Sample records for lipid classes including

  1. Hydrophilic interaction liquid chromatography-mass spectrometry of (lyso)phosphatidic acids, (lyso)phosphatidylserines and other lipid classes.

    PubMed

    Cífková, Eva; Hájek, Roman; Lísa, Miroslav; HolĿapek, Michal

    2016-03-25

    The goal of this work is a systematic optimization of hydrophilic interaction liquid chromatography (HILIC) separation of acidic lipid classes (namely phosphatidic acids-PA, lysophosphatidic acids-LPA, phosphatidylserines-PS and lysophosphatidylserines-LPS) and other lipid classes under mass spectrometry (MS) compatible conditions. The main parameters included in this optimization are the type of stationary phases used in HILIC, pH of the mobile phase, the type and concentration of mobile phase additives. Nine HILIC columns with different chemistries (unmodified silica, modified silica using diol, 2-picolylamine, diethylamine and 1-aminoanthracene and hydride silica) are compared with the emphasis on peak shapes of acidic lipid classes. The optimization of pH is correlated with the theoretical calculation of acidobasic equilibria of studied lipid classes. The final method using the hydride column, pH 4 adjusted by formic acid and the gradient of acetonitrile and 40 mmol/L of aqueous ammonium formate provides good peak shapes for all analyzed lipid classes including acidic lipids. This method is applied for the identification of lipids in real samples of porcine brain and kidney extracts. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. The relative proportions of different lipid classes and their fatty acid compositions change with culture age in the cariogenic dental pathogen Streptococcus mutans UA159.

    PubMed

    Custer, Jenny E; Goddard, Bryan D; Matter, Stephen F; Kaneshiro, Edna S

    2014-06-01

    The oral cariogenic bacterial pathogen Streptococcus mutans strain UA159 has become an important research organism strain since its genome was sequenced. However, there is a paucity of information on its lipidome using direct analytical biochemical approaches. We here report on comprehensive analyses of the major lipid classes and their fatty acids in cells grown in batch standing cultures. Using 2-D high-performance thin-layer chromatography lipid class composition changes were detected with culture age. More lipid components were detected in the stationary-phase compared to log-phase cells. The major lipids identified included 1,3-bis(sn-3'-phosphatidyl)-sn-glycerol (phosphatidylglycerol), 1,3-diphosphatidylglycerol (cardiolipin), aminoacyl-phosphatidylglycerol, monoglucosyldiacylglycerol, diglucosyldiacylglycerol, diglucosylmonoacylglycerol and, glycerophosphoryldiglucosyldiacylglycerol. Culture age also affected the fatty acid composition of the total polar lipid fraction. Thus, the major lipid classes detected in log-phase and stationary-phase cells were isolated and their fatty acids were analyzed by gas-liquid chromatography to determine the basis for the fatty acid compositional changes in the total polar lipid fraction. The analyses showed that the relative proportions of these acids changed with culture age within individual lipid classes. Hence fatty acid changes in the total polar lipid fraction reflected changes in both lipid class composition and fatty acid compositions within individual lipid classes.

  3. Lipid metabolism-related gene expression pattern of Atlantic bluefin tuna (Thunnus thynnus L.) larvae fed on live prey.

    PubMed

    Betancor, Mónica B; Ortega, Aurelio; de la Gándara, Fernando; Tocher, Douglas R; Mourente, Gabriel

    2017-04-01

    The present study is the first to evaluate lipid metabolism in first-feeding Atlantic bluefin tuna (ABT; Thunnus thynnus L.) larvae fed different live prey including enriched rotifers Brachionus plicatilis and Acartia sp. copepod nauplii from 2 days after hatch. Understanding the molecular basis of lipid metabolism and regulation in ABT will provide insights to optimize diet formulations for this high-value species new to aquaculture. To this end, we investigated the effect of dietary lipid on whole larvae lipid class and fatty acid compositions and the expression of key genes involved in lipid metabolism in first feeding ABT larvae fed different live prey. Additionally, the expression of lipid metabolism genes in tissues of adult broodstock ABT was evaluated. Growth and survival data indicated that copepods were the best live prey for first feeding ABT and that differences in growth performance and lipid metabolism observed between larvae from different year classes could be a consequence of broodstock nutrition. In addition, expression patterns of lipid metabolic genes observed in ABT larvae in the trials could reflect differences in lipid class and fatty acid compositions of the live prey. The lipid nutritional requirements, including essential fatty acid requirements of larval ABT during the early feeding stages, are unknown, and the present study represents a first step in addressing these highly relevant issues. However, further studies are required to determine nutritional requirements and understand lipid metabolism during development of ABT larvae and to apply the knowledge to the commercial culture of this iconic species.

  4. Distributions and Transformations of Natural Abundance 14C and 13C in Dissolved and Particulate Lipids in a Major Temperate Estuary

    NASA Astrophysics Data System (ADS)

    Bauer, J. E.; Canuel, E. A.; McIntosh, H.; Barrett, A.; Ferer, E.; Hossler, K.

    2013-12-01

    Limited previous studies have shown major differences in the natural 14C and 13C isotopic signatures and radiocarbon ages of different biochemical classes (e.g., proteins, carbohydrates, lipid, etc.) in river, estuarine and marine dissolved and particulate organic matter (DOM and POM, respectively). Of particular note are the much greater radiocarbon ages of lipophilic materials than other compound classes. Possible explanations for these findings include greater-than-expected inputs of fossil and highly aged lipid-containing organic matter to rivers and estuaries, extended sorptive-protection of lipophilic materials from degradation and/or lower overall reactivities of lipids vs. other major biochemical classes. We measured the Delta 14C and del 13C signatures and 14C ages of lipid classes in DOM and POM in a major temperate estuary, Delaware Bay (USA) over two years. Changes in DOM were also followed during large volume dark and light incubations to assess the microbial and photochemical reactivity and processing of DOM and lipids. Neutral lipids in DOM were among the most highly aged (> 30,000 yrs BP) of any materials measured in natural waters to date, and were significantly older than co-occurring polar lipids (~4,000-5,000 yrs BP). In general, DOM lipid ages were significantly greater than POM lipid ages across the river-estuary transect, arguing against sorptive protection as the major factor explaining greater ages of lipid than those of other compound classes. Both dark and light incubations of DOM resulted in losses of very highly aged material (30-50,000 y BP), with the remnant exported lipids being correspondingly younger. The microbial and photochemical alterations were most pronounced for lipids from freshwater reaches of the system (i.e., the Delaware River). These findings suggest that a) dissolved vs. particulate lipids have fundamentally different sources and/or physico-chemical partitioning, b) different lipid classes (e.g., neutral vs. polar) derive from uniquely aged sources and/or are processed at dissimilar rates, and c) biological and photochemical alteration and physical mixing during estuarine transport of DOM and POM can result in significant changes to the composition and ages of the exported materials. The implications of these findings for land-to-ocean fluxes of carbon and organic matter and impacts on oceanic DOM and POM are also examined.

  5. LMSD: LIPID MAPS structure database

    PubMed Central

    Sud, Manish; Fahy, Eoin; Cotter, Dawn; Brown, Alex; Dennis, Edward A.; Glass, Christopher K.; Merrill, Alfred H.; Murphy, Robert C.; Raetz, Christian R. H.; Russell, David W.; Subramaniam, Shankar

    2007-01-01

    The LIPID MAPS Structure Database (LMSD) is a relational database encompassing structures and annotations of biologically relevant lipids. Structures of lipids in the database come from four sources: (i) LIPID MAPS Consortium's core laboratories and partners; (ii) lipids identified by LIPID MAPS experiments; (iii) computationally generated structures for appropriate lipid classes; (iv) biologically relevant lipids manually curated from LIPID BANK, LIPIDAT and other public sources. All the lipid structures in LMSD are drawn in a consistent fashion. In addition to a classification-based retrieval of lipids, users can search LMSD using either text-based or structure-based search options. The text-based search implementation supports data retrieval by any combination of these data fields: LIPID MAPS ID, systematic or common name, mass, formula, category, main class, and subclass data fields. The structure-based search, in conjunction with optional data fields, provides the capability to perform a substructure search or exact match for the structure drawn by the user. Search results, in addition to structure and annotations, also include relevant links to external databases. The LMSD is publicly available at PMID:17098933

  6. Light-Induced Changes in Fatty Acid Profiles of Specific Lipid Classes in Several Freshwater Phytoplankton Species

    PubMed Central

    Wacker, Alexander; Piepho, Maike; Harwood, John L.; Guschina, Irina A.; Arts, Michael T.

    2016-01-01

    We tested the influence of two light intensities [40 and 300 μmol PAR / (m2s)] on the fatty acid composition of three distinct lipid classes in four freshwater phytoplankton species. We chose species of different taxonomic classes in order to detect potentially similar reaction characteristics that might also be present in natural phytoplankton communities. From samples of the bacillariophyte Asterionella formosa, the chrysophyte Chromulina sp., the cryptophyte Cryptomonas ovata and the zygnematophyte Cosmarium botrytis we first separated glycolipids (monogalactosyldiacylglycerol, digalactosyldiacylglycerol, and sulfoquinovosyldiacylglycerol), phospholipids (phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylinositol, and phosphatidylserine) as well as non-polar lipids (triacylglycerols), before analyzing the fatty acid composition of each lipid class. High variation in the fatty acid composition existed among different species. Individual fatty acid compositions differed in their reaction to changing light intensities in the four species. Although no generalizations could be made for species across taxonomic classes, individual species showed clear but small responses in their ecologically-relevant omega-3 and omega-6 polyunsaturated fatty acids (PUFA) in terms of proportions and of per tissue carbon quotas. Knowledge on how lipids like fatty acids change with environmental or culture conditions is of great interest in ecological food web studies, aquaculture, and biotechnology, since algal lipids are the most important sources of omega-3 long-chain PUFA for aquatic and terrestrial consumers, including humans. PMID:27014290

  7. Widely-targeted quantitative lipidomics methodology by supercritical fluid chromatography coupled with fast-scanning triple quadrupole mass spectrometry.

    PubMed

    Takeda, Hiroaki; Izumi, Yoshihiro; Takahashi, Masatomo; Paxton, Thanai; Tamura, Shohei; Koike, Tomonari; Yu, Ying; Kato, Noriko; Nagase, Katsutoshi; Shiomi, Masashi; Bamba, Takeshi

    2018-05-03

    Lipidomics, the mass spectrometry-based comprehensive analysis of lipids, has attracted attention as an analytical approach to provide novel insight into lipid metabolism and to search for biomarkers. However, an ideal method for both comprehensive and quantitative analysis of lipids has not been fully developed. Herein, we have proposed a practical methodology for widely-targeted quantitative lipidome analysis using supercritical fluid chromatography fast-scanning triple-quadrupole mass spectrometry (SFC/QqQMS) and theoretically calculated a comprehensive lipid multiple reaction monitoring (MRM) library. Lipid classes can be separated by SFC with a normal phase diethylamine-bonded silica column with high-resolution, high-throughput, and good repeatability. Structural isomers of phospholipids can be monitored by mass spectrometric separation with fatty acyl-based MRM transitions. SFC/QqQMS analysis with an internal standard-dilution method offers quantitative information for both lipid class and individual lipid molecular species in the same lipid class. Additionally, data acquired using this method has advantages including reduction of misidentification and acceleration of data analysis. Using the SFC/QqQMS system, alteration of plasma lipid levels in myocardial infarction-prone rabbits to the supplementation of eicosapentaenoic acid was first observed. Our developed SFC/QqQMS method represents a potentially useful tool for in-depth studies focused on complex lipid metabolism and biomarker discovery. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Deciphering the mechanisms for targeting and interaction of Arabidopsis Lipid Droplet Associated Protein (LDAP) to the lipid droplet surface

    USDA-ARS?s Scientific Manuscript database

    We recently identified a new class of lipid-droplet associated proteins (LDAPs) in plants that share extensive sequence similarity with abundant structural proteins that coat rubber particles in rubber-producing plants. A majority of higher plants, however, including those that do not produce rubber...

  9. Hit 'em where it hurts: The growing and structurally diverse family of peptides that target lipid-II.

    PubMed

    Oppedijk, Sabine F; Martin, Nathaniel I; Breukink, Eefjan

    2016-05-01

    Understanding the mode of action of antibiotics is becoming more and more important in the time that microorganisms start to develop resistance. One very well validated target of several classes of antibiotics is the peptidoglycan precursor lipid II. In this review different classes of lipid II targeting antibiotics will be discussed in detail, including the lantibiotics, human invertebrate defensins and the recently discovered teixobactin. By hitting bacteria where it hurts, at the level of lipid II, we expect to be able to develop efficient antibacterial agents in the future. This article is part of a Special Issue entitled: Antimicrobial peptides edited by Karl Lohner and Kai Hilpert. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Factors influencing particulate lipid production in the East Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Gašparović, B.; Frka, S.; Koch, B. P.; Zhu, Z. Y.; Bracher, A.; Lechtenfeld, O. J.; Neogi, S. B.; Lara, R. J.; Kattner, G.

    2014-07-01

    Extensive analyses of particulate lipids and lipid classes were conducted to gain insight into lipid production and related factors along the biogeochemical provinces of the Eastern Atlantic Ocean. Data are supported by particulate organic carbon (POC), chlorophyll a (Chl a), phaeopigments, Chl a concentrations and carbon content of eukaryotic micro-, nano- and picophytoplankton, including cell abundances for the latter two and for cyanobacteria and prokaryotic heterotrophs. We focused on the productive ocean surface (2 m depth and deep Chl a maximum (DCM). Samples from the deep ocean provided information about the relative reactivity and preservation potential of particular lipid classes. Surface and DCM particulate lipid concentrations (3.5-29.4 μg L-1) were higher than in samples from deep waters (3.2-9.3 μg L-1) where an increased contribution to the POC pool was observed. The highest lipid concentrations were measured in high latitude temperate waters and in the North Atlantic Tropical Gyral Province (13-25°N). Factors responsible for the enhanced lipid synthesis in the eastern Atlantic appeared to be phytoplankton size (micro, nano, pico) and the low nutrient status with microphytoplankton having the most expressed influence in the surface and eukaryotic nano- and picophytoplankton in the DCM layer. Higher lipid to Chl a ratios suggest enhanced lipid biosynthesis in the nutrient poorer regions. The various lipid classes pointed to possible mechanisms of phytoplankton adaptation to the nutritional conditions. Thus, it is likely that adaptation comprises the replacement of membrane phospholipids by non-phosphorus containing glycolipids under low phosphorus conditions. The qualitative and quantitative lipid compositions revealed that phospholipids were the most degradable lipids, and their occurrence decreased with increasing depth. In contrast, wax esters, possibly originating from zooplankton, survived downward transport probably due to the fast sinking rate of particles (fecal pellets). The important contribution of glycolipids in deep waters reflected their relatively stable nature and degradation resistance. A lipid-based proxy for the lipid degradative state (Lipolysis Index) suggests that many lipid classes were quite resistant to degradation even in the deep ocean.

  11. Lipid class and fatty acid composition of a little-known and rarely collected alga Exophyllum wentii Weber-van Bosse from Bali Island, Indonesia.

    PubMed

    Illijas, Muhammad I; Indy, Jeane R; Yasui, Hajime; Itabashi, Yutaka

    2009-01-01

    The lipid class and fatty acid composition of a little-known and rarely collected alga Exophyllum wentii from Bali Island, Indonesia were determined for fresh and frozen-thawed samples using thin-layer chromatography, gas-liquid chromatography, and high-performance liquid chromatography. Glycoglycerolipids, which mainly consisted of mongalactosyldiacylglycerols (MGDG) and digalactosyldiacylglycerols (DGDG), were the predominant lipid components, accounting for 67% and 56% of the total polar lipid content in the fresh and frozen-thawed samples, respectively. Phospholipids, including phosphatidylcholines (PC) and phosphatidylglycerols (PG), were detected with lesser amounts in both samples (16-17% of the total polar lipid content). Free fatty acids (FFA), sterols and triacylglycerols (TAG) were also detected in minor quantities; however, the FFA content in the frozen-thawed sample increased to up to 20% of the total lipid content, suggesting that hydrolysis of the membrane lipids had occurred. A crude enzyme preparation from the alga showed activities for hydrolyzing the acyl groups of the phospholipids and glycoglycerolipids. Palmitic acid (16:0) and arachidonic acid (20:4n-6) were the major fatty acids in both the total lipid and in individual polar lipid classes as well as the dominant fatty acids released from the membrane lipids by enzymatic hydrolysis. The high level of 20:4n-6 (29%) in the total lipid and the presence of considerable amounts of PC (11% of the total polar lipid) and PG (6.2%) support classification of E. wentii into the Division Rhodophyta.

  12. Lipid-Based Nanoparticles as Pharmaceutical Drug Carriers: From Concepts to Clinic

    PubMed Central

    Puri, Anu; Loomis, Kristin; Smith, Brandon; Lee, Jae-Ho; Yavlovich, Amichai; Heldman, Eli; Blumenthal, Robert

    2010-01-01

    In recent years, various nanotechnology platforms in the area of medical biology, including both diagnostics and therapy, have gained remarkable attention. Moreover, research and development of engineered multifunctional nanoparticles as pharmaceutical drug carriers have spurred exponential growth in applications to medicine in the last decade. Design principles of these nanoparticles, including nano-emulsions, dendrimers, nano-gold, liposomes, drug-carrier conjugates, antibody-drug complexes, and magnetic nanoparticles, are primarily based on unique assemblies of synthetic, natural, or biological components, including but not limited to synthetic polymers, metal ions, oils, and lipids as their building blocks. However, the potential success of these particles in the clinic relies on consideration of important parameters such as nanoparticle fabrication strategies, their physical properties, drug loading efficiencies, drug release potential, and, most importantly, minimum toxicity of the carrier itself. Among these, lipid-based nanoparticles bear the advantage of being the least toxic for in vivo applications, and significant progress has been made in the area of DNA/RNA and drug delivery using lipid-based nanoassemblies. In this review, we will primarily focus on the recent advances and updates on lipid-based nanoparticles for their projected applications in drug delivery. We begin with a review of current activities in the field of liposomes (the so-called honorary nanoparticles), and challenging issues of targeting and triggering will be discussed in detail. We will further describe nanoparticles derived from a novel class of amphipathic lipids called bolaamphiphiles with unique lipid assembly features that have been recently examined as drug/DNA delivery vehicles. Finally, an overview of an emerging novel class of particles (based on lipid components other than phospholipids), solid lipid nanoparticles and nanostructured lipid carriers will be presented. We conclude with a few examples of clinically successful formulations of currently available lipid-based nanoparticles. PMID:20402623

  13. Quantitative profile of lipid classes in blood by normal phase chromatography with evaporative light scattering detector: application in the detection of lipid class abnormalities in liver cirrhosis.

    PubMed

    Chamorro, Laura; García-Cano, Ana; Busto, Rebeca; Martínez-González, Javier; Albillos, Agustín; Lasunción, Miguel Ángel; Pastor, Oscar

    2013-06-05

    The lack of analytical methods specific for each lipid class, particularly for phospholipids and sphyngolipids, makes necessary their separation by preparative techniques before quantification. LC-MS would be the election method but for daily work in the clinical laboratory this is not feasible for different reasons, both economic and time consuming. In the present work, we have optimized an HPLC method to quantify lipid classes in plasma and erythrocytes and applied it to samples from patients with cirrhosis. Lipid classes were analyzed by normal phase liquid chromatography with evaporative light scattering detection. We employed a quaternary solvent system to separate twelve lipid classes in 15 min. Interday, intraday and recovery for quantification of lipid classes in plasma were excellent with our methodology. The total plasma lipid content of cirrhotic patients vs control subjects was decreased with diminished CE (81±33 vs 160±17 mg/dL) and PC (37±16 vs 60±19 mg/dL). The composition of erythrocytes showed a decrease in acidic phospholipids: PE, PI and PS. Present methodology provides a reliable quantification of lipid classes in blood. The lipid profile of cirrhotics showed alterations in the PC/PE plasma ratio and in the phospholipid content of erythrocytes, which might reflect alterations in hepatocyte and erythrocyte membrane integrity. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Acyl-Lipid Metabolism

    PubMed Central

    Li-Beisson, Yonghua; Shorrosh, Basil; Beisson, Fred; Andersson, Mats X.; Arondel, Vincent; Bates, Philip D.; Baud, Sébastien; Bird, David; DeBono, Allan; Durrett, Timothy P.; Franke, Rochus B.; Graham, Ian A.; Katayama, Kenta; Kelly, Amélie A.; Larson, Tony; Markham, Jonathan E.; Miquel, Martine; Molina, Isabel; Nishida, Ikuo; Rowland, Owen; Samuels, Lacey; Schmid, Katherine M.; Wada, Hajime; Welti, Ruth; Xu, Changcheng; Zallot, Rémi; Ohlrogge, John

    2013-01-01

    Acyl lipids in Arabidopsis and all other plants have a myriad of diverse functions. These include providing the core diffusion barrier of the membranes that separates cells and subcellular organelles. This function alone involves more than 10 membrane lipid classes, including the phospholipids, galactolipids, and sphingolipids, and within each class the variations in acyl chain composition expand the number of structures to several hundred possible molecular species. Acyl lipids in the form of triacylglycerol account for 35% of the weight of Arabidopsis seeds and represent their major form of carbon and energy storage. A layer of cutin and cuticular waxes that restricts the loss of water and provides protection from invasions by pathogens and other stresses covers the entire aerial surface of Arabidopsis. Similar functions are provided by suberin and its associated waxes that are localized in roots, seed coats, and abscission zones and are produced in response to wounding. This chapter focuses on the metabolic pathways that are associated with the biosynthesis and degradation of the acyl lipids mentioned above. These pathways, enzymes, and genes are also presented in detail in an associated website (ARALIP: http://aralip.plantbiology.msu.edu/). Protocols and methods used for analysis of Arabidopsis lipids are provided. Finally, a detailed summary of the composition of Arabidopsis lipids is provided in three figures and 15 tables. PMID:23505340

  15. Acyl-Lipid Metabolism

    PubMed Central

    Li-Beisson, Yonghua; Shorrosh, Basil; Beisson, Fred; Andersson, Mats X.; Arondel, Vincent; Bates, Philip D.; Baud, Sébastien; Bird, David; DeBono, Allan; Durrett, Timothy P.; Franke, Rochus B.; Graham, Ian A.; Katayama, Kenta; Kelly, Amélie A.; Larson, Tony; Markham, Jonathan E.; Miquel, Martine; Molina, Isabel; Nishida, Ikuo; Rowland, Owen; Samuels, Lacey; Schmid, Katherine M.; Wada, Hajime; Welti, Ruth; Xu, Changcheng; Zallot, Rémi; Ohlrogge, John

    2010-01-01

    Acyl lipids in Arabidopsis and all other plants have a myriad of diverse functions. These include providing the core diffusion barrier of the membranes that separates cells and subcellular organelles. This function alone involves more than 10 membrane lipid classes, including the phospholipids, galactolipids, and sphingolipids, and within each class the variations in acyl chain composition expand the number of structures to several hundred possible molecular species. Acyl lipids in the form of triacylglycerol account for 35% of the weight of Arabidopsis seeds and represent their major form of carbon and energy storage. A layer of cutin and cuticular waxes that restricts the loss of water and provides protection from invasions by pathogens and other stresses covers the entire aerial surface of Arabidopsis. Similar functions are provided by suberin and its associated waxes that are localized in roots, seed coats, and abscission zones and are produced in response to wounding. This chapter focuses on the metabolic pathways that are associated with the biosynthesis and degradation of the acyl lipids mentioned above. These pathways, enzymes, and genes are also presented in detail in an associated website (ARALIP: http://aralip.plantbiology.msu.edu/). Protocols and methods used for analysis of Arabidopsis lipids are provided. Finally, a detailed summary of the composition of Arabidopsis lipids is provided in three figures and 15 tables. PMID:22303259

  16. A Remarkably Simple Class of Imidazolium-Based Lipids and Their Biological Properties.

    PubMed

    Wang, Da; Richter, Christian; Rühling, Andreas; Drücker, Patrick; Siegmund, Daniel; Metzler-Nolte, Nils; Glorius, Frank; Galla, Hans-Joachim

    2015-10-19

    A series of imidazolium salts bearing two alkyl chains in the backbone of the imidazolium core were synthesized, resembling the structure of lipids. Their antibacterial activity and cytotoxicity were evaluated using Gram-positive and Gram-negative bacteria and eukaryotic cell lines including tumor cells. It is shown that the length of alkyl chains in the backbone is vital for the antibiofilm activities of these lipid-mimicking components. In addition to their biological activity, their surface activity and their membrane interactions are shown by film balance and quartz crystal microbalance (QCM) measurements. The structure-activity relationship indicates that the distinctive chemical structure contributes considerably to the biological activities of this novel class of lipids. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Comparative study of lipids in mature seeds of six Cordia species (family Boraginaceae) collected in different regions of Brazil.

    PubMed

    Carvalho, Patricía de O; Arrebola, Melissa B; Sawaya, Alexandra C H F; Cunha, Ildenize B S; Bastos, Deborah H M; Eberlin, Marcos N

    2006-08-01

    The oil content, FA, and lipid class composition of the mature seeds of six Cordia species were analyzed. Mature seeds of each species were collected in their natural habitat from 2002 to 2004. The total lipid content varied from 1.9% to 13.2%, there being significant differences between the results found in different years for each species and between the species analyzed. The contents of FFA varied from 2.0% to 7.9% of total lipids. Neutral lipids (NL) were the largest class, making up between 89.6% and 96.4% of the total lipids; the phospholipids (PL) were the second largest class (3.0% to 8.9% of the total lipids), and the glycolipids (GL) were the smallest class (0.6 to 3.4%). The presence of GLA was determined in each class of lipids; it is predominant in the NL. Levels of GLA ranged from 1.2% to 6.8% of total seed FA. This is, to our knowledge the first study of lipid composition in seeds of species of Cordia from Brazil.

  18. Supercritical fluid chromatography for lipid analysis in foodstuffs.

    PubMed

    Donato, Paola; Inferrera, Veronica; Sciarrone, Danilo; Mondello, Luigi

    2017-01-01

    The task of lipid analysis has always challenged separation scientists, and new techniques in chromatography were often developed for the separation of lipids; however, no single technique or methodology is yet capable of affording a comprehensive screening of all lipid species and classes. This review acquaints the role of supercritical fluid chromatography within the field of lipid analysis, from the early developed capillary separations based on pure CO 2 , to the most recent techniques employing packed columns under subcritical conditions, including the niche multidimensional techniques using supercritical fluids in at least one of the separation dimensions. A short history of supercritical fluid chromatography will be introduced first, from its early popularity in the late 1980s, to the sudden fall and oblivion until the last decade, experiencing a regain of interest within the chromatographic community. Afterwards, the subject of lipid nomenclature and classification will be briefly dealt with, before discussing the main applications of supercritical fluid chromatography for food analysis, according to the specific class of lipids. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. LipidFrag: Improving reliability of in silico fragmentation of lipids and application to the Caenorhabditis elegans lipidome

    PubMed Central

    Neumann, Steffen; Schmitt-Kopplin, Philippe

    2017-01-01

    Lipid identification is a major bottleneck in high-throughput lipidomics studies. However, tools for the analysis of lipid tandem MS spectra are rather limited. While the comparison against spectra in reference libraries is one of the preferred methods, these libraries are far from being complete. In order to improve identification rates, the in silico fragmentation tool MetFrag was combined with Lipid Maps and lipid-class specific classifiers which calculate probabilities for lipid class assignments. The resulting LipidFrag workflow was trained and evaluated on different commercially available lipid standard materials, measured with data dependent UPLC-Q-ToF-MS/MS acquisition. The automatic analysis was compared against manual MS/MS spectra interpretation. With the lipid class specific models, identification of the true positives was improved especially for cases where candidate lipids from different lipid classes had similar MetFrag scores by removing up to 56% of false positive results. This LipidFrag approach was then applied to MS/MS spectra of lipid extracts of the nematode Caenorhabditis elegans. Fragments explained by LipidFrag match known fragmentation pathways, e.g., neutral losses of lipid headgroups and fatty acid side chain fragments. Based on prediction models trained on standard lipid materials, high probabilities for correct annotations were achieved, which makes LipidFrag a good choice for automated lipid data analysis and reliability testing of lipid identifications. PMID:28278196

  20. Egg components and hatchling lipid reserves: parental investment in kinosternid turtles from the southeastern United States.

    PubMed

    Nagle, R D; Burke, V J; Congdon, J D

    1998-05-01

    We measured egg components and pre-ovulatory parental investment in kinosternid turtles (Kinosternon baurii, Kinosternon subrubrum, Sternotherus minor, and Sternotherus odoratus) from the southeastern USA. Allocation patterns were determined by comparing lipid content of eggs and hatchlings, to determine whether females of species with hatchlings that exhibit a delayed nest-emergence strategy: (1) allocate higher proportions of energy storage lipids to eggs, (2) produce hatchlings with higher levels of storage lipids, and (3) have higher levels of pre-ovulatory parental investment in comparison to species whose hatchlings exhibit immediate emergence. Whereas total non-polar lipid (NPL) proportions by dry mass of eggs varied significantly among species, NPL proportions of hatchlings were not significantly different. Pre-ovulatory parental investment in care (proportion of hatchling NPL to egg NPL) was 40, 50, and 55% for K. subrubrum, S. minor, and S. odoratus, respectively. Lipid class composition of eggs and hatchlings was studied to distinguish lipids allocated for energy storage from those allocated to other functions. For both eggs and hatchlings, individual lipid classes (triacylglycerol, triacylglycerol fatty acid, cholesterol, cholesterol ester, and phospholipid) as proportions of total lipid, were similar among species. The major lipid class component of eggs and hatchlings of all species was triacylglycerol (> 83%), an energy storage lipid. Substantial changes in lipid classes during embryogenesis were similar among species and included: (1) depletion of triacylglycerol, (2) increase in cholesterol esters, and (3) changes in phospholipid composition. Incubation time varied significantly among species, and appeared to be responsible for differential energy utilization during embryogenesis. Our results are inconsistent with the previously observed pattern that hatchlings exhibiting a delayed nest-emergence strategy are allocated higher proportions of energy storage lipids than those that exhibit immediate emergence. However, because the species that overwinters in the nest (K. subrubrum) hatches approximately 40 days later than the species that typically does not (S. odoratus), hatchling K. subrubrum may contain higher non-polar lipid proportions than hatchling S. odoratus during similar winter time periods. Kinosternid hatchlings contain enough stored lipids to support basal maintenance costs for substantial time periods. We suggest that such reserves may be critical to hatchling survival during a period of negative energy balance, regardless of nest emergence strategy.

  1. LipidPioneer: A Comprehensive User-Generated Exact Mass Template for Lipidomics

    PubMed Central

    Ulmer, Candice Z.; Koelmel, Jeremy P.; Ragland, Jared M.; Garrett, Timothy J.

    2017-01-01

    Lipidomics, the comprehensive measurement of lipid species in a biological system, has promising potential in biomarker discovery and disease etiology elucidation. Advances in chromatographic separation, mass spectrometric techniques, and novel substrate applications continue to expand the number of lipid species observed. The total number and type of lipid species detected in a given sample are generally indicative of the sample matrix examined (e.g. serum, plasma, cells, bacteria, tissue, etc.). Current exact mass lipid libraries are static and represent the most commonly analyzed matrices. It is common practice for users to manually curate their own lists of lipid species and adduct masses; however, this process is time-consuming. LipidPioneer, an interactive template, can be used to generate exact masses and molecular formulas of lipid species that may be encountered in the mass spectrometric analysis of lipid profiles. Over 60 lipid classes are present in the LipidPioneer template, and include several unique lipid species, such as ether-linked lipids and lipid oxidation products. In the template, users can add any fatty acyl constituents without limitation in the number of carbons or degrees of unsaturation. LipidPioneer accepts naming using the lipid class level (sum composition) and the LIPID MAPS notation for fatty acyl structure level. In addition to lipid identification, user generated lipid m/z values can be used to develop inclusion lists for targeted fragmentation experiments. Resulting lipid names and m/z values can be imported into software such as MZmine or Compound Discoverer to automate exact mass searching and isotopic pattern matching across experimental data. PMID:28074328

  2. Assessment of altered lipid homeostasis by HILIC-ion mobility-mass spectrometry-based lipidomics[S

    PubMed Central

    Hines, Kelly M.; Herron, Josi; Xu, Libin

    2017-01-01

    Ion mobility-mass spectrometry (IM-MS) has proven to be a highly informative technique for the characterization of lipids from cells and tissues. We report the combination of hydrophilic-interaction liquid chromatography (HILIC) with traveling-wave IM-MS (TWIM-MS) for comprehensive lipidomics analysis. Main lipid categories such as glycerolipids, sphingolipids, and glycerophospholipids are separated on the basis of their lipid backbones in the IM dimension, whereas subclasses of each category are mostly separated on the basis of their headgroups in the HILIC dimension, demonstrating the orthogonality of HILIC and IM separations. Using our previously established lipid calibrants for collision cross-section (CCS) measurements in TWIM, we measured over 250 CCS values covering 12 lipid classes in positive and negative modes. The coverage of the HILIC-IM-MS method is demonstrated in the analysis of Neuro2a neuroblastoma cells exposed to benzalkonium chlorides (BACs) with C10 or C16 alkyl chains, which we have previously shown to affect gene expression related to cholesterol and lipid homeostasis. We found that BAC exposure resulted in significant changes to several lipid classes, including glycerides, sphingomyelins, phosphatidylcholines, and phosphatidylethanolamines. Our results indicate that BAC exposure modifies lipid homeostasis in a manner that is dependent upon the length of the BAC alkyl chain. PMID:28167702

  3. Quantitative Profiling of Major Neutral Lipid Classes in Human Meibum by Direct Infusion Electrospray Ionization Mass Spectrometry

    PubMed Central

    Chen, Jianzhong; Green, Kari B.; Nichols, Kelly K.

    2013-01-01

    Purpose. The purpose of this investigation was to better understand lipid composition in human meibum. Methods. Intact lipids in meibum samples were detected by direct infusion electrospray ionization mass spectrometry (ESI-MS) analysis in positive detection mode using sodium iodide (NaI) as an additive. The peak intensities of all major types of lipid species, that is, wax esters (WEs), cholesteryl esters (CEs), and diesters (DEs) were corrected for peak overlapping and isotopic distribution; an additional ionization efficiency correction was performed for WEs and CEs, which was simplified by the observation that the corresponding ionization efficiency was primarily dependent on the specific lipid class and saturation degree of the lipids while independent of the carbon chain length. A set of WE and CE standards was spiked in meibum samples for ionization efficiency determination and absolute quantitation. Results. The absolute amount (μmol/mg) for each of 51 WEs and 31 CEs in meibum samples was determined. The summed masses for 51 WEs and 31 CEs accounted for 48 ± 4% and 40 ± 2%, respectively, of the total meibum lipids. The mass percentages of saturated and unsaturated species were determined to be 75 ± 2% and 25 ± 1% for CEs and 14 ± 1% and 86 ± 1% for WEs. The profiles for two types of DEs were also obtained, which include 42 α,ω Type II DEs, and 21 ω Type I-St DEs. Conclusions. Major neutral lipid classes in meibum samples were quantitatively profiled by ESI-MS analysis with NaI additive. PMID:23847307

  4. SEASONAL VARIABILTIY LIPIDS, LIPID CLASSES AND PCBS IN INDIGENOUS POPULATIONS OF RIBBED MUSSELS, MODIOLUS DEMISSUS

    EPA Science Inventory

    Two indigenous ribbed mussel (Modiolus demissus) populations were sampled approximately every four weeks during 1997 to investigate the seasonal variability of total lipids, lipid classes, and polychlorinated biphenyl (PCB) concentrations. One population was located in a highly c...

  5. LC-ESI-MS/MS identification of polar lipids of two thermophilic Anoxybacillus bacteria containing a unique lipid pattern.

    PubMed

    Rezanka, Tomáš; Kambourova, Margarita; Derekova, Anna; Kolouchová, Irena; Sigler, Karel

    2012-07-01

    Phospholipids and glycolipids from two recently described species belonging to the thermophilic genus Anoxybacillus were analyzed by liquid chromatography-electrospray tandem mass spectrometry (LC/ESI-MS/MS). Analysis of total lipids from the facultatively anaerobic A. bogrovensis on a HILIC (Hydrophilic Interaction LIquid Chromatography) column succeeded in separating diacyl- and plasmalogen phospholipids. The LC/ESI-MS/MS analysis of the strict aerobe A. rupiensis revealed the presence of different unique polar lipids, predominantly alanyl-, lysyl-, and glucosyl-phosphatidylglycerols and cardiolipins. Each of the classes of polar lipids was then analyzed by means of the ESI-MS/MS and more than 140 molecular species of six lipid classes from A. bogrovensis and nearly 200 molecular species of nine classes of polar lipids from A. rupiensis were identified. Five classes of unidentified polar lipids were detected in both strains. Plasmalogens were thus determined for the first time in a facultatively anaerobic bacterium, i.e. A. bogrovensis.

  6. Nontargeted quantitation of lipid classes using hydrophilic interaction liquid chromatography-electrospray ionization mass spectrometry with single internal standard and response factor approach.

    PubMed

    Cífková, Eva; Holčapek, Michal; Lísa, Miroslav; Ovčačíková, Magdaléna; Lyčka, Antonín; Lynen, Frédéric; Sandra, Pat

    2012-11-20

    The identification and quantitation of a wide range of lipids in complex biological samples is an essential requirement for the lipidomic studies. High-performance liquid chromatography-mass spectrometry (HPLC/MS) has the highest potential to obtain detailed information on the whole lipidome, but the reliable quantitation of multiple lipid classes is still a challenging task. In this work, we describe a new method for the nontargeted quantitation of polar lipid classes separated by hydrophilic interaction liquid chromatography (HILIC) followed by positive-ion electrospray ionization mass spectrometry (ESI-MS) using a single internal lipid standard to which all class specific response factors (RFs) are related to. The developed method enables the nontargeted quantitation of lipid classes and molecules inside these classes in contrast to the conventional targeted quantitation, which is based on predefined selected reaction monitoring (SRM) transitions for selected lipids only. In the nontargeted quantitation method described here, concentrations of lipid classes are obtained by the peak integration in HILIC chromatograms multiplied by their RFs related to the single internal standard (i.e., sphingosyl PE, d17:1/12:0) used as common reference for all polar lipid classes. The accuracy, reproducibility and robustness of the method have been checked by various means: (1) the comparison with conventional lipidomic quantitation using SRM scans on a triple quadrupole (QqQ) mass analyzer, (2) (31)P nuclear magnetic resonance (NMR) quantitation of the total lipid extract, (3) method robustness test using subsequent measurements by three different persons, (4) method transfer to different HPLC/MS systems using different chromatographic conditions, and (5) comparison with previously published results for identical samples, especially human reference plasma from the National Institute of Standards and Technology (NIST human plasma). Results on human plasma, egg yolk and porcine liver extracts are presented and discussed.

  7. Markers of sympathetic nervous system activity associate with complex plasma lipids in metabolic syndrome subjects.

    PubMed

    Nestel, Paul J; Khan, Anmar A; Straznicky, Nora E; Mellett, Natalie A; Jayawardana, Kaushala; Mundra, Piyushkumar A; Lambert, Gavin W; Meikle, Peter J

    2017-01-01

    Plasma sphingolipids including ceramides, and gangliosides are associated with insulin resistance (IR) through effects on insulin signalling and glucose metabolism. Our studies of subjects with metabolic syndrome (MetS) showed close relationships between IR and sympathetic nervous system (SNS) activity including arterial norepinephrine (NE). We have therefore investigated possible associations of IR and SNS activity with complex lipids that are involved in both insulin sensitivity and neurotransmission. We performed a cross-sectional assessment of 23 lipid classes/subclasses (total 339 lipid species) by tandem mass spectrometry in 94 overweight untreated subjects with IR (quantified by HOMA-IR, Matsuda index and plasma insulin). Independently of IR parameters, several circulating complex lipids associated significantly with arterial NE and NEFA (non-esterified fatty acids) and marginally with heart rate (HR). After accounting for BMI, HOMA-IR, systolic BP, age, gender, and correction for multiple comparisons, these associations were significant (p < 0.05): NE with ceramide, phosphatidylcholine, alkyl- and alkenylphosphatidylcholine and free cholesterol; NEFA with mono- di- and trihexosylceramide, G M3 ganglioside, sphingomyelin, phosphatidylcholine, alkyl- and alkenylphosphatidylcholine, phosphatidylinositol and free cholesterol; HR marginally (p = or <0.1>0.05) with ceramide, G M3 ganglioside, sphingomyelin, lysophosphatidylcholine, phosphatidylinositol, lysophosphatidylinositol and free cholesterol. Multiple subspecies of these lipids significantly associated with NE and NEFA. None of the IR biomarkers associated significantly with lipid classes/subclasses after correction for multiple comparisons. This is the first demonstration that arterial norepinephrine and NEFA, that reflect both SNS activity and IR, associate significantly with circulating complex lipids independently of IR, suggesting a role for such lipids in neural mechanisms operating in MetS. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  8. Cholesterol trafficking and raft-like membrane domain composition mediate scavenger receptor class B type 1-dependent lipid sensing in intestinal epithelial cells.

    PubMed

    Morel, Etienne; Ghezzal, Sara; Lucchi, Géraldine; Truntzer, Caroline; Pais de Barros, Jean-Paul; Simon-Plas, Françoise; Demignot, Sylvie; Mineo, Chieko; Shaul, Philip W; Leturque, Armelle; Rousset, Monique; Carrière, Véronique

    2018-02-01

    Scavenger receptor Class B type 1 (SR-B1) is a lipid transporter and sensor. In intestinal epithelial cells, SR-B1-dependent lipid sensing is associated with SR-B1 recruitment in raft-like/ detergent-resistant membrane domains and interaction of its C-terminal transmembrane domain with plasma membrane cholesterol. To clarify the initiating events occurring during lipid sensing by SR-B1, we analyzed cholesterol trafficking and raft-like domain composition in intestinal epithelial cells expressing wild-type SR-B1 or the mutated form SR-B1-Q445A, defective in membrane cholesterol binding and signal initiation. These features of SR-B1 were found to influence both apical cholesterol efflux and intracellular cholesterol trafficking from plasma membrane to lipid droplets, and the lipid composition of raft-like domains. Lipidomic analysis revealed likely participation of d18:0/16:0 sphingomyelin and 16:0/0:0 lysophosphatidylethanolamine in lipid sensing by SR-B1. Proteomic analysis identified proteins, whose abundance changed in raft-like domains during lipid sensing, and these included molecules linked to lipid raft dynamics and signal transduction. These findings provide new insights into the role of SR-B1 in cellular cholesterol homeostasis and suggest molecular links between SR-B1-dependent lipid sensing and cell cholesterol and lipid droplet dynamics. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. RELATIONSHIPS AMONG TOTAL LIPID, LIPID CLASSES AND POLYCHLORINATED BIPHENYL CONCENTRATIONS IN TWO INDIGENOUS POPULATIONS OF RIBBED MUSSELS (GUKENSIA DEMISSA) OVER AN ANNUAL CYCLE

    EPA Science Inventory

    Two indigenous ribbed mussel (Geukensia demissa) populations were sampled approximately every four weeks during 1997 to investigate the relationships among concentrations of total lipid, lipid classes, and polychlorinated biphenyls (PCBs). One population was located in a highly c...

  10. Extension of least squares spectral resolution algorithm to high-resolution lipidomics data.

    PubMed

    Zeng, Ying-Xu; Mjøs, Svein Are; David, Fabrice P A; Schmid, Adrien W

    2016-03-31

    Lipidomics, which focuses on the global study of molecular lipids in biological systems, has been driven tremendously by technical advances in mass spectrometry (MS) instrumentation, particularly high-resolution MS. This requires powerful computational tools that handle the high-throughput lipidomics data analysis. To address this issue, a novel computational tool has been developed for the analysis of high-resolution MS data, including the data pretreatment, visualization, automated identification, deconvolution and quantification of lipid species. The algorithm features the customized generation of a lipid compound library and mass spectral library, which covers the major lipid classes such as glycerolipids, glycerophospholipids and sphingolipids. Next, the algorithm performs least squares resolution of spectra and chromatograms based on the theoretical isotope distribution of molecular ions, which enables automated identification and quantification of molecular lipid species. Currently, this methodology supports analysis of both high and low resolution MS as well as liquid chromatography-MS (LC-MS) lipidomics data. The flexibility of the methodology allows it to be expanded to support more lipid classes and more data interpretation functions, making it a promising tool in lipidomic data analysis. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Lipidomics profiling of goat milk, soymilk and bovine milk by UPLC-Q-Exactive Orbitrap Mass Spectrometry.

    PubMed

    Li, Qiangqiang; Zhao, Yan; Zhu, Dan; Pang, Xiumei; Liu, Yue; Frew, Russell; Chen, Gang

    2017-06-01

    Lipids are very important for human health and milk is a rich dietary source of lipids. In this study, the lipid content in three types of milk (goat, soy and bovine) were determined by using UPLC-Q-Exactive Orbitrap Mass Spectrometry. A total of 13 classes of lipids (including Cer, SM, LPC, PC, PE, DG, TG, PA, PG, PI, PS, LPE, FA) were measured. Moreover, lipid profiles differed significantly between the different milk types. Soymilk is rich in phospholipids including PC, PE, PS, PG, while goat milk is rich in medium chain triglycerides (MCT), USFA, ω-6 FA and ω-3 FA, especially EPA and DHA. Furthermore, a PLS model was established for differentiation of milk types based on the lipid profiles. A total of 14 lipids were identified as biomarkers for differentiation of milk types, thus providing a basis for milk authentication and detection of adulteration. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Interspecific variability in phosphorus-induced lipid remodelling among marine eukaryotic phytoplankton.

    PubMed

    Cañavate, José Pedro; Armada, Isabel; Hachero-Cruzado, Ismael

    2017-01-01

    The response of marine microalgal lipids to phosphorus is of central importance in phytoplankton ecology but remains poorly understood. We determined how taxonomically diverse microalgal species remodelled their lipid class profile in response to phosphorus availability and whether these changes coincided with those already known to occur in land plants and in the limited number of phytoplankton species for which data are available. The complete lipid class profile and specific lipid ratios influenced by phosphorus availability were quantified in two green microalgae and seven Chromalveolates exposed to phosphorus repletion, deprivation and replenishment. Lipid class cell quota changes in the two green microalgae resembled the currently described pattern of betaine lipids substituting for phospholipids under phosphorus depletion, whereas only two of the studied Chromalveolates showed this pattern. Sulpholipids counterbalanced phosphatidylglycerol only in Picochlorum atomus. In all other species, both lipids decreased simultaneously under phosphorus deprivation, although sulpholipids declined more slowly. Phosphorus deprivation always induced a decrease in digalactosyl-diacylglycerol. However, the ratio of digalactosyl-diacylglycerol to total phospholipids increased in eight species and remained unchanged in Isochrysis galbana. Marine phytoplankton seems to have evolved a diversified mechanism for remodelling its lipid class profile under the influence of phosphorus, with cryptophytes and particularly haptophytes exhibiting previously unobserved lipid responses to phosphorus. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  13. Measurement of phospholipids by hydrophilic interaction liquid chromatography coupled to tandem mass spectrometry: the determination of choline containing compounds in foods.

    PubMed

    Zhao, Yuan-Yuan; Xiong, Yeping; Curtis, Jonathan M

    2011-08-12

    A hydrophilic interaction liquid chromatography-tandem mass spectrometry (HILIC LC-MS/MS) method using multiple scan modes was developed to separate and quantify 11 compounds and lipid classes including acetylcholine (AcCho), betaine (Bet), choline (Cho), glycerophosphocholine (GPC), lysophosphatidylcholine (LPC), lysophosphatidylethanolamine (LPE), phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylinositol (PI), phosphocholine (PCho) and sphingomyelin (SM). This includes all of the major choline-containing compounds found in foods. The method offers advantages over other LC methods since HILIC chromatography is readily compatible with electrospray ionization and results in higher sensitivity and improved peak shapes. The LC-MS/MS method allows quantification of all choline-containing compounds in a single run. Tests of method suitability indicated linear ranges of approximately 0.25-25 μg/ml for PI and PE, 0.5-50 μg/ml for PC, 0.05-5 μg/ml for SM and LPC, 0.5-25 μg/ml for LPE, 0.02-5 μg/ml for Cho, and 0.08-8 μg/ml for Bet, respectively. Accuracies of 83-105% with precisions of 1.6-13.2% RSD were achieved for standards over a wide range of concentrations, demonstrating that this method will be suitable for food analysis. 8 polar lipid classes were found in a lipid extract of egg yolk and different species of the same class were differentiated based on their molecular weights and fragment ion information. PC and PE were found to be the most abundant lipid classes consisting of 71% and 18% of the total phospholipids in egg yolk. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. 2011 Plant Lipids: Structure, Metabolism, & Function Gordon Research Conference

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christopher Benning

    2011-02-04

    This is the second Gordon Research Conference on 'Plant Lipids: Structure, Metabolism & Function'. It covers current topics in lipid structure, metabolism and function in eukaryotic photosynthetic organisms including seed plants, algae, mosses and ferns. Work in photosynthetic bacteria is considered as well as it serves the understanding of specific aspects of lipid metabolism in plants. Breakthroughs are discussed in research on plant lipids as diverse as glycerolipids, sphingolipids, lipids of the cell surface, isoprenoids, fatty acids and their derivatives. The program covers nine concepts at the forefront of research under which afore mentioned plant lipid classes are discussed. Themore » goal is to integrate areas such as lipid signaling, basic lipid metabolism, membrane function, lipid analysis, and lipid engineering to achieve a high level of stimulating interaction among diverse researchers with interests in plant lipids. One Emphasis is on the dynamics and regulation of lipid metabolism during plant cell development and in response to environmental factors.« less

  15. A Genetic Screen for Mutants with Supersized Lipid Droplets in Caenorhabditis elegans

    PubMed Central

    Li, Shiwei; Xu, Shibin; Ma, Yanli; Wu, Shuang; Feng, Yu; Cui, Qingpo; Chen, Lifeng; Zhou, Shuang; Kong, Yuanyuan; Zhang, Xiaoyu; Yu, Jialei; Wu, Mengdi; Zhang, Shaobing O.

    2016-01-01

    To identify genes that regulate the dynamics of lipid droplet (LD) size, we have used the genetically tractable model organism Caenorhabditis elegans, whose wild-type LD population displays a steady state of size with an upper limit of 3 μm in diameter. From a saturated forward genetic screen of 6.7 × 105 mutagenized haploid genomes, we isolated 118 mutants with supersized intestinal LDs often reaching 10 μm. These mutants define nine novel complementation groups, in addition to four known genes (maoc-1, dhs-28, daf-22, and prx-10). The nine groups are named drop (lipid droplet abnormal) and categorized into four classes. Class I mutants drop-5 and drop-9, similar to prx-10, are up-regulated in ACS-22-DGAT-2-dependent LD growth, resistant to LD hydrolysis, and defective in peroxisome import. Class II mutants drop-2, drop-3, drop-6, and drop-7 are up-regulated in LD growth, are resistant to LD hydrolysis, but are not defective in peroxisome import. Class III mutants drop-1 and drop-8 are neither up-regulated in LD growth nor resistant to LD hydrolysis, but seemingly up-regulated in LD fusion. Class IV mutant drop-4 is cloned as sams-1 and, different to the other three classes, is ACS-22-independent and hydrolysis-resistant. These four classes of supersized LD mutants should be valuable for mechanistic studies of LD cellular processes including growth, hydrolysis, and fusion. PMID:27261001

  16. Synthetic lipids and their role in defining macromolecular assemblies.

    PubMed

    Parrill, Abby L

    2015-10-01

    Lipids have a variety of physiological roles, ranging from structural and biophysical contributions to membrane functions to signaling contributions in normal and abnormal physiology. This review highlights some of the contributions made by Robert Bittman to our understanding of lipid assemblies through the production of synthetic lipid analogs in the sterol, sphingolipid, and glycolipid classes. His contributions have included the development of a fluorescent cholesterol analog that shows strong functional analogies to cholesterol that has allowed live imaging of cholesterol distribution in living systems, to stereospecific synthetic approaches to both sphingolipid and glycolipid analogs crucial in defining the structure-activity relationships of lipid biological targets. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  17. Near infrared Raman spectra of human brain lipids

    NASA Astrophysics Data System (ADS)

    Krafft, Christoph; Neudert, Lars; Simat, Thomas; Salzer, Reiner

    2005-05-01

    Human brain tissue, in particular white matter, contains high lipid content. These brain lipids can be divided into three principal classes: neutral lipids including the steroid cholesterol, phospholipids and sphingolipids. Major lipids in normal human brain tissue are phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, phosphatidylinositol, phosphatidic acid, sphingomyelin, galactocerebrosides, gangliosides, sulfatides and cholesterol. Minor lipids are cholesterolester and triacylglycerides. During transformation from normal brain tissue to tumors, composition and concentration of lipids change in a specific way. Therefore, analysis of lipids might be used as a diagnostic parameter to distinguish normal tissue from tumors and to determine the tumor type and tumor grade. Raman spectroscopy has been suggested as an analytical tool to detect these changes even under intra-operative conditions. We recorded Raman spectra of the 12 major and minor brain lipids with 785 nm excitation in order to identify their spectral fingerprints for qualitative and quantitative analyses.

  18. Lipid Profile in Different Parts of Edible Jellyfish Rhopilema esculentum.

    PubMed

    Zhu, Si; Ye, Mengwei; Xu, Jilin; Guo, Chunyang; Zheng, Huakun; Hu, Jiabao; Chen, Juanjuan; Wang, Yajun; Xu, Shanliang; Yan, Xiaojun

    2015-09-23

    Jellyfish Rhopilema esculentum has been exploited commercially as a delicious food for a long time. Although the edible and medicinal values of R. esculentum have gained extensive attention, the effects of lipids on its nutritional value have rarely been reported. In the present of study, the lipid profile including lipid classes, fatty acyl compositions, and fatty acid (FA) positions in lipids from different parts (oral arms, umbrella, and mouth stalk) of R. esculentum was explored by ultraperformance liquid chromatography--electrospray ionization--quadrupole time-of-flight mass spectrometry (UPLC-ESI-Q-TOF-MS). More than 87 species from 10 major lipid classes including phosphatidylcholine (PC), lysophosphatidylcholine (LPC), phosphatidylethanolamine (PE), lysophosphatidylethanolamine (LPE), phosphatidylinositol (PI), lysophosphatidylinositol (LPI), phosphatidylserine (PS), ceramide (Cer), ceramide 2-aminoethylphosphonate (CAEP), and triacylglycerol (TAG) were separated and characterized. Semiquantification of individual lipid species in different parts of R. esculentum was also conducted. Results showed that glycerophospholipids (GPLs) enriched in highly unsaturated fatty acids (HUFAs) were the major compenents in all parts of R. esculentum, which accounted for 54-63% of total lipids (TLs). Considering the high level of GPLs and the FA compositions in GPLs, jellyfish R. esculentum might have great potential as a health-promoting food for humans and as a growth-promoting diet for some commercial fish and crustaceans. Meanwhile, LPC, LPE, and LPI showed high levels in oral arms when compared with umbrella and mouth stalk, which may be due to the high proportion of phospholipase A2 (PLA2) in oral arms. Moreover, a high CAEP level was detected in oral arms, which may render cell membranes with resistance to chemical hydrolysis by PLA2. The relatively low TAG content could be associated with specific functions of oral arms.

  19. The influence of acclimation temperature on the lipid composition of the larval lamprey, Petromyzon marinus, depends on tissue and lipid class.

    PubMed

    Kao, Yung-Hsi; Sheridan, Mark A; Holmes, John A; Youson, John H

    2010-11-01

    This study was designed to examine the effect of thermal acclimation on the lipid composition of fat depot organs the liver and kidneys of larval sea lamprey, Petromyzon marinus. We found that 21 °C-acclimated larvae possessed lower total lipid amounts in the liver (39% lower) and kidneys (30% lower) than 13 °C-acclimated larvae. Relatively lower lipid contents in the liver and kidneys of 21 °C-acclimated lamprey primarily resulted from a reduction in stored lipid reserve, triacylglycerol, but not the structural lipid, phospholipid. Compared to 21 °C-acclimated larvae, 13 °C-acclimated larvae were found to possess fewer saturated fatty acids (SFAs) and more unsaturated fatty acids (USFAs) in renal triacylglycerol and phospholipid classes, while there were no significant differences in the SFAs and USFAs of hepatic triacylglycerol, phospholipid, cholesteryl ester, fatty acid, and monoacylglycerol classes. Fewer SFAs, found in the kidney triacylglycerol of 13 °C-acclimated lamprey, were due to lower 12:0 and 14:0 fatty acids, but those in the renal phospholipid class were characterized by fewer 14:0, 15:0, and 16:0 fatty acids. More USFAs in renal triacylglycerol, as indicated by a higher unsaturation index, primarily resulted from higher polyunsaturated fatty acids (18:2ω6, 18:3ω3, and 18:4ω3); whereas, in the renal phospholipid class, this was a result of higher monoenes (18:1, 20:1, and 22:1ω9) and ω3 polyunsaturated fatty acids (18:4ω3). These data suggest that the influence of thermal acclimation on the lipid composition of lamprey fat depot organs depends on tissue and lipid class.

  20. Lipid mediator profile in vernix caseosa reflects skin barrier development.

    PubMed

    Checa, Antonio; Holm, Tina; Sjödin, Marcus O D; Reinke, Stacey N; Alm, Johan; Scheynius, Annika; Wheelock, Craig E

    2015-11-02

    Vernix caseosa (VC) is a protective layer that covers the skin of most human newborns. This study characterized the VC lipid mediator profile, and examined its relationship to gestational period, gender of the newborn and maternal lifestyle. VC collected at birth from 156 newborns within the ALADDIN birth cohort was analyzed and 3 different groups of lipid mediators (eicosanoids and related oxylipin analogs, endocannabinoids and sphingolipids) were screened using LC-MS/MS. A total of 54 compounds were detected in VC. A number of associations between lipid mediators and the gestational period were observed, including increases in the ceramide to sphingomyelin ratio as well as the endocannabinoids anandamide and 2-arachidonoylglycerol. Gender-specific differences in lipid mediator levels were observed for all 3 lipid classes. In addition, levels of the linoleic acid oxidation products 9(10)-epoxy-12Z-octadecenoic and 12(13)-epoxy-9Z-octadecenoic acid (EpOMEs) as well as 12,13-dihydroxy-9Z-octadecenoic acid (DiHOME) were increased in VC of children from mothers with an anthroposophic lifestyle. Accordingly, VC was found to be rich in multiple classes of bioactive lipid mediators, which evidence lifestyle, gender and gestational week dependencies. Levels of lipid mediators in VC may therefore be useful as early stage non-invasive markers of the development of the skin as a protective barrier.

  1. Variation in lipid classes and fatty acid composition of salmon shark (Lamna ditropis) liver with season and gender.

    PubMed

    Jayasinghe, Chamila; Gotoh, Naohiro; Wada, Shun

    2003-02-01

    The influence of season and gender on lipid content, lipid classes, and fatty acid compositions was assessed in livers of salmon shark (Lamna ditropis), caught in the Pacific Ocean. No significant difference in the hepatosomatic index was noted with season, though the lipid content was significantly higher (P<0.05) in winter. Triacylglycerol (TAG) was identified as the predominant lipid class (78.5-82.0%), followed by sterol esters (5.7-9.1%) and hydrocarbons (3.4-5.4%). No significant differences were observed in TAG composition with respect to the season or gender. However, diacylglyceryl ether contents were significantly higher (P<0.05) in winter (3.8-5.3%) than those obtained in summer (1.3-1.1%). Polyunsaturated fatty acids constituted the major fatty acid class of salmon shark total liver lipid and docosahexaenoic acid (C22:6n-3) (22.7-28.4%) was the most abundant fatty acid which was significantly lower (P<0.05) in winter. These results suggested that lipid characteristics of salmon shark liver were influenced by season, but not by gender.

  2. Lipid Class, Carotenoid, and Toxin Dynamics of Karenia Brevis (Dinophyceae) During Diel Vertical Migration

    EPA Science Inventory

    Karenia brevis’ (Hansen and Moestrup) internal lipid, carotenoid, and toxin concentrations are influenced by its ability to use ambient light and nutrients for growth and reproduction. This project investigated changes of K. brevis toxicity, lipid class and carotenoid concentrat...

  3. APP Function and Lipids: A Bidirectional Link

    PubMed Central

    Grimm, Marcus O. W.; Mett, Janine; Grimm, Heike S.; Hartmann, Tobias

    2017-01-01

    Extracellular neuritic plaques, composed of aggregated amyloid-β (Aβ) peptides, are one of the major histopathological hallmarks of Alzheimer’s disease (AD), a progressive, irreversible neurodegenerative disorder and the most common cause of dementia in the elderly. One of the most prominent risk factor for sporadic AD, carrying one or two aberrant copies of the apolipoprotein E (ApoE) ε4 alleles, closely links AD to lipids. Further, several lipid classes and fatty acids have been reported to be changed in the brain of AD-affected individuals. Interestingly, the observed lipid changes in the brain seem not only to be a consequence of the disease but also modulate Aβ generation. In line with these observations, protective lipids being able to decrease Aβ generation and also potential negative lipids in respect to AD were identified. Mechanistically, Aβ peptides are generated by sequential proteolytic processing of the amyloid precursor protein (APP) by β- and γ-secretase. The α-secretase appears to compete with β-secretase for the initial cleavage of APP, preventing Aβ production. All APP-cleaving secretases as well as APP are transmembrane proteins, further illustrating the impact of lipids on Aβ generation. Beside the pathological impact of Aβ, accumulating evidence suggests that Aβ and the APP intracellular domain (AICD) play an important role in regulating lipid homeostasis, either by direct effects or by affecting gene expression or protein stability of enzymes involved in the de novo synthesis of different lipid classes. This review summarizes the current literature addressing the complex bidirectional link between lipids and AD and APP processing including lipid alterations found in AD post mortem brains, lipids that alter APP processing and the physiological functions of Aβ and AICD in the regulation of several lipid metabolism pathways. PMID:28344547

  4. Introduction to fatty acids and lipids.

    PubMed

    Burdge, Graham C; Calder, Philip C

    2015-01-01

    The purpose of this article is to describe the structure, function and metabolism of fatty acids and lipids that are of particular importance in the context of parenteral nutrition. Lipids are a heterogeneous group of molecules that share the common property of hydrophobicity. Lipids range in structure from simple short hydrocarbon chains to more complex molecules, including triacylglycerols, phospholipids and sterols and their esters. Lipids within each class may differ structurally. Fatty acids are common components of complex lipids, and these differ according to chain length and the presence, number and position of double bonds in the hydrocarbon chain. Structural variation among complex lipids and among fatty acids gives rise to functional differences that result in different impacts upon metabolism and upon cell and tissue responses. Fatty acids and complex lipids exhibit a variety of structural variations that influence their metabolism and their functional effects. © 2015 S. Karger AG, Basel.

  5. LIPID CLASS DISTRIBUTION OF HIGHLY UNSATURATED LONG CHAIN FATTY ACIDS IN MARINE DINOFLAGELLATES.

    EPA Science Inventory

    The very long chain highly unsaturated C28 fatty acids, octacosaheptaenoic [28:7(n-6)] and octacosaoctaenoic acid [28:8(n-3)], were found to be associated with phospholipids, obtained by fractionation of total lipid extracts into distinct lipid classes, in 4 and 6, respectively, ...

  6. Levels of Arabidopsis thaliana Leaf Phosphatidic Acids, Phosphatidylserines, and Most Trienoate-Containing Polar Lipid Molecular Species Increase during the Dark Period of the Diurnal Cycle.

    PubMed

    Maatta, Sara; Scheu, Brad; Roth, Mary R; Tamura, Pamela; Li, Maoyin; Williams, Todd D; Wang, Xuemin; Welti, Ruth

    2012-01-01

    Previous work has demonstrated that plant leaf polar lipid fatty acid composition varies during the diurnal (dark-light) cycle. Fatty acid synthesis occurs primarily during the light, but fatty acid desaturation continues in the absence of light, resulting in polyunsaturated fatty acids reaching their highest levels toward the end of the dark period. In this work, Arabidopsis thaliana were grown at constant (21°C) temperature with 12-h light and 12-h dark periods. Collision induced dissociation time-of-flight mass spectrometry (MS) demonstrated that 16:3 and 18:3 fatty acid content in membrane lipids of leaves are higher at the end of the dark than at the end of the light period, while 16:1, 16:2, 18:0, and 18:1 content are higher at the end of the light period. Lipid profiling of membrane galactolipids, phospholipids, and lysophospholipids by electrospray ionization triple quadrupole MS indicated that the monogalactosyldiacylglycerol, phosphatidylglycerol, and phosphatidylcholine classes include molecular species whose levels are highest at end of the light period and others that are highest at the end of the dark period. The levels of phosphatidic acid (PA) and phosphatidylserine classes were higher at the end of the dark period, and molecular species within these classes either followed the class pattern or were not significantly changed in the diurnal cycle. Phospholipase D (PLD) is a family of enzymes that hydrolyzes phospholipids to produce PA. Analysis of several PLD mutant lines suggests that PLDζ2 and possibly PLDα1 may contribute to diurnal cycling of PA. The polar lipid compositional changes are considered in relation to recent data that demonstrate phosphatidylcholine acyl editing.

  7. Separation and identification of neutral cereal lipids by normal phase high-performance liquid chromatography, using evaporative light-scattering and electrospray mass spectrometry for detection.

    PubMed

    Rocha, João M; Kalo, Paavo J; Ollilainen, Velimatti; Malcata, F Xavier

    2010-04-30

    A novel method was developed for the analysis of molecular species in neutral lipid classes, using separation by normal phase high-performance liquid chromatography, followed by detection by evaporative light-scattering and electrospray ionization tandem mass spectrometry. Monoacid standards, i.e. sterol esters, triacylglycerols, fatty acids, diacylglycerols, free sterols and monoacylglycerols, were separated to baseline on microbore 3 microm-silica gel columns. Complete or partial separation of molecular species in each lipid class permitted identification by automatic tandem mass spectrometry of ammonium adducts, produced via positive electrospray ionization. After optimization of the method, separation and identification of molecular species of various lipid classes was comprehensively tested by analysis of neutral lipids from the free lipid extract of maize flour. 2010 Elsevier B.V. All rights reserved.

  8. Multi-class multi-residue analysis of veterinary drugs in meat using enhanced matrix removal lipid cleanup and liquid chromatography-tandem mass spectrometry.

    PubMed

    Zhao, Limian; Lucas, Derick; Long, David; Richter, Bruce; Stevens, Joan

    2018-05-11

    This study presents the development and validation of a quantitation method for the analysis of multi-class, multi-residue veterinary drugs using lipid removal cleanup cartridges, enhanced matrix removal lipid (EMR-Lipid), for different meat matrices by liquid chromatography tandem mass spectrometry detection. Meat samples were extracted using a two-step solid-liquid extraction followed by pass-through sample cleanup. The method was optimized based on the buffer and solvent composition, solvent additive additions, and EMR-Lipid cartridge cleanup. The developed method was then validated in five meat matrices, porcine muscle, bovine muscle, bovine liver, bovine kidney and chicken liver to evaluate the method performance characteristics, such as absolute recoveries and precision at three spiking levels, calibration curve linearity, limit of quantitation (LOQ) and matrix effect. The results showed that >90% of veterinary drug analytes achieved satisfactory recovery results of 60-120%. Over 97% analytes achieved excellent reproducibility results (relative standard deviation (RSD) < 20%), and the LOQs were 1-5 μg/kg in the evaluated meat matrices. The matrix co-extractive removal efficiency by weight provided by EMR-lipid cartridge cleanup was 42-58% in samples. The post column infusion study showed that the matrix ion suppression was reduced for samples with the EMR-Lipid cartridge cleanup. The reduced matrix ion suppression effect was also confirmed with <15% frequency of compounds with significant quantitative ion suppression (>30%) for all tested veterinary drugs in all of meat matrices. The results showed that the two-step solid-liquid extraction provides efficient extraction for the entire spectrum of veterinary drugs, including the difficult classes such as tetracyclines, beta-lactams etc. EMR-Lipid cartridges after extraction provided efficient sample cleanup with easy streamlined protocol and minimal impacts on analytes recovery, improving method reliability and consistency. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Proposal for a common nomenclature for fragment ions in mass spectra of lipids

    PubMed Central

    Hartler, Jürgen; Christiansen, Klaus; Gallego, Sandra F.; Peng, Bing; Ahrends, Robert

    2017-01-01

    Advances in mass spectrometry-based lipidomics have in recent years prompted efforts to standardize the annotation of the vast number of lipid molecules that can be detected in biological systems. These efforts have focused on cataloguing, naming and drawing chemical structures of intact lipid molecules, but have provided no guidelines for annotation of lipid fragment ions detected using tandem and multi-stage mass spectrometry, albeit these fragment ions are mandatory for structural elucidation and high confidence lipid identification, especially in high throughput lipidomics workflows. Here we propose a nomenclature for the annotation of lipid fragment ions, describe its implementation and present a freely available web application, termed ALEX123 lipid calculator, that can be used to query a comprehensive database featuring curated lipid fragmentation information for more than 430,000 potential lipid molecules from 47 lipid classes covering five lipid categories. We note that the nomenclature is generic, extendable to stable isotope-labeled lipid molecules and applicable to automated annotation of fragment ions detected by most contemporary lipidomics platforms, including LC-MS/MS-based routines. PMID:29161304

  10. Proposal for a common nomenclature for fragment ions in mass spectra of lipids.

    PubMed

    Pauling, Josch K; Hermansson, Martin; Hartler, Jürgen; Christiansen, Klaus; Gallego, Sandra F; Peng, Bing; Ahrends, Robert; Ejsing, Christer S

    2017-01-01

    Advances in mass spectrometry-based lipidomics have in recent years prompted efforts to standardize the annotation of the vast number of lipid molecules that can be detected in biological systems. These efforts have focused on cataloguing, naming and drawing chemical structures of intact lipid molecules, but have provided no guidelines for annotation of lipid fragment ions detected using tandem and multi-stage mass spectrometry, albeit these fragment ions are mandatory for structural elucidation and high confidence lipid identification, especially in high throughput lipidomics workflows. Here we propose a nomenclature for the annotation of lipid fragment ions, describe its implementation and present a freely available web application, termed ALEX123 lipid calculator, that can be used to query a comprehensive database featuring curated lipid fragmentation information for more than 430,000 potential lipid molecules from 47 lipid classes covering five lipid categories. We note that the nomenclature is generic, extendable to stable isotope-labeled lipid molecules and applicable to automated annotation of fragment ions detected by most contemporary lipidomics platforms, including LC-MS/MS-based routines.

  11. Lipid class and depth-specific thermal properties in the blubber of the short-finned pilot whale and the pygmy sperm whale.

    PubMed

    Bagge, Laura E; Koopman, Heather N; Rommel, Sentiel A; McLellan, William A; Pabst, D A

    2012-12-15

    Blubber, the specialized hypodermis of cetaceans, provides thermal insulation through the quantity and quality of lipids it contains. Quality refers to percent lipid content; however, not all lipids are the same. Certain deep-diving cetacean groups possess blubber with lipids - wax esters (WE) - that are not typically found in mammals, and the insulative quality of 'waxy' blubber is unknown. Our study explored the influence of lipid storage class - specifically WE in pygmy sperm whales (Kogia breviceps; N=7) and typical mammalian triacylglycerols in short-finned pilot whales (Globicephala macrorhynchus; N=7) - on blubber's thermal properties. Although the blubber of both species had similar total lipid contents, the thermal conductivity of G. macrorhynchus blubber (0.20±0.01 W m(-1) °C(-1)) was significantly higher than that of K. breviceps (0.15±0.01 W m(-1) °C(-1); P=0.0006). These results suggest that lipid class significantly influences the ability of blubber to resist heat flow. In addition, because the lipid content of blubber is known to be stratified, we measured its depth-specific thermal conductivities. In K. breviceps blubber, the depth-specific conductivity values tended to vary inversely with lipid content. In contrast, G. macrorhynchus blubber displayed unexpected depth-specific relationships between lipid content and conductivity, which suggests that temperature-dependent effects, such as melting, may be occurring. Differences in heat flux measurements across the depth of the blubber samples provide evidence that both species are capable of storing heat in their blubber. The function of blubber as an insulator is complex and may rely upon its lipid class, stratified composition and dynamic heat storage capabilities.

  12. Lipid composition of thermophilic Geobacillus sp. strain GWE1, isolated from sterilization oven.

    PubMed

    Shah, Siddharth P; Jansen, Susan A; Taylor, Leeandrew Jacques-Asa; Chong, Parkson Lee-Gau; Correa-Llantén, Daniela N; Blamey, Jenny M

    2014-05-01

    GWE1 strain is an example of anthropogenic thermophilic bacterium, recently isolated from dark crusty material from sterilization ovens by Correa-Llantén et al. (Kor. J. Microb. Biotechnol. 2013. 41(3):278-283). Thermostability is likely to arise from the adaptation of macromolecules such as proteins, lipids and nucleic acids. Complex lipid arrangement and/or type in the cell membrane are known to affect thermostability of microorganisms and efforts were made to understand the chemical nature of the polar lipids of membrane. In this work, we extracted total lipids from GWE1 cell membrane, separated them by TLC into various fractions and characterize the lipid structures of certain fractions with analytical tools such as (1)H, (13)C, (31)P and 2D NMR spectroscopy, ATR-FTIR spectroscopy and MS(n) spectrometry. We were able to identify glycerophosphoethanolamine, glycerophosphate, glycerophosphocholine, glycerophosphoglycerol and cardiolipin lipid classes and an unknown glycerophospholipid class with novel MS/MS spectra pattern. We have also noticed the presence of saturated iso-branched fatty acids with NMR spectra in individual lipid classes. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  13. Glycerophospholipid Profiles of Bats with White-Nose Syndrome.

    PubMed

    Pannkuk, Evan L; McGuire, Liam P; Warnecke, Lisa; Turner, James M; Willis, Craig K R; Risch, Thomas S

    2015-01-01

    Pseudogymnoascus destructans is an ascomycetous fungus responsible for the disease dubbed white-nose syndrome (WNS) and massive mortalities of cave-dwelling bats. The fungus infects bat epidermal tissue, causing damage to integumentary cells and pilosebaceous units. Differences in epidermal lipid composition caused by P. destructans infection could have drastic consequences for a variety of physiological functions, including innate immune efficiency and water retention. While bat surface lipid and stratum corneum lipid composition have been described, the differences in epidermal lipid content between healthy tissue and P. destructans-infected tissue have not been documented. In this study, we analyzed the effect of wing damage from P. destructans infection on the epidermal polar lipid composition (glycerophospholipids [GPs] and sphingomyelin) of little brown bats (Myotis lucifugus). We hypothesized that infection would lead to lower levels of total lipid or higher oxidized lipid product proportions. Polar lipids from three damaged and three healthy wing samples were profiled by electrospray ionization tandem mass spectrometry. We found lower total broad lipid levels in damaged tissue, specifically ether-linked phospholipids, lysophospholipids, phosphatidylcholine, and phosphatidylethanolamine. Thirteen individual GP species from four broad GP classes were present in higher amounts in healthy tissue. Six unsaturated GP species were absent in damaged tissue. Our results confirm that P. destructans infection leads to altered lipid profiles. Clinical signs of WNS may include lower lipid levels and lower proportions of unsaturated lipids due to cellular and glandular damage.

  14. Effects of cadmium on lipids of almond seedlings (Prunus dulcis).

    PubMed

    Elloumi, Nada; Zouari, Mohamed; Chaari, Leila; Jomni, Chiraz; Marzouk, Brahim; Ben Abdallah, Ferjani

    2014-12-01

    Cadmium uptake and distribution, as well as its effects on lipid composition was investigated in almond seedlings (Prunus dulcis) grown in culture solution supplied with two concentrations of Cd (50 and 150 μM). The accumulation of Cd increased with external metal concentrations, and was considerably higher in roots than in leaves. Fourteen days after Cd treatment, the membrane lipids were extracted and separated on silica-gel thin layer chromatography (TLC). Fatty acid methyl esters were analyzed by FID-GC on a capillary column. Our results showed that Cd stress decreased the quantities of all lipids classes (phospholipids, galactolipids and neutral lipids). Galactolipid, phospholipid and neutral lipid concentrations decreased more in roots than in leaves by Cd-treatment. In almost all lipid classes the proportion of palmitic acid (16:0), linoleic (18: 2) and that of linolenic (18: 3) acid decreased, suggesting that heavy metal treatment induced an alteration in the fatty acid synthesis processes. In conclusion, our results show that the changes found in total fatty acids, in the quantities of all lipids classes, and in the in the profiles of individual polar lipids suggest that membrane structure and function might be altered by Cd stress.

  15. Mesoscale organization of domains in the plasma membrane - beyond the lipid raft.

    PubMed

    Lu, Stella M; Fairn, Gregory D

    2018-04-01

    The plasma membrane is compartmentalized into several distinct regions or domains, which show a broad diversity in both size and lifetime. The segregation of lipids and membrane proteins is thought to be driven by the lipid composition itself, lipid-protein interactions and diffusional barriers. With regards to the lipid composition, the immiscibility of certain classes of lipids underlies the "lipid raft" concept of plasmalemmal compartmentalization. Historically, lipid rafts have been described as cholesterol and (glyco)sphingolipid-rich regions of the plasma membrane that exist as a liquid-ordered phase that are resistant to extraction with non-ionic detergents. Over the years the interest in lipid rafts grew as did the challenges with studying these nanodomains. The term lipid raft has fallen out of favor with many scientists and instead the terms "membrane raft" or "membrane nanodomain" are preferred as they connote the heterogeneity and dynamic nature of the lipid-protein assemblies. In this article, we will discuss the classical lipid raft hypothesis and its limitations. This review will also discuss alternative models of lipid-protein interactions, annular lipid shells, and larger membrane clusters. We will also discuss the mesoscale organization of plasmalemmal domains including visible structures such as clathrin-coated pits and caveolae.

  16. Novel Advances in Shotgun Lipidomics for Biology and Medicine

    PubMed Central

    Wang, Miao; Wang, Chunyan; Han, Rowland H.; Han, Xianlin

    2015-01-01

    The field of lipidomics, as coined in 2003, has made profound advances and been rapidly expanded. The mass spectrometry-based strategies of this analytical methodology-oriented research discipline for lipid analysis are largely fallen into three categories: direct infusion-based shotgun lipidomics, liquid chromatography-mass spectrometry-based platforms, and matrix-assisted laser desorption/ionization mass spectrometry-based approaches (particularly in imagining lipid distribution in tissues or cells). This review focuses on shotgun lipidomics. After briefly introducing its fundamentals, the major materials of this article cover its recent advances. These include the novel methods of lipid extraction, novel shotgun lipidomics strategies for identification and quantification of previously hardly accessible lipid classes and molecular species including isomers, and novel tools for processing and interpretation of lipidomics data. Representative applications of advanced shotgun lipidomics for biological and biomedical research are also presented in this review. We believe that with these novel advances in shotgun lipidomics, this approach for lipid analysis should become more comprehensive and high throughput, thereby greatly accelerating the lipidomics field to substantiate the aberrant lipid metabolism, signaling, trafficking, and homeostasis under pathological conditions and their underpinning biochemical mechanisms. PMID:26703190

  17. Evaluation of Collision Cross Section Calibrants for Structural Analysis of Lipids by Traveling Wave Ion Mobility-Mass Spectrometry

    PubMed Central

    2016-01-01

    Collision cross section (CCS) measurement of lipids using traveling wave ion mobility-mass spectrometry (TWIM-MS) is of high interest to the lipidomics field. However, currently available calibrants for CCS measurement using TWIM are predominantly peptides that display quite different physical properties and gas-phase conformations from lipids, which could lead to large CCS calibration errors for lipids. Here we report the direct CCS measurement of a series of phosphatidylcholines (PCs) and phosphatidylethanolamines (PEs) in nitrogen using a drift tube ion mobility (DTIM) instrument and an evaluation of the accuracy and reproducibility of PCs and PEs as CCS calibrants for phospholipids against different classes of calibrants, including polyalanine (PolyAla), tetraalkylammonium salts (TAA), and hexakis(fluoroalkoxy)phosphazines (HFAP), in both positive and negative modes in TWIM-MS analysis. We demonstrate that structurally mismatched calibrants lead to larger errors in calibrated CCS values while the structurally matched calibrants, PCs and PEs, gave highly accurate and reproducible CCS values at different traveling wave parameters. Using the lipid calibrants, the majority of the CCS values of several classes of phospholipids measured by TWIM are within 2% error of the CCS values measured by DTIM. The development of phospholipid CCS calibrants will enable high-accuracy structural studies of lipids and add an additional level of validation in the assignment of identifications in untargeted lipidomics experiments. PMID:27321977

  18. Polar Lipids Analysis of Cultured Phytoplankton Reveals Significant Inter-taxa Changes, Low Influence of Growth Stage, and Usefulness in Chemotaxonomy.

    PubMed

    Cañavate, José Pedro; Armada, Isabel; Hachero-Cruzado, Ismael

    2017-05-01

    The high lipid diversity of microalgae has been used to taxonomically differentiate phytoplankton taxa at the class level. However, important lipids such as phospholipids (PL) and betaine lipids (BL) with potential chemotaxonomy application in phytoplankton ecology have been scarcely studied. The chemotaxonomy value of PL and BL depends on their intraspecific extent of variation as microalgae respond to external changing factors. To determine such effects, lipid class changes occurring at different growth stages in 15 microalgae from ten different classes were analyzed. BL occurred in 14 species and were the less affected lipids by growth stage with diacylglyceryl-hydroxymethyl-N,N,N-trimethyl-b-alanine (DGTA) showing the highest stability. PL were more influenced by growth stage with phosphatidylcholine (PC), phosphatidylglycerol (PG), and phosphatidyletanolamine (PE) declining towards older culture stages in some species. Glycolipids were the more common lipids, and no evident age-related variability pattern could be associated to taxonomic diversity. Selecting BL and PL as descriptor variables optimally distinguished microalgae taxonomic variability at all growth stages. Principal coordinate analysis arranged species through a main tendency from diacylglyceryl-hydroxymethyl-N,N,N-trimethyl-b-alanine (DGCC) containing species (mainly dinoflagellates and haptophytes) to DGTA or PC containing species (mainly cryptophytes). Two diatom classes with similar fatty acid profiles could be distinguished from their respective content in DGTA (Bacillariophyceae) or DGCC (Mediophyceae). In green lineage classes (Trebouxiophyceae, Porphyridophyceae, and Chlorodendrophyceae), PC was a better descriptor than BL. BL and PL explained a higher proportion of microalgae taxonomic variation than did fatty acids and played a complementary role as lipid markers.

  19. Daunorubicin and Cytarabine Lipid Complex Injection

    MedlinePlus

    Daunorubicin and cytarabine lipid complex is used to treat certain types of acute myeloid leukemia (AML; a type of cancer of ... is in a class of medications called anthracyclines. Cytarabine is in a class of medications called antimetabolites. ...

  20. The CD1 family: serving lipid antigens to T cells since the Mesozoic era.

    PubMed

    Zajonc, Dirk M

    2016-08-01

    Class I-like CD1 molecules are in a family of antigen-presenting molecules that bind lipids and lipopeptides, rather than peptides for immune surveillance by T cells. Since CD1 lacks the high degree of polymorphism found in their major histocompatibility complex (MHC) class I molecules, different species express different numbers of CD1 isotypes, likely to be able to present structurally diverse classes of lipid antigens. In this review, we will present a historical overview of the structures of the different human CD1 isotypes and also discuss species-specific adaptations of the lipid-binding groove. We will discuss how single amino acid changes alter the shape and volume of the CD1 binding groove, how these minor changes can give rise to different numbers of binding pockets, and how these pockets affect the lipid repertoire that can be presented by any given CD1 protein. We will compare the structures of various lipid antigens and finally, we will discuss recognition of CD1-presented lipid antigens by antigen receptors on T cells (TCRs).

  1. The CD1 family: serving lipid antigens to T cells since the Mesozoic era

    PubMed Central

    Zajonc, Dirk M.

    2016-01-01

    Class I-like CD1 molecules are in a family of antigen-presenting molecules that bind lipids and lipopeptides, rather than peptides for immune surveillance by T cells. Since CD1 lacks the high degree of polymorphism found in their major histocompatibility complex (MHC) class I molecules, different species express different numbers of CD1 isotypes, likely to be able to present structurally diverse classes of lipid antigens. In this review, we will present a historical overview of the structures of the different human CD1 isotypes and also discuss species-specific adaptations of the lipid-binding groove. We will discuss how single amino acid changes alter the shape and volume of the CD1 binding groove, how these minor changes can give rise to different numbers of binding pockets, and how these pockets affect the lipid repertoire that can be presented by any given CD1 protein. We will compare the structures of various lipid antigens and finally, we will discuss recognition of CD1-presented lipid antigens by antigen receptors on T cells (TCRs). PMID:27368414

  2. A critical assessment of transmethylation procedures for n-3 long-chain polyunsaturated fatty acid quantification of lipid classes.

    PubMed

    Sehl, Anthony; Couëdelo, Leslie; Fonseca, Laurence; Vaysse, Carole; Cansell, Maud

    2018-06-15

    Lipid transmethylation methods described in the literature are not always evaluated with care so to insure that the methods are effective, especially on food matrix or biological samples containing polyunsaturated fatty acid (PUFA). The aim of the present study was to select a method suitable for all lipid species rich in long chain n-3 PUFA. Three published methods were adapted and applied on individual lipid classes. Lipid (trans)methylation efficiency was characterized in terms of reaction yield and gas chromatography (GC) analysis. The acid-catalyzed method was unable to convert triglycerides and sterol esters, while the method using an incubation at a moderate temperature was ineffective on phospholipids and sterol esters. On the whole only the method using sodium methoxide and sulfuric acid was effective on lipid classes taken individually or in a complex medium. This study highlighted the use of an appropriate (trans)methylation method for insuring an accurate fatty acid composition. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. High-temperature gas chromatography-mass spectrometry for skin surface lipids profiling.

    PubMed

    Michael-Jubeli, Rime; Bleton, Jean; Baillet-Guffroy, Arlette

    2011-01-01

    Skin surface lipids (SSLs) arising from both sebaceous glands and skin removal form a complex lipid mixture composed of free fatty acids and neutral lipids. High-temperature gas chromatography coupled with electron impact or chemical ionization mass spectrometry was used to achieve a simple analytical protocol, without prior separation in classes and without prior cleavage of lipid molecules, in order to obtain simultaneously i) a qualitative characterization of the individual SSLs and ii) a quantitative evaluation of lipid classes. The method was first optimized with SSLs collected from the forehead of a volunteer. More than 200 compounds were identified in the same run. These compounds have been classified in five lipid classes: free fatty acids, hydrocarbons, waxes, sterols, and glycerides. The advantage to this method was it provided structural information on intact compounds, which is new for cholesteryl esters and glycerides, and to obtain detailed fingerprints of the major SSLs. These fingerprints were used to compare the SSL compositions from different body areas. The squalene/cholesterol ratio was used to determine the balance between sebaceous secretion and skin removal. This method could be of general interest in fields where complex lipid mixtures are involved.

  4. Endoplasmic Reticulum-Plasma Membrane Contact Sites.

    PubMed

    Saheki, Yasunori; De Camilli, Pietro

    2017-06-20

    The endoplasmic reticulum (ER) has a broad localization throughout the cell and forms direct physical contacts with all other classes of membranous organelles, including the plasma membrane (PM). A number of protein tethers that mediate these contacts have been identified, and study of these protein tethers has revealed a multiplicity of roles in cell physiology, including regulation of intracellular Ca 2+ dynamics and signaling as well as control of lipid traffic and homeostasis. In this review, we discuss the cross talk between the ER and the PM mediated by direct contacts. We review factors that tether the two membranes, their properties, and their dynamics in response to the functional state of the cell. We focus in particular on the role of ER-PM contacts in nonvesicular lipid transport between the two bilayers mediated by lipid transfer proteins.

  5. Characterization of E 471 food emulsifiers by high-performance thin-layer chromatography-fluorescence detection.

    PubMed

    Oellig, Claudia; Brändle, Klara; Schwack, Wolfgang

    2018-07-13

    Mono- and diacylglycerol (MAG and DAG) emulsifiers, also known as food additive E 471, are widely used to adjust techno-functional properties in various foods. Besides MAGs and DAGs, E 471 emulsifiers additionally comprise different amounts of triacylglycerols (TAGs) and free fatty acids (FFAs). MAGs, DAGs, TAGs and FFAs are generally determined by high-performance liquid chromatography (HPLC) or gas chromatography (GC) coupled to mass selective detection, analyzing the individual representatives of the lipid classes. In this work we present a rapid and sensitive method for the determination of MAGs, DAGs, TAGs and FFAs in E 471 emulsifiers by high-performance thin-layer chromatography with fluorescence detection (HPTLC-FLD), including a response factor system for quantitation. Samples were simply dissolved and diluted with t-butyl methyl ether before a two-fold development was performed on primuline pre-impregnated LiChrospher silica gel plates with diethyl ether and n-pentane/n-hexane/diethyl ether (52:20:28, v/v/v) as the mobile phases to 18 and 75 mm, respectively. For quantitation, the plate was scanned in the fluorescence mode at UV 366/>400 nm, when the cumulative signal for each lipid class was used. Calibration was done with 1,2-distearin and amounts of lipid classes were calculated with response factors and expressed as monostearin, distearin, tristearin and stearic acid. Limits of detection and quantitation were 1 and 4 ng/zone, respectively, for 1,2-distearin. Thus, the HPTLC-FLD approach represents a simple, rapid and convenient screening alternative to HPLC and GC analysis of the individual compounds. Visual detection additionally enables an easy characterization and the direct comparison of emulsifiers through the lipid class pattern, when utilized as a fingerprint. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Fabrication of taste sensor for education

    NASA Astrophysics Data System (ADS)

    Wu, Xiao; Tahara, Yusuke; Toko, Kiyoshi; Kuriyaki, Hisao

    2017-03-01

    In order to solve the unconcern to usefulness of learning science among high school students in Japan, we developed a simple fabricated taste sensor with sensitivity and selectivity to each taste quality, which can be applied in science class. A commercialized Teflon membrane was used as the polymer membrane holding lipids. In addition, a non-adhesive method is considered to combine the membrane and the sensor electrode using a plastic cap which is easily accessible. The taste sensor for education fabricated in this way showed a good selectivity and sensitivity. By adjusting the composition of trioctylmethylammonium chloride (TOMA) and phosphoric acid di(2-ethylhexyl) ester (PAEE) included in lipid solution, we improved the selectivity of this simple taste sensor to saltiness and sourness. To verify this taste sensor as a useful science teaching material for science class, we applied this taste sensor into a science class for university students. By comparing the results between the sensory test and the sensor response, humans taste showed the same tendency just as the sensor response, which proved the sensor as a useful teaching material for science class.

  7. The Ia.2 Epitope Defines a Subset of Lipid Raft Resident MHC Class II Molecules Crucial to Effective Antigen Presentation1

    PubMed Central

    Busman-Sahay, Kathleen; Sargent, Elizabeth; Harton, Jonathan A.; Drake, James R.

    2016-01-01

    Previous work has established that binding of the 11-5.2 anti-I-Ak mAb, which recognizes the Ia.2 epitope on I-Ak class II molecules, elicits MHC class II signaling, whereas binding of two other anti-I-Ak mAb that recognize the Ia.17 epitope fail to elicit signaling. Using a biochemical approach, we establish that the Ia.2 epitope recognized by the widely used 11-5.2 mAb defines a subset of cell surface I-Ak molecules predominantly found within membrane lipid rafts. Functional studies demonstrate that the Ia.2 bearing subset of I-Ak class II molecules is critically necessary for effective B cell–T cell interactions especially at low antigen doses, a finding consistent with published studies on the role of raft-resident class II molecules in CD4 T cell activation. Interestingly, B cells expressing recombinant I-Ak class II molecules possessing a β chain-tethered HEL peptide lack the Ia.2 epitope and fail to partition into lipid rafts. Moreover, cells expressing Ia.2 negative tethered peptide-class II molecules are severely impaired in their ability to present both tethered peptide or peptide derived from exogenous antigen to CD4 T cells. These results establish the Ia.2 epitope as defining a lipid raft-resident MHC class II confomer vital to the initiation of MHC class II restricted B cell–T cell interactions. PMID:21543648

  8. [Lipids in the amphipod Talorchestia margaritae (Amphipoda: Talitridae) and its relationship with the ecology of the species].

    PubMed

    López, Sandra; Díaz, Yusbelly; Noris, Karem; Cabrera, Aivle

    2010-09-01

    T. margaritae, an endemic species inhabiting Venezuelan coasts, plays an important ecological role in plant and animal decomposition. To understand this issue in some animal groups, especially small ones, lipid composition analysis has been an interesting tool to describe their trophic relationships and food preferences. In order to assess this and visualize the components of their diet, we determined the lipid composition differences between males and females and among age classes in this species. Two sandy beaches were selected: Mangle Quemao and Las Mercedes de Paparo, from which sand samples of known volume were collected at the supralittoral area in 2007. Organisms were separated by age and sex classes, and their size, weight, density, biomass, total lipids (TL), lipid classes and fatty acid markers present in their tissues were determined. The sizes were similar for all age classes between the two locations, while the weights were higher for Mangle Quemao. The TL and lipid classes showed similar proportions between sexes, age classes and locations (TL: 3-5%; Phospholipids: 20-30%; Glycolipids: <1%; sterols: 4%). On the other hand, Triglycerides (TAG) were higher in Mangle Quemao, which may be related to the difference between the weights of two locations. The most abundant fatty acid biomarkers in the two studied sites were 16:0 and 18:1(n-9); this last one is characteristic of a carnivorous diet. The other nine markers were identified with changes in their distribution in organisms at Mangle Quemao and between males and females of both populations. Based on observed fatty acids markers we can assume T. margaritae as a generalist carnivore. Those populations were influenced by available food; inducing differences in weight, TAG proportion and markers diversity.

  9. Enhanced Lipidome Coverage in Shotgun Analyses by using Gas-Phase Fractionation

    NASA Astrophysics Data System (ADS)

    Nazari, Milad; Muddiman, David C.

    2016-11-01

    A high resolving power shotgun lipidomics strategy using gas-phase fractionation and data-dependent acquisition (DDA) was applied toward comprehensive characterization of lipids in a hen ovarian tissue in an untargeted fashion. Using this approach, a total of 822 unique lipids across a diverse range of lipid categories and classes were identified based on their MS/MS fragmentation patterns. Classes of glycerophospholipids and glycerolipids, such as glycerophosphocholines (PC), glycerophosphoethanolamines (PE), and triglycerides (TG), are often the most abundant peaks observed in shotgun lipidomics analyses. These ions suppress the signal from low abundance ions and hinder the chances of characterizing low abundant lipids when DDA is used. These issues were circumvented by utilizing gas-phase fractionation, where DDA was performed on narrow m/z ranges instead of a broad m/z range. Employing gas-phase fractionation resulted in an increase in sensitivity by more than an order of magnitude in both positive- and negative-ion modes. Furthermore, the enhanced sensitivity increased the number of lipids identified by a factor of ≈4, and facilitated identification of low abundant lipids from classes such as cardiolipins that are often difficult to observe in untargeted shotgun analyses and require sample-specific preparation steps prior to analysis. This method serves as a resource for comprehensive profiling of lipids from many different categories and classes in an untargeted manner, as well as for targeted and quantitative analyses of individual lipids. Furthermore, this comprehensive analysis of the lipidome can serve as a species- and tissue-specific database for confident identification of other MS-based datasets, such as mass spectrometry imaging.

  10. Antimicrobial phenolics and unusual glycerides from Helichrysum italicum subsp. microphyllum.

    PubMed

    Taglialatela-Scafati, Orazio; Pollastro, Federica; Chianese, Giuseppina; Minassi, Alberto; Gibbons, Simon; Arunotayanun, Warunya; Mabebie, Blessing; Ballero, Mauro; Appendino, Giovanni

    2013-03-22

    During a large-scale isolation campaign for the heterodimeric phloroglucinyl pyrone arzanol (1a) from Helichrysum italicum subsp. microphyllum, several new phenolics as well as an unusual class of lipids named santinols (5a-c, 6-8) have been characterized. Santinols are angeloylated glycerides characterized by the presence of branched acyl- or keto-acyl chains and represent a hitherto unreported class of plant lipids. The antibacterial activity of arzanol and of a selection of Helichrysum phenolics that includes coumarates, benzofurans, pyrones, and heterodimeric phloroglucinols was evaluated, showing that only the heterodimers showed potent antibacterial action against multidrug-resistant Staphylococcus aureus isolates. These observations validate the topical use of Helichrysum extracts to prevent wound infections, a practice firmly established in the traditional medicine of the Mediterranean area.

  11. Lipid droplet-associated proteins (LDAPs) are involved in the compartmentalization of lipophilic compounds in plant cells

    PubMed Central

    Gidda, Satinder K; Watt, Samantha C; Collins-Silva, Jillian; Kilaru, Aruna; Arondel, Vincent; Yurchenko, Olga; Horn, Patrick J; James, Christopher N; Shintani, David; Ohlrogge, John B; Chapman, Kent D; Mullen, Robert T; Dyer, John M

    2013-01-01

    While lipid droplets have traditionally been considered as inert sites for the storage of triacylglycerols and sterol esters, they are now recognized as dynamic and functionally diverse organelles involved in energy homeostasis, lipid signaling, and stress responses. Unlike most other organelles, lipid droplets are delineated by a half-unit membrane whose protein constituents are poorly understood, except in the specialized case of oleosins, which are associated with seed lipid droplets. Recently, we identified a new class of lipid-droplet associated proteins called LDAPs that localize specifically to the lipid droplet surface within plant cells and share extensive sequence similarity with the small rubber particle proteins (SRPPs) found in rubber-accumulating plants. Here, we provide additional evidence for a role of LDAPs in lipid accumulation in oil-rich fruit tissues, and further explore the functional relationships between LDAPs and SRPPs. In addition, we propose that the larger LDAP/SRPP protein family plays important roles in the compartmentalization of lipophilic compounds, including triacylglycerols and polyisoprenoids, into lipid droplets within plant cells. Potential roles in lipid droplet biogenesis and function of these proteins also are discussed. PMID:24305619

  12. Spatial Mapping of Lipids at Cellular Resolution in Embryos of Cotton[W][OA

    PubMed Central

    Horn, Patrick J.; Korte, Andrew R.; Neogi, Purnima B.; Love, Ebony; Fuchs, Johannes; Strupat, Kerstin; Borisjuk, Ljudmilla; Shulaev, Vladimir; Lee, Young-Jin; Chapman, Kent D.

    2012-01-01

    Advances in mass spectrometry (MS) have made comprehensive lipidomics analysis of complex tissues relatively commonplace. These compositional analyses, although able to resolve hundreds of molecular species of lipids in single extracts, lose the original cellular context from which these lipids are derived. Recently, high-resolution MS of individual lipid droplets from seed tissues indicated organelle-to-organelle variation in lipid composition, suggesting that heterogeneity of lipid distributions at the cellular level may be prevalent. Here, we employed matrix-assisted laser desorption/ionization–MS imaging (MALDI-MSI) approaches to visualize lipid species directly in seed tissues of upland cotton (Gossypium hirsutum). MS imaging of cryosections of mature cotton embryos revealed a distinct, heterogeneous distribution of molecular species of triacylglycerols and phosphatidylcholines, the major storage and membrane lipid classes in cotton embryos. Other lipids were imaged, including phosphatidylethanolamines, phosphatidic acids, sterols, and gossypol, indicating the broad range of metabolites and applications for this chemical visualization approach. We conclude that comprehensive lipidomics images generated by MALDI-MSI report accurate, relative amounts of lipid species in plant tissues and reveal previously unseen differences in spatial distributions providing for a new level of understanding in cellular biochemistry. PMID:22337917

  13. Immunostimulatory Properties of Lipid Modified CpG Oligonucleotides.

    PubMed

    Yu, Chunsong; An, Myunggi; Li, Meng; Liu, Haipeng

    2017-08-07

    Innate immune responses recognizing pathogen associated molecular patterns play important roles in adaptive immunity. As such, ligands which mimic the conserved products of microbial and activate innate immunity are widely used as adjuvants for vaccines. Synthetic single strand oligodeoxynucleotides (ODNs) containing unmethylated cytosine-guanine (CpG) motifs which bind Toll-like receptor 9 (TLR9) are powerful molecular adjuvants, potentiating both humoral and cellular responses. However, CpG ODN's in vitro potency has not been translated to in vivo settings primarily due to issues associated with delivery and toxicity. A major challenge in clinical application of CpG ODN is the efficient delivery to lymph nodes, the anatomic sites where all the immune responses are initiated. Targeting CpG to the key antigen presenting cells (APC) is essential for its application as a vaccine adjuvant, as it not only enhances CpG's efficacy, but also greatly reduces the systemic toxicity. We recently discovered an "albumin-hitchhiking" approach by which CpG ODNs were conjugated to a lipophilic lipid tail and follow subcutaneous injection, accumulated in lymph nodes by binding and transporting with endogenous albumin. This molecular approach targets CpG to antigen presenting cells in the draining lymph nodes via an endogenous albumin-mediated mechanism and simultaneously improves both the efficacy and safety of CpG as a vaccine adjuvant. Since CpG ODNs can be divided into structurally distinct classes, and each class of CpG ODN activates different types of immune cells and triggers different types of immunostimulatory activities, it is important to thoroughly evaluate the efficacy of this "albumin-hitchhiking" strategy in each class of CpG. Here we compare the immunostimulatory activities of three classes of lipid conjugated CpG ODNs in vitro and in vivo. Three representative sequences of lipid modified CpG ODNs were synthesized and their stimulatory effects as a vaccine adjuvant were evaluated. Our results showed that in vitro, lipid modified class A CpG exhibited enhanced stimulatory activities toward TLR transfected reporter cells or bone-marrow derived dendritic cells, whereas lipid-modification of class B or C CpG reduces the activation of TLR9 by 2-3 fold, as compared with unmodified class B and class C CpG, respectively. However, in vivo coadministration of ovalbumin (OVA) protein antigen mixed with lipid-conjugated class B or C CpG ODNs, but not class A CpGs induced dramatically increased OVA-specific humoral and cytotoxic CD8 + T cells responses compared with OVA mixed with unmodified CpGs. Further, lipid-modification greatly reduces the toxicity associated with CpG by minimizing the systemic dissemination. Taken together, these results demonstrated that amphiphilic modification of three classes of CpG motifs differentially affected and modulated the immunostimulatory activities in vitro and in vivo. Our study highlights the importance of in vivo lymph node targeting of CpG ODNs in fulfilling their use as vaccine adjuvants, providing implications for the rational design of molecular adjuvant for subunit vaccines.

  14. Identification of a new class of lipid droplet-associated proteins in plants

    USDA-ARS?s Scientific Manuscript database

    Lipid droplets in plants (also known as oil bodies, lipid bodies or oleosomes) are well characterized in seeds, and oleosins, the major proteins associated with their surface, were shown to be important for stabilizing lipid droplets during seed desiccation and rehydration. However, lipid droplets ...

  15. [Socioeconomic inequalities and age and gender differences in cardiovascular risk factors].

    PubMed

    López-González, Ángel A; Bennasar-Veny, Miquel; Tauler, Pedro; Aguilo, Antoni; Tomàs-Salvà, Matias; Yáñez, Aina

    2015-01-01

    To describe the cardiovascular risk factors in a working population in the Balearic Islands and to examine whether differences by social class vary according to age and gender. A cross-sectional study was carried out in a sample of active workers aged 20-65 years in the Balearic Islands. The participants were included in the study during their annual work health assessment in 2011. The following variables were collected: occupation, social class, age, gender, height, weight, smoking, blood pressure, lipid profile, and glucose levels. Cardiovascular risk was calculated using two different equations (Framingham and REGICOR). Differences by social class were observed for most cardiovascular risk factors. The pattern of these differences differed depending on age group and gender. Differences in obesity by social class increased with age in women but decreased in men. More differences in hypertension by social class were found among women than among men, with differences increasing with age in both genders. Significant differences by social class were found among women in lipid profile, and these differences increased with age, mainly for low levels of high-density lipoprotein-cholesterol. Inequalities in cardiovascular risk factors by social class were higher among women than among men. Some cardiovascular risk factors such as smoking and obesity showed significant inequalities from a very early age. Copyright © 2014 SESPAS. Published by Elsevier Espana. All rights reserved.

  16. Antimicrobial Lipids: Novel Innate Defense Molecules are Elevated in Sinus Secretions of Patients with Chronic Rhinosinusitis

    PubMed Central

    Lee, Jivianne T.; Jansen, Mike; Yilma, Abebayehu N.; Nguyen, Angels; Desharnais, Robert; Porter, Edith

    2010-01-01

    Introduction Airway secretions possess intrinsic antimicrobial properties that contribute to the innate host defense of the respiratory tract. These microbicidal capabilities have largely been attributed to the presence of antibacterial polypeptides. However, recent investigation has demonstrated that host-derived lipids including cholesteryl esters also exhibit antimicrobial properties. The purpose of this study was to determine whether sinus secretions contain such antimicrobial lipids and to compare the lipid composition in patients with and without chronic rhinosinusitis (CRS). Methods Maxillary sinus fluid was obtained via antral lavage from subjects with (7) and without (9) a history of CRS. Following specimen collection, total lipid was extracted according to Bligh & Dyer and lipid profiles were obtained by reverse phase HPLC on an amide-embedded C18 column. In addition, the neutrophil specific antimicrobial peptides HNP1-3 were quantified by immunoblotting. Results Lipids were identified in the maxillary sinus secretions of patients with and without CRS including cholesteryl esters. However, levels of lipid composition differed between the two groups with CRS patients exhibiting greater amounts of all classes of lipids; reaching over 10-fold higher concentration when compared to nonCRS patients. This increase was independent of HNP1-3 content. Conclusions Sinus secretions of patients with CRS appear to demonstrate elevated levels of antimicrobial lipids compared to controls independent from neutrophil influx. This upregulation suggests that host-derived lipids act as mediators of mucosal immunity in CRS. Further study is necessary to determine if such antimicrobial lipids function alone or synergistically with antibacterial peptides in conferring such inherent microbicidal properties. PMID:20338107

  17. Tracking Intact Phospholipids and Triacylglycerides in Bering Sea Euphausiids during Two Pulsed Feeding Experiments via Tandem LC-MS

    NASA Astrophysics Data System (ADS)

    Pleuthner, R. L.; Harvey, H. R.

    2016-02-01

    In the eastern Bering Sea and Chukchi Sea, Thysanoessa raschii are the most abundant krill species and a keystone trophic component that serves as both an important grazer and link to upper levels consumers including whales. Krill experience large variation in food resources annually and store multiple lipid classes for both reproduction and growth. Two shipboard feeding experiments tested the lipid retention in adult T. raschii and examined the fluctuation of specific lipid biomarkers under food-limited conditions. Phospholipids represent the major structural and storage lipids; their retention as intact phospholipids (IPL), as well as other glycerides (i.e. diacyl- and triacylglycerides; DG and TG), were followed over 19- and 31-day experiments using RPLC ESI-MS/MS on an LTQ Orbitrap XL. Identification and quantification of the suite of phospholipids and associated fatty acids with each experiment was performed with Lipid Search software. IPL's comprised the majority of intact lipids present, most of which had phosphatidylcholine (PC) headgroups; smaller contributions were made by phosphatidylethanolamine (PE) and phosphatidylserine (PS)-contaning IPL's. Fatty acids were largely represented by seven compounds - C14:0n, C16:0n, C16:1(n-7), C18:1(n-7), C18:1(n-9), C20:5(n-3), C22:6(n-3) - and were typically present as mixed acyl groups within each intact lipid class. Concentrations (μmole/g wet weight) of IPL and glyceride lipids showed a decrease of 21% and 26%, respectively, from initial values, suggesting that both are mobilized in times of food scarcity and during overwintering. Structures containing 16:1 decreased most for IPL's, reflecting the absence of the 16:1(n-7) dietary algal fatty acid. This powerful set of analytical and software tools allows determination of the suite of intact lipids within euphausiids to provide a more comprehensive picture of krill structural and storage lipids and their retention during times of varied food availability.

  18. Fatty Acid Composition and Lipid Profile of Diospyros mespiliformis, Albizia lebbeck, and Caesalpinia pulcherrima Seed Oils from Nigeria.

    PubMed

    Adewuyi, Adewale; Oderinde, Rotimi Ayodele

    2014-01-01

    The screening of lesser-known underutilized seeds as source of food has been a way of finding solution to food insecurity in developing nations. In this regard, oil as a class of food was extracted from the seeds of Diospyros mespiliformis  (4.72 ± 0.2%), Albizia lebbeck  (6.40 ± 0.60%), and Caesalpinia pulcherrima  (7.2 ± 0.30%). The oils were finally analyzed for their fatty acid composition, lipid classes, fatty acid distribution in the lipid fractions, and molecular speciation of the triacylglycerols, glycolipids, and phospholipids. The fatty acid composition of the oils varied with C18:2 fatty acid being the most dominant in the oils. Neutral lipids were the most abundant lipid class found in the oils while molecular species of the triacylglycerol with equivalent carbon chain number C40 was majorly present in the oils of Diospyros mespiliformis and Caesalpinia pulcherrima. The present study presents lesser-known underutilized seeds as possible sources of food.

  19. Fatty Acid Composition and Lipid Profile of Diospyros mespiliformis, Albizia lebbeck, and Caesalpinia pulcherrima Seed Oils from Nigeria

    PubMed Central

    Oderinde, Rotimi Ayodele

    2014-01-01

    The screening of lesser-known underutilized seeds as source of food has been a way of finding solution to food insecurity in developing nations. In this regard, oil as a class of food was extracted from the seeds of Diospyros mespiliformis  (4.72 ± 0.2%), Albizia lebbeck  (6.40 ± 0.60%), and Caesalpinia pulcherrima  (7.2 ± 0.30%). The oils were finally analyzed for their fatty acid composition, lipid classes, fatty acid distribution in the lipid fractions, and molecular speciation of the triacylglycerols, glycolipids, and phospholipids. The fatty acid composition of the oils varied with C18:2 fatty acid being the most dominant in the oils. Neutral lipids were the most abundant lipid class found in the oils while molecular species of the triacylglycerol with equivalent carbon chain number C40 was majorly present in the oils of Diospyros mespiliformis and Caesalpinia pulcherrima. The present study presents lesser-known underutilized seeds as possible sources of food. PMID:26904625

  20. GPS-Lipid: a robust tool for the prediction of multiple lipid modification sites.

    PubMed

    Xie, Yubin; Zheng, Yueyuan; Li, Hongyu; Luo, Xiaotong; He, Zhihao; Cao, Shuo; Shi, Yi; Zhao, Qi; Xue, Yu; Zuo, Zhixiang; Ren, Jian

    2016-06-16

    As one of the most common post-translational modifications in eukaryotic cells, lipid modification is an important mechanism for the regulation of variety aspects of protein function. Over the last decades, three classes of lipid modifications have been increasingly studied. The co-regulation of these different lipid modifications is beginning to be noticed. However, due to the lack of integrated bioinformatics resources, the studies of co-regulatory mechanisms are still very limited. In this work, we developed a tool called GPS-Lipid for the prediction of four classes of lipid modifications by integrating the Particle Swarm Optimization with an aging leader and challengers (ALC-PSO) algorithm. GPS-Lipid was proven to be evidently superior to other similar tools. To facilitate the research of lipid modification, we hosted a publicly available web server at http://lipid.biocuckoo.org with not only the implementation of GPS-Lipid, but also an integrative database and visualization tool. We performed a systematic analysis of the co-regulatory mechanism between different lipid modifications with GPS-Lipid. The results demonstrated that the proximal dual-lipid modifications among palmitoylation, myristoylation and prenylation are key mechanism for regulating various protein functions. In conclusion, GPS-lipid is expected to serve as useful resource for the research on lipid modifications, especially on their co-regulation.

  1. Lipidomics of human brain aging and Alzheimer's disease pathology.

    PubMed

    Naudí, Alba; Cabré, Rosanna; Jové, Mariona; Ayala, Victoria; Gonzalo, Hugo; Portero-Otín, Manuel; Ferrer, Isidre; Pamplona, Reinald

    2015-01-01

    Lipids stimulated and favored the evolution of the brain. Adult human brain contains a large amount of lipids, and the largest diversity of lipid classes and lipid molecular species. Lipidomics is defined as "the full characterization of lipid molecular species and of their biological roles with respect to expression of proteins involved in lipid metabolism and function, including gene regulation." Therefore, the study of brain lipidomics can help to unravel the diversity and to disclose the specificity of these lipid traits and its alterations in neural (neurons and glial) cells, groups of neural cells, brain, and fluids such as cerebrospinal fluid and plasma, thus helping to uncover potential biomarkers of human brain aging and Alzheimer disease. This review will discuss the lipid composition of the adult human brain. We first consider a brief approach to lipid definition, classification, and tools for analysis from the new point of view that has emerged with lipidomics, and then turn to the lipid profiles in human brain and how lipids affect brain function. Finally, we focus on the current status of lipidomics findings in human brain aging and Alzheimer's disease pathology. Neurolipidomics will increase knowledge about physiological and pathological functions of brain cells and will place the concept of selective neuronal vulnerability in a lipid context. © 2015 Elsevier Inc. All rights reserved.

  2. Combined LC/MS-platform for analysis of all major stratum corneum lipids, and the profiling of skin substitutes.

    PubMed

    van Smeden, Jeroen; Boiten, Walter A; Hankemeier, Thomas; Rissmann, Robert; Bouwstra, Joke A; Vreeken, Rob J

    2014-01-01

    Ceramides (CERs), cholesterol, and free fatty acids (FFAs) are the main lipid classes in human stratum corneum (SC, outermost skin layer), but no studies report on the detailed analysis of these classes in a single platform. The primary aims of this study were to 1) develop an LC/MS method for (semi-)quantitative analysis of all main lipid classes present in human SC; and 2) use this method to study in detail the lipid profiles of human skin substitutes and compare them to human SC lipids. By applying two injections of 10μl, the developed method detects all major SC lipids using RPLC and negative ion mode APCI-MS for detection of FFAs, and NPLC using positive ion mode APCI-MS to analyze CERs and cholesterol. Validation showed this lipid platform to be robust, reproducible, sensitive, and fast. The method was successfully applied on ex vivo human SC, human SC obtained from tape strips and human skin substitutes (porcine SC and human skin equivalents). In conjunction with FFA profiles, clear differences in CER profiles were observed between these different SC sources. Human skin equivalents more closely mimic the lipid composition of human stratum corneum than porcine skin does, although noticeable differences are still present. These differences gave biologically relevant information on some of the enzymes that are probably involved in SC lipid processing. For future research, this provides an excellent method for (semi-)quantitative, 'high-throughput' profiling of SC lipids and can be used to advance the understanding of skin lipids and the biological processes involved. © 2013.

  3. Improved Butanol-Methanol (BUME) Method by Replacing Acetic Acid for Lipid Extraction of Biological Samples.

    PubMed

    Cruz, Mutya; Wang, Miao; Frisch-Daiello, Jessica; Han, Xianlin

    2016-07-01

    Extraction of lipids from biological samples is a critical step in lipidomics, especially for shotgun lipidomics where lipid extracts are directly infused into a mass spectrometer. The butanol-methanol (BUME) extraction method was originally developed to extract lipids from plasma samples with 1 % acetic acid. Considering some lipids are sensitive to acidic environments, we modified this protocol by replacing acetic acid with lithium chloride solution and extended the modified extraction to tissue samples. Although no significant reduction of plasmalogen levels in the acidic BUME extracts of rat heart samples was found, the modified method was established to extract various tissue samples, including rat liver, heart, and plasma. Essentially identical profiles of the majority of lipid classes were obtained from the extracts of the modified BUME and traditional Bligh-Dyer methods. However, it was found that neither the original, nor the modified BUME method was suitable for 4-hydroxyalkenal species measurement in biological samples.

  4. Improved Butanol-Methanol (BUME) Method by Replacing Acetic Acid for Lipid Extraction of Biological Samples

    PubMed Central

    Cruz, Mutya; Wang, Miao; Frisch-Daiello, Jessica; Han, Xianlin

    2016-01-01

    Extraction of lipids from biological samples is a critical step in lipidomics, especially for shotgun lipidomics where lipid extracts are directly infused into a mass spectrometer. The butanol-methanol (BUME) extraction method was originally developed to extract lipids from plasma samples with 1% acetic acid. Considering some lipids are sensitive to acidic environments, we modified this protocol by replacing acetic acid with lithium chloride solution and extended the modified extraction to tissue samples. Although no significant reduction of plasmalogen levels in the acidic BUME extracts of rat heart samples was found, the modified method was established to extract various tissue samples, including rat liver, heart, and plasma. Essentially identical profiles of the majority of lipid classes were obtained from the extracts of the modified BUME and traditional Bligh-Dyer methods. However, it was found that neither the original, nor the modified BUME method was suitable for 4-hydroxyalkenal species measurement in biological samples. PMID:27245345

  5. Neuronal Lipid Metabolism: Multiple Pathways Driving Functional Outcomes in Health and Disease

    PubMed Central

    Tracey, Timothy J.; Steyn, Frederik J.; Wolvetang, Ernst J.; Ngo, Shyuan T.

    2018-01-01

    Lipids are a fundamental class of organic molecules implicated in a wide range of biological processes related to their structural diversity, and based on this can be broadly classified into five categories; fatty acids, triacylglycerols (TAGs), phospholipids, sterol lipids and sphingolipids. Different lipid classes play major roles in neuronal cell populations; they can be used as energy substrates, act as building blocks for cellular structural machinery, serve as bioactive molecules, or a combination of each. In amyotrophic lateral sclerosis (ALS), dysfunctions in lipid metabolism and function have been identified as potential drivers of pathogenesis. In particular, aberrant lipid metabolism is proposed to underlie denervation of neuromuscular junctions, mitochondrial dysfunction, excitotoxicity, impaired neuronal transport, cytoskeletal defects, inflammation and reduced neurotransmitter release. Here we review current knowledge of the roles of lipid metabolism and function in the CNS and discuss how modulating these pathways may offer novel therapeutic options for treating ALS. PMID:29410613

  6. Generation and Biological Activities of Oxidized Phospholipids

    PubMed Central

    Oskolkova, Olga V.; Birukov, Konstantin G.; Levonen, Anna-Liisa; Binder, Christoph J.; Stöckl, Johannes

    2010-01-01

    Abstract Glycerophospholipids represent a common class of lipids critically important for integrity of cellular membranes. Oxidation of esterified unsaturated fatty acids dramatically changes biological activities of phospholipids. Apart from impairment of their structural function, oxidation makes oxidized phospholipids (OxPLs) markers of “modified-self” type that are recognized by soluble and cell-associated receptors of innate immunity, including scavenger receptors, natural (germ line-encoded) antibodies, and C-reactive protein, thus directing removal of senescent and apoptotic cells or oxidized lipoproteins. In addition, OxPLs acquire novel biological activities not characteristic of their unoxidized precursors, including the ability to regulate innate and adaptive immune responses. Effects of OxPLs described in vitro and in vivo suggest their potential relevance in different pathologies, including atherosclerosis, acute inflammation, lung injury, and many other conditions. This review summarizes current knowledge on the mechanisms of formation, structures, and biological activities of OxPLs. Furthermore, potential applications of OxPLs as disease biomarkers, as well as experimental therapies targeting OxPLs, are described, providing a broad overview of an emerging class of lipid mediators. Antioxid. Redox Signal. 12, 1009–1059. PMID:19686040

  7. Antimicrobial lipids: novel innate defense molecules are elevated in sinus secretions of patients with chronic rhinosinusitis.

    PubMed

    Lee, Jivianne T; Jansen, Mike; Yilma, Abebayehu N; Nguyen, Angels; Desharnais, Robert; Porter, Edith

    2010-01-01

    Airway secretions possess intrinsic antimicrobial properties that contribute to the innate host defense of the respiratory tract. These microbicidal capabilities have largely been attributed to the presence of antibacterial polypeptides. However, recent investigation has indicated that host-derived lipids including cholesteryl esters also exhibit antimicrobial properties. The purpose of this study was to determine whether sinus secretions contain such antimicrobial lipids and to compare the lipid composition in patients with and without chronic rhinosinusitis (CRS). Maxillary sinus fluid was obtained via antral lavage from subjects with (seven patients) and without (nine patients) a history of CRS. After specimen collection, total lipid was extracted according to Bligh and Dyer (Bligh EG and Dyer WJ, A rapid method of total lipid extraction and purification, Can J Biochem Physiol 37:911-918, 1959) and lipid profiles were obtained by reverse phase high-performance liquid chromatography on an amide-embedded C18 column. In addition, the neutrophil-specific antimicrobial peptides human neutrophil peptides 1-3 (HNP1-3) were quantified by Western immunoblotting. Lipids, including cholesteryl esters, were identified in the maxillary sinus secretions of patients with and without CRS. However, levels of lipid composition differed between the two groups with CRS patients exhibiting greater amounts of all classes of lipids, reaching over 10-fold higher concentration when compared with non-CRS patients. This increase was independent of HNP1-3 content. Sinus secretions of patients with CRS appear to show elevated levels of antimicrobial lipids compared with controls independent from neutrophil influx. This up-regulation suggests that host-derived lipids act as mediators of mucosal immunity in CRS. Further study is necessary to determine if such antimicrobial lipids function alone or synergistically with antibacterial peptides in conferring such inherent microbicidal properties.

  8. Rubber particle proteins REF1 and SRPP1 interact differently with native lipids extracted from Hevea brasiliensis latex.

    PubMed

    Wadeesirisak, Kanthida; Castano, Sabine; Berthelot, Karine; Vaysse, Laurent; Bonfils, Frédéric; Peruch, Frédéric; Rattanaporn, Kittipong; Liengprayoon, Siriluck; Lecomte, Sophie; Bottier, Céline

    2017-02-01

    Rubber particle membranes from the Hevea latex contain predominantly two proteins, REF1 and SRPP1 involved in poly(cis-1,4-isoprene) synthesis or rubber quality. The repartition of both proteins on the small or large rubber particles seems to differ, but their role in the irreversible coagulation of the rubber particle is still unknown. In this study we highlighted the different modes of interactions of both recombinant proteins with different classes of lipids extracted from Hevea brasiliensis latex, and defined as phospholipids (PL), glycolipids (GL) and neutral lipids (NL). We combined two biophysical methods, polarization modulated-infrared reflection adsorption spectroscopy (PM-IRRAS) and ellipsometry to elucidate their interactions with monolayers of each class of lipids. REF1 and SRPP1 interactions with native lipids are clearly different; SRPP1 interacts mostly in surface with PL, GL or NL, without modification of its structure. In contrast REF1 inserts deeply in the lipid monolayers with all lipid classes. With NL, REF1 is even able to switch from α-helice conformation to β-sheet structure, as in its aggregated form (amyloid form). Interaction between REF1 and NL may therefore have a specific role in the irreversible coagulation of rubber particles. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Daunorubicin Lipid Complex Injection

    MedlinePlus

    Daunorubicin lipid complex is used to treat advanced Kaposi's sarcoma (a type of cancer that causes abnormal tissue to ... body) related to acquired immunodeficiency syndrome (AIDS). Daunorubicin lipid complex is in a class of medications called ...

  10. Irinotecan Lipid Complex Injection

    MedlinePlus

    Irinotecan lipid complex is used in combination with other medications to treat pancreatic cancer that has spread to other ... worsened after treatment with other chemotherapy medications. Irinotecan lipid complex is in a class of antineoplastic medications ...

  11. LipidFinder: A computational workflow for discovery of lipids identifies eicosanoid-phosphoinositides in platelets

    PubMed Central

    O’Connor, Anne; Brasher, Christopher J.; Slatter, David A.; Meckelmann, Sven W.; Hawksworth, Jade I.; Allen, Stuart M.; O’Donnell, Valerie B.

    2017-01-01

    Accurate and high-quality curation of lipidomic datasets generated from plasma, cells, or tissues is becoming essential for cell biology investigations and biomarker discovery for personalized medicine. However, a major challenge lies in removing artifacts otherwise mistakenly interpreted as real lipids from large mass spectrometry files (>60 K features), while retaining genuine ions in the dataset. This requires powerful informatics tools; however, available workflows have not been tailored specifically for lipidomics, particularly discovery research. We designed LipidFinder, an open-source Python workflow. An algorithm is included that optimizes analysis based on users’ own data, and outputs are screened against online databases and categorized into LIPID MAPS classes. LipidFinder outperformed three widely used metabolomics packages using data from human platelets. We show a family of three 12-hydroxyeicosatetraenoic acid phosphoinositides (16:0/, 18:1/, 18:0/12-HETE-PI) generated by thrombin-activated platelets, indicating crosstalk between eicosanoid and phosphoinositide pathways in human cells. The software is available on GitHub (https://github.com/cjbrasher/LipidFinder), with full userguides. PMID:28405621

  12. Oxime Ether Lipids as Transfection Agents: Assembly and Complexation with siRNA.

    PubMed

    Puri, Anu; Zampino, Serena; Viard, Mathias; Shapiro, Bruce A

    2017-01-01

    RNAi-based therapeutic approaches to combat cancer and other diseases are currently an area of great interest. However, practical applications of this approach rely on optimal tools to carry and deliver siRNA to the desired site. Oxime ether lipids (OELs) are a class of molecules among other various carriers being examined for siRNA delivery. OELs, relatively new candidates, belong to a class of non-glycerol based lipids and have begun to claim their place as an siRNA delivery carrier in the field of RNAi therapy. Chemical synthesis steps of OELs are considered relatively simple with the ability to modify the functionalities as desired. OEL-siRNA complexes can be assembled in the presence of serum-containing buffers (or cell culture media) and recent data from our and other groups have demonstrated that OELs are viable carriers for siRNA delivery in the cell culture systems. In this chapter, we provide the details of experimental protocols routinely used in our laboratory to examine OEL-siRNA complexes including their assembly, stability, and transfection efficiencies.

  13. Towards a deeper understanding of fatty acid bioaccessibility and its dependence on culinary treatment and lipid class: a case study of gilthead seabream (Sparus aurata).

    PubMed

    Costa, Sara; Afonso, Cláudia; Cardoso, Carlos; Oliveira, Rui; Alves, Francisca; Nunes, Maria L; Bandarra, Narcisa M

    2016-11-08

    The bioaccessibility of total lipids and fatty acids (FA) in raw and grilled gilthead seabream (Sparus aurata) was determined using an in vitro digestion model. The particular impact of grilling on the FA profile of seabream was also studied. In addition, the influence of lipid class on the bioaccessibility of each FA was analysed. Grilling did not change the relative FA profile, and only the absolute values were altered. However, the relative FA profile varied across lipid classes, being more dissimilar between TAG and phospholipids. Long-chain SFA and PUFA seemed to be less bioaccessible. Moreover, grilling reduced bioaccessibility of protein, fat and many FA, with the highest reductions found in PUFA such as the DHA. Strong evidence supporting a predominantly regioselective action of lipase during in vitro digestion was found, and the impact of this phenomenon on FA bioaccessibility was assessed.

  14. A single step reversed-phase high performance liquid chromatography separation of polar and non-polar lipids.

    PubMed

    Olsson, Petter; Holmbäck, Jan; Herslöf, Bengt

    2014-11-21

    This paper reports a simple chromatographic system to separate lipids classes as well as their molecular species. By the use of phenyl coated silica as stationary phase in combination with a simple mobile phase consisting of methanol and water, all tested lipid classes elute within 30 min. Furthermore, a method to accurately predict retention times of specific lipid components for this type of chromatography is presented. Common detection systems were used, namely evaporative light scattering detection (ELSD), charged aerosol detection (CAD), electrospray mass spectrometry (ESI-MS), and UV detection. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Suitable Class Experiments in Biochemistry for High-school Chemistry and Biology Courses.

    ERIC Educational Resources Information Center

    Myers, A.

    1987-01-01

    Illustrates the scope of experimental investigations for biochemistry education in high school biology and chemistry courses. Gives a brief overview of biochemistry experiments with proteins, enzymes, carbohydrates, lipids, nucleic acids, vitamins, metabolism, electron transport, and photosynthesis including materials, procedures, and outcomes.…

  16. QUALITY ASSURANCE STUDY OF MARINE LIPID CLASS DETERMINATION USING CHROMAROD/IATROSCAN( REG. TRADEMARK) THIN-LAYER CHROMATOGRAPHY-FLAME IONIZATION DETECTOR

    EPA Science Inventory

    An Iatroscan thin-layer chromatorgraphy-flame ionization detector has been utilized to quantify lipid classes in marine samples. This method was evaluated relative to established quality assurance (QA) procedures used for the gas chromatographic analysis of PCBs. A method for ext...

  17. ONTOGENETIC CHANGES IN BIOCHEMICAL COMPOSITION DURING LARVAL GROWTH OF LEPIDOPHTHALMUS LOUISIANENSIS

    EPA Science Inventory

    Early stages of ghost shrimp were mass-reared in the laboratory (28?C; 20 o/ooS) from hatching to the decapodid (D) stage. Iatroscan lipid class analysis revealed that major lipid classes in recently deposited eggs were phospholipids (80.8?1.3%) and triglycerides (16.0?1.1%), bo...

  18. Amphotericin B Lipid Complex Injection

    MedlinePlus

    Amphotericin B lipid complex injection is used to treat serious, possibly life-threatening fungal infections in people who did not respond ... to tolerate conventional amphotericin B therapy. Amphotericin B lipid complex injection is in a class of medications ...

  19. Cloning, expression and biochemical characterization of one Epsilon-class (GST-3) and ten Delta-class (GST-1) glutathione S-transferases from Drosophila melanogaster, and identification of additional nine members of the Epsilon class.

    PubMed Central

    Sawicki, Rafał; Singh, Sharda P; Mondal, Ashis K; Benes, Helen; Zimniak, Piotr

    2003-01-01

    From the fruitfly, Drosophila melanogaster, ten members of the cluster of Delta-class glutathione S-transferases (GSTs; formerly denoted as Class I GSTs) and one member of the Epsilon-class cluster (formerly GST-3) have been cloned, expressed in Escherichia coli, and their catalytic properties have been determined. In addition, nine more members of the Epsilon cluster have been identified through bioinformatic analysis but not further characterized. Of the 11 expressed enzymes, seven accepted the lipid peroxidation product 4-hydroxynonenal as substrate, and nine were active in glutathione conjugation of 1-chloro-2,4-dinitrobenzene. Since the enzymically active proteins included the gene products of DmGSTD3 and DmGSTD7 which were previously deemed to be pseudogenes, we investigated them further and determined that both genes are transcribed in Drosophila. Thus our present results indicate that DmGSTD3 and DmGSTD7 are probably functional genes. The existence and multiplicity of insect GSTs capable of conjugating 4-hydroxynonenal, in some cases with catalytic efficiencies approaching those of mammalian GSTs highly specialized for this function, indicates that metabolism of products of lipid peroxidation is a highly conserved biochemical pathway with probable detoxification as well as regulatory functions. PMID:12443531

  20. A highly sensitive protocol for microscopy of alkyne lipids and fluorescently tagged or immunostained proteins[S

    PubMed Central

    Gaebler, Anne; Penno, Anke; Kuerschner, Lars; Thiele, Christoph

    2016-01-01

    The demand to study the cellular localization of specific lipids has led to recent advances in lipid probes and microscopy. Alkyne lipids bear a small, noninterfering tag and can be detected upon click reaction with an azide-coupled reporter. Fluorescent alkyne lipid imaging crucially depends on appropriate azide reporters and labeling protocols that allow for an efficient click reaction and therefore a sensitive detection. We synthesized several azide reporters with different spacer components and tested their suitability for alkyne lipid imaging in fixed cells. The implementation of a copper-chelating picolyl moiety into fluorescent or biotin-based azide reagents strongly increased the sensitivity of the imaging routine. We demonstrate the applicability and evaluate the performance of this approach using different lipid classes and experimental setups. As azide picolyl reporters allow for reduced copper catalyst concentrations, they also enable coimaging of alkyne lipids with multiple fluorescent proteins including enhanced green fluorescent protein. Alternatively, and as we also show, microscopy of alkyne lipids can be combined with protein detection by immunocytochemistry. In summary, we present a robust, sensitive, and highly versatile protocol for the labeling of alkyne lipids with azide-coupled reporters for fluorescence microscopy that can be combined with different protein detection and imaging techniques. PMID:27565170

  1. Brominated polyunsaturated lipids from the Chinese sponge Xestospongia testudinaria as a new class of pancreatic lipase inhibitors.

    PubMed

    Liang, Lin-Fu; Wang, Ting; Cai, You-Sheng; He, Wen-Fei; Sun, Peng; Li, Yu-Fen; Huang, Qi; Taglialatela-Scafati, Orazio; Wang, He-Yao; Guo, Yue-Wei

    2014-05-22

    Chemical analysis of the Chinese marine sponge Xestospongia testudinaria afforded a library of brominated polyunsaturated lipids including eight new compounds, named xestonarienes A-H (3-10) and thirteen known analogues (11-23). The structures of the new compounds were elucidated by detailed spectroscopic analysis and by comparison with literature data. The isolated lipids were evaluated for their inhibitory activity against pancreatic lipase (PL), an essential enzyme for efficient fat digestion and the major metabolite, 14, exhibited a marked inhibitory activity (IC50 = 3.11 μM), similar to that of the positive control Orlistat (IC50 = 0.78 μM). The preliminary structure-activity relationships on the series of compounds clearly evidenced that a terminal (E)-enyne functionality, a diyne within the chain, and methyl ester group are all key functional groups for the activity of this class of PL inhibitors. Further biological investigation on compound 14 revealed a significant decrease in the plasma triglyceride level following an oral lipid challenge in C57BLKS/J male mice. Acute toxicology study demonstrated that compound 14 was non-toxic up to 1600 mg/kg p.o in mice. This is the first report of the PL inhibitory activity for brominated polyunsaturated lipids and the obtained results qualify compound 14 as a potent and bioavailable drug candidate for a mild and safe treatment to prevent and reduce obesity. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  2. Profiling over 1500 lipids in induced lung sputum and the implications in studying lung diseases.

    PubMed

    t'Kindt, Ruben; Telenga, Eef D; Jorge, Lucie; Van Oosterhout, Antoon J M; Sandra, Pat; Ten Hacken, Nick H T; Sandra, Koen

    2015-01-01

    Induced lung sputum is a valuable matrix in the study of respiratory diseases. Although the methodology of sputum collection has evolved to a point where it is repeatable and responsive to inflammation, its use in molecular profiling studies is still limited. Here, an in-depth lipid profiling of induced lung sputum using high-resolution liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (LC-Q-TOF MS) is described. An enormous complexity in lipid composition could be revealed. Over 1500 intact lipids, originating from 6 major lipid classes, have been accurately identified in 120 μL of induced sputum. By number and measured intensity, glycerophospholipids represent the largest lipid class, followed by sphingolipids, glycerolipids, fatty acyls, sterol lipids, and prenol lipids. Several prenol lipids, originating from tobacco, could be detected in the lung sputum of smokers. To illustrate the utility of the methodology in studying respiratory diseases, a comparative lipid screening was performed on lung sputum extracts in order to study the effect of Chronic Obstructive Pulmonary Disease (COPD) on the lung barrier lipidome. Results show that sphingolipid expression in induced sputum significantly differs between smokers with and without COPD.

  3. Characterization of oilseed lipids from "DHA-producing Camelina sativa": a new transformed land plant containing long-chain omega-3 oils.

    PubMed

    Mansour, Maged P; Shrestha, Pushkar; Belide, Srinivas; Petrie, James R; Nichols, Peter D; Singh, Surinder P

    2014-02-21

    New and sustainable sources of long-chain (LC, ≥C₂₀) omega-3 oils containing DHA (docosahexaenoic acid, 22:6ω3) are required to meet increasing demands. The lipid content of the oilseed of a novel transgenic, DHA-producing land plant, Camelina sativa, containing microalgal genes able to produce LC omega-3 oils, contained 36% lipid by weight with triacylglycerols (TAG) as the major lipid class in hexane extracts (96% of total lipid). Subsequent chloroform-methanol (CM) extraction recovered further lipid (~50% polar lipid, comprising glycolipids and phospholipids) and residual TAG. The main phospholipid species were phosphatidyl choline and phosphatidyl ethanolamine. The % DHA was: 6.8% (of total fatty acids) in the TAG-rich hexane extract and 4.2% in the polar lipid-rich CM extract. The relative level of ALA (α-linolenic acid, 18:3ω3) in DHA-camelina seed was higher than the control. Major sterols in both DHA- and control camelina seeds were: sitosterol, campesterol, cholesterol, brassicasterol and isofucosterol. C₁₆-C₂₂ fatty alcohols, including iso-branched and odd-chain alcohols were present, including high levels of iso-17:0, 17:0 and 19:0. Other alcohols present were: 16:0, iso-18:0, 18:0 and 18:1 and the proportions varied between the hexane and CM extracts. These iso-branched odd-chain fatty alcohols, to our knowledge, have not been previously reported. These components may be derived from wax esters, or free fatty alcohols.

  4. Lipid Status and Predisposing Genes in Patients with Diabetes Mellitus Type 1 from Various Ethnic Groups.

    PubMed

    Kolesnikova, L I; Kolesnikov, S I; Darenskaya, M A; Grebenkina, L A; Semenova, N V; Osipova, E V; Gnusina, S V; Bardymova, T A

    2015-12-01

    The peculiarities of HLA class II profile and lipid metabolism were examined in Buryat and Russian ethnic groups of patients with diabetes mellitus type 1. The incidence of type 1 haplotypes in HLA class II gene family was lower in Buryats than that in Russians. In comparison with Russians, the course of diabetes mellitus type 1 in Buryat patients was characterized with a lower content of total lipids, triacylglycerols, total cholesterol, and LDL, which probably explains a more favorable course of the disease in Buryat population.

  5. Design, Synthesis, and Characterization of Novel Zwitterionic Lipids for Drug and siRNA Delivery Applications

    NASA Astrophysics Data System (ADS)

    Walsh, Colin L.

    Lipid-based nanoparticles have long been used to deliver biologically active molecules such as drugs, proteins, peptides, DNA, and siRNA in vivo. Liposomes and lipoplexes alter the biodistribution, pharmacokinetics, and cellular uptake of their encapsulated or associated cargo. This can increase drug efficacy while reducing toxicity, resulting in an increased therapeutic index and better clinical outcomes. Unlike small molecule drugs, which passively diffuse through lipid membranes, nucleic acids and proteins require an active, carrier mediated escape mechanism to reach their site of action. As such, the therapeutic application and drug properties dictate the required biophysical characteristics of the lipid nanoparticle. These carrier properties depend on the structure and biophysical characteristics of the lipids and other components used to formulate them. This dissertation presents a series of studies related to the development of novel synthetic lipids for use in drug delivery systems. First, we developed a novel class of zwitterionic lipids with head groups containing a cationic amine and anionic carboxylate and ester-linked oleic acid tails. These lipids exhibit structure-dependent, pH-responsive biophysical properties, and may be useful components for next-generation drug delivery systems. Second, we extended the idea of amine/carboxylate containing zwitterionic head groups and synthesized a series of acetate terminated diacyl lipids containing a quaternary amine. These lipids have an inverted headgroup orientation compared to naturally occurring zwitterionic lipids, and show interesting salt-dependent biophysical properties. Third, we synthesized and characterized a focused library of ionizable lysine-based lipids, which contain a lysine head group linked to a long-chain dialkylamine. A focused library was synthesized to determine the impact of hydrophobic fluidity, lipid net charge, and lipid pKa on the biophysical and siRNA transfection characteristics of these lipids. Our results indicate that structural variations significantly impact the biophysical and transfection behavior of this class of lipids. In summary, we have synthesized several new classes of lipids with biophysical characteristics that may be useful for drug delivery applications. Our results show that slight modifications to lipid structure impacts their biophysical behavior, which in turn dictates their potential utility in drug delivery systems. Further understanding lipid structure-activity relationships will allow for the rational design and engineering of lipids with appropriate properties for specific delivery applications.

  6. Identification of the lipid biomarkers from plasma in idiopathic pulmonary fibrosis by Lipidomics.

    PubMed

    Yan, Feng; Wen, Zhensong; Wang, Rui; Luo, Wenling; Du, Yufeng; Wang, Wenjun; Chen, Xianyang

    2017-12-06

    Idiopathic pulmonary fibrosis (IPF) is an irreversible interstitial pulmonary disease featured by high mortality, chronic and progressive course, and poor prognosis with unclear etiology. Currently, more studies have been focusing on identifying biomarkers to predict the progression of IPF, such as genes, proteins, and lipids. Lipids comprise diverse classes of molecules and play a critical role in cellular energy storage, structure, and signaling. The role of lipids in respiratory diseases, including cystic fibrosis, asthma and chronic obstructive pulmonary disease (COPD) has been investigated intensely in the recent years. The human serum lipid profiles in IPF patients however, have not been thoroughly understood and it will be very helpful if there are available molecular biomarkers, which can be used to monitor the disease progression or provide prognostic information for IPF disease. In this study, we performed the ultraperformance liquid chromatography coupled with quadrupole time of flight mass spectrometry (UPLC-QTOF/MS) to detect the lipid variation and identify biomarker in plasma of IPF patients. The plasma were from 22 IPF patients before received treatment and 18 controls. A total of 507 individual blood lipid species were determined with lipidomics from the 40 plasma samples including 20 types of fatty acid, 159 types of glycerolipids, 221 types of glycerophospholipids, 47 types of sphingolipids, 46 types of sterol lipids, 7 types of prenol lipids, 3 types of saccharolipids, and 4 types of polyketides. By comparing the variations in the lipid metabolite levels in IPF patients, a total of 62 unique lipids were identified by statistical analysis including 24 kinds of glycerophoslipids, 30 kinds of glycerolipids, 3 kinds of sterol lipids, 4 kinds of sphingolipids and 1 kind of fatty acids. Finally, 6 out of 62 discriminating lipids were selected as the potential biomarkers, which are able to differentiate between IPF disease and controls with ROC analysis. Our results provided vital information regarding lipid metabolism in IPF patients and more importantly, a few potentially promising biomarkers were firstly identified which may have a predictive role in monitoring and diagnosing IPF disease.

  7. A Teaching Laboratory for Comprehensive Lipid Characterization from Food Samples

    ERIC Educational Resources Information Center

    Bendinskas, Kestutis; Weber, Benjamin; Nsouli, Tamara; Nguyen, Hoangvy V.; Joyce, Carolyn; Niri, Vadoud; Jaskolla, Thorsten W.

    2014-01-01

    Traditional and state-of-the-art techniques were combined to probe for various lipid classes from egg yolk and avocado qualitatively and quantitatively. A total lipid extract was isolated using liquid-liquid extraction. An aliquot of the total lipid extract was subjected to transesterification to form volatile fatty acid methyl esters suitable for…

  8. Lipids and Fatty Acids in Algae: Extraction, Fractionation into Lipid Classes, and Analysis by Gas Chromatography Coupled with Flame Ionization Detector (GC-FID).

    PubMed

    Guihéneuf, Freddy; Schmid, Matthias; Stengel, Dagmar B

    2015-01-01

    Despite the number of biochemical studies exploring algal lipids and fatty acid biosynthesis pathways and profiles, analytical methods used by phycologists for this purpose are often diverse and incompletely described. Potential confusion and potential variability of the results between studies can therefore occur due to change of protocols for lipid extraction and fractionation, as well as fatty acid methyl esters (FAME) preparation before gas chromatography (GC) analyses. Here, we describe a step-by-step procedure for the profiling of neutral and polar lipids using techniques such as solid-liquid extraction (SLE), thin-layer chromatography (TLC), and gas chromatography coupled with flame ionization detector (GC-FID). As an example, in this protocol chapter, analyses of neutral and polar lipids from the marine microalga Pavlova lutheri (an EPA/DHA-rich haptophyte) will be outlined to describe the distribution of fatty acid residues within its major lipid classes. This method has been proven to be a reliable technique to assess changes in lipid and fatty acid profiles in several other microalgal species and seaweeds.

  9. Lipids and fatty acids in Calanus sinicus during oversummering in the southern Yellow Sea

    NASA Astrophysics Data System (ADS)

    Wang, Yanqing; Li, Chaolun; Liu, Mengtan; Jin, Xin

    2017-07-01

    Over-summering is a crucial period for Calanus sinicus in the southern Yellow Sea, where it is a key member of the zooplankton community. Lipids play an important role in copepod diapause, which is part of their over-summering strategy. We investigated how different fatty acids and lipid classes, including wax esters, changed during over-summering of C. sinicus during three cruises in June and August 2011 and November 2010, corresponding to the pre-, during and post-diapause periods, respectively. Large amounts of lipids were accumulated, mainly wax esters as previously found in C. finmarchicus during its diapause, and most of the storage lipids were used during over-summering. Wax ester polyunsaturated fatty acids (PUFAs) showed the most variation of the fatty acids (FAs), while the percentage composition of FAs in polar lipids was relatively stable. Selective use of wax ester PUFAs has already been shown to play important roles in the winter diapause of Calanus species in other regions, and our FA results show that this is the case for the Yellow Sea Cold Bottom Water (YSCBW) population that diapauses in summer.

  10. Effect of chemical permeation enhancers on stratum corneum barrier lipid organizational structure and interferon alpha permeability.

    PubMed

    Moghadam, Shadi H; Saliaj, Evi; Wettig, Shawn D; Dong, Chilbert; Ivanova, Marina V; Huzil, J Torin; Foldvari, Marianna

    2013-06-03

    The outermost layer of the skin, known as the stratum corneum (SC), is composed of dead corneocytes embedded in an intercellular lipid matrix consisting of ceramides, free fatty acids, and cholesterol. The high level of organization within this matrix protects the body by limiting the permeation of most compounds through the skin. While essential for its protective functions, the SC poses a significant barrier for the delivery of topically applied pharmaceutical agents. Chemical permeation enhancers (CPEs) can increase delivery of small drug compounds into the skin by interacting with the intercellular lipids through physical processes including extraction, fluidization, increased disorder, and phase separation. However, it is not clear whether these same mechanisms are involved in delivery of biotherapeutic macromolecules, such as proteins. Here we describe the effect of three categories of CPEs {solvents [ethanol, propylene glycol, diethylene glycol monoethyl ether (transcutol), oleic acid], terpenes [menthol, nerol, camphor, methyl salicylate], and surfactants [Tween 80, SDS, benzalkonium chloride, polyoxyl 40 hydrogenated castor oil (Cremophor RH40), didecyldimethylammonium bromide (DDAB), didecyltrimethylammonium bromide (DTAB)]} on the lipid organizational structure of human SC as determined by X-ray scattering studies. Small- and wide-angle X-ray scattering studies were conducted to correlate the degree of structural changes and hydrocarbon chain packing in SC lipids caused by these various classes of CPEs to the extent of permeation of interferon alpha-2b (IFNα), a 19 kDa protein drug, into human skin. With the exception of solvents, propylene glycol and ethanol, all classes of CPEs caused increased disordering of lamellar and lateral packing of lipids. We observed that the highest degree of SC lipid disordering was caused by surfactants (especially SDS, DDAB, and DTAB) followed by terpenes, such as nerol. Interestingly, in vitro skin permeation studies indicated that, in most cases, absorption of IFNα was low and that an increase in SC lipid disorder does not correspond to an increase in IFNα absorption.

  11. The spectrophotometric sulfo-phospho-vanillin assessment of total lipids in human meibomian gland secretions.

    PubMed

    McMahon, Anne; Lu, Hua; Butovich, Igor A

    2013-05-01

    Human meibomian gland secretions (meibum) are the major lipid component of the human preocular tear film. The predominant lipid classes found in meibum include waxes (WE), cholesteryl esters (CE), and varying amounts of cholesterol (Chl). The classical sulfo-phospho-vanillin assay (SPVA), adapted for a microplate reader, was used to quantitate lipids in meibum. To account for varying reactivities of different lipids in SPVA, a model meibomian lipid mixture (MMx) that approximated the WE/CE/Chl composition of meibum was developed and used to quantitate meibomian lipids. The overall SPV responses of MMx and meibum were found to be close, with similar intermediate and final reaction products for both. Saturated WE that had not been expected to be reactive were found to be SPV-positive. A reaction mechanism for these compounds in SPVA which involves the formation of alkenyl ethers is proposed and discussed. Tested proteins were non-reactive in SPVA. Thus, by comparing the results of gravimetric analyses of meibum samples with the results of a properly calibrated SPVA, it was estimated that the SPV-reactive lipid content of dry meibum in tested samples was about 78 % (w/w). The SPV method can also be adopted for analyzing other types of complex lipids secretions, such as sebum, as well as whole lipid extracts from other lipid-enriched organs and tissues, if proper standards are chosen.

  12. The Spectrophotometric Sulfo-Phospho-Vanillin Assessment of Total Lipids in Human Meibomian Gland Secretions

    PubMed Central

    McMahon, Anne; Lu, Hua

    2013-01-01

    Human meibomian gland secretions (meibum) are the major lipid component of the human preocular tear film. The predominant lipid classes found in meibum include waxes (WE), cholesteryl esters (CE), and varying amounts of cholesterol (Chl). The classical sulfo-phospho-vanillin assay (SPVA), adapted for a microplate reader, was used to quantitate lipids in meibum. To account for varying reactivities of different lipids in SPVA, a model meibomian lipid mixture (MMx) that approximated the WE/CE/Chl composition of meibum was developed and used to quantitate meibomian lipids. The overall SPV responses of MMx and meibum were found to be close, with similar intermediate and final reaction products for both. Saturated WE that had not been expected to be reactive were found to be SPV-positive. A reaction mechanism for these compounds in SPVA which involves the formation of alkenyl ethers is proposed and discussed. Tested proteins were non-reactive in SPVA. Thus, by comparing the results of gravimetric analyses of meibum samples with the results of a properly calibrated SPVA, it was estimated that the SPV-reactive lipid content of dry meibum in tested samples was about 78 % (w/w). The SPV method can also be adopted for analyzing other types of complex lipids secretions, such as sebum, as well as whole lipid extracts from other lipid-enriched organs and tissues, if proper standards are chosen. PMID:23345137

  13. Synthesis, characterization, and evaluation of ionizable lysine-based lipids for siRNA delivery.

    PubMed

    Walsh, Colin L; Nguyen, Juliane; Tiffany, Matthew R; Szoka, Francis C

    2013-01-16

    We report the synthesis and characterization of a series of ionizable lysine-based lipids (ILL), novel lipids containing a lysine headgroup linked to a long-chain dialkylamine through an amide linkage at the lysine α-amine. These ILLs contain two ionizable amines and a carboxylate, and exhibit pH-dependent lipid ionization that varies with lipid structure. The synthetic scheme employed allows for the simple, orthogonal manipulation of lipids. This provides a method for the development of a compositionally diverse library with varying ionizable headgroups, tail structures, and linker regions. A focused library of four ILLs was synthesized to determine the impact of hydrophobic fluidity, lipid net charge, and lipid pK(a) on the biophysical and siRNA transfection characteristics of this new class of lipids. We found that manipulation of lipid structure impacts the protonation behavior, electrostatically driven membrane disruption, and ability to promote siRNA mediated knockdown in vitro. ILL-siRNA liposomal formulations were tested in a murine Factor VII model; however, no significant siRNA-mediated knockdown was observed. These results indicate that ILL may be useful in vitro transfection reagents, but further optimization of this new class of lipids is required to develop an effective in vivo siRNA delivery system.

  14. Membrane Lipid Microenvironment Modulates Thermodynamic Properties of the Na+-K+-ATPase in Branchial and Intestinal Epithelia in Euryhaline Fish In vivo

    PubMed Central

    Díaz, Mario; Dópido, Rosa; Gómez, Tomás; Rodríguez, Covadonga

    2016-01-01

    We have analyzed the effects of different native membrane lipid composition on the thermodynamic properties of the Na+-K+-ATPase in different epithelia from the gilthead seabream Sparus aurata. Thermodynamic parameters of activation for the Na+-K+-ATPase, as well as contents of lipid classes and fatty acids from polar lipids were determined for gill epithelia and enterocytes isolated from pyloric caeca, anterior intestine and posterior intestine. Arrhenius analyses of control animals revealed differences in thermal discontinuity values (Td) and activation energies determined at both sides of Td between intestinal and gill epithelia. Eyring plots disclosed important differences in enthalpy of activation (ΔH‡) and entropy of activation (ΔS‡) between enterocytes and branchial cells. Induction of n-3 LCPUFA deficiency dramatically altered membrane lipid composition in enterocytes, being the most dramatic changes the increase in 18:1n-9 (oleic acid) and the reduction of n-3 LCPUFA (mainly DHA, docosahexaenoic acid). Strikingly, branchial cells were much more resistant to diet-induced lipid alterations than enterocytes, indicating the existence of potent lipostatic mechanisms preserving membrane lipid matrix in gill epithelia. Paralleling lipid alterations, values of Ea1, ΔH‡ and ΔS‡ for the Na+-K+-ATPase were all increased, while Td values vanished, in LCPUFA deficient enterocytes. In turn, Differences in thermodynamic parameters were highly correlated with specific changes in fatty acids, but not with individual lipid classes including cholesterol in vivo. Thus, Td was positively related to 18:1n-9 and negatively to DHA. Td, Ea1 and ΔH‡ were exponentially related to DHA/18:1n-9 ratio. The exponential nature of these relationships highlights the strong impact of subtle changes in the contents of oleic acid and DHA in setting the thermodynamic properties of epithelial Na+-K+-ATPase in vivo. The effects are consistent with physical effects on the lipid membrane surrounding the enzyme as well as with direct interactions with the Na+-K+-ATPase. PMID:28018232

  15. VARIATION IN GROWTH, LIPID CLASS AND FATTY ACID COMPOSITION OF THE MUD CRAB, RHITHROPANOPEUS HARRISII (GOULD) DURING LARVAL DEVELOPMENT FOLLOWING EXPOSURE TO AN INSECT JUVENILE HORMONE ANALOG (FENOXYCARB(R))

    EPA Science Inventory

    This study examines the effects of fenoxycarb?, an insect juvenile hormone (JH) analog, on larval growth, and lipid class and fatty acid composition in first crabs of the mud crab Rhithropanopeus harrisii reared through total larval development in nominal water concentrations fr...

  16. VARIATION IN GROWTH, LIPID CLASS AND FATTY ACID COMPOSITION OF THE MUD CRAB, RHITHROPANOPEUS HARRISII (GOULD) DURING LARVAL DEVELOPMENT FOLLOWING EXPOSURE TO AN INSECT JUVENILE HORMONE ANALOG (FENOXYCARB)

    EPA Science Inventory

    This study examines the effects of fenoxycarb?, an insect juvenile hormone analog, on larval growth, and lipid class and fatty acid composition in first crabs of the mud crab Rhithropanopeus harrisii reared through total larval development in nominal water concentrations from 1 ...

  17. Ethnic Differences in Lipid Profiles of Overweight, Obese, and Severely Obese Children and Adolescents 6-19 Years of Age.

    PubMed

    Dhuper, Sarita; Bayoumi, Nagla S; Shah, Yash D; Mehta, Shilpa

    2017-06-01

    Ethnic differences in lipid profiles exist in children and adolescents. This study assessed whether variations in lipid profiles present in overweight and obese youth were also observed in severely obese youth. Variations could explain the lower prevalence of the metabolic syndrome in certain ethnic groups at even severe levels of obesity. Data were obtained from the National Health and Nutrition Examination Survey for the years of 2001 through 2012. Subjects were divided into groups according to BMI classification. Normal weight was defined as a BMI less than the 85th percentile. Overweight was defined as a BMI between the 85th and 95th percentile. Class 1 obesity was defined as a BMI greater than the 95th percentile up to 120% of the 95th percentile. A BMI between 120% and 140% of the 95th percentile was defined as Class 2 obesity. Class 3 was defined as a BMI above 140% of the 95th percentile. Primary outcomes were mean total cholesterol, triglyceride, low-density lipoprotein, and high-density lipoprotein levels (HDL). The sample included 14,481 non-Hispanic black (NHB) (N = 4710), non-Hispanic white (N = 4910), and Mexican American (N = 4861) subjects. Across all BMI categories, the NHB group had significantly lower mean TG and higher mean HDL levels (p < 0.0001). Ethnic variations in lipid profiles were found in severely obese youth. These findings could explain the lower prevalence of the metabolic syndrome in NHB youth. Ethnic-specific guidelines are necessary for improved identification of those at risk at all levels of obesity.

  18. Endocannabinoids concentrations in plasma associated with feed efficiency and carcass composition of beef steers

    USDA-ARS?s Scientific Manuscript database

    Endocannabinoids, including anandamide (AEA) and 2-arachidonoylglycerol (2-AG), are a class of endogenous lipid mediators that activate cannabinoids receptors and may be involved in the control of feed intake and energy metabolism. The objective of this study was to quantify AEA and 2-AG in plasma a...

  19. Endocannabinoid concentrations in plasma associated with feed efficiency and carcass composition on crossbreed steers

    USDA-ARS?s Scientific Manuscript database

    Endocannabinoids, including anandamide (AEA) and 2-arachidonoylglycerol (2-AG), are a class of endogenous lipid mediators that activate cannabinoids receptors and may be involved in the control of feed intake and energy metabolism. The objective of this study was to quantify AEA and 2-AG in plasma a...

  20. Use of Solid Phase Extraction in the Biochemistry Laboratory to Separate Different Lipids

    ERIC Educational Resources Information Center

    Flurkey, William H.

    2005-01-01

    Solid-phase extraction (SPE) was used to demonstrate how various lipids and lipid classes could be separated in a biochemistry laboratory setting. Three different SPE methods were chosen on their ability to separate a lipid mixture, consisting of a combination of a either a fatty acid, a triacylglycerol, a mono- or diacylglycerol, phospholipid,…

  1. Lipid droplet-associated proteins (LDAPs) are required for the dynamic regulation of neutral lipid compartmentation in plant cells

    USDA-ARS?s Scientific Manuscript database

    Eukaryotic cells compartmentalize neutral lipids into organelles called lipid droplets (LDs), and while much is known about the role of LDs in storing triacylglycerols (TAGs) in seeds, their biogenesis and function in non-seed tissues is poorly understood. Recently, we identified a class of plant-sp...

  2. Serine Lipids of Porphyromonas gingivalis Are Human and Mouse Toll-Like Receptor 2 Ligands

    PubMed Central

    Clark, Robert B.; Cervantes, Jorge L.; Maciejewski, Mark W.; Farrokhi, Vahid; Nemati, Reza; Yao, Xudong; Anstadt, Emily; Fujiwara, Mai; Wright, Kyle T.; Riddle, Caroline; La Vake, Carson J.; Salazar, Juan C.; Finegold, Sydney

    2013-01-01

    The total cellular lipids of Porphyromas gingivalis, a known periodontal pathogen, were previously shown to promote dendritic cell activation and inhibition of osteoblasts through engagement of Toll-like receptor 2 (TLR2). The purpose of the present investigation was to fractionate all lipids of P. gingivalis and define which lipid classes account for the TLR2 engagement, based on both in vitro human cell assays and in vivo studies in mice. Specific serine-containing lipids of P. gingivalis, called lipid 654 and lipid 430, were identified in specific high-performance liquid chromatography fractions as the TLR2-activating lipids. The structures of these lipids were defined using tandem mass spectrometry and nuclear magnetic resonance methods. In vitro, both lipid 654 and lipid 430 activated TLR2-expressing HEK cells, and this activation was inhibited by anti-TLR2 antibody. In contrast, TLR4-expressing HEK cells failed to be activated by either lipid 654 or lipid 430. Wild-type (WT) or TLR2-deficient (TLR2−/−) mice were injected with either lipid 654 or lipid 430, and the effects on serum levels of the chemokine CCL2 were measured 4 h later. Administration of either lipid 654 or lipid 430 to WT mice resulted in a significant increase in serum CCL2 levels; in contrast, the administration of lipid 654 or lipid 430 to TLR2−/− mice resulted in no increase in serum CCL2. These results thus identify a new class of TLR2 ligands that are produced by P. gingivalis that likely play a significant role in mediating inflammatory responses both at periodontal sites and, potentially, in other tissues where these lipids might accumulate. PMID:23836823

  3. Separation and Classification of Lipids Using Differential Ion Mobility Spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shvartsburg, Alexandre A.; Isaac, Georgis; Leveque, Nathalie

    2011-04-12

    Correlations between the dimensions of a 2-D separation create trend lines that normally depend on structural or functional characteristics of the compound class and thus facilitate classification of unknowns. This broadly applies to conventional ion mobility spectrometry (IMS)/mass spectrometry (MS), where the major biomolecular classes (e.g., lipids, peptides, nucleotides) occupy different trend line domains. However, strong correlation between the IMS and MS separations for ions of same charge has impeded finer distinctions. Differential IMS (or FAIMS) is generally much less correlated to MS and thus should better separate the trend lines and associated domains. We report the first observation ofmore » chemical class separation by trend lines using FAIMS, here for lipids. For all lipids, FAIMS is indeed more independent of MS than conventional IMS, and subclasses (such as phospho-, glycero-, or sphingolipids) form distinct, often non-overlapping domains. Even finer categories with different functional groups or degrees of unsaturation are often separated. As expected, resolution improves in He-rich gases: at ~70% He, glycerolipid isomers with different positions of fatty acid attachment can be resolved. These results open the door for lipidomics application of FAIMS, particularly shotgun lipidomics and targeted analyses of bioactive lipids.« less

  4. A highly sensitive protocol for microscopy of alkyne lipids and fluorescently tagged or immunostained proteins.

    PubMed

    Gaebler, Anne; Penno, Anke; Kuerschner, Lars; Thiele, Christoph

    2016-10-01

    The demand to study the cellular localization of specific lipids has led to recent advances in lipid probes and microscopy. Alkyne lipids bear a small, noninterfering tag and can be detected upon click reaction with an azide-coupled reporter. Fluorescent alkyne lipid imaging crucially depends on appropriate azide reporters and labeling protocols that allow for an efficient click reaction and therefore a sensitive detection. We synthesized several azide reporters with different spacer components and tested their suitability for alkyne lipid imaging in fixed cells. The implementation of a copper-chelating picolyl moiety into fluorescent or biotin-based azide reagents strongly increased the sensitivity of the imaging routine. We demonstrate the applicability and evaluate the performance of this approach using different lipid classes and experimental setups. As azide picolyl reporters allow for reduced copper catalyst concentrations, they also enable coimaging of alkyne lipids with multiple fluorescent proteins including enhanced green fluorescent protein. Alternatively, and as we also show, microscopy of alkyne lipids can be combined with protein detection by immunocytochemistry. In summary, we present a robust, sensitive, and highly versatile protocol for the labeling of alkyne lipids with azide-coupled reporters for fluorescence microscopy that can be combined with different protein detection and imaging techniques. Copyright © 2016 by the American Society for Biochemistry and Molecular Biology, Inc.

  5. Biologic Activity of Porphyromonas endodontalis complex lipids

    PubMed Central

    Mirucki, Christopher S.; Abedi, Mehran; Jiang, Jin; Zhu, Qiang; Wang, Yu-Hsiung; Safavi, Kamran E.; Clark, Robert B.; Nichols, Frank C.

    2014-01-01

    Introduction Periapical infections secondary to pulpal necrosis are associated with bacterial contamination of the pulp. Porphyromonas endodontalis, a Gram-negative organism, is considered to be a pulpal pathogen. P. gingivalis is phylogenetically related to P. endodontalis and synthesizes several classes of novel complex lipids that possess biological activity, including the capacity to promote osteoclastogenesis and osteoclast activation. The purpose of this study was to extract and characterize constituent lipids of P. endodontalis, and evaluate their capacity to promote pro-inflammatory secretory responses in the macrophage cell line, RAW 264.7, as well as their capacity to promote osteoclastogenesis and inhibit osteoblast activity. Methods Constituent lipids of both organisms were fractionated by HPLC and were structurally characterized using electrospray-mass spectrometry (ESI-MS) or ESI-MS/MS. The virulence potential of P. endodontalis lipids was then compared with known biologically active lipids isolated from P. gingivalis. Results P. endodontalis total lipids were shown to promote TNF-α secretion from RAW 264.7 cells and the serine lipid fraction appeared to account for the majority of this effect. P. endodontalis lipid preparations also increased osteoclast formation from RAW 264.7 cells but osteoblast differentiation in culture was inhibited and appeared to be dependent on TLR2 expression. Conclusions These effects underscore the importance of P. endodontalis lipids in promoting inflammatory and bone cell activation processes that could lead to periapical pathology. PMID:25146013

  6. Quantification of sterol lipids in plants by quadrupole time-of-flight mass spectrometry

    PubMed Central

    Wewer, Vera; Dombrink, Isabel; vom Dorp, Katharina; Dörmann, Peter

    2011-01-01

    Glycerolipids, sphingolipids, and sterol lipids constitute the major lipid classes in plants. Sterol lipids are composed of free and conjugated sterols, i.e., sterol esters, sterol glycosides, and acylated sterol glycosides. Sterol lipids play crucial roles during adaption to abiotic stresses and plant-pathogen interactions. Presently, no comprehensive method for sterol lipid quantification in plants is available. We used nanospray ionization quadrupole-time-of-flight mass spectrometry (Q-TOF MS) to resolve and identify the molecular species of all four sterol lipid classes from Arabidopsis thaliana. Free sterols were derivatized with chlorobetainyl chloride. Sterol esters, sterol glycosides, and acylated sterol glycosides were ionized as ammonium adducts. Quantification of molecular species was achieved in the positive mode after fragmentation in the presence of internal standards. The amounts of sterol lipids quantified by Q-TOF MS/MS were validated by comparison with results obtained with TLC/GC. Quantification of sterol lipids from leaves and roots of phosphate-deprived A. thaliana plants revealed changes in the amounts and molecular species composition. The Q-TOF method is far more sensitive than GC or HPLC. Therefore, Q-TOF MS/MS provides a comprehensive strategy for sterol lipid quantification that can be adapted to other tandem mass spectrometers. PMID:21382968

  7. Lipid content and composition of coffee brews prepared by different methods.

    PubMed

    Ratnayake, W M; Hollywood, R; O'Grady, E; Stavric, B

    1993-04-01

    The lipid content and composition of boiled, filtered, dripped, Turkish and espresso coffees prepared from roasted beans of Coffea arabica and Coffea robusta, and of coffees prepared from different brands of instant coffee were examined. The lipid content varied with the method of preparation. While coffee brews filtered through filter paper contained less than 7 mg lipids, those prepared by boiling without filtering and espresso coffee reached 60-160 mg lipids/150-ml cup. Coffee brew filtered through a metal screener contained 50 mg lipids/150-ml cup. Although the lipid content varied, the method of preparation of the brew and filtration had no important influence on the lipid composition. During paper filtration lipids remained mainly in spent coffee grounds, and the brew and filter paper retained only 0.4 and 9.4%, respectively, of the total lipids recovered. However, the lipids in the brew, filter paper and spent coffee grounds had the same profile, indicating that there was no preferential retention of a particular lipid component in filter paper. Triglycerides and diterpene alcohol esters were the major lipid classes in coffee brewed from ground coffee beans, and ranged from 86.6 to 92.9 and 6.5 to 12.5% of total lipids, respectively. For coffee brews made from instant coffee, the levels of these two lipid classes were 96.4-98.5 and 1.6-3.6%, respectively. The lipid contents of both regular and decaffeinated instant coffees varied slightly from one brand to the other, and ranged from 1.8 to 6.6 mg/150-ml cup.

  8. Characterization of Oilseed Lipids from “DHA-Producing Camelina sativa”: A New Transformed Land Plant Containing Long-Chain Omega-3 Oils

    PubMed Central

    Mansour, Maged P.; Shrestha, Pushkar; Belide, Srinivas; Petrie, James R.; Nichols, Peter D.; Singh, Surinder P.

    2014-01-01

    New and sustainable sources of long-chain (LC, ≥C20) omega-3 oils containing DHA (docosahexaenoic acid, 22:6ω3) are required to meet increasing demands. The lipid content of the oilseed of a novel transgenic, DHA-producing land plant, Camelina sativa, containing microalgal genes able to produce LC omega-3 oils, contained 36% lipid by weight with triacylglycerols (TAG) as the major lipid class in hexane extracts (96% of total lipid). Subsequent chloroform-methanol (CM) extraction recovered further lipid (~50% polar lipid, comprising glycolipids and phospholipids) and residual TAG. The main phospholipid species were phosphatidyl choline and phosphatidyl ethanolamine. The % DHA was: 6.8% (of total fatty acids) in the TAG-rich hexane extract and 4.2% in the polar lipid-rich CM extract. The relative level of ALA (α-linolenic acid, 18:3ω3) in DHA-camelina seed was higher than the control. Major sterols in both DHA- and control camelina seeds were: sitosterol, campesterol, cholesterol, brassicasterol and isofucosterol. C16–C22 fatty alcohols, including iso-branched and odd-chain alcohols were present, including high levels of iso-17:0, 17:0 and 19:0. Other alcohols present were: 16:0, iso-18:0, 18:0 and 18:1 and the proportions varied between the hexane and CM extracts. These iso-branched odd-chain fatty alcohols, to our knowledge, have not been previously reported. These components may be derived from wax esters, or free fatty alcohols. PMID:24566436

  9. "Lipid raft aging" in the human frontal cortex during nonpathological aging: gender influences and potential implications in Alzheimer's disease.

    PubMed

    Díaz, Mario; Fabelo, Noemí; Ferrer, Isidre; Marín, Raquel

    2018-07-01

    Lipid rafts are highly dynamic membrane domains featured by distinctive biochemical composition and physicochemical properties compared with the surrounding plasma membrane. These microstructures are associated not only with cellular signaling and communication in normal nerve cells but also with pathological processing of amyloid precursor protein in Alzheimer's disease. Using lipid rafts isolated from human frontal cortex in nondemented subjects aging 24 to 85 years, we demonstrate here that lipid structure of lipid rafts undergo significant alterations of specific lipid classes and phospholipid-bound fatty acids as brain cortex correlating with aging. Main changes affect levels of plasmalogens, polyunsaturated fatty acids (especially docosahexaenoic acid and arachidonic acid), total polar lipids (mainly phosphatidylinositol, sphingomyelin, sulfatides, and cerebrosides), and total neutral lipids (particularly cholesterol and sterol esters). Besides, relevant relationships between main fatty acids and/or lipid classes were altered in an age-related manner. This "lipid raft aging" exhibits clear gender differences and appear to be more pronounced in women than in men, especially in older (postmenopausal) women. The outcomes led us to conclude that human cortical lipid rafts are modified by aging in a gender-dependent fashion. Given the central role of bilayer lipid matrix in lipid rafts functionality and neuronal signaling, we hypothesize that these findings might underlie the higher prevalence of cognitive decline evolving toward Alzheimer's disease in postmenopausal women. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Physiological status of naturally reared juvenile spring chinook salmon in the Yakima River: Seasonal dynamics and changes associated with smolting

    USGS Publications Warehouse

    Beckman, B.R.; Larsen, D.A.; Sharpe, C.; Lee-Pawlak, B.; Schreck, C.B.; Dickhoff, Walton W.

    2000-01-01

    Two year-classes of juvenile spring chinook salmon Oncorhynchus tshawytscha from the Yakima River, Washington, were sampled from July (3-4 months postemergence) through May (yearling smolt out-migration). Physiological characters measured included liver glycogen, body lipid, gill Na+-K+ ATPase, plasma thyroxine (T4), and plasma insulin-like growth factor-I (IGF-I). Distinct physiological changes were found that corresponded to season. Summer and fall were characterized by relatively high body lipid and condition factor. Winter was characterized by decreases in body lipid, condition factor, and plasma hormones. An increase in condition factor and body lipid was found in February and March. Finally, April and May were characterized by dramatic changes characteristic of smolting, including increased gill Na+-K+ ATPase activity, plasma T4, and IGF-I and decreased condition factor, body lipid, and liver glycogen. These results create a physiological template for juvenile spring chinook salmon in the drainage that provides a baseline for comparison with other years, populations, and life history types. In addition, this baseline provides a standard for controlled laboratory experiments and a target for fish culturists who rear juvenile spring chinook salmon for release from conservation hatcheries. The implications of these results for juvenile chinook salmon ecology and life history are discussed.

  11. COMPREHENSIVE RESPONSES OF LIPID CLASSES TO TOXIANTS AND INVOLVEMENT IN DISEASES

    EPA Science Inventory

    Along with genes and proteins, lipids are a key component of the cellular metabolome. Lipids can mediate the induction of some diseases such as atherosclerosis and also responses to some diseases, e.g., asthma. Pollutants such as ozone appear to induce biological responses throug...

  12. Lipase genes in Mucor circinelloides: identification, sub-cellular location, phylogenetic analysis and expression profiling during growth and lipid accumulation.

    PubMed

    Zan, Xinyi; Tang, Xin; Chu, Linfang; Zhao, Lina; Chen, Haiqin; Chen, Yong Q; Chen, Wei; Song, Yuanda

    2016-10-01

    Lipases or triacylglycerol hydrolases are widely spread in nature and are particularly common in the microbial world. The filamentous fungus Mucor circinelloides is a potential lipase producer, as it grows well in triacylglycerol-contained culture media. So far only one lipase from M. circinelloides has been characterized, while the majority of lipases remain unknown in this fungus. In the present study, 47 potential lipase genes in M. circinelloides WJ11 and 30 potential lipase genes in M. circinelloides CBS 277.49 were identified by extensive bioinformatics analysis. An overview of these lipases is presented, including several characteristics, sub-cellular location, phylogenetic analysis and expression profiling of the lipase genes during growth and lipid accumulation. All of these proteins contained the consensus sequence for a classical lipase (GXSXG motif) and were divided into four types including α/β-hydrolase_1, α/β-hydrolase_3, class_3 and GDSL lipase (GDSL) based on gene annotations. Phylogenetic analyses revealed that class_3 family and α/β-hydrolase_3 family were the conserved lipase family in M. circinelloides. Additionally, some lipases also contained a typical acyltransferase motif of H-(X) 4-D, and these lipases may play a dual role in lipid metabolism, catalyzing both lipid hydrolysis and transacylation reactions. The differential expression of all lipase genes were confirmed by quantitative real-time PCR, and the expression profiling were analyzed to predict the possible biological roles of these lipase genes in lipid metabolism in M. circinelloides. We preliminarily hypothesized that lipases may be involved in triacylglycerol degradation, phospholipid synthesis and beta-oxidation. Moreover, the results of sub-cellular localization, the presence of signal peptide and transcriptional analyses of lipase genes indicated that four lipase in WJ11 most likely belong to extracellular lipases with a signal peptide. These findings provide a platform for the selection of candidate lipase genes for further detailed functional study.

  13. Impact of dietary precursor ALA versus preformed DHA on fatty acid profiles of eggs, liver and adipose tissue and expression of genes associated with hepatic lipid metabolism in laying hens.

    PubMed

    Neijat, M; Eck, P; House, J D

    2017-04-01

    Dietary omega-3 polyunsaturated fatty acids (n-3 PUFA), including alpha-linolenic acid (ALA) and preformed longer chain PUFA (LCPUFA, particularly docosahexaenoic acid, DHA) differ in their egg LCPUFA enrichment efficiency. However, mechanisms leading to these differences are unclear. To this end, omega-3 PUFA contents in different lipid classes, including triacylglycerol (TAG) and total phospholipid (PL) in yolk, liver and adipose, as well as the expression of key hepatic enzymes in lipid metabolism were evaluated in laying hens in response to changes in dietary supply. Seventy Lohmann hens (n=10/treatment) consumed either a control diet (0.03% total omega-3 PUFA), or the control with supplementation (0.20%, 0.40% and 0.60% total omega-3 PUFA) from either flaxseed oil or algal product, as sources of ALA (precursor) or DHA (preformed), respectively. The study was arranged in a completely randomized design, and data were analyzed using the Proc Mixed procedure of SAS. ALA accumulated as a function of intake (P<0.0001) in total and lipid classes of yolk, liver and adipose (TAG only) for ALA- and DHA-fed hens. Unlike flaxseed oil, preformed-DHA contributed to greater (P<0.0001) accumulation of LCPUFA in yolk total PL and TAG pool, as well as adipose TAG. This may relate to elevated (P<0.0001) expression of acyl-CoA synthetase (ACSL1). No difference in hepatic EPA level in total lipids was noted between both treatment groups; EPA liver =2.1493x-0.0064; R 2 =0.70, P<0.0001 (x=dietary omega-3 PUFA). The latter result may highlight the role of hepatic EPA in the regulation of LCPUFA metabolism in laying hens. Copyright © 2017. Published by Elsevier Ltd.

  14. Altered expression of CD1d molecules and lipid accumulation in the human hepatoma cell line HepG2 after iron loading.

    PubMed

    Cabrita, Marisa; Pereira, Carlos F; Rodrigues, Pedro; Cardoso, Elsa M; Arosa, Fernando A

    2005-01-01

    Iron overload in the liver may occur in clinical conditions such as hemochromatosis and nonalcoholic steatohepatitis, and may lead to the deterioration of the normal liver architecture by mechanisms not well understood. Although a relationship between the expression of ICAM-1, and classical major histocompatibility complex (MHC) class I molecules, and iron overload has been reported, no relationship has been identified between iron overload and the expression of unconventional MHC class I molecules. Herein, we report that parameters of iron metabolism were regulated in a coordinated-fashion in a human hepatoma cell line (HepG2 cells) after iron loading, leading to increased cellular oxidative stress and growth retardation. Iron loading of HepG2 cells resulted in increased expression of Nor3.2-reactive CD1d molecules at the plasma membrane. Expression of classical MHC class I and II molecules, ICAM-1 and the epithelial CD8 ligand, gp180 was not significantly affected by iron. Considering that intracellular lipids regulate expression of CD1d at the cell surface, we examined parameters of lipid metabolism in iron-loaded HepG2 cells. Interestingly, increased expression of CD1d molecules by iron-loaded HepG2 cells was associated with increased phosphatidylserine expression in the outer leaflet of the plasma membrane and the presence of many intracellular lipid droplets. These data describe a new relationship between iron loading, lipid accumulation and altered expression of CD1d, an unconventional MHC class I molecule reported to monitor intracellular and plasma membrane lipid metabolism, in the human hepatoma cell line HepG2.

  15. Sebaceous lipid profiling of bat integumentary tissues: quantitative analysis of free Fatty acids, monoacylglycerides, squalene, and sterols.

    PubMed

    Pannkuk, Evan L; Gilmore, David F; Fuller, Nathan W; Savary, Brett J; Risch, Thomas S

    2013-12-01

    White-nose syndrome (WNS) is a fungal disease caused by Pseudogymnoascus destructans and is devastating North American bat populations. Sebaceous lipids secreted from host integumentary tissues are implicated in the initial attachment and recognition of host tissues by pathogenic fungi. We are interested in determining if ratios of lipid classes in sebum can be used as biomarkers to diagnose severity of fungal infection in bats. To first establish lipid compositions in bats, we isolated secreted and integral lipid fractions from the hair and wing tissues of three species: big brown bats (Eptesicus fuscus), Eastern red bats (Lasiurus borealis), and evening bats (Nycticeius humeralis). Sterols, FFAs, MAGs, and squalene were derivatized as trimethylsilyl esters, separated by gas chromatography, and identified by mass spectrometry. Ratios of sterol to squalene in different tissues were determined, and cholesterol as a disease biomarker was assessed. Free sterol was the dominant lipid class of bat integument. Squalene/sterol ratio is highest in wing sebum. Secreted wing lipid contained higher proportions of saturated FFAs and MAGs than integral wing or secreted hair lipid. These compounds are targets for investigating responses of P. destructans to specific host lipid compounds and as biomarkers to diagnose WNS. Copyright © 2013 Verlag Helvetica Chimica Acta AG, Zürich.

  16. Clusterin deficiency induces lipid accumulation and tissue damage in kidney.

    PubMed

    Heo, Jung-Yoon; Kim, Ji-Eun; Dan, Yongwook; Kim, Yong-Woon; Kim, Jong-Yeon; Cho, Kyu Hyang; Bae, Young Kyung; Im, Seung-Soon; Liu, Kwang-Hyeon; Song, In-Hwan; Kim, Jae-Ryong; Lee, In-Kyu; Park, So-Young

    2018-05-01

    Clusterin is a secretory glycoprotein that is involved in multiple physiopathological processes, including lipid metabolism. Previous studies have shown that clusterin prevents hepatic lipid accumulation via suppression of sterol regulatory element-binding protein (SREBP) 1. In this study, we examined the role of clusterin in renal lipid accumulation in clusterin-knockout mice and NRK52e tubular epithelial cells. Clusterin deficiency increased the expression of SREBP1 and its target genes and decreased malonyl-CoA decarboxylase protein levels in the kidney. Expression of the endocytic receptor, megalin, and scavenger receptor class A was increased in clusterin-deficient mice. Functional analysis of lipid metabolism also revealed that lipid uptake and triglyceride synthesis were increased and fatty acid oxidation was reduced, leading to increased lipid accumulation in clusterin-deficient mice. These phenomena were accompanied by mesangial expansion, fibrosis and increased urinary protein-to-creatinine ratio. High-fat feeding aggravated these clusterin deficiency-induced pathological changes. Clusterin knockdown in NRK52e cells increased lipogenic gene expression and lipid levels, whereas overexpression of clusterin by treatment with adenovirus or recombinant clusterin protein suppressed lipogenic gene expression and lipid levels. Transforming growth factor-beta 1 (TGFB1) expression increased in the kidney of clusterin-deficient mice and suppression of TGFB1 in NRK52e cells suppressed lipid accumulation. These results suggest that clusterin deficiency induces renal lipid accumulation by dysregulating the expression of lipid metabolism-related factors and TGFB1, thereby leading to chronic kidney disease. Hence, clusterin may serve as a therapeutic target for lipid-induced chronic kidney disease. © 2018 Society for Endocrinology.

  17. Variations in plasma and urinary lipids in response to enzyme replacement therapy for Fabry disease patients by nanoflow UPLC-ESI-MS/MS.

    PubMed

    Byeon, Seul Kee; Kim, Jin Yong; Lee, Jin-Sung; Moon, Myeong Hee

    2016-03-01

    A deficiency of α-galactosidase A causes Fabry disease (FD) by disrupting lipid metabolism, especially trihexosylceramide (THC). Enzyme replacement therapy (ERT) is clinically offered to FD patients in an attempt to lower the accumulated lipids. Studies on specific types of lipids that are directly or indirectly altered by FD are very scarce, even though they are crucial in understanding the biological process linked to the pathogenesis of FD. We performed a comprehensive lipid profiling of plasma and urinary lipids from FD patients with nanoflow liquid chromatography electrospray-ionization tandem mass spectrometry (nLC-ESI-MS/MS) and identified 129 plasma and 111 urinary lipids. Among these, lipids that exhibited alternations (>twofold) in patients were selected as targets for selected reaction monitoring (SRM)-based high-speed quantitation using nanoflow ultra-performance LC-ESI-MS/MS (nUPLC-ESI-MS/MS) and 31 plasma and 26 urinary lipids showed significant elevation among FD patients. Higher percentages of sphingolipids (SLs; 48% for plasma and 42% for urine) were highly elevated in patients; whereas, a smaller percentage of phospholipids (PLs; 15% for plasma and 13% for urine) were significantly affected. Even though α-galactosidase A is reported to affect THC only, the results show that other classes of lipids (especially SLs) are changed as well, indicating that FD not only alters metabolism of THC but various classes of lipids too. Most lipids showing significant increases in relative amounts before ERT decreased after ERT, but overall, ERT influenced plasma lipids more than urinary lipids.

  18. A central role for phosphatidic acid as a lipid mediator of regulated exocytosis in apicomplexa.

    PubMed

    Bullen, Hayley E; Soldati-Favre, Dominique

    2016-08-01

    Lipids are commonly known for the structural roles they play, however, the specific contribution of different lipid classes to wide-ranging signalling pathways is progressively being unravelled. Signalling lipids and their associated effector proteins are emerging as significant contributors to a vast array of effector functions within cells, including essential processes such as membrane fusion and vesicle exocytosis. Many phospholipids have signalling capacity, however, this review will focus on phosphatidic acid (PA) and the enzymes implicated in its production from diacylglycerol (DAG) and phosphatidylcholine (PC): DGK and PLD respectively. PA is a negatively charged, cone-shaped lipid identified as a key mediator in specific membrane fusion and vesicle exocytosis events in a variety of mammalian cells, and has recently been implicated in specialised secretory organelle exocytosis in apicomplexan parasites. This review summarises the recent work implicating a role for PA regulation in exocytosis in various cell types. We will discuss how these signalling events are linked to pathogenesis in the phylum Apicomplexa. © 2016 Federation of European Biochemical Societies.

  19. Multiple beneficial lipids including lecithin detected in the edible invasive mollusk Crepidula fornicata from the French Northeastern Atlantic coast.

    PubMed

    Dagorn, Flore; Buzin, Florence; Couzinet-Mossion, Aurélie; Decottignies, Priscilla; Viau, Michèle; Rabesaotra, Vony; Barnathan, Gilles; Wielgosz-Collin, Gaëtane

    2014-12-22

    The invasive mollusk Crepidula fornicata, occurring in large amounts in bays along the French Northeastern Atlantic coasts, may have huge environmental effects in highly productive ecosystems where shellfish are exploited. The present study aims at determining the potential economic value of this marine species in terms of exploitable substances with high added value. Lipid content and phospholipid (PL) composition of this mollusk collected on the Bourgneuf Bay were studied through four seasons. Winter specimens contained the highest lipid levels (5.3% dry weight), including 69% of PLs. Phosphatidylcholine (PC) was the major PL class all year, accounting for 63.9% to 88.9% of total PLs. Consequently, the winter specimens were then investigated for PL fatty acids (FAs), and free sterols. Dimethylacetals (DMAs) were present (10.7% of PL FA + DMA mixture) revealing the occurrence of plasmalogens. More than forty FAs were identified, including 20:5n-3 (9.4%) and 22:6n-3 (7.3%) acids. Fourteen free sterols were present, including cholesterol at 31.3% of the sterol mixture and about 40% of phytosterols. These data on lipids of C. fornicata demonstrate their positive attributes for human nutrition and health. The PL mixture, rich in PC and polyunsaturated FAs, offers an interesting alternative source of high value-added marine lecithin.

  20. Multiple Beneficial Lipids Including Lecithin Detected in the Edible Invasive Mollusk Crepidula fornicata from the French Northeastern Atlantic Coast

    PubMed Central

    Dagorn, Flore; Buzin, Florence; Couzinet-Mossion, Aurélie; Decottignies, Priscilla; Viau, Michèle; Rabesaotra, Vony; Barnathan, Gilles; Wielgosz-Collin, Gaëtane

    2014-01-01

    The invasive mollusk Crepidula fornicata, occurring in large amounts in bays along the French Northeastern Atlantic coasts, may have huge environmental effects in highly productive ecosystems where shellfish are exploited. The present study aims at determining the potential economic value of this marine species in terms of exploitable substances with high added value. Lipid content and phospholipid (PL) composition of this mollusk collected on the Bourgneuf Bay were studied through four seasons. Winter specimens contained the highest lipid levels (5.3% dry weight), including 69% of PLs. Phosphatidylcholine (PC) was the major PL class all year, accounting for 63.9% to 88.9% of total PLs. Consequently, the winter specimens were then investigated for PL fatty acids (FAs), and free sterols. Dimethylacetals (DMAs) were present (10.7% of PL FA + DMA mixture) revealing the occurrence of plasmalogens. More than forty FAs were identified, including 20:5n-3 (9.4%) and 22:6n-3 (7.3%) acids. Fourteen free sterols were present, including cholesterol at 31.3% of the sterol mixture and about 40% of phytosterols. These data on lipids of C. fornicata demonstrate their positive attributes for human nutrition and health. The PL mixture, rich in PC and polyunsaturated FAs, offers an interesting alternative source of high value-added marine lecithin. PMID:25532566

  1. Multidrug-Resistant Enterococcal Infections: New Compounds, Novel Antimicrobial Therapies?

    PubMed

    van Harten, Roel M; Willems, Rob J L; Martin, Nathaniel I; Hendrickx, Antoni P A

    2017-06-01

    Over the past two decades infections due to antibiotic-resistant bacteria have escalated world-wide, affecting patient morbidity, mortality, and health care costs. Among these bacteria, Enterococcus faecium and Enterococcus faecalis represent opportunistic nosocomial pathogens that cause difficult-to-treat infections because of intrinsic and acquired resistance to a plethora of antibiotics. In recent years, a number of novel antimicrobial compound classes have been discovered and developed that target Gram-positive bacteria, including E. faecium and E. faecalis. These new antibacterial agents include teixobactin (targeting lipid II and lipid III), lipopeptides derived from nisin (targeting lipid II), dimeric vancomycin analogues (targeting lipid II), sortase transpeptidase inhibitors (targeting the sortase enzyme), alanine racemase inhibitors, lipoteichoic acid synthesis inhibitors (targeting LtaS), various oxazolidinones (targeting the bacterial ribosome), and tarocins (interfering with teichoic acid biosynthesis). The targets of these novel compounds and mode of action make them very promising for further antimicrobial drug development and future treatment of Gram-positive bacterial infections. Here we review current knowledge of the most favorable anti-enterococcal compounds along with their implicated modes of action and efficacy in animal models to project their possible future use in the clinical setting. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Bioinformatics Pertinent to Lipid Analysis in Biological Samples.

    PubMed

    Ma, Justin; Arbelo, Ulises; Guerra, Yenifer; Aribindi, Katyayini; Bhattacharya, Sanjoy K; Pelaez, Daniel

    2017-01-01

    Electrospray ionization mass spectrometry has revolutionized the way lipids are studied. In this work, we present a tutorial for analyzing class-specific lipid spectra obtained from a triple quadrupole mass spectrometer. The open-source software MZmine 2.21 is used, coupled with LIPID MAPS databases. Here, we describe the steps for lipid identification, ratiometric quantification, and briefly address the differences to the analyses when using direct infusion versus tandem liquid chromatography-mass spectrometry (LC-MS). We also provide a tutorial and equations for quantification of lipid amounts using synthetic lipid standards and normalization to a protein amount.

  3. Biologic activity of porphyromonas endodontalis complex lipids.

    PubMed

    Mirucki, Christopher S; Abedi, Mehran; Jiang, Jin; Zhu, Qiang; Wang, Yu-Hsiung; Safavi, Kamran E; Clark, Robert B; Nichols, Frank C

    2014-09-01

    Periapical infections secondary to pulpal necrosis are associated with bacterial contamination of the pulp. Porphyromonas endodontalis, a gram-negative organism, is considered to be a pulpal pathogen. P. gingivalis is phylogenetically related to P. endodontalis and synthesizes several classes of novel complex lipids that possess biological activity, including the capacity to promote osteoclastogenesis and osteoclast activation. The purpose of this study was to extract and characterize constituent lipids of P. endodontalis and evaluate their capacity to promote proinflammatory secretory responses in the macrophage cell line, RAW 264.7, as well as their capacity to promote osteoclastogenesis and inhibit osteoblast activity. Constituent lipids of both organisms were fractionated by high-performance liquid chromatography and were structurally characterized using electrospray mass spectrometry or electrospray-mass spectrometry/mass spectrometry. The virulence potential of P. endodontalis lipids was then compared with known biologically active lipids isolated from P. gingivalis. P. endodontalis total lipids were shown to promote tumor necrosis factor alpha secretion from RAW 264.7 cells, and the serine lipid fraction appeared to account for the majority of this effect. P. endodontalis lipid preparations also increased osteoclast formation from RAW 264.7 cells, but osteoblast differentiation in culture was inhibited and appeared to be dependent on Toll-like receptor 2 expression. These effects underscore the importance of P. endodontalis lipids in promoting inflammatory and bone cell activation processes that could lead to periapical pathology. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  4. Levoglucosan and Lipid Class Compounds in the Asian Dusts and Marine Aerosols Collected During the ACE-Asia Campaign

    NASA Astrophysics Data System (ADS)

    Kobayashi, M.; Simoneit, B. R.; Kawamura, K.; Mochida, M.; Lee, M.; Lee, G.; Huebert, B. J.

    2002-12-01

    In order to characterize organic aerosols in the Asian Pacific region, we collected filter samples at Gosan (formerly Kosan) and Sapporo sites as well as on mobile platforms (R.V. R.H. Brown and NCAR C-130) in the western North Pacific. The aerosol extracts were analyzed by capillary GC-MS employing a TMS derivatization technique. We identified over 100 organic compounds in the samples. They are categorized into seven different classes in terms of functional groups and sources. First, sugar-type compounds were detected in the aerosols, including levoglucosan, galactosan and mannosan, which are tracers for biomass burning. Second, a homologous series of fatty acids (C12-C30) and fatty alcohols (C12-C30) mainly from plant waxes and marine lipids were present. The third group includes dicarboxylic acids (>C3) and other atmospheric oxidation products. Although oxalic (C2) and malonic (C3) acids were not detected by this method, they are very abundant in the aerosols. The fourth group includes n-alkanes (C18-C35) which usually showed a strong odd/even predominance, suggesting an important contribution from higher plant waxes. The fifth includes polynuclear aromatic hydrocarbons (PAH) ranging from phenanthrene to coronene, all combustion products of petroleum and mainly coal. Saccharides were the sixth group and consisted mainly of a- and b- glucose, sucrose and its alditol, and minor amounts of xylitol, sorbitol and arabitol. These saccharides are tracers for soil dust. Phthalates were detected as the seventh class, with a dominance of dioctyl phthalate. The results suggest that organic aerosols originate primarily from (1) natural emissions of terrestrial plant wax and marine lipids, (2) smoke from biomass burning (mainly non-conifer fuels), (3) soil resuspension due to spring agricultural activity, (4) urban/industrial emissions from fossil fuel use (coal), and (5) secondary reaction products. These compounds are transported by the strong westerly winds and therefore secondary oxidation is also significant in Southeast Asia and the western North Pacific.

  5. LC-MS-Based Lipidomics and Automated Identification of Lipids Using the LipidBlast In-Silico MS/MS Library.

    PubMed

    Cajka, Tomas; Fiehn, Oliver

    2017-01-01

    This protocol describes the analysis, specifically the identification, of blood plasma lipids. Plasma lipids are extracted using methyl tert-butyl ether (MTBE), methanol, and water followed by separation and data acquisition of isolated lipids using reversed-phase liquid chromatography coupled to quadrupole/time-of-flight mass spectrometry (RPLC-QTOFMS) operated in MS/MS mode. For lipid identification, acquired MS/MS spectra are converted to the mascot generic format (MGF) followed by library search using the in-silico MS/MS library LipidBlast. Using this approach, lipid classes, carbon-chain lengths, and degree of unsaturation of fatty-acid components are annotated.

  6. Structure and dynamics of cationic membrane peptides and proteins: Insights from solid-state NMR

    PubMed Central

    Hong, Mei; Su, Yongchao

    2011-01-01

    Many membrane peptides and protein domains contain functionally important cationic Arg and Lys residues, whose insertion into the hydrophobic interior of the lipid bilayer encounters significant energy barriers. To understand how these cationic molecules overcome the free energy barrier to insert into the lipid membrane, we have used solid-state NMR spectroscopy to determine the membrane-bound topology of these peptides. A versatile array of solid-state NMR experiments now readily yields the conformation, dynamics, orientation, depth of insertion, and site-specific protein–lipid interactions of these molecules. We summarize key findings of several Arg-rich membrane peptides, including β-sheet antimicrobial peptides, unstructured cell-penetrating peptides, and the voltage-sensing helix of voltage-gated potassium channels. Our results indicate the central role of guanidinium-phosphate and guanidinium-water interactions in dictating the structural topology of these cationic molecules in the lipid membrane, which in turn account for the mechanisms of this functionally diverse class of membrane peptides. PMID:21344534

  7. Glycolipid class profiling by packed-column subcritical fluid chromatography.

    PubMed

    Deschamps, Frantz S; Lesellier, Eric; Bleton, Jean; Baillet, Arlette; Tchapla, Alain; Chaminade, Pierre

    2004-06-18

    The potential of packed-column subcritical fluid chromatography (SubFC) for the separation of lipid classes has been assessed in this study. Three polar stationary phases were checked: silica, diol, and poly(vinyl alcohol). Carbon dioxide (CO2) with methanol as modifier was used as mobile phase and detection performed by evaporative light scattering detection. The influence of methanol content, temperature, and pressure on the chromatographic behavior of sphingolipids and glycolipids were investigated. A complete separation of lipid classes from a crude wheat lipid extract was achieved using a modifier gradient from 10 to 40% methanol in carbon dioxide. Solute selectivity was improved using coupled silica and diol columns in series. Because the variation of eluotropic strength depending on the fluid density changes, a normalized separation factor product (NSP) was used to select the nature, the number and the order of the columns to reach the optimum glycolipid separation.

  8. Stratum Corneum Lipids: Their Role for the Skin Barrier Function in Healthy Subjects and Atopic Dermatitis Patients.

    PubMed

    van Smeden, Jeroen; Bouwstra, Joke A

    2016-01-01

    Human skin acts as a primary barrier between the body and its environment. Crucial for this skin barrier function is the lipid matrix in the outermost layer of the skin, the stratum corneum (SC). Two of its functions are (1) to prevent excessive water loss through the epidermis and (2) to avoid that compounds from the environment permeate into the viable epidermal and dermal layers and thereby provoke an immune response. The composition of the SC lipid matrix is dominated by three lipid classes: cholesterol, free fatty acids and ceramides. These lipids adopt a highly ordered, 3-dimensional structure of stacked densely packed lipid layers (lipid lamellae): the lateral and lamellar lipid organization. The way in which these lipids are ordered depends on the composition of the lipids. One very common skin disease in which the SC lipid barrier is affected is atopic dermatitis (AD). This review addresses the SC lipid composition and organization in healthy skin, and elaborates on how these parameters are changed in lesional and nonlesional skin of AD patients. Concerning the lipid composition, the changes in the three main lipid classes and the importance of the carbon chain lengths of the lipids are discussed. In addition, this review addresses how these changes in lipid composition induce changes in lipid organization and subsequently correlate with an impaired skin barrier function in both lesional and nonlesional skin of these patients. Furthermore, the effect of filaggrin and mutations in the filaggrin gene on the SC lipid composition is critically discussed. Also, the breakdown products of filaggrin, the natural moisturizing factor molecules and its relation to SC-pH is described. Finally, the paper discusses some major changes in epidermal lipid biosynthesis in patients with AD and other related skin diseases, and how inflammation has a deteriorating effect on the SC lipids and SC biosynthesis. The review ends with perspectives on future studies in relation to other skin diseases. © 2016 S. Karger AG, Basel.

  9. A relative quantitative positive/negative ion switching method for untargeted lipidomics via high resolution LC-MS/MS from any biological source

    PubMed Central

    Breitkopf, Susanne B.; Ricoult, Stéphane J. H.; Yuan, Min; Xu, Ying; Peake, David A.; Manning, Brendan D.

    2017-01-01

    Introduction Advances in high-resolution mass spectrometry have created renewed interest for studying global lipid biochemistry in disease and biological systems. Objectives Here, we present an untargeted 30 min. LC-MS/MS platform that utilizes positive/negative polarity switching to perform unbiased data dependent acquisitions (DDA) via higher energy collisional dissociation (HCD) fragmentation to profile more than 1000–1500 lipid ions mainly from methyl-tert-butyl ether (MTBE) or chloroform:methanol extractions. Methods The platform uses C18 reversed-phase chromatography coupled to a hybrid QExactive Plus/HF Orbitrap mass spectrometer and the entire procedure takes ~10 h from lipid extraction to identification/quantification for a data set containing 12 samples (~4 h for a single sample). Lipids are identified by both accurate precursor ion mass and fragmentation features and quantified using Lipid-Search and Elements software. Results Using this approach, we are able to profile intact lipid ions from up to 18 different main lipid classes and 66 subclasses. We show several studies from different biological sources, including cultured cancer cells, resected tissues from mice such as lung and breast tumors and biological fluids such as plasma and urine. Conclusions Using mouse embryonic fibroblasts, we showed that TSC2−/− KD significantly abrogates lipid biosynthesis and that rapamycin can rescue triglyceride (TG) lipids and we show that SREBP−/− shuts down lipid biosynthesis significantly via mTORC1 signaling pathways. We show that in mouse EGFR driven lung tumors, a large number of TGs and phosphatidylmethanol (PMe) lipids are elevated while some phospholipids (PLs) show some of the largest decrease in lipid levels from ~ 2000 identified lipid ions. In addition, we identified more than 1500 unique lipid species from human blood plasma. PMID:28496395

  10. Beyond liposomes: Recent advances on lipid based nanostructures for poorly soluble/poorly permeable drug delivery.

    PubMed

    Teixeira, M C; Carbone, C; Souto, E B

    2017-10-01

    Solid lipid nanoparticle (SLN), nanostructured lipid carriers (NLC) and hybrid nanoparticles, have gained increasing interest as drug delivery systems because of their potential to load and release drugs from the Biopharmaceutical classification system (BCS) of class II (low solubility and high permeability) and of class IV (low solubility and low permeability). Lipid properties (e.g. high solubilizing potential, biocompatibility, biotolerability, biodegradability and distinct route of absorption) contribute for the improvement of the bioavailability of these drugs for a set of administration routes. Their interest continues to grow, as translated by the number of patents being field worldwide. This paper discusses the recent advances on the use of SLN, NLC and lipid-polymer hybrid nanoparticles for the loading of lipophilic, poorly water-soluble and poorly permeable drugs, being developed for oral, topical, parenteral and ocular administration, also discussing the industrial applications of these systems. A review of the patents filled between 2014 and 2017, concerning the original inventions of lipid nanocarriers, is also provided. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Ultraperformance convergence chromatography-high resolution tandem mass spectrometry for lipid biomarker profiling and identification.

    PubMed

    Jones, Jace W; Carter, Claire L; Li, Fei; Yu, Jianshi; Pierzchalski, Keely; Jackson, Isabel L; Vujaskovic, Zeljko; Kane, Maureen A

    2017-03-01

    Lipids represent biologically ubiquitous and highly dynamic molecules in terms of abundance and structural diversity. Whereas the potential for lipids to inform on disease/injury is promising, their unique characteristics make detection and identification of lipids from biological samples analytically demanding. We report the use of ultraperformance convergence chromatography (UPC 2 ), a variant of supercritical fluid chromatography, coupled to high-resolution, data-independent tandem mass spectrometry for characterization of total lipid extracts from mouse lung tissue. The UPC 2 platform resulted in lipid class separation and when combined with orthogonal column chemistries yielded chromatographic separation of intra-class species based on acyl chain hydrophobicity. Moreover, the combined approach of using UPC 2 with orthogonal column chemistries, accurate mass measurements, time-aligned low- and high-collision energy total ion chromatograms, and positive and negative ion mode product ion spectra correlation allowed for confident lipid identification. Of great interest was the identification of differentially expressed ceramides that were elevated 24 h post whole thorax lung irradiation. The identification of lipids that were elevated 24 h post-irradiation signifies a unique opportunity to investigate early mechanisms of action prior to the onset of clinical symptoms in the whole thorax lung irradiation mouse model. Copyright © 2016 John Wiley & Sons, Ltd.

  12. The lipidome in major depressive disorder: Shared genetic influence for ether-phosphatidylcholines, a plasma-based phenotype related to inflammation, and disease risk.

    PubMed

    Knowles, E E M; Huynh, K; Meikle, P J; Göring, H H H; Olvera, R L; Mathias, S R; Duggirala, R; Almasy, L; Blangero, J; Curran, J E; Glahn, D C

    2017-06-01

    The lipidome is rapidly garnering interest in the field of psychiatry. Recent studies have implicated lipidomic changes across numerous psychiatric disorders. In particular, there is growing evidence that the concentrations of several classes of lipids are altered in those diagnosed with MDD. However, for lipidomic abnormalities to be considered potential treatment targets for MDD (rather than secondary manifestations of the disease), a shared etiology between lipid concentrations and MDD should be demonstrated. In a sample of 567 individuals from 37 extended pedigrees (average size 13.57 people, range=3-80), we used mass spectrometry lipidomic measures to evaluate the genetic overlap between twenty-three biologically distinct lipid classes and a dimensional scale of MDD. We found that the lipid class with the largest endophenotype ranking value (ERV, a standardized parametric measure of pleiotropy) were ether-phosphodatidylcholines (alkylphosphatidylcholine, PC(O) and alkenylphosphatidylcholine, PC(P) subclasses). Furthermore, we examined the cluster structure of the twenty-five species within the top-ranked lipid class, and the relationship of those clusters with MDD. This analysis revealed that species containing arachidonic acid generally exhibited the greatest degree of genetic overlap with MDD. This study is the first to demonstrate a shared genetic etiology between MDD and ether-phosphatidylcholine species containing arachidonic acid, an omega-6 fatty acid that is a precursor to inflammatory mediators, such as prostaglandins. The study highlights the potential utility of the well-characterized linoleic/arachidonic acid inflammation pathway as a diagnostic marker and/or treatment target for MDD. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  13. Versatile lipid profiling by liquid chromatography-high resolution mass spectrometry using all ion fragmentation and polarity switching. Preliminary application for serum samples phenotyping related to canine mammary cancer.

    PubMed

    Gallart-Ayala, H; Courant, F; Severe, S; Antignac, J-P; Morio, F; Abadie, J; Le Bizec, B

    2013-09-24

    Lipids represent an extended class of substances characterized by such high variety and complexity that makes their unified analyses by liquid chromatography coupled to either high resolution or tandem mass spectrometry (LC-HRMS or LC-MS/MS) a real challenge. In the present study, a new versatile methodology associating ultra high performance liquid chromatography coupled to high resolution tandem mass spectrometry (UHPLC-HRMS/MS) have been developed for a comprehensive analysis of lipids. The use of polarity switching and "all ion fragmentation" (AIF) have been two action levels particularly exploited to finally permit the detection and identification of a multi-class and multi-analyte extended range of lipids in a single run. For identification purposes, both higher energy collision dissociation (HCD) and in-source CID (collision induced dissociation) fragmentation were evaluated in order to obtain information about the precursor and product ions in the same spectra. This approach provides both class-specific and lipid-specific fragments, enhancing lipid identification. Finally, the developed method was applied for differential phenotyping of serum samples collected from pet dogs developing spontaneous malignant mammary tumors and health controls. A biological signature associated with the presence of cancer was then successfully revealed from this lipidome analysis, which required to be further investigated and confirmed at larger scale. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Targeted Lipidomics in Drosophila melanogaster Identifies Novel 2-Monoacylglycerols and N-acyl Amides

    PubMed Central

    Takacs, Sara M.; Stuart, Jordyn M.; Basnet, Arjun; Raboune, Siham; Widlanski, Theodore S.; Doherty, Patrick; Bradshaw, Heather B.

    2013-01-01

    Lipid metabolism is critical to coordinate organ development and physiology in response to tissue-autonomous signals and environmental cues. Changes to the availability and signaling of lipid mediators can limit competitiveness, adaptation to environmental stressors, and augment pathological processes. Two classes of lipids, the N-acyl amides and the 2-acyl glycerols, have emerged as important signaling molecules in a wide range of species with important signaling properties, though most of what is known about their cellular functions is from mammalian models. Therefore, expanding available knowledge on the repertoire of these lipids in invertebrates will provide additional avenues of research aimed at elucidating biosynthetic, metabolic, and signaling properties of these molecules. Drosophila melanogaster is a commonly used organism to study intercellular communication, including the functions of bioactive lipids. However, limited information is available on the molecular identity of lipids with putative biological activities in Drosophila. Here, we used a targeted lipidomics approach to identify putative signaling lipids in third instar Drosophila larvae, possessing particularly large lipid mass in their fat body. We identified 2-linoleoyl glycerol, 2-oleoyl glycerol, and 45 N-acyl amides in larval tissues, and validated our findings by the comparative analysis of Oregon-RS, Canton-S and w1118 strains. Data here suggest that Drosophila represent another model system to use for the study of 2-acyl glycerol and N-acyl amide signaling. PMID:23874457

  15. Stratification of archaeal membrane lipids in the ocean and implications for adaptation and chemotaxonomy of planktonic archaea.

    PubMed

    Zhu, Chun; Wakeham, Stuart G; Elling, Felix J; Basse, Andreas; Mollenhauer, Gesine; Versteegh, Gerard J M; Könneke, Martin; Hinrichs, Kai-Uwe

    2016-12-01

    Membrane lipids of marine planktonic archaea have provided unique insights into archaeal ecology and paleoceanography. However, past studies of archaeal lipids in suspended particulate matter (SPM) and sediments mainly focused on a small class of fully saturated glycerol dibiphytanyl glycerol tetraether (GDGT) homologues identified decades ago. The apparent low structural diversity of GDGTs is in strong contrast to the high diversity of metabolism and taxonomy among planktonic archaea. Furthermore, adaptation of archaeal lipids in the deep ocean remains poorly constrained. We report the archaeal lipidome in SPM from diverse oceanic regimes. We extend the known inventory of planktonic archaeal lipids to include numerous unsaturated archaeal ether lipids (uns-AELs). We further reveal (i) different thermal regulations and polar headgroup compositions of membrane lipids between the epipelagic (≤ 100 m) and deep (>100 m) populations of archaea, (ii) stratification of unsaturated GDGTs with varying redox conditions, and (iii) enrichment of tetra-unsaturated archaeol and fully saturated GDGTs in epipelagic and deep oxygenated waters, respectively. Such stratified lipid patterns are consistent with the typical distribution of archaeal phylotypes in marine environments. We, thus, provide an ecological context for GDGT-based paleoclimatology and bring about the potential use of uns-AELs as biomarkers for planktonic Euryarchaeota. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  16. Plant sphingolipids: decoding the enigma of the Sphinx.

    PubMed

    Pata, Mickael O; Hannun, Yusuf A; Ng, Carl K-Y

    2010-02-01

    Sphingolipids are a ubiquitous class of lipids present in a variety of organisms including eukaryotes and bacteria. In the last two decades, research has focused on characterizing the individual species of this complex family of lipids, which has led to a new field of research called 'sphingolipidomics'. There are at least 500 (and perhaps thousands of) different molecular species of sphingolipids in cells, and in Arabidopsis alone it has been reported that there are at least 168 different sphingolipids. Plant sphingolipids can be divided into four classes: glycosyl inositol phosphoceramides (GIPCs), glycosylceramides, ceramides, and free long-chain bases (LCBs). Numerous enzymes involved in plant sphingolipid metabolism have now been cloned and characterized, and, in general, there is broad conservation in the way in which sphingolipids are metabolized in animals, yeast and plants. Here, we review the diversity of sphingolipids reported in the literature, some of the recent advances in our understanding of sphingolipid metabolism in plants, and the physiological roles that sphingolipids and sphingolipid metabolites play in plant physiology.

  17. Plant sphingolipids: decoding the enigma of the Sphinx

    PubMed Central

    Pata, Mickael O.; Hannun, Yusuf A.; Ng, Carl K.-Y.

    2009-01-01

    Summary Sphingolipids are a ubiquitous class of lipids present in a variety of organisms including eukaryotes and bacteria. In the last two decades, research has focused on characterizing the individual species of this complex family of lipids, leading to a new field of research called sphingolipidomics. There are at least 500 (and perhaps thousands) different molecular species of sphingolipids in cells, and in Arabidopsis alone, it has been reported that there are at least 168 different sphingolipids. Plant sphingolipids can be divided into four classes: glycosyl inositol phosphoceramides (GIPCs), glycosylceramides, ceramides, and free long chain bases (LCBs). Numerous enzymes involved in plant sphingolipid metabolism have now been cloned and characterized, and, in general, there is broad conservation in the way sphingolipids are metabolized in animals, yeast and plants. Here, we review the diversity of sphingolipids reported in the literature, some of the recent advances in our understanding of sphingolipid metabolism in plants, and the physiological roles that sphingolipids and sphingolipid metabolites play in plant physiology. PMID:20028469

  18. Future directions in lipid therapies.

    PubMed

    Ansell, Benjamin

    2002-01-01

    Cholesterol management to reduce the burden of cardiovascular disease is a major public health concern. Despite widespread recognition of lipid abnormalities as cardiovascular risk factors, significant cardiovascular event reductions with cholesterol-lowering therapies, and dissemination of treatment guidelines, most high-risk patients are not at target lipid levels. In addition to lifestyle changes, four major drug classes are available to modify lipid levels: fibrates, niacin, resins, and statins. High efficacy and tolerability in clinical trials make statins the most widely prescribed of these agents. Newer, more potent members of this class and novel formulations of niacin and resins may provide more effective therapy for dyslipidemia with fewer side effects. Several agents in development (cholesterol-absorption inhibitors and ACAT inhibitors) exploit mechanisms of action complementary to those of current treatments and combined with statins may produce greater improvements in lipid profiles than are now possible. These innovations should enable a greater number of patients to achieve more aggressive cholesterol goals, thereby reducing the risk of cardiovascular events.

  19. Lipidomic Profiling Links the Fanconi Anemia Pathway to Glycosphingolipid Metabolism in Head and Neck Cancer Cells.

    PubMed

    Zhao, Xueheng; Brusadelli, Marion G; Sauter, Sharon; Butsch Kovacic, Melinda; Zhang, Wujuan; Romick-Rosendale, Lindsey E; Lambert, Paul F; Setchell, Kenneth D R; Wells, Susanne I

    2018-06-01

    Purpose: Mutations in Fanconi anemia (FA) genes are common in sporadic squamous cell carcinoma of the head and neck (HNSCC), and we have previously demonstrated that FA pathway depletion in HNSCC cell lines stimulates invasion. The goal of our studies was to use a systems approach in order to define FA pathway-dependent lipid metabolism and to extract lipid-based signatures and effectors of invasion in FA-deficient cells. Experimental Design: We subjected FA-isogenic HNSCC keratinocyte cell lines to untargeted and targeted lipidomics analyses to discover novel biomarkers and candidate therapeutic targets in FA-deficient cells. Cellular invasion assays were carried out in the presence and absence of N-butyldeoxynojirimycin (NB-DNJ), a biosynthetic inhibitor of the newly identified class of gangliosides, to investigate the requirement of ganglioside upregulation in FA-deficient HNSCC cells. Results: The most notable element of the lipid profiling results was a consistent elevation of glycosphingolipids, and particularly the accumulation of gangliosides. Conversely, repression of this same class of lipids was observed upon genetic correction of FA patient-derived HNSCC cells. Functional studies demonstrate that ganglioside upregulation is required for HNSCC cell invasion driven by FA pathway loss. The motility of nontransformed keratinocytes in response to FA loss displayed a similar dependence, thus supporting early and late roles for the FA pathway in controlling keratinocyte invasion through lipid regulation. Conclusions: Elevation of glycosphingolipids including the ganglioside GM3 in response to FA loss stimulates invasive characteristics of immortalized and transformed keratinocytes. An inhibitor of glycosphingolipid biosynthesis NB-DNJ attenuates invasive characteristics of FA-deficient HNSCC cells. Clin Cancer Res; 24(11); 2700-9. ©2018 AACR . ©2018 American Association for Cancer Research.

  20. A semi-automated methodology for finding lipid-related GO terms.

    PubMed

    Fan, Mengyuan; Low, Hong Sang; Wenk, Markus R; Wong, Limsoon

    2014-01-01

    Although semantic similarity in Gene Ontology (GO) and other approaches may be used to find similar GO terms, there is yet a method to systematically find a class of GO terms sharing a common property with high accuracy (e.g., involving human curation). We have developed a methodology to address this issue and applied it to identify lipid-related GO terms, owing to the important and varied roles of lipids in many biological processes. Our methodology finds lipid-related GO terms in a semi-automated manner, requiring only moderate manual curation. We first obtain a list of lipid-related gold-standard GO terms by keyword search and manual curation. Then, based on the hypothesis that co-annotated GO terms share similar properties, we develop a machine learning method that expands the list of lipid-related terms from the gold standard. Those terms predicted most likely to be lipid related are examined by a human curator following specific curation rules to confirm the class labels. The structure of GO is also exploited to help reduce the curation effort. The prediction and curation cycle is repeated until no further lipid-related term is found. Our approach has covered a high proportion, if not all, of lipid-related terms with relatively high efficiency. http://compbio.ddns.comp.nus.edu.sg/∼lipidgo. © The Author(s) 2014. Published by Oxford University Press.

  1. Dynamics of biochemical components, lipid classes and energy values on gonadal development of R. philippinarum associated with the temperature and ingestion rate.

    PubMed

    Fernández-Reiriz, M J; Pérez-Camacho, A; Delgado, M; Labarta, U

    2007-08-01

    This study evaluates the effect of temperature, coupled with ingestion rate, on the dynamics of biochemical components and lipid classes in R. philippinarum. The data are discussed with regard to sexual development and energy balance. Experimental protocol developed in the present study used two groups of the clam R. philippinarum: L (temperatures of 14 degrees C and 18 degrees C) and H (temperatures of 18 degrees C and 22 degrees C). The intra-group ingestion level was similar, although the ingestion level of the clams in the group H was 2.4 times higher than group L. We observed that R. philippinarum conditioned at 18 degrees C (18L) shows higher protein content, furthermore an important loss of organic weight was observed after 48 days. In such a situation, the clams use their own reserves (carbohydrates and glycogen) for sexual development while in situations without food stress (positive energy balance) and low temperature (14 degrees C) an accumulation of reserves is produced. Strikingly dissimilar behaviour in biochemical composition was observed for the 18H and 22H treatments, both with a positive energy balance. Despite similar protein content, the highest levels of carbohydrates were observed at the lower temperature (18 degrees C). Glycogen was also higher for the 18 degrees C treatment, although the differences were significant only in the males. Although the total lipids in R. philippinarum showed no significant differences in any treatment, they became apparent and related to sex when considering the individual lipid classes. There was no variation in lipid classes in the males between the 14L and 22H treatments despite the large disparity in the degree of sexual development. However, in the females significant differences in lipid classes (phospholipids, triglycerides) were observed. The results of this study show that a positive energy balance permits R. philippinarum gonadal development and accumulation of reserves both in low and high temperature conditions. In low temperature situations, gonadal development is slower and the energy reserves are accumulated in the form of carbohydrates. When the clams are conditioned at high temperatures, gonadal development is fast and complete, carbohydrates are consumed and lipids are accumulated.

  2. Serum lipid alterations in GBA-associated Parkinson's disease.

    PubMed

    Guedes, Leonor Correia; Chan, Robin Barry; Gomes, Marcos António; Conceição, Vasco A; Machado, Raquel Bouça; Soares, Tiago; Xu, Yimeng; Gaspar, Paulo; Carriço, Joao André; Alcalay, Roy N; Ferreira, Joaquim J; Outeiro, Tiago Fleming; Miltenberger-Miltenyi, Gabriel

    2017-11-01

    Mutations in the GBA gene, encoding for the lysosomal enzyme glucocerebrosidase, are associated with Gaucher disease. Alterations in plasma sphingolipids have been reported in Gaucher, and similarly in brain extracts in Lewy body disease. As GBA mutations are prevalent risk factors for Parkinson's disease and overlap of molecular pathways are presumable, here we assessed the lipid profiles in Parkinson's patients with and without GBA mutations. We sequenced all GBA exons in 415 Parkinson's patients, previously genotyped for LRRK2. 64 patients (29 GBA positive vs. 35 non-GBA-carriers including 18 LRRK2 positive and 17 non-mutated) were analyzed for chitotriosidase activity and for the concentration of 40 lipid classes using HPLC-MS. 29/415 patients (6.9%) carried 8 different GBA mutations associated with Gaucher or Parkinson's, including one novel mutation. Chitotriosidase activity was similar across the genetic groups, while the levels of key lipids were altered in GBA mutation carriers: Monohexosylceramide, Ceramide and Sphingomyelin were elevated; while Phosphatidic acid (PA), Phosphatidylethanolamine (PE), Plasmalogen phosphatidylethanolamine (PEp) and Acyl Phosphatidylglycerol (AcylPG) were decreased. The results suggest an important role for these lipids in GBA mediated Parkinson's disease and assist in the identification of common pathways between Gaucher and Parkinson's. Ultimately, our findings may lead to the identification of novel biomarkers for individuals at increased risk of developing Parkinson's disease. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Comprehensive evaluation of apolipoprotein H gene (APOH) variation identifies novel associations with measures of lipid metabolism in GENOA*s⃞

    PubMed Central

    Leduc, Magalie S.; Shimmin, Lawrence C.; Klos, Kathy L. E.; Hanis, Craig; Boerwinkle, Eric; Hixson, James E.

    2008-01-01

    Apolipoprotein H (apoH, also named β-2 glycoprotein I) is found on several classes of lipoproteins, and is involved in the activation of lipoprotein lipase in lipid metabolism. We have comprehensively investigated the association of variation in the apoH gene (APOH) with lipid traits in hepatic cholesterol transport, dietary cholesterol transport (DCT), and reverse cholesterol transport (RCT). Our study population consisted of families from the Genetic Epidemiology Network of Arteriopathy multicenter study that include African Americans, Mexican Americans, and European Americans. We individually tested 36 single-nucleotide polymorphisms (SNPs) that span the APOH locus, including nonsynonymous variants that result in known apoH charge isoforms. In addition, we constructed haplotypes from SNPs in the 5′ promoter region that comprise cis-acting regulatory elements, as well as haplotypes for multiple amino acid substitutions. We found point-wise significant associations of APOH variants with various lipid measures in the three racial groups. The strongest associations were found for DCT traits (triglyceride and apoE levels) in Mexican Americans with a nonsynonymous variant (SNP 14917, Cys306Gly) that may alter apoH protein folding in a region involved in phospholipid binding. In conclusion, family-based analyses of APOH variants have identified associations with measures of lipid metabolism in three American racial groups. PMID:18676959

  4. Furosemide Loaded Silica-Lipid Hybrid Microparticles: Formulation Development, in vitro and ex vivo Evaluation.

    PubMed

    Sambaraj, Swapna; Ammula, Divya; Nagabandi, Vijaykumar

    2015-09-01

    The main objective of the current research work was to formulate and evaluate furosemide loaded silica lipid hybrid microparticles for improved oral delivery. A novel silica-lipid hybrid microparticulate system is used for enhancing the oral absorption of low solubility and low permeability of (BCS Class IV) drugs. Silica-lipid hybrid microparticles include the drug solubilising effect of dispersed lipids and stabilizing effect of hydrophilic silica particles to increase drug solubilisation, which leads to enhanced oral bioavailability. The slica lipid hybrid (SLH) microparticles were composed of poorly soluble drug (furosemide), dispersion of oil phase (Soya bean oil and miglyol) in lecithin (Phospholipoid 90H), non-ionic surfactant (Polysorbate 80) and adsorbent (Aerosol 380). Saturation solubility studies were performed in different oils and surfactants with increased concentration of drug revealed increased solubility of furosemide. In vitro dissolution studies conducted under simulated gastric medium revealed 2-4 fold increase in dissolution efficiencies for SLH microparticles compared to that of pure drug (furosemide) and marketed formulation Lasix®. Ex vivo studies showed enhanced lipid digestibility, which improved drug permeability. Solid-state characterization of SLH microparticles by X-ray powder diffraction and Fourier transform infrared spectroscopic analysis confirmed non-crystalline nature and more compatibility of furosemide in silica-lipid hybrid microparticles. It can be concluded that the role of lipids and hydrophilic silica based carrier highlighted in enhancing solubility and permeability, and hence the oral bioavailability of poorly soluble drugs.

  5. Furosemide Loaded Silica-Lipid Hybrid Microparticles: Formulation Development, in vitro and ex vivo Evaluation

    PubMed Central

    Sambaraj, Swapna; Ammula, Divya; Nagabandi, Vijaykumar

    2015-01-01

    Purpose: The main objective of the current research work was to formulate and evaluate furosemide loaded silica lipid hybrid microparticles for improved oral delivery. A novel silica-lipid hybrid microparticulate system is used for enhancing the oral absorption of low solubility and low permeability of (BCS Class IV) drugs. Silica-lipid hybrid microparticles include the drug solubilising effect of dispersed lipids and stabilizing effect of hydrophilic silica particles to increase drug solubilisation, which leads to enhanced oral bioavailability. Methods: The slica lipid hybrid (SLH) microparticles were composed of poorly soluble drug (furosemide), dispersion of oil phase (Soya bean oil and miglyol) in lecithin (Phospholipoid 90H), non-ionic surfactant (Polysorbate 80) and adsorbent (Aerosol 380). Saturation solubility studies were performed in different oils and surfactants with increased concentration of drug revealed increased solubility of furosemide. Results: In vitro dissolution studies conducted under simulated gastric medium revealed 2-4 fold increase in dissolution efficiencies for SLH microparticles compared to that of pure drug (furosemide) and marketed formulation Lasix®. Ex vivo studies showed enhanced lipid digestibility, which improved drug permeability. Solid-state characterization of SLH microparticles by X-ray powder diffraction and Fourier transform infrared spectroscopic analysis confirmed non-crystalline nature and more compatibility of furosemide in silica-lipid hybrid microparticles. Conclusion: It can be concluded that the role of lipids and hydrophilic silica based carrier highlighted in enhancing solubility and permeability, and hence the oral bioavailability of poorly soluble drugs. PMID:26504763

  6. Analyzing and Understanding Lipids of Yeast: A Challenging Endeavor.

    PubMed

    Kohlwein, Sepp D

    2017-05-01

    Lipids are essential biomolecules with diverse biological functions, ranging from building blocks for all biological membranes to energy substrates, signaling molecules, and protein modifiers. Despite advances in lipid analytics by mass spectrometry, the extraction and quantitative analysis of the diverse classes of lipids are still an experimental challenge. Yeast is a model organism that provides several advantages for studying lipid metabolism, because most biosynthetic pathways are well described and a great deal of information is available on the regulatory mechanisms that control lipid homeostasis. In addition, the composition of yeast lipids is much less complex than that of mammalian lipids, making yeast an excellent reference system for studying lipid-associated cell functions. © 2017 Cold Spring Harbor Laboratory Press.

  7. LIPID BIOMARKER CHARACTERIZATION OF BLOOM-RELATED DINOFLAGELLATES

    EPA Science Inventory

    Marine eukaryotic algae synthesize an array of lipids of chemotaxonomic utility that are potentially valuable in characterizing phytoplankton communities. Sterols and photopigments characteristic of dinoflagellates are rarely found in other algal classes. Long chain (C28) highly ...

  8. Docosahexaenoic acid modifies the clustering and size of lipid rafts and the lateral organization and surface expression of MHC class I of EL4 cells.

    PubMed

    Shaikh, Saame Raza; Rockett, Benjamin Drew; Salameh, Muhammad; Carraway, Kristen

    2009-09-01

    An emerging molecular mechanism by which docosahexaenoic acid (DHA) exerts its effects is modification of lipid raft organization. The biophysical model, based on studies with liposomes, shows that DHA avoids lipid rafts because of steric incompatibility between DHA and cholesterol. The model predicts that DHA does not directly modify rafts; rather, it incorporates into nonrafts to modify the lateral organization and/or conformation of membrane proteins, such as the major histocompatibility complex (MHC) class I. Here, we tested predictions of the model at a cellular level by incorporating oleic acid, eicosapentaenoic acid (EPA), and DHA, compared with a bovine serum albumin (BSA) control, into the membranes of EL4 cells. Quantitative microscopy showed that DHA, but not EPA, treatment, relative to the BSA control diminished lipid raft clustering and increased their size. Approximately 30% of DHA was incorporated directly into rafts without changing the distribution of cholesterol between rafts and nonrafts. Quantification of fluorescence colocalization images showed that DHA selectively altered MHC class I lateral organization by increasing the fraction of the nonraft protein into rafts compared with BSA. Both DHA and EPA treatments increased antibody binding to MHC class I compared with BSA. Antibody titration showed that DHA and EPA did not change MHC I conformation but increased total surface levels relative to BSA. Taken together, our findings are not in agreement with the biophysical model. Therefore, we propose a model that reconciles contradictory viewpoints from biophysical and cellular studies to explain how DHA modifies lipid rafts on several length scales. Our study supports the notion that rafts are an important target of DHA's mode of action.

  9. A Bioengineered Human Skin Equivalent (HSE) for the Evaluation of Protectants

    DTIC Science & Technology

    2006-11-01

    agonist clofibrate to the growth media. Medium supplemented with 25 μM palmitic acid , 15 μM linoleic acid , 25 μM oleic acid , 7 μM arachidonic acid , 0.25...granules (indicated by arrows). Fig. 6: A cross section of the HSE with lipids, ascorbic acid and clofibrate supplementation. The combination of... Clofibrate , Ascorbic Acid and Lipids Compared With the Lipid Profile of Native Human Skin. Clofibrate 300 μM Lipid class Control No ascorbic

  10. Enhanced dissolved lipid production as a response to the sea surface warming

    NASA Astrophysics Data System (ADS)

    Novak, Tihana; Godrijan, Jelena; Pfannkuchen, Daniela Marić; Djakovac, Tamara; Mlakar, Marina; Baricevic, Ana; Tanković, Mirta Smodlaka; Gašparović, Blaženka

    2018-04-01

    The temperature increase in oceans reflects on marine ecosystem functioning and surely has consequences on the marine carbon cycle and carbon sequestration. In this study, we examined dissolved lipid, lipid classes and dissolved organic carbon (DOC) production in the northern Adriatic Sea, isolated diatom Chaetoceros pseudocurvisetus batch cultures grown in a wide temperature range (10-30 °C) and in contrasting nutrient regimes, phosphorus (P)-depleted and P-replete conditions. Additionally, lipids and DOC were analyzed in the northern Adriatic (NA) in two stations characterized with different P availability, occupied from February to August 2010 that covered a temperature range from 9.3 to 31.1 °C. To gain insight into factors governing lipid and lipid classes' production in the NA, apart from temperature (T), Chlorophyll a, phytoplankton community abundance and structure, nutrient concentrations were measured together with hydrographic parameters. We found enhanced accumulation of dissolved lipids, particulary glycolipids, with increasing T, especially during the highest in situ temperature. The effect of T on enhanced dissolved lipid release is much more pronounced under P-deplete conditions indicating that oligotrophic regions might be more vulnerable to T rise. Temperature between 25 and 30 °C is a threshold T range for C. pseudocurvisetus, at which a significant part of lipid production is directed toward the dissolved phase. Unlike monocultures, there are multiple factors influencing produced lipid composition, distribution and cycling in the NA that may counteract the T influence. The possible role of enhanced dissolved lipid concentration for carbon sequestration at elevated T is discussed. On the one hand, lipids are buoyant and do not sink, which enhances their retention at the surface layer. In addition, they are surface active, and therefore prone to adsorb on sinking particles, contributing to the C sequestration.

  11. Identification of lipids that accumulate during the routine storage of prestorage leukoreduced red blood cells and cause acute lung injury

    PubMed Central

    Silliman, Christopher C.; Moore, Ernest E.; Kelher, Marguerite R.; Khan, Samina Y.; Gellar, Lauren; Elzi, David J.

    2011-01-01

    BACKGROUND Lipids accumulate during the storage of red blood cells (RBCs), prime neutrophils (PMNs), and have been implicated in transfusion-related acute lung injury (TRALI). These lipids are composed of two classes: nonpolar lipids and lysophosphatidylcholines based on their retention time on separation by high-pressure liquid chromatography. Prestorage leukoreduction significantly decreases white blood cell and platelet contamination of RBCs; therefore, it is hypothesized that prestorage leukoreduction changes the classes of lipids that accumulate during storage, and these lipids prime PMNs and induce acute lung injury (ALI) as the second event in a two-event in vivo model. STUDY DESIGN AND METHODS RBC units were divided: 50% was leukoreduced (LR-RBCs), stored, and sampled on Day 1 and at the end of storage, Day 42. Priming activity was evaluated on isolated PMNs, and the purified lipids from Day 1 or Day 42 were used as the second event in the in vivo model. RESULTS The plasma and lipids from RBCs and LR-RBCs primed PMNs, and the LR-RBC activity decreased with longer storage. Unlike RBCs, nonpolar lipids comprised the PMN-priming activity from stored LR-RBCs. Mass spectroscopy identified these lipids as arachidonic acid and 5-, 12-, and 15-hydroxyeicsotetranoic acid. At concentrations from Day 42, but not Day 1, three of four of these lipids individually, and the mixture, primed PMNs. The mixture also caused ALI as the second event in a two-event model of TRALI. CONCLUSION We conclude that the nonpolar lipids that accumulate during LR-RBC storage may represent the agents responsible for antibody-negative TRALI. PMID:21615744

  12. Fatty Acid Profile of Sunshine Bass: II. Profile Change Differs Among Fillet Lipid Classes.

    PubMed

    Trushenski, Jesse T; Lewis, Heidi A; Kohler, Christopher C

    2008-07-01

    Fatty acid (FA) profile of fish tissue mirrors dietary FA profile and changes in a time-dependent manner following a change in dietary FA composition. To determine whether FA profile change varies among lipid classes, we evaluated the FA composition of fillet cholesteryl esters (CE), phospholipids (PL), and triacylglycerols (TAG) of sunshine bass (SB, Morone chrysops x M. saxatilis) raised on feeds containing fish oil or 50:50 blend of fish oil and coconut, grapeseed, linseed, or poultry oil, with or without implementation of a finishing period (100% FO feed) prior to harvest. Each lipid class was associated with a generalized FA signature, irrespective of nutritional history: fillet PL was comprised largely of saturated FA (SFA), long-chain polyunsaturated FA (LC-PUFA), and total n-3 FA; fillet TAG was higher in MC-PUFA and total n-6 FA; and fillet CE was highest in monounsaturated FA (MUFA). Neutral lipids reflected dietary composition in a near-direct fashion; conversely, PL showed evidence of selectivity for MC- and LC-PUFA. Shorter-chain SFA were not strongly reflected within any lipid fraction, even when dietary availability was high, suggesting catabolism of these FA. FA metabolism in SB is apparently characterized by a division between saturated and unsaturated FA, whereby LC-PUFA are preferentially incorporated into tissues and SFA are preferentially oxidized for energy production. We demonstrated provision of SFA in grow-out feeds for SB, instead MC-PUFA which compete for tissue deposition, meets energy demands and allows for maximum inclusion of LC-PUFA within fillet lipids.

  13. High-throughput and rapid quantification of lipids by nanoflow UPLC-ESI-MS/MS: application to the hepatic lipids of rabbits with nonalcoholic fatty liver disease.

    PubMed

    Byeon, Seul Kee; Lee, Jong Cheol; Chung, Bong Chul; Seo, Hong Seog; Moon, Myeong Hee

    2016-07-01

    A rapid and high-throughput quantification method (approximately 300 lipids within 20 min) was established using nanoflow ultrahigh-pressure liquid chromatography-tandem mass spectrometry (nUPLC-ESI-MS/MS) with selective reaction monitoring (SRM) and applied to the quantitative profiling of the hepatic lipids of rabbits with different metabolic conditions that stimulate the development of nonalcoholic fatty liver disease (NAFLD). Among the metabolic conditions of rabbits in this study [inflammation (I), high-cholesterol diet (HC), and high-cholesterol diet combined with inflammation (HCI)], significant perturbation in hepatic lipidome (>3-fold and p < 0.01) was observed in the HC and HCI groups, while no single lipid showed a significant change in group I. In addition, this study revealed a dramatic increase (>2-fold) in relatively high-abundant monohexosylceramides (MHCs), sphingomyelins (SMs), and triacylglycerols (TGs) in both the HC and HCI groups, especially in MHCs as all 11 MHCs increased by larger than 3- to 12-fold. As the levels of the relatively high-abundant lipids in the above classes increased, the total lipidome level of each class increased significantly by approximately 2-fold to 5-fold. Other classes of lipids also generally increased, which was likely induced by the increase in mitogenic and nonapoptotic MHCs and SMs, as they promote cell proliferation. On the other hand, a slight decrease in the level of apoptotic ceramides (Cers) was observed, which agreed with the general increase in total lipid level. As distinct changes in hepatic lipidome were observed from HC groups, this suggests that HC or HCI is highly associated with NAFLD but not inflammation alone itself. Graphical Abstract Schematic of lipidomic analysis from hepatic tissue using nanoflow LC-ESI-MS/MS and nUPLC-ESI-MS/MS.

  14. LIPID BIOMARKER ANALYSIS OF MARINE DINOFLAGELLATES

    EPA Science Inventory

    Many marine eukaryotic algae have been shown to possess characteristic chemotaxonomic lipid biomarkers. Dinoflagellates in particular are often characterized by the presence of sterols and pigments that are rarely found in other classes of algae. To evaluate the utility of chemic...

  15. Age-Related Inducibility of Carboxylesterases by the Antiepileptic Agent Phenobarbital and Implications in Drug Metabolism and Lipid Accumulation 1, 2

    PubMed Central

    Xiao, Da; Chen, Yi-Tzai; Yang, Dongfang; Yan, Bingfang

    2014-01-01

    Carboxylesterases (CES) constitute a class of hydrolytic enzymes that play critical roles in drug metabolism and lipid mobilization. Previous studies with a large number of human liver samples have suggested that the inducibility of carboxylesterases is inversely related with age. To directly test this possibility, neonatal (10 days of age) and adult mice were treated with the antiepileptic agent phenobarbital. The expression and hydrolytic activity were determined on six major carboxylesterases including ces1d, the ortholog of human CES1. Without exception, all carboxylesterases tested were induced to a greater extent in neonatal than adult mice. The induction was detected at mRNA, protein and catalytic levels. Ces1d was greatly induced and found to rapidly hydrolyze the antiplatelet agent clopidogrel and support the accumulation of neutral lipids. Phenobarbital represents a large number of therapeutic agents that induce drug metabolizing enzymes and transporters in a species-conserved manner. The higher inducibility of carboxylesterases in the developmental age likely represents a general phenomenon cross species including human. Consequently, individuals in the developmental age may experience greater drug-drug interactions. The greater induction of ces1d also provides a molecular explanation to the clinical observation that children on antiepileptic drugs increase plasma lipids. PMID:22513142

  16. Lipid Molecular Species Composition in Developing Soybean Cotyledons 1

    PubMed Central

    Wilson, Richard F.; Rinne, Robert W.

    1978-01-01

    The fatty acid composition of triglyceride and phospholipids in developing soybean cotyledons (Glycine max L., var. “Harosoy 63”) was analyzed at several stages of growth between 30 and 70 days after flowering. Changes observed in fatty acid composition within each lipid class were related to the levels of lipid molecular species present in the oil. Thirteen molecular species of triglyceride were identified in developing cotyledons, however three of these groups: trilinolenic, dilinolenic-monolinoleic, and linolenic-linoleic-oleic triglycerides, were not found in the mature seed. In immature cotyledons, trioleic and trilinoleic triglycerides accounted for 50% of the structures found; the level of these molecules decreased to 24.9% in the mature seed. The dilinoleic-monolinolenic triglycerides increased from 0.4 to 23.4% during cotyledon development. Changes in triglyceride composition were compared to the levels of molecular species for each phospholipid class. Dilinoleic and monosaturated monolinoleic phospholipid species were dominant in all phospholipid classes throughout development. PMID:16660395

  17. Associations of maternal BMI and insulin resistance with the maternal metabolome and newborn outcomes.

    PubMed

    Sandler, Victoria; Reisetter, Anna C; Bain, James R; Muehlbauer, Michael J; Nodzenski, Michael; Stevens, Robert D; Ilkayeva, Olga; Lowe, Lynn P; Metzger, Boyd E; Newgard, Christopher B; Scholtens, Denise M; Lowe, William L

    2017-03-01

    Maternal obesity increases the risk for large-for-gestational-age birth and excess newborn adiposity, which are associated with adverse long-term metabolic outcomes in offspring, probably due to effects mediated through the intrauterine environment. We aimed to characterise the maternal metabolic milieu associated with maternal BMI and its relationship to newborn birthweight and adiposity. Fasting and 1 h serum samples were collected from 400 European-ancestry mothers in the Hyperglycaemia and Adverse Pregnancy Outcome Study who underwent an OGTT at ∼28 weeks gestation and whose offspring had anthropometric measurements at birth. Metabolomics assays were performed using biochemical analyses of conventional clinical metabolites, targeted MS-based measurement of amino acids and acylcarnitines and non-targeted GC/MS. Per-metabolite analyses demonstrated broad associations with maternal BMI at fasting and 1 h for lipids, amino acids and their metabolites together with carbohydrates and organic acids. Similar metabolite classes were associated with insulin resistance with unique associations including branched-chain amino acids. Pathway analyses indicated overlapping and unique associations with maternal BMI and insulin resistance. Network analyses demonstrated collective associations of maternal metabolite subnetworks with maternal BMI and newborn size and adiposity, including communities of acylcarnitines, lipids and related metabolites, and carbohydrates and organic acids. Random forest analyses demonstrated contribution of lipids and lipid-related metabolites to the association of maternal BMI with newborn outcomes. Higher maternal BMI and insulin resistance are associated with broad-based changes in maternal metabolites, with lipids and lipid-related metabolites accounting, in part, for the association of maternal BMI with newborn size at birth.

  18. LIPID BIOMARKER CHARACTERIZATION OF BLOOM-RELATED DINOFLAGELLATES AND OTHER EUKARYOTIC ALGAE

    EPA Science Inventory

    Marine eukaryotic algae synthesize an array of lipids of chemotaxonomic utility that are potentially valuable in characterizing phytoplankton communities. Sterols and photopigments characteristic of dinoflagellates are rarely found in other algal classes. Long chain (C28) highly ...

  19. Potentiation of pH-sensitive polymer-modified liposomes with cationic lipid inclusion as antigen delivery carriers for cancer immunotherapy.

    PubMed

    Yoshizaki, Yuta; Yuba, Eiji; Sakaguchi, Naoki; Koiwai, Kazunori; Harada, Atsushi; Kono, Kenji

    2014-09-01

    Cationic lipid-incorporated liposomes modified with pH-sensitive polymers were prepared by introducing 3, 5-didodecyloxybenzamidine as a cationic lipid to egg yolk phosphatidylcholine liposomes modified with 3-methylglutarylated hyperbranched poly(glycidol) (MGlu-HPG) as a pH-sensitive polymer. These liposomes were stable at neutral pH, but were destabilized below pH 6.0 because MGlu-HPG changed its characteristics from hydrophilic to hydrophobic in response to the pH decrease. Cationic lipid inclusion improved their pH sensitivity at weakly acidic pH and association of liposomes with murine dendritic cell (DC) lines. Cationic lipid-incorporated liposomes delivered entrapped ovalbumin (OVA) molecules not only to cytosol but also to endosome/lysosome. Treatment with cationic lipid-incorporated liposomes induced up-regulation of antigen presentation-involved molecules on DCs, the promotion of cytokine production, and antigen presentation via both major histocompatibility complex (MHC) class I and II molecules. Especially, antigen presentation via MHC class II was promoted by cationic lipid inclusion, which might correspond to efficient endosome/lysosome delivery of OVA. Subcutaneous administration of OVA-loaded cationic lipid-incorporated liposomes induced antigen-specific antibody production in serum and Th1-dominant immune responses in the spleen. Furthermore, administration of the cationic lipid-incorporated liposomes to mice bearing E.G7-OVA tumor more significantly reduced the tumor volume than liposomes without cationic lipids. Therefore, cationic lipid inclusion into pH-sensitive polymer-modified liposomes, which can achieve both efficient antigen intracellular delivery and activation of antigen presenting cell, is an effective approach to develop antigen carriers for efficient cancer immunotherapy. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Dependency of a therapy-resistant state of cancer cells on a lipid peroxidase pathway.

    PubMed

    Viswanathan, Vasanthi S; Ryan, Matthew J; Dhruv, Harshil D; Gill, Shubhroz; Eichhoff, Ossia M; Seashore-Ludlow, Brinton; Kaffenberger, Samuel D; Eaton, John K; Shimada, Kenichi; Aguirre, Andrew J; Viswanathan, Srinivas R; Chattopadhyay, Shrikanta; Tamayo, Pablo; Yang, Wan Seok; Rees, Matthew G; Chen, Sixun; Boskovic, Zarko V; Javaid, Sarah; Huang, Cherrie; Wu, Xiaoyun; Tseng, Yuen-Yi; Roider, Elisabeth M; Gao, Dong; Cleary, James M; Wolpin, Brian M; Mesirov, Jill P; Haber, Daniel A; Engelman, Jeffrey A; Boehm, Jesse S; Kotz, Joanne D; Hon, Cindy S; Chen, Yu; Hahn, William C; Levesque, Mitchell P; Doench, John G; Berens, Michael E; Shamji, Alykhan F; Clemons, Paul A; Stockwell, Brent R; Schreiber, Stuart L

    2017-07-27

    Plasticity of the cell state has been proposed to drive resistance to multiple classes of cancer therapies, thereby limiting their effectiveness. A high-mesenchymal cell state observed in human tumours and cancer cell lines has been associated with resistance to multiple treatment modalities across diverse cancer lineages, but the mechanistic underpinning for this state has remained incompletely understood. Here we molecularly characterize this therapy-resistant high-mesenchymal cell state in human cancer cell lines and organoids and show that it depends on a druggable lipid-peroxidase pathway that protects against ferroptosis, a non-apoptotic form of cell death induced by the build-up of toxic lipid peroxides. We show that this cell state is characterized by activity of enzymes that promote the synthesis of polyunsaturated lipids. These lipids are the substrates for lipid peroxidation by lipoxygenase enzymes. This lipid metabolism creates a dependency on pathways converging on the phospholipid glutathione peroxidase (GPX4), a selenocysteine-containing enzyme that dissipates lipid peroxides and thereby prevents the iron-mediated reactions of peroxides that induce ferroptotic cell death. Dependency on GPX4 was found to exist across diverse therapy-resistant states characterized by high expression of ZEB1, including epithelial-mesenchymal transition in epithelial-derived carcinomas, TGFβ-mediated therapy-resistance in melanoma, treatment-induced neuroendocrine transdifferentiation in prostate cancer, and sarcomas, which are fixed in a mesenchymal state owing to their cells of origin. We identify vulnerability to ferroptic cell death induced by inhibition of a lipid peroxidase pathway as a feature of therapy-resistant cancer cells across diverse mesenchymal cell-state contexts.

  1. Impact of Lipid Composition and Receptor Conformation on the Spatio-temporal Organization of μ-Opioid Receptors in a Multi-component Plasma Membrane Model

    PubMed Central

    Marino, Kristen A.; Prada-Gracia, Diego; Provasi, Davide; Filizola, Marta

    2016-01-01

    The lipid composition of cell membranes has increasingly been recognized as playing an important role in the function of various membrane proteins, including G Protein-Coupled Receptors (GPCRs). For instance, experimental and computational evidence has pointed to lipids influencing receptor oligomerization directly, by physically interacting with the receptor, and/or indirectly, by altering the bulk properties of the membrane. While the exact role of oligomerization in the function of class A GPCRs such as the μ-opioid receptor (MOR) is still unclear, insight as to how these receptors oligomerize and the relevance of the lipid environment to this phenomenon is crucial to our understanding of receptor function. To examine the effect of lipids and different MOR conformations on receptor oligomerization we carried out extensive coarse-grained molecular dynamics simulations of crystal structures of inactive and/or activated MOR embedded in an idealized mammalian plasma membrane composed of 63 lipid types asymmetrically distributed across the two leaflets. The results of these simulations point, for the first time, to specific direct and indirect effects of the lipids, as well as the receptor conformation, on the spatio-temporal organization of MOR in the plasma membrane. While sphingomyelin-rich, high-order lipid regions near certain transmembrane (TM) helices of MOR induce an effective long-range attractive force on individual protomers, both long-range lipid order and interface formation are found to be conformation dependent, with a larger number of different interfaces formed by inactive MOR compared to active MOR. PMID:27959924

  2. Effects of gemfibrozil on lipid metabolism, steroidogenesis and reproduction in the fathead minnow (Pimephales promelas)

    EPA Science Inventory

    Fibrates are a class of pharmaceuticals that indirectly modulate cholesterol biosynthesis through effects on peroxisome proliferator-activated receptors (PPARs), which are transcriptional cofactors that regulate expression of genes related to lipid metabolism. Gemfibrozil is a fi...

  3. Lipids in cell biology: how can we understand them better?

    PubMed Central

    Muro, Eleonora; Atilla-Gokcumen, G. Ekin; Eggert, Ulrike S.

    2014-01-01

    Lipids are a major class of biological molecules and play many key roles in different processes. The diversity of lipids is on the same order of magnitude as that of proteins: cells express tens of thousands of different lipids and hundreds of proteins to regulate their metabolism and transport. Despite their clear importance and essential functions, lipids have not been as well studied as proteins. We discuss here some of the reasons why it has been challenging to study lipids and outline technological developments that are allowing us to begin lifting lipids out of their “Cinderella” status. We focus on recent advances in lipid identification, visualization, and investigation of their biophysics and perturbations and suggest that the field has sufficiently advanced to encourage broader investigation into these intriguing molecules. PMID:24925915

  4. Water extract of gromwell (Lithospermum erythrorhizon) enhances migration of human keratinocytes and dermal fibroblasts with increased lipid synthesis in an in vitro wound scratch model.

    PubMed

    Kim, H; Kim, J; Park, J; Kim, S H; Uchida, Y; Holleran, W M; Cho, Y

    2012-01-01

    Although organic extracts of gromwell (Lithospermum erythrorhizon) have been shown to promote wound healing, the wound healing effects of water extracts of gromwell (WG) that are commonly used in traditional remedies have not been elucidated. We investigated whether WG promotes the migration and/or proliferation of cultured human keratinocytes (CHK) or dermal fibroblasts in parallel with increases in lipid synthesis during in vitro wound healing. CHK or fibroblasts were treated with 1-1,000 μg/ml WG for up to 48 h following scratch wound formation. Cell migration was assessed by measuring coverage (in percent) from the wound margin, while cell proliferation and lipid synthesis were determined by [(3)H]thymidine incorporation into DNA fractions, and [(3)H]palmitate or [(3)H]serine incorporation into lipid fractions, respectively. Low-dose WG (1 μg/ml) enhanced the wound coverage for both CHK and fibroblasts at 24 h, while cell proliferation was not altered in either cell types. Synthesis of both total lipids and individual lipid classes, including phospholipids, sphingolipids and neutral lipids, were found to be increased at 24 h in CHK treated with 1 μg/ml WG; in similarly treated fibroblasts, only the syntheses of sphingolipids (such as ceramides and glucosylceramides), but not other lipid species, were significantly increased. In contrast, a higher dose of WG (10-1,000 μg/ml) did not enhance wound coverage, and 100 μg/ml WG neither altered cell proliferation nor lipid synthesis in both CHK and fibroblasts. Low-dose WG (1 μg/ml) enhances the migration of both CHK and fibroblasts with increased lipid synthesis in an in vitro wound scratch model. Copyright © 2011 S. Karger AG, Basel.

  5. A mechanism accounting for the low cellular level of linoleic acid in cystic fibrosis and its reversal by DHA.

    PubMed

    Al-Turkmani, M Rabie; Andersson, Charlotte; Alturkmani, Ragheed; Katrangi, Waddah; Cluette-Brown, Joanne E; Freedman, Steven D; Laposata, Michael

    2008-09-01

    Specific fatty acid alterations have been described in the blood and tissues of cystic fibrosis (CF) patients. The principal alterations include decreased levels of linoleic acid (LA) and docosahexaenoic acid (DHA). We investigated the potential mechanisms of these alterations by studying the cellular uptake of LA and DHA, their distribution among lipid classes, and the metabolism of LA in a human bronchial epithelial cell model of CF. CF (antisense) cells demonstrated decreased levels of LA and DHA compared with wild type (WT, sense) cells expressing normal CFTR. Cellular uptake of LA and DHA was higher in CF cells compared with WT cells at 1 h and 4 h. Subsequent incorporation of LA and DHA into most lipid classes and individual phospholipids was also increased in CF cells. The metabolic conversion of LA to n-6 metabolites, including 18:3n-6 and arachidonic acid, was upregulated in CF cells, indicating increased flux through the n-6 pathway. Supplementing CF cells with DHA inhibited the production of LA metabolites and corrected the n-6 fatty acid defect. In conclusion, the evidence suggests that low LA level in cultured CF cells is due to its increased metabolism, and this increased LA metabolism is corrected by DHA supplementation.

  6. Organization of lipids in avian stratum corneum: Changes with temperature and hydration.

    PubMed

    Champagne, Alex M; Allen, Heather C; Bautista-Jimenez, Robin C; Williams, Joseph B

    2016-02-01

    In response to increases in ambient temperature (Ta), many animals increase total evaporative water loss (TEWL) through their skin and respiratory passages to maintain a constant body temperature, a response that compromises water balance. In birds, cutaneous water loss (CWL) accounts for approximately 65% of TEWL at thermoneutral temperatures. Although the proportion of TEWL accounted for by CWL decreases to only 25% at high Ta, the magnitude of CWL still increases, suggesting changes in the barrier function of the skin. The stratum corneum (SC) is composed of flat, dead cells called corneocytes embedded in a matrix of lipids, many of which arrange in layers called lamellae. The classes of lipids that comprise these lamellae, and their attendant physical properties, determine the rate of CWL. We measured CWL at 25, 30, 35, and 40 °C in House Sparrows (Passer domesticus) caught in the winter and summer, and in sparrows acclimated to warm and cold lab environments. We then used Fourier transform infrared spectroscopy to measure lipid-lipid and lipid-water interactions in the SC under different conditions of temperature and hydration, and correlated these results with lipid classes in the SC. As CWL increased at higher temperatures, the amount of gauche defects in lipid alkyl chains increased, indicating that lipid disorder is partially responsible for higher CWL at high temperatures. However, variation in CWL between groups could not be explained by the amount of gauche defects, and this remaining variation may be attributed to greater amounts of cerebrosides in birds with low CWL, as the sugar moieties of cerebrosides lie outside lipid lamellae and form strong hydrogen bonds with water molecules. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  7. Analysis of human serum lipoprotein lipid composition using MALDI-TOF mass spectrometry.

    PubMed

    Hidaka, Hiroya; Hanyu, Noboru; Sugano, Mitsutoshi; Kawasaki, Kenji; Yamauchi, Kazuyoshi; Katsuyama, Tsutomu

    2007-01-01

    This study used matrix-assisted laser desorption and ionization time-of-flight mass spectrometry (MALDI-TOF MS) to identify all lipid classes in human serum lipoproteins. After the major lipoproteins classes were isolated from serum by ultracentrifugation, the lipids were extracted and mixed with 2,5-dihydroxybenzoic acid (2,5-DHB) dissolved in Folch's solution (chloroform/methanol 2:1, v/v). MALDI-TOF MS analysis of the samples identified phospholipids (PLs), lysophospholipids (lysoPLs), sphingolipids (SLs), triglycerides (TGs), cholesteryl esters (CEs), and free cholesterol; it also showed the characteristics of individual fatty acid chains in serum lipids. MALDI-TOF MS allowed analysis of strongly hydrophobic and non-polar molecules such as CEs and TGs as well as hydrophilic molecules such as phospholipids. Direct analysis of fatty acids was not possible. The concentrations of lipids were not consistent with the ion peak intensities, since the extent of polarity affected the ionization characteristics of the molecules. However, lipid molecules with similar molecular structures but various fatty acid chains, such as phosphatidylcholine (PCs), were analyzed quantitatively by MALDI-TOF MS. Quantitative measurement of cholesterol was possible with the use of an internal standard. This study shows that MALDI-TOF MS can be used for direct investigation and quantitative analysis of the phospholipid composition of serum lipoproteins.

  8. Could Fidicina mannifera (Hemiptera: Cicadoidea: Fidicinini) promote a resource pulse in two Brazilian Cerrado vegetation classes?

    PubMed

    Oliveira, R N; Caramori, S S; Maccagnan, D H B

    2017-11-01

    Cicadas are usually studied regarding their importance in agriculture. However, the possibility of this group to represent a pulse of nutrients can also imply on the success of a given species in the biome. The aim of this study was to assess the level of total soluble proteins and lipids of Fidicina mannifera (Fabricius, 1803), and to determine whether the species can promote a pulse of nutrients in two vegetation classes of the Brazilian Cerrado. To assess the pulse of nutrients, it was concluded the determination of total soluble proteins and lipids from samples of males and adult females of F. mannifera, and the spatial distribution of exuviae of this species was also calculated in two vegetation classes of the Brazilian Cerrado. The amount of protein provided by each individual did not differ between males and females (p = 0.66) but females had 40% more lipids than males (p = 0.05). Regarding F. mannifera the gallery forest offered 11.75 g/ha of protein, 3.91 g/ha of lipids, and the Cerrado stricto sensu offered 4.25 g/ha of protein, and 1.41 g/ha of lipid. The male cicadas have a hollow abdomen, which houses a resonance chamber for sound production in order to attract females to mate, and females store larger amounts of lipids, mainly located in the abdominal cavity, where the body fat is directly linked to the reproductive system for the development of the ovaries and egg production after emergence. The mass occurrence of F. mannifera in the Brazilian Cerrado and the fast availability of proteins and lipids make this species a food resource that can directly impact the diet of secondary consumers and scavengers, although the amount of nutrients available by F. mannifera does not promote a pulse of nutrients in the study site.

  9. Comparison of fatty acids and lipids of smolting hatchery-fed and wild Atlantic salmon Salmo salar.

    PubMed

    Ackman, R G; Takeuchi, T

    1986-02-01

    In Atlantic Canada the Atlantic salmon Salmo salar change from the parr stage to the smolt stage while still in fresh water, preparatory to migration to salt water. In some stocks this takes place during the second overwintering. In several hatcheries where the water temperature drops to 0-0.5 C and the ponds ice over, there is a high incidence of erosion of the dorsal and pectoral fins and sometimes of the caudal fin. No disease organism has been identified, and the lesions heal over in most cases. Dietary fatty acids were thought to be a factor. A detailed study of lipid recoveries and classes has shown that in the skins of abnormal fish the total lipid is 7.8% compared to 4.7% in control fish. Unexpectedly, an analysis of one lot of healthy smoltstage wild fish showed that whole bodies have only a quarter of the lipid of comparable hatchery fish. Comparison of fatty acids showed that wild fish lipids include a higher proportion of arachidonic acid than those of the hatchery fish. In the latter, linoleic acid is provided readily by diet but the elongation to arachidonic acid evidently does not proceed. These results suggest that the smolt lipid is involved intimately with either the cause of the dermal lesion or is a defense mechanism, possibly mediated through oxygenase activity.

  10. Differential Transmembrane Domain GXXXG Motif Pairing Impacts Major Histocompatibility Complex (MHC) Class II Structure*

    PubMed Central

    Dixon, Ann M.; Drake, Lisa; Hughes, Kelly T.; Sargent, Elizabeth; Hunt, Danielle; Harton, Jonathan A.; Drake, James R.

    2014-01-01

    Major histocompatibility complex (MHC) class II molecules exhibit conformational heterogeneity, which influences their ability to stimulate CD4 T cells and drive immune responses. Previous studies suggest a role for the transmembrane domain of the class II αβ heterodimer in determining molecular structure and function. Our previous studies identified an MHC class II conformer that is marked by the Ia.2 epitope. These Ia.2+ class II conformers are lipid raft-associated and able to drive both tyrosine kinase signaling and efficient antigen presentation to CD4 T cells. Here, we establish that the Ia.2+ I-Ak conformer is formed early in the class II biosynthetic pathway and that differential pairing of highly conserved transmembrane domain GXXXG dimerization motifs is responsible for formation of Ia.2+ versus Ia.2− I-Ak class II conformers and controlling lipid raft partitioning. These findings provide a molecular explanation for the formation of two distinct MHC class II conformers that differ in their inherent ability to signal and drive robust T cell activation, providing new insight into the role of MHC class II in regulating antigen-presenting cell-T cell interactions critical to the initiation and control of multiple aspects of the immune response. PMID:24619409

  11. Lipidomic profile in three species of dinoflagellates (Amphidinium carterae, Cystodinium sp., and Peridinium aciculiferum) containing very long chain polyunsaturated fatty acids.

    PubMed

    Řezanka, Tomáš; Lukavský, Jaromír; Nedbalová, Linda; Sigler, Karel

    2017-07-01

    This study describes the identification of very long chain polyunsaturated fatty acids (VLCPUFAs) in three strains of dinoflagellates (Amphidinium carterae, Cystodinium sp., and Peridinium aciculiferum). The strains were cultivated and their lipidomic profiles were obtained by high resolution mass spectrometry with the aid of positive and negative electrospray ionization (ESI) mode by Orbitrap apparatus. Hydrophilic interaction liquid chromatography (HILIC/ESI) was used to separate major lipid classes of the three genera of dinoflagellates by neutral loss scan showing the ion [M + H-28:8] + , where 28:8 was octacosaoctaenoic acid, and by precursor ion scanning of ions at m/z 407, which was an ion corresponding to the structure of acyl of 28:8 acid (C 27 H 39 COO - ). Based on these analyzes, it was found that out of more than a dozen lipid classes present in the total lipids, only two classes of neutral lipids, i.e. major triacylglycerols and minor diacylglycerols contain VLCPUFAs. In polar lipids, VLCPUFAs were identified only in phosphatidic acid (PA) and phosphatidyl choline (PC) or in their lyso-forms (LPA and LPC). Further analysis of individual lipid classes by reversed-phase high-performance liquid chromatography (RP-HPLC) showed the presence of triacylglycerols (TAGs) containing VLCPUFAs, i.e. molecular species of the sn-28:7/28:8/28:8, sn-26:7/28:7/28:8, or sn-26:7/28:8/28:8 types. These TAGs are the longest and most unsaturated TAGs isolated from a natural source that have yet been synthesized. In the case of PA and PC, tandem MS identified sn-28:8/16:0-PA and sn-28:8/16:0-PC and the corresponding lyso-forms (28:8-LPC and 28:8-LPA). All these results indicate that TAGs containing VLCPUFAs are biosynthesized in dinoflagellates in the same manner as in higher eukaryotic organisms, which means that the PA, after conversion to DAG, serves as a precursor in the biosynthesis of other phospholipids, e.g. PC, and, after further acylation, also of TAG. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Comparative Lipidomics and Proteomics of Lipid Droplets in the Mesocarp and Seed Tissues of Chinese Tallow (Triadica sebifera)

    PubMed Central

    Zhi, Yao; Taylor, Matthew C.; Campbell, Peter M.; Warden, Andrew C.; Shrestha, Pushkar; El Tahchy, Anna; Rolland, Vivien; Vanhercke, Thomas; Petrie, James R.; White, Rosemary G.; Chen, Wenli; Singh, Surinder P.; Liu, Qing

    2017-01-01

    Lipid droplets (LDs) are composed of a monolayer of phospholipids (PLs), surrounding a core of non-polar lipids that consist mostly of triacylglycerols (TAGs) and to a lesser extent diacylglycerols. In this study, lipidome analysis illustrated striking differences in non-polar lipids and PL species between LDs derived from Triadica sebifera seed kernels and mesocarp. In mesocarp LDs, the most abundant species of TAG contained one C18:1 and two C16:0 and fatty acids, while TAGs containing three C18 fatty acids with higher level of unsaturation were dominant in the seed kernel LDs. This reflects the distinct differences in fatty acid composition of mesocarp (palmitate-rich) and seed-derived oil (α-linoleneate-rich) in T. sebifera. Major PLs in seed LDs were found to be rich in polyunsaturated fatty acids, in contrast to those with relatively shorter carbon chain and lower level of unsaturation in mesocarp LDs. The LD proteome analysis in T. sebifera identified 207 proteins from mesocarp, and 54 proteins from seed kernel, which belong to various functional classes including lipid metabolism, transcription and translation, trafficking and transport, cytoskeleton, chaperones, and signal transduction. Oleosin and lipid droplets associated proteins (LDAP) were found to be the predominant proteins associated with LDs in seed and mesocarp tissues, respectively. We also show that LDs appear to be in close proximity to a number of organelles including the endoplasmic reticulum, mitochondria, peroxisomes, and Golgi apparatus. This comparative study between seed and mesocarp LDs may shed some light on the structure of plant LDs and improve our understanding of their functionality and cellular metabolic networks in oleaginous plant tissues. PMID:28824675

  13. Comparative Lipidomics and Proteomics of Lipid Droplets in the Mesocarp and Seed Tissues of Chinese Tallow (Triadica sebifera).

    PubMed

    Zhi, Yao; Taylor, Matthew C; Campbell, Peter M; Warden, Andrew C; Shrestha, Pushkar; El Tahchy, Anna; Rolland, Vivien; Vanhercke, Thomas; Petrie, James R; White, Rosemary G; Chen, Wenli; Singh, Surinder P; Liu, Qing

    2017-01-01

    Lipid droplets (LDs) are composed of a monolayer of phospholipids (PLs), surrounding a core of non-polar lipids that consist mostly of triacylglycerols (TAGs) and to a lesser extent diacylglycerols. In this study, lipidome analysis illustrated striking differences in non-polar lipids and PL species between LDs derived from Triadica sebifera seed kernels and mesocarp. In mesocarp LDs, the most abundant species of TAG contained one C18:1 and two C16:0 and fatty acids, while TAGs containing three C18 fatty acids with higher level of unsaturation were dominant in the seed kernel LDs. This reflects the distinct differences in fatty acid composition of mesocarp (palmitate-rich) and seed-derived oil (α-linoleneate-rich) in T. sebifera . Major PLs in seed LDs were found to be rich in polyunsaturated fatty acids, in contrast to those with relatively shorter carbon chain and lower level of unsaturation in mesocarp LDs. The LD proteome analysis in T. sebifera identified 207 proteins from mesocarp, and 54 proteins from seed kernel, which belong to various functional classes including lipid metabolism, transcription and translation, trafficking and transport, cytoskeleton, chaperones, and signal transduction. Oleosin and lipid droplets associated proteins (LDAP) were found to be the predominant proteins associated with LDs in seed and mesocarp tissues, respectively. We also show that LDs appear to be in close proximity to a number of organelles including the endoplasmic reticulum, mitochondria, peroxisomes, and Golgi apparatus. This comparative study between seed and mesocarp LDs may shed some light on the structure of plant LDs and improve our understanding of their functionality and cellular metabolic networks in oleaginous plant tissues.

  14. Total milk fat extraction and quantification of polar and neutral lipids of cow, goat, and ewe milk by using a pressurized liquid system and chromatographic techniques.

    PubMed

    Castro-Gómez, M P; Rodriguez-Alcalá, L M; Calvo, M V; Romero, J; Mendiola, J A; Ibañez, E; Fontecha, J

    2014-11-01

    Although milk polar lipids such as phospholipids and sphingolipids located in the milk fat globule membrane constitute 0.1 to 1% of the total milk fat, those lipid fractions are gaining increasing interest because of their potential beneficial effects on human health and technological properties. In this context, the accurate quantification of the milk polar lipids is crucial for comparison of different milk species, products, or dairy treatments. Although the official International Organization for Standardization-International Dairy Federation method for milk lipid extraction gives satisfactory results for neutral lipids, it has important disadvantages in terms of polar lipid losses. Other methods using mixtures of solvents such as chloroform:methanol are highly efficient for extracting polar lipids but are also associated with low sample throughput, long time, and large solvent consumption. As an alternative, we have optimized the milk fat extraction yield by using a pressurized liquid extraction (PLE) method at different temperatures and times in comparison with those traditional lipid extraction procedures using 2:1 chloroform:methanol as a mixture of solvents. Comparison of classical extraction methods with the developed PLE procedure were carried out using raw whole milk from different species (cows, ewes, and goats) and considering fat yield, fatty acid methyl ester composition, triacylglyceride species, cholesterol content, and lipid class compositions, with special attention to polar lipids such as phospholipids and sphingolipids. The developed PLE procedure was validated for milk fat extraction and the results show that this method performs a complete or close to complete extraction of all lipid classes and in less time than the official and Folch methods. In conclusion, the PLE method optimized in this study could be an alternative to carry out milk fat extraction as a routine method. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  15. Combined thin layer chromatography and gas chromatography with mass spectrometric analysis of lipid classes and fatty acids in malnourished polar bears (Ursus maritimus) which swam to Iceland.

    PubMed

    Eibler, Dorothee; Krüger, Sabine; Skírnisson, Karl; Vetter, Walter

    2017-03-01

    Between 2008 and 2011, four polar bears (Ursus maritimus) from the Greenland population swam and/or drifted on ice to Iceland where they arrived in very poor body condition. Body fat resources in these animals were only between 0% and 10% of the body weight (usually 25%). Here we studied the lipid composition in different tissues (adipose tissue if available, liver, kidney and muscle). Lipid classes were determined by thin layer chromatography (TLC) and on-column gas chromatography with mass spectrometry (GC/MS). The fatty acid pattern of total lipids and free fatty acids was analyzed by GC/MS in selected ion monitoring (SIM) mode. Additionally, cholesteryl esters and native fatty acid methyl esters, initially detected as zones in thin layer chromatograms, were enriched by solid phase extraction and quantified by GC/MS. The ratio of free fatty acids to native fatty acid methyl esters could be correlated with the remained body lipids in the polar bears and thus may also serve as a marker for other starving animals or even for humans. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. A New Route to Liposil Formation by an Interfacial Sol-Gel Process Confined by Lipid Bilayer.

    PubMed

    Shen, Shukun; Yang, Lu; Lu, Yaxing; Chen, Jian-Gang; Song, Shaofei; Hu, Daodao; Parikh, Atul

    2015-11-18

    We report a new and simple approach to prepare a class of silica-reinforced liposomes with hybrid core-shell nanostructures. The amphiphilic natural structure of lipids was exploited to sequester hydrophobic molecules, namely precursor TEOS and pyrene, in the hydrophobic midplane of liposomal bilayer assemblies in the aqueous phase. Subsequent interfacial hydrolysis of TEOS at the bilayer/water interface and ensuing condensation within the hydrophobic interstices of the lipid bilayer drives silica formation in situ, producing a novel class of silica-lipid hybrid liposils. Structural characterization by scanning- and transmission electron microscopy confirm that the liposils so generated preserve closed topologies and size-monodipersity of the parent lecithin liposomes, and DSC-TGA and XRD measurements provide evidence for the silica coating. Monitoring fluorescence measurements using embedded pyrene yield detailed information on microenvironment changes, which occur during sol-gel process and shed light on the structural evolution during silica formation. We envisage that liposils formed by this simple, new approach, exploiting the hydrophobic core of the lipid bilayer to spatially localize silica-forming precursors enables preparation of stable liposils exhibiting capacity for cargo encapsulation, bicompatibility, and fluorescence monitoring, more generally opening a window for construction of stable, functional hybrid materials.

  17. Inhibitory effect of Piper betel leaf extracts on copper-mediated LDL oxidation and oxLDL-induced lipid accumulation via inducing reverse cholesterol transport in macrophages.

    PubMed

    Ma, Gwo-Chin; Wu, Pei-Fang; Tseng, Hsien-Chun; Chyau, Charng-Cherng; Lu, Hsiu-Chin; Chou, Fen-Pi

    2013-12-15

    Piper betel leaf (PBL) has the biological capabilities of detoxification and can work as an anti-inflammatory agent and an anti-oxidant. In this study, we evaluated the anti-oxidative activity of the extract of Piper betel leaves (PBLs) on the basis of Cu(2+)-mediated oxidation, and its ability to prevent foam cell formation in a model for oxidised low density lipoprotein (oxLDL)-induced lipid accumulation in macrophages. Our data demonstrated that PBLs were able to inhibit LDL oxidation in vitro and are able to reduce the lipid accumulation in macrophages. We showed the underlying mechanisms to be the following: PBLs up-regulated the protein levels of the class A and class B scavenger receptors, the membrane lipid transporter ABCA1, and its upstream regulator Liver X receptor (LXR) in the macrophages exposed to oxLDL. The results suggested that PBLs activated the reverse cholesterol transport mechanism to enhance the metabolism of the oxLDL that could prevent both lipid accumulation and foam cell formation and further minimise the possible damage of vessels caused by the oxLDL. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Regio- and stereospecific analysis of glycerolipids.

    PubMed

    Kuksis, Arnis; Itabashi, Yutaka

    2005-06-01

    In recent years researchers have recognized the potential value of comprehensive lipid profiling (lipidomics), which was invented and promoted by lipidologists who recognized the many valuable applications that grew out of the fields of DNA profiling (genomics) and protein profiling (proteonomics). Through lipid class-selective intrasource ionization and subsequent analysis of two-dimensional cross-peak intensities, the chemical identity and mass composition of individual molecular species of most lipid classes can now be determined in a chloroform extract. There remains, however, the necessity to distinguish the enantiomers and isobaric regioisomers resulting from enzymatic and chemical reactions, which conventional high performance liquid chromatography/mass spectrometry (HPLC/MS) has been slow to accommodate, and tandem MS unable to provide. While reversed-phase HPLC can separate regioisomers, normal-phase HPLC can resolve diastereomers, and chiral-phase HPLC can effect dramatic resolution of enantiomers, the full potential of the combined systems has seldom been exploited. The present chapter calls attention to both recent and earlier combinations of these methodologies with mass spectrometry, which allows the HPLC/ESI (electrospray ionization)-MS/MS separation and identification of enantiomeric diacylglycerols, triacylglycerols, and glycerophospholipids as well as their isobaric regioisomers. These developments permit further expansion of lipid profiling (lipidomics) and better understanding of lipid metabolism.

  19. Lipidomic analysis of biological samples: Comparison of liquid chromatography, supercritical fluid chromatography and direct infusion mass spectrometry methods.

    PubMed

    Lísa, Miroslav; Cífková, Eva; Khalikova, Maria; Ovčačíková, Magdaléna; Holčapek, Michal

    2017-11-24

    Lipidomic analysis of biological samples in a clinical research represents challenging task for analytical methods given by the large number of samples and their extreme complexity. In this work, we compare direct infusion (DI) and chromatography - mass spectrometry (MS) lipidomic approaches represented by three analytical methods in terms of comprehensiveness, sample throughput, and validation results for the lipidomic analysis of biological samples represented by tumor tissue, surrounding normal tissue, plasma, and erythrocytes of kidney cancer patients. Methods are compared in one laboratory using the identical analytical protocol to ensure comparable conditions. Ultrahigh-performance liquid chromatography/MS (UHPLC/MS) method in hydrophilic interaction liquid chromatography mode and DI-MS method are used for this comparison as the most widely used methods for the lipidomic analysis together with ultrahigh-performance supercritical fluid chromatography/MS (UHPSFC/MS) method showing promising results in metabolomics analyses. The nontargeted analysis of pooled samples is performed using all tested methods and 610 lipid species within 23 lipid classes are identified. DI method provides the most comprehensive results due to identification of some polar lipid classes, which are not identified by UHPLC and UHPSFC methods. On the other hand, UHPSFC method provides an excellent sensitivity for less polar lipid classes and the highest sample throughput within 10min method time. The sample consumption of DI method is 125 times higher than for other methods, while only 40μL of organic solvent is used for one sample analysis compared to 3.5mL and 4.9mL in case of UHPLC and UHPSFC methods, respectively. Methods are validated for the quantitative lipidomic analysis of plasma samples with one internal standard for each lipid class. Results show applicability of all tested methods for the lipidomic analysis of biological samples depending on the analysis requirements. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. LIPID CLASS DISTRIBUTION OF HIGHLY UNSATURATED LONG-CHAIN FATTY ACIDS IN MARINE DINOFLAGELLATES

    EPA Science Inventory

    Very-long-chain highly unsaturated C28 fatty acids (HUFAs), found in a number of dinoflagellates, are released as methyl esters from phospholipids obtained by fractionation of lipid extracts. By contrast, the highly unsaturated C18 fatty acid octadecapentaenoic acid (18:5n-3), co...

  1. Accumulation of hydroxyl lipids and 4-hydroxy-2-hexenal in live fish infected with fish diseases.

    PubMed

    Tanaka, Ryusuke; Shigeta, Kazuhiro; Sugiura, Yoshimasa; Hatate, Hideo; Matsushita, Teruo

    2014-04-01

    Hydroxy lipids (L-OH) and 4-hydroxy-2-hexenal (HHE) levels as well as other parameters such as lipid level, lipid class, fatty acid composition, and other aldehydes levels in the liver of diseased fish were investigated. Although significant differences in lipid level, lipid class, fatty acid composition, and other aldehyde levels were not always observed between normal and diseased fish, L-OH and HHE levels were significantly higher in the liver of the diseased fish than in that of the normal fish cultured with the same feeds under the same conditions. In the liver of puffer fish (Fugu rubripes) infected with Trichodina, L-OH and HHE levels significantly increased from 25.29±5.04 to 47.70 ± 5.27 nmol/mg lipid and from 299.79±25.25 to 1,184.40±60.27 nmol/g tissue, respectively. When the levels of HHE and other aldehydes in the liver of the normal and diseased puffer fish were plotted, a linear relationship with a high correlation coefficient was observed between HHE and propanal (r2=0.9447). Increased L-OH and HHE levels in the liver of the diseased fish and a high correlation between HHE and propanal in the liver of the normal and diseased fish were also observed in flat fish (Paralichthys olivaceus) infected with streptococcus, yellowtail (Seriola quinqueradiata) infected with jaundice, and amberjack (S. purpurascens) infected with Photobacterium damselae subsp. piscicida.

  2. Quantification of fatty acids as methyl esters and phospholipids in cheese samples after separation of triacylglycerides and phospholipids.

    PubMed

    Hauff, Simone; Vetter, Walter

    2009-03-23

    Determination of the individual fatty acid composition of neutral- and phospholipids as well as the phospholipid content of dairy food and other foodstuffs are important tasks in life sciences. For these purposes, a method was developed for the separation of lipids (standards of triolein and diacylphosphatidylcholines as well as three cheese samples) by solid-phase extraction using a self-packed column filled with partly deactivated silica. Non-halogenated solvents were used for the elution of the lipid classes. Cyclohexane/ethyl acetate (1:1, v/v) served for the elution of neutral lipids, while polar lipids were eluted with three solvents (ethyl acetate/methanol, methanol, and methanol/water) into one fraction. The separated lipid fractions were transesterified and the individual fatty acids were quantified by using gas chromatography coupled to electron ionization mass spectrometry (GC/EI-MS) in the selected ion monitoring (SIM) mode. The recovery rate for standard phosphatidylcholines was approximately 90% and cross-contamination from neutral lipids was negligible. The method was applied to cheese samples. Quantitative amounts of individual fatty acids in the phospholipid fraction were <0.002-0.29% of total lipids from camembert, <0.002-0.12% of total lipids from mozzarella, and <0.002-0.18% of total lipids in a goat cream cheese. Differences in the fatty acid pattern of neutral and polar lipids were detected. The quantity of the fatty acids determined in the phospholipid fraction was divided by the factor 0.7 in order to convert the fatty acid content into the phospholipid content of the cheese samples. This factor is based on the contribution of 16:0 to dipalmitoylphosphatidylcholine (DPPC). The resulting DPPC equivalents (DPPC(eq)) were found to be representative for the average contribution of fatty acids to all classes of phospholipids in dairy products. Using this approach, the phospholipid content of lipids from mozzarella, camembert, and goat cream cheese was 0.60%, 1.42% and 0.79%, respectively.

  3. Large-scale metabolite analysis of standards and human serum by laser desorption ionization mass spectrometry from silicon nanopost arrays

    DOE PAGES

    Korte, Andrew R.; Stopka, Sylwia A.; Morris, Nicholas; ...

    2016-07-11

    The unique challenges presented by metabolomics have driven the development of new mass spectrometry (MS)-based techniques for small molecule analysis. We have previously demonstrated silicon nanopost arrays (NAPA) to be an effective substrate for laser desorption ionization (LDI) of small molecules for MS. However, the utility of NAPA-LDI-MS for a wide range of metabolite classes has not been investigated. Here we apply NAPA-LDI-MS to the large-scale acquisition of high-resolution mass spectra and tandem mass spectra from a collection of metabolite standards covering a range of compound classes including amino acids, nucleotides, carbohydrates, xenobiotics, lipids, and other classes. In untargeted analysismore » of metabolite standard mixtures, detection was achieved for 374 compounds and useful MS/MS spectra were obtained for 287 compounds, without individual optimization of ionization or fragmentation conditions. Metabolite detection was evaluated in the context of 31 metabolic pathways, and NAPA-LDI-MS was found to provide detection for 63% of investigated pathway metabolites. Individual, targeted analysis of the 20 common amino acids provided detection of 100% of the investigated compounds, demonstrating that improved coverage is possible through optimization and targeting of individual analytes or analyte classes. In direct analysis of aqueous and organic extracts from human serum samples, spectral features were assigned to a total of 108 small metabolites and lipids. Glucose and amino acids were quantitated within their physiological concentration ranges. Finally, the broad coverage demonstrated by this large-scale screening experiment opens the door for use of NAPA-LDI-MS in numerous metabolite analysis applications« less

  4. Large-scale metabolite analysis of standards and human serum by laser desorption ionization mass spectrometry from silicon nanopost arrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Korte, Andrew R.; Stopka, Sylwia A.; Morris, Nicholas

    The unique challenges presented by metabolomics have driven the development of new mass spectrometry (MS)-based techniques for small molecule analysis. We have previously demonstrated silicon nanopost arrays (NAPA) to be an effective substrate for laser desorption ionization (LDI) of small molecules for MS. However, the utility of NAPA-LDI-MS for a wide range of metabolite classes has not been investigated. Here we apply NAPA-LDI-MS to the large-scale acquisition of high-resolution mass spectra and tandem mass spectra from a collection of metabolite standards covering a range of compound classes including amino acids, nucleotides, carbohydrates, xenobiotics, lipids, and other classes. In untargeted analysismore » of metabolite standard mixtures, detection was achieved for 374 compounds and useful MS/MS spectra were obtained for 287 compounds, without individual optimization of ionization or fragmentation conditions. Metabolite detection was evaluated in the context of 31 metabolic pathways, and NAPA-LDI-MS was found to provide detection for 63% of investigated pathway metabolites. Individual, targeted analysis of the 20 common amino acids provided detection of 100% of the investigated compounds, demonstrating that improved coverage is possible through optimization and targeting of individual analytes or analyte classes. In direct analysis of aqueous and organic extracts from human serum samples, spectral features were assigned to a total of 108 small metabolites and lipids. Glucose and amino acids were quantitated within their physiological concentration ranges. Finally, the broad coverage demonstrated by this large-scale screening experiment opens the door for use of NAPA-LDI-MS in numerous metabolite analysis applications« less

  5. Curative Treatment of Severe Gram-Negative Bacterial Infections by a New Class of Antibiotics Targeting LpxC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lemaître, Nadine; Liang, Xiaofei; Najeeb, Javaria

    ABSTRACT The infectious diseases caused by multidrug-resistant bacteria pose serious threats to humankind. It has been suggested that an antibiotic targeting LpxC of the lipid A biosynthetic pathway in Gram-negative bacteria is a promising strategy for curing Gram-negative bacterial infections. However, experimental proof of this concept is lacking. Here, we describe our discovery and characterization of a biphenylacetylene-based inhibitor of LpxC, an essential enzyme in the biosynthesis of the lipid A component of the outer membrane of Gram-negative bacteria. The compound LPC-069 has no known adverse effects in mice and is effectivein vitroagainst a broad panel of Gram-negative clinical isolates,more » including several multiresistant and extremely drug-resistant strains involved in nosocomial infections. Furthermore, LPC-069 is curative in a murine model of one of the most severe human diseases, bubonic plague, which is caused by the Gram-negative bacteriumYersinia pestis. Our results demonstrate the safety and efficacy of LpxC inhibitors as a new class of antibiotic against fatal infections caused by extremely virulent pathogens. The present findings also highlight the potential of LpxC inhibitors for clinical development as therapeutics for infections caused by multidrug-resistant bacteria. IMPORTANCEThe rapid spread of antimicrobial resistance among Gram-negative bacilli highlights the urgent need for new antibiotics. Here, we describe a new class of antibiotics lacking cross-resistance with conventional antibiotics. The compounds inhibit LpxC, a key enzyme in the lipid A biosynthetic pathway in Gram-negative bacteria, and are activein vitroagainst a broad panel of clinical isolates of Gram-negative bacilli involved in nosocomial and community infections. The present study also constitutes the first demonstration of the curative treatment of bubonic plague by a novel, broad-spectrum antibiotic targeting LpxC. Hence, the data highlight the therapeutic potential of LpxC inhibitors against a wide variety of Gram-negative bacterial infections, including the most severe ones caused byY. pestisand by multidrug-resistant and extensively drug-resistant carbapenemase-producing strains.« less

  6. Curative Treatment of Severe Gram-Negative Bacterial Infections by a New Class of Antibiotics Targeting LpxC.

    PubMed

    Lemaître, Nadine; Liang, Xiaofei; Najeeb, Javaria; Lee, Chul-Jin; Titecat, Marie; Leteurtre, Emmanuelle; Simonet, Michel; Toone, Eric J; Zhou, Pei; Sebbane, Florent

    2017-07-25

    The infectious diseases caused by multidrug-resistant bacteria pose serious threats to humankind. It has been suggested that an antibiotic targeting LpxC of the lipid A biosynthetic pathway in Gram-negative bacteria is a promising strategy for curing Gram-negative bacterial infections. However, experimental proof of this concept is lacking. Here, we describe our discovery and characterization of a biphenylacetylene-based inhibitor of LpxC, an essential enzyme in the biosynthesis of the lipid A component of the outer membrane of Gram-negative bacteria. The compound LPC-069 has no known adverse effects in mice and is effective in vitro against a broad panel of Gram-negative clinical isolates, including several multiresistant and extremely drug-resistant strains involved in nosocomial infections. Furthermore, LPC-069 is curative in a murine model of one of the most severe human diseases, bubonic plague, which is caused by the Gram-negative bacterium Yersinia pestis Our results demonstrate the safety and efficacy of LpxC inhibitors as a new class of antibiotic against fatal infections caused by extremely virulent pathogens. The present findings also highlight the potential of LpxC inhibitors for clinical development as therapeutics for infections caused by multidrug-resistant bacteria. IMPORTANCE The rapid spread of antimicrobial resistance among Gram-negative bacilli highlights the urgent need for new antibiotics. Here, we describe a new class of antibiotics lacking cross-resistance with conventional antibiotics. The compounds inhibit LpxC, a key enzyme in the lipid A biosynthetic pathway in Gram-negative bacteria, and are active in vitro against a broad panel of clinical isolates of Gram-negative bacilli involved in nosocomial and community infections. The present study also constitutes the first demonstration of the curative treatment of bubonic plague by a novel, broad-spectrum antibiotic targeting LpxC. Hence, the data highlight the therapeutic potential of LpxC inhibitors against a wide variety of Gram-negative bacterial infections, including the most severe ones caused by Y. pestis and by multidrug-resistant and extensively drug-resistant carbapenemase-producing strains. Copyright © 2017 Lemaître et al.

  7. Concurrent production of carotenoids and lipid by a filamentous microalga Trentepohlia arborum.

    PubMed

    Chen, Lin; Zhang, Lanlan; Liu, Tianzhong

    2016-08-01

    During the study of Trentepohlia arborum it became clear that its cells are rich in lipids and carotenoids. Thus, lipid content, composition and fatty acids profiles in individual lipid classes, as well as pigment profiles, responding to different culture conditions, were further investigated. The results showed that the predominant carotenoids and lipid fraction in total lipid in this study was β-carotene and TAG, respectively. The lipid content increased significantly under high light while nitrogen-replete conditions induced the highest carotenoids content. However, only with a double stress of high light and nitrogen-deficiency it was possible to maximize the productivities of both carotenoids and lipids. Carotenoids (mainly β-carotene) accounted for ca. 5% of the microalgal lipid under the double stress. Data herein show the potential of T. arborum for the production of both lipids and carotenoids, and hence provide an appropriate way to produce different products from T. arborum. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Biodegradable lipids enabling rapidly eliminated lipid nanoparticles for systemic delivery of RNAi therapeutics.

    PubMed

    Maier, Martin A; Jayaraman, Muthusamy; Matsuda, Shigeo; Liu, Ju; Barros, Scott; Querbes, William; Tam, Ying K; Ansell, Steven M; Kumar, Varun; Qin, June; Zhang, Xuemei; Wang, Qianfan; Panesar, Sue; Hutabarat, Renta; Carioto, Mary; Hettinger, Julia; Kandasamy, Pachamuthu; Butler, David; Rajeev, Kallanthottathil G; Pang, Bo; Charisse, Klaus; Fitzgerald, Kevin; Mui, Barbara L; Du, Xinyao; Cullis, Pieter; Madden, Thomas D; Hope, Michael J; Manoharan, Muthiah; Akinc, Akin

    2013-08-01

    In recent years, RNA interference (RNAi) therapeutics, most notably with lipid nanoparticle-based delivery systems, have advanced into human clinical trials. The results from these early clinical trials suggest that lipid nanoparticles (LNPs), and the novel ionizable lipids that comprise them, will be important materials in this emerging field of medicine. A persistent theme in the use of materials for biomedical applications has been the incorporation of biodegradability as a means to improve biocompatibility and/or to facilitate elimination. Therefore, the aim of this work was to further advance the LNP platform through the development of novel, next-generation lipids that combine the excellent potency of the most advanced lipids currently available with biodegradable functionality. As a representative example of this novel class of biodegradable lipids, the lipid evaluated in this work displays rapid elimination from plasma and tissues, substantially improved tolerability in preclinical studies, while maintaining in vivo potency on par with that of the most advanced lipids currently available.

  9. An Efficient Glycoblotting-Based Analysis of Oxidized Lipids in Liposomes and a Lipoprotein.

    PubMed

    Furukawa, Takayuki; Hinou, Hiroshi; Takeda, Seiji; Chiba, Hitoshi; Nishimura, Shin-Ichiro; Hui, Shu-Ping

    2017-10-05

    Although widely occurring lipid oxidation, which is triggered by reactive oxygen species (ROS), produces a variety of oxidized lipids, practical methods to efficiently analyze oxidized lipids remain elusive. Herein, it is shown that the glycoblotting platform can be used to analyze oxidized lipids. Analysis is based on the principle that lipid aldehydes, one of the oxidized lipid species, can be captured selectively, enriched, and detected. Moreover, 3-methyl-1-p-tolyltriazene (MTT) methylates phosphoric and carboxylic acids, and this MTT-mediated methylation is, in combination with conventional tandem mass spectrometry (MS/MS) analysis, an effective method for the structural analysis of oxidized lipids. By using three classes of standards, liposomes, and a lipoprotein, it is demonstrated that glycoblotting represents a powerful approach for focused lipidomics, even in complex macromolecules. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Comprehensive Lipidome-Wide Profiling Reveals Dynamic Changes of Tea Lipids during Manufacturing Process of Black Tea.

    PubMed

    Li, Jia; Hua, Jinjie; Zhou, Qinghua; Dong, Chunwang; Wang, Jinjin; Deng, Yuliang; Yuan, Haibo; Jiang, Yongwen

    2017-11-22

    As important biomolecules in Camellia sinensis L., lipids undergo substantial changes during black tea manufacture, which is considered to contribute to tea sensory quality. However, limited by analytical capacity, detailed lipid composition and its dynamic changes during black tea manufacture remain unclear. Herein, we performed tea lipidome profiling using high resolution liquid chromatography coupled to mass spectrometry (LC-MS), which allows simultaneous and robust analysis of 192 individual lipid species in black tea, covering 17 (sub)classes. Furthermore, dynamic changes of tea lipids during black tea manufacture were investigated. Significant alterations of lipid pattern were revealed, involved with chlorophyll degradation, metabolic pathways of glycoglycerolipids, and other extraplastidial membrane lipids. To our knowledge, this report presented most comprehensive coverage of lipid species in black tea. This study provides a global and in-depth metabolic map of tea lipidome during black tea manufacture.

  11. A new perspective on lipid research in age-related macular degeneration.

    PubMed

    van Leeuwen, Elisabeth M; Emri, Eszter; Merle, Benedicte M J; Colijn, Johanna M; Kersten, Eveline; Cougnard-Gregoire, Audrey; Dammeier, Sascha; Meester-Smoor, Magda; Pool, Frances M; de Jong, Eiko K; Delcourt, Cécile; Rodrigez-Bocanegra, Eduardo; Biarnés, Marc; Luthert, Philip J; Ueffing, Marius; Klaver, Caroline C W; Nogoceke, Everson; den Hollander, Anneke I; Lengyel, Imre

    2018-05-04

    There is an urgency to find new treatment strategies that could prevent or delay the onset or progression of AMD. Different classes of lipids and lipoproteins metabolism genes have been associated with AMD in a multiple ways, but despite the ever-increasing knowledge base, we still do not understand fully how circulating lipids or local lipid metabolism contribute to AMD. It is essential to clarify whether dietary lipids, systemic or local lipoprotein metabolismtrafficking of lipids in the retina should be targeted in the disease. In this article, we critically evaluate what has been reported in the literature and identify new directions needed to bring about a significant advance in our understanding of the role for lipids in AMD. This may help to develop potential new treatment strategies through targeting the lipid homeostasis. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. Lipidomic Profiles in Diabetes and Dementia.

    PubMed

    Huynh, Kevin; Martins, Ralph N; Meikle, Peter J

    2017-01-01

    Lipids are a diverse class of hydrophobic and amphiphilic molecules which make up the bulk of most biological systems and are essential for human life. The role of lipids in health and disease has been recognized for many decades, as evidenced by the early identification of cholesterol as an important risk factor of heart disease and the development and introduction of statins as a one of the most successful therapeutic interventions to date. While several studies have demonstrated an increased risk of dementia, including Alzheimer's disease (AD), in those with diabetes mellitus, the nature of this risk is not well understood. Recent developments in the field of lipidomics, driven primarily by technological advances in high pressure liquid chromatography and particularly mass spectrometry, have enabled the detailed characterization of the many hundreds of individual lipid species in mammalian systems and their association with disease states. Diabetes mellitus and AD have received particular attention due to their prominence in Western societies as a result of the ongoing obesity epidemic and the aging populations. In this review, we examine how these lipidomic studies are informing on the relationship between lipid metabolism with diabetes and AD and how this may inform on the common pathological pathways that link diabetes risk with dementia.

  13. Curcumin as a potential candidate for treating hyperlipidemia: A review of cellular and metabolic mechanisms.

    PubMed

    Panahi, Yunes; Ahmadi, Yasin; Teymouri, Manouchehr; Johnston, Thomas P; Sahebkar, Amirhossein

    2018-01-01

    Curcumin is an herbal polyphenol extensively investigated for antioxidant, anti-inflammatory, and hypolipidaemic properties. In the present review, the efficacy of curcumin for improving a plasma lipid profile has been evaluated and compared with statins, a well-known class of medicines for treating hypercholesterolemia and hyperlipidaemia. Curcumin is presumably most effective in reducing triglyceride (TG), while statins are most efficient in lowering low-density lipoproteins-cholesterol (LDL-C). Additionally, various molecular and metabolic mediators of cholesterol and plasma lipid homeostasis are discussed in relation to how they are modulated by curcumin or statins. Overall, curcumin influences the same mediators of plasma lipid alteration as statins do. Almost all the pathways through which cholesterol trafficking takes place are affected by these agents. These include gastrointestinal absorption of dietary cholesterol, hepatocellular removal of plasma cholesterol, the mediators of reverse cholesterol transport, and removal of cholesterol from peripheral tissues. Moreover, the reactive oxygen species (ROS) scavenging potential of curcumin limits the risk of lipid peroxidation that triggers inflammatory responses causing cardiovascular diseases (CVD) and atherosclerosis. Taken together, curcumin could be used as a safe and well-tolerated adjunct to statins to control hyperlipidaemia more effectively than statins alone. © 2017 Wiley Periodicals, Inc.

  14. Lipid markers of diet history and their retention during experimental starvation in the Bering Sea euphausiid Thysanoessa raschii

    NASA Astrophysics Data System (ADS)

    Pleuthner, Rachel L.; Shaw, C. Tracy; Schatz, Megan J.; Lessard, Evelyn J.; Harvey, H. Rodger

    2016-12-01

    Two extended pulsed feeding experiments, following the spring bloom period, investigated lipid retention in the prominent Bering Sea euphausiid (krill) Thysanoessa raschii. These experiments occurred during late spring and early summer of 2010. Concurrent taxonomic analysis of the natural algal community allowed prey type to be linked to lipid composition of the natural communities. In late spring, experimental periods of feeding followed by starvation showed an overall decrease in total lipid for T. raschii. In early summer, no consistent trend was observed for total lipid with the visible presence of storage lipid in some animals. Polar lipids, as phospholipids, were the dominant krill lipid class in both experiments constituting ≥88% of total lipid, and triacylglycerols reached a maximum of 5% of total lipid. The sterols cholesterol and brassicasterol+desmosterol comprised 98-99% of total sterol abundances in T. raschii throughout both experiments, even after feeding periods when alternative sterols (i.e. the algal sterol 24-methylenecholesterol) accounted for up to 39% of sterols in potential food particles. Cholesterol abundance and concentration increased during both incubations, likely due to the metabolism of dietary sterols. Major fatty acids observed in krill included C14:0n, C16:0n, C16:1(n-7), C18:1(n-7), C18:1(n-9), C20:5(n-3), and C22:6(n-3) with the diatom-attributed C16:1(n-7) decreasing in abundance and concentration during starvation. Low concentrations of the dinoflagellate-derived sterol and a novel C28:8 PUFA, typically found in dinoflagellates and prymnesiophytes, indicated predation on protozooplankton in early summer when diatom abundances were low. The stability of lipid distributions over periods of starvation and intermittent feeding suggest that fatty acid and sterol biomarkers present in this polar euphausiid principally reflect long-term diet history rather than short-term feeding episodes.

  15. Lipid profiles of detergent resistant fractions of the plasma membrane in oat and rye in association with cold acclimation and freezing tolerance.

    PubMed

    Takahashi, Daisuke; Imai, Hiroyuki; Kawamura, Yukio; Uemura, Matsuo

    2016-04-01

    Cold acclimation (CA) results in alteration of the plasma membrane (PM) lipid composition in plants, which plays a crucial role in the acquisition of freezing tolerance via membrane stabilization. Recent studies have indicated that PM structure is consistent with the fluid mosaic model but is laterally non-homogenous and contains microdomains enriched in sterols, sphingolipids and specific proteins. In plant cells, the function of these microdomains in relation to CA and freezing tolerance is not yet fully understood. The present study aimed to investigate the lipid compositions of detergent resistant fractions of the PM (DRM) which are considered to represent microdomains. They were prepared from leaves of low-freezing tolerant oat and high-freezing tolerant rye. The DRMs contained higher proportions of sterols, sphingolipids and saturated phospholipids than the PM. In particular, one of the sterol lipid classes, acylated sterylglycoside, was the predominant sterol in oat DRM while rye DRM contained free sterol as the major sterol. Oat and rye showed different patterns (or changes) of sterols and 2-hydroxy fatty acids of sphingolipids of DRM lipids during CA. Taken together, these results suggest that CA-induced changes of lipid classes and molecular species in DRMs are associated with changes in the thermodynamic properties and physiological functions of microdomains during CA and hence, influence plant freezing tolerance. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Mechanisms of Phosphorus Acquisition and Lipid Class Remodeling under P Limitation in a Marine Microalga1[OPEN

    PubMed Central

    Winge, Per; El Assimi, Aimen; Jouhet, Juliette; Vadstein, Olav

    2017-01-01

    Molecular mechanisms of phosphorus (P) limitation are of great interest for understanding algal production in aquatic ecosystems. Previous studies point to P limitation-induced changes in lipid composition. As, in microalgae, the molecular mechanisms of this specific P stress adaptation remain unresolved, we reveal a detailed phospholipid-recycling scheme in Nannochloropsis oceanica and describe important P acquisition genes based on highly corresponding transcriptome and lipidome data. Initial responses to P limitation showed increased expression of genes involved in P uptake and an expansion of the P substrate spectrum based on purple acid phosphatases. Increase in P trafficking displayed a rearrangement between compartments by supplying P to the chloroplast and carbon to the cytosol for lipid synthesis. We propose a novel phospholipid-recycling scheme for algae that leads to the rapid reduction of phospholipids and synthesis of the P-free lipid classes. P mobilization through membrane lipid degradation is mediated mainly by two glycerophosphoryldiester phosphodiesterases and three patatin-like phospholipases A on the transcriptome level. To compensate for low phospholipids in exponential growth, N. oceanica synthesized sulfoquinovosyldiacylglycerol and diacylglyceroltrimethylhomoserine. In this study, it was shown that an N. oceanica strain has a unique repertoire of genes that facilitate P acquisition and the degradation of phospholipids compared with other stramenopiles. The novel phospholipid-recycling scheme opens new avenues for metabolic engineering of lipid composition in algae. PMID:29051196

  17. Detection of Independent Associations of Plasma Lipidomic Parameters with Insulin Sensitivity Indices Using Data Mining Methodology.

    PubMed

    Kopprasch, Steffi; Dheban, Srirangan; Schuhmann, Kai; Xu, Aimin; Schulte, Klaus-Martin; Simeonovic, Charmaine J; Schwarz, Peter E H; Bornstein, Stefan R; Shevchenko, Andrej; Graessler, Juergen

    2016-01-01

    Glucolipotoxicity is a major pathophysiological mechanism in the development of insulin resistance and type 2 diabetes mellitus (T2D). We aimed to detect subtle changes in the circulating lipid profile by shotgun lipidomics analyses and to associate them with four different insulin sensitivity indices. The cross-sectional study comprised 90 men with a broad range of insulin sensitivity including normal glucose tolerance (NGT, n = 33), impaired glucose tolerance (IGT, n = 32) and newly detected T2D (n = 25). Prior to oral glucose challenge plasma was obtained and quantitatively analyzed for 198 lipid molecular species from 13 different lipid classes including triacylglycerls (TAGs), phosphatidylcholine plasmalogen/ether (PC O-s), sphingomyelins (SMs), and lysophosphatidylcholines (LPCs). To identify a lipidomic signature of individual insulin sensitivity we applied three data mining approaches, namely least absolute shrinkage and selection operator (LASSO), Support Vector Regression (SVR) and Random Forests (RF) for the following insulin sensitivity indices: homeostasis model of insulin resistance (HOMA-IR), glucose insulin sensitivity index (GSI), insulin sensitivity index (ISI), and disposition index (DI). The LASSO procedure offers a high prediction accuracy and and an easier interpretability than SVR and RF. After LASSO selection, the plasma lipidome explained 3% (DI) to maximal 53% (HOMA-IR) variability of the sensitivity indexes. Among the lipid species with the highest positive LASSO regression coefficient were TAG 54:2 (HOMA-IR), PC O- 32:0 (GSI), and SM 40:3:1 (ISI). The highest negative regression coefficient was obtained for LPC 22:5 (HOMA-IR), TAG 51:1 (GSI), and TAG 58:6 (ISI). Although a substantial part of lipid molecular species showed a significant correlation with insulin sensitivity indices we were able to identify a limited number of lipid metabolites of particular importance based on the LASSO approach. These few selected lipids with the closest connection to sensitivity indices may help to further improve disease risk prediction and disease and therapy monitoring.

  18. Proximate composition and energy density of some North Pacific forage fishes

    USGS Publications Warehouse

    van Pelt, Thomas I.; Piatt, John F.; Lance, Brian K.; Roby, Daniel D.

    1997-01-01

    Mature pelagic forage fish species (capelin, sand lance, squid) had greater lipid concentrations than juvenile age-classes of large demersal and pelagic fish species (walleye pollock, Pacific cod, Atka mackerel, greenling, prowfish, rockfish, sablefish). Myctophids preyed on by puffins have at least twice as much lipid per gram compared to mature capelin, sand lance and squid, and an order of magnitude greater lipid concentrations than juvenile forage fish. Energy density of forage fishes was positively correlated with lipid content, and negatively correlated with water, ash-free lean dry mass (mostly protein), and ash contents.

  19. Global Monitoring of the Mammalian Lipidome by Quantitative Shotgun Lipidomics.

    PubMed

    Nielsen, Inger Ødum; Maeda, Kenji; Bilgin, Mesut

    2017-01-01

    The emerging field of lipidomics presents the systems biology approach to identify and quantify the full lipid repertoire of cells, tissues, and organisms. The importance of the lipidome is demonstrated by a number of biological studies on dysregulation of lipid metabolism in human diseases such as cancer, diabetes, and neurodegenerative diseases. Exploring changes and regulations in the huge networks of lipids and their metabolic pathways requires a lipidomics methodology: Advanced mass spectrometry that resolves the complexity of the lipidome. Here, we report a comprehensive protocol of quantitative shotgun lipidomics that enables identification and quantification of hundreds of molecular lipid species, covering a wide range of lipid classes, extracted from cultured mammalian cells.

  20. Canine epidermal lipid sampling by skin scrub revealed variations between different body sites and normal and atopic dogs

    PubMed Central

    2014-01-01

    Background Previously, we evaluated a minimally invasive epidermal lipid sampling method called skin scrub, which achieved reproducible and comparable results to skin scraping. The present study aimed at investigating regional variations in canine epidermal lipid composition using the skin scrub technique and its suitability for collecting skin lipids in dogs suffering from certain skin diseases. Eight different body sites (5 highly and 3 lowly predisposed for atopic lesions) were sampled by skin scrub in 8 control dogs with normal skin. Additionally, lesional and non-lesional skin was sampled from 12 atopic dogs and 4 dogs with other skin diseases by skin scrub. Lipid fractions were separated by high performance thin layer chromatography and analysed densitometrically. Results No significant differences in total lipid content were found among the body sites tested in the control dogs. However, the pinna, lip and caudal back contained significantly lower concentrations of ceramides, whereas the palmar metacarpus and the axillary region contained significantly higher amounts of ceramides and cholesterol than most other body sites. The amount of total lipids and ceramides including all ceramide classes were significantly lower in both lesional and non-lesional skin of atopic dogs compared to normal skin, with the reduction being more pronounced in lesional skin. The sampling by skin scrub was relatively painless and caused only slight erythema at the sampled areas but no oedema. Histological examinations of skin biopsies at 2 skin scrubbed areas revealed a potential lipid extraction from the transition zone between stratum corneum and granulosum. Conclusions The present study revealed regional variations in the epidermal lipid and ceramide composition in dogs without skin abnormalities but no connection between lipid composition and predilection sites for canine atopic dermatitis lesions. The skin scrub technique proved to be a practicable sampling method for canine epidermal lipids, revealed satisfying results regarding alterations of skin lipid composition in canine atopic dermatitis and might be suitable for epidermal lipid investigations of further canine skin diseases. Although the ceramide composition should be unaffected by the deeper lipid sampling of skin scrub compared to other sampling methods, further studies are required to determine methodological differences. PMID:25012966

  1. Medical Student Response to a Class Lipid-Screening Project.

    ERIC Educational Resources Information Center

    Lum, Gifford; And Others

    1982-01-01

    Medical students at the State University of New York's Downstate Medical Center initiated and carried out a voluntary project to screen lipids (cholesterol) to identify known coronary risk factors. The incidence of coronary disease factors among these students and the response of students with high cholesterol levels are reported. (Authors/PP)

  2. Design and assembly of new non-viral RNAi delivery agents by microwave-assisted quaternization (MAQ) of tertiary amines

    PubMed Central

    Ghosh, Animesh; Mukherjee, Koushik; Jiang, Xinpeng; Zhou, Ying; McCarroll, Joshua; Qu, James; Swain, Pamela M.; Baigude, Huricha; Rana, Tariq M.

    2010-01-01

    RNA interference (RNAi), a gene-silencing phenomenon whereby double-stranded RNA (dsRNA) triggers the sequence-specific degradation of homologous mRNA. RNAi has been quickly and widely applied to discover gene functions and holds great potential to provide a new class of therapeutic agents. However, new chemistry and delivery approaches are greatly needed to silence disease-causing genes without toxic effects. We reasoned that conjugation of the cholesterol moiety to cationic lipids would enhance RNAi efficiencies and lower the toxic effects of lipid-mediated RNAi delivery. Here, we report the first design and synthesis of new cholesterol-conjugated cationic lipids for RNAi delivery using microwave-assisted quaternization (MAQ) of tertiary amines. This strategy can be employed to develop new classes of non-viral gene delivery agents under safe and fast reaction conditions. PMID:20722369

  3. Lipid rafts in T cell signalling and disease

    PubMed Central

    Jury, Elizabeth C.; Flores-Borja, Fabian; Kabouridis, Panagiotis S.

    2007-01-01

    Lipid rafts is a blanket term used to describe distinct areas in the plasma membrane rich in certain lipids and proteins and which are thought to perform diverse functions. A large number of studies report on lipid rafts having a key role in receptor signalling and activation of lymphocytes. In T cells, lipid raft involvement was demonstrated in the early steps during T cell receptor (TCR) stimulation. Interestingly, recent evidence has shown that signalling in these domains differs in T cells isolated from patients with autoimmune diseases such as systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA). Here, we discuss these findings and explore the potential of lipid rafts as targets for the development of a new class of agents to downmodulate immune responses and for the treatment of autoimmune diseases. PMID:17890113

  4. Novel Bacterial Proteins and Lipids Reveal the Diversity of Triterpenoid Biomarker Synthesis

    NASA Astrophysics Data System (ADS)

    Wei, J. H.; Banta, A. B.; Gill, C. C. C.; Giner, J. L.; Welander, P. V.

    2017-12-01

    Lipids preserved in sediments and rocks function as organic biomarkers providing evidence for the types of organisms that lived in ancient environments. We use a combined approach utilizing comparative genomics, molecular biology, and lipid analysis to discover novel cyclic triteprenoid lipids and their biosynthetic pathways in bacteria. Here, we present two cases of bacterial synthesis of pentacylic triterpenols previously thought to be indicative of eukaryotes, which address current incongruities in the fossil record. Cyclic triterpenoid lipids, such as hopanoids and sterols, are generally associated with bacteria and eukaryotes, respectively. The pentacyclic triterpenoid tetrahymanol, first discovered in the ciliate Tetrahymena pyriformis, and its diagenetic product gammacerane, have been previously interpreted as markers for eukaryotes and linked to water column stratification. Yet the occurrence of tetrahymanol in bacteria implies our knowledge of extant tetrahymanol producers is not complete. Through comparative genomics we identified a new gene required for tetrahymanol synthesis in the bacterium Methylomicrobium alcaliphilum. This gene encodes a novel enzyme, Tetrahymanol synthase (THS), that synthesizes tetrahymanol from the hopanoid diploptene demonstrating a pathway for tetrahymanol production in bacteria distinct from that in eukaryotes. We bionformatically identified THS homologs in 104 bacterial genomes and 472 metagenomes, implying a great diversity of tetrahymanol producers. Lipids of the arborane class, such as iso-arborinol, are commonly found in modern angiosperms. Arobranes are synthesized by the enzyme oxidosqualene cyclase (OSC), which in plants can form both tetra and pentacyclic molecules. While bacteria are known to produce tetracyclic sterol compounds, bacterial synthesis of pentacyclic arborane class triterpenols of this class were previously undiscovered. We have identified a bacterium, Eudoraea adriatica, whose OSC synthesizes arborinols, specifically the novel compounds Eudoraenol and Adriaticol. Discovery of these compounds in bacteria also sheds light on the occurrence of arboranes in Permian sediments predating the angiosperm fossil record, further demonstrating bacteria as a potential source for other orphan biomarkers.

  5. Early recycling compartment trafficking of CD1a is essential for its intersection and presentation of lipid antigens.

    PubMed

    Cernadas, Manuela; Cavallari, Marco; Watts, Gerald; Mori, Lucia; De Libero, Gennaro; Brenner, Michael B

    2010-02-01

    A major step in understanding differences in the nature of Ag presentation was the realization that MHC class I samples peptides transported to the endoplasmic reticulum from the cytosol, whereas MHC class II samples peptides from lysosomes. In contrast to MHC class I and II molecules that present protein Ags, CD1 molecules present lipid Ags for recognition by specific T cells. Each of the five members of the CD1 family (CD1a-e) localizes to a distinct subcompartment of endosomes. Accordingly, it has been widely assumed that the distinct trafficking of CD1 isoforms must also have evolved to enable them to sample lipid Ags that traffic via different routes. Among the CD1 isoforms, CD1a is unusual because it does not have a tyrosine-based cytoplasmic sorting motif and uniquely localizes to the early endocytic recycling compartment. This led us to predict that CD1a might have evolved to focus on lipids that localize to early endocytic/recycling compartments. Strikingly, we found that the glycolipid Ag sulfatide also localized almost exclusively to early endocytic and recycling compartments. Consistent with colocalization of CD1a and sulfatide, wild-type CD1a molecules efficiently presented sulfatide to CD1a-restricted, sulfatide-specific T cells. In contrast, CD1a:CD1b tail chimeras, that retain the same Ag-binding capacity as CD1a but traffic based on the cytoplasmic tail of CD1b to lysosomes, failed to present sulfatide efficiently. Thus, the intracellular trafficking route of CD1a is essential for efficient presentation of lipid Ags that traffic through the early endocytic and recycling pathways.

  6. Some Lipid Droplets Are More Equal Than Others: Different Metabolic Lipid Droplet Pools in Hepatic Stellate Cells.

    PubMed

    Molenaar, Martijn R; Vaandrager, Arie B; Helms, J Bernd

    2017-01-01

    Hepatic stellate cells (HSCs) are professional lipid-storing cells and are unique in their property to store most of the retinol (vitamin A) as retinyl esters in large-sized lipid droplets. Hepatic stellate cell activation is a critical step in the development of chronic liver disease, as activated HSCs cause fibrosis. During activation, HSCs lose their lipid droplets containing triacylglycerols, cholesteryl esters, and retinyl esters. Lipidomic analysis revealed that the dynamics of disappearance of these different classes of neutral lipids are, however, very different from each other. Although retinyl esters steadily decrease during HSC activation, triacylglycerols have multiple pools one of which becomes transiently enriched in polyunsaturated fatty acids before disappearing. These observations are consistent with the existence of preexisting "original" lipid droplets with relatively slow turnover and rapidly recycling lipid droplets that transiently appear during activation of HSCs. Elucidation of the molecular machinery involved in the regulation of these distinct lipid droplet pools may open new avenues for the treatment of liver fibrosis.

  7. The Impact of Preoperative BMI (Obesity Class I, II, and III) on the 12-Month Evolution of Patients Undergoing Laparoscopic Gastric Bypass.

    PubMed

    Ramírez, Eva M; Espinosa, Omar; Berrones, Ricardo; Sepúlveda, Elisa M; Guilbert, Lizbeth; Solís, Miguel; Zerrweck, Carlos

    2018-05-03

    Whether or not the initial body mass index (BMI) influences weight loss and comorbidities improvement after bariatric surgery continues to be a matter of debate. The main reason for this is a lack of studies including obesity class I. Retrospective study with patients submitted to gastric bypass at a single institution. They were classified based on initial BMI (obesity class I, II, and III), and a comparative analysis of their metabolic profile (glucose, HbA1c%, C-peptide, insulin and diabetes medication), lipid profile (triglycerides, total cholesterol, HDL, LDL), and clinical data (systolic/diastolic blood pressure and cardiovascular risk) was performed at 0 and 12 months. Diabetes remission and weight loss were also analyzed. Two-hundred and twenty patients were included (23 in group 1, 113 in group 2, and 84 in group 3). Initial weight, BMI, and number of patients with T2DM were statistically different in group 1; other parameters were homogenous. At 12 months, every group had similar improvement of the metabolic profile, excepting serum insulin. Diabetes remission was 57.9, 61.1, and 60% for group 1, 2, and 3. For weight loss, there were differences between groups when using BMI and percentage of excess weight loss, but not with percentage of total weight loss. The non-metabolic and clinical data improved without differences, except for total cholesterol and LDL. The metabolic, lipid, and clinical profiles associated with obesity present similar improvement 1 year after laparoscopic gastric bypass, despite different baseline BMI. Diabetes remission and percentage of total weight loss were also similar.

  8. A novel informatics concept for high-throughput shotgun lipidomics based on the molecular fragmentation query language

    PubMed Central

    2011-01-01

    Shotgun lipidome profiling relies on direct mass spectrometric analysis of total lipid extracts from cells, tissues or organisms and is a powerful tool to elucidate the molecular composition of lipidomes. We present a novel informatics concept of the molecular fragmentation query language implemented within the LipidXplorer open source software kit that supports accurate quantification of individual species of any ionizable lipid class in shotgun spectra acquired on any mass spectrometry platform. PMID:21247462

  9. Comprehensive lipid analysis: a powerful metanomic tool for predictive and diagnostic medicine.

    PubMed

    Watkins, S M

    2000-09-01

    The power and accuracy of predictive diagnostics stand to improve dramatically as a result of lipid metanomics. The high definition of data obtained with this approach allows multiple rather than single metabolites to be used in markers for a group. Since as many as 40 fatty acids are quantified from each lipid class, and up to 15 lipid classes can be quantified easily, more than 600 individual lipid metabolites can be measured routinely for each sample. Because these analyses are comprehensive, only the most appropriate and unique metabolites are selected for their predictive value. Thus, comprehensive lipid analysis promises to greatly improve predictive diagnostics for phenotypes that directly or peripherally involve lipids. A broader and possibly more exciting aspect of this technology is the generation of metabolic profiles that are not simply markers for disease, but metabolic maps that can be used to identify specific genes or activities that cause or influence the disease state. Metanomics is, in essence, functional genomics from metabolite analysis. By defining the metabolic basis for phenotype, researchers and clinicians will have an extraordinary opportunity to understand and treat disease. Much in the same way that gene chips allow researchers to observe the complex expression response to a stimulus, metanomics will enable researchers to observe the complex metabolic interplay responsible for defining phenotype. By extending this approach beyond the observation of individual dysregulations, medicine will begin to profile not single diseases, but health. As health is the proper balance of all vital metabolic pathways, comprehensive or metanomic analysis lends itself very well to identifying the metabolite distributions necessary for optimum health. Comprehensive and quantitative analysis of lipids would provide this degree of diagnostic power to researchers and clinicians interested in mining metabolic profiles for biological meaning.

  10. A Modern Analogue for Proterozoic Inverse Carbon Isotope Signatures

    NASA Astrophysics Data System (ADS)

    Close, H. G.; Diefendorf, A. F.; Freeman, K. H.; Pearson, A.

    2008-12-01

    The carbon isotope distribution preserved in sedimentary lipids changes near the Neoproterozoic-Cambrian boundary. In older samples, n-alkyl lipids contain more 13C than both isoprenoid lipids and kerogen [1]. In younger samples, the opposite prevails. Although extreme heterotrophy has been invoked as a mechanism to explain the enrichment in 13C [2], here we suggest another explanation. The switch may reflect a fundamental transition from an oligotrophic ocean dominated by prokaryotic biomass, to an ocean in which carbon fixation is more intensive and burial is dominated by eukaryotic biomass. An analogue for Proterozoic ordering is found in the modern, oligotrophic Pacific Ocean, where n-alkyl lipids of picoplankton (0.2-0.5 μm particulate matter) contain excess 13C relative to the same lipids found in larger size classes (> 0.5 μm). Picoplanktonic lipids are heavier isotopically (-18 ‰) than both the sterols of eukaryotes (-23 ‰ to -26 ‰) and the total organic matter (-20 ‰; TOM). The 0.2-0.5 μm size class also has a distinct chain-length abundance profile. Although large particles must be the vehicle for total carbon export, paradoxically the lipid component of export production appears to be dominated by the 0.2-0.5 μm source. The picoplanktonic chain lengths and isotopic composition dominate lipids of TOM at 670 meters. When the ratio of prokaryotic to eukaryotic production is high, as in the modern central Pacific Ocean, it appears that exported material has an inverse carbon isotope signature similar to that preserved in Precambrian samples. [1] Logan, G. A. et al., Nature 376:53-56 (1995). [2] Rothman, D. H. et al., PNAS 100:8124-8129 (2003).

  11. LipidPedia: a comprehensive lipid knowledgebase.

    PubMed

    Kuo, Tien-Chueh; Tseng, Yufeng Jane

    2018-04-10

    Lipids are divided into fatty acyls, glycerolipids, glycerophospholipids, sphingolipids, saccharolipids, sterols, prenol lipids and polyketides. Fatty acyls and glycerolipids are commonly used as energy storage, whereas glycerophospholipids, sphingolipids, sterols and saccharolipids are common used as components of cell membranes. Lipids in fatty acyls, glycerophospholipids, sphingolipids and sterols classes play important roles in signaling. Although more than 36 million lipids can be identified or computationally generated, no single lipid database provides comprehensive information on lipids. Furthermore, the complex systematic or common names of lipids make the discovery of related information challenging. Here, we present LipidPedia, a comprehensive lipid knowledgebase. The content of this database is derived from integrating annotation data with full-text mining of 3,923 lipids and more than 400,000 annotations of associated diseases, pathways, functions, and locations that are essential for interpreting lipid functions and mechanisms from over 1,400,000 scientific publications. Each lipid in LipidPedia also has its own entry containing a text summary curated from the most frequently cited diseases, pathways, genes, locations, functions, lipids and experimental models in the biomedical literature. LipidPedia aims to provide an overall synopsis of lipids to summarize lipid annotations and provide a detailed listing of references for understanding complex lipid functions and mechanisms. LipidPedia is available at http://lipidpedia.cmdm.tw. yjtseng@csie.ntu.edu.tw. Supplementary data are available at Bioinformatics online.

  12. Diabetes-induced changes in specific lipid molecular species in rat myocardium.

    PubMed Central

    Han, X; Abendschein, D R; Kelley, J G; Gross, R W

    2000-01-01

    Intrinsic cardiac dysfunction during the diabetic state has been causally linked to changes in myocardial lipid metabolism. However, the precise alterations in the molecular species of myocardial polar and non-polar lipids during the diabetic state and their responses to insulin have not been investigated. Herein we demonstrate four specific alterations in rat myocardial lipid molecular species after induction of the diabetic state by streptozotocin treatment: (i) a massive remodelling of triacylglycerol molecular species including a >5-fold increase in tripalmitin mass and a 60% decrease in polyunsaturated triacylglycerol molecular species mass (i.e. triacylglycerols containing at least one acyl residue with more than two double bonds); (ii) a 46% increase in myocardial phosphatidylinositol mass; (iii) a 44% increase in myocardial plasmenylethanolamine mass and (iv) a 22% decrease in 1-stearoyl-2-arachidonoyl phosphatidylethanolamine content. Each of the changes in phospholipid classes, subclasses and individual molecular species were prevented by insulin treatment after induction of the diabetic state. In sharp contrast, the alterations in triacylglycerol molecular species were not preventable by peripheral insulin treatment after induction of the diabetic state. These results segregate diabetes-induced alterations in myocardial lipid metabolism into changes that can be remedied or not by routine peripheral insulin treatment and suggest that peripheral insulin therapy alone may not be sufficient to correct all of the metabolic alterations present in diabetic myocardium. PMID:11062060

  13. Quantitative analysis of glycerophospholipids by LC-MS: acquisition, data handling, and interpretation

    PubMed Central

    Myers, David S.; Ivanova, Pavlina T.; Milne, Stephen B.; Brown, H. Alex

    2012-01-01

    As technology expands what it is possible to accurately measure, so too the challenges faced by modern mass spectrometry applications expand. A high level of accuracy in lipid quantitation across thousands of chemical species simultaneously is demanded. While relative changes in lipid amounts with varying conditions may provide initial insights or point to novel targets, there are many questions that require determination of lipid analyte absolute quantitation. Glycerophospholipids present a significant challenge in this regard, given the headgroup diversity, large number of possible acyl chain combinations, and vast range of ionization efficiency of species. Lipidomic output is being used more often not just for profiling of the masses of species, but also for highly-targeted flux-based measurements which put additional burdens on the quantitation pipeline. These first two challenges bring into sharp focus the need for a robust lipidomics workflow including deisotoping, differentiation from background noise, use of multiple internal standards per lipid class, and the use of a scriptable environment in order to create maximum user flexibility and maintain metadata on the parameters of the data analysis as it occurs. As lipidomics technology develops and delivers more output on a larger number of analytes, so must the sophistication of statistical post-processing also continue to advance. High-dimensional data analysis methods involving clustering, lipid pathway analysis, and false discovery rate limitation are becoming standard practices in a maturing field. PMID:21683157

  14. Infrared microscopic imaging of cutaneous wound healing: lipid conformation in the migrating epithelial tongue

    NASA Astrophysics Data System (ADS)

    Yu, Guo; Stojadinovic, Olivera; Tomic-Canic, Marjana; Flach, Carol R.; Mendelsohn, Richard

    2012-09-01

    Infrared microscopic imaging has been utilized to analyze for the first time the spatial distribution of lipid structure in an ex vivo human organ culture skin wound healing model. Infrared images were collected at zero, two, four, and six days following wounding. Analysis of lipid infrared spectral properties revealed the presence of a lipid class with disordered chains within and in the vicinity of the migrating epithelial tongue. The presence of lipid ester C=O bands colocalized with the disordered chains provided evidence for the presence of carbonyl-containing lipid species. Gene array data complemented the biophysical studies and provided a biological rationale for the generation of the disordered chain species. This is the first clear observation, to our knowledge, of disordered lipid involvement in cutaneous wound healing. Several possibilities are discussed for the biological relevance of these observations.

  15. A novel lipid transfer protein from the pea Pisum sativum: isolation, recombinant expression, solution structure, antifungal activity, lipid binding, and allergenic properties.

    PubMed

    Bogdanov, Ivan V; Shenkarev, Zakhar O; Finkina, Ekaterina I; Melnikova, Daria N; Rumynskiy, Eugene I; Arseniev, Alexander S; Ovchinnikova, Tatiana V

    2016-04-30

    Plant lipid transfer proteins (LTPs) assemble a family of small (7-9 kDa) ubiquitous cationic proteins with an ability to bind and transport lipids as well as participate in various physiological processes including defense against phytopathogens. They also form one of the most clinically relevant classes of plant allergens. Nothing is known to date about correlation between lipid-binding and IgE-binding properties of LTPs. The garden pea Pisum sativum is widely consumed crop and important allergenic specie of the legume family. This work is aimed at isolation of a novel LTP from pea seeds and characterization of its structural, functional, and allergenic properties. Three novel lipid transfer proteins, designated as Ps-LTP1-3, were found in the garden pea Pisum sativum, their cDNA sequences were determined, and mRNA expression levels of all the three proteins were measured at different pea organs. Ps-LTP1 was isolated for the first time from the pea seeds, and its complete amino acid sequence was determined. The protein exhibits antifungal activity and is a membrane-active compound that causes a leakage from artificial liposomes. The protein binds various lipids including bioactive jasmonic acid. Spatial structure of the recombinant uniformly (13)C,(15)N-labelled Ps-LTP1 was solved by heteronuclear NMR spectroscopy. In solution the unliganded protein represents the mixture of two conformers (relative populations ~ 85:15) which are interconnected by exchange process with characteristic time ~ 100 ms. Hydrophobic residues of major conformer form a relatively large internal tunnel-like lipid-binding cavity (van der Waals volume comes up to ~1000 Å(3)). The minor conformer probably corresponds to the protein with the partially collapsed internal cavity. For the first time conformational heterogeneity in solution was shown for an unliganded plant lipid transfer protein. Heat denaturation profile and simulated gastrointestinal digestion assay showed that Ps-LTP1 displayed a high thermal and digestive proteolytic resistance proper for food allergens. The reported structural and immunological findings seem to describe Ps-LTP1 as potential cross-reactive allergen in LTP-sensitized patients, mostly Pru p 3(+) ones. Similarly to allergenic LTPs the potential IgE-binding epitope of Ps-LTP1 is located near the proposed entrance into internal cavity and could be involved in lipid-binding.

  16. Metabolomics and Ionomics of Potato Tuber Reveals an Influence of Cultivar and Market Class on Human Nutrients and Bioactive Compounds

    PubMed Central

    Chaparro, Jacqueline M.; Holm, David G.; Broeckling, Corey D.; Prenni, Jessica E.; Heuberger, Adam L.

    2018-01-01

    Potato (Solanum tuberosum L.) is an important global food crop that contains phytochemicals with demonstrated effects on human health. Understanding sources of chemical variation of potato tuber can inform breeding for improved health attributes of the cooked food. Here, a comprehensive metabolomics (UPLC- and GC-MS) and ionomics (ICP-MS) analysis of raw and cooked potato tuber was performed on 60 unique potato genotypes that span 5 market classes including russet, red, yellow, chip, and specialty potatoes. The analyses detected 2,656 compounds that included known bioactives (43 compounds), nutrients (42), lipids (76), and 23 metals. Most nutrients and bioactives were partially degraded during cooking (44 out of 85; 52%), however genotypes with high quantities of bioactives remained highest in the cooked tuber. Chemical variation was influenced by genotype and market class. Specifically, ~53% of all detected compounds from cooked potato varied among market class and 40% varied by genotype. The most notable metabolite profiles were observed in yellow-flesh potato which had higher levels of carotenoids and specialty potatoes which had the higher levels of chlorogenic acid as compared to the other market classes. Variation in several molecules with known association to health was observed among market classes and included vitamins (e.g., pyridoxal, ~2-fold variation), bioactives (e.g., chlorogenic acid, ~40-fold variation), medicinals (e.g., kukoamines, ~6-fold variation), and minerals (e.g., calcium, iron, molybdenum, ~2-fold variation). Furthermore, more metabolite variation was observed within market class than among market class (e.g., α-tocopherol, ~1-fold variation among market class vs. ~3-fold variation within market class). Taken together, the analysis characterized significant metabolite and mineral variation in raw and cooked potato tuber, and support the potential to breed new cultivars for improved health traits. PMID:29876353

  17. Influence of north climatic conditions on the peat lipids composition

    NASA Astrophysics Data System (ADS)

    Serebrennikova, O. V.; Strelnikova, E. B.; Duchko, M. A.; Preis, Yu I.

    2018-03-01

    The paper studies the composition of lipid organic compounds of peat from the northern regions of the Russian Federation. Peat was sampled in the northern taiga, forest-tundra and tundra zones, characterized by various hydrothermal conditions and vegetation cover. n-Alkanes, fatty acids and their ethers, aldehydes, ketones, alcohols, tocopherols, squalene, bi-, tri- and pentacyclic terpenoids, as well as steroids were identified in peat lipids by gas chromatography-mass spectrometry. The dependences of the total content of lipids and the majority of the investigated compounds classes on the ambient temperature and vegetation, as well as the correlation between the composition of n-alkanes and humidity were revealed.

  18. Mechanisms of Phosphorus Acquisition and Lipid Class Remodeling under P Limitation in a Marine Microalga.

    PubMed

    Mühlroth, Alice; Winge, Per; El Assimi, Aimen; Jouhet, Juliette; Maréchal, Eric; Hohmann-Marriott, Martin F; Vadstein, Olav; Bones, Atle M

    2017-12-01

    Molecular mechanisms of phosphorus (P) limitation are of great interest for understanding algal production in aquatic ecosystems. Previous studies point to P limitation-induced changes in lipid composition. As, in microalgae, the molecular mechanisms of this specific P stress adaptation remain unresolved, we reveal a detailed phospholipid-recycling scheme in Nannochloropsis oceanica and describe important P acquisition genes based on highly corresponding transcriptome and lipidome data. Initial responses to P limitation showed increased expression of genes involved in P uptake and an expansion of the P substrate spectrum based on purple acid phosphatases. Increase in P trafficking displayed a rearrangement between compartments by supplying P to the chloroplast and carbon to the cytosol for lipid synthesis. We propose a novel phospholipid-recycling scheme for algae that leads to the rapid reduction of phospholipids and synthesis of the P-free lipid classes. P mobilization through membrane lipid degradation is mediated mainly by two glycerophosphoryldiester phosphodiesterases and three patatin-like phospholipases A on the transcriptome level. To compensate for low phospholipids in exponential growth, N. oceanica synthesized sulfoquinovosyldiacylglycerol and diacylglyceroltrimethylhomoserine. In this study, it was shown that an N. oceanica strain has a unique repertoire of genes that facilitate P acquisition and the degradation of phospholipids compared with other stramenopiles. The novel phospholipid-recycling scheme opens new avenues for metabolic engineering of lipid composition in algae. © 2017 American Society of Plant Biologists. All Rights Reserved.

  19. Defense related decadienal elicits membrane lipid remodeling in the diatom Phaeodactylum tricornutum

    PubMed Central

    Sabharwal, Tanya; Sathasivan, Kanagasabapathi

    2017-01-01

    Diatoms rapidly release extracellular oxylipins (oxygenated lipids) including polyunsaturated aldehydes in response to herbivory and other stresses. Oxylipins have several defense-related activities including inhibition of reproduction in herbivores and signaling to distant diatoms. Physiological changes in diatoms exposed to varying levels of oxylipins are only beginning to be understood. In this study, Phaeodactylum tricornutum cultures were treated with sublethal concentrations of the polyunsaturated aldehyde trans,trans-2,4-decadienal (DD) to assess effects on lipid composition and membrane permeability. In cells treated with DD for 3 hr, all measured saturated and unsaturated fatty acids significantly decreased (0.46–0.69 fold of levels in solvent control cells) except for 18:2 (decreased but not significantly). The decrease was greater in the polyunsaturated fatty acid pool than the saturated and monounsaturated fatty acid pool. Analysis of lipid classes revealed increased abundances of phosphatidylethanolamine and phosphatidylcholine at 3 and 6 hr. Concomitantly, these and other membrane lipids exhibited increased saturated and monounsaturated acyl chains content relative to polyunsaturated acyl chains compared to control cells. Evidence of decreased plasma membrane permeability in DD treated cells was obtained, based on reduced uptake of two of three dyes relative to control cells. Additionally, cells pre-conditioned with a sublethal DD dose for 3 hr then treated with a lethal DD dose for 2 hr exhibited greater membrane integrity than solvent pre-conditioned control cells that were similarly treated. Taken together, the data are supportive of the hypothesis that membrane remodeling induced by sublethal DD is a key element in the development of cellular resistance in diatoms to varying and potentially toxic levels of polyunsaturated aldehydes in environments impacted by herbivory or other stresses. PMID:28582415

  20. A systematic survey of lipids across mouse tissues

    PubMed Central

    Jain, Mohit; Ngoy, Soeun; Sheth, Sunil A.; Swanson, Raymond A.; Rhee, Eugene P.; Liao, Ronglih; Clish, Clary B.; Mootha, Vamsi K.

    2014-01-01

    Lipids are a diverse collection of macromolecules essential for normal physiology, but the tissue distribution and function for many individual lipid species remain unclear. Here, we report a mass spectrometry survey of lipid abundance across 18 mouse tissues, detecting ∼1,000 mass spectrometry features, of which we identify 179 lipids from the glycerolipids, glycerophospholipids, lysophospholipids, acylcarnitines, sphingolipids, and cholesteryl ester classes. Our data reveal tissue-specific organization of lipids and can be used to generate testable hypotheses. For example, our data indicate that circulating triglycerides positively and negatively associated with future diabetes in humans are enriched in mouse adipose tissue and liver, respectively, raising hypotheses regarding the tissue origins of these diabetes-associated lipids. We also integrate our tissue lipid data with gene expression profiles to predict a number of substrates of lipid-metabolizing enzymes, highlighting choline phosphotransferases and sterol O-acyltransferases. Finally, we identify several tissue-specific lipids not present in plasma under normal conditions that may be of interest as biomarkers of tissue injury, and we show that two of these lipids are released into blood following ischemic brain injury in mice. This resource complements existing compendia of tissue gene expression and may be useful for integrative physiology and lipid biology. PMID:24518676

  1. Concurrent studies of the flow of digesta in the duodenum and of exocrine pancreatic secretion of calves. 7. Influence of milk substitutes on abomasal lipolysis and biliary secretion.

    PubMed

    Ternouth, J H; Thompson, S Y; Edwards-Webb, J D

    1980-09-01

    1. The abomasal hydrolysis of lipids and the flow of endogenous (biliary) lipids was studied in two Friesian calves given four milk-substitute diets, by sampling the duodenal digesta. The diets were: reconstituted, mildly preheated, spray-dried skim-milk powder with (SKF) or without (SK) margarine fat or with 500 g/kg skim-milk powder in diet SKF replaced by soy-beran flour (ASKF) or fish-protein concentrate (BSKF) together with dried whey. The diets were given ad lib. twice daily from 13 to 37 d of age, each diet being given for six consecutive days. Collections of duodenal digesta from the re-entrant cannula situated caudal to the bile duct were made for 12 h after feeding the 6th and 12th meals for each diet. Samples from one collection only were subjected to detailed analysis of the lipid classes. 2. The inclusion of non-milk protein (ASKF and BSKF) not only increased the rate of passage of lipid through the abomasum but also the proportion of the lipid present as triglyceride particularly, in the first 2 h after feeding. 3. In a 12 h period, 2.3-6.3 g 'polar' lipids (mainly biliary phospholipids) were estimated to have been secreted. The rate of flow was high during the first hour after feeding and constant thereafter. The quantity of 'polar' lipid was not related to the type of milk fed or the duodenal flow of lipid. 4. When diet SK was fed, the small amounts of lipid present were extensively hydrolysed so that free fatty acids represented 700 g/kg lipid of dietary origin passing through the duodenum. When margarine fat was included in the diets (SKF, ASKF and BSKF), the free fatty acids represented only 210 g/kg lipid of dietary origin. 5. The quantities of lipid and nitrogen passing through the duodenum were poorly related to the quantities ingested at the beginning of the 12 h experimental period but were closely related to each other.

  2. A complete backbone spectral assignment of human apolipoprotein AI on a 38 kDa preβHDL (Lp1-AI) particle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, Xuefeng; Yang, Yunhuang; Neville, T.

    2007-06-12

    Apolipoprotein A-I (apoAI, 243-residues) is the major protein component of the high-density lipoprotein (HDL) that has been a hot subject of interests because of its anti-atherogenic properties. This important property of apoAI is related to its roles in reverse cholesterol transport pathway. Upon lipid-binding, apoAI undergoes conformational changes from lipid-free to several different HDL-associated states (1). These different conformational states regulate HDL formation, maturation and transportation. Two initial conformational states of apoAI are lipid-free apoAI and apoAI/preβHDL that recruit phospholipids and cholesterol to form HDL particles. In particular, lipid-free apoAI specifically binds to phospholipids to form lipid-poor apoAI, including apoAI/preβ-HDLmore » (~37 kDa). As a unique class of lipid poor HDL, both in vitro and in vivo evidence demonstrates that apoAI/preβ-HDLs are the most effective acceptors specifically for free cholesterol in human plasma and serves as the precursor of HDL particles (2). Here we report a complete backbone spectral assignment of human apoAI/preβHDL. Secondary structure prediction using backbone NMR parameters indicates that apoAI/preβHDL displays a two-domain structure: the N-terminal four helix-bundle domain (residues 1-186) and the C-terminal flexible domain (residues 187-243). A structure of apoAI/preβ-HDL is the first lipid-associated structure of apoAI and is critical for us to understand how apoAI recruits cholesterol to initialize HDL formation. BMRB deposit with accession number: 15093.« less

  3. A mitochondrial-targeted ubiquinone modulates muscle lipid profile and improves mitochondrial respiration in obesogenic diet-fed rats.

    PubMed

    Coudray, Charles; Fouret, Gilles; Lambert, Karen; Ferreri, Carla; Rieusset, Jennifer; Blachnio-Zabielska, Agnieszka; Lecomte, Jérôme; Ebabe Elle, Raymond; Badia, Eric; Murphy, Michael P; Feillet-Coudray, Christine

    2016-04-14

    The prevalence of the metabolic syndrome components including abdominal obesity, dyslipidaemia and insulin resistance is increasing in both developed and developing countries. It is generally accepted that the development of these features is preceded by, or accompanied with, impaired mitochondrial function. The present study was designed to analyse the effects of a mitochondrial-targeted lipophilic ubiquinone (MitoQ) on muscle lipid profile modulation and mitochondrial function in obesogenic diet-fed rats. For this purpose, twenty-four young male Sprague-Dawley rats were divided into three groups and fed one of the following diets: (1) control, (2) high fat (HF) and (3) HF+MitoQ. After 8 weeks, mitochondrial function markers and lipid metabolism/profile modifications in skeletal muscle were measured. The HF diet was effective at inducing the major features of the metabolic syndrome--namely, obesity, hepatic enlargement and glucose intolerance. MitoQ intake prevented the increase in rat body weight, attenuated the increase in adipose tissue and liver weights and partially reversed glucose intolerance. At the muscle level, the HF diet induced moderate TAG accumulation associated with important modifications in the muscle phospholipid classes and in the fatty acid composition of total muscle lipid. These lipid modifications were accompanied with decrease in mitochondrial respiration. MitoQ intake corrected the lipid alterations and restored mitochondrial respiration. These results indicate that MitoQ protected obesogenic diet-fed rats from some features of the metabolic syndrome through its effects on muscle lipid metabolism and mitochondrial activity. These findings suggest that MitoQ is a promising candidate for future human trials in the metabolic syndrome prevention.

  4. Phytoplankton in the ocean use non-phosphorus lipids in response to phosphorus scarcity.

    PubMed

    Van Mooy, Benjamin A S; Fredricks, Helen F; Pedler, Byron E; Dyhrman, Sonya T; Karl, David M; Koblízek, Michal; Lomas, Michael W; Mincer, Tracy J; Moore, Lisa R; Moutin, Thierry; Rappé, Michael S; Webb, Eric A

    2009-03-05

    Phosphorus is an obligate requirement for the growth of all organisms; major biochemical reservoirs of phosphorus in marine plankton include nucleic acids and phospholipids. However, eukaryotic phytoplankton and cyanobacteria (that is, 'phytoplankton' collectively) have the ability to decrease their cellular phosphorus content when phosphorus in their environment is scarce. The biochemical mechanisms that allow phytoplankton to limit their phosphorus demand and still maintain growth are largely unknown. Here we show that phytoplankton, in regions of oligotrophic ocean where phosphate is scarce, reduce their cellular phosphorus requirements by substituting non-phosphorus membrane lipids for phospholipids. In the Sargasso Sea, where phosphate concentrations were less than 10 nmol l-1, we found that only 1.3 +/- 0.6% of phosphate uptake was used for phospholipid synthesis; in contrast, in the South Pacific subtropical gyre, where phosphate was greater than 100 nmol l-1, plankton used 17 6% (ref. 6). Examination of the planktonic membrane lipids at these two locations showed that classes of sulphur- and nitrogen-containing membrane lipids, which are devoid of phosphorus, were more abundant in the Sargasso Sea than in the South Pacific. Furthermore, these non-phosphorus, 'substitute lipids' were dominant in phosphorus-limited cultures of all of the phytoplankton species we examined. In contrast, the marine heterotrophic bacteria we examined contained no substitute lipids and only phospholipids. Thus heterotrophic bacteria, which compete with phytoplankton for nutrients in oligotrophic regions like the Sargasso Sea, appear to have a biochemical phosphorus requirement that phytoplankton avoid by using substitute lipids. Our results suggest that phospholipid substitutions are fundamental biochemical mechanisms that allow phytoplankton to maintain growth in the face of phosphorus limitation.

  5. Lipid, Fatty Acid and Energy Density Profiles of White Sharks: Insights into the Feeding Ecology and Ecophysiology of a Complex Top Predator

    PubMed Central

    Pethybridge, Heidi R.; Parrish, Christopher C.; Bruce, Barry D.; Young, Jock W.; Nichols, Peter D.

    2014-01-01

    Lipids are major sources of metabolic energy in sharks and are closely linked to environmental conditions and biological cycles, such as those related to diet, reproduction and migration. In this study, we report for the first time, the total lipid content, lipid class composition and fatty acid profiles of muscle and liver tissue of white sharks, Carcharodon carcharias, of various lengths (1.5–3.9 m), sampled at two geographically separate areas off southern and eastern Australia. Muscle tissue was low in total lipid content (<0.9% wet mass, wm) and was dominated by phospholipids (>90% of total lipid) and polyunsaturated fatty acids (34±12% of total fatty acids). In contrast, liver was high in total lipid which varied between 51–81% wm and was dominated by triacylglycerols (>93%) and monounsaturated fatty acids (36±12%). With knowledge of total lipid and dry tissue mass, we estimated the energy density of muscle (18.4±0.1 kJ g−1 dm) and liver (34.1±3.2 kJ g−1 dm), demonstrating that white sharks have very high energetic requirements. High among-individual variation in these biochemical parameters and related trophic markers were observed, but were not related to any one biological or environmental factor. Signature fatty acid profiles suggest that white sharks over the size range examined are generalist predators with fish, elasmobranchs and mammalian blubber all contributing to the diet. The ecological applications and physiological influences of lipids in white sharks are discussed along with recommendations for future research, including the use of non-lethal sampling to examine the nutritional condition, energetics and dietary relationships among and between individuals. Such knowledge is fundamental to better understand the implications of environmental perturbations on this iconic and threatened species. PMID:24871223

  6. Lipid, fatty acid and energy density profiles of white sharks: insights into the feeding ecology and ecophysiology of a complex top predator.

    PubMed

    Pethybridge, Heidi R; Parrish, Christopher C; Bruce, Barry D; Young, Jock W; Nichols, Peter D

    2014-01-01

    Lipids are major sources of metabolic energy in sharks and are closely linked to environmental conditions and biological cycles, such as those related to diet, reproduction and migration. In this study, we report for the first time, the total lipid content, lipid class composition and fatty acid profiles of muscle and liver tissue of white sharks, Carcharodon carcharias, of various lengths (1.5-3.9 m), sampled at two geographically separate areas off southern and eastern Australia. Muscle tissue was low in total lipid content (<0.9% wet mass, wm) and was dominated by phospholipids (>90% of total lipid) and polyunsaturated fatty acids (34±12% of total fatty acids). In contrast, liver was high in total lipid which varied between 51-81% wm and was dominated by triacylglycerols (>93%) and monounsaturated fatty acids (36±12%). With knowledge of total lipid and dry tissue mass, we estimated the energy density of muscle (18.4±0.1 kJ g-1 dm) and liver (34.1±3.2 kJ g-1 dm), demonstrating that white sharks have very high energetic requirements. High among-individual variation in these biochemical parameters and related trophic markers were observed, but were not related to any one biological or environmental factor. Signature fatty acid profiles suggest that white sharks over the size range examined are generalist predators with fish, elasmobranchs and mammalian blubber all contributing to the diet. The ecological applications and physiological influences of lipids in white sharks are discussed along with recommendations for future research, including the use of non-lethal sampling to examine the nutritional condition, energetics and dietary relationships among and between individuals. Such knowledge is fundamental to better understand the implications of environmental perturbations on this iconic and threatened species.

  7. A Screen for Novel Phosphoinositide 3-kinase Effector Proteins*

    PubMed Central

    Dixon, Miles J.; Gray, Alexander; Boisvert, François-Michel; Agacan, Mark; Morrice, Nicholas A.; Gourlay, Robert; Leslie, Nicholas R.; Downes, C. Peter; Batty, Ian H.

    2011-01-01

    Class I phosphoinositide 3-kinases exert important cellular effects through their two primary lipid products, phosphatidylinositol 3,4,5-trisphosphate and phosphatidylinositol 3,4-bisphosphate (PtdIns(3,4)P2). As few molecular targets for PtdIns(3,4)P2 have yet been identified, a screen for PI 3-kinase-responsive proteins that is selective for these is described. This features a tertiary approach incorporating a unique, primary recruitment of target proteins in intact cells to membranes selectively enriched in PtdIns(3,4)P2. A secondary purification of these proteins, optimized using tandem pleckstrin homology domain containing protein-1 (TAPP-1), an established PtdIns(3,4)P2 selective ligand, yields a fraction enriched in proteins of potentially similar lipid binding character that are identified by liquid chromatography-tandem MS. Thirdly, this approach is coupled to stable isotope labeling with amino acids in cell culture using differential isotope labeling of cells stimulated in the absence and presence of the PI 3-kinase inhibitor wortmannin. This provides a ratio-metric readout that distinguishes authentically responsive components from copurifying background proteins. Enriched fractions thus obtained from astrocytoma cells revealed a subset of proteins that exhibited ratios indicative of their initial, cellular responsiveness to PI 3-kinase activation. The inclusion among these of tandem pleckstrin homology domain containing protein-1, three isoforms of Akt, switch associated protein-70, early endosome antigen-1 and of additional proteins expressing recognized lipid binding domains demonstrates the utility of this strategy and lends credibility to the novel candidate proteins identified. The latter encompass a broad set of proteins that include the gene product of TBC1D2A, a putative Rab guanine nucleotide triphosphatase activating protein (GAP) and IQ motif containing GAP1, a potential tumor promoter. A sequence comparison of the former protein indicates the presence of a pleckstrin homology domain whose lipid binding character remains to be established. IQ motif containing GAP1 lacks known lipid interacting components and a preliminary analysis here indicates that this may exemplify a novel class of atypical phosphoinositide (aPI) binding domain. PMID:21263009

  8. Ontogenetic changes in biochemical composition during larval and early postlarval development of Lepidophthalmus louisianensis, a ghost shrimp with abbreviated development

    EPA Science Inventory

    Larvae of the ghost shrimp, Lepidophthalmus louisianensis, were mass-reared under laboratory conditions (28|C; 20o/ooS) from hatching to the decapodid (D) stage. Iatroscan lipid class analysis revealed that polar lipids (Zoea I: 77.4|1.7%; Zoea II: 77.5|2.1%; Decapodid: 80.0|1.7%...

  9. Preparation of fatty acid methyl esters for gas-liquid chromatography[S

    PubMed Central

    Ichihara, Ken'ichi; Fukubayashi, Yumeto

    2010-01-01

    A convenient method using commercial aqueous concentrated HCl (conc. HCl; 35%, w/w) as an acid catalyst was developed for preparation of fatty acid methyl esters (FAMEs) from sterol esters, triacylglycerols, phospholipids, and FFAs for gas-liquid chromatography (GC). An 8% (w/v) solution of HCl in methanol/water (85:15, v/v) was prepared by diluting 9.7 ml of conc. HCl with 41.5 ml of methanol. Toluene (0.2 ml), methanol (1.5 ml), and the 8% HCl solution (0.3 ml) were added sequentially to the lipid sample. The final HCl concentration was 1.2% (w/v). This solution (2 ml) was incubated at 45°C overnight or heated at 100°C for 1–1.5 h. The amount of FFA formed in the presence of water derived from conc. HCl was estimated to be <1.4%. The yields of FAMEs were >96% for the above lipid classes and were the same as or better than those obtained by saponification/methylation or by acid-catalyzed methanolysis/methylation using commercial anhydrous HCl/methanol. The method developed here could be successfully applied to fatty acid analysis of various lipid samples, including fish oils, vegetable oils, and blood lipids by GC. PMID:19759389

  10. Comparison of Extruded and Sonicated Vesicles for Planar Bilayer Self-Assembly

    PubMed Central

    Cho, Nam-Joon; Hwang, Lisa Y.; Solandt, Johan J.R.; Frank, Curtis W.

    2013-01-01

    Lipid vesicles are an important class of biomaterials that have a wide range of applications, including drug delivery, cosmetic formulations and model membrane platforms on solid supports. Depending on the application, properties of a vesicle population such as size distribution, charge and permeability need to be optimized. Preparation methods such as mechanical extrusion and sonication play a key role in controlling these properties, and yet the effects of vesicle preparation method on vesicular properties and integrity (e.g., shape, size, distribution and tension) remain incompletely understood. In this study, we prepared vesicles composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) lipid by either extrusion or sonication, and investigated the effects on vesicle size distribution over time as well as the concomitant effects on the self-assembly of solid-supported planar lipid bilayers. Dynamic light scattering (DLS), quartz crystal microbalance with dissipation (QCM-D) monitoring, fluorescence recovery after photobleaching (FRAP) and atomic force microscopy (AFM) experiments were performed to characterize vesicles in solution as well as their interactions with silicon oxide substrates. Collectively, the data support that sonicated vesicles offer more robust control over the self-assembly of homogenous planar lipid bilayers, whereas extruded vesicles are vulnerable to aging and must be used soon after preparation. PMID:28811437

  11. Lipid composition and sensitivity of Prototheca wickerhamii to membrane-active antimicrobial agents.

    PubMed Central

    Sud, I J; Feingold, D S

    1979-01-01

    The lipid composition of Prototheca wickerhamii ATCC 16529 is presented and discussed in relation to the unique susceptibility of the organism to drugs of three membrane-active antimicrobial classes: the polyenes, the polymyxins, and the imidazoles. The presence of ergosterol in the neutral lipid fraction of the membrane is likely responsible for the exquisite susceptibility to amphotericin B. The presence of a large quantity of free fatty acids in the membrane appears responsible for imidazole susceptibility. The membrane determinants of polymyxin B susceptibility are less well defined. PMID:518077

  12. Worksite wellness: a cholesterol awareness program.

    PubMed

    Fritsch, Michelle A; Montpellier, Julie; Kussman, Cyra

    2009-02-01

    A 7-month intervention was undertaken to determine the impact of education and coaching on lifestyle choices and lipid values among employees with hyperlipidemia. Four classes over 2 months at the worksite during work time and two telephone interventions were provided with pre, mid, and post data collection. Total cholesterol and low-density lipoprotein values improved during the intervention. Positive lifestyle changes were made involving exercise and diet. Appropriate physician visits and continuous health care increased. Lipid-based interventions at the worksite can elicit positive changes in lifestyle, appropriate health care use, and improved lipid values.

  13. Surface analysis of lipids by mass spectrometry: more than just imaging.

    PubMed

    Ellis, Shane R; Brown, Simon H; In Het Panhuis, Marc; Blanksby, Stephen J; Mitchell, Todd W

    2013-10-01

    Mass spectrometry is now an indispensable tool for lipid analysis and is arguably the driving force in the renaissance of lipid research. In its various forms, mass spectrometry is uniquely capable of resolving the extensive compositional and structural diversity of lipids in biological systems. Furthermore, it provides the ability to accurately quantify molecular-level changes in lipid populations associated with changes in metabolism and environment; bringing lipid science to the "omics" age. The recent explosion of mass spectrometry-based surface analysis techniques is fuelling further expansion of the lipidomics field. This is evidenced by the numerous papers published on the subject of mass spectrometric imaging of lipids in recent years. While imaging mass spectrometry provides new and exciting possibilities, it is but one of the many opportunities direct surface analysis offers the lipid researcher. In this review we describe the current state-of-the-art in the direct surface analysis of lipids with a focus on tissue sections, intact cells and thin-layer chromatography substrates. The suitability of these different approaches towards analysis of the major lipid classes along with their current and potential applications in the field of lipid analysis are evaluated. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Online Ozonolysis Combined with Ion Mobility-Mass Spectrometry Provides a New Platform for Lipid Isomer Analyses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poad, Berwyck L. J.; Zheng, Xueyun; Mitchell, Todd W.

    One of the most significant challenges in contemporary lipidomics lies in the separation and identification of lipid isomers that differ only in site(s) of unsaturation or geometric configuration of the carbon-carbon double bonds. While analytical separation techniques including ion mobility spectrometry (IMS) and liquid chromatography (LC) can separate isomeric lipids under appropriate conditions, conventional tandem mass spectrometry cannot provide unequivocal identification. To address this challenge, we have implemented ozone-induced dissociation (OzID) in-line with LC, IMS and high resolution mass spectrometry. Modification of an IMS- capable quadrupole time-of-flight mass spectrometer was undertaken to allow the introduction of ozone into the high-pressuremore » trapping ion funnel region preceding the IMS cell. This enabled the novel LC-OzID-IMS-MS configuration where ozonolysis of ionized lipids occurred rapidly (10 ms) without prior mass-selection. LC-elution time alignment combined with accurate mass and arrival time extraction of ozonolysis products facilitated correlation of precursor and product ions without mass-selection (and associated reductions in duty cycle). Unsaturated lipids across 11 classes were examined using this workflow in both positive and negative ion modalities and in all cases the positions of carbon-carbon double bonds were unequivocally assigned based on predictable OzID transitions. Under these conditions geometric isomers exhibited different IMS arrival time distributions and distinct OzID product ion ratios providing a means for discrimination of cis/trans double bonds in complex lipids. The combination of OzID with multidimensional separations shows significant promise for facile profiling of unsaturation patterns within complex lipidomes.« less

  15. Lipid Droplet-Associated Proteins (LDAPs) Are Required for the Dynamic Regulation of Neutral Lipid Compartmentation in Plant Cells1

    PubMed Central

    Park, Sunjung; Wu, Peng

    2016-01-01

    Eukaryotic cells compartmentalize neutral lipids into organelles called lipid droplets (LDs), and while much is known about the role of LDs in storing triacylglycerols in seeds, their biogenesis and function in nonseed tissues are poorly understood. Recently, we identified a class of plant-specific, lipid droplet-associated proteins (LDAPs) that are abundant components of LDs in nonseed cell types. Here, we characterized the three LDAPs in Arabidopsis (Arabidopsis thaliana) to gain insight to their targeting, assembly, and influence on LD function and dynamics. While all three LDAPs targeted specifically to the LD surface, truncation analysis of LDAP3 revealed that essentially the entire protein was required for LD localization. The association of LDAP3 with LDs was detergent sensitive, but the protein bound with similar affinity to synthetic liposomes of various phospholipid compositions, suggesting that other factors contributed to targeting specificity. Investigation of LD dynamics in leaves revealed that LD abundance was modulated during the diurnal cycle, and characterization of LDAP misexpression mutants indicated that all three LDAPs were important for this process. LD abundance was increased significantly during abiotic stress, and characterization of mutant lines revealed that LDAP1 and LDAP3 were required for the proper induction of LDs during heat and cold temperature stress, respectively. Furthermore, LDAP1 was required for proper neutral lipid compartmentalization and triacylglycerol degradation during postgerminative growth. Taken together, these studies reveal that LDAPs are required for the maintenance and regulation of LDs in plant cells and perform nonredundant functions in various physiological contexts, including stress response and postgerminative growth. PMID:26896396

  16. Effects of temperature on growth and lipid synthesis of diatom Chaetoceros Curvisetus and the Northern Adriatic (Mediteranean) plankton community

    NASA Astrophysics Data System (ADS)

    Novak, Tihana; Gašparović, Blaženka; Godrijan, Jelena; Maric, Daniela; Djakovac, Tamara; Mlakar, Marina

    2017-04-01

    Phytoplankton is the major primary producer in the world. Marine phytoplankton lives in a rather changing environment, with variations in temperature, light, salinity, nutrient availability, etc. In such changing environment phytoplankton should live, grow and reproduce, and, in order to achieve that, they fix carbon and nutrients to produce biomolecules (lipids, proteins and carbohydrates). Lipids are a good indicator of organic matter (OM) processes in the seas and oceans, also good bioindicators for OM origin, and phytoplankton adaptations to environmental stress. Marine lipids are produced by organisms, mostly in phototrophic part of the seas and oceans, and their crucial producer is phytoplankton. We were interested to see how the increasing temperature and different nutrient availability affect quantitative and qualitative lipid and lipid classes production by plankton community. To test how marine phytoplankton would respond to predicted increasing temperature we conducted monoculture batch experiments in laboratory on model diatom Chaetoceros curvisetus at five different temperatures from 10 to 30C. Also we conducted experiments in phosphorous replete and deplete conditions mimicking eutrophic and oligotrophic marine conditions. We have chosen Chaetoceros curvisetus as a model culture since it is a major component of Northern Adriatic (NA) phytoplankton, but also Chaetoceros genus of diatoms is most abundant in wide range of marine ecosystems. We also conducted annual sampling of the NA particulate matter that covers the same temperature range as for the batch experiments. NA samples were taken on two stations with different nutrient supply that were characterized as oligotrophic and mesotrophic stations. Samples were taken from 2013 to 2014 on a monthly basis. Lipid classes were characterized with thin-layer chromatography-flame ionization detection. Data are supported by particulate organic carbon (POC), chlorophyll a (Chl a) concentrations and phytoplankton taxonomy and cell abundances.

  17. Comparison of lipids in organs of the starfish Asterias amurensis associated with different treatments

    NASA Astrophysics Data System (ADS)

    Wang, Qi; Ikegame, Keita; Takahashi, Koretaro; Xue, Changhu; Zhang, Weinong; Wang, Hongxun; Hou, Wenfu; Wang, Yuming

    2013-09-01

    Lipids were extracted from organs of the starfish Asterias amurensis associated with different treatments (raw-control, boiling and heating), and then analyzed for lipid content, lipid oxidation index, lipid classes and fatty acid composition. Results showed that boiling softened the hard starfish shells, thus facilitating the collection of starfish organs. As compared with raw organs, the boiled organs had lower water content and higher lipid content, possibly due to the loss of water-holding capacity caused by protein denaturation. Both boiling and heating increased the peroxide value (PV), thiobarbituric acid (TBA) value and carbon value (CV) of lipids. Despite slight increases in the content of complex lipids, associated lipid composition had no substantial variations upon boiling and heating. For simple lipids, the content of 1, 2-diglyceride decreased in boiled and heated organs, with free fatty acids observed on thin layer chromatography (TLC). However, neither boiling nor heating significantly changed the fatty acid compositions of simple or complex lipids in starfish organs, suggesting that these two treatments had no significant effects on complex lipids in starfish organs. Together, our results indicated that boiling of starfish soon after capture facilitated the handling and extraction of useful complex lipids consisting of abundant glucosylceramide and eicosapentaenoic acid (EPA)-bounded phospholipids.

  18. Dissolved lipid production in the Northern Adriatic (Mediterranean) in response to sea surface warmin

    NASA Astrophysics Data System (ADS)

    Gasparovic, Blazenka; Novak, Tihana; Godrijan, Jelena; Mlakar, Marina; MAric, Daniela; Djakovac, Tamara

    2017-04-01

    Marine dissolved organic matter (OM) represents one of the largest active pools of organic carbon in the global carbon cycle. Oceans and seas are responsible for half of global primary production. Ocean warming caused by climate change is already starting to impact the marine life that necessary will have impact on ocean productivity. The partition of OM production by phytoplankton (major OM producer in seas and ocens) in the conditions of rising temperatures may considerably change. This has implications for the export of organic matter from the photic zone. In this study, we set out to see how annual temperature changes between 10 and 30 C in the Northern Adriatic (Mediterranean) affect production of DOM and particularly dissolved lipids and lipid classes. We have sampled at two stations being oligotrophic and mesotrophic where we expected different system reaction to temperature changes. In addition, we performed microcosm incubations covering temperature range of the NA with nutrient amendments to test whether changes in the available nutrients would reflect those of dissolved OM in the NA. We have selected to work with extracellular OM produced during growth of diatom Chaetoceros curvisetus cultures according to the criteria that genera Chaetoceros are important component of the phytoplankton in the NA and are often among bloom-forming taxa. Details on the dissolved lipid and lipid classes production as plankton responce to rising temperature will be discussed.

  19. Lipidomics of Candida albicans biofilms reveals phase-dependent production of phospholipid molecular classes and role for lipid rafts in biofilm formation.

    PubMed

    Lattif, Ali Abdul; Mukherjee, Pranab K; Chandra, Jyotsna; Roth, Mary R; Welti, Ruth; Rouabhia, Mahmoud; Ghannoum, Mahmoud A

    2011-11-01

    Candida albicans-associated bloodstream infections are linked to the ability of this yeast to form biofilms. In this study, we used lipidomics to compare the lipid profiles of C. albicans biofilms and planktonic cells, in early and mature developmental phases. Our results showed that significant differences exist in lipid composition in both developmental phases. Biofilms contained higher levels of phospholipid and sphingolipids than planktonic cells (nmol per g biomass, P<0.05 for all comparisons). In the early phase, levels of lipid in most classes were significantly higher in biofilms compared to planktonic cells (P≤0.05). The ratio of phosphatidylcholine to phosphatidylethanolamine was lower in biofilms compared to planktonic cells in both early (1.17 vs 2.52, P≤0.001) and late (2.34 vs 3.81, P≤0.001) developmental phases. The unsaturation index of phospholipids decreased with time, with this effect being particularly strong for biofilms. Inhibition of the biosynthetic pathway for sphingolipid [mannosyl diinositolphosphoryl ceramide, M(IP)₂C] by myriocin or aureobasidin A, and disruption of the gene encoding inositolphosphotransferase (Ipt1p), abrogated the ability of C. albicans to form biofilms. The differences in lipid profiles between biofilms and planktonic Candida cells may have important implications for the biology and antifungal resistance of biofilms.

  20. Growth, fatty acid profile in major lipid classes and lipid fluidity of Aurantiochytrium mangrovei SK-02 As a function of growth temperature.

    PubMed

    Chodchoey, Kanokwan; Verduyn, Cornelis

    2012-01-01

    Aurantiochytrium mangrovei Sk-02 was grown in a medium containing glucose (40 g/l), yeast extract (10 g/L) and sea salts (15 g/L) at temperatures ranging from 12 to 35°C. The fastest growth (µmax= 0.15 h(-1)) and highest fatty acid content of 415 mg/g-dry cell weight were found in the cells grown at 30°C. However, the cells grown at 12°C showed the highest percentage of polyunsaturated fatty acid (PUFA) (48.6% of total fatty acid). The percentage of docosahexaenoic acid (DHA) and pentadecanoic acid (C15:0) decreased with an increase in the growth temperature, whereas, palmitic acid (C16:0), stearic acid (C18:0) and DPA (C22:5n6) increased with an increase in the growth temperature. The composition of the major lipid class (%w/w) was slightly affected by the growth temperature. The fluidity of the organelle membrane or intracellular lipid (by DPH measurement) decreased with an increase in the growth temperatures, while the plasma membrane fluidity (by TMA-DPH measurement) could still maintain its fluidity in a wide range of temperatures (15 - 37°C). Furthermore, the distribution of DHA was found to be higher (36 - 54%) in phospholipid (PL) as compared to neutral lipid (NL) (20 - 41%).

  1. Investigation of trophic ecology in Newfoundland cold-water deep-sea corals using lipid class and fatty acid analyses

    NASA Astrophysics Data System (ADS)

    Salvo, Flora; Hamoutene, Dounia; Hayes, Vonda E. Wareham; Edinger, Evan N.; Parrish, Christopher C.

    2018-03-01

    The trophic behavior of some deep-sea Newfoundland cold-water corals was explored using fatty acid (FA) and lipid profiles. No significant effect of geographic location and/or depth was identified in lipid or FA composition. However, differences were detected between and within taxon groups in hexa- or octocoral subclasses. Phospholipids constituted the main lipid class in all groups except black-thorny corals which had less structural lipids likely due to their morphology (stiff axes) and slower growth rates. Within each subclass, major differences in the identity of dominant FAs were detected at the order level, whereas differences between species and taxon groups of the same order were mainly driven by a variation in proportions of the dominant FA. Soft corals and gorgonians (Order Alcyonacea) were close in composition and are likely relying on phytodetritus resulting from algae, macrophytes and/or foraminifera, while sea pens (Order Pennatulacea) seem to consume more diatoms and/or herbivorous zooplankton with the exception of Pennatula sp. In the hexacoral subclass, black-thorny corals ( Stauropathes arctica) differed significantly from the stony-cup corals ( Flabellum alabastrum); S. arctica was seemingly more carnivorous (zooplankton markers) than F. alabastrum, which appears omnivorous (phyto- and zooplankton markers). Our results suggest that deep-sea corals are not as opportunistic as expected but have some selective feeding associated with taxonomy.

  2. Altered fatty acid concentrations in prefrontal cortex of schizophrenic patients

    PubMed Central

    Taha, Ameer Y.; Cheon, Yewon; Ma, Kaizong; Rapoport, Stanley I.; Rao, Jagadeesh S.

    2013-01-01

    Background Disturbances in prefrontal cortex phospholipid and fatty acid composition have been reported in schizophrenic (SCZ) patients, often as percent of total lipid concentration or incomplete lipid profile. In this study, we quantified absolute concentrations (nmol/g wet weight) of several lipid classes and their constituent fatty acids in postmortem prefrontal cortex of SCZ patients (n = 10) and age-matched controls (n = 10). Methods Lipids were extracted, fractionated with thin layer chromatography and assayed. Results Mean total lipid, phospholipid, individual phospholipids, plasmalogen, triglyceride and cholesteryl ester concentrations did not differ significantly between the groups. Compared to controls, SCZ brains showed significant increases in several monounsaturated and polyunsaturated fatty acids in cholesteryl ester. Significant increases or decreases occurred in palmitoleic, linoleic, γ-linolenic and n-3 docosapentaenoic acid in total lipids, triglycerides or phospholipids. Conclusion These changes suggest disturbed prefrontal cortex fatty acid concentrations, particularly within cholesteryl esters, as a pathological aspect of schizophrenia. PMID:23428160

  3. Comparison of the lipid composition of oat root and coleoptile plasma membranes: lack of short-term change in response to auxin

    NASA Technical Reports Server (NTRS)

    Sandstrom, R. P.; Cleland, R. E.

    1989-01-01

    The total lipid composition of plasma membranes (PM), isolated by the phase partitioning method from two different oat (Avena sativa L.) tissues, the root and coleoptile, was compared. In general, the PM lipid composition was not conserved between these two organs of the oat seedling. Oat roots contained 50 mole percent phospholipid, 25 mole percent glycolipid, and 25 mole percent free sterol, whereas comparable amounts in the coleoptile were 42, 39, and 19 mole percent, respectively. Individual lipid components within each lipid class also showed large variations between the two tissues. Maximum specific ATPase activity in the root PM was more than double the activity in the coleoptile. Treatment of coleoptile with auxin for 1 hour resulted in no detectable changes in PM lipids or extractable ATPase activity. Differences in the PM lipid composition between the two tissues that may define the limits of ATPase activity are discussed.

  4. [The composition of lipids and lipid peroxidation in the pancreas of quails exposed to nitrates and correction by the amaranth's seeds].

    PubMed

    Tsekhmistrenko, S I; Ponomarenko, N V

    2013-01-01

    Researches of features of lipid composition, functioning of the system of antioxidant defense, maintenance of lipid peroxidation products in the quail's pancreas on the early postnatal ontogenesis stages are conducted for actions of nitrates and feeding with amaranth's seeds in mixed fodder. The arrival of nitrates in the organism of quails results in the decline of general lipids maintenance and nonetherified fat acids in the pancreas. Using of amaranth's seeds in mixed fodder on the background of the nitrate loading results in the increase of activity of the enzimes system of antioxidant defence, the growth of general lipid level in the quail's pancreas. Thus in correlation with separate classes of lipid maintenance of cholesterol goes down for certain, whereas the maintenance of triacylglycerols and ethers of cholesterol rises. The results obtained in the researches show the ability of amaranth's seeds to avert oxidative stress in quail's pancreas under nitrates influence.

  5. Adverse signaling of scavenger receptor class B1 and PGC1s in alcoholic hepatosteatosis and steatohepatitis and protection by betaine in rat.

    PubMed

    Varatharajalu, Ravi; Garige, Mamatha; Leckey, Leslie C; Arellanes-Robledo, Jaime; Reyes-Gordillo, Karina; Shah, Ruchi; Lakshman, M Raj

    2014-07-01

    Because scavenger receptor class B type 1 is the cholesterol uptake liver receptor, whereas peroxisome proliferator-activated receptor γ coactivator-1β (PGC-1β) and PGC-1α are critical for lipid synthesis and degradation, we investigated the roles of these signaling molecules in the actions of ethanol-polyunsaturated fatty acids and betaine on hepatosteatosis and steatohepatitis. Ethanol-polyunsaturated fatty acid treatment caused the following: i) hepatosteatosis, as evidenced by increased liver cholesterol and triglycerides, lipid score, and decreased serum adiponectin; ii) marked inhibition of scavenger receptor class B type 1 glycosylation, its plasma membrane localization, and its hepatic cholesterol uptake function; and iii) moderate steatohepatitis, as evidenced by histopathological characteristics, increased liver tumor necrosis factor α and IL-6, decreased glutathione, and elevated serum alanine aminotransferase. These actions of ethanol involved up-regulated PGC-1β, sterol regulatory element-binding proteins 1c and 2, acetyl-CoA carboxylase, and HMG-CoA reductase mRNAs/proteins and inactive non-phosphorylated AMP kinase; and down-regulated silence regulator gene 1 and PGC-1α mRNA/proteins and hepatic fatty acid oxidation. Betaine markedly blunted all these actions of ethanol on hepatosteatosis and steatohepatitis. Therefore, we conclude that ethanol-mediated impaired post-translational modification, trafficking, and function of scavenger receptor class B type 1 may account for alcoholic hyperlipidemia. Up-regulation of PGC-1β and lipid synthetic genes and down-regulation of silence regulator gene 1, PGC-1α, adiponectin, and lipid degradation genes account for alcoholic hepatosteatosis. Induction of proinflammatory cytokines and depletion of endogenous antioxidant, glutathione, account for alcoholic steatohepatitis. We suggest betaine as a potential therapeutic agent because it effectively protects against adverse actions of ethanol. Copyright © 2014 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  6. Membrane lipidomics in schizophrenia patients: a correlational study with clinical and cognitive manifestations.

    PubMed

    Tessier, C; Sweers, K; Frajerman, A; Bergaoui, H; Ferreri, F; Delva, C; Lapidus, N; Lamaziere, A; Roiser, J P; De Hert, M; Nuss, P

    2016-10-04

    Schizophrenia is a severe mental condition in which several lipid abnormalities-either structural or metabolic-have been described. We tested the hypothesis that an abnormality in membrane lipid composition may contribute to aberrant dopamine signaling, and thereby symptoms and cognitive impairment, in schizophrenia (SCZ) patients. Antipsychotic-medicated and clinically stable SCZ outpatients (n=74) were compared with matched healthy subjects (HC, n=40). A lipidomic analysis was performed in red blood cell (RBC) membranes examining the major phospholipid (PL) classes and their associated fatty acids (FAs). Clinical manifestations were examined using the positive and negative syndrome scale (PANSS). Cognitive function was assessed using the Continuous Performance Test, Salience Attribution Test and Wisconsin Card Sorting Test. Sphingomyelin (SM) percentage was the lipid abnormality most robustly associated with a schizophrenia diagnosis. Two groups of patients were defined. The first group (SCZ c/SM-) is characterized by a low SM membrane content. In this group, all other PL classes, plasmalogen and key polyunsaturated FAs known to be involved in brain function, were significantly modified, identifying a very specific membrane lipid cluster. The second patient group (SCZ c/SM+) was similar to HCs in terms of RBC membrane SM composition. Compared with SCZ c/SM+, SCZ c/SM- patients were characterized by significantly more severe PANSS total, positive, disorganized/cognitive and excited psychopathology. Cognitive performance was also significantly poorer in this subgroup. These data show that a specific RBC membrane lipid cluster is associated with clinical and cognitive manifestations of dopamine dysfunction in schizophrenia patients. We speculate that this membrane lipid abnormality influences presynaptic dopamine signaling.

  7. Recent advances in lipid separations and structural elucidation using mass spectrometry combined with ion mobility spectrometry, ion-molecule reactions and fragmentation approaches

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Xueyun; Smith, Richard D.; Baker, Erin S.

    Lipids are a vital class of molecules that play important and varied roles in biological processes. Fully understanding lipid roles, however, is extremely difficult since the number and diversity of lipid species is immense, with cells expressing hundreds of enzymes that synthesize tens of thousands of different lipids. While recent advances in chromatography and high resolution mass spectrometry have greatly progressed the understanding of lipid species and functions, effectively separating many lipids still remains problematic. Isomeric lipids have made lipid characterization especially difficult and occur due to subclasses having the same chemical composition, or species having multiple acyl chains connectivitiesmore » (sn-1, sn-2, or sn-3), double bond positions and orientations (cis or trans), and functional group stereochemistry (R versus S). Fully understanding the roles of lipids in biological processes therefore requires separating and evaluating how isomers change in biological and environmental samples. To address this challenge, ion mobility spectrometry separations, ion-molecule reactions and fragmentation techniques have increasingly been added to lipid analysis workflows to improve identifications. In this manuscript, we review the current state of these approaches and their capabilities for improving the identification of specific lipid species.« less

  8. Alkyl ether lipids, ion channels and lipid raft reorganization in cancer therapy.

    PubMed

    Jaffrès, Paul-Alain; Gajate, Consuelo; Bouchet, Ana Maria; Couthon-Gourvès, Hélène; Chantôme, Aurélie; Potier-Cartereau, Marie; Besson, Pierre; Bougnoux, Philippe; Mollinedo, Faustino; Vandier, Christophe

    2016-09-01

    Synthetic alkyl lipids, such as the ether lipids edelfosine (1-O-octadecyl-2-O-methyl-rac-glycero-3-phosphocholine) and ohmline (1-O-hexadecyl-2-O-methyl-rac-glycero-3-β-lactose), are forming a class of antitumor agents that target cell membranes to induce apoptosis and to decrease cell migration/invasion, leading to the inhibition of tumor and metastasis development. In this review, we present the structure-activity relationship of edelfosine and ohmline, and we point out differences and similarities between these two amphiphilic compounds. We also discuss the mechanisms of action of these synthetic alkyl ether lipids (involving, among other structures and molecules, membrane domains, Fas/CD95 death receptor signaling, and ion channels), and highlight a key role for lipid rafts in the underlying process. The reorganization of lipid raft membrane domains induced by these alkyl lipids affects the function of death receptors and ion channels, thus leading to apoptosis and/or inhibition of cancer cell migration. The possible therapeutic use of these alkyl lipids and the clinical perspectives for these lipids in prevention or/and treatment of tumor development and metastasis are also discussed. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Large-scale human skin lipidomics by quantitative, high-throughput shotgun mass spectrometry.

    PubMed

    Sadowski, Tomasz; Klose, Christian; Gerl, Mathias J; Wójcik-Maciejewicz, Anna; Herzog, Ronny; Simons, Kai; Reich, Adam; Surma, Michal A

    2017-03-07

    The lipid composition of human skin is essential for its function; however the simultaneous quantification of a wide range of stratum corneum (SC) and sebaceous lipids is not trivial. We developed and validated a quantitative high-throughput shotgun mass spectrometry-based platform for lipid analysis of tape-stripped SC skin samples. It features coverage of 16 lipid classes; total quantification to the level of individual lipid molecules; high reproducibility and high-throughput capabilities. With this method we conducted a large lipidomic survey of 268 human SC samples, where we investigated the relationship between sampling depth and lipid composition, lipidome variability in samples from 14 different sampling sites on the human body and finally, we assessed the impact of age and sex on lipidome variability in 104 healthy subjects. We found sebaceous lipids to constitute an abundant component of the SC lipidome as they diffuse into the topmost SC layers forming a gradient. Lipidomic variability with respect to sampling depth, site and subject is considerable, and mainly accredited to sebaceous lipids, while stratum corneum lipids vary less. This stresses the importance of sampling design and the role of sebaceous lipids in skin studies.

  10. Is the full potential of the biopharmaceutics classification system reached?

    PubMed

    Bergström, Christel A S; Andersson, Sara B E; Fagerberg, Jonas H; Ragnarsson, Gert; Lindahl, Anders

    2014-06-16

    In this paper we analyse how the biopharmaceutics classification system (BCS) has been used to date. A survey of the literature resulted in a compilation of 242 compounds for which BCS classes were reported. Of these, 183 compounds had been reported to belong to one specific BCS class whereas 59 compounds had been assigned to multiple BCS classes in different papers. Interestingly, a majority of the BCS class 2 compounds had fraction absorbed (FA) values >85%, indicating that they were completely absorbed after oral administration. Solubility was computationally predicted at pH 6.8 for BCS class 2 compounds to explore the impact of the pH of the small intestine, where most of the absorption occurs, on the solubility. In addition, the solubilization capacity of lipid aggregates naturally present in the intestine was studied computationally and experimentally for a subset of 12 compounds. It was found that all acidic compounds with FA>85% were completely dissolved in the pH of the small intestine. Further, lipids at the concentration used in fasted state simulated intestinal fluid (FaSSIF) dissolved the complete dose given of the most lipophilic (logD6.5>3) compounds studied. Overall, biorelevant dissolution media (pure buffer of intestinal pH or FaSSIF) identified that for 20 of the 29 BCS class 2 compounds with FA>85% the complete dose given orally would be dissolved. These results indicate that a more relevant pH restriction for acids and/or dissolution medium with lipids present better forecast solubility-limited absorption in vivo than the presently used BCS solubility criterion. The analysis presented herein further strengthens the discussion on the requirement of more physiologically relevant dissolution media for the in vitro solubility classification performed to reach the full potential of the BCS. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Metabolism of nC11 fatty acid fed to Trichoderma koningii and Penicillium janthinellum II: Production of intracellular and extracellular lipids.

    PubMed

    Monreal, Carlos M; Chahal, Amarpreet; Rowland, Owen; Smith, Myron; Schnitzer, Morris

    2014-01-01

    Little is known about the fungal metabolism of nC10 and nC11 fatty acids and their conversion into lipids. A mixed batch culture of soil fungi, T. koningii and P. janthinellum, was grown on undecanoic acid (UDA), a mixture of UDA and potato dextrose broth (UDA+PDB), and PDB alone to examine their metabolic conversion during growth. We quantified seven intracellular and extracellular lipid classes using Iatroscan thin-layer chromatography with flame ionization detection (TLC-FID). Gas chromatography with flame ionization detection (GC-FID) was used to quantify 42 individual fatty acids. Per 150 mL culture, the mixed fungal culture grown on UDA+PDB produced the highest amount of intracellular (531 mg) and extracellular (14.7 mg) lipids during the exponential phase. The content of total intracellular lipids represented 25% of the total biomass-carbon, or 10% of the total biomass dry weight produced. Fatty acids made up the largest class of intracellular lipids (457 mg/150 mL culture) and they were synthesized at a rate of 2.4 mg/h during the exponential phase, and decomposed at a rate of 1.8 mg/h during the stationary phase, when UDA+PDB was the carbon source. Palmitic acid (C16:0), stearic acid (C18:0), oleic acid (C18:1), linoleic acid (C18:2) and vaccenic acid (C18:1) accounted for >80% of the total intracellular fatty acids. During exponential growth on UDA+PDB, hydrocarbons were the largest pool of all extracellular lipids (6.5 mg), and intracellularly they were synthesized at a rate of 64 μg/h. The mixed fungal species culture of T. koningii and P. janthinellum produced many lipids for potential use as industrial feedstocks or bioproducts in biorefineries.

  12. Curative Treatment of Severe Gram-Negative Bacterial Infections by a New Class of Antibiotics Targeting LpxC

    PubMed Central

    Lemaître, Nadine; Liang, Xiaofei; Najeeb, Javaria; Lee, Chul-Jin; Titecat, Marie; Leteurtre, Emmanuelle; Simonet, Michel; Toone, Eric J.

    2017-01-01

    ABSTRACT The infectious diseases caused by multidrug-resistant bacteria pose serious threats to humankind. It has been suggested that an antibiotic targeting LpxC of the lipid A biosynthetic pathway in Gram-negative bacteria is a promising strategy for curing Gram-negative bacterial infections. However, experimental proof of this concept is lacking. Here, we describe our discovery and characterization of a biphenylacetylene-based inhibitor of LpxC, an essential enzyme in the biosynthesis of the lipid A component of the outer membrane of Gram-negative bacteria. The compound LPC-069 has no known adverse effects in mice and is effective in vitro against a broad panel of Gram-negative clinical isolates, including several multiresistant and extremely drug-resistant strains involved in nosocomial infections. Furthermore, LPC-069 is curative in a murine model of one of the most severe human diseases, bubonic plague, which is caused by the Gram-negative bacterium Yersinia pestis. Our results demonstrate the safety and efficacy of LpxC inhibitors as a new class of antibiotic against fatal infections caused by extremely virulent pathogens. The present findings also highlight the potential of LpxC inhibitors for clinical development as therapeutics for infections caused by multidrug-resistant bacteria. PMID:28743813

  13. Association of Scavenger Receptor Class B Type I Polymorphisms with Subclinical Atherosclerosis: The Multi-Ethnic Study of Atherosclerosis

    PubMed Central

    Naj, Adam C.; West, Michael; Rich, Stephen S.; Post, Wendy; Kao, W.H. Linda; Wasserman, Bruce A.; Herrington, David M.; Rodriguez, Annabelle

    2012-01-01

    Background Little is known regarding the association of scavenger receptor class B type I (SCARB1) single nucleotide polymorphisms (SNPs) and subclinical atherosclerosis (SCA), particularly in subjects of different racial/ethnic backgrounds. We examined this relationship in the Multi-Ethnic Study of Atherosclerosis (MESA). Methods and Results Forty-three SCARB1 tagging SNPs were genotyped. Baseline examinations included fasting lipids and SCA phenotypes (coronary artery calcium [CAC], and common and internal carotid artery thickness [CCIMT and ICIMT]). Examining SNP associations with different SCA phenotypes across multiple racial/ethnic groups with adjustment for multiple covariates, we found the C allele of SNP rs10846744 was associated with higher CCIMT in African American (P=0.03), Chinese (P=0.02), European American (P=0.05), and Hispanic participants (P=0.03), and was strongly associated in pooled analyses (P=0.0002). The results also showed that the association of this SNP with CCIMT was independent of lipids and other well-established cardiovascular risk factors. Stratifying by sex, there appeared to be a strong association of rs10846744 with CCIMT in females, but no genotype-sex interactions were observed. Conclusions Variation in SCARB1 at rs10846744 was significantly associated with CCIMT across racial/ethnic groups in MESA. PMID:20160195

  14. Plant lipid environment and membrane enzymes: the case of the plasma membrane H+-ATPase.

    PubMed

    Morales-Cedillo, Francisco; González-Solís, Ariadna; Gutiérrez-Angoa, Lizbeth; Cano-Ramírez, Dora Luz; Gavilanes-Ruiz, Marina

    2015-04-01

    Several lipid classes constitute the universal matrix of the biological membranes. With their amphipathic nature, lipids not only build the continuous barrier that confers identity to every cell and organelle, but they are also active actors that modulate the activity of the proteins immersed in the lipid bilayer. The plasma membrane H(+)-ATPase, an enzyme from plant cells, is an excellent example of a transmembrane protein whose activity is influenced by the hydrophilic compartments at both sides of the membrane and by the hydrophobic domains of the lipid bilayer. As a result, an extensive documentation of the effect of numerous amphiphiles in the enzyme activity can be found. Detergents, membrane glycerolipids, and sterols can produce activation or inhibition of the enzyme activity. In some cases, these effects are associated with the lipids of the membrane bulk, but in others, a direct interaction of the lipid with the protein is involved. This review gives an account of reports related to the action of the membrane lipids on the H(+)-ATPase activity.

  15. Turning Defense into Offense: Defensin Mimetics as Novel Antibiotics Targeting Lipid II

    PubMed Central

    Ateh, Eugene; Oashi, Taiji; Lu, Wuyuan; Huang, Jing; Diepeveen-de Buin, Marlies; Bryant, Joseph; Breukink, Eefjan; MacKerell, Alexander D.; de Leeuw, Erik P. H.

    2013-01-01

    We have previously reported on the functional interaction of Lipid II with human alpha-defensins, a class of antimicrobial peptides. Lipid II is an essential precursor for bacterial cell wall biosynthesis and an ideal and validated target for natural antibiotic compounds. Using a combination of structural, functional and in silico analyses, we present here the molecular basis for defensin-Lipid II binding. Based on the complex of Lipid II with Human Neutrophil peptide-1, we could identify and characterize chemically diverse low-molecular weight compounds that mimic the interactions between HNP-1 and Lipid II. Lead compound BAS00127538 was further characterized structurally and functionally; it specifically interacts with the N-acetyl muramic acid moiety and isoprenyl tail of Lipid II, targets cell wall synthesis and was protective in an in vivo model for sepsis. For the first time, we have identified and characterized low molecular weight synthetic compounds that target Lipid II with high specificity and affinity. Optimization of these compounds may allow for their development as novel, next generation therapeutic agents for the treatment of Gram-positive pathogenic infections. PMID:24244161

  16. Omega-3 fatty acids, lipids, and apoE lipidation in Alzheimer's disease: a rationale for multi-nutrient dementia prevention.

    PubMed

    Grimm, Marcus O W; Michaelson, Daniel M; Hartmann, Tobias

    2017-11-01

    In the last decade, it has become obvious that Alzheimer's disease (AD) is closely linked to changes in lipids or lipid metabolism. One of the main pathological hallmarks of AD is amyloid-β (Aβ) deposition. Aβ is derived from sequential proteolytic processing of the amyloid precursor protein (APP). Interestingly, both, the APP and all APP secretases are transmembrane proteins that cleave APP close to and in the lipid bilayer. Moreover, apoE4 has been identified as the most prevalent genetic risk factor for AD. ApoE is the main lipoprotein in the brain, which has an abundant role in the transport of lipids and brain lipid metabolism. Several lipidomic approaches revealed changes in the lipid levels of cerebrospinal fluid or in post mortem AD brains. Here, we review the impact of apoE and lipids in AD, focusing on the major brain lipid classes, sphingomyelin, plasmalogens, gangliosides, sulfatides, DHA, and EPA, as well as on lipid signaling molecules, like ceramide and sphingosine-1-phosphate. As nutritional approaches showed limited beneficial effects in clinical studies, the opportunities of combining different supplements in multi-nutritional approaches are discussed and summarized. Copyright © 2017 by the American Society for Biochemistry and Molecular Biology, Inc.

  17. Polymer-lipid hybrid systems: merging the benefits of polymeric and lipid-based nanocarriers to improve oral drug delivery.

    PubMed

    Rao, Shasha; Prestidge, Clive A

    2016-01-01

    A number of biobarriers limit efficient oral drug absorption; both polymer-based and lipid-based nanocarriers have demonstrated properties and delivery mechanisms to overcome these biobarriers in preclinical settings. Moreover, in order to address the multifaceted oral drug delivery challenges, polymer-lipid hybrid systems are now being designed to merge the beneficial features of both polymeric and lipid-based nanocarriers. Recent advances in the development of polymer-lipid hybrids with a specific focus on their viability in oral delivery are reviewed. Three classes of polymer-lipid hybrids have been identified, i.e. lipid-core polymer-shell systems, polymer-core lipid-shell systems, and matrix-type polymer-lipid hybrids. We focus on their application to overcome the various biological barriers to oral drug absorption, as exemplified by selected preclinical studies. Numerous studies have demonstrated the superiority of polymer-lipid hybrid systems to their non-hybrid counterparts in providing improved drug encapsulation, modulated drug release, and improved cellular uptake. These features have encouraged their applications in the delivery of chemotherapeutics, proteins, peptides, and vaccines. With further research expected to optimize the manufacturing and scaling up processes and in-depth pre-clinical pharmacological and toxicological assessments, these multifaceted drug delivery systems will have significant clinical impact on the oral delivery of pharmaceuticals and biopharmaceuticals.

  18. It’s a lipid’s world: Bioactive lipid metabolism and signaling in neural stem cell differentiation

    PubMed Central

    Bieberich, Erhard

    2012-01-01

    Lipids are often considered membrane components whose function is to embed proteins into cell membranes. In the last two decades, studies on brain lipids have unequivocally demonstrated that many lipids have critical cell signaling functions; they are called “bioactive lipids”. Pioneering work in Dr. Robert Ledeen’s laboratory has shown that two bioactive brain sphingolipids, sphingomyelin and the ganglioside GM1 are major signaling lipids in the nuclear envelope. In addition to derivatives of the sphingolipid ceramide, the bioactive lipids discussed here belong to the classes of terpenoids and steroids, eicosanoids, and lysophospholipids. These lipids act mainly through two mechanisms: 1) direct interaction between the bioactive lipid and a specific protein binding partner such as a lipid receptor, protein kinase or phosphatase, ion exchanger, or other cell signaling protein; and 2) formation of lipid microdomains or rafts that regulate the activity of a group of raft-associated cell signaling proteins. In recent years, a third mechanism has emerged, which invokes lipid second messengers as a regulator for the energy and redox balance of differentiating neural stem cells (NSCs). Interestingly, developmental niches such as the stem cell niche for adult NSC differentiation may also be metabolic compartments that respond to a distinct combination of bioactive lipids. The biological function of these lipids as regulators of NSC differentiation will be reviewed and their application in stem cell therapy discussed. PMID:22246226

  19. Severe Alterations in Lipid Composition of Frontal Cortex Lipid Rafts from Parkinson’s Disease and Incidental Parkinson’s Disease

    PubMed Central

    Fabelo, Noemí; Martín, Virginia; Santpere, Gabriel; Marín, Raquel; Torrent, Laia; Ferrer, Isidre; Díaz, Mario

    2011-01-01

    Lipid rafts are cholesterol- and sphingomyelin-enriched microdomains that provide a highly saturated and viscous physicochemical microenvironment to promote protein–lipid and protein–protein interactions. We purified lipid rafts from human frontal cortex from normal, early motor stages of Parkinson’s disease (PD) and incidental Parkinson’s disease (iPD) subjects and analyzed their lipid composition. We observed that lipid rafts from PD and iPD cortices exhibit dramatic reductions in their contents of n-3 and n-6 long-chain polyunsaturated fatty acids, especially docosahexaenoic acid (22:6-n3) and arachidonic acid (20:4n-6). Also, saturated fatty acids (16:0 and 18:0) were significantly higher than in control brains. Paralleling these findings, unsaturation and peroxidability indices were considerably reduced in PD and iPD lipid rafts. Lipid classes were also affected in PD and iPD lipid rafts. Thus, phosphatidylserine and phosphatidylinositol were increased in PD and iPD, whereas cerebrosides and sulfatides and plasmalogen levels were considerably diminished. Our data pinpoint a dramatic increase in lipid raft order due to the aberrant biochemical structure in PD and iPD and indicate that these abnormalities of lipid rafts in the frontal cortex occur at early stages of PD pathology. The findings correlate with abnormal lipid raft signaling and cognitive decline observed during the development of these neurodegenerative disorders. PMID:21717034

  20. LIPIDS OF SARCINA LUTEA II.

    PubMed Central

    Albro, Phillip W.; Huston, Charles K.

    1964-01-01

    Albro, Phillip W. (Ft. Detrick, Frederick, Md.), and Charles K. Huston. Lipids of Sarcina lutea. II. Hydrocarbon content of the lipid extracts. J. Bacteriol. 88:981–986. 1964.—The hydrocarbon fraction from Sarcina lutea lipid extracts was characterized by a combination of thin-layer and gas-liquid chromatography and infrared spectroscopy. A total of 37 components were observed by gas-liquid chromatography of this material. A breakdown of the components into classes indicated a composition consisting of 88.9% n-saturates, 1.2% monoenes, 2.1% dienes, 5.0% trienes, and 0.6% branched-saturates. Less than 0.1% of the hydrocarbon material was aromatic. No attempt was made in this study to relate the composition to either origin or function in the cell. PMID:14222808

  1. Lipid requirement of the membrane sodium-plus-potassium ion-dependent adenosine triphosphatase system.

    PubMed Central

    Wheeler, K P; Walker, J A; Barker, D M

    1975-01-01

    The dependence of the (Na-++K-+)-dependent ATPase (adenosine triphosphatase) (EC 3.6.1.3) on lipid has been examined in a number of different ways, with the use of various preparations from kidney tissue. The main findings were as follows. (1) The ATPase activities of the preparations examined were closely correlated with their total phospholipid content. (2) Extraction of the ATPase with deoxycholate or Lubrol W, combined with suitable salt-fractionation and washing procedures, removed phospholipid, cholesterol and enzymic activity in parallel; but activity was completely lost before all lipid had been removed. (3) The loss of activity could not be attributed to inhibition by residual detergent. (4) No selective removal of any particular phospholipid class by detergent could be detected. (5) Consistent reactivation of the Lubrol-extracted enzymes was obtained by adding dispersions of exogenous phospholipid, but only some, bearing a net negative charge, such as phosphatidylserine and phosphatidylglycerol, were effective. (6) The degree of reactivation was correlated with the amount of residual activity remaining after lipid depletion. (7) Partial purification of the ATPase, giving a 50-fold increase in specific activity, was not accompanied by selective enhancement of any particular class of phospholipid. We conclude that although the ATPase is dependent on phospholipid, only the reactivation results provide evidence for specificity. PMID:125082

  2. Phospholipid analogues of Porphyromonas gingivalis.

    PubMed

    Tavana, A M; Korachi, M; Boote, V; Hull, P S; Love, D N; Drucker, D B

    2000-05-01

    Porphyromonas has lipids containing hydroxy acids and C16:0 and iso-C15:0 major monocarboxylic acids among others. Nothing is known of its individual phospholipid molecular species. The aim of this study was to determine molecular weights and putative identities of individual phospholipid molecular species extracted from Porphyromonas gingivalis (seven strains), P. asaccharolytica (one strain) and P. endodontalis (two strains). Cultures on Blood-Fastidious Anaerobe Agar were harvested, washed and freeze-dried. Phospholipids were extracted and separated by fast atom bombardment mass spectrometry (FAB MS) in negative-ion mode. Phospholipid classes were also separated by thin layer chromatography (TLC). The major anions in the range m/z 209-299 were consistent with the presence of the C13: 0, C15: 0, C16: 0 and C18: 3 mono-carboxylate anions. Major polar lipid anion peaks in the range m/z 618-961 were consistent with the presence of molecular species of phosphatidylethanolamine, phosphatidylglycerol and with unidentified lipid analogues. Porphyromonas gingivalis differed from comparison strains of other species by having major anions with m/z 932, 946 and 960. Unusually, a feline strain of P. gingivalis had a major peak of m/z 736. Selected anions were studied by tandem FAB MS which revealed that peaks with m/z 653 and 946 did not correspond to commonly occurring classes of polar lipids. They were however, glycerophosphates. It is concluded that the polar lipid analogue profiles obtained with Porphyromonas are quite different from those of the genera Prevotella and Bacteroides but reveal heterogeneity within P. gingivalis.

  3. Oral and transdermal drug delivery systems: role of lipid-based lyotropic liquid crystals.

    PubMed

    Rajabalaya, Rajan; Musa, Muhammad Nuh; Kifli, Nurolaini; David, Sheba R

    2017-01-01

    Liquid crystal (LC) dosage forms, particularly those using lipid-based lyotropic LCs (LLCs), have generated considerable interest as potential drug delivery systems. LCs have the physical properties of liquids but retain some of the structural characteristics of crystalline solids. They are compatible with hydrophobic and hydrophilic compounds of many different classes and can protect even biologicals and nucleic acids from degradation. This review, focused on research conducted over the past 5 years, discusses the structural evaluation of LCs and their effects in drug formulations. The structural classification of LLCs into lamellar, hexagonal and micellar cubic phases is described. The structures of these phases are influenced by the addition of surfactants, which include a variety of nontoxic, biodegradable lipids; these also enhance drug solubility. LLC structure influences drug localization, particle size and viscosity, which, in turn, determine drug delivery properties. Through several specific examples, we describe the applications of LLCs in oral and topical drug formulations, the latter including transdermal and ocular delivery. In oral LLC formulations, micelle compositions and the resulting LLC structures can determine drug solubilization and stability as well as intestinal transport and absorption. Similarly, in topical LLC formulations, composition can influence whether the drug is retained in the skin or delivered transdermally. Owing to their enhancement of drug stability and promotion of controlled drug delivery, LLCs are becoming increasingly popular in pharmaceutical formulations.

  4. Oral and transdermal drug delivery systems: role of lipid-based lyotropic liquid crystals

    PubMed Central

    Rajabalaya, Rajan; Musa, Muhammad Nuh; Kifli, Nurolaini; David, Sheba R

    2017-01-01

    Liquid crystal (LC) dosage forms, particularly those using lipid-based lyotropic LCs (LLCs), have generated considerable interest as potential drug delivery systems. LCs have the physical properties of liquids but retain some of the structural characteristics of crystalline solids. They are compatible with hydrophobic and hydrophilic compounds of many different classes and can protect even biologicals and nucleic acids from degradation. This review, focused on research conducted over the past 5 years, discusses the structural evaluation of LCs and their effects in drug formulations. The structural classification of LLCs into lamellar, hexagonal and micellar cubic phases is described. The structures of these phases are influenced by the addition of surfactants, which include a variety of nontoxic, biodegradable lipids; these also enhance drug solubility. LLC structure influences drug localization, particle size and viscosity, which, in turn, determine drug delivery properties. Through several specific examples, we describe the applications of LLCs in oral and topical drug formulations, the latter including transdermal and ocular delivery. In oral LLC formulations, micelle compositions and the resulting LLC structures can determine drug solubilization and stability as well as intestinal transport and absorption. Similarly, in topical LLC formulations, composition can influence whether the drug is retained in the skin or delivered transdermally. Owing to their enhancement of drug stability and promotion of controlled drug delivery, LLCs are becoming increasingly popular in pharmaceutical formulations. PMID:28243062

  5. Identification of lipidomic markers of chronic 3,3',4,4',5-pentachlorobiphenyl (PCB 126) exposure in the male rat liver.

    PubMed

    Kania-Korwel, Izabela; Wu, Xianai; Wang, Kai; Lehmler, Hans-Joachim

    2017-09-01

    Exposure to PCB 126, an environmentally relevant aryl hydrocarbon receptor agonist, is an environmental factor causing hepatic steatosis in rodent models; however, the lipidome of PCB 126-exposed rats has not been investigated in-depth. The objective of the present study was therefore to characterize dose-dependent changes in the lipid profile in the liver of male Sprague-Dawley rats exposed to PCB 126. Rats were exposed for three month to intraperitoneal injections of 0.01, 0.05 and 0.2μmol/kg bw PCB 126 in corn oil. Control animals were exposed in parallel and received corn oil alone. Lipids were extracted from whole liver homogenate and levels of polar lipids and fatty acids incorporated into triglycerides (FA TAGs ) were determined with tandem mass spectrometry using electrospray ionization. PCB 126 exposure increased the hepatic content of polar lipids and FA TAGs . Protein adjusted levels of several polar lipid classes, in particular phosphatidylserine levels, decreased, whereas FA TAGs levels typically increased with increasing PCB 126 dose. Sensitive, dose-dependent endpoints of PCB 126 exposure included an increase in levels of adrenic acid incorporated into triglycerides and changes in levels of certain ether-linked phospholipid and 1-alkyl/1-alkenyldiacylglycerol species, as determined using partial least square discriminant analysis (PLS-DA) and ANOVA. These changes in the composition of polar lipids and fatty acid in the liver of PCB 126 exposed rats identified several novel markers of PCB 126-mediated fatty liver disease that need to be validated in further studies. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Metabolic Networks and Metabolites Underlie Associations Between Maternal Glucose During Pregnancy and Newborn Size at Birth

    PubMed Central

    Bain, James R.; Reisetter, Anna C.; Muehlbauer, Michael J.; Nodzenski, Michael; Stevens, Robert D.; Ilkayeva, Olga; Lowe, Lynn P.; Metzger, Boyd E.; Newgard, Christopher B.; Lowe, William L.

    2016-01-01

    Maternal metabolites and metabolic networks underlying associations between maternal glucose during pregnancy and newborn birth weight and adiposity demand fuller characterization. We performed targeted and nontargeted gas chromatography/mass spectrometry metabolomics on maternal serum collected at fasting and 1 h following glucose beverage consumption during an oral glucose tolerance test (OGTT) for 400 northern European mothers at ∼28 weeks' gestation in the Hyperglycemia and Adverse Pregnancy Outcome Study. Amino acids, fatty acids, acylcarnitines, and products of lipid metabolism decreased and triglycerides increased during the OGTT. Analyses of individual metabolites indicated limited maternal glucose associations at fasting, but broader associations, including amino acids, fatty acids, carbohydrates, and lipids, were found at 1 h. Network analyses modeling metabolite correlations provided context for individual metabolite associations and elucidated collective associations of multiple classes of metabolic fuels with newborn size and adiposity, including acylcarnitines, fatty acids, carbohydrates, and organic acids. Random forest analyses indicated an improved ability to predict newborn size outcomes by using maternal metabolomics data beyond traditional risk factors, including maternal glucose. Broad-scale association of fuel metabolites with maternal glucose is evident during pregnancy, with unique maternal metabolites potentially contributing specifically to newborn birth weight and adiposity. PMID:27207545

  7. PCSK9 Inhibition With Monoclonal Antibodies: Modern Management of Hypercholesterolemia.

    PubMed

    Ito, Matthew K; Santos, Raul D

    2017-01-01

    Current guidelines for hypercholesterolemia treatment emphasize lifestyle modification and lipid-modifying therapy to reduce the risk for cardiovascular disease. Statins are the primary class of agents used for the treatment of hypercholesterolemia. Although statins are effective for many patients, they fail to achieve optimal reduction in lipids for some patients, including those who have or are at high risk for cardiovascular disease. The PCSK9 gene was identified in the past decade as a potential therapeutic target for the management of patients with hypercholesterolemia. Pharmacologic interventions to decrease PCSK9 levels are in development, with the most promising approach using monoclonal antibodies that bind to PCSK9 in the plasma. Two monoclonal antibodies, alirocumab and evolocumab, have recently been approved for the treatment of hypercholesterolemia, and a third one, bococizumab, is in phase 3 clinical development. All 3 agents achieve significant reductions in levels of low-density lipoprotein cholesterol, as well as reductions in non-high-density lipoprotein cholesterol, apolipoprotein B, and lipoprotein(a). Long-term outcome trials are under way to determine the sustained efficacy, safety, and tolerability of PCSK9 inhibitors and whether this novel class of agents decreases the risk for major cardiovascular events in patients on lipid-modifying therapy. Available data suggest that PCSK9 inhibitors provide a robust reduction in atherogenic cholesterol levels with a good safety profile, especially for patients who fail to obtain an optimal clinical response to statin therapy, those who are statin intolerant or have contraindications to statin therapy, and those with familial hypercholesterolemia. © 2016, The Authors. The Journal of Clinical Pharmacology Published by Wiley Periodicals, Inc. on behalf of American College of Clinical Pharmacology.

  8. Effectiveness of a Low-Calorie Weight Loss Program in Moderately and Severely Obese Patients

    PubMed Central

    Winkler, Julia K.; Schultz, Jobst-Hendrik; Woehning, Annika; Piel, David; Gartner, Lena; Hildebrand, Mirjam; Roeder, Eva; Nawroth, Peter P.; Wolfrum, Christian; Rudofsky, Gottfried

    2013-01-01

    Aims To compare effectiveness of a 1-year weight loss program in moderately and severely obese patients. Methods The study sample included 311 obese patients participating in a weight loss program, which comprised a 12-week weight reduction phase (low-calorie formula diet) and a 40-week weight maintenance phase. Body weight and glucose and lipid values were determined at the beginning of the program as well as after the weight reduction and the weight maintenance phase. Participants were analyzed according to their BMI class at baseline (30-34.9 kg/m2; 35-39.9 kg/m2; 40-44.9 kg/m2; 45-49.9 kg/m2; ≥50 kg/m2). Furthermore, moderately obese patients (BMI ℋ 40 kg/m2) were compared to severely obese participants (BMI ≥ 40 kg/m2). Results Out of 311 participants, 217 individuals completed the program. Their mean baseline BMI was 41.8 ± 0.5 kg/m2. Average weight loss was 17.9 ± 0.6%, resulting in a BMI of 34.3 ± 0.4 kg/m2 after 1 year (p ℋ 0.001). Overall weight loss was not significantly different in moderately and severely obese participants. Yet, severely obese participants achieved greater weight loss during the weight maintenance phase than moderately obese participants (−3.1 ± 0.7% vs. −1.2 ± 0.6%; p = 0.04). Improvements in lipid profiles and glucose metabolism were found throughout all BMI classes. Conclusion 1-year weight loss intervention improves body weight as well as lipid and glucose metabolism not only in moderately, but also in severely obese individuals. PMID:24135973

  9. Methanol-Promoted Lipid Remodelling during Cooling Sustains Cryopreservation Survival of Chlamydomonas reinhardtii

    PubMed Central

    Yang, Duanpeng; Li, Weiqi

    2016-01-01

    Cryogenic treatments and cryoprotective agents (CPAs) determine the survival rate of organisms that undergo cryopreservation, but their mechanisms of operation have not yet been characterised adequately. In particular, the way in which membrane lipids respond to cryogenic treatments and CPAs is unknown. We developed comparative profiles of the changes in membrane lipids among cryogenic treatments and between the CPAs dimethyl sulfoxide (DMSO) and methanol (MeOH) for the green alga Chlamydomonas reinhardtii. We found that freezing in liquid nitrogen led to a dramatic degradation of lipids, and that thawing at warm temperature (35°C) induced lipid remodelling. DMSO did not protect membranes, but MeOH significantly attenuated lipid degradation. The presence of MeOH during cooling (from 25°C to −55°C at a rate of 1°C/min) sustained the lipid composition to the extent that membrane integrity was maintained; this phenomenon accounts for successful cryopreservation. An increase in monogalactosyldiacylglycerol and a decrease in diacylglycerol were the major changes in lipid composition associated with survival rate, but there was no transformation between these lipid classes. Phospholipase D-mediated phosphatidic acid was not involved in freezing-induced lipid metabolism in C. reinhardtii. Lipid unsaturation changed, and the patterns of change depended on the cryogenic treatment. Our results provide new insights into the cryopreservation of, and the lipid metabolism in, algae. PMID:26731741

  10. Mitochondrial modulators improve lipid composition and attenuate memory deficits in experimental model of Huntington's disease.

    PubMed

    Mehrotra, Arpit; Sood, Abhilasha; Sandhir, Rajat

    2015-12-01

    3-Nitropropionic acid (3-NP) is an irreversible inhibitor of succinate dehydrogenase and induces neuropathological changes similar to those observed in Huntington's disease (HD). The objective of the present study was to investigate neuroprotective effect of mitochondrial modulators; alpha-lipoic acid (ALA) and acetyl-L-carnitine (ALCAR) on 3-NP-induced alterations in mitochondrial lipid composition, mitochondrial structure and memory functions. Experimental model of HD was developed by administering 3-NP at sub-chronic doses, twice daily for 17 days. The levels of conjugated dienes, cholesterol and glycolipids were significantly increased, whereas the levels of phospholipids (phosphatidylethanolamine, phosphatidylcholine, phosphatidylserine) including cardiolipin were significantly decreased in the mitochondria isolated from the striatum of 3-NP-treated animals. In addition, the difference in molecular composition of each phospholipid class was also evaluated using mass spectrometry. Mitochondria lipid from 3-NP-treated animals showed increased cholesterol to phospholipid ratio, suggesting decreased mitochondrial membrane fluidity. 3-NP administration also resulted in ultra-structural changes in mitochondria, accompanied by swelling as assessed by transmission electron microscopy. The 3-NP administered animals had impaired spatial memory evaluated using elevated plus maze test. However, combined supplementation with ALA + ALCAR for 21 days normalized mitochondrial lipid composition, improved mitochondrial structure and ameliorated memory impairments in 3-NP-treated animals, suggesting an imperative role of these two modulators in combination in the management of HD.

  11. Identification of fatty acids and fatty acid amides in human meibomian gland secretions.

    PubMed

    Nichols, Kelly K; Ham, Bryan M; Nichols, Jason J; Ziegler, Corrie; Green-Church, Kari B

    2007-01-01

    The complex superficial lipid layer of the tear film functions to prevent evaporation and maintain tear stability. Although classes of lipids found in the tear film have been reported, individual lipid species are currently being studied with more sophisticated. The purpose of this work was to show the identification of fatty acids and the fatty acid amides in human meibomian gland secretions by using electrospray mass spectrometry. methods. Human meibomian gland secretions (meibum) were analyzed by electrospray quadrupole time-of-flight mass spectrometry (positive- and negative-ion mode). Accurate mass determination and collision-induced dissociation of meibum, and lipid standards were used to identify lipid species. Mass analysis of meibum in an acidic chloroform-methanol solution in positive-ion mode revealed a mass peak of m/z 282.3, which was identified as the protonated molecule of oleamide [C(18)H(35)NO+H](+). The high-resolution mass analysis of the m/z 282.2788 peak (oleamide) demonstrated a mass accuracy of 3.2 parts per million (ppm). Collision-induced dissociation of this species from meibum, compared with an oleamide standard, confirmed its identification. Myristic, palmitic, stearic, and oleic free fatty acids were identified in a similar manner, as were the other fatty acid amides (myristamide, palmitamide, stearamide, and erucamide). The findings indicate that oleamide (cis-9-octadecenamide), an endogenous fatty acid primary amide, is a predominant component of meibum when examined by electrospray mass spectrometry. The novel finding of oleamide and other members of the fatty acid amide family in the tear film could lead to additional insights into the role of fatty acid amide activity in human biological systems and may indicate a new function for this lipid class of molecules in ocular surface signaling and/or in the maintenance of the complex tear film.

  12. The processing and presentation of lipids and glycolipids to the immune system

    PubMed Central

    Vartabedian, Vincent F.; Savage, Paul B.; Teyton, Luc

    2016-01-01

    Summary The recognition of CD1-lipid complexes by T cells was discovered twenty years ago and has since been an emerging and expanding field of investigation. Unlike protein antigens, which are presented on MHC class I and II molecules, lipids can only be presented by CD1 molecules, a unique family of MHC-like proteins whose singularity is a hydrophobic antigen binding groove. The processing and loading of lipid antigens inside this groove of CD1 molecules require localization to late endosomal and lysosomal subcellular compartments and their acidic pHs. This particular environment provides the necessary glycolytic enzymes and lipases that process lipid and glycolipid antigens, as well as a set of lipid transfer proteins that load the final version of the antigen inside the groove of CD1. The overall sequence of events needed for efficient presentation of lipid antigens is now understood and presented in this review. However, a large number of important details have been elusive. This elusiveness is linked to the inherent technical difficulties of studying lipids and the lipid-protein interface in vitro and in vivo. Here, we will expose some of those limitations and describe new approaches to address them during the characterization of lipids and glycolipids antigen presentation. PMID:27319346

  13. Regulation of Lipid Synthesis in Soybeans by Two Benzoic Acid Herbicides 1

    PubMed Central

    Muslih, Raad K.; Linscott, Dean L.

    1977-01-01

    The effects of 3-nitro-2,5-dichlorobenzoic acid (dinoben) and 3-amino-2,4-dichlorobenzoic acid (chloramben) on lipid formation and on the incorporation of various substrates into lipids by intact seeds and subcellular fractions of germinating soybean (Glycine max [L.] Merr. `Amsoy') were studied. Dinoben (20 μg/ml) inhibited synthesis of total lipids 67%, neutral lipids 73%, glycolipids 51%, and phospholipids 39% in germinating seeds. When polar lipids were analyzed further, inhibition of individual lipid classes was also observed. Chloramben (20 μg/ml) stimulated total lipid synthesis 25%. With the exception of the mitochondrial fraction where malonate thiokinase was absent, dinoben inhibited up to 99% the incorporation of acetate and malonate into lipids, but did not inhibit acetyl-CoA and malonyl-CoA incorporation. Chloramben stimulated the incorporation of all substrates tested into lipids by all fractions except the mitochondrial fraction when malonate was the substrate. When dinoben and chloramben were used in combinations, chloramben did not reverse the inhibitory effect of dinoben. It is concluded that the dinoben inhibitory effect is specific and is associated with the acetate and malonate thiokinase systems. The chloramben effect is stimulatory to either acetyl-CoA carboxylase or fatty acid synthetase or both. PMID:16660173

  14. CD1-Restricted T Cells at the Crossroad of Innate and Adaptive Immunity.

    PubMed

    Pereira, Catia S; Macedo, M Fatima

    2016-01-01

    Lipid-specific T cells comprise a group of T cells that recognize lipids bound to the MHC class I-like CD1 molecules. There are four isoforms of CD1 that are expressed at the surface of antigen presenting cells and therefore capable of presenting lipid antigens: CD1a, CD1b, CD1c, and CD1d. Each one of these isoforms has distinct structural features and cellular localizations, which promotes binding to a broad range of different types of lipids. Lipid antigens originate from either self-tissues or foreign sources, such as bacteria, fungus, or plants and their recognition by CD1-restricted T cells has important implications in infection but also in cancer and autoimmunity. In this review, we describe the characteristics of CD1 molecules and CD1-restricted lipid-specific T cells, highlighting the innate-like and adaptive-like features of different CD1-restricted T cell subtypes.

  15. A Global Map of Lipid-Binding Proteins and Their Ligandability in Cells.

    PubMed

    Niphakis, Micah J; Lum, Kenneth M; Cognetta, Armand B; Correia, Bruno E; Ichu, Taka-Aki; Olucha, Jose; Brown, Steven J; Kundu, Soumajit; Piscitelli, Fabiana; Rosen, Hugh; Cravatt, Benjamin F

    2015-06-18

    Lipids play central roles in physiology and disease, where their structural, metabolic, and signaling functions often arise from interactions with proteins. Here, we describe a set of lipid-based chemical proteomic probes and their global interaction map in mammalian cells. These interactions involve hundreds of proteins from diverse functional classes and frequently occur at sites of drug action. We determine the target profiles for several drugs across the lipid-interaction proteome, revealing that its ligandable content extends far beyond traditionally defined categories of druggable proteins. In further support of this finding, we describe a selective ligand for the lipid-binding protein nucleobindin-1 (NUCB1) and show that this compound perturbs the hydrolytic and oxidative metabolism of endocannabinoids in cells. The described chemical proteomic platform thus provides an integrated path to both discover and pharmacologically characterize a wide range of proteins that participate in lipid pathways in cells. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Molecular Packing of Functionalized Fluorinated Lipids in Langmuir Monolayers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Landsberg, Michael J.; Ruggles, Jeremy L.; Hussein, Waleed M.

    2012-01-20

    Fluorinated amphipaths are a fascinating class of compounds, which, despite significant challenges associated with their syntheses, have found use across a number of areas of biotechnology. Applications range from the in vitro stabilization of membrane proteins to the development of enhanced stability intravenous drug and gene delivery systems. More recently, monolayer-forming fluorinated lipids have found use in the 2D crystallization of detergent-solubilized hydrophobic or partially hydrophobic proteins at the air-water interface. In this study, we investigate the surface properties of a novel suite of monolayer forming, partially fluorinated lipids. These modular lipid structures contain a densely fluorinated insertion in themore » hydrocarbon tail and a synthetically modifiable headgroup. Analyses of surface-pressure area isotherms and X-ray reflectometry profiles reveal that the lipids spread into fluid monolayers and are more compressible than their non-fluorinated counterparts. Furthermore, the data support a model whereby the partially fluorinated chains of the lipid tails form a film which is fundamentally incompatible with detergents and other destabilizing amphipaths.« less

  17. Effect of temperature towards lipid oxidation and non-enzymatic browning reactions in krill oil upon storage.

    PubMed

    Lu, F S H; Bruheim, I; Haugsgjerd, B O; Jacobsen, C

    2014-08-15

    The main objective of this study was to investigate the effect of temperature towards lipid oxidation and non-enzymatic browning reactions in krill oil upon storage. Krill oil was incubated at two different temperatures (20 and 40 °C) for 28 or 42 days. The oxidative stability of krill oil was assessed by peroxide value and anisidine value, measurement of lipid derived volatiles, lipid classes and antioxidants. The non-enzymatic browning reactions were assessed through the measurement of pyrroles, free amino acids content and Strecker-derived volatiles. The increase of incubation temperature firstly increased the lipid oxidation in krill oil and subsequently the non-enzymatic browning reactions. The occurrence of these reactions was most likely due to the reaction between α-dicarbonyl or carbonyl compounds with amino acids or ammonia. In addition to tocopherol and astaxanthin esters, the formation of pyrroles might help to protect the krill oil against lipid oxidation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. The Lipid domain Phase diagram in a Dipalmitoyl-PC/Docosahaexnoic Acid-PE/Cholesterol System

    NASA Astrophysics Data System (ADS)

    Lor, Chai; Hirst, Linda

    2011-03-01

    Lipid domains in bilayer membrane and polyunsaturated fatty acids (PUFAs) are thought to play an important role in cellular activities. In particular, lipids containing docosahaexnoic acid are an interesting class of PUFAs due to their health benefits. In this project, we perform oxidation measurements of DHA-PE to determine the rate of oxidation in combination with antioxidants. A ternary diagram of DPPC/DHA-PE/cholesterol is mapped out to identify phase separation phenomena using atomic force microscope (AFM). Fluorescence microscopy is also used to image lipid domains in a flat bilayer with fluorescent labels. As expected, we observe the phase, shape, and size of lipid domains changes with varying composition. Moreover, we find that the roughness of the domains changes possibly due to overpacking of cholesterol in domains. This model study provides further understanding of the role of cholesterol in the bilayer membrane leading towards a better understanding of cell membranes. NSF award # DMR 0852791, ``CAREER: Self-Assembly of Polyunsaturated Lipids and Cholesterol In The Cell Membrane.''

  19. Formation of electrophilic oxidation products from mitochondrial cardiolipin in vitro and in vivo in the context of apoptosis and atherosclerosis.

    PubMed

    Zhong, Huiqin; Lu, Jianhong; Xia, Lin; Zhu, Mingjiang; Yin, Huiyong

    2014-01-01

    Emerging evidence indicates that mitochondrial cardiolipins (CL) are prone to free radical oxidation and this process appears to be intimately associated with multiple biological functions of mitochondria. Our previous work demonstrated that a significant amount of potent lipid electrophiles including 4-hydroxy-nonenal (4-HNE) was generated from CL oxidation through a novel chemical mechanism. Here we provide further evidence that a characteristic class of CL oxidation products, epoxyalcohol-aldehyde-CL (EAA-CL), is formed through this novel mechanism in isolated mice liver mitochondria when treated with the pro-apoptotic protein t-Bid to induce cyt c release. Generation of these oxidation products are dose-dependently attenuated by a peroxidase inhibitor acetaminophen (ApAP). Using a mouse model of atherosclerosis, we detected significant amount of these CL oxidation products in liver tissue of low density lipoprotein receptor knockout (LDLR -/-) mice after Western diet feeding. Our studies highlight the importance of lipid electrophiles formation from CL oxidation in the settings of apoptosis and atherosclerosis as inhibition of CL oxidation and lipid electrophiles formation may have potential therapeutic value in diseases linked to oxidant stress and mitochondrial dysfunctions.

  20. Implications for eicosapentaenoic acid- and docosahexaenoic acid-derived resolvins as therapeutics for arthritis.

    PubMed

    Souza, Patricia R; Norling, Lucy V

    2016-08-15

    Omega-3 polyunsaturated fatty acids are essential for health and are known to possess anti-inflammatory properties, improving cardiovascular health as well as benefiting inflammatory diseases. Indeed, dietary supplementation with omega-3 polyunsaturated fatty acids has proved efficacious in reducing joint pain, morning stiffness and nonsteroidal anti-inflammatory drugs usage in rheumatoid arthritis patients. However, the mechanisms by which omega-3 polyunsaturated fatty acids exert their beneficial effects have not been fully explored. Seminal discoveries by Serhan and colleagues have unveiled a novel class of bioactive lipid mediators that are enzymatically biosynthesized in vivo from omega-3 eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), termed resolvins, protectins and maresins. These bioactive pro-resolving lipid mediators provide further rationale for the beneficial effects of fish-oil enriched diets. These endogenous lipid mediators are spatiotemporally biosynthesized to actively regulate resolution by acting on specific G protein-coupled receptors (GPCRs) to initiate anti-inflammatory and pro-resolving signals that terminate inflammation. In this review, we will discuss the mechanism of actions of these molecules, including their analgesic and bone-sparing properties making them ideal therapeutic agonists for the treatment of inflammatory diseases such as rheumatoid arthritis. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. 21 CFR 862.1575 - Phospholipid test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862... treatment of disorders involving lipid (fat) metabolism. (b) Classification. Class I (general controls). The...

  2. Structural distinction of diacyl-, alkylacyl, and alk-1-enylacyl glycerophosphocholines as [M - 15]⁻ ions by multiple-stage linear ion-trap mass spectrometry with electrospray ionization.

    PubMed

    Hsu, Fong-Fu; Lodhi, Irfan J; Turk, John; Semenkovich, Clay F

    2014-08-01

    We describe a linear ion-trap (LIT) multiple-stage (MS(n)) mass spectrometric approach towards differentiation of alkylacyl, alk-1-enylacyl- and diacyl-glycerophoscholines (PCs) as the [M - 15]⁻ ions desorbed by electrospray ionization (ESI) in the negative-ion mode. The MS⁴ mass spectra of the [M - 15 - R²'CH = CO]⁻ ions originated from the three PC subfamilies are readily distinguishable, resulting in unambiguous distinction of the lipid classes. This method is applied to two alkyl ether rich PC mixtures isolated from murine bone marrow neutrophils and kidney, respectively, to explore its utility in the characterization of complex PC mixture of biological origin, resulting in the realization of the detailed structures of the PC species, including various classes and many minor isobaric isomers.

  3. UVA Photoirradiation of Nitro-Polycyclic Aromatic Hydrocarbons—Induction of Reactive Oxygen Species and Formation of Lipid Peroxides †

    PubMed Central

    Xia, Qingsu; Yin, Jun J.; Zhao, Yuewei; Wu, Yuh-Sen; Wang, Yu-Qui; Ma, Liang; Chen, Shoujun; Sun, Xin; Fu, Peter P.; Yu, Hongtao

    2013-01-01

    Nitro-polycyclic aromatic hydrocarbons (nitro-PAHs) are a class of genotoxic environmental contaminants. We have long been interested in determining the mechanisms by which nitro-PAHs induce genotoxicity. Although the metabolic activation of nitro-PAHs leading to toxicological activities has been well studied, the photo-induced activation of nitro-PAHs has seldom been reported. In this paper, we report photo-induced lipid peroxidation by 19 nitro-PAHs. The results indicated that all but two of the nitro-PAHs can induce lipid peroxidation. Mechanistic studies suggest that lipid peroxidation by nitro-PAHs is mediated by free radicals generated in the reaction. There was no structural correlation between the nitro-PAHs and their ability to induce lipid peroxidation upon UVA irradiation, or between the HOMO-LUMO gap and the ability to cause lipid peroxidation. Most of the nitro-PAHs are less potent in terms of causing lipid peroxidation than their parent PAHs. The lack of correlation is attributed to the complex photophysics and photochemistry of the nitro-PAHs and the yield of reactive oxygen species (ROS) and other factors. PMID:23493032

  4. Lamellar Biogels: Fluid-Membrane-Based Hydrogels Containing Polymer Lipids

    NASA Astrophysics Data System (ADS)

    Warriner, Heidi E.; Idziak, Stefan H. J.; Slack, Nelle L.; Davidson, Patrick; Safinya, Cyrus R.

    1996-02-01

    A class of lamellar biological hydrogels comprised of fluid membranes of lipids and surfactants with small amounts of low molecular weight poly(ethylene glycol)-derived polymer lipids (PEG-lipids) were studied by x-ray diffraction, polarized light microscopy, and rheometry. In contrast to isotropic hydrogels of polymer networks, these membrane-based birefringent liquid crystalline biogels, labeled Lα,g, form the gel phase when water is added to the liquid-like lamellar L_α phase, which reenters a liquid-like mixed phase upon further dilution. Furthermore, gels with larger water content require less PEG-lipid to remain stable. Although concentrated (~50 weight percent) mixtures of free PEG (molecular weight, 5000) and water do not gel, gelation does occur in mixtures containing as little as 0.5 weight percent PEG-lipid. A defining signature of the Lα,g regime as it sets in from the fluid lamellar L_α phase is the proliferation of layer-dislocation-type defects, which are stabilized by the segregation of PEG-lipids to the defect regions of high membrane curvature that connect the membranes.

  5. Extensive characterization of human tear fluid collected using different techniques unravels the presence of novel lipid amphiphiles1[S

    PubMed Central

    Lam, Sin Man; Tong, Louis; Duan, Xinrui; Petznick, Andrea; Wenk, Markus R.; Shui, Guanghou

    2014-01-01

    The tear film covers the anterior eye and the precise balance of its various constituting components is critical for maintaining ocular health. The composition of the tear film amphiphilic lipid sublayer, in particular, has largely remained a matter of contention due to the limiting concentrations of these lipid amphiphiles in tears that render their detection and accurate quantitation tedious. Using systematic and sensitive lipidomic approaches, we validated different tear collection techniques and report the most comprehensive human tear lipidome to date; comprising more than 600 lipid species from 17 major lipid classes. Our study confers novel insights to the compositional details of the existent tear film model, in particular the disputable amphiphilic lipid sublayer constituents, by demonstrating the presence of cholesteryl sulfate, O-acyl-ω-hydroxyfatty acids, and various sphingolipids and phospholipids in tears. The discovery and quantitation of the relative abundance of various tear lipid amphiphiles reported herein are expected to have a profound impact on the current understanding of the existent human tear film model. PMID:24287120

  6. Organic geochemistry of sediments from the continental margin off southern New England, U.S.A.--Part II. Lipids

    NASA Technical Reports Server (NTRS)

    Venkatesan, M. I.; Ruth, E.; Steinberg, S.; Kaplan, I. R.

    1987-01-01

    Organic geochemical measurements of the lipid fraction, comparing saturated and aromatic hydrocarbons, fatty acids, alcohols and sterols, have been carried out on six sediments cores collected from the Atlantic shelf, slope and the rise areas to evaluate the cross-shelf transport of the organic carbon. The concentration of most of the organic compound classes studied is correlated with the total organic carbon, which decreases from the shelf through slope to the rise. Terrigenous carbon is recognizable even in the slope and rise sediments, but terrestrial influx decreases relative to marine generated lipids in the slope and rise organic matter. We estimate that approximately 50% of the shelf organic matter is exported to the slope. Data of sediment trap material collected at 1200 m from 1250 m water depth are discussed and compared with that of surface sediment from 1280 m water depth (slope). Fluxes for specific organic compound classes have been computed. The fluxes are of the same magnitude as for equatorial North Atlantic trap particulates at comparable water depth, studied by other investigations.

  7. New assays for detection and localization of endogenous lipid peroxidation products in living boar sperm after BTS dilution or after freeze-thawing.

    PubMed

    Brouwers, Jos F; Silva, Patricia F N; Gadella, Barend M

    2005-01-15

    Reactive oxygen species have been implicated in sperm aberrations causing multiple pathologies including sub- and infertility. Freeze/thawing of sperm samples is routinely performed in the cattle breeding industries for semen storage prior to artificial insemination but unusual in porcine breeding industries as semen dilution and storage at 17 degrees C is sufficient for artificial insemination within 2-3 days. However, longer semen storage requires cryopreservation of boar semen. Freeze/thawing procedures induce sperm damage and induce reactive oxygen species in mammalian sperm and boar sperm seems to be more vulnerable for this than bull sperm. We developed a new method to detect reactive oxygen species induced damage at the level of the sperm plasma membrane in bull sperm. Lipid peroxidation in freshly stored and frozen/thawed sperm cells was assessed by mass spectrometric analysis of the main endogenous lipid classes, phosphatidylcholine and cholesterol and by fluorescence techniques using the lipid peroxidation reporter probe C11-BODIPY(581/591). Peroxidation as reported by the fluorescent probe, clearly corresponded with the presence of hydroxy- and hydroperoxyphosphatidylcholine in the sperm membranes, which are early stage products of lipid peroxidation. This allowed us, for the first time, to correlate endogenous lipid peroxidation with localization of this process in the living sperm cells. Cytoplasmatic droplets in incompletely matured sperm cells were intensely peroxidized. Furthermore, lipid peroxidation was particularly strong in the mid-piece and tail of frozen/thawed spermatozoa and significantly less intense in the sperm head. Induction of peroxidation in fresh sperm cells with the lipid soluble reactive oxygen species tert-butylhydroperoxide gave an even more pronounced effect, demonstrating antioxidant activity in the head of fresh sperm cells. Furthermore, we were able to show using the flow cytometer that spontaneous peroxidation was not a result of cell death, as only a pronounced subpopulation of living cells showed peroxidation after freeze-thawing. Although the method was established on bovine sperm, we discuss the importance of these assays for detecting lipid peroxidation in boar sperm cells.

  8. An editor for pathway drawing and data visualization in the Biopathways Workbench.

    PubMed

    Byrnes, Robert W; Cotter, Dawn; Maer, Andreia; Li, Joshua; Nadeau, David; Subramaniam, Shankar

    2009-10-02

    Pathway models serve as the basis for much of systems biology. They are often built using programs designed for the purpose. Constructing new models generally requires simultaneous access to experimental data of diverse types, to databases of well-characterized biological compounds and molecular intermediates, and to reference model pathways. However, few if any software applications provide all such capabilities within a single user interface. The Pathway Editor is a program written in the Java programming language that allows de-novo pathway creation and downloading of LIPID MAPS (Lipid Metabolites and Pathways Strategy) and KEGG lipid metabolic pathways, and of measured time-dependent changes to lipid components of metabolism. Accessed through Java Web Start, the program downloads pathways from the LIPID MAPS Pathway database (Pathway) as well as from the LIPID MAPS web server http://www.lipidmaps.org. Data arises from metabolomic (lipidomic), microarray, and protein array experiments performed by the LIPID MAPS consortium of laboratories and is arranged by experiment. Facility is provided to create, connect, and annotate nodes and processes on a drawing panel with reference to database objects and time course data. Node and interaction layout as well as data display may be configured in pathway diagrams as desired. Users may extend diagrams, and may also read and write data and non-lipidomic KEGG pathways to and from files. Pathway diagrams in XML format, containing database identifiers referencing specific compounds and experiments, can be saved to a local file for subsequent use. The program is built upon a library of classes, referred to as the Biopathways Workbench, that convert between different file formats and database objects. An example of this feature is provided in the form of read/construct/write access to models in SBML (Systems Biology Markup Language) contained in the local file system. Inclusion of access to multiple experimental data types and of pathway diagrams within a single interface, automatic updating through connectivity to an online database, and a focus on annotation, including reference to standardized lipid nomenclature as well as common lipid names, supports the view that the Pathway Editor represents a significant, practicable contribution to current pathway modeling tools.

  9. 21 CFR 862.1470 - Lipid (total) test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862.... (b) Classification. Class I (general controls). The device is exempt from the premarket notification...

  10. Temporal variation in the biochemical ecology of lower trophic levels in the Northern California Current

    NASA Astrophysics Data System (ADS)

    Miller, J. A.; Peterson, W. T.; Copeman, L. A.; Du, X.; Morgan, C. A.; Litz, M. N. C.

    2017-06-01

    There is strong correlative evidence that variation in the growth and survival of secondary consumers is related to the copepod species composition within the Northern California Current. Potential mechanisms driving these correlations include: (1) enhanced growth and survival of secondary consumers when lipid-rich, boreal copepod species are abundant, with cascading effects on higher trophic levels; (2) the regulation of growth and condition of primary and secondary consumers by the relative proportion of certain essential fatty acids (FAs) in primary producers; or (3) a combination of these factors. Disentangling the relative importance of taxonomic composition, lipid quantity, and FA composition on the nutritional quality of copepods requires detailed information on both the consumer and primary producers. Therefore, we collected phytoplankton and copepods at an oceanographic station for 19 months and completed species community analyses and generated detailed lipid profiles, including lipid classes and FAs, for both groups. There was strong covariation between species and biochemistry within and across trophic levels and distinct seasonal differences. The amount of total lipid within both the phytoplankton and copepod communities was twice as high in spring and summer than in fall and winter, and certain FAs, such as diatom indicators 20:5ω3 and 16:1ω7, comprised a greater proportion of the FA pool in spring and summer. Indicators of bacterial production within the copepod community were proportionally twice as high during fall and winter than spring and summer. Seasonal transitions in copepod FA composition were consistently offset from transitions in copepod species composition by approximately two weeks. The timing of the seasonal transition in copepod FAs reflected seasonal shifts in the species composition and/or biochemistry of primary producers more than seasonal shifts in the copepod species composition. These results emphasize the importance of interactions between the copepod community and their available phytoplankton prey in regulating the nutritional quality of primary consumers.

  11. Nonessential fatty acids in formula fat blends influence essential fatty acid metabolism and composition in plasma and organ lipid classes in piglets.

    PubMed

    Wall, K M; Diersen-Schade, D; Innis, S M

    1992-12-01

    The n-6 and n-3 fatty acid status of developing organs is the cumulative result of the diet lipid composition and many complex events of lipid metabolism. Little information is available, however, on the potential effects of the saturated fatty acid chain length (8:0-16:0) or oleic acid (18:1) content of the diet on the subsequent metabolism of the essential fatty acids 18:2n-6 and 18:3n-3 and their elongated/desaturated products. The effects of feeding piglets formulas with fat blends containing either coconut oil (12:0 + 14:0) or medium chain triglycerides (MCT, 8:0 + 10:0) but similar levels of 18:1, 18:2n-6 and 18:3n-3, or MCT with high or low 18:1 but constant 18:2n-6 and 18:3n-3 on the fatty acid composition of plasma, liver and kidney triglycerides, phospholipids and cholesteryl esters, and of brain total lipid, were studied. Diet-induced changes in the fatty acid composition of lipid classes were generally similar for plasma, liver and kidney. Dietary 18:1 content was reflected in tissue lipids and was inversely associated with levels of 18:2n-6. Lower percentage of 18:2n-6, however, was not associated with lower levels of its elongated/desaturated product 20:4n-6 but was associated with higher levels of 22:6n-3. Feeding coconut oil vs. MCT resulted in lower 18:1 levels in all lipids, and higher percentages of 20:4n-6 in tissue phospholipid. Increasing the dietary n-6/n-3 ratio from 5 to 8 significantly increased tissue percentage of 18:2n-6 and decreased phospholipid 22:6n-3.(ABSTRACT TRUNCATED AT 250 WORDS)

  12. HDL particles incorporate into lipid bilayers - a combined AFM and single molecule fluorescence microscopy study.

    PubMed

    Plochberger, Birgit; Röhrl, Clemens; Preiner, Johannes; Rankl, Christian; Brameshuber, Mario; Madl, Josef; Bittman, Robert; Ros, Robert; Sezgin, Erdinc; Eggeling, Christian; Hinterdorfer, Peter; Stangl, Herbert; Schütz, Gerhard J

    2017-11-21

    The process, how lipids are removed from the circulation and transferred from high density lipoprotein (HDL) - a main carrier of cholesterol in the blood stream - to cells, is highly complex. HDL particles are captured from the blood stream by the scavenger receptor, class B, type I (SR-BI), the so-called HDL receptor. The details in subsequent lipid-transfer process, however, have not yet been completely understood. The transfer has been proposed to occur directly at the cell surface across an unstirred water layer, via a hydrophobic channel in the receptor, or after HDL endocytosis. The role of the target lipid membrane for the transfer process, however, has largely been overlooked. Here, we studied at the single molecule level how HDL particles interact with synthetic lipid membranes. Using (high-speed) atomic force microscopy and fluorescence correlation spectroscopy (FCS) we found out that, upon contact with the membrane, HDL becomes integrated into the lipid bilayer. Combined force and single molecule fluorescence microscopy allowed us to directly monitor the transfer process of fluorescently labelled amphiphilic lipid probe from HDL particles to the lipid bilayer upon contact.

  13. The Sheep Genome Illuminates Biology of the Rumen and Lipid Metabolism

    PubMed Central

    Talbot, Richard; Maddox, Jillian F.; Faraut, Thomas; Wu, Chunhua; Muzny, Donna M.; Li, Yuxiang; Zhang, Wenguang; Stanton, Jo-Ann; Brauning, Rudiger; Barris, Wesley C.; Hourlier, Thibaut; Aken, Bronwen L.; Searle, Stephen M.J.; Adelson, David L.; Bian, Chao; Cam, Graham R.; Chen, Yulin; Cheng, Shifeng; DeSilva, Udaya; Dixen, Karen; Dong, Yang; Fan, Guangyi; Franklin, Ian R.; Fu, Shaoyin; Guan, Rui; Highland, Margaret A.; Holder, Michael E.; Huang, Guodong; Ingham, Aaron B.; Jhangiani, Shalini N.; Kalra, Divya; Kovar, Christie L.; Lee, Sandra L.; Liu, Weiqing; Liu, Xin; Lu, Changxin; Lv, Tian; Mathew, Tittu; McWilliam, Sean; Menzies, Moira; Pan, Shengkai; Robelin, David; Servin, Bertrand; Townley, David; Wang, Wenliang; Wei, Bin; White, Stephen N.; Yang, Xinhua; Ye, Chen; Yue, Yaojing; Zeng, Peng; Zhou, Qing; Hansen, Jacob B.; Kristensen, Karsten; Gibbs, Richard A.; Flicek, Paul; Warkup, Christopher C.; Jones, Huw E.; Oddy, V. Hutton; Nicholas, Frank W.; McEwan, John C.; Kijas, James; Wang, Jun; Worley, Kim C.; Archibald, Alan L.; Cockett, Noelle; Xu, Xun; Wang, Wen; Dalrymple, Brian P.

    2014-01-01

    Sheep (Ovis aries) are a major source of meat, milk and fiber in the form of wool, and represent a distinct class of animals that have a specialized digestive organ, the rumen, which carries out the initial digestion of plant material. We have developed and analyzed a high quality reference sheep genome and transcriptomes from 40 different tissues. We identified highly expressed genes encoding keratin cross-linking proteins associated with rumen evolution. We also identified genes involved in lipid metabolism that had been amplified and/or had altered tissue expression patterns. This may be in response to changes in the barrier lipids of the skin, an interaction between lipid metabolism and wool synthesis, and an increased role of volatile fatty acids in ruminants, compared to non-ruminant animals. PMID:24904168

  14. Ionization behavior of amino lipids for siRNA delivery: determination of ionization constants, SAR, and the impact of lipid pKa on cationic lipid-biomembrane interactions.

    PubMed

    Zhang, Jingtao; Fan, Haihong; Levorse, Dorothy A; Crocker, Louis S

    2011-03-01

    Ionizable amino lipids are being pursued as an important class of materials for delivering small interfering RNA (siRNA) therapeutics, and research is being conducted to elucidate the structure-activity relationships (SAR) of these lipids. The pK(a) of cationic lipid headgroups is one of the critical physiochemical properties of interest due to the strong impact of lipid ionization on the assembly and performance of these lipids. This research focused on developing approaches that permit the rapid determination of the relevant pK(a) of the ionizable amino lipids. Two distinct approaches were investigated: (1) potentiometric titration of amino lipids dissolved in neutral surfactant micelles; and (2) pH-dependent partitioning of a fluorescent dye to cationic liposomes formulated from amino lipids. Using the approaches developed here, the pK(a) values of cationic lipids with distinct headgroups were measured and found to be significantly lower than calculated values. It was also found that lipid-lipid interaction has a strong impact on the pK(a) values of lipids. Lysis of model biomembranes by cationic lipids was used to evaluate the impact of lipid pK(a) on the interaction between cationic lipids and cell membranes. It was found that cationic lipid-biomembrane interaction depends strongly on lipid pK(a) and solution pH, and this interaction is much stronger when amino lipids are highly charged. The presence of an optimal pK(a) range of ionizable amino lipids for siRNA delivery was suggested based on these results. The pK(a) methods reported here can be used to support the SAR screen of cationic lipids for siRNA delivery, and the information revealed through studying the impact of pK(a) on the interaction between cationic lipids and cell membranes will contribute significantly to the design of more efficient siRNA delivery vehicles.

  15. Differential regulatory functions of three classes of phosphatidylinositol and phosphoinositide 3-kinases in autophagy

    PubMed Central

    Yu, Xinlei; Long, Yun Chau; Shen, Han-Ming

    2015-01-01

    Autophagy is an evolutionarily conserved and exquisitely regulated self-eating cellular process with important biological functions. Phosphatidylinositol 3-kinases (PtdIns3Ks) and phosphoinositide 3-kinases (PI3Ks) are involved in the autophagic process. Here we aim to recapitulate how 3 classes of these lipid kinases differentially regulate autophagy. Generally, activation of the class I PI3K suppresses autophagy, via the well-established PI3K-AKT-MTOR (mechanistic target of rapamycin) complex 1 (MTORC1) pathway. In contrast, the class III PtdIns3K catalytic subunit PIK3C3/Vps34 forms a protein complex with BECN1 and PIK3R4 and produces phosphatidylinositol 3-phosphate (PtdIns3P), which is required for the initiation and progression of autophagy. The class II enzyme emerged only recently as an alternative source of PtdIns3P and autophagic initiator. However, the orthodox paradigm is challenged by findings that the PIK3CB catalytic subunit of class I PI3K acts as a positive regulator of autophagy, and PIK3C3 was thought to be an amino acid sensor for MTOR, which curbs autophagy. At present, a number of PtdIns3K and PI3K inhibitors, including specific PIK3C3 inhibitors, have been developed for suppression of autophagy and for clinical applications in autophagy-related human diseases. PMID:26018563

  16. Toward an Animal Model of the Human Tear Film: Biochemical Comparison of the Mouse, Canine, Rabbit, and Human Meibomian Lipidomes

    PubMed Central

    Butovich, Igor A.; Lu, Hua; McMahon, Anne; Eule, J. Corinna

    2012-01-01

    Purpose. Secretions that are produced by meibomian glands (also known as meibum) are a major source of lipids for the ocular surface of humans and animals alike. Many animal species have been evaluated for their meibomian lipidomes. However, there have been a very small number of studies in which the animals were compared with humans side by side. Therefore, the purpose of this study was to compare meibum collected from humans and three typical laboratory animals, canines, mice, and rabbits, for their meibomian lipid composition in order to determine which animal species most resembles humans. Methods. High pressure liquid chromatography (HPLC) and gas-liquid chromatography (GLC) in combination with mass spectrometry were used to evaluate lipidomes of all tested species. Results. Among three tested animal species, mice were found to be the closest match to humans in terms of their meibomian lipidomes, while canines were the second closest species. The lipids of these three species were close to each other structurally and, for most lipid classes, quantitatively. The rabbit meibomian lipidome, on the other hand, was vastly different from lipidomes of all other tested species. Interestingly, a previously described class of lipids, acylated omega-hydroxy fatty acids (OAHFA), was found to be present in every tested species as the major amphiphilic component of meibum. Conclusions. Our side by side comparison of the rabbit and the human meibum demonstrated their vast differences. Thus, the rabbit seems to be a poor animal model of the human tear film, at least when studying its biochemistry and biophysics. PMID:22918629

  17. TRITON HYPERLIPEMIA IN DOGS

    PubMed Central

    Scanu, Angelo; Oriente, Pasquale; Szajewski, Janusz M.; McCormack, Lawrence J.; Page, Irvine H.

    1961-01-01

    Fourteen dogs, fed a regular diet and given 250 mg/kg of triton (a non-ionic surface-active agent) intravenously every 4th day, exhibited a progressively severe hyperlipemia. Serum triglycerides were the first to increase. Cholesterol, mostly in the free form, and phospholipids showed elevation only at a later stage and increased at almost identical rates. The plasma-free fatty acid concentration was from 2 to 3 times above normal. With establishment of sustained hyperlipemia, there was reduction, followed by total disappearance, of the high density D 1.063 to 1.21 lipoprotein. Most of the cholesterol and phospholipids (70 to 75 per cent of the total) were found in the D 1.006 to 1.063 lipoprotein class, the remainder in the D < 1.006 class. Triglycerides were almost evenly distributed between these two classes. The concentration of the serum lipoprotein proteins was within normal limits. All of the animals died within from 4 to 5 months after receiving the first injection of triton. Autopsy findings consistently showed: (a) numerous lipidladen macrophages in the liver, spleen, and lymph nodes; (b) significant depletion of all fat stores; (c) presence of lipids, either free or engulfed in macrophages (foam cells), in the subintima of the coronary arteries, aorta, and pulmonary arteries, indicating an early stage of atherosclerosis. Concurrent daily administration of heparin (5 mg per kilogram of body weight) did not substantially change the course of the disease. Withdrawal of triton from animals that had been receiving the detergent for from 3 to 4 months, elicited a slow return to normal of the lipid pattern. In two dogs killed when normolipemia was reestablished, all tissues were normal with the minor exception of a few hepatic macrophages still laden with sudanophilic material. It is postulated that the primary action of the injected triton was on the lipid moieties of plasma lipoproteins with formation of complexes, which, as foreign bodies, were preferentially taken up by the cells of the reticuloendothelial system. Depletion of fat stores was probably secondary to increased lipid mobilization, as an attempt by these tissues to supply energy to the parenchymal cells unable to utilize triton-bound lipids. PMID:13747053

  18. The sheep genome illuminates biology of the rumen and lipid metabolism.

    PubMed

    Jiang, Yu; Xie, Min; Chen, Wenbin; Talbot, Richard; Maddox, Jillian F; Faraut, Thomas; Wu, Chunhua; Muzny, Donna M; Li, Yuxiang; Zhang, Wenguang; Stanton, Jo-Ann; Brauning, Rudiger; Barris, Wesley C; Hourlier, Thibaut; Aken, Bronwen L; Searle, Stephen M J; Adelson, David L; Bian, Chao; Cam, Graham R; Chen, Yulin; Cheng, Shifeng; DeSilva, Udaya; Dixen, Karen; Dong, Yang; Fan, Guangyi; Franklin, Ian R; Fu, Shaoyin; Guan, Rui; Highland, Margaret A; Holder, Michael E; Huang, Guodong; Ingham, Aaron B; Jhangiani, Shalini N; Kalra, Divya; Kovar, Christie L; Lee, Sandra L; Liu, Weiqing; Liu, Xin; Lu, Changxin; Lv, Tian; Mathew, Tittu; McWilliam, Sean; Menzies, Moira; Pan, Shengkai; Robelin, David; Servin, Bertrand; Townley, David; Wang, Wenliang; Wei, Bin; White, Stephen N; Yang, Xinhua; Ye, Chen; Yue, Yaojing; Zeng, Peng; Zhou, Qing; Hansen, Jacob B; Kristensen, Karsten; Gibbs, Richard A; Flicek, Paul; Warkup, Christopher C; Jones, Huw E; Oddy, V Hutton; Nicholas, Frank W; McEwan, John C; Kijas, James; Wang, Jun; Worley, Kim C; Archibald, Alan L; Cockett, Noelle; Xu, Xun; Wang, Wen; Dalrymple, Brian P

    2014-06-06

    Sheep (Ovis aries) are a major source of meat, milk, and fiber in the form of wool and represent a distinct class of animals that have a specialized digestive organ, the rumen, that carries out the initial digestion of plant material. We have developed and analyzed a high-quality reference sheep genome and transcriptomes from 40 different tissues. We identified highly expressed genes encoding keratin cross-linking proteins associated with rumen evolution. We also identified genes involved in lipid metabolism that had been amplified and/or had altered tissue expression patterns. This may be in response to changes in the barrier lipids of the skin, an interaction between lipid metabolism and wool synthesis, and an increased role of volatile fatty acids in ruminants compared with nonruminant animals. Copyright © 2014, American Association for the Advancement of Science.

  19. Membrane Proteomic Insights into the Physiology and Taxonomy of an Oleaginous Green Microalga1

    PubMed Central

    Vera-Estrella, Rosario

    2017-01-01

    Ettlia oleoabundans is a nonsequenced oleaginous green microalga. Despite the significant biotechnological interest in producing value-added compounds from the acyl lipids of this microalga, a basic understanding of the physiology and biochemistry of oleaginous microalgae is lacking, especially under nitrogen deprivation conditions known to trigger lipid accumulation. Using an RNA sequencing-based proteomics approach together with manual annotation, we are able to provide, to our knowledge, the first membrane proteome of an oleaginous microalga. This approach allowed the identification of novel proteins in E. oleoabundans, including two photoprotection-related proteins, Photosystem II Subunit S and Maintenance of Photosystem II under High Light1, which were considered exclusive to higher photosynthetic organisms, as well as Retinitis Pigmentosa Type 2-Clathrin Light Chain, a membrane protein with a novel domain architecture. Free-flow zonal electrophoresis of microalgal membranes coupled to liquid chromatography-tandem mass spectrometry proved to be a useful technique for determining the intracellular location of proteins of interest. Carbon-flow compartmentalization in E. oleoabundans was modeled using this information. Molecular phylogenetic analyses of protein markers and 18S ribosomal DNA support the reclassification of E. oleoabundans within the trebouxiophycean microalgae, rather than with the Chlorophyceae class, in which it is currently classified, indicating that it may not be closely related to the model green alga Chlamydomonas reinhardtii. A detailed survey of biological processes taking place in the membranes of nitrogen-deprived E. oleoabundans, including lipid metabolism, provides insights into the basic biology of this nonmodel organism. PMID:27837088

  20. Influence of Meibomian Gland Expression Methods on Human Lipid Analysis Results.

    PubMed

    Kunnen, Carolina M E; Brown, Simon H J; Lazon de la Jara, Percy; Holden, Brien A; Blanksby, Stephen J; Mitchell, Todd W; Papas, Eric B

    2016-01-01

    To compare the lipid composition of human meibum across three different meibum expression techniques. Meibum was collected from five healthy non-contact lens wearers (aged 20-35 years) after cleaning the eyelid margin using three meibum expression methods: cotton buds (CB), meibomian gland evaluator (MGE) and meibomian gland forceps (MGF). Meibum was also collected using cotton buds without cleaning the eyelid margin (CBn). Lipids were analyzed by chip-based, nano-electrospray mass spectrometry (ESI-MS). Comparisons were made using linear mixed models. Tandem MS enabled identification and quantification of over 200 lipid species across ten lipid classes. There were significant differences between collection techniques in the relative quantities of polar lipids obtained (P<.05). The MGE method returned smaller polar lipid quantities than the CB approaches. No significant differences were found between techniques for nonpolar lipids. No significant differences were found between cleaned and non-cleaned eyelids for polar or nonpolar lipids. Meibum expression technique influences the relative amount of phospholipids in the resulting sample. The highest amounts of phospholipids were detected with the CB approaches and the lowest with the MGE technique. Cleaning the eyelid margin prior to expression was not found to affect the lipid composition of the sample. This may be a consequence of the more forceful expression resulting in cell membrane contamination or higher risk of tear lipid contamination as a result of reflex tearing. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Alpha1-adrenergic blockers: current usage considerations.

    PubMed

    Sica, Domenic A

    2005-12-01

    Alpha1-adrenergic-blocking drugs are effective in reducing blood pressure and do so in a fashion comparable to most other antihypertensive drug classes. These compounds are most effective in patients in the upright position, reducing systolic and diastolic pressures by 8%-10%. Alpha1-adrenergic-blocking drugs incrementally reduce blood pressure when combined with most drug classes and are the only antihypertensive drug class to improve plasma lipid profiles. Alpha1-adrenergic-blocking drugs are also accepted as important elements of the treatment plan for symptomatic benign prostatic hypertrophy. Dose escalation of an alpha1-adrenergic-blocking drug can trigger renal Na+ retention, and the ensuing volume expansion can attenuate its blood pressure-lowering effect. Orthostatic hypotension can occur with these compounds, particularly when a patient is volume-contracted. Dizziness, headache, and drowsiness are common side effects with alpha1-adrenergic blockers. A modest decline in the use of doxazosin and other alpha1-adrenergic-blocking drugs has occurred coincident to the early termination of the doxazosin treatment arm in the Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial.

  2. Triacylglycerol estolides, a new class of mammalian lipids, in the paracloacal gland of the brushtail possum (Trichosurus vulpecula).

    PubMed

    McLean, Stuart; Davies, Noel W; Nichols, David S; Mcleod, Bernie J

    2015-06-01

    The paracloacal glands are the most prevalent scent glands in marsupials, and previous investigation of their secretions in the brushtail possum (Trichosurus vulpecula) has identified many odorous compounds together with large amounts of neutral lipids. We have examined the lipids by LC-MS, generating ammonium adducts of acylglycerols by electrospray ionisation. Chromatograms showed a complex mixture of coeluting acylglycerols, with m/z from about 404 to 1048. Plots of single [M + NH4](+) ions showed three groups of lipids clearly separated by retention time. MS-MS enabled triacylglycerols and diacylglycerol ethers to be identified from neutral losses and formation of diacylglycerols and other product ions. The earliest-eluting lipids were found to be triacylglycerol estolides, in which a fourth fatty acid forms an ester link with a hydroxy fatty acid attached to the glycerol chain. This is the first report of triacylglycerol estolides in animals. They form a complex mixture with the triacylglycerols and diacylglycerol ethers of lipids with short- and long-chain fatty acids with varying degrees of unsaturation. This complexity suggests a functional role, possibly in social communication.

  3. Comparison of structure and organization of cutaneous lipids in a reconstructed skin model and human skin: spectroscopic imaging and chromatographic profiling.

    PubMed

    Tfayli, Ali; Bonnier, Franck; Farhane, Zeineb; Libong, Danielle; Byrne, Hugh J; Baillet-Guffroy, Arlette

    2014-06-01

    The use of animals for scientific research is increasingly restricted by legislation, increasing the demand for human skin models. These constructs present comparable bulk lipid content to human skin. However, their permeability is significantly higher, limiting their applicability as models of barrier function, although the molecular origins of this reduced barrier function remain unclear. This study analyses the stratum corneum (SC) of one such commercially available reconstructed skin model (RSM) compared with human SC by spectroscopic imaging and chromatographic profiling. Total lipid composition was compared by chromatographic analysis (HPLC). Raman spectroscopy was used to evaluate the conformational order, lateral packing and distribution of lipids in the surface and skin/RSM sections. Although HPLC indicates that all SC lipid classes are present, significant differences are observed in ceramide profiles. Raman imaging demonstrated that the RSM lipids are distributed in a non-continuous matrix, providing a better understanding of the limited barrier function. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Lipid metabolism during embryonic development of the common snapping turtle, Chelydra serpentina.

    PubMed

    Lawniczak, Cynthia J; Teece, Mark A

    2009-05-01

    The metabolism of lipids and fatty acids during embryonic development of Chelydra serpentina (common snapping turtle) was investigated. Substantial changes in lipid class and fatty acid composition occurred as lipids were transferred from the yolk to the yolk sac membrane (YSM) and then to the brain, eyes, heart, and lungs of the hatchling. Lipids were hydrolyzed in the yolk prior to transport to the YSM, shown by a large increase in free fatty acids (FFAs) during the second half of development. Triglyceride-derived docosahexaenoic acid (DHA) was utilized preferentially to phospholipid-derived DHA. In the YSM, arachidonic acid (ARA) was selectively incorporated into phospholipids while DHA was preferentially incorporated into triglycerides. Selective incorporation of DHA and ARA into the brain and eyes, and ARA into the heart was observed, indicating the importance of these PUFAs for organ development and function. The amount of DHA and ARA in each organ was less than 1% of that measured in the yolk of the freshly laid egg, indicating that only a small portion of yolk PUFAs were incorporated into the hatchling organs studied. We discuss the differences in the mechanisms and utilization of yolk lipids in turtles compared with lipid uptake during embryonic development in birds.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mruetusatorn, Prachya; Boreyko, Jonathan B; Sarles, Stephen A

    Droplet interface bilayers (DIBs) are a powerful platform for studying the dynamics of synthetic cellular membranes; however, very little has been done to exploit the unique dynamical features of DIBs. Here, we generate microscale droplet interface bilayers ( DIBs) by bringing together femtoliter-volume water droplets in a microfluidic oil channel, and characterize morphological changes of the DIBs as the droplets shrink due to evaporation. By varying the initial conditions of the system, we identify three distinct classes of dynamic morphology. (1) Buckling and Fission: When forming DIBs using the lipid-out method (lipids in oil phase), lipids in the shrinking monolayersmore » continually pair together and slide into the bilayer to conserve their mass. As the bilayer continues to grow, it becomes confined, buckles, and eventually fissions one or more vesicles. (2) Uniform Shrinking: When using the lipid-in method (lipids in water phase) to form DIBs, lipids uniformly transfer from the monolayers and bilayer into vesicles contained inside the water droplets. (3) Stretching and Unzipping: Finally, when the droplets are pinned to the wall(s) of the microfluidic channel, the droplets become stretched during evaporation, culminating in the unzipping of the bilayer and droplet separation. These findings offer a better understanding of the dynamics of coupled lipid interfaces.« less

  6. Characterization of a unique class C acid phosphatase from Clostridium perfringens.

    PubMed

    Reilly, Thomas J; Chance, Deborah L; Calcutt, Michael J; Tanner, John J; Felts, Richard L; Waller, Stephen C; Henzl, Michael T; Mawhinney, Thomas P; Ganjam, Irene K; Fales, William H

    2009-06-01

    Clostridium perfringens is a gram-positive anaerobe and a pathogen of medical importance. The detection of acid phosphatase activity is a powerful diagnostic indicator of the presence of C. perfringens among anaerobic isolates; however, characterization of the enzyme has not previously been reported. Provided here are details of the characterization of a soluble recombinant form of this cell-associated enzyme. The denatured enzyme was approximately 31 kDa and a homodimer in solution. It catalyzed the hydrolysis of several substrates, including para-nitrophenyl phosphate, 4-methylumbelliferyl phosphate, and 3' and 5' nucleoside monophosphates at pH 6. Calculated K(m)s ranged from 0.2 to 0.6 mM with maximum velocity ranging from 0.8 to 1.6 micromol of P(i)/s/mg. Activity was enhanced in the presence of some divalent cations but diminished in the presence of others. Wild-type enzyme was detected in all clinical C. perfringens isolates tested and found to be cell associated. The described enzyme belongs to nonspecific acid phosphatase class C but is devoid of lipid modification commonly attributed to this class.

  7. Characterization of a Unique Class C Acid Phosphatase from Clostridium perfringens▿

    PubMed Central

    Reilly, Thomas J.; Chance, Deborah L.; Calcutt, Michael J.; Tanner, John J.; Felts, Richard L.; Waller, Stephen C.; Henzl, Michael T.; Mawhinney, Thomas P.; Ganjam, Irene K.; Fales, William H.

    2009-01-01

    Clostridium perfringens is a gram-positive anaerobe and a pathogen of medical importance. The detection of acid phosphatase activity is a powerful diagnostic indicator of the presence of C. perfringens among anaerobic isolates; however, characterization of the enzyme has not previously been reported. Provided here are details of the characterization of a soluble recombinant form of this cell-associated enzyme. The denatured enzyme was ∼31 kDa and a homodimer in solution. It catalyzed the hydrolysis of several substrates, including para-nitrophenyl phosphate, 4-methylumbelliferyl phosphate, and 3′ and 5′ nucleoside monophosphates at pH 6. Calculated Kms ranged from 0.2 to 0.6 mM with maximum velocity ranging from 0.8 to 1.6 μmol of Pi/s/mg. Activity was enhanced in the presence of some divalent cations but diminished in the presence of others. Wild-type enzyme was detected in all clinical C. perfringens isolates tested and found to be cell associated. The described enzyme belongs to nonspecific acid phosphatase class C but is devoid of lipid modification commonly attributed to this class. PMID:19363079

  8. Quantification and characterisation of fatty acid methyl esters in microalgae: Comparison of pretreatment and purification methods.

    PubMed

    Lage, Sandra; Gentili, Francesco G

    2018-06-01

    A systematic qualitative and quantitative analysis of fatty acid methyl esters (FAMEs) is crucial for microalgae species selection for biodiesel production. The aim of this study is to identify the best method to assess microalgae FAMEs composition and content. A single-step method, was tested with and without purification steps-that is, separation of lipid classes by thin-layer chromatography (TLC) or solid-phase extraction (SPE). The efficiency of a direct transesterification method was also evaluated. Additionally, the yield of the FAMEs and the profiles of the microalgae samples with different pretreatments (boiled in isopropanol, freezing, oven-dried and freeze-dried) were compared. The application of a purification step after lipid extraction proved to be essential for an accurate FAMEs characterisation. The purification methods, which included TLC and SPE, provided superior results compared to not purifying the samples. Freeze-dried microalgae produced the lowest FAMEs yield. However, FAMEs profiles were generally equivalent among the pretreatments. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Fatty Aldehydes in Cyanobacteria Are a Metabolically Flexible Precursor for a Diversity of Biofuel Products

    PubMed Central

    Kaiser, Brett K.; Carleton, Michael; Hickman, Jason W.; Miller, Cameron; Lawson, David; Budde, Mark; Warrener, Paul; Paredes, Angel; Mullapudi, Srinivas; Navarro, Patricia; Cross, Fred; Roberts, James M.

    2013-01-01

    We describe how pathway engineering can be used to convert a single intermediate derived from lipid biosynthesis, fatty aldehydes, into a variety of biofuel precursors including alkanes, free fatty acids and wax esters. In cyanobacteria, long-chain acyl-ACPs can be reduced to fatty aldehydes, and then decarbonylated to alkanes. We discovered a cyanobacteria class-3 aldehyde-dehydrogenase, AldE, that was necessary and sufficient to instead oxidize fatty aldehyde precursors into fatty acids. Overexpression of enzymes in this pathway resulted in production of 50 to 100 fold more fatty acids than alkanes, and the fatty acids were secreted from the cell. Co-expression of acyl-ACP reductase, an alcohol-dehydrogenase and a wax-ester-synthase resulted in a third fate for fatty aldehydes: conversion to wax esters, which accumulated as intracellular lipid bodies. Conversion of acyl-ACP to fatty acids using endogenous cyanobacterial enzymes may allow biofuel production without transgenesis. PMID:23505484

  10. DAF-16 and TCER-1 Facilitate Adaptation to Germline Loss by Restoring Lipid Homeostasis and Repressing Reproductive Physiology in C. elegans

    PubMed Central

    Amrit, Francis Raj Gandhi; Steenkiste, Elizabeth Marie; Ratnappan, Ramesh; Chen, Shaw-Wen; McClendon, T. Brooke; Kostka, Dennis; Yanowitz, Judith; Olsen, Carissa Perez; Ghazi, Arjumand

    2016-01-01

    Elimination of the proliferating germline extends lifespan in C. elegans. This phenomenon provides a unique platform to understand how complex metazoans retain metabolic homeostasis when challenged with major physiological perturbations. Here, we demonstrate that two conserved transcription regulators essential for the longevity of germline-less adults, DAF-16/FOXO3A and TCER-1/TCERG1, concurrently enhance the expression of multiple genes involved in lipid synthesis and breakdown, and that both gene classes promote longevity. Lipidomic analyses revealed that key lipogenic processes, including de novo fatty acid synthesis, triglyceride production, desaturation and elongation, are augmented upon germline removal. Our data suggest that lipid anabolic and catabolic pathways are coordinately augmented in response to germline loss, and this metabolic shift helps preserve lipid homeostasis. DAF-16 and TCER-1 also perform essential inhibitory functions in germline-ablated animals. TCER-1 inhibits the somatic gene-expression program that facilitates reproduction and represses anti-longevity genes, whereas DAF-16 impedes ribosome biogenesis. Additionally, we discovered that TCER-1 is critical for optimal fertility in normal adults, suggesting that the protein acts as a switch supporting reproductive fitness or longevity depending on the presence or absence of the germline. Collectively, our data offer insights into how organisms adapt to changes in reproductive status, by utilizing the activating and repressive functions of transcription factors and coordinating fat production and degradation. PMID:26862916

  11. Synthesis of arborane triterpenols by a bacterial oxidosqualene cyclase

    NASA Astrophysics Data System (ADS)

    Banta, Amy B.; Wei, Jeremy H.; Gill, Clare C. C.; Giner, José-Luis; Welander, Paula V.

    2017-01-01

    Cyclic triterpenoids are a broad class of polycyclic lipids produced by bacteria and eukaryotes. They are biologically relevant for their roles in cellular physiology, including membrane structure and function, and biochemically relevant for their exquisite enzymatic cyclization mechanism. Cyclic triterpenoids are also geobiologically significant as they are readily preserved in sediments and are used as biomarkers for ancient life throughout Earth's history. Isoarborinol is one such triterpenoid whose only known biological sources are certain angiosperms and whose diagenetic derivatives (arboranes) are often used as indicators of terrestrial input into aquatic environments. However, the occurrence of arborane biomarkers in Permian and Triassic sediments, which predates the accepted origin of angiosperms, suggests that microbial sources of these lipids may also exist. In this study, we identify two isoarborinol-like lipids, eudoraenol and adriaticol, produced by the aerobic marine heterotrophic bacterium Eudoraea adriatica. Phylogenetic analysis demonstrates that the E. adriatica eudoraenol synthase is an oxidosqualene cyclase homologous to bacterial lanosterol synthases and distinct from plant triterpenoid synthases. Using an Escherichia coli heterologous sterol expression system, we demonstrate that substitution of four amino acid residues in a bacterial lanosterol synthase enabled synthesis of pentacyclic arborinols in addition to tetracyclic sterols. This variant provides valuable mechanistic insight into triterpenoid synthesis and reveals diagnostic amino acid residues to differentiate between sterol and arborinol synthases in genomic and metagenomic datasets. Our data suggest that there may be additional bacterial arborinol producers in marine and freshwater environments that could expand our understanding of these geologically informative lipids.

  12. Synthesis of arborane triterpenols by a bacterial oxidosqualene cyclase

    PubMed Central

    Banta, Amy B.; Wei, Jeremy H.; Gill, Clare C. C.; Giner, José-Luis; Welander, Paula V.

    2017-01-01

    Cyclic triterpenoids are a broad class of polycyclic lipids produced by bacteria and eukaryotes. They are biologically relevant for their roles in cellular physiology, including membrane structure and function, and biochemically relevant for their exquisite enzymatic cyclization mechanism. Cyclic triterpenoids are also geobiologically significant as they are readily preserved in sediments and are used as biomarkers for ancient life throughout Earth's history. Isoarborinol is one such triterpenoid whose only known biological sources are certain angiosperms and whose diagenetic derivatives (arboranes) are often used as indicators of terrestrial input into aquatic environments. However, the occurrence of arborane biomarkers in Permian and Triassic sediments, which predates the accepted origin of angiosperms, suggests that microbial sources of these lipids may also exist. In this study, we identify two isoarborinol-like lipids, eudoraenol and adriaticol, produced by the aerobic marine heterotrophic bacterium Eudoraea adriatica. Phylogenetic analysis demonstrates that the E. adriatica eudoraenol synthase is an oxidosqualene cyclase homologous to bacterial lanosterol synthases and distinct from plant triterpenoid synthases. Using an Escherichia coli heterologous sterol expression system, we demonstrate that substitution of four amino acid residues in a bacterial lanosterol synthase enabled synthesis of pentacyclic arborinols in addition to tetracyclic sterols. This variant provides valuable mechanistic insight into triterpenoid synthesis and reveals diagnostic amino acid residues to differentiate between sterol and arborinol synthases in genomic and metagenomic datasets. Our data suggest that there may be additional bacterial arborinol producers in marine and freshwater environments that could expand our understanding of these geologically informative lipids. PMID:28028245

  13. Influence of Ganglioside GM1 Concentration on Lipid Clustering and Membrane Properties and Curvature.

    PubMed

    Patel, Dhilon S; Park, Soohyung; Wu, Emilia L; Yeom, Min Sun; Widmalm, Göran; Klauda, Jeffery B; Im, Wonpil

    2016-11-01

    Gangliosides are a class of glycosphingolipids (GSLs) with amphiphilic character that are found at the outer leaflet of the cell membranes, where their ability to organize into special domains makes them vital cell membrane components. However, a molecular understanding of GSL-rich membranes in terms of their clustered organization, stability, and dynamics is still elusive. To gain molecular insight into the organization and dynamics of GSL-rich membranes, we performed all-atom molecular-dynamics simulations of bicomponent ganglioside GM1 in 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) phospholipid bilayers with varying concentrations of GM1 (10%, 20%, and 30%). Overall, the simulations show very good agreement with available experimental data, including x-ray electron density profiles along the membrane normal, NMR carbohydrate proton-proton distances, and x-ray crystal structures. This validates the quality of our model systems for investigating GM1 clustering through an ordered-lipid-cluster analysis. The increase in GM1 concentration induces tighter lipid packing, driven mainly by inter-GM1 carbohydrate-carbohydrate interactions, leading to a greater preference for the positive curvature of GM1-containing membranes and larger cluster sizes of ordered-lipid clusters (with a composite of GM1 and POPC). These clusters tend to segregate and form a large percolated cluster at a 30% GM1 concentration at 293 K. At a higher temperature of 330 K, however, the segregation is not maintained. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  14. Formation and mobilization of neutral lipids in the yeast Saccharomyces cerevisiae.

    PubMed

    Wagner, A; Daum, G

    2005-11-01

    Since energy storage is a basic metabolic process, the synthesis of neutral lipids occurs in all kingdoms of life. The yeast Saccharomyces cerevisiae, widely accepted as a model eukaryotic cell, contains two classes of neutral lipids, namely STEs (steryl esters) and TAGs (triacylglycerols). TAGs are synthesized through two pathways governed by the acyl-CoA diacylglycerol acyltransferase Dga1p and the phospholipid diacylglycerol acyltransferase Lro1p. STEs are formed by two STE synthases Are1p and Are2p, two enzymes with overlapping function, which also catalyse TAG formation, although to a minor extent. Neutral lipids are stored in the so-called lipid particles and can be utilized for membrane formation under conditions of lipid depletion. For this purpose, storage lipids have to be mobilized by TAG lipases and STE hydrolases. A TAG lipase named Tgl3p was identified as a major yeast TAG hydrolytic enzyme in lipid particles. Recently, a new family of hydrolases was detected which is required for STE mobilization in S. cerevisiae. These enzymes, named Yeh1p, Yeh2p and Tgl1p, are paralogues of the mammalian acid lipase family. The role of these proteins in biosynthesis and mobilization of TAG and STE, and the regulation of these processes will be discussed in this minireview.

  15. Critical temperatures and a critical chain length in saturated diacylphosphatidylcholines: calorimetric, ultrasonic and Monte Carlo simulation study of chain-melting/ordering in aqueous lipid dispersions.

    PubMed

    Kharakoz, Dmitry P; Panchelyuga, Maria S; Tiktopulo, Elizaveta I; Shlyapnikova, Elena A

    2007-12-01

    Chain-ordering/melting transition in a series of saturated diacylphosphatidylcholines (PCs) in aqueous dispersions have been studied experimentally (calorimetric and ultrasonic techniques) and theoretically (an Ising-like lattice model). The shape of the calorimetric curves was compared with the theoretical data and interpreted in terms of the lateral interactions and critical temperatures determined for each lipid studied. A critical chain length has been found (between 16 and 17 C-atoms per chain) which subdivides PCs into two classes with different phase behavior. In shorter lipids, the transition takes place above their critical temperatures meaning that this is an intrinsically continuous transition. In longer lipids, the transition occurs below the critical temperatures of the lipids, meaning that the transition is intrinsically discontinuous (first-order). This conclusion was supported independently by the ultrasonic relaxation sensitive to density fluctuations. Interestingly, it is this length that is the most abundant among the saturated chains in biological membranes.

  16. General synthesis and physicochemical characterisation of a series of peptide-mimic lysine-based amino-functionalised lipids.

    PubMed

    Wölk, Christian; Drescher, Simon; Meister, Annette; Blume, Alfred; Langner, Andreas; Dobner, Bodo

    2013-09-16

    A series of novel malonic acid diamides (second generation) with two long hydrophobic alkyl chains and an alkaline polar head group was synthesised and characterised as a new class of amino-functionalised lipids. These peptide-mimic lipids are suitable for polynucleotide transfer. The lipids bear a novel backbone consisting of a lysine unit and a malonic acid unit. Six different head-group structures, which vary in size and number of amino groups that can be protonated, were attached to the backbone structure. Furthermore, different alkyl chains were used to build the lipophilic part (namely tetradecyl, hexadecyl, and oleyl). Phase transitions of the new compounds in aqueous dispersions at pH 10 were analysed and discussed in terms of head group and alkyl chain variations. The shape and size of the formed aggregates of selected lipid dispersions were investigated by dynamic light scattering and transmission electron microscopy. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. LHCII organization and thylakoid lipids affect the sensitivity of the photosynthetic apparatus to high-light treatment.

    PubMed

    Dankov, Kolyo G; Dobrikova, Anelia G; Ughy, Bettina; Bogos, Balázs; Gombos, Zoltan; Apostolova, Emilia L

    2011-06-01

    Pulse-amplitude-modulated (PAM) chlorophyll fluorescence and photosynthetic oxygen evolution were used to investigate the role of the different amount and organization of light-harvesting complexes of photosystem II (LHCII) in four pea species on the susceptibility of the photosynthetic apparatus to high-light treatment. In this work we analyzed the thylakoid membrane lipid composition of the studied pea plants. A relationship between the structural organization of LHCII proteins, the amount of the main lipid classes and the sensitivity of the photosynthetic apparatus to high-light treatment was found. The results reveal that the photosynthetic apparatus, enriched in oligomeric forms of LHCII concomitant with decreased amount of anionic lipids and increased content of the monogalactosyldiacylglycerol (MGDG), is less sensitive to high light. Our data also suggest that the degree of LHCII oligomerization, as well as the lipid composition do not influence the degree of recovery of the PSII photochemistry after excess light exposure. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  18. Molecular recognition of microbial lipid-based antigens by T cells.

    PubMed

    Gras, Stephanie; Van Rhijn, Ildiko; Shahine, Adam; Le Nours, Jérôme

    2018-05-01

    The immune system has evolved to protect hosts from pathogens. T cells represent a critical component of the immune system by their engagement in host defence mechanisms against microbial infections. Our knowledge of the molecular recognition by T cells of pathogen-derived peptidic antigens that are presented by the major histocompatibility complex glycoproteins is now well established. However, lipids represent an additional, distinct chemical class of molecules that when presented by the family of CD1 antigen-presenting molecules can serve as antigens, and be recognized by specialized subsets of T cells leading to antigen-specific activation. Over the past decades, numerous CD1-presented self- and bacterial lipid-based antigens have been isolated and characterized. However, our understanding at the molecular level of T cell immunity to CD1 molecules presenting microbial lipid-based antigens is still largely unexplored. Here, we review the insights and the molecular basis underpinning the recognition of microbial lipid-based antigens by T cells.

  19. In Vitro Reconstitution of Autophagosome-Lysosome Fusion.

    PubMed

    Diao, J; Li, L; Lai, Y; Zhong, Q

    2017-01-01

    SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptors) proteins are a highly regulated class of membrane proteins lying in the center of membrane fusion. In conjunction with accessory proteins, SNAREs drive efficient merger of two distinct lipid bilayers into one interconnected structure. This chapter describes our fluorescence resonance energy transfer (FRET)-based proteoliposome fusion assays for the roles of various SNARE proteins, accessory proteins, and effects of different lipid compositions on membrane fusion involved in autophagy. © 2017 Elsevier Inc. All rights reserved.

  20. Major Alterations of Phosphatidylcholine and Lysophosphotidylcholine Lipids in the Substantia Nigra Using an Early Stage Model of Parkinson’s Disease

    PubMed Central

    Farmer, Kyle; Smith, Catherine A.; Hayley, Shawn; Smith, Jeffrey

    2015-01-01

    Parkinson’s disease (PD) is a progressive neurodegenerative disease affecting the nigrostriatal pathway, where patients do not manifest motor symptoms until >50% of neurons are lost. Thus, it is of great importance to determine early neuronal changes that may contribute to disease progression. Recent attention has focused on lipids and their role in pro- and anti-apoptotic processes. However, information regarding the lipid alterations in animal models of PD is lacking. In this study, we utilized high performance liquid chromatography electrospray ionization tandem mass spectrometry (HPLC-ESI-MS/MS) and novel HPLC solvent methodology to profile phosphatidylcholines and sphingolipids within the substantia nigra. The ipsilateral substantia nigra pars compacta was collected from rats 21 days after an infusion of 6-hydroxydopamine (6-OHDA), or vehicle into the anterior dorsal striatum. We identified 115 lipid species from their mass/charge ratio using the LMAPS Lipid MS Predict Database. Of these, 19 lipid species (from phosphatidylcholine and lysophosphotidylcholine lipid classes) were significantly altered by 6-OHDA, with most being down-regulated. The two lipid species that were up-regulated were LPC (16:0) and LPC (18:1), which are important for neuroinflammatory signalling. These findings provide a first step in the characterization of lipid changes in early stages of PD-like pathology and could provide novel targets for early interventions in PD. PMID:26274953

  1. Surfactant Lipids at the Host-Environment Interface. Metabolic Sensors, Suppressors, and Effectors of Inflammatory Lung Disease.

    PubMed

    Fessler, Michael B; Summer, Ross S

    2016-05-01

    The lipid composition of pulmonary surfactant is unlike that of any other body fluid. This extracellular lipid reservoir is also uniquely susceptible by virtue of its direct and continuous exposure to environmental oxidants, inflammatory agents, and pathogens. Historically, the greatest attention has been focused on those biophysical features of surfactant that serve to reduce surface tension at the air-liquid interface. More recently, surfactant lipids have also been recognized as bioactive molecules that maintain immune quiescence in the lung but can also be remodeled by the inhaled environment into neolipids that mediate key roles in inflammation, immunity, and fibrosis. This review focuses on the roles in inflammatory and infectious lung disease of two classes of native surfactant lipids, glycerophospholipids and sterols, and their corresponding oxidized species, oxidized glycerophospholipids and oxysterols. We highlight evidence that surfactant composition is sensitive to circulating lipoproteins and that the lipid milieu of the alveolus should thus be recognized as susceptible to diet and common systemic metabolic disorders. We also discuss intriguing evidence suggesting that oxidized surfactant lipids may represent an evolutionary link between immunity and tissue homeostasis that arose in the primordial lung. Taken together, the emerging picture is one in which the unique environmental susceptibility of the lung, together with its unique extracellular lipid requirements, may have made this organ both an evolutionary hub and an engine for lipid-immune cross-talk.

  2. Surfactants have multi-fold effects on skin barrier function.

    PubMed

    Lemery, Emmanuelle; Briançon, Stéphanie; Chevalier, Yves; Oddos, Thierry; Gohier, Annie; Boyron, Olivier; Bolzinger, Marie-Alexandrine

    2015-01-01

    The stratum corneum (SC) is responsible for the barrier properties of the skin and the role of intercorneocyte skin lipids, particularly their structural organization, in controlling SC permeability is acknowledged. Upon contacting the skin, surfactants interact with the SC components leading to barrier damage. To improve knowledge of the effect of several classes of surfactant on skin barrier function at three different levels. The influence of treatments of human skin explants with six non-ionic and four ionic surfactant solutions on the physicochemical properties of skin was investigated. Skin surface wettability and polarity were assessed through contact angle measurements. Infrared spectroscopy allowed monitoring the SC lipid organization. The lipid extraction potency of surfactants was evaluated thanks to HPLC-ELSD assays. One anionic and one cationic surfactant increased the skin polarity by removing the sebaceous and epidermal lipids and by disturbing the organization of the lipid matrix. Another cationic surfactant displayed a detergency effect without disturbing the skin barrier. Several non-ionic surfactants disturbed the lipid matrix organization and modified the skin wettability without any extraction of the skin lipids. Finally two non-ionic surfactants did not show any effect on the investigated parameters or on the skin barrier. The polarity, the organization of the lipid matrix and the lipid composition of the skin allowed describing finely how surfactants can interact with the skin and disturb the skin barrier function.

  3. Localizing the lipid products of PI3Kγ in neutrophils.

    PubMed

    Norton, Laura; Lindsay, Yvonne; Deladeriere, Arnaud; Chessa, Tamara; Guillou, Hervé; Suire, Sabine; Lucocq, John; Walker, Simon; Andrews, Simon; Segonds-Pichon, Anne; Rausch, Oliver; Finan, Peter; Sasaki, Takehiko; Du, Cheng-Jin; Bretschneider, Till; Ferguson, G John; Hawkins, Phillip T; Stephens, Len

    2016-01-01

    Class I phosphoinositide 3-kinases (PI3Ks) are important regulators of neutrophil migration in response to a range of chemoattractants. Their primary lipid products PtdIns(3,4,5)P3 and PtdIns(3,4)P2 preferentially accumulate near to the leading edge of migrating cells and are thought to act as an important cue organizing molecular and morphological polarization. We have investigated the distribution and accumulation of these lipids independently in mouse neutrophils using eGFP-PH reportersand electron microscopy (EM). We found that authentic mouse neutrophils rapidly polarized their Class I PI3K signalling, as read-out by eGFP-PH reporters, both at the up-gradient leading edge in response to local stimulation with fMLP as well as spontaneously and randomly in response to uniform stimulation. EM studies revealed these events occurred at the plasma membrane, were dominated by accumulation of PtdIns(3,4,5)P3, but not PtdIns(3,4)P2, and were dependent on PI3Kγ and its upstream activation by both Ras and Gβγs. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. Exogenous salicylic acid protects phospholipids against cadmium stress in flax (Linum usitatissimum L.).

    PubMed

    Belkadhi, Aïcha; De Haro, Antonio; Obregon, Sara; Chaïbi, Wided; Djebali, Wahbi

    2015-10-01

    Salicylic acid (SA) promotes plant defense responses against toxic metal stresses. The present study addressed the hypothesis that 8-h SA pretreatment, would alter membrane lipids in a way that would protect against Cd toxicity. Flax seeds were pre-soaked for 8h in SA (0, 250 and 1000µM) and then subjected, at seedling stage, to cadmium (Cd) stress. At 100µM CdCl2, significant decreases in the percentages of phosphatidylcholine (PC), phosphatidylglycerol (PG), phosphatidylethanolamine (PE) and monogalactosyldiacylglycerol (MGDG) and changes in their relative fatty acid composition were observed in Cd-treated roots in comparison with controls. However, in roots of 8-h SA pretreated plantlets, results showed that the amounts of PC and PE were significantly higher as compared to non-pretreated plantlets. Additionally, in both lipid classes, the proportion of linolenic acid (18:3) increased upon the pretreatment with SA. This resulted in a significant increase in the fatty acid unsaturation ratio of the root PC and PE classes. As the exogenous application of SA was found to be protective of flax lipid metabolism, the possible mechanisms of protection against Cd stress in flax roots were discussed. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Nanoscale platforms for messenger RNA delivery.

    PubMed

    Li, Bin; Zhang, Xinfu; Dong, Yizhou

    2018-05-04

    Messenger RNA (mRNA) has become a promising class of drugs for diverse therapeutic applications in the past few years. A series of clinical trials are ongoing or will be initiated in the near future for the treatment of a variety of diseases. Currently, mRNA-based therapeutics mainly focuses on ex vivo transfection and local administration in clinical studies. Efficient and safe delivery of therapeutically relevant mRNAs remains one of the major challenges for their broad applications in humans. Thus, effective delivery systems are urgently needed to overcome this limitation. In recent years, numerous nanoscale biomaterials have been constructed for mRNA delivery in order to protect mRNA from extracellular degradation and facilitate endosomal escape after cellular uptake. Nanoscale platforms have expanded the feasibility of mRNA-based therapeutics, and enabled its potential applications to protein replacement therapy, cancer immunotherapy, therapeutic vaccines, regenerative medicine, and genome editing. This review focuses on recent advances, challenges, and future directions in nanoscale platforms designed for mRNA delivery, including lipid and lipid-derived nanoparticles, polymer-based nanoparticles, protein derivatives mRNA complexes, and other types of nanomaterials. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Biology-Inspired Nanomaterials > Lipid-Based Structures Biology-Inspired Nanomaterials > Nucleic Acid-Based Structures. © 2018 Wiley Periodicals, Inc.

  6. A Physically Based Framework for Modelling the Organic Fractionation of Sea Spray Aerosol from Bubble Film Langmuir Equilibria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burrows, Susannah M.; Ogunro, O.; Frossard, Amanda

    2014-12-19

    The presence of a large fraction of organic matter in primary sea spray aerosol (SSA) can strongly affect its cloud condensation nuclei activity and interactions with marine clouds. Global climate models require new parameterizations of the SSA composition in order to improve the representation of these processes. Existing proposals for such a parameterization use remotely-sensed chlorophyll-a concentrations as a proxy for the biogenic contribution to the aerosol. However, both observations and theoretical considerations suggest that existing relationships with chlorophyll-a, derived from observations at only a few locations, may not be representative for all ocean regions. We introduce a novel frameworkmore » for parameterizing the fractionation of marine organic matter into SSA based on a competitive Langmuir adsorption equilibrium at bubble surfaces. Marine organic matter is partitioned into classes with differing molecular weights, surface excesses, and Langmuir adsorption parameters. The classes include a lipid-like mixture associated with labile dissolved organic carbon (DOC), a polysaccharide-like mixture associated primarily with semi-labile DOC, a protein-like mixture with concentrations intermediate between lipids and polysaccharides, a processed mixture associated with recalcitrant surface DOC, and a deep abyssal humic-like mixture. Box model calculations have been performed for several cases of organic adsorption to illustrate the underlying concepts. We then apply the framework to output from a global marine biogeochemistry model, by partitioning total dissolved organic carbon into several classes of macromolecule. Each class is represented by model compounds with physical and chemical properties based on existing laboratory data. This allows us to globally map the predicted organic mass fraction of the nascent submicron sea spray aerosol. Predicted relationships between chlorophyll-\\textit{a} and organic fraction are similar to existing empirical parameterizations, but can vary between biologically productive and non-productive regions, and seasonally within a given region. Major uncertainties include the bubble film thickness at bursting and the variability of organic surfactant activity in the ocean, which is poorly constrained. In addition, marine colloids and cooperative adsorption of polysaccharides may make important contributions to the aerosol, but are not included here. This organic fractionation framework is an initial step towards a closer linking of ocean biogeochemistry and aerosol chemical composition in Earth system models. Future work should focus on improving constraints on model parameters through new laboratory experiments or through empirical fitting to observed relationships in the real ocean and atmosphere, as well as on atmospheric implications of the variable composition of organic matter in sea spray.« less

  7. Geochemically distinct carbon isotope distributions in Allochromatium vinosum DSM 180T grown photoautotrophically and photoheterotrophically.

    PubMed

    Tang, T; Mohr, W; Sattin, S R; Rogers, D R; Girguis, P R; Pearson, A

    2017-03-01

    Anoxygenic, photosynthetic bacteria are common at redox boundaries. They are of interest in microbial ecology and geosciences through their role in linking the carbon, sulfur, and iron cycles, yet much remains unknown about how their flexible carbon metabolism-permitting either autotrophic or heterotrophic growth-is recorded in the bulk sedimentary and lipid biomarker records. Here, we investigated patterns of carbon isotope fractionation in a model photosynthetic sulfur-oxidizing bacterium, Allochromatium vinosum DSM180 T . In one treatment, A. vinosum was grown with CO 2 as the sole carbon source, while in a second treatment, it was grown on acetate. Different intracellular isotope patterns were observed for fatty acids, phytol, individual amino acids, intact proteins, and total RNA between the two experiments. Photoautotrophic CO 2 fixation yielded typical isotopic ordering for the lipid biomarkers: δ 13 C values of phytol > n-alkyl lipids. In contrast, growth on acetate greatly suppressed intracellular isotopic heterogeneity across all molecular classes, except for a marked 13 C-depletion in phytol. This caused isotopic "inversion" in the lipids (δ 13 C values of phytol < n-alkyl lipids). The finding suggests that inverse δ 13 C patterns of n-alkanes and pristane/phytane in the geologic record may be at least in part a signal for photoheterotrophy. In both experimental scenarios, the relative isotope distributions could be predicted from an isotope flux-balance model, demonstrating that microbial carbon metabolisms can be interrogated by combining compound-specific stable isotope analysis with metabolic modeling. Isotopic differences among molecular classes may be a means of fingerprinting microbial carbon metabolism, both in the modern environment and the geologic record. © 2017 John Wiley & Sons Ltd.

  8. Separation of sardine oil without heating from surimi waste and its effect on lipid metabolism in rats.

    PubMed

    Toyoshima, Kotoe; Noguchi, Ryoko; Hosokawa, Masashi; Fukunaga, Kenji; Nishiyama, Toshimasa; Takahashi, Riki; Miyashita, Kazuo

    2004-04-21

    Sardine oil was obtained by centrifugation of surimi wastewater without heating or chemical refining. This oil (CE) showed light yellow color and the peroxide value was less than 1.0 meq/kg. The main lipid class of CE was triacylglycerol (TG) (>99%). These features indicate that CE can be directly used as food materials without further purification. Commercial sardine oil (CO) is usually prepared via some kind of refining process with high temperature (250 degrees C) and chemical treatment. The comparative study on the physiological effects of these sardine oils (CE and CO) revealed that the dietary sardine oils were more effective in reducing abdominal fat pads, plasma total cholesterol, and TG levels of rats than was a soybean oil diet (control). Furthermore, these effects were greater in CE than CO, although there was little difference in the fatty acid composition of both oils. Although the main lipid class of CE was TG (>99%), CE was prepared by centrifugation from surimi waste and directly used as dietary fat without further purification. Therefore, CE may contain some kinds of minor components, which could be attributed to the higher physiological activity of CE. To reveal the involvement of the minor compounds in CE, we prepared TG from CE by column chromatography and measured its effect on lipid metabolism of rats. TG from CE also showed the reducing effects on abdominal fad pads and plasma lipid levels. The effect of TG from CE was almost the same as that of original CE, suggesting that the higher nutritional activity of CE than CO may not be due to the minor compounds in CE.

  9. The ABCs of diabetes: diabetes self-management education program for African Americans affects A1C, lipid-lowering agent prescriptions, and emergency department visits.

    PubMed

    Magee, Michelle; Bowling, Andrea; Copeland, James; Fokar, Ali; Pasquale, Patricia; Youssef, Gretchen

    2011-01-01

    The purpose of the study was to examine the feasibility and impact of a concise community-based program on diabetes self-management education (DSME), according to frequency of emergency department visits and knowledge of, prescriptions for, and control of A1C, blood pressure, and low-density lipoprotein (LDL) cholesterol. A free community-based DSME program was placed in a public library. Adults with diabetes (N, 360) consented to participate in this prospective nonrandomized cohort study with preintervention-postintervention design. The small-group interactive DSME (two 2.5-hour classes) focused on improving cardiovascular disease risk factors and facilitating communication with the primary care physician. An increase in knowledge of American Diabetes Association-recommended targets for A1C, blood pressure, and LDL cholesterol from baseline to postintervention was seen among participants. Significant clinical outcomes included reduction in self-reported emergency department visits and reduction in mean A1C. However, despite an increase in prescriptions written for lipid-lowering drugs, blood pressure and LDL cholesterol did not change. Participants who started on insulin were more likely to achieve or maintain A1C < 7% compared to those who either did not take or stopped taking insulin during the study. Offering DSME classes for African Americans at a public library was feasible and significantly affected 6-month clinical outcomes, including a reduction in A1C, an increased likelihood of attaining a target A1C of < 7% if insulin was started during the study period, and a two-thirds reduction in emergency department visits for uncontrolled diabetes. Observed results suggest that partnering with community-based organizations such as public libraries offers an accessible and well-received location for offering DSME programs.

  10. Phase behavior of stratum corneum lipids in mixed Langmuir-Blodgett monolayers.

    PubMed Central

    ten Grotenhuis, E; Demel, R A; Ponec, M; Boer, D R; van Miltenburg, J C; Bouwstra, J A

    1996-01-01

    The lipids found in the bilayers of the stratum corneum fulfill the vital barrier role of mammalian bodies. The main classes of lipids found in stratum corneum are ceramides, cholesterol, and free fatty acids. For an investigation of their phase behavior, mixed Langmuir-Blodgett monolayers of these lipids were prepared. Atomic force microscopy was used to investigate the structure of the monolayers as a function of the monolayer composition. Three different types of ceramide were used: ceramide extracted from pigskin, a commercially available ceramide with several fatty acid chain lengths, and two synthetic ceramides that have only one fatty acid chain length. In pigskin ceramide-cholesterol mixed monolayers phase separation was observed. This phase separation was also found for the commercially available type III Sigma ceramide-cholesterol mixed monolayers with molar ratios ranging from 1:0.1 to 1:1. These monolayers separated into two phases, one composed of the long fatty acid chain fraction of Sigma ceramide III and the other of the short fatty acid chain fraction of Sigma ceramide III mixed with cholesterol. Mixtures with a higher cholesterol content consisted of only one phase. These observations were confirmed by the results obtained with synthetic ceramides, which have only one fatty acid chain length. The synthetic ceramide with a palmitic acid (16:0) chain mixed with cholesterol, and the synthetic ceramide with a lignoceric acid (24:0) chain did not. Free fatty acids showed a preference to mix with one of these phases, depending on their fatty acid chain lengths. The results of this investigation suggest that the model system used in this study is in good agreement with those of other studies concerning the phase behavior of the stratum corneum lipids. By varying the composition of the monolayers one can study the role of each lipid class in detail. Images FIGURE 2 FIGURE 3 FIGURE 4 FIGURE 5 FIGURE 6 PMID:8874014

  11. Polar Lipids of Burkholderia pseudomallei Induce Different Host Immune Responses

    PubMed Central

    Gonzalez-Juarrero, Mercedes; Mima, Naoko; Trunck, Lily A.; Schweizer, Herbert P.; Bowen, Richard A.; Dascher, Kyle; Mwangi, Waithaka; Eckstein, Torsten M.

    2013-01-01

    Melioidosis is a disease in tropical and subtropical regions of the world that is caused by Burkholderia pseudomallei. In endemic regions the disease occurs primarily in humans and goats. In the present study, we used the goat as a model to dissect the polar lipids of B. pseudomallei to identify lipid molecules that could be used for adjuvants/vaccines or as diagnostic tools. We showed that the lipidome of B. pseudomallei and its fractions contain several polar lipids with the capacity to elicit different immune responses in goats, namely rhamnolipids and ornithine lipids which induced IFN-γ, whereas phospholipids and an undefined polar lipid induced strong IL-10 secretion in CD4+ T cells. Autologous T cells co-cultured with caprine dendritic cells (cDCs) and polar lipids of B. pseudomallei proliferated and up-regulated the expression of CD25 (IL-2 receptor) molecules. Furthermore, we demonstrated that polar lipids were able to up-regulate CD1w2 antigen expression in cDCs derived from peripheral blood monocytes. Interestingly, the same polar lipids had only little effect on the expression of MHC class II DR antigens in the same caprine dendritic cells. Finally, antibody blocking of the CD1w2 molecules on cDCs resulted in decreased expression for IFN-γ by CD4+ T cells. Altogether, these results showed that polar lipids of B. pseudomallei are recognized by the caprine immune system and that their recognition is primarily mediated by the CD1 antigen cluster. PMID:24260378

  12. Intermolecular Interaction between Phosphatidylcholine and Sulfobetaine Lipid: A Combination of Lipids with Antiparallel Arranged Headgroup Charge.

    PubMed

    Aikawa, Tatsuo; Yokota, Keisuke; Kondo, Takeshi; Yuasa, Makoto

    2016-10-05

    Intermolecular interactions between lipid molecules are important when designing lipid bilayer interfaces, which have many biomedical applications such as in drug delivery vehicles and biosensors. Phosphatidylcholine, a naturally occurring lipid, is the most common lipid found in organisms. Its chemical structure has a negatively charged phosphate linkage, adjacent to an ester linkage in a glycerol moiety, and a positively charged choline group, placed at the terminus of the molecule. Recently, several types of synthetic lipids that have headgroups with the opposite charge to that of phosphatidylcholine have emerged; that is, a positively charged ammonium group is present adjacent to the ester linkage in their glycerol moiety and a negatively charged group is placed at their terminus. These types of lipids constitute a new class of soft material. The aim of this study was to determine how such lipids, with antiparallel arranged headgroup charge, interact with naturally occurring phosphatidylcholines. We synthesized 1,2-dipalmitoyl-sn-glycero-3-sulfobetaine (DPSB) to represent a reversed-head lipid; 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC) was used to represent a naturally occurring phospholipid. The intermolecular interaction between these lipids was investigated using surface pressure-area (π-A) isotherms of the lipid monolayer at the air/water interface. We found that the extrapolated area and excess free energy of the mixed monolayer deviated negatively when compared with the ideal values from additivity. Moreover, differential scanning calorimetry of the lipid mixture in aqueous dispersion showed that the gel-to-liquid crystal transition temperature increased compared with that of each pure lipid composition. These results clearly indicate that DPSB preferably interacts with DPPC in the mixture. We believe that the attraction between the oppositely charged headgroups of these lipids reinforces the intermolecular interaction. Our results provide insight into the intermolecular interaction between phospholipids and reversed-head lipids, which may prove useful for the design of lipid-based materials in the future.

  13. Lipidomics by Supercritical Fluid Chromatography

    PubMed Central

    Laboureur, Laurent; Ollero, Mario; Touboul, David

    2015-01-01

    This review enlightens the role of supercritical fluid chromatography (SFC) in the field of lipid analysis. SFC has been popular in the late 1980s and 1990s before almost disappearing due to the commercial success of liquid chromatography (LC). It is only 20 years later that a regain of interest appeared when new commercial instruments were introduced. As SFC is fully compatible with the injection of extracts in pure organic solvent, this technique is perfectly suitable for lipid analysis and can be coupled with either highly universal (UV or evaporative light scattering) or highly specific (mass spectrometry) detection methods. A short history of the use of supercritical fluids as mobile phase for the separation oflipids will be introduced first. Then, the advantages and drawbacks of SFC are discussed for each class of lipids (fatty acyls, glycerolipids, glycerophospholipids, sphingolipids, sterols, prenols, polyketides) defined by the LIPID MAPS consortium. PMID:26090714

  14. Global analysis of the yeast lipidome by quantitative shotgun mass spectrometry.

    PubMed

    Ejsing, Christer S; Sampaio, Julio L; Surendranath, Vineeth; Duchoslav, Eva; Ekroos, Kim; Klemm, Robin W; Simons, Kai; Shevchenko, Andrej

    2009-02-17

    Although the transcriptome, proteome, and interactome of several eukaryotic model organisms have been described in detail, lipidomes remain relatively uncharacterized. Using Saccharomyces cerevisiae as an example, we demonstrate that automated shotgun lipidomics analysis enabled lipidome-wide absolute quantification of individual molecular lipid species by streamlined processing of a single sample of only 2 million yeast cells. By comparative lipidomics, we achieved the absolute quantification of 250 molecular lipid species covering 21 major lipid classes. This analysis provided approximately 95% coverage of the yeast lipidome achieved with 125-fold improvement in sensitivity compared with previous approaches. Comparative lipidomics demonstrated that growth temperature and defects in lipid biosynthesis induce ripple effects throughout the molecular composition of the yeast lipidome. This work serves as a resource for molecular characterization of eukaryotic lipidomes, and establishes shotgun lipidomics as a powerful platform for complementing biochemical studies and other systems-level approaches.

  15. [Medicines interacting with mitochondria: anti-ischemic effects of trimetazidine].

    PubMed

    Spedding, M; Tillement, J P; Morin, D; Le Ridant, A

    1999-01-01

    While mitochondria are key factors in energy production in cells they are also key factors in their life cycle because under certain circumstances they can provoke cellular apoptosis. Some 45 per cent of myocardial volume is taken up by mitochondria. Furthermore, mitochondria are key to many aspects of neuronal activity and can trigger neurodegenerative processes. Lipid oxidation is responsible for the production of much ATP resynthesis in the heart but this process is less oxygen efficient than glucose oxidation. During ischaemia, lipid oxidation is suddenly blocked, but markedly increased during reperfusion, causing accumulation of potentially toxic metabolites (acylcarnitines, acyl-CoA, lysophospholipids). These metabolites can change calcium handling, inducing arrhythmias. Trimetazidine, and another product in development, ranolazine, by inhibiting lipid oxidation favours glucose oxidation and inhibits the production of deleterious lipid metabolites. Thus this class of drugs can have beneficial effects on myocardial metabolism without direct haemodynamic effects.

  16. MS/MS analysis and imaging of lipids across Drosophila brain using secondary ion mass spectrometry.

    PubMed

    Phan, Nhu T N; Munem, Marwa; Ewing, Andrew G; Fletcher, John S

    2017-06-01

    Lipids are abundant biomolecules performing central roles to maintain proper functioning of cells and biological bodies. Due to their highly complex composition, it is critical to obtain information of lipid structures in order to identify particular lipids which are relevant for a biological process or metabolic pathway under study. Among currently available molecular identification techniques, MS/MS in secondary ion mass spectrometry (SIMS) imaging has been of high interest in the bioanalytical community as it allows visualization of intact molecules in biological samples as well as elucidation of their chemical structures. However, there have been few applications using SIMS and MS/MS owing to instrumental challenges for this capability. We performed MS and MS/MS imaging to study the lipid structures of Drosophila brain using the J105 and 40-keV Ar 4000 + gas cluster ion source, with the novelty being the use of MS/MS SIMS analysis of intact lipids in the fly brain. Glycerophospholipids were identified by MS/MS profiling. MS/MS was also used to characterize diglyceride fragment ions and to identify them as triacylglyceride fragments. Moreover, MS/MS imaging offers a unique possibility for detailed elucidation of biomolecular distribution with high accuracy based on the ion images of its fragments. This is particularly useful in the presence of interferences which disturb the interpretation of biomolecular localization. Graphical abstract MS/MS was performed during time-of-flight secondary ion mass spectrometry (ToF-SIMS) analysis of Drosophila melongaster (fruit fly) to elucidate the structure and origin of different chemical species in the brain including a range of different phospholipid classes (PC, PI, PE) and di- and triacylglycerides (DAG & TAG) species where reference MS/MS spectra provided a potential means of discriminating between the isobaric [M-OH] + ion of DAGs and the [M-RCO] + ion of TAGs.

  17. Altered fructosamine and lipid fractions in subclinical hypothyroidism.

    PubMed

    Udupa, Sridevi V; Manjrekar, Poornima A; Udupa, Vinit A; Vivian, D'Souza

    2013-01-01

    Thyroid function disorders lead to changes in the lipoprotein metabolism. To study the lipid and the glycaemic abnormalities in the subclinical hypothyroidism cases and to compare the same with the euthyroid, overt hypothyroid and the hyperthyroid subjects. Four groups, euthyroid (Group-I), hypothyroid (Group-II), subclinical hypothyroid (Group-III) and hyperthyroid (Group-IV), which consisted of 30 subjects each, of either sex, who were aged 25-55 years, underwent Fasting Plasma Glucose (FPG), fructosamine, lipid profile and total T3, T4 and TSH estimations. The subjects who were on lipid lowering or thyroid disorder drugs and known diabetics were excluded from the study. In Group-III, all the lipid fractions were comparable to those of Group-II and they were significantly deranged, as compared to those of Group-I. The fructosamine levels were significantly higher in Group-II and Group-III (p<0.05), but the subclinical hypothyroid pool had statistically lower levels than the hypothyroid pool (376.63±54.73, 587.80±65.10). In the Group-IV patients, the LDL-C levels were significantly higher as compared to those in the euthyroid pool. The fructosamine levels were significantly lower in comparison with both the euthyroid and the hypothyroid pools (both in Groups-II and III). The FPG levels were higher in all the classes of the thyroid abnormalities (subclinical hypothyroidnot significant) but within the reference range of 70-100mg/dl. Since the lipid derangement in subclinical hypothyroidism is on par with that in overt hypothyrodism, the subclinical hypothyroid cases also need to be treated similarly. The fructosamine values which are largely in excess of the FPG values, indicate a higher propensity to glycation and a decreased turnover of the proteins in the hypothyroid and the subclinical hypothyroid pools. Vice versa is true of the hyperthyroid pool. Fructosamine can be included in the thyroid work up of the patients to assess the metabolic function and the subsequent response after the initiation of the therapy.

  18. Phenotypic malignant changes and untargeted lipidomic analysis of long-term exposed prostate cancer cells to endocrine disruptors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bedia, Carmen, E-mail: carmen.bedia@idaea.csic.es; Dalmau, Núria, E-mail: nuria.dalmau@idaea.csic.es; Jaumot, Joaquim, E-mail: joaquim.jaumot@idaea.csic.es

    2015-07-15

    Endocrine disruptors (EDs) are a class of environmental toxic molecules able to interfere with the normal hormone metabolism. Numerous studies involve EDs exposure to initiation and development of cancers, including prostate cancer. In this work, three different EDs (aldrin, aroclor 1254 and chlorpyrifos (CPF)) were investigated as potential inducers of a malignant phenotype in DU145 prostate cancer cells after a chronic exposure. Epithelial to mesenchymal transition (EMT) induction, proliferation, migration, colony formation and release of metalloproteinase 2 (MMP-2) were analyzed in 50-day exposed cells to the selected EDs. As a result, aldrin and CPF exposure led to an EMT inductionmore » (loss of 16% and 14% of E-cadherin levels, respectively, compared to the unexposed cells). Aroclor and CPF presented an increased migration (134% and 126%, respectively), colony formation (204% and 144%, respectively) and MMP-2 release (137% in both cases) compared to the unexposed cells. An untargeted lipidomic analysis was performed to decipher the lipids involved in the observed transformations. As general results, aldrin exposure showed a global decrease in phospholipids and sphingolipids, and aroclor and CPF showed an increase of certain phospholipids, glycosphingolipids as well as a remarkable increase of some cardiolipin species. Furthermore, the three exposures resulted in an increase of some triglyceride species. In conclusion, some significant changes in lipids were identified and thus we postulate that some lipid compounds and lipid metabolic pathways could be involved in the acquisition of the malignant phenotype in exposed prostate cancer cells to the selected EDs. - Highlights: • Aldrin, aroclor and chlorpyrifos induced an aggressive phenotype in DU145 cells. • An untargeted lipidomic analysis has been performed on chronic exposed cells. • Lipidomic results showed changes in specific lipid species under chronic exposure. • These lipids may have a role in the acquisition of a malignant phenotype.« less

  19. Altered lipid composition and enhanced lipid production in green microalga by introduction of brassica diacylglycerol acyltransferase 2

    PubMed Central

    Ahmad, Irshad; Sharma, Anil K.; Daniell, Henry; Kumar, Shashi

    2015-01-01

    Summary Higher lipid biosynthesis and accumulation are important to achieve economic viability of biofuel production via microalgae. To enhance lipid content, Chlamydomonas reinhardtii was genetically engineered with a key enzyme diacylglycerol acyltransferase (BnDGAT2) from Brassica napus, responsible for neutral lipid biosynthesis. The transformed colonies harbouring aph7 gene, screened on hygromycin-supplemented medium, achieved transformation frequency of ~120 ± 10 colonies/1 × 106 cells. Transgene integration and expression were confirmed by PCR, Southern blots, staining lipid droplets, proteins and spectro-fluorometric analysis of Nile red-stained cells. The neutral lipid is a major class (over 80% of total lipids) and most significant requirement for biodiesel production; this was remarkably higher in the transformed alga than the untransformed control. The levels of saturated fatty acids in the transformed alga decreased to about 7% while unsaturated fatty acids increased proportionately when compared to wild type cells. Polyunsaturated fatty acids, especially α-linolenic acid, an essential omega-3 fatty acid, were enhanced up to 12% in the transformed line. Nile red staining confirmed formation of a large number of lipid globules in the transformed alga. Evaluation of long-term stability and vitality of the transgenic alga revealed that cryopreservation produced significantly higher quantity of lipid than those maintained continuously over 128 generations on solid medium. The overexpression of BnDGAT2 significantly altered the fatty acids profile in the transformed alga. Results of this study offer a valuable strategy of genetic manipulation for enhancing polyunsaturated fatty acids and neutral lipids for biofuel production in algae. PMID:25403771

  20. [Magneto-peloidotherapy and hydrogen sulfide baths for the correction of dyslipidemia and immune inflammation in patients with ischemic heart disease during resort treatment].

    PubMed

    Bykov, A T; Konovalova, M P; Khodasevich, L S

    2009-01-01

    A total of 55 patients with angina of effort (functional classes I-II) were treated by magneto-peloidotherapy and hydrogen sulfide baths. Effectiveness of he treatment was evaluated based on the lipid profile (total cholesterol, triglycerides, high and low density lipoproteides), atherogenicity index, lipid peroxidation, reactivity of the antioxidative defense system, and immune characteristics. Results of the study indicate that combination of magneto-peloidotherapy and hydrogen sulfide baths has hypolipidemic effect and reduces lipid peroxidation in the absence of activation of the antioxidative defense system and correction of the disbalanced immune system. Taken together, these effects decrease severity of the systemic inflammatory reaction and facilitate remission of the atherosclerotic process.

  1. Glucosylceramide accumulation is not confined to the lysosome in fibroblasts from patients with Gaucher disease.

    PubMed

    Fuller, Maria; Rozaklis, Tina; Lovejoy, Melanie; Zarrinkalam, Krystyna; Hopwood, John J; Meikle, Peter J

    2008-04-01

    Gaucher disease (GD) is an inborn error of glycosphingolipid metabolism resulting from a deficiency of the lysosomal enzyme beta-glucosidase leading to the accumulation of glucosylceramide (GC) in lysosomes of affected cells. In order to determine the effect of GC accumulation on intracellular lipid content in fibroblasts from patients with GD, we measured individual species of ceramide, di- and trihexosylceramide, sphingomyelin, phosphatidylcholine, phosphatidylinositol and phosphatidylglycerol using electrospray ionisation-tandem mass spectrometry. The different subspecies of each lipid class correlated with each other and were summed to give total lipid concentrations. In addition to GC, we also noted secondary elevations in other lipids, especially in type 2 GD. Sub-cellular fractionation showed that GC was not confined to the lysosome but increased throughout the cell. The sequelae of extra-lysosomal accumulation may have implications in the pathogenic mechanisms of GD by interaction with biochemical and metabolic pathways located outside the lysosome. The elevation of ceramide in confluent type 2 GD fibroblasts redistributed from its primary site of accumulation in the lysosome to the endosomal region at four-weeks post-confluence. The accumulation of lipids in the endosome and lysosome suggests both impaired trafficking of lipids and reduced capacity of the lysosome to degrade lipids.

  2. Using ambient ozone for assignment of double bond position in unsaturated lipids.

    PubMed

    Ellis, Shane R; Hughes, Jessica R; Mitchell, Todd W; in het Panhuis, Marc; Blanksby, Stephen J

    2012-03-07

    Unsaturated lipids deposited onto a range of materials are observed to react with the low concentrations of ozone present in normal laboratory air. Parent lipids and ozonolysis cleavage products are both detected directly from surfaces by desorption electrospray ionisation mass spectrometry (DESI-MS) with the resulting mass spectra providing clear evidence of the double bond position within these molecules. This serendipitous process has been coupled with thin-layer chromatography (TLC) to provide a simple but powerful approach for the detailed structural elucidation of lipids present in complex biological extracts. Lipid extracts from human lens were deposited onto normal phase TLC plates and then developed to separate components according to lipid class. Exposure of the developed plates to laboratory air for ca. 1 h prior to DESI-MS analysis gave rise to ozonolysis products allowing for the unambiguous identification of double bond positions in even low abundant, unsaturated lipids. In particular, the co-localization of intact unsaturated lactosylceramides (LacCer) with products from their oxidative cleavage provide the first evidence for the presence of three isomeric LacCer (d18:0/24:1) species in the ocular lens lipidome, i.e., variants with double bonds at the n-9, n-7 and n-5 positions.

  3. Interaction between dietary lipids and gut microbiota regulates hepatic cholesterol metabolism.

    PubMed

    Caesar, Robert; Nygren, Heli; Orešič, Matej; Bäckhed, Fredrik

    2016-03-01

    The gut microbiota influences many aspects of host metabolism. We have previously shown that the presence of a gut microbiota remodels lipid composition. Here we investigated how interaction between gut microbiota and dietary lipids regulates lipid composition in the liver and plasma, and gene expression in the liver. Germ-free and conventionally raised mice were fed a lard or fish oil diet for 11 weeks. We performed lipidomics analysis of the liver and serum and microarray analysis of the liver. As expected, most of the variation in the lipidomics dataset was induced by the diet, and abundance of most lipid classes differed between mice fed lard and fish oil. However, the gut microbiota also affected lipid composition. The gut microbiota increased hepatic levels of cholesterol and cholesteryl esters in mice fed lard, but not in mice fed fish oil. Serum levels of cholesterol and cholesteryl esters were not affected by the gut microbiota. Genes encoding enzymes involved in cholesterol biosynthesis were downregulated by the gut microbiota in mice fed lard and were expressed at a low level in mice fed fish oil independent of microbial status. In summary, we show that gut microbiota-induced regulation of hepatic cholesterol metabolism is dependent on dietary lipid composition. Copyright © 2016 by the American Society for Biochemistry and Molecular Biology, Inc.

  4. Mugil cephalus roe oil obtained by supercritical fluid extraction affects the lipid profile and viability in cancer HeLa and B16F10 cells.

    PubMed

    Rosa, A; Piras, A; Nieddu, M; Putzu, D; Cesare Marincola, F; Falchi, A M

    2016-09-14

    We explored the changes in viability and lipid profile occurring in cancer cells, murine melanoma cells (B16F10 cells) and human cervical carcinoma cells (HeLa cells), when exposed to 24 h-treatments with an n-3 PUFA-rich oil obtained by supercritical extraction with CO2 from Mugil cephalus processed roe (bottarga). The composition of the major lipid classes of bottarga oil was determined by the (13)C NMR technique. Reversed-phase HPLC with DAD/ELSD detection was performed to analyze cells' total fatty acid profile and the levels of phospholipids, total/free cholesterol, triacylglycerols, and cholesteryl esters. Cell-based fluorescent measurements of intracellular membranes and lipid droplets were performed on bottarga oil-treated cells using the Nile red staining technique. The treatments of cancer cells with bottarga oil reduced the viability and affected the fatty acid profile, with a significant n-3 PUFA increase in treated cells. Mullet roe oil uptake modulated the cancer cell lipid composition, inducing a remarkable incorporation of health beneficial n-3 PUFA in the polar and neutral lipid fractions. Bottarga oil treatment influenced the synthesis of intracellular membranes and accumulation of cytoplasmic lipid droplets in cancer cells.

  5. Mutual anti-oxidative effect of gossypol acetic acid and gossypol-iron complex on hepatic lipid peroxidation in male rats.

    PubMed

    El-Sharaky, A S; Wahby, M M; Bader El-Dein, M M; Fawzy, R A; El-Shahawy, I N

    2009-11-01

    Gossypol displays anticancer behavior and anti-fertility in males. Male rats were treated with either gossypol acetic acid (GAA) or gossypol-iron complex (GIC). Serum alanine transaminase (ALT) activity elevated of GAA. However, GIC-treated animals showed a decrease in hepatic glutathione (GSH) content with increased malondialdehyde (MDA) content. Whereas, GSH-Px specific activity increased in GAA group. GAA and GIC induce significant increases in the hepatic NEFA with remarkable decrease in the total saturated fatty acids with a significant increase of PUFA. Lipid peroxidation is inhibited by gossypol, which shield lipids against oxidative damage. Phenols are oxidized to phenoxy radicals, which do not permit anti-oxidation due to resonance stabilization. GAA stimulate hydroxyl radicals (()OH) generation and DNA damage. GAA and GIC produce increase in lipid peroxidation as proved by a steep rise in thiobarbituric acid reactive species (TBARS). Controversy of specificity of TBARS towards compounds other than MDA was reported. If TBARS increased, more specific assay to be employed. Assay of lipid classes and fatty acids pattern, reveled the significance of the technique in assessment of lipid peroxidation in tissues. GAA and GIC were powerful inhibitors of lipid peroxidation and exhibit pro- and antioxidant behavior, with less toxicity of GIC.

  6. Extended synaptotagmins are Ca2+-dependent lipid transfer proteins at membrane contact sites.

    PubMed

    Yu, Haijia; Liu, Yinghui; Gulbranson, Daniel R; Paine, Alex; Rathore, Shailendra S; Shen, Jingshi

    2016-04-19

    Organelles are in constant communication with each other through exchange of proteins (mediated by trafficking vesicles) and lipids [mediated by both trafficking vesicles and lipid transfer proteins (LTPs)]. It has long been known that vesicle trafficking can be tightly regulated by the second messenger Ca(2+), allowing membrane protein transport to be adjusted according to physiological demands. However, it remains unclear whether LTP-mediated lipid transport can also be regulated by Ca(2+) In this work, we show that extended synaptotagmins (E-Syts), poorly understood membrane proteins at endoplasmic reticulum-plasma membrane contact sites, are Ca(2+)-dependent LTPs. Using both recombinant and endogenous mammalian proteins, we discovered that E-Syts transfer glycerophospholipids between membrane bilayers in the presence of Ca(2+) E-Syts use their lipid-accommodating synaptotagmin-like mitochondrial lipid binding protein (SMP) domains to transfer lipids. However, the SMP domains themselves cannot transport lipids unless the two membranes are tightly tethered by Ca(2+)-bound C2 domains. Strikingly, the Ca(2+)-regulated lipid transfer activity of E-Syts was fully recapitulated when the SMP domain was fused to the cytosolic domain of synaptotagmin-1, the Ca(2+)sensor in synaptic vesicle fusion, indicating that a common mechanism of membrane tethering governs the Ca(2+)regulation of lipid transfer and vesicle fusion. Finally, we showed that microsomal vesicles isolated from mammalian cells contained robust Ca(2+)-dependent lipid transfer activities, which were mediated by E-Syts. These findings established E-Syts as a novel class of LTPs and showed that LTP-mediated lipid trafficking, like vesicular transport, can be subject to tight Ca(2+)regulation.

  7. Age-related polychlorinated biphenyl dynamics in immature bull sharks (Carcharhinus leucas).

    PubMed

    Olin, Jill A; Beaudry, Marina; Fisk, Aaron T; Paterson, Gordon

    2014-01-01

    Polychlorinated biphenyls (PCBs) were quantified in liver tissues of bull sharks (Carcharhinus leucas) ranging in age from <4 wk to >3 yr. Summed values of PCBs (ΣPCBs) ranged from 310 ng/g to 22 070 ng/g (lipid wt) across age classes with ΣPCB concentrations for the youngest sharks in the present study (<4 wk; 5230 ± 2170 ng/g lipid wt) determined to not significantly differ from those quantified in >3-yr-old sharks, highlighting the extent of exposure of this young life stage to this class of persistent organic pollutants (POPs). Age normalization of PCB congener concentrations to those measured for the youngest sharks demonstrated a significant hydrophobicity (log octanol/water partition coefficient [KOW ]) effect that was indicative of maternal offloading of highly hydrophobic (log KOW ≥6.5) congeners to the youngest individuals. A distinct shift in the PCB congener profiles was also observed as these young sharks grew in size. This shift was consistent with a transition from the maternally offloaded signal to the initiation of exogenous feeding and the contributions of mechanisms including growth dilution and whole-body elimination. These results add to the growing pool of literature documenting substantially high concentrations of POPs in juvenile sharks that are most likely attributable to maternal offloading. Collectively, such results underscore the potential vulnerability of young sharks to POP exposure and pose additional concerns for shark-conservation efforts. © 2013 SETAC.

  8. Investigating Hydrophilic Pores in Model Lipid Bilayers using Molecular Simulations: Correlating Bilayer Properties with Pore Formation Thermodynamics

    PubMed Central

    Hu, Yuan; Sinha, Sudipta Kumar

    2015-01-01

    Cell-penetrating and antimicrobial peptides show remarkable ability to translocate across physiological membranes. Along with factors such as electric potential induced-perturbations of membrane structure and surface tension effects, experiments invoke pore-like membrane configurations during the solute transfer process into vesicles and cells. The initiation and formation of pores are associated with a non-trivial free energy cost, thus necessitating consideration of the factors associated with pore formation and attendant free energetics. Due to experimental and modeling challenges related to the long timescales of the translocation process, we use umbrella-sampling molecular dynamics simulations with a lipid-density based order parameter to investigate membrane pore-formation free energy employing Martini coarse-grained models. We investigate structure and thermodynamic features of the pore in 18 lipids spanning a range of head-groups, charge states, acyl chain lengths and saturation. We probe the dependence of pore-formation barriers on area per lipid, lipid bilayer thickness, membrane bending rigidities in three different lipid classes. The pore formation free energy in pure bilayers and peptide translocating scenarios are significantly coupled with bilayer thickness. Thicker bilayers require more reversible work to create pores. Pore formation free energy is higher in peptide-lipid systems relative to the peptide-free lipid systems due to penalties to maintain solvation of charged hydrophilic solutes within the membrane environment. PMID:25614183

  9. Investigating Hydrophilic Pores in Model Lipid Bilayers Using Molecular Simulations: Correlating Bilayer Properties with Pore-Formation Thermodynamics.

    PubMed

    Hu, Yuan; Sinha, Sudipta Kumar; Patel, Sandeep

    2015-06-23

    Cell-penetrating and antimicrobial peptides show a remarkable ability to translocate across physiological membranes. Along with factors such as electric-potential-induced perturbations of membrane structure and surface tension effects, experiments invoke porelike membrane configurations during the solute transfer process into vesicles and cells. The initiation and formation of pores are associated with a nontrivial free-energy cost, thus necessitating a consideration of the factors associated with pore formation and the attendant free energies. Because of experimental and modeling challenges related to the long time scales of the translocation process, we use umbrella sampling molecular dynamics simulations with a lipid-density-based order parameter to investigate membrane-pore-formation free energy employing Martini coarse-grained models. We investigate structure and thermodynamic features of the pore in 18 lipids spanning a range of headgroups, charge states, acyl chain lengths, and saturation. We probe the dependence of pore-formation barriers on the area per lipid, lipid bilayer thickness, and membrane bending rigidities in three different lipid classes. The pore-formation free energy in pure bilayers and peptide translocating scenarios are significantly coupled with bilayer thickness. Thicker bilayers require more reversible work to create pores. The pore-formation free energy is higher in peptide-lipid systems than in peptide-free lipid systems due to penalties to maintain the solvation of charged hydrophilic solutes within the membrane environment.

  10. Genetic variants at the PDZ-interacting domain of the scavenger receptor class B type I interact with diet to influence the risk of metabolic syndrome in obese men and women.

    PubMed

    Junyent, Mireia; Arnett, Donna K; Tsai, Michael Y; Kabagambe, Edmond K; Straka, Robert J; Province, Michael; An, Ping; Lai, Chao-Qiang; Parnell, Laurence D; Shen, Jian; Lee, Yu-Chi; Borecki, Ingrid; Ordovás, Jose M

    2009-05-01

    The scaffolding protein PDZ domain containing 1 (PDZK1) regulates the HDL receptor scavenger receptor class B type I. However, the effect of PDZK1 genetic variants on lipids and metabolic syndrome (MetS) traits remains unknown. This study evaluated the association of 3 PDZK1 single nucleotide polymorphisms (SNP) (i33968C > T, i15371G > A, and i19738C > T) with lipids and risk of MetS and their potential interactions with diet. PDZK1 SNP were genotyped in 1000 participants (481 men, 519 women) included in the Genetics of Lipid Lowering Drugs and Diet Network study. Lipoprotein subfractions were measured by proton NMR spectroscopy and dietary intake was estimated using a validated questionnaire. The PDZK1_i33968C > T polymorphism was associated with MetS (P = 0.034), mainly driven by the association of the minor T allele with higher plasma triglycerides (P = 0.004) and VLDL (P = 0.021), and lower adiponectin concentrations (P = 0.022) than in participants homozygous for the major allele (C). We found a significant gene x BMI x diet interaction, in which the deleterious association of the i33968T allele with MetS was observed in obese participants with high PUFA and carbohydrate (P-values ranging from 0.004 to 0.020) intakes. Conversely, a there was a protective effect in nonobese participants with high PUFA intake (P < 0.05). These findings suggest that PDZK1_i33968C > T genetic variants may be associated with a higher risk of exhibiting MetS. This gene x BMI x diet interaction offers the potential to identify dietary and other lifestyle changes that may obviate the onset of MetS in individuals with a specific genetic background.

  11. Lipid composition dictates serum stability of reconstituted high-density lipoproteins: implications for in vivo applications.

    PubMed

    Gilmore, Sean F; Carpenter, Timothy S; Ingólfsson, Helgi I; Peters, Sandra K G; Henderson, Paul T; Blanchette, Craig D; Fischer, Nicholas O

    2018-04-26

    Nanolipoprotein particles (NLPs) are reconstituted high-density lipoproteins, consisting of a phospholipid bilayer stabilized by an apolipoprotein scaffold protein. This class of nanoparticle has been a vital tool in the study of membrane proteins, and in recent years has been increasingly used for in vivo applications. Previous work demonstrated that the composition of the lipid bilayer component affects the stability of these particles in serum solutions. In the current study, NLPs assembled with phosphatidylcholine lipids featuring different acyl chain structures were systematically tested to understand the effect that lipid composition has on NLP stability in both neat serum and cell culture media supplemented with 10% serum by volume. The time at which 50% of the particles dissociate, as well as the fraction of the initial population that remains resistant to dissociation, were correlated to key parameters obtained from all-atom simulations of the corresponding lipid bilayers. A significant correlation was observed between the compressibility modulus of the lipid bilayer and particle stability in these complex biological milieu. These results can be used as a reference to tune the stability of these versatile biological nanoparticles for in vitro and in vivo applications.

  12. Control mechanisms operating for lipid biosynthesis differ in oil-palm (Elaeis guineensis Jacq.) and olive (Olea europaea L.) callus cultures.

    PubMed Central

    Ramli, Umi S; Baker, Darren S; Quant, Patti A; Harwood, John L

    2002-01-01

    As a prelude to detailed flux control analysis of lipid synthesis in plants, we have examined the latter in tissue cultures from two important oil crops, olive (Olea europaea L.) and oil palm (Elaeis guineensis Jacq.). Temperature was used to manipulate the overall rate of lipid formation in order to characterize and validate the system to be used for analysis. With [1-14C]acetate as a precursor, an increase in temperature from 20 to 30 degrees C produced nearly a doubling of total lipid labelling. This increase in total lipids did not change the radioactivity in the intermediate acyl-(acyl carrier protein) or acyl-CoA pools, indicating that metabolism of these pools did not exert any significant constraint for overall synthesis. In contrast, there were some differences in the proportional labelling of fatty acids and of lipid classes at the two temperatures. The higher temperature caused a decrease in polyunsaturated fatty acid labelling and an increase in the proportion of triacylglycerol labelling in both calli. The intermediate diacylglycerol was increased in olive, but not in oil palm. Overall the data indicate the suitability of olive and oil-palm cultures for the study of lipid synthesis and indicate that de novo fatty acid synthesis may exert more flux control than complex lipid assembly. In olive, diacylglycerol acyltransferase may exert significant flux control when lipid synthesis is rapid. PMID:12023881

  13. Identification of a New Class of Lipid Droplet-Associated Proteins in Plants1[C][W][OPEN

    PubMed Central

    Horn, Patrick J.; James, Christopher N.; Gidda, Satinder K.; Kilaru, Aruna; Dyer, John M.; Mullen, Robert T.; Ohlrogge, John B.; Chapman, Kent D.

    2013-01-01

    Lipid droplets in plants (also known as oil bodies, lipid bodies, or oleosomes) are well characterized in seeds, and oleosins, the major proteins associated with their surface, were shown to be important for stabilizing lipid droplets during seed desiccation and rehydration. However, lipid droplets occur in essentially all plant cell types, many of which may not require oleosin-mediated stabilization. The proteins associated with the surface of nonseed lipid droplets, which are likely to influence the formation, stability, and turnover of this compartment, remain to be elucidated. Here, we have combined lipidomic, proteomic, and transcriptomic studies of avocado (Persea americana) mesocarp to identify two new lipid droplet-associated proteins, which we named LDAP1 and LDAP2. These proteins are highly similar to each other and also to the small rubber particle proteins that accumulate in rubber-producing plants. An Arabidopsis (Arabidopsis thaliana) homolog to LDAP1 and LDAP2, At3g05500, was localized to the surface of lipid droplets after transient expression in tobacco (Nicotiana tabacum) cells that were induced to accumulate triacylglycerols. We propose that small rubber particle protein-like proteins are involved in the general process of binding and perhaps the stabilization of lipid-rich particles in the cytosol of plant cells and that the avocado and Arabidopsis protein members reveal a new aspect of the cellular machinery that is involved in the packaging of triacylglycerols in plant tissues. PMID:23821652

  14. Comparative lipidomic analysis of synovial fluid in human and canine osteoarthritis.

    PubMed

    Kosinska, M K; Mastbergen, S C; Liebisch, G; Wilhelm, J; Dettmeyer, R B; Ishaque, B; Rickert, M; Schmitz, G; Lafeber, F P; Steinmeyer, J

    2016-08-01

    The lipid profile of synovial fluid (SF) is related to the health status of joints. The early stages of human osteoarthritis (OA) are poorly understood, which larger animals are expected to be able to model closely. This study examined whether the canine groove model of OA represents early OA in humans based on the changes in the lipid species profile in SF. Furthermore, the SF lipidomes of humans and dogs were compared to determine how closely canine lipid species profiles reflect the human lipidome. Lipids were extracted from cell- and cellular debris-free knee SF from nine donors with healthy joints, 17 patients with early and 13 patients with late osteoarthritic changes, and nine dogs with knee OA and healthy contralateral joints. Lipid species were quantified by electrospray ionization tandem mass spectrometry (ESI-MS/MS). Compared with control canine SF most lipid species were elevated in canine OA SF. Moreover, the lipid species profiles in the canine OA model resembled early OA profiles in humans. The SF lipidomes between dog and human were generally similar, with differences in certain lipid species in the phosphatidylcholine (PC), lysophosphatidylcholine (LPC) and sphingomyelin (SM) classes. Our lipidomic analysis demonstrates that SF in the canine OA model closely mimics the early osteoarthritic changes that occur in humans. Further, the canine SF lipidome often reflects normal human lipid metabolism. Copyright © 2016 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  15. Optimization of lipids production by Cryptococcus laurentii 11 using cheese whey with molasses.

    PubMed

    Castanha, Rodrigo Fernandes; Mariano, Adriano Pinto; de Morais, Lilia Aparecida Salgado; Scramin, Shirlei; Monteiro, Regina Teresa Rosim

    2014-01-01

    This study aimed the optimization of culture condition and composition for production of Cryptococcus laurentii 11 biomass and lipids in cheese whey medium supplemented with sugarcane molasses. The optimization of pH, fermentation time, and molasses concentration according to a full factorial statistical experimental design was followed by a Plackett-Burman experimental design, which was used to determine whether the supplementation of the culture medium by yeast extract and inorganic salts could provide a further enhancement of lipids production. The following conditions and composition of the culture medium were found to optimize biomass and lipids production: 360 h fermentation, 6.5 pH and supplementation of (g L(-1)): 50 molasses, 0.5 yeast extract, 4 KH2PO4, 1 Na2HPO4, 0.75 MgSO4 · 7H2O and 0.002 ZnSO4 · H2O. Additional supplementation with inorganic salts and yeast extract was essential to optimize the production, in terms of product concentration and productivity, of neutral lipids by C. laurentii 11. Under this optimized condition, the production of total lipids increased by 133% in relation to control experiment (from 1.27 to 2.96 g L(-1)). The total lipids indicated a predominant (86%) presence of neutral lipids with high content of 16- and 18-carbon-chain saturated and monosaturated fatty acids. This class of lipids is considered especially suitable for the production of biodiesel.

  16. Isolation and characterization of lipid rafts in Emiliania huxleyi: a role for membrane microdomains in host-virus interactions.

    PubMed

    Rose, Suzanne L; Fulton, James M; Brown, Christopher M; Natale, Frank; Van Mooy, Benjamin A S; Bidle, Kay D

    2014-04-01

    Coccolithoviruses employ a suite of glycosphingolipids (GSLs) to successfully infect the globally important coccolithophore Emiliania huxleyi. Lipid rafts, chemically distinct membrane lipid microdomains that are enriched in GSLs and are involved in sensing extracellular stimuli and activating signalling cascades through protein-protein interactions, likely play a fundamental role in host-virus interactions. Using combined lipidomics, proteomics and bioinformatics, we isolated and characterized the lipid and protein content of lipid rafts from control E. huxleyi cells and those infected with EhV86, the type strain for Coccolithovirus. Lipid raft-enriched fractions were isolated and purified as buoyant, detergent-resistant membranes (DRMs) in OptiPrep density gradients. Transmission electron microscopy of vesicle morphology, polymerase chain reaction amplification of the EhV major capsid protein gene and immunoreactivity to flotillin antisera served as respective physical, molecular and biochemical markers. Subsequent lipid characterization of DRMs via high performance liquid chromatography-triple quadrapole mass spectrometry revealed four distinct GSL classes. Parallel proteomic analysis confirmed flotillin as a major lipid raft protein, along with a variety of proteins affiliated with host defence, programmed cell death and innate immunity pathways. The detection of an EhV86-encoded C-type lectin-containing protein confirmed that infection occurs at the interface between lipid rafts and cellular stress/death pathways via specific GSLs and raft-associated proteins. © 2013 Society for Applied Microbiology and John Wiley & Sons Ltd.

  17. Membrane Proteomic Insights into the Physiology and Taxonomy of an Oleaginous Green Microalga.

    PubMed

    Garibay-Hernández, Adriana; Barkla, Bronwyn J; Vera-Estrella, Rosario; Martinez, Alfredo; Pantoja, Omar

    2017-01-01

    Ettlia oleoabundans is a nonsequenced oleaginous green microalga. Despite the significant biotechnological interest in producing value-added compounds from the acyl lipids of this microalga, a basic understanding of the physiology and biochemistry of oleaginous microalgae is lacking, especially under nitrogen deprivation conditions known to trigger lipid accumulation. Using an RNA sequencing-based proteomics approach together with manual annotation, we are able to provide, to our knowledge, the first membrane proteome of an oleaginous microalga. This approach allowed the identification of novel proteins in E. oleoabundans, including two photoprotection-related proteins, Photosystem II Subunit S and Maintenance of Photosystem II under High Light1, which were considered exclusive to higher photosynthetic organisms, as well as Retinitis Pigmentosa Type 2-Clathrin Light Chain, a membrane protein with a novel domain architecture. Free-flow zonal electrophoresis of microalgal membranes coupled to liquid chromatography-tandem mass spectrometry proved to be a useful technique for determining the intracellular location of proteins of interest. Carbon-flow compartmentalization in E. oleoabundans was modeled using this information. Molecular phylogenetic analyses of protein markers and 18S ribosomal DNA support the reclassification of E. oleoabundans within the trebouxiophycean microalgae, rather than with the Chlorophyceae class, in which it is currently classified, indicating that it may not be closely related to the model green alga Chlamydomonas reinhardtii A detailed survey of biological processes taking place in the membranes of nitrogen-deprived E. oleoabundans, including lipid metabolism, provides insights into the basic biology of this nonmodel organism. © 2017 American Society of Plant Biologists. All Rights Reserved.

  18. Determination of the structure of lecithins.

    PubMed

    Blank, M L; Nutter, L J; Privett, O S

    1966-03-01

    A method is described for the determination of the classes of lecithins in terms of unsaturated and saturated fatty acids based on a total fatty acid composition, the composition of the fatty acids in the beta-position, and the amount of disaturated class determined via mercuric acetate adduct formation. The accuracy of the method was determined on lecithins of known composition and the method was applied to lecithins isolated from milk serum and egg lipids, safflower and soybean oils.

  19. ISX is a retinoic acid-sensitive gatekeeper that controls intestinal β,β-carotene absorption and vitamin A production

    PubMed Central

    Lobo, Glenn P.; Hessel, Susanne; Eichinger, Anne; Noy, Noa; Moise, Alexander R.; Wyss, Adrian; Palczewski, Krzysztof; von Lintig, Johannes

    2010-01-01

    The uptake of dietary lipids from the small intestine is a complex process that depends on the activities of specific membrane receptors with yet unknown regulatory mechanisms. Using both mouse models and human cell lines, we show here that intestinal lipid absorption by the scavenger receptor class B type 1 (SR-BI) is subject to control by retinoid signaling. Retinoic acid via retinoic acid receptors induced expression of the intestinal transcription factor ISX. ISX then repressed the expression of SR-B1 and the carotenoid-15,15′-oxygenase Bcmo1. BCMO1 acts downstream of SR-BI and converts absorbed β,β-carotene to the retinoic acid precursor, retinaldehyde. Using BCMO1-knockout mice, we demonstrated increased intestinal SR-BI expression and systemic β,β-carotene accumulation. SR-BI-dependent accumulation of β,β-carotene was prevented by dietary retinoids that induced ISX expression. Thus, our study revealed a diet-responsive regulatory network that controls β,β-carotene absorption and vitamin A production by negative feedback regulation. The role of SR-BI in the intestinal absorption of other dietary lipids, including cholesterol, fatty acids, and tocopherols, implicates retinoid signaling in the regulation of lipid absorption more generally and has clinical implications for diseases associated with dyslipidemia.—Lobo, G. P., Hessel, S., Eichinger, A., Noy, N., Moise, A. R., Wyss, A., Palczewski, K., von Lintig, J. ISX is a retinoic acid-sensitive gatekeeper that controls intestinal β,β-carotene absorption and vitamin A production. PMID:20061533

  20. Perfluorinated chemicals: differential toxicity, inhibition of aromatase activity and alteration of cellular lipids in human placental cells.

    PubMed

    Gorrochategui, Eva; Pérez-Albaladejo, Elisabet; Casas, Josefina; Lacorte, Sílvia; Porte, Cinta

    2014-06-01

    The cytotoxicity of eight perfluorinated chemicals (PFCs), namely, perfluorobutanoic acid (PFBA), perfluorohexanoic acid (PFHxA), perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorododecanoic acid (PFDoA), perfluorobutanesulfonate (PFBS), perfluorohexanesulfonate (PFHxS) and perfluorooctanesulfonate (PFOS) was assessed in the human placental choriocarcinoma cell line JEG-3. Only the long chain PFCs--PFOS, PFDoA, PFNA, PFOA--showed significant cytotoxicity in JEG-3 cells with EC50 values in the range of 107 to 647 μM. The observed cytotoxicity was to some extent related to a higher uptake of the longer chain PFCs by cells (PFDoA>PFOS≫PFNA>PFOA>PFHxA). Moreover, this work evidences a high potential of PFOS, PFOA and PFBS to act as aromatase inhibitors in placental cells with IC50s in the range of 57-80 μM, the inhibitory effect of PFBS being particularly important despite the rather low uptake of the compound by cells. Finally, exposure of JEG-3 cells to a mixture of the eight PFCs (0.6 μM each) led to a relative increase (up to 3.4-fold) of several lipid classes, including phosphatidylcholines (PCs), plasmalogen PC and lyso plasmalogen PC, which suggests an interference of PFCs with membrane lipids. Overall, this work highlights the ability of the PFC mixture to alter cellular lipid pattern at concentrations well below those that generate toxicity, and the potential of the short chain PFBS, often considered a safe substitute of PFOS, to significantly inhibit aromatase activity in placental cells. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Hydration effects on the barrier function of stratum corneum lipids: Raman analysis of ceramides 2, III and 5.

    PubMed

    Tfayli, Ali; Jamal, Dima; Vyumvuhore, Raoul; Manfait, Michel; Baillet-Guffroy, Arlette

    2013-11-07

    The stratum corneum is the outermost layer of the skin; its barrier function is highly dependent on the composition and the structure as well as the organization of lipids in its extracellular matrix. Ceramides, free fatty acids and cholesterol represent the major lipid classes present in this matrix. They play an important role in maintaining the normal hydration levels required for the normal physiological function. Despite the advancement in the understanding of the structure, composition and the function of the stratum corneum (SC), the concern of "dry skin" remains important in dermatology and care research. Most studies focus on the quantification of water in the skin using different techniques including Raman spectroscopy, while the studies that investigate the effect of hydration on the quality of the barrier function of the skin are limited. Raman spectroscopy provides structural, conformational and organizational information that could help elucidate the effect of hydration on the barrier function of the skin. In order to assess the effect of relative humidity on the lipid barrier function; we used Raman spectroscopy to follow-up the evolution of the conformation and the organization of three synthetic ceramides (CER) differing from each other by the nature of their polar heads (sphingosine, phytosphingosine and α hydroxyl sphingosine), CER 2, III and 5 respectively. CER III and 5 showed a more compact and ordered organization with stronger polar interactions at intermediate relative humidity values, while CER 2 showed opposite tendencies to those observed with CER III and 5.

  2. 3D MALDI Mass Spectrometry Imaging of a Single Cell: Spatial Mapping of Lipids in the Embryonic Development of Zebrafish

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dueñas, Maria Emilia; Essner, Jeffrey J.; Lee, Young Jin

    The zebrafish ( Danio rerio) has been widely used as a model vertebrate system to study lipid metabolism, the roles of lipids in diseases, and lipid dynamics in embryonic development. Here, we applied high-spatial resolution matrix-assisted laser desorption/ionization (MALDI)-mass spectrometry imaging (MSI) to map and visualize the three-dimensional spatial distribution of phospholipid classes, phosphatidylcholine (PC), phosphatidylethanolamines (PE), and phosphatidylinositol (PI), in newly fertilized individual zebrafish embryos. This is the first time MALDI-MSI has been applied for three dimensional chemical imaging of a single cell. PC molecular species are present inside the yolk in addition to the blastodisc, while PE andmore » PI species are mostly absent in the yolk. Two-dimensional MSI was also studied for embryos at different cell stages (1-, 2-, 4-, 8-, and 16-cell stage) to investigate the localization changes of some lipids at various cell developmental stages. Lastly, four different normalization approaches were compared to find reliable relative quantification in 2D- and 3D- MALDI MSI data sets.« less

  3. Fluorescent probes for lipid rafts: from model membranes to living cells.

    PubMed

    Klymchenko, Andrey S; Kreder, Rémy

    2014-01-16

    Membrane microdomains (rafts) remain one of the controversial issues in biophysics. Fluorescent molecular probes, which make these lipid nanostructures visible through optical techniques, are one of the tools currently used to study lipid rafts. The most common are lipophilic fluorescent probes that partition specifically into liquid ordered or liquid disordered phase. Their partition depends on the lipid composition of a given phase, which complicates their use in cellular membranes. A second class of probes is based on environment-sensitive dyes, which partition into both phases, but stain them by different fluorescence color, intensity, or lifetime. These probes can directly address the properties of each separate phase, but their cellular applications are still limited. The present review focuses on summarizing the current state in the field of developing and applying fluorescent molecular probes to study lipid rafts. We highlight an urgent need to develop new probes, specifically adapted for cell plasma membranes and compatible with modern fluorescence microscopy techniques to push the understanding of membrane microdomains forward. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. New procedure for extraction of algal lipids from wet biomass: a green clean and scalable process.

    PubMed

    Dejoye Tanzi, Celine; Abert Vian, Maryline; Chemat, Farid

    2013-04-01

    A new procedure, called Simultaneous Distillation and Extraction Process (SDEP), for lipid extraction from wet microalgae (Nannochloropsis oculata and Dunaliella salina) was reported. This method does not require a pre-drying of the biomass and employs alternative solvents such as d-limonene, α-pinene and p-cymene. This procedure has been compared with Soxhlet extraction (Sox) and Bligh & Dyer method (B&D). For N. oculata, results showed that SDEP-cymene provided similar lipid yields to B&D (21.45% and 23.78%), while SDEP-limonene and pinene provided lower yields (18.73% and 18.75% respectively). For D. salina, SDEP-pinene provided the maximum lipid yield (3.29%) compared to the other solvents, which is quite close to B&D result (4.03%). No significant differences in terms of distribution of lipid classes and fatty acid composition have been obtained for different techniques. Evaluation of energy consumption indicates a substantial saving in the extraction cost by SDEP compared to the conventional extraction technique, Soxhlet. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. 3D MALDI Mass Spectrometry Imaging of a Single Cell: Spatial Mapping of Lipids in the Embryonic Development of Zebrafish

    DOE PAGES

    Dueñas, Maria Emilia; Essner, Jeffrey J.; Lee, Young Jin

    2017-11-02

    The zebrafish ( Danio rerio) has been widely used as a model vertebrate system to study lipid metabolism, the roles of lipids in diseases, and lipid dynamics in embryonic development. Here, we applied high-spatial resolution matrix-assisted laser desorption/ionization (MALDI)-mass spectrometry imaging (MSI) to map and visualize the three-dimensional spatial distribution of phospholipid classes, phosphatidylcholine (PC), phosphatidylethanolamines (PE), and phosphatidylinositol (PI), in newly fertilized individual zebrafish embryos. This is the first time MALDI-MSI has been applied for three dimensional chemical imaging of a single cell. PC molecular species are present inside the yolk in addition to the blastodisc, while PE andmore » PI species are mostly absent in the yolk. Two-dimensional MSI was also studied for embryos at different cell stages (1-, 2-, 4-, 8-, and 16-cell stage) to investigate the localization changes of some lipids at various cell developmental stages. Lastly, four different normalization approaches were compared to find reliable relative quantification in 2D- and 3D- MALDI MSI data sets.« less

  6. Pharmacology of modality-specific transient receptor potential vanilloid-1 antagonists that do not alter body temperature.

    PubMed

    Reilly, Regina M; McDonald, Heath A; Puttfarcken, Pamela S; Joshi, Shailen K; Lewis, LaGeisha; Pai, Madhavi; Franklin, Pamela H; Segreti, Jason A; Neelands, Torben R; Han, Ping; Chen, Jun; Mantyh, Patrick W; Ghilardi, Joseph R; Turner, Teresa M; Voight, Eric A; Daanen, Jerome F; Schmidt, Robert G; Gomtsyan, Arthur; Kort, Michael E; Faltynek, Connie R; Kym, Philip R

    2012-08-01

    The transient receptor potential vanilloid-1 (TRPV1) channel is involved in the development and maintenance of pain and participates in the regulation of temperature. The channel is activated by diverse agents, including capsaicin, noxious heat (≥ 43°C), acidic pH (< 6), and endogenous lipids including N-arachidonoyl dopamine (NADA). Antagonists that block all modes of TRPV1 activation elicit hyperthermia. To identify efficacious TRPV1 antagonists that do not affect temperature antagonists representing multiple TRPV1 pharmacophores were evaluated at recombinant rat and human TRPV1 channels with Ca(2+) flux assays, and two classes of antagonists were identified based on their differential ability to inhibit acid activation. Although both classes of antagonists completely blocked capsaicin- and NADA-induced activation of TRPV1, select compounds only partially inhibited activation of the channel by protons. Electrophysiology and calcitonin gene-related peptide release studies confirmed the differential pharmacology of these antagonists at native TRPV1 channels in the rat. Comparison of the in vitro pharmacological properties of these TRPV1 antagonists with their in vivo effects on core body temperature confirms and expands earlier observations that acid-sparing TRPV1 antagonists do not significantly increase core body temperature. Although both classes of compounds elicit equivalent analgesia in a rat model of knee joint pain, the acid-sparing antagonist tested is not effective in a mouse model of bone cancer pain.

  7. Retention behavior of lipids in reversed-phase ultrahigh-performance liquid chromatography-electrospray ionization mass spectrometry.

    PubMed

    Ovčačíková, Magdaléna; Lísa, Miroslav; Cífková, Eva; Holčapek, Michal

    2016-06-10

    Reversed-phase ultrahigh-performance liquid chromatography (RP-UHPLC) method using two 15cm sub-2μm particles octadecylsilica gel columns is developed with the goal to separate and unambiguously identify a large number of lipid species in biological samples. The identification is performed by the coupling with high-resolution tandem mass spectrometry (MS/MS) using quadrupole - time-of-flight (QTOF) instrument. Electrospray ionization (ESI) full scan and tandem mass spectra are measured in both polarity modes with the mass accuracy better than 5ppm, which provides a high confidence of lipid identification. Over 400 lipid species covering 14 polar and nonpolar lipid classes from 5 lipid categories are identified in total lipid extracts of human plasma, human urine and porcine brain. The general dependences of relative retention times on relative carbon number or relative double bond number are constructed and fit with the second degree polynomial regression. The regular retention patterns in homologous lipid series provide additional identification point for UHPLC/MS lipidomic analysis, which increases the confidence of lipid identification. The reprocessing of previously published data by our and other groups measured in the RP mode and ultrahigh-performance supercritical fluid chromatography on the silica column shows more generic applicability of the polynomial regression for the description of retention behavior and the prediction of retention times. The novelty of this work is the characterization of general trends in the retention behavior of lipids within logical series with constant fatty acyl length or double bond number, which may be used as an additional criterion to increase the confidence of lipid identification. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Biochemistry of ungerminated and germinated spores of the vesicular-arbuscular mycorrhizal fungus, Glomus caledonius: changes in neutral and polar lipids.

    PubMed

    Beilby, J P; Kidby, D K

    1980-08-01

    Neutral and polar spore lipids of the vesicular-arbuscular (VA) endophyte Glomus caledonius, were identified and quantitatively determined during spore germination, germ tube growth, and germ tube senescence. There are no previous reports detailing the spore lipid components of any member of the Endogenaceae, which is in the Zygomycotina. The fungus contained 45 to 72% total lipid depending upon its stage of growth. The concentration of neutral lipids decreased during germination while the polar lipids increased. Triacylglycerides were the most abundant neutral lipid, and lesser amounts of diacylglycerides, monoacylglycerides, free fatty acids, bound fatty acids, hydrocarbons, and sterols. The major fatty acids identified by gas--liquid chromatography and mass spectrometry were 16:1, 16:0, and 18:1. The minor fatty acids identified were n-3 and n-6 polyunsaturates. The n-3 polyunsaturated fatty acids have not been reported before in Zygomycetes. The fatty acid composition of the individual lipid classes was examined. The major phospholipids were phosphatidylserine, phosphatidylethanolamine and phosphatidylcholine, with smaller amounts of diphosphatidylglycerol and phosphatidic acid. The free sterol fraction was in greater quantity than sterol esters during germination and germ tube elongation. The capacity to synthesize sterols was demonstrated. Approximate net rates of change in the different lipid components were calculated. During spore germination and early germ tube growth, there was a net synthesis of lipids, with a large production of free fatty acids, in the germinating spore. Later in the growth period there was a net degradation of lipid, characterized by a large conversion of free fatty acids to unidentified compounds. During this period net free sterol synthesis ceased and sterol ester synthesis continued using the existing free sterol.

  9. Effect Of Substrates On The Fractionation Of Hydrogen Isotopes During Lipid-Biosynthesis By Haloarcula marismortui

    NASA Astrophysics Data System (ADS)

    Dirghangi, S. S.; Pagani, M.

    2010-12-01

    Lipids form an important class of proxies for paleoclimatological research, and hydrogen isotope ratios of lipids are being increasingly used for understanding changes in the hydrological system. Proper understanding of hydrogen isotope fractionation during lipid biosynthesis is therefore important and attention has been directed toward understanding the magnitude of hydrogen isotope fractionation that occurs during lipid biosynthesis in various organisms. Hydrogen isotope ratios of lipids depend on the hydrogen isotopic composition of the ambient water, hydrogen isotopic composition of NADPH used during biosynthesis, growth conditions, pathways of lipid biosynthesis, and substrates in the case of heterotrophic organisms. Recently it has been observed that NADPH contributes a significant part of the hydrogen in fatty acids synthesized by bacteria during heterotrophic growth (Zhang et al, 2009). As NADPH is formed by reduction of NADP+ during metabolism of substrates, different metabolic pathways form NADPH with different D/H ratios, which in turn results in variation in D/H ratios of lipids (Zhang et al, 2009). Therefore, substrates play a significant role in hydrogen isotopic compositions of lipids. For this study, we are investigating the effects of substrates on hydrogen isotope fractionation during biosynthesis of isoprenoidal lipids by heterotrophically growing halophilic archaea. Haloarcula marismortui is a halophilic archaea which synthesizes Archaeol (a diether lipid) and other isoprenoidal lipids. We have grown Haloarcula marismortui in pure cultures on three different substrates and are in the process of evaluating isotopic variability of Archaeol and other lipids associated with substrate and the D/H composition of ambient water. Our results will be helpful for a better understanding of hydrogen isotope fractionations during lipid synthesis by archaea. Also, halophilic archaea are the only source of archaeol in hypersaline environments. Therefore, our results will also indicate whether archaeol can be used as a proxy of ambient water hydrogen isotopic compositions in hypersaline environments.

  10. Novel Use of a Lipid-Lowering Fibrate Medication to Prevent Nicotine Reward and Relapse: Preclinical Findings

    PubMed Central

    Panlilio, Leigh V; Justinova, Zuzana; Mascia, Paola; Pistis, Marco; Luchicchi, Antonio; Lecca, Salvatore; Barnes, Chanel; Redhi, Godfrey H; Adair, Jordan; Heishman, Stephen J; Yasar, Sevil; Aliczki, Mano; Haller, Jozsef; Goldberg, Steven R

    2012-01-01

    Experimental drugs that activate α-type peroxisome proliferator-activated receptors (PPARα) have recently been shown to reduce the rewarding effects of nicotine in animals, but these drugs have not been approved for human use. The fibrates are a class of PPARα-activating medications that are widely prescribed to improve lipid profiles and prevent cardiovascular disease, but these drugs have not been tested in animal models of nicotine reward. Here, we examine the effects of clofibrate, a representative of the fibrate class, on reward-related behavioral, electrophysiological, and neurochemical effects of nicotine in rats and squirrel monkeys. Clofibrate prevented the acquisition of nicotine-taking behavior in naive animals, substantially decreased nicotine taking in experienced animals, and counteracted the relapse-inducing effects of re-exposure to nicotine or nicotine-associated cues after a period of abstinence. In the central nervous system, clofibrate blocked nicotine's effects on neuronal firing in the ventral tegmental area and on dopamine release in the nucleus accumbens shell. All of these results suggest that fibrate medications might promote smoking cessation. The fact that fibrates are already approved for human use could expedite clinical trials and subsequent implementation of fibrates as a treatment for tobacco dependence, especially in smokers with abnormal lipid profiles. PMID:22453137

  11. In Silico Identification Software (ISIS): A Machine Learning Approach to Tandem Mass Spectral Identification of Lipids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kangas, Lars J.; Metz, Thomas O.; Isaac, Georgis

    2012-05-15

    Liquid chromatography-mass spectrometry-based metabolomics has gained importance in the life sciences, yet it is not supported by software tools for high throughput identification of metabolites based on their fragmentation spectra. An algorithm (ISIS: in silico identification software) and its implementation are presented and show great promise in generating in silico spectra of lipids for the purpose of structural identification. Instead of using chemical reaction rate equations or rules-based fragmentation libraries, the algorithm uses machine learning to find accurate bond cleavage rates in a mass spectrometer employing collision-induced dissocia-tion tandem mass spectrometry. A preliminary test of the algorithm with 45 lipidsmore » from a subset of lipid classes shows both high sensitivity and specificity.« less

  12. Developing Equipotent Teixobactin Analogues against Drug-Resistant Bacteria and Discovering a Hydrophobic Interaction between Lipid II and Teixobactin.

    PubMed

    Zong, Yu; Sun, Xiuyun; Gao, Hongying; Meyer, Kirsten J; Lewis, Kim; Rao, Yu

    2018-04-26

    Teixobactin, targeting lipid II, represents a new class of antibiotics with novel structures and has excellent activity against Gram-positive pathogens. We developed a new convergent method to synthesize a series of teixobactin analogues and explored structure-activity relationships. We obtained equipotent and simplified teixobactin analogues, replacing the l- allo-enduracididine with lysine, substituting oxygen to nitrogen on threonine, and adding a phenyl group on the d-phenylalanine. On the basis of the antibacterial activities that resulted from corresponding modifications of the d-phenylalanine, we propose a hydrophobic interaction between lipid II and the N-terminal of teixobactin analogues, which we map out with our analogue 35. Finally, a representative analogue from our series showed high efficiency in a mouse model of Streptococcus pneumoniae septicemia.

  13. Rational design for multifunctional non-liposomal lipid-based nanocarriers for cancer management: theory to practice

    PubMed Central

    2013-01-01

    Nanomedicines have gained more and more attention in cancer therapy thanks to their ability to enhance the tumour accumulation and the intracellular uptake of drugs while reducing their inactivation and toxicity. In parallel, nanocarriers have been successfully employed as diagnostic tools increasing imaging resolution holding great promises both in preclinical research and in clinical settings. Lipid-based nanocarriers are a class of biocompatible and biodegradable vehicles that provide advanced delivery of therapeutic and imaging agents, improving pharmacokinetic profile and safety. One of most promising engineering challenges is the design of innovative and versatile multifunctional targeted nanotechnologies for cancer treatment and diagnosis. This review aims to highlight rational approaches to design multifunctional non liposomal lipid-based nanocarriers providing an update of literature in this field. PMID:24564841

  14. Features in the Lipid Status of Two Generations of Fingerlings (0+) of Atlantic Salmon (Salmo salar L.) Inhabiting the Arenga River (Kola Peninsula).

    PubMed

    Nemova, Nina N; Murzina, Svetlana A; Nefedova, Zinaida A; Veselov, Alexey E

    2015-07-30

    The present research focused on determining the lipid status of salmon fingerlings (0+) in early development after dispersal form groups of spawning nests in biotopes of different hydrological conditions. The revealed qualitative and quantitative differences in the levels of phospholipids and fatty acids among two generations of Atlantic salmon fingerlings (0+) living in different biotopes of the Arenga River (a tributary of the Varzuga River) may be associated with the peculiarities of their genetically determined processes of the biosynthesis and modification of individual lipid classes and trophoecological factors (food spectrum, quality and availability of food objects, and hydrological regime). The research was organized to observe the dynamics of these developmental changes from ages 0+ to 2+.

  15. Voxel-based plaque classification in coronary intravascular optical coherence tomography images using decision trees

    NASA Astrophysics Data System (ADS)

    Kolluru, Chaitanya; Prabhu, David; Gharaibeh, Yazan; Wu, Hao; Wilson, David L.

    2018-02-01

    Intravascular Optical Coherence Tomography (IVOCT) is a high contrast, 3D microscopic imaging technique that can be used to assess atherosclerosis and guide stent interventions. Despite its advantages, IVOCT image interpretation is challenging and time consuming with over 500 image frames generated in a single pullback volume. We have developed a method to classify voxel plaque types in IVOCT images using machine learning. To train and test the classifier, we have used our unique database of labeled cadaver vessel IVOCT images accurately registered to gold standard cryoimages. This database currently contains 300 images and is growing. Each voxel is labeled as fibrotic, lipid-rich, calcified or other. Optical attenuation, intensity and texture features were extracted for each voxel and were used to build a decision tree classifier for multi-class classification. Five-fold cross-validation across images gave accuracies of 96 % +/- 0.01 %, 90 +/- 0.02% and 90 % +/- 0.01 % for fibrotic, lipid-rich and calcified classes respectively. To rectify performance degradation seen in left out vessel specimens as opposed to left out images, we are adding data and reducing features to limit overfitting. Following spatial noise cleaning, important vascular regions were unambiguous in display. We developed displays that enable physicians to make rapid determination of calcified and lipid regions. This will inform treatment decisions such as the need for devices (e.g., atherectomy or scoring balloon in the case of calcifications) or extended stent lengths to ensure coverage of lipid regions prone to injury at the edge of a stent.

  16. Effects of Gemfibrozil on Cholesterol Metabolism, Steroidogenesis, and Reproduction in the Fathead Minnow (Pimephales promelas)

    EPA Science Inventory

    Fibrates are a class of pharmaceuticals that indirectly modulate cholesterol biosynthesis through effects on peroxisome proliferator-activated receptors, which are transcriptional cofactors that regulate expression of genes related to lipid metabolism. Gemfibrozil is a fibrate th...

  17. Effects of Gemfibrozil on Cholesterol Metabolism and Steroidogenesis in the Fathead Minnow (Pimephales promelas)

    EPA Science Inventory

    Fibrates are a class of pharmaceuticals that indirectly modulate cholesterol biosynthesis through effects on peroxisome proliferator-activated receptors (PPAR), which are transcriptional cofactors that regulate expression of genes related to lipid metabolism. Gemfibrozil is a fib...

  18. Effects of Gemfibrozil on Cholesterol Metabolism, Steroidogenesis, and Reproduction in the Fathead Minnow (Pimephales promelas)

    EPA Science Inventory

    Fibrates are a class of pharmaceuticals that indirectly modulate cholesterol biosynthesis through effects on peroxisome proliferator-activated receptors (PPAR), which are transcriptional cofactors that regulate expression of genes related to lipid metabolism. Gemfibrozil is a fib...

  19. Effects of treatment with sucrose in drinking water on liver histology, lipogenesis and lipogenic gene expression in rats fed high-fiber diet.

    PubMed

    Mašek, Tomislav; Filipović, Natalija; Vuica, Ana; Starčević, Kristina

    2017-01-01

    We studied the influence of sucrose in drinking water on liver histology, fatty acid profile and lipogenic genes expression in rats maintained on high-fiber. The experimental groups were: control group (water) and sucrose group (sucrose solution in drinking water, 30% w/v). Liver histology of sucrose treated rats revealed steatosis and increased number of αSMA immunoreactive cells without the signs of fibrosis. Sucrose treatment increased de novo lipogenesis, lipid peroxidation and MUFA content and decreased PUFA content, C18:2n6 and C20:4n6 content in total phospholipids and phosphatidylethanolamine and C18:2n6 content in cardiolipin. RT-qPCR revealed increase in Δ-9-desaturase and SREBP1c gene expression and decrease in the Δ-5-desaturase and elongase 5 expression. Treatment with sucrose extensively changes fatty acid composition of hepatic lipid and phospholipid classes including cardiolipin, increases oxidative stress and causes pathological changes in liver in rats maintained on high-fiber diet. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Direct-acting antiviral agents against hepatitis C virus and lipid metabolism.

    PubMed

    Kanda, Tatsuo; Moriyama, Mitsuhiko

    2017-08-21

    Hepatitis C virus (HCV) infection induces steatosis and is accompanied by multiple metabolic alterations including hyperuricemia, reversible hypocholesterolemia and insulin resistance. Total cholesterol, low-density lipoprotein-cholesterol and triglyceride levels are increased by peginterferon and ribavirin combination therapy when a sustained virologic response (SVR) is achieved in patients with HCV. Steatosis is significantly more common in patients with HCV genotype 3 but interferon-free regimens are not always effective for treating HCV genotype 3 infections. HCV infection increases fatty acid synthase levels, resulting in the accumulation of fatty acids in hepatocytes. Of note, low-density lipoprotein receptor, scavenger receptor class B type I and Niemann-Pick C1-like 1 proteins are candidate receptors that may be involved in HCV. They are also required for the uptake of cholesterol from the external environment of hepatocytes. Among HCV-infected patients with or without human immunodeficiency virus infection, changes in serum lipid profiles are observed during interferon-free treatment and after the achievement of an SVR. It is evident that HCV affects cholesterol metabolism during interferon-free regimens. Although higher SVR rates were achieved with interferon-free treatment of HCV, special attention must also be paid to unexpected adverse events based on host metabolic changes including hyperlipidemia.

  1. Novel analytical methods to assess the chemical and physical properties of liposomes.

    PubMed

    Kothalawala, Nuwan; Mudalige, Thilak K; Sisco, Patrick; Linder, Sean W

    2018-08-01

    Liposomes are used in commercial pharmaceutical formulations (PFs) and dietary supplements (DSs) as a carrier vehicle to protect the active ingredient from degradation and to increase the half-life of the injectable. Even as the commercialization of liposomal products has rapidly increased, characterization methodologies to evaluate physical and chemical properties of the liposomal products have not been well-established. Herein we develop rapid methodologies to evaluate chemical and selected physical properties of liposomal formulations. Chemical properties of liposomes are determined by their lipid composition. The lipid composition is evaluated by first screening of the lipids present in the sample using HPLC-ELSD followed by HPLC-MSMS analysis with high mass accuracy (<5 ppm), fragmentation pattern and lipid structure databases searching. Physical properties such as particle size and size distribution were investigated using Tunable Resistive Pulse Sensing (TRPS). The developed methods were used to analyze commercially available PFs and DSs. As results, PFs contain distinct number of lipids as indicated by the manufacture, but DSs were more complicated containing a large number of lipids belonging to different sub-classes. Commercially available liposomes have particles with wide size distribution based on size measurements performed by TRPS. The high mass accuracy as well as identification lipids using multiple fragment ions aided to accurately identify the lipids and differentiate them from other lipophilic molecules. The developed analytical methodologies were successfully adapted to measure the physiochemical properties of commercial liposomes. Copyright © 2018. Published by Elsevier B.V.

  2. Enhancement of neutral lipid productivity in the microalga Isochrysis affinis Galbana (T-Iso) by a mutation-selection procedure.

    PubMed

    Bougaran, Gaël; Rouxel, Catherine; Dubois, Nolwenn; Kaas, Raymond; Grouas, Sophie; Lukomska, Ewa; Le Coz, Jean-René; Cadoret, Jean-Paul

    2012-11-01

    Microalgae offer a high potential for energetic lipid storage as well as high growth rates. They are therefore considered promising candidates for biofuel production, with the selection of high lipid-producing strains a major objective in projects on the development of this technology. We developed a mutation-selection method aimed at increasing microalgae neutral lipid productivity. A two step method, based on UVc irradiation followed by flow cytometry selection, was applied to a set of strains that had an initial high lipid content and improvement was assessed by means of Nile-red fluorescence measurements. The method was first tested on Isochrysis affinis galbana (T-Iso). Following a first round of mutation-selection, the total fatty acid content had not increased significantly, being 262 ± 21 mgTFA (gC)-1 for the wild type (WT) and 269 ± 49 mgTFA (gC)-1 for the selected population (S1M1). Conversely, fatty acid distribution among the lipid classes was affected by the process, resulting in a 20% increase for the fatty acids in the neutral lipids and a 40% decrease in the phospholipids. After a second mutation-selection step (S2M2), the total fatty acid content reached 409 ± 64 mgTFA (gC)-1 with a fatty acid distribution similar to the S1M1 population. Growth rate remained unaffected by the process, resulting in a 80% increase for neutral lipid productivity. Copyright © 2012 Wiley Periodicals, Inc.

  3. Molecular lipid species in urinary exosomes as potential prostate cancer biomarkers.

    PubMed

    Skotland, Tore; Ekroos, Kim; Kauhanen, Dimple; Simolin, Helena; Seierstad, Therese; Berge, Viktor; Sandvig, Kirsten; Llorente, Alicia

    2017-01-01

    Exosomes have recently appeared as a novel source of noninvasive cancer biomarkers, since these nanovesicles contain molecules from cancer cells and can be detected in biofluids. We have here investigated the potential use of lipids in urinary exosomes as prostate cancer biomarkers. A high-throughput mass spectrometry quantitative lipidomic analysis was performed to reveal the lipid composition of urinary exosomes in prostate cancer patients and healthy controls. Control samples were first analysed to characterise the lipidome of urinary exosomes and test the reproducibility of the method. In total, 107 lipid species were quantified in urinary exosomes. Several differences, for example, in cholesterol and phosphatidylcholine, were found between urinary exosomes and exosomes derived from cell lines, thus showing the importance of in vivo studies for biomarker analysis. The 36 most abundant lipid species in urinary exosomes were then quantified in 15 prostate cancer patients and 13 healthy controls. Interestingly, the levels of nine lipids species were found to be significantly different when the two groups were compared. The highest significance was shown for phosphatidylserine (PS) 18:1/18:1 and lactosylceramide (d18:1/16:0), the latter also showed the highest patient-to-control ratio. Furthermore, combinations of these lipid species and PS 18:0-18:2 distinguished the two groups with 93% sensitivity and 100% specificity. Finally, in agreement with the reported dysregulation of sphingolipid metabolism in cancer cells, alteration in specific sphingolipid lipid classes were observed. This study shows for the first time the potential use of exosomal lipid species in urine as prostate cancer biomarkers. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Characterization of myrtle seed (Myrtus communis var. baetica) as a source of lipids, phenolics, and antioxidant activities.

    PubMed

    Wannes, Wissem Aidi; Marzouk, Brahim

    2016-04-01

    This study aimed to characterize the chemical composition and antioxidant activity of the oil and the methanolic extract of Myrtus communis var. baetica seed. The oil yield of myrtle seed was 8.90%, with the amount of neutral lipid, especially triacylglycerol, being the highest, followed by phospholipids and glycolipids. Total lipids and all lipid classes were rich in linoleic acid. The content of total phenols, flavonoids, tannins, and proanthocyanidins of the methanolic extract and the oil from myrtle seed was determined using spectrophotometric methods. Antioxidant activities of the oil and the methanolic extract from myrtle seed were evaluated using 1,1-diphenyl-2-picrylhydrazyl radical scavenging, β-carotene-linoleic acid bleaching, and reducing power and metal chelating activity assays. In all tests, the methanolic extract of myrtle seed showed better antioxidant activity than oil. This investigation could suggest the use of myrtle seed in food, industrial, and biomedical applications for its potential metabolites and antioxidant abilities. Copyright © 2015. Published by Elsevier B.V.

  5. Composition and Quantitation of Microalgal Lipids by ERETIC 1H NMR Method

    PubMed Central

    Nuzzo, Genoveffa; Gallo, Carmela; d’Ippolito, Giuliana; Cutignano, Adele; Sardo, Angela; Fontana, Angelo

    2013-01-01

    Accurate characterization of biomass constituents is a crucial aspect of research in the biotechnological application of natural products. Here we report an efficient, fast and reproducible method for the identification and quantitation of fatty acids and complex lipids (triacylglycerols, glycolipids, phospholipids) in microalgae under investigation for the development of functional health products (probiotics, food ingredients, drugs, etc.) or third generation biofuels. The procedure consists of extraction of the biological matrix by modified Folch method and direct analysis of the resulting material by proton nuclear magnetic resonance (1H NMR). The protocol uses a reference electronic signal as external standard (ERETIC method) and allows assessment of total lipid content, saturation degree and class distribution in both high throughput screening of algal collection and metabolic analysis during genetic or culturing studies. As proof of concept, the methodology was applied to the analysis of three microalgal species (Thalassiosira weissflogii, Cyclotella cryptica and Nannochloropsis salina) which drastically differ for the qualitative and quantitative composition of their fatty acid-based lipids. PMID:24084790

  6. Taking a Toll on human disease: Toll-like receptor 4 agonists as vaccine adjuvants and monotherapeutic agents.

    PubMed

    Baldridge, Jory R; McGowan, Patrick; Evans, Jay T; Cluff, Christopher; Mossman, Sally; Johnson, David; Persing, David

    2004-07-01

    Toll-like receptor (TLR) agonists are being developed for use as vaccine adjuvants and as stand-alone immunomodulators because of their ability to stimulate innate and adaptive immune responses. Among the most thoroughly studied TLR agonists are the lipid A molecules that target the TLR4 complex. One promising candidate, monophosphoryl lipid A, which is a derivative of lipid A from Salmonella minnesota, has proven to be safe and effective as a vaccine adjuvant in > 120,000 human doses. A new class of synthetic lipid A mimetics, the aminoalkyl glucosaminide 4-phosphates (AGPs), have been engineered specifically to target human TLR4 and are showing promise as vaccine adjuvants and as monotherapeutic agents capable of eliciting nonspecific protection against a wide range of infectious pathogens. In this review, the authors provide an update of the preclinical and clinical experiences with the TLR4 agonists, MPL (Corixa Corporation) adjuvant and the AGPs.

  7. Tear Film Lipids

    PubMed Central

    Butovich, Igor A.

    2013-01-01

    Human meibomian gland secretions (MGS, or meibum) are formed from a complex mixture of lipids of different classes such as wax esters, cholesteryl esters, (O-acyl)-ω-hydroxy fatty acids (OAHFA) and their esters, acylglycerols, diacylated diols, free fatty acids, cholesterol, and a smaller amount of other polar and nonpolar lipids, whose chemical nature and the very presence in MGS have been a matter of intense debates. The purpose of this review is to discuss recent results that were obtained using different experimental techniques, estimate limitations of their usability, and discuss their biochemical, biophysical, and physiological implications. To create a lipid map of MGS and tears, the results obtained in the author’s laboratory were integrated with available information on chemical composition of MGS and tears. The most informative approaches that are available today to researchers, such as HPLC-MS, GC-MS, and proton NMR, are discussed in details. A map of the meibomian lipidome (as it is seen in reverse phase liquid chromatography/mass spectrometry experiments) is presented. Directions of future efforts in the area are outlined. PMID:23769846

  8. Highly stable and self-repairing membrane-mimetic 2D nanomaterials assembled from lipid-like peptoids

    PubMed Central

    Jin, Haibao; Jiao, Fang; Daily, Michael D.; Chen, Yulin; Yan, Feng; Ding, Yan-Huai; Zhang, Xin; Robertson, Ellen J.; Baer, Marcel D.; Chen, Chun-Long

    2016-01-01

    An ability to develop sequence-defined synthetic polymers that both mimic lipid amphiphilicity for self-assembly of highly stable membrane-mimetic 2D nanomaterials and exhibit protein-like functionality would revolutionize the development of biomimetic membranes. Here we report the assembly of lipid-like peptoids into highly stable, crystalline, free-standing and self-repairing membrane-mimetic 2D nanomaterials through a facile crystallization process. Both experimental and molecular dynamics simulation results show that peptoids assemble into membranes through an anisotropic formation process. We further demonstrated the use of peptoid membranes as a robust platform to incorporate and pattern functional objects through large side-chain diversity and/or co-crystallization approaches. Similar to lipid membranes, peptoid membranes exhibit changes in thickness upon exposure to external stimuli; they can coat surfaces in single layers and self-repair. We anticipate that this new class of membrane-mimetic 2D nanomaterials will provide a robust matrix for development of biomimetic membranes tailored to specific applications. PMID:27402325

  9. Temperature-Dependent Lipid Storage of Juvenile Arctic cod (Boreogadus saida) and Co-Occurring North Pacific Gadids

    NASA Astrophysics Data System (ADS)

    Copeman, L.; Laurel, B.; Spencer, M. L.; Iseri, P.; Sremba, A. L.

    2016-02-01

    Climate change impacts on Arctic ecosystems will largely be determined by temperature-dependent bioenergetics of resident and invading forage fish species. In this study, we experimentally measured total lipids and lipid class storage in the liver and muscle of juvenile Arctic gadids (Arctic cod, Boreogadus saida and saffron cod, Eleginus gracilis) and two North Pacific gadids (walleye pollock, Gadus chalcogrammus and Pacific cod, Gadus macrocephalus). Experiments were conducted over a 6-wk period across five temperatures (0, 5, 9, 16 and 20 °C) at the Hatfield Marine Science Center in Newport, OR, USA. Results indicated clear physiological differences among species in terms of temperature-dependent growth and lipid storage. Arctic cod exhibited highest growth and lipid storage (27 mg/g WW) at the coldest temperature (0 °C) compared to the other gadids, with near maximum growth at 5 °C and onset of mortality above 9 °C. In contrast, saffron cod growth rates steadily increased at temperatures beyond 16 °C, but lipid storage was low overall with only slightly higher lipid storage at warm temperatures (10 to 17 mg/g WW). Both walleye pollock and Pacific cod showed a domed response with increased lipid storage and growth at intermediate temperatures (9 - 12°C) and reduced growth and lipid storage at cold and warm maxima. We did not observe a trade-off between growth rate and lipid accumulation in any species. These results suggest that saffron cod can thrive in a warming Arctic but will be energetically inferior as a prey item to the more temperature-sensitive Arctic cod. Alternatively, North Pacific gadids can energetically resemble Arctic cod at warmer temperatures and could theoretically be an important prey item if their range extends northward with continued climate change.

  10. Polyhydroxy surfactants for the formulation of lipid nanoparticles (SLN and NLC): effects on size, physical stability and particle matrix structure.

    PubMed

    Kovacevic, A; Savic, S; Vuleta, G; Müller, R H; Keck, C M

    2011-03-15

    The two polyhydroxy surfactants polyglycerol 6-distearate (Plurol(®)Stearique WL1009 - (PS)) and caprylyl/capryl glucoside (Plantacare(®) 810 - (PL)) are a class of PEG-free stabilizers, made from renewable resources. They were investigated for stabilization of aqueous solid lipid nanoparticle (SLN) and nanostructured lipid carrier (NLC) dispersions. Production was performed by high pressure homogenization, analysis by photon correlation spectroscopy (PCS), laser diffraction (LD), zeta potential measurements and differential scanning calorimetry (DSC). Particles were made from Cutina CP as solid lipid only (SLN) and its blends with Miglyol 812 (NLC, the blends containing increasing amounts of oil from 20% to 60%). The obtained particle sizes were identical for both surfactants, about 200 nm with polydispersity indices below 0.20 (PCS), and unimodal size distribution (LD). All dispersions with both surfactants were physically stable for 3 months at room temperature, but Plantacare (PL) showing a superior stability. The melting behaviour and crystallinity of bulk lipids/lipid blends were compared to the nanoparticles. Both were lower for the nanoparticles. The crystallinity of dispersions stabilized with PS was higher, the zeta potential decreased with storage time associated with this higher crystallinity, and leading to a few, but negligible larger particles. The lower crystallinity particles stabilized with PL remained unchanged in zeta potential (about -50 mV) and in size. These data show that surfactants have a distinct influence on the particle matrix structure (and related stability and drug loading), to which too little attention was given by now. Despite being from the same surfactant class, the differences on the structure are pronounced. They are attributed to the hydrophobic-lipophilic tail structure with one-point anchoring in the interface (PL), and the loop conformation of PS with two hydrophobic anchor points, i.e. their molecular structure and its interaction with the matrix surface and matrix bulk. Analysis of the effects of the surfactants on the particle matrix structure could potentially be used to further optimization of stability, drug loading and may be drug release. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Hexadecenoic Fatty Acid Isomers in Human Blood Lipids and Their Relevance for the Interpretation of Lipidomic Profiles

    PubMed Central

    Sansone, Anna; Tolika, Evanthia; Louka, Maria; Sunda, Valentina; Deplano, Simone; Melchiorre, Michele; Anagnostopoulos, Dimitrios; Chatgilialoglu, Chryssostomos; Formisano, Cesare; Di Micco, Rosa; Faraone Mennella, Maria Rosaria; Ferreri, Carla

    2016-01-01

    Monounsaturated fatty acids (MUFA) are emerging health biomarkers, and in particular the ratio between palmitoleic acid (9cis-16:1) and palmitic acid (16:0) affords the delta-9 desaturase index that is increased in obesity. Recently, other positional and geometrical MUFA isomers belonging to the hexadecenoic family (C16 MUFA) were found in circulating lipids, such as sapienic acid (6cis-16:1), palmitelaidic acid (9trans-16:1) and 6trans-16:1. In this work we report: i) the identification of sapienic acid as component of human erythrocyte membrane phospholipids with significant increase in morbidly obese patients (n = 50) compared with age-matched lean controls (n = 50); and ii) the first comparison of erythrocyte membrane phospholipids (PL) and plasma cholesteryl esters (CE) in morbidly obese patients highlighting that some of their fatty acid levels have opposite trends: increases of both palmitic and sapienic acids with the decrease of linoleic acid (9cis,12cis-18:2, omega-6) in red blood cell (RBC) membrane PL were reversed in plasma CE, whereas the increase of palmitoleic acid was similar in both lipid species. Consequentially, desaturase enzymatic indexes gave different results, depending on the lipid class used for the fatty acid content. The fatty acid profile of morbidly obese subjects also showed significant increases of stearic acid (C18:0) and C20 omega-6, as well as decreases of oleic acid (9cis-18:1) and docosahexaenoic acid (C22:6 omega-3) as compared with lean healthy controls. Trans monounsaturated and polyunsaturated fatty acids were also measured and found significantly increased in both lipid classes of morbidly obese subjects. These results highlight the C16 MUFA isomers as emerging metabolic marker provided that the assignment of the double bond position and geometry is correctly performed, thus identifying the corresponding lipidomic pathway. Since RBC membrane PL and plasma CE have different fatty acid trends, caution must also be used in the choice of lipid species for the interpretation of lipidomic profiles. PMID:27045677

  12. Hexadecenoic Fatty Acid Isomers in Human Blood Lipids and Their Relevance for the Interpretation of Lipidomic Profiles.

    PubMed

    Sansone, Anna; Tolika, Evanthia; Louka, Maria; Sunda, Valentina; Deplano, Simone; Melchiorre, Michele; Anagnostopoulos, Dimitrios; Chatgilialoglu, Chryssostomos; Formisano, Cesare; Di Micco, Rosa; Faraone Mennella, Maria Rosaria; Ferreri, Carla

    2016-01-01

    Monounsaturated fatty acids (MUFA) are emerging health biomarkers, and in particular the ratio between palmitoleic acid (9cis-16:1) and palmitic acid (16:0) affords the delta-9 desaturase index that is increased in obesity. Recently, other positional and geometrical MUFA isomers belonging to the hexadecenoic family (C16 MUFA) were found in circulating lipids, such as sapienic acid (6cis-16:1), palmitelaidic acid (9trans-16:1) and 6trans-16:1. In this work we report: i) the identification of sapienic acid as component of human erythrocyte membrane phospholipids with significant increase in morbidly obese patients (n = 50) compared with age-matched lean controls (n = 50); and ii) the first comparison of erythrocyte membrane phospholipids (PL) and plasma cholesteryl esters (CE) in morbidly obese patients highlighting that some of their fatty acid levels have opposite trends: increases of both palmitic and sapienic acids with the decrease of linoleic acid (9cis,12cis-18:2, omega-6) in red blood cell (RBC) membrane PL were reversed in plasma CE, whereas the increase of palmitoleic acid was similar in both lipid species. Consequentially, desaturase enzymatic indexes gave different results, depending on the lipid class used for the fatty acid content. The fatty acid profile of morbidly obese subjects also showed significant increases of stearic acid (C18:0) and C20 omega-6, as well as decreases of oleic acid (9cis-18:1) and docosahexaenoic acid (C22:6 omega-3) as compared with lean healthy controls. Trans monounsaturated and polyunsaturated fatty acids were also measured and found significantly increased in both lipid classes of morbidly obese subjects. These results highlight the C16 MUFA isomers as emerging metabolic marker provided that the assignment of the double bond position and geometry is correctly performed, thus identifying the corresponding lipidomic pathway. Since RBC membrane PL and plasma CE have different fatty acid trends, caution must also be used in the choice of lipid species for the interpretation of lipidomic profiles.

  13. Polyoxylglycerides and glycerides: effects of manufacturing parameters on API stability, excipient functionality and processing.

    PubMed

    Jannin, Vincent; Rodier, Jean-David; Musakhanian, Jasmine

    2014-05-15

    Lipid-based formulations are a viable option to address modern drug delivery challenges such as increasing the oral bioavailability of poorly water-soluble active pharmaceutical ingredients (APIs), or sustaining the drug release of molecules intended for chronic diseases. Esters of fatty acids and glycerol (glycerides) and polyethylene-glycols (polyoxylglycerides) are two main classes of lipid-based excipients used by oral, dermal, rectal, vaginal or parenteral routes. These lipid-based materials are more and more commonly used in pharmaceutical drug products but there is still a lack of understanding of how the manufacturing processes, processing aids, or additives can impact the chemical stability of APIs within the drug product. In that regard, this review summarizes the key parameters to look at when formulating with lipid-based excipients in order to anticipate a possible impact on drug stability or variation of excipient functionality. The introduction presents the chemistry of natural lipids, fatty acids and their properties in relation to the extraction and refinement processes. Then, the key parameters during the manufacturing process influencing the quality of lipid-based excipients are provided. Finally, their critical characteristics are discussed in relation with their intended functionality and ability to interact with APIs and others excipients within the formulation. Copyright © 2014. Published by Elsevier B.V.

  14. A not-stop-flow online normal-/reversed-phase two-dimensional liquid chromatography-quadrupole time-of-flight mass spectrometry method for comprehensive lipid profiling of human plasma from atherosclerosis patients.

    PubMed

    Li, Min; Tong, Xunliang; Lv, Pu; Feng, Baosheng; Yang, Li; Wu, Zheng; Cui, Xinge; Bai, Yu; Huang, Yining; Liu, Huwei

    2014-11-03

    A not-stop-flow online two-dimensional (2D) liquid chromatography (LC) method was developed for comprehensive lipid profiling by coupling normal- and reversed-phase LC with quadrupole time-of-flight mass spectrometry (QToF-MS), which was then applied to separate and identify the lipid species in plasma, making its merits in quality and quantity of the detection of lipids. Total 540 endogenous lipid species from 17 classes were determined in human plasma, and the differences in lipid metabolism products in human plasma between atherosclerosis patients and control subjects were explored in detail. The limit of detections (LODs) of 19 validation standards could all reach ng/mL magnitude, and the RSDs of peak area and retention time ranged 0.4-8.0% and 0.010-0.47%, respectively. In addition, a pair of isomers, galactosylceramides (GalC) and glucosylceramides (GluC), was successfully separated, showing that only the levels of GalC in atherosclerosis patients were significantly increasing, rather than GluC, compared with the controls (controls vs. patients: the ratio was 1.5-2.8-fold increasing). It would be helpful to the further research of the atherosclerosis. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Designer lipid-like peptides: a class of detergents for studying functional olfactory receptors using commercial cell-free systems.

    PubMed

    Corin, Karolina; Baaske, Philipp; Ravel, Deepali B; Song, Junyao; Brown, Emily; Wang, Xiaoqiang; Wienken, Christoph J; Jerabek-Willemsen, Moran; Duhr, Stefan; Luo, Yuan; Braun, Dieter; Zhang, Shuguang

    2011-01-01

    A crucial bottleneck in membrane protein studies, particularly G-protein coupled receptors, is the notorious difficulty of finding an optimal detergent that can solubilize them and maintain their stability and function. Here we report rapid production of 12 unique mammalian olfactory receptors using short designer lipid-like peptides as detergents. The peptides were able to solubilize and stabilize each receptor. Circular dichroism showed that the purified olfactory receptors had alpha-helical secondary structures. Microscale thermophoresis suggested that the receptors were functional and bound their odorants. Blot intensity measurements indicated that milligram quantities of each olfactory receptor could be produced with at least one peptide detergent. The peptide detergents' capability was comparable to that of the detergent Brij-35. The ability of 10 peptide detergents to functionally solubilize 12 olfactory receptors demonstrates their usefulness as a new class of detergents for olfactory receptors, and possibly other G-protein coupled receptors and membrane proteins.

  16. Designer Lipid-Like Peptides: A Class of Detergents for Studying Functional Olfactory Receptors Using Commercial Cell-Free Systems

    PubMed Central

    Corin, Karolina; Baaske, Philipp; Ravel, Deepali B.; Song, Junyao; Brown, Emily; Wang, Xiaoqiang; Wienken, Christoph J.; Jerabek-Willemsen, Moran; Duhr, Stefan; Luo, Yuan; Braun, Dieter; Zhang, Shuguang

    2011-01-01

    A crucial bottleneck in membrane protein studies, particularly G-protein coupled receptors, is the notorious difficulty of finding an optimal detergent that can solubilize them and maintain their stability and function. Here we report rapid production of 12 unique mammalian olfactory receptors using short designer lipid-like peptides as detergents. The peptides were able to solubilize and stabilize each receptor. Circular dichroism showed that the purified olfactory receptors had alpha-helical secondary structures. Microscale thermophoresis suggested that the receptors were functional and bound their odorants. Blot intensity measurements indicated that milligram quantities of each olfactory receptor could be produced with at least one peptide detergent. The peptide detergents' capability was comparable to that of the detergent Brij-35. The ability of 10 peptide detergents to functionally solubilize 12 olfactory receptors demonstrates their usefulness as a new class of detergents for olfactory receptors, and possibly other G-protein coupled receptors and membrane proteins. PMID:22132066

  17. Converging roles for sphingolipids and cell stress in the progression of neurological dysfunction in AIDS

    PubMed Central

    Haughey, Norman J.; Steiner, Joesph; Nath, Avindra; McArthur, Justin; Sacktor, Ned; Pardo, Carlos; Bandaru, Veera Venkata Ratnam

    2009-01-01

    Sphingolipids are a class of lipids enriched in the central nervous system that have important roles in signal transduction. Recent advances in our understanding of how sphingolipids are involved in the control of life and death signaling have uncovered roles for these lipids in the neuropathogenesis of HIV-associated neurocognitive disorders (HAND). In this review we briefly summarize the molecular mechanisms involved in the pathological production of the toxic sphingolipid, ceramide and address questions of how cytokine and cellular stress pathways that are perturbed in HAND converge to deregulate ceramide-associated signaling. PMID:18508574

  18. A new herbicidal site of action: Cinmethylin binds to acyl-ACP thioesterase and inhibits plant fatty acid biosynthesis.

    PubMed

    Campe, Ruth; Hollenbach, Eva; Kämmerer, Lara; Hendriks, Janneke; Höffken, Hans Wolfgang; Kraus, Helmut; Lerchl, Jens; Mietzner, Thomas; Tresch, Stefan; Witschel, Matthias; Hutzler, Johannes

    2018-06-01

    The prevalent occurrence of herbicide resistant weeds increases the necessity for new site of action herbicides for effective control as well as to relax selection pressure on the known sites of action. As a consequence, interest increased in the unexploited molecule cinmethylin as a new solution for the control of weedy grasses in cereals. Therefore, the mechanism of action of cinmethylin was reevaluated. We applied the chemoproteomic approach cellular Target Profiling™ from Evotec to identify the cinmethylin target in Lemna paucicostata protein extracts. We found three potential targets belonging to the same protein family of fatty acid thioesterases (FAT) to bind to cinmethylin with high affinity. Binding of cinmethylin to FAT proteins from Lemna and Arabidopsis was confirmed by fluorescence-based thermal shift assay. The plastid localized enzyme FAT plays a crucial role in plant lipid biosynthesis, by mediating the release of fatty acids (FA) from its acyl carrier protein (ACP) which is necessary for FA export to the endoplasmic reticulum. GC-MS analysis of free FA composition in Lemna extracts revealed strong reduction of unsaturated C18 as well as saturated C14, and C16 FAs upon treatment with cinmethylin, indicating that FA release for subsequent lipid biosynthesis is the primary target of cinmethylin. Lipid biosynthesis is a prominent target of different herbicide classes. To assess whether FAT inhibition constitutes a new mechanism of action within this complex pathway, we compared physiological effects of cinmethylin to different ACCase and VLCFA synthesis inhibitors and identified characteristic differences in plant symptomology and free FA composition upon treatment with the three herbicide classes. Also, principal component analysis of total metabolic profiling of treated Lemna plants showed strong differences in overall metabolic changes after cinmethylin, ACCase or VLCFA inhibitor treatments. Our results identified and confirmed FAT as the cinmethylin target and validate FAT inhibition as a new site of action different from other lipid biosynthesis inhibitor classes. Copyright © 2018 BASF SE. Published by Elsevier Inc. All rights reserved.

  19. Multicomponent Reactions in Ligation and Bioconjugation Chemistry.

    PubMed

    Reguera, Leslie; Méndez, Yanira; Humpierre, Ana R; Valdés, Oscar; Rivera, Daniel G

    2018-05-25

    Multicomponent reactions (MCRs) encompass an exciting class of chemical transformations that have proven success in almost all fields of synthetic organic chemistry. These convergent procedures incorporate three or more reactants into a final product in one pot, thus combining high levels of complexity and diversity generation with low synthetic cost. Striking applications of these processes are found in heterocycle, peptidomimetic, and natural product syntheses. However, their potential in the preparation of large macro- and biomolecular constructs has been realized just recently. This Account describes the most relevant results of our group in the utilization of MCRs for ligation/conjugation of biomolecules along with significant contributions from other laboratories that validate the utility of this special class of bioconjugation process. Thus, MCRs have proven to be efficient in the ligation of lipids to peptides and oligosaccharides as well as the ligation of steroids, carbohydrates, and fluorescent and affinity tags to peptides and proteins. In the field of glycolipids, we highlight the power of isocyanide-based MCRs with the one-pot double lipidation of glycan fragments functionalized as either the carboxylic acid or amine. In peptide chemistry, the versatility of the multicomponent ligation strategy is demonstrated in both solution-phase lipidation protocols and solid-phase procedures enabling the simultaneous lipidation and biotinylation of peptides. In addition, we show that MCRs are powerful methods for synchronized lipidation/labeling and macrocyclization of peptides, thus accomplishing in one step what usually requires long sequences. In the realm of protein bioconjugation, MCRs have also proven to be effective in labeling, site-selective modification, immobilization, and glycoconjugation processes. For example, we illustrate a successful application of multicomponent polysaccharide-protein conjugation with the preparation of multivalent glycoconjugate vaccine candidates by the ligation of two antigenic capsular polysaccharides of a pathogenic bacterium to carrier proteins. By highlighting the ability to join several biomolecules in only one synthetic operation, we hope to encourage the biomolecular chemistry community to apply this powerful chemistry to novel biomedicinal challenges.

  20. Turnover of muscle lipids and response to exercise differ between neutral and polar fractions in a model songbird, the zebra finch.

    PubMed

    Carter, Wales A; Cooper-Mullin, Clara; McWilliams, Scott R

    2018-03-19

    The turnover rates of tissues and their constituent molecules give us insights into animals' physiological demands and their functional flexibility over time. Thus far, most studies of this kind have focused on protein turnover, and few have considered lipid turnover despite an increasing appreciation of the functional diversity of this class of molecules. We measured the turnover rates of neutral and polar lipids from the pectoralis muscles of a model songbird, the zebra finch ( Taeniopygia guttata , N =65), in a 256 day C 3 /C 4 diet shift experiment, with tissue samples taken at 10 time points. We also manipulated the physiological state of a subset of these birds with a 10 week flight training regimen to test the effect of exercise on lipid turnover. We measured lipid δ 13 C values via isotope ratio mass spectrometry (IRMS) and estimated turnover in different fractions and treatment groups with non-linear mixed-effect regression. We found a significant difference between the mean retention times (τ) of neutral and polar lipids ( t 119 =-2.22, P =0.028), with polar lipids (τ=11.80±1.28 days) having shorter retention times than neutral lipids (τ=19.47±3.22 days). When all birds were considered, we also found a significant decrease in the mean retention time of polar lipids in exercised birds relative to control birds (difference=-2.2±1.83 days, t 56 =-2.37, P =0.021), but not neutral lipids (difference=4.2± 7.41 days, t 56 =0.57, P =0.57). A larger, more variable neutral lipid pool and the exposure of polar lipids in mitochondrial membranes to oxidative damage and increased turnover provide mechanisms consistent with our results. © 2018. Published by The Company of Biologists Ltd.

  1. Metabolite mapping by consecutive nanostructure and silver-assisted mass spectrometry imaging on tissue sections.

    PubMed

    Gustafsson, O J R; Guinan, T M; Rudd, D; Kobus, H; Benkendorff, K; Voelcker, N H

    2017-06-30

    Nanostructure-based mass spectrometry imaging (MSI) is a promising technology for molecular imaging of small molecules, without the complex chemical background typically encountered in matrix-assisted molecular imaging approaches. Here, we have enhanced these surfaces with silver (Ag) to provide a second tier of MSI data from a single sample. MSI data was acquired through the application of laser desorption/ionization mass spectrometry to biological samples imprinted onto desorption/ionization on silicon (DIOS) substrates. Following initial analysis, ultra-thin Ag layers were overlaid onto the followed by MSI analysis (Ag-DIOS MSI). This approach was first demonstrated for fingermark small molecules including environmental contaminants and sebum components. Subsequently, this bimodal method was translated to lipids and metabolites in fore-stomach sections from a 6-bromoisatin chemopreventative murine mouse model. DIOS MSI allowed mapping of common ions in fingermarks as well as 6-bromoisatin metabolites and lipids in murine fore-stomach. Furthermore, DIOS MSI was complemented by the Ag-DIOS MSI of Ag-adductable lipids such as wax esters in fingermarks and cholesterol in murine fore-stomach. Gastrointestinal acid condensation products of 6-bromoisatin, such as the 6,6'-dibromoindirubin mapped herein, are very challenging to isolate and characterize. By re-analyzing the same tissue imprints, this metabolite was readily detected by DIOS, placed in a tissue-specific spatial context, and subsequently overlaid with additional lipid distributions acquired using Ag-DIOS MSI. The ability to place metabolite and lipid classes in a tissue-specific context makes this novel method suited to MSI analyses where the collection of additional information from the same sample maximises resource use, and also maximises the number of annotated small molecules, in particular for metabolites that are typically undetectable with traditional platforms. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  2. Detailed Structural Characterization of Sphingolipids via 193 nm Ultraviolet Photodissociation and Ultra High Resolution Tandem Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Ryan, Eileen; Nguyen, Catherine Quynh Nhu; Shiea, Christopher; Reid, Gavin E.

    2017-07-01

    Sphingolipids serve not only as components of cellular membranes but also as bioactive mediators of numerous cellular functions. As the biological activities of these lipids are dependent on their structures, and due to the limitations of conventional ion activation methods employed during tandem mass spectrometry (MS/MS), there is a recognized need for the development of improved structure-specific methods for their comprehensive identification and characterization. Here, positive-ionization mode 193 nm ultraviolet photodissociation (UVPD)-MS/MS has been implemented for the detailed structural characterization of lipid species from a range of sphingolipid classes introduced to the mass spectrometer via electrospray ionization as their lithiated or protonated adducts. These include sphingosine d18:1(4E), dihydrosphingosine (sphinganine) d18:0, sphingadiene d18:2(4E,11Z), the isomeric sphingolipids ceramide d18:1(4E)/18:0 and dihydroceramide d18:0/18:1(9Z), ceramide-1-phosphate d18:1(4Z)/16:0, sphingomyelin d18:1(4E)/18:1(9Z) the glycosphingolipids galactosyl ceramide d18:1(4E)/24:1(15Z) and lactosyl ceramide d18:1(4E)/24:0, and several endogenous lipids present within a porcine brain total lipid extract. In addition to the product ions formed by higher energy collision dissociation (HCD), UVPD is shown to yield a series of novel structurally diagnostic product ions resulting from cleavage of both sphingosine carbon-carbon and acyl chain carbon-carbon double bonds for direct localization of site(s) of unsaturation, as well as via diagnostic cleavages of the sphingosine backbone and N-C amide bond linkages. With activation timescales and dissociation efficiencies similar to those found in conventional MS/MS strategies, this approach is therefore a promising new tool in the arsenal of ion activation techniques toward providing complete structural elucidation in automated, high-throughput lipid analysis workflows.

  3. Etiology and management of dyslipidemia in children with chronic kidney disease and end-stage renal disease.

    PubMed

    Khurana, Mona; Silverstein, Douglas M

    2015-12-01

    Lipids are essential components of cell membranes, contributing to cell fuel, myelin formation, subcellular organelle function, and steroid hormone synthesis. Children with chronic kidney disease (CKD) and end-stage renal disease (ESRD) exhibit various co-morbidities, including dyslipidemia. The prevalence of dyslipidemias in children with CKD and ESRD is high, being present in 39-65% of patients. Elevated lipid levels in children without renal disease are a risk factor for cardiovascular disease (CVD), while the risk for CVD in pediatric CKD/ESRD is unclear. The pathogenesis of dyslipidemia in CKD features various factors, including increased levels of triglycerides, triglyceride-rich lipoproteins, apolipoprotein C3 (ApoC-III), decreased levels of cholesterylester transfer protein and high-density lipoproteins, and aberrations in serum very low-density and intermediate-density lipoproteins. If initial risk assessment indicates that a child with advanced CKD has 2 or more co-morbidities for CVD, first-line treatment should consist of non-pharmacologic management such as therapeutic lifestyle changes and dietary counseling. Pharmacologic treatment of dyslipidemia may reduce the incidence of CVD in children with CKD/ESRD, but randomized trials are lacking. Statins are the only class of lipid-lowering drugs currently approved by the U.S. Food and Drug Administration (FDA) for use in the pediatric population. FDA-approved pediatric labeling for these drugs is based on results from placebo-controlled trial results, showing 30-50% reductions in baseline low-density lipoprotein cholesterol. Although statins are generally well tolerated in adults, a spectrum of adverse events has been reported with their use in both the clinical trial and post-marketing settings.

  4. Gas chromatographic and mass spectrometric investigations of organic residues from Roman glass unguentaria.

    PubMed

    Ribechini, Erika; Modugno, Francesca; Colombini, Maria Perla; Evershed, Richard P

    2008-03-07

    A combination of gas chromatographic (GC) and mass spectrometric (MS) techniques, including direct exposure-MS (DE-MS), high-temperature GC-MS (HTGC-MS) and GC-MS of neutral and acid fractions, was employed to study the composition and recognise origin of the organic materials used to manufacture balm residues surviving in a series of glass unguentaria recovered from excavations of a Roman villa (Villa B) in the ancient town of Oplontis (Naples, Italy). DE-MS provided comprehensive 'fingerprint' information on the solvent soluble components of the contents of the unguentaria, while GC-MS analyses provided detailed molecular compositions, highlighting the presence of a wide range of compound classes including mid- and long-chain fatty acids, long-chain hydroxy-acids, n-alkanols, alkandiols, n-alkanes, long-chain monoesters, phytosterols and diterpenoid acids. Characteristic biomarkers and their distributions indicate the presence of beeswax, Pinaceae resin and another wax, as the main organic constituents of all of the preparations examined. In particular, the occurrence of phytosterols and long-chain monoesters, in which the acyl moiety was not exclusively palmitic acid, suggested the presence of a second waxy-lipid constituent of plant origin. The results are consistent with beeswax being used in the preparation of the cosmetics preserved in the unguentaria, while the other lipids are most likely the residue of some as yet unidentified plant extract(s), possibly deriving from the cuticular waxes of flowers and/or leaves. The composition of the extracts are consistent with the ancient practices of maceration and/or "enfleurage", in which lipid-based materials, such as beeswax, animal fat or vegetables oils, were used to extract aromatic and fragrant substances from resin, flowers, spices and scented wood, in order to produce unguents and balms.

  5. Lipid oxidation in baked products: impact of formula and process on the generation of volatile compounds.

    PubMed

    Maire, Murielle; Rega, Barbara; Cuvelier, Marie-Elisabeth; Soto, Paola; Giampaoli, Pierre

    2013-12-15

    This paper investigates the effect of ingredients on the reactions occurring during the making of sponge cake and leading to the generation of volatile compounds related to flavour quality. To obtain systems sensitive to lipid oxidation (LO), a formulation design was applied varying the composition of fatty matter and eggs. Oxidation of polyunsaturated fatty acids (PUFA) and formation of related volatile compounds were followed at the different steps of cake-making. Optimised dynamic Solid Phase Micro Extraction was applied to selectively extract either volatile or semi-volatile compounds directly from the baking vapours. We show for the first time that in the case of alveolar baked products, lipid oxidation occurs very early during the step of dough preparation and to a minor extent during the baking process. The generation of lipid oxidation compounds depends on PUFA content and on the presence of endogenous antioxidants in the raw matter. Egg yolk seemed to play a double role on reactivity: protecting unsaturated lipids from oxidation and being necessary to generate a broad class of compounds of the Maillard reaction during baking and linked to the typical flavour of sponge cake. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. A simple protocol for Matrix Assisted Laser Desorption Ionization- time of flight-mass spectrometry (MALDI-TOF-MS) analysis of lipids and proteins in single microsamples of paintings.

    PubMed

    van der Werf, Inez D; Calvano, Cosima D; Palmisano, Francesco; Sabbatini, Luigia

    2012-03-09

    A simple protocol, based on Bligh-Dyer (BD) extraction followed by MALDI-TOF-MS analysis, for fast identification of paint binders in single microsamples is proposed. For the first time it is demonstrated that the BD method is effective for the simultaneous extraction of lipids and proteins from complex, and atypical matrices, such as pigmented paint layers. The protocol makes use of an alternative denaturing anionic detergent (RapiGest™) in order to improve efficiency of protein digestion and purification step. Detection of various lipid classes, such as triacylglycerols (TAGs) and phospholipids (PLs), and their oxidation by-products was accomplished, whereas proteins could be identified by peptide mass fingerprinting. The effect of pigments on ageing of lipids and proteins was also investigated. Finally, the proposed protocol was successfully applied to the study of a late-15th century Italian panel painting allowing the identification of various proteinaceous and lipid sections in organic binders, such as egg yolk, egg white, animal glue, casein, and drying oil. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Ultra-small lipid-polymer hybrid nanoparticles for tumor-penetrating drug delivery

    NASA Astrophysics Data System (ADS)

    Dehaini, Diana; Fang, Ronnie H.; Luk, Brian T.; Pang, Zhiqing; Hu, Che-Ming J.; Kroll, Ashley V.; Yu, Chun Lai; Gao, Weiwei; Zhang, Liangfang

    2016-07-01

    Lipid-polymer hybrid nanoparticles, consisting of a polymeric core coated by a layer of lipids, are a class of highly scalable, biodegradable nanocarriers that have shown great promise in drug delivery applications. Here, we demonstrate the facile synthesis of ultra-small, sub-25 nm lipid-polymer hybrid nanoparticles using an adapted nanoprecipitation approach and explore their utility for targeted delivery of a model chemotherapeutic. The fabrication process is first optimized to produce a monodisperse population of particles that are stable under physiological conditions. It is shown that these ultra-small hybrid nanoparticles can be functionalized with a targeting ligand on the surface and loaded with drug inside the polymeric matrix. Further, the in vivo fate of the nanoparticles after intravenous injection is characterized by examining the blood circulation and biodistribution. In a final proof-of-concept study, targeted ultra-small hybrid nanoparticles loaded with the cancer drug docetaxel are used to treat a mouse tumor model and demonstrate improved efficacy compared to a clinically available formulation of the drug. The ability to synthesize a significantly smaller version of the established lipid-polymer hybrid platform can ultimately enhance its applicability across a wider range of applications.

  8. A Comparison of Tissue Spray and Lipid Extract Direct Injection Electrospray Ionization Mass Spectrometry for the Differentiation of Eutopic and Ectopic Endometrial Tissues

    NASA Astrophysics Data System (ADS)

    Chagovets, Vitaliy; Wang, Zhihao; Kononikhin, Alexey; Starodubtseva, Natalia; Borisova, Anna; Salimova, Dinara; Popov, Igor; Kozachenko, Andrey; Chingin, Konstantin; Chen, Huanwen; Frankevich, Vladimir; Adamyan, Leila; Sukhikh, Gennady

    2018-02-01

    Recent research revealed that tissue spray mass spectrometry enables rapid molecular profiling of biological tissues, which is of great importance for the search of disease biomarkers as well as for online surgery control. However, the payback for the high speed of analysis in tissue spray analysis is the generally lower chemical sensitivity compared with the traditional approach based on the offline chemical extraction and electrospray ionization mass spectrometry detection. In this study, high resolution mass spectrometry analysis of endometrium tissues of different localizations obtained using direct tissue spray mass spectrometry in positive ion mode is compared with the results of electrospray ionization analysis of lipid extracts. Identified features in both cases belong to three lipid classes: phosphatidylcholines, phosphoethanolamines, and sphingomyelins. Lipids coverage is validated by hydrophilic interaction liquid chromatography with mass spectrometry of lipid extracts. Multivariate analysis of data from both methods reveals satisfactory differentiation of eutopic and ectopic endometrium tissues. Overall, our results indicate that the chemical information provided by tissue spray ionization is sufficient to allow differentiation of endometrial tissues by localization with similar reliability but higher speed than in the traditional approach relying on offline extraction.

  9. Lipidomics in triacylglycerol and cholesteryl ester oxidation.

    PubMed

    Kuksis, Arnis

    2007-05-01

    Although direct mass spectrometry is capable of identification the major molecular species of lipids in crude total lipid extracts, prior chromatographic isolation is necessary for detection and identification of the minor components. This is especially important for the analysis of the oxolipids, which usually occur in trace amounts in the total lipid extract, and require prior isolation for detailed analysis. Both thin-layer chromatography and adsorption cartridges provide effective means for isolation and enrichment of lipid classes, while gas-liquid chromatography and high performance liquid chromatography with on-line mass spectrometry permit further separation and identification of molecular species. Prior chromatographic resolution is absolutely necessary for the identification of isobaric and chiral molecules, which mass spectrometry/mass spectrometry (MS/MS) cannot distinguish. Both gas chromatography-mass spectrometry and liquid chromatography-mass spectrometry applications may require the preparation of derivatives in order to improve the chromatographic and mass spectrometric properties of the oxolipids which is a small inconvenience for securing analytical reliability. The following chapter reviews the advantages and necessity of combined chromatographic-mass spectrometric approaches to successful identification and quantification of molecular species of oxoacylglycerols and oxocholesteryl esters in in-vitro model studies of lipid peroxidation and in the analyses of oxolipids recovered from tissues.

  10. Determining the fatty acid composition in plasma and tissues as fatty acid methyl esters using gas chromatography – a comparison of different derivatization and extraction procedures.

    PubMed

    Ostermann, Annika I; Müller, Maike; Willenberg, Ina; Schebb, Nils Helge

    2014-12-01

    Analysis of the fatty acid (FA) composition in biological samples is commonly carried out using gas liquid chromatography (GC) after transesterification to volatile FA methyl esters (FAME). We compared the efficacy of six frequently used protocols for derivatization of different lipid classes as well as for plasma and tissue samples. Transesterification with trimethylsulfonium hydroxide (TMSH) led to insufficient derivatization efficacies for polyunsaturated FAs (PUFA, <50%). Derivatization in presence of potassium hydroxide (KOH) failed at derivatizing free FAs (FFAs). Boron trifluoride (BF3) 7% in hexane/MeOH (1:1) was insufficient for the transesterification of cholesterol ester (CE) as well as triacylglycerols (TGs). In contrast, methanolic hydrochloric acid (HCl) as well as a combination of BF3 with methanolic sodium hydroxide (NaOH+BF3) were suitable for the derivatization of FFAs, polar lipids, TGs, and CEs (derivatization rate >80% for all tested lipids). Regarding plasma samples, all methods led to an overall similar relative FA pattern. However, significant differences were observed, for example, for the relative amount of EPA+DHA (n3-index). Absolute FA plasma concentrations differed considerably among the methods, with low yields for KOH and BF3. We also demonstrate that lipid extraction with tert-butyl methyl ether/methanol (MTBE/MeOH) is as efficient as the classical method according to Bligh and Dyer, making it possible to replace (environmentally) toxic chloroform.We conclude that HCl-catalyzed derivatization in combination with MeOH/MTBE extraction is the most appropriate among the methods tested for the analysis of FA concentrations and FA pattern in small biological samples. A detailed protocol for the analysis of plasma and tissues is included in this article.

  11. Permeability of lipid bilayers to amino acids and phosphate

    NASA Technical Reports Server (NTRS)

    Chakrabarti, A. C.; Deamer, D. W.

    1992-01-01

    Permeability coefficients for amino acid classes, including neutral, polar, hydrophobic, and charged species, were measured and compared with values for other ionic solutes such as phosphate. The rates of efflux of glycine, lysine, phenylalanine, serine and tryptophan were determined after they were passively entrapped in large unilamellar vesicles (LUVs) composed of egg phosphatidylcholine (EPC) or dimyristoylphosphatidylcholine (DMPC). The following permeability coefficients were obtained for: glycine, 5.7 x 10(-12) cm s-1 (EPC), 2.0 x 10(-11) cm s-1 (DMPC); serine, 5.5 x 10(-12) cm s-1 (EPC), 1.6 x 10(-11) cm s-1 (DMPC); lysine, 5.1 x 10(-12) cm s-1 (EPC), 1.9 x 10(-11) cm s-1 (DMPC); tryptophan, 4.1 x 10(-10) cm s-1 (EPC); and phenylalanine, 2.5 x 10(-10) cm s-1 (EPC). Decreasing lipid chain length increased permeability slightly, while variations in pH had only minor effects on the permeability coefficients of the amino acids tested. Phosphate permeability was in the range of 10(-12)-10(-13) cm s-1 depending on the pH of the medium. The values for the polar and charged amino acids were surprisingly similar to those previously measured for monovalent cations such as sodium and potassium, which are in the range of 10(-12)-10(-13) cm s-1, depending on conditions and the lipid species used. This observation suggests that the permeation rates for the neutral, polar and charged amino acids are controlled by bilayer fluctuations and transient defects, rather than partition coefficients and Born energy barriers. The results are relevant to the permeation of certain peptides into lipid bilayers during protein translocation and membrane biogenesis.

  12. Feeding and Fasting Signals Converge on the LKB1-SIK3 Pathway to Regulate Lipid Metabolism in Drosophila

    PubMed Central

    Choi, Sekyu; Lim, Dae-Sik; Chung, Jongkyeong

    2015-01-01

    LKB1 plays important roles in governing energy homeostasis by regulating AMP-activated protein kinase (AMPK) and other AMPK-related kinases, including the salt-inducible kinases (SIKs). However, the roles and regulation of LKB1 in lipid metabolism are poorly understood. Here we show that Drosophila LKB1 mutants display decreased lipid storage and increased gene expression of brummer, the Drosophila homolog of adipose triglyceride lipase (ATGL). These phenotypes are consistent with those of SIK3 mutants and are rescued by expression of constitutively active SIK3 in the fat body, suggesting that SIK3 is a key downstream kinase of LKB1. Using genetic and biochemical analyses, we identify HDAC4, a class IIa histone deacetylase, as a lipolytic target of the LKB1-SIK3 pathway. Interestingly, we found that the LKB1-SIK3-HDAC4 signaling axis is modulated by dietary conditions. In short-term fasting, the adipokinetic hormone (AKH) pathway, related to the mammalian glucagon pathway, inhibits the kinase activity of LKB1 as shown by decreased SIK3 Thr196 phosphorylation, and consequently induces HDAC4 nuclear localization and brummer gene expression. However, under prolonged fasting conditions, AKH-independent signaling decreases the activity of the LKB1-SIK3 pathway to induce lipolytic responses. We also identify that the Drosophila insulin-like peptides (DILPs) pathway, related to mammalian insulin pathway, regulates SIK3 activity in feeding conditions independently of increasing LKB1 kinase activity. Overall, these data suggest that fasting stimuli specifically control the kinase activity of LKB1 and establish the LKB1-SIK3 pathway as a converging point between feeding and fasting signals to control lipid homeostasis in Drosophila. PMID:25996931

  13. Variation in prescription use and spending for lipid-lowering and diabetes medications in the Veterans Affairs Healthcare System.

    PubMed

    Gellad, Walid F; Good, Chester B; Lowe, John C; Donohue, Julie M

    2010-10-01

    To examine variation in outpatient prescription use and spending for hyperlipidemia and diabetes mellitus in the Veterans Affairs Healthcare System (VA) and its association with quality measures for these conditions. Cross-sectional. We compared outpatient prescription use, spending, and quality of care across 135 VA medical centers (VAMCs) in fiscal year 2008, including 2.3 million patients dispensed lipid-lowering medications and 981,031 patients dispensed diabetes medications. At each facility, we calculated VAMC-level cost per patient for these medications, the proportion of patients taking brand-name drugs, and Healthcare Effectiveness Data and Information Set (HEDIS) scores for hyperlipidemia (low-density lipoprotein cholesterol level <100 mg/dL) and for diabetes (glycosylated hemoglobin level >9% or not measured). The median cost per patient for lipid-lowering agents in fiscal year 2008 was $49.60 and varied from $39.68 in the least expensive quartile of VAMCs to $69.57 in the most expensive quartile (P < .001). For diabetes agents, the median cost per patient was $158.34 and varied from $123.34 in the least expensive quartile to $198.31 in the most expensive quartile (P < .001). The proportion of patients dispensed brand-name oral drugs among these classes in the most expensive quartile of VAMCs was twice that in the least expensive quartile (P < .001). There was no correlation between VAMC-level prescription spending and performance on HEDIS measures for lipid-lowering drugs (r = 0.12 and r = 0.07) or for diabetes agents (r = -0.10). Despite the existence of a closely managed formulary, significant variation in prescription spending and use of brand-name drugs exists in the VA. Although we could not explicitly risk-adjust, there appears to be no relationship between prescription spending and quality of care.

  14. Unravelling polar lipids dynamics during embryonic development of two sympatric brachyuran crabs (Carcinus maenas and Necora puber) using lipidomics

    PubMed Central

    Rey, Felisa; Alves, Eliana; Melo, Tânia; Domingues, Pedro; Queiroga, Henrique; Rosa, Rui; Domingues, M. Rosário M.; Calado, Ricardo

    2015-01-01

    Embryogenesis is an important stage of marine invertebrates with bi-phasic life cycles, as it conditions their larval and adult life. Throughout embryogenesis, phospholipids (PL) play a key role as an energy source, as well as constituents of biological membranes. However, the dynamics of PL during embryogenesis in marine invertebrates is still poorly studied. The present work used a lipidomic approach to determine how polar lipid profiles shift during embryogenesis in two sympatric estuarine crabs, Carcinus maenas and Necora puber. The combination of thin layer chromatography, liquid chromatography – mass spectrometry and gas chromatography – mass spectrometry allowed us to achieve an unprecedented resolution on PL classes and molecular species present on newly extruded embryos (stage 1) and those near hatching (stage 3). Embryogenesis proved to be a dynamic process, with four PL classes being recorded in stage 1 embryos (68 molecular species in total) and seven PL classes at stage 3 embryos (98 molecular species in total). The low interspecific difference recorded in the lipidomic profiles of stage 1 embryos appears to indicate the existence of similar maternal investment. The same pattern was recorded for stage 3 embryos revealing a similar catabolism of embryonic resources during incubation for both crab species. PMID:26419891

  15. Altered Fructosamine and Lipid Fractions in Subclinical Hypothyroidism

    PubMed Central

    Udupa, Sridevi V.; Manjrekar, Poornima A.; Udupa, Vinit A.; Vivian, D’Souza

    2013-01-01

    Background: Thyroid function disorders lead to changes in the lipoprotein metabolism. Objectives: To study the lipid and the glycaemic abnormalities in the subclinical hypothyroidism cases and to compare the same with the euthyroid, overt hypothyroid and the hyperthyroid subjects. Methodology: Four groups, euthyroid (Group-I), hypothyroid (Group-II), subclinical hypothyroid (Group-III) and hyperthyroid (Group-IV), which consisted of 30 subjects each, of either sex, who were aged 25-55 years, underwent Fasting Plasma Glucose (FPG), fructosamine, lipid profile and total T3, T4 and TSH estimations. The subjects who were on lipid lowering or thyroid disorder drugs and known diabetics were excluded from the study. Results: In Group-III, all the lipid fractions were comparable to those of Group-II and they were significantly deranged, as compared to those of Group-I. The fructosamine levels were significantly higher in Group-II and Group-III (p<0.05), but the subclinical hypothyroid pool had statistically lower levels than the hypothyroid pool (376.63±54.73, 587.80±65.10). In the Group-IV patients, the LDL-C levels were significantly higher as compared to those in the euthyroid pool. The fructosamine levels were significantly lower in comparison with both the euthyroid and the hypothyroid pools (both in Groups-II and III). The FPG levels were higher in all the classes of the thyroid abnormalities (subclinical hypothyroidnot significant) but within the reference range of 70-100mg/dl. Conclusion: Since the lipid derangement in subclinical hypothyroidism is on par with that in overt hypothyrodism, the subclinical hypothyroid cases also need to be treated similarly. The fructosamine values which are largely in excess of the FPG values, indicate a higher propensity to glycation and a decreased turnover of the proteins in the hypothyroid and the subclinical hypothyroid pools. Vice versa is true of the hyperthyroid pool. Fructosamine can be included in the thyroid work up of the patients to assess the metabolic function and the subsequent response after the initiation of the therapy. PMID:23449765

  16. Nonclassical T Cells and Their Antigens in Tuberculosis

    PubMed Central

    De Libero, Gennaro; Singhal, Amit; Lepore, Marco; Mori, Lucia

    2014-01-01

    T cells that recognize nonpeptidic antigens, and thereby are identified as nonclassical, represent important yet poorly characterized effectors of the immune response. They are present in large numbers in circulating blood and tissues and are as abundant as T cells recognizing peptide antigens. Nonclassical T cells exert multiple functions including immunoregulation, tumor control, and protection against infections. They recognize complexes of nonpeptidic antigens such as lipid and glycolipid molecules, vitamin B2 precursors, and phosphorylated metabolites of the mevalonate pathway. Each of these antigens is presented by antigen-presenting molecules other than major histocompatibility complex (MHC), including CD1, MHC class I–related molecule 1 (MR1), and butyrophilin 3A1 (BTN3A1) molecules. Here, we discuss how nonclassical T cells participate in the recognition of mycobacterial antigens and in the mycobacterial-specific immune response. PMID:25059739

  17. LipidMatch: an automated workflow for rule-based lipid identification using untargeted high-resolution tandem mass spectrometry data.

    PubMed

    Koelmel, Jeremy P; Kroeger, Nicholas M; Ulmer, Candice Z; Bowden, John A; Patterson, Rainey E; Cochran, Jason A; Beecher, Christopher W W; Garrett, Timothy J; Yost, Richard A

    2017-07-10

    Lipids are ubiquitous and serve numerous biological functions; thus lipids have been shown to have great potential as candidates for elucidating biomarkers and pathway perturbations associated with disease. Methods expanding coverage of the lipidome increase the likelihood of biomarker discovery and could lead to more comprehensive understanding of disease etiology. We introduce LipidMatch, an R-based tool for lipid identification for liquid chromatography tandem mass spectrometry workflows. LipidMatch currently has over 250,000 lipid species spanning 56 lipid types contained in in silico fragmentation libraries. Unique fragmentation libraries, compared to other open source software, include oxidized lipids, bile acids, sphingosines, and previously uncharacterized adducts, including ammoniated cardiolipins. LipidMatch uses rule-based identification. For each lipid type, the user can select which fragments must be observed for identification. Rule-based identification allows for correct annotation of lipids based on the fragments observed, unlike typical identification based solely on spectral similarity scores, where over-reporting structural details that are not conferred by fragmentation data is common. Another unique feature of LipidMatch is ranking lipid identifications for a given feature by the sum of fragment intensities. For each lipid candidate, the intensities of experimental fragments with exact mass matches to expected in silico fragments are summed. The lipid identifications with the greatest summed intensity using this ranking algorithm were comparable to other lipid identification software annotations, MS-DIAL and Greazy. For example, for features with identifications from all 3 software, 92% of LipidMatch identifications by fatty acyl constituents were corroborated by at least one other software in positive mode and 98% in negative ion mode. LipidMatch allows users to annotate lipids across a wide range of high resolution tandem mass spectrometry experiments, including imaging experiments, direct infusion experiments, and experiments employing liquid chromatography. LipidMatch leverages the most extensive in silico fragmentation libraries of freely available software. When integrated into a larger lipidomics workflow, LipidMatch may increase the probability of finding lipid-based biomarkers and determining etiology of disease by covering a greater portion of the lipidome and using annotation which does not over-report biologically relevant structural details of identified lipid molecules.

  18. Coherent anti-Stokes Raman scattering (CARS) spectroscopy in Caenorhabditis elegans and Globodera pallida: evidence for an ivermectin-activated decrease in lipid stores.

    PubMed

    Smus, Justyna P; Ludlow, Elizabeth; Dallière, Nicolas; Luedtke, Sarah; Monfort, Tual; Lilley, Catherine; Urwin, Peter; Walker, Robert J; O'Connor, Vincent; Holden-Dye, Lindy; Mahajan, Sumeet

    2017-12-01

    Macrocyclic lactones are arguably the most successful chemical class with efficacy against parasitic nematodes. Here we investigated the effect of the macrocyclic lactone ivermectin on lipid homeostasis in the plant parasitic nematode Globodera pallida and provide new insight into its mode of action. A non-invasive, non-destructive, label-free and chemically selective technique called Coherent anti-Stokes Raman scattering (CARS) spectroscopy was used to study lipid stores in G. pallida. We optimised the protocol using the free-living nematode Caenorhabditis elegans and then used CARS to quantify lipid stores in the pre-parasitic, non-feeding J2 stage of G. pallida. This revealed a concentration of lipid stores in the posterior region of J2 s within 24 h of hatching which decreased to undetectable levels over the course of 28 days. We tested the effect of ivermectin on J2 viability and lipid stores. Within 24 h, ivermectin paralysed J2 s. Counterintuitively, over the same time-course ivermectin increased the rate of depletion of J2 lipid, suggesting that in ivermectin-treated J2 s there is a disconnection between the energy requirements for motility and metabolic rate. This decrease in lipid stores would be predicted to negatively impact on J2 infective potential. These data suggest that the benefit of macrocyclic lactones as seed treatments may be underpinned by a multilevel effect involving both neuromuscular inhibition and acceleration of lipid metabolism. © 2017 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. © 2017 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

  19. Coherent anti‐Stokes Raman scattering (CARS) spectroscopy in Caenorhabditis elegans and Globodera pallida: evidence for an ivermectin‐activated decrease in lipid stores

    PubMed Central

    Smus, Justyna P; Ludlow, Elizabeth; Dallière, Nicolas; Luedtke, Sarah; Monfort, Tual; Lilley, Catherine; Urwin, Peter; Walker, Robert J; O'Connor, Vincent

    2017-01-01

    Abstract BACKGROUND Macrocyclic lactones are arguably the most successful chemical class with efficacy against parasitic nematodes. Here we investigated the effect of the macrocyclic lactone ivermectin on lipid homeostasis in the plant parasitic nematode Globodera pallida and provide new insight into its mode of action. RESULTS A non‐invasive, non‐destructive, label‐free and chemically selective technique called Coherent anti‐Stokes Raman scattering (CARS) spectroscopy was used to study lipid stores in G. pallida. We optimised the protocol using the free‐living nematode Caenorhabditis elegans and then used CARS to quantify lipid stores in the pre‐parasitic, non‐feeding J2 stage of G. pallida. This revealed a concentration of lipid stores in the posterior region of J2 s within 24 h of hatching which decreased to undetectable levels over the course of 28 days. We tested the effect of ivermectin on J2 viability and lipid stores. Within 24 h, ivermectin paralysed J2 s. Counterintuitively, over the same time‐course ivermectin increased the rate of depletion of J2 lipid, suggesting that in ivermectin‐treated J2 s there is a disconnection between the energy requirements for motility and metabolic rate. This decrease in lipid stores would be predicted to negatively impact on J2 infective potential. CONCLUSION These data suggest that the benefit of macrocyclic lactones as seed treatments may be underpinned by a multilevel effect involving both neuromuscular inhibition and acceleration of lipid metabolism. © 2017 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. PMID:28834172

  20. Lipid raft disarrangement as a result of neuropathological progresses: a novel strategy for early diagnosis?

    PubMed

    Marin, R; Rojo, J A; Fabelo, N; Fernandez, C E; Diaz, M

    2013-08-15

    Lipid rafts are the preferential site of numerous membrane signaling proteins which are involved in neuronal functioning and survival. These proteins are organized in multiprotein complexes, or signalosomes, in close contact with lipid classes particularly represented in lipid rafts (i.e. cholesterol, sphingolipids and saturated fatty acids), which may contribute to physiological responses leading to neuroprotection. Increasing evidence indicates that alteration of lipid composition in raft structures as a consequence of neuropathologies, such as Alzheimer's disease (AD) and Parkinson's disease (PD), causes a dramatic increase in lipid raft order. These phenomena may correlate with perturbation of signalosome activities, likely contributing to neurodegenerative progression. Interestingly, significant disruption of stable raft microenvironments has been already observed in the first stages of either AD or PD, suggesting that these alterations may represent early events in the neuropathological development. In this regard, the search for biochemical markers, such as specific metabolic products altered in the brain at the first steps of the disease, presently represents an important challenge for early diagnostic strategies. Alterations of these biomarkers may be reflected in either plasma or cerebrospinal fluid, thus representing a potential strategy to predict an accurate diagnosis. We propose that pathologically-linked lipid raft markers may be interesting candidates to be explored at this level, although it has not been studied so far to what extent alteration of different signalosome components may be reflected in peripheral fluids. In this mini-review, we will discuss on relevant aspects of lipid rafts that contribute to the modulation of neuropathological events related to AD and PD. An interesting hypothesis is that anomalies on raft biomarkers measured at peripheral fluids might mirror the lipid raft pathology observed in early stages of AD and PD. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  1. Seasonal changes in minor membrane phospholipid classes, sterols and tocopherols in overwintering insect, Pyrrhocoris apterus.

    PubMed

    Koštál, Vladimír; Urban, Tomáš; Rimnáčová, Lucie; Berková, Petra; Simek, Petr

    2013-09-01

    Ectotherm animals including insects are known to undergo seasonal restructuring of the cell membranes in order to keep their functionality and/or protect their structural integrity at low body temperatures. Studies on insects so far focused either on fatty acids or on composition of molecular species in major phospholipid classes. Here we extend the scope of analysis and bring results on seasonal changes in minor phospholipid classes, lysophospholipids (LPLs), free fatty acids, phytosterols and tocopherols in heteropteran insect, Pyrrhocoris apterus. We found that muscle tissue contains unusually high amounts of LPLs. Muscle and fat body tissues also contain high amounts of β-sitosterol and campesterol, two phytosterols derived from plant food, while only small amounts of cholesterol are present. In addition, two isomers (γ and δ) of tocopherol (vitamin E) are present in quantities comparable to, or even higher than phytosterols in both tissues. Distinct seasonal patterns of sterol and tocopherol concentrations were observed showing a minimum in reproductively active bugs in summer and a maximum in diapausing, cold-acclimated bugs in winter. Possible adaptive meanings of such changes are discussed including: preventing the unregulated transition of membrane lipids from functional liquid crystalline phase to non-functional gel phase; decreasing the rates of ion/solute leakage; silencing the activities of membrane bound enzymes and receptors; and counteracting the higher risk of oxidative damage to PUFA in winter membranes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Spatial variation in the accumulation of POPs and mercury in bottlenose dolphins of the Lower Florida Keys and the coastal Everglades (South Florida).

    PubMed

    Damseaux, France; Kiszka, Jeremy J; Heithaus, Michael R; Scholl, George; Eppe, Gauthier; Thomé, Jean-Pierre; Lewis, Jennifer; Hao, Wensi; Fontaine, Michaël C; Das, Krishna

    2017-01-01

    The bottlenose dolphin (Tursiops truncatus) is an upper trophic level predator and the most common cetacean species found in nearshore waters of southern Florida, including the Lower Florida Keys (LFK) and the Florida Coastal Everglades (FCE). The objective of this study was to assess contamination levels of total mercury (T-Hg) in skin and persistent organic pollutants (PCBs, PBDEs, DDXs, HCHs, HCB, Σ PCDD/Fs and Σ DL-PCBs) in blubber samples of bottlenose dolphins from LFK (n = 27) and FCE (n = 24). PCBs were the major class of compounds found in bottlenose dolphin blubber and were higher in individuals from LFK (Σ 6 PCBs LFK males: 13,421 ± 7730 ng g -1 lipids, Σ 6 PCBs LFK females: 9683 ± 19,007 ng g -1 lipids) than from FCE (Σ 6 PCBs FCE males: 5638 ng g -1  ± 3627 lipids, Σ 6 PCBs FCE females: 1427 ± 908 ng g -1 lipids). These levels were lower than previously published data from the southeastern USA. The Σ DL-PCBs were the most prevalent pollutants of dioxin and dioxin like compounds (Σ DL-PCBs LFK: 739 ng g -1 lipids, Σ DL-PCBs FCE: 183 ng g -1 lipids) since PCDD/F concentrations were low for both locations (mean 0.1 ng g -1 lipids for LFK and FCE dolphins). The toxicity equivalences of PCDD/Fs and DL-PCBs expressed as TEQ in LFK and FCE dolphins is mainly expressed by DL-PCBs (81% LFK - 65% FCE). T-Hg concentrations in skin were significantly higher in FCE (FCE median 9314 ng g -1 dw) compared to LFK dolphins (LFK median 2941 ng g -1 dw). These concentrations are the highest recorded in bottlenose dolphins in the southeastern USA, and may be explained, at least partially, by the biogeochemistry of the Everglades and mangrove sedimentary habitats that create favourable conditions for the retention of mercury and make it available at high concentrations for aquatic predators. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. "Bligh and Dyer" and Folch Methods for Solid-Liquid-Liquid Extraction of Lipids from Microorganisms. Comprehension of Solvatation Mechanisms and towards Substitution with Alternative Solvents.

    PubMed

    Breil, Cassandra; Abert Vian, Maryline; Zemb, Thomas; Kunz, Werner; Chemat, Farid

    2017-03-27

    Bligh and Dyer (B & D) or Folch procedures for the extraction and separation of lipids from microorganisms and biological tissues using chloroform/methanol/water have been used tens of thousands of times and are "gold standards" for the analysis of extracted lipids. Based on the Conductor-like Screening MOdel for realistic Solvatation (COSMO-RS), we select ethanol and ethyl acetate as being potentially suitable for the substitution of methanol and chloroform. We confirm this by performing solid-liquid extraction of yeast ( Yarrowia lipolytica IFP29 ) and subsequent liquid-liquid partition-the two steps of routine extraction. For this purpose, we consider similar points in the ternary phase diagrams of water/methanol/chloroform and water/ethanol/ethyl acetate, both in the monophasic mixtures and in the liquid-liquid miscibility gap. Based on high performance thin-layer chromatography (HPTLC) to obtain the distribution of lipids classes, and gas chromatography coupled with a flame ionisation detector (GC/FID) to obtain fatty acid profiles, this greener solvents pair is found to be almost as effective as the classic methanol-chloroform couple in terms of efficiency and selectivity of lipids and non-lipid material. Moreover, using these bio-sourced solvents as an alternative system is shown to be as effective as the classical system in terms of the yield of lipids extracted from microorganism tissues, independently of their apparent hydrophilicity.

  4. Rhodopsin-lipid interactions studied by NMR.

    PubMed

    Soubias, Olivier; Gawrisch, Klaus

    2013-01-01

    The biophysical properties of the lipid matrix are known to influence function of integral membrane proteins. We report on a sample preparation method for reconstitution of membrane proteins which uses porous anodic aluminum oxide (AAO) filters with 200-nm-wide pores of high density. The substrate permits formation of tubular, single membranes that line the inner surface of pores. One square centimeter of filter with a thickness of 60μm yields on the order of 500cm(2) of solid-supported single bilayer surface, sufficient for NMR studies. The tubular bilayers are free of detergent, fully hydrated, and accessible for ligands from one side of the membrane. The use of AAO filters greatly improves reproducibility of the reconstitution process such that the influence of protein on lipid order parameters can be studied with high resolution. As an example, results for the G protein-coupled receptor of class A, bovine rhodopsin, are shown. By (2)H NMR order parameter measurements, it is detected that rhodopsin insertion elastically deforms membranes near the protein. Furthermore, by (1)H saturation-transfer NMR under conditions of magic angle spinning, we demonstrate detection of preferences in interactions of rhodopsin with particular lipid species. It is assumed that function of integral membrane proteins depends on both protein-induced elastic deformations of the lipid matrix and preferences for interaction of the protein with particular lipid species in the first layer of lipids surrounding the protein. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. “Bligh and Dyer” and Folch Methods for Solid–Liquid–Liquid Extraction of Lipids from Microorganisms. Comprehension of Solvatation Mechanisms and towards Substitution with Alternative Solvents

    PubMed Central

    Breil, Cassandra; Abert Vian, Maryline; Zemb, Thomas; Kunz, Werner; Chemat, Farid

    2017-01-01

    Bligh and Dyer (B & D) or Folch procedures for the extraction and separation of lipids from microorganisms and biological tissues using chloroform/methanol/water have been used tens of thousands of times and are “gold standards” for the analysis of extracted lipids. Based on the Conductor-like Screening MOdel for realistic Solvatation (COSMO-RS), we select ethanol and ethyl acetate as being potentially suitable for the substitution of methanol and chloroform. We confirm this by performing solid–liquid extraction of yeast (Yarrowia lipolytica IFP29) and subsequent liquid–liquid partition—the two steps of routine extraction. For this purpose, we consider similar points in the ternary phase diagrams of water/methanol/chloroform and water/ethanol/ethyl acetate, both in the monophasic mixtures and in the liquid–liquid miscibility gap. Based on high performance thin-layer chromatography (HPTLC) to obtain the distribution of lipids classes, and gas chromatography coupled with a flame ionisation detector (GC/FID) to obtain fatty acid profiles, this greener solvents pair is found to be almost as effective as the classic methanol–chloroform couple in terms of efficiency and selectivity of lipids and non-lipid material. Moreover, using these bio-sourced solvents as an alternative system is shown to be as effective as the classical system in terms of the yield of lipids extracted from microorganism tissues, independently of their apparent hydrophilicity. PMID:28346372

  6. Machine-Learned Data Structures of Lipid Marker Serum Concentrations in Multiple Sclerosis Patients Differ from Those in Healthy Subjects.

    PubMed

    Lötsch, Jörn; Thrun, Michael; Lerch, Florian; Brunkhorst, Robert; Schiffmann, Susanne; Thomas, Dominique; Tegder, Irmgard; Geisslinger, Gerd; Ultsch, Alfred

    2017-06-07

    Lipid metabolism has been suggested to be a major pathophysiological mechanism of multiple sclerosis (MS). With the increasing knowledge about lipid signaling, acquired data become increasingly complex making bioinformatics necessary in lipid research. We used unsupervised machine-learning to analyze lipid marker serum concentrations, pursuing the hypothesis that for the most relevant markers the emerging data structures will coincide with the diagnosis of MS. Machine learning was implemented as emergent self-organizing feature maps (ESOM) combined with the U*-matrix visualization technique. The data space consisted of serum concentrations of three main classes of lipid markers comprising eicosanoids ( d = 11 markers), ceramides ( d = 10), and lyosophosphatidic acids ( d = 6). They were analyzed in cohorts of MS patients ( n = 102) and healthy subjects ( n = 301). Clear data structures in the high-dimensional data space were observed in eicosanoid and ceramides serum concentrations whereas no clear structure could be found in lysophosphatidic acid concentrations. With ceramide concentrations, the structures that had emerged from unsupervised machine-learning almost completely overlapped with the known grouping of MS patients versus healthy subjects. This was only partly provided by eicosanoid serum concentrations. Thus, unsupervised machine-learning identified distinct data structures of bioactive lipid serum concentrations. These structures could be superimposed with the known grouping of MS patients versus healthy subjects, which was almost completely possible with ceramides. Therefore, based on the present analysis, ceramides are first-line candidates for further exploration as drug-gable targets or biomarkers in MS.

  7. Iatroscan-measured particulate and dissolved lipids in the Almeria-Oran frontal system (Almofront-1, May 1991)

    NASA Astrophysics Data System (ADS)

    Gérin, C.; Goutx, M.

    1994-08-01

    The Chromarod-Iatroscan system was used to measure dissolved and particulate lipids at six sites representative of the main hydrological zones of the Almeria-Oran frontal system in May 1991. Concentrations ranged from 9 to 113 μg 1 -1 and from 3 to 84 μg 1 -1 respectively. Particulate carbon was estimated on a CHN Leco analyzer. Dissolved lipid concentrations were highly variable with depth and exhibited clear signatures of phytoplankton degradation throughout the profiles. In the 300-400 m layer, particulate wax esters denoted the presence of deep zooplankton which may be benefit from the downward fluxes of organic matter from the frontal zone. In surface water, high concentrations of dissolved lipids and particulate carbon marked the presence of the jet front. Particulate lipid classes in samples were related to the presence of zooplankton and to the physiological state of cells rather than to phytoplankton biomass. Particulate triglyceride concentrations (storage lipids in phytoplankton) increased from the left to the right border of the jet core and further southwards, culminating in the Atlantic anticyclonic gyre. The distribution of particulate lipids to carbon and chlorophyllatios and the increasing level of triglycerides from the jet and southwards suggested a rapid removal of the frontal production by physical transports. The ability of anticyclonic structures to enhance accumulations of energetically rich compounds and thus to play a role as fertilizers of the oligotrophic waters of the Mediterranean Sea is discussed.

  8. A Novel Therapeutic Vaccine for Metastatic Mammary Carcinoma: Focusing MHC/Peptide Complexes to Lipid Rafts

    DTIC Science & Technology

    2006-11-01

    reportable outcomes). Briefly, the T cell lymphoma EL4 and the immortalized fibroblast cell line DAP (both expressing ova) were used to measure...and Use Committee. Cells, transfections, and antibodies B16.BL6 8.2, A20, EL4 and EL4 /ova were cultured as described (20-22). NIH3T3 cells were...types can donate MHC class I molecules to DC. To determine if the levels of MHC class I on the donor cell affected the efficiency of transfer, EL4 /ova

  9. Comparison of ambient solvent extraction methods for the analysis of fatty acids in non-starch lipids of flour and starch

    PubMed Central

    Bahrami, Niloufar; Yonekura, Lina; Linforth, Robert; Carvalho da Silva, Margarida; Hill, Sandra; Penson, Simon; Chope, Gemma; Fisk, Ian Denis

    2014-01-01

    BACKGROUND Lipids are minor components of flours, but are major determinants of baking properties and end-product quality. To the best of our knowledge, there is no single solvent system currently known that efficiently extracts all non-starch lipids from all flours without the risk of chemical, mechanical or thermal damage. This paper compares nine ambient solvent systems (monophasic and biphasic) with varying polarities: Bligh and Dyer (BD); modified Bligh and Dyer using HCl (BDHCL); modified BD using NaCl (BDNaCl); methanol–chloroform–hexane (3:2:1, v/v); Hara and Radin (hexane–isopropanol, 3:2, v/v); water-saturated n-butanol; chloroform; methanol and hexane for their ability to extract total non-starch lipids (separated by lipid classes) from wheat flour (Triticum aestivum L.). Seven ambient extraction protocols were further compared for their ability to extract total non-starch lipids from three alternative samples: barley flour (Hordeum vulgare L.), maize starch (Zea mays L.) and tapioca starch (Manihot esculenta Crantz). RESULTS For wheat flour the original BD method and those containing HCl or NaCl tended to extract the maximum lipid and a significant correlation between lipid extraction yield (especially the glycolipids and phospholipids) and the polarity of the solvent was observed. For the wider range of samples BD and BD HCl repeatedly offered the maximum extraction yield and using pooled standardized (by sample) data from all flours, total non-starch lipid extraction yield was positively correlated with solvent polarity (r = 0.5682, P < 0.05) and water ratio in the solvent mixture (r = 0.5299, P < 0.05). CONCLUSION In general, BD-based methods showed better extraction yields compared to methods without the addition of water and, most interestingly, there was much greater method dependence of lipid yields in the starches when compared to the flour samples, which is due to the differences in lipid profiles between the two sample types (flours and starches). PMID:24132804

  10. Lifestyle Intervention for People With Severe Obesity and Serious Mental Illness.

    PubMed

    Naslund, John A; Aschbrenner, Kelly A; Scherer, Emily A; Pratt, Sarah I; Wolfe, Rosemarie S; Bartels, Stephen J

    2016-02-01

    People with serious mental illness experience elevated severe obesity rates, yet limited evidence documents whether lifestyle intervention participation can benefit these individuals. This study examined the impact of the In SHAPE lifestyle intervention on weight loss among participants with serious mental illness and severe obesity (BMI ≥40) compared with participants who are overweight (BMI 25 to <30) and have class I (BMI 30 to <35) or class II (BMI 35 to <40) obesity. Data were combined from three trials of the 12-month In SHAPE intervention for individuals with serious mental illness collected between 2007 and 2013 and analyzed in 2014. In SHAPE includes individual weekly meetings with a fitness trainer, a gym membership, and nutrition education. The primary outcome was weight loss. Secondary outcomes were fitness, blood pressure, lipids, and program adherence. Participants (N=192) were diagnosed with schizophrenia spectrum (53.1%) or mood (46.9%) disorders. At 12 months, the overall sample showed significant weight loss, but differences among BMI groups were not significant (severe obesity, 2.57% [7.98%]; class II, 2.26% [8.69%]; class I, 1.05% [6.86%]; overweight, 0.83% [7.62%]). One third of participants with severe obesity achieved ≥5% weight loss, which was comparable across groups. More participants with severe obesity achieved ≥10% weight loss (20%) than overweight (2.9%, p=0.001) and class I (5.9%, p<0.001), but not class II (17.8%, p=0.974), obesity groups. People with severe obesity and serious mental illness benefit similarly to those in lower BMI groups from lifestyle intervention participation. Copyright © 2016 American Journal of Preventive Medicine. Published by Elsevier Inc. All rights reserved.

  11. The homeodomain transcription factor TaHDZipI-2 from wheat regulates frost tolerance, flowering time and spike development in transgenic barley.

    PubMed

    Kovalchuk, Nataliya; Chew, William; Sornaraj, Pradeep; Borisjuk, Nikolai; Yang, Nannan; Singh, Rohan; Bazanova, Natalia; Shavrukov, Yuri; Guendel, Andre; Munz, Eberhard; Borisjuk, Ljudmilla; Langridge, Peter; Hrmova, Maria; Lopato, Sergiy

    2016-07-01

    Homeodomain leucine zipper class I (HD-Zip I) transcription factors (TFs) play key roles in the regulation of plant growth and development under stresses. Functions of the TaHDZipI-2 gene isolated from the endosperm of developing wheat grain were revealed. Molecular characterization of TaHDZipI-2 protein included studies of its dimerisation, protein-DNA interactions and gene activation properties using pull-down assays, in-yeast methods and transient expression assays in wheat cells. The analysis of TaHDZipI-2 gene functions was performed using transgenic barley plants. It included comparison of developmental phenotypes, yield components, grain quality, frost tolerance and the levels of expression of potential target genes in transgenic and control plants. Transgenic TaHDZipI-2 lines showed characteristic phenotypic features that included reduced growth rates, reduced biomass, early flowering, light-coloured leaves and narrowly elongated spikes. Transgenic lines produced 25-40% more seeds per spike than control plants, but with 50-60% smaller grain size. In vivo lipid imaging exposed changes in the distribution of lipids between the embryo and endosperm in transgenic seeds. Transgenic lines were significantly more tolerant to frost than control plants. Our data suggest the role of TaHDZipI-2 in controlling several key processes underlying frost tolerance, transition to flowering and spike development. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  12. Comparative transcriptomics of elasmobranchs and teleosts highlight important processes in adaptive immunity and regional endothermy.

    PubMed

    Marra, Nicholas J; Richards, Vincent P; Early, Angela; Bogdanowicz, Steve M; Pavinski Bitar, Paulina D; Stanhope, Michael J; Shivji, Mahmood S

    2017-01-30

    Comparative genomic and/or transcriptomic analyses involving elasmobranchs remain limited, with genome level comparisons of the elasmobranch immune system to that of higher vertebrates, non-existent. This paper reports a comparative RNA-seq analysis of heart tissue from seven species, including four elasmobranchs and three teleosts, focusing on immunity, but concomitantly seeking to identify genetic similarities shared by the two lamnid sharks and the single billfish in our study, which could be linked to convergent evolution of regional endothermy. Across seven species, we identified an average of 10,877 Swiss-Prot annotated genes from an average of 32,474 open reading frames within each species' heart transcriptome. About half of these genes were shared between all species while the remainder included functional differences between our groups of interest (elasmobranch vs. teleost and endotherms vs. ectotherms) as revealed by Gene Ontology (GO) and selection analyses. A repeatedly represented functional category, in both the uniquely expressed elasmobranch genes (total of 259) and the elasmobranch GO enrichment results, involved antibody-mediated immunity, either in the recruitment of immune cells (Fc receptors) or in antigen presentation, including such terms as "antigen processing and presentation of exogenous peptide antigen via MHC class II", and such genes as MHC class II, HLA-DPB1. Molecular adaptation analyses identified three genes in elasmobranchs with a history of positive selection, including legumain (LGMN), a gene with roles in both innate and adaptive immunity including producing antigens for presentation by MHC class II. Comparisons between the endothermic and ectothermic species revealed an enrichment of GO terms associated with cardiac muscle contraction in endotherms, with 19 genes expressed solely in endotherms, several of which have significant roles in lipid and fat metabolism. This collective comparative evidence provides the first multi-taxa transcriptomic-based perspective on differences between elasmobranchs and teleosts, and suggests various unique features associated with the adaptive immune system of elasmobranchs, pointing in particular to the potential importance of MHC Class II. This in turn suggests that expanded comparative work involving additional tissues, as well as genome sequencing of multiple elasmobranch species would be productive in elucidating the regulatory and genome architectural hallmarks of elasmobranchs.

  13. Design and Synthesis of Archaea-Inspired Tetraether Lipids

    NASA Astrophysics Data System (ADS)

    Koyanagi, Takaoki

    Maintaining the correct ion homeostasis across membranes is a major challenge in both nature and artificial systems. Archaea, have evolved to solve membrane permeability problems to survive in extreme environments by incorporating unique structural features found in their lipid. Specifically, inclusion of phytanyl side chains, ether glycerol linkages, tethering of lipids, cycloalkanes, and different polar lipid headgroups into their lipid membrane are believed to contribute to membrane stability. We sought to gain a better understanding of the functional benefits attributed to these structural features to membrane stability to design a new class of synthetic Archaea inspired lipid membranes that can be used to overcome limitations (i.e. unstable in serum environment, high background leakage, and prone to hydrolysis) found in current lipid based technologies. Leakage experiments revealed liposomes made from GMGTPC (glycerol monoalkyl glycerol tetraether lipid with phosphatidylcholine headgroup) demonstrated a two order magnitude reduction in membrane leakage to small ions when compared with liposomes made from EggPC. Additionally, liposomes composed of GMGTPC-CH (cyclohexane integrated) lipid displayed an additional 40% decrease in membrane leakage to small ions when compared with liposomes made from GMGTPC lipids. Furthermore, leakage experiments revealed a higher degree of tolerance to headgroup modifications to membrane leakage for liposomes made from GMGT lipid analogs when compared with liposomes made from POPC. After designing an optimal tetraether lipid scaffold that incorporates key Archaeal structural features for membrane leakage, we explored to integrate strategies employed by eukaryotes to improve membrane properties (i.e. addition of cholesterol). Liposomes made from the hybrid lipid, GcGTPC-CH, displayed a five-fold decrease in membrane leakage when compared with liposomes made from GMGTPC-CH, while maintaining functional membrane properties similar to membranes made from diacyl lipids. Lastly, we engineered a thiol responsive hybrid lipid, GcGT(S-S)PC-CH, that demonstrated similar membrane stability in serum as GcGTPC-CH. Gratifyingly, doxorubicin loaded liposomes composed of GcGT(S-S)PC-CH liposomes displayed a 4 or 20-fold increase in toxicity to HeLa cells when compared with liposomes made from GcGTPC-CH or Doxil, respectively. This work represents a first step towards development of stimuli-responsive tetraether lipids that may offer advantages in membrane properties to be used in cancer therapy.

  14. 2013 plant lipids Gordon Research conference and Gordon Research Seminar (January 27 - February 1, 2013 - Hotel Galvez, Galveston, TX)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Welti, Ruth

    2012-11-01

    Presenters will discuss the latest advances in plant and algal lipid metabolism, oil synthesis, lipid signaling, lipid visualization, lipid biotechnology and its applications, the physiological and developmental roles of lipids, and plant lipids in health. Sessions include: Producing Nutritional Lipids; Metabolic biochemistry in the next decade; Triacylglycerols: Metabolism, function, and as a target for engineering; Lipids in Protection, Reproduction, and Development; Genetic and Lipidomic Approaches to Understanding Lipid Metabolism and Signaling; Lipid Signaling in Stress Responses; New Insights on the Path to Triacylglycerols; Membrane Lipid Signaling; Lipid Visualization; Development of Biofuels and Industrial Lipids.

  15. Ion Mobility-Derived Collision Cross Section As an Additional Measure for Lipid Fingerprinting and Identification

    PubMed Central

    2014-01-01

    Despite recent advances in analytical and computational chemistry, lipid identification remains a significant challenge in lipidomics. Ion-mobility spectrometry provides an accurate measure of the molecules’ rotationally averaged collision cross-section (CCS) in the gas phase and is thus related to ionic shape. Here, we investigate the use of CCS as a highly specific molecular descriptor for identifying lipids in biological samples. Using traveling wave ion mobility mass spectrometry (MS), we measured the CCS values of over 200 lipids within multiple chemical classes. CCS values derived from ion mobility were not affected by instrument settings or chromatographic conditions, and they were highly reproducible on instruments located in independent laboratories (interlaboratory RSD < 3% for 98% of molecules). CCS values were used as additional molecular descriptors to identify brain lipids using a variety of traditional lipidomic approaches. The addition of CCS improved the reproducibility of analysis in a liquid chromatography-MS workflow and maximized the separation of isobaric species and the signal-to-noise ratio in direct-MS analyses (e.g., “shotgun” lipidomics and MS imaging). These results indicate that adding CCS to databases and lipidomics workflows increases the specificity and selectivity of analysis, thus improving the confidence in lipid identification compared to traditional analytical approaches. The CCS/accurate-mass database described here is made publicly available. PMID:25495617

  16. Molecular mechanism of metal-independent decomposition of lipid hydroperoxide 13-HPODE by halogenated quinoid carcinogens.

    PubMed

    Qin, Hao; Huang, Chun-Hua; Mao, Li; Xia, Hai-Ying; Kalyanaraman, Balaraman; Shao, Jie; Shan, Guo-Qiang; Zhu, Ben-Zhan

    2013-10-01

    Halogenated quinones are a class of carcinogenic intermediates and newly identified chlorination disinfection by-products in drinking water. 13-Hydroperoxy-9,11-octadecadienoic acid (13-HPODE) is the most extensively studied endogenous lipid hydroperoxide. Although it is well known that the decomposition of 13-HPODE can be catalyzed by transition metal ions, it is not clear whether halogenated quinones could enhance its decomposition independent of metal ions and, if so, what the unique characteristics and similarities are. Here we show that 2,5-dichloro-1,4-benzoquinone (DCBQ) could markedly enhance the decomposition of 13-HPODE and formation of reactive lipid alkyl radicals such as pentyl and 7-carboxyheptyl radicals, and the genotoxic 4-hydroxy-2-nonenal (HNE), through the complementary application of ESR spin trapping, HPLC-MS, and GC-MS methods. Interestingly, two chloroquinone-lipid alkoxyl conjugates were also detected and identified from the reaction between DCBQ and 13-HPODE. Analogous results were observed with other halogenated quinones. This represents the first report that halogenated quinoid carcinogens can enhance the decomposition of the endogenous lipid hydroperoxide 13-HPODE and formation of reactive lipid alkyl radicals and genotoxic HNE via a novel metal-independent nucleophilic substitution coupled with homolytic decomposition mechanism, which may partly explain their potential genotoxicity and carcinogenicity. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Integration of lipidomics and transcriptomics unravels aberrant lipid metabolism and defines cholesteryl oleate as potential biomarker of prostate cancer

    NASA Astrophysics Data System (ADS)

    Li, Jia; Ren, Shancheng; Piao, Hai-Long; Wang, Fubo; Yin, Peiyuan; Xu, Chuanliang; Lu, Xin; Ye, Guozhu; Shao, Yaping; Yan, Min; Zhao, Xinjie; Sun, Yinghao; Xu, Guowang

    2016-02-01

    In-depth delineation of lipid metabolism in prostate cancer (PCa) is significant to open new insights into prostate tumorigenesis and progression, and provide potential biomarkers with greater accuracy for improved diagnosis. Here, we performed lipidomics and transcriptomics in paired prostate cancer tumor (PCT) and adjacent nontumor (ANT) tissues, followed by external validation of biomarker candidates. We identified major dysregulated pathways involving lipogenesis, lipid uptake and phospholipids remodeling, correlated with widespread lipid accumulation and lipid compositional reprogramming in PCa. Specifically, cholesteryl esters (CEs) were most prominently accumulated in PCa, and significantly associated with cancer progression and metastasis. We showed that overexpressed scavenger receptor class B type I (SR-BI) may contribute to CEs accumulation. In discovery set, CEs robustly differentiated PCa from nontumor (area under curve (AUC) of receiver operating characteristics (ROC), 0.90-0.94). In validation set, CEs potently distinguished PCa and non-malignance (AUC, 0.84-0.91), and discriminated PCa and benign prostatic hyperplasia (BPH) (AUC, 0.90-0.96), superior to serum prostate-specific antigen (PSA) (AUC = 0.83). Cholesteryl oleate showed highest AUCs in distinguishing PCa from non-malignance or BPH (AUC = 0.91 and 0.96). Collectively, our results unravel the major lipid metabolic aberrations in PCa and imply the potential role of CEs, particularly, cholesteryl oleate, as molecular biomarker for PCa detection.

  18. Single cell-type analysis of cellular lipid remodelling in response to salinity in the epidermal bladder cells of the model halophyte Mesembryanthemum crystallinum.

    PubMed

    Barkla, Bronwyn J; Garibay-Hernández, Adriana; Melzer, Michael; Rupasinghe, Thusitha W T; Roessner, Ute

    2018-05-29

    Salt stress causes dramatic changes in the organization and dynamic properties of membranes, however, little is known about the underlying mechanisms involved. Modified trichomes, known as epidermal bladder cells (EBC), on the leaves and stems of the halophyte Mesembryanthemum crystallinum can be successfully exploited as a single-cell-type system to investigate salt-induced changes to cellular lipid composition. In this study alterations in key molecular species from different lipid classes highlighted an increase in phospholipid species, particularly those from phosphatidylcholine (PC) and phosphatidic acid (PA), where the latter is central to the synthesis of membrane lipids. Triacylglycerol (TG) species decreased during salinity, while there was little change in plastidic galactolipids. EBC transcriptomic and proteomic data mining revealed changes in genes and proteins involved in lipid metabolism and the upregulation of transcripts for PIPKIB, PI5PII, PIPKIII, and PLDδ, suggested the induction of signalling processes mediated by phosphoinositides and PA. TEM and flow cytometry showed the dynamic nature of lipid droplets in these cells under salt stress. Altogether, this work indicates the metabolism of TG might play an important role in EBC response to salinity as either an energy reserve for sodium accumulation and/or driving membrane biosynthesis for EBC expansion. This article is protected by copyright. All rights reserved.

  19. Antidepressants Accumulate in Lipid Rafts Independent of Monoamine Transporters to Modulate Redistribution of the G Protein, Gαs.

    PubMed

    Erb, Samuel J; Schappi, Jeffrey M; Rasenick, Mark M

    2016-09-16

    Depression is a significant public health problem for which currently available medications, if effective, require weeks to months of treatment before patients respond. Previous studies have shown that the G protein responsible for increasing cAMP (Gαs) is increasingly localized to lipid rafts in depressed subjects and that chronic antidepressant treatment translocates Gαs from lipid rafts. Translocation of Gαs, which shows delayed onset after chronic antidepressant treatment of rats or of C6 glioma cells, tracks with the delayed onset of therapeutic action of antidepressants. Because antidepressants appear to specifically modify Gαs localized to lipid rafts, we sought to determine whether structurally diverse antidepressants accumulate in lipid rafts. Sustained treatment of C6 glioma cells, which lack 5-hydroxytryptamine transporters, showed marked concentration of several antidepressants in raft fractions, as revealed by increased absorbance and by mass fingerprint. Closely related molecules without antidepressant activity did not concentrate in raft fractions. Thus, at least two classes of antidepressants accumulate in lipid rafts and effect translocation of Gαs to the non-raft membrane fraction, where it activates the cAMP-signaling cascade. Analysis of the structural determinants of raft localization may both help to explain the hysteresis of antidepressant action and lead to design and development of novel substrates for depression therapeutics. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Effects of perfluorinated chemicals on adipocyte development ...

    EPA Pesticide Factsheets

    Obesity is a growing concern in the US population. Current interest is high in the role played by environmental factors called obesogens that may contribute to obesity through developmental exposure. One class of potential obesogens is the family of perfluorinated chemicals used as surfactants in a variety of industrial applications. Given the importance of understanding the role these compounds play in lipid homeostasis we used pre-adipocyte 3T3-L1 mouse fibroblast cells (Zen-Bio, RTP NC) to study their effects on adipogenesis and lipid accumulation. These cells differentiate into adipocytes accumulating large lipid droplets. Cultures were treated with perfluorooctanoic acid (PFOA) (1-200uM), perfluorononanoic acid (PFNA) (5-lOOuM), perfluorooctane sulfonate (PFOS) (5O-300uM), and perfluorohexane sulfonate (PFHxS) (40- 250uM). Cell size number, and lipid content were assessed using morphomeiric analysis. All four compounds decreased cell size compared to control, and PFNA was most potent, in terms of lowest observed effect concentration (LOEC), whereas PFOA was least potent. Cell number increased for all perfluorinated chemicals tested, most potently for PFNA and least for PFOS. Interestingly, average lipid area per cell for all four chemicals decreased compared to control, but PFOS and PFHxS had increased total lipid area. Additionally, significant increases in total triglyceride were noted for all compounds compared to controls. PFOA and PFNA increased trigly

  1. Thiazide diuretics in the treatment of hypertension: an update.

    PubMed

    Salvetti, Antonio; Ghiadoni, Lorenzo

    2006-04-01

    Thiazide diuretics were the first tolerated efficient antihypertensive drugs that significantly reduced cardiovascular morbidity and mortality in placebo-controlled clinical studies. Although these drugs today still are considered a fundamental therapeutic tool for the treatment of hypertensive patients, the following considerations should be taken into account. Although there are some indications that chlorthalidone can offer additional advantages as compared with other compounds, a recent meta-analysis of placebo-controlled trials suggested that the beneficial effects of thiazide diuretics could be a class effect. Thiazide diuretics must be used at appropriate and/or optimal doses to achieve the optimal antihypertensive effect with the smallest occurrence of side effects, including alterations in glucose and lipid profiles and hypokalemia. Moreover, because thiazide diuretics can increase the incidence of new-onset diabetes, especially when combined with beta blockers, caution is advised in using these drugs above all in patients who are at high risk for developing diabetes, in whom thiazide diuretics should be used at the lowest active dose and possibly in combination with drugs that block the renin-angiotensin system. Finally, the current debate on whether thiazide diuretics are the first-choice drug for most patients with uncomplicated hypertension, as stated in the Seventh Joint National Committee Report, or are included in the major classes of antihypertensive agents that are suitable for initiation and maintenance of therapy, as reported in the European Society of Hypertension-European Society of Cardiology Guidelines, derives from different interpretations of controlled clinical trial data on drug class comparison and of cost-benefit analyses. However, considering that the benefit of antihypertensive drugs seems to be due principally to BP lowering per se without definitive evidence of the superiority of a particular drug class and that there is no cost-benefit analysis showing the superiority of thiazide diuretics, it is believed that these drugs should not be considered as the only first-choice drug but included among first-choice drugs.

  2. The thrifty lipids: Endocannabinoids and the neural control of energy conservation

    PubMed Central

    DiPatrizio, Nicholas V.; Piomelli, Daniele

    2013-01-01

    The “thrifty gene hypothesis” posits that evolution preferentially selects physiological mechanisms that optimize energy storage to increase survival under alternating conditions of abundance and scarcity of food. Recent experiments suggest that endocannabinoids – a class of lipid-derived mediators that activate cannabinoid receptors in many cells of the body – are key agents of energy conservation. The new evidence indicates that these compounds increase energy intake and decrease energy expenditure by controlling the activity of peripheral and central neural pathways involved in the sensing and hedonic processing of sweet and fatty foods, as well as in the storage of their energy content for future use. PMID:22622030

  3. Exosomes account for vesicle-mediated transcellular transport of activatable phospholipases and prostaglandins[S

    PubMed Central

    Subra, Caroline; Grand, David; Laulagnier, Karine; Stella, Alexandre; Lambeau, Gérard; Paillasse, Michael; De Medina, Philippe; Monsarrat, Bernard; Perret, Bertrand; Silvente-Poirot, Sandrine; Poirot, Marc; Record, Michel

    2010-01-01

    Exosomes are bioactive vesicles released from multivesicular bodies (MVB) by intact cells and participate in intercellular signaling. We investigated the presence of lipid-related proteins and bioactive lipids in RBL-2H3 exosomes. Besides a phospholipid scramblase and a fatty acid binding protein, the exosomes contained the whole set of phospholipases (A2, C, and D) together with interacting proteins such as aldolase A and Hsp 70. They also contained the phospholipase D (PLD) / phosphatidate phosphatase 1 (PAP1) pathway leading to the formation of diglycerides. RBL-2H3 exosomes also carried members of the three phospholipase A2 classes: the calcium-dependent cPLA2-IVA, the calcium-independent iPLA2-VIA, and the secreted sPLA2-IIA and V. Remarkably, almost all members of the Ras GTPase superfamily were present, and incubation of exosomes with GTPγS triggered activation of phospholipase A2 (PLA2)and PLD2. A large panel of free fatty acids, including arachidonic acid (AA) and derivatives such as prostaglandin E2 (PGE2) and 15-deoxy-Δ12,14-prostaglandinJ2 (15-d PGJ2), were detected. We observed that the exosomes were internalized by resting and activated RBL cells and that they accumulated in an endosomal compartment. Endosomal concentrations were in the micromolar range for prostaglandins; i.e., concentrations able to trigger prostaglandin-dependent biological responses. Therefore exosomes are carriers of GTP-activatable phospholipases and lipid mediators from cell to cell. PMID:20424270

  4. Membrane interactions of ionic liquids and imidazolium salts.

    PubMed

    Wang, Da; Galla, Hans-Joachim; Drücker, Patrick

    2018-06-01

    Room-temperature ionic liquids (RTILs) have attracted considerable attention in recent years due to their versatile properties such as negligible volatility, inflammability, high extractive selectivity and thermal stability. In general, RTILs are organic salts with a melting point below ~100 °C determined by the asymmetry of at least one of their ions. Due to their amphiphilic character, strong interactions with biological materials can be expected. However, rising attention has appeared towards their similarity and interaction with biomolecules. By employing structural modifications, the biochemical properties of RTILs can be designed to mimic lipid structures and to tune their hydrophobicity towards a lipophilic behavior. This is evident for the interaction with lipid-membranes where some of these compounds present membrane-disturbing effects or cellular toxicity. Moreover, they can form micelles or lipid-like bilayer structures by themselves. Both aspects, cellular effects and membrane-forming capacities, of a novel class of lipophilic imidazolium salts will be discussed.

  5. Individual Variation in Lipidomic Profiles of Healthy Subjects in Response to Omega-3 Fatty Acids

    PubMed Central

    Nording, Malin L.; Yang, Jun; Georgi, Katrin; Hegedus Karbowski, Christine; German, J. Bruce; Weiss, Robert H.; Hogg, Ronald J.; Trygg, Johan; Hammock, Bruce D.; Zivkovic, Angela M.

    2013-01-01

    Introduction Conflicting findings in both interventional and observational studies have resulted in a lack of consensus on the benefits of ω3 fatty acids in reducing disease risk. This may be due to individual variability in response. We used a multi-platform lipidomic approach to investigate both the consistent and inconsistent responses of individuals comprehensively to a defined ω3 intervention. Methods The lipidomic profile including fatty acids, lipid classes, lipoprotein distribution, and oxylipins was examined multi- and uni-variately in 12 healthy subjects pre vs. post six weeks of ω3 fatty acids (1.9 g/d eicosapentaenoic acid [EPA] and 1.5 g/d docosahexaenoic acid [DHA]). Results Total lipidomic and oxylipin profiles were significantly different pre vs. post treatment across all subjects (p=0.00007 and p=0.00002 respectively). There was a strong correlation between oxylipin profiles and EPA and DHA incorporated into different lipid classes (r2=0.93). However, strikingly divergent responses among individuals were also observed. Both ω3 and ω6 fatty acid metabolites displayed a large degree of variation among the subjects. For example, in half of the subjects, two arachidonic acid cyclooxygenase products, prostaglandin E2 (PGE2) and thromboxane B2 (TXB2), and a lipoxygenase product, 12-hydroxyeicosatetraenoic acid (12-HETE) significantly decreased post intervention, whereas in the other half they either did not change or increased. The EPA lipoxygenase metabolite 12-hydroxyeicosapentaenoic acid (12-HEPE) varied among subjects from an 82% decrease to a 5,000% increase. Conclusions Our results show that certain defined responses to ω3 fatty acid intervention were consistent across all subjects. However, there was also a high degree of inter-individual variability in certain aspects of lipid metabolism. This lipidomic based phenotyping approach demonstrated that individual responsiveness to ω3 fatty acids is highly variable and measurable, and could be used as a means to assess the effectiveness of ω3 interventions in modifying disease risk and determining metabolic phenotype. PMID:24204640

  6. Lipidomic Analysis of Endocannabinoid Signaling: Targeted Metabolite Identification and Quantification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keereetaweep, Jantana; Chapman, Kent D.

    The endocannabinoidsN-arachidonoylethanolamide (or anandamide, AEA) and 2-arachidonoylglycerol (2-AG) belong to the larger groups ofN-acylethanolamines (NAEs) and monoacylglycerol (MAG) lipid classes, respectively. They are biologically active lipid molecules that activate G-protein-coupled cannabinoid receptors found in various organisms. After AEA and 2-AG were discovered in the 1990s, they have been extensively documented to have a broad range of physiological functions. Along with AEA, several NAEs, for example,N-palmitoylethanolamine (PEA),N-stearoylethanolamine (SEA), andN-oleoylethanolamine (OEA) are also present in tissues, usually at much larger concentrations than AEA. Any perturbation that involves the endocannabinoid pathway may subsequently alter basal level or metabolism of these lipid mediators. Further,more » the altered levels of these molecules often reflect pathological conditions associated with tissue damage. Robust and sensitive methodologies to analyze these lipid mediators are essential to understanding how they act as endocannabinoids. Lastly, the recent advances in mass spectrometry allow researchers to develop lipidomics approaches and several methodologies have been proposed to quantify endocannabinoids in various biological systems.« less

  7. Lipidomic Analysis of Endocannabinoid Signaling: Targeted Metabolite Identification and Quantification

    DOE PAGES

    Keereetaweep, Jantana; Chapman, Kent D.

    2016-01-01

    The endocannabinoidsN-arachidonoylethanolamide (or anandamide, AEA) and 2-arachidonoylglycerol (2-AG) belong to the larger groups ofN-acylethanolamines (NAEs) and monoacylglycerol (MAG) lipid classes, respectively. They are biologically active lipid molecules that activate G-protein-coupled cannabinoid receptors found in various organisms. After AEA and 2-AG were discovered in the 1990s, they have been extensively documented to have a broad range of physiological functions. Along with AEA, several NAEs, for example,N-palmitoylethanolamine (PEA),N-stearoylethanolamine (SEA), andN-oleoylethanolamine (OEA) are also present in tissues, usually at much larger concentrations than AEA. Any perturbation that involves the endocannabinoid pathway may subsequently alter basal level or metabolism of these lipid mediators. Further,more » the altered levels of these molecules often reflect pathological conditions associated with tissue damage. Robust and sensitive methodologies to analyze these lipid mediators are essential to understanding how they act as endocannabinoids. Lastly, the recent advances in mass spectrometry allow researchers to develop lipidomics approaches and several methodologies have been proposed to quantify endocannabinoids in various biological systems.« less

  8. Open Field Study of Some Zea mays Hybrids, Lipid Compounds and Fumonisins Accumulation

    PubMed Central

    Giorni, Paola; Dall’Asta, Chiara; Reverberi, Massimo; Scala, Valeria; Ludovici, Matteo; Cirlini, Martina; Galaverna, Gianni; Fanelli, Corrado; Battilani, Paola

    2015-01-01

    Lipid molecules are increasingly recognized as signals exchanged by organisms interacting in pathogenic and/or symbiotic ways. Some classes of lipids actively determine the fate of the interactions. Host cuticle/cell wall/membrane components such as sphingolipids and oxylipins may contribute to determining the fate of host–pathogen interactions. In the present field study, we considered the relationship between specific sphingolipids and oxylipins of different hybrids of Zea mays and fumonisin by F. verticillioides, sampling ears at different growth stages from early dough to fully ripe. The amount of total and free fumonisin differed significantly between hybrids and increased significantly with maize ripening. Oxylipins and phytoceramides changed significantly within the hybrids and decreased with kernel maturation, starting from physiological maturity. Although the correlation between fumonisin accumulation and plant lipid profile is certain, the data collected so far cannot define a cause-effect relationship but open up new perspectives. Therefore, the question—“Does fumonisin alter plant lipidome or does plant lipidome modulate fumonisin accumulation?”—is still open. PMID:26378580

  9. Lipidomic Approaches towards Deciphering Glycolipids from Microalgae as a Reservoir of Bioactive Lipids

    PubMed Central

    da Costa, Elisabete; Silva, Joana; Mendonça, Sofia Hoffman; Abreu, Maria Helena; Domingues, Maria Rosário

    2016-01-01

    In recent years, noteworthy research has been performed around lipids from microalgae. Among lipids, glycolipids (GLs) are quite abundant in microalgae and are considered an important source of fatty acids (FAs). GLs are rich in 16- and 18-carbon saturated and unsaturated fatty acids and often contain polyunsaturated fatty acids (PUFAs) like n-3 α-linolenic (ALA 18:3), eicosapentaenoic (EPA, 20:5) and docosahexaenoic (DHA, 22:6). GLs comprise three major classes: monogalactosyldiacyl glycerolipids (MGDGs), digalactosyl diacylglycerolipids (DGDGs) and sulfoquinovosyl diacylglycerolipids (SQDGs), whose composition in FA directly depends on the growth conditions. Some of these lipids are high value-added compounds with antitumoral, antimicrobial and anti-inflammatory activities and also with important nutritional significance. To fully explore GLs’ bioactive properties it is necessary to fully characterize their structure and to understand the relation between the structure and their biological properties, which can be addressed using modern mass spectrometry (MS)-based lipidomic approaches. This review will focus on the up-to-date FA composition of GLs identified by MS-based lipidomics and their potential as phytochemicals. PMID:27213410

  10. Effects of solid-state fermentation with two filamentous fungi on the total phenolic contents, flavonoids, antioxidant activities and lipid fractions of plum fruit (Prunus domestica L.) by-products.

    PubMed

    Dulf, Francisc Vasile; Vodnar, Dan Cristian; Socaciu, Carmen

    2016-10-15

    Evolutions of phenolic contents and antioxidant activities during solid-state fermentation (SSF) of plum pomaces (from the juice industry) and brandy distillery wastes with Aspergillus niger and Rhizopus oligosporus were investigated. The effect of fermentation time on the oil content and major lipid classes in the plum kernels was also studied. Results showed that total phenolic (TP) amounts increased by over 30% for SSF with Rhizopus oligosporus and by >21% for SSF with A. niger. The total flavonoid contents presented similar tendencies to those of the TPs. The free radical scavenging activities of methanolic extracts were also significantly enhanced. The HPLC-MS analysis showed that quercetin-3-glucoside was the major phenolic compound in both fermented plum by-products. The results also demonstrated that SSF not only helped to achieve higher lipid recovery from plum kernels, but also resulted in oils with better quality attributes (high sterol ester and n-3 PUFA-rich polar lipid contents). Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Laser Desorption/Ionization Mass Spectrometric Imaging of Endogenous Lipids from Rat Brain Tissue Implanted with Silver Nanoparticles

    NASA Astrophysics Data System (ADS)

    Muller, Ludovic; Baldwin, Kathrine; Barbacci, Damon C.; Jackson, Shelley N.; Roux, Aurélie; Balaban, Carey D.; Brinson, Bruce E.; McCully, Michael I.; Lewis, Ernest K.; Schultz, J. Albert; Woods, Amina S.

    2017-08-01

    Mass spectrometry imaging (MSI) of tissue implanted with silver nanoparticulate (AgNP) matrix generates reproducible imaging of lipids in rodent models of disease and injury. Gas-phase production and acceleration of size-selected 8 nm AgNP is followed by controlled ion beam rastering and soft landing implantation of 500 eV AgNP into tissue. Focused 337 nm laser desorption produces high quality images for most lipid classes in rat brain tissue (in positive mode: galactoceramides, diacylglycerols, ceramides, phosphatidylcholines, cholesteryl ester, and cholesterol, and in negative ion mode: phosphatidylethanolamides, sulfatides, phosphatidylinositol, and sphingomyelins). Image reproducibility in serial sections of brain tissue is achieved within <10% tolerance by selecting argentated instead of alkali cationized ions. The imaging of brain tissues spotted with pure standards was used to demonstrate that Ag cationized ceramide and diacylglycerol ions are from intact, endogenous species. In contrast, almost all Ag cationized fatty acid ions are a result of fragmentations of numerous lipid types having the fatty acid as a subunit. Almost no argentated intact fatty acid ions come from the pure fatty acid standard on tissue.

  12. Turnover of Glycerolipid Metabolite Pool and Seed Viability

    PubMed Central

    Hu, Xiao-Long; Yu, Xiao-Mei; Chen, Hong-Ying

    2018-01-01

    Hydration–dehydration cycles can frequently cause stress to seeds, but can also be used to improve germination. However, the molecular basis of the stress caused is poorly understood. Herein, we examine the effects of hydration–dehydration cycles on seed viability and profile the membrane glycerolipid molecular species. We find that seed viability was not affected during the first two cycles, but significantly decreased as further cycles were applied, until all viability was lost. The abundances of seven glycerolipid classes increased and decreased through hydration and dehydration, respectively, but the phosphatidic acid and diacylglycerol abundances changed in the opposite sense, while total glycerolipid contents remained constant. This suggests that during hydration–dehydration cycles, turnover of glycerolipid metabolite pools take place, while no significant lipid synthesis or degradation is involved. As further hydration–dehydration cycles occurred, lipid unsaturation increased, plastidic lipids decreased, and phosphatidylserine acyl chains lengthened. The latter two could be lethal for seeds. Our findings reveal a novel model of membrane lipid changes, and provide new insights into the responses of seeds to hydration–dehydration cycles. PMID:29747431

  13. Lipidomic Analysis of Endocannabinoid Signaling: Targeted Metabolite Identification and Quantification

    PubMed Central

    Keereetaweep, Jantana; Chapman, Kent D.

    2016-01-01

    The endocannabinoids N-arachidonoylethanolamide (or anandamide, AEA) and 2-arachidonoylglycerol (2-AG) belong to the larger groups of N-acylethanolamines (NAEs) and monoacylglycerol (MAG) lipid classes, respectively. They are biologically active lipid molecules that activate G-protein-coupled cannabinoid receptors found in various organisms. After AEA and 2-AG were discovered in the 1990s, they have been extensively documented to have a broad range of physiological functions. Along with AEA, several NAEs, for example, N-palmitoylethanolamine (PEA), N-stearoylethanolamine (SEA), and N-oleoylethanolamine (OEA) are also present in tissues, usually at much larger concentrations than AEA. Any perturbation that involves the endocannabinoid pathway may subsequently alter basal level or metabolism of these lipid mediators. Further, the altered levels of these molecules often reflect pathological conditions associated with tissue damage. Robust and sensitive methodologies to analyze these lipid mediators are essential to understanding how they act as endocannabinoids. The recent advances in mass spectrometry allow researchers to develop lipidomics approaches and several methodologies have been proposed to quantify endocannabinoids in various biological systems. PMID:26839710

  14. Shedding new light on lipid functions with CARS and SRS microscopy

    PubMed Central

    Yu, Yong; Ramachandran, Prasanna V.; Wang, Meng C.

    2014-01-01

    Modern optical microscopy has granted biomedical scientists unprecedented access to the inner workings of a cell, and revolutionized our understanding of the molecular mechanisms underlying physiological and disease states. In spite of these advances, however, visualization of certain classes of molecules (e.g. lipids) at the sub-cellular level has remained elusive. Recently developed chemical imaging modalities – Coherent Anti-Stokes Raman Scattering (CARS) microscopy and Stimulated Raman Scattering (SRS) microscopy – have helped bridge this gap. By selectively imaging the vibration of a specific chemical group, these non-invasive techniques allow high-resolution imaging of individual molecules in vivo, and circumvent the need for potentially perturbative extrinsic labels. These tools have already been applied to the study of fat metabolism, helping uncover novel regulators of lipid storage. Here we review the underlying principle of CARS and SRS microscopy, and discuss the advantages and caveats of each technique. We also review recent applications of these tools in the study of lipids as well as other biomolecules, and conclude with a brief guide for interested researchers to build and use CARS/SRS systems for their own research. PMID:24576891

  15. Lipids in the cell: organisation regulates function.

    PubMed

    Santos, Ana L; Preta, Giulio

    2018-06-01

    Lipids are fundamental building blocks of all cells and play important roles in the pathogenesis of different diseases, including inflammation, autoimmune disease, cancer, and neurodegeneration. The lipid composition of different organelles can vary substantially from cell to cell, but increasing evidence demonstrates that lipids become organised specifically in each compartment, and this organisation is essential for regulating cell function. For example, lipid microdomains in the plasma membrane, known as lipid rafts, are platforms for concentrating protein receptors and can influence intra-cellular signalling. Lipid organisation is tightly regulated and can be observed across different model organisms, including bacteria, yeast, Drosophila, and Caenorhabditis elegans, suggesting that lipid organisation is evolutionarily conserved. In this review, we summarise the importance and function of specific lipid domains in main cellular organelles and discuss recent advances that investigate how these specific and highly regulated structures contribute to diverse biological processes.

  16. CTP:phosphocholine cytidylyltransferase binds anionic phospholipid vesicles in a cross-bridging mode.

    PubMed

    Taneva, Svetla G; Patty, Philipus J; Frisken, Barbara J; Cornell, Rosemary B

    2005-07-05

    CTP:phosphocholine cytidylyltransferase (CCT) catalyzes the rate-limiting step in phosphatidylcholine (PC) synthesis, and its activity is regulated by reversible association with membranes, mediated by an amphipathic helical domain M. Here we describe a new feature of the CCTalpha isoform, vesicle tethering. We show, using dynamic light scattering and transmission electron microscopy, that dimers of CCTalpha can cross-bridge separate vesicles to promote vesicle aggregation. The vesicles contained either class I activators (anionic phospholipids) or the less potent class II activators, which favor nonlamellar phase formation. CCT increased the apparent hydrodynamic radius and polydispersity of anionic phospholipid vesicles even at low CCT concentrations corresponding to only one or two dimers per vesicle. Electron micrographs of negatively stained phosphatidylglycerol (PG) vesicles confirmed CCT-mediated vesicle aggregation. CCT conjugated to colloidal gold accumulated on the vesicle surfaces and in areas of vesicle-vesicle contact. PG vesicle aggregation required both the membrane-binding domain and the intact CCT dimer, suggesting binding of CCT to apposed membranes via the two M domains situated on opposite sides of the dimerization domain. In contrast to the effects on anionic phospholipid vesicles, CCT did not induce aggregation of PC vesicles containing the class II lipids, oleic acid, diacylglycerol, or phosphatidylethanolamine. The different behavior of the two lipid classes reflected differences in measured binding affinity, with only strongly binding phospholipid vesicles being susceptible to CCT-induced aggregation. Our findings suggest a new model for CCTalpha domain organization and membrane interaction, and a potential involvement of the enzyme in cellular events that implicate close apposition of membranes.

  17. Identification of Shared and Unique Serum Lipid Profiles in Diabetes Mellitus and Myocardial Infarction.

    PubMed

    Kjellqvist, Sanela; Klose, Christian; Surma, Michal A; Hindy, George; Mollet, Inês G; Johansson, Anna; Chavaux, Patrick; Gottfries, Johan; Simons, Kai; Melander, Olle; Fernandez, Céline

    2016-11-29

    Diabetes mellitus (DM) and cardiovascular disease are associated with dyslipidemia, but the detailed lipid molecular pattern in both diseases remains unknown. We used shotgun mass spectrometry to determine serum levels of 255 molecular lipids in 316 controls, 171 DM, and 99 myocardial infarction (MI) events from a cohort derived from the Malmö Diet and Cancer study. Orthogonal projections to latent structures analyses were conducted between the lipids and clinical parameters describing DM or MI. Fatty acid desaturases (FADS) and elongation of very long chain fatty acid protein 5 (ELOVL5) activities were estimated by calculating product to precursor ratios of polyunsaturated fatty acids in complex lipids. FADS genotypes encoding these desaturases were then tested for association with lipid levels and ratios. Differences in the levels of lipids belonging to the phosphatidylcholine and triacylglyceride (TAG) classes contributed the most to separating DM from controls. TAGs also played a dominating role in discriminating MI from controls. Levels of C18:2 fatty acids in complex lipids were lower both in DM and MI versus controls (DM, P=0.004; MI, P=6.0E-06) at least due to an acceleration in the metabolic flux from C18:2 to C20:4 (eg, increased estimated ELOVL5: DM, P=0.02; MI, P=0.04, and combined elongase-desaturase activities: DM, P=3.0E-06; MI, P=2.0E-06). Minor allele carriers of FADS genotypes were associated with increased levels of C18:2 (P≤0.007) and lower desaturase activity (P≤0.002). We demonstrate a possible relationship between decreased levels of C18:2 in complex lipids and DM or MI. We thereby highlight the importance of molecular lipids in the pathogenesis of both diseases. © 2016 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

  18. Molecular signature of complex regional pain syndrome (CRPS) and its analysis.

    PubMed

    König, Simone; Schlereth, Tanja; Birklein, Frank

    2017-10-01

    Complex Regional Pain Syndrome (CRPS) is a rare, but often disabling pain disease. Biomarkers are lacking, but several inflammatory substances have been associated with the pathophysiology. This review outlines the current knowledge with respect to target biomolecules and the analytical tools available to measure them. Areas covered: Targets include cytokines, neuropeptides and resolvins; analysis strategies are thus needed for different classes of substances such as proteins, peptides, lipids and small molecules. Traditional methods like immunoassays are of importance next to state-of-the art high-resolution mass spectrometry techniques and 'omics' approaches. Expert commentary: Future biomarker studies need larger cohorts, which improve subgrouping of patients due to their presumed pathophysiology, and highly standardized workflows from sampling to analysis.

  19. Mono- and Dialkyl Glycerol Ether Lipids in Anaerobic Bacteria: Biosynthetic Insights from the Mesophilic Sulfate Reducer Desulfatibacillum alkenivorans PF2803T

    PubMed Central

    Mollex, Damien; Vinçon-Laugier, Arnauld; Hakil, Florence; Pacton, Muriel; Cravo-Laureau, Cristiana

    2015-01-01

    Bacterial glycerol ether lipids (alkylglycerols) have received increasing attention during the last decades, notably due to their potential role in cell resistance or adaptation to adverse environmental conditions. Major uncertainties remain, however, regarding the origin, biosynthesis, and modes of formation of these uncommon bacterial lipids. We report here the preponderance of monoalkyl- and dialkylglycerols (1-O-alkyl-, 2-O-alkyl-, and 1,2-O-dialkylglycerols) among the hydrolyzed lipids of the marine mesophilic sulfate-reducing proteobacterium Desulfatibacillum alkenivorans PF2803T grown on n-alkenes (pentadec-1-ene or hexadec-1-ene) as the sole carbon and energy source. Alkylglycerols account for one-third to two-thirds of the total cellular lipids (alkylglycerols plus acylglycerols), depending on the growth substrate, with dialkylglycerols contributing to one-fifth to two-fifths of the total ether lipids. The carbon chain distribution of the lipids of D. alkenivorans also depends on that of the substrate, but the chain length and methyl-branching patterns of fatty acids and monoalkyl- and dialkylglycerols are systematically congruent, supporting the idea of a biosynthetic link between the three classes of compounds. Vinyl ethers (1-alken-1′-yl-glycerols, known as plasmalogens) are not detected among the lipids of strain PF2803T. Cultures grown on different (per)deuterated n-alkene, n-alkanol, and n-fatty acid substrates further demonstrate that saturated alkylglycerols are not formed via the reduction of hypothetic alken-1′-yl intermediates. Our results support an unprecedented biosynthetic pathway to monoalkyl/monoacyl- and dialkylglycerols in anaerobic bacteria and suggest that n-alkyl compounds present in the environment can serve as the substrates for supplying the building blocks of ether phospholipids of heterotrophic bacteria. PMID:25724965

  20. Carbon and Acyl Chain Flux during Stress-induced Triglyceride Accumulation by Stable Isotopic Labeling of the Polar Microalga Coccomyxa subellipsoidea C169*

    PubMed Central

    Allen, James W.; DiRusso, Concetta C.; Black, Paul N.

    2017-01-01

    Deriving biofuels and other lipoid products from algae is a promising future technology directly addressing global issues of atmospheric CO2 balance. To better understand the metabolism of triglyceride synthesis in algae, we examined their metabolic origins in the model species, Coccomyxa subellipsoidea C169, using stable isotopic labeling. Labeling patterns arising from [U-13C]glucose, 13CO2, or D2O supplementation were analyzed by GC-MS and/or LC-MS over time courses during nitrogen starvation to address the roles of catabolic carbon recycling, acyl chain redistribution, and de novo fatty acid (FA) synthesis during the expansion of the lipid bodies. The metabolic origin of stress-induced triglyceride was found to be a continuous 8:2 ratio between de novo synthesized FA and acyl chain transfer from pre-stressed membrane lipids with little input from lipid remodeling. Membrane lipids were continually synthesized with associated acyl chain editing during nitrogen stress, in contrast to an overall decrease in total membrane lipid. The incorporation rates of de novo synthesized FA into lipid classes were measured over a time course of nitrogen starvation. The synthesis of triglycerides, phospholipids, and galactolipids followed a two-stage pattern where nitrogen starvation resulted in a 2.5-fold increase followed by a gradual decline. Acyl chain flux into membrane lipids was dominant in the first stage followed by triglycerides. These data indicate that the level of metabolic control that determines acyl chain flux between membrane lipids and triglycerides during nitrogen stress relies primarily on the Kennedy pathway and de novo FA synthesis with limited, defined input from acyl editing reactions. PMID:27903654

  1. Ethanol Production and Maximum Cell Growth Are Highly Correlated with Membrane Lipid Composition during Fermentation as Determined by Lipidomic Analysis of 22 Saccharomyces cerevisiae Strains

    PubMed Central

    Henderson, Clark M.; Lozada-Contreras, Michelle; Jiranek, Vladimir; Longo, Marjorie L.

    2013-01-01

    Optimizing ethanol yield during fermentation is important for efficient production of fuel alcohol, as well as wine and other alcoholic beverages. However, increasing ethanol concentrations during fermentation can create problems that result in arrested or sluggish sugar-to-ethanol conversion. The fundamental cellular basis for these problem fermentations, however, is not well understood. Small-scale fermentations were performed in a synthetic grape must using 22 industrial Saccharomyces cerevisiae strains (primarily wine strains) with various degrees of ethanol tolerance to assess the correlation between lipid composition and fermentation kinetic parameters. Lipids were extracted at several fermentation time points representing different growth phases of the yeast to quantitatively analyze phospholipids and ergosterol utilizing atmospheric pressure ionization-mass spectrometry methods. Lipid profiling of individual fermentations indicated that yeast lipid class profiles do not shift dramatically in composition over the course of fermentation. Multivariate statistical analysis of the data was performed using partial least-squares linear regression modeling to correlate lipid composition data with fermentation kinetic data. The results indicate a strong correlation (R2 = 0.91) between the overall lipid composition and the final ethanol concentration (wt/wt), an indicator of strain ethanol tolerance. One potential component of ethanol tolerance, the maximum yeast cell concentration, was also found to be a strong function of lipid composition (R2 = 0.97). Specifically, strains unable to complete fermentation were associated with high phosphatidylinositol levels early in fermentation. Yeast strains that achieved the highest cell densities and ethanol concentrations were positively correlated with phosphatidylcholine species similar to those known to decrease the perturbing effects of ethanol in model membrane systems. PMID:23064336

  2. Ethanol production and maximum cell growth are highly correlated with membrane lipid composition during fermentation as determined by lipidomic analysis of 22 Saccharomyces cerevisiae strains.

    PubMed

    Henderson, Clark M; Lozada-Contreras, Michelle; Jiranek, Vladimir; Longo, Marjorie L; Block, David E

    2013-01-01

    Optimizing ethanol yield during fermentation is important for efficient production of fuel alcohol, as well as wine and other alcoholic beverages. However, increasing ethanol concentrations during fermentation can create problems that result in arrested or sluggish sugar-to-ethanol conversion. The fundamental cellular basis for these problem fermentations, however, is not well understood. Small-scale fermentations were performed in a synthetic grape must using 22 industrial Saccharomyces cerevisiae strains (primarily wine strains) with various degrees of ethanol tolerance to assess the correlation between lipid composition and fermentation kinetic parameters. Lipids were extracted at several fermentation time points representing different growth phases of the yeast to quantitatively analyze phospholipids and ergosterol utilizing atmospheric pressure ionization-mass spectrometry methods. Lipid profiling of individual fermentations indicated that yeast lipid class profiles do not shift dramatically in composition over the course of fermentation. Multivariate statistical analysis of the data was performed using partial least-squares linear regression modeling to correlate lipid composition data with fermentation kinetic data. The results indicate a strong correlation (R(2) = 0.91) between the overall lipid composition and the final ethanol concentration (wt/wt), an indicator of strain ethanol tolerance. One potential component of ethanol tolerance, the maximum yeast cell concentration, was also found to be a strong function of lipid composition (R(2) = 0.97). Specifically, strains unable to complete fermentation were associated with high phosphatidylinositol levels early in fermentation. Yeast strains that achieved the highest cell densities and ethanol concentrations were positively correlated with phosphatidylcholine species similar to those known to decrease the perturbing effects of ethanol in model membrane systems.

  3. Carbon and Acyl Chain Flux during Stress-induced Triglyceride Accumulation by Stable Isotopic Labeling of the Polar Microalga Coccomyxa subellipsoidea C169.

    PubMed

    Allen, James W; DiRusso, Concetta C; Black, Paul N

    2017-01-06

    Deriving biofuels and other lipoid products from algae is a promising future technology directly addressing global issues of atmospheric CO 2 balance. To better understand the metabolism of triglyceride synthesis in algae, we examined their metabolic origins in the model species, Coccomyxa subellipsoidea C169, using stable isotopic labeling. Labeling patterns arising from [U- 13 C]glucose, 13 CO 2 , or D 2 O supplementation were analyzed by GC-MS and/or LC-MS over time courses during nitrogen starvation to address the roles of catabolic carbon recycling, acyl chain redistribution, and de novo fatty acid (FA) synthesis during the expansion of the lipid bodies. The metabolic origin of stress-induced triglyceride was found to be a continuous 8:2 ratio between de novo synthesized FA and acyl chain transfer from pre-stressed membrane lipids with little input from lipid remodeling. Membrane lipids were continually synthesized with associated acyl chain editing during nitrogen stress, in contrast to an overall decrease in total membrane lipid. The incorporation rates of de novo synthesized FA into lipid classes were measured over a time course of nitrogen starvation. The synthesis of triglycerides, phospholipids, and galactolipids followed a two-stage pattern where nitrogen starvation resulted in a 2.5-fold increase followed by a gradual decline. Acyl chain flux into membrane lipids was dominant in the first stage followed by triglycerides. These data indicate that the level of metabolic control that determines acyl chain flux between membrane lipids and triglycerides during nitrogen stress relies primarily on the Kennedy pathway and de novo FA synthesis with limited, defined input from acyl editing reactions. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. High-energy Collision-induced Dissociation by MALDI TOF/TOF Causes Charge-Remote Fragmentation of Steroid Sulfates

    PubMed Central

    Yan, Yuetian; Ubukata, Masaaki; Cody, Robert B.; Holy, Timothy E.; Gross, Michael L.

    2014-01-01

    A method for structural elucidation of biomolecules dating to the 1980s utilized high-energy collisions (~10 keV, laboratory frame) that induced charge-remote fragmentations (CRF), a class of fragmentations particularly informative for lipids, steroids, surfactants, and peptides. Unfortunately, the capability for high-energy activation has largely disappeared with the demise of magnetic sector instruments. With the latest designs of tandem time-of-flight mass spectrometers (TOF/TOF), however, this capability is now being restored to coincide with the renewed interest in metabolites and lipids including steroid-sulfates and other steroid metabolites. For these metabolites, structure determinations are required at concentration levels below that appropriate for NMR. To meet this need, we explored CRF with TOF/TOF mass spectrometry for two groups of steroid sulfates, 3-sulfates and 21-sulfates. We demonstrated that the current generation of MALDI TOF/TOF instruments can generate charge-remote-fragmentations for these materials. The resulting collision-induced dissociation (CID) spectra are useful for positional isomer differentiation and very often allow the complete structure determination of the steroid. We also propose a new nomenclature that directly indicates the cleavage sites on the steroid ring with carbon numbers. PMID:24781458

  5. High-energy collision-induced dissociation by MALDI TOF/TOF causes charge-remote fragmentation of steroid sulfates.

    PubMed

    Yan, Yuetian; Ubukata, Masaaki; Cody, Robert B; Holy, Timothy E; Gross, Michael L

    2014-08-01

    A method for structural elucidation of biomolecules dating to the 1980s utilized high-energy collisions (~10 keV, laboratory frame) that induced charge-remote fragmentations (CRF), a class of fragmentations particularly informative for lipids, steroids, surfactants, and peptides. Unfortunately, the capability for high-energy activation has largely disappeared with the demise of magnetic sector instruments. With the latest designs of tandem time-of-flight mass spectrometers (TOF/TOF), however, this capability is now being restored to coincide with the renewed interest in metabolites and lipids, including steroid-sulfates and other steroid metabolites. For these metabolites, structure determinations are required at concentration levels below that appropriate for NMR. To meet this need, we explored CRF with TOF/TOF mass spectrometry for two groups of steroid sulfates, 3-sulfates and 21-sulfates. We demonstrated that the current generation of MALDI TOF/TOF instruments can generate charge-remote fragmentations for these materials. The resulting collision-induced dissociation (CID) spectra are useful for positional isomer differentiation and very often allow the complete structure determination of the steroid. We also propose a new nomenclature that directly indicates the cleavage sites on the steroid ring with carbon numbers.

  6. Turning the Waiting Room into a Classroom: Weekly Classes Using a Vegan or a Portion-Controlled Eating Plan Improve Diabetes Control in a Randomized Translational Study.

    PubMed

    Barnard, Neal D; Levin, Susan M; Gloede, Lise; Flores, Rosendo

    2018-06-01

    In research settings, plant-based (vegan) eating plans improve diabetes management, typically reducing weight, glycemia, and low-density lipoprotein (LDL) cholesterol concentrations to a greater extent than has been shown with portion-controlled eating plans. The study aimed to test whether similar benefits could be found using weekly nutrition classes in a typical endocrinology practice, hypothesizing that a vegan eating plan would improve glycemic control, weight, lipid concentrations, blood pressure, and renal function and would do so more effectively than a portion-controlled eating plan. In a 20-week trial, participants were randomly assigned to a low-fat vegan or portion-controlled eating plan. Individuals with type 2 diabetes treated in a single endocrinology practice in Washington, DC, participated (45 starters, 40 completers). Participants attended weekly after-hours classes in the office waiting room. The vegan plan excluded animal products and added oils and favored low-glycemic index foods. The portion-controlled plan included energy intake limits for weight loss (typically a deficit of 500 calories/day) and provided guidance on portion sizes. Body weight, hemoglobin A1c (HbA1c), plasma lipids, urinary albumin, and blood pressure were measured. For normally distributed data, t tests were used; for skewed outcomes, rank-based approaches were implemented (Wilcoxon signed-rank test for within-group changes, Wilcoxon two-sample test for between-group comparisons, and exact Hodges-Lehmann estimation to estimate effect sizes). Although participants were in generally good metabolic control at baseline, body weight, HbA1c, and LDL cholesterol improved significantly within each group, with no significant differences between the two eating plans (weight: -6.3 kg vegan, -4.4 kg portion-controlled, between-group P=0.10; HbA1c, -0.40 percentage point in both groups, P=0.68; LDL cholesterol -11.9 mg/dL vegan, -12.7 mg/dL portion-controlled, P=0.89). Mean urinary albumin was normal at baseline and did not meaningfully change. Blood pressure changes were not significant. Weekly classes, integrated into a clinical practice and using either a low-fat vegan or portion-controlled eating plan, led to clinical improvements in individuals with type 2 diabetes. Copyright © 2018 Academy of Nutrition and Dietetics. Published by Elsevier Inc. All rights reserved.

  7. Lipids and flaviviruses, present and future perspectives for the control of dengue, Zika, and West Nile viruses.

    PubMed

    Martín-Acebes, Miguel A; Vázquez-Calvo, Ángela; Saiz, Juan-Carlos

    2016-10-01

    Flaviviruses are emerging arthropod-borne pathogens that cause life-threatening diseases such as yellow fever, dengue, West Nile encephalitis, tick-borne encephalitis, Kyasanur Forest disease, tick-borne encephalitis, or Zika disease. This viral genus groups >50 viral species of small enveloped plus strand RNA virus that are phylogenetically closely related to hepatitis C virus. Importantly, the flavivirus life cycle is intimately associated to host cell lipids. Along this line, flaviviruses rearrange intracellular membranes from the endoplasmic-reticulum of the infected cells to develop adequate platforms for viral replication and particle biogenesis. Moreover, flaviviruses dramatically orchestrate a profound reorganization of the host cell lipid metabolism to create a favorable environment for viral multiplication. Consistently, recent work has shown the importance of specific lipid classes in flavivirus infections. For instances, fatty acid synthesis is linked to viral replication, phosphatidylserine and phosphatidylethanolamine are involved on the entry of flaviviruses, sphingolipids (ceramide and sphingomyelin) play a key role on virus assembly and pathogenesis, and cholesterol is essential for innate immunity evasion in flavivirus-infected cells. Here, we revise the current knowledge on the interactions of the flaviviruses with the cellular lipid metabolism to identify potential targets for future antiviral development aimed to combat these relevant health-threatening pathogens. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Genetic Variants in HSD17B3, SMAD3, and IPO11 Impact Circulating Lipids in Response to Fenofibrate in Individuals With Type 2 Diabetes.

    PubMed

    Rotroff, Daniel M; Pijut, Sonja S; Marvel, Skylar W; Jack, John R; Havener, Tammy M; Pujol, Aurora; Schluter, Agatha; Graf, Gregory A; Ginsberg, Henry N; Shah, Hetal S; Gao, He; Morieri, Mario-Luca; Doria, Alessandro; Mychaleckyi, Josyf C; McLeod, Howard L; Buse, John B; Wagner, Michael J; Motsinger-Reif, Alison A

    2018-04-01

    Individuals with type 2 diabetes (T2D) and dyslipidemia are at an increased risk of cardiovascular disease. Fibrates are a class of drugs prescribed to treat dyslipidemia, but variation in response has been observed. To evaluate common and rare genetic variants that impact lipid responses to fenofibrate in statin-treated patients with T2D, we examined lipid changes in response to fenofibrate therapy using a genomewide association study (GWAS). Associations were followed-up using gene expression studies in mice. Common variants in SMAD3 and IPO11 were marginally associated with lipid changes in black subjects (P < 5 × 10 -6 ). Rare variant and gene expression changes were assessed using a false discovery rate approach. AKR7A3 and HSD17B13 were associated with lipid changes in white subjects (q < 0.2). Mice fed fenofibrate displayed reductions in Hsd17b13 gene expression (q < 0.1). Associations of variants in SMAD3, IPO11, and HSD17B13, with gene expression changes in mice indicate that transforming growth factor-beta (TGF-β) and NRF2 signaling pathways may influence fenofibrate effects on dyslipidemia in patients with T2D. © 2017 American Society for Clinical Pharmacology and Therapeutics.

  9. Metabolic incorporation of unsaturated fatty acids into boar spermatozoa lipids and de novo formation of diacylglycerols.

    PubMed

    Svetlichnyy, Valentin; Müller, Peter; Pomorski, Thomas G; Schulze, Martin; Schiller, Jürgen; Müller, Karin

    2014-01-01

    Lipids play an important role in the maturation, viability and function of sperm cells. In this study, we examined the neutral and polar lipid composition of boar spermatozoa by thin-layer chromatography/mass spectrometry. Main representatives of the neutral lipid classes were diacylglycerols containing saturated (myristoyl, palmitoyl and stearoyl) fatty acyl residues. Glycerophosphatidylcholine and glycerophosphatidylethanolamine with alk(en)yl ether residues in the sn-1 position and unsaturated long chained fatty acyl residues in sn-2 position were identified as the most prominent polar lipids. The only glycoglycerolipid was sulfogalactosylglycerolipid carrying 16:0-alkyl- and 16:0-acyl chains. Using stable isotope-labelling, the metabolic incorporation of exogenously supplied fatty acids was analysed. Boar spermatozoa incorporated hexadecenoic (16:1), octadecenoic (18:1), octadecadienoic (18:2) and octadecatrienoic (18:3) acids primarily in the diacylglycerols and glycerophosphatidylcholines. In contrast, incorporation of eicosapentaenoic acid (20:5) was not detected. The analysis of molecular species composition subsequent to the incorporation of exogenous [(14)C]-octadecadienoic acid suggests two pathways for incorporation of exogenous fatty acids into glycerophosphatidylcholine: (1) de novo synthesis of glycerophosphatidylcholine via the CDP-choline pathway and (2) reacylation of lysophosphatidylcholine via an acyltransferase. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  10. Intra- and extracellular lipid composition and associated gene expression patterns during pollen development in Brassica napus.

    PubMed

    Piffanelli, P; Ross, J H; Murphy, D J

    1997-03-01

    Pollen development in angiosperms is regulated by the interaction of products contributed by both the gametophytic (haploid) and sporophytic (diploid) genomes. In entomophilous species, lipids are major products of both sporophytic and gametophytic metabolism during pollen development. Mature pollen grains of Brassica napus are shown to contain three major acyl lipid pools as follows: (i) the extracellular tryphine mainly consisting of medium-chain neutral esters; (ii) the intracellular membranes, particularly endoplasmic reticulum, mainly containing phospholipids; and (iii) the intracellular storage lipids, which are mostly triacylglycerols. This paper reports on the kinetics of accumulation of these lipid classes during pollen maturation and the expression patterns of several lipid biosynthetic genes and their protein products that are differentially regulated in developing microspores/ pollen grains (gametophyte) and tapetal cells (sporophyte) of B. napus. Detailed analysis of three members of the stearoyl-ACP desaturase (sad) gene family by Northern blotting, in situ hybridization and RT-PCR showed that the same individual genes were expressed both in gametophytic and sporophytic tissues, although under different temporal regulation. In the tapetum, maximal expression of two marker genes for lipid biosynthesis (sad and ear) occurred at a bud length of 2-3 mm, and the corresponding gene products SAD and EAR were detected by Western blotting in 3-4 mm buds, coinciding with the maximal rates of tapetal lipid accumulation. These lipids are released following tapetal cell disintegration and are relocated to form the major structural component of the extracellular tryphine layer that coats the mature pollen grain. In contrast, in developing microspores/pollen grains, maximal expression of the lipid marker genes sad, ear, acp and cyb5 was at the 3-5 mm bud stages, with the SAD and EAR gene products detected in 4-7 mm buds. This pattern of expression coincided with accumulation of the intracellular storage and membrane lipid components of pollen. These results suggest that, although the same genes may be expressed in the sporophytic tapetal cells and in gametophytic tissues, they are regulated differentially leading to the production of the various contrasting lipidic structures that are assembled together to give rise to a viable, fertile pollen grain.

  11. Apolipoprotein A-II Plus Lipid Emulsion Enhance Cell Growth via SR-B1 and Target Pancreatic Cancer In Vitro and In Vivo

    PubMed Central

    Thanh LE, Thao N.; Gill, Anthony J.; Bulanadi, Jerikho C.; Patel, Mili; Waddington, Lynne J.; Rye, Kerry-Anne; Moghaddam, Minoo J.; Smith, Ross C.

    2016-01-01

    Background Apolipoprotein A-II (ApoA-II) is down regulated in the sera of pancreatic ductal adenocarcinoma (PDAC) patients, which may be due to increase utilization of high density lipoprotein (HDL) lipid by pancreatic cancer tissue. This study examined the influence of exogenous ApoA-II on lipid uptake and cell growth in pancreatic cancer (PC) both in vitro and in vivo. Methods Cryo transmission electron microscopy (TEM) examined ApoA-II’s influence on morphology of SMOFLipid emulsion. The influence of ApoA-II on proliferation of cancer cell lines was determined by incubating them with lipid+/-ApoA-II and anti-SR-B1 antibody. Lipid was labeled with the fluorophore, DiD, to trace lipid uptake by cancer cells in vitro by confocal microscopy and in vivo in PDAC patient derived xenograft tumours (PDXT) by fluorescence imaging. Scavenger receptor class B type-1(SR-B1) expression in PDAC cell lines and in PDAC PDXT was measured by western blotting and immunohistochemistry, respectively. Results ApoA-II spontaneously converted lipid emulsion into very small unilamellar rHDL like vesicles (rHDL/A-II) and enhanced lipid uptake in PANC-1, CFPAC-1 and primary tumour cells as shown by confocal microscopy. SR-B1 expression was 13.2, 10.6, 3.1 and 2.3 fold higher in PANC-1, MIAPaCa-2, CFPAC-1 and BxPC3 cell lines than the normal pancreatic cell line (HPDE6) and 3.7 fold greater in PDAC tissue than in normal pancreas. ApoA-II plus lipid significantly increased the uptake of labeled lipid and promoted cell growth in PANC-1, MIAPaCa-2, CFPAC-1 and BxPC3 cells which was inhibited by anti SR-B1 antibody. Further, ApoA-II increased the uptake of lipid in xenografts by 3.4 fold. Conclusion Our data suggest that ApoA-II enhance targeting potential of lipid in pancreatic cancer which may have imaging and drug delivery potentialities. PMID:27002321

  12. Apolipoprotein A-II Plus Lipid Emulsion Enhance Cell Growth via SR-B1 and Target Pancreatic Cancer In Vitro and In Vivo.

    PubMed

    Julovi, Sohel M; Xue, Aiqun; Thanh LE, Thao N; Gill, Anthony J; Bulanadi, Jerikho C; Patel, Mili; Waddington, Lynne J; Rye, Kerry-Anne; Moghaddam, Minoo J; Smith, Ross C

    2016-01-01

    Apolipoprotein A-II (ApoA-II) is down regulated in the sera of pancreatic ductal adenocarcinoma (PDAC) patients, which may be due to increase utilization of high density lipoprotein (HDL) lipid by pancreatic cancer tissue. This study examined the influence of exogenous ApoA-II on lipid uptake and cell growth in pancreatic cancer (PC) both in vitro and in vivo. Cryo transmission electron microscopy (TEM) examined ApoA-II's influence on morphology of SMOFLipid emulsion. The influence of ApoA-II on proliferation of cancer cell lines was determined by incubating them with lipid+/-ApoA-II and anti-SR-B1 antibody. Lipid was labeled with the fluorophore, DiD, to trace lipid uptake by cancer cells in vitro by confocal microscopy and in vivo in PDAC patient derived xenograft tumours (PDXT) by fluorescence imaging. Scavenger receptor class B type-1(SR-B1) expression in PDAC cell lines and in PDAC PDXT was measured by western blotting and immunohistochemistry, respectively. ApoA-II spontaneously converted lipid emulsion into very small unilamellar rHDL like vesicles (rHDL/A-II) and enhanced lipid uptake in PANC-1, CFPAC-1 and primary tumour cells as shown by confocal microscopy. SR-B1 expression was 13.2, 10.6, 3.1 and 2.3 fold higher in PANC-1, MIAPaCa-2, CFPAC-1 and BxPC3 cell lines than the normal pancreatic cell line (HPDE6) and 3.7 fold greater in PDAC tissue than in normal pancreas. ApoA-II plus lipid significantly increased the uptake of labeled lipid and promoted cell growth in PANC-1, MIAPaCa-2, CFPAC-1 and BxPC3 cells which was inhibited by anti SR-B1 antibody. Further, ApoA-II increased the uptake of lipid in xenografts by 3.4 fold. Our data suggest that ApoA-II enhance targeting potential of lipid in pancreatic cancer which may have imaging and drug delivery potentialities.

  13. Comprehensive and quantitative profiling of lipid species in human milk, cow milk and a phospholipid-enriched milk formula by GC and MS/MSALL.

    PubMed

    Sokol, Elena; Ulven, Trond; Færgeman, Nils J; Ejsing, Christer S

    2015-06-01

    Here we present a workflow for in-depth analysis of milk lipids that combines gas chromatography (GC) for fatty acid (FA) profiling and a shotgun lipidomics routine termed MS/MS ALL for structural characterization of molecular lipid species. To evaluate the performance of the workflow we performed a comparative lipid analysis of human milk, cow milk, and Lacprodan® PL-20, a phospholipid-enriched milk protein concentrate for infant formula. The GC analysis showed that human milk and Lacprodan have a similar FA profile with higher levels of unsaturated FAs as compared to cow milk. In-depth lipidomic analysis by MS/MS ALL revealed that each type of milk sample comprised distinct composition of molecular lipid species. Lipid class composition showed that the human and cow milk contain a higher proportion of triacylglycerols (TAGs) as compared to Lacprodan. Notably, the MS/MS ALL analysis demonstrated that the similar FA profile of human milk and Lacprodan determined by GC analysis is attributed to the composition of individual TAG species in human milk and glycerophospholipid species in Lacprodan. Moreover, the analysis of TAG molecules in Lacprodan and cow milk showed a high proportion of short-chain FAs that could not be monitored by GC analysis. The results presented here show that complementary GC and MS/MS ALL analysis is a powerful approach for characterization of molecular lipid species in milk and milk products. : Milk lipid analysis is routinely performed using gas chromatography. This method reports the total fatty acid composition of all milk lipids, but provides no structural or quantitative information about individual lipid molecules in milk or milk products. Here we present a workflow that integrates gas chromatography for fatty acid profiling and a shotgun lipidomics routine termed MS/MS ALL for structural analysis and quantification of molecular lipid species. We demonstrate the efficacy of this complementary workflow by a comparative analysis of molecular lipid species in human milk, cow milk, and a milk-based supplement used for infant formula.

  14. Comprehensive and quantitative profiling of lipid species in human milk, cow milk and a phospholipid-enriched milk formula by GC and MS/MSALL

    PubMed Central

    Sokol, Elena; Ulven, Trond; Færgeman, Nils J; Ejsing, Christer S

    2015-01-01

    Here we present a workflow for in-depth analysis of milk lipids that combines gas chromatography (GC) for fatty acid (FA) profiling and a shotgun lipidomics routine termed MS/MSALL for structural characterization of molecular lipid species. To evaluate the performance of the workflow we performed a comparative lipid analysis of human milk, cow milk, and Lacprodan® PL-20, a phospholipid-enriched milk protein concentrate for infant formula. The GC analysis showed that human milk and Lacprodan have a similar FA profile with higher levels of unsaturated FAs as compared to cow milk. In-depth lipidomic analysis by MS/MSALL revealed that each type of milk sample comprised distinct composition of molecular lipid species. Lipid class composition showed that the human and cow milk contain a higher proportion of triacylglycerols (TAGs) as compared to Lacprodan. Notably, the MS/MSALL analysis demonstrated that the similar FA profile of human milk and Lacprodan determined by GC analysis is attributed to the composition of individual TAG species in human milk and glycerophospholipid species in Lacprodan. Moreover, the analysis of TAG molecules in Lacprodan and cow milk showed a high proportion of short-chain FAs that could not be monitored by GC analysis. The results presented here show that complementary GC and MS/MSALL analysis is a powerful approach for characterization of molecular lipid species in milk and milk products. Practical applications : Milk lipid analysis is routinely performed using gas chromatography. This method reports the total fatty acid composition of all milk lipids, but provides no structural or quantitative information about individual lipid molecules in milk or milk products. Here we present a workflow that integrates gas chromatography for fatty acid profiling and a shotgun lipidomics routine termed MS/MSALL for structural analysis and quantification of molecular lipid species. We demonstrate the efficacy of this complementary workflow by a comparative analysis of molecular lipid species in human milk, cow milk, and a milk-based supplement used for infant formula. PMID:26089741

  15. Inferring Phytoplankton, Terrestrial Plant and Bacteria Bulk δ¹³C Values from Compound Specific Analyses of Lipids and Fatty Acids

    PubMed Central

    Taipale, Sami J.; Peltomaa, Elina; Hiltunen, Minna; Jones, Roger I.; Hahn, Martin W.; Biasi, Christina; Brett, Michael T.

    2015-01-01

    Stable isotope mixing models in aquatic ecology require δ13C values for food web end members such as phytoplankton and bacteria, however it is rarely possible to measure these directly. Hence there is a critical need for improved methods for estimating the δ13C ratios of phytoplankton, bacteria and terrestrial detritus from within mixed seston. We determined the δ13C values of lipids, phospholipids and biomarker fatty acids and used these to calculate isotopic differences compared to the whole-cell δ13C values for eight phytoplankton classes, five bacterial taxa, and three types of terrestrial organic matter (two trees and one grass). The lipid content was higher amongst the phytoplankton (9.5±4.0%) than bacteria (7.3±0.8%) or terrestrial matter (3.9±1.7%). Our measurements revealed that the δ13C values of lipids followed phylogenetic classification among phytoplankton (78.2% of variance was explained by class), bacteria and terrestrial matter, and there was a strong correlation between the δ13C values of total lipids, phospholipids and individual fatty acids. Amongst the phytoplankton, the isotopic difference between biomarker fatty acids and bulk biomass averaged -10.7±1.1‰ for Chlorophyceae and Cyanophyceae, and -6.1±1.7‰ for Cryptophyceae, Chrysophyceae and Diatomophyceae. For heterotrophic bacteria and for type I and type II methane-oxidizing bacteria our results showed a -1.3±1.3‰, -8.0±4.4‰, and -3.4±1.4‰ δ13C difference, respectively, between biomarker fatty acids and bulk biomass. For terrestrial matter the isotopic difference averaged -6.6±1.2‰. Based on these results, the δ13C values of total lipids and biomarker fatty acids can be used to determine the δ13C values of bulk phytoplankton, bacteria or terrestrial matter with ± 1.4‰ uncertainty (i.e., the pooled SD of the isotopic difference for all samples). We conclude that when compound-specific stable isotope analyses become more widely available, the determination of δ13C values for selected biomarker fatty acids coupled with established isotopic differences, offers a promising way to determine taxa-specific bulk δ13C values for the phytoplankton, bacteria, and terrestrial detritus embedded within mixed seston. PMID:26208114

  16. Type 2 diabetes associated changes in the plasma non-esterified fatty acids, oxylipins and endocannabinoids

    USDA-ARS?s Scientific Manuscript database

    Type 2 diabetes (T2D) has profound effects on metabolism that can be detected in plasma. While increases in circulating non-esterified fatty acids (NEFA) are well described in T2D, effects on circulating signaling lipids have received little attention. Oxylipins and endocannabinoids are classes of ...

  17. LIPID BIOMARKER ANALYSIS OF THE TOXIC DINOFLAGELLATENPFIESTERIA PISCICIDA: DISTRIBUTION OF STEROLS AND FATTY ACIDS WITHIN THE CLASS DINOPHYCEAE

    EPA Science Inventory

    Within United States waters, regular blooms of harmful dinoflagellates occur in the Gulf of Mexico and Chesapeake Bay regions. Although the causes of blooms are not fully understood, events in Gulf of Mexico waters have been recorded for over thirty years, and are almost exclusiv...

  18. The sheep genome illuminates biology of the rumen and lipid metabolism

    USDA-ARS?s Scientific Manuscript database

    Sheep (Ovis aries) are a major source of meat, milk, and fiber in the form of wool and represent a distinct class of animals that have a specialized digestive organ, the rumen, that carries out the initial digestion of plant material. We have developed and analyzed a high-quality reference sheep gen...

  19. Establishing and performing targeted multi-residue analysis for lipid mediators and fatty acids in small clinical plasma samples.

    USDA-ARS?s Scientific Manuscript database

    LC-MS/MS and GC-MS based targeted metabolomics is typically conducted by analyzing and quantifying a cascade of metabolites with methods specifically developed for the metabolite class. Here we describe an approach for the development of multi-residue analytical profiles, calibration standards, and ...

  20. Beyond fatty acid methyl esters: Expanding the renewable carbon profile with alkenones from Isochrysis sp.

    USDA-ARS?s Scientific Manuscript database

    In addition to characteristic fatty acid methyl esters (FAMEs), biodiesel produced from Isochrysis sp. contains a significant amount (14% dry weight) of predominantly C37 and C38 longchain alkenones. These compounds are members of a class of lipids known collectively as polyunsaturated long-chain al...

Top