constitute an alternative external binding site, and iv) residues determining external access for quaternary amine inhibitors, such as QX314. We conclude that sodium channel inhibitors must be heterogenous in terms of binding sites and inhibition mechanisms, and propose that this heterogeneity should be taken into consideration during drug development.

  13. Protein surface-distribution and protein-protein interactions in the binding of peripheral proteins to charged lipid membranes.

    PubMed Central

    Heimburg, T; Marsh, D

    1995-01-01

    The binding of native cytochrome c to negatively charged lipid dispersions of dioleoyl phosphatidylglycerol has been studied over a wide range of ionic strengths. Not only is the strength of protein binding found to decrease rapidly with increasing ionic strength, but also the binding curves reach an apparent saturation level that decreases rapidly with increasing ionic strength. Analysis of the binding isotherms with a general statistical thermodynamic model that takes into account not only the free energy of the electrostatic double layer, but also the free energy of the surface distribution of the protein, demonstrates that the apparent saturation effects could arise from a competition between the out-of-plane binding reaction and the lateral in-plane interactions between proteins at the surface. It is found that association with nonlocalized sites results in binding isotherms that display the apparent saturation effect to a much more pronounced extent than does the Langmuir adsorption isotherm for binding to localized sites. With the model for nonlocalized sites, the binding isotherms of native cytochrome c can be described adequately by taking into account only the entropy of the surface distribution of the protein, without appreciable enthalpic interactions between the bound proteins. The binding of cytochrome c to dioleoyl phosphatidylglycerol dispersions at a temperature at which the bound protein is denatured on the lipid surface, but is nondenatured when free in solution, has also been studied. The binding curves for the surface-denatured protein differ from those for the native protein in that the apparent saturation at high ionic strength is less pronounced. This indicates the tendency of the denatured protein to aggregate on the lipid surface, and can be described by the binding isotherms for nonlocalized sites only if attractive interactions between the surface-bound proteins are included in addition to the distributional entropic terms. Additionally

  14. Antidepressant binding site in a bacterial homologue of neurotransmitter transporters.

    PubMed

    Singh, Satinder K; Yamashita, Atsuko; Gouaux, Eric

    2007-08-23

    Sodium-coupled transporters are ubiquitous pumps that harness pre-existing sodium gradients to catalyse the thermodynamically unfavourable uptake of essential nutrients, neurotransmitters and inorganic ions across the lipid bilayer. Dysfunction of these integral membrane proteins has been implicated in glucose/galactose malabsorption, congenital hypothyroidism, Bartter's syndrome, epilepsy, depression, autism and obsessive-compulsive disorder. Sodium-coupled transporters are blocked by a number of therapeutically important compounds, including diuretics, anticonvulsants and antidepressants, many of which have also become indispensable tools in biochemical experiments designed to probe antagonist binding sites and to elucidate transport mechanisms. Steady-state kinetic data have revealed that both competitive and noncompetitive modes of inhibition exist. Antagonist dissociation experiments on the serotonin transporter (SERT) have also unveiled the existence of a low-affinity allosteric site that slows the dissociation of inhibitors from a separate high-affinity site. Despite these strides, atomic-level insights into inhibitor action have remained elusive. Here we screen a panel of molecules for their ability to inhibit LeuT, a prokaryotic homologue of mammalian neurotransmitter sodium symporters, and show that the tricyclic antidepressant (TCA) clomipramine noncompetitively inhibits substrate uptake. Cocrystal structures show that clomipramine, along with two other TCAs, binds in an extracellular-facing vestibule about 11 A above the substrate and two sodium ions, apparently stabilizing the extracellular gate in a closed conformation. Off-rate assays establish that clomipramine reduces the rate at which leucine dissociates from LeuT and reinforce our contention that this TCA inhibits LeuT by slowing substrate release. Our results represent a molecular view into noncompetitive inhibition of a sodium-coupled transporter and define principles for the rational design of

  15. Antidepressant Binding Site in a Bacterial Homologue of Neurotransmitter Transporters

    SciTech Connect

    Singh,S.; Yamashita, A.; Gouaux, E.

    2007-01-01

    Sodium-coupled transporters are ubiquitous pumps that harness pre-existing sodium gradients to catalyse the thermodynamically unfavourable uptake of essential nutrients, neurotransmitters and inorganic ions across the lipid bilayer. Dysfunction of these integral membrane proteins has been implicated in glucose/galactose malabsorption, congenital hypothyroidism, Bartter's syndrome, epilepsy, depression, autism and obsessive-compulsive disorder. Sodium-coupled transporters are blocked by a number of therapeutically important compounds, including diuretics, anticonvulsants and antidepressants, many of which have also become indispensable tools in biochemical experiments designed to probe antagonist binding sites and to elucidate transport mechanisms. Steady-state kinetic data have revealed that both competitive and noncompetitive modes of inhibition exist. Antagonist dissociation experiments on the serotonin transporter (SERT) have also unveiled the existence of a low-affinity allosteric site that slows the dissociation of inhibitors from a separate high-affinity site. Despite these strides, atomic-level insights into inhibitor action have remained elusive. Here we screen a panel of molecules for their ability to inhibit LeuT, a prokaryotic homologue of mammalian neurotransmitter sodium symporters, and show that the tricyclic antidepressant (TCA) clomipramine noncompetitively inhibits substrate uptake. Cocrystal structures show that clomipramine, along with two other TCAs, binds in an extracellular-facing vestibule about 11 {angstrom} above the substrate and two sodium ions, apparently stabilizing the extracellular gate in a closed conformation. Off-rate assays establish that clomipramine reduces the rate at which leucine dissociates from LeuT and reinforce our contention that this TCA inhibits LeuT by slowing substrate release. Our results represent a molecular view into noncompetitive inhibition of a sodium-coupled transporter and define principles for the rational

  16. Specific phospholipid binding to Na,K-ATPase at two distinct sites.

    PubMed

    Habeck, Michael; Kapri-Pardes, Einat; Sharon, Michal; Karlish, Steven J D

    2017-03-14

    Membrane protein function can be affected by the physical state of the lipid bilayer and specific lipid-protein interactions. For Na,K-ATPase, bilayer properties can modulate pump activity, and, as observed in crystal structures, several lipids are bound within the transmembrane domain. Furthermore, Na,K-ATPase activity depends on phosphatidylserine (PS) and cholesterol, which stabilize the protein, and polyunsaturated phosphatidylcholine (PC) or phosphatidylethanolamine (PE), known to stimulate Na,K-ATPase activity. Based on lipid structural specificity and kinetic mechanisms, specific interactions of both PS and PC/PE have been inferred. Nevertheless, specific binding sites have not been identified definitively. We address this question with native mass spectrometry (MS) and site-directed mutagenesis. Native MS shows directly that one molecule each of 18:0/18:1 PS and 18:0/20:4 PC can bind specifically to purified human Na,K-ATPase (α1β1). By replacing lysine residues at proposed phospholipid-binding sites with glutamines, the two sites have been identified. Mutations in the cytoplasmic αL8-9 loop destabilize the protein but do not affect Na,K-ATPase activity, whereas mutations in transmembrane helices (TM), αTM2 and αTM4, abolish the stimulation of activity by 18:0/20:4 PC but do not affect stability. When these data are linked to crystal structures, the underlying mechanism of PS and PC/PE effects emerges. PS (and cholesterol) bind between αTM 8, 9, 10, near the FXYD subunit, and maintain topological integrity of the labile C terminus of the α subunit (site A). PC/PE binds between αTM2, 4, 6, and 9 and accelerates the rate-limiting E1P-E2P conformational transition (site B). We discuss the potential physiological implications.

  17. Defining the bacteroides ribosomal binding site.

    PubMed

    Wegmann, Udo; Horn, Nikki; Carding, Simon R

    2013-03-01

    The human gastrointestinal tract, in particular the colon, hosts a vast number of commensal microorganisms. Representatives of the genus Bacteroides are among the most abundant bacterial species in the human colon. Bacteroidetes diverged from the common line of eubacterial descent before other eubacterial groups. As a result, they employ unique transcription initiation signals and, because of this uniqueness, they require specific genetic tools. Although some tools exist, they are not optimal for studying the roles and functions of these bacteria in the human gastrointestinal tract. Focusing on translation initiation signals in Bacteroides, we created a series of expression vectors allowing for different levels of protein expression in this genus, and we describe the use of pepI from Lactobacillus delbrueckii subsp. lactis as a novel reporter gene for Bacteroides. Furthermore, we report the identification of the 3' end of the 16S rRNA of Bacteroides ovatus and analyze in detail its ribosomal binding site, thus defining a core region necessary for efficient translation, which we have incorporated into the design of our expression vectors. Based on the sequence logo information from the 5' untranslated region of other Bacteroidales ribosomal protein genes, we conclude that our findings are relevant to all members of this order.

  18. Defining the Bacteroides Ribosomal Binding Site

    PubMed Central

    Horn, Nikki; Carding, Simon R.

    2013-01-01

    The human gastrointestinal tract, in particular the colon, hosts a vast number of commensal microorganisms. Representatives of the genus Bacteroides are among the most abundant bacterial species in the human colon. Bacteroidetes diverged from the common line of eubacterial descent before other eubacterial groups. As a result, they employ unique transcription initiation signals and, because of this uniqueness, they require specific genetic tools. Although some tools exist, they are not optimal for studying the roles and functions of these bacteria in the human gastrointestinal tract. Focusing on translation initiation signals in Bacteroides, we created a series of expression vectors allowing for different levels of protein expression in this genus, and we describe the use of pepI from Lactobacillus delbrueckii subsp. lactis as a novel reporter gene for Bacteroides. Furthermore, we report the identification of the 3′ end of the 16S rRNA of Bacteroides ovatus and analyze in detail its ribosomal binding site, thus defining a core region necessary for efficient translation, which we have incorporated into the design of our expression vectors. Based on the sequence logo information from the 5′ untranslated region of other Bacteroidales ribosomal protein genes, we conclude that our findings are relevant to all members of this order. PMID:23335775

  19. Type II oestrogen binding sites in human colorectal carcinoma.

    PubMed Central

    Piantelli, M; Ricci, R; Larocca, L M; Rinelli, A; Capelli, A; Rizzo, S; Scambia, G; Ranelletti, F O

    1990-01-01

    Seven cases of colorectal adenocarcinomas were investigated for the presence of oestrogen receptors and progesterone receptors. The tumours specifically bound oestradiol. This binding almost exclusively resulted from the presence of high numbers of type II oestrogen binding sites. Oestrogen receptors were absent or present at very low concentrations. Immunohistochemical investigation of nuclear oestrogen receptors gave negative results. This indicates that antioestrogen receptor antibodies recognise oestrogen receptors but not type II oestrogen binding sites. The presence of specific type II oestrogen binding sites and progesterone binding offers further evidence for a potential role for these steroids and their receptors in colorectal carcinoma. PMID:2266171

  20. Why Transcription Factor Binding Sites Are Ten Nucleotides Long

    PubMed Central

    Stewart, Alexander J.; Hannenhalli, Sridhar; Plotkin, Joshua B.

    2012-01-01

    Gene expression is controlled primarily by transcription factors, whose DNA binding sites are typically 10 nt long. We develop a population-genetic model to understand how the length and information content of such binding sites evolve. Our analysis is based on an inherent trade-off between specificity, which is greater in long binding sites, and robustness to mutation, which is greater in short binding sites. The evolutionary stable distribution of binding site lengths predicted by the model agrees with the empirical distribution (5–31 nt, with mean 9.9 nt for eukaryotes), and it is remarkably robust to variation in the underlying parameters of population size, mutation rate, number of transcription factor targets, and strength of selection for proper binding and selection against improper binding. In a systematic data set of eukaryotic and prokaryotic transcription factors we also uncover strong relationships between the length of a binding site and its information content per nucleotide, as well as between the number of targets a transcription factor regulates and the information content in its binding sites. Our analysis explains these features as well as the remarkable conservation of binding site characteristics across diverse taxa. PMID:22887818

  1. Zinc-induced oligomerization of zinc α2 glycoprotein reveals multiple fatty acid-binding sites.

    PubMed

    Zahid, Henna; Miah, Layeque; Lau, Andy M; Brochard, Lea; Hati, Debolina; Bui, Tam T T; Drake, Alex F; Gor, Jayesh; Perkins, Stephen J; McDermott, Lindsay C

    2016-01-01

    Zinc α2 glycoprotein (ZAG) is an adipokine with a class I MHC protein fold and is associated with obesity and diabetes. Although its intrinsic ligand remains unknown, ZAG binds the dansylated C11 fatty acid 11-(dansylamino)undecanoic acid (DAUDA) in the groove between the α1 and α2 domains. The surface of ZAG has approximately 15 weak zinc-binding sites deemed responsible for precipitation from human plasma. In the present study the functional significance of these metal sites was investigated. Analytical ultracentrifugation (AUC) and CD showed that zinc, but not other divalent metals, causes ZAG to oligomerize in solution. Thus ZAG dimers and trimers were observed in the presence of 1 and 2 mM zinc. Molecular modelling of X-ray scattering curves and sedimentation coefficients indicated a progressive stacking of ZAG monomers, suggesting that the ZAG groove may be occluded in these. Using fluorescence-detected sedimentation velocity, these ZAG-zinc oligomers were again observed in the presence of the fluorescent boron dipyrromethene fatty acid C16-BODIPY (4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-s-indacene-3-hexadecanoic acid). Fluorescence spectroscopy confirmed that ZAG binds C16-BODIPY. ZAG binding to C16-BODIPY, but not to DAUDA, was reduced by increased zinc concentrations. We conclude that the lipid-binding groove in ZAG contains at least two distinct fatty acid-binding sites for DAUDA and C16-BODIPY, similar to the multiple lipid binding seen in the structurally related immune protein CD1c. In addition, because high concentrations of zinc occur in the pancreas, the perturbation of these multiple lipid-binding sites by zinc may be significant in Type 2 diabetes where dysregulation of ZAG and zinc homoeostasis occurs.

  2. Autoradiographic localization of endothelin-1 binding sites in porcine skin

    SciTech Connect

    Zhao, Y.D.; Springall, D.R.; Wharton, J.; Polak, J.M. )

    1991-01-01

    Autoradiographic techniques and {sup 125}I-labeled endothelin-1 were used to study the distribution of endothelin-1 binding sites in porcine skin. Specific endothelin-1 binding sites were localized to blood vessels (capillaries, deep cutaneous vascular plexus, arteries, and arterioles), the deep dermal and connective tissue sheath of hair follicles, sebaceous and sweat glands, and arrector pili muscle. Specific binding was inhibited by endothelin-2 and endothelin-3 as well as endothelin-1. Non-specific binding was found in the epidermis and the medulla of hair follicles. No binding was found in connective tissue or fat. These vascular binding sites may represent endothelin receptors, in keeping with the known cutaneous vasoconstrictor actions of the peptide. If all binding sites are receptors, the results suggest that endothelin could also regulate the function of sweat glands and may have trophic effects in the skin.

  3. Protein function annotation by local binding site surface similarity.

    PubMed

    Spitzer, Russell; Cleves, Ann E; Varela, Rocco; Jain, Ajay N

    2014-04-01

    Hundreds of protein crystal structures exist for proteins whose function cannot be confidently determined from sequence similarity. Surflex-PSIM, a previously reported surface-based protein similarity algorithm, provides an alternative method for hypothesizing function for such proteins. The method now supports fully automatic binding site detection and is fast enough to screen comprehensive databases of protein binding sites. The binding site detection methodology was validated on apo/holo cognate protein pairs, correctly identifying 91% of ligand binding sites in holo structures and 88% in apo structures where corresponding sites existed. For correctly detected apo binding sites, the cognate holo site was the most similar binding site 87% of the time. PSIM was used to screen a set of proteins that had poorly characterized functions at the time of crystallization, but were later biochemically annotated. Using a fully automated protocol, this set of 8 proteins was screened against ∼60,000 ligand binding sites from the PDB. PSIM correctly identified functional matches that predated query protein biochemical annotation for five out of the eight query proteins. A panel of 12 currently unannotated proteins was also screened, resulting in a large number of statistically significant binding site matches, some of which suggest likely functions for the poorly characterized proteins.

  4. Whole-genome cartography of estrogen receptor alpha binding sites.

    PubMed

    Lin, Chin-Yo; Vega, Vinsensius B; Thomsen, Jane S; Zhang, Tao; Kong, Say Li; Xie, Min; Chiu, Kuo Ping; Lipovich, Leonard; Barnett, Daniel H; Stossi, Fabio; Yeo, Ailing; George, Joshy; Kuznetsov, Vladimir A; Lee, Yew Kok; Charn, Tze Howe; Palanisamy, Nallasivam; Miller, Lance D; Cheung, Edwin; Katzenellenbogen, Benita S; Ruan, Yijun; Bourque, Guillaume; Wei, Chia-Lin; Liu, Edison T

    2007-06-01

    Using a chromatin immunoprecipitation-paired end diTag cloning and sequencing strategy, we mapped estrogen receptor alpha (ERalpha) binding sites in MCF-7 breast cancer cells. We identified 1,234 high confidence binding clusters of which 94% are projected to be bona fide ERalpha binding regions. Only 5% of the mapped estrogen receptor binding sites are located within 5 kb upstream of the transcriptional start sites of adjacent genes, regions containing the proximal promoters, whereas vast majority of the sites are mapped to intronic or distal locations (>5 kb from 5' and 3' ends of adjacent transcript), suggesting transcriptional regulatory mechanisms over significant physical distances. Of all the identified sites, 71% harbored putative full estrogen response elements (EREs), 25% bore ERE half sites, and only 4% had no recognizable ERE sequences. Genes in the vicinity of ERalpha binding sites were enriched for regulation by estradiol in MCF-7 cells, and their expression profiles in patient samples segregate ERalpha-positive from ERalpha-negative breast tumors. The expression dynamics of the genes adjacent to ERalpha binding sites suggest a direct induction of gene expression through binding to ERE-like sequences, whereas transcriptional repression by ERalpha appears to be through indirect mechanisms. Our analysis also indicates a number of candidate transcription factor binding sites adjacent to occupied EREs at frequencies much greater than by chance, including the previously reported FOXA1 sites, and demonstrate the potential involvement of one such putative adjacent factor, Sp1, in the global regulation of ERalpha target genes. Unexpectedly, we found that only 22%-24% of the bona fide human ERalpha binding sites were overlapping conserved regions in whole genome vertebrate alignments, which suggest limited conservation of functional binding sites. Taken together, this genome-scale analysis suggests complex but definable rules governing ERalpha binding and gene

  5. Whole-Genome Cartography of Estrogen Receptor α Binding Sites

    PubMed Central

    Thomsen, Jane S; Zhang, Tao; Kong, Say Li; Xie, Min; Chiu, Kuo Ping; Lipovich, Leonard; Barnett, Daniel H; Stossi, Fabio; Yeo, Ailing; George, Joshy; Kuznetsov, Vladimir A; Lee, Yew Kok; Charn, Tze Howe; Palanisamy, Nallasivam; Miller, Lance D; Cheung, Edwin; Katzenellenbogen, Benita S; Ruan, Yijun; Bourque, Guillaume; Wei, Chia-Lin; Liu, Edison T

    2007-01-01

    Using a chromatin immunoprecipitation-paired end diTag cloning and sequencing strategy, we mapped estrogen receptor α (ERα) binding sites in MCF-7 breast cancer cells. We identified 1,234 high confidence binding clusters of which 94% are projected to be bona fide ERα binding regions. Only 5% of the mapped estrogen receptor binding sites are located within 5 kb upstream of the transcriptional start sites of adjacent genes, regions containing the proximal promoters, whereas vast majority of the sites are mapped to intronic or distal locations (>5 kb from 5′ and 3′ ends of adjacent transcript), suggesting transcriptional regulatory mechanisms over significant physical distances. Of all the identified sites, 71% harbored putative full estrogen response elements (EREs), 25% bore ERE half sites, and only 4% had no recognizable ERE sequences. Genes in the vicinity of ERα binding sites were enriched for regulation by estradiol in MCF-7 cells, and their expression profiles in patient samples segregate ERα-positive from ERα-negative breast tumors. The expression dynamics of the genes adjacent to ERα binding sites suggest a direct induction of gene expression through binding to ERE-like sequences, whereas transcriptional repression by ERα appears to be through indirect mechanisms. Our analysis also indicates a number of candidate transcription factor binding sites adjacent to occupied EREs at frequencies much greater than by chance, including the previously reported FOXA1 sites, and demonstrate the potential involvement of one such putative adjacent factor, Sp1, in the global regulation of ERα target genes. Unexpectedly, we found that only 22%–24% of the bona fide human ERα binding sites were overlapping conserved regions in whole genome vertebrate alignments, which suggest limited conservation of functional binding sites. Taken together, this genome-scale analysis suggests complex but definable rules governing ERα binding and gene regulation. PMID:17542648

  6. pMD-Membrane: A Method for Ligand Binding Site Identification in Membrane-Bound Proteins

    PubMed Central

    Gorfe, Alemayehu A.

    2015-01-01

    Probe-based or mixed solvent molecular dynamics simulation is a useful approach for the identification and characterization of druggable sites in drug targets. However, thus far the method has been applied only to soluble proteins. A major reason for this is the potential effect of the probe molecules on membrane structure. We have developed a technique to overcome this limitation that entails modification of force field parameters to reduce a few pairwise non-bonded interactions between selected atoms of the probe molecules and bilayer lipids. We used the resulting technique, termed pMD-membrane, to identify allosteric ligand binding sites on the G12D and G13D oncogenic mutants of the K-Ras protein bound to a negatively charged lipid bilayer. In addition, we show that differences in probe occupancy can be used to quantify changes in the accessibility of druggable sites due to conformational changes induced by membrane binding or mutation. PMID:26506102

  7. OSBP-Related Protein Family in Lipid Transport Over Membrane Contact Sites

    PubMed Central

    Olkkonen, Vesa M.

    2015-01-01

    Increasing evidence suggests that oxysterol-binding protein-related proteins (ORPs) localize at membrane contact sites, which are high-capacity platforms for inter-organelle exchange of small molecules and information. ORPs can simultaneously associate with the two apposed membranes and transfer lipids across the interbilayer gap. Oxysterol-binding protein moves cholesterol from the endoplasmic reticulum to trans-Golgi, driven by the retrograde transport of phosphatidylinositol-4-phosphate (PI4P). Analogously, yeast Osh6p mediates the transport of phosphatidylserine from the endoplasmic reticulum to the plasma membrane in exchange for PI4P, and ORP5 and -8 are suggested to execute similar functions in mammalian cells. ORPs may share the capacity to bind PI4P within their ligand-binding domain, prompting the hypothesis that bidirectional transport of a phosphoinositide and another lipid may be a common theme among the protein family. This model, however, needs more experimental support and does not exclude a function of ORPs in lipid signaling. PMID:26715851

  8. Isolated Polar Amino Acid Residues Modulate Lipid Binding in the Large Hydrophobic Cavity of CD1d.

    PubMed

    Inuki, Shinsuke; Aiba, Toshihiko; Hirata, Natsumi; Ichihara, Osamu; Yoshidome, Daisuke; Kita, Shunsuke; Maenaka, Katsumi; Fukase, Koichi; Fujimoto, Yukari

    2016-11-18

    The CD1d protein is a nonpolymorphic MHC class I-like protein that controls the activation of natural killer T (NKT) cells through the presentation of self- and foreign-lipid ligands, glycolipids, or phospholipids, leading to the secretion of various cytokines. The CD1d contains a large hydrophobic lipid binding pocket: the A' pocket of CD1d, which recognizes hydrophobic moieties of the ligands, such as long fatty acyl chains. Although lipid-protein interactions typically rely on hydrophobic interactions between lipid chains and the hydrophobic sites of proteins, we showed that the small polar regions located deep inside the hydrophobic A' pocket could be used for the modulation of the lipid binding. A series of the ligands, α-galactosyl ceramide (α-GalCer) derivatives containing polar groups in the acyl chain, was synthesized, and the structure-activity relationship studies demonstrated that simple modification from a methylene to an amide group in the long fatty acyl chain, when introduced at optimal positions, enhanced the CD1d recognition of the glycolipid ligands. Formation of hydrogen bonds between the amide group and the polar residues was supported by molecular dynamics (MD) simulations and WaterMap calculations. The computational studies suggest that localized hydrating water molecules may play an important role in the ligand recognition. Here, the results showed that confined polar residues in the large hydrophobic lipid binding pockets of the proteins could be potential targets to modulate the affinity for its ligands.

  9. Sizes of Mn-binding sites in spinach thylakoids.

    PubMed

    Takahashi, M; Asada, K

    1986-12-25

    The sizes of the Mn-binding sites in spinach thylakoids were estimated by target size analysis, assaying the membrane-bound Mn that was resistant to EDTA washing after radiation inactivation. The inactivation curve showed well the inactivation of two independent Mn-binding sites of different sizes: about two-thirds of the Mn coordinated to a binding site of 65 kDa, and the rest bound to a much smaller site of only about 3 kDa. In the large site, there was about 1 g atom of Mn/110 mol of chlorophyll in spinach thylakoids, which was constant in normally grown plants, although the Mn level in the small site depended on culture conditions. Thylakoids that had been incubated with hydroxylamine or in 0.8 M Tris lost Mn exclusively from the large binding site.

  10. Sizes of Mn-binding sites in spinach thylakoids

    SciTech Connect

    Takahashi, M.; Asada, K.

    1986-12-25

    The sizes of the Mn-binding sites in spinach thylakoids were estimated by target size analysis, assaying the membrane-bound Mn that was resistant to EDTA washing after radiation inactivation. The inactivation curve showed well the inactivation of two independent Mn-binding sites of different sizes: about two-thirds of the Mn coordinated to a binding site of 65 kDa, and the rest bound to a much smaller site of only about 3 kDa. In the large site, there was about 1 g atom of Mn/110 mol of chlorophyll in spinach thylakoids, which was constant in normally grown plants, although the Mn level in the small site depended on culture conditions. Thylakoids that had been incubated with hydroxylamine or in 0.8 M Tris lost Mn exclusively from the large binding site.

  11. Structure and localisation of drug binding sites on neurotransmitter transporters.

    PubMed

    Ravna, Aina W; Sylte, Ingebrigt; Dahl, Svein G

    2009-10-01

    The dopamine (DAT), serotontin (SERT) and noradrenalin (NET) transporters are molecular targets for different classes of psychotropic drugs. The crystal structure of Aquifex aeolicus LeuT(Aa) was used as a template for molecular modeling of DAT, SERT and NET, and two putative drug binding sites (pocket 1 and 2) in each transporter were identified. Cocaine was docked into binding pocket 1 of DAT, corresponding to the leucine binding site in LeuT(Aa), which involved transmembrane helices (TMHs) 1, 3, 6 and 8. Clomipramine was docked into binding pocket 2 of DAT, involving TMHs 1, 3, 6, 10 and 11, and extracellular loops 4 and 6, corresponding to the clomipramine binding site in a crystal structure of a LeuT(Aa)-clomipramine complex. The structures of the proposed cocaine- and tricyclic antidepressant-binding sites may be of particular interest for the design of novel DAT interacting ligands.

  12. Druggability of methyl-lysine binding sites

    NASA Astrophysics Data System (ADS)

    Santiago, C.; Nguyen, K.; Schapira, M.

    2011-12-01

    Structural modules that specifically recognize—or read—methylated or acetylated lysine residues on histone peptides are important components of chromatin-mediated signaling and epigenetic regulation of gene expression. Deregulation of epigenetic mechanisms is associated with disease conditions, and antagonists of acetyl-lysine binding bromodomains are efficacious in animal models of cancer and inflammation, but little is known regarding the druggability of methyl-lysine binding modules. We conducted a systematic structural analysis of readers of methyl marks and derived a predictive druggability landscape of methyl-lysine binding modules. We show that these target classes are generally less druggable than bromodomains, but that some proteins stand as notable exceptions.

  13. Membrane binding of a lipidated N-Ras protein studied in lipid monolayers.

    PubMed

    Bringezu, Frank; Majerowicz, Monika; Wen, Shaoying; Reuther, Guido; Tan, Kui-Thong; Kuhlmann, Jürgen; Waldmann, Herbert; Huster, Daniel

    2007-04-01

    The adsorption of doubly lipidated full-length N-Ras protein on 1,2-dipalmitoyl-sn-phosphatidylcholine (DPPC) monolayers was studied by lateral pressure analysis, grazing incidence X-ray diffraction (GIXD), and specular reflectivity (XR). N-Ras protein adsorbs to the DPPC monolayer (lateral pressure of 20 mN/m) from the subphase thereby increasing the lateral pressure in the monolayer by 4 mN/m. The protein insertion does not alter the tilt angle and structure of the lipid molecules at the air/water interface but influences the electron density profile of the monolayer. Further, electron density differences into the subphase were observed. The Fresnel normalized reflectivity could be reconstructed in the analysis using box models yielding electron density profiles of the DPPC monolayer in the absence and in the presence of N-Ras protein. The electron density profiles of the DPPC monolayer in the presence of Ras showed clear intensity variations in the headgroup/glycerol/upper chain region, the so-called interface region where previous bilayer studies had confirmed Ras binding.

  14. Thermodynamics of cationic lipid binding to DNA and DNA condensation: roles of electrostatics and hydrophobicity.

    PubMed

    Matulis, Daumantas; Rouzina, Ioulia; Bloomfield, Victor A

    2002-06-26

    Alkylammonium binding to DNA was studied by isothermal titration calorimetry. Experimental data, obtained as functions of alkyl chain length, salt concentration, DNA concentration, and temperature, provided a detailed thermodynamic description of lipid-DNA binding reactions leading to DNA condensation. Lipid binding, counterion displacement, and DNA condensation were highly cooperative processes, driven by a large increase in entropy and opposed by a relatively small endothermic enthalpy at room temperature. Large negative heat capacity change indicated a contribution from hydrophobic interactions between aliphatic tails. An approximation of lipid-DNA binding as dominated by two factors-ionic and hydrophobic interactions-yielded a model that was consistent with experimental data. Chemical group contributions to the energetics of binding were determined and could be used to predict energetics of other lipid binding to DNA. Electrostatic and hydrophobic contributions to Gibbs free energy, enthalpy, entropy, and heat capacity could be distinguished by applying additivity principles. Binding of lipids with two, three, and four aliphatic tails was investigated and compared to single-tailed lipid binding. Structurally, the model suggests that lipid cationic headgroups and aliphatic tails distribute evenly and lay down on DNA surface without the formation of micelles.

  15. Host humoral immune response to Leishmania lipid-binding protein.

    PubMed

    Maache, M; Azzouz, S; Diaz de la Guardia, R; Alvarez, P; Gil, R; de Pablos, L M; Osuna, A

    2005-06-01

    SUMMARY We report on the use of Leishmania donovani lipid-binding proteins (LBPs) as antigens capable of being recognized by serum from immunocompetent patients from southern Spain suffering from visceral leishmaniasis and from Peruvian patients with localized cutaneous leishmaniasis caused by Leishmania braziliensis. The absorbance found by immunoenzymatic techniques gave significantly different results for the serum samples from patients with and without leishmaniasis. Specificity by ELISA testing was 93.2% and sensibility 100%. Dot blots from human patient serum samples or naturally infected dogs from Spain gave similarly significant results. All the human serum samples from individuals with visceral leishmaniasis and the Leishmania-positive canine samples recognized two bands, with molecular weights of 8 and 57 kDa. The serum from individuals with cutaneous leishmaniasis caused by L. braziliensis recognized an additional band of 16 kDa. We discuss the role of Leishmania FABP and compare the immunological reactions found with serum samples from other protozoan infections such as toxoplasma and Chagas as well as bacterial infections such as tuberculosis and syphilis.

  16. Comparison of Saccharomyces cerevisiae F-BAR Domain Structures Reveals a Conserved Inositol Phosphate Binding Site

    DOE PAGES

    Moravcevic, Katarina; Alvarado, Diego; Schmitz, Karl R.; ...

    2015-01-22

    F-BAR domains control membrane interactions in endocytosis, cytokinesis, and cell signaling. Although they are generally thought to bind curved membranes containing negatively charged phospholipids, numerous functional studies argue that differences in lipid-binding selectivities of F-BAR domains are functionally important. Here in this paper, we compare membrane-binding properties of the Saccharomyces cerevisiae F-BAR domains in vitro and in vivo. Whereas some F-BAR domains (such as Bzz1p and Hof1p F-BARs) bind equally well to all phospholipids, the F-BAR domain from the RhoGAP Rgd1p preferentially binds phosphoinositides. We determined X-ray crystal structures of F-BAR domains from Hof1p and Rgd1p, the latter bound tomore » an inositol phosphate. The structures explain phospholipid-binding selectivity differences and reveal an F-BAR phosphoinositide binding site that is fully conserved in a mammalian RhoGAP called Gmip and is partly retained in certain other F-BAR domains. In conclusion, our findings reveal previously unappreciated determinants of F-BAR domain lipid-binding specificity and provide a basis for its prediction from sequence.« less

  17. Studying the role of lipid rafts on protein receptor bindings with cellular automata.

    PubMed

    Haack, Fiete; Burrage, Kevin; Redmer, Ronald; Uhrmacher, Adelinde M

    2013-01-01

    It is widely accepted that lipid rafts promote receptor clustering and thereby facilitate signaling transduction. The role of lipid rafts in inducing and promoting receptor accumulation within the cell membrane has been explored by several computational and experimental studies. However, it remains unclear whether lipid rafts influence the recruitment and binding of proteins from the cytosol as well. To provide an answer to this question a spatial membrane model has been developed based on cellular automata. Our results indicate that lipid rafts indeed influence protein receptor bindings. In particular processes with slow dissociation and binding kinetics are promoted by lipid rafts, whereas fast binding processes are slightly hampered. However, the impact depends on a variety of parameters, such as the size and mobility of the lipid rafts, the induced slow down of receptors within rafts, and also the dissociation and binding kinetics of the cytosolic proteins. Thus, for any individual signaling pathway the influence of lipid rafts on protein binding might be different. To facilitate analyzing this influence given a specific pathway, our approach has been generalized into LiRaM, a modeling and simulation tool for lipid rafts models.

  18. Phloem Proteomics Reveals New Lipid-Binding Proteins with a Putative Role in Lipid-Mediated Signaling

    PubMed Central

    Barbaglia, Allison M.; Tamot, Banita; Greve, Veronica; Hoffmann-Benning, Susanne

    2016-01-01

    Global climate changes inversely affect our ability to grow the food required for an increasing world population. To combat future crop loss due to abiotic stress, we need to understand the signals responsible for changes in plant development and the resulting adaptations, especially the signaling molecules traveling long-distance through the plant phloem. Using a proteomics approach, we had identified several putative lipid-binding proteins in the phloem exudates. Simultaneously, we identified several complex lipids as well as jasmonates. These findings prompted us to propose that phloem (phospho-) lipids could act as long-distance developmental signals in response to abiotic stress, and that they are released, sensed, and moved by phloem lipid-binding proteins (Benning et al., 2012). Indeed, the proteins we identified include lipases that could release a signaling lipid into the phloem, putative receptor components, and proteins that could mediate lipid-movement. To test this possible protein-based lipid-signaling pathway, three of the proteins, which could potentially act in a relay, are characterized here: (I) a putative GDSL-motif lipase (II) a PIG-P-like protein, with a possible receptor-like function; (III) and PLAFP (phloem lipid-associated family protein), a predicted lipid-binding protein of unknown function. Here we show that all three proteins bind lipids, in particular phosphatidic acid (PtdOH), which is known to participate in intracellular stress signaling. Genes encoding these proteins are expressed in the vasculature, a prerequisite for phloem transport. Cellular localization studies show that the proteins are not retained in the endoplasmic reticulum but surround the cell in a spotted pattern that has been previously observed with receptors and plasmodesmatal proteins. Abiotic signals that induce the production of PtdOH also regulate the expression of GDSL-lipase and PLAFP, albeit in opposite patterns. Our findings suggest that while all three

  19. Phloem proteomics reveals new lipid-binding proteins with a putative role in lipid-mediated signaling

    DOE PAGES

    Barbaglia, Allison M.; Tamot, Banita; Greve, Veronica; ...

    2016-04-28

    Global climate changes inversely affect our ability to grow the food required for an increasing world population. To combat future crop loss due to abiotic stress, we need to understand the signals responsible for changes in plant development and the resulting adaptations, especially the signaling molecules traveling long-distance through the plant phloem. Using a proteomics approach, we had identified several putative lipid-binding proteins in the phloem exudates. Simultaneously, we identified several complex lipids as well as jasmonates. These findings prompted us to propose that phloem (phospho-) lipids could act as long-distance developmental signals in response to abiotic stress, and thatmore » they are released, sensed, and moved by phloem lipid-binding proteins (Benning et al., 2012). Indeed, the proteins we identified include lipases that could release a signaling lipid into the phloem, putative receptor components, and proteins that could mediate lipid-movement. To test this possible protein-based lipid-signaling pathway, three of the proteins, which could potentially act in a relay, are characterized here: (I) a putative GDSL-motif lipase (II) a PIG-P-like protein, with a possible receptor-like function; (III) and PLAFP (phloem lipid-associated family protein), a predicted lipid-binding protein of unknown function. Here we show that all three proteins bind lipids, in particular phosphatidic acid (PtdOH), which is known to participate in intracellular stress signaling. Genes encoding these proteins are expressed in the vasculature, a prerequisite for phloem transport. Cellular localization studies show that the proteins are not retained in the endoplasmic reticulum but surround the cell in a spotted pattern that has been previously observed with receptors and plasmodesmatal proteins. Abiotic signals that induce the production of PtdOH also regulate the expression of GDSL-lipase and PLAFP, albeit in opposite patterns. Our findings suggest that while all

  20. Phloem proteomics reveals new lipid-binding proteins with a putative role in lipid-mediated signaling

    SciTech Connect

    Barbaglia, Allison M.; Tamot, Banita; Greve, Veronica; Hoffmann-Benning, Susanne

    2016-04-28

    Global climate changes inversely affect our ability to grow the food required for an increasing world population. To combat future crop loss due to abiotic stress, we need to understand the signals responsible for changes in plant development and the resulting adaptations, especially the signaling molecules traveling long-distance through the plant phloem. Using a proteomics approach, we had identified several putative lipid-binding proteins in the phloem exudates. Simultaneously, we identified several complex lipids as well as jasmonates. These findings prompted us to propose that phloem (phospho-) lipids could act as long-distance developmental signals in response to abiotic stress, and that they are released, sensed, and moved by phloem lipid-binding proteins (Benning et al., 2012). Indeed, the proteins we identified include lipases that could release a signaling lipid into the phloem, putative receptor components, and proteins that could mediate lipid-movement. To test this possible protein-based lipid-signaling pathway, three of the proteins, which could potentially act in a relay, are characterized here: (I) a putative GDSL-motif lipase (II) a PIG-P-like protein, with a possible receptor-like function; (III) and PLAFP (phloem lipid-associated family protein), a predicted lipid-binding protein of unknown function. Here we show that all three proteins bind lipids, in particular phosphatidic acid (PtdOH), which is known to participate in intracellular stress signaling. Genes encoding these proteins are expressed in the vasculature, a prerequisite for phloem transport. Cellular localization studies show that the proteins are not retained in the endoplasmic reticulum but surround the cell in a spotted pattern that has been previously observed with receptors and plasmodesmatal proteins. Abiotic signals that induce the production of PtdOH also regulate the expression of GDSL-lipase and PLAFP, albeit in opposite patterns. Our findings suggest that while all three

  1. Paramagnetic Ligand Tagging To Identify Protein Binding Sites

    PubMed Central

    2015-01-01

    Transient biomolecular interactions are the cornerstones of the cellular machinery. The identification of the binding sites for low affinity molecular encounters is essential for the development of high affinity pharmaceuticals from weakly binding leads but is hindered by the lack of robust methodologies for characterization of weakly binding complexes. We introduce a paramagnetic ligand tagging approach that enables localization of low affinity protein–ligand binding clefts by detection and analysis of intermolecular protein NMR pseudocontact shifts, which are invoked by the covalent attachment of a paramagnetic lanthanoid chelating tag to the ligand of interest. The methodology is corroborated by identification of the low millimolar volatile anesthetic interaction site of the calcium sensor protein calmodulin. It presents an efficient route to binding site localization for low affinity complexes and is applicable to rapid screening of protein–ligand systems with varying binding affinity. PMID:26289584

  2. A lipid-regulated docking site on vinculin for protein kinase C.

    PubMed

    Ziegler, Wolfgang H; Tigges, Ulrich; Zieseniss, Anke; Jockusch, Brigitte M

    2002-03-01

    During cell spreading, binding of actin-organizing proteins to acidic phospholipids and phosphorylation are important for localization and activity of these proteins at nascent cell-matrix adhesion sites. Here, we report on a transient interaction between the lipid-dependent protein kinase Calpha and vinculin, an early component of these sites, during spreading of HeLa cells on collagen. In vitro binding of protein kinase Calpha to vinculin tail was found dependent on free calcium and acidic phospholipids but independent of a functional kinase domain. The interaction was enhanced by conditions that favor the oligomerization of vinculin. Phosphorylation by protein kinase Calpha reached 1.5 mol of phosphate/mol of vinculin tail and required the C-terminal hydrophobic hairpin, a putative phosphatidylinositol 4,5-bisphosphate-binding site. Mass spectroscopy of peptides derived from in vitro phosphorylated vinculin tail identified phosphorylation of serines 1033 and 1045. Inhibition of C-terminal phospholipid binding at the vinculin tail by mutagenesis or deletion reduced the rate of phosphorylation to < or =50%. We suggest a possible mechanism whereby phospholipid-regulated conformational changes in vinculin may lead to exposure of a docking site for protein kinase Calpha and subsequent phosphorylation of vinculin and/or vinculin interaction partners, thereby affecting the formation of cell adhesion complexes.

  3. The number of nucleotide binding sites in cytochrome C oxidase.

    PubMed

    Rieger, T; Napiwotzki, J; Hüther, F J; Kadenbach, B

    1995-12-05

    The binding of 2'(3')-O-(2,4,6-trinitrophenyl)-adenosine-5'-triphosphate (TNP-ATP), [35S]ATP alpha S and 8-azido-[gamma-32P]ATP to isolated cytochrome c oxidase of bovine heart and liver and to the two-subunit enzyme of Paracoccus dentrificans was studied by measuring the fluorescence change or bound radioactivity, respectively. With TNP-ATP three binding sites were determined at cytochrome c oxidase from bovine heart and liver, both with two dissociation constants Kd of about 0.2 and 0.9 microM. Trypsin treatment of the enzyme from bovine heart, resulted in one binding site with a Kd of 0.3 microM. The two-subunit enzyme of Paracoccus dentrificans had only one binding site with a Kd of 3.6 microM. The binding of [35S]ATP alpha S to cytochrome c oxidase was studied by equilibrium dialysis. With the enzyme of bovine heart seven and the enzyme of liver six high-affinity binding sites with apparent Kd's of 7.5 and 12 microM, respectively, were obtained. The two-subunit enzyme of Paracoccus denitrificans had one binding site with a Kd of 20 microM. The large number of binding sites at cytochrome c oxidase from bovine heart, mainly at nuclear coded subunits, was verified by photoaffinity labelling with 8-azido-[gamma-32P]ATP.

  4. Comparison of the Folding Mechanism of Highly Homologous Proteins in the Lipid-binding Protein Family

    EPA Science Inventory

    The folding mechanism of two closely related proteins in the intracellular lipid binding protein family, human bile acid binding protein (hBABP) and rat bile acid binding protein (rBABP) were examined. These proteins are 77% identical (93% similar) in sequence Both of these singl...

  5. Comparison of the Folding Mechanism of Highly Homologous Proteins in the Lipid-binding Protein Family

    EPA Science Inventory

    The folding mechanism of two closely related proteins in the intracellular lipid binding protein family, human bile acid binding protein (hBABP) and rat bile acid binding protein (rBABP) were examined. These proteins are 77% identical (93% similar) in sequence Both of these singl...

  6. Expression, purification, crystallization and structure of human adipocyte lipid-binding protein (aP2)

    SciTech Connect

    Marr, Eric; Tardie, Mark; Carty, Maynard; Brown Phillips, Tracy; Wang, Ing-Kae; Soeller, Walt; Qiu, Xiayang Karam, George

    2006-11-01

    The crystal structure of human adipocyte lipid-binding protein (aP2) with a bound palmitate is reported at 1.5 Å resolution. Human adipocyte lipid-binding protein (aP2) belongs to a family of intracellular lipid-binding proteins involved in the transport and storage of lipids. Here, the crystal structure of human aP2 with a bound palmitate is described at 1.5 Å resolution. Unlike the known crystal structure of murine aP2 in complex with palmitate, this structure shows that the fatty acid is in a folded conformation and that the loop containing Phe57 acts as a lid to regulate ligand binding by excluding solvent exposure to the central binding cavity.

  7. Characterization of nicotine binding to the rat brain P/sub 2/ preparation: the identification of multiple binding sites which include specific up-regulatory site(s)

    SciTech Connect

    Sloan, J.W.

    1984-01-01

    These studies show that nicotine binds to the rat brain P/sub 2/ preparation by saturable and reversible processes. Multiple binding sites were revealed by the configuration of saturation, kinetic and Scatchard plots. A least squares best fit of Scatchard data using nonlinear curve fitting programs confirmed the presence of a very high affinity site, an up-regulatory site, a high affinity site and one or two low affinity sites. Stereospecificity was demonstrated for the up-regulatory site where (+)-nicotine was more effective and for the high affinity site where (-)-nicotine had a higher affinity. Drugs which selectively up-regulate nicotine binding site(s) have been identified. Further, separate very high and high affinity sites were identified for (-)- and (+)-(/sup 3/H)nicotine, based on evidence that the site density for the (-)-isomer is 10 times greater than that for the (+)-isomer at these sites. Enhanced nicotine binding has been shown to be a statistically significant phenomenon which appears to be a consequence of drugs binding to specific site(s) which up-regulate binding at other site(s). Although Scatchard and Hill plots indicate positive cooperatively, up-regulation more adequately describes the function of these site(s). A separate up-regulatory site is suggested by the following: (1) Drugs vary markedly in their ability to up-regulate binding. (2) Both the affinity and the degree of up-regulation can be altered by structural changes in ligands. (3) Drugs with specificity for up-regulation have been identified. (4) Some drugs enhance binding in a dose-related manner. (5) Competition studies employing cold (-)- and (+)-nicotine against (-)- and (+)-(/sup 3/H)nicotine show that the isomers bind to separate sites which up-regulate binding at the (-)- and (+)-nicotine high affinity sites and in this regard (+)-nicotine is more specific and efficacious than (-)-nicotine.

  8. Structural signatures of antibiotic binding sites on the ribosome

    PubMed Central

    David-Eden, Hilda; Mankin, Alexander S.; Mandel-Gutfreund, Yael

    2010-01-01

    The ribosome represents a major target for antibacterial drugs. Being a complex molecular machine, it offers many potential sites for functional interference. The high-resolution structures of ribosome in complex with various antibiotics provide a unique data set for understanding the universal features of drug-binding pockets on the ribosome. In this work, we have analyzed the structural and evolutionary properties of 65 antibiotic binding sites (ABSs) in the ribosome. We compared these sites to similar-size computed pockets extracted from the small and large ribosomal subunits. Based on this analysis, we defined properties of the known drug-binding sites, which constitute the signature of a ‘druggable’ site. The most noticeable properties of the ABSs are prevalence of non-paired bases, a strong bias in favor of unusual syn conformation of the RNA bases and an unusual sugar pucker. We propose that despite the different geometric and chemical properties of diverse antibiotics, their binding sites tend to have common attributes that possibly reflect the potency of the pocket for binding small molecules. Finally, we utilized the ensemble of properties to derive a druggability index, which can be used in conjunction with site functionality information to identify new drug-binding sites on the ribosome. PMID:20494981

  9. RNA binding protein and binding site useful for expression of recombinant molecules

    DOEpatents

    Mayfield, Stephen

    2000-01-01

    The present invention relates to a gene expression system in eukaryotic and prokaryotic cells, preferably plant cells and intact plants. In particular, the invention relates to an expression system having a RB47 binding site upstream of a translation initiation site for regulation of translation mediated by binding of RB47 protein, a member of the poly(A) binding protein family. Regulation is further effected by RB60, a protein disulfide isomerase. The expression system is capable of functioning in the nuclear/cytoplasm of cells and in the chloroplast of plants. Translation regulation of a desired molecule is enhanced approximately 100 fold over that obtained without RB47 binding site activation.

  10. RNA binding protein and binding site useful for expression of recombinant molecules

    DOEpatents

    Mayfield, Stephen P.

    2006-10-17

    The present invention relates to a gene expression system in eukaryotic and prokaryotic cells, preferably plant cells and intact plants. In particular, the invention relates to an expression system having a RB47 binding site upstream of a translation initiation site for regulation of translation mediated by binding of RB47 protein, a member of the poly(A) binding protein family. Regulation is further effected by RB60, a protein disulfide isomerase. The expression system is capable of functioning in the nuclear/cytoplasm of cells and in the chloroplast of plants. Translation regulation of a desired molecule is enhanced approximately 100 fold over that obtained without RB47 binding site activation.

  11. Influence of sulfhydryl sites on metal binding by bacteria

    NASA Astrophysics Data System (ADS)

    Nell, Ryan M.; Fein, Jeremy B.

    2017-02-01

    The role of sulfhydryl sites within bacterial cell envelopes is still unknown, but the sites may control the fate and bioavailability of metals. Organic sulfhydryl compounds are important complexing ligands in aqueous systems and they can influence metal speciation in natural waters. Though representing only approximately 5-10% of the total available binding sites on bacterial surfaces, sulfhydryl sites exhibit high binding affinities for some metals. Due to the potential importance of bacterial sulfhydryl sites in natural systems, metal-bacterial sulfhydryl site binding constants must be determined in order to construct accurate models of the fate and distribution of metals in these systems. To date, only Cd-sulfhydryl binding has been quantified. In this study, the thermodynamic stabilities of Mn-, Co-, Ni-, Zn-, Sr- and Pb-sulfhydryl bacterial cell envelope complexes were determined for the bacterial species Shewanella oneidensis MR-1. Metal adsorption experiments were conducted as a function of both pH, ranging from 5.0 to 7.0, and metal loading, from 0.5 to 40.0 μmol/g (wet weight) bacteria, in batch experiments in order to determine if metal-sulfhydryl binding occurs. Initially, the data were used to calculate the value of the stability constants for the important metal-sulfhydryl bacterial complexes for each metal-loading condition studied, assuming a single binding reaction for the dominant metal-binding site type under the pH conditions of the experiments. For most of the metals that we studied, these calculated stability constant values increased significantly with decreasing metal loading, strongly suggesting that our initial assumption was not valid and that more than one type of binding occurs at the assumed binding site. We then modeled each dataset with two distinct site types with identical acidity constants: one site with a high metal-site stability constant value, which we take to represent metal-sulfhydryl binding and which dominates under low

  12. Structural Consensus among Antibodies Defines the Antigen Binding Site

    PubMed Central

    Kunik, Vered; Peters, Bjoern; Ofran, Yanay

    2012-01-01

    The Complementarity Determining Regions (CDRs) of antibodies are assumed to account for the antigen recognition and binding and thus to contain also the antigen binding site. CDRs are typically discerned by searching for regions that are most different, in sequence or in structure, between different antibodies. Here, we show that ∼20% of the antibody residues that actually bind the antigen fall outside the CDRs. However, virtually all antigen binding residues lie in regions of structural consensus across antibodies. Furthermore, we show that these regions of structural consensus which cover the antigen binding site are identifiable from the sequence of the antibody. Analyzing the predicted contribution of antigen binding residues to the stability of the antibody-antigen complex, we show that residues that fall outside of the traditionally defined CDRs are at least as important to antigen binding as residues within the CDRs, and in some cases, they are even more important energetically. Furthermore, antigen binding residues that fall outside of the structural consensus regions but within traditionally defined CDRs show a marginal energetic contribution to antigen binding. These findings allow for systematic and comprehensive identification of antigen binding sites, which can improve the understanding of antigenic interactions and may be useful in antibody engineering and B-cell epitope identification. PMID:22383868

  13. Tau binds to lipid membrane surfaces via short amphipathic helices located in its microtubule-binding repeats.

    PubMed

    Georgieva, Elka R; Xiao, Shifeng; Borbat, Peter P; Freed, Jack H; Eliezer, David

    2014-09-16

    Tau is a microtubule-associated protein that is genetically linked to dementia and linked to Alzheimer's disease via its presence in intraneuronal neurofibrillary tangle deposits, where it takes the form of aggregated paired helical and straight filaments. Although the precise mechanisms by which tau contributes to neurodegeneration remain unclear, tau aggregation is commonly considered to be a critical component of tau-mediated pathogenicity. Nevertheless, the context in which tau aggregation begins in vivo is unknown. Tau is enriched in membrane-rich neuronal structures such as axons and growth cones, and can interact with membranes both via intermediary proteins and directly via its microtubule-binding domain (MBD). Membranes efficiently facilitate tau aggregation in vitro, and may therefore provide a physiologically relevant context for nucleating tau aggregation in vivo. Furthermore, tau-membrane interactions may potentially play a role in tau's poorly understood normal physiological functions. Despite the potential importance of direct tau-membrane interactions for tau pathology and physiology, the structural mechanisms that underlie such interactions remain to be elucidated. Here, we employ electron spin resonance spectroscopy to investigate the secondary and long-range structural properties of the MBD of three-repeat tau isoforms when bound to lipid vesicles and membrane mimetics. We show that the membrane interactions of the tau MBD are mediated by short amphipathic helices formed within each of the MBD repeats in the membrane-bound state. To our knowledge, this is the first detailed elucidation of helical tau structure in the context of intact lipid bilayers. We further show, for the first time (to our knowledge), that these individual helical regions behave as independent membrane-binding sites linked by flexible connecting regions. These results represent the first (to our knowledge) detailed structural view of membrane-bound tau and provide insights

  14. Differential lipid binding of vinculin isoforms promotes quasi-equivalent dimerization

    PubMed Central

    Chinthalapudi, Krishna; Rangarajan, Erumbi S.; Brown, David T.; Izard, Tina

    2016-01-01

    The main cause of death globally remains debilitating heart conditions, such as dilated cardiomyopathy (DCM) and hypertrophic cardiomyopathy (HCM), which are often due to mutations of specific components of adhesion complexes. Vinculin regulates these complexes and plays essential roles in intercalated discs that are necessary for muscle cell function and coordinated movement and in the development and function of the heart. Humans bearing familial or sporadic mutations in vinculin suffer from chronic, progressively debilitating DCM that ultimately leads to cardiac failure and death, whereas autosomal dominant mutations in vinculin can also provoke HCM, causing acute cardiac failure. The DCM/HCM-associated mutants of vinculin occur in the 68-residue insert unique to the muscle-specific, alternatively spliced isoform of vinculin, termed metavinculin (MV). Contrary to studies that suggested that phosphoinositol-4,5-bisphosphate (PIP2) only induces vinculin homodimers, which are asymmetric, we show that phospholipid binding results in a domain-swapped symmetric MV dimer via a quasi-equivalent interface compared with vinculin involving R975. Although one of the two PIP2 binding sites is preserved, the symmetric MV dimer that bridges two PIP2 molecules differs from the asymmetric vinculin dimer that bridges only one PIP2. Unlike vinculin, wild-type MV and the DCM/HCM-associated R975W mutant bind PIP2 in their inactive conformations, and R975W MV fails to dimerize. Mutating selective vinculin residues to their corresponding MV residues, or vice versa, switches the isoform’s dimeric constellation and lipid binding site. Collectively, our data suggest that MV homodimerization modulates microfilament attachment at muscular adhesion sites and furthers our understanding of MV-mediated cardiac remodeling. PMID:27503891

  15. alpha 2-Macroglobulin binding to cultured fibroblasts. Solubilization and partial purification of binding sites.

    PubMed

    Hanover, J A; Cheng, S; Willingham, M C; Pastan, I H

    1983-01-10

    Binding sites having the characteristics of receptors for "activated" alpha 2-macroglobulin (alpha 2M) have been solubilized with octyl-beta-D-glucoside from fibroblast membranes. When the detergent was removed by dialysis, the resulting insoluble extract was shown to bind 125I-alpha 2M specifically. Analysis of the binding data using a nonlinear curve-fitting program suggests that the solubilized preparation contains two classes of binding sites (KD = 0.34 nM and KD = 104 nM). Membranes or solubilized extracts from KB cells which lack alpha 2M binding sites did not specifically bind 125I-alpha 2M. The solubilized binding sites from fibroblasts were inactivated by boiling and trypsin treatment, and required Ca+2 for maximal binding. In addition, the high affinity binding of 125I-alpha 2M to the solubilized receptor was inhibited by bacitracin and by alpha-bromo-5-iodo-4-hydroxy-3-nitroacetophenone, two agents which interfere with the uptake of alpha 2M in cultured fibroblasts. Using a combination of ion exchange and gel permeation chromatography, we have purified the high affinity alpha 2M binding site approximately 100-fold from membrane derived from NIH-3T3 (spontaneously transformed) fibroblasts grown as tumors in mice. The receptor is apparently an acidic protein and the receptor octyl-beta-D-glucoside complex has a Stokes radius of 45-50 A as measured by gel filtration.

  16. Localization of gonadotropin binding sites in human ovarian neoplasms

    SciTech Connect

    Nakano, R.; Kitayama, S.; Yamoto, M.; Shima, K.; Ooshima, A. )

    1989-10-01

    The binding of human luteinizing hormone and human follicle-stimulating hormone to ovarian tumor biopsy specimens from 29 patients was analyzed. The binding sites for human luteinizing hormone were demonstrated in one tumor of epithelial origin (mucinous cystadenoma) and in one of sex cord-stromal origin (theca cell tumor). The binding sites for human follicle-stimulating hormone were found in three tumors of epithelial origin (serous cystadenoma and mucinous cystadenoma) and in two of sex cord-stromal origin (theca cell tumor and theca-granulosa cell tumor). The surface-binding autoradiographic study revealed that the binding sites for gonadotropins were localized in the stromal tissue. The results suggest that gonadotropic hormones may play a role in the growth and differentiation of a certain type of human ovarian neoplasms.

  17. An additional substrate binding site in a bacterial phenylalanine hydroxylase.

    PubMed

    Ronau, Judith A; Paul, Lake N; Fuchs, Julian E; Corn, Isaac R; Wagner, Kyle T; Liedl, Klaus R; Abu-Omar, Mahdi M; Das, Chittaranjan

    2013-09-01

    Phenylalanine hydroxylase (PAH) is a non-heme iron enzyme that catalyzes oxidation of phenylalanine to tyrosine, a reaction that must be kept under tight regulatory control. Mammalian PAH has a regulatory domain in which binding of the substrate leads to allosteric activation of the enzyme. However, the existence of PAH regulation in evolutionarily distant organisms, for example some bacteria in which it occurs, has so far been underappreciated. In an attempt to crystallographically characterize substrate binding by PAH from Chromobacterium violaceum, a single-domain monomeric enzyme, electron density for phenylalanine was observed at a distal site 15.7 Å from the active site. Isothermal titration calorimetry (ITC) experiments revealed a dissociation constant of 24 ± 1.1 μM for phenylalanine. Under the same conditions, ITC revealed no detectable binding for alanine, tyrosine, or isoleucine, indicating the distal site may be selective for phenylalanine. Point mutations of amino acid residues in the distal site that contact phenylalanine (F258A, Y155A, T254A) led to impaired binding, consistent with the presence of distal site binding in solution. Although kinetic analysis revealed that the distal site mutants suffer discernible loss of their catalytic activity, X-ray crystallographic analysis of Y155A and F258A, the two mutants with the most noticeable decrease in activity, revealed no discernible change in the structure of their active sites, suggesting that the effect of distal binding may result from protein dynamics in solution.

  18. Autoradiographic localization of relaxin binding sites in rat brain

    SciTech Connect

    Osheroff, P.L.; Phillips, H.S. )

    1991-08-01

    Relaxin is a member of the insulin family of polypeptide hormones and exerts its best understood actions in the mammalian reproductive system. Using a biologically active 32P-labeled human relaxin, the authors have previously shown by in vitro autoradiography specific relaxin binding sites in rat uterus, cervix, and brain tissues. Using the same approach, they describe here a detailed localization of human relaxin binding sites in the rat brain. Displaceable relaxin binding sites are distributed in discrete regions of the olfactory system, neocortex, hypothalamus, hippocampus, thalamus, amygdala, midbrain, and medulla of the male and female rat brain. Characterization of the relaxin binding sites in the subfornical organ and neocortex reveals a single class of high-affinity sites (Kd = 1.4 nM) in both regions. The binding of relaxin to two of the circumventricular organs (subfornical organ and organum vasculosum of the lamina terminalis) and the neurosecretory magnocellular hypothalamic nuclei (i.e., paraventricular and supraoptic nuclei) provides the anatomical and biochemical basis for emerging physiological evidence suggesting a central role for relaxin in the control of blood pressure and hormone release. They conclude that specific, high-affinity relaxin binding sites are present in discrete regions of the rat brain and that the distribution of some of these sites may be consistent with a role for relaxin in control of vascular volume and blood pressure.

  19. Salt-mediated two-site ligand binding by the cocaine-binding aptamer.

    PubMed

    Neves, Miguel A D; Slavkovic, Sladjana; Churcher, Zachary R; Johnson, Philip E

    2017-02-17

    Multisite ligand binding by proteins is commonly utilized in the regulation of biological systems and exploited in a range of biochemical technologies. Aptamers, although widely utilized in many rationally designed biochemical systems, are rarely capable of multisite ligand binding. The cocaine-binding aptamer is often used for studying and developing sensor and aptamer-based technologies. Here, we use isothermal titration calorimetry (ITC) and NMR spectroscopy to demonstrate that the cocaine-binding aptamer switches from one-site to two-site ligand binding, dependent on NaCl concentration. The high-affinity site functions at all buffer conditions studied, the low-affinity site only at low NaCl concentrations. ITC experiments show the two ligand-binding sites operate independently of one another with different affinities and enthalpies. NMR spectroscopy shows the second binding site is located in stem 2 near the three-way junction. This ability to control ligand binding at the second site by adjusting the concentration of NaCl is rare among aptamers and may prove a useful in biotechnology applications. This work also demonstrates that in vitro selected biomolecules can have functions as complex as those found in nature. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  20. Antimicrobial lipopeptide tridecaptin A1 selectively binds to Gram-negative lipid II

    PubMed Central

    Cochrane, Stephen A.; Findlay, Brandon; Bakhtiary, Alireza; Acedo, Jeella Z.; Rodriguez-Lopez, Eva M.; Mercier, Pascal; Vederas, John C.

    2016-01-01

    Tridecaptin A1 (TriA1) is a nonribosomal lipopeptide with selective antimicrobial activity against Gram-negative bacteria. Here we show that TriA1 exerts its bactericidal effect by binding to the bacterial cell-wall precursor lipid II on the inner membrane, disrupting the proton motive force. Biochemical and biophysical assays show that binding to the Gram-negative variant of lipid II is required for membrane disruption and that only the proton gradient is dispersed. The NMR solution structure of TriA1 in dodecylphosphocholine micelles with lipid II has been determined, and molecular modeling was used to provide a structural model of the TriA1–lipid II complex. These results suggest that TriA1 kills Gram-negative bacteria by a mechanism of action using a lipid-II–binding motif. PMID:27688760

  1. Antimicrobial lipopeptide tridecaptin A1 selectively binds to Gram-negative lipid II.

    PubMed

    Cochrane, Stephen A; Findlay, Brandon; Bakhtiary, Alireza; Acedo, Jeella Z; Rodriguez-Lopez, Eva M; Mercier, Pascal; Vederas, John C

    2016-10-11

    Tridecaptin A1 (TriA1) is a nonribosomal lipopeptide with selective antimicrobial activity against Gram-negative bacteria. Here we show that TriA1 exerts its bactericidal effect by binding to the bacterial cell-wall precursor lipid II on the inner membrane, disrupting the proton motive force. Biochemical and biophysical assays show that binding to the Gram-negative variant of lipid II is required for membrane disruption and that only the proton gradient is dispersed. The NMR solution structure of TriA1 in dodecylphosphocholine micelles with lipid II has been determined, and molecular modeling was used to provide a structural model of the TriA1-lipid II complex. These results suggest that TriA1 kills Gram-negative bacteria by a mechanism of action using a lipid-II-binding motif.

  2. Driving force of binding of amyloid {beta}-protein to lipid bilayers

    SciTech Connect

    Ikeda, Keisuke; Matsuzaki, Katsumi

    2008-06-06

    Amyloid {beta}-protein (A{beta}) has been reported to interact with a variety of lipid species, although the thermodynamic driving force remains unclear. We investigated the binding of A{beta}s labeled with the dye diethylaminocoumarin (DAC-A{beta}s) to lipid bilayers under various conditions. DAC-A{beta}-(1-40) electrostatically bound to anionic and cationic lipids at acidic and alkaline interfacial pH, respectively. However, at neutral pH, electroneutral A{beta} did not bind to these lipids, indicating little hydrophobic interaction between A{beta}-(1-40) and the acyl chains of lipids. In contrast, DAC-A{beta} associated with glycolipids even under electroneutral conditions. These results suggested that hydrogen-bonding as well as hydrophobic interactions with sugar groups of glycolipids drive the membrane binding of A{beta}-(1-40)

  3. Keys to Lipid Selection in Fatty Acid Amide Hydrolase Catalysis: Structural Flexibility, Gating Residues and Multiple Binding Pockets.

    PubMed

    Palermo, Giulia; Bauer, Inga; Campomanes, Pablo; Cavalli, Andrea; Armirotti, Andrea; Girotto, Stefania; Rothlisberger, Ursula; De Vivo, Marco

    2015-06-01

    The fatty acid amide hydrolase (FAAH) regulates the endocannabinoid system cleaving primarily the lipid messenger anandamide. FAAH has been well characterized over the years and, importantly, it represents a promising drug target to treat several diseases, including inflammatory-related diseases and cancer. But its enzymatic mechanism for lipid selection to specifically hydrolyze anandamide, rather than similar bioactive lipids, remains elusive. Here, we clarify this mechanism in FAAH, examining the role of the dynamic paddle, which is formed by the gating residues Phe432 and Trp531 at the boundary between two cavities that form the FAAH catalytic site (the "membrane-access" and the "acyl chain-binding" pockets). We integrate microsecond-long MD simulations of wild type and double mutant model systems (Phe432Ala and Trp531Ala) of FAAH, embedded in a realistic membrane/water environment, with mutagenesis and kinetic experiments. We comparatively analyze three fatty acid substrates with different hydrolysis rates (anandamide > oleamide > palmitoylethanolamide). Our findings identify FAAH's mechanism to selectively accommodate anandamide into a multi-pocket binding site, and to properly orient the substrate in pre-reactive conformations for efficient hydrolysis that is interceded by the dynamic paddle. Our findings therefore endorse a structural framework for a lipid selection mechanism mediated by structural flexibility and gating residues between multiple binding cavities, as found in FAAH. Based on the available structural data, this exquisite catalytic strategy for substrate specificity seems to be shared by other lipid-degrading enzymes with similar enzymatic architecture. The mechanistic insights for lipid selection might assist de-novo enzyme design or drug discovery efforts.

  4. Identification, characterization, and developmental regulation of embryonic benzodiazepine binding sites

    SciTech Connect

    Borden, L.A.; Gibbs, T.T.; Farb, D.H.

    1987-06-01

    We report the identification and characterization of 2 classes of benzodiazepine binding sites in the embryonic chick CNS. Binding was examined by competition and saturation binding experiments, using as radioligands /sup 3/H-flunitrazepam, a classical benzodiazepine anxiolytic, and /sup 3/H-Ro5-4864, a convulsant benzodiazepine. The results demonstrate that high-affinity (KD = 2.3 nM) /sup 3/H-flunitrazepam binding sites (site-A) are present by embryonic day 5 (Hamburger and Hamilton stage 27) and increase throughout development (Bmax = 0.3 and 1.3 pmol/mg protein in 7 and 20 d brain membranes, respectively). When 7 or 20 d brain membranes are photoaffinity-labeled with /sup 3/H-flunitrazepam and ultraviolet light, the radioactivity migrates as 2 bands on SDS-PAGE, consistent with Mrs of 48,000 and 51,000. GABA potentiates /sup 3/H-flunitrazepam binding at both 7 and 20 d of development, indicating that site-A is coupled to receptors for GABA early in development. Importantly, we have also identified a novel site (site-B) that binds classical benzodiazepine agonists with low affinity (micromolar) but displays high affinity for Ro5-4864 (KD = 41 nM). Site-B displays characteristics expected for a functional receptor, including stereospecificity and sensitivity to inactivation by heat and protease treatment. Saturation binding studies employing /sup 3/H-Ro5-4864 indicate that the levels of site-B are similar in 7 and 20 d brain (ca. 2.5 pmol/mg protein). The function of site-B is not known, but its preponderance in 7 d brain, relative to site-A, suggests that it might be important during early embryonic development.

  5. Drug Promiscuity in PDB: Protein Binding Site Similarity Is Key

    PubMed Central

    Schroeder, Michael

    2013-01-01

    Drug repositioning applies established drugs to new disease indications with increasing success. A pre-requisite for drug repurposing is drug promiscuity (polypharmacology) – a drug’s ability to bind to several targets. There is a long standing debate on the reasons for drug promiscuity. Based on large compound screens, hydrophobicity and molecular weight have been suggested as key reasons. However, the results are sometimes contradictory and leave space for further analysis. Protein structures offer a structural dimension to explain promiscuity: Can a drug bind multiple targets because the drug is flexible or because the targets are structurally similar or even share similar binding sites? We present a systematic study of drug promiscuity based on structural data of PDB target proteins with a set of 164 promiscuous drugs. We show that there is no correlation between the degree of promiscuity and ligand properties such as hydrophobicity or molecular weight but a weak correlation to conformational flexibility. However, we do find a correlation between promiscuity and structural similarity as well as binding site similarity of protein targets. In particular, 71% of the drugs have at least two targets with similar binding sites. In order to overcome issues in detection of remotely similar binding sites, we employed a score for binding site similarity: LigandRMSD measures the similarity of the aligned ligands and uncovers remote local similarities in proteins. It can be applied to arbitrary structural binding site alignments. Three representative examples, namely the anti-cancer drug methotrexate, the natural product quercetin and the anti-diabetic drug acarbose are discussed in detail. Our findings suggest that global structural and binding site similarity play a more important role to explain the observed drug promiscuity in the PDB than physicochemical drug properties like hydrophobicity or molecular weight. Additionally, we find ligand flexibility to have a

  6. Mitochondrial COQ9 is a lipid-binding protein that associates with COQ7 to enable coenzyme Q biosynthesis.

    PubMed

    Lohman, Danielle C; Forouhar, Farhad; Beebe, Emily T; Stefely, Matthew S; Minogue, Catherine E; Ulbrich, Arne; Stefely, Jonathan A; Sukumar, Shravan; Luna-Sánchez, Marta; Jochem, Adam; Lew, Scott; Seetharaman, Jayaraman; Xiao, Rong; Wang, Huang; Westphall, Michael S; Wrobel, Russell L; Everett, John K; Mitchell, Julie C; López, Luis C; Coon, Joshua J; Tong, Liang; Pagliarini, David J

    2014-11-04

    Coenzyme Q (CoQ) is an isoprenylated quinone that is essential for cellular respiration and is synthesized in mitochondria by the combined action of at least nine proteins (COQ1-9). Although most COQ proteins are known to catalyze modifications to CoQ precursors, the biochemical role of COQ9 remains unclear. Here, we report that a disease-related COQ9 mutation leads to extensive disruption of the CoQ protein biosynthetic complex in a mouse model, and that COQ9 specifically interacts with COQ7 through a series of conserved residues. Toward understanding how COQ9 can perform these functions, we solved the crystal structure of Homo sapiens COQ9 at 2.4 Å. Unexpectedly, our structure reveals that COQ9 has structural homology to the TFR family of bacterial transcriptional regulators, but that it adopts an atypical TFR dimer orientation and is not predicted to bind DNA. Our structure also reveals a lipid-binding site, and mass spectrometry-based analyses of purified COQ9 demonstrate that it associates with multiple lipid species, including CoQ itself. The conserved COQ9 residues necessary for its interaction with COQ7 comprise a surface patch around the lipid-binding site, suggesting that COQ9 might serve to present its bound lipid to COQ7. Collectively, our data define COQ9 as the first, to our knowledge, mammalian TFR structural homolog and suggest that its lipid-binding capacity and association with COQ7 are key features for enabling CoQ biosynthesis.

  7. Quenching of fluorescein-conjugated lipids by antibodies. Quantitative recognition and binding of lipid-bound haptens in biomembrane models, formation of two-dimensional protein domains and molecular dynamics simulations.

    PubMed Central

    Ahlers, M; Grainger, D W; Herron, J N; Lim, K; Ringsdorf, H; Salesse, C

    1992-01-01

    Three model biomembrane systems, monolayers, micelles, and vesicles, have been used to study the influence of chemical and physical variables of hapten presentation at membrane interfaces on antibody binding. Hapten recognition and binding were monitored for the anti-fluorescein monoclonal antibody 4-4-20 generated against the hapten, fluorescein, in these membrane models as a function of fluorescein-conjugated lipid architecture. Specific recognition and binding in this system are conveniently monitored by quenching of fluorescein emission upon penetration of fluorescein into the antibody's active site. Lipid structure was shown to play a large role in affecting antibody quenching. Interestingly, the observed degrees of quenching were nearly independent of the lipid membrane model studied, but directly correlated with the chemical structure of the lipids. In all cases, the antibody recognized and quenched most efficiently a lipid based on dioctadecylamine where fluorescein is attached to the headgroup via a long, flexible hydrophilic spacer. Dipalmitoyl phosphatidylethanolamine containing a fluorescein headgroup demonstrated only partial binding/quenching. Egg phosphatidylethanolamine with a fluorescein headgroup showed no susceptibility to antibody recognition, binding, or quenching. Formation of two-dimensional protein domains upon antibody binding to the fluorescein-lipids in monolayers is also presented. Chemical and physical requirements for these antibody-hapten complexes at membrane surfaces have been discussed in terms of molecular dynamics simulations based on recent crystallographic models for this antibody-hapten complex (Herron et al., 1989. Proteins Struct. Funct. Genet. 5:271-280). Images FIGURE 7 FIGURE 8 PMID:1420916

  8. CaMELS: In silico prediction of calmodulin binding proteins and their binding sites.

    PubMed

    Abbasi, Wajid Arshad; Asif, Amina; Andleeb, Saiqa; Minhas, Fayyaz Ul Amir Afsar

    2017-09-01

    Due to Ca(2+) -dependent binding and the sequence diversity of Calmodulin (CaM) binding proteins, identifying CaM interactions and binding sites in the wet-lab is tedious and costly. Therefore, computational methods for this purpose are crucial to the design of such wet-lab experiments. We present an algorithm suite called CaMELS (CalModulin intEraction Learning System) for predicting proteins that interact with CaM as well as their binding sites using sequence information alone. CaMELS offers state of the art accuracy for both CaM interaction and binding site prediction and can aid biologists in studying CaM binding proteins. For CaM interaction prediction, CaMELS uses protein sequence features coupled with a large-margin classifier. CaMELS models the binding site prediction problem using multiple instance machine learning with a custom optimization algorithm which allows more effective learning over imprecisely annotated CaM-binding sites during training. CaMELS has been extensively benchmarked using a variety of data sets, mutagenic studies, proteome-wide Gene Ontology enrichment analyses and protein structures. Our experiments indicate that CaMELS outperforms simple motif-based search and other existing methods for interaction and binding site prediction. We have also found that the whole sequence of a protein, rather than just its binding site, is important for predicting its interaction with CaM. Using the machine learning model in CaMELS, we have identified important features of protein sequences for CaM interaction prediction as well as characteristic amino acid sub-sequences and their relative position for identifying CaM binding sites. Python code for training and evaluating CaMELS together with a webserver implementation is available at the URL: http://faculty.pieas.edu.pk/fayyaz/software.html#camels. © 2017 Wiley Periodicals, Inc.

  9. Modelling insecticide-binding sites in the voltage-gated sodium channel

    PubMed Central

    O'Reilly, Andrias O.; Khambay, Bhupinder P. S.; Williamson, Martin S.; Field, Linda M.; WAllace, B. A.; Davies, T. G. Emyr

    2006-01-01

    A homology model of the housefly voltage-gated sodium channel was developed to predict the location of binding sites for the insecticides fenvalerate, a synthetic pyrethroid, and DDT an early generation organochlorine. The model successfully addresses the state-dependent affinity of pyrethroid insecticides, their mechanism of action and the role of mutations in the channel that are known to confer insecticide resistance. The sodium channel was modelled in an open conformation with the insecticide-binding site located in a hydrophobic cavity delimited by the domain II S4-S5 linker and the IIS5 and IIIS6 helices. The binding cavity is predicted to be accessible to the lipid bilayer and therefore to lipid-soluble insecticides. The binding of insecticides and the consequent formation of binding contacts across different channel elements could stabilize the channel when in an open state, which is consistent with the prolonged sodium tail currents induced by pyrethroids and DDT. In the closed state, the predicted alternative positioning of the domain II S4-S5 linker would result in disruption of pyrethroid-binding contacts, consistent with the observation that pyrethroids have their highest affinity for the open channel. The model also predicts a key role for the IIS5 and IIIS6 helices in insecticide binding. Some of the residues on the helices that form the putative binding contacts are not conserved between arthropod and non-arthropod species, which is consistent with their contribution to insecticide species selectivity. Additional binding contacts on the II S4-S5 linker can explain the higher potency of pyrethroid insecticides compared with DDT. PMID:16475981

  10. Modelling insecticide-binding sites in the voltage-gated sodium channel.

    PubMed

    O'Reilly, Andrias O; Khambay, Bhupinder P S; Williamson, Martin S; Field, Linda M; Wallace, B A; Davies, T G Emyr

    2006-06-01

    A homology model of the housefly voltage-gated sodium channel was developed to predict the location of binding sites for the insecticides fenvalerate, a synthetic pyrethroid, and DDT an early generation organochlorine. The model successfully addresses the state-dependent affinity of pyrethroid insecticides, their mechanism of action and the role of mutations in the channel that are known to confer insecticide resistance. The sodium channel was modelled in an open conformation with the insecticide-binding site located in a hydrophobic cavity delimited by the domain II S4-S5 linker and the IIS5 and IIIS6 helices. The binding cavity is predicted to be accessible to the lipid bilayer and therefore to lipid-soluble insecticides. The binding of insecticides and the consequent formation of binding contacts across different channel elements could stabilize the channel when in an open state, which is consistent with the prolonged sodium tail currents induced by pyrethroids and DDT. In the closed state, the predicted alternative positioning of the domain II S4-S5 linker would result in disruption of pyrethroid-binding contacts, consistent with the observation that pyrethroids have their highest affinity for the open channel. The model also predicts a key role for the IIS5 and IIIS6 helices in insecticide binding. Some of the residues on the helices that form the putative binding contacts are not conserved between arthropod and non-arthropod species, which is consistent with their contribution to insecticide species selectivity. Additional binding contacts on the II S4-S5 linker can explain the higher potency of pyrethroid insecticides compared with DDT.

  11. Development of cholecystokinin binding sites in rat upper gastrointestinal tract

    SciTech Connect

    Robinson, P.H.; Moran, T.H.; Goldrich, M.; McHugh, P.R.

    1987-04-01

    Autoradiography using /sup 125/I-labeled Bolton Hunter-CCK-33 was used to study the distribution of cholecystokinin binding sites at different stages of development in the rat upper gastrointestinal tract. Cholecystokinin (CCK) binding was present in the distal stomach, esophagus, and gastroduodenal junction in the rat fetus of gestational age of 17 days. In the 20-day fetus, specific binding was found in the gastric mucosa, antral circular muscle, and pyloric sphincter. Mucosal binding declined during postnatal development and had disappeared by day 15. Antral binding declined sharply between day 10 and day 15 and disappeared by day 50. Pyloric muscle binding was present in fetal stomach and persisted in the adult. Pancreatic CCK binding was not observed before day 10. These results suggest that CCK may have a role in the control of gastric emptying and ingestive behavior in the neonatal rat.

  12. Configurable lipid membrane gradients quantify diffusion, phase separations and binding densities.

    PubMed

    Liu, Katherine N; Hung, Chen-Min S; Swift, Michael A; Muñoz, Kristen A; Cortez, Jose L; Sanii, Babak

    2015-11-14

    Single-experiment analysis of phospholipid compositional gradients reveals diffusion coefficients, phase separation parameters, and binding densities as a function of localized lipid mixture. Compositional gradients are formed by directed self assembly where rapid-prototyping techniques (i.e., additive manufacturing or laser-cutting) prescribe lipid geometries that self-spread, heal and mix by diffusion.

  13. Aminoglycoside antibiotics: A-site specific binding to 16S

    NASA Astrophysics Data System (ADS)

    Baker, Erin Shammel; Dupuis, Nicholas F.; Bowers, Michael T.

    2009-06-01

    The A-site of 16S rRNA, which is a part of the 30S ribosomal subunit involved in prokaryotic translation, is a well known aminoglycoside binding site. Full characterization of the conformational changes undergone at the A-site upon aminoglycoside binding is essential for development of future RNA/drug complexes; however, the massiveness of 16S makes this very difficult. Recently, studies have found that a 27 base RNA construct (16S27) that comprises the A-site subdomain of 16S behaves similarly to the whole A-site domain. ESI-MS, ion mobility and molecular dynamics methods were utilized in this study to analyze the A-site of 16S27 before and after the addition of ribostamycin (R), paromomycin (P) and lividomycin (L). The ESI mass spectrum for 16S27 alone illustrated both single-stranded 16S27 and double-stranded (16S27)2 complexes. Upon aminoglycoside addition, the mass spectra showed that only one aminoglycoside binds to 16S27, while either one or two bind to (16S27)2. Ion mobility measurements and molecular dynamics calculations were utilized in determining the solvent-free structures of the 16S27 and (16S27)2 complexes. These studies found 16S27 in a hairpin conformation while (16S27)2 existed as a cruciform. Only one aminoglycoside binds to the single A-site of the 16S27 hairpin and this attachment compresses the hairpin. Since two A-sites exist for the (16S27)2 cruciform, either one or two aminoglycosides may bind. The aminoglycosides compress the A-sites causing the cruciform with just one aminoglycoside bound to be larger than the cruciform with two bound. Non-specific binding was not observed in any of the aminoglycoside/16S27 complexes.

  14. Does alpha-helix folding necessarily provide an energy source for the protein-lipid binding?

    PubMed

    Gursky, Olga

    2007-01-01

    Lipid-induced alpha-helix folding, which occurs in many lipid surface-binding proteins and peptides such as apolipoproteins and synucleins, has been proposed to provide an energy source for protein-lipid interactions. We propose that in a system comprised of a phospholipid surface and a small polypeptide that is unfolded in solution and binds reversibly to lipid surface, helical folding involves expenditure of free energy as compared to a similar polypeptide that is alpha-helical in solution. This is a consequence of the entropic cost of helix folding that is illustrated in a simple thermodynamic model and exemplifies the general "key-into-lock" paradigm of protein-ligand binding. Even though this simple model does not explicitly address the protein-induced lipid re-arrangement and may not directly apply to large proteins that undergo significant tertiary structural changes upon lipid binding, it suggests that the notion of helix folding as an energy source for lipid binding should be treated with caution.

  15. A graph kernel method for DNA-binding site prediction.

    PubMed

    Yan, Changhui; Wang, Yingfeng

    2014-01-01

    Protein-DNA interactions play important roles in many biological processes. Computational methods that can accurately predict DNA-binding sites on proteins will greatly expedite research on problems involving protein-DNA interactions. This paper presents a method for predicting DNA-binding sites on protein structures. The method represents protein surface patches using labeled graphs and uses a graph kernel method to calculate the similarities between graphs. A new surface patch is predicted to be interface or non-interface patch based on its similarities to known DNA-binding patches and non-DNA-binding patches. The proposed method achieved high accuracy when tested on a representative set of 146 protein-DNA complexes using leave-one-out cross-validation. Then, the method was applied to identify DNA-binding sites on 13 unbound structures of DNA-binding proteins. In each of the unbound structure, the top 1 patch predicted by the proposed method precisely indicated the location of the DNA-binding site. Comparisons with other methods showed that the proposed method was competitive in predicting DNA-binding sites on unbound proteins. The proposed method uses graphs to encode the feature's distribution in the 3-dimensional (3D) space. Thus, compared with other vector-based methods, it has the advantage of taking into account the spatial distribution of features on the proteins. Using an efficient kernel method to compare graphs the proposed method also avoids the demanding computations required for 3D objects comparison. It provides a competitive method for predicting DNA-binding sites without requiring structure alignment.

  16. SiteOut: An Online Tool to Design Binding Site-Free DNA Sequences

    PubMed Central

    Scholes, Clarissa; Wunderlich, Zeba; DePace, Angela H.

    2016-01-01

    DNA-binding proteins control many fundamental biological processes such as transcription, recombination and replication. A major goal is to decipher the role that DNA sequence plays in orchestrating the binding and activity of such regulatory proteins. To address this goal, it is useful to rationally design DNA sequences with desired numbers, affinities and arrangements of protein binding sites. However, removing binding sites from DNA is computationally non-trivial since one risks creating new sites in the process of deleting or moving others. Here we present an online binding site removal tool, SiteOut, that enables users to design arbitrary DNA sequences that entirely lack binding sites for factors of interest. SiteOut can also be used to delete sites from a specific sequence, or to introduce site-free spacers between functional sequences without creating new sites at the junctions. In combination with commercial DNA synthesis services, SiteOut provides a powerful and flexible platform for synthetic projects that interrogate regulatory DNA. Here we describe the algorithm and illustrate the ways in which SiteOut can be used; it is publicly available at https://depace.med.harvard.edu/siteout/. PMID:26987123

  17. SiteOut: An Online Tool to Design Binding Site-Free DNA Sequences.

    PubMed

    Estrada, Javier; Ruiz-Herrero, Teresa; Scholes, Clarissa; Wunderlich, Zeba; DePace, Angela H

    2016-01-01

    DNA-binding proteins control many fundamental biological processes such as transcription, recombination and replication. A major goal is to decipher the role that DNA sequence plays in orchestrating the binding and activity of such regulatory proteins. To address this goal, it is useful to rationally design DNA sequences with desired numbers, affinities and arrangements of protein binding sites. However, removing binding sites from DNA is computationally non-trivial since one risks creating new sites in the process of deleting or moving others. Here we present an online binding site removal tool, SiteOut, that enables users to design arbitrary DNA sequences that entirely lack binding sites for factors of interest. SiteOut can also be used to delete sites from a specific sequence, or to introduce site-free spacers between functional sequences without creating new sites at the junctions. In combination with commercial DNA synthesis services, SiteOut provides a powerful and flexible platform for synthetic projects that interrogate regulatory DNA. Here we describe the algorithm and illustrate the ways in which SiteOut can be used; it is publicly available at https://depace.med.harvard.edu/siteout/.

  18. Cation binding site of cytochrome c oxidase: progress report.

    PubMed

    Vygodina, Tatiana V; Kirichenko, Anna; Konstantinov, Alexander A

    2014-07-01

    Cytochrome c oxidase from bovine heart binds Ca(2+) reversibly at a specific Cation Binding Site located near the outer face of the mitochondrial membrane. Ca(2+) shifts the absorption spectrum of heme a, which allowed earlier the determination of the kinetic and equilibrium characteristics of the binding, and, as shown recently, the binding of calcium to the site inhibits cytochrome oxidase activity at low turnover rates of the enzyme [Vygodina, Т., Kirichenko, A., Konstantinov, A.A (2013). Direct Regulation of Cytochrome c Oxidase by Calcium Ions. PloS ONE 8, e74436]. This paper summarizes further progress in the studies of the Cation Binding Site in this group presenting the results to be reported at 18th EBEC Meeting in Lisbon, 2014. The paper revises specificity of the bovine oxidase Cation Binding Site for different cations, describes dependence of the Ca(2+)-induced inhibition on turnover rate of the enzyme and reports very high affinity binding of calcium with the "slow" form of cytochrome oxidase. This article is part of a Special Issue entitled: 18th European Bioenergetic Conference. Guest Editors: Manuela Pereira and Miguel Teixeira.

  19. Challenges of docking in large, flexible and promiscuous binding sites.

    PubMed

    Kotev, Martin; Soliva, Robert; Orozco, Modesto

    2016-10-15

    After decades of work, the correct determination of the binding mode of a small molecule into a target protein is still a challenging problem, whose difficulty depends on: (i) the sizes of the binding site and the ligand; (ii) the flexibility of both interacting partners, and (iii) the differential solvation of bound and unbound partners. We have evaluated the performance of standard rigid(receptor)/flexible(ligand) docking approaches with respect to last-generation fully flexible docking methods to obtain reasonable poses in a very challenging case: soluble Epoxide Hydrolase (sEH), a flexible protein showing different binding sites. We found that full description of the flexibility of both protein and ligand and accurate description of solvation leads to significant improvement in the ability of docking to reproduce well known binding modes, and at the same time capture the intrinsic binding promiscuity of the protein. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Intracellular Lipid Droplets Contain Dynamic Pools of Sphingomyelin: ADRP Binds Phospholipids with High Affinity

    PubMed Central

    McIntosh, Avery L.; Storey, Stephen M.

    2011-01-01

    During the last several years, intracellular lipid droplets have become the focus of intense study. No longer an inert bystander, the lipid droplet is now known as a dynamic organelle contributing lipids to many cellular events. However, while the dynamics of cholesterol efflux from both the plasma membrane and lipid droplets have been studied, less is known regarding the efflux of sphingomyelin from these membranes. In order to address this issue, sphingomyelin efflux kinetics and binding affinities from different intracellular pools were examined. When compared to the plasma membrane, lipid droplets had a smaller exchangeable sphingomyelin efflux pool and the time required to efflux that pool was significantly shorter. Fluorescence binding assays revealed that proteins in the plasma membrane and lipid droplet pool bound sphingomyelin with high affinity. Further characterization identified adipose differentiation-related protein (ADRP) as one of the sphingomyelin binding proteins in the lipid droplet fraction and revealed that ADRP demonstrated saturable binding to 6-((N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl) amino)-hexanoyl)sphingosyl-phosphocholine (NBD-sphingomyelin) and also 2-(6-(7-nitrobenz-2-oxa-1, 3-diazol-4-yl)amino)hexanoyl-1-hexadecanoyl-sn-glycero-3-phosphocholine (NBD-phosphatidylcholine) with binding affinities in the nanomolar range. Taken together, these results suggest that lipid droplet associated proteins such as ADRP may play a significant role in regulating the intracellular distribution of phospholipids and lipids in general. Overall, insights from the present work suggest new and important roles for lipid droplets and ADRP in phospholipid metabolism. PMID:20473576

  1. Understanding the physical and chemical nature of the warfarin drug binding site in human serum albumin: experimental and theoretical studies.

    PubMed

    Abou-Zied, Osama K

    2015-01-01

    Human serum albumin (HSA) is one of the major carrier proteins in the body and constitutes approximately half of the protein found in blood plasma. It plays an important role in lipid metabolism, and its ability to reversibly bind a large variety of pharmaceutical compounds makes it a crucial determinant of drug pharmacokinetics and pharmacodynamics. This review deals with one of the protein's major binding sites "Sudlow I" which includes a binding pocket for the drug warfarin (WAR). The binding nature of this important site can be characterized by measuring the spectroscopic changes when a ligand is bound. Using several drugs, including WAR, and other drug-like molecules as ligands, the results emphasize the nature of Sudlow I as a flexible binding site, capable of binding a variety of ligands by adapting its binding pockets. The high affinity of the WAR pocket for binding versatile molecular structures stems from the flexibility of the amino acids forming the pocket. The binding site is shown to have an ionization ability which is important to consider when using drugs that are known to bind in Sudlow I. Several studies point to the important role of water molecules trapped inside the binding site in molecular recognition and ligand binding. Water inside the protein's cavity is crucial in maintaining the balance between the hydrophobic and hydrophilic nature of the binding site. Upon the unfolding and refolding of HSA, more water molecules are trapped inside the binding site which cause some swelling that prevents a full recovery from the denatured state. Better understanding of the mechanism of binding in macromolecules such as HSA and other proteins can be achieved by combining experimental and theoretical studies which produce significant synergies in studying complex biochemical phenomena.

  2. Binding sites for gonadotropins in human postmenopausal ovaries

    SciTech Connect

    Nakano, R.; Shima, K.; Yamoto, M.; Kobayashi, M.; Nishimori, K.; Hiraoka, J.

    1989-02-01

    The binding of human LH and human FSH to postmenopausal ovarian tissue from 21 patients with cervical carcinoma was analyzed. The binding sites for FSH and LH were demonstrated in postmenopausal ovarian tissue. The surface-binding sites for gonadotropins were localized in the cells of cortical stroma of the postmenopausal ovary. In addition, diffuse cytoplasmic staining of endogenous estrogen and 3 beta-hydroxysteroid dehydrogenase activity were detected immunohistochemically and histochemically in the cells of the cortical stroma. Electron microscopic study also suggested steroidogenic function in the cells of the cortical stroma. The results of the present study suggest that postmenopausal ovaries contain specific binding sites for pituitary gonadotropins and play a role in ovarian steroidogenesis.

  3. Mg NMR in DNA solutions: Dominance of site binding effects.

    PubMed

    Rose, D M; Bleam, M L; Record, M T; Bryant, R G

    1980-11-01

    (25)Mg NMR spectroscopy is applied to a study of magnesium ion interactions with DNA, which is considered as a model for a linear polyelectrolyte. It is demonstrated that the magnesium ion spectrum is complicated by a non-Lorent-zian line shape and is dominated by the effects of chemical exchange with macromolecule binding sites. A distinction is made between specific-site interactions in which the magnesium ion loses a water molecule from the first coordination sphere on binding and those interactions, referred to as territorial binding, in which the ion maintains its first coordination sphere complement of solvent. The first type of site-binding interactions are shown to dominate the magnesium ion NMR spectrum, based on a consideration of the magnitudes of the observed (25)Mg relaxation rates compared with (23)Na relaxation rates, the clear contributions of chemical exchange-limited relaxation, and an ion displacement experiment employing sodium.

  4. Characterization of peripheral benzodiazepine binding sites in human term placenta.

    PubMed

    Fares, F; Gavish, M

    1986-01-15

    Peripheral benzodiazepine binding sites were characterized in human term placental membranes using [3H]PK 11195, which is a ligand specific for peripheral benzodiazepine binding sites. Binding of [3H]PK 11195 to human term placental membranes was found to be saturable. Scatchard analysis revealed a single population of binding sites (r = 0.98). Equilibrium dissociation constant (KD) was 2.1 +/- 0.3 nM, and density of binding sites (Bmax) was 920 +/- 105 fmol/mg protein. The KD value calculated from kinetic experiments was 3.6 +/- 0.2 nM. The ability of various drugs to displace [3H]PK 11195 from human term placental binding sites was tested: the inhibition constants (KI) for PK 11195, Ro 5-4864, and diazepam were 2.9, 11.8, and 177 nM, respectively, whereas clonazepam, methyl-beta-carboline-3-carboxylate, Ro 15-1788, chlordiazepoxide, atropine, and estradiol were inefficient in displacing [3H]PK 11195 (KI greater than 10(-5) M).

  5. SiteLight: binding-site prediction using phage display libraries.

    PubMed

    Halperin, Inbal; Wolfson, Haim; Nussinov, Ruth

    2003-07-01

    Phage display enables the presentation of a large number of peptides on the surface of phage particles. Such libraries can be tested for binding to target molecules of interest by means of affinity selection. Here we present SiteLight, a novel computational tool for binding site prediction using phage display libraries. SiteLight is an algorithm that maps the 1D peptide library onto a three-dimensional (3D) protein surface. It is applicable to complexes made up of a protein Template and any type of molecule termed Target. Given the three-dimensional structure of a Template and a collection of sequences derived from biopanning against the Target, the Template interaction site with the Target is predicted. We have created a large diverse data set for assessing the ability of SiteLight to correctly predict binding sites. SiteLight predictive mapping enables discrimination between the binding and nonbinding parts of the surface. This prediction can be used to effectively reduce the surface by 75% without excluding the binding site. In 63% of the cases we have tested, there is at least one binding site prediction that overlaps the interface by at least 50%. These results suggest the applicability of phage display libraries for automated binding site prediction on three-dimensional structures. For most effective binding site prediction we propose using a random phage display library twice, to scan both binding partners of a given complex. The derived peptides are mapped to the other binding partner (now used as a Template). Here, the surface of each partner is reduced by 75%, focusing their relative positions with respect to each other significantly. Such information can be utilized to improve docking algorithms and scoring functions.

  6. Structural evidence of a phosphoinositide binding site in the Rgd1-RhoGAP domain.

    PubMed

    Martinez, Denis; Langlois d'Estaintot, Béatrice; Granier, Thierry; Tolchard, James; Courrèges, Cécile; Prouzet-Mauléon, Valérie; Hugues, Michel; Gallois, Bernard; Doignon, François; Odaert, Benoit

    2017-07-31

    Phosphoinositide lipids recruit proteins to the plasma membrane involved in the regulation of cytoskeleton organization and in signalling pathways that control cell polarity and growth. Among those, Rgd1p is a yeast GTPase activating protein (GAP) specific for Rho3p and Rho4p GTPases, which control actin polymerization and stress signalling pathways. Phosphoinositides not only bind Rgd1p, but also stimulate its GAP activity on the membrane-anchored form of Rho4p. Both F-BAR and RhoGAP domains of Rgd1p are involved in lipid interactions. In the Rgd1p-F-BAR domain, a phosphoinositide binding site has been recently characterized. We report here the X-ray structure of the Rgd1p-RhoGAP domain, identify by NMR spectroscopy and confirm by docking simulations, a new but cryptic phosphoinositide binding site, comprising contiguous A1, A1' and B helices. The addition of helix A1', unusual among RhoGAP domains, seems to be crucial for lipid interactions. Such a site was totally unexpected inside a RhoGAP domain, as it was not predicted from either the protein sequence or its three-dimensional structure. Phosphoinositide binding sites in RhoGAP domains have been reported to correspond to polybasic regions (PBR), which are located at the unstructured flexible termini of proteins. Solid state NMR spectroscopy experiments confirm the membrane interaction of the Rgd1p-RhoGAP domain upon addition of PtdIns(4,5)P2 and indicate a slight membrane destabilization in the presence of the two partners. ©2017 The Author(s).

  7. Opioid binding sites in the guinea pig and rat kidney: Radioligand homogenate binding and autoradiography

    SciTech Connect

    Dissanayake, V.U.; Hughes, J.; Hunter, J.C. )

    1991-07-01

    The specific binding of the selective {mu}-, {delta}-, and {kappa}-opioid ligands (3H)(D-Ala2,MePhe4,Gly-ol5)enkephalin ((3H) DAGOL), (3H)(D-Pen2,D-Pen5)enkephalin ((3H)DPDPE), and (3H)U69593, respectively, to crude membranes of the guinea pig and rat whole kidney, kidney cortex, and kidney medulla was investigated. In addition, the distribution of specific 3H-opioid binding sites in the guinea pig and rat kidney was visualized by autoradiography. Homogenate binding and autoradiography demonstrated the absence of {mu}- and {kappa}-opioid binding sites in the guinea pig kidney. No opioid binding sites were demonstrable in the rat kidney. In the guinea pig whole kidney, cortex, and medulla, saturation studies demonstrated that (3H)DPDPE bound with high affinity (KD = 2.6-3.5 nM) to an apparently homogeneous population of binding sites (Bmax = 8.4-30 fmol/mg of protein). Competition studies using several opioid compounds confirmed the nature of the {delta}-opioid binding site. Autoradiography experiments demonstrated that specific (3H)DPDPE binding sites were distributed radially in regions of the inner and outer medulla and at the corticomedullary junction of the guinea pig kidney. Computer-assisted image analysis of saturation data yielded KD values (4.5-5.0 nM) that were in good agreement with those obtained from the homogenate binding studies. Further investigation of the {delta}-opioid binding site in medulla homogenates, using agonist ((3H)DPDPE) and antagonist ((3H)diprenorphine) binding in the presence of Na+, Mg2+, and nucleotides, suggested that the {delta}-opioid site is linked to a second messenger system via a GTP-binding protein. Further studies are required to establish the precise localization of the {delta} binding site in the guinea pig kidney and to determine the nature of the second messenger linked to the GTP-binding protein in the medulla.

  8. Characterisation of imidazoline I2 binding sites in pig brain.

    PubMed

    Anderson, Neil J; Lupo, Patrick A; Nutt, David J; Hudson, Alan L; Robinson, Emma S J

    2005-09-05

    The imidazoline I2 binding sites in the central nervous system have previously been described in several different species including rat, mouse, rabbit and frog. The present study has investigated the imidazoline I2 binding site, and its relationship to the monoamine oxidase isoforms, in pig whole brain and compared the results obtained with data from other species. Results from saturation binding studies revealed that the imidazoline I2-selective ligand, [3H]2BFI (2-(2-benzofuranyl)-2-imidazoline) labelled a single saturable population of sites with a KD=6.6 nM and Bmax=771.7 fmol/mg protein. The pharmacological characterisation of the sites was similar to that previously reported with a rank order of potency for the imidazoline I2 ligands of 2BFI>BU224>Idazoxan>BU226. Displacement by the imidazoline I1 ligands was low affinity and the monoamine oxidase inhibitors displaced with micromolar affinity. The majority of compounds displaced the binding in a monophasic manner, however, displacement by the putative endogenous ligand, harmane was biphasic. The relative populations of the two monoamine oxidase isoforms revealed a 10 fold greater expression of monoamine oxidase B relative to monoamine oxidase A. These data confirm the presence of imidazoline I2 binding sites in pig brain and show that their pharmacology is characteristic of that seen in other species. The proportion of monoamine oxidase A and B expressed in the pig brain is similar to that seen in the human brain therefore, given the association between imidazoline I2 binding sites and monoamine oxidase, the pig may provide a more useful model for human imidazoline I2 binding sites than other species such as the rat.

  9. Characterization of Staphylococcus aureus SarA binding sites.

    PubMed

    Sterba, Kristen M; Mackintosh, Samuel G; Blevins, Jon S; Hurlburt, Barry K; Smeltzer, Mark S

    2003-08-01

    The staphylococcal accessory regulator locus (sarA) encodes a DNA-binding protein (SarA) that modulates expression of over 100 genes. Whether this occurs via a direct interaction between SarA and cis elements associated with its target genes is unclear, partly because the definitive characteristics of a SarA binding site have not been identified. In this work, electrophoretic mobility shift assays (EMSAs) were used to identify a SarA binding site(s) upstream of the SarA-regulated gene cna. The results suggest the existence of multiple high-affinity binding sites within the cna promoter region. Using a SELEX (systematic evolution of ligands by exponential enrichment) procedure and purified, recombinant SarA, we also selected DNA targets that contain a high-affinity SarA binding site from a random pool of DNA fragments. These fragments were subsequently cloned and sequenced. Randomly chosen clones were also examined by EMSA. These DNA fragments bound SarA with affinities comparable to those of recognized SarA-regulated genes, including cna, fnbA, and sspA. The composition of SarA-selected DNAs was AT rich, which is consistent with the nucleotide composition of the Staphylococcus aureus genome. Alignment of selected DNAs revealed a 7-bp consensus (ATTTTAT) that was present with no more than one mismatch in 46 of 56 sequenced clones. By using the same criteria, consensus binding sites were also identified upstream of the S. aureus genes spa, fnbA, sspA, agr, hla, and cna. With the exception of cna, which has not been previously examined, this 7-bp motif was within the putative SarA binding site previously associated with each gene.

  10. Modeling lanthanide series binding sites on humic acid.

    PubMed

    Pourret, Olivier; Martinez, Raul E

    2009-02-01

    Lanthanide (Ln) binding to humic acid (HA) has been investigated by combining ultrafiltration and ICP-MS techniques. A Langmuir-sorption-isotherm metal-complexation model was used in conjunction with a linear programming method (LPM) to fit experimental data representing various experimental conditions both in HA/Ln ratio (varying between 5 and 20) and in pH range (from 2 to 10) with an ionic strength of 10(-3) mol L(-1). The LPM approach, not requiring prior knowledge of surface complexation parameters, was used to solve the existing discrepancies in LnHA binding constants and site densities. The application of the LPM to experimental data revealed the presence of two discrete metal binding sites at low humic acid concentrations (5 mg L(-1)), with log metal complexation constants (logK(S,j)) of 2.65+/-0.05 and 7.00 (depending on Ln). The corresponding site densities were 2.71+/-0.57x10(-8) and 0.58+/-0.32x10(-8) mol of Ln(3+)/mg of HA (depending on Ln). Total site densities of 3.28+/-0.28x10(-8), 4.99+/-0.02x10(-8), and 5.01+/-0.01x10(-8) mol mg(-1) were obtained by LPM for humic acid, for humic acid concentrations of 5, 10, and 20 mg L(-1), respectively. These results confirm that lanthanide binding occurs mainly at weak sites (i.e., ca. 80%) and second at strong sites (i.e., ca. 20%). The first group of discrete metal binding sites may be attributed to carboxylic groups (known to be the main binding sites of Ln in HA), and the second metal binding group to phenolic moieties. Moreover, this study evidences heterogeneity in the distribution of the binding sites among Ln. Eventually, the LPM approach produced feasible and reasonable results, but it was less sensitive to error and did not require an a priori assumption of the number and concentration of binding sites.

  11. Bacterial periplasmic sialic acid-binding proteins exhibit a conserved binding site

    SciTech Connect

    Gangi Setty, Thanuja; Cho, Christine; Govindappa, Sowmya; Apicella, Michael A.; Ramaswamy, S.

    2014-07-01

    Structure–function studies of sialic acid-binding proteins from F. nucleatum, P. multocida, V. cholerae and H. influenzae reveal a conserved network of hydrogen bonds involved in conformational change on ligand binding. Sialic acids are a family of related nine-carbon sugar acids that play important roles in both eukaryotes and prokaryotes. These sialic acids are incorporated/decorated onto lipooligosaccharides as terminal sugars in multiple bacteria to evade the host immune system. Many pathogenic bacteria scavenge sialic acids from their host and use them for molecular mimicry. The first step of this process is the transport of sialic acid to the cytoplasm, which often takes place using a tripartite ATP-independent transport system consisting of a periplasmic binding protein and a membrane transporter. In this paper, the structural characterization of periplasmic binding proteins from the pathogenic bacteria Fusobacterium nucleatum, Pasteurella multocida and Vibrio cholerae and their thermodynamic characterization are reported. The binding affinities of several mutations in the Neu5Ac binding site of the Haemophilus influenzae protein are also reported. The structure and the thermodynamics of the binding of sugars suggest that all of these proteins have a very well conserved binding pocket and similar binding affinities. A significant conformational change occurs when these proteins bind the sugar. While the C1 carboxylate has been identified as the primary binding site, a second conserved hydrogen-bonding network is involved in the initiation and stabilization of the conformational states.

  12. LHRH-pituitary plasma membrane binding: the presence of specific binding sites in other tissues.

    PubMed

    Marshall, J C; Shakespear, R A; Odell, W D

    1976-11-01

    Two specific binding sites for LHRH are present on plasma membranes prepared from rat and bovine anterior pituitary glands. One site is of high affinity (K = 2X108 1/MOL) and the second is of lower affinity (8-5X105 1/mol) and much greater capacity. Studies on membrane fractions prepared from other tissues showed the presence of a single specific site for LHRH. The kinetics and specificity of this site were similar to those of the lower affinity pituitary receptor. These results indicate that only pituitary membranes possess the higher affinity binding site and suggest that the low affinity site is not of physiological importance in the regulation of gonadotrophin secretion. After dissociation from membranes of non-pituitary tissues 125I-LHRH rebound to pituitary membrane preparations. Thus receptor binding per se does not result in degradation of LHRH and the function of these peripheral receptors remains obscure.

  13. Apolipoprotein A-I lysine modification: effects on helical content, lipid binding and cholesterol acceptor activity.

    PubMed

    Brubaker, Gregory; Peng, Dao-Quan; Somerlot, Benjamin; Abdollahian, Davood J; Smith, Jonathan D

    2006-01-01

    We examined the role of the positively charged lysine residues in apoAI by chemical modification. Lysine modification by reductive methylation did not alter apoAI's net charge, secondary or tertiary structure as observed by circular dichroism and trytophan fluorescence, respectively, or have much impact on lipid binding or ABCA1-dependent cholesterol acceptor activity. Acetylation of lysine residues lowered the isoelectric point of apoAI, altered its secondary and tertiary structure, and led to a 40% decrease in cholesterol acceptor activity, while maintaining 93% of its lipid binding activity. Exhaustive lysine acetoacetylation lowered apoAI's isoelectric point, profoundly disrupted its secondary and tertiary structure, and led to 90% and 82% reductions in cholesterol acceptor and lipid binding activities, respectively. The dose-dependent acetoacetylation of an increasing proportion of apoAI lysine residues demonstrated that cholesterol acceptor activity was more sensitive to this modification than lipid binding activity, suggesting that apoAI lysine positive charges play an important role in ABCA1 mediated lipid efflux beyond the role needed to maintain alpha-helical content and lipid binding activity.

  14. The binding sites for tRNA on eukaryotic ribosomes.

    PubMed Central

    Leader, D P; Machray, G C

    1975-01-01

    We have studied the non-enzymic binding of phe-tRNA to ribosomes from rat liver using deacylated tRNA to inhibit binding to the P-site and puromycin (5 x 10-minus3M) to inhibit binding to the A-site. We conclude that at a low concentration of magnesium ions (10mM) phe-tRNA is bound only at the A-site of 80S irbosomes, whereas at a high concentration of magnesium ions (40mM) phe-tRNA is also bound at the P-site. Studies with edeine indicate that, during non-enzymic binding of phe-tRNA, eukaryotic ribosomes (in contrast to prokarotic ribosomes) have the A-site of the 60S subunit and the initiation site of the 40S subunit juxtaposed. This may account for the differences observed, in formation of diphenylalanyl-tRNA and phenylalanyl-puromycin, between phe-tRNA bound non-enzymically to the P-sites of eukaryotic and prokaryotic ribosomes. PMID:1098024

  15. The binding sites for tRNA on eukaryotic ribosomes.

    PubMed

    Leader, D P; Machray, G C

    1975-07-01

    We have studied the non-enzymic binding of phe-tRNA to ribosomes from rat liver using deacylated tRNA to inhibit binding to the P-site and puromycin (5 x 10-minus3M) to inhibit binding to the A-site. We conclude that at a low concentration of magnesium ions (10mM) phe-tRNA is bound only at the A-site of 80S irbosomes, whereas at a high concentration of magnesium ions (40mM) phe-tRNA is also bound at the P-site. Studies with edeine indicate that, during non-enzymic binding of phe-tRNA, eukaryotic ribosomes (in contrast to prokarotic ribosomes) have the A-site of the 60S subunit and the initiation site of the 40S subunit juxtaposed. This may account for the differences observed, in formation of diphenylalanyl-tRNA and phenylalanyl-puromycin, between phe-tRNA bound non-enzymically to the P-sites of eukaryotic and prokaryotic ribosomes.

  16. Keys to Lipid Selection in Fatty Acid Amide Hydrolase Catalysis: Structural Flexibility, Gating Residues and Multiple Binding Pockets

    PubMed Central

    Palermo, Giulia; Bauer, Inga; Campomanes, Pablo; Cavalli, Andrea; Armirotti, Andrea; Girotto, Stefania; Rothlisberger, Ursula; De Vivo, Marco

    2015-01-01

    The fatty acid amide hydrolase (FAAH) regulates the endocannabinoid system cleaving primarily the lipid messenger anandamide. FAAH has been well characterized over the years and, importantly, it represents a promising drug target to treat several diseases, including inflammatory-related diseases and cancer. But its enzymatic mechanism for lipid selection to specifically hydrolyze anandamide, rather than similar bioactive lipids, remains elusive. Here, we clarify this mechanism in FAAH, examining the role of the dynamic paddle, which is formed by the gating residues Phe432 and Trp531 at the boundary between two cavities that form the FAAH catalytic site (the “membrane-access” and the “acyl chain-binding” pockets). We integrate microsecond-long MD simulations of wild type and double mutant model systems (Phe432Ala and Trp531Ala) of FAAH, embedded in a realistic membrane/water environment, with mutagenesis and kinetic experiments. We comparatively analyze three fatty acid substrates with different hydrolysis rates (anandamide > oleamide > palmitoylethanolamide). Our findings identify FAAH’s mechanism to selectively accommodate anandamide into a multi-pocket binding site, and to properly orient the substrate in pre-reactive conformations for efficient hydrolysis that is interceded by the dynamic paddle. Our findings therefore endorse a structural framework for a lipid selection mechanism mediated by structural flexibility and gating residues between multiple binding cavities, as found in FAAH. Based on the available structural data, this exquisite catalytic strategy for substrate specificity seems to be shared by other lipid-degrading enzymes with similar enzymatic architecture. The mechanistic insights for lipid selection might assist de-novo enzyme design or drug discovery efforts. PMID:26111155

  17. Transcription Factor Binding Sites Prediction Based on Modified Nucleosomes

    PubMed Central

    Talebzadeh, Mohammad; Zare-Mirakabad, Fatemeh

    2014-01-01

    In computational methods, position weight matrices (PWMs) are commonly applied for transcription factor binding site (TFBS) prediction. Although these matrices are more accurate than simple consensus sequences to predict actual binding sites, they usually produce a large number of false positive (FP) predictions and so are impoverished sources of information. Several studies have employed additional sources of information such as sequence conservation or the vicinity to transcription start sites to distinguish true binding regions from random ones. Recently, the spatial distribution of modified nucleosomes has been shown to be associated with different promoter architectures. These aligned patterns can facilitate DNA accessibility for transcription factors. We hypothesize that using data from these aligned and periodic patterns can improve the performance of binding region prediction. In this study, we propose two effective features, “modified nucleosomes neighboring” and “modified nucleosomes occupancy”, to decrease FP in binding site discovery. Based on these features, we designed a logistic regression classifier which estimates the probability of a region as a TFBS. Our model learned each feature based on Sp1 binding sites on Chromosome 1 and was tested on the other chromosomes in human CD4+T cells. In this work, we investigated 21 histone modifications and found that only 8 out of 21 marks are strongly correlated with transcription factor binding regions. To prove that these features are not specific to Sp1, we combined the logistic regression classifier with the PWM, and created a new model to search TFBSs on the genome. We tested the model using transcription factors MAZ, PU.1 and ELF1 and compared the results to those using only the PWM. The results show that our model can predict Transcription factor binding regions more successfully. The relative simplicity of the model and capability of integrating other features make it a superior method for TFBS

  18. Estrophilin immunoreactivity versus estrogen receptor binding activity in meningiomas: evidence for multiple estrogen binding sites

    SciTech Connect

    Lesch, K.P.; Schott, W.; Gross, S.

    1987-09-01

    The existence of estrogen receptors in human meningiomas has long been a controversial issue. This may be explained, in part, by apparent heterogeneity of estrogen binding sites in meningioma tissue. In this study, estrogen receptors were determined in 58 meningiomas with an enzyme immunoassay using monoclonal antibodies against human estrogen receptor protein (estrophilin) and with a sensitive radioligand binding assay using /sup 125/I-labeled estradiol (/sup 125/I-estradiol) as radioligand. Low levels of estrophilin immunoreactivity were found in tumors from 62% of patients, whereas radioligand binding activity was demonstrated in about 46% of the meningiomas examined. In eight (14%) tissue samples multiple binding sites for estradiol were observed. The immunoreactive binding sites correspond to the classical, high affinity estrogen receptors: the Kd for /sup 125/I-estradiol binding to the receptor was approximately 0.2 nM and the binding was specific for estrogens. The second, low affinity class of binding sites considerably influenced measurement of the classical receptor even at low ligand concentrations. The epidemiological and clinical data from patients with meningiomas, and the existence of specific estrogen receptors confirmed by immunochemical detection, may be important factors in a theory of oncogenesis.

  19. Probing binding hot spots at protein–RNA recognition sites

    PubMed Central

    Barik, Amita; Nithin, Chandran; Karampudi, Naga Bhushana Rao; Mukherjee, Sunandan; Bahadur, Ranjit Prasad

    2016-01-01

    We use evolutionary conservation derived from structure alignment of polypeptide sequences along with structural and physicochemical attributes of protein–RNA interfaces to probe the binding hot spots at protein–RNA recognition sites. We find that the degree of conservation varies across the RNA binding proteins; some evolve rapidly compared to others. Additionally, irrespective of the structural class of the complexes, residues at the RNA binding sites are evolutionary better conserved than those at the solvent exposed surfaces. For recognitions involving duplex RNA, residues interacting with the major groove are better conserved than those interacting with the minor groove. We identify multi-interface residues participating simultaneously in protein–protein and protein–RNA interfaces in complexes where more than one polypeptide is involved in RNA recognition, and show that they are better conserved compared to any other RNA binding residues. We find that the residues at water preservation site are better conserved than those at hydrated or at dehydrated sites. Finally, we develop a Random Forests model using structural and physicochemical attributes for predicting binding hot spots. The model accurately predicts 80% of the instances of experimental ΔΔG values in a particular class, and provides a stepping-stone towards the engineering of protein–RNA recognition sites with desired affinity. PMID:26365245

  20. Probing binding hot spots at protein-RNA recognition sites.

    PubMed

    Barik, Amita; Nithin, Chandran; Karampudi, Naga Bhushana Rao; Mukherjee, Sunandan; Bahadur, Ranjit Prasad

    2016-01-29

    We use evolutionary conservation derived from structure alignment of polypeptide sequences along with structural and physicochemical attributes of protein-RNA interfaces to probe the binding hot spots at protein-RNA recognition sites. We find that the degree of conservation varies across the RNA binding proteins; some evolve rapidly compared to others. Additionally, irrespective of the structural class of the complexes, residues at the RNA binding sites are evolutionary better conserved than those at the solvent exposed surfaces. For recognitions involving duplex RNA, residues interacting with the major groove are better conserved than those interacting with the minor groove. We identify multi-interface residues participating simultaneously in protein-protein and protein-RNA interfaces in complexes where more than one polypeptide is involved in RNA recognition, and show that they are better conserved compared to any other RNA binding residues. We find that the residues at water preservation site are better conserved than those at hydrated or at dehydrated sites. Finally, we develop a Random Forests model using structural and physicochemical attributes for predicting binding hot spots. The model accurately predicts 80% of the instances of experimental ΔΔG values in a particular class, and provides a stepping-stone towards the engineering of protein-RNA recognition sites with desired affinity.

  1. Gaussian mapping of chemical fragments in ligand binding sites

    NASA Astrophysics Data System (ADS)

    Wang, Kun; Murcia, Marta; Constans, Pere; Pérez, Carlos; Ortiz, Angel R.

    2004-02-01

    We present a new approach to automatically define a quasi-optimal minimal set of pharmacophoric points mapping the interaction properties of a user-defined ligand binding site. The method is based on a fitting algorithm where a grid of sampled interaction energies of the target protein with small chemical fragments in the binding site is approximated by a linear expansion of Gaussian functions. A heuristic approximation selects from this expansion the smallest possible set of Gaussians required to describe the interaction properties of the binding site within a prespecified accuracy. We have evaluated the performance of the approach by comparing the computed Gaussians with the positions of aromatic sites found in experimental protein-ligand complexes. For a set of 53 complexes, good correspondence is found in general. At a 95% significance level, ˜65% of the predicted interaction points have an aromatic binding site within 1.5 Å. We then studied the utility of these points in docking using the program DOCK. Short docking times, with an average of ˜0.18 s per conformer, are obtained, while retaining, both for rigid and flexible docking, the ability to sample native-like binding modes for the ligand. An average 4-5-fold speed-up in docking times and a similar success rate is estimated with respect to the standard DOCK protocol. Abbreviations: RMSD - root mean square deviation; ASA - Atomic Shell Approximation; LSF - Least-Squares Fitting; 3D - three-dimensional; VDW - Van der Waals.

  2. The Role of ATP-Binding Cassette Transporters in Neuro-Inflammation: Relevance for Bioactive Lipids.

    PubMed

    Kooij, Gijs; van Horssen, Jack; Bandaru, Veera Venkata Ratnam; Haughey, Norman J; de Vries, Helga E

    2012-01-01

    ATP-binding cassette (ABC) transporters are highly expressed by brain endothelial cells that form the blood-brain barrier (BBB). These efflux pumps play an important role in maintaining brain homeostasis as they actively hinder the entry of unwanted blood-derived compounds into the central nervous system (CNS). Consequently, their high activity at the BBB has been a major hurdle for the treatment of several brain diseases, as they prevent numerous drugs to reach their site of action within the brain. Importantly, recent data indicate that endogenous substrates for ABC transporters may include inflammatory mediators, such as prostaglandins, leukotrienes, cytokines, chemokines, and bioactive lipids, suggesting a potential role for ABC transporters in immunological responses, and more specifically in inflammatory brain disorders, such as multiple sclerosis (MS). In this review, we will give a comprehensive overview of recent findings that illustrate this novel role for ABC transporters in neuro-inflammatory processes. Moreover, we will provide first insights into underlying mechanisms and focus on the importance for bioactive lipids, in particular platelet-activating factor, herein. A thorough understanding of these events may form the basis for the development for selective treatment modalities to dampen the neuro-inflammatory attack in MS and thereby reducing tissue damage.

  3. Three Dimensional Structure Prediction of Fatty Acid Binding Site on Human Transmembrane Receptor CD36.

    PubMed

    Tarhda, Zineb; Semlali, Oussama; Kettani, Anas; Moussa, Ahmed; Abumrad, Nada A; Ibrahimi, Azeddine

    2013-01-01

    CD36 is an integral membrane protein which is thought to have a hairpin-like structure with alpha-helices at the C and N terminals projecting through the membrane as well as a larger extracellular loop. This receptor interacts with a number of ligands including oxidized low density lipoprotein and long chain fatty acids (LCFAs). It is also implicated in lipid metabolism and heart diseases. It is therefore important to determine the 3D structure of the CD36 site involved in lipid binding. In this study, we predict the 3D structure of the fatty acid (FA) binding site [127-279 aa] of the CD36 receptor based on homology modeling with X-ray structure of Human Muscle Fatty Acid Binding Protein (PDB code: 1HMT). Qualitative and quantitative analysis of the resulting model suggests that this model was reliable and stable, taking in consideration over 97.8% of the residues in the most favored regions as well as the significant overall quality factor. Protein analysis, which relied on the secondary structure prediction of the target sequence and the comparison of 1HMT and CD36 [127-279 aa] secondary structures, led to the determination of the amino acid sequence consensus. These results also led to the identification of the functional sites on CD36 and revealed the presence of residues which may play a major role during ligand-protein interactions.

  4. Three Dimensional Structure Prediction of Fatty Acid Binding Site on Human Transmembrane Receptor CD36

    PubMed Central

    Tarhda, Zineb; Semlali, Oussama; Kettani, Anas; Moussa, Ahmed; Abumrad, Nada A.; Ibrahimi, Azeddine

    2013-01-01

    CD36 is an integral membrane protein which is thought to have a hairpin-like structure with alpha-helices at the C and N terminals projecting through the membrane as well as a larger extracellular loop. This receptor interacts with a number of ligands including oxidized low density lipoprotein and long chain fatty acids (LCFAs). It is also implicated in lipid metabolism and heart diseases. It is therefore important to determine the 3D structure of the CD36 site involved in lipid binding. In this study, we predict the 3D structure of the fatty acid (FA) binding site [127–279 aa] of the CD36 receptor based on homology modeling with X-ray structure of Human Muscle Fatty Acid Binding Protein (PDB code: 1HMT). Qualitative and quantitative analysis of the resulting model suggests that this model was reliable and stable, taking in consideration over 97.8% of the residues in the most favored regions as well as the significant overall quality factor. Protein analysis, which relied on the secondary structure prediction of the target sequence and the comparison of 1HMT and CD36 [127–279 aa] secondary structures, led to the determination of the amino acid sequence consensus. These results also led to the identification of the functional sites on CD36 and revealed the presence of residues which may play a major role during ligand-protein interactions. PMID:24348024

  5. Identification of an imidazoline binding protein: Creatine kinase and an imidazoline-2 binding site

    PubMed Central

    Kimura, Atsuko; Tyacke, Robin J.; Robinson, James J.; Husbands, Stephen M.; Minchin, Michael C.W.; Nutt, David J.; Hudson, Alan L.

    2009-01-01

    Drugs that bind to imidazoline binding proteins have major physiological actions. To date, three subtypes of such proteins, I1, I2 and I3, have been proposed, although characterisations of these binding proteins are lacking. I2 binding sites are found throughout the brain, particularly dense in the arcuate nucleus of the hypothalamus. Selective I2 ligands demonstrate antidepressant-like activity and the identity of the proteins that respond to such ligands remained unknown until now. Here we report the isolation of a ∼ 45 kDa imidazoline binding protein from rabbit and rat brain using a high affinity ligand for the I2 subtype, 2-BFI, to generate an affinity column. Following protein sequencing of the isolated ∼ 45 kDa imidazoline binding protein, we identified it to be brain creatine kinase (B-CK). B-CK shows high binding capacity to selective I2 ligands; [3H]-2-BFI (5 nM) specifically bound to B-CK (2330 ± 815 fmol mg protein− 1). We predicted an I2 binding pocket near the active site of B-CK using molecular modelling. Furthermore, B-CK activity was inhibited by a selective I2 irreversible ligand, where 20 μM BU99006 reduced the enzyme activity by 16%, confirming the interaction between B-CK and the I2 ligand. In summary, we have identified B-CK to be the ∼ 45 kDa imidazoline binding protein and we have demonstrated the existence of an I2 binding site within this enzyme. The importance of B-CK in regulating neuronal activity and neurotransmitter release may well explain the various actions of I2 ligands in brain and the alterations in densities of I2 binding sites in psychiatric disorders. PMID:19410564

  6. Avermectin binding in Caenorhabditis elegans. A two-state model for the avermectin binding site.

    PubMed

    Schaeffer, J M; Haines, H W

    1989-07-15

    Specific binding sites for ivermectin (IVM; 22,23-dihydroavermectin-B1) were identified and characterized in a crude membrane fraction prepared from the nematode, Caenorhabditis elegans (C. elegans). Specific [3H]IVM binding was saturable with an apparent dissociation constant, Kd, of 0.26 nM and a receptor concentration of 3.53 pmol/mg protein. [3H]IVM binding in C. elegans was linear with tissue protein concentration, and optimal binding occurred within a pH range of 7.3 to 7.6. Kinetic analysis of the binding showed that the reaction proceeded by a two-step mechanism. Initially, a rapidly reversible complex was formed and, after additional incubation, this complex was transformed to a much more slowly reversible complex. Stereospecificity of [3H]IVM binding to C. elegans membranes was demonstrated by competition with a series of avermectin derivatives. The in vivo effects of IVM and its derivatives on C. elegans motility were concentration dependent and correlated well with their relative binding affinities. Several putative neurotransmitters including gamma-aminobutyric acid (GABA), carbamyl choline, taurine, glutamate and dopamine were tested and found to have no effect on IVM binding. Specific IVM binding sites were also identified in rat brain; however, the affinity was approximately 100-fold lower than that observed in C. elegans and stereospecificity studies demonstrated structural differences in the two binding sites. These results are the first direct demonstration of a specific IVM binding site in nematodes and thus are important in furthering our understanding of its mode of action.

  7. Penicillin-binding site on the Escherichia coli cell envelope

    SciTech Connect

    Amaral, L.; Lee, Y.; Schwarz, U.; Lorian, V.

    1986-08-01

    The binding of /sup 35/S-labeled penicillin to distinct penicillin-binding proteins (PBPs) of the cell envelope obtained from the sonication of Escherichia coli was studied at different pHs ranging from 4 to 11. Experiments distinguishing the effect of pH on penicillin binding by PBP 5/6 from its effect on beta-lactamase activity indicated that although substantial binding occurred at the lowest pH, the amount of binding increased with pH, reaching a maximum at pH 10. Based on earlier studies, it is proposed that the binding at high pH involves the formation of a covalent bond between the C-7 of penicillin and free epsilon amino groups of the PBPs. At pHs ranging from 4 to 8, position 1 of penicillin, occupied by sulfur, is considered to be the site that establishes a covalent bond with the sulfhydryl groups of PBP 5. The use of specific blockers of free epsilon amino groups or sulfhydryl groups indicated that wherever the presence of each had little or no effect on the binding of penicillin by PBP 5, the presence of both completely prevented binding. The specific blocker of the hydroxyl group of serine did not affect the binding of penicillin.

  8. Insulin binding sites in various segments of the rabbit nephron

    SciTech Connect

    Nakamura, R.; Emmanouel, D.S.; Katz, A.I.

    1983-07-01

    Insulin binds specifically to basolateral renal cortical membranes and modifies tubular electrolyte transport, but the target sites of this hormone in the nephron have not been identified. Using a microassay that permits measurement of hormone binding in discrete tubule segments we have determined the binding sites of /sup 125/I-insulin along the rabbit nephron. Assays were performed under conditions that minimize insulin degradation, and specific binding was measured as the difference between /sup 125/I-insulin bound in the presence or absence of excess (10(-5) M) unlabeled hormone. Insulin monoiodinated in position A14 was used in all assays. Specific insulin binding (attomol . cm-1 +/- SE) was highest in the distal convoluted tubule (180.5 +/- 15.0) and medullary thick ascending limb of Henle's loop (132.9 +/- 14.6), followed by the proximal convoluted and straight tubule. When expressed per milligram protein, insulin binding capacity was highest along the entire thick ascending limb (medullary and cortical portions) and the distal convoluted tubule, i.e., the ''diluting segment'' (congruent to 10(-13) mol . mg protein-1), and was lower (congruent to 4 X 10(-14) mol . mg protein-1), and remarkably similar, in all other nephron segments. Binding specificity was verified in competition studies with unlabeled insulin, insulin analogues (proinsulin and desoctapeptide insulin), and unrelated hormones (glucagon, 1-34 parathyroid hormone, prolactin, follicle-stimulating hormone). In addition, serum containing antiinsulin receptor antibody from two patients with type B insulin resistance syndrome markedly inhibited insulin binding to isolated tubules. Whether calculated per unit tubule length or protein content, insulin binding is highest in the thick ascending limb and the distal convoluted tubule, the same nephron sites where a regulatory role in sodium transport has been postulated for this hormone.

  9. Amyloidogenesis Abolished by Proline Substitutions but Enhanced by Lipid Binding

    PubMed Central

    Jiang, Ping; Xu, Weixin; Mu, Yuguang

    2009-01-01

    The influence of lipid molecules on the aggregation of a highly amyloidogenic segment of human islet amyloid polypeptide, hIAPP20–29, and the corresponding sequence from rat has been studied by all-atom replica exchange molecular dynamics (REMD) simulations with explicit solvent model. hIAPP20–29 fragments aggregate into partially ordered β-sheet oligomers and then undergo large conformational reorganization and convert into parallel/antiparallel β-sheet oligomers in mixed in-register and out-of-register patterns. The hydrophobic interaction between lipid tails and residues at positions 23–25 is found to stabilize the ordered β-sheet structure, indicating a catalysis role of lipid molecules in hIAPP20–29 self-assembly. The rat IAPP variants with three proline residues maintain unstructured micelle-like oligomers, which is consistent with non-amyloidogenic behavior observed in experimental studies. Our study provides the atomic resolution descriptions of the catalytic function of lipid molecules on the aggregation of IAPP peptides. PMID:19360098

  10. Relating the shape of protein binding sites to binding affinity profiles: is there an association?

    PubMed Central

    2010-01-01

    Background Various pattern-based methods exist that use in vitro or in silico affinity profiles for classification and functional examination of proteins. Nevertheless, the connection between the protein affinity profiles and the structural characteristics of the binding sites is still unclear. Our aim was to investigate the association between virtual drug screening results (calculated binding free energy values) and the geometry of protein binding sites. Molecular Affinity Fingerprints (MAFs) were determined for 154 proteins based on their molecular docking energy results for 1,255 FDA-approved drugs. Protein binding site geometries were characterized by 420 PocketPicker descriptors. The basic underlying component structure of MAFs and binding site geometries, respectively, were examined by principal component analysis; association between principal components extracted from these two sets of variables was then investigated by canonical correlation and redundancy analyses. Results PCA analysis of the MAF variables provided 30 factors which explained 71.4% of the total variance of the energy values while 13 factors were obtained from the PocketPicker descriptors which cumulatively explained 94.1% of the total variance. Canonical correlation analysis resulted in 3 statistically significant canonical factor pairs with correlation values of 0.87, 0.84 and 0.77, respectively. Redundancy analysis indicated that PocketPicker descriptor factors explain 6.9% of the variance of the MAF factor set while MAF factors explain 15.9% of the total variance of PocketPicker descriptor factors. Based on the salient structures of the factor pairs, we identified a clear-cut association between the shape and bulkiness of the drug molecules and the protein binding site descriptors. Conclusions This is the first study to investigate complex multivariate associations between affinity profiles and the geometric properties of protein binding sites. We found that, except for few specific

  11. The molecular basis for the prolonged blood circulation of lipidated incretin peptides: Peptide oligomerization or binding to serum albumin?

    PubMed

    Wang, Ying; Lomakin, Aleksey; Kanai, Sonoko; Alex, Rainer; Belli, Sara; Donzelli, Massimiliano; Benedek, George B

    2016-11-10

    Hybrid incretin peptides are a new generation of drugs for the treatment of diabetes and obesity. Despite their biological potency, the effectiveness of these peptides as drugs is limited by their short circulation time in blood (typically within minutes). In this work, we show that lipid conjugated forms of a GLP-1/GIP/glucagon hybrid peptides stay in circulation for hours. We studied the oligomerization and albumin-binding of the unconjugated hybrid peptide as well as its lipidated variants. These lipidated peptides differ in the N-terminal mutation, the position of lipidation and the linkage to lipid. We found that these lipidated peptides form stable oligomers at concentrations above 1mg/mL. This concentration range is relevant to formulation and storage of the peptides. We observed no binding between the peptide oligomers and human serum albumin. However, at the expected therapeutic concentration range (~10-100ng/mL), the oligomers dissociate into monomers. The monomers of lipidated peptides bind to albumin. We have determined the dissociation constants of binding between the lipidated peptides and serum albumin. The dissociation constants of albumin-binding of our lipidated peptides are all very close and similar to that of the fatty acid binding of albumin. Our findings suggest that the monomeric lipidated peptides bind to HSA mainly by the fatty acid chain. Therefore, albumin binding is likely to be a universal mechanism of the prolonged circulating duration of lipidated pharmaceutical peptides.

  12. A novel non-opioid binding site for endomorphin-1.

    PubMed

    Lengyel, I; Toth, F; Biyashev, D; Szatmari, I; Monory, K; Tomboly, C; Toth, G; Benyhe, S; Borsodi, A

    2016-08-01

    Endomorphins are natural amidated opioid tetrapeptides with the following structure: Tyr-Pro-Trp-Phe-NH2 (endomorphin-1), and Tyr-Pro-Phe-Phe-NH2 (endomorphin-2). Endomorphins interact selectively with the μ-opioid or MOP receptors and exhibit nanomolar or sub-nanomolar receptor binding affinities, therefore they suggested to be endogenous agonists for the μ-opioid receptors. Endomorphins mediate a number of characteristic opioid effects, such as antinociception, however there are several physiological functions in which endomorphins appear to act in a fashion that does not involve binding to and activation of the μ-opioid receptor. Our recent data indicate that a radiolabelled [(3)H]endomorphin-1 with a specific radioactivity of 2.35 TBq/mmol - prepared by catalytic dehalogenation of the diiodinated peptide precursor in the presence of tritium gas - is able to bind to a second, naloxone insensitive recognition site in rat brain membranes. Binding heterogeneity, i.e., the presence of higher (Kd = 0.4 nM / Bmax = 120 fmol/mg protein) and lower (Kd = 8.2 nM / Bmax = 432 fmol/mg protein) affinity binding components is observed both in saturation binding experiments followed by Schatchard analysis, and in equilibrium competition binding studies. The signs of receptor multiplicity, e.g., curvilinear Schatchard plots or biphasic displacement curves are seen only if the non-specific binding is measured in the presence of excess unlabeled endomorphin-1 and not in the presence of excess unlabeled naloxone. The second, lower affinity non-opioid binding site is not recognized by heterocyclic opioid alkaloid ligands, neither agonists such as morphine, nor antagonists such as naloxone. On the contrary, endomorphin-1 is displaced from its lower affinity, higher capacity binding site by several natural neuropeptides, including methionine-enkephalin-Arg-Phe, nociceptin-orphanin FQ, angiotensin and FMRF-amide. This naloxone-insensitive, consequently non-opioid binding site seems

  13. Structural Analyses of the Slm1-PH Domain Demonstrate Ligand Binding in the Non-Canonical Site

    PubMed Central

    Anand, Kanchan; Maeda, Kenji; Gavin, Anne-Claude

    2012-01-01

    Background Pleckstrin homology (PH) domains are common membrane-targeting modules and their best characterized ligands are a set of important signaling lipids that include phosphatidylinositol phosphates (PtdInsPs). PH domains recognize PtdInsPs through two distinct mechanisms that use different binding pockets on opposite sides of the β-strands 1 and 2: i) a canonical binding site delimited by the β1-β2 and β3-β4loops and ii) a non-canonical binding site bordered by the β1-β2 and β5-β6loops. The PH domain-containing protein Slm1 from budding yeast Saccharomyces cerevisiae is required for actin cytoskeleton polarization and cell growth. We recently reported that this PH domain binds PtdInsPs and phosphorylated sphingolipids in a cooperative manner. Principal Findings To study the structural basis for the Slm1-PH domain (Slm1-PH) specificity, we co-crystallized this domain with different soluble compounds that have structures analogous to anionic lipid head groups of reported Slm1 ligands: inositol 4-phosphate, which mimics phosphatidylinositol-4-phosphate (PtdIns(4)P), and phosphoserine as a surrogate for dihydrosphingosine 1-phosphate (DHS1-P). We found electron densities for the ligands within the so-called non-canonical binding site. An additional positively charged surface that contacts a phosphate group was identified next to the canonical binding site. Conclusions Our results suggest that Slm1-PH utilizes a non-canonical binding site to bind PtdInsPs, similar to that described for the PH domains of β-spectrin, Tiam1 and ArhGAP9. Additionally, Slm1-PH may have retained an active canonical site. We propose that the presence of both a canonical and a non-canonical binding pocket in Slm1-PH may account for the cooperative binding to PtdInsPs and DHS-1P. PMID:22574179

  14. Binding of DNA to zwitterionic lipid layers mediated by divalent cations.

    PubMed

    Mengistu, Demmelash H; Bohinc, Klemen; May, Sylvio

    2009-09-10

    Divalent cations, i.e., calcium, magnesium, and others, are able to enhance the ability of DNA to interact with membranes that are composed of zwitterionic lipids such as phosphatidylcholine. The resulting condensed complexes offer potential applications as nontoxic gene delivery vehicles. The present study suggests a generic theoretical model to describe the energetics and structural features of a zwitterionic lipid-DNA complex in the presence of divalent cations. Specifically, we consider the adsorption of a single molecule of double-stranded DNA onto a planar zwitterionic lipid layer. Our theoretical model is based on the continuum Poisson-Boltzmann formalisms, which we modified so as to account for the two opposite charges and orientational freedom of the zwitterionic lipid headgroups. We find a substantially more favorable adsorption free energy of the DNA if divalent cations are present. In addition, our model predicts the divalent cations to preferentially interact with the phosphate groups of the zwitterionic lipids, given these lipids are located in close vicinity to the DNA. This is accompanied by a small but notable reorientation of the zwitterionic headgroups toward the DNA. We demonstrate that the binding of DNA onto a zwitterionic lipid layer is not driven by the release of counterions. Instead, the binding leads to a partial redistribution of the divalent cations, from the phosphate groups of the DNA (prior to the binding) to the phosphate groups of the zwitterionic lipids (after the binding). Our results thus suggest a general physical mechanism underlying complex formation between DNA and zwitterionic lipids in terms of mean-field electrostatics, i.e., neither involving correlations nor specific interactions of the divalent cations.

  15. The Alzheimer's disease Aβ peptide binds to the anionic DMPS lipid bilayer.

    PubMed

    Lockhart, Christopher; Klimov, Dmitri K

    2016-06-01

    We have applied isobaric-isothermal replica exchange molecular dynamics (REMD) and the all-atom explicit water model to study binding of Aβ10-40 peptide to the anionic DMPS bilayer. To provide comparison with a zwitterionic bilayer, we used our previous REMD simulations probing binding of the same peptide to the DMPC bilayer. Using two sets of simulations, we comparatively analyzed the equilibrium Aβ conformational ensemble, peptide-bilayer interactions, and changes in the bilayer structure induced by Aβ binding. Our results are six-fold. (1) Binding to the DMPS bilayer triggers the formation of stable helix in the Aβ C-terminal, although the helix-inducing effect caused by DMPS lipids is weaker than that of DMPC. (2) Compared to the DMPC-bound Aβ monomer, the anionic bilayer weakens intrapeptide interactions, particularly, formed by charged amino acids. (3) Binding of Aβ peptide to the DMPS bilayer is primarily governed by electrostatic interactions between charged amino acids and charged lipid groups. In contrast, these interactions play minor role in Aβ binding to the DMPC bilayer. (4) Aβ peptide generally resides on the DMPS bilayer surface causing relatively minor bilayer thinning. The opposite scenario applies to Aβ binding to the DMPC bilayer. (5) In contrast to DMPC simulations, Aβ largely expels anionic lipids from its binding "footprint" forming a ring of charged amino acids mixed with charged lipid groups around the peptide. (6) Aβ binding disorders proximal DMPS lipids more strongly than their DMPC counterparts. Our simulations show that Aβ monomers fail to perturb anionic or zwitterionic bilayers across both leaflets. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Discovery of dual binding site acetylcholinesterase inhibitors identified by pharmacophore modeling and sequential virtual screening techniques.

    PubMed

    Gupta, Shikhar; Fallarero, Adyary; Järvinen, Päivi; Karlsson, Daniela; Johnson, Mark S; Vuorela, Pia M; Mohan, C Gopi

    2011-02-15

    Dual binding site acetylcholinesterase (AChE) inhibitors are promising for the treatment of Alzheimer's disease (AD). They alleviate the cognitive deficits and AD-modifying agents, by inhibiting the β-amyloid (Aβ) peptide aggregation, through binding to both the catalytic and peripheral anionic sites, the so called dual binding site of the AChE enzyme. In this Letter, chemical features based 3D-pharmacophore models were developed based on the eight potent and structurally diverse AChE inhibitors (I-VIII) obtained from high-throughput in vitro screening technique. The best 3D-pharmacophore model, Hypo1, consists of two hydrogen-bond acceptor lipid, one hydrophobe, and two hydrophobic aliphatic features obtained by Catalyst/HIPHOP algorithm adopted in Discovery studio program. Hypo1 was used as a 3D query in sequential virtual screening study to filter three small compound databases. Further, a total of nine compounds were selected and followed on in vitro analysis. Finally, we identified two leads--Specs1 (IC(50)=3.279 μM) and Spec2 (IC(50)=5.986 μM) dual binding site compounds from Specs database, having good AChE enzyme inhibitory activity.

  17. Specific Lipid Binding of Membrane Proteins in Detergent Micelles Characterized by NMR and Molecular Dynamics.

    PubMed

    Zhao, Linlin; Wang, Shuqing; Run, Changqing; OuYang, Bo; Chou, James J

    2016-09-27

    Many membrane proteins bind specifically to lipids as an integral component of their structures. The ability of detergents to support lipid binding is thus an important consideration when solubilizing membrane proteins for structural studies. In particular, the zwitterionic phosphocholine (PC)-based detergents, which have been widely used in solution NMR studies of channels and transporters, are controversial because of their strong solubilization power and thus perceived as more denaturing than nonionic detergents such as the maltosides. Here, we investigate the ability of the mitochondrial ADP/ATP carrier (AAC) to specifically bind cardiolipin, a mitochondrial lipid important for the carrier function, in dodecylphosphocholine (DPC) micelles. We found that in DPC, the AAC specifically binds cardiolipin in a manner consistent with the bound cardiolipins found in the crystal structures of the AAC determined in n-decyl β-d-maltoside. Our results suggest that PC detergent is compatible with specific lipid binding and that PC detergent mixed with the relevant lipid represents a viable solubilization system for NMR studies of membrane proteins.

  18. ASCONA: Rapid Detection and Alignment of Protein Binding Site Conformations.

    PubMed

    Bietz, Stefan; Rarey, Matthias

    2015-08-24

    The usage of conformational ensembles constitutes a widespread technique for the consideration of protein flexibility in computational biology. When experimental structures are applied for this purpose, alignment techniques are usually required in dealing with structural deviations and annotation inconsistencies. Moreover, many application scenarios focus on protein ligand binding sites. Here, we introduce our new alignment algorithm ASCONA that has been specially geared to the problem of aligning multiple conformations of sequentially similar binding sites. Intense efforts have been directed to an accurate detection of highly flexible backbone deviations, multiple binding site matches within a single structure, and a reliable, but at the same time highly efficient, search algorithm. In contrast, most available alignment methods rather target other issues, e.g., the global alignment of distantly related proteins that share structurally conserved regions. For conformational ensembles, this might not only result in an overhead of computation time but could also affect the achieved accuracy, especially for more complicated cases as highly flexible proteins. ASCONA was evaluated on a test set containing 1107 structures of 65 diverse proteins. In all cases, ASCONA was able to correctly align the binding site at an average alignment computation time of 4 ms per target. Furthermore, no false positive matches were observed when searching the same query sites in the structures of other proteins. ASCONA proved to cope with highly deviating backbone structures and to tolerate structural gaps and moderate mutation rates. ASCONA is available free of charge for academic use at http://www.zbh.uni-hamburg.de/ascona .

  19. Synthetic human serum albumin Sudlow I binding site mimics.

    PubMed

    Karlsson, Björn C G; Rosengren, Annika M; Näslund, Inga; Andersson, Per Ola; Nicholls, Ian A

    2010-11-25

    Here, we report the design, synthesis, and characterization of molecularly imprinted polymer (MIP) derived mimics of the human serum albumin (HSA) Sudlow I site-the binding site for the anticoagulant warfarin. MIP design was based upon a combination of experimental ((1)H NMR) and computational (molecular dynamics) methods. Two MIPs and corresponding nonimprinted reference polymers were synthesized and characterized (scanning electron microscopy; nitrogen sorption; and Fourier transform infrared spectroscopy). MIP-ligand recognition was examined using radioligand binding studies, where the largest number of selective sites was found in a warfarin-imprinted methacrylic acid-ethylene dimethacrylate copolymer (MAA-MIP). The warfarin selectivity of this MIP was confirmed using radioligand displacement and zonal chromatographic studies. A direct comparison of MIP-warfarin binding characteristics with those of the HSA Sudlow I binding site was made, and similarities in site population (per gram polymer or protein) and affinities were observed. The warfarin selectivity of the MIP suggests its potential for use as a recognition element in a MIP-based warfarin sensor and even as a model to aid in understanding and steering blood-plasma protein-regulated transport processes or even for the development of warfarin sensors.

  20. Evidence for chemoreceptors with bimodular ligand-binding regions harboring two signal-binding sites

    PubMed Central

    Pineda-Molina, Estela; Reyes-Darias, José-Antonio; Lacal, Jesús; Ramos, Juan L.; García-Ruiz, Juan Manuel; Gavira, Jose A.; Krell, Tino

    2012-01-01

    Chemoreceptor-based signaling is a central mechanism in bacterial signal transduction. Receptors are classified according to the size of their ligand-binding region. The well-studied cluster I proteins have a 100- to 150-residue ligand-binding region that contains a single site for chemoattractant recognition. Cluster II receptors, which contain a 220- to 300-residue ligand-binding region and which are almost as abundant as cluster I receptors, remain largely uncharacterized. Here, we report high-resolution structures of the ligand-binding region of the cluster II McpS chemotaxis receptor (McpS-LBR) of Pseudomonas putida KT2440 in complex with different chemoattractants. The structure of McpS-LBR represents a small-molecule binding domain composed of two modules, each able to bind different signal molecules. Malate and succinate were found to bind to the membrane-proximal module, whereas acetate binds to the membrane-distal module. A structural alignment of the two modules revealed that the ligand-binding sites could be superimposed and that amino acids involved in ligand recognition are conserved in both binding sites. Ligand binding to both modules was shown to trigger chemotactic responses. Further analysis showed that McpS-like receptors were found in different classes of proteobacteria, indicating that this mode of response to different carbon sources may be universally distributed. The physiological relevance of the McpS architecture may lie in its capacity to respond with high sensitivity to the preferred carbon sources malate and succinate and, at the same time, mediate lower sensitivity responses to the less preferred but very abundant carbon source acetate. PMID:23112148

  1. Relations between high-affinity binding sites of markers for binding regions on human serum albumin.

    PubMed Central

    Kragh-Hansen, U

    1985-01-01

    Binding of warfarin, digitoxin, diazepam, salicylate and Phenol Red, individually or in different pair combinations, to defatted human serum albumin at ligand/protein molar ratios less than 1:1 was studied at pH 7.0. The binding was determined by ultrafiltration. Some of the experiments were repeated with the use of equilibrium dialysis in order to strengthen the results. Irrespective of the method used, all ligands bind to one high-affinity binding site with an association constant in the range 10(4)-10(6) M-1. High-affinity binding of the following pair of ligands took place independently: warfarin-Phenol Red, warfarin-diazepam, warfarin-digitoxin and digitoxin-diazepam. Simultaneous binding of warfarin and salicylate led to a mutual decrease in binding of one another, as did simultaneous binding of digitoxin and Phenol Red. Both effects could be accounted for by a coupling constant. The coupling constant is the factor by which the primary association constants are affected; in these examples of anti-co-operativity the factor has a value between 0 and 1. In the first example it was calculated to be 0.8 and in the latter 0.5. Finally, digitoxin and salicylate were found to compete for a common high-affinity binding site. The present findings support the proposal of four separate primary binding sites for warfarin, digitoxin (and salicylate), diazepam and Phenol Red. An attempt to correlate this partial binding model for serum albumin with other models in the literature is made. PMID:3977850

  2. Lipid-Free Antigen B Subunits from Echinococcus granulosus: Oligomerization, Ligand Binding, and Membrane Interaction Properties

    PubMed Central

    Silva-Álvarez, Valeria; Franchini, Gisela R.; Pórfido, Jorge L.; Kennedy, Malcolm W.; Ferreira, Ana M.; Córsico, Betina

    2015-01-01

    Background The hydatid disease parasite Echinococcus granulosus has a restricted lipid metabolism, and needs to harvest essential lipids from the host. Antigen B (EgAgB), an abundant lipoprotein of the larval stage (hydatid cyst), is thought to be important in lipid storage and transport. It contains a wide variety of lipid classes, from highly hydrophobic compounds to phospholipids. Its protein component belongs to the cestode-specific Hydrophobic Ligand Binding Protein family, which includes five 8-kDa isoforms encoded by a multigene family (EgAgB1-EgAgB5). How lipid and protein components are assembled into EgAgB particles remains unknown. EgAgB apolipoproteins self-associate into large oligomers, but the functional contribution of lipids to oligomerization is uncertain. Furthermore, binding of fatty acids to some EgAgB subunits has been reported, but their ability to bind other lipids and transfer them to acceptor membranes has not been studied. Methodology/Principal Findings Lipid-free EgAgB subunits obtained by reverse-phase HPLC were used to analyse their oligomerization, ligand binding and membrane interaction properties. Size exclusion chromatography and cross-linking experiments showed that EgAgB8/2 and EgAgB8/3 can self-associate, suggesting that lipids are not required for oligomerization. Furthermore, using fluorescent probes, both subunits were found to bind fatty acids, but not cholesterol analogues. Analysis of fatty acid transfer to phospholipid vesicles demonstrated that EgAgB8/2 and EgAgB8/3 are potentially capable of transferring fatty acids to membranes, and that the efficiency of transfer is dependent on the surface charge of the vesicles. Conclusions/Significance We show that EgAgB apolipoproteins can oligomerize in the absence of lipids, and can bind and transfer fatty acids to phospholipid membranes. Since imported fatty acids are essential for Echinococcus granulosus, these findings provide a mechanism whereby EgAgB could engage in lipid

  3. Caffeine inhibits glucose transport by binding at the GLUT1 nucleotide-binding site.

    PubMed

    Sage, Jay M; Cura, Anthony J; Lloyd, Kenneth P; Carruthers, Anthony

    2015-05-15

    Glucose transporter 1 (GLUT1) is the primary glucose transport protein of the cardiovascular system and astroglia. A recent study proposes that caffeine uncompetitive inhibition of GLUT1 results from interactions at an exofacial GLUT1 site. Intracellular ATP is also an uncompetitive GLUT1 inhibitor and shares structural similarities with caffeine, suggesting that caffeine acts at the previously characterized endofacial GLUT1 nucleotide-binding site. We tested this by confirming that caffeine uncompetitively inhibits GLUT1-mediated 3-O-methylglucose uptake in human erythrocytes [Vmax and Km for transport are reduced fourfold; Ki(app) = 3.5 mM caffeine]. ATP and AMP antagonize caffeine inhibition of 3-O-methylglucose uptake in erythrocyte ghosts by increasing Ki(app) for caffeine inhibition of transport from 0.9 ± 0.3 mM in the absence of intracellular nucleotides to 2.6 ± 0.6 and 2.4 ± 0.5 mM in the presence of 5 mM intracellular ATP or AMP, respectively. Extracellular ATP has no effect on sugar uptake or its inhibition by caffeine. Caffeine and ATP displace the fluorescent ATP derivative, trinitrophenyl-ATP, from the GLUT1 nucleotide-binding site, but d-glucose and the transport inhibitor cytochalasin B do not. Caffeine, but not ATP, inhibits cytochalasin B binding to GLUT1. Like ATP, caffeine renders the GLUT1 carboxy-terminus less accessible to peptide-directed antibodies, but cytochalasin B and d-glucose do not. These results suggest that the caffeine-binding site bridges two nonoverlapping GLUT1 endofacial sites-the regulatory, nucleotide-binding site and the cytochalasin B-binding site. Caffeine binding to GLUT1 mimics the action of ATP but not cytochalasin B on sugar transport. Molecular docking studies support this hypothesis.

  4. Lipophilic oligonucleotides spontaneously insert into lipid membranes, bind complementary DNA strands, and sequester into lipid-disordered domains.

    PubMed

    Bunge, Andreas; Kurz, Anke; Windeck, Anne-Kathrin; Korte, Thomas; Flasche, Wolfgang; Liebscher, Jürgen; Herrmann, Andreas; Huster, Daniel

    2007-04-10

    For the development of surface functionalized bilayers, we have synthesized lipophilic oligonucleotides to combine the molecular recognition mechanism of nucleic acids and the self-assembly characteristics of lipids in planar membranes. A lipophilic oligonucleotide consisting of 21 thymidine units and two lipophilic nucleotides with an alpha-tocopherol moiety as a lipophilic anchor was synthesized using solid-phase methods with a phosphoramadite strategy. The interaction of the water soluble lipophilic oligonucleotide with vesicular lipid membranes and its capability to bind complementary DNA strands was studied using complementary methods such as NMR, EPR, DSC, fluorescence spectroscopy, and fluorescence microscopy. This oligonucleotide inserted stably into preformed membranes from the aqueous phase. Thereby, no significant perturbation of the lipid bilayer and its stability was observed. However, the non-lipidated end of the oligonucleotide is exposed to the aqueous environment, is relatively mobile, and is free to interact with complementary DNA strands. Binding of the complementary single-stranded DNA molecules is fast and accomplished by the formation of Watson-Crick base pairs, which was confirmed by 1H NMR chemical shift analysis and fluorescence resonance energy transfer. The molecular structure of the membrane bound DNA double helix is very similar to the free double-stranded DNA. Further, the membrane bound DNA double strands also undergo regular melting. Finally, in raft-like membrane mixtures, the lipophilic oligonucleotide was shown to preferentially sequester into liquid-disordered membrane domains.

  5. Binding of oligoarginine to membrane lipids and heparan sulfate: structural and thermodynamic characterization of a cell-penetrating peptide.

    PubMed

    Gonçalves, Elisabete; Kitas, Eric; Seelig, Joachim

    2005-02-22

    Cell-penetrating peptides (CPPs) comprise a group of arginine-rich oligopeptides that are able to deliver exogenous cargo into cells. A first step in the internalization of CPPs is their binding to the cell surface, a reaction likely to involve membrane phospholipids and/or heparan sulfate proteoglycans (HSPGs). The present work characterizes the interaction of R(9), one of the most efficient CPPs, with either heparan sulfate (HS) or lipid vesicles composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine (POPC) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylglycerol (POPG). Isothermal titration calorimetry shows that R(9) binds to HS with high affinity. Assuming that HS has n independent and equivalent binding sites for R(9), we find an association constant of 3.1 x 10(6) M(-1) at 28 degrees C. At this temperature, the reaction enthalpy is DeltaH(degrees)pep = - 5.5 kcal/mol and approximately 7 R(9) molecules bind per HS chain, which is equivalent to approximately 0.95 cationic/anionic charge ratio. Delta decreases in magnitude upon an increase in temperature, and the reaction becomes entropy-driven at higher temperatures (>or=37 degrees C). The positive heat-capacity change entailed by this reaction (DeltaC(degrees)P = +167 cal mol(-1) K(-1)) indicates the loss of polar residues on R(9)-HS binding, suggesting that hydrophobic forces play no major role on binding. Calorimetric analysis of the interaction of R(9) with POPC/POPG (75:25) vesicles reveals an association constant of 8.2 x 10(4) M(-1) at 28 degrees C. Using a surface partition equilibrium model to correct for electrostatic effects, we find an intrinsic partition constant of approximately 900 M(-1), a value that is also confirmed by electrophoretic mobility measurements. This corresponds to an electrostatic contribution of approximately 33% to the total free energy of binding. Deuterium nuclear magnetic resonance (NMR) shows no change in the headgroup conformation of POPC and POPG, suggesting

  6. Structural variations of the cell wall precursor lipid II and their influence on binding and activity of the lipoglycopeptide antibiotic oritavancin.

    PubMed

    Münch, Daniela; Engels, Ina; Müller, Anna; Reder-Christ, Katrin; Falkenstein-Paul, Hildegard; Bierbaum, Gabriele; Grein, Fabian; Bendas, Gerd; Sahl, Hans-Georg; Schneider, Tanja

    2015-02-01

    Oritavancin is a semisynthetic derivative of the glycopeptide antibiotic chloroeremomycin with activity against Gram-positive pathogens, including vancomycin-resistant staphylococci and enterococci. Compared to vancomycin, oritavancin is characterized by the presence of two additional residues, a hydrophobic 4'-chlorobiphenyl methyl moiety and a 4-epi-vancosamine substituent, which is also present in chloroeremomycin. Here, we show that oritavancin and its des-N-methylleucyl variant (des-oritavancin) effectively inhibit lipid I- and lipid II-consuming peptidoglycan biosynthesis reactions in vitro. In contrast to that for vancomycin, the binding affinity of oritavancin to the cell wall precursor lipid II appears to involve, in addition to the D-Ala-D-Ala terminus, other species-specific binding sites of the lipid II molecule, i.e., the crossbridge and D-isoglutamine in position 2 of the lipid II stem peptide, both characteristic for a number of Gram-positive pathogens, including staphylococci and enterococci. Using purified lipid II and modified lipid II variants, we studied the impact of these modifications on the binding of oritavancin and compared it to those of vancomycin, chloroeremomycin, and des-oritavancin. Analysis of the binding parameters revealed that additional intramolecular interactions of oritavancin with the peptidoglycan precursor appear to compensate for the loss of a crucial hydrogen bond in vancomycin-resistant strains, resulting in enhanced binding affinity. Augmenting previous findings, we show that amidation of the lipid II stem peptide predominantly accounts for the increased binding of oritavancin to the modified intermediates ending in D-Ala-D-Lac. Corroborating our conclusions, we further provide biochemical evidence for the phenomenon of the antagonistic effects of mecA and vanA resistance determinants in Staphylococcus aureus, thus partially explaining the low frequency of methicillin-resistant S. aureus (MRSA) acquiring high

  7. Studies on the biotin-binding sites of avidin and streptavidin. Tyrosine residues are involved in the binding site.

    PubMed Central

    Gitlin, G; Bayer, E A; Wilchek, M

    1990-01-01

    The involvement of tyrosine in the biotin-binding sites of the egg-white glycoprotein avidin and the bacterial protein streptavidin was examined by using the tyrosine-specific reagent p-nitrobenzenesulphonyl fluoride (Nbs-F). Modification of an average of about 0.5 mol of tyrosine residue/mol of avidin subunit caused the complete loss of biotin binding. This indicates that the single tyrosine residue (Tyr-33) in the avidin subunit is directly involved in the biotin-binding site and that its modification by Nbs also abolishes the binding properties of a neighbouring subunit. This suggests that the tyrosine residues of the egg-white protein may also contribute to the stabilization of the native protein structure. In streptavidin, however, the modification of an average of 3 mol of tyrosine residue/mol of subunit was required to inactivate completely the biotin-binding activity of the protein, but only 1 mol (average) of tyrosine residue/mol of subunit was protected in the presence of biotin. The difference between the h.p.l.c. elution profiles of the enzymic digests of Nbs-modified streptavidin and the Nbs-modified streptavidin-biotin complex revealed two additional fractions in the unprotected protein that contain Nbs-modified tyrosine residues. These residues, Tyr-43 (major fraction) and Tyr-54 (minor fraction), appear to contribute to the biotin-binding site in streptavidin. PMID:2386489

  8. Studies on the biotin-binding sites of avidin and streptavidin. Tyrosine residues are involved in the binding site.

    PubMed

    Gitlin, G; Bayer, E A; Wilchek, M

    1990-07-15

    The involvement of tyrosine in the biotin-binding sites of the egg-white glycoprotein avidin and the bacterial protein streptavidin was examined by using the tyrosine-specific reagent p-nitrobenzenesulphonyl fluoride (Nbs-F). Modification of an average of about 0.5 mol of tyrosine residue/mol of avidin subunit caused the complete loss of biotin binding. This indicates that the single tyrosine residue (Tyr-33) in the avidin subunit is directly involved in the biotin-binding site and that its modification by Nbs also abolishes the binding properties of a neighbouring subunit. This suggests that the tyrosine residues of the egg-white protein may also contribute to the stabilization of the native protein structure. In streptavidin, however, the modification of an average of 3 mol of tyrosine residue/mol of subunit was required to inactivate completely the biotin-binding activity of the protein, but only 1 mol (average) of tyrosine residue/mol of subunit was protected in the presence of biotin. The difference between the h.p.l.c. elution profiles of the enzymic digests of Nbs-modified streptavidin and the Nbs-modified streptavidin-biotin complex revealed two additional fractions in the unprotected protein that contain Nbs-modified tyrosine residues. These residues, Tyr-43 (major fraction) and Tyr-54 (minor fraction), appear to contribute to the biotin-binding site in streptavidin.

  9. Crystal structure of YegS, a homologue to the mammalian diacylglycerol kinases, reveals a novel regulatory metal binding site.

    PubMed

    Bakali, H M Amin; Herman, Maria Dolores; Johnson, Kenneth A; Kelly, Amélie A; Wieslander, Ake; Hallberg, B Martin; Nordlund, Pär

    2007-07-06

    The human lipid kinase family controls cell proliferation, differentiation, and tumorigenesis and includes diacylglycerol kinases, sphingosine kinases, and ceramide kinases. YegS is an Escherichia coli protein with significant sequence homology to the catalytic domain of the human lipid kinases. We have solved the crystal structure of YegS and shown that it is a lipid kinase with phosphatidylglycerol kinase activity. The crystal structure reveals a two-domain protein with significant structural similarity to a family of NAD kinases. The active site is located in the interdomain cleft formed by four conserved sequence motifs. Surprisingly, the structure reveals a novel metal binding site composed of residues conserved in most lipid kinases.

  10. Membrane Contact Sites: Complex Zones for Membrane Association and Lipid Exchange

    PubMed Central

    Quon, Evan; Beh, Christopher T.

    2015-01-01

    Lipid transport between membranes within cells involves vesicle and protein carriers, but as agents of nonvesicular lipid transfer, the role of membrane contact sites has received increasing attention. As zones for lipid metabolism and exchange, various membrane contact sites mediate direct associations between different organelles. In particular, membrane contact sites linking the plasma membrane (PM) and the endoplasmic reticulum (ER) represent important regulators of lipid and ion transfer. In yeast, cortical ER is stapled to the PM through membrane-tethering proteins, which establish a direct connection between the membranes. In this review, we consider passive and facilitated models for lipid transfer at PM–ER contact sites. Besides the tethering proteins, we examine the roles of an additional repertoire of lipid and protein regulators that prime and propagate PM–ER membrane association. We conclude that instead of being simple mediators of membrane association, regulatory components of membrane contact sites have complex and multilayered functions. PMID:26949334

  11. Specific binding sites for muramyl peptides on murine macrophages

    SciTech Connect

    Silverman, D.H.S.; Krueger, J.M.; Karnovsky, M.L.

    1986-03-15

    Two radiolabeled (/sup 125/I) muramyl peptide derivatives of high specific activity were prepared: a tripeptide with an iodinated C-terminal tyrosine methyl ester (Ligand I), and a muramyl tripeptide with a C-terminal lysine derivatized with Bolton-Hunter reagent (Ligand II). These were used to characterize binding of muramyl peptides to monolayers of murine macrophages. Saturable high-affinity binding to resident, caseinate-elicited, and Listeria-activated peritoneal cells was observed with both radioligands. Binding affinities varied with the state of activation of the macrophages, and K/sub D/ values ranged from 48 +/- 33 pM (for resident macrophages, Ligand I) to 1020 +/- 90 pM (for activated macrophages, Ligand II). Specific binding sites were also found on a macrophage-derived cell line. The ability of several unlabeled muramyl peptides to compete with Ligands I and II for their binding sites was tested. Competition was stereospecific and correlated with known biological activities of these compounds (i.e., immunoadjuvanticity, pyrogenicity, and somnogenicity). The sites identified here for Ligands I and II may mediate some of the effects that muramyl peptides have previously been demonstrated to have on macrophages.

  12. Curcumin recognizes a unique binding site of tubulin.

    PubMed

    Chakraborti, Soumyananda; Das, Lalita; Kapoor, Neha; Das, Amlan; Dwivedi, Vishnu; Poddar, Asim; Chakraborti, Gopal; Janik, Mark; Basu, Gautam; Panda, Dulal; Chakrabarti, Pinak; Surolia, Avadhesha; Bhattacharyya, Bhabatarak

    2011-09-22

    Although curcumin is known for its anticarcinogenic properties, the exact mechanism of its action or the identity of the target receptor is not completely understood. Studies on a series of curcumin analogues, synthesized to investigate their tubulin binding affinities and tubulin self-assembly inhibition, showed that: (i) curcumin acts as a bifunctional ligand, (ii) analogues with substitution at the diketone and acetylation of the terminal phenolic groups of curcumin are less effective, (iii) a benzylidiene derivative, compound 7, is more effective than curcumin in inhibiting tubulin self-assembly. Cell-based studies also showed compound 7 to be more effective than curcumin. Using fluorescence spectroscopy we show that curcumin binds tubulin 32 Å away from the colchicine-binding site. Docking studies also suggests that the curcumin-binding site to be close to the vinblastine-binding site. Structure-activity studies suggest that the tridented nature of compound 7 is responsible for its higher affinity for tubulin compared to curcumin.

  13. Five of Five VHHs Neutralizing Poliovirus Bind the Receptor-Binding Site

    PubMed Central

    Strauss, Mike; Schotte, Lise; Thys, Bert; Filman, David J.

    2016-01-01

    ABSTRACT Nanobodies, or VHHs, that recognize poliovirus type 1 have previously been selected and characterized as candidates for antiviral agents or reagents for standardization of vaccine quality control. In this study, we present high-resolution cryo-electron microscopy reconstructions of poliovirus with five neutralizing VHHs. All VHHs bind the capsid in the canyon at sites that extensively overlap the poliovirus receptor-binding site. In contrast, the interaction involves a unique (and surprisingly extensive) surface for each of the five VHHs. Five regions of the capsid were found to participate in binding with all five VHHs. Four of these five regions are known to alter during the expansion of the capsid associated with viral entry. Interestingly, binding of one of the VHHs, PVSS21E, resulted in significant changes of the capsid structure and thus seems to trap the virus in an early stage of expansion. IMPORTANCE We describe the cryo-electron microscopy structures of complexes of five neutralizing VHHs with the Mahoney strain of type 1 poliovirus at resolutions ranging from 3.8 to 6.3Å. All five VHHs bind deep in the virus canyon at similar sites that overlap extensively with the binding site for the receptor (CD155). The binding surfaces on the VHHs are surprisingly extensive, but despite the use of similar binding surfaces on the virus, the binding surface on the VHHs is unique for each VHH. In four of the five complexes, the virus remains essentially unchanged, but for the fifth there are significant changes reminiscent of but smaller in magnitude than the changes associated with cell entry, suggesting that this VHH traps the virus in a previously undescribed early intermediate state. The neutralizing mechanisms of the VHHs and their potential use as quality control agents for the end game of poliovirus eradication are discussed. PMID:26764003

  14. Phytotropins: III. NAPHTHYLPHTHALAMIC ACID BINDING SITES ON MAIZE COLEOPTILE MEMBRANES AS POSSIBLE RECEPTOR SITES FOR PHYTOTROPIN ACTION.

    PubMed

    Katekar, G F; Navé, J F; Geissler, A E

    1981-12-01

    Certain members of the phytotropin class of auxin transport inhibitors are shown to bind with high affinity to the known naphthylphthalamic acid binding sites in maize (Zea mays) coleoptiles. The binding site is, thus, a phytotropin binding site. In general, the degree of binding correlates with the phytotropin structure activity rules and with physiological activities of model compounds. It is argued that the binding site may be a receptor, and it also may be the receptor involved in the control of the auxin transport process. The possibility is raised that the binding sites may be intrinsic receptors for endoanalog(s) of the phytotropins.

  15. Combination of extended X-ray absorption fine structure spectroscopy with lipidic cubic phases for the study of cation binding in bacteriorhodopsin.

    PubMed

    Perálvarez-Marín, Alex; Sepulcre, Francesc; Márquez, Mercedes; Proietti, Maria Grazia; Padrós, Esteve

    2011-08-01

    We have performed a quantitative X-ray absorption fine structure analysis of bacteriorhodopsin in purple membrane patches and in lipidic cubic phases regenerated with Mn(2+). Lipidic cubic phases and purple membrane results have been compared, demonstrating that the lipidic cubic phase process does not introduce relevant distortions in the local geometry of the cation binding sites. For both samples, we have observed similarities for Mn(2+) coordination in terms of type, number, and average distances of surrounding atoms, indicating a first coordination shell composed by 6 O atoms, and 3/4 C atoms located in the second coordination shell.

  16. Molecular simulations of multimodal ligand-protein binding: elucidation of binding sites and correlation with experiments.

    PubMed

    Freed, Alexander S; Garde, Shekhar; Cramer, Steven M

    2011-11-17

    Multimodal chromatography, which employs more than one mode of interaction between ligands and proteins, has been shown to have unique selectivity and high efficacy for protein purification. To test the ability of free solution molecular dynamics (MD) simulations in explicit water to identify binding regions on the protein surface and to shed light on the "pseudo affinity" nature of multimodal interactions, we performed MD simulations of a model protein ubiquitin in aqueous solution of free ligands. Comparisons of MD with NMR spectroscopy of ubiquitin mutants in solutions of free ligands show a good agreement between the two with regard to the preferred binding region on the surface of the protein and several binding sites. MD simulations also identify additional binding sites that were not observed in the NMR experiments. "Bound" ligands were found to be sufficiently flexible and to access a number of favorable conformations, suggesting only a moderate loss of ligand entropy in the "pseudo affinity" binding of these multimodal ligands. Analysis of locations of chemical subunits of the ligand on the protein surface indicated that electrostatic interaction units were located on the periphery of the preferred binding region on the protein. The analysis of the electrostatic potential, the hydrophobicity maps, and the binding of both acetate and benzene probes were used to further study the localization of individual ligand moieties. These results suggest that water-mediated electrostatic interactions help the localization and orientation of the MM ligand to the binding region with additional stability provided by nonspecific hydrophobic interactions.

  17. Molecular Modeling of the M3 Acetylcholine Muscarinic Receptor and Its Binding Site

    PubMed Central

    Martinez-Archundia, Marlet; Cordomi, Arnau; Garriga, Pere; Perez, Juan J.

    2012-01-01

    The present study reports the results of a combined computational and site mutagenesis study designed to provide new insights into the orthosteric binding site of the human M3 muscarinic acetylcholine receptor. For this purpose a three-dimensional structure of the receptor at atomic resolution was built by homology modeling, using the crystallographic structure of bovine rhodopsin as a template. Then, the antagonist N-methylscopolamine was docked in the model and subsequently embedded in a lipid bilayer for its refinement using molecular dynamics simulations. Two different lipid bilayer compositions were studied: one component palmitoyl-oleyl phosphatidylcholine (POPC) and two-component palmitoyl-oleyl phosphatidylcholine/palmitoyl-oleyl phosphatidylserine (POPC-POPS). Analysis of the results suggested that residues F222 and T235 may contribute to the ligand-receptor recognition. Accordingly, alanine mutants at positions 222 and 235 were constructed, expressed, and their binding properties determined. The results confirmed the role of these residues in modulating the binding affinity of the ligand. PMID:22500107

  18. Caffeine inhibits glucose transport by binding at the GLUT1 nucleotide-binding site

    PubMed Central

    Sage, Jay M.; Cura, Anthony J.; Lloyd, Kenneth P.

    2015-01-01

    Glucose transporter 1 (GLUT1) is the primary glucose transport protein of the cardiovascular system and astroglia. A recent study proposes that caffeine uncompetitive inhibition of GLUT1 results from interactions at an exofacial GLUT1 site. Intracellular ATP is also an uncompetitive GLUT1 inhibitor and shares structural similarities with caffeine, suggesting that caffeine acts at the previously characterized endofacial GLUT1 nucleotide-binding site. We tested this by confirming that caffeine uncompetitively inhibits GLUT1-mediated 3-O-methylglucose uptake in human erythrocytes [Vmax and Km for transport are reduced fourfold; Ki(app) = 3.5 mM caffeine]. ATP and AMP antagonize caffeine inhibition of 3-O-methylglucose uptake in erythrocyte ghosts by increasing Ki(app) for caffeine inhibition of transport from 0.9 ± 0.3 mM in the absence of intracellular nucleotides to 2.6 ± 0.6 and 2.4 ± 0.5 mM in the presence of 5 mM intracellular ATP or AMP, respectively. Extracellular ATP has no effect on sugar uptake or its inhibition by caffeine. Caffeine and ATP displace the fluorescent ATP derivative, trinitrophenyl-ATP, from the GLUT1 nucleotide-binding site, but d-glucose and the transport inhibitor cytochalasin B do not. Caffeine, but not ATP, inhibits cytochalasin B binding to GLUT1. Like ATP, caffeine renders the GLUT1 carboxy-terminus less accessible to peptide-directed antibodies, but cytochalasin B and d-glucose do not. These results suggest that the caffeine-binding site bridges two nonoverlapping GLUT1 endofacial sites—the regulatory, nucleotide-binding site and the cytochalasin B-binding site. Caffeine binding to GLUT1 mimics the action of ATP but not cytochalasin B on sugar transport. Molecular docking studies support this hypothesis. PMID:25715702

  19. GPS-Lipid: a robust tool for the prediction of multiple lipid modification sites.

    PubMed

    Xie, Yubin; Zheng, Yueyuan; Li, Hongyu; Luo, Xiaotong; He, Zhihao; Cao, Shuo; Shi, Yi; Zhao, Qi; Xue, Yu; Zuo, Zhixiang; Ren, Jian

    2016-06-16

    As one of the most common post-translational modifications in eukaryotic cells, lipid modification is an important mechanism for the regulation of variety aspects of protein function. Over the last decades, three classes of lipid modifications have been increasingly studied. The co-regulation of these different lipid modifications is beginning to be noticed. However, due to the lack of integrated bioinformatics resources, the studies of co-regulatory mechanisms are still very limited. In this work, we developed a tool called GPS-Lipid for the prediction of four classes of lipid modifications by integrating the Particle Swarm Optimization with an aging leader and challengers (ALC-PSO) algorithm. GPS-Lipid was proven to be evidently superior to other similar tools. To facilitate the research of lipid modification, we hosted a publicly available web server at http://lipid.biocuckoo.org with not only the implementation of GPS-Lipid, but also an integrative database and visualization tool. We performed a systematic analysis of the co-regulatory mechanism between different lipid modifications with GPS-Lipid. The results demonstrated that the proximal dual-lipid modifications among palmitoylation, myristoylation and prenylation are key mechanism for regulating various protein functions. In conclusion, GPS-lipid is expected to serve as useful resource for the research on lipid modifications, especially on their co-regulation.

  20. GPS-Lipid: a robust tool for the prediction of multiple lipid modification sites

    PubMed Central

    Xie, Yubin; Zheng, Yueyuan; Li, Hongyu; Luo, Xiaotong; He, Zhihao; Cao, Shuo; Shi, Yi; Zhao, Qi; Xue, Yu; Zuo, Zhixiang; Ren, Jian

    2016-01-01

    As one of the most common post-translational modifications in eukaryotic cells, lipid modification is an important mechanism for the regulation of variety aspects of protein function. Over the last decades, three classes of lipid modifications have been increasingly studied. The co-regulation of these different lipid modifications is beginning to be noticed. However, due to the lack of integrated bioinformatics resources, the studies of co-regulatory mechanisms are still very limited. In this work, we developed a tool called GPS-Lipid for the prediction of four classes of lipid modifications by integrating the Particle Swarm Optimization with an aging leader and challengers (ALC-PSO) algorithm. GPS-Lipid was proven to be evidently superior to other similar tools. To facilitate the research of lipid modification, we hosted a publicly available web server at http://lipid.biocuckoo.org with not only the implementation of GPS-Lipid, but also an integrative database and visualization tool. We performed a systematic analysis of the co-regulatory mechanism between different lipid modifications with GPS-Lipid. The results demonstrated that the proximal dual-lipid modifications among palmitoylation, myristoylation and prenylation are key mechanism for regulating various protein functions. In conclusion, GPS-lipid is expected to serve as useful resource for the research on lipid modifications, especially on their co-regulation. PMID:27306108

  1. Predicting the binding modes and sites of metabolism of xenobiotics.

    PubMed

    Mukherjee, Goutam; Lal Gupta, Pancham; Jayaram, B

    2015-07-01

    Metabolism studies are an essential integral part of ADMET profiling of drug candidates to evaluate their safety and efficacy. Cytochrome P-450 (CYP) metabolizes a wide variety of xenobiotics/drugs. The binding modes of these compounds with CYP and their intrinsic reactivities decide the metabolic products. We report here a novel computational protocol, which comprises docking of ligands to heme-containing CYPs and prediction of binding energies through a newly developed scoring function, followed by analyses of the docked structures and molecular orbitals of the ligand molecules, for predicting the sites of metabolism (SOM) of ligands. The calculated binding free energies of 121 heme-containing protein-ligand docked complexes yielded a correlation coefficient of 0.84 against experiment. Molecular orbital analyses of the resultant top three unique poses of the docked complexes provided a success rate of 87% in identifying the experimentally known sites of metabolism of the xenobiotics. The SOM prediction methodology is freely accessible at .

  2. Lipid binding and membrane penetration of polymyxin B derivatives studied in a biomimetic vesicle system.

    PubMed Central

    Katz, Marina; Tsubery, Haim; Kolusheva, Sofiya; Shames, Alex; Fridkin, Mati; Jelinek, Raz

    2003-01-01

    Understanding membrane interactions and cell-wall permeation of Gram-negative bacteria is of great importance, owing to increasing bacterial resistance to existing drugs and therapeutic treatments. Here we use biomimetic lipid vesicles to analyse membrane association and penetration by synthetic derivatives of polymyxin B (PMB), a potent naturally occurring antibacterial cyclic peptide. The PMB analogues studied were PMB nonapeptide (PMBN), in which the hydrophobic alkyl residue was cleaved, PMBN diastereomer containing D-instead of L-amino acids within the cyclic ring (dPMBN) and PMBN where the hydrophobic alkyl chain was replaced with an Ala6 repeat (Ala6-PMBN). Peptide binding measurements, colorimetric transitions induced within the vesicles, fluorescence quenching experiments and ESR spectroscopy were applied to investigate the structural parameters underlying the different membrane-permeation profiles and biological activities of the analogues. The experiments point to the role of negatively charged lipids in membrane binding and confirm the prominence of lipopolisaccharide (LPS) in promoting membrane association and penetration by the peptides. Examination of the lipid interactions of the PMB derivatives shows that the cyclic moiety of PMB is not only implicated in lipid attachment and LPS binding, but also affects penetration into the inner bilayer core. The addition of the Ala6 peptide moiety, however, does not significantly promote peptide insertion into the hydrophobic lipid environment. The data also indicate that the extent of penetration into the lipid bilayer is not related to the overall affinity of the peptides to the membrane. PMID:12848621

  3. Interaction of P-aminobenzoic acid with normal and sickel erythrocyte membrane: photoaffinity labelling of the binding sites

    SciTech Connect

    Premachandra, B.R.

    1986-03-05

    Electron microscopic studies revealed that P-Amino benzoic acid (PABA) could prevent eichinocytosis of red cells in vitro. Equilibrium binding studies with right side out membrane vesicles (ROV) revealed a similar number of binding sites (1.2-1.4 ..mu..mol/mg) and Kd (1.4-1.6 mM) values for both normal and sickle cell membranes. /sup 14/C-Azide analogue of PABA was synthesized as a photoaffinity label to probe its sites of interaction on the erythrocyte membranes. Competitive binding studies of PABA with its azide indicated that both the compounds share common binding sites on the membrane surface since a 20 fold excess of azide inhibited PABA binding in a linear fashion. The azide was covalently incorporated into the membrane components only upon irradiation (52-35% of the label found in the proteins and the rest in lipids). Electrophoretic analysis of photolabelled ROV revealed that the azide interacts chiefly with Band 3 protein. PABA inhibited both high and low affinity calcium (Ca) binding sites situated on either surface of the membrane in a non-competitive manner; however, Ca binding stimulated by Mg-ATP was not affected. Ca transport into inside out vesicles was inhibited by PABA; but it did not affect the calcium ATP-ase activity. The authors studies suggest that the mechanism of action of PABA is mediated by its interaction with Band 3 protein (anion channel), calcium channel and calcium binding sites of erythrocyte membrane.

  4. A semisynthetic Atg3 reveals that acetylation promotes Atg3 membrane binding and Atg8 lipidation

    NASA Astrophysics Data System (ADS)

    Li, Yi-Tong; Yi, Cong; Chen, Chen-Chen; Lan, Huan; Pan, Man; Zhang, Shao-Jin; Huang, Yi-Chao; Guan, Chao-Jian; Li, Yi-Ming; Yu, Li; Liu, Lei

    2017-03-01

    Acetylation of Atg3 regulates the lipidation of the protein Atg8 in autophagy. The molecular mechanism behind this important biochemical event remains to be elucidated. We describe the first semi-synthesis of homogeneous K19/K48-diacetylated Atg3 through sequential hydrazide-based native chemical ligation. In vitro reconstitution experiments with the semi-synthetic proteins confirm that Atg3 acetylation can promote the lipidation of Atg8. We find that acetylation of Atg3 enhances its binding to phosphatidylethanolamine-containing liposomes and to endoplasmic reticulum, through which it promotes the lipidation process.

  5. Receptor affinity purification of a lipid-binding adhesin from Helicobacter pylori.

    PubMed Central

    Lingwood, C A; Wasfy, G; Han, H; Huesca, M

    1993-01-01

    Our previous work has shown that Helicobacter pylori specifically recognizes gangliotetraosylceramide, gangliotriaosylceramide, and phosphatidylethanolamine in vitro. This binding specificity is shared by exoenzyme S from Pseudomonas aeruginosa, and monoclonal antibodies against this adhesin prevent the attachment of H. pylori to its lipid receptors. We now report the use of a novel, versatile affinity matrix to purify a 63-kDa exoenzyme S-like adhesin from H. pylori which is responsible for the lipid-binding specificity of this organism. Images PMID:8500882

  6. Characterization of a labile naloxone binding site (lambda site) in rat brain.

    PubMed

    Grevel, J; Yu, V; Sadée, W

    1985-05-01

    A high-affinity binding site selective for naloxone and other 4,5-epoxymorphinans (lambda site) has been previously described in rat brain. Following homogenization of freshly dissected brain, the lambda sites convert from a high-affinity to a low-affinity state. When measured with [3H]naloxone, the decay is very rapid at 20 degrees C (t 1/2 less than 2 min), whereas it is progressively slowed at lower temperatures. Proteinase inhibitors, antoxidants, and sulfhydryl group-protecting agents failed to prevent this conversion. Kinetic measurements of mu and lambda binding at varying temperatures demonstrated that the decrease in lambda binding does not coincide with the concurrent increase in mu binding and that the loss of high-affinity lambda binding at 20 degrees C can be partially restored when the temperature is lowered to 0 degrees C. The low-affinity state of the lambda site is rather stable in the Tris buffer homogenates and is susceptible to digestion by a protease. The (-)-isomer of WIN 44,441, a benzomorphan drug, binds to lambda sites with moderate affinity (dissociation constant, KD = 63 nM), whereas the (+)-isomer does not (KD greater than 10,000 nM), thus establishing stereoselectivity of the binding process. Neither the high-affinity nor the low-affinity state of lambda binding is significantly affected by the presence of 100 mM sodium chloride or 50 microM Gpp(NH)p, (a GTP analog), which is in contrast to the dramatic effect of these agents on the established opioid receptor system. Naltrexone, naloxone, nalorphine, and morphine (in this order of decreasing potency) bind to the lambda site in vivo in intact rat brain over dosage ranges that are commonly employed in pharmacological studies.

  7. LASAGNA: A novel algorithm for transcription factor binding site alignment

    PubMed Central

    2013-01-01

    Background Scientists routinely scan DNA sequences for transcription factor (TF) binding sites (TFBSs). Most of the available tools rely on position-specific scoring matrices (PSSMs) constructed from aligned binding sites. Because of the resolutions of assays used to obtain TFBSs, databases such as TRANSFAC, ORegAnno and PAZAR store unaligned variable-length DNA segments containing binding sites of a TF. These DNA segments need to be aligned to build a PSSM. While the TRANSFAC database provides scoring matrices for TFs, nearly 78% of the TFs in the public release do not have matrices available. As work on TFBS alignment algorithms has been limited, it is highly desirable to have an alignment algorithm tailored to TFBSs. Results We designed a novel algorithm named LASAGNA, which is aware of the lengths of input TFBSs and utilizes position dependence. Results on 189 TFs of 5 species in the TRANSFAC database showed that our method significantly outperformed ClustalW2 and MEME. We further compared a PSSM method dependent on LASAGNA to an alignment-free TFBS search method. Results on 89 TFs whose binding sites can be located in genomes showed that our method is significantly more precise at fixed recall rates. Finally, we described LASAGNA-ChIP, a more sophisticated version for ChIP (Chromatin immunoprecipitation) experiments. Under the one-per-sequence model, it showed comparable performance with MEME in discovering motifs in ChIP-seq peak sequences. Conclusions We conclude that the LASAGNA algorithm is simple and effective in aligning variable-length binding sites. It has been integrated into a user-friendly webtool for TFBS search and visualization called LASAGNA-Search. The tool currently stores precomputed PSSM models for 189 TFs and 133 TFs built from TFBSs in the TRANSFAC Public database (release 7.0) and the ORegAnno database (08Nov10 dump), respectively. The webtool is available at http://biogrid.engr.uconn.edu/lasagna_search/. PMID:23522376

  8. How cholesterol interacts with membrane proteins: an exploration of cholesterol-binding sites including CRAC, CARC, and tilted domains.

    PubMed

    Fantini, Jacques; Barrantes, Francisco J

    2013-01-01

    The plasma membrane of eukaryotic cells contains several types of lipids displaying high biochemical variability in both their apolar moiety (e.g., the acyl chain of glycerolipids) and their polar head (e.g., the sugar structure of glycosphingolipids). Among these lipids, cholesterol is unique because its biochemical variability is almost exclusively restricted to the oxidation of its polar -OH group. Although generally considered the most rigid membrane lipid, cholesterol can adopt a broad range of conformations due to the flexibility of its isooctyl chain linked to the polycyclic sterane backbone. Moreover, cholesterol is an asymmetric molecule displaying a planar α face and a rough β face. Overall, these structural features open up a number of possible interactions between cholesterol and membrane lipids and proteins, consistent with the prominent regulatory functions that this unique lipid exerts on membrane components. The aim of this review is to describe how cholesterol interacts with membrane lipids and proteins at the molecular/atomic scale, with special emphasis on transmembrane domains of proteins containing either the consensus cholesterol-binding motifs CRAC and CARC or a tilted peptide. Despite their broad structural diversity, all these domains bind cholesterol through common molecular mechanisms, leading to the identification of a subset of amino acid residues that are overrepresented in both linear and three-dimensional membrane cholesterol-binding sites.

  9. Ligand Binding Properties of the Lentil Lipid Transfer Protein: Molecular Insight into the Possible Mechanism of Lipid Uptake.

    PubMed

    Shenkarev, Zakhar O; Melnikova, Daria N; Finkina, Ekaterina I; Sukhanov, Stanislav V; Boldyrev, Ivan A; Gizatullina, Albina K; Mineev, Konstantin S; Arseniev, Alexander S; Ovchinnikova, Tatiana V

    2017-03-28

    The lentil lipid transfer protein, designated as Lc-LTP2, was isolated from Lens culinaris seeds. The protein belongs to the LTP1 subfamily and consists of 93 amino acid residues. Its spatial structure includes four α-helices (H1-H4) and a long C-terminal tail. Here, we report the ligand binding properties of Lc-LTP2. The fluorescent 2-p-toluidinonaphthalene-6-sulfonate binding assay revealed that the affinity of Lc-LTP2 for saturated and unsaturated fatty acids was enhanced with a decrease in acyl-chain length. Measurements of boundary potential in planar lipid bilayers and calcein dye leakage in vesicular systems revealed preferential interaction of Lc-LTP2 with the negatively charged membranes. Lc-LTP2 more efficiently transferred anionic dimyristoylphosphatidylglycerol (DMPG) than zwitterionic dimyristoylphosphatidylcholine. Nuclear magnetic resonance experiments confirmed the higher affinity of Lc-LTP2 for anionic lipids and those with smaller volumes of hydrophobic chains. The acyl chains of the bound lysopalmitoylphosphatidylglycerol (LPPG), DMPG, or dihexanoylphosphatidylcholine molecules occupied the internal hydrophobic cavity, while their headgroups protruded into the aqueous environment between helices H1 and H3. The spatial structure and backbone dynamics of the Lc-LTP2-LPPG complex were determined. The internal cavity was expanded from ∼600 to ∼1000 Å(3) upon the ligand binding. Another entrance into the internal cavity, restricted by the H2-H3 interhelical loop and C-terminal tail, appeared to be responsible for the attachment of Lc-LTP2 to the membrane or micelle surface and probably played an important role in the lipid uptake determining the ligand specificity. Our results confirmed the previous assumption regarding the membrane-mediated antimicrobial action of Lc-LTP2 and afforded molecular insight into its biological role in the plant.

  10. Probing Molecular Docking in a Charged Model Binding Site

    PubMed Central

    Brenk, Ruth; Vetter, Stefan W.; Boyce, Sarah E.; Goodin, David B.; Shoichet, Brian K.

    2011-01-01

    A model binding site was used to investigate charge–charge interactions in molecular docking. This simple site, a small (180 Å3) engineered cavity in cyctochrome c peroxidase (CCP), is negatively charged and completely buried from solvent, allowing us to explore the balance between electrostatic energy and ligand desolvation energy in a system where many of the common approximations in docking do not apply. A database with about 5300 molecules was docked into this cavity. Retrospective testing with known ligands and decoys showed that overall the balance between electrostatic interaction and desolvation energy was captured. More interesting were prospective docking scre”ens that looked for novel ligands, especially those that might reveal problems with the docking and energy methods. Based on screens of the 5300 compound database, both high-scoring and low-scoring molecules were acquired and tested for binding. Out of 16 new, high-scoring compounds tested, 15 were observed to bind. All of these were small heterocyclic cations. Binding constants were measured for a few of these, they ranged between 20 μM and 60 μM. Crystal structures were determined for ten of these ligands in complex with the protein. The observed ligand geometry corresponded closely to that predicted by docking. Several low-scoring alkyl amino cations were also tested and found to bind. The low docking score of these molecules owed to the relatively high charge density of the charged amino group and the corresponding high desolvation penalty. When the complex structures of those ligands were determined, a bound water molecule was observed interacting with the amino group and a backbone carbonyl group of the cavity. This water molecule mitigates the desolvation penalty and improves the interaction energy relative to that of the “naked” site used in the docking screen. Finally, six low-scoring neutral molecules were also tested, with a view to looking for false negative predictions

  11. Variable structure motifs for transcription factor binding sites.

    PubMed

    Reid, John E; Evans, Kenneth J; Dyer, Nigel; Wernisch, Lorenz; Ott, Sascha

    2010-01-14

    Classically, models of DNA-transcription factor binding sites (TFBSs) have been based on relatively few known instances and have treated them as sites of fixed length using position weight matrices (PWMs). Various extensions to this model have been proposed, most of which take account of dependencies between the bases in the binding sites. However, some transcription factors are known to exhibit some flexibility and bind to DNA in more than one possible physical configuration. In some cases this variation is known to affect the function of binding sites. With the increasing volume of ChIP-seq data available it is now possible to investigate models that incorporate this flexibility. Previous work on variable length models has been constrained by: a focus on specific zinc finger proteins in yeast using restrictive models; a reliance on hand-crafted models for just one transcription factor at a time; and a lack of evaluation on realistically sized data sets. We re-analysed binding sites from the TRANSFAC database and found motivating examples where our new variable length model provides a better fit. We analysed several ChIP-seq data sets with a novel motif search algorithm and compared the results to one of the best standard PWM finders and a recently developed alternative method for finding motifs of variable structure. All the methods performed comparably in held-out cross validation tests. Known motifs of variable structure were recovered for p53, Stat5a and Stat5b. In addition our method recovered a novel generalised version of an existing PWM for Sp1 that allows for variable length binding. This motif improved classification performance. We have presented a new gapped PWM model for variable length DNA binding sites that is not too restrictive nor over-parameterised. Our comparison with existing tools shows that on average it does not have better predictive accuracy than existing methods. However, it does provide more interpretable models of motifs of variable

  12. Multiple binding sites for transcriptional repressors can produce regular bursting and enhance noise suppression

    NASA Astrophysics Data System (ADS)

    Lengyel, Iván M.; Morelli, Luis G.

    2017-04-01

    Cells may control fluctuations in protein levels by means of negative autoregulation, where transcription factors bind DNA sites to repress their own production. Theoretical studies have assumed a single binding site for the repressor, while in most species it is found that multiple binding sites are arranged in clusters. We study a stochastic description of negative autoregulation with multiple binding sites for the repressor. We find that increasing the number of binding sites induces regular bursting of gene products. By tuning the threshold for repression, we show that multiple binding sites can also suppress fluctuations. Our results highlight possible roles for the presence of multiple binding sites of negative autoregulators.

  13. Multiple binding sites for transcriptional repressors can produce regular bursting and enhance noise suppression.

    PubMed

    Lengyel, Iván M; Morelli, Luis G

    2017-04-01

    Cells may control fluctuations in protein levels by means of negative autoregulation, where transcription factors bind DNA sites to repress their own production. Theoretical studies have assumed a single binding site for the repressor, while in most species it is found that multiple binding sites are arranged in clusters. We study a stochastic description of negative autoregulation with multiple binding sites for the repressor. We find that increasing the number of binding sites induces regular bursting of gene products. By tuning the threshold for repression, we show that multiple binding sites can also suppress fluctuations. Our results highlight possible roles for the presence of multiple binding sites of negative autoregulators.

  14. Enthalpy-driven apolipoprotein A-I and lipid bilayer interaction indicating protein penetration upon lipid binding.

    PubMed

    Arnulphi, Cristina; Jin, Lihua; Tricerri, M Alejandra; Jonas, Ana

    2004-09-28

    The interaction of lipid-free apolipoprotein A-I (apoA-I) with small unilamellar vesicles (SUVs) of 1-palmitoyl-2-oleoylphosphatidylcholine (POPC) with and without free cholesterol (FC) was studied by isothermal titration calorimetry and circular dichroism spectroscopy. Parameters reported are the affinity constant (K(a)), the number of protein molecules bound per vesicle (n), enthalpy change (DeltaH degrees), entropy change (DeltaS degrees ), and the heat capacity change (DeltaC(p) degrees). The binding process of apoA-I to SUVs of POPC plus 0-20% (mole) FC was exothermic between 15 and 37 degrees C studied, accompanied by a small negative entropy change, making enthalpy the main driving force of the interaction. The presence of cholesterol in the vesicles increased the binding affinity and the alpha-helix content of apoA-I but lowered the number of apoA-I bound per vesicle and the enthalpy and entropy changes per bound apoA-I. Binding affinity and stoichiometry were essentially invariant of temperature for binding to SUVs of POPC/FC at a molar ratio of 6/1 at (2.8-4) x 10(6) M(-1) and 2.4 apoA-I molecules bound per vesicle or 1.4 x 10(2) phospholipids per bound apoA-I. A plot of DeltaH degrees against temperature displayed a linear behavior, from which the DeltaC(p) degrees per mole of bound apoA-I was calculated to be -2.73 kcal/(mol x K). These results suggested that binding of apoA-I to POPC vesicles is characterized by nonclassical hydrophobic interactions, with alpha-helix formation as the main driving force for the binding to cholesterol-containing vesicles. In addition, comparison to literature data on peptides suggested a cooperativity of the helices in apoA-I in lipid interaction.

  15. E2F in vivo binding specificity: Comparison of consensus versus nonconsensus binding sites

    PubMed Central

    Rabinovich, Alina; Jin, Victor X.; Rabinovich, Roman; Xu, Xiaoqin; Farnham, Peggy J.

    2008-01-01

    We have previously shown that most sites bound by E2F family members in vivo do not contain E2F consensus motifs. However, differences between in vivo target sites that contain or lack a consensus E2F motif have not been explored. To understand how E2F binding specificity is achieved in vivo, we have addressed how E2F family members are recruited to core promoter regions that lack a consensus motif and are excluded from other regions that contain a consensus motif. Using chromatin immunoprecipitation coupled with DNA microarray analysis (ChIP-chip) assays, we have shown that the predominant factors specifying whether E2F is recruited to an in vivo binding site are (1) the site must be in a core promoter and (2) the region must be utilized as a promoter in that cell type. We have tested three models for recruitment of E2F to core promoters lacking a consensus site, including (1) indirect recruitment, (2) looping to the core promoter mediated by an E2F bound to a distal motif, and (3) assisted binding of E2F to a site that weakly resembles an E2F motif. To test these models, we developed a new in vivo assay, termed eChIP, which allows analysis of transcription factor binding to isolated fragments. Our findings suggest that in vivo (1) a consensus motif is not sufficient to recruit E2Fs, (2) E2Fs can bind to isolated regions that lack a consensus motif, and (3) binding can require regions other than the best match to the E2F motif. PMID:18836037

  16. Central melatonin binding sites in rainbow trout (Onchorhynchus mykiss).

    PubMed

    Davies, B; Hannah, L T; Randall, C F; Bromage, N; Williams, L M

    1994-10-01

    A combination of in vitro autoradiography and membrane homogenate receptor assays has been used to localize and characterized 2-[125I]iodomelatonin binding sites in the brain of the rainbow trout (Onchorhynchus mykiss). Specific 2-[125I]iodomelatonin binding, defined as that displaced by 1 microM melatonin, increased linearly with increasing protein concentration in membrane homogenates of whole trout brain. Specific binding was both time and temperature dependent and reversible in the presence of 1 microM melatonin. Binding was saturable at between 100-150 pM 2-[125I]iodomelatonin and Scatchard analysis of saturation isotherms revealed a dissociation constant (Kd) of 15.00 +/- 0.95 pM and a maximum receptor number (Bmax) of 42.35 +/- 2.70 fm/mg protein (n = 16). Addition of 10(-4) M GTP gamma S (an analogue of guanosine triphosphate) to saturation isotherms apparently reduced the Bmax by 75% on average with no apparent change in the affinity of the binding. Scatchard analysis of saturation isotherms generated from whole brain membrane homogenates of trout kept on long days (15 hr light:9 hr dark) and killed either during the midlight or middark phase showed no significant differences in either the Kd or the Bmax of 2-[125I]iodomelatonin binding, although a robust rhythm in melatonin concentration was confirmed in these fish. Displacement of 2-[125I]iodomelatonin binding with increasing concentrations of competing ligands gave an order of potency of 2-iodomelatonin > melatonin > 5-HT. Localization of specific central 2-[125I]iodomelatonin binding in the rainbow trout showed high levels of binding associated with neuronal areas involved in the processing of visual signals, particularly the optic tectum and nucleus rotundus.(ABSTRACT TRUNCATED AT 250 WORDS)

  17. Detection of Binding Site Molecular Interaction Field Similarities.

    PubMed

    Chartier, Matthieu; Najmanovich, Rafael

    2015-08-24

    Protein binding-site similarity detection methods can be used to predict protein function and understand molecular recognition, as a tool in drug design for drug repurposing and polypharmacology, and for the prediction of the molecular determinants of drug toxicity. Here, we present IsoMIF, a method able to identify binding site molecular interaction field similarities across protein families. IsoMIF utilizes six chemical probes and the detection of subgraph isomorphisms to identify geometrically and chemically equivalent sections of protein cavity pairs. The method is validated using six distinct data sets, four of those previously used in the validation of other methods. The mean area under the receiver operator curve (AUC) obtained across data sets for IsoMIF is higher than those of other methods. Furthermore, while IsoMIF obtains consistently high AUC values across data sets, other methods perform more erratically across data sets. IsoMIF can be used to predict function from structure, to detect potential cross-reactivity or polypharmacology targets, and to help suggest bioisosteric replacements to known binding molecules. Given that IsoMIF detects spatial patterns of molecular interaction field similarities, its predictions are directly related to pharmacophores and may be readily translated into modeling decisions in structure-based drug design. IsoMIF may in principle detect similar binding sites with distinct amino acid arrangements that lead to equivalent interactions within the cavity. The source code to calculate and visualize MIFs and MIF similarities are freely available.

  18. Peanut lectin-binding sites in large bowel carcinoma.

    PubMed

    Cooper, H S

    1982-10-01

    Peanut lectin is known to bind to B-D-Gal-(1 leads to 3)-D-GalNac which provides antigenic determination for the T (TAg) blood group antigen. We examined 33 rectosigmoid carcinomas and 15 corresponding controls for their ability to express peanut lectin-binding sites. In controls one could localize TAg to the supranuclear portion of the cell, however, in cancers one noticed a cytostructural relocalization of TAg with the following two major patterns: localization to the region of the glycocalyx and localization intracytoplasmically in the apical portion of the cell. These two patterns were associated with glandular differentiation. Less frequently noted or in association with the above was a mucin glob-like pattern and/or a fine diffuse intracytoplasmic pattern associated with solid, nonglandular areas. The more poorly differentiated cancers less frequently expressed peanut lectin-binding sites. Benign (nontransitional zone) epithelium in those patients whose tumor expressed TAg was negative for peanut lectin-binding sites in 66 per cent of the cases. Reduced tumoral glycosyltransferases may explain this increased synthesis of TAg in cancers as compared with controls, if one considers TAg to be an incomplete glycoprotein of the MN blood group system.

  19. A Lipid Pathway for Ligand Binding Is Necessary for a Cannabinoid G Protein-coupled Receptor*

    PubMed Central

    Hurst, Dow P.; Grossfield, Alan; Lynch, Diane L.; Feller, Scott; Romo, Tod D.; Gawrisch, Klaus; Pitman, Michael C.; Reggio, Patricia H.

    2010-01-01

    Recent isothiocyanate covalent labeling studies have suggested that a classical cannabinoid, (−)-7′-isothiocyanato-11-hydroxy-1′,1′dimethylheptyl-hexahydrocannabinol (AM841), enters the cannabinoid CB2 receptor via the lipid bilayer (Pei, Y., Mercier, R. W., Anday, J. K., Thakur, G. A., Zvonok, A. M., Hurst, D., Reggio, P. H., Janero, D. R., and Makriyannis, A. (2008) Chem. Biol. 15, 1207–1219). However, the sequence of steps involved in such a lipid pathway entry has not yet been elucidated. Here, we test the hypothesis that the endogenous cannabinoid sn-2-arachidonoylglycerol (2-AG) attains access to the CB2 receptor via the lipid bilayer. To this end, we have employed microsecond time scale all-atom molecular dynamics (MD) simulations of the interaction of 2-AG with CB2 via a palmitoyl-oleoyl-phosphatidylcholine lipid bilayer. Results suggest the following: 1) 2-AG first partitions out of bulk lipid at the transmembrane α-helix (TMH) 6/7 interface; 2) 2-AG then enters the CB2 receptor binding pocket by passing between TMH6 and TMH7; 3) the entrance of the 2-AG headgroup into the CB2 binding pocket is sufficient to trigger breaking of the intracellular TMH3/6 ionic lock and the movement of the TMH6 intracellular end away from TMH3; and 4) subsequent to protonation at D3.49/D6.30, further 2-AG entry into the ligand binding pocket results in both a W6.48 toggle switch change and a large influx of water. To our knowledge, this is the first demonstration via unbiased molecular dynamics that a ligand can access the binding pocket of a class A G protein-coupled receptor via the lipid bilayer and the first demonstration via molecular dynamics of G protein-coupled receptor activation triggered by a ligand binding event. PMID:20220143

  20. Clostridium Perfringens Epsilon Toxin Binds to Membrane Lipids and Its Cytotoxic Action Depends on Sulfatide

    PubMed Central

    Gil, Carles; Dorca-Arévalo, Jonatan; Blasi, Juan

    2015-01-01

    Epsilon toxin (Etx) is one of the major lethal toxins produced by Clostridium perfringens types B and D, being the causal agent of fatal enterotoxemia in animals, mainly sheep and goats. Etx is synthesized as a non-active prototoxin form (proEtx) that becomes active upon proteolytic activation. Etx exhibits a cytotoxic effect through the formation of a pore in the plasma membrane of selected cell targets where Etx specifically binds due to the presence of specific receptors. However, the identity and nature of host receptors of Etx remain a matter of controversy. In the present study, the interactions between Etx and membrane lipids from the synaptosome-enriched fraction from rat brain (P2 fraction) and MDCK cell plasma membrane preparations were analyzed. Our findings show that both Etx and proEtx bind to lipids extracted from lipid rafts from the two different models as assessed by protein-lipid overlay assay. Lipid rafts are membrane microdomains enriched in cholesterol and sphingolipids. Binding of proEtx to sulfatide, phosphatidylserine, phosphatidylinositol (3)-phosphate and phosphatidylinositol (5)-phosphate was detected. Removal of the sulphate groups via sulfatase treatment led to a dramatic decrease in Etx-induced cytotoxicity, but not in proEtx-GFP binding to MDCK cells or a significant shift in oligomer formation, pointing to a role of sulfatide in pore formation in rafts but not in toxin binding to the target cell membrane. These results show for the first time the interaction between Etx and membrane lipids from host tissue and point to a major role for sulfatides in C. perfringens epsilon toxin pathophysiology. PMID:26452234

  1. Photoaffinity labeling in target- and binding-site identification

    PubMed Central

    Smith, Ewan; Collins, Ian

    2015-01-01

    Photoaffinity labeling (PAL) using a chemical probe to covalently bind its target in response to activation by light has become a frequently used tool in drug discovery for identifying new drug targets and molecular interactions, and for probing the location and structure of binding sites. Methods to identify the specific target proteins of hit molecules from phenotypic screens are highly valuable in early drug discovery. In this review, we summarize the principles of PAL including probe design and experimental techniques for in vitro and live cell investigations. We emphasize the need to optimize and validate probes and highlight examples of the successful application of PAL across multiple disease areas. PMID:25686004

  2. Comparison of SARS and NL63 papain-like protease binding sites and binding site dynamics: inhibitor design implications.

    PubMed

    Chaudhuri, Rima; Tang, Sishi; Zhao, Guijun; Lu, Hui; Case, David A; Johnson, Michael E

    2011-11-25

    The human severe acute respiratory syndrome coronavirus (SARS-CoV) and the NL63 coronaviruses are human respiratory pathogens for which no effective antiviral treatment exists. The papain-like cysteine proteases encoded by the coronavirus (SARS-CoV: PLpro; NL63: PLP1 and PLP2) represent potential targets for antiviral drug development. Three recent inhibitor-bound PLpro structures highlight the role of an extremely flexible six-residue loop in inhibitor binding. The high binding site plasticity is a major challenge in computational drug discovery/design efforts. From conventional molecular dynamics and accelerated molecular dynamics (aMD) simulations, we find that with conventional molecular dynamics simulation, PLpro translationally samples the open and closed conformation of BL2 loop on a picosecond-nanosecond timescale but does not reproduce the peptide bond inversion between loop residues Tyr269 and Gln270 that is observed on inhibitor GRL0617 binding. Only aMD simulation, starting from the closed loop conformation, reproduced the 180° ϕ-ψ dihedral rotation back to the open loop state. The Tyr-Gln peptide bond inversion appears to involve a progressive conformational change of the full loop, starting at one side, and progressing to the other. We used the SARS-CoV apo X-ray structure to develop a model of the NL63-PLP2 catalytic site. Superimposition of the PLP2 model on the PLpro X-ray structure identifies binding site residues in PLP2 that contribute to the distinct substrate cleavage site specificities between the two proteases. The topological and electrostatic differences between the two protease binding sites also help explain the selectivity of non-covalent PLpro inhibitors.

  3. Calmodulin regulates dimerization, motility, and lipid binding of Leishmania myosin XXI

    PubMed Central

    Batters, Christopher; Ellrich, Heike; Helbig, Constanze; Woodall, Katy Anna; Hundschell, Christian; Brack, Dario; Veigel, Claudia

    2014-01-01

    Myosin XXI is the only myosin expressed in Leishmania parasites. Although it is assumed that it performs a variety of motile functions, the motor’s oligomerization states, cargo-binding, and motility are unknown. Here we show that binding of a single calmodulin causes the motor to adopt a monomeric state and to move actin filaments. In the absence of calmodulin, nonmotile dimers that cross-linked actin filaments were formed. Unexpectedly, structural analysis revealed that the dimerization domains include the calmodulin-binding neck region, essential for the generation of force and movement in myosins. Furthermore, monomeric myosin XXI bound to mixed liposomes, whereas the dimers did not. Lipid-binding sections overlapped with the dimerization domains, but also included a phox-homology domain in the converter region. We propose a mechanism of myosin regulation where dimerization, motility, and lipid binding are regulated by calmodulin. Although myosin-XXI dimers might act as nonmotile actin cross-linkers, the calmodulin-binding monomers might transport lipid cargo in the parasite. PMID:24379364

  4. Neutron scattering determination of the binding of prothrombin to lipid vesicles

    SciTech Connect

    Torbet, J.

    1987-12-01

    Low-angle neutron scattering is used to study the binding of human prothrombin to small single-bilayer vesicles consisting of phosphatidylcholine and phosphatidylserine (1/1 w/w). The radius of gyration of prothrombin indicates that it is an elongated molecule. The vesicles alone were not observed to coalesce, and their molecular weight, outer radius, and average surface area per lipid were respectively (1.6 +/- 0.32) x 10/sup 6/, 114 +/- 4 A, and 110 +/- 18 A/sup 2/. These values were independent of the presence of calcium and were not altered significantly by prothrombin, which binds reversibly to the vesicle outer surface with its long axis projecting approximately radially forming a 90-A thick protein shell. From the titration of the protein-vesicle interaction, the apparent dissociation constant of the binding of prothrombin to these vesicles is estimated to be 0.8 +/- 0.4 ..mu..M. At saturation, 57 +/- 7 prothrombin molecules bind, giving 25 +/- 6 lipid residues and an area of 2900 +/- 400 A/sup 2/ per prothrombin molecule on the vesicle outer surface. This area is about twice that calculated from a prolate ellipsoid model for prothrombin. However, it is close to the maximum cross-sectional area of fragment 1, the lipid binding region of prothrombin, which is coin-shaped in the high-resolution X-ray structure. This similarity suggests that prothrombin binding could be sterically limited.

  5. Studies on the biotin-binding site of avidin. Minimized fragments that bind biotin.

    PubMed

    Hiller, Y; Bayer, E A; Wilchek, M

    1991-09-01

    The object of this study was to define minimized biotin-binding fragments, or 'prorecognition sites', of either the egg-white glycoprotein avidin or its bacterial analogue streptavidin. Because of the extreme stability to enzymic hydrolysis, fragments of avidin were prepared by chemical means and examined for their individual biotin-binding capacity. Treatment of avidin with hydroxylamine was shown to result in new cleavage sites in addition to the known Asn-Gly cleavage site (position 88-89 in avidin). Notably, the Asn-Glu and Asp-Lys peptide bonds (positions 42-43 and 57-58 respectively) were readily cleaved; in addition, lesser levels of hydrolysis of the Gln-Pro (61-62) and Asn-Asp (12-13 and 104-105) bonds could be detected. The smallest biotin-binding peptide fragment, derived from hydroxylamine cleavage of either native or non-glycosylated avidin, was identified to comprise residues 1-42. CNBr cleavage resulted in a 78-amino acid-residue fragment (residues 19-96) that still retained activity. The data ascribe an important biotin-binding function to the overlapping region (residues 19-42) of avidin, which bears the single tyrosine moiety. This contention was corroborated by synthesizing a tridecapeptide corresponding to residues 26-38 of avidin; this peptide was shown to recognize biotin. Streptavidin was not susceptible to either enzymic or chemical cleavage methods used in this work. The approach taken in this study enabled the experimental distinction between the chemical and structural elements of the binding site. The capacity to assign biotin-binding activity to the tyrosine-containing domain of avidin underscores its primary chemical contribution to the binding of biotin by avidin.

  6. Studies on the biotin-binding site of avidin. Minimized fragments that bind biotin.

    PubMed Central

    Hiller, Y; Bayer, E A; Wilchek, M

    1991-01-01

    The object of this study was to define minimized biotin-binding fragments, or 'prorecognition sites', of either the egg-white glycoprotein avidin or its bacterial analogue streptavidin. Because of the extreme stability to enzymic hydrolysis, fragments of avidin were prepared by chemical means and examined for their individual biotin-binding capacity. Treatment of avidin with hydroxylamine was shown to result in new cleavage sites in addition to the known Asn-Gly cleavage site (position 88-89 in avidin). Notably, the Asn-Glu and Asp-Lys peptide bonds (positions 42-43 and 57-58 respectively) were readily cleaved; in addition, lesser levels of hydrolysis of the Gln-Pro (61-62) and Asn-Asp (12-13 and 104-105) bonds could be detected. The smallest biotin-binding peptide fragment, derived from hydroxylamine cleavage of either native or non-glycosylated avidin, was identified to comprise residues 1-42. CNBr cleavage resulted in a 78-amino acid-residue fragment (residues 19-96) that still retained activity. The data ascribe an important biotin-binding function to the overlapping region (residues 19-42) of avidin, which bears the single tyrosine moiety. This contention was corroborated by synthesizing a tridecapeptide corresponding to residues 26-38 of avidin; this peptide was shown to recognize biotin. Streptavidin was not susceptible to either enzymic or chemical cleavage methods used in this work. The approach taken in this study enabled the experimental distinction between the chemical and structural elements of the binding site. The capacity to assign biotin-binding activity to the tyrosine-containing domain of avidin underscores its primary chemical contribution to the binding of biotin by avidin. Images Fig. 1. Fig. 2. Fig. 3. Fig. 6. Fig. 7. Fig. 9. PMID:1898347

  7. Opioid binding site in EL-4 thymoma cell line

    SciTech Connect

    Fiorica, E.; Spector, S.

    1988-01-01

    Using EL-4 thymoma cell-line we found a binding site similar to the k opioid receptor of the nervous system. The Scatchard analysis of the binding of (/sup 3/H) bremazocine indicated a single site with a K/sub D/ = 60 +/- 17 nM and Bmax = 2.7 +/- 0.8 pmols/10/sup 6/ cells. To characterize this binding site, competition studies were performed using selective compounds for the various opioid receptors. The k agonist U-50,488H was the most potent displacer of (/sup 3/H) bremazocine with an IC/sub 50/ value = 0.57..mu..M. The two steroisomers levorphanol and dextrorphan showed the same affinity for this site. While morphine, (D-Pen/sup 2/, D-Pen/sup 5/) enkephalin and ..beta..-endorphin failed to displace, except at very high concentrations, codeine demonstrated a IC/sub 50/ = 60..mu..M, that was similar to naloxone. 32 references, 3 figures, 2 tables.

  8. N2 Binding to an Iron-Sulfur-Carbon Site

    PubMed Central

    Čorić, Ilija; Mercado, Brandon Q.; Bill, Eckhard; Vinyard, David J.; Holland, Patrick L.

    2015-01-01

    Nitrogenases are found in some microorganisms, and these enzymes convert atmospheric N2 to ammonia, thereby providing essential nitrogen atoms for higher organisms. Some nitrogenases reduce atmospheric N2 at the FeMoco, a sulfur-rich iron-molybdenum cluster1–5. The iron centers that are coordinated to sulfur and carbon atoms in FeMoco have been proposed as the substrate binding sites, based on kinetic and spectroscopic studies5,6. Studies on the enzyme indicate that iron atom Fe6 and possibly also adjacent belt iron sites are involved.5–8 In the resting state, the central Fe sites (including Fe6) have identical environments consisting of three sulfides and a carbide. Addition of electrons to the resting state causes the FeMoco to react with N2, but the geometry and bonding environment of N2-bound species remain unknown5. In this manuscript, we describe a synthetic complex with a sulfur-rich coordination sphere that, upon reduction, breaks an Fe-S bond and binds N2. The product is the first synthetic Fe–N2 complex in which iron has bonds to sulfur and carbon atoms, providing a model for N2 coordination in the FeMoco. Our results demonstrate that breaking an Fe-S bond is a chemically reasonable route to N2 binding in the FeMoco, and show structural and spectroscopic details for weakened N2 on a sulfur-rich iron site. PMID:26416755

  9. Distinct OGT-Binding Sites Promote HCF-1 Cleavage

    PubMed Central

    Bhuiyan, Tanja; Waridel, Patrice; Kapuria, Vaibhav; Zoete, Vincent; Herr, Winship

    2015-01-01

    Human HCF-1 (also referred to as HCFC-1) is a transcriptional co-regulator that undergoes a complex maturation process involving extensive O-GlcNAcylation and site-specific proteolysis. HCF-1 proteolysis results in two active, noncovalently associated HCF-1N and HCF-1C subunits that regulate distinct phases of the cell-division cycle. HCF-1 O-GlcNAcylation and site-specific proteolysis are both catalyzed by O-GlcNAc transferase (OGT), which thus displays an unusual dual enzymatic activity. OGT cleaves HCF-1 at six highly conserved 26 amino acid repeat sequences called HCF-1PRO repeats. Here we characterize the substrate requirements for OGT cleavage of HCF-1. We show that the HCF-1PRO-repeat cleavage signal possesses particular OGT-binding properties. The glutamate residue at the cleavage site that is intimately involved in the cleavage reaction specifically inhibits association with OGT and its bound cofactor UDP-GlcNAc. Further, we identify a novel OGT-binding sequence nearby the first HCF-1PRO-repeat cleavage signal that enhances cleavage. These results demonstrate that distinct OGT-binding sites in HCF-1 promote proteolysis, and provide novel insights into the mechanism of this unusual protease activity. PMID:26305326

  10. Assembly of a π-π stack of ligands in the binding site of an acetylcholine-binding protein.

    PubMed

    Stornaiuolo, Mariano; De Kloe, Gerdien E; Rucktooa, Prakash; Fish, Alexander; van Elk, René; Edink, Ewald S; Bertrand, Daniel; Smit, August B; de Esch, Iwan J P; Sixma, Titia K

    2013-01-01

    Acetylcholine-binding protein is a water-soluble homologue of the extracellular ligand-binding domain of cys-loop receptors. It is used as a structurally accessible prototype for studying ligand binding to these pharmaceutically important pentameric ion channels, in particular to nicotinic acetylcholine receptors, due to conserved binding site residues present at the interface between two subunits. Here we report that an aromatic conjugated small molecule binds acetylcholine-binding protein in an ordered π-π stack of three identical molecules per binding site, two parallel and one antiparallel. Acetylcholine-binding protein stabilizes the assembly of the stack by aromatic contacts. Thanks to the plasticity of its ligand-binding site, acetylcholine-binding protein can accommodate the formation of aromatic stacks of different size by simple loop repositioning and minimal adjustment of the interactions. This type of supramolecular binding provides a novel paradigm in drug design.

  11. Antioxidant and Membrane Binding Properties of Serotonin Protect Lipids from Oxidation.

    PubMed

    Azouzi, Slim; Santuz, Hubert; Morandat, Sandrine; Pereira, Catia; Côté, Francine; Hermine, Olivier; El Kirat, Karim; Colin, Yves; Le Van Kim, Caroline; Etchebest, Catherine; Amireault, Pascal

    2017-05-09

    Serotonin (5-hydroxytryptamine, 5-HT) is a well-known neurotransmitter that is involved in a growing number of functions in peripheral tissues. Recent studies have shown nonpharmacological functions of 5-HT linked to its chemical properties. Indeed, it was reported that 5-HT may, on the one hand, bind lipid membranes and, on the other hand, protect red blood cells through a mechanism independent of its specific receptors. To better understand these underevaluated properties of 5-HT, we combined biochemical, biophysical, and molecular dynamics simulations approaches to characterize, at the molecular level, the antioxidant capacity of 5-HT and its interaction with lipid membranes. To do so, 5-HT was added to red blood cells and lipid membranes bearing different degrees of unsaturation. Our results demonstrate that 5-HT acts as a potent antioxidant and binds with a superior affinity to lipids with unsaturation on both alkyl chains. We show that 5-HT locates at the hydrophobic-hydrophilic interface, below the glycerol group. This interfacial location is stabilized by hydrogen bonds between the 5-HT hydroxyl group and lipid headgroups and allows 5-HT to intercept reactive oxygen species, preventing membrane oxidation. Experimental and molecular dynamics simulations using membrane enriched with oxidized lipids converge to further reveal that 5-HT contributes to the termination of lipid peroxidation by direct interaction with active groups of these lipids and could also contribute to limit the production of new radicals. Taken together, our results identify 5-HT as a potent inhibitor of lipid peroxidation and offer a different perspective on the role of this pleiotropic molecule. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  12. Noble gas binding to human serum albumin using docking simulation: nonimmobilizers and anesthetics bind to different sites.

    PubMed

    Seto, Tomoyoshi; Isogai, Hideto; Ozaki, Masayuki; Nosaka, Shuichi

    2008-10-01

    Nonimmobilizers are structurally similar to anesthetics, but do not produce anesthesia at clinically relevant concentrations. Xenon, krypton, and argon are anesthetics, whereas neon and helium are nonimmobilizers. The structures of noble gases with anesthetics or nonimmobilizers are similar and their interactions are simple. Whether the binding site of anesthetics differs from that of nonimmobilizers has long been a question in molecular anesthesiology. We investigated the binding sites and energies of anesthetic and nonimmobilizer noble gases in human serum albumin (HSA) because the 3D structure of HSA is well known and it has an anesthetic binding site. The computational docking simulation we used searches for binding sites and calculates the binding energy for small molecules and a template molecule. Xenon, krypton, and argon were found to bind to the enflurane binding site of HSA, whereas neon and helium were found to bind to sites different from the xenon binding site. Rare gas anesthetic binding was dominated by van der Waals energy, while nonimmobilizer binding was dominated by solvent-effect energy. Binding site preference was determined by the ratios of local binding energy (van der Waals energy) and nonspecific binding energy (solvent-effect energy) to the total binding energy. van der Waals energy dominance is necessary for anesthetic binding. This analysis of binding energy components provides a rationale for the binding site difference of anesthetics and nonimmobilizers, reveals the differences between the binding interactions of anesthetics and nonimmobilizers, may explain pharmacological differences between anesthetics and nonimmobilizers, and provide an understanding of anesthetic action at the atomic level.

  13. Exploration of binding site pattern in arachidonic acid metabolizing enzymes, Cyclooxygenases and Lipoxygenases.

    PubMed

    Reddy, Kakularam Kumar; Vidya Rajan, Veena Kumari; Gupta, Ashish; Aparoy, Polamarasetty; Reddanna, Pallu

    2015-04-16

    Cyclooxygenase (COXs) and Lipoxygenase (LOXs) pathways are the two major enzymatic pathways in arachidonic acid (AA) metabolism. The term eicosanoid is used to describe biologically active lipid mediators including prostaglandins, thromboxanes, leukotrienes and other oxygenated derivatives, which are produced primarily from AA. Eicosanoids generated in a tissue specific manner play a key role in inflammation and cancer. As AA is the substrate common to variety of COXs and LOXs, inhibition of one pathway results in diversion of the substrate to other pathways, which often is responsible for undesirable side effects. Hence there is need for development of not only isozyme specific inhibitors but also dual/multi enzyme inhibitors. Understanding the interactions of AA and characterizing its binding sites in these enzymes therefore is crucial for developing enzyme specific and multi enzyme inhibitors for enhancing therapeutic efficacy and/or overcoming side effects. AA binding sites in COXs and LOXs are identified and compared by the development of receptor based pharmacophore using MultiBind. Physico chemical properties were compared to understand the details of the binding sites in all the enzymes and to elucidate important amino acids that can be targeted for drug design. The alignment of AA binding sites in the seven enzymes COX-1, COX-2, 5-LOX, 12-LOX, 15-LOX and plant soybean LOX-1 and LOX-3 indicated a common pattern of five common interacting groups. In the same way, comparison of AA binding sites was done pair wise and by multiple alignment in various combinations. It has been identified that aliphatic and aromatic interactions are the most common in all the enzymes. In addition interactions unique to each one of these enzymes were identified. The complete analysis of AA binding sites in the seven enzymes was performed; 120 combinations for the seven enzymes were studied in detail. All the seven enzymes are structurally quite different, yet they share AA as the

  14. Structure of a lipid A phosphoethanolamine transferase suggests how conformational changes govern substrate binding.

    PubMed

    Anandan, Anandhi; Evans, Genevieve L; Condic-Jurkic, Karmen; O'Mara, Megan L; John, Constance M; Phillips, Nancy J; Jarvis, Gary A; Wills, Siobhan S; Stubbs, Keith A; Moraes, Isabel; Kahler, Charlene M; Vrielink, Alice

    2017-02-28

    Multidrug-resistant (MDR) gram-negative bacteria have increased the prevalence of fatal sepsis in modern times. Colistin is a cationic antimicrobial peptide (CAMP) antibiotic that permeabilizes the bacterial outer membrane (OM) and has been used to treat these infections. The OM outer leaflet is comprised of endotoxin containing lipid A, which can be modified to increase resistance to CAMPs and prevent clearance by the innate immune response. One type of lipid A modification involves the addition of phosphoethanolamine to the 1 and 4' headgroup positions by phosphoethanolamine transferases. Previous structural work on a truncated form of this enzyme suggested that the full-length protein was required for correct lipid substrate binding and catalysis. We now report the crystal structure of a full-length lipid A phosphoethanolamine transferase from Neisseria meningitidis, determined to 2.75-Å resolution. The structure reveals a previously uncharacterized helical membrane domain and a periplasmic facing soluble domain. The domains are linked by a helix that runs along the membrane surface interacting with the phospholipid head groups. Two helices located in a periplasmic loop between two transmembrane helices contain conserved charged residues and are implicated in substrate binding. Intrinsic fluorescence, limited proteolysis, and molecular dynamics studies suggest the protein may sample different conformational states to enable the binding of two very different- sized lipid substrates. These results provide insights into the mechanism of endotoxin modification and will aid a structure-guided rational drug design approach to treating multidrug-resistant bacterial infections.

  15. Positive cooperative regulation of double binding sites for human acetylcholinesterase.

    PubMed

    Liu, Hao; Ye, Wei; Chen, Hai-Feng

    2016-10-25

    Acetylcholinesterase is a potent enzyme that regulates neurotransmission by rapidly hydrolyzing the neurotransmitter acetylcholine in synapses of the nervous system. As drug target of anti-AD, it has catalytic and peripheral anionic sites. However, the regulation relation between these two sites is unclear. Therefore, we constructed dynamics fluctuation network based on all-atom molecular dynamics simulations to reveal the regulation mechanism. The results suggest that the correlation network in double-site system (hAChE/TZ5) is distinctly different from that in the free state and single-site systems (hAChE/huprine and hAChE/1YL). The community network analysis indicates that the information freely transfers from the peripheral anionic site to the catalytic active site in hAChE/TZ5. Furthermore, the binding free energy between the inhibitor and hAChE for hAChE/TZ5 is significantly lower than of either hAChE/huprine or hAChE/1YL. Thus, a hypothesis of 'positive cooperative regulation' is proposed for the regulation of double binding sites and further confirmed by the weakening and mutation community analyses. Finally, one possible cooperative regulation pathway of W86-TZ5-W286 was identified based on the shortest path algorithm and was confirmed by the network perturbation analysis. Interestingly, the regulation pathway for single-site systems is significantly different from that of dual-site system. The process targeting on the shortest pathway can better regulate the hydrolyzing the neurotransmitter acetylcholine and significantly inhibit the aggregation of Aβ amyloid.

  16. Discovery of the ammonium substrate site on glutamine synthetase, a third cation binding site.

    PubMed Central

    Liaw, S. H.; Kuo, I.; Eisenberg, D.

    1995-01-01

    Glutamine synthetase (GS) catalyzes the ATP-dependent condensation of ammonia and glutamate to yield glutamine, ADP, and inorganic phosphate in the presence of divalent cations. Bacterial GS is an enzyme of 12 identical subunits, arranged in two rings of 6, with the active site between each pair of subunits in a ring. In earlier work, we have reported the locations within the funnel-shaped active site of the substrates glutamate and ATP and of the two divalent cations, but the site for ammonia (or ammonium) has remained elusive. Here we report the discovery by X-ray crystallography of a binding site on GS for monovalent cations, Tl+ and Cs+, which is probably the binding site for the substrate ammonium ion. Fourier difference maps show the following. (1) Tl+ and Cs+ bind at essentially the same site, with ligands being Glu 212, Tyr 179, Asp 50', Ser 53' of the adjacent subunit, and the substrate glutamate. From its position adjacent to the substrate glutamate and the cofactor ADP, we propose that this monovalent cation site is the substrate ammonium ion binding site. This proposal is supported by enzyme kinetics. Our kinetic measurements show that Tl+, Cs+, and NH4+ are competitive inhibitors to NH2OH in the gamma-glutamyl transfer reaction. (2) GS is a trimetallic enzyme containing two divalent cation sites (n1, n2) and one monovalent cation site per subunit. These three closely spaced ions are all at the active site: the distance between n1 and n2 is 6 A, between n1 and Tl+ is 4 A, and between n2 and Tl+ is 7 A. Glu 212 and the substrate glutamate are bridging ligands for the n1 ion and Tl+. (3) The presence of a monovalent cation in this site may enhance the structural stability of GS, because of its effect of balancing the negative charges of the substrate glutamate and its ligands and because of strengthening the "side-to-side" intersubunit interaction through the cation-protein bonding. (4) The presence of the cofactor ADP increases the Tl+ binding to GS

  17. Structural Analysis Uncovers Lipid-Binding Properties of Notch Ligands

    PubMed Central

    Chillakuri, Chandramouli R.; Sheppard, Devon; Ilagan, Ma. Xenia G.; Holt, Laurie R.; Abbott, Felicity; Liang, Shaoyan; Kopan, Raphael; Handford, Penny A.; Lea, Susan M.

    2013-01-01

    Summary The Notch pathway is a core cell-cell signaling system in metazoan organisms with key roles in cell-fate determination, stem cell maintenance, immune system activation, and angiogenesis. Signals are initiated by extracellular interactions of the Notch receptor with Delta/Serrate/Lag-2 (DSL) ligands, whose structure is highly conserved throughout evolution. To date, no structure or activity has been associated with the extreme N termini of the ligands, even though numerous mutations in this region of Jagged-1 ligand lead to human disease. Here, we demonstrate that the N terminus of human Jagged-1 is a C2 phospholipid recognition domain that binds phospholipid bilayers in a calcium-dependent fashion. Furthermore, we show that this activity is shared by a member of the other class of Notch ligands, human Delta-like-1, and the evolutionary distant Drosophila Serrate. Targeted mutagenesis of Jagged-1 C2 domain residues implicated in calcium-dependent phospholipid binding leaves Notch interactions intact but can reduce Notch activation. These results reveal an important and previously unsuspected role for phospholipid recognition in control of this key signaling system. PMID:24239355

  18. Dimer interface of bovine cytochrome c oxidase is influenced by local posttranslational modifications and lipid binding.

    PubMed

    Liko, Idlir; Degiacomi, Matteo T; Mohammed, Shabaz; Yoshikawa, Shinya; Schmidt, Carla; Robinson, Carol V

    2016-07-19

    Bovine cytochrome c oxidase is an integral membrane protein complex comprising 13 protein subunits and associated lipids. Dimerization of the complex has been proposed; however, definitive evidence for the dimer is lacking. We used advanced mass spectrometry methods to investigate the oligomeric state of cytochrome c oxidase and the potential role of lipids and posttranslational modifications in its subunit interfaces. Mass spectrometry of the intact protein complex revealed that both the monomer and the dimer are stabilized by large lipid entities. We identified these lipid species from the purified protein complex, thus implying that they interact specifically with the enzyme. We further identified phosphorylation and acetylation sites of cytochrome c oxidase, located in the peripheral subunits and in the dimer interface, respectively. Comparing our phosphorylation and acetylation sites with those found in previous studies of bovine, mouse, rat, and human cytochrome c oxidase, we found that whereas some acetylation sites within the dimer interface are conserved, suggesting a role for regulation and stabilization of the dimer, phosphorylation sites were less conserved and more transient. Our results therefore provide insights into the locations and interactions of lipids with acetylated residues within the dimer interface of this enzyme, and thereby contribute to a better understanding of its structure in the natural membrane. Moreover dimeric cytochrome c oxidase, comprising 20 transmembrane, six extramembrane subunits, and associated lipids, represents the largest integral membrane protein complex that has been transferred via electrospray intact into the gas phase of a mass spectrometer, representing a significant technological advance.

  19. Components of the macrolide binding site on the ribosome.

    PubMed

    Tejedor, F; Ballesta, J P

    1985-07-01

    Carbomycin A, niddamycin and tylosin, macrolide antibiotics that inhibit ribosomal activity, have alpha-beta unsaturated ketone groups in their structure that make them photoreactive. These drugs can also take part in thermic reactions, probably through an addition mechanism to the double bond. Given of the photoactivity and thermic reactivity of their molecules, affinity labeling of the macrolide binding site on the ribosome has been performed using radioactive derivatives of these drugs. After either irradiating or incubating samples containing antibiotics and ribosomal particles, radioactivity appears covalent associated to the proteins. Ribosomal protein L27 is the major labeled component, indicating that this polypeptide, which seems to be part of the peptidyl transferase centre of the ribosome, also plays an important role on the macrolide binding site.

  20. Identifying and quantifying two ligand-binding sites while imaging native human membrane receptors by AFM

    NASA Astrophysics Data System (ADS)

    Pfreundschuh, Moritz; Alsteens, David; Wieneke, Ralph; Zhang, Cheng; Coughlin, Shaun R.; Tampé, Robert; Kobilka, Brian K.; Müller, Daniel J.

    2015-11-01

    A current challenge in life sciences is to image cell membrane receptors while characterizing their specific interactions with various ligands. Addressing this issue has been hampered by the lack of suitable nanoscopic methods. Here we address this challenge and introduce multifunctional high-resolution atomic force microscopy (AFM) to image human protease-activated receptors (PAR1) in the functionally important lipid membrane and to simultaneously localize and quantify their binding to two different ligands. Therefore, we introduce the surface chemistry to bifunctionalize AFM tips with the native receptor-activating peptide and a tris-N-nitrilotriacetic acid (tris-NTA) group binding to a His10-tag engineered to PAR1. We further introduce ways to discern between the binding of both ligands to different receptor sites while imaging native PAR1s. Surface chemistry and nanoscopic method are applicable to a range of biological systems in vitro and in vivo and to concurrently detect and localize multiple ligand-binding sites at single receptor resolution.

  1. Identifying and quantifying two ligand-binding sites while imaging native human membrane receptors by AFM

    PubMed Central

    Pfreundschuh, Moritz; Alsteens, David; Wieneke, Ralph; Zhang, Cheng; Coughlin, Shaun R.; Tampé, Robert; Kobilka, Brian K.; Müller, Daniel J.

    2015-01-01

    A current challenge in life sciences is to image cell membrane receptors while characterizing their specific interactions with various ligands. Addressing this issue has been hampered by the lack of suitable nanoscopic methods. Here we address this challenge and introduce multifunctional high-resolution atomic force microscopy (AFM) to image human protease-activated receptors (PAR1) in the functionally important lipid membrane and to simultaneously localize and quantify their binding to two different ligands. Therefore, we introduce the surface chemistry to bifunctionalize AFM tips with the native receptor-activating peptide and a tris-N-nitrilotriacetic acid (tris-NTA) group binding to a His10-tag engineered to PAR1. We further introduce ways to discern between the binding of both ligands to different receptor sites while imaging native PAR1s. Surface chemistry and nanoscopic method are applicable to a range of biological systems in vitro and in vivo and to concurrently detect and localize multiple ligand-binding sites at single receptor resolution. PMID:26561004

  2. Identifying and quantifying two ligand-binding sites while imaging native human membrane receptors by AFM.

    PubMed

    Pfreundschuh, Moritz; Alsteens, David; Wieneke, Ralph; Zhang, Cheng; Coughlin, Shaun R; Tampé, Robert; Kobilka, Brian K; Müller, Daniel J

    2015-11-12

    A current challenge in life sciences is to image cell membrane receptors while characterizing their specific interactions with various ligands. Addressing this issue has been hampered by the lack of suitable nanoscopic methods. Here we address this challenge and introduce multifunctional high-resolution atomic force microscopy (AFM) to image human protease-activated receptors (PAR1) in the functionally important lipid membrane and to simultaneously localize and quantify their binding to two different ligands. Therefore, we introduce the surface chemistry to bifunctionalize AFM tips with the native receptor-activating peptide and a tris-N-nitrilotriacetic acid (tris-NTA) group binding to a His10-tag engineered to PAR1. We further introduce ways to discern between the binding of both ligands to different receptor sites while imaging native PAR1s. Surface chemistry and nanoscopic method are applicable to a range of biological systems in vitro and in vivo and to concurrently detect and localize multiple ligand-binding sites at single receptor resolution.

  3. Visualization of specific binding sites of benzodiazepine in human brain

    SciTech Connect

    Shinotoh, H.; Yamasaki, T.; Inoue, O.; Itoh, T.; Suzuki, K.; Hashimoto, K.; Tateno, Y.; Ikehira, H.

    1986-10-01

    Using 11C-labeled Ro15-1788 and positron emission tomography, studies of benzodiazepine binding sites in the human brain were performed on four normal volunteers. Rapid and high accumulation of 11C activity was observed in the brain after i.v. injection of (11C)Ro15-1788, the maximum of which was within 12 min. Initial distribution of 11C activity in the brain was similar to the distribution of the normal cerebral blood flow. Ten minutes after injection, however, a high uptake of 11C activity was observed in the cerebral cortex and moderate uptake was seen in the cerebellar cortex, the basal ganglia, and the thalamus. The accumulation of 11C activity was low in the brain stem. This distribution of 11C activity was approximately parallel to the known distribution of benzodiazepine receptors. Saturation experiments were performed on four volunteers with oral administration of 0.3-1.8 mg/kg of cold Ro15-1788 prior to injection. Initial distribution of 11C activity following injection peaked within 2 min and then the accumulation of 11C activity decreased rapidly and remarkably throughout the brain. The results indicated that (11C) Ro15-1788 associates and dissociates to specific and nonspecific binding sites rapidly and has a high ratio of specific receptor binding to nonspecific binding in vivo. Carbon-11 Ro15-1788 is a suitable radioligand for the study of benzodiazepine receptors in vivo in humans.

  4. Covalent attachment of functionalized lipid bilayers to planar waveguides for measuring protein binding to biomimetic membranes.

    PubMed Central

    Heyse, S.; Vogel, H.; Sänger, M.; Sigrist, H.

    1995-01-01

    A new method is presented for measuring sensitively the interactions between ligands and their membrane-bound receptors in situ using integrated optics, thus avoiding the need for additional labels. Phospholipid bilayers were attached covalently to waveguides by a novel protocol, which can in principle be used with any glass-like surface. In a first step, phospholipids carrying head-group thiols were covalently immobilized onto SiO2-TiO2 waveguide surfaces. This was accomplished by acylation of aminated waveguides with the heterobifunctional crosslinker N-succinimidyl-3-maleimidopropionate, followed by the formation of thioethers between the surface-grafted maleimides and the synthetic thiolipids. The surface-attached thiolipids served as hydrophobic templates and anchors for the deposition of a complete lipid bilayer either by fusion of lipid vesicles or by lipid self-assembly from mixed lipid/detergent micelles. The step-by-step lipid bilayer formation on the waveguide surface was monitored in situ by an integrated optics technique, allowing the simultaneous determination of optical thickness and one of the two refractive indices of the adsorbed organic layers. Surface coverages of 50-60% were calculated for thiolipid layers. Subsequent deposition of POPC resulted in an overall lipid layer thickness of 45-50 A, which corresponds to the thickness of a fluid bilayer membrane. Specific recognition reactions occurring at cell membrane surfaces were modeled by the incorporation of lipid-anchored receptor molecules into the supported bilayer membranes. (1) The outer POPC layer was doped with biotinylated phosphatidylethanolamine. Subsequent specific binding of streptavidin was optically monitored. (2) A lipopeptide was incorporated in the outer POPC monolayer. Membrane binding of monoclonal antibodies, which were directed against the peptide moiety of the lipopeptide, was optically detected. The specific antibody binding correlated well with the lipopepitde

  5. A Conserved Steroid Binding Site in Cytochrome c Oxidase

    SciTech Connect

    Qin, Ling; Mills, Denise A.; Buhrow, Leann; Hiser, Carrie; Ferguson-Miller, Shelagh

    2010-09-02

    Micromolar concentrations of the bile salt deoxycholate are shown to rescue the activity of an inactive mutant, E101A, in the K proton pathway of Rhodobacter sphaeroides cytochrome c oxidase. A crystal structure of the wild-type enzyme reveals, as predicted, deoxycholate bound with its carboxyl group at the entrance of the K path. Since cholate is a known potent inhibitor of bovine oxidase and is seen in a similar position in the bovine structure, the crystallographically defined, conserved steroid binding site could reveal a regulatory site for steroids or structurally related molecules that act on the essential K proton path.

  6. Minimal Zn2+ Binding Site of Amyloid-β

    PubMed Central

    Tsvetkov, Philipp O.; Kulikova, Alexandra A.; Golovin, Andrey V.; Tkachev, Yaroslav V.; Archakov, Alexander I.; Kozin, Sergey A.; Makarov, Alexander A.

    2010-01-01

    Zinc-induced aggregation of amyloid-β peptide (Aβ) is a hallmark molecular feature of Alzheimer's disease. Here we provide direct thermodynamic evidence that elucidates the role of the Aβ region 6–14 as the minimal Zn2+ binding site wherein the ion is coordinated by His6, Glu11, His13, and His14. With the help of isothermal titration calorimetry and quantum mechanics/molecular mechanics simulations, the region 11–14 was determined as the primary zinc recognition site and considered an important drug-target candidate to prevent Zn2+-induced aggregation of Aβ. PMID:21081056

  7. Minimal Zn(2+) binding site of amyloid-β.

    PubMed

    Tsvetkov, Philipp O; Kulikova, Alexandra A; Golovin, Andrey V; Tkachev, Yaroslav V; Archakov, Alexander I; Kozin, Sergey A; Makarov, Alexander A

    2010-11-17

    Zinc-induced aggregation of amyloid-β peptide (Aβ) is a hallmark molecular feature of Alzheimer's disease. Here we provide direct thermodynamic evidence that elucidates the role of the Aβ region 6-14 as the minimal Zn(2+) binding site wherein the ion is coordinated by His(6), Glu(11), His(13), and His(14). With the help of isothermal titration calorimetry and quantum mechanics/molecular mechanics simulations, the region 11-14 was determined as the primary zinc recognition site and considered an important drug-target candidate to prevent Zn(2+)-induced aggregation of Aβ.

  8. Cation binding sites on the projected structure of bacteriorhodopsin.

    PubMed

    Katre, N V; Kimura, Y; Stroud, R M

    1986-08-01

    Divalent cations are involved in the function of bacteriorhodopsin (bR) as a light-driven proton pump. If cations are removed from purple membranes they become blue. Divalent cations such as Ca2+ or Pb2+ or trivalent ions, can be stoichiometrically titrated back on to these deionized membranes. The color transitions as a function of ion concentration for Ca2+ or Pb2+ are precisely comparable and indicate that approximately three stoichiometric equivalents of cations are required to effect the color transition (Kimura et al., 1984). We found four main partially occupied binding sites for cations at a stoichiometric ratio of 3 Pb2+/bR. We localized the binding sites for Pb2+ using x-ray diffraction of membranes reconstituted with 1, 2, and 3 equivalents of Pb2+ per bR. The site of highest affinity is located on helix 7. At 2 Pb2+/bR, sites on helix 6 and between helix 2 and 3 are occupied. At 3 Pb2+/bR a fourth site above helix 3 is occupied.

  9. Analysis of zinc binding sites in protein crystal structures.

    PubMed Central

    Alberts, I. L.; Nadassy, K.; Wodak, S. J.

    1998-01-01

    The geometrical properties of zinc binding sites in a dataset of high quality protein crystal structures deposited in the Protein Data Bank have been examined to identify important differences between zinc sites that are directly involved in catalysis and those that play a structural role. Coordination angles in the zinc primary coordination sphere are compared with ideal values for each coordination geometry, and zinc coordination distances are compared with those in small zinc complexes from the Cambridge Structural Database as a guide of expected trends. We find that distances and angles in the primary coordination sphere are in general close to the expected (or ideal) values. Deviations occur primarily for oxygen coordinating atoms and are found to be mainly due to H-bonding of the oxygen coordinating ligand to protein residues, bidentate binding arrangements, and multi-zinc sites. We find that H-bonding of oxygen containing residues (or water) to zinc bound histidines is almost universal in our dataset and defines the elec-His-Zn motif. Analysis of the stereochemistry shows that carboxyl elec-His-Zn motifs are geometrically rigid, while water elec-His-Zn motifs show the most geometrical variation. As catalytic motifs have a higher proportion of carboxyl elec atoms than structural motifs, they provide a more rigid framework for zinc binding. This is understood biologically, as a small distortion in the zinc position in an enzyme can have serious consequences on the enzymatic reaction. We also analyze the sequence pattern of the zinc ligands and residues that provide elecs, and identify conserved hydrophobic residues in the endopeptidases that also appear to contribute to stabilizing the catalytic zinc site. A zinc binding template in protein crystal structures is derived from these observations. PMID:10082367

  10. Cloud Computing for Protein-Ligand Binding Site Comparison

    PubMed Central

    2013-01-01

    The proteome-wide analysis of protein-ligand binding sites and their interactions with ligands is important in structure-based drug design and in understanding ligand cross reactivity and toxicity. The well-known and commonly used software, SMAP, has been designed for 3D ligand binding site comparison and similarity searching of a structural proteome. SMAP can also predict drug side effects and reassign existing drugs to new indications. However, the computing scale of SMAP is limited. We have developed a high availability, high performance system that expands the comparison scale of SMAP. This cloud computing service, called Cloud-PLBS, combines the SMAP and Hadoop frameworks and is deployed on a virtual cloud computing platform. To handle the vast amount of experimental data on protein-ligand binding site pairs, Cloud-PLBS exploits the MapReduce paradigm as a management and parallelizing tool. Cloud-PLBS provides a web portal and scalability through which biologists can address a wide range of computer-intensive questions in biology and drug discovery. PMID:23762824

  11. Two mechanisms of ion selectivity in protein binding sites.

    PubMed

    Yu, Haibo; Noskov, Sergei Yu; Roux, Benoît

    2010-11-23

    A theoretical framework is presented to clarify the molecular determinants of ion selectivity in protein binding sites. The relative free energy of a bound ion is expressed in terms of the main coordinating ligands coupled to an effective potential of mean force representing the influence of the rest of the protein. The latter is separated into two main contributions. The first includes all the forces keeping the ion and the coordinating ligands confined to a microscopic subvolume but does not prevent the ligands from adapting to a smaller or larger ion. The second regroups all the remaining forces that control the precise geometry of the coordinating ligands best adapted to a given ion. The theoretical framework makes it possible to delineate two important limiting cases. In the limit where the geometric forces are dominant (rigid binding site), ion selectivity is controlled by the ion-ligand interactions within the matching cavity size according to the familiar "snug-fit" mechanism of host-guest chemistry. In the limit where the geometric forces are negligible, the ion and ligands behave as a "confined microdroplet" that is free to fluctuate and adapt to ions of different sizes. In this case, ion selectivity is set by the interplay between ion-ligand and ligand-ligand interactions and is controlled by the number and the chemical type of ion-coordinating ligands. The framework is illustrated by considering the ion-selective binding sites in the KcsA channel and the LeuT transporter.

  12. Cloud computing for protein-ligand binding site comparison.

    PubMed

    Hung, Che-Lun; Hua, Guan-Jie

    2013-01-01

    The proteome-wide analysis of protein-ligand binding sites and their interactions with ligands is important in structure-based drug design and in understanding ligand cross reactivity and toxicity. The well-known and commonly used software, SMAP, has been designed for 3D ligand binding site comparison and similarity searching of a structural proteome. SMAP can also predict drug side effects and reassign existing drugs to new indications. However, the computing scale of SMAP is limited. We have developed a high availability, high performance system that expands the comparison scale of SMAP. This cloud computing service, called Cloud-PLBS, combines the SMAP and Hadoop frameworks and is deployed on a virtual cloud computing platform. To handle the vast amount of experimental data on protein-ligand binding site pairs, Cloud-PLBS exploits the MapReduce paradigm as a management and parallelizing tool. Cloud-PLBS provides a web portal and scalability through which biologists can address a wide range of computer-intensive questions in biology and drug discovery.

  13. Creating BHb-imprinted magnetic nanoparticles with multiple binding sites.

    PubMed

    Li, Yanxia; Chen, Yiting; Huang, Lu; Lou, BenYong; Chen, Guonan

    2017-01-16

    A kind of protein imprinted over magnetic Fe3O4@Au multifunctional nanoparticles (NPs) with multiple binding sites was synthesized and investigated. Magnetic Fe3O4@Au NPs as carrier materials were modified with 4-mercaptophenylboronic acid (MPBA) and mercaptopropionic acid (MPA) to introduce boronic acids and carboxyl groups. Using Bovine Hemoglobin (BHb) as a template, a polydopamine(PDA)-based molecular imprinted film was fabricated to produce a kind of magnetic molecularly imprinted nanoparticle (MMIP), possessing multiple binding sites with benzene-diol, amino groups, boronic acids and carboxyl groups. The MMIPs exhibited an excellent imprinting effect and adsorption capacity (89.65± 0.38 mg g(-1)) toward the template protein. The results show that the MMIPs reached saturated adsorption at 0.5 mg mL(-1) within 90 min. The synthesized MMIPs are suitable for the removal and enrichment of the template protein in proteomics. The strategy of multiple binding sites paves the way for the preparation of functional nanomaterials in molecular imprinting techniques.

  14. Galanthamine and non-competitive inhibitor binding to ACh-binding protein: evidence for a binding site on non α-subunit interfaces of heteromeric neuronal nicotinic receptors

    PubMed Central

    Hansen, Scott B.; Taylor, Palmer

    2007-01-01

    Rapid neurotransmission is mediated through a superfamily of Cys-loop receptors, that includes the nicotinic acetylcholine (nAChR), γ-aminobutyric-acid (GABAA/C), serotonin (5-HT3) and glycine receptors. A class of ligands, including galanthamine, local anesthetics and certain toxins, interact with nAChRs non-competitively. Suggested modes of action include blockade of the ion-channel, modulation from as yet undefined extracellular sites, stabilization of desensitized states, and association with annular or boundary lipid. Alignment of mammalian Cys-loop receptors show aromatic residues, found in the acetylcholine or ligand binding pocket of nAChRs, are conserved in all subunit interfaces of neuronal nAChRs, including subunit interfaces that are not formed by α subunits on the principal side of the transmitter binding site. The amino terminal domain containing the ligand recognition site is homologous to the soluble acetylcholine binding protein (AChBP) from mollusks, an established structural and functional surrogate. Herein we assess ligand specificity and employ X-ray crystallography with AChBP to demonstrate ligand interactions at subunit interfaces lacking vicinal cysteines (i.e., the non-α subunit interfaces in nAChRs). Non-competitive nicotinic ligands bind AChBP with high affinity (KD’s of 0.015 to 6 μM). We mutated the vicinal cysteines in loop C of AChBP to mimic the non-alpha subunit interfaces of neuronal nAChRs and other Cys loop receptors. Classical nicotinic agonists show a 10 to 40-fold reduction in binding affinity, whereas binding of ligands known to be non-competitive are not affected. X-ray structures of cocaine and galanthamine bound to AChBP (1.8 and 2.9 Å resolution respectively) reveal interactions deep within the subunit interface and the absence of a contact surface with the tip of loop C. Hence, in addition to channel blocking, non-competitive interactions with heteromeric neuronal nAChR appear to occur at the non-alpha subunit

  15. Binding sites of retinol and retinoic acid with serum albumins.

    PubMed

    Belatik, A; Hotchandani, S; Bariyanga, J; Tajmir-Riahi, H A

    2012-02-01

    Retinoids are effectively transported in the bloodstream via serum albumins. We report the complexation of bovine serum albumin (BSA) with retinol and retinoic acid at physiological conditions, using constant protein concentration and various retinoid contents. FTIR, CD and fluorescence spectroscopic methods and molecular modeling were used to analyze retinoid binding site, the binding constant and the effects of complexation on BSA stability and secondary structure. Structural analysis showed that retinoids bind BSA via hydrophilic and hydrophobic interactions with overall binding constants of K(Ret)(-BSA) = 5.3 (±0.8) × 10(6) M(-1) and K(Retac-BSA) = 2.3 (±0.4) × 10(6) M(-1). The number of bound retinoid molecules (n) was 1.20 (±0.2) for retinol and 1.8 (±0.3) for retinoic acid. Molecular modeling showed the participation of several amino acids in retinoid-BSA complexes stabilized by H-bonding network. The retinoid binding altered BSA conformation with a major reduction of α-helix from 61% (free BSA) to 36% (retinol-BSA) and 26% (retinoic acid-BSA) with an increase in turn and random coil structures indicating a partial protein unfolding. The results indicate that serum albumins are capable of transporting retinoids in vitro and in vivo.

  16. The Next Generation of Transcription Factor Binding Site Prediction

    PubMed Central

    Mathelier, Anthony; Wasserman, Wyeth W.

    2013-01-01

    Finding where transcription factors (TFs) bind to the DNA is of key importance to decipher gene regulation at a transcriptional level. Classically, computational prediction of TF binding sites (TFBSs) is based on basic position weight matrices (PWMs) which quantitatively score binding motifs based on the observed nucleotide patterns in a set of TFBSs for the corresponding TF. Such models make the strong assumption that each nucleotide participates independently in the corresponding DNA-protein interaction and do not account for flexible length motifs. We introduce transcription factor flexible models (TFFMs) to represent TF binding properties. Based on hidden Markov models, TFFMs are flexible, and can model both position interdependence within TFBSs and variable length motifs within a single dedicated framework. The availability of thousands of experimentally validated DNA-TF interaction sequences from ChIP-seq allows for the generation of models that perform as well as PWMs for stereotypical TFs and can improve performance for TFs with flexible binding characteristics. We present a new graphical representation of the motifs that convey properties of position interdependence. TFFMs have been assessed on ChIP-seq data sets coming from the ENCODE project, revealing that they can perform better than both PWMs and the dinucleotide weight matrix extension in discriminating ChIP-seq from background sequences. Under the assumption that ChIP-seq signal values are correlated with the affinity of the TF-DNA binding, we find that TFFM scores correlate with ChIP-seq peak signals. Moreover, using available TF-DNA affinity measurements for the Max TF, we demonstrate that TFFMs constructed from ChIP-seq data correlate with published experimentally measured DNA-binding affinities. Finally, TFFMs allow for the straightforward computation of an integrated TF occupancy score across a sequence. These results demonstrate the capacity of TFFMs to accurately model DNA

  17. Review: biogenesis of the multifunctional lipid droplet: lipids, proteins, and sites.

    PubMed

    Pol, Albert; Gross, Steven P; Parton, Robert G

    2014-03-03

    Lipid droplets (LDs) are ubiquitous dynamic organelles that store and supply lipids in all eukaryotic and some prokaryotic cells for energy metabolism, membrane synthesis, and production of essential lipid-derived molecules. Interest in the organelle's cell biology has exponentially increased over the last decade due to the link between LDs and prevalent human diseases and the discovery of new and unexpected functions of LDs. As a result, there has been significant recent progress toward understanding where and how LDs are formed, and the specific lipid pathways that coordinate LD biogenesis.

  18. Lipid Interaction Sites on Channels, Transporters and Receptors: Recent Insights from Molecular Dynamics Simulations

    PubMed Central

    Hedger, George; Sansom, Mark S. P.

    2017-01-01

    Lipid molecules are able to selectively interact with specific sites on integral membrane proteins, and modulate their structure and function. Identification and characterisation of these sites is of importance for our understanding of the molecular basis of membrane protein function and stability, and may facilitate the design of lipid-like drug molecules. Molecular dynamics simulations provide a powerful tool for the identification of these sites, complementing advances in membrane protein structural biology and biophysics. We describe recent notable biomolecular simulation studies which have identified lipid interaction sites on a range of different membrane proteins. The sites identified in these simulation studies agree well with those identified by complementary experimental techniques. This demonstrates the power of the molecular dynamics approach in the prediction and characterization of lipid interaction sites on integral membrane proteins. PMID:26946244

  19. Trimerization of the HIV Transmembrane Domain in Lipid Bilayers Modulates Broadly Neutralizing Antibody Binding.

    PubMed

    Reichart, Timothy M; Baksh, Michael M; Rhee, Jin-Kyu; Fiedler, Jason D; Sligar, Stephen G; Finn, M G; Zwick, Michael B; Dawson, Philip E

    2016-02-18

    The membrane-proximal external region (MPER) of HIV gp41 is an established target of antibodies that neutralize a broad range of HIV isolates. To evaluate the role of the transmembrane (TM) domain, synthetic MPER-derived peptides were incorporated into lipid nanoparticles using natural and designed TM domains, and antibody affinity was measured using immobilized and solution-based techniques. Peptides incorporating the native HIV TM domain exhibit significantly stronger interactions with neutralizing antibodies than peptides with a monomeric TM domain. Furthermore, a peptide with a trimeric, three-helix bundle TM domain recapitulates the binding profile of the native sequence. These studies suggest that neutralizing antibodies can bind the MPER when the TM domain is a three-helix bundle and this presentation could influence the binding of neutralizing antibodies to the virus. Lipid-bilayer presentation of viral antigens in Nanodiscs is a new platform for evaluating neutralizing antibodies.

  20. Direct GR Binding Sites Potentiate Clusters of TF Binding across the Human Genome.

    PubMed

    Vockley, Christopher M; D'Ippolito, Anthony M; McDowell, Ian C; Majoros, William H; Safi, Alexias; Song, Lingyun; Crawford, Gregory E; Reddy, Timothy E

    2016-08-25

    The glucocorticoid receptor (GR) binds the human genome at >10,000 sites but only regulates the expression of hundreds of genes. To determine the functional effect of each site, we measured the glucocorticoid (GC) responsive activity of nearly all GR binding sites (GBSs) captured using chromatin immunoprecipitation (ChIP) in A549 cells. 13% of GBSs assayed had GC-induced activity. The responsive sites were defined by direct GR binding via a GC response element (GRE) and exclusively increased reporter-gene expression. Meanwhile, most GBSs lacked GC-induced reporter activity. The non-responsive sites had epigenetic features of steady-state enhancers and clustered around direct GBSs. Together, our data support a model in which clusters of GBSs observed with ChIP-seq reflect interactions between direct and tethered GBSs over tens of kilobases. We further show that those interactions can synergistically modulate the activity of direct GBSs and may therefore play a major role in driving gene activation in response to GCs.

  1. Sec12 Binds to Sec16 at Transitional ER Sites

    PubMed Central

    Montegna, Elisabeth A.; Bhave, Madhura; Liu, Yang; Bhattacharyya, Dibyendu; Glick, Benjamin S.

    2012-01-01

    COPII vesicles bud from an ER domain known as the transitional ER (tER). Assembly of the COPII coat is initiated by the transmembrane guanine nucleotide exchange factor Sec12. In the budding yeast Pichia pastoris, Sec12 is concentrated at tER sites. Previously, we found that the tER localization of P. pastoris Sec12 requires a saturable binding partner. We now show that this binding partner is Sec16, a peripheral membrane protein that functions in ER export and tER organization. One line of evidence is that overexpression of Sec12 delocalizes Sec12 to the general ER, but simultaneous overexpression of Sec16 retains overexpressed Sec12 at tER sites. Additionally, when P. pastoris Sec12 is expressed in S. cerevisiae, the exogenous Sec12 localizes to the general ER, but when P. pastoris Sec16 is expressed in the same cells, the exogenous Sec12 is recruited to tER sites. In both of these experimental systems, the ability of Sec16 to recruit Sec12 to tER sites is abolished by deleting a C-terminal fragment of Sec16. Biochemical experiments confirm that this C-terminal fragment of Sec16 binds to the cytosolic domain of Sec12. Similarly, we demonstrate that human Sec12 is concentrated at tER sites, likely due to association with a C-terminal fragment of Sec16A. These results suggest that a Sec12–Sec16 interaction has a conserved role in ER export. PMID:22347445

  2. Binding of the C-terminal sterile alpha motif (SAM) domain of human p73 to lipid membranes.

    PubMed

    Barrera, Francisco N; Poveda, José A; González-Ros, José M; Neira, José L

    2003-11-21

    The alpha splice variant of p73 (p73alpha), a homologue of the tumor suppressor p53, has close to its C terminus a sterile alpha motif (SAM), SAMp73, that is thought to be involved in protein-protein interactions. Here, we report the lipid binding properties of this domain. Binding was assayed against zwitterionic (phosphatidylcholine) and anionic (phosphatidic acid) lipids and was studied by different biophysical techniques, namely, circular dichroism and fluorescence spectroscopies and differential scanning calorimetry. These techniques unambiguously indicate that SAMp73 binds to lipids. The binding involves protein surface attachment and partial membrane penetration, accompanied by changes in SAMp73 structure.

  3. Membrane Binding of HIV-1 Matrix Protein: Dependence on Bilayer Composition and Protein Lipidation

    PubMed Central

    Barros, Marilia; Nanda, Hirsh

    2016-01-01

    ABSTRACT By assembling in a protein lattice on the host's plasma membrane, the retroviral Gag polyprotein triggers formation of the viral protein/membrane shell. The MA domain of Gag employs multiple signals—electrostatic, hydrophobic, and lipid-specific—to bring the protein to the plasma membrane, thereby complementing protein-protein interactions, located in full-length Gag, in lattice formation. We report the interaction of myristoylated and unmyristoylated HIV-1 Gag MA domains with bilayers composed of purified lipid components to dissect these complex membrane signals and quantify their contributions to the overall interaction. Surface plasmon resonance on well-defined planar membrane models is used to quantify binding affinities and amounts of protein and yields free binding energy contributions, ΔG, of the various signals. Charge-charge interactions in the absence of the phosphatidylinositide PI(4,5)P2 attract the protein to acidic membrane surfaces, and myristoylation increases the affinity by a factor of 10; thus, our data do not provide evidence for a PI(4,5)P2 trigger of myristate exposure. Lipid-specific interactions with PI(4,5)P2, the major signal lipid in the inner plasma membrane, increase membrane attraction at a level similar to that of protein lipidation. While cholesterol does not directly engage in interactions, it augments protein affinity strongly by facilitating efficient myristate insertion and PI(4,5)P2 binding. We thus observe that the isolated MA protein, in the absence of protein-protein interaction conferred by the full-length Gag, binds the membrane with submicromolar affinities. IMPORTANCE Like other retroviral species, the Gag polyprotein of HIV-1 contains three major domains: the N-terminal, myristoylated MA domain that targets the protein to the plasma membrane of the host; a central capsid-forming domain; and the C-terminal, genome-binding nucleocapsid domain. These domains act in concert to condense Gag into a membrane

  4. Camptothecin-binding site in human serum albumin and protein transformations induced by drug binding.

    PubMed

    Fleury, F; Ianoul, A; Berjot, M; Feofanov, A; Alix, A J; Nabiev, I

    1997-07-14

    Circular dichroism (CD) and Raman spectroscopy were employed in order to locate a camptothecin (CPT)-binding site within human serum albumin (HSA) and to identify protein structural transformations induced by CPT binding. A competitive binding of CPT and 3'-azido-3'-deoxythymidine (a ligand occupying IIIA structural sub-domain of the protein) to HSA does not show any competition and demonstrates that the ligands are located in the different binding sites, whereas a HSA-bound CPT may be replaced by warfarin, occupying IIA structural sub-domain of the protein. Raman and CD spectra of HSA and HSA/CPT complexes show that the CPT-binding does not induce changes of the global protein secondary structure. On the other hand, Raman spectra reveal pronounced CPT-induced local structural modifications of the HSA molecule, involving changes in configuration of the two disulfide bonds and transfer of a single Trp-residue to hydrophilic environment. These data suggest that CPT is bound in the region of interdomain connections within the IIA structural domain of HSA and it induces relative movement of the protein structural domains.

  5. Sodium channel from rat brain. Reconstitution of voltage-dependent scorpion toxin binding in vesicles of defined lipid composition

    SciTech Connect

    Feller, D.J.; Talvenheimo, J.A.; Catterall, W.A.

    1985-09-25

    Purified sodium channels incorporated into phosphatidylcholine (PC) vesicles mediate neurotoxin-activated SSNa influx but do not bind the alpha-scorpion toxin from Leiurus quinquestriatus (LqTx) with high affinity. Addition of phosphatidylethanolamine (PE) or phosphatidylserine to the reconstitution mixture restores high affinity LqTx binding with KD = 1.9 nM for PC/PE vesicles at -90 mV and 36 degrees C in sucrose-substituted medium. Other lipids tested were markedly less effective. The binding of LqTx in vesicles of PC/PE (65:35) is sensitive to both the membrane potential formed by sodium gradients across the reconstituted vesicle membrane and the cation concentration in the extravesicular medium. Binding of LqTx is reduced 3- to 4-fold upon depolarization to 0 mV from -50 to -60 mV in experiments in which (Na+)out/(Na+)in is varied by changing (Na+)in or (Na+)out at constant extravesicular ionic strength. It is concluded that the purified sodium channel contains the receptor site for LqTx in functional form and that restoration of high affinity, voltage-dependent binding of LqTx by the purified sodium channel requires an appropriate ratio of PC to PE and/or phosphatidylserine in the vesicle membrane.

  6. Lipid binding by Escherichia coli pyruvate oxidase is disrupted by small alterations of the carboxyl-terminal region.

    PubMed

    Grabau, C; Chang, Y Y; Cronan, J E

    1989-07-25

    Escherichia coli pyruvate oxidase is a membrane-associated flavoprotein dehydrogenase which is greatly activated by lipids and detergents. The carboxyl-terminal region of the protein has been shown to play a critical role in the interaction with lipids. We report mutations generated by chemical and oligonucleotide-mediated site-directed mutagenesis of the poxB gene which result in enzymes defective in lipid activation. Nine mutants were isolated which encode enzymes with point mutations in the carboxyl-terminal segment of the protein. Two mutant lesions introduced termination codons giving enzymes lacking the last nine or three amino acids of the protein which were unable to interact with detergents in vitro and were unable to function in vivo. Of the missense mutants isolated, two were most informative. One was the substitution of Glu-564 with proline in the PoxB16 oxidase. This residue lies in the center of a putative lipid-binding amphipathic alpha-helix (Arg-558 to Thr-568) located close to the carboxyl terminus. Strains producing the PoxB16 oxidase were devoid of oxidase activity in vivo, the enzymes could not be activated by Triton X-100, and were activated poorly by phospholipids in vitro. These results indicated that the PoxB16 oxidase lacked normal lipid-binding ability. Another mutant oxidase (PoxB15) in which proline was substituted for Asp-560 at the beginning of the amphipathic alpha-helix had normal oxidase activity. These findings indicate that the amphipathic alpha-helix structure plays an essential role in the activation and lipid-binding properties of the enzyme. The second informative missense mutation was the substitution of the carboxyl-terminal arginine with glycine. This enzyme showed normal activation in vitro by phospholipids and some detergents, and somewhat reduced activity in vivo. This mutant enzyme appeared to dissociate from detergent vesicles more readily than does the normal enzyme. A model for the membrane interaction of the

  7. Protein-Binding RNA Aptamers Affect Molecular Interactions Distantly from Their Binding Sites

    PubMed Central

    Dupont, Daniel M.; Thuesen, Cathrine K.; Bøtkjær, Kenneth A.; Behrens, Manja A.; Dam, Karen; Sørensen, Hans P.; Pedersen, Jan S.; Ploug, Michael; Jensen, Jan K.; Andreasen, Peter A.

    2015-01-01

    Nucleic acid aptamer selection is a powerful strategy for the development of regulatory agents for molecular intervention. Accordingly, aptamers have proven their diligence in the intervention with serine protease activities, which play important roles in physiology and pathophysiology. Nonetheless, there are only a few studies on the molecular basis underlying aptamer-protease interactions and the associated mechanisms of inhibition. In the present study, we use site-directed mutagenesis to delineate the binding sites of two 2´-fluoropyrimidine RNA aptamers (upanap-12 and upanap-126) with therapeutic potential, both binding to the serine protease urokinase-type plasminogen activator (uPA). We determine the subsequent impact of aptamer binding on the well-established molecular interactions (plasmin, PAI-1, uPAR, and LRP-1A) controlling uPA activities. One of the aptamers (upanap-126) binds to the area around the C-terminal α-helix in pro-uPA, while the other aptamer (upanap-12) binds to both the β-hairpin of the growth factor domain and the kringle domain of uPA. Based on the mapping studies, combined with data from small-angle X-ray scattering analysis, we construct a model for the upanap-12:pro-uPA complex. The results suggest and highlight that the size and shape of an aptamer as well as the domain organization of a multi-domain protein such as uPA, may provide the basis for extensive sterical interference with protein ligand interactions considered distant from the aptamer binding site. PMID:25793507

  8. Molecular modelling and competition binding study of Br-noscapine and colchicine provide insight into noscapinoid-tubulin binding site.

    PubMed

    Naik, Pradeep K; Santoshi, Seneha; Rai, Ankit; Joshi, Harish C

    2011-06-01

    We have previously discovered the tubulin-binding anti-cancer properties of noscapine and its derivatives (noscapinoids). Here, we present three lines of evidence that noscapinoids bind at or near the well studied colchicine binding site of tubulin: (1) in silico molecular docking studies of Br-noscapine and noscapine yield highest docking score with the well characterised colchicine-binding site from the co-crystal structure; (2) the molecular mechanics-generalized Born/surface area (MM-GB/SA) scoring results ΔΔG(bind-cald) for both noscapine and Br-noscapine (3.915 and 3.025 kcal/mol) are in reasonably good agreement with our experimentally determined binding affinity (ΔΔG(bind-Expt) of 3.570 and 2.988 kcal/mol, derived from K(d) values); and (3) Br-noscapine competes with colchicine binding to tubulin. The simplest interpretation of these collective data is that Br-noscapine binds tubulin at a site overlapping with, or very close to colchicine-binding site of tubulin. Although we cannot rule out a formal possibility that Br-noscapine might bind to a site distinct and distant from the colchicine-binding site that might negatively influence the colchicine binding to tubulin.

  9. Defining the binding site of homotetrameric R67 dihydrofolate reductase and correlating binding enthalpy with catalysis.

    PubMed

    Strader, Michael Brad; Chopra, Shaileja; Jackson, Michael; Smiley, R Derike; Stinnett, Lori; Wu, Jun; Howell, Elizabeth E

    2004-06-15

    R67 dihydrofolate reductase (DHFR) is a novel protein that possesses 222 symmetry. A single active site pore traverses the length of the homotetramer. Although the 222 symmetry implies that four symmetry-related binding sites should exist for each substrate as well as each cofactor, isothermal titration calorimetry (ITC) studies indicate only two molecules bind. Three possible combinations include two dihydrofolate molecules, two NADPH molecules, or one substrate with one cofactor. The latter is the productive ternary complex. To evaluate the roles of A36, Y46, T51, G64, and V66 residues in binding and catalysis, a site-directed mutagenesis approach was employed. One mutation per gene produces four mutations per active site pore, which often result in large cumulative effects. Conservative mutations at these positions either eliminate the ability of the gene to confer trimethoprim resistance or have no effect on catalysis. This result, in conjunction with previous mutagenesis studies on K32, K33, S65, Q67, I68, and Y69 [Strader, M. B., et al. (2001) Biochemistry 40, 11344-11352; Hicks, S. N., et al. (2003) Biochemistry 42, 10569-10578; Park, H., et al. (1997) Protein Eng. 10, 1415-1424], allows mapping of the active site surface. Residues for which conservative mutations have large effects on binding and catalysis include K32, Q67, I68, and Y69. These residues form a stripe that establishes the ligand binding surface. Residues that accommodate conservative mutations that do not greatly affect catalysis include K33, Y46, T51, S65, and V66. Isothermal titration calorimetry studies were also conducted on many of the mutants described above to determine the enthalpy of folate binding to the R67 DHFR.NADPH complex. A linear correlation between this DeltaH value and log k(cat)/K(m) is observed. Since structural tightness appears to be correlated with the exothermicity of the binding interaction, this leads to the hypothesis that enthalpy-driven formation of the ternary

  10. The genomic binding sites of a noncoding RNA

    PubMed Central

    Simon, Matthew D.; Wang, Charlotte I.; Kharchenko, Peter V.; West, Jason A.; Chapman, Brad A.; Alekseyenko, Artyom A.; Borowsky, Mark L.; Kuroda, Mitzi I.; Kingston, Robert E.

    2011-01-01

    Long noncoding RNAs (lncRNAs) have important regulatory roles and can function at the level of chromatin. To determine where lncRNAs bind to chromatin, we developed capture hybridization analysis of RNA targets (CHART), a hybridization-based technique that specifically enriches endogenous RNAs along with their targets from reversibly cross-linked chromatin extracts. CHART was used to enrich the DNA and protein targets of endogenous lncRNAs from flies and humans. This analysis was extended to genome-wide mapping of roX2, a well-studied ncRNA involved in dosage compensation in Drosophila. CHART revealed that roX2 binds at specific genomic sites that coincide with the binding sites of proteins from the male-specific lethal complex that affects dosage compensation. These results reveal the genomic targets of roX2 and demonstrate how CHART can be used to study RNAs in a manner analogous to chromatin immunoprecipitation for proteins. PMID:22143764

  11. Site-specific fab fragment biotinylation at the conserved nucleotide binding site for enhanced Ebola detection.

    PubMed

    Mustafaoglu, Nur; Alves, Nathan J; Bilgicer, Basar

    2015-07-01

    The nucleotide binding site (NBS) is a highly conserved region between the variable light and heavy chains at the Fab domains of all antibodies, and a small molecule that we identified, indole-3-butyric acid (IBA), binds specifically to this site. Fab fragment, with its small size and simple production methods compared to intact antibody, is good candidate for use in miniaturized diagnostic devices and targeted therapeutic applications. However, commonly used modification techniques are not well suited for Fab fragments as they are often more delicate than intact antibodies. Fab fragments are of particular interest for sensor surface functionalization but immobilization results in damage to the antigen binding site and greatly reduced activity due to their truncated size that allows only a small area that can bind to surfaces without impeding antigen binding. In this study, we describe an NBS-UV photocrosslinking functionalization method (UV-NBS(Biotin) in which a Fab fragment is site-specifically biotinylated with an IBA-EG11-Biotin linker via UV energy exposure (1 J/cm(2)) without affecting its antigen binding activity. This study demonstrates successful immobilization of biotinylated Ebola detecting Fab fragment (KZ52 Fab fragment) via the UV-NBS(Biotin) method yielding 1031-fold and 2-fold better antigen detection sensitivity compared to commonly used immobilization methods: direct physical adsorption and NHS-Biotin functionalization, respectively. Utilization of the UV-NBS(Biotin) method for site-specific conjugation to Fab fragment represents a proof of concept use of Fab fragment for various diagnostic and therapeutic applications with numerous fluorescent probes, affinity molecules and peptides.

  12. Photoaffinity labeling of uncoupler binding sites on mitochondrial membrane.

    PubMed

    Kurup, C K; Sanadi, D R

    1977-02-01

    3H 2-azido-4-nitrophenol, a photoactive uncoupler, has been synthesized, and its uncoupling action on oxidative phosphorylation and its binding to the mitochondrial membrane have been studied. The uncoupler bound covalently to the mitochondrial membrane on photoirradiation was 3-4 times that bound reversibly in the absence of light. When irradiation was carried out in the presence of serum albumin, covalent binding was significantly depressed. The pattern of loss of ATP-Pi exchange activity with increasing amounts of the uncoupler suggests that serum albumin prevents the binding of the uncoupler to the functional sites as well. Polyacrylamide gel electrophoresis of photoaffinity labeled submitochondrial particles in the presence of sodium dodecyl sulfate revealed that a 9000 dalton peptide bound high levels of uncoupler. Other proteins in the molecular weight range of 20,000-40,000 and 55,000 were also labeled. Photolysis in the presence of serum albumin or ATP decreased the covalent binding of the uncoupler to all the proteins, but particularly to the 20,000 dalton component. Soluble ATPase and the mitochondrial proteolipid purified from labeled mitochondria showed the presence of label.

  13. A Unitary Anesthetic Binding Site at High Resolution

    SciTech Connect

    L Vedula; G Brannigan; N Economou; J Xi; M Hall; R Liu; M Rossi; W Dailey; K Grasty; et. al.

    2011-12-31

    Propofol is the most widely used injectable general anesthetic. Its targets include ligand-gated ion channels such as the GABA{sub A} receptor, but such receptor-channel complexes remain challenging to study at atomic resolution. Until structural biology methods advance to the point of being able to deal with systems such as the GABA{sub A} receptor, it will be necessary to use more tractable surrogates to probe the molecular details of anesthetic recognition. We have previously shown that recognition of inhalational general anesthetics by the model protein apoferritin closely mirrors recognition by more complex and clinically relevant protein targets; here we show that apoferritin also binds propofol and related GABAergic anesthetics, and that the same binding site mediates recognition of both inhalational and injectable anesthetics. Apoferritin binding affinities for a series of propofol analogs were found to be strongly correlated with the ability to potentiate GABA responses at GABA{sub A} receptors, validating this model system for injectable anesthetics. High resolution x-ray crystal structures reveal that, despite the presence of hydrogen bond donors and acceptors, anesthetic recognition is mediated largely by van der Waals forces and the hydrophobic effect. Molecular dynamics simulations indicate that the ligands undergo considerable fluctuations about their equilibrium positions. Finally, apoferritin displays both structural and dynamic responses to anesthetic binding, which may mimic changes elicited by anesthetics in physiologic targets like ion channels.

  14. A Unitary Anesthetic-Binding Site at High Resolution

    SciTech Connect

    Vedula, L.; Brannigan, G; Economou, N; Xi, J; Hall, M; Liu, R; Rossi, M; Dailey, W; Grasty, K; et. al.

    2009-01-01

    Propofol is the most widely used injectable general anesthetic. Its targets include ligand-gated ion channels such as the GABAA receptor, but such receptor-channel complexes remain challenging to study at atomic resolution. Until structural biology methods advance to the point of being able to deal with systems such as the GABA{sub A} receptor, it will be necessary to use more tractable surrogates to probe the molecular details of anesthetic recognition. We have previously shown that recognition of inhalational general anesthetics by the model protein apoferritin closely mirrors recognition by more complex and clinically relevant protein targets; here we show that apoferritin also binds propofol and related GABAergic anesthetics, and that the same binding site mediates recognition of both inhalational and injectable anesthetics. Apoferritin binding affinities for a series of propofol analogs were found to be strongly correlated with the ability to potentiate GABA responses at GABA{sub A} receptors, validating this model system for injectable anesthetics. High resolution x-ray crystal structures reveal that, despite the presence of hydrogen bond donors and acceptors, anesthetic recognition is mediated largely by van der Waals forces and the hydrophobic effect. Molecular dynamics simulations indicate that the ligands undergo considerable fluctuations about their equilibrium positions. Finally, apoferritin displays both structural and dynamic responses to anesthetic binding, which may mimic changes elicited by anesthetics in physiologic targets like ion channels.

  15. A Unitary Anesthetic Binding Site at High Resolution

    SciTech Connect

    Vedula, L. Sangeetha; Brannigan, Grace; Economou, Nicoleta J.; Xi, Jin; Hall, Michael A.; Liu, Renyu; Rossi, Matthew J.; Dailey, William P.; Grasty, Kimberly C.; Klein, Michael L.; Eckenhoff, Roderic G.; Loll, Patrick J.

    2009-10-21

    Propofol is the most widely used injectable general anesthetic. Its targets include ligand-gated ion channels such as the GABA{sub A} receptor, but such receptor-channel complexes remain challenging to study at atomic resolution. Until structural biology methods advance to the point of being able to deal with systems such as the GABA{sub A} receptor, it will be necessary to use more tractable surrogates to probe the molecular details of anesthetic recognition. We have previously shown that recognition of inhalational general anesthetics by the model protein apoferritin closely mirrors recognition by more complex and clinically relevant protein targets; here we show that apoferritin also binds propofol and related GABAergic anesthetics, and that the same binding site mediates recognition of both inhalational and injectable anesthetics. Apoferritin binding affinities for a series of propofol analogs were found to be strongly correlated with the ability to potentiate GABA responses at GABA{sub A} receptors, validating this model system for injectable anesthetics. High resolution x-ray crystal structures reveal that, despite the presence of hydrogen bond donors and acceptors, anesthetic recognition is mediated largely by van der Waals forces and the hydrophobic effect. Molecular dynamics simulations indicate that the ligands undergo considerable fluctuations about their equilibrium positions. Finally, apoferritin displays both structural and dynamic responses to anesthetic binding, which may mimic changes elicited by anesthetics in physiologic targets like ion channels.

  16. Gamma-aminobutyric acid-modulated benzodiazepine binding sites in bacteria

    SciTech Connect

    Lummis, S.C.R.; Johnston, G.A.R. ); Nicoletti, G. ); Holan, G. )

    1991-01-01

    Benzodiazepine binding sites, which were once considered to exist only in higher vertebrates, are here demonstrated in the bacteria E. coli. The bacterial ({sup 3}H)diazepam binding sites are modulated by GABA; the modulation is dose dependent and is reduced at high concentrations. The most potent competitors of E.Coli ({sup 3}H)diazepam binding are those that are active in displacing ({sup 3}H)benzodiazepines from vertebrate peripheral benzodiazepine binding sites. These vertebrate sites are not modulated by GABA, in contrast to vertebrate neuronal benzodiazepine binding sites. The E.coli benzodiazepine binding sites therefore differ from both classes of vertebrate benzodiazepine binding sites; however the ligand spectrum and GABA-modulatory properties of the E.coli sites are similar to those found in insects. This intermediate type of receptor in lower species suggests a precursor for at least one class of vertebrate benzodiazepine binding sites may have existed.

  17. Interplay of electrostatics and lipid packing determines the binding of charged polymer coated nanoparticles to model membranes.

    PubMed

    Biswas, Nupur; Bhattacharya, Rupak; Saha, Arindam; Jana, Nikhil R; Basu, Jaydeep K

    2015-10-07

    Understanding of nanoparticle-membrane interactions is useful for various applications of nanoparticles like drug delivery and imaging. Here we report on the studies of interaction between hydrophilic charged polymer coated semiconductor quantum dot nanoparticles with model lipid membranes. Atomic force microscopy and X-ray reflectivity measurements suggest that cationic nanoparticles bind and penetrate bilayers of zwitterionic lipids. Penetration and binding depend on the extent of lipid packing and result in the disruption of the lipid bilayer accompanied by enhanced lipid diffusion. On the other hand, anionic nanoparticles show minimal membrane binding although, curiously, their interaction leads to reduction in lipid diffusivity. It is suggested that the enhanced binding of cationic QDs at higher lipid packing can be understood in terms of the effective surface potential of the bilayers which is tunable through membrane lipid packing. Our results bring forth the subtle interplay of membrane lipid packing and electrostatics which determine nanoparticle binding and penetration of model membranes with further implications for real cell membranes.

  18. Coenzyme A Binding to the Aminoglycoside Acetyltransferase (3)-IIIb Increases Conformational Sampling of Antibiotic Binding Site

    SciTech Connect

    Hu, Xiaohu; Norris, Adrianne; Baudry, Jerome Y; Serpersu, Engin H

    2011-01-01

    NMR spectroscopy experiments and molecular dynamics simulations were performed to describe the dynamic properties of the aminoglycoside acetyltransferase (3)-IIIb (AAC) in its apo and coenzyme A (CoASH) bound forms. The {sup 15}N-{sup 1}H HSQC spectra indicate a partial structural change and coupling of the CoASH binding site with another region in the protein upon the CoASH titration into the apo enzyme. Molecular dynamics simulations indicate a significant structural and dynamic variation of the long loop in the antibiotic binding domain in the form of a relatively slow (250 ns), concerted opening motion in the CoASH enzyme complex and that binding of the CoASH increases the structural flexibility of the loop, leading to an interchange between several similar equally populated conformations.

  19. In silico mapping of allosteric ligand binding sites in type-1 cannabinoid receptor.

    PubMed

    Sabatucci, Annalaura; Tortolani, Daniel; Dainese, Enrico; Maccarrone, Mauro

    2017-08-17

    The recent resolution of the crystal structure of type-1 cannabinoid receptor (CB1 ), and the discovery of novel modulators for this target open the way to the possibility of elucidating the structural requirements for CB1 binding, and thereby facilitate a rational drug design. Compounds that target the orthosteric site of CB1 in some cases have shown side effects. Allosteric modulators could potentially avoid these side effects by influencing binding and/or efficacy of orthosteric ligands. Here, we summarize and compare previous data on different putative allosteric binding sites observed in CB1 homology models with an in silico docking study of the recently published crystal structure of the same receptor on endogenous and natural hydrophobic ligands that act as positive allosteric modulators (PAMs) and negative allosteric modulators (NAMs) of CB1 . In particular, a lipid-exposed pocket targeted by most of the tested molecules is reported and discussed. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  20. Characterization of the proton binding sites of extracellular polymeric substances in an anaerobic membrane bioreactor.

    PubMed

    Liu, Yi; Chang, Sheng; Defersha, Fantahun M

    2015-07-01

    This paper focuses on the characterization of the chemical compositions and acidic constants of the extracellular polymeric substances (EPSs) in an anaerobic membrane bioreactor treating synthetic brewery wastewater by using chemical analysis, linear programming analysis (LPA) of titration data, and FT-IR analysis. The linear programming analysis of titration data revealed that the EPSs have proton binding sites with pKa values from pKa ≤ 6, between 6 and 7, and approximately 9.8. The strong acidic sites (pKa ≤ 6) and some weak acidic sites (7.5 < pKa < 9.0) were found to be readily removed by 0.45-μm membrane filtration. In addition, the FT-IR analysis confirmed the presence of proteins, carbohydrates, nucleic acids, and lipids in the EPS samples. Based on the FT-IR analysis and the main chemical functional groups at the bacterial cell surfaces, the identified proton binding sites were related to carboxyl, phosphate, and hydroxyl/amine groups with pKa values of 4.6 ± 0.7, 6.6 ± 0.01, and 9.7 ± 0.1, respectively, with the corresponding respective intensities of 0.31 ± 0.05, 0.96 ± 0.3, and 1.53 ± 0.3 mmole/g-EPS. The pKa values and intensities of the proton binding sites are the fundamental molecular properties of EPSs that affect the EPS charge, molecular interactions, and metal complexation characteristics. Determination of such properties can advance Derjaguin-Landau-Verwey-Overbeek (DLVO)-based concentration polarization modeling, facilitate the estimation of the osmotic pressure of the EPS concentration polarization layers, and lead to a deeper understanding of the role of metal complexation in membrane fouling.

  1. Human 15-LOX-1 active site mutations alter inhibitor binding and decrease potency.

    PubMed

    Armstrong, Michelle; van Hoorebeke, Christopher; Horn, Thomas; Deschamps, Joshua; Freedman, J Cody; Kalyanaraman, Chakrapani; Jacobson, Matthew P; Holman, Theodore

    2016-11-01

    Human 15-lipoxygenase-1 (h15-LOX-1 or h12/15-LOX) reacts with polyunsaturated fatty acids and produces bioactive lipid derivatives that are implicated in many important human diseases. One such disease is stroke, which is the fifth leading cause of death and the first leading cause of disability in America. The discovery of h15-LOX-1 inhibitors could potentially lead to novel therapeutics in the treatment of stroke, however, little is known about the inhibitor/active site interaction. This study utilizes site-directed mutagenesis, guided in part by molecular modeling, to gain a better structural understanding of inhibitor interactions within the active site. We have generated eight mutants (R402L, R404L, F414I, F414W, E356Q, Q547L, L407A, I417A) of h15-LOX-1 to determine whether these active site residues interact with two h15-LOX-1 inhibitors, ML351 and an ML094 derivative, compound 18. IC50 values and steady-state inhibition kinetics were determined for the eight mutants, with four of the mutants affecting inhibitor potency relative to wild type h15-LOX-1 (F414I, F414W, E356Q and L407A). The data indicate that ML351 and compound 18, bind in a similar manner in the active site to an aromatic pocket close to F414 but have subtle differences in their specific binding modes. This information establishes the binding mode for ML094 and ML351 and will be leveraged to develop next-generation inhibitors.

  2. Identifying the Interaction of Vancomycin With Novel pH-Responsive Lipids as Antibacterial Biomaterials Via Accelerated Molecular Dynamics and Binding Free Energy Calculations.

    PubMed

    Ahmed, Shaimaa; Vepuri, Suresh B; Jadhav, Mahantesh; Kalhapure, Rahul S; Govender, Thirumala

    2017-03-09

    Nano-drug delivery systems have proven to be an efficient formulation tool to overcome the challenges with current antibiotics therapy and resistance. A series of pH-responsive lipid molecules were designed and synthesized for future liposomal formulation as a nano-drug delivery system for vancomycin at the infection site. The structures of these lipids differ from each other in respect of hydrocarbon tails: Lipid1, 2, 3 and 4 have stearic, oleic, linoleic, and linolenic acid hydrocarbon chains, respectively. The impact of variation in the hydrocarbon chain in the lipid structure on drug encapsulation and release profile, as well as mode of drug interaction, was investigated using molecular modeling analyses. A wide range of computational tools, including accelerated molecular dynamics, normal molecular dynamics, binding free energy calculations and principle component analysis, were applied to provide comprehensive insight into the interaction landscape between vancomycin and the designed lipid molecules. Interestingly, both MM-GBSA and MM-PBSA binding affinity calculations using normal molecular dynamics and accelerated molecular dynamics trajectories showed a very consistent trend, where the order of binding affinity towards vancomycin was lipid4 > lipid1 > lipid2 > lipid3. From both normal molecular dynamics and accelerated molecular dynamics, the interaction of lipid3 with vancomycin is demonstrated to be the weakest (∆Gbinding = -2.17 and -11.57, for normal molecular dynamics and accelerated molecular dynamics, respectively) when compared to other complexes. We believe that the degree of unsaturation of the hydrocarbon chain in the lipid molecules may impact on the overall conformational behavior, interaction mode and encapsulation (wrapping) of the lipid molecules around the vancomycin molecule. This thorough computational analysis prior to the experimental investigation is a valuable approach to guide for predicting the encapsulation

  3. Functionally Important ATP Binding and Hydrolysis Sites in Escherichia coli MsbA †

    PubMed Central

    Westfahl, Kathryn M.; Merten, Jacqueline A.; Buchaklian, Adam H.; Klug, Candice S.

    2009-01-01

    ATP-binding cassette (ABC) transporters make up one of the largest classes of proteins found in nature, and their ability to move a variety of substrates across the membrane using energy from the binding or hydrolysis of ATP is essential to an array of human pathologies and to bacterial viability. MsbA is an essential ABC transporter that specifically transports lipid A across the inner membranes of Gram-negative organisms such as Escherichia coli. The exact mechanisms of function during the binding and hydrolysis of ATP at the molecular level remain unclear. The studies presented and summarized in this work directly address the role and local dynamics of specific residues within the conserved ABC motifs in E. coli MsbA using in vivo growth and biochemical activity assays coupled with site-directed spin labeling electron paramagnetic resonance (EPR) spectroscopy motional and accessibility analysis. This first comprehensive analysis of the specific residues in these motifs within MsbA indicates that closure of the dimer interface does not occur upon ATP binding in this transporter. PMID:19053284

  4. Location-specific nanoplasmonic sensing of biomolecular binding to lipid membranes with negative curvature

    NASA Astrophysics Data System (ADS)

    Junesch, Juliane; Emilsson, Gustav; Xiong, Kunli; Kumar, Shailabh; Sannomiya, Takumi; Pace, Hudson; Vörös, Janos; Oh, Sang-Hyun; Bally, Marta; Dahlin, Andreas B.

    2015-09-01

    The biochemical processes of cell membranes are sensitive to the geometry of the lipid bilayer. We show how plasmonic ``nanowells'' provide label-free real-time analysis of molecules on membranes with detection of preferential binding at negative curvature. It is demonstrated that norovirus accumulate in invaginations due to multivalent interactions with glycosphingolipids.The biochemical processes of cell membranes are sensitive to the geometry of the lipid bilayer. We show how plasmonic ``nanowells'' provide label-free real-time analysis of molecules on membranes with detection of preferential binding at negative curvature. It is demonstrated that norovirus accumulate in invaginations due to multivalent interactions with glycosphingolipids. Electronic supplementary information (ESI) available: Additional plasmonic sensing results, numerical electromagnetic simulations, quartz crystal microbalance data, fluorescence recovery after photobleaching, additional electron microscopy images, experimental methodology and materials used. See DOI: 10.1039/c5nr04208a

  5. How to gather useful and valuable information from protein binding measurements using Langmuir lipid monolayers.

    PubMed

    Boisselier, Élodie; Demers, Éric; Cantin, Line; Salesse, Christian

    2017-03-18

    This review presents data on the influence of various experimental parameters on the binding of proteins onto Langmuir lipid monolayers. The users of the Langmuir methodology are often unaware of the importance of choosing appropriate experimental conditions to validate the data acquired with this method. The protein Retinitis pigmentosa 2 (RP2) has been used throughout this review to illustrate the influence of these experimental parameters on the data gathered with Langmuir monolayers. The methods detailed in this review include the determination of protein binding parameters from the measurement of adsorption isotherms, infrared spectra of the protein in solution and in monolayers, ellipsometric isotherms and fluorescence micrographs.

  6. Conformational changes in the metal-binding sites of cardiac troponin C induced by calcium binding

    SciTech Connect

    Krudy, G.A.; Brito, R.M.M.; Putkey, J.A.; Rosevear, P.R. )

    1992-02-18

    Isotope labeling of recombinant normal cardiac troponin C (cTnC3) with {sup 15}N-enriched amino acids and multidimensional NMR were used to assign the downfield-shifted amide protons of Gly residues at position 6 in Ca{sup 2+}-binding loops II, III, and IV, as well a tightly hydrogen-bonded amides within the short antiparallel {beta}-sheets between pairs of Ca{sup 2+}-binding loops. The amide protons of Gly70, Gly110, and Gly146 were found to be shifted significantly downfield from the remaining amide proton resonances in Ca{sup 2+}-saturated cTnC3. No downfield-shifted Gly resonance was observed from the naturally inactive site I. Comparison of downfield-shifted amide protons in the Ca{sup 2+}-saturated forms of cTnC3 and CBM-IIA, a mutant having Asp65 replaced by Ala, demonstrated the Gly70 is hydrogen bonded to the carboxylate side chain of Asp65. Thus, the hydrogen bond between Gly and Asp in positions 6 and 1, respectively, of the Ca{sup 2+}-binding loop appears crucial for maintaining the integrity of the helix-loop-helix Ca{sup 2+}-binding sites. The amide protons of Ile112 and Ile148 in the C-terminal domain and Ile36 in the N-terminal domain {beta}-sheets exhibit chemical shifts consistent with hydrogen-bond formation between the pair of Ca{sup 2+}-binding loops in each domain of Ca{sup 2+}-saturated cTnC3. In the absence of Ca{sup 2+}, no strong hydrogen bonds were detected between the {beta}-strands in the N-terminal domain of cTnC3. Thus, Ca{sup 2+} binding at site II results in a tightening of the Ca{sup 2+}-binding loop and formation of one strong hydrogen bond between {beta}-strands in the N-terminal domain. These changes may initiate movement of helices in the N-terminal domain responsible for the interaction of TnC with troponin I.

  7. Plant cell wall secretion and lipid traffic at membrane contact sites of the cell cortex.

    PubMed

    Samuels, Lacey; McFarlane, Heather E

    2012-02-01

    Plant cell wall secretion is the result of dynamic vesicle fusion events at the plasma membrane. The importance of the lipid bilayer environment of the plasma membrane and its interactions with the endomembrane system through vesicle traffic are well recognized. Recent advances in yeast molecular biology and biochemistry lead us to re-examine the hypothesis that non-vesicular traffic of lipids through close contact sites of the plasma membrane and endoplasmic reticulum could also be important in plant cell wall biosynthesis. Non-vesicular traffic is the extraction and transfer of individual lipid molecules from a donor bilayer to a target bilayer, usually with the assistance of lipid transfer proteins.

  8. 3DLigandSite: predicting ligand-binding sites using similar structures

    PubMed Central

    Wass, Mark N.; Kelley, Lawrence A.; Sternberg, Michael J. E.

    2010-01-01

    3DLigandSite is a web server for the prediction of ligand-binding sites. It is based upon successful manual methods used in the eighth round of the Critical Assessment of techniques for protein Structure Prediction (CASP8). 3DLigandSite utilizes protein-structure prediction to provide structural models for proteins that have not been solved. Ligands bound to structures similar to the query are superimposed onto the model and used to predict the binding site. In benchmarking against the CASP8 targets 3DLigandSite obtains a Matthew’s correlation co-efficient (MCC) of 0.64, and coverage and accuracy of 71 and 60%, respectively, similar results to our manual performance in CASP8. In further benchmarking using a large set of protein structures, 3DLigandSite obtains an MCC of 0.68. The web server enables users to submit either a query sequence or structure. Predictions are visually displayed via an interactive Jmol applet. 3DLigandSite is available for use at http://www.sbg.bio.ic.ac.uk/3dligandsite. PMID:20513649

  9. Photosensitizer binding to lipid bilayers as a precondition for the photoinactivation of membrane channels.

    PubMed Central

    Rokitskaya, T I; Block, M; Antonenko, Y N; Kotova, E A; Pohl, P

    2000-01-01

    The photodynamic activity of sulfonated aluminum phthalocyanines (AlPcS(n), 1 lipids. Adsorbing to the surface of large unilamellar vesicles (LUVs), aluminum phthalocyanine disulfonate induced the highest changes in their electrophoretic mobility. AlPcS(2) was also most efficient in mediating photoinactivation of gramicidin channels, as revealed by measurements of the electric current across planar lipid bilayers. The increase in the degree of sulfonation of phthalocyanine progressively reduced its affinity for the lipid bilayer as well as its potency of sensitizing gramicidin channel photoinactivation. The portion of photoinactivated gramicidin channels, alpha, increased with rising photosensitizer concentration up to some optimum. The concentration at which alpha was at half-maximum amounted to 80 nM, 30 nM, 200 nM, and 2 microM for AlPcS(1), AlPcS(2), AlPcS(3), and AlPcS(4), respectively. At high concentrations alpha was found to decrease, which was attributed to quenching of reactive oxygen species and self-quenching of the photosensitizer triplet state by its ground state. Fluoride anions were observed to inhibit both AlPcS(n) (2 binding to LUVs and sensitized photoinactivation of gramicidin channels. It is concluded that photosensitizer binding to membrane lipids is a prerequisite for the photodynamic inactivation of gramicidin channels. PMID:10777753

  10. Lipid Binding of the Amphipathic Helix Serving as Membrane Anchor of Pestivirus Glycoprotein Erns

    PubMed Central

    Aberle, Daniel; Oetter, Kay-Marcus; Meyers, Gregor

    2015-01-01

    Pestiviruses express a peculiar protein named Erns representing envelope glycoprotein and RNase, which is important for control of the innate immune response and persistent infection. The latter functions are connected with secretion of a certain amount of Erns from the infected cell. Retention/secretion of Erns is most likely controlled by its unusual membrane anchor, a long amphipathic helix attached in plane to the membrane. Here we present results of experiments conducted with a lipid vesicle sedimentation assay able to separate lipid-bound from unbound protein dissolved in the water phase. Using this technique we show that a protein composed of tag sequences and the carboxyterminal 65 residues of Erns binds specifically to membrane vesicles with a clear preference for compositions containing negatively charged lipids. Mutations disturbing the helical folding and/or amphipathic character of the anchor as well as diverse truncations and exchange of amino acids important for intracellular retention of Erns had no or only small effects on the proteins membrane binding. This result contrasts the dramatically increased secretion rates observed for Erns proteins with equivalent mutations within cells. Accordingly, the ratio of secreted versus cell retained Erns is not determined by the lipid affinity of the membrane anchor. PMID:26270479

  11. Lipid Binding of the Amphipathic Helix Serving as Membrane Anchor of Pestivirus Glycoprotein Erns.

    PubMed

    Aberle, Daniel; Oetter, Kay-Marcus; Meyers, Gregor

    2015-01-01

    Pestiviruses express a peculiar protein named Erns representing envelope glycoprotein and RNase, which is important for control of the innate immune response and persistent infection. The latter functions are connected with secretion of a certain amount of Erns from the infected cell. Retention/secretion of Erns is most likely controlled by its unusual membrane anchor, a long amphipathic helix attached in plane to the membrane. Here we present results of experiments conducted with a lipid vesicle sedimentation assay able to separate lipid-bound from unbound protein dissolved in the water phase. Using this technique we show that a protein composed of tag sequences and the carboxyterminal 65 residues of Erns binds specifically to membrane vesicles with a clear preference for compositions containing negatively charged lipids. Mutations disturbing the helical folding and/or amphipathic character of the anchor as well as diverse truncations and exchange of amino acids important for intracellular retention of Erns had no or only small effects on the proteins membrane binding. This result contrasts the dramatically increased secretion rates observed for Erns proteins with equivalent mutations within cells. Accordingly, the ratio of secreted versus cell retained Erns is not determined by the lipid affinity of the membrane anchor.

  12. Can We Rely on Computational Predictions To Correctly Identify Ligand Binding Sites on Novel Protein Drug Targets? Assessment of Binding Site Prediction Methods and a Protocol for Validation of Predicted Binding Sites.

    PubMed

    Broomhead, Neal K; Soliman, Mahmoud E

    2017-03-01

    In the field of medicinal chemistry there is increasing focus on identifying key proteins whose biochemical functions can firmly be linked to serious diseases. Such proteins become targets for drug or inhibitor molecules that could treat or halt the disease through therapeutic action or by blocking the protein function respectively. The protein must be targeted at the relevant biologically active site for drug or inhibitor binding to be effective. As insufficient experimental data is available to confirm the biologically active binding site for novel protein targets, researchers often rely on computational prediction methods to identify binding sites. Presented herein is a short review on structure-based computational methods that (i) predict putative binding sites and (ii) assess the druggability of predicted binding sites on protein targets. This review briefly covers the principles upon which these methods are based, where they can be accessed and their reliability in identifying the correct binding site on a protein target. Based on this review, we believe that these methods are useful in predicting putative binding sites, but as they do not account for the dynamic nature of protein-ligand binding interactions, they cannot definitively identify the correct site from a ranked list of putative sites. To overcome this shortcoming, we strongly recommend using molecular docking to predict the most likely protein-ligand binding site(s) and mode(s), followed by molecular dynamics simulations and binding thermodynamics calculations to validate the docking results. This protocol provides a valuable platform for experimental and computational efforts to design novel drugs and inhibitors that target disease-related proteins.

  13. An experimentally based computer search identifies unstructured membrane-binding sites in proteins: application to class I myosins, PAKS, and CARMIL.

    PubMed

    Brzeska, Hanna; Guag, Jake; Remmert, Kirsten; Chacko, Susan; Korn, Edward D

    2010-02-19

    Programs exist for searching protein sequences for potential membrane-penetrating segments (hydrophobic regions) and for lipid-binding sites with highly defined tertiary structures, such as PH, FERM, C2, ENTH, and other domains. However, a rapidly growing number of membrane-associated proteins (including cytoskeletal proteins, kinases, GTP-binding proteins, and their effectors) bind lipids through less structured regions. Here, we describe the development and testing of a simple computer search program that identifies unstructured potential membrane-binding sites. Initially, we found that both basic and hydrophobic amino acids, irrespective of sequence, contribute to the binding to acidic phospholipid vesicles of synthetic peptides that correspond to the putative membrane-binding domains of Acanthamoeba class I myosins. Based on these results, we modified a hydrophobicity scale giving Arg- and Lys-positive, rather than negative, values. Using this basic and hydrophobic scale with a standard search algorithm, we successfully identified previously determined unstructured membrane-binding sites in all 16 proteins tested. Importantly, basic and hydrophobic searches identified previously unknown potential membrane-binding sites in class I myosins, PAKs and CARMIL (capping protein, Arp2/3, myosin I linker; a membrane-associated cytoskeletal scaffold protein), and synthetic peptides and protein domains containing these newly identified sites bound to acidic phospholipids in vitro.

  14. Viral receptor-binding site antibodies with diverse germline origins

    PubMed Central

    Schmidt, Aaron G.; Therkelsen, Matthew D.; Stewart, Shaun; Kepler, Thomas B.; Liao, Hua-Xin; Moody, M. Anthony; Haynes, Barton F.; Harrison, Stephen C.

    2015-01-01

    Vaccines for rapidly evolving pathogens will confer lasting immunity if they elicit antibodies recognizing conserved epitopes, such as a receptor-binding site (RBS). From characteristics of an influenza-virus RBS-directed antibody, we devised a signature motif to search for similar antibodies. We identified, from three vaccinees, over 100 candidates encoded by eleven different VH genes. Crystal structures show that antibodies in this class engage the hemagglutinin RBS and mimic binding of the receptor, sialic acid, by supplying a critical dipeptide on their projecting, heavy-chain third complementarity determining region. They share contacts with conserved, receptor-binding residues but contact different residues on the RBS periphery, limiting the likelihood of viral escape when several such antibodies are present. These data show that related modes of RBS recognition can arise from different germline origins and mature through diverse affinity maturation pathways. Immunogens focused on an RBS-directed response will thus have a broad range of B-cell targets. PMID:25959776

  15. The brown adipocyte protein CIDEA promotes lipid droplet fusion via a phosphatidic acid-binding amphipathic helix

    PubMed Central

    Barneda, David; Planas-Iglesias, Joan; Gaspar, Maria L; Mohammadyani, Dariush; Prasannan, Sunil; Dormann, Dirk; Han, Gil-Soo; Jesch, Stephen A; Carman, George M; Kagan, Valerian; Parker, Malcolm G; Ktistakis, Nicholas T; Klein-Seetharaman, Judith; Dixon, Ann M; Henry, Susan A; Christian, Mark

    2015-01-01

    Maintenance of energy homeostasis depends on the highly regulated storage and release of triacylglycerol primarily in adipose tissue, and excessive storage is a feature of common metabolic disorders. CIDEA is a lipid droplet (LD)-protein enriched in brown adipocytes promoting the enlargement of LDs, which are dynamic, ubiquitous organelles specialized for storing neutral lipids. We demonstrate an essential role in this process for an amphipathic helix in CIDEA, which facilitates embedding in the LD phospholipid monolayer and binds phosphatidic acid (PA). LD pairs are docked by CIDEA trans-complexes through contributions of the N-terminal domain and a C-terminal dimerization region. These complexes, enriched at the LD–LD contact site, interact with the cone-shaped phospholipid PA and likely increase phospholipid barrier permeability, promoting LD fusion by transference of lipids. This physiological process is essential in adipocyte differentiation as well as serving to facilitate the tight coupling of lipolysis and lipogenesis in activated brown fat. DOI: http://dx.doi.org/10.7554/eLife.07485.001 PMID:26609809

  16. Examination of the thiamin diphosphate binding site in yeast transketolase by site-directed mutagenesis.

    PubMed

    Meshalkina, L; Nilsson, U; Wikner, C; Kostikowa, T; Schneider, G

    1997-03-01

    The role of two conserved amino acid residues in the thiamin diphosphate binding site of yeast transketolase has been analyzed by site-directed mutagenesis. Replacement of E162, which is part of a cluster of glutamic acid residues at the subunit interface, by alanine or glutamine results in mutant enzymes with most catalytic properties similar to wild-type enzyme. The two mutant enzymes show, however, significant increases in the K0.5 values for thiamin diphosphate in the absence of substrate and in the lag of the reaction progress curves. This suggests that the interaction of E162 with residue E418, and possibly E167, from the second subunit is important for formation and stabilization of the transketolase dimer. Replacement of the conserved residue D382, which is buried upon binding of thiamin diphosphate, by asparagine and alanine, results in mutant enzymes severely impaired in thiamin diphosphate binding and catalytic efficiency. The 25-80-fold increase in K0.5 for thiamin diphosphate suggests that D382 is involved in cofactor binding, probably by electrostatic compensation of the positive charge of the thiazolium ring and stabilization of a flexible loop at the active site. The decrease in catalytic activities in the D382 mutants indicates that this residue might also be important in subsequent steps in catalysis.

  17. Differentiation of human keratinocytes: changes in lipid synthesis, plasma membrane lipid composition, and /sup 125/I-EGF binding upon administration of 25-hydroxycholesterol and mevinolin

    SciTech Connect

    Ponec, M.; Kempenaar, J.; Weerheim, A.; Boonstra, J.

    1987-11-01

    We have studied the relationship between differentiation capacity, plasma membrane composition, and epidermal growth factor (EGF) receptor expression of normal keratinocytes in vitro. The plasma membrane composition of the cells was modulated experimentally by cholesterol depletion, using specific inhibitors of cholesterol synthesis, such as 25-hydroxycholesterol and mevinolin. Exposure of the cells towards these inhibitors resulted in a drastic decrease of cholesterol biosynthesis, as determined from /sup 14/C-acetate incorporation into the various lipid fractions. This effect on cholesterol biosynthesis was reflected by changes in plasma membrane composition, as determined by lipid analysis of isolated plasma membrane fractions, these resulting in a decreased cholesterol-phospholipid ratio. The experimental modulation of plasma membrane composition by 25-hydroxycholesterol or mevinolin were accompanied by a decreased cornified envelope formation and by high expression of EGF binding sites. These phenomena were more pronounced in cells induced to differentiate by exposure of cells grown under low Ca2+ to normal Ca2+ concentrations, as compared to cells grown persistently under low Ca2+ concentrations. These results suggest a close correlation between plasma membrane composition, differentiation capacity, and EGF receptor expression.

  18. Atrial natriuretic factor binding sites in experimental congestive heart failure

    SciTech Connect

    Bianchi, C.; Thibault, G.; Wrobel-Konrad, E.; De Lean, A.; Genest, J.; Cantin, M. )

    1989-10-01

    A quantitative in vitro autoradiographic study was performed on the aorta, renal glomeruli, and adrenal cortex of cardiomyopathic hamsters in various stages of heart failure and correlated, in some instances, with in vivo autoradiography. The results indicate virtually no correlation between the degree of congestive heart failure and the density of 125I-labeled atrial natriuretic factor ((Ser99, Tyr126)ANF) binding sites (Bmax) in the tissues examined. Whereas the Bmax was increased in the thoracic aorta in moderate and severe heart failure, there were no significant changes in the zona glomerulosa. The renal glomeruli Bmax was lower in mild and moderate heart failure compared with control and severe heart failure. The proportion of ANF B- and C-receptors was also evaluated in sections of the aorta, adrenal, and kidney of control and cardiomyopathic hamsters with severe heart failure. (Arg102, Cys121)ANF (des-(Gln113, Ser114, Gly115, Leu116, Gly117) NH2) (C-ANF) at 10(-6) M displaced approximately 505 of (Ser99, Tyr126)125I-ANF bound in the aorta and renal glomeruli and approximately 20% in the adrenal zona glomerulosa in both series of animals. These results suggest that ANF may exert a buffering effect on the vasoconstriction of heart failure and to a certain extent may inhibit aldosterone secretion. The impairment of renal sodium excretion does not appear to be related to glomerular ANF binding sites at any stage of the disease.

  19. Conserved properties of individual Ca2+-binding sites in calmodulin

    PubMed Central

    Halling, D. Brent; Liebeskind, Benjamin J.; Hall, Amelia W.; Aldrich, Richard W.

    2016-01-01

    Calmodulin (CaM) is a Ca2+-sensing protein that is highly conserved and ubiquitous in eukaryotes. In humans it is a locus of life-threatening cardiomyopathies. The primary function of CaM is to transduce Ca2+ concentration into cellular signals by binding to a wide range of target proteins in a Ca2+-dependent manner. We do not fully understand how CaM performs its role as a high-fidelity signal transducer for more than 300 target proteins, but diversity among its four Ca2+-binding sites, called EF-hands, may contribute to CaM’s functional versatility. We therefore looked at the conservation of CaM sequences over deep evolutionary time, focusing primarily on the four EF-hand motifs. Expanding on previous work, we found that CaM evolves slowly but that its evolutionary rate is substantially faster in fungi. We also found that the four EF-hands have distinguishing biophysical and structural properties that span eukaryotes. These results suggest that all eukaryotes require CaM to decode Ca2+ signals using four specialized EF-hands, each with specific, conserved traits. In addition, we provide an extensive map of sites associated with target proteins and with human disease and correlate these with evolutionary sequence diversity. Our comprehensive evolutionary analysis provides a basis for understanding the sequence space associated with CaM function and should help guide future work on the relationship between structure, function, and disease. PMID:26884197

  20. Imidazoline binding sites and receptors in cardiovascular tissue.

    PubMed

    Molderings, G J; Göthert, M

    1999-01-01

    1. Imidazoline binding sites and receptors and their endogenous ligands have been identified in cardiovascular tissue of various species including human beings. 2. I2- (but only exceptionally I1-)imidazoline binding sites have been shown to exist on cardiac myocytes and vascular smooth muscle cells; at present, their functional role is unknown. 3. The sympathetic nerves supplying the cardiovascular system are endowed with presynaptic inhibitory imidazoline receptors that may become of therapeutic relevance as targets of drugs. 4. ATP-sensitive K+ channels present in heart and blood vessels can be blocked by several imidazolines and guanidines; hence, those drugs can interfere with the cardioprotective effects resulting from K(ATP) channel activation by a decrease in the endogenous ligand ATP or by drugs. 5. Imidazoline derivatives exhibit antiarrhythmic properties that are due to a reduction of sympathetic tone by central and peripheral mechanisms and to blockade of postsynaptic alpha2-adrenoceptors in the heart and coronary arteries. 6. Agmatine and clonidine-displacing substance, which are endogenous ligands at imidazoline and alpha2-receptors, are present in the blood serum and appear to participate in vascular smooth muscle proliferation and blood pressure regulation.

  1. Effects of cytosine methylation on transcription factor binding sites

    PubMed Central

    2014-01-01

    Background DNA methylation in promoters is closely linked to downstream gene repression. However, whether DNA methylation is a cause or a consequence of gene repression remains an open question. If it is a cause, then DNA methylation may affect the affinity of transcription factors (TFs) for their binding sites (TFBSs). If it is a consequence, then gene repression caused by chromatin modification may be stabilized by DNA methylation. Until now, these two possibilities have been supported only by non-systematic evidence and they have not been tested on a wide range of TFs. An average promoter methylation is usually used in studies, whereas recent results suggested that methylation of individual cytosines can also be important. Results We found that the methylation profiles of 16.6% of cytosines and the expression profiles of neighboring transcriptional start sites (TSSs) were significantly negatively correlated. We called the CpGs corresponding to such cytosines “traffic lights”. We observed a strong selection against CpG “traffic lights” within TFBSs. The negative selection was stronger for transcriptional repressors as compared with transcriptional activators or multifunctional TFs as well as for core TFBS positions as compared with flanking TFBS positions. Conclusions Our results indicate that direct and selective methylation of certain TFBS that prevents TF binding is restricted to special cases and cannot be considered as a general regulatory mechanism of transcription. PMID:24669864

  2. Membrane contact sites, ancient and central hubs of cellular lipid logistics.

    PubMed

    Jain, Amrita; Holthuis, Joost C M

    2017-09-01

    Membrane contact sites (MCSs) are regions where two organelles are closely apposed to facilitate molecular communication and promote a functional integration of compartmentalized cellular processes. There is growing evidence that MCSs play key roles in controlling intracellular lipid flows and distributions. Strikingly, even organelles connected by vesicular trafficking exchange lipids en bulk via lipid transfer proteins that operate at MCSs. Herein, we describe how MCSs developed into central hubs of lipid logistics during the evolution of eukaryotic cells. We then focus on how modern eukaryotes exploit MCSs to help solve a major logistical problem, namely to preserve the unique lipid mixtures of their early and late secretory organelles in the face of extensive vesicular trafficking. This article is part of a Special Issue entitled: Membrane Contact Sites edited by Christian Ungermann and Benoit Kornmann. Copyright © 2017. Published by Elsevier B.V.

  3. Mass spectrometry reveals synergistic effects of nucleotides, lipids, and drugs binding to a multidrug resistance efflux pump.

    PubMed

    Marcoux, Julien; Wang, Sheila C; Politis, Argyris; Reading, Eamonn; Ma, Jerome; Biggin, Philip C; Zhou, Min; Tao, Houchao; Zhang, Qinghai; Chang, Geoffrey; Morgner, Nina; Robinson, Carol V

    2013-06-11

    Multidrug resistance is a serious barrier to successful treatment of many human diseases, including cancer, wherein chemotherapeutics are exported from target cells by membrane-embedded pumps. The most prevalent of these pumps, the ATP-Binding Cassette transporter P-glycoprotein (P-gp), consists of two homologous halves each comprising one nucleotide-binding domain and six transmembrane helices. The transmembrane region encapsulates a hydrophobic cavity, accessed by portals in the membrane, that binds cytotoxic compounds as well as lipids and peptides. Here we use mass spectrometry (MS) to probe the intact P-gp small molecule-bound complex in a detergent micelle. Activation in the gas phase leads to formation of ions, largely devoid of detergent, yet retaining drug molecules as well as charged or zwitterionic lipids. Measuring the rates of lipid binding and calculating apparent KD values shows that up to six negatively charged diacylglycerides bind more favorably than zwitterionic lipids. Similar experiments confirm binding of cardiolipins and show that prior binding of the immunosuppressant and antifungal antibiotic cyclosporin A enhances subsequent binding of cardiolipin. Ion mobility MS reveals that P-gp exists in an equilibrium between different states, readily interconverted by ligand binding. Overall these MS results show how concerted small molecule binding leads to synergistic effects on binding affinities and conformations of a multidrug efflux pump.

  4. MONKEY: Identifying conserved transcription-factor binding sitesin multiple alignments using a binding site-specific evolutionarymodel

    SciTech Connect

    Moses, Alan M.; Chiang, Derek Y.; Pollard, Daniel A.; Iyer, VenkyN.; Eisen, Michael B.

    2004-10-28

    We introduce a method (MONKEY) to identify conserved transcription-factor binding sites in multispecies alignments. MONKEY employs probabilistic models of factor specificity and binding site evolution, on which basis we compute the likelihood that putative sites are conserved and assign statistical significance to each hit. Using genomes from the genus Saccharomyces, we illustrate how the significance of real sites increases with evolutionary distance and explore the relationship between conservation and function.

  5. Altering the GTP binding site of the DNA/RNA-binding protein, Translin/TB-RBP, decreases RNA binding and may create a dominant negative phenotype.

    PubMed

    Chennathukuzhi, V M; Kurihara, Y; Bray, J D; Yang, J; Hecht, N B

    2001-11-01

    The DNA/RNA-binding protein, Translin/Testis Brain RNA-binding protein (Translin/TB-RBP), contains a putative GTP binding site in its C-terminus which is highly conserved. To determine if guanine nucleotide binding to this site functionally alters nucleic acid binding, electrophoretic mobility shift assays were performed with RNA and DNA binding probes. GTP, but not GDP, reduces RNA binding by approximately 50% and the poorly hydrolyzed GTP analog, GTPgammaS, reduces binding by >90% in gel shift and immunoprecipitation assays. No similar reduction of DNA binding is seen. When the putative GTP binding site of TB-RBP, amino acid sequence VTAGD, is altered to VTNSD by site directed mutagenesis, GTP will no longer bind to TB-RBP(GTP) and TB-RBP(GTP) no longer binds to RNA, although DNA binding is not affected. Yeast two-hybrid assays reveal that like wild-type TB-RBP, TB-RBP(GTP) will interact with itself, with wild-type TB-RBP and with Translin associated factor X (Trax). Transfection of TB-RBP(GTP) into NIH 3T3 cells leads to a marked increase in cell death suggesting a dominant negative function for TB-RBP(GTP) in cells. These data suggest TB-RBP is an RNA-binding protein whose activity is allosterically controlled by nucleotide binding.

  6. Studies on the biotin-binding site of avidin. Lysine residues involved in the active site.

    PubMed Central

    Gitlin, G; Bayer, E A; Wilchek, M

    1987-01-01

    Egg-white avidin was treated with 1-fluoro-2,4-dinitrobenzene. Modification of an average of one lysine residue per avidin subunit caused the complete loss of biotin binding. Tryptic peptides obtained from the 2,4-dinitrophenylated avidin were fractionated by reversed-phase h.p.l.c. Three peptides contained the 2,4-dinitrophenyl group. Amino acid analysis revealed that lysine residues 45, 94 and 111 are modified and probably comprise part of the biotin-binding site. PMID:3109401

  7. Studies on the biotin-binding site of avidin. Tryptophan residues involved in the active site.

    PubMed Central

    Gitlin, G; Bayer, E A; Wilchek, M

    1988-01-01

    Egg-white avidin was modified with the tryptophan-specific reagent 2-hydroxy-5-nitrobenzyl bromide. The complete loss of biotin-binding activity was achieved upon modification of an average of one tryptophan residue per avidin subunit. The identity of the modified residues was determined by isolating the relevant tryptic and chymotryptic peptides from CNBr-cleaved avidin fragments. The results demonstrate that Trp-70 and Trp-110 are modified in approximately equivalent proportions. It is believed that these residues are located in the active site of avidin and take part in the binding of biotin. PMID:3355517

  8. Studies on the biotin-binding site of avidin. Tryptophan residues involved in the active site.

    PubMed

    Gitlin, G; Bayer, E A; Wilchek, M

    1988-02-15

    Egg-white avidin was modified with the tryptophan-specific reagent 2-hydroxy-5-nitrobenzyl bromide. The complete loss of biotin-binding activity was achieved upon modification of an average of one tryptophan residue per avidin subunit. The identity of the modified residues was determined by isolating the relevant tryptic and chymotryptic peptides from CNBr-cleaved avidin fragments. The results demonstrate that Trp-70 and Trp-110 are modified in approximately equivalent proportions. It is believed that these residues are located in the active site of avidin and take part in the binding of biotin.

  9. Binding Cooperativity Matters: A GM1-Like Ganglioside-Cholera Toxin B Subunit Binding Study Using a Nanocube-Based Lipid Bilayer Array

    PubMed Central

    Weatherston, Joshua D.

    2016-01-01

    Protein-glycan recognition is often mediated by multivalent binding. These multivalent bindings can be further complicated by cooperative interactions between glycans and individual glycan binding subunits. Here we have demonstrated a nanocube-based lipid bilayer array capable of quantitatively elucidating binding dissociation constants, maximum binding capacity, and binding cooperativity in a high-throughput format. Taking cholera toxin B subunit (CTB) as a model cooperativity system, we studied both GM1 and GM1-like gangliosides binding to CTB. We confirmed the previously observed CTB-GM1 positive cooperativity. Surprisingly, we demonstrated fucosyl-GM1 has approximately 7 times higher CTB binding capacity than GM1. In order to explain this phenomenon, we hypothesized that the reduced binding cooperativity of fucosyl-GM1 caused the increased binding capacity. This was unintuitive, as GM1 exhibited higher binding avidity (16 times lower dissociation constant). We confirmed the hypothesis using a theoretical stepwise binding model of CTB. Moreover, by taking a mixture of fucosyl-GM1 and GM2, we observed the mild binding avidity fucosyl-GM1 activated GM2 receptors enhancing the binding capacity of the lipid bilayer surface. This was unexpected as GM2 receptors have negligible binding avidity in pure GM2 bilayers. These unexpected discoveries demonstrate the importance of binding cooperativity in multivalent binding mechanisms. Thus, quantitative analysis of multivalent protein-glycan interactions in heterogeneous glycan systems is of critical importance. Our user-friendly, robust, and high-throughput nanocube-based lipid bilayer array offers an attractive method for dissecting these complex mechanisms. PMID:27070150

  10. The first intron of the human growth hormone gene contains a binding site for glucocorticoid receptor.

    PubMed

    Moore, D D; Marks, A R; Buckley, D I; Kapler, G; Payvar, F; Goodman, H M

    1985-02-01

    Glucocorticoid receptor (GCR) protein stimulates transcription from a variety of cellular genes. We show here that GCR partially purified from rat liver binds specifically to a site within the first intron of the human growth hormone (hGH) gene, approximately 100 base pairs downstream from the start of hGH transcription. GCR binding is selectively inhibited by methylation of two short, symmetrically arranged clusters of guanine residues within this site. A cloned synthetic 24-base-pair deoxyoligonucleotide containing the predicted GCR binding sequence interacts specifically with GCR. The hGH binding site shares sequence homology with a GCR binding site upstream from the human metallothionein II gene and a subset of GCR binding sites from mouse mammary tumor virus. All of these binding sites for this eukaryotic transcriptional regulatory protein show remarkable similarity in overall geometry to the binding sites for several prokaryotic transcriptional regulatory proteins.

  11. Genome-wide mapping of Hif-1α binding sites in zebrafish.

    PubMed

    Greenald, David; Jeyakani, Justin; Pelster, Bernd; Sealy, Ian; Mathavan, Sinnakaruppan; van Eeden, Fredericus J

    2015-11-11

    Hypoxia Inducible Factor (HIF) regulates a cascade of transcriptional events in response to decreased oxygenation, acting from the cellular to the physiological level. This response is evolutionarily conserved, allowing the use of zebrafish (Danio rerio) as a model for studying the hypoxic response. Activation of the hypoxic response can be achieved in zebrafish by homozygous null mutation of the von Hippel-Lindau (vhl) tumour suppressor gene. Previous work from our lab has focused on the phenotypic characterisation of this mutant, establishing the links between vhl mutation, the hypoxic response and cancer. To further develop fish as a model for studying hypoxic signalling, we examine the transcriptional profile of the vhl mutant with respect to Hif-1α. As our approach uses embryos consisting of many cell types, it has the potential to uncover additional HIF regulated genes that have escaped detection in analogous mammalian cell culture studies. We performed high-density oligonucleotide microarray analysis of the gene expression changes in von Hippel-Lindau mutant zebrafish, which identified up-regulation of well-known hypoxia response genes and down-regulation of genes primarily involved in lipid processing. To identify the dependency of these transcriptional changes on HIF, we undertook Chromatin Immunoprecipitation linked next generation sequencing (ChIP-seq) for the transcription factor Hypoxia Inducible Factor 1α (HIF-1α). We identified HIF-1α binding sites across the genome, with binding sites showing enrichment for an RCGTG motif, showing conservation with the mammalian hypoxia response element. Transcriptome analysis of vhl mutant embryos detected activation of key hypoxia response genes seen in human cell models of hypoxia, but also suppression of many genes primarily involved in lipid processing. ChIP-seq analysis of Hif-1α binding sites unveiled an unprecedented number of loci, with a high proportion containing a canonical hypoxia response element

  12. DBD2BS: connecting a DNA-binding protein with its binding sites

    PubMed Central

    Chien, Ting-Ying; Lin, Chih-Kang; Lin, Chih-Wei; Weng, Yi-Zhong; Chen, Chien-Yu; Chang, Darby Tien-Hao

    2012-01-01

    By binding to short and highly conserved DNA sequences in genomes, DNA-binding proteins initiate, enhance or repress biological processes. Accurately identifying such binding sites, often represented by position weight matrices (PWMs), is an important step in understanding the control mechanisms of cells. When given coordinates of a DNA-binding domain (DBD) bound with DNA, a potential function can be used to estimate the change of binding affinity after base substitutions, where the changes can be summarized as a PWM. This technique provides an effective alternative when the chromatin immunoprecipitation data are unavailable for PWM inference. To facilitate the procedure of predicting PWMs based on protein–DNA complexes or even structures of the unbound state, the web server, DBD2BS, is presented in this study. The DBD2BS uses an atom-level knowledge-based potential function to predict PWMs characterizing the sequences to which the query DBD structure can bind. For unbound queries, a list of 1066 DBD–DNA complexes (including 1813 protein chains) is compiled for use as templates for synthesizing bound structures. The DBD2BS provides users with an easy-to-use interface for visualizing the PWMs predicted based on different templates and the spatial relationships of the query protein, the DBDs and the DNAs. The DBD2BS is the first attempt to predict PWMs of DBDs from unbound structures rather than from bound ones. This approach increases the number of existing protein structures that can be exploited when analyzing protein–DNA interactions. In a recent study, the authors showed that the kernel adopted by the DBD2BS can generate PWMs consistent with those obtained from the experimental data. The use of DBD2BS to predict PWMs can be incorporated with sequence-based methods to discover binding sites in genome-wide studies. Available at: http://dbd2bs.csie.ntu.edu.tw/, http://dbd2bs.csbb.ntu.edu.tw/, and http://dbd2bs.ee.ncku.edu.tw. PMID:22693214

  13. DBD2BS: connecting a DNA-binding protein with its binding sites.

    PubMed

    Chien, Ting-Ying; Lin, Chih-Kang; Lin, Chih-Wei; Weng, Yi-Zhong; Chen, Chien-Yu; Chang, Darby Tien-Hao

    2012-07-01

    By binding to short and highly conserved DNA sequences in genomes, DNA-binding proteins initiate, enhance or repress biological processes. Accurately identifying such binding sites, often represented by position weight matrices (PWMs), is an important step in understanding the control mechanisms of cells. When given coordinates of a DNA-binding domain (DBD) bound with DNA, a potential function can be used to estimate the change of binding affinity after base substitutions, where the changes can be summarized as a PWM. This technique provides an effective alternative when the chromatin immunoprecipitation data are unavailable for PWM inference. To facilitate the procedure of predicting PWMs based on protein-DNA complexes or even structures of the unbound state, the web server, DBD2BS, is presented in this study. The DBD2BS uses an atom-level knowledge-based potential function to predict PWMs characterizing the sequences to which the query DBD structure can bind. For unbound queries, a list of 1066 DBD-DNA complexes (including 1813 protein chains) is compiled for use as templates for synthesizing bound structures. The DBD2BS provides users with an easy-to-use interface for visualizing the PWMs predicted based on different templates and the spatial relationships of the query protein, the DBDs and the DNAs. The DBD2BS is the first attempt to predict PWMs of DBDs from unbound structures rather than from bound ones. This approach increases the number of existing protein structures that can be exploited when analyzing protein-DNA interactions. In a recent study, the authors showed that the kernel adopted by the DBD2BS can generate PWMs consistent with those obtained from the experimental data. The use of DBD2BS to predict PWMs can be incorporated with sequence-based methods to discover binding sites in genome-wide studies. Available at: http://dbd2bs.csie.ntu.edu.tw/, http://dbd2bs.csbb.ntu.edu.tw/, and http://dbd2bs.ee.ncku.edu.tw.

  14. The I1-imidazoline receptor: from binding site to therapeutic target in cardiovascular disease.

    PubMed

    Ernsberger, P; Friedman, J E; Koletsky, R J

    1997-01-01

    To review previous work and present additional evidence characterizing the I1-imidazoline receptor and its role in cellular signaling, central cardiovascular control, and the treatment of metabolic syndromes. Second-generation centrally-acting antihypertensives inhibit sympathetic activity mainly via imidazoline receptors, whereas first-generation agents act via alpha2-adrenergic receptors. The I1 subtype of imidazoline receptor resides in the plasma membrane and binds central antihypertensives with high affinity. Radioligand binding assays have characterized I1-imidazoline sites in the brainstem site of action for these agents in the rostral ventrolateral medulla. Binding affinity at I1-imidazoline sites, but not at other classes of imidazoline binding sites, correlates closely with the potency of central antihypertensive agents in animals and in human clinical trials. The antihypertensive action of systemic moxonidine is eliminated by the I1/alpha2-antagonist efaroxan, but not by selective blockade of alpha2-adrenergic receptors. Until now, the cell signaling pathway coupled to I1-imidazoline receptors was unknown. Using a model system lacking alpha2-adrenergic receptors (PC12 pheochromocytoma cells) we have found that moxonidine acts as an agonist at the cell level and I1-imidazoline receptor activation leads to the production of the second messenger diacylglycerol, most likely through direct activation of phosphatidylcholine-selective phospholipase C. The obese spontaneously hypertensive rat (SHR; SHROB strain) shows many of the abnormalities that cluster in human syndrome X, including elevations in blood pressure, serum lipids and insulin. SHROB and their lean SHR littermates were treated with moxonidine at 8 mg/kg per day. SHROB and SHR treated with moxonidine showed not only lowered blood pressure but also improved glucose tolerance and facilitated insulin secretion in response to a glucose load. Because alpha2-adrenergic agonists impair glucose tolerance, I

  15. The I1-imidazoline receptor: from binding site to therapeutic target in cardiovascular disease

    PubMed Central

    Ernsberger, Paul; Friedman, Jacob E.; Koletsky, Richard J.

    2005-01-01

    Objective To review previous work and present additional evidence characterizing the I1-imidazoline receptor and its role in cellular signaling, central cardiovascular control, and the treatment of metabolic syndromes. Second-generation centrally-acting antihypertensives inhibit sympathetic activity mainly via imidazoline receptors, whereas first-generation agents act viaα2-adrenergic receptors. The I1 subtype of imidazoline receptor resides in the plasma membrane and binds central antihypertensives with high affinity. Methods and results Radioligand binding assays have characterized I1-imidazoline sites in the brainstem site of action for these agents in the rostral ventrolateral medulla. Binding affinity at I1-imidazoline sites, but not at other classes of imidazoline binding sites, correlates closely with the potency of central antihypertensive agents in animals and in human clinical trials. The antihypertensive action of systemic moxonidine is eliminated by the I1/α2-antagonist efaroxan, but not by selective blockade of α2-adrenergic receptors. Until now, the cell signaling pathway coupled to I1-imidazoline receptors was unknown. Using a model system lacking α2-adrenergic receptors (PC12 pheochromocytoma cells) we have found that moxonidine acts as an agonist at the cell level and I1-imidazoline receptor activation leads to the production of the second messenger diacylglycerol, most likely through direct activation of phosphatidylcholine-selective phospholipase C. The obese spontaneously hypertensive rat (SHR; SHROB strain) shows many of the abnormalities that cluster in human syndrome X, including elevations in blood pressure, serum lipids and insulin. SHROB and their lean SHR littermates were treated with moxonidine at 8 mg/kg per day. SHROB and SHR treated with moxonidine showed not only lowered blood pressure but also improved glucose tolerance and facilitated insulin secretion in response to a glucose load. Because α2-adrenergic agonists impair

  16. Oligosaccharyltransferase directly binds to ribosome at a location near the translocon-binding site

    SciTech Connect

    Harada, Y.; Li, H.; Li, Hua; Lennarz, W. J.

    2009-04-28

    Oligosaccharyltransferase (OT) transfers high mannose-type glycans to the nascent polypeptides that are translated by the membrane-bound ribosome and translocated into the lumen of the endoplasmic reticulum through the Sec61 translocon complex. In this article, we show that purified ribosomes and OT can form a binary complex with a stoichiometry of {approx}1 to 1 in the presence of detergent. We present evidence that OT may bind to the large ribosomal subunit near the site where nascent polypeptides exit. We further show that OT and the Sec61 complex can simultaneously bind to ribosomes in vitro. Based on existing data and our findings, we propose that cotranslational translocation and N-glycosylation of nascent polypeptides are mediated by a ternary supramolecular complex consisting of OT, the Sec61 complex, and ribosomes.

  17. Small Substrate Transport and Mechanism of a Molybdate ATP Binding Cassette Transporter in a Lipid Environment*

    PubMed Central

    Rice, Austin J.; Harrison, Alistair; Alvarez, Frances J. D.; Davidson, Amy L.; Pinkett, Heather W.

    2014-01-01

    Embedded in the plasma membrane of all bacteria, ATP binding cassette (ABC) importers facilitate the uptake of several vital nutrients and cofactors. The ABC transporter, MolBC-A, imports molybdate by passing substrate from the binding protein MolA to a membrane-spanning translocation pathway of MolB. To understand the mechanism of transport in the biological membrane as a whole, the effects of the lipid bilayer on transport needed to be addressed. Continuous wave-electron paramagnetic resonance and in vivo molybdate uptake studies were used to test the impact of the lipid environment on the mechanism and function of MolBC-A. Working with the bacterium Haemophilus influenzae, we found that MolBC-A functions as a low affinity molybdate transporter in its native environment. In periods of high extracellular molybdate concentration, H. influenzae makes use of parallel molybdate transport systems (MolBC-A and ModBC-A) to take up a greater amount of molybdate than a strain with ModBC-A alone. In addition, the movement of the translocation pathway in response to nucleotide binding and hydrolysis in a lipid environment is conserved when compared with in-detergent analysis. However, electron paramagnetic resonance spectroscopy indicates that a lipid environment restricts the flexibility of the MolBC translocation pathway. By combining continuous wave-electron paramagnetic resonance spectroscopy and substrate uptake studies, we reveal details of molybdate transport and the logistics of uptake systems that employ multiple transporters for the same substrate, offering insight into the mechanisms of nutrient uptake in bacteria. PMID:24722984

  18. Small substrate transport and mechanism of a molybdate ATP binding cassette transporter in a lipid environment.

    PubMed

    Rice, Austin J; Harrison, Alistair; Alvarez, Frances J D; Davidson, Amy L; Pinkett, Heather W

    2014-05-23

    Embedded in the plasma membrane of all bacteria, ATP binding cassette (ABC) importers facilitate the uptake of several vital nutrients and cofactors. The ABC transporter, MolBC-A, imports molybdate by passing substrate from the binding protein MolA to a membrane-spanning translocation pathway of MolB. To understand the mechanism of transport in the biological membrane as a whole, the effects of the lipid bilayer on transport needed to be addressed. Continuous wave-electron paramagnetic resonance and in vivo molybdate uptake studies were used to test the impact of the lipid environment on the mechanism and function of MolBC-A. Working with the bacterium Haemophilus influenzae, we found that MolBC-A functions as a low affinity molybdate transporter in its native environment. In periods of high extracellular molybdate concentration, H. influenzae makes use of parallel molybdate transport systems (MolBC-A and ModBC-A) to take up a greater amount of molybdate than a strain with ModBC-A alone. In addition, the movement of the translocation pathway in response to nucleotide binding and hydrolysis in a lipid environment is conserved when compared with in-detergent analysis. However, electron paramagnetic resonance spectroscopy indicates that a lipid environment restricts the flexibility of the MolBC translocation pathway. By combining continuous wave-electron paramagnetic resonance spectroscopy and substrate uptake studies, we reveal details of molybdate transport and the logistics of uptake systems that employ multiple transporters for the same substrate, offering insight into the mechanisms of nutrient uptake in bacteria. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Effect of acidic phospholipids on apolipoprotein binding by artificial lipid particles in vivo.

    PubMed

    Tong, M F; Kuksis, A

    1986-08-01

    Soybean triacylglycerol particles stabilized with soybean phosphatidylinositol (PI), bovine brain phosphatidylserine (PS), egg yolk phosphatidylcholine (PC) or mixtures of these acidic and neutral phospholipids were prepared with diameters ranging from 250 to 520 nm. Binding of apoproteins to the lipid particles was studied using the strategy of Connelly and Kuksis. The recoveries of the injected particles, which had undergone minimal changes in lipid composition, ranged rom 57% for the PC-stabilized emulsions to 21% for the emulsions stabilized with PS and 8% for the emulsions stabilized with PI. The apoprotein (apo) composition of the recovered particles showed characteristic qualitative and quantitative differences. The particles stabilized with PI and PS or PI-phosphatidylethanolamine contained an unknown protein of molecular weight 117,000 (43-48%) and albumin (9-13%) as major components. The apoC-II, apoC-III, apoA-I, apoE, and apoA-IV were present as minor components in ratios that were the reverse of those seen for the PC-stabilized particles, which contained these proteins as major components. The relative strength of the binding of the proteins, which was determined by washing the particles with saline under standard conditions, also showed variations among the different particles and different apoproteins. The lipid particles stabilized with the acidic phospholipids had less total apoprotein and held it less tightly than the particles stabilized with PC. It is concluded that the binding of apoproteins by lipid particles stabilized with acidic phospholipids involves hydrophobic and ionic interactions, both of which may be physiologically important.

  20. Binding of amphiphilic and triphilic block copolymers to lipid model membranes: the role of perfluorinated moieties.

    PubMed

    Schwieger, Christian; Achilles, Anja; Scholz, Sven; Rüger, Jan; Bacia, Kirsten; Saalwaechter, Kay; Kressler, Jörg; Blume, Alfred

    2014-09-07

    A novel class of symmetric amphi- and triphilic (hydrophilic, lipophilic, fluorophilic) block copolymers has been investigated with respect to their interactions with lipid membranes. The amphiphilic triblock copolymer has the structure PGMA(20)-PPO(34)-PGMA(20) (GP) and it becomes triphilic after attaching perfluoroalkyl moieties (F9) to either end which leads to F(9)-PGMA(20)-PPO(34)-PGMA(20)-F(9) (F-GP). The hydrophobic poly(propylene oxide) (PPO) block is sufficiently long to span a lipid bilayer. The poly(glycerol monomethacrylate) (PGMA) blocks have a high propensity for hydrogen bonding. The hydrophobic and lipophobic perfluoroalkyl moieties have the tendency to phase segregate in aqueous as well as in hydrocarbon environments. We performed differential scanning calorimetry (DSC) measurements on polymer bound lipid vesicles under systematic variation of the bilayer thickness, the nature of the lipid headgroup, and the polymer concentration. The vesicles were composed of phosphatidylcholines (DMPC, DPPC, DAPC, DSPC) or phosphatidylethanolamines (DMPE, DPPE, POPE). We showed that GP as well as F-GP binding have membrane stabilizing and destabilizing components. PPO and F9 blocks insert into the hydrophobic part of the membrane concomitantly with PGMA block adsorption to the lipid headgroup layer. The F9 chains act as additional membrane anchors. The insertion of the PPO blocks of both GP and F-GP could be proven by 2D-NOESY NMR spectroscopy. By fluorescence microscopy we show that F-GP binding increases the porosity of POPC giant unilamellar vesicles (GUVs), allowing the influx of water soluble dyes as well as the translocation of the complete triphilic polymer and its accumulation at the GUV surface. These results open a new route for the rational design of membrane systems with specific properties.

  1. GE23077 binds to the RNA polymerase 'i' and 'i+1' sites and prevents the binding of initiating nucleotides.

    PubMed

    Zhang, Yu; Degen, David; Ho, Mary X; Sineva, Elena; Ebright, Katherine Y; Ebright, Yon W; Mekler, Vladimir; Vahedian-Movahed, Hanif; Feng, Yu; Yin, Ruiheng; Tuske, Steve; Irschik, Herbert; Jansen, Rolf; Maffioli, Sonia; Donadio, Stefano; Arnold, Eddy; Ebright, Richard H

    2014-04-22

    Using a combination of genetic, biochemical, and structural approaches, we show that the cyclic-peptide antibiotic GE23077 (GE) binds directly to the bacterial RNA polymerase (RNAP) active-center 'i' and 'i+1' nucleotide binding sites, preventing the binding of initiating nucleotides, and thereby preventing transcription initiation. The target-based resistance spectrum for GE is unusually small, reflecting the fact that the GE binding site on RNAP includes residues of the RNAP active center that cannot be substituted without loss of RNAP activity. The GE binding site on RNAP is different from the rifamycin binding site. Accordingly, GE and rifamycins do not exhibit cross-resistance, and GE and a rifamycin can bind simultaneously to RNAP. The GE binding site on RNAP is immediately adjacent to the rifamycin binding site. Accordingly, covalent linkage of GE to a rifamycin provides a bipartite inhibitor having very high potency and very low susceptibility to target-based resistance. DOI: http://dx.doi.org/10.7554/eLife.02450.001.

  2. Using molecular docking-based binding energy to predict toxicity of binary mixture with different binding sites.

    PubMed

    Yao, Zhifeng; Lin, Zhifen; Wang, Ting; Tian, Dayong; Zou, Xiaoming; Gao, Ya; Yin, Daqiang

    2013-08-01

    The flood of chemical substances in the environment result in the complexity of chemical mixtures, and one of the reasons for complexity is that their individual chemicals bind to different binding sites on different (or same) target proteins within the organism. A general approaches therefore are proposed in this study to predict the toxicity of chemical mixtures with different binding sites by using molecular docking-based binding energy (Ebinding). Aldehydes and cyanogenic toxicants were selected as the example of chemical mixtures with same binding site. Triazines and urea herbicide were selected as the example of chemical mixtures with different binding sites but on same target protein. Sulfonamides and trimethoprim toxicants were selected as the example of chemical mixtures with different target proteins. Although these chemical mixtures bind to their binding sites by different ways, there is a general relationship between their binary mixture toxicity (EC50M) and their corresponding Ebinding of individual chemicals and logKow(mix). By using the Ebinding to describe how the individual chemicals work in the different binding sites, the approach may provide a general and simply model to predict mixture toxicity to microorganism. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  3. Oxytocin receptor binding sites in the periphery of the neonatal mouse

    PubMed Central

    Greenwood, Maria A.

    2017-01-01

    Oxytocin (OXT) is a pleiotropic regulator of physiology and behavior. An emerging body of evidence demonstrates a role for OXT in the transition to postnatal life of the infant. To identify potential sites of OXT action via the OXT receptor (OXTR) in the newborn mouse, we performed receptor autoradiography on 20 μm sagittal sections of whole postnatal day 0 male and female mice on a C57BL/6J background using the 125iodinated ornithine vasotocin analog ([125I]-OVTA) radioligand. A competitive binding assay on both wild-type (WT) and OXTR knockout (OXTR KO) tissue was used to assess the selectivity of [125I]-OVTA for neonatal OXTR. Radioactive ligand (0.05 nM [125I]-OVTA) was competed against concentrations of 0 nM, 10 nM, and 1000 nM excess unlabeled OXT. Autoradiographs demonstrated the high selectivity of the radioligand for infant peripheral OXTR. Specific ligand binding activity for OXTR was observed in the oronasal cavity, the eye, whisker pads, adrenal gland, and anogenital region in the neonatal OXTR WT mouse, but was absent in neonatal OXTR KO. Nonspecific binding was observed in areas with a high lipid content such as the scapular brown adipose tissue and the liver: in these regions, binding was present in both OXTR WT and KO mice, and could not be competed away with OXT in either WT or KO mice. Collectively, these data confirm novel OXT targets in the periphery of the neonate. These peripheral OXTR sites, coupled with the immaturity of the neonate’s own OXT system, suggest a role for exogenous OXT in modulating peripheral physiology and development. PMID:28235051

  4. Binding of coumarins to site I of human serum albumin. Effect of the fatty acids.

    PubMed

    Zatón, A M; Ferrer, J M; Ruiz de Gordoa, J C; Marquínez, M A

    1995-07-14

    It is known that binding site I on human serum albumin (HSA) consists of a zone of two overlapping regions: the specific binding region represented by warfarin binding and the specific binding region represented by azapropazone and phenylbutazone binding. In this paper binding parameters to defatted HSA and to HSA with fatty acids (molar ratio of fatty acid/HSA = 4) were compared. High-affinity binding sites for warfarin, 4-chromanol, 4-hydroxycoumarin, coumarin, 3-acetylcoumarin and phenylbutazone (759,549 M-1 > Ka > 67,024 M-1) constitute binding site I on HSA. In this binding area defatted HSA can bind two molecules of warfarin, but the presence of fatty acids diminish the binding capacity of warfarin to HSA (2 > n > 1).

  5. Polyomavirus Large T Antigen Binds Cooperatively to Its Multiple Binding Sites in the Viral Origin of DNA Replication

    PubMed Central

    Peng, Yu-Cai; Acheson, Nicholas H.

    1998-01-01

    Polyomavirus large T antigen binds to multiple 5′-G(A/G)GGC-3′ pentanucleotide sequences in sites 1/2, A, B, and C within and adjacent to the origin of viral DNA replication on the polyomavirus genome. We asked whether the binding of large T antigen to one of these sites could influence binding to other sites. We discovered that binding to origin DNA is substantially stronger at pH 6 to 7 than at pH 7.4 to 7.8, a range often used in DNA binding assays. Large T antigen-DNA complexes formed at pH 6 to 7 were stable, but a fraction of these complexes dissociated at pH 7.6 and above upon dilution or during electrophoresis. Increased binding at low pH is therefore due at least in part to increased stability of protein-DNA complexes, and binding at higher pH values is reversible. Binding to fragments of origin DNA in which one or more sites were deleted or inactivated by point mutations was measured by nitrocellulose filter binding and DNase I footprinting. The results showed that large T antigen binds cooperatively to its four binding sites in viral DNA, suggesting that the binding of this protein to one of these sites stabilizes its binding to other sites via protein-protein contacts. Sites A, B, and C may therefore augment DNA replication by facilitating the binding of large T antigen to site 1/2 at the replication origin. ATP stabilized large T antigen-DNA complexes against dissociation in the presence, but not the absence, of site 1/2, and ATP specifically enhanced protection against DNase I digestion in the central 10 to 12 bp of site 1/2, at which hexamers are believed to form and begin unwinding DNA. We propose that large T antigen molecules bound to these multiple sites on origin DNA interact with each other to form a compact protein-DNA complex and, furthermore, that ATP stimulates their assembly into hexamers at site 1/2 by a “handover” mechanism mediated by these protein-protein contacts. PMID:9696829

  6. Photoaffinity labeling with cholesterol analogues precisely maps a cholesterol-binding site in voltage-dependent anion channel-1.

    PubMed

    Budelier, Melissa M; Cheng, Wayland W L; Bergdoll, Lucie; Chen, Zi-Wei; Janetka, James W; Abramson, Jeff; Krishnan, Kathiresan; Mydock-McGrane, Laurel; Covey, Douglas F; Whitelegge, Julian P; Evers, Alex S

    2017-06-02

    Voltage-dependent anion channel-1 (VDAC1) is a highly regulated β-barrel membrane protein that mediates transport of ions and metabolites between the mitochondria and cytosol of the cell. VDAC1 co-purifies with cholesterol and is functionally regulated by cholesterol, among other endogenous lipids. Molecular modeling studies based on NMR observations have suggested five cholesterol-binding sites in VDAC1, but direct experimental evidence for these sites is lacking. Here, to determine the sites of cholesterol binding, we photolabeled purified mouse VDAC1 (mVDAC1) with photoactivatable cholesterol analogues and analyzed the photolabeled sites with both top-down mass spectrometry (MS), and bottom-up MS paired with a clickable, stable isotope-labeled tag, FLI-tag. Using cholesterol analogues with a diazirine in either the 7 position of the steroid ring (LKM38) or the aliphatic tail (KK174), we mapped a binding pocket in mVDAC1 localized to Thr(83) and Glu(73), respectively. When Glu(73) was mutated to a glutamine, KK174 no longer photolabeled this residue, but instead labeled the nearby Tyr(62) within this same binding pocket. The combination of analytical strategies employed in this work permits detailed molecular mapping of a cholesterol-binding site in a protein, including an orientation of the sterol within the site. Our work raises the interesting possibility that cholesterol-mediated regulation of VDAC1 may be facilitated through a specific binding site at the functionally important Glu(73) residue. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Equilibrium binding of single-stranded DNA to the secondary DNA binding site of the bacterial recombinase RecA.

    PubMed

    Gourves, A S; Defais, M; Johnson, N P

    2001-03-30

    The bacterial recombinase RecA forms a nucleoprotein filament in vitro with single-stranded DNA (ssDNA) at its primary DNA binding site, site I. This filament has a second site, site II, which binds ssDNA and double-stranded DNA. We have investigated the binding of ssDNA to the RecA protein in the presence of adenosine 5'-O-(thiotriphosphate) cofactor using fluorescence anisotropy. The RecA protein carried out DNA strand exchange with a 5'-fluorescein-labeled 32-mer oligonucleotide. The anisotropy signal was shown to measure oligonucleotide binding to RecA, and the relationship between signal and binding density was determined. Binding of ssDNA to site I of RecA was stable at high NaCl concentrations. Binding to site II could be described by a simple two-state equilibrium, K = 4.5 +/- 1.5 x 10(5) m(-1) (37 degrees C, 150 mm NaCl, pH 7.4). The reaction was enthalpy-driven and entropy-opposed. It depended on salt concentration and was sensitive to the type of monovalent anion, suggesting that anion-dependent protein conformations contribute to ssDNA binding at site II.

  8. Functional impact of HIV coreceptor-binding site mutations

    SciTech Connect

    Biscone, Mark J.; Miamidian, John L.; Muchiri, John M.; Baik, Sarah S.W.; Lee, Fang-Hua; Doms, Robert W. . E-mail: doms@mail.med.upenn.edu; Reeves, Jacqueline D. . E-mail: jreeves@MonogramBio.com

    2006-07-20

    The bridging sheet region of the gp120 subunit of the HIV-1 Env protein interacts with the major virus coreceptors, CCR5 and CXCR4. We examined the impact of mutations in and adjacent to the bridging sheet region of an X4 tropic HIV-1 on membrane fusion and entry inhibitor susceptibility. When the V3-loop of this Env was changed so that CCR5 was used, the effects of these same mutations on CCR5 use were assayed as well. We found that coreceptor-binding site mutations had greater effects on CXCR4-mediated fusion and infection than when CCR5 was used as a coreceptor, perhaps related to differences in coreceptor affinity. The mutations also reduced use of the alternative coreceptors CCR3 and CCR8 to varying degrees, indicating that the bridging sheet region is important for the efficient utilization of both major and minor HIV coreceptors. As seen before with a primary R5 virus strain, bridging sheet mutations increased susceptibility to the CCR5 inhibitor TAK-779, which correlated with CCR5 binding efficiency. Bridging sheet mutations also conferred increased susceptibility to the CXCR4 ligand AMD-3100 in the context of the X4 tropic Env. However, these mutations had little effect on the rate of membrane fusion and little effect on susceptibility to enfuvirtide, a membrane fusion inhibitor whose activity is dependent in part on the rate of Env-mediated membrane fusion. Thus, mutations that reduce coreceptor binding and enhance susceptibility to coreceptor inhibitors can affect fusion and enfuvirtide susceptibility in an Env context-dependent manner.

  9. Mapping protein binding sites on the biomolecular corona of nanoparticles

    NASA Astrophysics Data System (ADS)

    Kelly, Philip M.; Åberg, Christoffer; Polo, Ester; O'Connell, Ann; Cookman, Jennifer; Fallon, Jonathan; Krpetić, Željka; Dawson, Kenneth A.

    2015-05-01

    Nanoparticles in a biological milieu are known to form a sufficiently long-lived and well-organized ‘corona’ of biomolecules to confer a biological identity to the particle. Because this nanoparticle-biomolecule complex interacts with cells and biological barriers, potentially engaging with different biological pathways, it is important to clarify the presentation of functional biomolecular motifs at its interface. Here, we demonstrate that by using antibody-labelled gold nanoparticles, differential centrifugal sedimentation and various imaging techniques it is possible to identify the spatial location of proteins, their functional motifs and their binding sites. We show that for transferrin-coated polystyrene nanoparticles only a minority of adsorbed proteins exhibit functional motifs and the spatial organization appears random, which is consistent, overall, with a stochastic and irreversible adsorption process. Our methods are applicable to a wide array of nanoparticles and can offer a microscopic molecular description of the biological identity of nanoparticles.

  10. Location of platinum binding sites on bacteriorhodopsin by electron diffraction

    SciTech Connect

    Dumont, M.E.; Wiggins, J.W.; Hayward, S.B.

    1981-05-01

    A platinum-containing derivative of bacteriorhodopsin has been prepared by treating purple membranes with glycyl-L-methionatoplatinum. Low-dose electron diffraction was used to identify Pt binding sites in the 5.6 A resolution reconstruction of the bacteriorhodopsin unit cell in projection. This is a necessary first step in the use of the Pt derivative for identifying the parts of the amino acid sequence corresponding to the ..cap alpha.. helices in the bacteriorhodopsin structure and for obtaining phases for reflections out to 3.5 A resolution by the method of heavy-atom isomorphous replacement. The largest peak in a Fourier difference map between platinum-labeled and native purple membrane is larger than thespurious features expected to arise from errors in measurements of diffraction intensities.

  11. A Sialic Acid Binding Site in a Human Picornavirus

    PubMed Central

    Frank, Martin; Hähnlein-Schick, Irmgard; Ekström, Jens-Ola; Arnberg, Niklas; Stehle, Thilo

    2014-01-01

    The picornaviruses coxsackievirus A24 variant (CVA24v) and enterovirus 70 (EV70) cause continued outbreaks and pandemics of acute hemorrhagic conjunctivitis (AHC), a highly contagious eye disease against which neither vaccines nor antiviral drugs are currently available. Moreover, these viruses can cause symptoms in the cornea, upper respiratory tract, and neurological impairments such as acute flaccid paralysis. EV70 and CVA24v are both known to use 5-N-acetylneuraminic acid (Neu5Ac) for cell attachment, thus providing a putative link between the glycan receptor specificity and cell tropism and disease. We report the structures of an intact human picornavirus in complex with a range of glycans terminating in Neu5Ac. We determined the structure of the CVA24v to 1.40 Å resolution, screened different glycans bearing Neu5Ac for CVA24v binding, and structurally characterized interactions with candidate glycan receptors. Biochemical studies verified the relevance of the binding site and demonstrated a preference of CVA24v for α2,6-linked glycans. This preference can be rationalized by molecular dynamics simulations that show that α2,6-linked glycans can establish more contacts with the viral capsid. Our results form an excellent platform for the design of antiviral compounds to prevent AHC. PMID:25329320

  12. Muscarinic acetylcholine receptors: location of the ligand binding site

    SciTech Connect

    Hulme, E.; Wheatley, M.; Curtis, C.; Birdsall, N.

    1987-05-01

    The key to understanding the pharmacological specificity of muscarinic acetylcholine receptors (mAChR's) is the location within the receptor sequence of the amino acid residues responsible for ligand binding. To approach this problem, they have purified mAChR's from rat brain to homogeneity by sequential ion-exchange chromatography, affinity chromatography and molecular weight fractionation. Following labelling of the binding site with an alkylating affinity label, /sup 3/H-propylbenzilycholine mustard aziridinium ion (/sup 3/H-PrBCM), the mAChR was digested with a lysine-specific endoproteinase, and a ladder of peptides of increasing molecular weight, each containing the glycosylated N-terminus, isolated by chromatography on wheat-germ agglutinin sepharose. The pattern of labelling showed that a residue in the peptides containing transmembrane helices 2 and/or 3 of the mAChR was alkylated. The linkage was cleaved by 1 M hydroxylamine, showing that /sup 3/H-PrBCM was attached to an acidic residue, whose properties strongly suggested it to be embedded in a hydrophobic intramembrane region of the mAChR. Examination of the cloned sequence of the mAChR reveals several candidate residues, the most likely of which is homologous to an aspartic acid residue thought to protonate the retinal Schiff's base in the congeneric protein rhodopsin.

  13. Membrane-active peptides: binding, translocation, and flux in lipid vesicles

    PubMed Central

    Almeida, Paulo F.

    2014-01-01

    Recently, new and improved methods have been developed to measure translocation of membrane-active peptides (antimicrobial, cytolytic, and amphipathic cell-penetrating peptides) across lipid bilayer membranes. The hypothesis that translocation of membrane-active peptides across a lipid bilayer is determined by the Gibbs energy of insertion of the peptide into the bilayer is re-examined in the light of new experimental tests. The original hypothesis and its motivation are first revisited, examining some specific predictions it generated and the results of initial tests. Translocation is understood as requiring two previous steps: binding and insertion in the membrane. The problem of peptide binding to membranes, its prediction, measurement, and calculation are addressed. Particular attention is given to understanding the reason for the need for amphipathic structures in the function of membrane-active peptides. Insertion into the membrane is then examined. Hydrophobicity scales are compared, and their influence on calculations is discussed. The relation between translocation and graded or all-or-none peptide-induced flux from or into lipid vesicles is also considered. Finally, the most recent work on translocation is examined, both experimental and from molecular dynamics simulations. PMID:24769436

  14. Demonstration of specific binding sites for /sup 3/H-RRR-alpha-tocopherol on human erythrocytes

    SciTech Connect

    Kitabchi, A.E.; Wimalasena, J.

    1982-01-01

    Previous work from our laboratory demonstrated specific binding sites for /sup 3/H-RRR-alpha-tocopherol (/sup 3/H-d alpha T) in membranes of rat adrenal cells. As tocopherol deficiency is associated with increased susceptibility of red blood cells to hemolysis, we investigated tocopherol binding sites in human RBCs. Erythrocytes were found to have specific binding sites for /sup 3/H-d alpha T that exhibited saturability and time and cell-concentration dependence as well as reversibility of binding. Kinetic studies of binding demonstrated two binding sites--one with high affinity (Ka of 2.6 x 10(7) M-1), low capacity (7,600 sites per cell) and the other with low affinity (1.2 x 10(6) M-1), high capacity (150,000 sites per cell). In order to localize the binding sites further, RBCs were fractionated and greater than 90% of the tocopherol binding was located in the membranes. Similar to the findings in intact RBCs, the membranes exhibited two binding sites with a respective Ka of 3.3 x 10(7) M-1 and 1.5 x 10(6) M-1. Specificity data for binding demonstrated 10% binding for RRR-gamma-tocopherol, but not other tocopherol analog exhibited competition for /sup 3/H-d alpha T binding sites. Instability data suggested a protein nature for these binding sites. Preliminary studies on Triton X-100 solubilized fractions resolved the binding sites to a major component with an Mr of 65,000 and a minor component with an Mr of 125,000. We conclude that human erythrocyte membranes contain specific binding sites for RRR-alpha-tocopherol. These sites may be of physiologic significance in the function of tocopherol on the red blood cell membrane.

  15. Multiple saxitoxin-binding sites in bullfrog muscle: tetrodotoxin-sensitive sodium channels and tetrodotoxin-insensitive sites of unknown function

    SciTech Connect

    Moczydlowski, E.; Mahar, J.; Ravindran, A.

    1988-02-01

    The possible presence of multiple sodium channel subtypes in bullfrog skeletal muscle was investigated in binding experiments with (/sup 3/H)saxitoxin and in single-channel studies using planar lipid bilayers. Two classes of (/sup 3/H)saxitoxin-binding sites were identified in membrane preparations. One class displayed a toxin specificity characteristic of voltage-dependent sodium channels: high affinity for saxitoxin (KD approximately equal to 0.5 nM), neosaxitoxin (KD approximately equal to 0.1 nM), and tetrodotoxin (KD approximately equal to 1.3 nM). A second class of membrane-associated binding sites exhibited high affinity for saxitoxin (KD approximately equal to 0.1 nM), lower affinity for neosaxitoxin (KD approximately equal to 25 nM), and complete insensitivity to tetrodotoxin at concentrations up to 32 microM. The first class corresponded to functional tetrodotoxin-sensitive sodium channels that could be incorporated and observed in planar bilayers in the presence of batrachotoxin. The unusual, tetrodotoxin-insensitive binding activity for (/sup 3/H)saxitoxin was also found at nM levels in the high speed supernatant of homogenized skeletal muscle without the addition of detergents. This soluble class of sites exhibited low affinity for neosaxitoxin (KD approximately equal to 60 nM) and a very slow dissociation rate of (/sup 3/H)saxitoxin (t0.5 approximately equal to 90 min), properties nearly identical to those of the tetrodotoxin-insensitive sites in membranes. The soluble saxitoxin-binding activity is also characterized by a more basic pH dependence and a complete lack of binding competition between saxitoxin and alkali cations. Bullfrog muscle appears to be a good tissue source for the purification of this soluble saxitoxin-binding protein.

  16. Genome-wide prediction, display and refinement of binding sites with information theory-based models

    PubMed Central

    Gadiraju, Sashidhar; Vyhlidal, Carrie A; Leeder, J Steven; Rogan, Peter K

    2003-01-01

    Background We present Delila-genome, a software system for identification, visualization and analysis of protein binding sites in complete genome sequences. Binding sites are predicted by scanning genomic sequences with information theory-based (or user-defined) weight matrices. Matrices are refined by adding experimentally-defined binding sites to published binding sites. Delila-Genome was used to examine the accuracy of individual information contents of binding sites detected with refined matrices as a measure of the strengths of the corresponding protein-nucleic acid interactions. The software can then be used to predict novel sites by rescanning the genome with the refined matrices. Results Parameters for genome scans are entered using a Java-based GUI interface and backend scripts in Perl. Multi-processor CPU load-sharing minimized the average response time for scans of different chromosomes. Scans of human genome assemblies required 4–6 hours for transcription factor binding sites and 10–19 hours for splice sites, respectively, on 24- and 3-node Mosix and Beowulf clusters. Individual binding sites are displayed either as high-resolution sequence walkers or in low-resolution custom tracks in the UCSC genome browser. For large datasets, we applied a data reduction strategy that limited displays of binding sites exceeding a threshold information content to specific chromosomal regions within or adjacent to genes. An HTML document is produced listing binding sites ranked by binding site strength or chromosomal location hyperlinked to the UCSC custom track, other annotation databases and binding site sequences. Post-genome scan tools parse binding site annotations of selected chromosome intervals and compare the results of genome scans using different weight matrices. Comparisons of multiple genome scans can display binding sites that are unique to each scan and identify sites with significantly altered binding strengths. Conclusions Delila-Genome was used to

  17. Genome-wide prediction, display and refinement of binding sites with information theory-based models.

    PubMed

    Gadiraju, Sashidhar; Vyhlidal, Carrie A; Leeder, J Steven; Rogan, Peter K

    2003-09-08

    We present Delila-genome, a software system for identification, visualization and analysis of protein binding sites in complete genome sequences. Binding sites are predicted by scanning genomic sequences with information theory-based (or user-defined) weight matrices. Matrices are refined by adding experimentally-defined binding sites to published binding sites. Delila-Genome was used to examine the accuracy of individual information contents of binding sites detected with refined matrices as a measure of the strengths of the corresponding protein-nucleic acid interactions. The software can then be used to predict novel sites by rescanning the genome with the refined matrices. Parameters for genome scans are entered using a Java-based GUI interface and backend scripts in Perl. Multi-processor CPU load-sharing minimized the average response time for scans of different chromosomes. Scans of human genome assemblies required 4-6 hours for transcription factor binding sites and 10-19 hours for splice sites, respectively, on 24- and 3-node Mosix and Beowulf clusters. Individual binding sites are displayed either as high-resolution sequence walkers or in low-resolution custom tracks in the UCSC genome browser. For large datasets, we applied a data reduction strategy that limited displays of binding sites exceeding a threshold information content to specific chromosomal regions within or adjacent to genes. An HTML document is produced listing binding sites ranked by binding site strength or chromosomal location hyperlinked to the UCSC custom track, other annotation databases and binding site sequences. Post-genome scan tools parse binding site annotations of selected chromosome intervals and compare the results of genome scans using different weight matrices. Comparisons of multiple genome scans can display binding sites that are unique to each scan and identify sites with significantly altered binding strengths. Delila-Genome was used to scan the human genome sequence

  18. Protein transduction domains of HIV-1 and SIV TAT interact with charged lipid vesicles. Binding mechanism and thermodynamic analysis.

    PubMed

    Ziegler, André; Blatter, Xiaochun Li; Seelig, Anna; Seelig, Joachim

    2003-08-05

    Cell-penetrating peptides (CPPs) traverse cell membranes of cultured cells very efficiently by a mechanism not yet identified. Recent theories for the translocation suggest either the binding of the CPPs to extracellular glycosaminoglycans or the formation of inverted micelles with negatively charged lipids. In the present study, the binding of the protein transduction domains (PTD) of human (HIV-1) and simian immunodeficiency virus (SIV) TAT peptide (amino acid residues 47-57, electric charge z(p) = +8) to membranes containing various proportions of negatively charged lipid (POPG) is characterized. Monolayer expansion measurements demonstrate that TAT-PTD insertion between lipids requires loosely packed monolayer films. For densely packed monolayers (pi > 29 mN/m) and lipid bilayers, no insertion is possible, and binding occurs via electrostatic adsorption to the membrane surface. Light scattering experiments show an aggregation of anionic lipid vesicles when the electric surface charge is neutralized by TAT-PTD, the observed stoichiometry being close to the theoretical value of 1:8. Membrane binding was quantitated with isothermal titration calorimetry and three further methods. The reaction enthalpy is Delta H degrees approximately equal to -1.5 kcal/mol peptide and is almost temperature-independent with Delta C(p) degrees approximately 0 kcal/(mol K), indicating equal contributions of polar and hydrophobic interactions to the reaction heat capacity. The binding of TAT-PTD to the anionic membrane is described by an electrostatic attraction/chemical partition model. The electrostatic attraction energy, calculated with the Gouy-Chapman theory, accounts for approximately 80% of the binding energy. The overall binding constant, K(app), is approximately 10(3)-10(4) M(-1). The intrinsic binding constant (K(p)), corrected for electrostatic effects and describing the partitioning of the peptide between the lipid-water interface and the membrane, is small and is K

  19. Energetics of peptide (pHLIP) binding to and folding across a lipid bilayer membrane.

    PubMed

    Reshetnyak, Yana K; Andreev, Oleg A; Segala, Michael; Markin, Vladislav S; Engelman, Donald M

    2008-10-07

    The pH low-insertion peptide (pHLIP) serves as a model system for peptide insertion and folding across a lipid bilayer. It has three general states: (I) soluble in water or (II) bound to the surface of a lipid bilayer as an unstructured monomer, and (III) inserted across the bilayer as a monomeric alpha-helix. We used fluorescence spectroscopy and isothermal titration calorimetry to study the interactions of pHLIP with a palmitoyloleoylphosphatidylcholine (POPC) lipid bilayer and to calculate the transition energies between states. We found that the Gibbs free energy of binding to a POPC surface at low pHLIP concentration (state I-state II transition) at 37 degrees C is approximately -7 kcal/mol near neutral pH and that the free energy of insertion and folding across a lipid bilayer at low pH (state II-state III transition) is nearly -2 kcal/mol. We discuss a number of related thermodynamic parameters from our measurements. Besides its fundamental interest as a model system for the study of membrane protein folding, pHLIP has utility as an agent to target diseased tissues and translocate molecules through the membrane into the cytoplasm of cells in environments with elevated levels of extracellular acidity, as in cancer and inflammation. The results give the amount of energy that might be used to move cargo molecules across a membrane.

  20. Energetics of peptide (pHLIP) binding to and folding across a lipid bilayer membrane

    PubMed Central

    Reshetnyak, Yana K.; Andreev, Oleg A.; Segala, Michael; Markin, Vladislav S.; Engelman, Donald M.

    2008-01-01

    The pH low-insertion peptide (pHLIP) serves as a model system for peptide insertion and folding across a lipid bilayer. It has three general states: (I) soluble in water or (II) bound to the surface of a lipid bilayer as an unstructured monomer, and (III) inserted across the bilayer as a monomeric α-helix. We used fluorescence spectroscopy and isothermal titration calorimetry to study the interactions of pHLIP with a palmitoyloleoylphosphatidylcholine (POPC) lipid bilayer and to calculate the transition energies between states. We found that the Gibbs free energy of binding to a POPC surface at low pHLIP concentration (state I–state II transition) at 37°C is approximately −7 kcal/mol near neutral pH and that the free energy of insertion and folding across a lipid bilayer at low pH (state II–state III transition) is nearly −2 kcal/mol. We discuss a number of related thermodynamic parameters from our measurements. Besides its fundamental interest as a model system for the study of membrane protein folding, pHLIP has utility as an agent to target diseased tissues and translocate molecules through the membrane into the cytoplasm of cells in environments with elevated levels of extracellular acidity, as in cancer and inflammation. The results give the amount of energy that might be used to move cargo molecules across a membrane. PMID:18829441

  1. Paracetamol and cytarabine binding competition in high affinity binding sites of transporting protein

    NASA Astrophysics Data System (ADS)

    Sułkowska, A.; Bojko, B.; Równicka, J.; Sułkowski, W. W.

    2006-07-01

    Paracetamol (acetaminophen, AA) the most popular analgesic drug is commonly used in the treatment of pain in patients suffering from cancer. In our studies, we evaluated the competition in binding with serum albumin between paracetamol (AA) and cytarabine, antyleukemic drug (araC). The presence of one drug can alter the binding affinity of albumin towards the second one. Such interaction can result in changing of the free fraction of the one of these drugs in blood. Two spectroscopic methods were used to determine high affinity binding sites and the competition of the drugs. Basing on the change of the serum albumin fluorescence in the presence of either of the drugs the quenching ( KQ) constants for the araC-BSA and AA-BSA systems were calculated. Analysis of UV difference spectra allowed us to describe the changes in drug-protein complexes (araC-albumin and AA-albumin) induced by the presence of the second drug (AA and araC, respectively). The mechanism of competition between araC and AA has been proposed.

  2. Fat(al) attraction: Picornaviruses Usurp Lipid Transfer at Membrane Contact Sites to Create Replication Organelles.

    PubMed

    van der Schaar, Hilde M; Dorobantu, Cristina M; Albulescu, Lucian; Strating, Jeroen R P M; van Kuppeveld, Frank J M

    2016-07-01

    All viruses that carry a positive-sense RNA genome (+RNA), such as picornaviruses, hepatitis C virus, dengue virus, and SARS- and MERS-coronavirus, confiscate intracellular membranes of the host cell to generate new compartments (i.e., replication organelles) for amplification of their genome. Replication organelles (ROs) are membranous structures that not only harbor viral proteins but also contain a specific array of hijacked host factors that create a unique lipid microenvironment optimal for genome replication. While some lipids may be locally synthesized de novo, other lipids are shuttled towards ROs. In picornavirus-infected cells, lipids are exchanged at membrane contact sites between ROs and other organelles. In this paper, we review recent advances in our understanding of how picornaviruses exploit host membrane contact site machinery to generate ROs, a mechanism that is used by some other +RNA viruses as well. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Lipid Rafts Act as Specialized Domains for Tetanus Toxin Binding and Internalization into Neurons

    PubMed Central

    Herreros, Judit; Ng, Tony; Schiavo, Giampietro

    2001-01-01

    Tetanus (TeNT) is a zinc protease that blocks neurotransmission by cleaving the synaptic protein vesicle-associated membrane protein/synaptobrevin. Although its intracellular catalytic activity is well established, the mechanism by which this neurotoxin interacts with the neuronal surface is not known. In this study, we characterize p15s, the first plasma membrane TeNT binding proteins and we show that they are glycosylphosphatidylinositol-anchored glycoproteins in nerve growth factor (NGF)-differentiated PC12 cells, spinal cord cells, and purified motor neurons. We identify p15 as neuronal Thy-1 in NGF-differentiated PC12 cells. Fluorescence lifetime imaging microscopy measurements confirm the close association of the binding domain of TeNT and Thy-1 at the plasma membrane. We find that TeNT is recruited to detergent-insoluble lipid microdomains on the surface of neuronal cells. Finally, we show that cholesterol depletion affects a raft subpool and blocks the internalization and intracellular activity of the toxin. Our results indicate that TeNT interacts with target cells by binding to lipid rafts and that cholesterol is required for TeNT internalization and/or trafficking in neurons. PMID:11598183

  4. Haloduracin α binds the peptidoglycan precursor lipid II with 2:1 stoichiometry.

    PubMed

    Oman, Trent J; Lupoli, Tania J; Wang, Tsung-Shing Andrew; Kahne, Daniel; Walker, Suzanne; van der Donk, Wilfred A

    2011-11-09

    The two-peptide lantibiotic haloduracin is composed of two post-translationally modified polycyclic peptides that synergistically act on gram-positive bacteria. We show here that Halα inhibits the transglycosylation reaction catalyzed by PBP1b by binding in a 2:1 stoichiometry to its substrate lipid II. Halβ and the mutant Halα-E22Q were not able to inhibit this step in peptidoglycan biosynthesis, but Halα with its leader peptide still attached was a potent inhibitor. Combined with previous findings, the data support a model in which a 1:2:2 lipid II:Halα:Halβ complex inhibits cell wall biosynthesis and mediates pore formation, resulting in loss of membrane potential and potassium efflux.

  5. A Distinct Subfraction of Aβ is Responsible for the High-Affinity Pittsburgh Compound B (PIB) Binding Site in Alzheimer’s Disease Brain

    PubMed Central

    Matveev, Sergey V.; Spielmann, H. Peter; Metts, Brittney M.; Chen, Jing; Onono, Fredrick; Zhu, Haining; Scheff, Stephen W.; Walker, Lary C.; LeVine, Harry

    2014-01-01

    The positron emitting (PET) 11C-labeled Pittsburgh Compound B (PIB) ligand is used to image β-amyloid (Aβ) deposits in the brains of living subjects with the intent of detecting early stages of Alzheimer’s disease (AD). However, deposits of human-sequence Aβ in APP transgenic mice and nonhuman primates bind very little PIB. The high stoichiometry of PIB:Aβ binding in human AD suggests that the PIB binding site may represent a particularly pathogenic entity and/or report local pathologic conditions. In this study, 3H-PIB was employed to track purification of the PIB binding site in > 90% yield from frontal cortical tissue of autopsy-diagnosed AD subjects. The purified PIB binding site comprises a distinct, highly insoluble subfraction of the Aβ in AD brain with low buoyant density due to an SDS-resistant association with a limited subset of brain proteins and lipids with physical properties similar to lipid rafts and to a ganglioside:Aβ complex in AD and Down Syndrome brain. Both the protein and lipid components are required for PIB binding. Elucidation of human-specific biological components and pathways will be important in guiding improvement of the animal models for AD and in identifying new potential therapeutic avenues. PMID:24995708

  6. Chloramphenicol binding to human serum albumin: Determination of binding constants and binding sites by steady-state fluorescence

    NASA Astrophysics Data System (ADS)

    Ding, Fei; Zhao, Guangyu; Chen, Shoucong; Liu, Feng; Sun, Ying; Zhang, Li

    2009-07-01

    The interaction between chloramphenicol and human serum albumin (HSA) was studied by fluorescence, UV/vis, circular dichroism (CD) and three-dimensional fluorescence spectroscopy. Fluorescence data revealed that the fluorescence quenching of HSA by chloramphenicol was the result of the formation of drug-HSA complex, and the effective quenching constants ( Ka) were 2.852 × 10 4, 2.765 × 10 4, 2.638 × 10 4 and 2.542 × 10 4 M -1 at 287, 295, 303 and 311 K, respectively. The thermodynamic parameters, enthalpy change (Δ H) and entropy change (Δ S) for the reaction were calculated to be -3.634 kJ mol -1 and 72.66 J mol -1 K -1 according to van't Hoff equation. The results indicated that the hydrophobic and electrostatic interactions played a major role in the binding of drug to HSA. The distance r between donor and acceptor was obtained to be 3.63 nm according to Förster's theory. Site marker competitive experiments indicated that the binding of drug to HSA primarily took place in subdomain IIA. The alterations of HSA secondary structure in the presence of chloramphenicol were confirmed by the evidences from synchronous fluorescence, CD and three-dimensional fluorescence spectra. In addition, the effect of common ions on the binding constants of drug-HSA complex was also discussed.

  7. Nanoscale Synaptic Membrane Mimetic Allows Unbiased High Throughput Screen That Targets Binding Sites for Alzheimer’s-Associated Aβ Oligomers

    PubMed Central

    Wilcox, Kyle C.; Marunde, Matthew R.; Das, Aditi; Velasco, Pauline T.; Kuhns, Benjamin D.; Marty, Michael T.; Jiang, Haoming; Luan, Chi-Hao; Sligar, Stephen G.; Klein, William L.

    2015-01-01

    Despite their value as sources of therapeutic drug targets, membrane proteomes are largely inaccessible to high-throughput screening (HTS) tools designed for soluble proteins. An important example comprises the membrane proteins that bind amyloid β oligomers (AβOs). AβOs are neurotoxic ligands thought to instigate the synapse damage that leads to Alzheimer’s dementia. At present, the identities of initial AβO binding sites are highly uncertain, largely because of extensive protein-protein interactions that occur following attachment of AβOs to surface membranes. Here, we show that AβO binding sites can be obtained in a state suitable for unbiased HTS by encapsulating the solubilized synaptic membrane proteome into nanoscale lipid bilayers (Nanodiscs). This method gives a soluble membrane protein library (SMPL)—a collection of individualized synaptic proteins in a soluble state. Proteins within SMPL Nanodiscs showed enzymatic and ligand binding activity consistent with conformational integrity. AβOs were found to bind SMPL Nanodiscs with high affinity and specificity, with binding dependent on intact synaptic membrane proteins, and selective for the higher molecular weight oligomers known to accumulate at synapses. Combining SMPL Nanodiscs with a mix-incubate-read chemiluminescence assay provided a solution-based HTS platform to discover antagonists of AβO binding. Screening a library of 2700 drug-like compounds and natural products yielded one compound that potently reduced AβO binding to SMPL Nanodiscs, synaptosomes, and synapses in nerve cell cultures. Although not a therapeutic candidate, this small molecule inhibitor of synaptic AβO binding will provide a useful experimental antagonist for future mechanistic studies of AβOs in Alzheimer’s model systems. Overall, results provide proof of concept for using SMPLs in high throughput screening for AβO binding antagonists, and illustrate in general how a SMPL Nanodisc system can facilitate drug

  8. Target-mediated drug disposition model for drugs with two binding sites that bind to a target with one binding site.

    PubMed

    Gibiansky, Leonid; Gibiansky, Ekaterina

    2017-07-19

    The paper extended the TMDD model to drugs with two identical binding sites (2-1 TMDD). The quasi-steady-state (2-1 QSS), quasi-equilibrium (2-1 QE), irreversible binding (2-1 IB), and Michaelis-Menten (2-1 MM) approximations of the model were derived. Using simulations, the 2-1 QSS approximation was compared with the full 2-1 TMDD model. As expected and similarly to the standard TMDD for monoclonal antibodies (mAb), 2-1 QSS predictions were nearly identical to 2-1 TMDD predictions, except for times of fast changes following initiation of dosing, when equilibrium has not yet been reached. To illustrate properties of new equations and approximations, several variations of population PK data for mAbs with soluble (slow elimination of the complex) or membrane-bound (fast elimination of the complex) targets were simulated from a full 2-1 TMDD model and fitted to 2-1 TMDD models, to its approximations, and to the standard (1-1) QSS model. For a mAb with a soluble target, it was demonstrated that the 2-1 QSS model provided nearly identical description of the observed (simulated) free drug and total target concentrations, although there was some minor bias in predictions of unobserved free target concentrations. The standard QSS approximation also provided a good description of the observed data, but was not able to distinguish between free drug concentrations (with no target attached and both binding site free) and partially bound drug concentrations (with one of the binding sites occupied by the target). For a mAb with a membrane-bound target, the 2-1 MM approximation adequately described the data. The 2-1 QSS approximation converged 10 times faster than the full 2-1 TMDD, and its run time was comparable with the standard QSS model.

  9. Discovery and information-theoretic characterization of transcription factor binding sites that act cooperatively

    NASA Astrophysics Data System (ADS)

    Clifford, Jacob; Adami, Christoph

    2015-10-01

    Transcription factor binding to the surface of DNA regulatory regions is one of the primary causes of regulating gene expression levels. A probabilistic approach to model protein-DNA interactions at the sequence level is through position weight matrices (PWMs) that estimate the joint probability of a DNA binding site sequence by assuming positional independence within the DNA sequence. Here we construct conditional PWMs that depend on the motif signatures in the flanking DNA sequence, by conditioning known binding site loci on the presence or absence of additional binding sites in the flanking sequence of each site's locus. Pooling known sites with similar flanking sequence patterns allows for the estimation of the conditional distribution function over the binding site sequences. We apply our model to the Dorsal transcription factor binding sites active in patterning the Dorsal-Ventral axis of Drosophila development. We find that those binding sites that cooperate with nearby Twist sites on average contain about 0.5 bits of information about the presence of Twist transcription factor binding sites in the flanking sequence. We also find that Dorsal binding site detectors conditioned on flanking sequence information make better predictions about what is a Dorsal site relative to background DNA than detection without information about flanking sequence features.

  10. MicroRNA binding sites in C. elegans 3' UTRs.

    PubMed

    Liu, Chaochun; Rennie, William A; Mallick, Bibekanand; Kanoria, Shaveta; Long, Dang; Wolenc, Adam; Carmack, C Steven; Ding, Ye

    2014-01-01

    MicroRNAs (miRNAs) are post-transcriptional regulators of gene expression. Since the discovery of lin-4, the founding member of the miRNA family, over 360 miRNAs have been identified for Caenorhabditis elegans (C. elegans). Prediction and validation of targets are essential for elucidation of regulatory functions of these miRNAs. For C. elegans, crosslinking immunoprecipitation (CLIP) has been successfully performed for the identification of target mRNA sequences bound by Argonaute protein ALG-1. In addition, reliable annotation of the 3' untranslated regions (3' UTRs) as well as developmental stage-specific expression profiles for both miRNAs and 3' UTR isoforms are available. By utilizing these data, we developed statistical models and bioinformatics tools for both transcriptome-scale and developmental stage-specific predictions of miRNA binding sites in C. elegans 3' UTRs. In performance evaluation via cross validation on the ALG-1 CLIP data, the models were found to offer major improvements over established algorithms for predicting both seed sites and seedless sites. In particular, our top-ranked predictions have a substantially higher true positive rate, suggesting a much higher likelihood of positive experimental validation. A gene ontology analysis of stage-specific predictions suggests that miRNAs are involved in dynamic regulation of biological functions during C. elegans development. In particular, miRNAs preferentially target genes related to development, cell cycle, trafficking, and cell signaling processes. A database for both transcriptome-scale and stage-specific predictions and software for implementing the prediction models are available through the Sfold web server at http://sfold.wadsworth.org.

  11. Identification of a new hormone-binding site on the surface of thyroid hormone receptor.

    PubMed

    Souza, P C T; Puhl, A C; Martínez, L; Aparício, R; Nascimento, A S; Figueira, A C M; Nguyen, P; Webb, P; Skaf, M S; Polikarpov, I

    2014-04-01

    Thyroid hormone receptors (TRs) are members of the nuclear receptor superfamily of ligand-activated transcription factors involved in cell differentiation, growth, and homeostasis. Although X-ray structures of many nuclear receptor ligand-binding domains (LBDs) reveal that the ligand binds within the hydrophobic core of the ligand-binding pocket, a few studies suggest the possibility of ligands binding to other sites. Here, we report a new x-ray crystallographic structure of TR-LBD that shows a second binding site for T3 and T4 located between H9, H10, and H11 of the TRα LBD surface. Statistical multiple sequence analysis, site-directed mutagenesis, and cell transactivation assays indicate that residues of the second binding site could be important for the TR function. We also conducted molecular dynamics simulations to investigate ligand mobility and ligand-protein interaction for T3 and T4 bound to this new TR surface-binding site. Extensive molecular dynamics simulations designed to compute ligand-protein dissociation constant indicate that the binding affinities to this surface site are of the order of the plasma and intracellular concentrations of the thyroid hormones, suggesting that ligands may bind to this new binding site under physiological conditions. Therefore, the second binding site could be useful as a new target site for drug design and could modulate selectively TR functions.

  12. Drug binding and mobility relating to the thermal fluctuation in fluid lipid membranes

    NASA Astrophysics Data System (ADS)

    Okamura, Emiko; Yoshii, Noriyuki

    2008-12-01

    Drug binding and mobility in fluid lipid bilayer membranes are quantified in situ by using the multinuclear solution NMR combined with the pulsed-field-gradient technique. One-dimensional and pulsed-field-gradient F19 and H1 NMR signals of an anticancer drug, 5-fluorouracil (5FU) are analyzed at 283-313 K in the presence of large unilamellar vesicles (LUVs) of egg phosphatidylcholine (EPC) as model cell membranes. The simultaneous observation of the membrane-bound and free 5FU signals enables to quantify in what amount of 5FU is bound to the membrane and how fast 5FU is moving within the membrane in relation to the thermal fluctuation of the soft, fluid environment. It is shown that the mobility of membrane-bound 5FU is slowed down by almost two orders of magnitude and similar to the lipid movement in the membrane, the movement closely related to the intramembrane fluidity. The mobility of 5FU and EPC is, however, not similar at 313 K; the 5FU movement is enhanced in the membrane as a result of the loose binding of 5FU in the lipid matrices. The membrane-bound fraction of 5FU is ˜0.1 and almost unaltered over the temperature range examined. It is also independent of the 5FU concentration from 2 to 30 mM with respect to the 40-50 mM LUV. The free energy of the 5FU binding is estimated at -4 to -2 kJ/mol, the magnitude always close to the thermal fluctuation, 2.4-2.6 kJ/mol.

  13. Ring A of nukacin ISK-1: a lipid II-binding motif for type-A(II) lantibiotic.

    PubMed

    Islam, Mohammad R; Nishie, Mami; Nagao, Jun-ichi; Zendo, Takeshi; Keller, Sandro; Nakayama, Jiro; Kohda, Daisuke; Sahl, Hans-Georg; Sonomoto, Kenji

    2012-02-29

    Ring A of nukacin ISK-1, which is also present in different type-A(II) lantibiotics, resembles a lipid II-binding motif (TxS/TxD/EC, x denotes undefined residues) similar to that present in mersacidin (type-B lantibiotics), which suggests that nukacin ISK-1 binds to lipid II as a docking molecule. Results from our experiments on peptidoglycan precursor (UDP-MurNAc-pp) accumulation and peptide antagonism assays clearly indicated that nukacin ISK-1 inhibits cell-wall biosynthesis, accumulating lipid II precursor inside the cell, and the peptide activity can be repressed by lipid I and lipid II. Interaction analysis of nukacin ISK-1 and different ring A variants with lipid II revealed that nukacin ISK-1 and nukacin D13E (a more active variant) have a high affinity (K(D) = 0.17 and 0.19 μM, respectively) for lipid II, whereas nukacin D13A (a less active variant) showed a lower affinity, and nukacin C14S (a negative variant lacking the ring A structure) exhibited no interaction. Therefore, on the basis of the structural similarity and positional significance of the amino acids in this region, we concluded that nukacin ISK-1 binds lipid II via its ring A region and may lead to the inhibition of cell-wall biosynthesis.

  14. Lipid transfer proteins from Rosaceae fruits share consensus epitopes responsible for their IgE-binding cross-reactivity.

    PubMed

    Borges, Jean-Philippe; Barre, Annick; Culerrier, Raphaël; Granier, Claude; Didier, Alain; Rougé, Pierre

    2008-01-25

    Four IgE-binding epitopes have been characterized that cover a large area (40%) of the molecular surface of lipid transfer protein allergens of Rosaceae (apple, peach, apricot, and plum). They mainly correspond to electropositively charged regions protruding on the molecular surface of the modeled apple (Mal d 3), apricot (Pru ar 3), and plum (Pru d 3) allergens. Two of these epitopes consist of consensus epitopes structurally conserved among the lipid transfer protein allergens from the Rosaceae. Their occurrence in different lipid transfer protein allergens presumably accounts for the IgE-binding cross-reactivity often observed among different Rosaceae fruits. In this respect, LTP consist of phylogenetically- and structurally-related pan allergens. However, the IgE-binding cross-reactivity due to fruit lipid transfer protein has varying degrees of clinical relevance and this cross-reactivity is not necessarily accompanied by a cross-allergenicity to the corresponding fruits.

  15. Binding of dexamethasone to rat liver nuclei in vivo and in vitro: evidence for two distinct binding sites.

    PubMed

    Kaufmann, S H; Shaper, J H

    1984-03-01

    The binding of [3H]dexamethasone (DEX) to rat liver nuclei in vitro and in vivo have been compared. In vitro, purified nuclei displayed a single class of specific glucocorticoid binding sites with a dissociation constant (Kd) of approximately 10(-7) M for [3H]DEX at 4 degrees C. The glucocorticoid agonists prednisolone, cortisol, and corticosterone and the antagonists progesterone and cortexolone competed avidly for this site, but the potent glucocorticoid triamcinolone acetonide (TA) competed poorly in vitro. Nuclei isolated from the livers of intact rats contained 1-2 X 10(4) [3H]DEX binding sites/nucleus. Up to 85% of the binding sites were recovered in the nuclear envelope (NE) fraction when NE were prepared either before or after labeling with [3H]DEX in vitro. After adrenalectomy, the specific [3H]DEX binding capacity of both nuclei and NE decreased to 15-20% of control values, indicating sensitivity of the binding sites to hormonal status of the animals. Efforts to restore the binding capacity by administration of exogenous glucocorticoids, however, were unsuccessful. After labeling of rat liver nuclei in vivo by intraperitoneal injection of [3H]DEX or [3H]TA into living animals, the steroid specificity and subnuclear localization of radiolabel were different. Both [3H]TA (which did not bind in vitro) and [3H]DEX became localized to nuclei in a saturable fashion in vivo. With either of these ligands, approximately 20% of the total nuclear radiolabel was recovered in the NE fraction. These results suggest the presence of two separate and distinct binding sites in rat liver nuclei, one which is localized to the NE and binds [3H]DEX (but not [3H]TA) in vitro, and another which is not localized to the NE but binds [3H]DEX and [3H]TA in vivo.

  16. Forskolin- and dihydroalprenolol (DHA) binding sites and adenylate cyclase activity in heart of rats fed diets containing different oils

    SciTech Connect

    Alam, S.Q.; Ren, Y.F.; Alam, B.S.

    1987-05-01

    The purpose of the present investigation was to determine if dietary lipids can induce changes in the adenylate cyclase system in rat heart. Three groups of male young Sprague-Dawley rats were fed for 6 weeks diets containing 10% corn oil (I), 8% coconut oil + 2% corn oil (II) or 10% menhaden oil (III). Adenylate cyclase activity (basal, fluoride-, isoproterenol-, and forskolin-stimulated) was higher in heart homogenates of rats in group III than in the other two groups. Concentration of the (/sup 3/H)-forskolin binding sites in the cardiac membranes were significantly higher in rats fed menhaden oil. The values (pmol/mg protein) were 4.8 +/- 0.2 (I), 4.5 +/- 0.7 (II) and 8.4 +/- 0.5 (III). There was no significant difference in the affinity of the forskolin binding sites among the 3 dietary groups. When measured at different concentrations of forskolin, the adenylate cyclase activity in cardiac membranes of rats fed menhaden oil was higher than in the other 2 groups. Concentrations of the (/sup 3/H)DHA binding sites were slightly higher but their affinity was lower in cardiac membranes of rats fed menhaden oil. The results suggest that diets containing fish oil increase the concentration of the forskolin binding sites and may also affect the characteristics of the ..beta..-adrenergic receptor in rat heart.

  17. Characterization of ruthenium red-binding sites of the Ca(2+)-ATPase from sarcoplasmic reticulum and their interaction with Ca(2+)-binding sites.

    PubMed Central

    Corbalan-Garcia, S; Teruel, J A; Gomez-Fernandez, J C

    1992-01-01

    Sarcoplasmic reticulum Ca(2+)-ATPase has previously been shown to bind and dissociate two Ca2+ ions in a sequential mode. This behaviour is confirmed here by inducing sequential Ca2+ dissociation with Ruthenium Red. Ruthenium Red binds to sarcoplasmic reticulum vesicles (6 nmol/mg) with a Kd = 2 microM, producing biphasic kinetics of Ca2+ dissociation from the Ca(2+)-ATPase, decreasing the affinity for Ca2+ binding. Studies on the effect of Ca2+ on Ruthenium Red binding indicate that Ruthenium Red does not bind to the high-affinity Ca(2+)-binding sites, as suggested by the following observations: (i) micromolar concentrations of Ca2+ do not significantly alter Ruthenium Red binding to the sarcoplasmic reticulum; (ii) quenching of the fluorescence of fluorescein 5'-isothiocyanate (FITC) bound to Ca(2+)-ATPase by Ruthenium Red (resembling Ruthenium Red binding) is not prevented by micromolar concentrations of Ca2+; (iii) quenching of FITC fluorescence by Ca2+ binding to the high-affinity sites is achieved even though Ruthenium Red is bound to the Ca(2+)-ATPase; and (iv) micromolar Ca2+ concentrations prevent inhibition of the ATP-hydrolytic capability by dicyclohexylcarbodi-imide modification, but Ruthenium Red does not. However, micromolar concentrations of lanthanides (La3+ and Tb3+) and millimolar concentrations of bivalent cations (Ca2+ and Mg2+) inhibit Ruthenium Red binding as well as quenching of FITC-labelled Ca(2+)-ATPase fluorescence by Ruthenium Red. Studies of Ruthenium Red binding to tryptic fragments of Ca(2+)-ATPase, as demonstrated by ligand blotting, indicate that Ruthenium Red does not bind to the A1 subfragment. Our observations suggest that Ruthenium Red might bind to a cation-binding site in Ca(2+)-ATPase inducing fast release of the last bound Ca2+ by interactions between the sites. PMID:1280106

  18. Use of the parallax-quench method to determine the position of the active-site loop of cholesterol oxidase in lipid bilayers.

    PubMed

    Chen, X; Wolfgang, D E; Sampson, N S

    2000-11-07

    To elucidate the cholesterol oxidase-membrane bilayer interaction, a cysteine was introduced into the active site lid at position-81 using the Brevibacterium enzyme. To eliminate the possibility of labeling native cysteine, the single cysteine in the wild-type enzyme was mutated to a serine without any change in activity. The loop-cysteine mutant was then labeled with acrylodan, an environment-sensitive fluorescence probe. The fluorescence increased and blue-shifted upon binding to lipid vesicles, consistent with a change into a more hydrophobic, i.e., lipid, environment. This acrylodan-labeled cholesterol oxidase was used to explore the pH, ionic strength, and headgroup dependence of binding. Between pH 6 and 10, there was no significant change in binding affinity. Incorporation of anionic lipids (phosphatidylserine) into the vesicles did not increase the binding affinity nor did altering the ionic strength. These experiments suggested that the interactions are primarily driven by hydrophobic effects not ionic effects. Using vesicles doped with either 5-doxyl phosphatidylcholine, 10-doxyl phosphatidylcholine, or phosphatidyl-tempocholine, quenching of acrylodan fluorescence was observed upon binding. Using the parallax method of London [Chattopadhyay, A., and London, E. (1987) Biochemistry 26, 39-45], the acrylodan ring is calculated to be 8.1 +/- 2.5 A from the center of the lipid bilayer. Modeling the acrylodan-cysteine residue as an extended chain suggests that the backbone of the loop does not penetrate into the lipid bilayer but interacts with the headgroups, i.e., the choline. These results demonstrate that cholesterol oxidase interacts directly with the lipid bilayer and sits on the surface of the membrane.

  19. Fluorescence energy transfer between points in G-actin: the nucleotide-binding site, the metal-binding site and Cys-373 residue.

    PubMed

    Miki, M; Wahl, P

    1985-04-05

    Fluorescence energy transfers were studied in order to investigate the spatial relationships between the nucleotide-binding site, the metal-binding site and the Cys-373 residue in the G-actin molecule. When 1-N6-ethenoadenosine-5'-triphosphate (epsilon-ATP) in the nucleotide-binding site and Co2+ or Ni2+ in the metal-binding site were used as fluorescence donor and acceptor, respectively, the fluorescence intensity of epsilon-ATP was perfectly quenched by Ni2+ or Co2+. This indicated that the nucleotide-binding site is very close to the metal-binding site; the distance should be less than 10 A. When N-iodoacetyl-N'-(5-sulfo-1-naphthyl)ethylenediamine (IAEDANS) bound to Cys-373 residue and Co2+ in the metal-binding site were used as a fluorescence donor and an acceptor, respectively, the transfer efficiency was equal to 5 +/- 1%. The corresponding distance was calculated to be 23-32 A, assuming a random orientation factor K2 = 2/3.

  20. A novel lipid transfer protein from the pea Pisum sativum: isolation, recombinant expression, solution structure, antifungal activity, lipid binding, and allergenic properties.

    PubMed

    Bogdanov, Ivan V; Shenkarev, Zakhar O; Finkina, Ekaterina I; Melnikova, Daria N; Rumynskiy, Eugene I; Arseniev, Alexander S; Ovchinnikova, Tatiana V

    2016-04-30

    Plant lipid transfer proteins (LTPs) assemble a family of small (7-9 kDa) ubiquitous cationic proteins with an ability to bind and transport lipids as well as participate in various physiological processes including defense against phytopathogens. They also form one of the most clinically relevant classes of plant allergens. Nothing is known to date about correlation between lipid-binding and IgE-binding properties of LTPs. The garden pea Pisum sativum is widely consumed crop and important allergenic specie of the legume family. This work is aimed at isolation of a novel LTP from pea seeds and characterization of its structural, functional, and allergenic properties. Three novel lipid transfer proteins, designated as Ps-LTP1-3, were found in the garden pea Pisum sativum, their cDNA sequences were determined, and mRNA expression levels of all the three proteins were measured at different pea organs. Ps-LTP1 was isolated for the first time from the pea seeds, and its complete amino acid sequence was determined. The protein exhibits antifungal activity and is a membrane-active compound that causes a leakage from artificial liposomes. The protein binds various lipids including bioactive jasmonic acid. Spatial structure of the recombinant uniformly (13)C,(15)N-labelled Ps-LTP1 was solved by heteronuclear NMR spectroscopy. In solution the unliganded protein represents the mixture of two conformers (relative populations ~ 85:15) which are interconnected by exchange process with characteristic time ~ 100 ms. Hydrophobic residues of major conformer form a relatively large internal tunnel-like lipid-binding cavity (van der Waals volume comes up to ~1000 Å(3)). The minor conformer probably corresponds to the protein with the partially collapsed internal cavity. For the first time conformational heterogeneity in solution was shown for an unliganded plant lipid transfer protein. Heat denaturation profile and simulated gastrointestinal digestion assay showed that Ps

  1. Effect of dietary cellulose on site of lipid absorption

    SciTech Connect

    Gallaher, D.; Schneeman, B.O.

    1985-08-01

    The effect of dietary cellulose on the localization within the small intestine of isotopically labeled triglyceride (TG) and cholesterol (CH) from a test meal was investigated. Feeding a 20% cellulose meal resulted in greater quantities of /sup 14/C-TG present in both the contents and mucosa of the distal intestine compared with a fiber-free control meal. In contrast, cellulose had no effect on the localization of CH within either the intestinal contents or the mucosa. Accumulation of TG within the intestine was not due to differences in stomach emptying, as the emptying rate was similar for both TG and CH. Within the bulk phase TG must be hydrolyzed by pancreatic lipase before it is available for cellular uptake at the microvillus membrane, whereas CH requires no hydrolysis. The greater amount of TG, but not of CH, within the intestine suggests that cellulose can interfere with lipase activity in vivo. Consequently, cellulose can delay TG hydrolysis and increase the amount of lipid absorbed in the ileum.

  2. HDL surface lipids mediate CETP binding as revealed by electron microscopy and molecular dynamics simulation

    SciTech Connect

    Zhang, Meng; Charles, River; Tong, Huimin; Zhang, Lei; Patel, Mili; Wang, Francis; Rames, Matthew J.; Ren, Amy; Rye, Kerry-Anne; Qiu, Xiayang; Johns, Douglas G.; Charles, M. Arthur; Ren, Gang

    2015-03-04

    Cholesteryl ester transfer protein (CETP) mediates the transfer of cholesterol esters (CE) from atheroprotective high-density lipoproteins (HDL) to atherogenic low-density lipoproteins (LDL). CETP inhibition has been regarded as a promising strategy for increasing HDL levels and subsequently reducing the risk of cardiovascular diseases (CVD). Although the crystal structure of CETP is known, little is known regarding how CETP binds to HDL. Here, we investigated how various HDL-like particles interact with CETP by electron microscopy and molecular dynamics simulations. Results showed that CETP binds to HDL via hydrophobic interactions rather than protein-protein interactions. The HDL surface lipid curvature generates a hydrophobic environment, leading to CETP hydrophobic distal end interaction. This interaction is independent of other HDL components, such as apolipoproteins, cholesteryl esters and triglycerides. Thus, disrupting these hydrophobic interactions could be a new therapeutic strategy for attenuating the interaction of CETP with HDL.

  3. HDL surface lipids mediate CETP binding as revealed by electron microscopy and molecular dynamics simulation

    DOE PAGES

    Zhang, Meng; Charles, River; Tong, Huimin; ...

    2015-03-04

    Cholesteryl ester transfer protein (CETP) mediates the transfer of cholesterol esters (CE) from atheroprotective high-density lipoproteins (HDL) to atherogenic low-density lipoproteins (LDL). CETP inhibition has been regarded as a promising strategy for increasing HDL levels and subsequently reducing the risk of cardiovascular diseases (CVD). Although the crystal structure of CETP is known, little is known regarding how CETP binds to HDL. Here, we investigated how various HDL-like particles interact with CETP by electron microscopy and molecular dynamics simulations. Results showed that CETP binds to HDL via hydrophobic interactions rather than protein-protein interactions. The HDL surface lipid curvature generates a hydrophobicmore » environment, leading to CETP hydrophobic distal end interaction. This interaction is independent of other HDL components, such as apolipoproteins, cholesteryl esters and triglycerides. Thus, disrupting these hydrophobic interactions could be a new therapeutic strategy for attenuating the interaction of CETP with HDL.« less

  4. HDL surface lipids mediate CETP binding as revealed by electron microscopy and molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Zhang, Meng; Charles, River; Tong, Huimin; Zhang, Lei; Patel, Mili; Wang, Francis; Rames, Matthew J.; Ren, Amy; Rye, Kerry-Anne; Qiu, Xiayang; Johns, Douglas G.; Charles, M. Arthur; Ren, Gang

    2015-03-01

    Cholesteryl ester transfer protein (CETP) mediates the transfer of cholesterol esters (CE) from atheroprotective high-density lipoproteins (HDL) to atherogenic low-density lipoproteins (LDL). CETP inhibition has been regarded as a promising strategy for increasing HDL levels and subsequently reducing the risk of cardiovascular diseases (CVD). Although the crystal structure of CETP is known, little is known regarding how CETP binds to HDL. Here, we investigated how various HDL-like particles interact with CETP by electron microscopy and molecular dynamics simulations. Results showed that CETP binds to HDL via hydrophobic interactions rather than protein-protein interactions. The HDL surface lipid curvature generates a hydrophobic environment, leading to CETP hydrophobic distal end interaction. This interaction is independent of other HDL components, such as apolipoproteins, cholesteryl esters and triglycerides. Thus, disrupting these hydrophobic interactions could be a new therapeutic strategy for attenuating the interaction of CETP with HDL.

  5. Co-opted oxysterol-binding ORP and VAP proteins channel sterols to RNA virus replication sites via membrane contact sites.

    PubMed

    Barajas, Daniel; Xu, Kai; de Castro Martín, Isabel Fernández; Sasvari, Zsuzsanna; Brandizzi, Federica; Risco, Cristina; Nagy, Peter D

    2014-10-01

    Viruses recruit cellular membranes and subvert cellular proteins involved in lipid biosynthesis to build viral replicase complexes and replication organelles. Among the lipids, sterols are important components of membranes, affecting the shape and curvature of membranes. In this paper, the tombusvirus replication protein is shown to co-opt cellular Oxysterol-binding protein related proteins (ORPs), whose deletion in yeast model host leads to decreased tombusvirus replication. In addition, tombusviruses also subvert Scs2p VAP protein to facilitate the formation of membrane contact sites (MCSs), where membranes are juxtaposed, likely channeling lipids to the replication sites. In all, these events result in redistribution and enrichment of sterols at the sites of viral replication in yeast and plant cells. Using in vitro viral replication assay with artificial vesicles, we show stimulation of tombusvirus replication by sterols. Thus, co-opting cellular ORP and VAP proteins to form MCSs serves the virus need to generate abundant sterol-rich membrane surfaces for tombusvirus replication.

  6. Co-opted Oxysterol-Binding ORP and VAP Proteins Channel Sterols to RNA Virus Replication Sites via Membrane Contact Sites

    PubMed Central

    Barajas, Daniel; Xu, Kai; de Castro Martín, Isabel Fernández; Sasvari, Zsuzsanna; Brandizzi, Federica; Risco, Cristina; Nagy, Peter D.

    2014-01-01

    Viruses recruit cellular membranes and subvert cellular proteins involved in lipid biosynthesis to build viral replicase complexes and replication organelles. Among the lipids, sterols are important components of membranes, affecting the shape and curvature of membranes. In this paper, the tombusvirus replication protein is shown to co-opt cellular Oxysterol-binding protein related proteins (ORPs), whose deletion in yeast model host leads to decreased tombusvirus replication. In addition, tombusviruses also subvert Scs2p VAP protein to facilitate the formation of membrane contact sites (MCSs), where membranes are juxtaposed, likely channeling lipids to the replication sites. In all, these events result in redistribution and enrichment of sterols at the sites of viral replication in yeast and plant cells. Using in vitro viral replication assay with artificial vesicles, we show stimulation of tombusvirus replication by sterols. Thus, co-opting cellular ORP and VAP proteins to form MCSs serves the virus need to generate abundant sterol-rich membrane surfaces for tombusvirus replication. PMID:25329172

  7. Micrometer-Sized Supported Lipid Bilayer Arrays for Bacterial Toxin Binding Studies through Total Internal Reflection Fluorescence Microscopy

    PubMed Central

    Moran-Mirabal, Jose M.; Edel, Joshua B.; Meyer, Grant D.; Throckmorton, Dan; Singh, Anup K.; Craighead, Harold G.

    2005-01-01

    In this article, we present the use of micron-sized lipid domains, patterned onto planar substrates and within microfluidic channels, to assay the binding of bacterial toxins via total internal reflection fluorescence microscopy. The lipid domains were patterned using a polymer lift-off technique and consisted of ganglioside-populated distearoylphosphatidylcholine:cholesterol supported lipid bilayers (SLBs). Lipid patterns were formed on the substrates by vesicle fusion followed by polymer lift-off, which revealed micron-sized SLBs containing either ganglioside GT1b or GM1. The ganglioside-populated SLB arrays were then exposed to either cholera toxin B subunit or tetanus toxin C fragment. Binding was assayed on planar substrates by total internal reflection fluorescence microscopy down to 100 pM concentration for cholera toxin subunit B and 10 nM for tetanus toxin fragment C. Apparent binding constants extracted from three different models applied to the binding curves suggest that binding of a protein to a lipid-based receptor is influenced by the microenvironment of the SLB and the substrate on which the bilayer is formed. Patterning of SLBs inside microfluidic channels also allowed the preparation of lipid domains with different compositions on a single device. Arrays within microfluidic channels were used to achieve segregation and selective binding from a binary mixture of the toxin fragments in one device. The binding and segregation within the microfluidic channels was assayed with epifluorescence as proof of concept. We propose that the method used for patterning the lipid microarrays on planar substrates and within microfluidic channels can be easily adapted to proteins or nucleic acids and can be used for biosensor applications and cell stimulation assays under different flow conditions. PMID:15833994

  8. Identification and characterization of a novel high affinity metal-binding site in the hammerhead ribozyme.

    PubMed Central

    Hansen, M R; Simorre, J P; Hanson, P; Mokler, V; Bellon, L; Beigelman, L; Pardi, A

    1999-01-01

    A novel metal-binding site has been identified in the hammerhead ribozyme by 31P NMR. The metal-binding site is associated with the A13 phosphate in the catalytic core of the hammerhead ribozyme and is distinct from any previously identified metal-binding sites. 31P NMR spectroscopy was used to measure the metal-binding affinity for this site and leads to an apparent dissociation constant of 250-570 microM at 25 degrees C for binding of a single Mg2+ ion. The NMR data also show evidence of a structural change at this site upon metal binding and these results are compared with previous data on metal-induced structural changes in the core of the hammerhead ribozyme. These NMR data were combined with the X-ray structure of the hammerhead ribozyme (Pley HW, Flaherty KM, McKay DB. 1994. Nature 372:68-74) to model RNA ligands involved in binding the metal at this A13 site. In this model, the A13 metal-binding site is structurally similar to the previously identified A(g) metal-binding site and illustrates the symmetrical nature of the tandem G x A base pairs in domain 2 of the hammerhead ribozyme. These results demonstrate that 31P NMR represents an important method for both identification and characterization of metal-binding sites in nucleic acids. PMID:10445883

  9. Shared binding sites in Lepidoptera for Bacillus thuringiensis Cry1Ja and Cry1A toxins.

    PubMed

    Herrero, S; González-Cabrera, J; Tabashnik, B E; Ferré, J

    2001-12-01

    Bacillus thuringiensis toxins act by binding to specific target sites in the insect midgut epithelial membrane. The best-known mechanism of resistance to B. thuringiensis toxins is reduced binding to target sites. Because alteration of a binding site shared by several toxins may cause resistance to all of them, knowledge of which toxins share binding sites is useful for predicting cross-resistance. Conversely, cross-resistance among toxins suggests that the toxins share a binding site. At least two strains of diamondback moth (Plutella xylostella) with resistance to Cry1A toxins and reduced binding of Cry1A toxins have strong cross-resistance to Cry1Ja. Thus, we hypothesized that Cry1Ja shares binding sites with Cry1A toxins. We tested this hypothesis in six moth and butterfly species, each from a different family: Cacyreus marshalli (Lycaenidae), Lobesia botrana (Tortricidae), Manduca sexta (Sphingidae), Pectinophora gossypiella (Gelechiidae), P. xylostella (Plutellidae), and Spodoptera exigua (Noctuidae). Although the extent of competition varied among species, experiments with biotinylated Cry1Ja and radiolabeled Cry1Ac showed that Cry1Ja and Cry1Ac competed for binding sites in all six species. A recent report also indicates shared binding sites for Cry1Ja and Cry1A toxins in Heliothis virescens (Noctuidae). Thus, shared binding sites for Cry1Ja and Cry1A occur in all lepidopteran species tested so far.

  10. Competitive binding between mercury and copper for reduced sulfur binding sites on dissolved organic matter from the Florida Everglades

    NASA Astrophysics Data System (ADS)

    Gerbig, C. A.; Aiken, G. R.; Ryan, J. N.

    2007-12-01

    The interaction of mercury and dissolved organic matter (DOM) strongly influences the biogeochemistry of mercury in the Florida Everglades. Previous laboratory-based studies of simple systems at environmentally relevant concentrations of mercury(II) (a soft Lewis acid) and DOM found strong conditional binding constants (log KHgL' = 28-31). These large constants result from the interaction of mercury(II) with reduced sulfur (a soft Lewis base) sites on DOM. Reported conditional binding constants for other metals with DOM (e.g. log KCuL' = 11-14), suggest that metals of borderline Lewis acidity would not compete with mercury(II) for the strongest binding sites at environmentally relevant concentrations. However, the small proportion of strong binding sites responsible for mercury(II) binding have proven to be susceptible to competitive effects from borderline metals. Equilibrium dialysis experiments using organic matter isolated from the Florida Everglades were designed to determine the effects of competitive binding between copper(II) and mercury(II) on DOM binding sites. These experiments demonstrated that copper(II), a borderline Lewis acid, effectively competed for strong DOM sites at concentrations only 1-2 orders of magnitude greater than experimental mercury(II) concentrations (which ranged from 0.05 to 0.2nM). Our results indicate that the reduced sulfur sites responsible for Hg(II) binding on DOM also have high affinities for borderline metals. Interactions of copper(II) and DOM were also investigated in the absence of mercury(II). These results further substantiate the significance of a small concentration of strong binding sites on DOM. At low copper(II) to DOM ratios, preliminary results indicate that the binding interactions between copper(II) and DOM are significantly greater than previously reported and are close to those measured for DOM-mercury(II) binding. We conclude that currently available binding constants for metals of interest (borderline

  11. Discovery of a novel allosteric inhibitor-binding site in ERK5: comparison with the canonical kinase hinge ATP-binding site

    PubMed Central

    Chen, Hongming; Tucker, Julie; Wang, Xiaotao; Gavine, Paul R.; Phillips, Chris; Augustin, Martin A.; Schreiner, Patrick; Steinbacher, Stefan; Preston, Marian; Ogg, Derek

    2016-01-01

    MAP kinases act as an integration point for multiple biochemical signals and are involved in a wide variety of cellular processes such as proliferation, differentiation, regulation of transcription and development. As a member of the MAP kinase family, ERK5 (MAPK7) is involved in the downstream signalling pathways of various cell-surface receptors, including receptor tyrosine kinases and G protein-coupled receptors. In the current study, five structures of the ERK5 kinase domain co-crystallized with ERK5 inhibitors are reported. Interestingly, three of the compounds bind at a novel allosteric binding site in ERK5, while the other two bind at the typical ATP-binding site. Binding of inhibitors at the allosteric site is accompanied by displacement of the P-loop into the ATP-binding site and is shown to be ATP-competitive in an enzymatic assay of ERK5 kinase activity. Kinase selectivity data show that the most potent allosteric inhibitor exhibits superior kinase selectivity compared with the two inhibitors that bind at the canonical ATP-binding site. An analysis of these structures and comparison with both a previously published ERK5–inhibitor complex structure (PDB entry 4b99) and the structures of three other kinases (CDK2, ITK and MEK) in complex with allosteric inhibitors are presented. PMID:27139631

  12. Quantifying RNA binding sites transcriptome-wide using DO-RIP-seq.

    PubMed

    Nicholson, Cindo O; Friedersdorf, Matthew; Keene, Jack D

    2017-01-01

    RNA-binding proteins (RBPs) and noncoding RNAs orchestrate post-transcriptional processes through the recognition of specific sites on targeted transcripts. Thus, understanding the connection between binding to specific sites and active regulation of the whole transcript is essential. Many immunoprecipitation techniques have been developed that identify either whole transcripts or binding sites of RBPs on each transcript using cell lysates. However, none of these methods simultaneously measures the strength of each binding site and quantifies binding to whole transcripts. In this study, we compare current procedures and present digestion optimized (DO)-RIP-seq, a simple method that locates and quantifies RBP binding sites using a continuous metric. We have used the RBP HuR/ELAVL1 to demonstrate that DO-RIP-seq can quantify HuR binding sites with high coverage across the entire human transcriptome, thereby generating metrics of relative RNA binding strength. We demonstrate that this quantitative enrichment of binding sites is proportional to the relative in vitro binding strength for these sites. In addition, we used DO-RIP-seq to quantify and compare HuR's binding to whole transcripts, thus allowing for seamless integration of binding site data with whole-transcript measurements. Finally, we demonstrate that DO-RIP-seq is useful for identifying functional mRNA target sets and binding sites where combinatorial interactions between HuR and AGO-microRNAs regulate the fate of the transcripts. Our data indicate that DO-RIP-seq will be useful for quantifying RBP binding events that regulate dynamic biological processes. © 2016 Nicholson et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  13. Protein ligand-binding site comparison by a reduced vector representation derived from multidimensional scaling of generalized description of binding sites.

    PubMed

    Nakamura, Tsukasa; Tomii, Kentaro

    2016-01-15

    Proteins serve various functions in living cells. When they exert their functions, physical contact with other molecules occurs. A close connection therefore exists between their functions and structures. Therefore, comparison and classification about known and predicted protein structures provides important insight into the structural features of proteins, elucidating their functions and structures. Analyzing the mutual interactions between proteins and small molecules is important to predict the ligands which bind to parts of putative ligand binding sites. Such analysis demands a fast and efficient method for comparing ligand binding sites because of the recent increase of protein structure information. A method has been developed for representing a ligand binding site with one reduced vector for binding site comparison. Using our method, one can calculate the similarity between ligand binding sites merely by calculating the inner product of 11-dimensional vectors. The method explained herein shows higher performance of the similarity between binding sites than metrics used in existing alignment-free methods. It also shows performance that is comparable to accurate methods developed recently, which employ solving the optimization problem: APoc. Moreover, these study results suggest that this new method can provide similarities faster than our previous method. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Deformed protein binding sites and cofactor binding sites are required for the function of a small segment-specific regulatory element in Drosophila embryos.

    PubMed Central

    Zeng, C; Pinsonneault, J; Gellon, G; McGinnis, N; McGinnis, W

    1994-01-01

    How each of the homeotic selector proteins can regulate distinct sets of DNA target elements in embryos is not understood. Here we describe a detailed functional dissection of a small element that is specifically regulated by the Deformed homeotic protein. This 120 bp element (module E) is part of a larger 2.7 kb autoregulatory enhancer that maintains Deformed (Dfd) transcription in the epidermis of the maxillary and mandibular segments of Drosophila embryos. In vitro binding assays show that module E contains only one Dfd protein binding site. Mutations in the Dfd binding site that increase or decrease its in vitro affinity for Dfd protein generate parallel changes in the regulatory activity of module E in transgenic embryos, strong evidence that the in vitro-defined binding site is a direct target of Dfd protein in embryos. However, a monomer or multimer of the Dfd binding region alone is not sufficient to supply Dfd-dependent, segment-specific reporter gene expression. An analysis of a systematic series of clustered point mutations in module E revealed that an additional region containing an imperfect inverted repeat sequence is also required for the function of this homeotic protein response element. The Dfd binding site and the putative cofactor binding site(s) in the region of the inverted repeat are both necessary and in combination sufficient for the function of module E. Images PMID:7910795

  15. All-atom simulations and free-energy calculations of coiled-coil peptides with lipid bilayers: binding strength, structural transition, and effect on lipid dynamics

    PubMed Central

    Woo, Sun Young; Lee, Hwankyu

    2016-01-01

    Peptides E and K, which are synthetic coiled-coil peptides for membrane fusion, were simulated with lipid bilayers composed of lipids and cholesterols at different ratios using all-atom models. We first calculated free energies of binding from umbrella sampling simulations, showing that both E and K peptides tend to adsorb onto the bilayer surface, which occurs more strongly in the bilayer composed of smaller lipid headgroups. Then, unrestrained simulations show that K peptides more deeply insert into the bilayer with partially retaining the helical structure, while E peptides less insert and predominantly become random coils, indicating the structural transition from helices to random coils, in quantitative agreement with experiments. This is because K peptides electrostatically interact with lipid phosphates, as well as because hydrocarbons of lysines of K peptide are longer than those of glutamic acids of E peptide and thus form stronger hydrophobic interactions with lipid tails. This deeper insertion of K peptide increases the bilayer dynamics and a vacancy below the peptide, leading to the rearrangement of smaller lipids. These findings help explain the experimentally observed or proposed differences in the insertion depth, binding strength, and structural transition of E and K peptides, and support the snorkeling effect. PMID:26926570

  16. All-atom simulations and free-energy calculations of coiled-coil peptides with lipid bilayers: binding strength, structural transition, and effect on lipid dynamics.

    PubMed

    Woo, Sun Young; Lee, Hwankyu

    2016-03-01

    Peptides E and K, which are synthetic coiled-coil peptides for membrane fusion, were simulated with lipid bilayers composed of lipids and cholesterols at different ratios using all-atom models. We first calculated free energies of binding from umbrella sampling simulations, showing that both E and K peptides tend to adsorb onto the bilayer surface, which occurs more strongly in the bilayer composed of smaller lipid headgroups. Then, unrestrained simulations show that K peptides more deeply insert into the bilayer with partially retaining the helical structure, while E peptides less insert and predominantly become random coils, indicating the structural transition from helices to random coils, in quantitative agreement with experiments. This is because K peptides electrostatically interact with lipid phosphates, as well as because hydrocarbons of lysines of K peptide are longer than those of glutamic acids of E peptide and thus form stronger hydrophobic interactions with lipid tails. This deeper insertion of K peptide increases the bilayer dynamics and a vacancy below the peptide, leading to the rearrangement of smaller lipids. These findings help explain the experimentally observed or proposed differences in the insertion depth, binding strength, and structural transition of E and K peptides, and support the snorkeling effect.

  17. All-atom simulations and free-energy calculations of coiled-coil peptides with lipid bilayers: binding strength, structural transition, and effect on lipid dynamics

    NASA Astrophysics Data System (ADS)

    Woo, Sun Young; Lee, Hwankyu

    2016-03-01

    Peptides E and K, which are synthetic coiled-coil peptides for membrane fusion, were simulated with lipid bilayers composed of lipids and cholesterols at different ratios using all-atom models. We first calculated free energies of binding from umbrella sampling simulations, showing that both E and K peptides tend to adsorb onto the bilayer surface, which occurs more strongly in the bilayer composed of smaller lipid headgroups. Then, unrestrained simulations show that K peptides more deeply insert into the bilayer with partially retaining the helical structure, while E peptides less insert and predominantly become random coils, indicating the structural transition from helices to random coils, in quantitative agreement with experiments. This is because K peptides electrostatically interact with lipid phosphates, as well as because hydrocarbons of lysines of K peptide are longer than those of glutamic acids of E peptide and thus form stronger hydrophobic interactions with lipid tails. This deeper insertion of K peptide increases the bilayer dynamics and a vacancy below the peptide, leading to the rearrangement of smaller lipids. These findings help explain the experimentally observed or proposed differences in the insertion depth, binding strength, and structural transition of E and K peptides, and support the snorkeling effect.

  18. Gibbs Recursive Sampler: finding transcription factor binding sites.

    PubMed

    Thompson, William; Rouchka, Eric C; Lawrence, Charles E

    2003-07-01

    The Gibbs Motif Sampler is a software package for locating common elements in collections of biopolymer sequences. In this paper we describe a new variation of the Gibbs Motif Sampler, the Gibbs Recursive Sampler, which has been developed specifically for locating multiple transcription factor binding sites for multiple transcription factors simultaneously in unaligned DNA sequences that may be heterogeneous in DNA composition. Here we describe the basic operation of the web-based version of this sampler. The sampler may be acces-sed at http://bayesweb.wadsworth.org/gibbs/gibbs.html and at http://www.bioinfo.rpi.edu/applications/bayesian/gibbs/gibbs.html. An online user guide is available at http://bayesweb.wadsworth.org/gibbs/bernoulli.html and at http://www.bioinfo.rpi.edu/applications/bayesian/gibbs/manual/bernoulli.html. Solaris, Solaris.x86 and Linux versions of the sampler are available as stand-alone programs for academic and not-for-profit users. Commercial licenses are also available. The Gibbs Recursive Sampler is distributed in accordance with the ISCB level 0 guidelines and a requirement for citation of use in scientific publications.

  19. Active site and laminarin binding in glycoside hydrolase family 55

    SciTech Connect

    Bianchetti, Christopher M.; Takasuka, Taichi E.; Deutsch, Sam; Udell, Hannah S.; Yik, Eric J.; Bergeman, Lai F.; Fox, Brian G.

    2015-03-09

    The Carbohydrate Active Enzyme (CAZy) database indicates that glycoside hydrolase family 55 (GH55) contains both endo- and exo-β-1,3-glucanases. The founding structure in the GH55 is PcLam55A from the white rot fungus Phanerochaete chrysosporium. Here, we present high resolution crystal structures of bacterial SacteLam55A from the highly cellulolytic Streptomyces sp. SirexAA-E with bound substrates and product. These structures, along with mutagenesis and kinetic studies, implicate Glu-502 as the catalytic acid (as proposed earlier for Glu-663 in PcLam55A) and a proton relay network of four residues in activating water as the nucleophile. Further, a set of conserved aromatic residues that define the active site apparently enforce an exo-glucanase reactivity as demonstrated by exhaustive hydrolysis reactions with purified laminarioligosaccharides. Two additional aromatic residues that line the substrate-binding channel show substrate-dependent conformational flexibility that may promote processive reactivity of the bound oligosaccharide in the bacterial enzymes. Gene synthesis carried out on ~30% of the GH55 family gave 34 active enzymes (19% functional coverage of the nonredundant members of GH55). These active enzymes reacted with only laminarin from a panel of 10 different soluble and insoluble polysaccharides and displayed a broad range of specific activities and optima for pH and temperature. Furthermore, application of this experimental method provides a new, systematic way to annotate glycoside hydrolase phylogenetic space for functional properties.

  20. Energetic localization of saxitoxin in its channel binding site.

    PubMed Central

    Choudhary, Gaurav; Shang, Lisa; Li, Xiufeng; Dudley, Samuel C

    2002-01-01

    Saxitoxin (STX) selectively blocks the voltage-gated sodium channel at the outer vestibule lined by P-loops of the four domains. Neosaxitoxin has an additional -OH group at the N1 position of the 1,2,3 guanidinium (N1-OH) that interacts with domains I and IV of the Na(+) channel. Determination of a second toxin interaction with the channel would fix the location of STX. Gonyautoxin 2,3 and Gonyautoxin 1,4 are C-11 sulfated derivatives of saxitoxin and neosaxitoxin, respectively. We used these variants to constrain the STX docking orientation by energetically localizing the C-11 sulfate in the outer vestibule. Interactions between the C-11 sulfate and each of the four domains of the channel were determined by a systematic approach to mutant cycle analysis in which all known carboxyl groups important for site 1 toxin binding were neutralized, allowing energetic triangulation of the toxin sulfate and overcoming some limitations of mutant cycles. Toxin IC(50)s were measured by two-electrode voltage clamp from Xenopus oocytes injected with the channel mRNA. Three unique types of analysis based on the coupling results localized the C-11 sulfate between domains III and IV. Combined with our previous report, the data establish the orientation of STX in the outer vestibule and confirm the clockwise arrangement of the channel domains. PMID:12124273

  1. Mutations and Binding Sites of Human Transcription Factors

    PubMed Central

    Kamanu, Frederick Kinyua; Medvedeva, Yulia A.; Schaefer, Ulf; Jankovic, Boris R.; Archer, John A. C.; Bajic, Vladimir B.

    2012-01-01

    Mutations in any genome may lead to phenotype characteristics that determine ability of an individual to cope with adaptation to environmental challenges. In studies of human biology, among the most interesting ones are phenotype characteristics that determine responses to drug treatments, response to infections, or predisposition to specific inherited diseases. Most of the research in this field has been focused on the studies of mutation effects on the final gene products, peptides, and their alterations. Considerably less attention was given to the mutations that may