Science.gov

Sample records for lipid layer determined

  1. Composite S-layer lipid structures

    PubMed Central

    Schuster, Bernhard; Sleytr, Uwe B.

    2010-01-01

    Designing and utilization of biomimetic membrane systems generated by bottom-up processes is a rapidly growing scientific and engineering field. Elucidation of the supramolecular construction principle of archaeal cell envelopes composed of S-layer stabilized lipid membranes led to new strategies for generating highly stable functional lipid membranes at meso- and macroscopic scale. In this review, we provide a state of the art survey how S-layer proteins, lipids, and polysaccharides may be used as basic building blocks for the assembly of S-layer supported lipid membranes. These biomimetic membrane systems are distinguished by a nanopatterned fluidity, enhanced stability and longevity and thus, provide a dedicated reconstitution matrix for membrane-active peptides and transmembrane proteins. Exciting areas for application of composite S-layer membrane systems concern sensor systems involving specific membrane functions. PMID:19303933

  2. Lipid Layer-based Corrosion Monitoring on Metal Substrates

    DTIC Science & Technology

    2013-04-01

    explore lipid layers as a potential biosensor for corrosion. It is hypothesized that applying a lipid layer to metals will allow for corrosion monitoring...Corrosion monitoring, lipid layers, biosensor 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT UU 18. NUMBER OF PAGES 14 19a...occurs as the material’s surface is oxidized in an electrochemical reaction, commonly in the presence of oxygen and water, which initially causes

  3. Evaluation of the lipid-rich layer of reamer aspirate.

    PubMed

    Kay Sinclair, Sarina S; Jeray, Kyle J; Tanner, Stephanie L; Burg, Karen J L

    2010-08-01

    The fatty layer of aspirate obtained by reaming the femoral shaft using a reamer/irrigator/aspirator (RIA) device was characterized for fatty acid content and the presence of adult stem cells. Gas chromatography analysis was performed on samples taken from multiple patients to determine and compare the fatty acid contents of aspirate lipid samples. All four patients had the same four fatty acids present in the highest percentages: oleic, palmitic, linoleic and stearic. After successful isolation from bulk material, cells isolated from this lipid-rich layer were studied to determine their osteogenic and growth potential on a clinically available ceramic bone graft substitute. The results of metabolic activity and intracellular protein assays indicated that the ceramics supported growth of the cells isolated from the aspirate fat layer, although levels of alkaline phosphatase (ALP) expression were low for cells grown on the ceramics. Cells will not transition along the osteogenic pathway when they are actively dividing, and active growth may have contributed to the lack of ALP expression in this study. Isolated cells grown on tissue culture plastic expressed significant levels of the bone marker ALP. The results of this study suggest that cells isolated from the fat layer of RIA aspirate proliferate on ceramic bone void filler and have the potential to differentiate along an osteogenic pathway. Previously considered waste, the lipid-rich fat layer of aspirate may be a source of mesenchymal stem cells that, either alone or in conjunction with currently available synthetic bone graft material, could be used to stimulate new bone growth.

  4. Combined urea-thin layer chromatography and silver nitrate-thin layer chromatography for micro separation and determination of hard-to-detect branched chain fatty acids in natural lipids.

    PubMed

    Yan, Yuanyuan; Wang, Xingguo; Liu, Yijun; Xiang, Jingying; Wang, Xiaosan; Zhang, Huijun; Yao, Yunping; Liu, Ruijie; Zou, Xiaoqiang; Huang, Jianhua; Jin, Qingzhe

    2015-12-18

    A simple, fast and efficient procedure was developed for micro separation and enrichment of branched chain fatty acids (BCFA) from natural products using successive thin layer chromatography (TLC) technique coupling novel urea-TLC with AgNO3-TLC, which rely on the formation of urea adduction and AgNO3 bonding in methanol. These natural lipids contain a significant amount of straight chain fatty acids (FA). Fresh and fast urea-TLC and AgNO3-TLC plate making techniques were developed with more even coating and less coating material contamination before being utilized for separation. Goat milk fat was used as a model. Various experimental parameters that affect urea-TLC and AgNO3-TLC separation of BCFA were investigated and optimized, including coating of urea, concentration of original oil sample, mobile phase and sample application format. High efficiency of removal of straight chain FA was achieved with a low amount of sample in an easy and fast way. A total BCFA mix with much higher purity than previous studies was successfully achieved. The developed method has also been applied for the concentration and analysis of BCFA in cow milk fat and Anchovy oil.

  5. Lipid Layers on Polyelectrolyte Multilayers: Understanding Lipid-Polyelectrolyte Interactions and Applications on the Surface Engineering of Nanomaterials.

    PubMed

    Diamanti, Eleftheria; Gregurec, Danijela; Gabriela, Romero; Cuellar, J L; Donath, E; Moya, S E

    2016-06-01

    In this manuscript we review work of our group on the assembly of lipid layers on top of polyelectrolyte multilayers (PEMs). The assembly of lipid layers with zwitterionic and charged lipids on PEMs is studied as a function of lipid and polyelectrolyte composition by the Quartz Crystal Microbalance. Polyelectrolyte lipid interactions are studied by means of Atomic Force Spectroscopy. We also show the coating of lipid layers for engineering different nanomaterials, i.e., carbon nanotubes and poly(lactic-co-glycolic) nanoparticles and how these can be used to decrease in vitro toxicity and to direct the intracellular localization of nanomaterials.

  6. Tear film lipid layer: A molecular level view.

    PubMed

    Cwiklik, Lukasz

    2016-10-01

    Human cornea is covered by an aqueous tear film, and the outermost layer of the tear film is coated by lipids. This so-called tear film lipid layer (TFLL) reduces surface tension of the tear film and helps with the film re-spreading after blinks. Alterations of tear lipids composition and properties are related to dry eye syndrome. Therefore, unveiling structural and functional properties of TFLL is necessary for understanding tear film function under both normal and pathological conditions. Key properties of TFLL, such as resistance against high lateral pressures and ability to spread at the tear film surface, are directly related to the chemical identity of TFLL lipids. Hence, a molecular-level description is required to get better insight into TFLL properties. Molecular dynamics simulations are particularly well suited for this task and they were recently used for investigating TFLL. The present review discusses molecular level organization and properties of TFLL as seen by these simulation studies. This article is part of a Special Issue entitled: Biosimulations edited by Ilpo Vattulainen and Tomasz Róg.

  7. Lipid and protein maps defining arterial layers in atherosclerotic aorta

    PubMed Central

    Martin-Lorenzo, Marta; Balluff, Benjamin; Maroto, Aroa S.; Carreira, Ricardo J.; van Zeijl, Rene J.M.; Gonzalez-Calero, Laura; de la Cuesta, Fernando; Barderas, Maria G; Lopez-Almodovar, Luis F; Padial, Luis R; McDonnell, Liam A.; Vivanco, Fernando; Alvarez-Llamas, Gloria

    2015-01-01

    Subclinical atherosclerosis cannot be predicted and novel therapeutic targets are needed. The molecular anatomy of healthy and atherosclerotic tissue is pursued to identify ongoing molecular changes in atherosclerosis development. Mass Spectrometry Imaging (MSI) accounts with the unique advantage of analyzing proteins and metabolites (lipids) while preserving their original localization; thus two dimensional maps can be obtained. Main molecular alterations were investigated in a rabbit model in response to early development of atherosclerosis. Aortic arterial layers (intima and media) and calcified regions were investigated in detail by MALDI-MSI and proteins and lipids specifically defining those areas of interest were identified. These data further complement main findings previously published in J Proteomics (M. Martin-Lorenzo et al., J. Proteomics. (In press); M. Martin-Lorenzo et al., J. Proteomics 108 (2014) 465–468.) [1,2]. PMID:26217810

  8. Criteria for lipid layer pattern evaluation: Pli-marker database

    NASA Astrophysics Data System (ADS)

    García-Resúa, Carlos; Pena-Verdeal, Hugo; Remeseiro, Beatriz; Penedo, Manuel G.; Giráldez, María. Jesús; Yebra-Pimentel, Eva

    2013-11-01

    The purpose of this study is to establish the procedure of acquisition and evaluate the Lipid layer pattern (LLP) by Tearscope in order to enhance this useful technique. To aid this purpose, we present a new broad LLP images database (included in a web application called Pli-marker) The tear film lipid layer was examined using a Tearscope-plus (Keeler, Windsor, UK). To capture LLPs videos a Topcon DV-3 digital camera was used and attached to the slit lamp. All videos were stored in a computer via Topcon IMAGEnet i-base software and LLP images were obtained and uploaded at Pli-marker web application, which offers the manual selection of regions associated to a specific LLP. 50 images were analysed by 4 experienced optometrists. Each of them marked (using Pli-marker) those areas in the 50 images that corresponded with some of the 5 LLP: open meshwork (OM), closed meshwork, (CM), wave (W), amorphous (AM) and color fringe (CO). From the 50 images we obtained 25 areas of OM, 22 areas of CM, 20 areas of W, 46 areas of AM and 17 areas of CO that 4 observers were in accordance. We present an example of 4 pictures for each area of concordance together with the description of the features used for categorizing the LLP in our study. This work describes the methodology used in our research project, including settings for capture image, and the criteria for subjective categorization of the LLP accomplished by a set of images.

  9. Profiling the Triacylglyceride Contents in Bat Integumentary Lipids by Preparative Thin Layer Chromatography and MALDI-TOF Mass Spectrometry

    PubMed Central

    Pannkuk, Evan L.; Risch, Thomas S.; Savary, Brett J.

    2013-01-01

    The mammalian integument includes sebaceous glands that secrete an oily material onto the skin surface. Sebum production is part of the innate immune system that is protective against pathogenic microbes. Abnormal sebum production and chemical composition are also a clinical symptom of specific skin diseases. Sebum contains a complex mixture of lipids, including triacylglycerides, which is species-specific. The broad chemical properties exhibited by diverse lipid classes hinder the specific determination of sebum composition. Analytical techniques for lipids typically require chemical derivatizations that are labor-intensive and increase sample preparation costs. This paper describes how to extract lipids from mammalian integument, separate broad lipid classes by thin-layer chromatography, and profile the triacylglyceride contents using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. This robust method enables a direct determination of the triacylglyceride profiles among species and individuals, and it can be readily applied to any taxonomic group of mammals. PMID:24056580

  10. Lipids from the nacreous and prismatic layers of two Pteriomorpha mollusc shells.

    PubMed

    Farre, B; Dauphin, Y

    2009-02-01

    Mollusc shells are acellular biominerals, in which macromolecular structures are intimately associated with mineral phases. Most studies are devoted to proteins, despite sugars have been described. Lipids were extracted from the calcite prismatic and aragonite nacreous layer of two mollusc shells. Fourier Transform Infrared Spectrometry shows that lipids are present in both samples, but they are not similar. Thin layer chromatography confirms that lipids are different in the two studied layers, so that it may be suggested they are species-dependant. Although not yet deciphered, their role in biomineralization and fossilisation processes is probably important.

  11. Biophysical investigations of the structure and function of the tear fluid lipid layer and the effect of ectoine. Part A: natural meibomian lipid films.

    PubMed

    Dwivedi, Mridula; Backers, Hannes; Harishchandra, Rakesh Kumar; Galla, Hans-Joachim

    2014-10-01

    The tear fluid lipid layer is the outermost part of the tear film on the ocular surface which protects the eye from inflammations and injuries. We investigated the influence of ectoine on the structural organization of natural meibomian lipid films using surface activity analysis and topographical studies. These films exhibit a continuous pressure-area isotherm without any phase transition. With the addition of ectoine, the isotherm is expanded towards higher area per molecule values suggesting an increased area occupied by the interfacial lipid molecules. The AFM topology scans of natural meibomian lipid films reveal a presence of fiber-like structures. The addition of ectoine causes an appearance of droplet-like structures which are hypothesized to be tri-acyl-glycerols and other hydrophobic components excluded from the lipid film. Further the material properties of the droplet-like structure with respect to the surrounding were determined by using the quantitative imaging mode of the AFM technique. The droplet-like structures were found to be comparatively softer than the surrounding. Based on the observations a preliminary hypothesis is proposed explaining the mechanism of action of ectoine leading to the fluidization of meibomian lipid films. This suggests the possibility of ectoine as a treatment for the dry eye syndrome.

  12. Lipid vesicular nanocarrier: Quick encapsulation efficiency determination and transcutaneous application.

    PubMed

    Zhang, Yibang; Ng, Weibeng; Feng, Xue; Cao, Fangying; Xu, Huaxi

    2017-01-10

    Nanoscale delivery systems have been widely investigated to overcome the penetration barrier of stratum corneum for effective transcutaneous application. The aim of this study is the development of effective vesicular formulations of ovalbumin and saponin which are able to promote penetration through the skin layers. Three kinds of vesicular formulations have been investigated as carriers, including liposomes, transfersomes and ethosomes, in which cholesterol and/or cationic lipid stearylamine are incorporated. The impact of membrane composition variations on the protein entrapment has been evaluated for each vesicle type. Formulations were characterized for particle size, polydispersity and encapsulation efficiency. The best formulations for each type of vesicle were subjected to in vivo transdermal immunization in mice. Among the three kinds of vesicular carrier, ethosomal nano carrier not only showed the best stability over a two months' storage, but also enabled the highest increase in the titer of serum antibody. In this regard, cationic nano-ethosomes can be considered as a promising vesicular carrier for transdermal vaccines. Meanwhile, we have developed a simple method to determine encapsulation efficiency of vesicular systems, which has potential application as a high throughput screening for vesicular formulations.

  13. Early determinants of development: a lipid perspective1234

    PubMed Central

    Carlson, Susan E

    2009-01-01

    This article results from an International Life Sciences Institute workshop on early nutritional determinants of health and development. The presentation on lipids focused mainly on the longer-chain products of the essential fatty acids, particularly docosahexaenoic acid (22:6n–3), and cognitive development as among the most studied lipids and outcomes, respectively, in early human nutrition. Because there have been several recent reviews on this topic, the present review takes a broader perspective with respect to both early development and lipids: an expanded research agenda is plausible on the basis of observations from some human studies and from animal studies. Other lipids known to be provided in variable amounts to infants through human milk are cholesterol and gangliosides. Short sections address the current state of knowledge and some questions that could be pursued. PMID:19321568

  14. Normal and lateral forces between lipid covered solids in solution: correlation with layer packing and structure.

    PubMed Central

    Grant, L M; Tiberg, F

    2002-01-01

    We report on the normal and lateral forces between controlled-density mono- and bilayers of phospholipid co-adsorbed onto hydrophobic and hydrophilic solid supports, respectively. Interactions between 1,2-dioleoyl-sn-glycero-3-phosphocholine layers were measured using an atomic force microscope. Notable features of the normal force curves (barrier heights and widths) were found to correlate with the thickness and density of the supported lipid layers. The friction and normal force curves were also found interrelated. Thus, very low friction values were measured as long as the supported layer(s) resisted the normal pressure of the tip. However, as the applied load exceeded the critical value needed for puncturing the layers, the friction jumped to values close to those recorded between bare surfaces. The lipid layers were self-healing between measurements, but a significant hysteresis was observed in the force curves measured on approach and retraction, respectively. The study shows the potential of using atomic force microscopy for lipid layer characterization both with respect to structure and interactions. It further shows the strong lubricating effect of adsorbed lipid layers and how this varies with surface density of lipids. The findings may have important implications for the issue of joint lubrication. PMID:11867453

  15. Determining the pivotal plane of fluid lipid membranes in simulations

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Deserno, Markus

    2015-10-01

    Each leaflet of a curved lipid membrane contains a surface at which the area strain vanishes, the so-called pivotal plane. Its distance z0 from the bilayer's midplane arises in numerous contexts, for instance the connection between monolayer and bilayer moduli, stress-profile moments, or area-difference elasticity theories. Here, we propose two precise methods for determining the location of the pivotal plane in computer simulations, both of which rely on monitoring the lipid imbalance across a curved bilayer. The first method considers the ratio of lipid number between the two leaflets of cylindrical or spherical vesicles; it hence requires lipid flip-flop for equilibration. The second method looks at the leaflet difference across local sections cut out from a buckled membrane; this observable equilibrates even in the absence of flip-flop. We apply our methods to two different coarse-grained lipid models, the generic three-bead solvent-free Cooke model and a ten-bead representation of dimyristoylphosphocholine with the explicit solvent MARTINI model. The Cooke model is amenable to both methods and gives results that agree at the percent level. Using it, we also show that the pivotal plane moves outward as lipid curvature becomes more positive. The MARTINI model can only be analyzed with the buckling method; the obtained value z0 = 0.850(11) nm lies about 0.4 nm inwards of the glycerol backbone and is hence unexpectedly small. We attribute this to limitations of the coarse-grained description, suggesting that the location of the pivotal plane might be a good indicator for how well lipid models capture the microscopic origins of curvature elasticity. Finally, we also show that the pivotal plane position itself moves as the membrane is bent. The leading correction is linear in curvature, dependent on the Poisson ratio, and can matter when analyzing experimental results obtained from highly curved inverse hexagonal phases.

  16. A preliminary investigation into the relationship between ocular surface temperature and lipid layer thickness.

    PubMed

    Giraldez, Maria Jesus; Naroo, Shehzad A; Resua, Carlos Garcia

    2009-08-01

    The aim of this study was to establish the relationship between OST, tear film stability as assessed by NIBUT and subjective evaluation of the lipid layer thickness in a young, asymptomatic, sample group (N=29). Non-invasive tear break-up time (NIBUT) and tear lipid layer structure were evaluated through a slit-lamp mounted Tearscope Plus. A self-calibrating infrared thermography camera was used to record two OST values (one immediately post-blink and one immediately pre the subsequent blink). The most common lipid layer pattern observed was the amorphous pattern (48.3%). Differences between post- and pre-blink OST values were observed (paired t-test; p<0.001). Significant differences of pre-blink OST values were observed between the closed marmoreal group with that from the amorphous and flow groups (Tukey post hoc test, p<0.05). There were no differences of NIBUT values between each lipid layer thickness (Kruskal-Wallis test; p=0.152). A no significant tendency for higher OST in eyes with increased NIBUT was observed. This study suggests that higher OST values could be associated with thicker tear lipid layer in normal subjects. The lack of significant results in relation with tear film stability may be due to only normal subjects were included.

  17. Four Characteristics and a Model of an Effective Tear Film Lipid Layer (TFLL)

    PubMed Central

    King-Smith, P. Ewen; Bailey, Melissa D.; Braun, Richard J.

    2015-01-01

    It is proposed that a normal, effective tear film lipid layer (TFLL) should have the following four characteristics: 1) high evaporation resistance to prevent water loss and consequent hyperosmolarity; 2) respreadability, so it will return to its original state after the compression-expansion cycle of the blink; 3) fluidity sufficient to avoid blocking secretion from meibomian glands; 4) gel-like and incompressible structure that can resist forces that may tend to disrupt it. These characteristics tend to be incompatible; for example, lipids that form good evaporation barriers tend to be disrupted by compression-expansion cycles. It is noted that clues about the function and organization of the TFLL can be obtained by comparison with other biological lipid layers, such as lung surfactant and the lipid evaporation barrier of the skin. In an attempt to satisfy the conflicting characteristics, a “multilamellar sandwich model” of the TFLL is proposed, having features in common with the skin evaporation barrier. PMID:24112227

  18. Tear lipid layer thickness with eye drops in meibomian gland dysfunction

    PubMed Central

    Fogt, Jennifer S; Kowalski, Matthew J; King-Smith, P Ewen; Epitropolous, Alice T; Hendershot, Andrew J; Lembach, Carrie; Maszczak, John Paul; Jones-Jordan, Lisa A; Barr, Joseph T

    2016-01-01

    Purpose The aim of this study was to evaluate the efficacy of a lipid containing emollient eye drop, Soothe XP, which was reformulated in 2014 with a more stable preservative and buffer system, compared to a control, non-emollient, eye drop (Systane Ultra) in improving lipid layer thickness (LLT) in subjects with dry eye due to meibomian gland dysfunction (MGD). Patients and methods This prospective single-center, open-label, cross-over, examiner masked-study enrolled subjects aged 30–75 years with lipid-deficient dry eye and a clinical diagnosis of MGD as determined by a slit lamp examination, an evaluation of meibomian gland drop out with meibography, and a standard patient evaluation of eye dryness questionnaire of >5. Eligibility was then determined by a LLT of <75 nm at baseline and the inability to increase LLT ≥15 nm with three blinks, as determined by interferometric methods. Subjects were randomized to receive a single emollient or non-emollient eye drop at Visit 1 and were crossed over for the alternate treatment at Visit 2. At each visit, LLT was measured prior to and 15 minutes following the instillation of the assigned eye drop. The primary endpoint was the change in LLT from baseline. Results Subjects (n=40) were enrolled and 35 completed the two study arms. Mean (±SD) patient age was 55.7 years (10.9) and 69% were female. Mean (±SD) LLT at baseline was 49.5 nm (9.2). Instillation of Soothe XP resulted in an increase in LLT to 77.5 nm (29.3) 15 minutes following drop instillation, which is an increase of 28.0 nm (27.4) (P<0.001). In contrast, LLT 15 minutes after the instillation of Systane Ultra was 50.8 nm (14.1), which was not statistically significant when compared to the baseline LLT. Conclusion In this study of subjects with MGD, the emollient, or lipid containing eye drop, increased the LLT of tears when measured 15 minutes after instilling a single eye drop. PMID:27853352

  19. Analysis and quantification of plant membrane lipids by thin-layer chromatography and gas chromatography.

    PubMed

    Wewer, Vera; Dörmann, Peter; Hölzl, Georg

    2013-01-01

    Galactolipids represent the predominant membrane lipid class in plants. In general, galactolipids are restricted to plastids, but during phosphate deficiency, they also accumulate in extraplastidial membranes. Two groups of plants can be distinguished based on the presence of a specific fatty acid, hexadecatrienoic acid (16:3), in chloroplast lipids. Plants that contain galactolipids with 16:3 acids are designated "16:3-plants"; the other group of plants which lack 16:3 contain mostly 18:3 in their galactolipids ("18:3-plants"). The methods in this chapter describe the extraction of membrane lipids from whole leaves, or from subcellular fractions, and their analysis via thin-layer chromatography (TLC) with different staining methods. Furthermore, a protocol for membrane lipid quantification is presented starting with the separation via TLC, transmethylation of the isolated lipids to fatty acid methyl esters, and their quantitative analysis via gas chromatography (GC).

  20. Releasable layer-by-layer assembly of stabilized lipid nanocapsules on microneedles for enhanced transcutaneous vaccine delivery.

    PubMed

    DeMuth, Peter C; Moon, James J; Suh, Heikyung; Hammond, Paula T; Irvine, Darrell J

    2012-09-25

    Here we introduce a new approach for transcutaneous drug delivery, using microneedles coated with stabilized lipid nanocapsules, for delivery of a model vaccine formulation. Poly(lactide-co-glycolide) microneedle arrays were coated with multilayer films via layer-by-layer assembly of a biodegradable cationic poly(β-amino ester) (PBAE) and negatively charged interbilayer-cross-linked multilamellar lipid vesicles (ICMVs). To test the potential of these nanocapsule-coated microneedles for vaccine delivery, we loaded ICMVs with a protein antigen and the molecular adjuvant monophosphoryl lipid A. Following application of microneedle arrays to the skin of mice for 5 min, (PBAE/ICMV) films were rapidly transferred from microneedle surfaces into the cutaneous tissue and remained in the skin following removal of the microneedle arrays. Multilayer films implanted in the skin dispersed ICMV cargos in the treated tissue over the course of 24 h in vivo, allowing for uptake of the lipid nanocapsules by antigen presenting cells in the local tissue and triggering their activation in situ. Microneedle-mediated transcutaneous vaccination with ICMV-carrying multilayers promoted robust antigen-specific humoral immune responses with a balanced generation of multiple IgG isotypes, whereas bolus delivery of soluble or vesicle-loaded antigen via intradermal injection or transcutaneous vaccination with microneedles encapsulating soluble protein elicited weak, IgG(1)-biased humoral immune responses. These results highlight the potential of lipid nanocapsules delivered by microneedles as a promising platform for noninvasive vaccine delivery applications.

  1. Biomimetic interfaces based on S-layer proteins, lipid membranes and functional biomolecules

    PubMed Central

    Schuster, Bernhard; Sleytr, Uwe B.

    2014-01-01

    Designing and utilization of biomimetic membrane systems generated by bottom-up processes is a rapidly growing scientific and engineering field. Elucidation of the supramolecular construction principle of archaeal cell envelopes composed of S-layer stabilized lipid membranes led to new strategies for generating highly stable functional lipid membranes at meso- and macroscopic scale. In this review, we provide a state-of-the-art survey of how S-layer proteins, lipids and polymers may be used as basic building blocks for the assembly of S-layer-supported lipid membranes. These biomimetic membrane systems are distinguished by a nanopatterned fluidity, enhanced stability and longevity and, thus, provide a dedicated reconstitution matrix for membrane-active peptides and transmembrane proteins. Exciting areas in the (lab-on-a-) biochip technology are combining composite S-layer membrane systems involving specific membrane functions with the silicon world. Thus, it might become possible to create artificial noses or tongues, where many receptor proteins have to be exposed and read out simultaneously. Moreover, S-layer-coated liposomes and emulsomes copying virus envelopes constitute promising nanoformulations for the production of novel targeting, delivery, encapsulation and imaging systems. PMID:24812051

  2. Biomimetic interfaces based on S-layer proteins, lipid membranes and functional biomolecules.

    PubMed

    Schuster, Bernhard; Sleytr, Uwe B

    2014-07-06

    Designing and utilization of biomimetic membrane systems generated by bottom-up processes is a rapidly growing scientific and engineering field. Elucidation of the supramolecular construction principle of archaeal cell envelopes composed of S-layer stabilized lipid membranes led to new strategies for generating highly stable functional lipid membranes at meso- and macroscopic scale. In this review, we provide a state-of-the-art survey of how S-layer proteins, lipids and polymers may be used as basic building blocks for the assembly of S-layer-supported lipid membranes. These biomimetic membrane systems are distinguished by a nanopatterned fluidity, enhanced stability and longevity and, thus, provide a dedicated reconstitution matrix for membrane-active peptides and transmembrane proteins. Exciting areas in the (lab-on-a-) biochip technology are combining composite S-layer membrane systems involving specific membrane functions with the silicon world. Thus, it might become possible to create artificial noses or tongues, where many receptor proteins have to be exposed and read out simultaneously. Moreover, S-layer-coated liposomes and emulsomes copying virus envelopes constitute promising nanoformulations for the production of novel targeting, delivery, encapsulation and imaging systems.

  3. Binding of DNA to zwitterionic lipid layers mediated by divalent cations.

    PubMed

    Mengistu, Demmelash H; Bohinc, Klemen; May, Sylvio

    2009-09-10

    Divalent cations, i.e., calcium, magnesium, and others, are able to enhance the ability of DNA to interact with membranes that are composed of zwitterionic lipids such as phosphatidylcholine. The resulting condensed complexes offer potential applications as nontoxic gene delivery vehicles. The present study suggests a generic theoretical model to describe the energetics and structural features of a zwitterionic lipid-DNA complex in the presence of divalent cations. Specifically, we consider the adsorption of a single molecule of double-stranded DNA onto a planar zwitterionic lipid layer. Our theoretical model is based on the continuum Poisson-Boltzmann formalisms, which we modified so as to account for the two opposite charges and orientational freedom of the zwitterionic lipid headgroups. We find a substantially more favorable adsorption free energy of the DNA if divalent cations are present. In addition, our model predicts the divalent cations to preferentially interact with the phosphate groups of the zwitterionic lipids, given these lipids are located in close vicinity to the DNA. This is accompanied by a small but notable reorientation of the zwitterionic headgroups toward the DNA. We demonstrate that the binding of DNA onto a zwitterionic lipid layer is not driven by the release of counterions. Instead, the binding leads to a partial redistribution of the divalent cations, from the phosphate groups of the DNA (prior to the binding) to the phosphate groups of the zwitterionic lipids (after the binding). Our results thus suggest a general physical mechanism underlying complex formation between DNA and zwitterionic lipids in terms of mean-field electrostatics, i.e., neither involving correlations nor specific interactions of the divalent cations.

  4. Biophysical investigations of the structure and function of the tear fluid lipid layers and the effect of ectoine. Part B: artificial lipid films.

    PubMed

    Dwivedi, Mridula; Brinkkötter, Marc; Harishchandra, Rakesh Kumar; Galla, Hans-Joachim

    2014-10-01

    The tear fluid lipid layer is present at the outermost part of the tear film which lines the ocular surface and functions to maintain the corneal surface moist by retarding evaporation. Instability in the structure of the tear fluid lipid layer can cause an increased rate of evaporation and thus dry eye syndrome. Ectoine has been previously shown to fluidize lipid monolayers and alter the phase behavior. In the current study we have investigated the effect of ectoine on the artificial tear fluid lipid layer composed of binary and ternary lipid mixtures of dipalmitoyl phosphatidylcholine (DPPC), cholesteryl esters and tri-acyl-glycerols. The focus of our study was mainly the structural and the biophysical aspects of the artificial tear fluid lipid layer using surface activity studies and topology analysis. The presence of ectoine consistently causes an expansion of the pressure-area isotherm indicating increased intermolecular spacing. The topology studies showed the formation of droplet-like structures due to the addition of ectoine only when tri-acyl-glycerol is present in the mixture of DPPC and chol-palmitate, similar to the natural meibomian lipids. Consequently, the hypothesis of an exclusion of tri/di-acyl-glycerol from the meibomian lipid film in the presence of ectoine in the subphase is confirmed. A model describing the effect of ectoine on meibomian lipid films is further presented which may have an application for the use of ectoines in eye drops as a treatment for the dry eye syndrome.

  5. Releasable Layer-by-Layer Assembly of Stabilized Lipid Nanocapsules on Microneedles for Enhanced Transcutaneous Vaccine Delivery

    PubMed Central

    DeMuth, Peter C.; Moon, James J.; Suh, Heikyung; Hammond, Paula T.; Irvine, Darrell J.

    2012-01-01

    Here we introduce a new approach for transcutaneous drug delivery, using microneedles coated with stabilized lipid nanocapsules for delivery of a model vaccine formulation. Poly(lactide-co-glycolide) (PLGA) microneedle arrays were coated with multilayer films via layer-by-layer (LbL) assembly of a biodegradable cationic poly(β-amino ester) (PBAE) and negatively-charged interbilayer-crosslinked multilamellar lipid vesicles (ICMVs). To test the potential of these nanocapsule-coated microneedles for vaccine delivery, we loaded ICMVs with a protein antigen and the molecular adjuvant monophosphoryl lipid A (MPLA). Following application of microneedle arrays to the skin of mice for 5 minutes, (PBAE/ICMV) films were rapidly transferred from microneedle surfaces into the cutaneous tissue, and remained in the skin following removal of the microneedle arrays. Multilayer films implanted in the skin dispersed ICMV cargos in the treated tissue over the course of 24 hours in vivo, allowing for uptake of the lipid nanocapsules by antigen presenting cells (APCs) in the local tissue and triggering their activation in situ. Microneedle-mediated transcutaneous vaccination with ICMV-carrying multilayers promoted robust antigen-specific humoral immune responses with a balanced generation of multiple IgG isotypes, whereas bolus delivery of soluble or vesicle-loaded antigen via intradermal injection or transcutaneous vaccination with microneedles encapsulating soluble protein elicited weak, IgG1-biased humoral immune responses. These results highlight the potential of lipid nanocapsules delivered by microneedles as a promising platform for non-invasive vaccine delivery applications. PMID:22920601

  6. Surface enhanced Raman spectroscopy of self-assembled layers of lipid molecules on nanostructured Au and Ag substrates.

    PubMed

    Slekiene, Nora; Ramanauskaite, Lina; Snitka, Valentinas

    2017-03-01

    In this work surface enhanced Raman spectroscopy (SERS) has been used for the investigation of the self-assembled layers of lipid molecules (SALLMs) deposited on the nanostructured Au and Ag surfaces. The SALLMs were prepared from one part of 1,2-dioleoyl-sn-glycero-3-phospho-l-serine (DOPS) and four parts of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) lipids. The synthesis of Au and Ag SERS substrates was based on the direct gold and silver ions reduction onto HF etched silicon wafers. Au SERS substrates were not suitable for the formation of SALLMs because of the inappropriate contact angle of surface. It was found that the formation of the SALLM does not take place on Au SERS substrate. However, it has been shown that the modification of Au SERS substrate with 1-dodecanothiol layer allows building the SALLM on its surface. In the case of Ag SERS substrate, the SALLM was deposited directly on its surface. The SERS spectra of the SALLMs were recorded in the CH stretching (2800-3000cm(-1)) and the fingerprint (<1.800cm(-1)) regions. It has been demonstrated that the SERS spectra of the SALLM recorded on Au substrate differs from that one recorded on Ag SERS substrate. These spectral differences were found to be determined by the different interaction mechanisms of the lipid molecules with nanostructured surfaces.

  7. Lipids from the nacreous and prismatic layers of two Pteriomorpha Mollusc shells

    NASA Astrophysics Data System (ADS)

    Farre, B.; Dauphin, Y.

    2009-04-01

    Mollusc shells are the best-known Ca-carbonate biominerals. They are commonly described as a mineralized two layered structure: an outer layer composed of calcite prismatic units, and an internal layer composed of tablets of aragonite: the nacreous layer. An external organic layer (periostracum) is present in most taxa. However, the most common structure in the Mollusc shell is the aragonite crossed lamellar layer, but aragonite prisms, calcite foliated layers and homogeneous layers have been also described by Boggild (1930) in all the Mollusc orders. Since, more detailed descriptions of Bivalve shells have been done (Taylor et al., 1969, 1973). Despite the nacroprismatic arrangement is rare, calcite prismatic and aragonite nacreous layers are the best studied because of their simple 3D structure and large units. Among these Molluscs, some Bivalve species composed of these two layers are of commercial interest, such as the pearl oyster, Pinctada margaritifera, cultivated in French Polynesia to produce black pearls. It is well established that Mollusc shells are composite structures of organic and inorganic components (Hatchett, 1799; Grégoire et al., 1955; Beedham, 1958; Simkiss, 1965; Mutvei, 1969; Cuif et al., 1980; Berman et al., 1993; Kobayashi and Samata, 2006). Numerous studies are concerned with the organic matrix of the shell. Organic components are commonly obtained after a strong or mild decalcification process. They are said to consist of both a soluble and insoluble fraction. The main part of studies is dedicated to the soluble components, and among them, proteins (Grégoire et al., 1955; Grégoire, 1961; Krampitz et al., 1976; Samata et al., 1980, 2004; Weiner, 1983; Miyamoto et al., 2006). Despite the pioneering work of Wada (1980) sugars are usually neglected despite their role in biomineralization. The third component of the organic matrix of calcareous biominerals is lipids. To date, there is a paucity of information concerning the presence

  8. Lipid modification gives rise to two distinct Haloferax volcanii S-layer glycoprotein populations.

    PubMed

    Kandiba, Lina; Guan, Ziqiang; Eichler, Jerry

    2013-03-01

    The S-layer glycoprotein is the sole component of the protein shell surrounding Haloferax volcanii cells. The deduced amino acid sequence of the S-layer glycoprotein predicts the presence of a C-terminal membrane-spanning domain. However, several earlier observations, including the ability of EDTA to selectively solubilize the protein, are inconsistent with the presence of a trans-membrane sequence. In the present report, sequential solubilization of the S-layer glycoprotein by EDTA and then with detergent revealed the existence of two distinct populations of the S-layer glycoprotein. Whereas both S-layer glycoprotein populations underwent signal peptide cleavage and N-glycosylation, base hydrolysis followed by mass spectrometry revealed that a lipid, likely archaetidic acid, modified only the EDTA-solubilized version of the protein. These observations are consistent with the S-layer glycoprotein being initially synthesized as an integral membrane protein and subsequently undergoing a processing event in which the extracellular portion of the protein is separated from the membrane-spanning domain and transferred to a waiting lipid moiety.

  9. Probing Peptide and Protein Insertion in a Biomimetic S-Layer Supported Lipid Membrane Platform

    PubMed Central

    Damiati, Samar; Schrems, Angelika; Sinner, Eva-Kathrin; Sleytr, Uwe B.; Schuster, Bernhard

    2015-01-01

    The most important aspect of synthetic lipid membrane architectures is their ability to study functional membrane-active peptides and membrane proteins in an environment close to nature. Here, we report on the generation and performance of a biomimetic platform, the S-layer supported lipid membrane (SsLM), to investigate the structural and electrical characteristics of the membrane-active peptide gramicidin and the transmembrane protein α-hemolysin in real-time using a quartz crystal microbalance with dissipation monitoring in combination with electrochemical impedance spectroscopy. A shift in membrane resistance is caused by the interaction of α-hemolysin and gramicidin with SsLMs, even if only an attachment onto, or functional channels through the lipid membrane, respectively, are formed. Moreover, the obtained results did not indicate the formation of functional α-hemolysin pores, but evidence for functional incorporation of gramicidin into this biomimetic architecture is provided. PMID:25633104

  10. Development of "all natural" layer-by-layer redispersible solid lipid nanoparticles by nano spray drying technology.

    PubMed

    Wang, Taoran; Hu, Qiaobin; Zhou, Mingyong; Xia, Yan; Nieh, Mu-Ping; Luo, Yangchao

    2016-10-01

    Solid lipid nanoparticles (SLNs) have gained tremendous attraction as carriers for controlled drug delivery. Despite numerous advances in the field, one long-standing historical challenge for their practical applications remains unmet: redispersibility after drying. In this work, a novel design of SLNs using a layer-by-layer (LbL) technique was developed and the formulations were optimized by surface response methodology (Box-Behnken design). To the best of our knowledge, this is the first study reporting the fabrication of SLNs from all natural ingredients in the absence of any synthetic surfactants or coatings. The SLNs were prepared by a combined solvent-diffusion and hot homogenization method, with soy lecithin as natural emulsifier (first layer), followed by the subsequent coating with sodium caseinate (second layer) and pectin (third layer), both of which are natural food biopolymers. The adsorption of pectin coating onto caseinate was reinforced by hydrophobic and electrostatic interactions induced by a pH-driven process along with thermal treatment. The innovative nano spray drying technology was further explored to obtain ultra-fine powders of SLNs. Compared to uncoated or single-layer coated SLNs powders, which showed severe aggregation after spray drying, the well-separated particles with spherical shape and smooth surface were obtained for layer-by-layer (LbL) SLNs, which were redispersible into water without variation of dimension, shape and morphology. The SLNs were characterized by Fourier transform infrared and high-performance differential scanning calorimetry for their physical properties. The LbL-coated SLNs based on all natural ingredients have promising features for future applications as drug delivery systems, overcoming the major obstacles in conventional spray drying and redispersing SLNs-based formulations.

  11. Tear-film lipid layer morphology and corneal sensation in the development of blinking in neonates and infants

    PubMed Central

    Lawrenson, John G; Birhah, Rosalind; Murphy, Paul J

    2005-01-01

    The aim of the study was to evaluate the role of lipid layer thickness and corneal sensation in the development of blinking in neonates. The study group comprised sixty-four neonates and infants (mean age 27.5 ± 15 (sd) weeks, range 3.4–52) whose mothers were attending a general practice healthy baby clinic. Spontaneous eye-blink activity was determined from digital videographic recordings; tear film lipid layer morphology wasexamined using interference patterns produced by the Keeler Tearscope™ Plus over a five-point grading scale (higher grades are associated with thick and stable lipid films); corneal sensation threshold was assessed with the Non-Contact Corneal Aesthesiometer (NCCA), using the eye-blink response as an objective indication that the cooling stimulus had been felt; palpebral aperture dimensions were measured using calibrated digital still images of the eye in the primary position. The overall mean spontaneous blink-rate was found to be 3.6 (± 0.3) blinks min−1, and the mean interblink time was 21.6 (± 2.8) s. The lowest blink-rates were observed in the 0–17-week age group (average 2 blinks min−1). The blink-rate showed a highly significant correlation with age (r = 0.46, P < 0.01). The overall mean lipid layer grading was 3.6 (± 0.2 SE) arbitrary units. Higher grades were found in the newborn and the mean grading score reduced with age (P < 0.01). The mean sensation threshold to blink (TTB) was 0.69 (0.04 SE) mbar, which did not differ from a control group of older subjects (P > 0.05). There was a rapid increase in palpebral aperture length and width from birth to 1 year old, with surface area increasing by 50% over the same period. We concluded that the low rate of spontaneous eye blink activity in neonates is associated with a thick stable lipid layer that may be a function of a small palpebral aperture. Furthermore, neonates appear to have the capacity to detect ocular surface cooling, which is a major trigger for spontaneous

  12. Lipid modification of proteins in Archaea: attachment of a mevalonic acid-based lipid moiety to the surface-layer glycoprotein of Haloferax volcanii follows protein translocation.

    PubMed Central

    Konrad, Zvia; Eichler, Jerry

    2002-01-01

    Once the newly synthesized surface (S)-layer glycoprotein of the halophilic archaeaon Haloferax volcanii has traversed the plasma membrane, the protein undergoes a membrane-related, Mg(2+)-dependent maturation event, revealed as an increase in the apparent molecular mass and hydrophobicity of the protein. To test whether lipid modification of the S-layer glycoprotein could explain these observations, H. volcanii cells were incubated with a radiolabelled precursor of isoprene, [(3)H]mevalonic acid. In Archaea, isoprenoids serve as the major hydrophobic component of archaeal membrane lipids and have been shown to modify other haloarchaeal S-layer glycoproteins, although little is known of the mechanism, site or purpose of such modification. In the present study we report that the H. volcanii S-layer glycoprotein is modified by a derivative of mevalonic acid and that maturation of the protein was prevented upon treatment with mevinolin (lovastatin), an inhibitor of mevalonic acid biosynthesis. These findings suggest that lipid modification of S-layer glycoproteins is a general property of halophilic archaea and, like S-layer glycoprotein glycosylation, lipid-modification of the S-layer glycoproteins takes place on the external cell surface, i.e. following protein translocation across the membrane. PMID:12069685

  13. Thermal stability of ladderane lipids as determined by hydrous pyrolysis

    USGS Publications Warehouse

    Jaeschke, A.; Lewan, M.D.; Hopmans, E.C.; Schouten, S.; Sinninghe, Damste J.S.

    2008-01-01

    Anaerobic ammonium oxidation (anammox) has been recognized as a major process resulting in loss of fixed inorganic nitrogen in the marine environment. Ladderane lipids, membrane lipids unique to anammox bacteria, have been used as markers for the detection of anammox in marine settings. However, the fate of ladderane lipids after sediment burial and maturation is unknown. In this study, anammox bacterial cell material was artificially matured by hydrous pyrolysis at constant temperatures ranging from 120 to 365 ??C for 72 h to study the stability of ladderane lipids during progressive dia- and catagenesis. HPLC-MS/MS analysis revealed that structural alterations of ladderane lipids already occurred at 120 ??C. At temperatures >140 ??C, ladderane lipids were absent and only more thermally stable products could be detected, i.e., ladderane derivatives in which some of the cyclobutane rings were opened. These diagenetic products of ladderane lipids were still detectable up to temperatures of 260 ??C using GC-MS. Thus, ladderane lipids are unlikely to occur in ancient sediments and sedimentary rocks, but specific diagenetic products of ladderane lipids will likely be present in sediments and sedimentary rocks of relatively low maturity (i.e., C31 hopane 22S/(22S + 22R) ratio 0.5). ?? 2008 Elsevier Ltd.

  14. Lipid bilayer thickness determines cholesterol's location in model membranes

    SciTech Connect

    Marquardt, Drew; Heberle, Frederick A.; Greathouse, Denise V.; Koeppe, II, Roger E.; Standaert, Robert F.; Van Oosten, Brad J.; Harroun, Thad A.; Kinnun, Jacob J.; Williams, Justin A.; Wassall, Stephen R.; Katsaras, John

    2016-10-11

    Cholesterol is an essential biomolecule of animal cell membranes, and an important precursor for the biosynthesis of certain hormones and vitamins. It is also thought to play a key role in cell signaling processes associated with functional plasma membrane microdomains (domains enriched in cholesterol), commonly referred to as rafts. In all of these diverse biological phenomena, the transverse location of cholesterol in the membrane is almost certainly an important structural feature. Using a combination of neutron scattering and solid-state 2H NMR, we have determined the location and orientation of cholesterol in phosphatidylcholine (PC) model membranes having fatty acids of different lengths and degrees of unsaturation. The data establish that cholesterol reorients rapidly about the bilayer normal in all the membranes studied, but is tilted and forced to span the bilayer midplane in the very thin bilayers. The possibility that cholesterol lies flat in the middle of bilayers, including those made from PC lipids containing polyunsaturated fatty acids (PUFAs), is ruled out. Finally, these results support the notion that hydrophobic thickness is the primary determinant of cholesterol's location in membranes.

  15. Lipid bilayer thickness determines cholesterol's location in model membranes

    DOE PAGES

    Marquardt, Drew; Heberle, Frederick A.; Greathouse, Denise V.; ...

    2016-10-11

    Cholesterol is an essential biomolecule of animal cell membranes, and an important precursor for the biosynthesis of certain hormones and vitamins. It is also thought to play a key role in cell signaling processes associated with functional plasma membrane microdomains (domains enriched in cholesterol), commonly referred to as rafts. In all of these diverse biological phenomena, the transverse location of cholesterol in the membrane is almost certainly an important structural feature. Using a combination of neutron scattering and solid-state 2H NMR, we have determined the location and orientation of cholesterol in phosphatidylcholine (PC) model membranes having fatty acids of differentmore » lengths and degrees of unsaturation. The data establish that cholesterol reorients rapidly about the bilayer normal in all the membranes studied, but is tilted and forced to span the bilayer midplane in the very thin bilayers. The possibility that cholesterol lies flat in the middle of bilayers, including those made from PC lipids containing polyunsaturated fatty acids (PUFAs), is ruled out. Finally, these results support the notion that hydrophobic thickness is the primary determinant of cholesterol's location in membranes.« less

  16. Spectroscopic study of 3-Hydroxyflavone - protein interaction in lipidic bi-layers immobilized on silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Voicescu, Mariana; Ionescu, Sorana; Nistor, Cristina L.

    2017-01-01

    The interaction of 3-Hydroxyflavone with serum proteins (BSA and HSA) in lecithin lipidic bi-layers (PC) immobilized on silver nanoparticles (SNPs), was studied by fluorescence and Raman spectroscopy. BSA secondary structure was quantified with a deconvolution algorithm, showing a decrease in α-helix structure when lipids were added to the solution. The effect of temperature on the rate of the excited-state intra-molecular proton transfer and on the dual fluorescence emission of 3-HF in the HSA/PC/SNPs systems was discussed. Evaluation of the antioxidant activity of 3-HF in HSA/PC/SNPs systems was also studied. The antioxidant activity of 3-HF decreased in the presence of SNPs. The results are discussed with relevance to the secondary structure of proteins and of the 3-HF based nano-systems to a topical formulation useful in the oxidative stress process.

  17. Automatic classification of the interferential tear film lipid layer using colour texture analysis.

    PubMed

    Remeseiro, B; Penas, M; Barreira, N; Mosquera, A; Novo, J; García-Resúa, C

    2013-07-01

    The tear film lipid layer is heterogeneous among the population. Its classification depends on its thickness and can be done using the interference pattern categories proposed by Guillon. This papers presents an exhaustive study about the characterisation of the interference phenomena as a texture pattern, using different feature extraction methods in different colour spaces. These methods are first analysed individually and then combined to achieve the best results possible. The principal component analysis (PCA) technique has also been tested to reduce the dimensionality of the feature vectors. The proposed methodologies have been tested on a dataset composed of 105 images from healthy subjects, with a classification rate of over 95% in some cases.

  18. A hydrated phospholipid polymer-grafted layer prevents lipid-related oxidative degradation of cross-linked polyethylene.

    PubMed

    Kyomoto, Masayuki; Moro, Toru; Yamane, Shihori; Takatori, Yoshio; Tanaka, Sakae; Ishihara, Kazuhiko

    2017-01-01

    The surface and substrate of a cross-linked polyethylene (CLPE) liner are designed to achieve resistance against oxidative degradation in the construction of hip joint replacements. In this study, we aimed to evaluate the oxidative degradation caused by lipid absorption of a highly hydrophilic nanometer-scaled thickness layer prepared by grafting a poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC) layer and a high-dose gamma-ray irradiated CLPE with vitamin E blending (HD-CLPE[VE]). The HD-CLPE(VE) and PMPC-grafted HD-CLPE(VE) exhibited extremely high oxidation resistance regardless of lipid absorption, even though residual-free radical levels were detectable. The water wettability of the PMPC-grafted CLPE and PMPC-grafted HD-CLPE(VE) surfaces was considerably greater than that of untreated surfaces. The hydrated PMPC-grafted layer also exhibited extremely low solubility for squalene. Lipids such as squalene and cholesterol esters diminished the oxidation resistance of CLPE despite the vitamin E improvement. Notably, the PMPC-grafted surface was resistant to lipid absorption and diffusion as well as subsequent lipid-related oxidative degradation, likely because of the presence of the hydrated PMPC-grafted layer. Together, these results provide preliminary evidence that the resistance against lipid absorption and diffusion of a hydrated PMPC-grafted layer might positively affect the extent of resistance to the in vivo oxidation of orthopedic implants.

  19. Engineering and validation of a novel lipid thin film for biomembrane modeling in lipophilicity determination of drugs and xenobiotics

    PubMed Central

    Idowu, Sunday Olakunle; Adeyemo, Morenikeji Ambali; Ogbonna, Udochi Ihechiluru

    2009-01-01

    Background Determination of lipophilicity as a tool for predicting pharmacokinetic molecular behavior is limited by the predictive power of available experimental models of the biomembrane. There is current interest, therefore, in models that accurately simulate the biomembrane structure and function. A novel bio-device; a lipid thin film, was engineered as an alternative approach to the previous use of hydrocarbon thin films in biomembrane modeling. Results Retention behavior of four structurally diverse model compounds; 4-amino-3,5-dinitrobenzoic acid (ADBA), naproxen (NPX), nabumetone (NBT) and halofantrine (HF), representing 4 broad classes of varying molecular polarities and aqueous solubility behavior, was investigated on the lipid film, liquid paraffin, and octadecylsilane layers. Computational, thermodynamic and image analysis confirms the peculiar amphiphilic configuration of the lipid film. Effect of solute-type, layer-type and variables interactions on retention behavior was delineated by 2-way analysis of variance (ANOVA) and quantitative structure property relationships (QSPR). Validation of the lipid film was implemented by statistical correlation of a unique chromatographic metric with Log P (octanol/water) and several calculated molecular descriptors of bulk and solubility properties. Conclusion The lipid film signifies a biomimetic artificial biological interface capable of both hydrophobic and specific electrostatic interactions. It captures the hydrophilic-lipophilic balance (HLB) in the determination of lipophilicity of molecules unlike the pure hydrocarbon film of the prior art. The potentials and performance of the bio-device gives the promise of its utility as a predictive analytic tool for early-stage drug discovery science. PMID:19735551

  20. Determining Membrane Protein-Lipid Binding Thermodynamics Using Native Mass Spectrometry.

    PubMed

    Cong, Xiao; Liu, Yang; Liu, Wen; Liang, Xiaowen; Russell, David H; Laganowsky, Arthur

    2016-04-06

    Membrane proteins are embedded in the biological membrane where the chemically diverse lipid environment can modulate their structure and function. However, the thermodynamics governing the molecular recognition and interaction of lipids with membrane proteins is poorly understood. Here, we report a method using native mass spectrometry (MS), to determine thermodynamics of individual ligand binding events to proteins. Unlike conventional methods, native MS can resolve individual ligand binding events and, coupled with an apparatus to control the temperature, determine binding thermodynamic parameters, such as for protein-lipid interactions. We validated our approach using three soluble protein-ligand systems (maltose binding protein, lysozyme, and nitrogen regulatory protein) and obtained similar results to those using isothermal titration calorimetry and surface plasmon resonance. We also determined for the first time the thermodynamics of individual lipid binding to the ammonia channel (AmtB), an integral membrane protein from Escherichia coli. Remarkably, we observed distinct thermodynamic signatures for the binding of different lipids and entropy-enthalpy compensation for binding lipids of variable chain length. Additionally, using a mutant form of AmtB that abolishes a specific phosphatidylglycerol (PG) binding site, we observed distinct changes in the thermodynamic signatures for binding PG, implying these signatures can identify key residues involved in specific lipid binding and potentially differentiate between specific lipid binding sites.

  1. Ionization behavior of amino lipids for siRNA delivery: determination of ionization constants, SAR, and the impact of lipid pKa on cationic lipid-biomembrane interactions.

    PubMed

    Zhang, Jingtao; Fan, Haihong; Levorse, Dorothy A; Crocker, Louis S

    2011-03-01

    Ionizable amino lipids are being pursued as an important class of materials for delivering small interfering RNA (siRNA) therapeutics, and research is being conducted to elucidate the structure-activity relationships (SAR) of these lipids. The pK(a) of cationic lipid headgroups is one of the critical physiochemical properties of interest due to the strong impact of lipid ionization on the assembly and performance of these lipids. This research focused on developing approaches that permit the rapid determination of the relevant pK(a) of the ionizable amino lipids. Two distinct approaches were investigated: (1) potentiometric titration of amino lipids dissolved in neutral surfactant micelles; and (2) pH-dependent partitioning of a fluorescent dye to cationic liposomes formulated from amino lipids. Using the approaches developed here, the pK(a) values of cationic lipids with distinct headgroups were measured and found to be significantly lower than calculated values. It was also found that lipid-lipid interaction has a strong impact on the pK(a) values of lipids. Lysis of model biomembranes by cationic lipids was used to evaluate the impact of lipid pK(a) on the interaction between cationic lipids and cell membranes. It was found that cationic lipid-biomembrane interaction depends strongly on lipid pK(a) and solution pH, and this interaction is much stronger when amino lipids are highly charged. The presence of an optimal pK(a) range of ionizable amino lipids for siRNA delivery was suggested based on these results. The pK(a) methods reported here can be used to support the SAR screen of cationic lipids for siRNA delivery, and the information revealed through studying the impact of pK(a) on the interaction between cationic lipids and cell membranes will contribute significantly to the design of more efficient siRNA delivery vehicles.

  2. Interobserver and intraobserver repeatability of lipid layer pattern evaluation by two experienced observers

    NASA Astrophysics Data System (ADS)

    García-Resúa, Carlos; Pena-Verdeal, Hugo; Lira, Madalena; Penedo, Manuel G.; Giráldez, Maria Jesús; Yebra-Pimentel, Eva

    2013-11-01

    The lipid layer plays a major role in limiting evaporation of the tear film. Based on interference phenomena, there is a test directed to lipid layer pattern (LLP) evaluation, but is affected by subjective interpretation of the patterns. The aim of this study is to compare the LLP evaluation between two experienced observers on a group of healthy patients. Furthermore, the observers re-evaluated the same images in order to check their individual repeatability. LLP was examined using a Tearscope-plus (Keeler, Windsor, UK) attached to a slit lamp. Tear film was recorded by a Topcon DV-3 digital camera video and LLP images were captured. This yielded 124 LLP images that were categorized (based on Guillon's schema) by two expert observers in two sessions separated by one month. Interobserver repeatability and intraobserver repeatability between both sessions were studied by using Cohen's kappa coefficient. Comparing LLP categorization between both observers, Cohen's kappa coefficient was 0.615 and 0.633 for first and second session, respectively. When comparing LLP categorization by the same observer between both sessions, Cohen's kappa coefficient was 0.770 and 0.812 for Observer 1 and Observer 2. These results indicate substantial correlation in all cases [range of 0.61-0.80]. The most frequent misinterpretations were between open and closed meshwork and Wave and closed meshwork patterns. Although substantial correlation was found between categorizations of experienced observers, misinterpretation of the patters may appear even in the same observer. Some misinterpretations between adjacent patterns could be palliated by including intermediate patterns between those categories.

  3. Determination of HEat Capacity of Yucca Mountain Strtigraphic Layers

    SciTech Connect

    T. Hadgu; C. Lum; J.E. Bean

    2006-06-20

    The heat generated from the radioactive waste to be placed in the proposed geologic repository at Yucca Mountain, Nevada, will affect the thermal-hydrology of the Yucca Mountain stratigraphic layers. In order to assess the effect of the movement of repository heat into the fractured rocks accurate determination of thermodynamic and hydraulic properties is important. Heat capacity is one of the properties that are required to evaluate energy storage in the fractured rock. Rock-grain heat capacity, the subject of this study, is the heat capacity of the solid part of the rock. Yucca Mountain consists of alternating lithostratigraphic units of welded and non-welded ash-flow tuff, mainly rhyolitic in composition and displaying varying degrees of vitrification and alteration. A number of methods exist that can be used to evaluate heat capacity of the stratigraphic layers that consist of different compositions. In this study, the mineral summation method has been used to quantify the heat capacity of the stratigraphic layers based on Kopp's rule. The mineral summation method is an addition of the weighted heat capacity of each mineral found in a specific layer. For this study the weighting was done based on the mass percentage of each mineral in the layer. The method utilized a mineralogic map of the rocks at the Yucca Mountain repository site. The Calico Hills formation and adjacent bedded tuff layers display a bimodal mineral distribution of vitric and zeolitic zones with differing mineralogies. Based on this bimodal distribution in zeolite abundance, the boundary between the vitric and zeolitic zones was selected to be 15% zeolitic abundance. Thus, based on the zeolite abundance, subdivisions have been introduced to these layers into ''vitric'' and ''zeolitic'' zones. Heat capacity values have been calculated for these layers both as ''layer average'' and ''zone average''. The heat capacity determination method presented in this report did not account for spatial

  4. Combined thin layer chromatography and gas chromatography with mass spectrometric analysis of lipid classes and fatty acids in malnourished polar bears (Ursus maritimus) which swam to Iceland.

    PubMed

    Eibler, Dorothee; Krüger, Sabine; Skírnisson, Karl; Vetter, Walter

    2017-03-01

    Between 2008 and 2011, four polar bears (Ursus maritimus) from the Greenland population swam and/or drifted on ice to Iceland where they arrived in very poor body condition. Body fat resources in these animals were only between 0% and 10% of the body weight (usually 25%). Here we studied the lipid composition in different tissues (adipose tissue if available, liver, kidney and muscle). Lipid classes were determined by thin layer chromatography (TLC) and on-column gas chromatography with mass spectrometry (GC/MS). The fatty acid pattern of total lipids and free fatty acids was analyzed by GC/MS in selected ion monitoring (SIM) mode. Additionally, cholesteryl esters and native fatty acid methyl esters, initially detected as zones in thin layer chromatograms, were enriched by solid phase extraction and quantified by GC/MS. The ratio of free fatty acids to native fatty acid methyl esters could be correlated with the remained body lipids in the polar bears and thus may also serve as a marker for other starving animals or even for humans.

  5. Carbon and nitrogen abundances determined from transition layer lines

    NASA Technical Reports Server (NTRS)

    Boehm-Vitense, Erika; Mena-Werth, Jose

    1992-01-01

    The possibility of determining relative carbon, nitrogen, and silicon abundances from the emission-line fluxes in the lower transition layers between stellar chromospheres and coronae is explored. Observations for main-sequence and luminosity class IV stars with presumably solar element abundances show that for the lower transition layers Em = BT sup -gamma. For a given carbon abundance the constants gamma and B in this relation can be determined from the C II and C IV emission-line fluxes. From the N V and S IV lines, the abundances of these elements relative to carbon can be determined from their surface emission-line fluxes. Ratios of N/C abundances determined in this way for some giants and supergiants agree within the limits of errors with those determined from molecular bands. For giants, an increase in the ratio of N/C at B-V of about 0.8 is found, as expected theoretically.

  6. Determination of lipid asymmetry in human red cells by resonance energy transfer

    SciTech Connect

    Connor, J.; Schroit, A.J.

    1987-08-11

    This report describes the application of a resonance energy transfer assay to determine the transbilayer distribution of /sup 125/I-labelled 7-nitro-2,1,3-benzoxadiazol-4-yl (NBD)-labelled lipid analogues. The validity of this technique was established by determining the relationship between the distance of separation of lissamine rhodamine B labeled phosphatidylethanolamine (N-Rho-PE) acceptor lipid and NBD-labeled donor lipid and energy transfer efficiency. By determination of the distance between probes at 50% transfer efficiency (R/sub 0/), the distance between fluorophores distributed symmetrically (outer leaflet label) and asymmetrically in artificially generated vesicles was determined. Calculation of the average distance between probes revealed a 14-A difference between NBD-lipid and N-Rho-PE localized in the same leaflet and in opposing leaflets, respectively. Application of this technique to the study of the transbilayer distribution of NBD-lipid in human red blood cells (RBC) showed that exogenously supplied NBD-phosphatidylserine (NBD-PS) was selectively transported to the inner leaflet, whereas NBD-phosphatidylcholine remained in outer leaflet. In contrast, pretreatment of the RBC with diamide (a SH cross-linking reagent) blocked the transport of NBD-PS. The absence or presence of NBD-PS in the outer leaflet was independently verified by employing back-exchange, trinitrobenzenesulfonic acid derivatization, and decarboxylation with PS decarboxylase experiments. These control experiments yielded results which confirmed the lipid distributions determined by the resonance energy transfer assay.

  7. The design of naproxen solid lipid nanoparticles to target skin layers.

    PubMed

    Akbari, Jafar; Saeedi, Majid; Morteza-Semnani, Katayoun; Rostamkalaei, Seyyed Sohrab; Asadi, Masoumeh; Asare-Addo, Kofi; Nokhodchi, Ali

    2016-09-01

    The aim of the current investigation was to produce naproxen solid lipid nanoparticles (Nap-SLNs) by the ultrasonication method to improve its skin permeation and also to investigate the influence of Hydrophilic-lipophilic balance (HLB) changes on nanoparticles properties. The properties of obtained SLNs loaded with naproxen were characterized by photon correlation spectroscopy (PCS), transmission electron microscopy (TEM) and differential scanning calorimetry (DSC). FT-IR was also used to investigate any interaction between naproxen and the excipients used at the molecular level during the preparation of the SLNs. The performance of the formulations was investigated in terms of skin permeation and also the retention of the drug by the skin. It was found that generally, with increasing the lipid concentration, the average particle size and polydispersity index (PDI) of SLNs increased from 94.257±4.852nm to 143.90±2.685nm and from 0.293±0.037 to 0.525±0.038 respectively. The results also showed that a reduction in the HLB resulted in an increase in the PDI, particle size, zeta potential and entrapment efficiency (EE%). DSC showed that the naproxen encapsulated in the SLNs was in its amorphous form. The peaks of prominent functional groups of naproxen were found in the FT-IR spectra of naproxen-SLN, which confirmed the entrapment of naproxen in the lipid matrix. FT-IR results also ruled out any chemical interaction between drug and the chemicals used in the preparation of SLNs. The amount of naproxen detected in the receptor chamber at all the sampling times for the reference formulation (naproxen solution containing all surfactants at pH 7.4) was higher than that of the Nap-SLN8 formulation. Nap-SLN8 showed an increase in the concentration of naproxen in the skin layer with less systemic absorption. This indicates that most of the drug in Nap-SLN8 remains in the skin which can reduce the side effect of systemic absorption of the drug and increases the

  8. Fabrication of fracture-free nanoglassified substrates by layer-by-layer deposition with a paint gun technique for real-time monitoring of protein-lipid interactions.

    PubMed

    Linman, Matthew J; Culver, Sean P; Cheng, Quan

    2009-03-03

    New sensing materials that are robust, biocompatible, and amenable to array fabrication are vital to the development of novel bioassays. Herein we report the fabrication of ultrathin (ca. 5-8 nm) glass (silicate) layers on top of a gold surface for surface plasmon resonance (SPR) biosensing applications. The nanoglass layers are fabricated by layer-by-layer (LbL) deposition of poly(allylamine) hydrochloride (PAH) and sodium silicate (SiO(x)), followed by calcination at high temperature. To deposit these layers in a uniform and reproducible manner, we employed a high-volume, low-pressure (HVLP) paint gun technique that offers high precision and better control through pressurized nitrogen gas. The new substrates are stable in solution for a long period of time, and scanning electron microscopy (SEM) images confirm that these films are nearly fracture-free. In addition, atomic force microscopy (AFM) indicates that the surface roughness of the silicate layers is low (rms = 2 to 3 nm), similar to that of bare glass slides. By tuning the experimental parameters such as HVLP gun pressure and layers deposited, different surface morphology could be obtained as revealed by fluorescence microscopy and SEM images. To demonstrate the utility of these ultrathin, fracture-free substrates, lipid bilayer membranes composed of phosphorylated derivatives of phosphoinositides (PIs) were deposited on the new substrates for biosensing applications. Fluorescence recovery after photobleaching (FRAP) data indicated that these lipid components in the membranes were highly mobile. Furthermore, interactions of PtdIns(4,5)P2 and PtdIns(4)P lipids with their respective binding proteins were detected with high sensitivity by using SPR spectroscopy. This method of glass deposition can be combined with already well-developed surface chemistry for a range of planar glass assay applications, and the process is amenable to automation for mass production of nanometer thick silicate chips in a highly

  9. Chill-coma recovery time, age and sex determine lipid profiles in Ceratitis capitata tissues.

    PubMed

    Pujol-Lereis, Luciana Mercedes; Fagali, Natalia Soledad; Rabossi, Alejandro; Catalá, Ángel; Quesada-Allué, Luis Alberto

    2016-04-01

    The remodeling of membrane composition by changes in phospholipid head groups and fatty acids (FA) degree of unsaturation has been associated with the maintenance of membrane homeostasis under stress conditions. Overall lipid levels and the composition of cuticle lipids also influence insect stress resistance and tissue protection. In a previous study, we demonstrated differences in survival, behavior and Cu/Zn superoxide dismutase gene expression between subgroups of Ceratitis capitata flies that had a reversible recovery from chill-coma and those that developed chilling-injury. Here, we analyzed lipid profiles from comparable subgroups of 15 and 30-day-old flies separated according to their recovery time after a chill-coma treatment. Neutral and polar lipid classes of chill-coma subgroups were separated by thin layer chromatography and quantified by densitometry. FA composition of polar lipids of chill-coma subgroups and non-stressed flies was evaluated using gas chromatography coupled to mass spectrometry. Higher amounts of neutral lipids such as triglycerides, diacylglycerol, wax esters, sterol esters and free esters were found in male flies that recovered faster from chill-coma compared to slower flies. A multivariate analysis revealed changes in patterns of storage and cuticle lipids among subgroups both in males and females. FA unsaturation increased after cold exposure, and was higher in thorax of slower subgroups compared to faster subgroups. The changes in neutral lipid patterns and FA composition depended on recovery time, sex, age and body-part, and were not specifically associated with the development of chilling-injury. An analysis of phospholipid classes showed that the phosphatidylcholine to lysophosphatidylcholine ratio (PC/LPC) was significantly higher, or showed a tendency, in subgroups that may have developed chilling-injury compared to those with a reversible recovery from coma.

  10. Lipids that determine detergent resistance of MDCK cell membrane fractions.

    PubMed

    Manni, Marco M; Cano, Ainara; Alonso, Cristina; Goñi, Félix M

    2015-10-01

    A comparative lipidomic study has been performed of whole Madin-Darby canine kidney epithelial cells and of the detergent-resistant membrane fraction (DRM) obtained after treating the cells with the non-ionic detergent Triton X-100. The DRM were isolated following a standard procedure that is extensively used in cell biology studies. Significant differences were found in the lipid composition of the whole cells and of DRM. The latter were enriched in all the analyzed sphingolipid classes: sphingomyelins, ceramides and hexosylceramides. Diacylglycerols were also preferentially found in DRM. The detergent-resistant fraction was also enriched in saturated over unsaturated fatty acyl chains, and in sn-1 acyl chains containing 16 carbon atoms, over the longer and shorter ones. The glycerophospholipid species phosphatidylethanolamines and phosphatidylinositols, that were mainly unsaturated, did not show a preference for DRM. Phosphatidylcholines were an intermediate case: the saturated, but not the unsaturated species were found preferentially in DRM. The question remains on whether these DRM, recovered from detergent-membrane mixtures by floatation over a sucrose gradient, really correspond to membrane domains existing in the cell membrane prior to detergent treatment.

  11. Biomimetic biosensor based on lipidic layers containing tyrosinase and lutetium bisphthalocyanine for the detection of antioxidants.

    PubMed

    Apetrei, C; Alessio, P; Constantino, C J L; de Saja, J A; Rodriguez-Mendez, M L; Pavinatto, F J; Ramos Fernandes, E Giuliani; Zucolotto, V; Oliveira, O N

    2011-01-15

    This paper describes the preparation of a biomimetic Langmuir-Blodgett film of tyrosinase incorporated in a lipidic layer and the use of lutetium bisphthalocyanine as an electron mediator for the voltammetric detection of phenol derivatives, which include one monophenol (vanillic acid), two diphenols (catechol and caffeic acid) and two triphenols (gallic acid and pyrogallol). The first redox process of the voltammetric responses is associated with the reduction of the enzymatically formed o-quinone and is favoured by the lutetium bisphthalocyanine because significant signal amplification is observed, while the second is associated with the electrochemical oxidation of the antioxidant and occurs at lower potentials in the presence of an electron mediator. The biosensor shows low detection limit (1.98×10(-6)-27.49×10(-6) M), good reproducibility, and high affinity to antioxidants (K(M) in the range of 62.31-144.87 μM). The excellent functionality of the enzyme obtained using a biomimetic immobilisation method, the selectivity afforded by enzyme catalysis, the signal enhancement caused by the lutetium bisphthalocyanine mediator and the increased selectivity of the curves due to the occurrence of two redox processes make these sensors exceptionally suitable for the detection of phenolic compounds.

  12. Structural determinants of protein partitioning into ordered membrane domains and lipid rafts.

    PubMed

    Lorent, Joseph Helmuth; Levental, Ilya

    2015-11-01

    Increasing evidence supports the existence of lateral nanoscopic lipid domains in plasma membranes, known as lipid rafts. These domains preferentially recruit membrane proteins and lipids to facilitate their interactions and thereby regulate transmembrane signaling and cellular homeostasis. The functionality of raft domains is intrinsically dependent on their selectivity for specific membrane components; however, while the physicochemical determinants of raft association for lipids are known, very few systematic studies have focused on the structural aspects that guide raft partitioning of proteins. In this review, we describe biophysical and thermodynamic aspects of raft-mimetic liquid ordered phases, focusing on those most relevant for protein partitioning. Further, we detail the variety of experimental models used to study protein-raft interactions. Finally, we review the existing literature on mechanisms for raft targeting, including lipid post-translational modifications, lipid binding, and transmembrane domain features. We conclude that while protein palmitoylation is a clear raft-targeting signal, few other general structural determinants for raft partitioning have been revealed, suggesting that many discoveries lie ahead in this burgeoning field.

  13. Direct comparison of fatty acid ratios in single cellular lipid droplets as determined by Raman spectroscopy and gas chromatography

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cellular lipid droplets are the least studied and least understood cellular organelles in eukaryotic and prokaryotic cells. Despite a broad research trying to understand lipid droplets it has not been possible to determine the composition of individual cellular lipid droplets. In this paper we prese...

  14. Lidar determination of mixing layer height with high resolution

    NASA Astrophysics Data System (ADS)

    Martucci, Giovanni; Matthey, Renaud; Mitev, Valentin; Richner, Hans

    2005-10-01

    Ecological monitoring and analysis of the planetary boundary layer (PBL) dynamics require determination of the mixing layer height (MLH) on a continuous basis. In a number of cases it is necessary to determine the MLH with sufficiently high resolution - both altitude and temporal. The backscatter lidar provides a convenient tool for such determination, using the aerosol as tracer and determining its vertical profile and its time-evolution, with the capability for continuous measurements. Although methods already exist, based on the altitude derivative of the backscatter lidar signal (altitude Gradient method) and its time-variance (Variance method), the application of these methods with high resolution is limited by the background noise presence. We report here a further development of backscatter lidar gradient and variance methods for MLH determination, allowing higher resolutions. In it, the MLH determination from the gradient and the variance of the lidar signal is supported by a convenient filter technique. Time scale of increased temporal resolution allows the investigation of the fine atmospheric dynamic structures like convective motion. A number of examples in MLH retrieval are presented. The examples are based on backscatter lidar measurements performed in the PBL above Neuchatel, Switzerland (47.00°N, 6.95°S, 485m asl). The examples show the applicability and the usefulness of the reported technique in measurements of the daily cycle of the MLH dynamics.

  15. Organic matter in sediment layers of an acidic mining lake as assessed by lipid analysis. Part II: Neutral lipids.

    PubMed

    Poerschmann, Juergen; Koschorreck, Matthias; Górecki, Tadeusz

    2017-02-01

    Natural neutralization of acidic mining lakes is often limited by organic matter. The knowledge of the sources and degradability of organic matter is crucial for understanding alkalinity generation in these lakes. Sediments collected at different depths (surface sediment layer from 0 to 1 cm and deep sediment layer from 4 to 5cm) from an acidic mining lake were studied in order to characterize sedimentary organic matter based on neutral signature markers. Samples were exhaustively extracted, subjected to pre-chromatographic derivatizations and analyzed by GC/MS. Herein, molecular distributions of diagnostic alkanes/alkenes, terpenes/terpenoids, polycyclic aromatic hydrocarbons, aliphatic alcohols and ketones, sterols, and hopanes/hopanoids were addressed. Characterization of the contribution of natural vs. anthropogenic sources to the sedimentary organic matter in these extreme environments was then possible based on these distributions. With the exception of polycyclic aromatic hydrocarbons, combined concentrations across all marker classes proved higher in the surface sediment layer as compared to those in the deep sediment layer. Alkane and aliphatic alcohol distributions pointed to predominantly allochthonous over autochthonous contribution to sedimentary organic matter. Sterol patterns were dominated by phytosterols of terrestrial plants including stigmasterol and β-sitosterol. Hopanoid markers with the ββ-biohopanoid "biological" configuration were more abundant in the surface sediment layer, which pointed to higher bacterial activity. The pattern of polycyclic aromatic hydrocarbons pointed to prevailing anthropogenic input. Pyrolytic makers were likely to due to atmospheric deposition from a nearby former coal combustion facility. The combined analysis of the array of biomarkers provided new insights into the sources and transformations of organic matter in lake sediments.

  16. Promoting the selection and maintenance of fetal liver stem/progenitor cell colonies by layer-by-layer polypeptide tethered supported lipid bilayer.

    PubMed

    Lee, I-Chi; Liu, Yung-Chiang; Tsai, Hsuan-Ang; Shen, Chia-Ning; Chang, Ying-Chih

    2014-12-10

    In this study, we designed and constructed a series of layer-by-layer polypeptide adsorbed supported lipid bilayer (SLB) films as a novel and label-free platform for the isolation and maintenance of rare populated stem cells. In particular, four alternative layers of anionic poly-l-glutamic acid and cationic poly-l-lysine were sequentially deposited on an anionic SLB. We found that the fetal liver stem/progenitor cells from the primary culture were selected and formed colonies on all layer-by-layer polypeptide adsorbed SLB surfaces, regardless of the number of alternative layers and the net charges on those layers. Interestingly, these isolated stem/progenitor cells formed colonies which were maintained for an 8 day observation period. Quartz crystal microbalance with dissipation measurements showed that all SLB-polypeptide films were protein resistant with serum levels significantly lower than those on the polypeptide multilayer films without an underlying SLB. We suggest the fluidic SLB promotes selective binding while minimizing the cell-surface interaction due to its nonfouling nature, thus limiting stem cell colonies from spreading.

  17. Solid lipid nanoparticles coated with cross-linked polymeric double layer for oral delivery of curcumin.

    PubMed

    Wang, Taoran; Ma, Xiaoyu; Lei, Yu; Luo, Yangchao

    2016-12-01

    Solid lipid nanoparticles (SLNs) are regarded as promising carriers to improve the safety and effectiveness of delivery for drugs and nutrients, however, the clinic applications for oral administration are limited by their poor stability in gastrointestinal conditions. In this study, surface modification was explored to confer new physicochemical properties to SLNs and thus achieve enhanced functionalities. Novel SLNs with biopolymeric double layer (DL) coating using two natural biopolymers, i.e. caseinate (NaCas) and pectin, were prepared to encapsulate and deliver curcumin, a lipophilic bioactive compound studied as a model drug/nutrient. The DL coating was chemically cross-linked by creating covalent bonds between NaCas and pectin, using two different cross-linkers, i.e. glutaraldehyde (GA) and 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide/N-Hydroxysuccinimide (EDC/NHS). Prior to cross-linking, the mean particle size, polydispersity index and zeta potential of DL-SLNs were 300-330nm, 0.25-0.30, -45-40mV, respectively. It was found that cross-linking with GA had a more prominent effect on particle size and polydispersity index than EDC/NHS. The cross-linking process significantly improved physicochemical properties of DL-SLNs, resulting in higher encapsulation efficiency and loading capacity, better stability and slower release profile in simulated gastrointestinal conditions. Particularly, an optimal zero-order release kinetic was observed for EDC/NHS crosslinked DL-SLNs. The electron microscopy revealed that both cross-linked DL-SLNs exhibited spherical shape with homogeneous size and smooth surface. Encapsulation of curcumin in SLNs dramatically enhanced its antioxidant activity in aqueous condition. The cross-linking process further helped spray drying of SLNs by forming homogenous powder particles. These results indicated that coating with cross-linked polymers could significantly improve the physicochemical properties of SLNs and expand their potentials as

  18. Comparison of histological, genetic, metabolomics, and lipid-based methods for sex determination in marine mussels.

    PubMed

    Hines, Adam; Yeung, Wai Ho; Craft, John; Brown, Margaret; Kennedy, Jill; Bignell, John; Stentiford, Grant D; Viant, Mark R

    2007-10-15

    Omics technologies are increasingly being used to monitor organismal responses to environmental stressors. Previous studies have shown that species identification, an appreciation of life history traits, and organism phenotype (e.g., gender) are essential for the accurate interpretation of omics data from field samples. As marine mussels are increasingly being used in ecotoxicogenomics and monitoring, a technique to determine mussel gender throughout their annual reproductive cycle is urgently needed. This study examines four methods for sex determination in the two mussel species found in the United Kingdom, Mytilus edulis and Mytilus galloprovincialis, and their hybrid. Each of these methods-histology, a lipid-based assay, a new reverse transcriptase polymerase chain reaction (RT-PCR) assay, and nuclear magnetic resonance (NMR)-based metabolomics-initially was evaluated using sexually mature ("ripe") mussels whose gender was clearly distinguishable using histology. The methods subsequently were tested on spawned ("spent") mussels. For ripe animals, all techniques yielded high classification accuracies: histology, 100%; RT-PCR, 94.6%; lipid analysis, 90.6%; and metabolomics, 89.5%. The gender of spent animals, however, could not be determined by histology (0%) or lipid analysis (55.6%), but RT-PCR (100%) and metabolomics (88.9%) both proved to be successful. In addition, the RT-PCR, metabolomics, and lipid-based methods identified animals of mixed sex. Our findings highlight the application of a novel RT-PCR method as a robust technique for gender determination of ripe and spent mussels.

  19. Milk fat content and DGAT1 genotype determine lipid composition of the milk fat globule membrane.

    PubMed

    Argov-Argaman, Nurit; Mida, Kfir; Cohen, Bat-Chen; Visker, Marleen; Hettinga, Kasper

    2013-01-01

    During secretion of milk fat globules, triacylglycerol (TAG) droplets are enveloped by a phospholipid (PL) trilayer. Globule size has been found to be related to polar lipid composition and fat content, and milk fat content and fatty acid composition have been associated with the diacylglycerol acyltransferase 1 (DGAT1) K232A polymorphism; however, the association between the DGAT1 polymorphism and fat globule size and polar lipid composition has not been studied. The ratio between polar and neutral lipids as well as the composition of the polar lipids in milk has industrial as well as nutritional and health implications. Understanding phenotypic and genotypic factors influencing these parameters could contribute to improving milk lipid composition for dairy products. The focus of the present study was to determine the effect of both fat content and DGAT1 polymorphism on PL/TAG ratio, as a marker for milk fat globule size, and detailed PL composition. Milk samples were selected from 200 cows such that there were equal numbers of samples for the different fat contents as well as per DGAT1 genotype. Samples were analyzed for neutral and polar lipid concentration and composition. PL/TAG ratio was significantly associated with both fat content and DGAT1 genotype. Phosphatidylinositol and phosphatidylserine concentrations were associated with fat content*DGAT1 genotype with a stronger association for the AA than the KK genotype. Sphingomyelin concentration tended to interact with fat content*DGAT1 genotype. Phosphatidylethanolamine (PE) concentration showed a biphasic response to fat content, suggesting that multiple biological processes influence its concentration. These results provide a new direction for controlling polar lipid concentration and composition in milk through selective breeding of cows.

  20. Disposition of ceramide in model lipid membranes determined by neutron diffraction.

    PubMed

    Groen, D; Gooris, G S; Barlow, D J; Lawrence, M J; van Mechelen, J B; Demé, B; Bouwstra, J A

    2011-03-16

    The lipid matrix present in the uppermost layer of the skin, the stratum corneum, plays a crucial role in the skin barrier function. The lipids are organized into two lamellar phases. To gain more insight into the molecular organization of one of these lamellar phases, we performed neutron diffraction studies. In the diffraction pattern, five diffraction orders were observed attributed to a lamellar phase with a repeat distance of 5.4 nm. Using contrast variation, the scattering length density profile could be calculated showing a typical bilayer arrangement. To obtain information on the arrangement of ceramides in the unit cell, a mixture that included a partly deuterated ceramide was also examined. The scattering length density profile of the 5.4-nm phase containing this deuterated ceramide demonstrated a symmetric arrangement of the ceramides with interdigitating acyl chains in the center of the unit cell.

  1. Air motion determination by tracking humidity patterns in isentropic layers

    NASA Technical Reports Server (NTRS)

    Mancuso, R. L.; Hall, D. J.

    1975-01-01

    Determining air motions by tracking humidity patterns in isentropic layers was investigated. Upper-air rawinsonde data from the NSSL network and from the AVE-II pilot experiment were used to simulate temperature and humidity profile data that will eventually be available from geosynchronous satellites. Polynomial surfaces that move with time were fitted to the mixing-ratio values of the different isentropic layers. The velocity components of the polynomial surfaces are part of the coefficients that are determined in order to give an optimum fitting of the data. In the mid-troposphere, the derived humidity motions were in good agreement with the winds measured by rawinsondes so long as there were few or no clouds and the lapse rate was relatively stable. In the lower troposphere, the humidity motions were unreliable primarily because of nonadiabatic processes and unstable lapse rates. In the upper troposphere, the humidity amounts were too low to be measured with sufficient accuracy to give reliable results. However, it appears that humidity motions could be used to provide mid-tropospheric wind data over large regions of the globe.

  2. Direct comparison of fatty acid ratios in single cellular lipid droplets as determined by comparative Raman spectroscopy and gas chromatography.

    PubMed

    Schie, Iwan W; Nolte, Lena; Pedersen, Theresa L; Smith, Zach; Wu, Jian; Yahiatène, Idir; Newman, John W; Huser, Thomas

    2013-11-07

    Cellular lipid droplets are the least studied and least understood cellular organelles in eukaryotic and prokaryotic cells. Despite a significant body of research studying the physiology of lipid droplets it has not yet been possible to fully determine the composition of individual cellular lipid droplets. In this paper we use Raman spectroscopy on single cellular lipid droplets and least-squares fitting of pure fatty acid spectra to determine the composition of individual lipid droplets in cells after treatment with different ratios of oleic and palmitic acid. We validate the results of the Raman spectroscopy-based single lipid droplet analysis with results obtained by gas chromatography analysis of millions of cells, and find that our approach can accurately predict the relative amount of a specific fatty acid in the lipid droplet. Based on these results we show that the fatty acid composition in individual lipid droplets is on average similar to that of all lipid droplets found in the sample. Furthermore, we expand this approach to the investigation of the lipid composition in single cellular peroxisomes. We determine the location of cellular peroxisomes based on two-photon excitation fluorescence (TPEF) imaging of peroxisomes labeled with the green fluorescent protein, and successive Raman spectroscopy of peroxisomes. We find that in some cases peroxisomes can produce a detectable CARS signal, and that the peroxisomal Raman spectra exhibit an oleic acid-like signature.

  3. Improved pharmacokinetics and enhanced tumor growth inhibition using a nanostructured lipid carrier loaded with doxorubicin and modified with a layer-by-layer polyelectrolyte coating

    PubMed Central

    Mussi, Samuel V.; Parekh, Gaurav; Pattekari, Pravin; Levchenko, Tatyana; Lvov, Yuri; Ferreira, Lucas A.M.; Torchilin, Vladimir P.

    2015-01-01

    A nanostructured lipid carrier (NLC) loaded with doxorubicin (DOX) has been shown to be cytotoxic against the human cancer cell lines A549 and MCF-7/Adr. In attempts to improve formulation characteristics, enhance pharmacokinetics and antitumor effects, we modified the surface of these NLC with an alternating layer-by-layer (LbL) assembly of polycation and polyanion polyelectrolytes and an additional coating with PEG using a simple method of core shell attachment. The formulation had a narrow size distribution, longer residence in the blood, lower accumulation in the liver, higher accumulation in tumors and a significant tumor growth inhibition effect. Thus, NLC-DOX nanopreparations complexes modified by LbL coating have the potential to enhance the anticancer effects of DOX against tumors. PMID:26325314

  4. Simultaneous measurement of lipid and aqueous layers of tear film using optical coherence tomography and statistical decision theory

    NASA Astrophysics Data System (ADS)

    Huang, Jinxin; Clarkson, Eric; Kupinski, Matthew; Rolland, Jannick P.

    2014-03-01

    The prevalence of Dry Eye Disease (DED) in the USA is approximately 40 million in aging adults with about $3.8 billion economic burden. However, a comprehensive understanding of tear film dynamics, which is the prerequisite to advance the management of DED, is yet to be realized. To extend our understanding of tear film dynamics, we investigate the simultaneous estimation of the lipid and aqueous layers thicknesses with the combination of optical coherence tomography (OCT) and statistical decision theory. In specific, we develop a mathematical model for Fourier-domain OCT where we take into account the different statistical processes associated with the imaging chain. We formulate the first-order and second-order statistical quantities of the output of the OCT system, which can generate some simulated OCT spectra. A tear film model, which includes a lipid and aqueous layer on top of a rough corneal surface, is the object being imaged. Then we further implement a Maximum-likelihood (ML) estimator to interpret the simulated OCT data to estimate the thicknesses of both layers of the tear film. Results show that an axial resolution of 1 μm allows estimates down to nanometers scale. We use the root mean square error of the estimates as a metric to evaluate the system parameters, such as the tradeoff between the imaging speed and the precision of estimation. This framework further provides the theoretical basics to optimize the imaging setup for a specific thickness estimation task.

  5. Change in Tear Film Lipid Layer Thickness, Corneal Thickness, Volume and Topography after Superficial Cauterization for Conjunctivochalasis.

    PubMed

    Chan, Tommy C Y; Ye, Cong; Ng, Paul K F; Li, Emmy Y M; Yuen, Hunter K L; Jhanji, Vishal

    2015-07-17

    We evaluated the change in tear film lipid layer thickness, corneal thickness, volume and topography after superficial cauterization of symptomatic conjunctivochalasis. Bilateral superficial conjunctival cauterization was performed in 36 eyes of 18 patients with symptomatic conjunctivochalasis. The mean age of patients (12 males, 6 females) was 68.6 ± 10.9 years (range: 44-83 years). Preoperatively, 28 eyes (77.8%) had grade 1 conjunctivochalasis, and 8 eyes (22.2%) had grade 2 conjunctivochalasis. At 1 month postoperatively, the severity of conjunctivochalasis decreased significantly (p < 0.001) and 29 eyes (80.6%) had grade 0 conjunctivochalasis whereas 7 eyes (19.4%) had grade 1 conjunctivochalasis. The mean Ocular Surface Disease Index score decreased from 31.5 ± 15.2 preoperatively to 21.5 ± 14.2 at the end of 1 month postoperatively (p = 0.001). There was a statistically significant increase in mean tear film lipid layer thickness 1 month after the surgery (49.6 ± 16.1 nm vs 62.6 ± 21.6 nm; p < 0.001). The central corneal thickness, thinnest corneal thickness and corneal volume decreased significantly postoperatively (p < 0.001). Our study showed that superficial conjunctival cauterization is an effective technique for management of conjunctivochalasis in the short term. An increase in tear film lipid layer thickness along with a decrease in corneal thickness and volume were observed after surgical correction of conjunctivochalasis.

  6. Determination of lipid content of oleaginous microalgal biomass by NMR spectroscopic and GC-MS techniques.

    PubMed

    Sarpal, Amarijt S; Teixeira, Claudia M L L; Silva, Paulo R M; Lima, Gustavo M; Silva, Samantha R; Monteiro, Thays V; Cunha, Valnei S; Daroda, Romeu J

    2015-05-01

    Direct methods based on (1)H NMR spectroscopic techniques have been developed for the determination of neutral lipids (triglycerides and free fatty acids) and polar lipids (glyceroglycolipids/phospholipids) in the solvent extracts of oleaginous microalgal biomasses cultivated on a laboratory scale with two species in different media. The chemical shift assignments observed in the (1)H and (13)C NMR spectra corresponding to unsaturated (C18:N, N = 1-3, C20:3, C20:5, C22:6, epoxy) and saturated (C14-C18) fatty acid ester components in a complex matrix involving overlapped resonances have been unambiguously confirmed by the application of 2D NMR spectroscopy (total correlation spectroscopy and heteronuclear single quantum coherence-total correlation spectroscopy). The study of the effect of a polar lipid matrix on the determination of neutral lipids by an internal reference blending process by a systematic designed experimental protocol has provided absolute quantification. The fatty acid composition of algal extracts was found to be similar to that of vegetable oils containing saturated (C16-C18:0) and unsaturated (C18:N, N = 1-3, C20:N, N = 3-4, C22:6) fatty acids as confirmed by NMR spectroscopy and gas chromatography-mass spectrometry analyses. The NMR methods developed offer great potential for rapid screening of algal strains for generation of algal biomass with the desired lipid content, quality, and potential for biodiesel and value-added polyunsaturated fatty acids in view of the cost economics of the overall cost of generation of the biomass.

  7. Nile red fluorescence screening facilitating neutral lipid phenotype determination in budding yeast, Saccharomyces cerevisiae, and the fission yeast Schizosaccharomyces pombe.

    PubMed

    Rostron, Kerry A; Rolph, Carole E; Lawrence, Clare L

    2015-07-01

    Investigation of yeast neutral lipid accumulation is important for biotechnology and also for modelling aberrant lipid metabolism in human disease. The Nile red (NR) method has been extensively utilised to determine lipid phenotypes of yeast cells via microscopic means. NR assays have been used to differentiate lipid accumulation and relative amounts of lipid in oleaginous species but have not been thoroughly validated for phenotype determination arising from genetic modification. A modified NR assay, first described by Sitepu et al. (J Microbiol Methods 91:321-328, 2012), was able to detect neutral lipid changes in Saccharomyces cerevisiae deletion mutants with sensitivity similar to more advanced methodology. We have also be able to, for the first time, successfully apply the NR assay to the well characterised fission yeast Schizosaccharomyces pombe, an increasingly important organism in biotechnology. The described NR fluorescence assay is suitable for increased throughput and rapid screening of genetically modified strains in both the biotechnology industry and for modelling ectopic lipid production for a variety of human diseases. This ultimately negates the need for labour intensive and time consuming lipid analyses of samples that may not yield a desirable lipid phenotype, whilst genetic modifications impacting significantly on the cellular lipid phenotype can be further promoted for more in depth analyses.

  8. Determination of PCBs and total lipids in edible fish and crab tissue using supercritical fluid extraction

    SciTech Connect

    Gavlor, M.; Hale, R.; Smith, C.; Thames, J.; Mothershead, R.

    1995-12-31

    An offline supercritical fluid extraction (SFE) method has been developed to determine PCB congeners and total tissue lipid content in edible fish and crab tissues collected from several river systems in Virginia. The method is rapid and safe, requiring only 40 minutes per sample and uses nonorganic solvents for total lipid extraction and only 1.5 mL isooctane for PCB extraction. The SFE approach compares favorably with soxhlet extraction, ASE and column elution. Over 800 fish and crab tissue samples were analyzed successfully, thus demonstrating the robustness of the method. Total lipid values obtained using SFE showed considerable spatial and interspecies variability ranging from 1.8% in blue crab (Callinectes sapidus) to 36.4% in striped bass (Morone saxatilis). Total PCB concentrations also varied greatly by site and species. These ranged from below the quantitation limit (1.0 {micro}1 g/kg) to 9,910 {micro}g/kg on a dry weight basis using GCELCD. Dominant PCB congeners detected were in good agreement with those reported by other researchers. Mean total PCB concentrations did not correlate well with total tissue lipid content.

  9. Depth Profile Determination of Stratified Layers Using Internal Reflection Spectroscopy

    NASA Astrophysics Data System (ADS)

    Shick, Robert Adam

    It is the purpose of this project to develop a method to quantitatively determine depth profile information using internal reflection spectroscopy. The theory allowing depth profile information to be recovered from variable angle attenuated total reflection (VA-ATR) spectroscopy is shown for both perpendicular and parallel polarization. The major approximation is that the extinction coefficient must be small, so that the field decay due to distance and absorption are comparable. The errors invoked by these approximations are evaluated by comparison with exact optical simulations using dispersion theory. Having shown that the newly developed method is theoretically feasible, it is important to show that it is a viable technique with current instrumentation. It is shown that VA-ATR Fourier transform infrared spectroscopy is a valuable technique to recover depth profile information on the molecular level. A number of known step profiles are measured to determine the limits of applicability for this method. Thickness results obtained using the internal reflection technique are compared with thickness determination using a stylus profilometer. It is shown that the results using p-polarization are somewhat more realistic than s -polarization. The VA-ATR infrared technique was used to investigate the interaction and diffusion of poly(2,6-dimethyl-1,4 -phenylene oxide), PPO, and polystyrene, PS. Optical theory was employed to clarify the effect of the local interactions on the infrared spectra. Optical theory was also used to determine composition profiles at various times of inter -diffusion. It was observed that migration occurred between the PPO and the PS layer, even below the glass transition of the PPO. This migration proceeded linearly with time ^{1/2} which is an indication of Fickian diffusion, although the profiles had some additional non-Fickian characteristics.

  10. Development of the layer-by-layer biosensor using graphene films: application for cholesterol determination

    NASA Astrophysics Data System (ADS)

    Binh Nguyen, Hai; Chuc Nguyen, Van; Nguyen, Van Tu; Doan Le, Huu; Quynh Nguyen, Van; Thanh Tam Ngo, Thi; Phuc Do, Quan; Nghia Nguyen, Xuan; Phan, Ngoc Minh; Tran, Dai Lam

    2013-03-01

    The preparation and characterization of graphene films for cholesterol determination are described. The graphene films were synthesized by thermal chemical vapor deposition (CVD) method. Methane gas (CH4) and copper tape were used as carbon source and catalyst in the graphene growth process, respectively. The intergrated array was fabricated by using micro-electro-mechanical systems (MEMS) technology in which Fe3O4-doped polyaniline (PANi) film was electropolymerized on Pt/Gr electrodes. The properties of the Pt/Gr/PANi/Fe3O4 films were investigated by field-emission scanning electron microscopy (FE-SEM), Raman spectroscopy and electrochemical techniques. Cholesterol oxidase (ChOx) has been immobilized onto the working electrode with glutaraldehyde agent. The cholesterol electrochemical biosensor shows high sensitivity (74 μA mM-1 cm-2) and fast response time (<5 s). A linear calibration plot was obtained in the wide cholesterol concentration range from 2 to 20 mM and correlation coefficient square (R2) of 0.9986. This new layer-by-layer biosensor based on graphene films promises many practical applications.

  11. Determination of layer-charge characteristics of smectites

    USGS Publications Warehouse

    Christidis, G.E.; Eberl, D.D.

    2003-01-01

    A new method for calculation of layer charge and charge distribution of smectites is proposed. The method is based on comparisons between X-ray diffraction (XRD) patterns of K-saturated, ethylene glycol-solvated, oriented samples and calculated XRD patterns for three-component, mixed-layer systems. For the calculated patterns it is assumed that the measured patterns can be modeled as random interstratifications of fully expanding 17.1 A?? layers, partially expanding 13.5 A?? layers and non-expanding 9.98 A?? layers. The technique was tested using 29 well characterized smectites. According to their XRD patterns, smectites were classified as group 1 (low-charge smectites) and group 2 (high-charge smectites). The boundary between the two groups is at a layer charge of -0.46 equivalents per half unit-cell. Low-charge smectites are dominated by 17.1 A?? layers, whereas high-charge smectites contain only 20% fully expandable layers on average. Smectite properties and industrial applications may be dictated by the proportion of 17.1 A?? layers present. Non-expanding layers may control the behavior of smectites during weathering, facilitating the formation of illite layers after subsequent cycles of wetting and drying. The precision of the method is better than 3.5% at a layer charge of -0.50; therefore the method should be useful for basic research and for industrial purposes.

  12. Core lipid structure is a major determinant of the oxidative resistance of low density lipoprotein.

    PubMed Central

    Schuster, B; Prassl, R; Nigon, F; Chapman, M J; Laggner, P

    1995-01-01

    The influence of thermally induced changes in the lipid core structure on the oxidative resistance of discrete, homogeneous low density lipoprotein (LDL) subspecies (d, 1.0297-1.0327 and 1.0327-1.0358 g/ml) has been evaluated. The thermotropic transition of the LDL lipid core at temperatures between 15 degrees C and 37 degrees C, determined by differential scanning calorimetry, exerted significant effects on the kinetics of copper-mediated LDL oxidation expressed in terms of intrinsic antioxidant efficiency (lag time) and diene production rate. Thus, the temperature coefficients of oxidative resistance and maximum oxidation rate showed break points at the core transition temperature. Temperature-induced changes in copper binding were excluded as the molecular basis of such effects, as the saturation of LDL with copper was identical below and above the core transition. At temperatures below the transition, the elevation in lag time indicated a greater resistance to oxidation, reflecting a higher degree of antioxidant protection. This effect can be explained by higher motional constraints and local antioxidant concentrations, the latter resulting from the freezing out of antioxidants from crystalline domains of cholesteryl esters and triglycerides. Below the transition temperature, the conjugated diene production rate was decreased, a finding that correlated positively with the average size of the cooperative units of neutral lipids estimated from the calorimetric transition width. The reduced accessibility and structural hindrance in the cluster organization of the core lipids therefore inhibits peroxidation. Our findings provide evidence for a distinct effect of the dynamic state of the core lipids on the oxidative susceptibility of LDL and are therefore relevant to the atherogenicity of these cholesterol-rich particles. PMID:7708675

  13. Thin layer chromatographic determination of deoxynivalenol in processed grain products.

    PubMed

    Trucksess, M W; Flood, M T; Page, S W

    1986-01-01

    The thin layer chromatographic (TLC) method of Trucksess et al. (J. Assoc. Off. Anal. Chem. (1984) 67, 40-43) was modified for the determination of deoxynivalenol (DON) in high-sugar breakfast cereals, corn syrup, and beer. Celite was added to the substrate before extraction with acetonitrile-water (84 + 16). After filtration through an alumina-charcoal-Celite (0.5 + 0.7 + 0.3) column, the filtrate was evaporated to dryness and redissolved in water, which was passed through an octylsilyl reverse phase column. DON was eluted with anhydrous ethyl ether. The residue remaining after the eluate was evaporated to dryness was dissolved in CHCl3-acetonitrile (4 + 1) and chromatographed on AlCl3-impregnated silica gel TLC plates. The blue fluorescent DON spot was quantitated fluorodensitometrically after the TLC plate was heated at 120 degrees C for 7 min. Recoveries of DON added to breakfast cereals at 100, 200, and 400 ng/g levels and to syrup and beer at 50, 100, and 200 ng/g levels averaged 86%. The limit of determination in these products was about 50 ng/g.

  14. The effect of supplementing layer diets with shark cartilage or chitosan on egg components and yolk lipids.

    PubMed

    Nogueira, C M; Zapata, J F F; Fuentes, M F F; Freitas, E R; Craveiro, A A; Aguiar, C M

    2003-05-01

    1. An experiment was designed to evaluate the effects of the addition of shark cartilage (SC) or chitosan (CH) to layer diets on egg component weights, yolk lipids and hen plasma lipids. 2. Hy-Line laying hens (80) were used during a 56 d feeding trial. Treatments were: basal diet (BD), BD + 20 g/kg SC, BD + 30 g/kg SC, BD + 20 g/kg CH and BD + 30 g/kg CH. Eggs were analysed on d 14, 28, 42 and 56. 3. Egg weight and egg component weights were not affected by these treatments throughout the experimental period. 4. After 14d of experimental feeding, cholesterol levels were higher in eggs from birds given BD + 20 g/kg CH and BD + 30 g/kg CH than in those from birds given BD. 5. Furthermore, eggs from hens given BD + 20 g/kg SC or BD + 20 g/kg CH were higher in palmitic and stearic acids and lower in oleic acid than those from birds fed on BD. After 56 d feeding, however, palmitic and stearic acid contents in eggs from hens given any of the supplemented diets were lower than in those from hens given BD, and oleic acid in eggs from hens given BD + 20 g/kg SC, BD + 30 g/kg SC and BD + 30 g/kg CH was higher than in those from birds fed on BD. 6. Plasma cholesterol and triacylglycerol levels were not significantly affected by dietary treatment. 7. Shark cartilage or chitosan at up to 30 g/kg in layer diets did not affect egg component weights (yolk, white and shell) and total lipid contents. During the period from 42 to 56d of experimental feeding, diets containing up to 30 g/kg chitosan reduced egg yolk contents of cholesterol, palmitic and stearic acids and increased the content of oleic acid.

  15. Enhanced electrochemical sensing of leukemia cells using drug/lipid co-immobilized on the conducting polymer layer.

    PubMed

    Gurudatt, N G; Naveen, M Halappa; Ban, Changill; Shim, Yoon-Bo

    2016-12-15

    Electrochemical biosensors using five anticancer drug and lipid molecules attached on the conducting polymer layer to obtain the orientation of drug molecules toward cancer cells, were evaluated as sensing materials and their performances were compared. Conjugation of the drug molecules with a lipid, phosphatidylcholine (PC) has enhanced the sensitivity towards leukemia cells and differentiates cancer cells from normal cells. The composition of each layer of sensor probe was confirmed by electrochemical and surface characterization experiments. Both impedance spectroscopy and voltammetry show the enhanced interaction of leukemia cells using the drug/lipid modified sensor probe. As the number of leukemia cells increased, the charge transfer resistance (Rct) in impedance spectra increased and the amine oxidation peak current of drug molecules in voltammograms decreased at around 0.7-1.0V. Of test drug molecules, raltitrexed (Rtx) showed the best performance for the cancer cells detection. Cancer and normal cell lines from different origins were examined to evaluate the degree of expression of folate receptors (FR) on cells surface, where cervical HeLa cell line was found to be shown the highest expression of the receptor. Impedance and chronoamperometric experiments for leukemia cell line (Jurkat E6-1) showed linear dynamic ranges of 1.0×10(3)-2.5×10(5) cells/mL and 1.0×10(3)-8.0×10(3) cells/mL with detection limits of 68±5 cells/mL and 21±3 cells/mL, respectively.

  16. Altered lipid metabolism in the aging kidney identified by three layered omic analysis.

    PubMed

    Braun, Fabian; Rinschen, Markus M; Bartels, Valerie; Frommolt, Peter; Habermann, Bianca; Hoeijmakers, Jan H J; Schumacher, Björn; Dollé, Martijn E T; Müller, Roman-Ulrich; Benzing, Thomas; Schermer, Bernhard; Kurschat, Christine E

    2016-03-01

    Aging-associated diseases and their comorbidities affect the life of a constantly growing proportion of the population in developed countries. At the center of these comorbidities are changes of kidney structure and function as age-related chronic kidney disease predisposes to the development of cardiovascular diseases such as stroke, myocardial infarction or heart failure. To detect molecular mechanisms involved in kidney aging, we analyzed gene expression profiles of kidneys from adult and aged wild-type mice by transcriptomic, proteomic and targeted lipidomic methodologies. Interestingly, transcriptome and proteome analyses revealed differential expression of genes primarily involved in lipid metabolism and immune response. Additional lipidomic analyses uncovered significant age-related differences in the total amount of phosphatidylethanolamines, phosphatidylcholines and sphingomyelins as well as in subspecies of phosphatidylserines and ceramides with age. By integration of these datasets we identified Aldh1a1, a key enzyme in vitamin A metabolism specifically expressed in the medullary ascending limb, as one of the most prominent upregulated proteins in old kidneys. Moreover, ceramidase Asah1 was highly expressed in aged kidneys, consistent with a decrease in ceramide C16. In summary, our data suggest that changes in lipid metabolism are involved in the process of kidney aging and in the development of chronic kidney disease.

  17. Super-resolved thickness maps of thin film phantoms and in vivo visualization of tear film lipid layer using OCT

    PubMed Central

    dos Santos, Valentin Aranha; Schmetterer, Leopold; Triggs, Graham J.; Leitgeb, Rainer A.; Gröschl, Martin; Messner, Alina; Schmidl, Doreen; Garhofer, Gerhard; Aschinger, Gerold; Werkmeister, René M.

    2016-01-01

    In optical coherence tomography (OCT), the axial resolution is directly linked to the coherence length of the employed light source. It is currently unclear if OCT allows measuring thicknesses below its axial resolution value. To investigate spectral-domain OCT imaging in the super-resolution regime, we derived a signal model and compared it with the experiment. Several island thin film samples of known refractive indices and thicknesses in the range 46 – 163 nm were fabricated and imaged. Reference thickness measurements were performed using a commercial atomic force microscope. In vivo measurements of the tear film were performed in 4 healthy subjects. Our results show that quantitative super-resolved thickness measurement can be performed using OCT. In addition, we report repeatable tear film lipid layer visualization. Our results provide a novel interpretation of the OCT axial resolution limit and open a perspective to deeper extraction of the information hidden in the coherence volume. PMID:27446696

  18. Virosome engineering of colloidal particles and surfaces: bioinspired fusion to supported lipid layers

    NASA Astrophysics Data System (ADS)

    Fleddermann, J.; Diamanti, E.; Azinas, S.; Košutić, M.; Dähne, L.; Estrela-Lopis, I.; Amacker, M.; Donath, E.; Moya, S. E.

    2016-04-01

    Immunostimulating reconstituted influenza virosomes (IRIVs) are liposomes with functional viral envelope glycoproteins: influenza virus hemagglutinin (HA) and neuraminidase intercalated in the phospholipid bilayer. Here we address the fusion of IRIVs to artificial supported lipid membranes assembled on polyelectrolyte multilayers on both colloidal particles and planar substrates. The R18 assay is used to prove the IRIV fusion in dependence of pH, temperature and HA concentration. IRIVs display a pH-dependent fusion mechanism, fusing at low pH in analogy to the influenza virus. The pH dependence is confirmed by the Quartz Crystal Microbalance technique. Atomic Force Microscopy imaging shows that at low pH virosomes are integrated in the supported membrane displaying flattened features and a reduced vertical thickness. Virosome fusion offers a new strategy for transferring biological functions on artificial supported membranes with potential applications in targeted delivery and sensing.Immunostimulating reconstituted influenza virosomes (IRIVs) are liposomes with functional viral envelope glycoproteins: influenza virus hemagglutinin (HA) and neuraminidase intercalated in the phospholipid bilayer. Here we address the fusion of IRIVs to artificial supported lipid membranes assembled on polyelectrolyte multilayers on both colloidal particles and planar substrates. The R18 assay is used to prove the IRIV fusion in dependence of pH, temperature and HA concentration. IRIVs display a pH-dependent fusion mechanism, fusing at low pH in analogy to the influenza virus. The pH dependence is confirmed by the Quartz Crystal Microbalance technique. Atomic Force Microscopy imaging shows that at low pH virosomes are integrated in the supported membrane displaying flattened features and a reduced vertical thickness. Virosome fusion offers a new strategy for transferring biological functions on artificial supported membranes with potential applications in targeted delivery and sensing

  19. Refractive index and thickness determination in Langmuir monolayers of myelin lipids.

    PubMed

    Pusterla, Julio M; Malfatti-Gasperini, Antonio A; Puentes-Martinez, Ximena E; Cavalcanti, Leide P; Oliveira, Rafael G

    2017-05-01

    Langmuir monolayers at the air/water interface are widely used as biomembrane models and for amphiphilic molecules studies in general. Under controlled intermolecular organization (lateral molecular area), surface pressure, surface potential, reflectivity (R) and other magnitudes can be precisely determined on these planar monomolecular films. However, some physical parameters such as the refractive index of the monolayer (n) still remain elusive. The refractive index is very relevant because (in combination with R) it allows for the determination of the thickness of the film. The uncertainties of n determine important errors that propagate non-linearly into the calculation of monolayers thickness. Here we present an analytical method for the determination of n in monolayers based on refractive index matching. By using a Brewster angle microscopy (BAM) setup and monolayers spread over subphases with variable refractive index (n2), a minimum in R is search as a function of n2. In these conditions, n equals n2. The results shown correspond to monolayers of myelin lipids. The n values remain constant at 1.46 upon compression and equals the obtained value for myelin lipid bilayers in suspension. The values for n and R allow for the determination of thickness. We establish comparisons between these thicknesses for the monolayer and those obtained from two X-ray scattering techniques: 1) GIXOS for monolayers at the air/water interface and 2) SAXS for bilayers in bulk suspension. This allows us to conclude that the thickness that we measure by BAM includes the apolar and polar headgroup regions of the monolayer.

  20. Square Wave Voltammetry: An Alternative Technique to Determinate Piroxicam Release Profiles from Nanostructured Lipid Carriers.

    PubMed

    Otarola, Jessica; Garrido, Mariano; Correa, N Mariano; Molina, Patricia G

    2016-08-04

    A new, simple, and fast electrochemical (EC) method has been developed to determine the release profile of piroxicam, a nonsteroidal anti-inflammatory drug, loaded in a drug delivery system based on nanostructured lipid carriers (NLCs). For the first time, the samples were analyzed by using square wave voltammetry, a sensitive EC technique. The piroxicam EC responses allow us to propose a model that explains the experimental results and to subsequently determine the amount of drug loaded into the NLCs formulation as a function of time. In vitro drug release studies showed prolonged drug release (up to 5 days), releasing 60 % of the incorporated drug. The proposed method is a promising and stable alternative for the study of different drug delivery systems.

  1. Determination of mixing layer heights from ceilometer data

    NASA Astrophysics Data System (ADS)

    Schafer, Klaus; Emeis, Stefan M.; Rauch, Andreas; Munkel, Christoph; Vogt, Siegfried

    2004-11-01

    The Vaisala ceilometer LD40 is an eye-safe commercial lidar. It is designed originally to detect cloud base heights and vertical visibility for aviation safety purposes. The instrument was operated continuously at different measurement campaigns to detect mixing layer height from aerosol backscatter profiles. First results with the CT25K ceilometer were presented last year in the paper SPIE 5235-64 from the environmental measuring campaign in the frame of the BMBF-funded project VALIUM in Hanover, Germany, investigating the air pollution in a street canyon and the surrounding with various sensors. A software for routine retrieval of mixing layer height (MLH) from ceilometer data was developed. A comparison with mixing layer height retrievals from a SODAR and a wind-temperature-radar (WTR) operated in the urban region of Munich will be shown. The three instruments give information that partly agree and partly complement each other. The ceilometer gives information on the aerosol content of the air and the WTR provides a direct measurement of the vertical temperature distribution in the boundary layer. The WTR and the ceilometer add information on the moisture structure of the boundary layer that is not detected by the SODAR which gives information on the thermal structure. On the other hand this comparison validates known techniques by which the MLH is derived from SODAR data. In the absence of low clouds and precipitation ceilometers can estimate the mixing-layer-height fairly well. The potential of the ceilometer, being the smallest instrument among the used ones as LIDAR, SODAR and WTR, will be discussed to be used in future MLH studies.

  2. The Effect of Particle Size on the Deposition of Solid Lipid Nanoparticles in Different Skin Layers: A Histological Study

    PubMed Central

    Mardhiah Adib, Zahra; Ghanbarzadeh, Saeed; Kouhsoltani, Maryam; Yari Khosroshahi, Ahmad; Hamishehkar, Hamed

    2016-01-01

    Purpose: In the present study the effect of particle size, as a substantial parameters in skin penetration, on the deposition depth and rate of SLNs in different layers of skin was explored. Methods: SLNs in different particle size ranges (80, 333 and 971 nm) made of Precirol as solid lipid were prepared using hot melt homogenization technique and pigmented by Rhodamine B to be able to be tracked in the skin under inspection of fluorescent microscopy. After 0.5 h, 3 h, 6 h and 24 h of SLNs administration on rat skin, animals were sacrificed and exercised skins were sliced by a freeze microtome. SLNs were monitored in the skin structure under fluorescence microscope. Results: The size of SLNs played a crucial role in the penetration to deep skin layers. The sub100 nm size range of SLNs showed the most promising skin penetration rate and depth mainly via hair follicles. Conclusion: The results of the present study indicated that the selection of an appropriate size of particles may be a valuable factor impacting the therapeutic outcomes of dermal drug administration. PMID:27123415

  3. Determination of Stability and Translation in a Boundary Layer

    NASA Technical Reports Server (NTRS)

    Crepeau, John; Tobak, Murray

    1996-01-01

    Reducing the infinite degrees of freedom inherent in fluid motion into a manageable number of modes to analyze fluid motion is presented. The concepts behind the center manifold technique are used. Study of the Blasius boundary layer and a precise description of stability within the flow field are discussed.

  4. Postprandial lipid responses to standard carbohydrates used to determine glycaemic index values

    PubMed Central

    Vega-López, Sonia; Ausman, Lynne M.; Matthan, Nirupa R.; Lichtenstein, Alice H.

    2015-01-01

    Prior studies assessing the metabolic effects of different types of carbohydrates have focused on their glycaemic response. However, the response of postprandial cardiometabolic risk indicators has not been considered in these studies. The present study assessed postprandial lipid responses to two forms of carbohydrates used as reference foods for glycaemic index determinations, white bread (50 g available carbohydrate) and glucose (50 g), under controlled conditions and with intra-individual replicate determinations. A total of twenty adults (20–70 years) underwent two cycles of challenges with each pair of reference foods (four challenges/person), administered in a random order on separate days under standard conditions. Serum lipids (total cholesterol, LDL-cholesterol, HDL-cholesterol, TAG and NEFA), glucose and insulin were monitored for 5 h post-ingestion. Oral glucose resulted in greater glycaemic and insulinaemic responses than white bread for the first 90 min and a greater subsequent decline after 120 min (P = 0.0001). The initial decline in serum NEFA concentrations was greater after the oral glucose than after the white bread challenge, as was the rebound after 150 min (P = 0.001). Nevertheless, the type of carbohydrate had no significant effect on postprandial total cholesterol, LDL-cholesterol and HDL-cholesterol concentrations. Following an initial modest rise in TAG concentrations in response to both challenges, the values dropped below the fasting values for oral glucose but not for the white bread challenge. These data suggest that the type of carbohydrate used to determine the glycaemic index, bread or glucose, has little or modest effects on postprandial plasma cholesterol concentrations. Differences in TAG and NEFA concentrations over the 5 h time period were modest, and their clinical relevance is unclear. PMID:23656707

  5. Postprandial lipid responses to standard carbohydrates used to determine glycaemic index values.

    PubMed

    Vega-López, Sonia; Ausman, Lynne M; Matthan, Nirupa R; Lichtenstein, Alice H

    2013-11-01

    Prior studies assessing the metabolic effects of different types of carbohydrates have focused on their glycaemic response. However, the response of postprandial cardiometabolic risk indicators has not been considered in these studies. The present study assessed postprandial lipid responses to two forms of carbohydrates used as reference foods for glycaemic index determinations, white bread (50 g available carbohydrate) and glucose (50 g), under controlled conditions and with intra-individual replicate determinations. A total of twenty adults (20–70 years) underwent two cycles of challenges with each pair of reference foods (four challenges/person), administered in a random order on separate days under standard conditions. Serum lipids (total cholesterol, LDL-cholesterol, HDL-cholesterol, TAG and NEFA), glucose and insulin were monitored for 5 h post-ingestion. Oral glucose resulted in greater glycaemic and insulinaemic responses than white bread for the first 90 min and a greater subsequent decline after 120 min (P =0·0001). The initial decline in serum NEFA concentrations was greater after the oral glucose than after the white bread challenge, as was the rebound after 150 min (P = 0·001). Nevertheless, the type of carbohydrate had no significant effect on postprandial total cholesterol, LDL-cholesterol and HDL-cholesterol concentrations. Following an initial modest rise in TAG concentrations in response to both challenges, the values dropped below the fasting values for oral glucose but not for the white bread challenge. These data suggest that the type of carbohydrate used to determine the glycaemic index, bread or glucose, has little or modest effects on postprandial plasma cholesterol concentrations. Differences in TAG and NEFA concentrations over the 5 h time period were modest, and their clinical relevance is unclear.

  6. Determination of layer moduli from falling weight deflectometer measurements

    NASA Astrophysics Data System (ADS)

    Ruotoistenmaeki, A.

    Back calculation programs are used for evaluation of pavement layer moduli from falling weight deflectometer (FWD) measurements. A comparison of two programs with different calculation methods, Modulus and Elmod, is made using deflection data derived from 43 SHRP-LTPP (Strategic Highway Research Program, Long-Term Pavement Performance) test sections. Critical strains were calculated using the linear program (BISAR) with layer moduli from the Modulus program as input and with the Elmod program. It was found that calculated strains from the two programs agree very well, even though the calculated moduli are quite different. Calculated strains from FWD loading were compared with measured strains under moving wheel load at Virttaa test site. The differences between the two are most likely due to differences in the loading conditions and in the method of analysis.

  7. Determination of the primary structure of two lipid transfer proteins from apricot (Prunus armeniaca).

    PubMed

    Conti, A; Fortunato, D; Ortolani, C; Giuffrida, M G; Pravettoni, V; Napolitano, L; Farioli, L; Perono Garoffo, L; Trambaioli, C; Pastorello, E A

    2001-05-25

    It has been recently demonstrated that the major allergen of apricot is a protein of molecular mass (Mr) 9000 belonging to the family of Lipid Transfer Protein. The aim of this study was the determination of the primary structure of apricot LTP by micro-sequencing and mass spectrometric analyses. Apricot LTP is a 91 amino acids protein like peach and almond LTPs with a sequence identity of 91% and 94%, respectively. Like for the peach LTP, out of the 25 amino acids forming the inner surface of the tunnel-like hydrophobic cavity in maize ns-LTP, 16 are identical and 7 similar in the apricot LTP, supporting the hypothesis of a similar function.

  8. Effective application of freezing lipid precipitation and SCX-SPE for determination of pyrrolizidine alkaloids in high lipid foodstuffs by LC-ESI-MS/MS.

    PubMed

    Yoon, Soo Hwan; Kim, Min-Sun; Kim, Sang Hoon; Park, Hyun Mee; Pyo, Heesoo; Lee, Yong Moon; Lee, Kyung-Tae; Hong, Jongki

    2015-06-15

    Pyrrolizidine alkaloids (PAs) are naturally occurring plant toxins associated with serious hepatic disease in humans and animals. In this study, rapid and sensitive analytical method was developed for the determination of 9 toxic PAs in popularly high lipid foodstuffs by liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS). PAs in lipid foodstuff were effectively purified by freezing lipid precipitation (FLP) and strong cation exchange (SCX)-solid-phase extraction (SPE). Especially, FLP could easily remove the large amounts of triacylglycerols in the lipid sample extract and effectively combine with SPE cleanup. During the FLP procedure, over 77% of the lipids in the foodstuff extracts were rapidly eliminated without any significant loss of the PAs with over 81% recovery. The elimination efficiency of lipids by FLP was tested with LC-atmospheric chemical ionization (APCI)-MS. For further purification, SCX-SPE cartridge could successfully purify PAs from the remaining interfering substances by the variation pH with 5% NH4OH in methanol. For precise quantification and confirmation of PAs in complicate sample matrices, appropriate transition ions in LC-MS/MS-multiple-ion reaction monitoring (MRM) mode were selected on the basis of MS/MS fragmentation pathways of PAs. The established analytical method was validated in terms of the linearity, limits of detection (LOD), and quantification (LOQ), precision, and accuracy. The method was deemed satisfactory by inter- and intra-day validation and exhibited both high accuracy and precision (relative standard deviation<11.06%). Overall limits of detection and quantitation of PAs were approximately 0.06-0.60ng/mL at a signal-to-noise ratio (S/N) of 3 and were about 0.20-1.99ng/mL at a S/N of 10 for all foodstuffs. The established method was successfully applied for the monitoring of toxic PAs in several types of high lipid foodstuffs such as soybeans, seed oil, milk, and margarine.

  9. Maternal Lipids as Strong Determinants of Fetal Environment and Growth in Pregnancies With Gestational Diabetes Mellitus

    PubMed Central

    Schaefer-Graf, Ute M.; Graf, Kristof; Kulbacka, Irina; Kjos, Siri L.; Dudenhausen, Joachim; Vetter, Klaus; Herrera, Emilio

    2008-01-01

    OBJECTIVE—To determine the contribution of maternal glucose and lipids to intrauterine metabolic environment and fetal growth in pregnancies with gestational diabetes mellitus (GDM). RESEARCH DESIGN AND METHODS—In 150 pregnancies, serum triglycerides (TGs), cholesterol, free fatty acids (FFAs), glycerol, insulin, and glucose were determined in maternal serum and cord blood during the 3rd trimester. Maternal glucose values came from oral glucose tolerance testing and glucose profiles. Measurements of fetal abdominal circumference (AC) were performed simultaneously with maternal blood sampling and birth weight, and BMI and neonatal fat mass were obtained following delivery. RESULTS—Maternal TGs and FFAs correlated with fetal AC size (at 28 weeks: triglycerides, P = 0.001; FFAs, P = 0.02), and at delivery they correlated with all neonatal anthropometric measures (FFA: birth weight, P = 0.002; BMI, P = 0.001; fat mass, P = 0.01). After adjustment for confounding variables, maternal FFAs and TGs at delivery remained the only parameters independently related to newborns large for gestational age (LGA) (P = 0.008 and P = 0.04, respectively). Maternal FFA levels were higher in mothers with LGA newborns than in those with appropriate for gestational age (AGA) newborns (362.8 ± 101.7 vs. 252.4 ± 10.1, P = 0.002). Maternal levels of TGs, FFAs, and glycerol at delivery correlated with those in cord blood (P = 0.003, P = 0.004, and P = 0.005, respectively). Fetal triglyceride and cholesterol levels were negatively correlated with newborn birth weight (P = 0.001), BMI (P = 0.004), and fat mass (P = 0.001). TGs were significantly higher in small for gestational age (SGA) newborns compared with AGA or LGA newborns, while insulin-to-glucose ratio and FFAs were the highest in LGA newborns. CONCLUSIONS—In well-controlled GDM pregnancies, maternal lipids are strong predictors for fetal lipids and fetal growth. Infants with abnormal growth seem to be exposed to a distinct

  10. [Thin-layer chromatographic determination of coumarin derivatives].

    PubMed

    Tsvetkova, Ts M

    1977-01-01

    Described is a thin-layer chromatography method for the demonstration and identification of the cumarin derivatives cumaphos and warfarin. Tested were five solvents and six developers. Best results were obtained by means of Silica gel plates, the toluol-aceton solvent (85:15), and the developer of a diazosalt 0.4% in an alcohol 20% sodiumhydroxide. Warfarin and cumaphos are demonstrated with the appearance of yellow, resp. orange spots on a white background, the RF values being 0.37 and 0.85, and sensitivity as regards warfarin 0.5 microgram and cumaphos 0.2 microgram.

  11. Primary aminophospholipids in the external layer of liposomes protect their component polyunsaturated fatty acids from 2,2'-azobis(2-amidinopropane)- dihydrochloride-mediated lipid peroxidation.

    PubMed

    Kubo, Kazuhiro; Sekine, Seiji; Saito, Morio

    2005-02-09

    We showed in our previous study that docosahexaenoic acid-rich phosphatidylethanolamine in the external layer of small-size liposomes, as a model for biomembranes, protected its docosahexaenoic acid from 2,2'-azobis(2-amidinopropane)dihydrochloride- (AAPH-) mediated lipid peroxidation in vitro. Besides phosphatidylethanolamine, both phosphatidylserine and an alkenyl-acyl analogue of phosphatidylethanolamine, phosphatidylethanolamine plasmalogen, are reported to possess characteristic antioxidant activities. However, there are few reports about the relationship between the protective activity of phosphatidylethanolamine plasmalogen and/or phosphatidylserine against lipid peroxidation and their distribution in a phospholipid bilayer. Furthermore, it is unclear whether phosphatidylethanolamine plasmalogen and/or phosphatidylserine protect their component polyunsaturated fatty acids (PUFAs) from lipid peroxidation. In the present study, we examined the relationship between the transbilayer distribution of aminophospholipids, such as phosphatidylethanolamine rich in arachidonic acid, phosphatidylethanolamine plasmalogen, and phosphatidylserine, and the oxidative stability of their component PUFAs. The transbilayer distribution of these aminophospholipids in liposomes was modulated by coexisting phosphatidylcholine bearing two types of acyl chain: dipalmitoyl or dioleoyl. The amounts of these primary aminophospholipids in the external layer became significantly higher in liposomes containing dioleoylphosphatidylcholine than in those containing dipalmitoylphosphatidylcholine. Phosphatidylethanolamine rich in arachidonic acid, phosphatidylethanolamine plasmalogen or phosphatidylserine in the external layer of liposomes, as well as external docosahexaenoic acid-rich phosphatidylethanolamine, were able to protect their component PUFAs from AAPH-mediated lipid peroxidation.

  12. A validated HPLC method for the determination of octocrylene in solid lipid nanoparticle systems.

    PubMed

    Berkman, M S; Yazan, Y

    2011-02-01

    UV filters are traditionally classified as chemical absorbers and physical blockers depending on their mechanism of action. In this study, one of the most important chemical UVB absorber, octocrylene, was incorporated into Solid Lipid Nanoparticle (SLN) systems which themselves have UV blocking potential similar to physical blockers. Determination of octocrylene in the formulations was performed by HPLC (High Performance Liquid Chromatography) using a new validated method based on ICH harmonised tripartite guideline "validation of analytical procedures Q2(R1)". Determination and validation studies were carried out on a 4.6 x 250 mm, 5 microm C18 ACE column using an optimized mobile phase of acetonitrile:water (75:25, v/v) at a flow rate of 1.5 mL x min(-1). UV detection was performed at 210 nm and the column temperature was adjusted to 50 degrees C. Cyclosporine A was used as an internal standard (IS). The specified working range was derived from linearity studies and kept in the concentration range of 2.5 x -5.5 x 10(-5) M. Good correlation and accuracy were obtained. Limit of detection (LOD) and limit of quantitation (LOQ) values were determined to be 1.64 x 10(-6) M and 4.97 x 10-6 M, respectively. Octocrylene recovery % results of the SLN formulations stored at 25 degrees C, 4 degrees C and 40 degrees C for 360 days were investigated and compared to the freshly prepared samples.

  13. Determination of Components in Beverages by Thin-Layer Chromatography.

    ERIC Educational Resources Information Center

    Ma, Yinfa; Yeung, Edward S.

    1990-01-01

    Described is a simple and interesting chromatography experiment using three different fluorescence detection principles for the determination of caffeine, saccharin and sodium benzoate in beverages. Experimental procedures and an analysis and discussion of the results are included. (CW)

  14. Determination of the Atmospheric Boundary Layer Height from Radiosonde and Lidar Backscatter

    NASA Astrophysics Data System (ADS)

    Hennemuth, Barbara; Lammert, Andrea

    2006-07-01

    The height of the atmospheric boundary layer is derived with the help of two different measuring systems and methods. From radiosoundings the boundary layer height is determined by the parcel method and by temperature and humidity gradients. From lidar backscatter measurements a combination of the averaging variance method and the high-resolution gradient method is used to determine boundary layer heights. In this paper lidar-derived boundary layer heights on a 10 min basis are presented. Datasets from four experiments two over land and two over the sea are used to compare boundary layer heights from both methods. Only the daytime boundary layer is investigated because the height of the nighttime stable boundary layer is below the range of the lidar. In many situations the boundary layer heights from both systems coincide within ±200 m. This corresponds to the standard deviation of lidar-derived 10-min values within a 1-h interval and is due to the time and space variability of the boundary layer height. Deviations appear for certain situations and depend on which radiosonde method is applied. The parcel method fails over land surfaces in the afternoon when the boundary layer stabilizes and over the ocean when the boundary layer is slightly stable. An automatic radiosonde gradient method sometimes fails when multiple layers are present, e.g. a residual layer above the growing convective boundary layer. The lidar method has the advantage of continuous tracing and thus avoids confusion with elevated layers. On the other hand, it mostly fails in situations with boundary layer clouds

  15. Determination of lipid hydroperoxides in serum iodometry and high performance liquid chromatography compared.

    PubMed

    Wieland, E; Schettler, V; Diedrich, F; Schuff-Werner, P; Oellerich, M

    1992-06-01

    It is postulated that lipid peroxidation plays a role in the pathogenesis of a variety of diseases. Efforts have therefore been made to develop reliable and practicable procedures for quantifying lipid peroxidation products such as lipid hydroperoxides in biological specimens. An iodometric cholesterol colour reagent (Merck, Darmstadt, Germany) can be used to measure lipid hydroperoxides in isolated low density lipoproteins without lipid extraction. This method has been validated with respect to its analytical performance and suitability for serum samples by comparing it with a high performance liquid chromatography technique. The method was found to have acceptable performance characteristics with aqueous fatty acid hydroperoxide solutions (linoleic acid) and isolated low density lipoproteins, but it cannot be applied to native serum samples without extraction of lipids.

  16. Characterization of solid lipid nanoparticles containing caffeic acid and determination of its effects on MCF-7 cells.

    PubMed

    Dikmen, Gokhan; Guney, Gamze; Genc, Lutfi

    2015-01-01

    Many anticancer drugs that are currently used in cancer treatment are natural products or their analogues by structural modification. Caffeic acid (3, 4-dihydroxycinnamic acid; CA) is classified as hydroxycinnamic acid and has a variety of potential pharmacological effects, including antioxidant, immunomodulatory and anti-inflammatory activities. As a drug carrier, solid lipid nanoparticles (SLNs) introduced to improve stability, provide controlled drug release, avoid organic solvents and are obtained in small sizes. In this study, we developed solid lipid nanoparticles incorporating with caffeic acid using hot homogenization method. Caffeic acid loaded solid lipid nanoparticles were characterized regarding particle size, zeta potential, drug entrapment efficiency, drug release, scanning electron microscopy (SEM) and FT-IR. The effects of caffeic acid loaded solid lipid nanoparticles on MCF-7 cells were determined by 3-(4, 5-dimethylthiazol-2-yl)-2, 5-dimethyl tetrazolium bromide (MTT) test and Annexin V-PI analysis. As a result, solid lipid nanoparticles could potentially be used for the delivery of caffeic acid and solid lipid nanoparticles formulation enhanced the effects of caffeic acid on MCF-7 cells. Some relevant patents are also referred in this article.

  17. Distribution of Lipids in the Grain of Wheat (cv. Hereward) Determined by Lipidomic Analysis of Milling and Pearling Fractions.

    PubMed

    González-Thuillier, Irene; Salt, Louise; Chope, Gemma; Penson, Simon; Skeggs, Peter; Tosi, Paola; Powers, Stephen J; Ward, Jane L; Wilde, Peter; Shewry, Peter R; Haslam, Richard P

    2015-12-16

    Lipidomic analyses of milling and pearling fractions from wheat grain were carried out to determine differences in composition that could relate to the spatial distribution of lipids in the grain. Free fatty acids and triacylglycerols were major components in all fractions, but the relative contents of polar lipids varied, particularly those of lysophosphatidylcholine and digalactosyldiglyceride, which were enriched in flour fractions. By contrast, minor phospholipids were enriched in bran and offal fractions. The most abundant fatty acids in the analyzed acyl lipids were C16:0 and C18:2 and their combinations, including C36:4 and C34:2. Phospholipids and galactolipids have been reported to have beneficial properties for breadmaking, whereas free fatty acids and triacylglycerols are considered detrimental. The subtle differences in the compositions of fractions determined in the present study could therefore underpin the production of flour fractions with optimized compositions for different end uses.

  18. Optimization of a Nile Red method for rapid lipid determination in autotrophic, marine microalgae is species dependent.

    PubMed

    Balduyck, Lieselot; Veryser, Cedrick; Goiris, Koen; Bruneel, Charlotte; Muylaert, Koenraad; Foubert, Imogen

    2015-11-01

    Several studies have been conducted to develop rapid methods for quantification of lipid content in microalgae, as an alternative for time consuming gravimetric methods. Different studies showed that lipid staining with Nile Red in whole cell suspensions and subsequently quantification by the use of a spectrofluorometric device is a promising method, but a profound optimization and validation is rare. It has already been proven that the correlation curve for quantification is species dependent, but it has not yet been investigated whether this is also the case for the optimization of the Nile Red assay protocol. Therefore, two autotrophic, marine microalgae, Nannochloropsis oculata and T-Isochrysis lutea, strongly differing in e.g. cell wall structure, were selected in this study to investigate whether optimization of the Nile Red assay is species dependent. Besides this, it was checked for one of these species, Nannochloropsis, whether the lipid content, determined by the Nile Red assay, could indeed be correlated with the neutral and/or total lipid content determined by gravimetric methods. It was found that optimization of the Nile Red assay was strongly species dependent. Consequently, optimization has to be done for each species before using the assay. For Nannochloropsis, a good correlation was found between total and neutral lipid content obtained by the Nile Red assay and by gravimetric methods.

  19. Experimental Determination of Shock Structures in Hetrogeneous Layered Material Systems

    DTIC Science & Technology

    2005-07-19

    2004). The failure and ultimate strength of the composites were both reported to increase with strain rate. Haque et al. (2003) used SHPB technique...Sierakowski and Chaturvedi, 1997). These material systems can be engineered to have the same strength and stiffness as high- strength steels , yet they...Hugoniot curve of GRP were determined. The spall strength of GRP was also studied by conducting a series of both normal-impact and combined pressure

  20. Using fluorescence-activated flow cytometry to determine reactive oxygen species formation and membrane lipid peroxidation in viable boar spermatozoa

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fluorescence-activated flow cytometry analyses were developed for determination of reactive oxygen species (ROS) formation and membrane lipid peroxidation in live spermatozoa loaded with, respectively, hydroethidine (HE) or the lipophilic probe 4,4-difluoro-5-(4-phenyl-1,3-butadienyl)-4-bora-3a,4a-d...

  1. Evaluation of micro-colorimetric lipid determination method with samples prepared using sonication and accelerated solvent extraction methods

    EPA Science Inventory

    Two common laboratory extraction techniques were evaluated for routine use with the micro-colorimetric lipid determination method developed by Van Handel (1985) [E. Van Handel, J. Am. Mosq. Control Assoc. 1(1985) 302] and recently validated for small samples by Inouye and Lotufo ...

  2. The modified fluorescence based vesicle fluctuation spectroscopy technique for determination of lipid bilayer bending properties.

    PubMed

    Drabik, Dominik; Przybyło, Magda; Chodaczek, Grzegorz; Iglič, Aleš; Langner, Marek

    2016-02-01

    Lipid bilayer is the main constitutive element of biological membrane, which confines intracellular space. The mechanical properties of biological membranes may be characterized by various parameters including membrane stiffness or membrane bending rigidity, which can be measured using flicker noise spectroscopy. The flicker noise spectroscopy exploits the spontaneous thermal undulations of the membrane. The method is based on the quantitative analysis of a series of microscopic images captured during thermal membrane fluctuations. Thus, measured bending rigidity coefficient depends on the image quality as well as the selection of computational tools for image processing and mathematical model used. In this work scanning and spinning disc confocal microscopies were used to visualize fluctuating membranes of giant unilamellar vesicles. The bending rigidity coefficient was calculated for different acquisition modes, using different fluorescent probes and different image processing methods. It was shown that both imaging approaches gave similar bending coefficient values regardless of acquisition time. Using the developed methodology the effect of fluorescent probe type and aqueous phase composition on the value of the membrane bending rigidity coefficient was measured. Specifically it was found that the bending rigidity coefficient of DOPC bilayer in water is smaller than that determined for POPC membrane. It has been found that the POPC and DOPC bending rigidities coefficient in sucrose solution was lower than that in water. Fluorescence imaging makes possible the quantitative analysis of membrane mechanical properties of inhomogeneous membrane.

  3. Evaluation of micro-colorimetric lipid determination method with samples prepared using sonication and accelerated solvent extraction methods.

    PubMed

    Billa, Nanditha; Hubin-Barrows, Dylan; Lahren, Tylor; Burkhard, Lawrence P

    2014-02-01

    Two common laboratory extraction techniques were evaluated for routine use with the micro-colorimetric lipid determination method developed by Van Handel (1985) [2] and recently validated for small samples by Inouye and Lotufo (2006) [1]. With the accelerated solvent extraction method using chloroform:methanol solvent and the colorimetric lipid determination method, 28 of 30 samples had significant proportional bias (α=1%, determined using standard additions) and 1 of 30 samples had significant constant bias (α=1%, determined using Youden Blank measurements). With sonic extraction, 0 of 6 samples had significant proportional bias (α=1%) and 1 of 6 samples had significant constant bias (α=1%). These demonstrate that the accelerated solvent extraction method with chloroform:methanol solvent system creates an interference with the colorimetric assay method, and without accounting for the bias in the analysis, inaccurate measurements would be obtained.

  4. Development of novel fluorescent probe 3-perylene diphenylphosphine for determination of lipid hydroperoxide with fluorescent image analysis

    SciTech Connect

    Chotimarkorn, Chatchawan; Nagasaka, Reiko; Ushio, Hideki . E-mail: hushio@s.kaiyodai.ac.jp; Ohshima, Toshiaki; Matsunaga, Shigeki

    2005-12-16

    A novel fluorescent probe 3-perylene diphenylphosphine (3-PeDPP) was synthesized for the direct analysis of lipid hydroperoxides. The structure of 3-PeDPP was identified by the spectroscopic data, FAB-MS, {sup 1}H NMR, and {sup 13}C NMR. The reactivities of 3-PeDPP with lipid hydroperoxides were investigated in chloroform/MeOH homogeneous solutions and PC liposome model systems oxidized by either 2,2'-azobis(2-amidinopropane)dihydrochloride and photosensitized oxidation. The fluorescence intensity derived from 3-perylene diphenylphosphineoxide (3-PeDPPO) increased proportionally with amount of hydroperoxides produced in homogeneous solutions and liposome model systems. 3-PeDPP was easily incorporated into mouse myeloma SP2 cells and thin tissue section for dynamic membrane lipid peroxidation studies. Linear correlations between fluorescence intensity and amount of hydroperoxides in the cell membrane and tissue sections were obtained. The fluorescence intensity from 2-dimensional image analysis was also well correlated with lipid hydroperoxide level in these models. Thus, the novel probe 3-PeDPP is useful for the direct determination of lipid hydroperoxides in biological materials.

  5. Comparison of Methods for Determining Boundary Layer Edge Conditions for Transition Correlations

    NASA Technical Reports Server (NTRS)

    Liechty, Derek S.; Berry, Scott A.; Hollis, Brian R.; Horvath, Thomas J.

    2003-01-01

    Data previously obtained for the X-33 in the NASA Langley Research Center 20-Inch Mach 6 Air Tunnel have been reanalyzed to compare methods for determining boundary layer edge conditions for use in transition correlations. The experimental results were previously obtained utilizing the phosphor thermography technique to monitor the status of the boundary layer downstream of discrete roughness elements via global heat transfer images of the X-33 windward surface. A boundary layer transition correlation was previously developed for this data set using boundary layer edge conditions calculated using an inviscid/integral boundary layer approach. An algorithm was written in the present study to extract boundary layer edge quantities from higher fidelity viscous computational fluid dynamic solutions to develop transition correlations that account for viscous effects on vehicles of arbitrary complexity. The boundary layer transition correlation developed for the X-33 from the viscous solutions are compared to the previous boundary layer transition correlations. It is shown that the boundary layer edge conditions calculated using an inviscid/integral boundary layer approach are significantly different than those extracted from viscous computational fluid dynamic solutions. The present results demonstrate the differences obtained in correlating transition data using different computational methods.

  6. Determination of thermal stability of specific biomarker lipids of the freshwater fern Azolla through hydrous pyrolysis

    NASA Astrophysics Data System (ADS)

    Sap, Merel; Speelman, Eveline N.; Lewan, Michael D.; Sinninghe Damsté, Jaap S.; Reichart, Gert-Jan

    2010-05-01

    Enormous blooms of the free-floating freshwater fern Azolla occurred within the Arctic Basin during an extended period of ~1.2 Ma during the middle Eocene (Brinkhuis et al. 2006; Speelman et al., GB, 2009). The sustained growth of Azolla, currently ranking among the fastest growing plants on Earth, in a major anoxic basin may have substantially contributed to decreasing atmospheric CO2 levels by burial of Azolla-derived organic matter. Speelman et al. (OG, 2009) reported biomarkers for Azolla (1,w20 C32 - C36 diols, structurally related C29 ω20,ω21 diols, C29 1,20,21 triols, C29 dihydroxy fatty acids as well as a series of wax esters containing these mono- and dihydroxy lipids), which can be used to reconstruct palaeo-environmental conditions. Here we assess the thermal stability of these compounds, to extend their biomarker potential. We specifically focused on the thermal stability of the Azolla biomarkers using hydrous pyrolysis in order to determine which burial conditions allow reconstruction of past occurrences of Azolla. In addition, hydrous pyrolysis was also performed on samples from the Eocene Arctic Ocean (ACEX core), to test if and how the biomarkers change under higher temperatures and pressures in situ. During hydrous pyrolysis, the biomass was heated under high pressure at temperatures ranging between 220 and 365°C for 72 hours. Four experiments were also run using different durations to explore the kinetics of biomarker degradation at specific temperatures. First results indicate that the Azolla specific diols are still present at 220°C, while the corresponding wax esters are already absent. At 300°C all Azolla specific biomarkers are destroyed. More specific determination of the different biomarkers' stability and kinetics would potentially allow the reconstruction of the temperature and pressure history of Azolla deposits. Literature: • Brinkhuis, H., Schouten, S., Collinson, M. E., Sluijs, A., Sinninghe Damste, J. S., Dickens, G. R., Huber

  7. Simultaneous determination of dopamine and uric acid using layer-by-layer graphene and chitosan assembled multilayer films.

    PubMed

    Weng, Xuexiang; Cao, Qingxue; Liang, Lixin; Chen, Jianrong; You, Chunping; Ruan, Yongmin; Lin, Hongjun; Wu, Lanju

    2013-12-15

    Multilayer films containing graphene (Gr) and chitosan (CS) were prepared on glassy carbon electrodes with layer-by-layer (LBL) assembly technique. After being characterized with cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and scanning electron microscopy (SEM), the electrochemical sensor based on the resulted films was developed to simultaneously determine dopamine (DA) and uric acid (UA). The LBL assembled electrode showed excellent electrocatalytic activity towards the oxidation of DA and UA. In addition, the self-assembly electrode possessed an excellent sensing performance for detection of DA and UA with a linear range from 0.1 μM to 140 µM and from 1.0 µM to 125 µM with the detection limit as low as 0.05 µM and 0.1 µM based on S/N=3, respectively.

  8. NMR techniques for determination of lipid content in microalgal biomass and their use in monitoring the cultivation with biodiesel potential.

    PubMed

    Sarpal, Amarjit S; Teixeira, Cláudia M L L; Silva, Paulo Roque Martins; da Costa Monteiro, Thays Vieira; da Silva, Júlia Itacolomy; da Cunha, Valnei Smarcaro; Daroda, Romeu José

    2016-03-01

    In the present investigation, the application of NMR spectroscopic techniques was extensively used with an objective to explore the biodiesel potential of biomass cultivated on a lab scale using strains of Chlorella vulgaris and Scenedesmus ecornis. The effect of variation in the composition of culturing medium on the neutral and polar lipids productivity, and fatty acid profile of solvent extracts of microalgae biomass was studied. Determination of unsaturated fatty acid composition (C18:N = 1-3, ω3 C20:5, ω3 C22:6), polyunsaturated fatty esters (PUFEs), saturated fatty acids (SFAs), unsaturated fatty acids (UFAs), free fatty acids (FFAs), and iodine value were achieved from a single (1)H NMR spectral analysis. The results were validated by (13)C NMR and GC-MS analyses. It was demonstrated that newly developed methods based on (1)H and (13)C NMR techniques are direct, rapid, and convenient for monitoring the microalgae cultivation process for enhancement of lipid productivity and their quality aspects in the solvent extracts of microalgal biomasses without any sample treatment and prior separation compared to other methods. The fatty acid composition of algae extracts was found to be similar to vegetable and fish oils, mostly rich in C16:0, C18:N (N = 0 to 3), and n-3 omega polyunsaturated fatty acids (PUFAs). The lipid content, particularly neutral lipids, as well as most of the quality parameters were found to be medium specific by both the strains. The newly developed methods based on NMR and ultrasonic procedure developed for efficient extraction of neutral lipids are cost economic and can be an effective aid for rapid screening of algae strains for modulation of lipid productivity with desired biodiesel quality and value-added products including fatty acid profile.

  9. Structure determination of a partially ordered layered silicate material with an NMR crystallography approach.

    PubMed

    Brouwer, Darren Henry; Cadars, Sylvian; Hotke, Kathryn; Van Huizen, Jared; Van Huizen, Nicholas

    2017-03-01

    Structure determination of layered materials can present challenges for conventional diffraction methods due to the fact that such materials often lack full three-dimensional periodicity since adjacent layers may not stack in an orderly and regular fashion. In such cases, NMR crystallography strategies involving a combination of solid-state NMR spectroscopy, powder X-ray diffraction, and computational chemistry methods can often reveal structural details that cannot be acquired from diffraction alone. We present here the structure determination of a surfactant-templated layered silicate material that lacks full three-dimensional crystallinity using such an NMR crystallography approach. Through a combination of powder X-ray diffraction and advanced (29)Si solid-state NMR spectroscopy, it is revealed that the structure of the silicate layer of this layered silicate material templated with cetyltrimethylammonium surfactant cations is isostructural with the silicate layer of a previously reported material referred to as ilerite, octosilicate, or RUB-18. High-field (1)H NMR spectroscopy reveals differences between the materials in terms of the ordering of silanol groups on the surfaces of the layers, as well as the contents of the inter-layer space.

  10. Microfluidic Synthesis of Hybrid Nanoparticles with Controlled Lipid Layers: Understanding Flexibility-Regulated Cell-Nanoparticle Interaction.

    PubMed

    Zhang, Lu; Feng, Qiang; Wang, Jiuling; Zhang, Shuai; Ding, Baoquan; Wei, Yujie; Dong, Mingdong; Ryu, Ji-Young; Yoon, Tae-Young; Shi, Xinghua; Sun, Jiashu; Jiang, Xingyu

    2015-10-27

    The functionalized lipid shell of hybrid nanoparticles plays an important role for improving their biocompatibility and in vivo stability. Yet few efforts have been made to critically examine the shell structure of nanoparticles and its effect on cell-particle interaction. Here we develop a microfluidic chip allowing for the synthesis of structurally well-defined lipid-polymer nanoparticles of the same sizes, but covered with either lipid-monolayer-shell (MPs, monolayer nanoparticles) or lipid-bilayer-shell (BPs, bilayer nanoparticles). Atomic force microscope and atomistic simulations reveal that MPs have a lower flexibility than BPs, resulting in a more efficient cellular uptake and thus anticancer effect than BPs do. This flexibility-regulated cell-particle interaction may have important implications for designing drug nanocarriers.

  11. Determinants of the tumor suppressor INPP4B protein and lipid phosphatase activities.

    PubMed

    Lopez, Sandra M; Hodgson, Myles C; Packianathan, Charles; Bingol-Ozakpinar, Ozlem; Uras, Fikriye; Rosen, Barry P; Agoulnik, Irina U

    2013-10-18

    The tumor suppressor INPP4B is an important regulator of phosphatidyl-inositol signaling in the cell. Reduced INPP4B expression is associated with poor outcomes for breast, prostate, and ovarian cancer patients. INPP4B contains a CX5R catalytic motif characteristic of dual-specificity phosphatases, such as PTEN. Lipid phosphatase activity of INPP4B has previously been described. In this report we show that INPP4B can dephosphorylate para-nitrophenyl phosphate (pNPP) and 6,8-difluoro-4-methylumbelliferyl (DiFMUP), synthetic phosphotyrosine analogs, suggesting that INPP4B has protein tyrosine phosphatase (PTP) activity. Using mutagenesis, we examined the functional role of specific amino acids within the INPP4B C842KSAKDR catalytic site. The K843M mutant displayed increased pNPP hydrolysis, the K846M mutant lost lipid phosphatase activity with no effect on PTP activity, and the D847E substitution ablated PTP activity and significantly reduced lipid phosphatase activity. Further, we show that INPP4B but not PTEN is able to reduce tyrosine phosphorylation of Akt1 and both the lipid and PTP activity of INPP4B likely contribute to the reduction of Akt1 phosphorylation. Taken together our data identified key residues in the INPP4B catalytic domain associated with lipid and protein phosphatase activities and found a robust downstream target regulated by INPP4B but not PTEN.

  12. Determination of cloud and aerosol layers using CALIPSO and image processing

    NASA Astrophysics Data System (ADS)

    Alias, A. N.; MatJafri, M. Z.; Lim, H. S.; Abdullah, K.; Saleh, N. Mohd.

    2008-10-01

    The height of cloud and aerosol layers in the atmosphere is believed to affect climate change and air pollution because both of them have important direct effects on the radiation balance of the earth. In this paper, we study the ability of Cloud Aerosol LIDAR and Infrared Pathfinder Satellite Observation (CALIPSO) data to detect, locate and distinguish between cloud and aerosol layers in the atmosphere over Peninsula Malaysia. We also used image processing technique to differentiate between cloud and aerosol layers from the CALIPSO images. The cloud and aerosol layers mostly are seen at troposphere (>10 km) and lower stratosphere (>15km). The results shows that CALIPSO can be used to determine cloud and aerosol layers and image processing technique has successfully distinguished them in the atmosphere.

  13. Direct determination of the thickness of stratospheric layers from single-channel satellite radiance measurements.

    NASA Technical Reports Server (NTRS)

    Quiroz, R. S.; Gelman, M. E.

    1972-01-01

    The direct use of measured radiances for determining the thickness of stratospheric layers is investigated. Layers based at 100-10 mb, with upper boundaries at 10-0.5 mb, are investigated using a carefully selected family of stratospheric temperature profiles and computed radiances. On the basis of physical reasoning, a high correlation of thickness with radiance is anticipated for deep layers, such as the 100- to 2-mb layer (from about 15 to 43 km), that emit a substantial part of the infrared energy reaching a satellite radiometer in a particular channel. Empirical regression curves relating thickness and radiance are developed and are compared with blackbody curves obtained by substituting the blackbody temperature in the hydrostatic equation. Maximum thickness-radiance correlation is found, for each infrared channel, for the layer having the best agreement of empirical and blackbody curves.

  14. New Method to Determine the Schottky Barrier in Few-Layer Black Phosphorus Metal Contacts.

    PubMed

    Lee, Su Yeong; Yun, Won Seok; Lee, J D

    2017-03-01

    Schottky barrier height and carrier polarity are seminal concepts for a practical device application of the interface between semiconductor and metal electrode. Investigation of those concepts is usually made by a conventional method such as the Schottky-Mott rule, incorporating the metal work function and semiconductor electron affinity, or the Fermi level pinning effect, resulting from the metal-induced gap states. Both manners are, however, basically applied to the bulk semiconductor metal contacts. To explore few-layer black phosphorus metal contacts far from the realm of bulk, we propose a new method to determine the Schottky barrier by scrutinizing the layer-by-layer phosphorus electronic structure from the first-principles calculation combined with the state-of-the-art band unfolding technique. In this study, using the new method, we calculate the Schottky barrier height and determine the contact polarity of Ti, Sc, and Al metal contacts to few-layer (mono-, bi-, tri-, and quadlayer) black phosphorus. This gives a significant physical insight toward the utmost layer-by-layer manipulation of electronic properties of few-layer semiconductor metal contacts.

  15. Postprandial lipid responses to standard carbohydrate challenges used to determine glycemic index values

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Prior studies assessing metabolic effects of different types of carbohydrate have focused on their glycemic response. Not considered has been the response of postprandial cardiometabolic risk indicators. This study assessed the postprandial lipid responses to two forms of carbohydrates used as ref...

  16. Layer-by-layer assembled carbon nanotubes for selective determination of dopamine in the presence of ascorbic acid.

    PubMed

    Zhang, Meining; Gong, Kuanping; Zhang, Hongwu; Mao, Lanqun

    2005-01-15

    Multilayer films of shortened multi-walled carbon nanotubes (MWNTs) are homogeneously and stably assembled on glassy carbon (GC) electrodes using layer-by-layer (LBL) method based on electrostatic interaction of positively charged poly(diallyldimethylammonium chloride) (PDDA) and negatively charged shortened MWNTs. The assembled MWNT multilayer films were studied with respect to the electrocatalytic activity toward ascorbic acid (AA) and dopamine (DA) and were further applied for selective determination of DA in the presence of AA. Scanning electron microscopy (SEM) used for characterization of MWNT films indicates that the assembled MWNTs are almost in a form of small bundles or single nanotubes on the electrodes. Cyclic voltammetric results with assembled MWNT electrode indicate that the strategy based on the LBL method for assembling the MWNT multilayer films on substrate well retains the electrochemical catalytic activity of the MWNTs toward AA and DA, offering some advantages particularly attractive for analytical applications, such as the form of MWNTs assembled on the substrate, i.e., small bundles or single tubes, homogeneity and stability of the as-assembled MWNT films. These features make the assembled MWNTs relatively potential for selective and sensitive determination of DA in the presence of AA.

  17. Determination of the Mixing Layer Height Over two Sites, Using Pilot Balloons During the MILAGRO Campaign

    NASA Astrophysics Data System (ADS)

    Wohrnschimmel, H.; Alonso, A. L.; Ángeles, F.; Sosa, G.; Varela, J.; Cárdenas, B.

    2007-12-01

    Among the mechanisms that affect air quality there is a variety of meteorological processes. An important process in this context are the changes in the mixing layer height during a day and over the year. The mixing layer height is the portion of the atmosphere close to the surface layer where air pollutants get diluted, without leaving this layer. Therefore, it is important to describe the variations in the height of the mixing layer, i.e. the vertical dilution of air pollution, since this is a process mitigating naturally the impact of emissions. There exist different methods to obtain information on the mixing layer height, among them radio soundings, the application of vertical wind profilers, and launching pilot balloons. In this study, pilot balloons have been used simultaneously over two sites of the Mexico City Metropolitan Area during the MILAGRO campaign in March 2006. The objective was to determine the vertical wind profiles and derive information on the mixing layer height. Daily, four pilot balloons were launched, at 9:00, 12:00, 15:00, and 18:00 hours, over Tenango del Aire (a rural area in the Southeast of Mexico City), and over Ciudad Universitaria, in the Southern metropolitan area. At some occasions, night time measurements have been carried out at 21:00 and 24:00. A variability of the diurnal evolution of the mixing layer was observed along March, which could be related to surface temperature. The diurnal evolution showed a sudden growth of the mixing layer between 9:00 and 12:00 hours. Data intercomparisons were carried out for pilot balloons versus radio soundings during a few days at a third site, Tula, in the North of Mexico City. Both intercomparisons showed that pilot balloons are an effective method to obtain information about the development of the mixing layer.

  18. The direct determination of double bond positions in lipid mixtures by liquid chromatography/in-line ozonolysis/mass spectrometry.

    PubMed

    Sun, Chenxing; Zhao, Yuan-Yuan; Curtis, Jonathan M

    2013-01-31

    The direct determination of double bond positions in unsaturated lipids using in-line ozonolysis-mass spectrometry (O(3)-MS) is described. In this experiment, ozone penetrates through the semi-permeable Teflon AF-2400 tubing containing a flow of a solution of fatty acid methyl esters (FAME). Unsaturated FAME are thus oxidized by the ozone and cleaved at the double bond positions. The ozonolysis products then flow directly into the atmospheric pressure photoionization (APPI) source of a mass spectrometer for analysis. Aldehyde products retaining the methyl ester group are indicative of the double bond positions in unsaturated FAME. For the first time, O(3)-MS is able to couple directly to high performance liquid chromatography (HPLC), making the double bond localization in lipid mixtures possible. The application of LC/O(3)-MS has been demonstrated for a fat sample from bovine adipose tissue. A total of 9 unsaturated FAME including 6 positional isomers were identified unambiguously, without comparison to standards. The in-line ozonolysis reaction apparatus is applicable to most mass spectrometers without instrumental modification; it is also directly compatible with various LC columns. The LC/O(3)-MS method described here is thus a practical, versatile and easy to use new approach to the direct determination of double bond positions in lipids, even in complex mixtures.

  19. Back-calculation of temperature parameters for determination of asphalt layer modulus

    NASA Astrophysics Data System (ADS)

    Dong, Qinxi; Matsui, Kunihito; Yamamoto, Kazuya; Higashi, Shigeo

    2000-05-01

    The pavement elastic modulus of each layer was usually assumed not to be dependent on the environmental factors when the backcalculation of asphalt pavement was conducted from the measured surface deflections of FWD. However, it is well known that the elastic modulus of asphalt layer changes with the variation of temperature. Considering the influence of atmospheric temperature and radiant heat, the temperature distribution is nonlinear along the asphalt layer thickness, and has always been changed. Therefore, the distribution of elastic modulus in the asphalt layer has been considered to change as well. In this paper, we assume the elastic modulus distribution of the asphalt layer to vary with its temperature in terms of the exponential form. Based on the finite element method forward analysis, we propose a method to estimate a standard elastic modulus and temperature coefficient at 20 degrees Celsius for the asphalt layer from the backcalculation analysis. The corresponding FEM backcalculation program using Gauss-Newton method was developed to determine the pavement layer moduli and temperature dependent coefficient, in which the singular value decomposition (SVD) was used for the inverse analysis with scaling of unknown parameters. This method results in a smaller condition number that contributes to improvement of numerical stability. Both numerical simulation and measured data from FWD testing are used to demonstrate the potential applications of this method. As a result, the backcalculation procedure is less dependent on the user's initial values, fast in convergence rate and effective in the pavement engineering.

  20. Determination of lipid oxidation products in vegetable oils and marine omega-3 supplements

    PubMed Central

    Halvorsen, Bente Lise; Blomhoff, Rune

    2011-01-01

    Background There is convincing evidence that replacing dietary saturated fats with polyunsaturated fats (PUFA) decreases risk of cardiovascular diseases. Therefore, PUFA rich foods such as vegetable oils, fatty fish, and marine omega-3 supplements are recommended. However, PUFA are easily oxidizable and there is concern about possible negative health effects from intake of oxidized lipids. Little is known about the degree of lipid oxidation in such products. Objective To assess the content of lipid oxidation products in a large selection of vegetable oils and marine omega-3 supplements available in Norway. Both fresh and heated vegetable oils were studied. Design A large selection of commercially available vegetable oils and marine omega-3 supplements was purchased from grocery stores, pharmacies, and health food stores in Norway. The content of lipid oxidation products were measured as peroxide value and alkenal concentration. Twelve different vegetable oils were heated for a temperature (225°C) and time (25 minutes) resembling conditions typically used during cooking. Results The peroxide values were in the range 1.04–10.38 meq/kg for omega-3 supplements and in the range 0.60–5.33 meq/kg for fresh vegetable oils. The concentration range of alkenals was 158.23–932.19 nmol/mL for omega-3 supplements and 33.24–119.04 nmol/mL for vegetable oils. After heating, a 2.9–11.2 fold increase in alkenal concentration was observed for vegetable oils. Conclusions The contents of hydroperoxides and alkenals in omega-3 supplements are higher than in vegetable oils. After heating vegetable oils, a large increase in alkenal concentration was observed. PMID:21691461

  1. Anionic Lipids: Determinants of Binding Cytotoxins from Snake Venom on the Surface of Cell Membranes

    PubMed Central

    Boldyrev, I.A.; Omelkov, A.V.; Utkin, Yu.N.; Efremov, R.G.

    2010-01-01

    The cytotoxic properties of cytotoxins (CTs) from snake venom are mediated by their interaction with the cell membrane. The hydrophobic pattern containing the tips of loops I–III and flanked by polar residues is known to be a membrane–binding motif of CTs. However, this is not enough to explain the difference in activity among various CTs which are similar in sequence and in 3D structure. The mechanism of further CT–membrane interaction leading to pore formation and cell death still remains unknown. Published experimental data on the specific interaction between CT and low molecular weight anionic components (sulphatide) of the bilayer point to the existence of corresponding ligand binding sites on the surface of toxin molecules. In this work we study the membrane–lytic properties of CT I, CT II (Naja oxiana), and Ct 4 (Naja kaouthia), which belong to different structural and functional types (P– and S–type) of CTs, by measuring the intensity of a fluorescent dye, calcein released from liposomes containing a phosphatidylserine (PS) lipid as an anionic component. Using molecular docking simulations, we find and characterize three sites in CT molecules that can potentially bind the PS polar head. Based on the data obtained, we suggest a hypothesis that CTs can specifically interact with one or more of the anionic lipids (in particular, with PS) contained in the membrane, thus facilitating the interaction between CTs and the lipid bilayer of a cell membrane. PMID:22649646

  2. Dual role of outer epicuticular lipids in determining the wettability of dragonfly wings.

    PubMed

    Nguyen, Song Ha T; Webb, Hayden K; Hasan, Jafar; Tobin, Mark J; Crawford, Russell J; Ivanova, Elena P

    2013-06-01

    Numerous natural surfaces possess superhydrophobicity and self-cleaning properties that would be extremely beneficial when applied in industry. Dragonfly wings are one example of such surfaces, and while their general surface structure is known, their precise chemical composition is not. Here, the epicuticular lipids of dragonfly wing membranes were characterized to investigate their significance in contributing to self-cleaning and superhydrophobic properties. After just 10s of lipid extraction using chloroform, the water contact angles exhibited by the wings decreased below the accepted threshold for superhydrophobicity (150°). Infrared spectra collected at the Australian Synchrotron contained characteristic absorption bands of amide, ester and aliphatic hydrocarbons moieties on the wing surfaces, the latter of which was decreased post-extraction with chloroform. GC-MS data analysis revealed that the epicuticular wax components were dominated by n-alkanes with even-numbered carbons, especially n-hexacosane, and palmitic acid. SEM and AFM data analysis conducted on the untreated and chloroform-extracted wing surfaces demonstrated that surface topography changed after extraction; the surface nanostructure was progressively lost with extended extraction times. The data presented here indicate that epicuticular lipids contribute not only to self-cleaning and superhydrophobic properties through their inherent hydrophobic nature, but also by forming the physical structure of the wing surface. This knowledge will be extremely valuable for reconstruction of dragonfly wing structures as a biomimetic template.

  3. Neutron scattering determination of the binding of prothrombin to lipid vesicles

    SciTech Connect

    Torbet, J.

    1987-12-01

    Low-angle neutron scattering is used to study the binding of human prothrombin to small single-bilayer vesicles consisting of phosphatidylcholine and phosphatidylserine (1/1 w/w). The radius of gyration of prothrombin indicates that it is an elongated molecule. The vesicles alone were not observed to coalesce, and their molecular weight, outer radius, and average surface area per lipid were respectively (1.6 +/- 0.32) x 10/sup 6/, 114 +/- 4 A, and 110 +/- 18 A/sup 2/. These values were independent of the presence of calcium and were not altered significantly by prothrombin, which binds reversibly to the vesicle outer surface with its long axis projecting approximately radially forming a 90-A thick protein shell. From the titration of the protein-vesicle interaction, the apparent dissociation constant of the binding of prothrombin to these vesicles is estimated to be 0.8 +/- 0.4 ..mu..M. At saturation, 57 +/- 7 prothrombin molecules bind, giving 25 +/- 6 lipid residues and an area of 2900 +/- 400 A/sup 2/ per prothrombin molecule on the vesicle outer surface. This area is about twice that calculated from a prolate ellipsoid model for prothrombin. However, it is close to the maximum cross-sectional area of fragment 1, the lipid binding region of prothrombin, which is coin-shaped in the high-resolution X-ray structure. This similarity suggests that prothrombin binding could be sterically limited.

  4. Determining mean thickness of the oxide layer by mapping the surface of a silicon sphere.

    PubMed

    Zhang, Jitao; Li, Yan; Wu, Xuejian; Luo, Zhiyong; Wei, Haoyun

    2010-03-29

    To determine Avogadro constant with a relative uncertainty of better than 2 x 10(-8), the mean thickness of the oxide layer grown non-uniformly on the silicon sphere should be determined with about 0.1 nm uncertainty. An effective and flexible mapping strategy is proposed, which is insensitive to the angle resolution of the sphere-rotating mechanism. In this method, a sphere-rotating mechanism is associated with spectroscopic ellipsometer to determine the distribution of the layer, and a weighted mean method based on equal-area projection theory is applied to estimate the mean thickness. The spectroscopic ellipsometer is calibrated by X-ray reflectivity method. Within 12 hours, eight hundred positions on the silicon sphere are measured twice. The mean thickness is determined to be 4.23 nm with an uncertainty of 0.13 nm, which is in the acceptable level for the Avogadro project.

  5. A method for determining the thickness of tribological performing thin layers formed by selective transfer

    NASA Astrophysics Data System (ADS)

    Ilie, Filip; Chisiu, Georgiana; Ipate, George

    2017-02-01

    A new stage in the research of the unconventional friction couples (alloys or pseudo-alloys in thin layers) to implement them in the designing and execution of machines is represented by the modern friction couples which are based on selective transfer (transfer of a material from one element of the friction couple to the other in the presence of a lubricant forming a superficial layer, antifriction, very thin, the order of several microns, which behaves very well to friction and wear). A selective transfer can be achieved with certainty in a friction couple, lubricated with glycerine or with a special lubricant, if in the friction area there is a material from alloys on based copper. The thin superficial layer formed through selective transfer in the friction process of a friction couple is made of the elements of the alloy based on copper, where the copper is predominant. Hence results the practical necessity to determine the thickness of superficial thin layers (0.1 - 4 μm) obtained in the friction couples, by selective transfer (mass selective transfer through diffusion from one element of the friction couple to another, in conditions of local energies favourable to the transfer process and in the presence of relative motion). The aim of this paper is presenting and explaining a methodology for determining the thickness of layers formed by selective transfer, in the friction process, on the surfaces of elements friction couples.

  6. Determining the imaging plane of a retinal capillary layer in adaptive optical imaging

    NASA Astrophysics Data System (ADS)

    Yang, Le-Bao; Hu, Li-Fa; Li, Da-Yu; Cao, Zhao-Liang; Mu, Quan-Quan; Ma, Ji; Xuan, Li

    2016-09-01

    Even in the early stage, endocrine metabolism disease may lead to micro aneurysms in retinal capillaries whose diameters are less than 10 μm. However, the fundus cameras used in clinic diagnosis can only obtain images of vessels larger than 20 μm in diameter. The human retina is a thin and multiple layer tissue, and the layer of capillaries less than 10 μm in diameter only exists in the inner nuclear layer. The layer thickness of capillaries less than 10 μm in diameter is about 40 μm and the distance range to rod&cone cell surface is tens of micrometers, which varies from person to person. Therefore, determining reasonable capillary layer (CL) position in different human eyes is very difficult. In this paper, we propose a method to determine the position of retinal CL based on the rod&cone cell layer. The public positions of CL are recognized with 15 subjects from 40 to 59 years old, and the imaging planes of CL are calculated by the effective focal length of the human eye. High resolution retinal capillary imaging results obtained from 17 subjects with a liquid crystal adaptive optics system (LCAOS) validate our method. All of the subjects’ CLs have public positions from 127 μm to 147 μm from the rod&cone cell layer, which is influenced by the depth of focus. Project supported by the National Natural Science Foundation of China (Grant Nos. 11174274, 11174279, 61205021, 11204299, 61475152, and 61405194).

  7. pH- and thermosensitive thin lipid layer coated mesoporous magnetic nanoassemblies as a dual drug delivery system towards thermochemotherapy of cancer.

    PubMed

    Pradhan, Lina; Srivastava, R; Bahadur, D

    2014-07-01

    A new pH-sensitive and thermosensitive dual drug delivery system consisting of thin lipid layer encapsulated mesoporous magnetite nanoassemblies (MMNA) has been developed which can deliver two anticancer drugs simultaneously. The formulation of lipid layer used is 5:2:2:2 w/w, DPPC:cholesterol:DSPE-PEG2000:MMNA. The structure, morphology and magnetic properties of MMNA and lipid coated MMNA (LMMNA) were thoroughly characterized. This hybrid system was investigated for its ability to carry two anticancer drugs as well as its ability to provide heat under an alternating current magnetic field (ACMF). A very high loading efficiency of up to ∼81% of doxorubicin hydrochloride (DOX) with an ∼0.02 mg mg(-1) loading capacity and ∼60% of paclitaxel (TXL) with an ∼0.03 mg mg(-1) loading capacity are obtained with LMMNA. A sustained release of drug is observed over a period of 172 h, with better release, of ∼88:53% (DOX:TXL), at pH 4.3 compared to the ∼28:26% (DOX:TXL) in physiological conditions (pH 7.4). An enhanced release of ∼72 and ∼68% is recorded for DOX and TXL, respectively, during the first hour with the application of an ACMF (∼43°C). A greater in vitro cytotoxic effect is observed with the two drugs compared to them individually in HeLa, MCF-7 and HepG2 cancer cells. With the application of an ACMF for 10 min, the cell killing efficiency is improved substantially due to simultaneous thermo- and chemotherapy. Confocal microscopy confirms the internalization of drug loaded MMNA and LMMNA by cells and their morphological changes during thermochemotherapy.

  8. Lipids in blood-brain barrier models in vitro I: Thin-layer chromatography and high-performance liquid chromatography for the analysis of lipid classes and long-chain polyunsaturated fatty acids.

    PubMed

    Krämer, Stefanie D; Hurley, Johannah A; Abbott, N Joan; Begley, David J

    2002-01-01

    The objectives of this study were to optimize a sensitive high-performance liquid chromatography (HPLC) method for fatty acid (FA) analysis for the quantification of polyunsaturated FAs (PUFAs) in cell lipid extracts and to analyze the lipid and FA patterns of three cell lines used in blood-brain barrier (BBB) models: RBE4, ECV304, and C6. Thin-layer chromatographic analysis revealed differences in the phosphatidylcholine-phosphatidylethanolamine (PC:PE) ratios and the triglyceride (TG) content. The PC:PE ratio was <1 for RBE4 cells but >1 for ECV304 and C6 cells. ECV304 cells displayed up to 9% TG depending on culture time, whereas the other cell lines contained about 1% TG. The percentages of docosahexaenoic acid were 9.4 +/- 1.7% of the unsaturated FAs in RBE4 cells (n = 5; 4 d in culture; 9.9% after 10 d), 8.1 +/- 2.0% in ECV304 cells (n = 11; 10 to 14 d), and 6.7 +/- 0.6% in C6 cells (n = 6; 10 to 14 d) and were close to the published values for rat brain microvascular endothelium. The percentage of arachidonic acid (C20:4) was about half that in vivo. ECV304 cells contained the highest fraction of C20:4, 17.8 +/- 2.2%; RBE4 cells contained 11.6 +/- 2.4%; and C6 cells 15.8 +/- 1.9%. It is concluded that a sensitive HPLC method for FAs is now optimized for the analysis of long-chain PUFAs. The results provide a useful framework for studies on the effects of lipid modulation and give reference information for the development of further BBB models.

  9. Analytical method for determining the location of ionospheric and atmospheric layers from radio occultation data

    NASA Astrophysics Data System (ADS)

    Pavelyev, A. G.; Zhang, K.; Wang, C. S.; Liou, Y. A.; Kuleshov, Yu.

    2012-08-01

    We generalize the fundamental principle of the radio-occultation method for studying the atmospheres and ionospheres of planets and the Earth. The criterion containing the necessary and sufficient condition under which the tangential point, at which the refractive-index gradient is normal to the ray trajectory coincides with the radio-ray perigee, is obtained. The method for determining the location and parameters of ionospheric and ionospheric layers, which is based on the relationship between the amplitudes and phases of the analytic functions determined from variations in the phase path (eikonal) and intensity of the radio-occultation signal, is proposed. This method yields qualitative and quantitative estimations of the value of the spatial displacement of the ionospheric or ionospheric layer with respect to the radio-ray perigee and allows one to determine the altitude and inclination of the ionospheric layer. The developed method is, in particular, required for determining the location and inclination of the wind-shear region and the direction of propagation of internal waves in the ionosphere and the atmosphere. This method is simpler and more accurate than the back-propagation, radio-holographic method which was previously used for determining the location of the ionospheric irregularities.

  10. Comparison of techniques for determination of boundary layer transition in shock wave induced flows

    NASA Technical Reports Server (NTRS)

    Hall, J. L.

    1974-01-01

    Three methods of determining transition times in shock wave-induced boundary layers are compared. Experimental transition data for these comparisons were obtained in two different shock tube facilities for shock wave Mach numbers from 3.0 to 5.5. Bias in determining transition times by the conventional thin-film temperature history and difficulty in reading schlieren photographs suggest the use of a new heat-flux technique for determining transition. It is suggested that the heat-flux technique be used when possible, because of better sensitivity and a view of the entire transition process and because it reveals important information concerning departures from theoretical laminar boundary-layer development. Transition results presented extend the range of data available in the literature and are in good agreement with existing data through transition Reynolds numbers of 1,000,000.

  11. Lipid and fatty acid analysis of the Plodia interpunctella granulosis virus (PiGV) envelope

    NASA Technical Reports Server (NTRS)

    Shastri-Bhalla, K.; Funk, C. J.; Consigli, R. A.; Spooner, B. S. (Principal Investigator)

    1993-01-01

    Virus envelope was isolated from Plodia interpunctella granulosis virus, produced in early fourth-instar larvae. Both polar and neutral lipids were analyzed by two-dimensional thin-layer chromatography. Fatty acid composition of various individual neutral and polar lipids was determined by gas-liquid chromatography. The major components of envelope neutral lipid were diacylglycerols. Palmitic acid and stearic acid were the major saturated fatty acids in both polar and neutral lipids. Whereas palmitoleic acid was the major unsaturated fatty acids in neutral lipids, oleic acid was the major unsaturated fatty acid in the polar lipids.

  12. Role of blooming in determining the storage stability of lipid-based dosage forms.

    PubMed

    Khan, Nurzalina; Craig, Duncan Q M

    2004-12-01

    Gelucire 50/13 alone and solid dispersions in this material containing two model drugs (10% w/w caffeine and paracetamol) have been studied with a view to establishing the mechanism underpinning changes in drug-release characteristics as a function of storage time and temperature. The lipid systems were fabricated into tablets and stored for up to 180 days at temperatures of 20 and 37 degrees C. The dispersions were studied using differential scanning calorimetry (DSC), scanning electron microscopy, and dissolution testing. DSC studies indicated that the Gelucire 50/13 exists in two principal melting forms (melting points 38 and 43 degrees C) that undergo transformation to the higher melting form on storage at 37 degrees C. Scanning electron microscopy studies indicated that the systems exhibit "blooming," with crystal formation on the surface being apparent on storage at both temperatures. The dissolution rate increased on storage, with the effect being particularly marked at higher storage temperatures and for the paracetamol systems. However, whereas these changes corresponded well to those seen for the morphology, the correlation between the changes in dissolution and those of the DSC profiles was poor. The study has suggested a novel explanation for the storage instability of Gelucire 50/13 whereby the change in dissolution is associated not with molecular rearrangement as such but with the gross distribution of the constituent components, this in turn altering the physical integrity of the lipid bases.

  13. Determination of mixing-layer height by ground-based remote sensing

    NASA Astrophysics Data System (ADS)

    Emeis, S.; Schäfer, K.; Münkel, C.

    2009-09-01

    Different ground-based remote sensing methods are today available to profile the boundary-layer and to derive such information as vertical layering and mixing-layer height (MLH). A SODAR detects the vertical profile of temperature fluctuations and gradients. By an algorithm which uses the acoustic backscatter intensity and the variance of the vertical velocity component estimates of the MLH can be made. A ceilometer detects the vertical distribution of aerosol particles and water droplets. By an algorithm which uses the vertical gradient of the optical backscatter intensity estimates of the MLH can be made. A RASS directly detects the vertical temperature profile and therefore allows for a direct measurement of MLH by analysing the vertical temperature gradient. In this presentation MLH determination from all three instruments will be compared and a few applications in the fields of air quality and wind energy will be presented. Limitations and restrictions of the different methods will be discussed.

  14. Determination of mixing layer heights by ceilometer and influences upon air quality at Mexico City airport

    NASA Astrophysics Data System (ADS)

    Schäfer, Klaus; Flores-Jardines, Edgar; Emeis, Stefan; Grutter, Michel; Kurtenbach, Ralf; Wiesen, Peter; Münkel, Christoph

    2009-09-01

    Monitoring of mixing layer height (MLH) was performed during different measurement campaigns in urban and suburban area (Hannover, Munich, Budapest, Zürich, Augsburg) by the Vaisala ceilometer LD40. It is an eye-safe commercial lidar and designed originally to detect cloud base heights and vertical visibility for aviation safety purposes. Software for routine retrieval of mixing layer height from ceilometer data was developed and improved continuously. MLH was determined during a one-week-campaign at the airport Mexico City. Air pollutants like NO, NOx, CO and O3 as well as meteorological parameters like wind, temperature and irradiance are measured at the airport in addition to the air quality monitoring network RAMA in Mexico City. The influence of MLH together with wind, temperature and cloudiness upon air pollution is investigated. These continuous MLH and meteorological data are correlated with simultaneous measured air pollutants. The influence of mixing layer height upon air quality is shown.

  15. Herbivore impacts to the moss layer determine tundra ecosystem response to grazing and warming.

    PubMed

    Gornall, Jemma L; Woodin, Sarah J; Jónsdóttir, Ingibjörg S; Van der Wal, Rene

    2009-10-01

    Herbivory and climate are key environmental drivers, shaping ecosystems at high latitudes. Here, we focus on how these two drivers act in concert, influencing the high arctic tundra. We aim to investigate mechanisms through which herbivory by geese influences vegetation and soil processes in tundra ecosystems under ambient and warmed conditions. To achieve this, two grazing treatments, clipping plus faecal additions and moss removal, were implemented in conjunction with passive warming. Our key finding was that, in many cases, the tundra ecosystem response was determined by treatment impacts on the moss layer. Moss removal reduced the remaining moss layer depth by 30% and increased peak grass biomass by 27%. These impacts were probably due to observed higher soil temperatures and decomposition rates associated with moss removal. The positive impact of moss removal on grass biomass was even greater with warming, further supporting this conclusion. In contrast, moss removal reduced dwarf shrub biomass possibly resulting from increased exposure to desiccating winds. An intact moss layer buffered the soil to increased air temperature and as a result there was no response of vascular plant productivity to warming over the course of this study. In fact, moss removal impacts on soil temperature were nearly double those of warming, suggesting that the moss layer is a key component in controlling soil conditions. The moss layer also absorbed nutrients from faeces, promoting moss growth. We conclude that both herbivory and warming influence this high arctic ecosystem but that herbivory is the stronger driver of the two. Disturbance to the moss layer resulted in a shift towards a more grass-dominated system with less abundant mosses and shrubs, a trend that was further enhanced by warming. Thus herbivore impacts to the moss layer are key to understanding arctic ecosystem response to grazing and warming.

  16. Oceanic upper mixed layer depth determination by the use of satellite data

    NASA Technical Reports Server (NTRS)

    Yan, Xiao-Hai; Schubel, J. R.; Pritchard, D. W.

    1990-01-01

    A method has been developed to determine the oceanic daily mean mixed layer depth from satellite observations and a mixed layer thermal inertia (MLTI) model. The algorithms were developed to use remotely-sensed values of sea surface temperature, albedo, and surface wind speeds to calculate the thermal inertia and to predict changes in subsurface diurnal mixed layer depth. The MLTI model, based on a mixed layer model of the upper ocean, has been used to simulate the diurnal mixing process and thermal inertia distribution in the Sargasso Sea around 34 deg N, 70 deg W. Sea surface temperature and albedo have been obtained from the NOAA7-AVHRR images. Surface wind speeds have been derived from the Scanning Multichannel Microwave Radiometer (SMMR) aboard Nimbus 7. Image processing was performed for images gathered between June and July 1982. The daily mean mixed layer depths predicted by the MLTI model agree well with data gathered at the LOTUS mooring located in the Sargasso Sea. This suggests that vertical mixing is the dominant physical process that controls the thermal inertia distribution in the midocean, far from major current systems, and that remote sensing is a promising tool to study such upper ocean processes.

  17. Lipid peroxidation induced by cercosporin as a possible determinant of its toxicity.

    PubMed

    Cavallini, L; Bindoli, A; Macrì, F; Vianello, A

    1979-12-01

    The photodynamic action of cercosporin was assayed in various kinds of natural and artificial membranes. Cerosporin induces lipoperoxidation of liposomes, rat liver and pea internode mitochondria and microsomes, estimated both as malondialdehyde (MDA) formation and O2 consumption. Cercosporin-induced lipoperoxidation is inhibited by either singlet oxygen quenchers, free radical trapping agents or EDTA. Superoxide anion (O2-), hydrogen peroxide and hydroxyl radicals (.OH) are not involved in the activity of cercosporin. In addition cercosporin, by chelating iron, lowers the lipoperoxidation induced by such a metal. Therefore cercosporin stimulates, through singlet oxygen production, the hydroperoxide formation but, at the same time, it inhibits the continuation of the iron-mediated free radical chain. The present results suggest that cellular lipid peroxidation has a certain relevance to toxic activity of cercosporin.

  18. Permuting the PGF Signature Motif Blocks both Archaeosortase-Dependent C-Terminal Cleavage and Prenyl Lipid Attachment for the Haloferax volcanii S-Layer Glycoprotein

    PubMed Central

    Abdul Halim, Mohd Farid; Karch, Kelly R.; Zhou, Yitian; Haft, Daniel H.; Garcia, Benjamin A.

    2015-01-01

    ABSTRACT For years, the S-layer glycoprotein (SLG), the sole component of many archaeal cell walls, was thought to be anchored to the cell surface by a C-terminal transmembrane segment. Recently, however, we demonstrated that the Haloferax volcanii SLG C terminus is removed by an archaeosortase (ArtA), a novel peptidase. SLG, which was previously shown to be lipid modified, contains a C-terminal tripartite structure, including a highly conserved proline-glycine-phenylalanine (PGF) motif. Here, we demonstrate that ArtA does not process an SLG variant where the PGF motif is replaced with a PFG motif (slgG796F,F797G). Furthermore, using radiolabeling, we show that SLG lipid modification requires the PGF motif and is ArtA dependent, lending confirmation to the use of a novel C-terminal lipid-mediated protein-anchoring mechanism by prokaryotes. Similar to the case for the ΔartA strain, the growth, cellular morphology, and cell wall of the slgG796F,F797G strain, in which modifications of additional H. volcanii ArtA substrates should not be altered, are adversely affected, demonstrating the importance of these posttranslational SLG modifications. Our data suggest that ArtA is either directly or indirectly involved in a novel proteolysis-coupled, covalent lipid-mediated anchoring mechanism. Given that archaeosortase homologs are encoded by a broad range of prokaryotes, it is likely that this anchoring mechanism is widely conserved. IMPORTANCE Prokaryotic proteins bound to cell surfaces through intercalation, covalent attachment, or protein-protein interactions play critical roles in essential cellular processes. Unfortunately, the molecular mechanisms that anchor proteins to archaeal cell surfaces remain poorly characterized. Here, using the archaeon H. volcanii as a model system, we report the first in vivo studies of a novel protein-anchoring pathway involving lipid modification of a peptidase-processed C terminus. Our findings not only yield important insights into

  19. A Biochemical GC-MS Application for the Organic Chemistry Laboratory: Determination of Fatty Acid Composition of Arabidopsis thaliana Lipids

    NASA Astrophysics Data System (ADS)

    Bender, Jared D.; Catino, Arthur J., III.; Hess, Kenneth R.; Lassman, Michael E.; Leber, Phyllis A.; Reinard, Michael D.; Strotman, Neil A.; Pike, Carl S.

    2000-11-01

    A biochemical application of GC-MS in which students determine the qualitative and quantitative lipid composition of plant leaf samples is described. There are four facets of this project: (i) synthesis and characterization of individual fatty acid methyl esters (FAMEs) as standards for GC-MS analysis, (ii) isolation of the fatty acids of Arabidopsis thaliana leaves, both wild type and mutants, as FAMEs, (iii) GC-MS analysis of the Arabidopsis leaf extracts for fatty acid composition, and (iv) comparison of the class results with the literature data for both wild type and the four mutants and with a biochemical model of two pathways for lipid synthesis in Arabidopsis leaves. Because this experimental paradigm links organic synthesis and spectral characterization by IR and NMR, both 1H and 13C, with separation and identification via GC-MS analysis, all of the key areas of laboratory procedure are encompassed in this single project. The experimental design permits a myriad of hypothesis-testing variations. Plants can be grown at different temperatures and for different lengths of time to determine if and how fatty acid composition varies. Different types of plant leaves can be examined to ascertain if each has a unique fatty acid fingerprint.

  20. Lipids of Sarcina lutea III. Composition of the Complex Lipids

    PubMed Central

    Huston, Charles K.; Albro, Phillip W.; Grindey, Gerald B.

    1965-01-01

    Huston, Charles K. (Fort Detrick, Frederick, Md.), Phillip W. Albro, and Gerald B. Grindey. Lipids of Sarcina lutea. III. Composition of the complex lipids. J. Bacteriol. 89:768–775. 1965.—The complex lipids from a strain of Sarcina lutea were isolated and separated into fractions on diethylaminoethyl cellulose acetate and silicic acid columns. These fractions were monitored in several thin-layer chromatography systems. The various lipid types were characterized by their behavior in thin-layer systems and by an analysis of their hydrolysis products. The fatty acid composition of the column fractions was determined by gas-liquid chromatography. A number of components (13) were separated by thin-layer chromatography and characterized. The major components were polyglycerol phosphatide (17.0%), lipoamino acids (15.1%), phosphatidyl glycerol (13.8%), and an incompletely characterized substance (15.0%). Minor constituents included phosphatidyl inositol (5.5%), phosphatidic acid (4.2%), phosphatidyl serine (2.0%), and phosphatidyl choline (1.0%). No phosphatidyl ethanolamine was observed. PMID:14273659

  1. Determining the number of hidden units in multi-layer perceptrons using F-ratios

    NASA Technical Reports Server (NTRS)

    Jansen, Ben H.; Desai, Pratish R.

    1993-01-01

    The hidden units in multi-layer perceptrons are believed to act as feature extractors. In other words, the outputs of the hidden units represent the features in a more traditional statistical classification paradigm. This viewpoint offers a statistical, objective approach to determining the optimal number of hidden units required. This approach is based on an F-ratio test, and proceeds in an iterative fashion. The method and its application to simulated time-series data are presented.

  2. Lipid A structure of Pseudoalteromonas haloplanktis TAC 125: use of electrospray ionization tandem mass spectrometry for the determination of fatty acid distribution.

    PubMed

    Corsaro, Maria Michela; Piaz, Fabrizio Dal; Lanzetta, Rosa; Parrilli, Michelangelo

    2002-05-01

    The use of electrospray Ionization (ESI) tandem mass spectrometry (MS/MS) for the structural determination of the lipid A components of the psychrophilic bacterium Pseudoalteromonas haloplanktis TAC 125 is reported. The lipid A contains the classical bisphosphorylated beta-(1' --> 6)-linked D-glucosamine disaccharide with 3-hydroxydodecanoyl residues (12 : 0 (3-OH)) linked both as esters and amides to 2', 3' (distal glucosamine) and 2, 3 positions (proximal glucosamine) of the sugar backbone. The hydroxyl of 12 : 0 (3-OH) fatty acid linked at the 3' position is esterified by a dodecanoyl residue (12 : 0). In addition to the pentaacyl component, a minor tetraacyl lipid A, lacking the acyl residue at position 3, was also found in the lipid A fraction. The advantage of this MS technique for the investigation of the intra-ring fragmentation, which is useful for the determination of fatty acyl residue distribution on each glucosamine unit, is emphasized.

  3. Determination of the Schottky barrier height of ferromagnetic contacts to few-layer phosphorene

    SciTech Connect

    Anugrah, Yoska; Robbins, Matthew C.; Koester, Steven J.; Crowell, Paul A.

    2015-03-09

    Phosphorene, the 2D analogue of black phosphorus, is a promising material for studying spin transport due to its low spin-orbit coupling and its ½ nuclear spin, which could allow the study of hyperfine effects. In this work, the properties of permalloy (Py) and cobalt (Co) contacts to few-layer phosphorene are presented. The Schottky barrier height was extracted and determined as a function of gate bias. Flat-band barrier heights, relative to the valence band edge, of 110 meV and 200 meV were determined for Py and Co, respectively. These results are important for future studies of spin transport in phosphorene.

  4. Experimental phasing for structure determination using membrane-protein crystals grown by the lipid cubic phase method

    SciTech Connect

    Li, Dianfan; Pye, Valerie E.; Caffrey, Martin

    2015-01-01

    Very little information is available in the literature concerning the experimental heavy-atom phasing of membrane-protein structures where the crystals have been grown using the lipid cubic phase (in meso) method. In this paper, pre-labelling, co-crystallization, soaking, site-specific mercury binding to genetically engineered single-cysteine mutants and selenomethionine labelling as applied to an integral membrane kinase crystallized in meso are described. An assay to assess cysteine accessibility for mercury labelling of membrane proteins is introduced. Despite the marked increase in the number of membrane-protein structures solved using crystals grown by the lipid cubic phase or in meso method, only ten have been determined by SAD/MAD. This is likely to be a consequence of the technical difficulties associated with handling proteins and crystals in the sticky and viscous hosting mesophase that is usually incubated in glass sandwich plates for the purposes of crystallization. Here, a four-year campaign aimed at phasing the in meso structure of the integral membrane diacylglycerol kinase (DgkA) from Escherichia coli is reported. Heavy-atom labelling of this small hydrophobic enzyme was attempted by pre-labelling, co-crystallization, soaking, site-specific mercury binding to genetically engineered single-cysteine mutants and selenomethionine incorporation. Strategies and techniques for special handling are reported, as well as the typical results and the lessons learned for each of these approaches. In addition, an assay to assess the accessibility of cysteine residues in membrane proteins for mercury labelling is introduced. The various techniques and strategies described will provide a valuable reference for future experimental phasing of membrane proteins where crystals are grown by the lipid cubic phase method.

  5. Lipid droplets hypertrophy: a crucial determining factor in insulin regulation by adipocytes

    NASA Astrophysics Data System (ADS)

    Sanjabi, Bahram; Dashty, Monireh; Özcan, Behiye; Akbarkhanzadeh, Vishtaseb; Rahimi, Mehran; Vinciguerra, Manlio; van Rooij, Felix; Al-Lahham, Saad; Sheedfar, Fareeba; van Kooten, Theo G.; Spek, C. Arnold; Rowshani, Ajda T.; van der Want, Johannes; Klaassen, Rene; Sijbrands, Eric; Peppelenbosch, Maikel P.; Rezaee, Farhad

    2015-03-01

    Lipid droplets (LDs) hypertrophy in adipocytes is the main cause of energy metabolic system dysfunction, obesity and its afflictions such as T2D. However, the role of adipocytes in linking energy metabolic disorders with insulin regulation is unknown in humans. Human adipocytes constitutively synthesize and secrete insulin, which is biologically functional. Insulin concentrations and release are fat mass- and LDs-dependent respectively. Fat reduction mediated by bariatric surgery repairs obesity-associated T2D. The expression of genes, like PCSK1 (proinsulin conversion enzyme), GCG (Glucagon), GPLD1, CD38 and NNAT, involved in insulin regulation/release were differentially expressed in pancreas and adipose tissue (AT). INS (insulin) and GCG expression reduced in human AT-T2D as compared to AT-control, but remained unchanged in pancreas in either state. Insulin levels (mRNA/protein) were higher in AT derived from prediabetes BB rats with destructed pancreatic β-cells and controls than pancreas derived from the same rats respectively. Insulin expression in 10 human primary cell types including adipocytes and macrophages is an evidence for extrapancreatic insulin-producing cells. The data suggest a crosstalk between AT and pancreas to fine-tune energy metabolic system or may minimize the metabolic damage during diabetes. This study opens new avenues towards T2D therapy with a great impact on public health.

  6. Determination of Lipid-Protein Interactions in Lung Surfactants Using Computer Simulations and Structural Bioinformatics.

    NASA Astrophysics Data System (ADS)

    Kaznessis, Yiannis

    2001-06-01

    Proteins are the primary components of the networks that conduct the flows of mass, energy and information in living organisms. The discovery of the principles of protein structure and function allows the development of design rules for biological activities. The microscopic nature of the operating mechanisms of protein activity, and the vast complexity of the networks of interaction call for the employment of powerful computational methodologies that can decipher the physicochemical and evolutionary principles underlying protein structure and function. An example will be presented that reflects the strength of computational approaches. Atomistic molecular dynamics simulations and structural bioinformatics tools are employed to investigate the interactions between the first 25 N-terminal residues of surfactant protein B (SP-B 1-25) and the lipid components of the lung surfactant (LS). An understanding of the molecular level interactions between the LS components is essential for the establishment of design rules for the development of synthetic LS and the treatment of the neonatal respiratory distress syndrome, which results from deficiency or inactivation of LS.

  7. Lipid droplets hypertrophy: a crucial determining factor in insulin regulation by adipocytes

    PubMed Central

    Sanjabi, Bahram; Dashty, Monireh; Özcan, Behiye; Akbarkhanzadeh, Vishtaseb; Rahimi, Mehran; Vinciguerra, Manlio; van Rooij, Felix; Al-Lahham, Saad; Sheedfar, Fareeba; van Kooten, Theo G.; Spek, C. Arnold; Rowshani, Ajda T.; van der Want, Johannes; Klaassen, Rene; Sijbrands, Eric; Peppelenbosch, Maikel P.; Rezaee, Farhad

    2015-01-01

    Lipid droplets (LDs) hypertrophy in adipocytes is the main cause of energy metabolic system dysfunction, obesity and its afflictions such as T2D. However, the role of adipocytes in linking energy metabolic disorders with insulin regulation is unknown in humans. Human adipocytes constitutively synthesize and secrete insulin, which is biologically functional. Insulin concentrations and release are fat mass- and LDs-dependent respectively. Fat reduction mediated by bariatric surgery repairs obesity-associated T2D. The expression of genes, like PCSK1 (proinsulin conversion enzyme), GCG (Glucagon), GPLD1, CD38 and NNAT, involved in insulin regulation/release were differentially expressed in pancreas and adipose tissue (AT). INS (insulin) and GCG expression reduced in human AT-T2D as compared to AT-control, but remained unchanged in pancreas in either state. Insulin levels (mRNA/protein) were higher in AT derived from prediabetes BB rats with destructed pancreatic β-cells and controls than pancreas derived from the same rats respectively. Insulin expression in 10 human primary cell types including adipocytes and macrophages is an evidence for extrapancreatic insulin-producing cells. The data suggest a crosstalk between AT and pancreas to fine-tune energy metabolic system or may minimize the metabolic damage during diabetes. This study opens new avenues towards T2D therapy with a great impact on public health. PMID:25743104

  8. Analytical performance and comparability of the determination of cholesterol by 12 Lipid-Research Clinics.

    PubMed

    Lippel, K; Ahmed, S; Albers, J J; Bachorik, P; Cooper, G; Helms, R; Williams, J

    1977-09-01

    Twelve Lipid-Research Clinic laboratories performed automated cholesterol analyses on four control-serum pools of known cholesterol concentration, using the Liebermann-Burchard reaction. The analyses were done during a two-year period, with the same standards, methodology, and quality-control procedures. Estimates of analytical bias, variability, and short- and long-term trends for each instrument and for the entire group of LRC instruments are presented. High accuracy, precision, and interlaboratory comparability were achieved through the rigorous standardization and control of the entire analytical procedure. The significance of these results for long-term collaborative studies is discussed. Individual laboratory biases averaged from 0.5 to 2.0% below Abell-Kendall reference values. Between-run variability was about equal to within-run variability and inter-laboratory variation was substantially less than intra-laboratory variation. The total standard deviation for all instruments was about 0.04 g/liter. Only 8-15% of this variation was due to differences between instruments. The between-instrument standard deviation ranged from 0.011 to 0.015 g/liter; the between-run, within-instrument standard deviation ranged from 0.023 to 0.030 g/liter; and within-run standard deviation ranged from 0.023 to 0.028 g/liter. The significance of the achieved results for long-term collaborative studies is discussed.

  9. Note: Non-invasive optical method for rapid determination of alignment degree of oriented nanofibrous layers

    SciTech Connect

    Pokorny, M.; Rebicek, J.; Klemes, J.; Kotzianova, A.; Velebny, V.

    2015-10-15

    This paper presents a rapid non-destructive method that provides information on the anisotropic internal structure of nanofibrous layers. A laser beam of a wavelength of 632.8 nm is directed at and passes through a nanofibrous layer prepared by electrostatic spinning. Information about the structural arrangement of nanofibers in the layer is directly visible in the form of a diffraction image formed on a projection screen or obtained from measured intensities of the laser beam passing through the sample which are determined by the dependency of the angle of the main direction of polarization of the laser beam on the axis of alignment of nanofibers in the sample. Both optical methods were verified on Polyvinyl alcohol (PVA) nanofibrous layers (fiber diameter of 470 nm) with random, single-axis aligned and crossed structures. The obtained results match the results of commonly used methods which apply the analysis of electron microscope images. The presented simple method not only allows samples to be analysed much more rapidly and without damaging them but it also makes possible the analysis of much larger areas, up to several square millimetres, at the same time.

  10. Determining the Effect of Growth Rate on Hydrogen Isotope Fractionation of Algal Lipids in Two North Pacific Sites

    NASA Astrophysics Data System (ADS)

    Wolfshorndl, M.; Sachs, J. P.

    2015-12-01

    Tropical hydrologic changes have a large effect on global climate, but there does not yet exist a good indicator of rainfall variation in the tropics. Understanding past natural variability of such features as the Intertropical Convergence Zone and El Niño Southern Oscillation provides information about the extent of anthropogenic climate change today. The hydrogen isotopic composition (D/H ratio) of algal lipids has been shown to track the isotopic composition of source water in which the organism grew, providing information about precipitation variability over time. However, culture work has revealed that environmental factors such as salinity, temperature, growth rate, and irradiance also influence algal lipid D/H ratios. Here I present work determining the effect of growth rate and irradiance on the hydrogen isotope composition of alkenone-producing algae in the water column in two North Pacific locations, off the coast of Oregon and near the Hawaii Ocean Time Series site. This work corroborates empirical relationships observed in culture studies and indicates that the effects of growth rate and irradiance should be taken into account when applying the D/H isotope ratio rainfall proxy to reconstruct past climates.

  11. Quantification of brain lipids by FTIR spectroscopy and partial least squares regression

    NASA Astrophysics Data System (ADS)

    Dreissig, Isabell; Machill, Susanne; Salzer, Reiner; Krafft, Christoph

    2009-01-01

    Brain tissue is characterized by high lipid content. Its content decreases and the lipid composition changes during transformation from normal brain tissue to tumors. Therefore, the analysis of brain lipids might complement the existing diagnostic tools to determine the tumor type and tumor grade. Objective of this work is to extract lipids from gray matter and white matter of porcine brain tissue, record infrared (IR) spectra of these extracts and develop a quantification model for the main lipids based on partial least squares (PLS) regression. IR spectra of the pure lipids cholesterol, cholesterol ester, phosphatidic acid, phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, phosphatidylinositol, sphingomyelin, galactocerebroside and sulfatide were used as references. Two lipid mixtures were prepared for training and validation of the quantification model. The composition of lipid extracts that were predicted by the PLS regression of IR spectra was compared with lipid quantification by thin layer chromatography.

  12. Density of states determination in organic donor-acceptor blend layers enabled by molecular doping

    NASA Astrophysics Data System (ADS)

    Fischer, Janine; Ray, Debdutta; Kleemann, Hans; Pahner, Paul; Schwarze, Martin; Koerner, Christian; Vandewal, Koen; Leo, Karl

    2015-06-01

    Charge carrier transport is a key parameter determining the efficiency of organic solar cells, and is closely related to the density of free and trapped states. For trap characterization, impedance spectroscopy is a suitable, non-invasive method, applicable to complete organic semiconductor devices. In order to contribute to the capacitive signal, the traps must be filled with charge carriers. Typically, trap filling is achieved by illuminating the device or by injecting charge carriers through application of a forward bias voltage. However, in both cases, the exact number of charge carriers in the device is not known and depends strongly on the measurement conditions. Here, hole trap states of the model blend layer ZnPc:C60 are filled by weak p-doping, enabling trap characterization in a blend layer at a controlled hole density. We evaluate impedance spectra at different temperatures in order to determine the density of occupied states (DOOS) directly from the capacitance-frequency spectra by assuming a simple energy diagram. The reconstructed DOOS distribution is analyzed at different doping concentrations and device thicknesses and compared to thermally stimulated current measurements performed on the same devices. In both methods, a pronounced Gaussian peak at about 0.4 eV below the transport level is found as well as deep, exponential tail states, providing a deeper insight into the density of states distribution of this donor-acceptor blend layer. Additionally, the effect of doping-induced trap filling on the solar cell characteristics is studied in these devices.

  13. Determination of isotropic layer parameters from spatiotemporal signals of an ultrasonic array

    NASA Astrophysics Data System (ADS)

    Titov, S. A.; Maev, R. G.

    2013-09-01

    The paper discusses a method for measuring the velocities and attenuation of longitudinal and transverse ultrasonic waves and the density and thickness of the isotropic layer with an array placed in an immersion liquid parallel to the sample. The method is based on the recording of the total spatiotemporal signal of the array and its expansion into a spatial spectrum of pulse plane wave response. The ultrasonic velocity and sample thickness depend on the response delay of the plane wave in the layer from the transverse projection of the slowness vector. The density and attenuation are determined from the behavior of the amplitudes of spectral responses. To confirm this method in experiment, the parameters of a polystyrene plate have been measured using a linear 32-element array with a central frequency of 17 MHz.

  14. Parenteral lipid fatty acid composition directly determines the fatty acid composition of red blood cell and brain lipids in preterm pigs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Studies in enterally-fed infants have shown a positive effect of n-3 long-chain polyunsaturated fatty acid (LCPUFA) supplementatin on neurodevelopment. The effect of n-3 LCPUFA in fish oil-based parenteral (PN) lipid emulsions on neuronal tissues of PN-fed preterm infants is unknown. The objective ...

  15. Application of pressure-modulated differential scanning calorimetry to the determination of relaxation kinetics of multilamellar lipid vesicles.

    PubMed

    Boehm, Kristian; Guddorf, Jessica; Hinz, Hans-Jürgen

    2007-03-01

    We report an extension of the recently published PMDSC method that permitted synchronous determination of heat capacity and expansibility when using slow, defined pressure formats in a DSC scan. Here we applied continuously opposing pressure changes that are fast compared to the time constants of the DSC instrument to study relaxation kinetics of phospholipids. Investigations of multilamellar vesicles of DPPC or DSPC in water revealed for both lipids relaxation times of about 30 s at the maximum of the main transition peak and about 15 s at the maximum of the pretransition. The relaxation times in the transition range are proportional to heat capacity of main- and pretransition. The molecular origin of the relaxation processes appears to stem from pressure-induced water fluxes between the interbilayer region and the bulk water phase.

  16. Determination of the degree of oxidation in highly-oxidised lipids using profile changes of fatty acids.

    PubMed

    Kim, Tae Soo; Yeo, JuDong; Kim, Ji Young; Kim, Mi-Ja; Lee, JaeHwan

    2013-06-01

    The degree of highly oxidised lipids was determined by a modified method using profile changes of fatty acids in lard and soybean oil heated at 180°C. The usefulness of the modified method was compared through conjugated dienoic acid (CDA) and/or p-anisidine value (p-AV) methods. Absolute values, which were expressed as equivalent to an internal standard (C11:0), of both unsaturated fatty acids (UFAs) and saturated fatty acids (SFAs) decreased significantly during thermal oxidation (p<0.05) while relative percentage of SFA increased and those of UFA decreased significantly (p<0.05). The content of caprylic acid (C8:0) increased significantly (p<0.05) as thermal oxidation time increased. The ratio of total saturated over total unsaturated fatty acids (SFAs/UFAs) or caprylic acid (C8:0) over UFAs could be useful markers to determine the degree of oxidation. Antioxidant capacity of sesamol, a free radical scavenger, was determined using the ratio of fatty acids. The modified method can be applied to determine the quality control of fried foods containing highly oxidised and abused oils, which may not be measured correctly using CDA and p-AV.

  17. Simultaneous determination of anabolic steroids and synthetic hormones in meat by freezing-lipid filtration, solid-phase extraction and gas chromatography-mass spectrometry.

    PubMed

    Seo, Jungju; Kim, Hye-Young; Chung, Bong Chul; Hong, Jongki

    2005-03-04

    Estradiol, testosterone, progesterone, zeranol and diethylstilbestrol including estradiol metabolites were determined simultaneously in meat. Extraction of growth hormones was carried out by ultasonication using a methanol-water mixture. The growth hormones in the meat extract can be effectively separated from lipids by freezing-lipid filtration, followed by C8-solid phase extraction (SPE). During freezing-lipid filtration, about 90% of lipids are removed without any significant loss of growth hormones. For further clean-up, silica- and aminopropyl-SPE were used. To enhance detection sensitivity, the growth hormones are derivatized with trimethylsilyl reagents. Quantitation using isotope-labelled internal standards was performed by gas chromatography-mass spectrometry in the selected ion monitoring mode. The method detection limits were 0.1-0.4 microg/kg for all growth hormones. Overall recoveries of synthetic and natural growth hormones were 68-106% with coefficients of variation of 5-16% for the complete procedure.

  18. Novel therapeutic mechanisms determine the effectiveness of lipid-core nanocapsules on melanoma models

    PubMed Central

    Drewes, Carine C; Fiel, Luana A; Bexiga, Celina G; Asbahr, Ana Carolina C; Uchiyama, Mayara K; Cogliati, Bruno; Araki, Koiti; Guterres, Sílvia S; Pohlmann, Adriana R; Farsky, Sandra P

    2016-01-01

    Melanoma is a severe metastatic skin cancer with poor prognosis and no effective treatment. Therefore, novel therapeutic approaches using nanotechnology have been proposed to improve therapeutic effectiveness. Lipid-core nanocapsules (LNCs), prepared with poly(ε-caprolactone), capric/caprylic triglyceride, and sorbitan monostearate and stabilized by polysorbate 80, are efficient as drug delivery systems. Here, we investigated the effects of acetyleugenol-loaded LNC (AcE-LNC) on human SK-Mel-28 melanoma cells and its therapeutic efficacies on melanoma induced by B16F10 in C57B6 mice. LNC and AcE-LNC had z-average diameters and zeta potential close to 210 nm and -10.0 mV, respectively. CytoViva® microscopy images showed that LNC and AcE-LNC penetrated into SK-Mel-28 cells, and remained in the cytoplasm. AcE-LNC in vitro treatment (18–90×109 particles/mL; 1 hour) induced late apoptosis and necrosis; LNC and AcE-LNC (3–18×109 particles/mL; 48 hours) treatments reduced cell proliferation and delayed the cell cycle. Elevated levels of nitric oxide were found in supernatant of LNC and AcE-LNC, which were not dependent on nitric oxide synthase expressions. Daily intraperitoneal or oral treatment (days 3–10 after tumor injection) with LNC or AcE-LNC (1×1012 particles/day), but not with AcE (50 mg/kg/day, same dose as AcE-LNC), reduced the volume of the tumor; nevertheless, intraperitoneal treatment caused toxicity. Oral LNC treatment was more efficient than AcE-LNC treatment. Moreover, oral treatment with nonencapsulated capric/caprylic triglyceride did not inhibit tumor development, implying that nanocapsule supramolecular structure is important to the therapeutic effects. Together, data herein presented highlight the relevance of the supramolecular structure of LNCs to toxicity on SK-Mel-28 cells and to the therapeutic efficacy on melanoma development in mice, conferring novel therapeutic mechanisms to LNC further than a drug delivery system. PMID:27099491

  19. To determine ice layer thickness of Europa by high energy neutrino

    NASA Astrophysics Data System (ADS)

    Shoji, D.; Kurita, K.; Tanaka, H. K.

    2010-12-01

    Europa, the second closest Galilean satellite is one of the targets which are suspected to have an internal ocean. Detection and characterization of the internal ocean is one of the main subjects for Europa orbiter exploration. Although the gravitational data has shown the thickness of the surface H2O layer of 80-170km[1], it can not determine the phase of H2O. The variations in the magnetic field associated with the induced current in the internal ocean can determine the thickness of the layer of ice if satellite's orbits satisfy the required conditions. Observations of tidal amplitude forced by Jupiter can also resolve the thickness of the surface lithosphere[2]. At moment because of the lack of observational constraints there exist two contrasting models:thick ice layer model and thin model. Here we propose new method to detect the ocean directly based on the radiation by high energy neutrino interacted with matter. Schaefer et al[3] have proposed a similar method to determine ice layer thickness. We will focus on the detection of internal ocean for Europa and present the method is suitable for actual situations of Europa exploration by numerical simulations. Neutrino is famous for its traveling at long distance without any interaction with matter. When high energy neutrinos traverse in Europa hadronic showers are produced by the weak interaction with the nucleons that makes the body of Europa. These hadronic showers induces excess electrons. Because of these excess electrons, Cherenkov photons are emitted. When this radiation occurs in the ice layer, radiations whose wave length is over 10cm should be coherent because the scale of the shower becomes small (a few cm) in the ice, which is called as Askaryan effect[3]. Thus, the intensity of the radiation whose frequency is a few GHz should be enhanced. Since ice has a much longer attenuation length than water, the radiations which occur in the surface ice layer could be detected by the antenna outside Europa but

  20. Maximum Angle Method for Determining Mixed Layer Depth from Seaglider Data

    DTIC Science & Technology

    2010-01-01

    exchange with the atmosphere, and in turn affects 47  the climate . 48  Objective and accurate identification of HT and HD is important for the...determination of 49  barrier layer occurrence and its climate impact. Three types of criteria (difference, gradient, and 50  curvature) are available for...0.2oC (de Boyer Montegut et al., 2004). The reference level changes from near surface (Wyrtki, 58  1964) to 10 m depth (de Boyer Montegut et al., 2004

  1. Echinococcus granulosus: DNA extraction from germinal layers allows strain determination in fertile and nonfertile hydatid cysts.

    PubMed

    Kamenetzky, L; Canova, S G; Guarnera, E A; Rosenzvit, M C

    2000-06-01

    A method for the isolation of Echinococcus granulosus DNA from germinal layers of hydatid cysts is described. The method includes a hexadecyltrimethylammonium bromide/chloroform extraction and an adsorption to diatomaceous earth suspension. DNA suitable for polymerase chain reaction was obtained and used for parasite strain determination by mitochondrial cytochrome c oxidase I gene sequencing. Fertile and nonfertile cyst isolates from sheep, cattle, pigs, and humans were characterized. Hitherto, no direct parasite strain characterization has been made on nonfertile hydatid cysts, whereas here we report that nonfertile hydatid cysts were produced by sheep strain (G1 genotype) in sheep, cattle, and humans and by pig strain (G7 genotype) in pigs.

  2. Giant aeolian dune size determined by the average depth of the atmospheric boundary layer.

    PubMed

    Andreotti, Bruno; Fourrière, Antoine; Ould-Kaddour, Fouzia; Murray, Brad; Claudin, Philippe

    2009-02-26

    Depending on the wind regime, sand dunes exhibit linear, crescent-shaped or star-like forms resulting from the interaction between dune morphology and sand transport. Small-scale dunes form by destabilization of the sand bed with a wavelength (a few tens of metres) determined by the sand transport saturation length. The mechanisms controlling the formation of giant dunes, and in particular accounting for their typical time and length scales, have remained unknown. Using a combination of field measurements and aerodynamic calculations, we show here that the growth of aeolian giant dunes, ascribed to the nonlinear interaction between small-scale superimposed dunes, is limited by the confinement of the flow within the atmospheric boundary layer. Aeolian giant dunes and river dunes form by similar processes, with the thermal inversion layer that caps the convective boundary layer in the atmosphere acting analogously to the water surface in rivers. In both cases, the bed topography excites surface waves on the interface that in turn modify the near-bed flow velocity. This mechanism is a stabilizing process that prevents the scale of the pattern from coarsening beyond the resonant condition. Our results can explain the mean spacing of aeolian giant dunes ranging from 300 m in coastal terrestrial deserts to 3.5 km. We propose that our findings could serve as a starting point for the modelling of long-term evolution of desert landscapes under specific wind regimes.

  3. Giant aeolian dune size determined by the average depth of the atmospheric boundary layer

    NASA Astrophysics Data System (ADS)

    Claudin, P.; Fourrière, A.; Andreotti, B.; Murray, A. B.

    2009-12-01

    Depending on the wind regime, sand dunes exhibit linear, crescent-shaped or star-like forms resulting from the interaction between dune morphology and sand transport. Small-scale dunes form by destabilization of the sand bed with a wavelength (a few tens of metres) determined by the sand transport saturation length. The mechanisms controlling the formation of giant dunes, and in particular accounting for their typical time and length scales, have remained unknown. Using a combination of field measurements and aerodynamic calculations, we show here that the growth of aeolian giant dunes, ascribed to the nonlinear interaction between small-scale superimposed dunes, is limited by the confinement of the flow within the atmospheric boundary layer. Aeolian giant dunes and river dunes form by similar processes, with the thermal inversion layer that caps the convective boundary layer in the atmosphere acting analogously to the water surface in rivers. In both cases, the bed topography excites surface waves on the interface that in turn modify the near-bed flow velocity. This mechanism is a stabilizing process that prevents the scale of the pattern from coarsening beyond the resonant condition. Our results can explain the mean spacing of aeolian giant dunes ranging from 300 m in coastal terrestrial deserts to 3.5 km. We propose that our findings could serve as a starting point for the modelling of long-term evolution of desert landscapes under specific wind regimes.

  4. A validated high performance thin layer chromatography method for determination of yohimbine hydrochloride in pharmaceutical preparations

    PubMed Central

    Badr, Jihan M.

    2013-01-01

    Background: Yohimbine is an indole alkaloid used as a promising therapy for erectile dysfunction. A number of methods were reported for the analysis of yohimbine in the bark or in pharmaceutical preparations. Materials and Method: In the present work, a simple and sensitive high performance thin layer chromatographic method is developed for determination of yohimbine (occurring as yohimbine hydrochloride) in pharmaceutical preparations and validated according to International Conference of Harmonization (ICH) guidelines. The method employed thin layer chromatography aluminum sheets precoated with silica gel as the stationary phase and the mobile phase consisted of chloroform:methanol:ammonia (97:3:0.2), which gave compact bands of yohimbine hydrochloride. Results: Linear regression data for the calibration curves of standard yohimbine hydrochloride showed a good linear relationship over a concentration range of 80–1000 ng/spot with respect to the area and correlation coefficient (R2) was 0.9965. The method was evaluated regarding accuracy, precision, selectivity, and robustness. Limits of detection and quantitation were recorded as 5 and 40 ng/spot, respectively. The proposed method efficiently separated yohimbine hydrochloride from other components even in complex mixture containing powdered plants. The amount of yohimbine hydrochloride ranged from 2.3 to 5.2 mg/tablet or capsule in preparations containing the pure alkaloid, while it varied from zero (0) to 1.5–1.8 mg/capsule in dietary supplements containing powdered yohimbe bark. Conclusion: We concluded that this method employing high performance thin layer chromatography (HPTLC) in quantitative determination of yohimbine hydrochloride in pharmaceutical preparations is efficient, simple, accurate, and validated. PMID:23661986

  5. Shielding application of perturbation theory to determine changes in neutron and gamma doses due to changes in shield layers

    NASA Technical Reports Server (NTRS)

    Fieno, D.

    1972-01-01

    Perturbation theory formulas were derived and applied to determine changes in neutron and gamma-ray doses due to changes in various radiation shield layers for fixed sources. For a given source and detector position, the perturbation method enables dose derivatives with respect to density, or equivalently thickness, for every layer to be determined from one forward and one inhomogeneous adjoint calculation. A direct determination without the perturbation approach would require two forward calculations to evaluate the dose derivative due to a change in a single layer. Hence, the perturbation method for obtaining dose derivatives requires fewer computations for design studies of multilayer shields. For an illustrative problem, a comparison was made of the fractional change in the dose per unit change in the thickness of each shield layer in a two-layer spherical configuration as calculated by perturbation theory and by successive direct calculations; excellent agreement was obtained between the two methods.

  6. Nondestructive and in situ determination of graphene layers using optical fiber Fabry-Perot interference

    NASA Astrophysics Data System (ADS)

    Li, Cheng; Peng, Xiaobin; Liu, Qianwen; Gan, Xin; Lv, Ruitao; Fan, Shangchun

    2017-02-01

    Thickness measurement plays an important role for characterizing optomechanical behaviors of graphene. From the view of graphene-based Fabry-Perot (F-P) sensors, a simple, nondestructive and in situ method of determining the thickness of nanothick graphene membranes was demonstrated by using optical fiber F-P interference. Few-layer/multilayer graphene sheets were suspendedly adhered onto the endface of a ferrule with a 125 µm inner diameter by van der Waals interactions to construct micro F-P cavities. Along with the Fresnel’s law and complex index of refraction of the membrane working as a light reflector of an F-P interferometer, the optical reflectivity of graphene was modeled to investigate the effects of light wavelength and temperature. Then the average thickness of graphene membranes were extracted by F-P interference demodulation, and yielded a very strong cross-correlation coefficient of 99.95% with the experimental results observed by Raman spectrum and atomic force microscope. The method could be further extended for determining the number of layers of other 2D materials.

  7. Annual layers in the Roosevelt Island (coastal Antarctica) ice core determined from conductivity and calcium measurements

    NASA Astrophysics Data System (ADS)

    Simonsen, Marius; Vallelonga, Paul; Kjær, Helle; Neff, Peter; Bertler, Nancy; Svensson, Anders; Dahl-Jensen, Dorthe; Riis, Marie

    2015-04-01

    The Roosevelt Island Climate Evolution (RICE) Project aims to determine the stability of the Ross Ice Shelf and thus the West Antarctic Ice Sheet in a warming world. A 764 m ice core (79.36° S, 161.71° W) was drilled in 2011-13 at the summit of the Roosevelt Island ice dome, a location surrounded by the Ross Ice Shelf. The site has high accumulation (0.26 m ice equivalent) and a mean annual temperature of -23 °C. From 2012 to 2014, continuous flow analysis (CFA) of the ice core enabled continuous measurements of conductivity, acidity, calcium and insoluble dust particle concentrations along the core. The RICE ice core features high background levels of sulphate and marine salts, due to the low altitude of the site (550 m asl) and its proximity to open ocean. At Roosevelt Island, calcium is influenced by both dust and marine salt inputs. By investigating the residual offset between conductivity and calcium, it has been possible to calculate non-sea salt conductivity and hence determine impurity layers deriving from volcanic eruptions. We present a preliminary chronology for the last 2000 years of deposition in the RICE ice core, composed of counted impurity layers and constrained by a limited number of large, well-dated volcanic eruptions.

  8. Study of the Impact of Polyanions on the Formation of Lipid Bilayers on Top of Polyelectrolyte Multilayers with Poly(allylamine hydrochloride) as the Top Layer.

    PubMed

    Diamanti, Eleftheria; Andreozzi, Patrizia; Kirby, Christopher; Anguiano, Ramiro; Yate, Luis; Heinz, Hendrik; Ziolo, Ronald F; Donath, Edwin; Moya, Sergio Enrique

    2017-02-09

    The impact of polyanions on the formation of lipid bilayers on top of polyelectrolyte multilayers (PEMs) with poly(allylamine hydrochloride) (PAH) as the top layer is studied for the deposition of vesicles of mixed lipid composition, 50:50 molar ratio of zwitterionic 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and negatively charged 1,2-dioleoyl-sn-glycero-3-phospho-l-serine (DOPS). PEMs are assembled with polystyrene sulfonate (PSS), poly(acrylic acid) (PAA), and alginic acid sodium salt (Alg) as polyanions. The assembly of the vesicles on the PEMs is followed by means of the quartz crystal microbalance with dissipation. Fluorescence recovery after photobleaching measurements are applied to evaluate bilayer formation. Whereas a bilayer is formed on top of PAH/PSS multilayers, the vesicles are adsorbed on top of PAH/Alg and PAH/PAA multilayers, remaining unruptured or only partially fused. The influence of the surface composition of the PEM and of the bulk properties of the film are analyzed. The phosphate ions present in phosphate-buffered saline (PBS) play a fundamental role in bilayer formation on top of PAH/PSS as they complex with PAH and render the surface potential close to zero. For PAH/PAA and PAH/Alg, PBS renders the surface negative. X-ray photoelectron spectroscopy shows that the dibasic phosphate ions from PBS complex preferentially with PAH in PAH/PAA and PAH/Alg multilayers, whereas monobasic phosphates complex with PAH in PAH/PSS. An explanation for the absence of bilayer formation on PAH/PAA and PAH/Alg is given on the basis of the different affinities of phosphate ions for PAH in combination with the different polyanions.

  9. Determination of lipid and phenolic fraction in two hazelnut (Corylus avellana L.) cultivars grown in Poland.

    PubMed

    Ciemniewska-Żytkiewicz, Hanna; Verardo, Vito; Pasini, Federica; Bryś, Joanna; Koczoń, Piotr; Caboni, Maria Fiorenza

    2015-02-01

    The fatty acid, tocopherol, sterol, phospholipid and phenolic compositions of Polish hazelnuts (Kataloński and Webba Cenny) were examined. Particularly, free+esterified and bound tocopherol, sterol and phenolic compounds were determined. The major fatty acids found in hazelnuts were oleic and linoleic acids. α-Tocopherol was the most abundant tocopherol accounting for 90-92% of the total content. Bound tocopherols represented 45.5% and 21.7% of total tocopherols in Kataloński and Webba Cenny cultivar, respectively. Total free+esterified sterols were between 62.0% and 75.7% of total sterols and β-sitosterol was the first sterol in the two samples. Phosphatidylcholine was the most common phospholipid, accounting for 72.2% for Kataloński and 67.5% Webba Cenny, respectively. The most abundant fatty acids in the phospholipid fraction were oleic equally with palmitic acids. Twelve free and six bound phenolic compounds were identified and quantified in hazelnut kernel, instead nine free and six bound phenolic compounds were determined in hard shell.

  10. The dynamics of the plasmasphere boundary layer as determined by ground magnetometers, satellite observations, and modeling

    NASA Astrophysics Data System (ADS)

    Zesta, E.; Boudouridis, A.; Yizengaw, E.; Jorgensen, A. M.; Carranza-fulmer, T. L.; Moldwin, M.; Mann, I. R.; Chi, P. J.

    2013-12-01

    The plasmasphere boundary layer (PBL) separates the cold and dense plasmaspheric plasma from the more tenuous and hot plasma sheet plasma and organizes the spatial distribution of ULF and VLF waves that can contribute to acceleration or loss processes of radiation belt particles through wave-particle interactions. The PBL has been traditionally determined by in situ observations and can be given by empirical models. Recent work has shown that a mid-latitude chain of well-spaced ground magnetometers can also determine the PBL location. Spectral properties, like the cross-phase reversal in the standard field-line resonance (FLR) determination between two stations closely aligned in latitude, have been shown to indicate the presence of a sharp PBL. We merge data from many ground magnetometer pairs from the SAMBA (South American Meridional B-field Array), McMAC (Mid continent Magnetoseismic Chain), and CARISMA (Canadian Array for Realtime Investigations of Magnetic Activity) chains to provide the best available spatial coverage in L values spanning the plasmasphere and PBL, for a range of dynamic states (L=1.6 to greater than 5). The PBL location is identified as the L value of the station pair for which a reverse phase difference is observed in the standard FLR determination. We compare the FLR determined PBL with the trough boundary determined by GPS Total Electron Content (TEC) analysis and with model PBL. Initial results demonstrate that the PBL as identified by the reverse phase differences is in general agreement with TEC identifications and reasonable agreement with models. Reverse Phase Differences are regularly observed at the L range of 2.7 to 3.7 and are highly correlated with Dst and Kp, as determined by daily correlations. We further examine the more detailed time sequence of the PBL dynamics by focusing on key periods around storms preceded by quiet periods, and by using the full L range of the ground magnetometer pairs.

  11. Competing Lipid-Protein and Protein-Protein Interactions Determine Clustering and Gating Patterns in the Potassium Channel from Streptomyces lividans (KcsA)*

    PubMed Central

    Molina, M. Luisa; Giudici, A. Marcela; Poveda, José A.; Fernández-Ballester, Gregorio; Montoya, Estefanía; Renart, M. Lourdes; Fernández, Asia M.; Encinar, José A.; Riquelme, Gloria; Morales, Andrés; González-Ros, José M.

    2015-01-01

    There is increasing evidence to support the notion that membrane proteins, instead of being isolated components floating in a fluid lipid environment, can be assembled into supramolecular complexes that take part in a variety of cooperative cellular functions. The interplay between lipid-protein and protein-protein interactions is expected to be a determinant factor in the assembly and dynamics of such membrane complexes. Here we report on a role of anionic phospholipids in determining the extent of clustering of KcsA, a model potassium channel. Assembly/disassembly of channel clusters occurs, at least partly, as a consequence of competing lipid-protein and protein-protein interactions at nonannular lipid binding sites on the channel surface and brings about profound changes in the gating properties of the channel. Our results suggest that these latter effects of anionic lipids are mediated via the Trp67–Glu71–Asp80 inactivation triad within the channel structure and its bearing on the selectivity filter. PMID:26336105

  12. Lipid nutritional value of legumes: Evaluation of different extraction methods and determination of fatty acid composition.

    PubMed

    Caprioli, Giovanni; Giusti, Federica; Ballini, Roberto; Sagratini, Gianni; Vila-Donat, Pilar; Vittori, Sauro; Fiorini, Dennis

    2016-02-01

    This study sought to contribute to the assessment of the nutritional properties of legumes by determining the fatty acid (FA) composition of 29 legume samples after the evaluation of nine extraction methods. The Folch method and liquid-solid extraction with hexane/isopropanol or with hexane/acetone were investigated, as was the effect of previous hydration of samples. Soxhlet extractions were also evaluated with different solvent mixtures. Results on FA composition using the hexane/isopropanol extraction method were the same in terms of FA composition of the Folch method, but the extraction yield was only around 20-40% of that of the Folch method preceded by hydration. Some types of legumes showed particularly interesting values for the ratio of polyunsaturated fatty acids (PUFAs) n-6/n-3, such as lentils, with the value of 4.0, and Azuki beans, at 3.2. In lentils, the PUFAs% ranged from 42.0% to 57.4%, while in Azuki beans it was 57.5%.

  13. Bioelectronic tongue based on lipidic nanostructured layers containing phenol oxidases and lutetium bisphthalocyanine for the analysis of grapes.

    PubMed

    Medina-Plaza, C; de Saja, J A; Rodriguez-Mendez, M L

    2014-07-15

    In this work, a multisensor system formed by nanostructured voltammetric biosensors based on phenol oxidases (tyrosinase and laccase) has been developed. The enzymes have been incorporated into a biomimetic environment provided by a Langmuir-Blodgett (LB) film of arachidic acid (AA). Lutetium bisphthalocyanine (LuPc2) has also been introduced in the films to act as electron mediator. The incorporation of the enzymes to the floating layers to form Tyr/AA/LuPc2 and Lac/AA/LuPc2 films has been confirmed by the expansion in the surface pressure isotherms and by the AFM images. The voltammetric response towards six phenolic compounds demonstrates the enhanced performance of the biosensors that resulted from a preserved activity of the tyrosinase and laccase combined with the electron transfer activity of LuPc2. Biosensors show improved detection limits in the range of 10(-7)-10(-8) mol L(-1). An array formed by three sensors AA/LuPc2, Tyr/AA/LuPc2 and Lac/AA/LuPc2 has been employed to discriminate phenolic antioxidants of interest in the food industry. The Principal Component Analysis scores plot has demonstrated that the multisensor system is able to discriminate phenols according to the number of phenolic groups attached to the structure. The system has also been able to discriminate grapes of different varieties according to their phenolic content. This good performance is due to the combination of four factors: the high functionality of the enzyme obtained using a biomimetic immobilization, the signal enhancement caused by the LuPc2 mediator, the improvement in the selectivity induced by the enzymes and the complementary activity of the enzymatic sensors demonstrated in the loading plots.

  14. Determination of Total Lipids as Fatty Acid Methyl Esters (FAME) by in situ Transesterification: Laboratory Analytical Procedure (LAP)

    SciTech Connect

    Van Wychen, S.; Laurens, L. M. L.

    2013-12-01

    This procedure is based on a whole biomass transesterification of lipids to fatty acid methyl esters to represent an accurate reflection of the potential of microalgal biofuels. Lipids are present in many forms and play various roles within an algal cell, from cell membrane phospholipids to energy stored as triacylglycerols.

  15. Mixing layer height measurements determines influence of meteorology on air pollutant concentrations in urban area

    NASA Astrophysics Data System (ADS)

    Schäfer, Klaus; Blumenstock, Thomas; Bonn, Boris; Gerwig, Holger; Hase, Frank; Münkel, Christoph; Nothard, Rainer; von Schneidemesser, Erika

    2015-10-01

    Mixing layer height (MLH) is a key parameter to determine the influence of meteorological parameters upon air pollutants such as trace gas species and particulate concentrations near the surface. Meteorology, and MLH as a key parameter, affect the budget of emission source strengths, deposition, and accumulation. However, greater possibilities for the application of MLH data have been identified in recent years. Here, the results of measurements in Berlin in 2014 are shown and discussed. The concentrations of NO, NO2, O3, CO, PM1, PM2.5, PM10 and about 70 volatile organic compounds (anthropogenic and biogenic of origin) as well as particle size distributions and contributions of SOA and soot species to PM were measured at the urban background station of the Berlin air quality network (BLUME) in Nansenstr./Framstr., Berlin-Neukölln. A Vaisala ceilometer CL51, which is a commercial mini-lidar system, was applied at that site to detect the layers of the lower atmosphere in real time. Special software for these ceilometers with MATLAB provided routine retrievals of MLH from vertical profiles of laser backscatter data. Five portable Bruker EM27/SUN FTIR spectrometers were set up around Berlin to detect column averaged abundances of CO2 and CH4 by solar absorption spectrometry. Correlation analyses were used to show the coupling of temporal variations of trace gas compounds and PM with MLH. Significant influences of MLH upon NO, NO2, PM10, PM2.5, PM1 and toluene (marker for traffic emissions) concentrations as well as particle number concentrations in the size modes 70 - 100 nm, 100 - 200 nm and 200 - 500 nm on the basis of averaged diurnal courses were found. Further, MLH was taken as important auxiliary information about the development of the boundary layer during each day of observations, which was required for the proper estimation of CO2 and CH4 source strengths from Berlin on the basis of atmospheric column density measurements.

  16. Age determination in manatees using growth-layer-group counts in bone

    USGS Publications Warehouse

    Marmontel, M.; O'Shea, T.J.; Kochman, H.I.; Humphrey, S.R.

    1996-01-01

    Growth layers were observed in histological preparations of bones of known-age, known minimum-age, and tetracycline-marked free-ranging and captive Florida manatees (Trichechus manatus latirostris), substantiating earlier preliminary findings of other studies. Detailed analysis of 17 new case histories showed that growth-layer group (GLG) counts in the periotic bone were consistent with known age, or time since tetracycline administration, but were less reliable in other bones. GLG counts were also made in periotic bones of 1,196 Florida manatees of unknown age found dead from 1974 through 1991. These counts were conducted in order to assess variability and to determine relationships among estimated age, size, sex, and degree of bone resorption. Resorption can interfere with accuracy of GLG counts. This effect does not occur until ages greater than about 15 yr and body lengths greater than 300 cm are attained. GLGs were also observed in periotic bones of Antillean manatees (Trichechus manatus manatus) but were not validated against known-age specimens. Use of GLG counts in the periotic bone is suitable for application to studies of population dynamics and other age-related aspects of manatee biology.

  17. Determining the Effective Density and Stabilizer Layer Thickness of Sterically Stabilized Nanoparticles

    PubMed Central

    2016-01-01

    A series of model sterically stabilized diblock copolymer nanoparticles has been designed to aid the development of analytical protocols in order to determine two key parameters: the effective particle density and the steric stabilizer layer thickness. The former parameter is essential for high resolution particle size analysis based on analytical (ultra)centrifugation techniques (e.g., disk centrifuge photosedimentometry, DCP), whereas the latter parameter is of fundamental importance in determining the effectiveness of steric stabilization as a colloid stability mechanism. The diblock copolymer nanoparticles were prepared via polymerization-induced self-assembly (PISA) using RAFT aqueous emulsion polymerization: this approach affords relatively narrow particle size distributions and enables the mean particle diameter and the stabilizer layer thickness to be adjusted independently via systematic variation of the mean degree of polymerization of the hydrophobic and hydrophilic blocks, respectively. The hydrophobic core-forming block was poly(2,2,2-trifluoroethyl methacrylate) [PTFEMA], which was selected for its relatively high density. The hydrophilic stabilizer block was poly(glycerol monomethacrylate) [PGMA], which is a well-known non-ionic polymer that remains water-soluble over a wide range of temperatures. Four series of PGMAx–PTFEMAy nanoparticles were prepared (x = 28, 43, 63, and 98, y = 100–1400) and characterized via transmission electron microscopy (TEM), dynamic light scattering (DLS), and small-angle X-ray scattering (SAXS). It was found that the degree of polymerization of both the PGMA stabilizer and core-forming PTFEMA had a strong influence on the mean particle diameter, which ranged from 20 to 250 nm. Furthermore, SAXS was used to determine radii of gyration of 1.46 to 2.69 nm for the solvated PGMA stabilizer blocks. Thus, the mean effective density of these sterically stabilized particles was calculated and determined to lie between 1.19 g

  18. Optical methods for determining thicknesses of few-layer graphene flakes

    NASA Astrophysics Data System (ADS)

    Ouyang, Wengen; Liu, Xin-Z.; Li, Qunyang; Zhang, Yingying; Yang, Jiarui; Zheng, Quan-shui

    2013-12-01

    Optical microscopy (OM) methods have been commonly used as a convenient means for locating and identifying few-layer graphene (FLG) on SiO2/Si substrates. However, it is less clear how reliably optical images of FLG could be used to determine the sample thickness. In this work, various OM methods based on color differences and color contrasts are presented and their reliabilities are evaluated. Our analysis shows that these color-based OM methods depend sensitively on certain parameters of the measuring system, particularly the light source and the reference substrate. These parameters have usually been overlooked and less controlled in routine experiments. From evaluating the performance of these OM methods with both virtual and real FLG samples, we propose some practical guidelines for minimizing the impact of these less-controlled experimental parameters and provide a user-friendly MATLAB script for facilitating the implementation.

  19. Determination of heavy metals by thin-layer chromatography-square-wave anodic stripping voltammetry

    SciTech Connect

    Aldstadt, J.H.; Dewald, H.D. )

    1992-12-15

    A square-wave anodic stripping voltammetric method is described for low parts per million determination of heavy metals separated by thin-layer chromatography (TLC). Heavy metal samples are separated on carboxymethyl cellulose TLC plates and detected by anodic stripping voltammetry (ASV) using a cellulose dialysis membrane-covered mercury film electrode (CM-MFE) placed directly on the TLC plate surface in a thin film of supporting electrolyte solution. The fast scan rates possible in square-wave voltammetry during the stripping step eliminate the need to deoxygenate the sample. Results are presented for a mixture of Pb(II), Cd(II), Cu(II), and Zn(II). Calibration curves for Pb(II) were linear over the range 10-500 ng, with a relative standard deviation of the peak current over a set of eight separate 100-ng Pb(II) samples of 16%. 25 refs., 7 figs.

  20. Determination of free fatty acids in pharmaceutical lipids by ¹H NMR and comparison with the classical acid value.

    PubMed

    Skiera, Christina; Steliopoulos, Panagiotis; Kuballa, Thomas; Diehl, Bernd; Holzgrabe, Ulrike

    2014-05-01

    Indices like acid value, peroxide value, and saponification value play an important role in quality control and identification of lipids. Requirements on these parameters are given by the monographs of the European pharmacopeia. (1)H NMR spectroscopy provides a fast and simple alternative to these classical approaches. In the present work a new (1)H NMR approach to determine the acid value is described. The method was validated using a statistical approach based on a variance components model. The performance under repeatability and in-house reproducibility conditions was assessed. We applied this (1)H NMR assay to a wide range of different fatty oils. A total of 305 oil and fat samples were examined by both the classical and the NMR method. Except for hard fat, the data obtained by the two methods were in good agreement. The (1)H NMR method was adapted to analyse waxes and oleyloleat. Furthermore, the effect of solvent and in the case of castor oil the effect of the oil matrix on line broadening and chemical shift of the carboxyl group signal are discussed.

  1. Reconstitution baking tests with defatted wheat flour are suitable for determining the functional effects of lipase-treated wheat lipids.

    PubMed

    Schaffarczyk, Monika; Østdal, Henrik; Matheis, Olivia; Jekle, Mario; Koehler, Peter

    2016-06-01

    A microscale reconstitution baking test, using wheat flour defatted with 2-propanol at 20 °C, was established to determine the functional effects of lipids isolated from lipase-treated wheat dough. Proper selection of solvent and extraction temperature was of major importance to maintain the functionality of defatted flour. Dough and gluten from flour defatted with water-saturated 1-butanol (WSB; extracted at 20 °C) and 2-propanol (extracted at 75 °C) had inferior extensibility and loaf volume compared to control flour extracted with 2-propanol at 20 °C. Quantitation of gluten proteins showed that defatting with WSB (20 °C) or 2-propanol (75 °C) decreased the gliadin and increased the glutenin content. Possible reasons were thiol-disulfide interchange reactions, caused either by heat (2-propanol, 75 °C) or by the solvent WSB, which affected gluten proteins. Confocal laser scanning microscopy showed that regular, interconnected gluten structures were only present in dough from flour defatted with 2-propanol at 20 °C.

  2. FCS diffusion laws in two-phase lipid membranes: determination of domain mean size by experiments and Monte Carlo simulations.

    PubMed

    Favard, Cyril; Wenger, Jérôme; Lenne, Pierre-François; Rigneault, Hervé

    2011-03-02

    Many efforts have been undertaken over the last few decades to characterize the diffusion process in model and cellular lipid membranes. One of the techniques developed for this purpose, fluorescence correlation spectroscopy (FCS), has proved to be a very efficient approach, especially if the analysis is extended to measurements on different spatial scales (referred to as FCS diffusion laws). In this work, we examine the relevance of FCS diffusion laws for probing the behavior of a pure lipid and a lipid mixture at temperatures below, within and above the phase transitions, both experimentally and numerically. The accuracy of the microscopic description of the lipid mixtures found here extends previous work to a more complex model in which the geometry is unknown and the molecular motion is driven only by the thermodynamic parameters of the system itself. For multilamellar vesicles of both pure lipid and lipid mixtures, the FCS diffusion laws recorded at different temperatures exhibit large deviations from pure Brownian motion and reveal the existence of nanodomains. The variation of the mean size of these domains with temperature is in perfect correlation with the enthalpy fluctuation. This study highlights the advantages of using FCS diffusion laws in complex lipid systems to describe their temporal and spatial structure.

  3. Genetic determinants of serum lipid levels in Chinese subjects: A population-based study in Shanghai, China

    PubMed Central

    Andreotti, Gabriella; Menashe, Idan; Chen, Jinbo; Chang, Shih-Chen; Rashid, Asif; Gao, Yu-Tang; Han, Tian-Quan; Sakoda, Lori C.; Chanock, Stephen; Rosenberg, Philip S.; Hsing, Ann W.

    2010-01-01

    Purpose We examined the associations between 21 single nucleotide polymorphisms (SNPs) of eight lipid metabolism genes and lipid levels in a Chinese population. Methods This study was conducted as part of a population-based study in China with 799 randomly selected healthy residents who provided fasting blood and an in-person interview. Associations between variants and mean lipid levels were examined using a test of trend and least squares mean test in a general linear model. Results Four SNPs were associated with lipid levels: LDLR rs1003723 was associated with total cholesterol (p-trend=0.002) and LDL (p-trend=0.01), LDLR rs6413503 was associated with total cholesterol (p-trend=0.05), APOB rs1367117 was associated with apoB (p-trend=0.02), and ABCB11 rs49550 was associated with total cholesterol (p-trend=0.01), triglycerides (p-trend=0.01), and apoA (p-trend=0.01). We found statistically significant effects on lipid levels for LDLR rs6413503 among those with high dairy intake, LPL rs263 among those with high allium vegetable intake, and APOE rs440446 among those with high red meat intake. Conclusion We identified new associations between SNPs and lipid levels in Chinese previously found in Caucasians. These findings provide insight into the role of lipid metabolism genes, as well as the mechanisms by which these genes may be linked with disease. PMID:19888660

  4. Simultaneous determination of cyclodol and diprazin by thin layer chromatography and high performance liquid chromatography.

    PubMed

    Makharadze, R; Adeishvili, L; Chelidze, T; Imnadze, N; Nizharadze, N

    2009-11-01

    Ciklodol (trihexyphenidil)--the central and peripheral m-cholinoblocker is currently used with other antipsychotic drugs such as phenotiazines and tricycle antidepressants. For the purpose of simultaneous determination of ciklodol and diprazine, were selected two methods of analysis: Thin Layer Chromatography (TLC) and High Performance Liquid Chromatography (HPLC). During development of TLC method was studied the 10 visualizing system and 24 mobile systems. For individual or simultaneous determination of ciklodol and diprazine were recommended the following solvents' systems: 1. Toluene-acetone-ethanole-25%NH(4)OH (45:45: 7.5:2.5), 2. Hexane-ethyl acetate (15:5), 3. Chloroform-heptene-25%NH(4)OH (16:3:3), 4. Ethylacetate-hexane (10:10), 5. Acetonitrile-metanol (10:10) and 6.Heptene-chloroform-ethanol-25% NH(4)OH (5:10:3:1). As visualizing systems were chosen: Iodine vapors, blacklight (UV254) and reagent of FNP. Reagent of FNP gives colored spot just with diprazine and it is also could be used for separation of both objects in simultaneous analysis. Developed HPLC method of simultaneous determination of ciklodol and diprazine: like mobile phase is recommended: Acetonitril- 0.05M KH(2)PO4 (55:45) (v/v) +H(3)PO(4) (pH3.5), column EC250 x 4.6mm, with solid phase Nucleosil, flow rate 1ml/min, sample volume 40 microl. In given conditions, the retention time of ciklodol is 6.005min and diprazine 7.227min. Developed method of simultaneous determination and separation of ciklodol and diprazine in respective mixtures could be successfully applied as in the pharmaceutical, as well in the chemical-toxicological laboratories.

  5. Surface layer determination for the Si spheres of the Avogadro project

    NASA Astrophysics Data System (ADS)

    Busch, I.; Azuma, Y.; Bettin, H.; Cibik, L.; Fuchs, P.; Fujii, K.; Krumrey, M.; Kuetgens, U.; Kuramoto, N.; Mizushima, S.

    2011-04-01

    For the accurate determination of the Avogadro constant, two 28Si spheres were produced, whose macroscopic density, in addition to other values, must be determined. To make a contribution to the new definition of the kilogram, a relative standard uncertainty of less than 2 × 10-8 has to be achieved. Each silicon surface is covered by a surface layer (SL). Consequently, correction parameters for the SL are determined to be applied to the mass and volume determination of the enriched spheres. With the use of a large set of surface analysing techniques, the structure of the SL is investigated. An unexpected metallic contamination existing on the sphere surface enlarges the uncertainty contribution of the correction parameters above the originally targeted value of 1 × 10-8. In the framework of this investigation this new obstacle is resolved in two ways. A new combination of analytical methods is applied to measure the SL mass mSL and the thickness dSL, including this new contamination, with an uncertainty of u(mSL) = 14.5 µg and 14.4 µg, respectively, and u(dSL) = 0.33 nm and 0.32 nm for the 28Si spheres AVO28-S5 and AVO28-S8, respectively. In the second part of the work, the chemical composition of these metallic contaminations is found to be Cu, Ni and Zn silicide compounds. For the removal of this contamination, a special procedure is developed, tested and applied to the spheres to produce the originally expected surface structure on the spheres. After the application of this new procedure the use of x-ray reflectometry directly at the spheres will be possible. It is expected to reduce the uncertainty contribution due to the SL down to 1 × 10-8.

  6. Optimal Linear Fitting for Objective Determination of Ocean Mixed Layer Depth from Glider Profiles

    DTIC Science & Technology

    2010-09-06

    profile is around 1 m . All the profiles are deeper than 700 m and clearly show the existence of layered structure: mixed layer, thermocline, and deep...controlled profiles observed by the two Seagliders. With high vertical resolution (1 m ), we chose n 5 4. The value of Hmix was calculated for each...compared to the fluctuations in the mixed layer depth observed after this date. The mixed layer depth oscillates between 50 and 90 m before 25 November 2007

  7. High-performance thin-layer chromatographic determination of lamotrigine in serum.

    PubMed

    Patil, Kuldeep M; Bodhankar, Subhash L

    2005-09-05

    A simple and rapid high-performance thin-layer chromatographic (HPTLC) determination of lamotrigine (LTG) in serum is reported. The method involves extraction of the drug by ethyl acetate followed by separation on TLC silica plates using a mixture of toluene-acetone-ammonia (7:3:0.5), as eluting solvent. Densitometric analysis was carried out at 312 nm with lamotrigine being detected at Rf of 0.54. The analytical method has excellent linearity (r=0.998) in the range of 20-300 ng/spot. This assay range is adequate for analyzing human serum, as it corresponds to lamotrigine concentrations measured in human serum from epileptic patients. The method was validated for sensitivity, selectivity, extraction efficiency, accuracy and intra and inter-day reproducibility. The limit of detection and limit of quantification were found to be 6.4 and 10.2 ng, respectively. Good accuracy is reported in the range of 92.06-97.12% and high precision with %CV in range of 0.53-2.59. The method was applied for determination of serum lamotrigine levels in epileptic patients and in pharmacokinetic study of lamotrigine administered orally to rabbits.

  8. Quantitative Determination of Photosynthetic Pigments in Green Beans Using Thin-Layer Chromatography and a Flatbed Scanner as Densitometer

    ERIC Educational Resources Information Center

    Valverde, Juan; This, Herve; Vignolle, Marc

    2007-01-01

    A simple method for the quantitative determination of photosynthetic pigments extracted from green beans using thin-layer chromatography is proposed. Various extraction methods are compared, and it is shown how a simple flatbed scanner and free software for image processing can give a quantitative determination of pigments. (Contains 5 figures.)

  9. Paper-based thin-layer coulometric sensor for halide determination.

    PubMed

    Cuartero, Maria; Crespo, Gastón A; Bakker, Eric

    2015-02-03

    We report on a paper-based analytical device (PAD) for the exhaustive, and therefore absolute, determination of halides in a range of diverse water samples and food supplements. A mixture of chloride, bromide, and iodide ions is assessed in a wide range of concentrations, specifically, from 10(-4.8) to 0.1 M for bromide and iodide and from 10(-4.5) to 0.6 M for chloride, with a limit of detection of 10(-5) M. As a result of a careful optimization of the electrochemical cell, a thin layer made of cellulose paper (75-μm thickness), a cation-exchange Donnan exclusion membrane (FKL), and a silver-foil working electrode were selected as optimum materials. Cyclic voltammetry (from 0 to 0.8 V) was chosen as the interrogation technique to impose the exhaustive oxidative plating and re-reduction of halides on the silver element, accompanied by outward and inward counterion fluxes. The scan rate plays an important role in the ability of the technique to resolve mixtures of ions. Moderate scan rates (10 mV s(-1)) provide a suitable compromise between sensitivity, limit of detection, and resolution. This paper-based microfluidic device is extremely simple in terms of manipulation, cost, and contamination risk. Paper is an excellent basis for the establishment of a confined thin aqueous layer, the construction of disposable halide sensors, and portability for measuring outside the controlled laboratory environment. A discussion of the relevant analytical characteristics is presented herein, followed by a demonstration of halide assessment in water samples (sea, tap, river, and mineral waters) and food supplements enriched with iodide and chloride as early examples.

  10. Epidermal surface lipids.

    PubMed

    Pappas, Apostolos

    2009-03-01

    A layer of lipids, which are of both sebaceous and keratinocyte origin, covers the surface of the skin. The apparent composition of surface lipids varies depending on the selected method of sampling. Lipids produced by the epidermal cells are an insignificant fraction of the total extractable surface lipid on areas rich in sebaceous glands. Due to the holocrine activity of the sebaceous gland, its product of secretion (sebum) is eventually released to the surface of the skin and coats the fur as well. Lipids of epidermal origin fill the spaces between the cells, like mortar or cement. The sebaceous lipids are primarily non polar lipids as triglycerides, wax esters and squalene, while epidermal lipids are a mixture of ceramides, free fatty acids and cholesterol. The composition of the sebaceous lipids is unique and intriguing and elevated sebum excretion is a major factor involved in the pathophysiology of acne. Recent studies have elucidated the roles that epidermal surface lipids have on normal skin functions and acne.

  11. Epidermal surface lipids

    PubMed Central

    2009-01-01

    A layer of lipids, which are of both sebaceous and keratinocyte origin, covers the surface of the skin. The apparent composition of surface lipids varies depending on the selected method of sampling. Lipids produced by the epidermal cells are an insignificant fraction of the total extractable surface lipid on areas rich in sebaceous glands. Due to the holocrine activity of the sebaceous gland, its product of secretion (sebum) is eventually released to the surface of the skin and coats the fur as well. Lipids of epidermal origin fill the spaces between the cells, like mortar or cement. The sebaceous lipids are primarily non polar lipids as triglycerides, wax esters and squalene, while epidermal lipids are a mixture of ceramides, free fatty acids and cholesterol. The composition of the sebaceous lipids is unique and intriguing and elevated sebum excretion is a major factor involved in the pathophysiology of acne. Recent studies have elucidated the roles that epidermal surface lipids have on normal skin functions and acne. PMID:20224687

  12. A shielding application of perturbation theory to determine changes in neutron and gamma doses due to changes in shield layers

    NASA Technical Reports Server (NTRS)

    Fieno, D.

    1972-01-01

    The perturbation theory for fixed sources was applied to radiation shielding problems to determine changes in neutron and gamma ray doses due to changes in various shield layers. For a given source and detector position the perturbation method enables dose derivatives due to all layer changes to be determined from one forward and one inhomogeneous adjoint calculation. The direct approach requires two forward calculations for the derivative due to a single layer change. Hence, the perturbation method for obtaining dose derivatives permits an appreciable savings in computation for a multilayered shield. For an illustrative problem, a comparison was made of the fractional change in the dose per unit change in the thickness of each shield layer as calculated by perturbation theory and by successive direct calculations; excellent agreement was obtained between the two methods.

  13. Determination of effective mechanical properties of a double-layer beam by means of a nano-electromechanical transducer

    SciTech Connect

    Hocke, Fredrik; Pernpeintner, Matthias; Gross, Rudolf; Zhou, Xiaoqing; Kippenberg, Tobias J.; Schliesser, Albert; Huebl, Hans

    2014-09-29

    We investigate the mechanical properties of a doubly clamped, double-layer nanobeam embedded into an electromechanical system. The nanobeam consists of a highly pre-stressed silicon nitride and a superconducting niobium layer. By measuring the mechanical displacement spectral density both in the linear and the nonlinear Duffing regime, we determine the pre-stress and the effective Young's modulus of the nanobeam. An analytical double-layer model quantitatively corroborates the measured values. This suggests that this model can be used to design mechanical multilayer systems for electro- and optomechanical devices, including materials controllable by external parameters such as piezoelectric, magnetostrictive, or in more general multiferroic materials.

  14. Ferritin-stimulated lipid peroxidation, lysosomal leak, and macroautophagy promote lysosomal "metastability" in primary hepatocytes determining in vitro cell survival.

    PubMed

    Krenn, Margit A; Schürz, Melanie; Teufl, Bernhard; Uchida, Koji; Eckl, Peter M; Bresgen, Nikolaus

    2015-03-01

    Several pathologies are associated with elevated levels of serum ferritin, for which growth inhibitory properties have been reported; however, the underlying mechanisms are still poorly defined. Previously we have described cytotoxic properties of isoferritins released from primary hepatocytes in vitro, which induce apoptosis in an iron and oxidative stress-dependent mode. Here we show that this ferritin species stimulates endosome clustering and giant endosome formation in primary hepatocytes accompanied by enhanced lysosomal membrane permeability (LMP). In parallel, protein modification by lipid peroxidation-derived 4-hydroxynonenal (HNE) is strongly promoted by ferritin, the HNE-modified proteins (HNE-P) showing remarkable aggregation. Emphasizing the prooxidant context, GSH is rapidly depleted and the GSH/GSSG ratio is substantially declining in ferritin-treated cells. Furthermore, ferritin triggers a transient upregulation of macroautophagy which is abolished by iron chelation and apparently supports HNE-P clearance. Macroautophagy inhibition by 3-methyladenine strongly amplifies ferritin cytotoxicity in a time- and concentration-dependent mode, suggesting an important role of macroautophagy on cellular responses to ferritin endocytosis. Moreover, pointing at an involvement of lysosomal proteolysis, ferritin cytotoxicity and lysosome fragility are aggravated by the protease inhibitor leupeptin. In contrast, EGF which suppresses ferritin-induced cell death attenuates ferritin-mediated LMP. In conclusion, we propose that HNE-P accumulation, lysosome dysfunction, and macroautophagy stimulated by ferritin endocytosis provoke lysosomal "metastability" in primary hepatocytes which permits cell survival as long as in- and extrinsic determinants (e.g., antioxidant availability, damage repair, EGF signaling) keep the degree of lysosomal destabilization below cell death-inducing thresholds.

  15. Large Eddy Simulations to determine the role of dispersive stresses in the urban canopy layer

    NASA Astrophysics Data System (ADS)

    Christen, Andreas; Giometto, Marco; Parlange, Marc

    2013-04-01

    Urban-scale weather and air pollution forecasting models need to realistically predict conditions in the urban canopy layer (UCL) - the atmosphere in-between buildings where people live and most activities take place. Nevertheless, for performance reasons, forecasting models cannot resolve every detail of the flow field around individual buildings and obstacles in a city. In common urban canopy parameterizations (UCPs), exchange processes between the UCL and the overlying atmosphere - including momentum transfer - are simplified to one-dimensional bulk flow representations, where the time-averaged flow field is also horizontally averaged over a larger spatial subset of the urban canopy. In the spatial averaging process of RANS equations, additional covariance terms arise in the time-averaged momentum balance, called 'dispersive stresses'. Physically, a dispersive stress can be explained as spatial correlation between the mean horizontal flow and mean vertical flow around buildings at a given height layer. Due to lack of knowledge on the role of dispersive fluxes, they are neglected in all current UCPs and transfer formulations. Only limited CFD studies for idealized cubical arrays show that dispersive fluxes are relevant and important to properly describe the overall momentum transfer in those specific rigid canopies. The current contribution determines the role of dispersive stresses to the overall momentum transfer for a more realistic urban canopy by means of large eddy simulation (LES). LES takes into account the unsteadiness that characterizes canopy layer flows, offering indisputably superior performances in predicting momentum exchange with respect to traditional methods, in particular when the effects of canopy elements play a major role. LES also showed to be able to properly represent the flow in areas of strong separation and in wakes, features that are strongly present in urban canopies, where most RANS and URANS models fail due to their under

  16. Rapid determination of lipid peroxidation using a novel pyridoxamine-participating ferrous oxidation-sulfosalicylic acid spectrophotometric method.

    PubMed

    Chen, Jingnan; Cai, Danqian; Zhang, Yu

    2016-11-15

    A novel method is developed to rapidly analyze lipid peroxidation in edible oils and fatty foods at room temperature, which is called the pyridoxamine-participating ferrous oxidation-sulfosalicylic acid (PFOS) method. The PFOS method evaluates the lipid peroxide value colorimetrically via detecting the pyridoxamine-mediated pigment produced by 5-sulfosalicylic acid and Fe(3+) at 500nm, while the latter is converted from Fe(2+) in the presence of lipid peroxides. The optimized formulation was ethanol (70%, v/v), Fe(2+) (4mmol/L), 5-sulfosalicylic acid (40mmol/L) and pyridoxamine (18mmol/L). The limit of quantitation is 0.087mmol Fe(3+)/L with acceptable reproducibility. In addition, current method has a significant linear correlation with both conventional thiobarbituric acid (R(2)=0.9999) and ferric thiocyanate assays (R(2)=0.9675). This method offers a rapid technique for evaluating lipid peroxidation without heating and sophisticated instrumental procedures. Besides, current method provides a new option to evaluate the lipid peroxidation state and improve the reproducibility of ferrous-oxidation.

  17. Estimation of thickness of concentration boundary layers by osmotic volume flux determination.

    PubMed

    Jasik-Ślęzak, Jolanta S; Olszówka, Kornelia M; Slęzak, Andrzej

    2011-06-01

    The estimation method of the concentration boundary layers thicknesses (δ) in a single-membrane system containing non-electrolytic binary or ternary solutions was devised using the Kedem-Katchalsky formalism. A square equation used in this method contains membrane transport (L(p), σ, ω) and solution (D, C) parameters as well as a volume osmotic flux (J(v)). These values can be determined in a series of independent experiments. Calculated values δ are nonlinearly dependent on the concentrations of investigated solutions and the membrane system configuration. These nonlinearities are the effect of a competition between spontaneously occurring diffusion and natural convection. The mathematical model based on Kedem-Katchalsky equations and a concentration Rayleigh number (R(C)) was presented. On the basis of this model we introduce the dimensionless parameter, called by us a Katchalsky number (Ka), modifies R(C) of membrane transport. The critical value of this number well describes a moment of transition from the state of diffusion into convective diffusion membrane transport.

  18. Birth order dependent growth cone segregation determines synaptic layer identity in the Drosophila visual system

    PubMed Central

    Kulkarni, Abhishek; Ertekin, Deniz; Lee, Chi-Hon; Hummel, Thomas

    2016-01-01

    The precise recognition of appropriate synaptic partner neurons is a critical step during neural circuit assembly. However, little is known about the developmental context in which recognition specificity is important to establish synaptic contacts. We show that in the Drosophila visual system, sequential segregation of photoreceptor afferents, reflecting their birth order, lead to differential positioning of their growth cones in the early target region. By combining loss- and gain-of-function analyses we demonstrate that relative differences in the expression of the transcription factor Sequoia regulate R cell growth cone segregation. This initial growth cone positioning is consolidated via cell-adhesion molecule Capricious in R8 axons. Further, we show that the initial growth cone positioning determines synaptic layer selection through proximity-based axon-target interactions. Taken together, we demonstrate that birth order dependent pre-patterning of afferent growth cones is an essential pre-requisite for the identification of synaptic partner neurons during visual map formation in Drosophila. DOI: http://dx.doi.org/10.7554/eLife.13715.001 PMID:26987017

  19. Chromatographic method for clobetasol propionate determination in hair follicles and in different skin layers.

    PubMed

    Ângelo, Tamara; Cunha-Filho, Marcílio S S; Gelfuso, Guilherme M; Gratieri, Tais

    2017-02-01

    Clobetasol propionate (CLO) is a potent steroid used for the treatment of several dermatological diseases. Recent studies suggest its additional use in alopecia topical treatment, generating a demand for novel formulations with specific delivery into hair follicles. Hence, a selective analytical method for drug quantification in follicular structures and skin layers is required. For this, a simple HPLC-UV method was developed. Quantification was performed using a RP-C18 column (4.6 mm × 15 cm, 5 μm), with a mixture of methanol-acetonitrile-water (50:15:35 v/v) as mobile phase, a flow rate of 1.2 mL/min, oven temperature of 30°C, injection volume of 50 μL and detection at 240 nm. The optimized conditions enabled a 12 min running with CLO elution at 10.1 min and resolution of 2.424 from skin matrix interferences. Validation was performed in accordance with International Conference on Harmonization guidelines and fulfilled the criteria of selectivity, linearity (0.5-15.0 μg/mL), robustness, precision, accuracy and limits of detection and quantification (0.02 and 0.07 μg/mL, respectively). The validated method was successfully applied for CLO quantification following in vitro skin permeation experiments and differential tape-stripping for hair follicle deposition determination, demonstrating its suitability.

  20. Urban boundary-layer height determination from lidar measurements over the paris area.

    PubMed

    Menut, L; Flamant, C; Pelon, J; Flamant, P H

    1999-02-20

    The Paris area is strongly urbanized and is exposed to atmospheric pollution events. To understand the chemical and physical processes that are taking place in this area it is necessary to describe correctly the atmospheric boundary-layer (ABL) dynamics and the ABL height evolution. During the winter of 1994-1995, within the framework of the Etude de la Couche Limite Atmosphérique en Agglomération Parisienne (ECLAP) experiment, the vertical structure of the ABL over Paris and its immediate suburbs was extensively documented by means of lidar measurements. We present methods suited for precise determination of the ABL structure's temporal evolution in a dynamic environment as complex as the Paris area. The purpose is to identify a method that can be used on a large set of lidar data. We compare commonly used methods that permit ABL height retrievals from backscatter lidar signals under different meteorological conditions. Incorrect tracking of the ABL depth's diurnal cycle caused by limitations in the methods is analyzed. The study uses four days of the ECLAP experiment characterized by different meteorological and synoptic conditions.

  1. Birth order dependent growth cone segregation determines synaptic layer identity in the Drosophila visual system.

    PubMed

    Kulkarni, Abhishek; Ertekin, Deniz; Lee, Chi-Hon; Hummel, Thomas

    2016-03-17

    The precise recognition of appropriate synaptic partner neurons is a critical step during neural circuit assembly. However, little is known about the developmental context in which recognition specificity is important to establish synaptic contacts. We show that in the Drosophila visual system, sequential segregation of photoreceptor afferents, reflecting their birth order, lead to differential positioning of their growth cones in the early target region. By combining loss- and gain-of-function analyses we demonstrate that relative differences in the expression of the transcription factor Sequoia regulate R cell growth cone segregation. This initial growth cone positioning is consolidated via cell-adhesion molecule Capricious in R8 axons. Further, we show that the initial growth cone positioning determines synaptic layer selection through proximity-based axon-target interactions. Taken together, we demonstrate that birth order dependent pre-patterning of afferent growth cones is an essential pre-requisite for the identification of synaptic partner neurons during visual map formation in Drosophila.

  2. Different determinants of soil carbon decomposition between active and permafrost layers: evidence from alpine permafrost on the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Yang, Y.; Chen, L.; Qin, S.; Ding, J.; Yang, G.; Li, F.

    2015-12-01

    The fate of permafrost carbon is of great concern among global change community due to its potential positive feedback to climate warming. However, the determinants of soil carbon decomposition between active layer and permafrost layers remain poorly understood. This incubation study was designed to test the following two hypotheses: 1) low carbon quantity and microbial abundances in permafrost soils limit decomposition rates compared with active layer soils; 2) carbon losses from active layer are more controlled by environmental factors, whereas those from permafrost depth are primarily determined by the microbial condition. We collected five active layer and permafrost soils from alpine grasslands on the Tibetan Plateau and compared the carbon dioxide (CO2) emissions at -5 and 5 °C in a 80-days aerobic incubation. The availability of organic carbon and microbial abundances (fungi, bacteria, and actinomycete) within permafrost soils were significantly lower than active layer soils, which, together with the environmental data supports the reduced cumulative CO2 emissions in permafrost depth. However, the decomposability of SOC from permafrost was similar or even higher than surface soils. The carbon loss not only depended on SOC quantity and microbial abundance, but also nitrogen availability and soil pH. Nevertheless, the controls on carbon emissions between active and permafrost layers were significantly different. Cumulative CO2 emission from active layers was best predicted by soil moisture, and carbon emission from permafrost depths was highly associated with fungal-PLFAs. Taken together, these results demonstrate that different controls on carbon emission between active layer and permafrost soils. These differences highlight the importance of distinguishing permafrost depth in Earth System Models when predicting the responses of deep soil carbon to environmental change.

  3. Conformation Transformation Determined by Different Self-Assembled Phases in a DNA Complex with Cationic Polyhedral Oligomeric Silsesquioxane Lipid

    SciTech Connect

    Cui,L.; Chen, D.; Zhu, L.

    2008-01-01

    In this work, a novel cube-shaped cationic lipid based on the imidazolium salt of polyhedral oligomeric silsesquioxane (POSS) was complexed with double-stranded DNA. Because of the negative spontaneous curvature of the cationic POSS imidazolium lipid, an inverted hexagonal phase resulted above the melting point of POSS crystals. Depending on the competition between the crystallization of POSS molecules and the negative spontaneous curvature of cationic POSS imidazolium lipids, different self-assembled phase morphologies were obtained. A lamellar phase was obtained when the POSS crystallization was relatively slow. When the POSS crystallization was fast, an inverted hexagonal phase was obtained with POSS lamellar crystals grown in the interstitials of DNA cylinders. On the basis of a circular dichroism study, double-stranded DNA adopted the B-form helical conformation in the inverted hexagonal phase, whereas the helical conformation was largely destroyed in the lamellar phase.

  4. The determination of the thickness of the layers deposited on the electronic circuit boards through tribological methods

    NASA Astrophysics Data System (ADS)

    Petrescu, A. M.; Tudor, A.; Chişiu, G.; Stoica, N. A.; Cihak Bayr, U.

    2017-02-01

    The purpose of the paper is to determinate the thickness of the copper layer deposit on the electronic circuit boards, the thickness of the soldering alloy SAC 307 (96.5%Sn/3.0%Ag/0.7%Cu) deposit on the copper-PCB assembly used in electronic industry and also to determinate the sliding length of the sphere on those materials. Slurry composed of water and SiC was used to reduce the testing time. For the experiment a CSEM Calowear equipment was used and the tested materials were the layer of FR4(flame retardant 4) with copper deposit and the soldering alloy SAC 307.

  5. In Vitro Amphotericin B Susceptibility of Malassezia pachydermatis Determined by the CLSI Broth Microdilution Method and Etest Using Lipid-Enriched Media

    PubMed Central

    Álvarez-Pérez, Sergio; Peláez, Teresa; Cutuli, Maite; García, Marta E.

    2014-01-01

    We determined the in vitro amphotericin B susceptibility of 60 Malassezia pachydermatis isolates by the CLSI broth microdilution method and the Etest using lipid-enriched media. All isolates were susceptible at MICs of ≤1 μg/ml, confirming the high activity of amphotericin B against this yeast species. Overall, the essential agreement between the tested methods was high (80% and 96.7% after 48 h and 72 h, respectively), and all discrepancies were regarded as nonsubstantial. PMID:24752258

  6. Accuracy of Young's Modulus of Thermal Barrier Coating Layer Determined by Bending Resonance of a Multilayered Specimen

    NASA Astrophysics Data System (ADS)

    Waki, Hiroyuki; Takizawa, Kensuke; Kato, Masahiko; Takahashi, Satoru

    2016-04-01

    The Young's modulus of individual layer in thermal barrier coating (TBC) system is an important mechanical property because it allows determining the parameters of materials mechanics in the TBC system. In this study, we investigated the accuracy of the evaluation method for the Young's modulus of a TBC layer according to the first bending resonance of a multilayered specimen comprising a substrate, bond coating, and TBC. First, we derived a closed-form solution for the Young's modulus of the TBC layer using the equation of motion for the bending vibration of a composite beam. The solution for the three-layered model provided the Young's modulus of the TBC layer according to the measured resonance frequency and the known values for the dimensions, mass, and Young's moduli of all the other layers. Next, we analyzed the sensitivity of these input errors to the evaluated Young's modulus and revealed the important inputs for accurate evaluation. Finally, we experimentally confirmed that the Young's modulus of the TBC layer was obtained accurately by the developed method.

  7. A Novel Method to Determine the Thermal Conductivity of Interfacial Layers Surrounding the Nanoparticles of a Nanofluid

    PubMed Central

    Pal, Rajinder

    2014-01-01

    Nanofluids are becoming increasingly popular as heat transfer fluids in a variety of industrial applications, due to their enhanced heat transfer characteristics. The thermal conductivity of nanofluids is usually found to be much larger than that predicted from the classical models, such as the Maxwell model. The key mechanism of enhancement of thermal conductivity of dilute nanofluids is the solvation of nanoparticles with a layer of matrix liquid. As of now, little is known quantitatively about the thermal conductivity of the interfacial layers surrounding the nanoparticles. In this article, a novel method is presented to determine the thermal conductivity of the interfacial layers of the nanoparticles. The proposed method allows the estimation of the thermal conductivity of interfacial layers based on the combined measurements of the intrinsic viscosity and intrinsic thermal conductivity of a bulk nanofluid. From the measured intrinsic viscosity of the nanofluid, the thickness of the interfacial layer is estimated. Using the known interfacial layer thickness along with the measured intrinsic thermal conductivity of the nanofluid, the thermal conductivity of the interfacial layer is estimated. The proposed method is validated by simulation and experimental results.

  8. Determining Fuzzy Membership for Sentiment Classification: A Three-Layer Sentiment Propagation Model

    PubMed Central

    Zhao, Chuanjun; Wang, Suge; Li, Deyu

    2016-01-01

    Enormous quantities of review documents exist in forums, blogs, twitter accounts, and shopping web sites. Analysis of the sentiment information hidden in these review documents is very useful for consumers and manufacturers. The sentiment orientation and sentiment intensity of a review can be described in more detail by using a sentiment score than by using bipolar sentiment polarity. Existing methods for calculating review sentiment scores frequently use a sentiment lexicon or the locations of features in a sentence, a paragraph, and a document. In order to achieve more accurate sentiment scores of review documents, a three-layer sentiment propagation model (TLSPM) is proposed that uses three kinds of interrelations, those among documents, topics, and words. First, we use nine relationship pairwise matrices between documents, topics, and words. In TLSPM, we suppose that sentiment neighbors tend to have the same sentiment polarity and similar sentiment intensity in the sentiment propagation network. Then, we implement the sentiment propagation processes among the documents, topics, and words in turn. Finally, we can obtain the steady sentiment scores of documents by a continuous iteration process. Intuition might suggest that documents with strong sentiment intensity make larger contributions to classification than those with weak sentiment intensity. Therefore, we use the fuzzy membership of documents obtained by TLSPM as the weight of the text to train a fuzzy support vector machine model (FSVM). As compared with a support vector machine (SVM) and four other fuzzy membership determination methods, the results show that FSVM trained with TLSPM can enhance the effectiveness of sentiment classification. In addition, FSVM trained with TLSPM can reduce the mean square error (MSE) on seven sentiment rating prediction data sets. PMID:27846225

  9. Determination of solid state characteristics of spray-congealed Ibuprofen solid lipid microparticles and their impact on sustaining drug release.

    PubMed

    Wong, Priscilla Chui Hong; Heng, Paul Wan Sia; Chan, Lai Wah

    2015-05-04

    This study was used to find solid state characteristics of ibuprofen loaded spray-congealed solid lipid microparticles (SLMs) by employing simple lipids as matrices, with or without polymeric additives, and the impact of solid drug-matrix miscibility on sustaining drug release. Solid miscibility of ibuprofen with two lipids, cetyl alcohol (CA) and stearic acid (SA), were investigated using differential scanning calorimetry (DSC). SLMs containing 20% w/w ibuprofen with or without polymeric additives, PVP/VA and EC, were produced by spray congealing, and the resultant microparticles were subjected to visual examination by scanning electron microscopy (SEM), thermal analysis using DSC, and hot-stage microscopy. Intermolecular interactions between lipids and drug as well as additives were investigated by Fourier-transformed infrared spectroscopy (FTIR) and nuclear magnetic resonance spectroscopy (NMR). X-ray diffractometry (XRD) was utilized to study polymorphic changes of drug and matrix over the course of a year. Ibuprofen was found to depress the melting points of CA and SA in a colligative manner, reaching maximum solubility at 10% w/w and 30% w/w for CA and SA, respectively. Drug encapsulation efficiencies and yields of spray-congealed SLMs containing 20% w/w ibuprofen were consistently high for both lipid matrices. CA and SA were found to adopt their stable γ- and β-polymorphs, respectively, immediately after spray congealing. The spray congealing process resulted in ibuprofen adopting an amorphous or poorly crystalline state, with no further changes over the course of a year. SEM, DSC, and hot stage microscope studies on the SLMs confirmed the formation of a solid dispersion between ibuprofen and CA and a solid solution between ibuprofen and SA. SA was found to sustain the release of ibuprofen significantly better than CA. PVP/VA and EC showed some interactions with CA, which led to an expansion of unit cell dimensions of CA upon spray congealing, whereas they

  10. Oral mucosal lipids are antibacterial against Porphyromonas gingivalis, induce ultrastructural damage, and alter bacterial lipid and protein compositions.

    PubMed

    Fischer, Carol L; Walters, Katherine S; Drake, David R; Dawson, Deborah V; Blanchette, Derek R; Brogden, Kim A; Wertz, Philip W

    2013-09-01

    Oral mucosal and salivary lipids exhibit potent antimicrobial activity for a variety of Gram-positive and Gram-negative bacteria; however, little is known about their spectrum of antimicrobial activity or mechanisms of action against oral bacteria. In this study, we examine the activity of two fatty acids and three sphingoid bases against Porphyromonas gingivalis, an important colonizer of the oral cavity implicated in periodontitis. Minimal inhibitory concentrations, minimal bactericidal concentrations, and kill kinetics revealed variable, but potent, activity of oral mucosal and salivary lipids against P. gingivalis, indicating that lipid structure may be an important determinant in lipid mechanisms of activity against bacteria, although specific components of bacterial membranes are also likely important. Electron micrographs showed ultrastructural damage induced by sapienic acid and phytosphingosine and confirmed disruption of the bacterial plasma membrane. This information, coupled with the association of treatment lipids with P. gingivalis lipids revealed via thin layer chromatography, suggests that the plasma membrane is a likely target of lipid antibacterial activity. Utilizing a combination of two-dimensional in-gel electrophoresis and Western blot followed by mass spectroscopy and N-terminus degradation sequencing we also show that treatment with sapienic acid induces upregulation of a set of proteins comprising a unique P. gingivalis stress response, including proteins important in fatty acid biosynthesis, metabolism and energy production, protein processing, cell adhesion and virulence. Prophylactic or therapeutic lipid treatments may be beneficial for intervention of infection by supplementing the natural immune function of endogenous lipids on mucosal surfaces.

  11. Oral mucosal lipids are antibacterial against Porphyromonas gingivalis, induce ultrastructural damage, and alter bacterial lipid and protein compositions

    PubMed Central

    Fischer, Carol L; Walters, Katherine S; Drake, David R; Dawson, Deborah V; Blanchette, Derek R; Brogden, Kim A; Wertz, Philip W

    2013-01-01

    Oral mucosal and salivary lipids exhibit potent antimicrobial activity for a variety of Gram-positive and Gram-negative bacteria; however, little is known about their spectrum of antimicrobial activity or mechanisms of action against oral bacteria. In this study, we examine the activity of two fatty acids and three sphingoid bases against Porphyromonas gingivalis, an important colonizer of the oral cavity implicated in periodontitis. Minimal inhibitory concentrations, minimal bactericidal concentrations, and kill kinetics revealed variable, but potent, activity of oral mucosal and salivary lipids against P. gingivalis, indicating that lipid structure may be an important determinant in lipid mechanisms of activity against bacteria, although specific components of bacterial membranes are also likely important. Electron micrographs showed ultrastructural damage induced by sapienic acid and phytosphingosine and confirmed disruption of the bacterial plasma membrane. This information, coupled with the association of treatment lipids with P. gingivalis lipids revealed via thin layer chromatography, suggests that the plasma membrane is a likely target of lipid antibacterial activity. Utilizing a combination of two-dimensional in-gel electrophoresis and Western blot followed by mass spectroscopy and N-terminus degradation sequencing we also show that treatment with sapienic acid induces upregulation of a set of proteins comprising a unique P. gingivalis stress response, including proteins important in fatty acid biosynthesis, metabolism and energy production, protein processing, cell adhesion and virulence. Prophylactic or therapeutic lipid treatments may be beneficial for intervention of infection by supplementing the natural immune function of endogenous lipids on mucosal surfaces. PMID:23867843

  12. Alteration of interleaflet coupling due to compounds displaying rapid translocation in lipid membranes

    PubMed Central

    Reigada, Ramon

    2016-01-01

    The spatial coincidence of lipid domains at both layers of the cell membrane is expected to play an important role in many cellular functions. Competition between the surface interleaflet tension and a line hydrophobic mismatch penalty are conjectured to determine the transversal behavior of laterally heterogeneous lipid membranes. Here, by a combination of molecular dynamics simulations, a continuum field theory and kinetic equations, I demonstrate that the presence of small, rapidly translocating molecules residing in the lipid bilayer may alter its transversal behavior by favoring the spatial coincidence of similar lipid phases. PMID:27596355

  13. Determination of Mean Thickness of an Oxide Layer on a Silicon Sphere by Spectroscopic Ellipsometry

    NASA Astrophysics Data System (ADS)

    Zhang, Ji-Tao; Li, Yan; Luo, Zhi-Yong; Wu, Xue-Jian

    2010-05-01

    One of the biggest obstacles to reduce the uncertainty of the Avogadro constant NA is such that there will be an oxide layers on the surface of a silicon sphere. The thickness of this layer is measured by a modified spectroscopic ellipsometer, which can eliminate the influence of the curved surface, and the results are calibrated by x-ray reflectivity. Fifty positions distributed nearly uniformly on the surface of the silicon sphere are measured twice. The results show that the mean thickness of the overall oxide layer is 3.75 nm with the standard uncertainty of 0.21 nm, which means that the relative uncertainty component of NA owing to this layer can be reduced to 1.2 × 10-8.

  14. Structure of Yeast OSBP-Related Protein Osh1 Reveals Key Determinants for Lipid Transport and Protein Targeting at the Nucleus-Vacuole Junction.

    PubMed

    Manik, Mohammad Kawsar; Yang, Huiseon; Tong, Junsen; Im, Young Jun

    2017-03-10

    Yeast Osh1 belongs to the oxysterol-binding protein (OSBP) family of proteins and contains multiple targeting modules optimized for lipid transport at the nucleus-vacuole junction (NVJ). The key determinants for NVJ targeting and the role of Osh1 at NVJs have remained elusive because of unknown lipid specificities. In this study, we determined the structures of the ankyrin repeat domain (ANK), and OSBP-related domain (ORD) of Osh1, in complex with Nvj1 and ergosterol, respectively. The Osh1 ANK forms a unique bi-lobed structure that recognizes a cytosolic helical segment of Nvj1. We discovered that Osh1 ORD binds ergosterol and phosphatidylinositol 4-phosphate PI(4)P in a competitive manner, suggesting counter-transport function of the two lipids. Ergosterol is bound to the hydrophobic pocket in a head-down orientation, and the structure of the PI(4)P-binding site in Osh1 is well conserved. Our results suggest that Osh1 performs non-vesicular transport of ergosterol and PI(4)P at the NVJ.

  15. INAA determination of major and trace elements in loess, paleosol and precipitation layers in a pleistocene Loess Section, China

    USGS Publications Warehouse

    Tian, J.; Chou, C.-L.; Ehmann, W.D.

    1987-01-01

    Instrumental neutron activation analysis was used for the determination of 31 major and trace elements in 32 samples from the Xinji Loess Section, Shaanxi Province, China. Interferences, including those from uranium fission products, were evaluated and corrections applied where necessary. The 39.7-meter deep section comprises of Lishi Loess of the middle Pleistocene (Q2) and Malan Loess of the late Pleistocene (Q3). The section is characterized by the presence of 5 layers of paleosol, and each paleosol is underlain by a precipitation layer. When the elemental abundances are converted to a carbonate-free basis, there is little compositional difference among the carbonate-free fractions of loess, paleosol and precipitation layers. This indicates that dissolution of carbonate minerals by downward-moving surface water was an important process in paleosol formation while other minerals were not severely weathered and elemental fractionation was minimal. The parent materials of the paleosol and precipitation layers closely resemble the loess layers in their elemental abundances, which suggests that all layers in the section have a compositionally similar source. ?? 1987 Akade??miai Kiado??.

  16. S-layer protein gene of Lactobacillus brevis: cloning by polymerase chain reaction and determination of the nucleotide sequence.

    PubMed Central

    Vidgrén, G; Palva, I; Pakkanen, R; Lounatmaa, K; Palva, A

    1992-01-01

    The surface (S)-layer protein of Lactobacillus brevis was isolated, purified, and characterized. The S-layer protein is the major protein of the cell, with an apparent molecular mass of 46 kDa in sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Immunogold electron microscopy with polyclonal antiserum against the isolated 46-kDa protein was used to confirm the surface location of this protein. N-terminal amino acid sequences of the intact 46-kDa protein and its tryptic peptides were determined. The gene of the S-layer protein was amplified from the genome of L. brevis by polymerase chain reaction with oligonucleotides, synthesized according to the N-terminal amino acid sequences, as primers. The polymerase chain reaction fragments containing the entire S-layer gene and its regulatory regions were sequenced. Nucleic acid sequence analysis revealed one open reading frame with a capacity to encode a protein of 48,159 Da. From the regulatory region of the gene, two subsequent promoters and a ribosome binding site, showing typical features of prokaryotic consensus sequences, were found. The coding region contained a characteristic gram-positive-type signal peptide of 30 amino acids. Removal of the signal peptide results in a polypeptide of 435 amino acids, which is in excellent agreement with the size of the S-layer protein determined by SDS-PAGE. The size and the 5' end analyses of the S-layer transcripts confirmed the monocistronic nature of the S-layer operon and the functionality of the two promoters found. Images PMID:1429463

  17. Approach for simultaneous determination of thickness and sound velocity in layered structures based on sound field simulations

    NASA Astrophysics Data System (ADS)

    Kühnicke, Elfgard; Wolf, Mario; Kümmritz, Sebastian

    2017-02-01

    This paper describes a non-invasive, nondestructive method for the simultaneous determination of sound velocity and thickness of the different layers of a layered structure by means of ultrasound. It will be demonstrated how further information about the reflected sound field, in addition to the time of flight, is acquired by using annular arrays. Because of this supplementary information, reflectors or other probes at known distances are not necessary and the specimen does not have to be placed in a medium with known sound velocity. Two different evaluation methods combined with a geometric model are explained. To improve the accuracy, measured signals are also evaluated by a wave propagation model.

  18. Note: Accurate determination of thickness of multiple layers of thin film deposited on a piezoelectric quartz crystal.

    PubMed

    Wajid, Abdul

    2013-10-01

    Modern day piezoelectric quartz crystal microbalances for thin film deposition control are based on Z-match equation, which is mathematically valid for deposition of a single material on a given quartz crystal. When multiple layers are deposited, thickness and deposition rate errors accumulate due to mismatch of acoustic impedance of different materials. Here we present a novel method, based on the acoustic transfer matrix formalism, for accurate determination of thickness of an arbitrary number of layers of dissimilar materials deposited on a quartz crystal. Laboratory data show excellent accuracy of the method compared to conventional Z-match equation.

  19. Note: Accurate determination of thickness of multiple layers of thin film deposited on a piezoelectric quartz crystal

    NASA Astrophysics Data System (ADS)

    Wajid, Abdul

    2013-10-01

    Modern day piezoelectric quartz crystal microbalances for thin film deposition control are based on Z-match equation, which is mathematically valid for deposition of a single material on a given quartz crystal. When multiple layers are deposited, thickness and deposition rate errors accumulate due to mismatch of acoustic impedance of different materials. Here we present a novel method, based on the acoustic transfer matrix formalism, for accurate determination of thickness of an arbitrary number of layers of dissimilar materials deposited on a quartz crystal. Laboratory data show excellent accuracy of the method compared to conventional Z-match equation.

  20. Separation of Intra- and Extramyocellular Lipid Signals in Proton MR Spectra by Determination of Their Magnetic Field Distribution

    NASA Astrophysics Data System (ADS)

    Steidle, G.; Machann, J.; Claussen, C. D.; Schick, F.

    2002-02-01

    In skeletal musculature intramyocellular (IMCL) and extramyocellular lipids (EMCL) are stored in compartments of different geometry and experience different magnetic field strengths due to geometrical susceptibility effects. The effect is strong enough to-at least partly-separate IMCL and EMCL contributions in 1H MR spectroscopy, despite IMCL and EMCL consisting of the same substances. The assessment of intramyocellular lipid stores in skeletal musculature by 1H MR spectroscopy plays an important role for studying physiological and pathological aspects of lipid metabolism. Therefore, a method using mathematical tools of Fourier analysis is developed to obtain the magnetic field distribution (MFD) from the measured spectra by deconvolution. A reference lipid spectrum is required which was recorded in tibial yellow bone marrow. It is shown that the separation of IMCL contributions can be performed more precisely-compared to other methods-based on the MFD. Examples of deconvolution in model systems elucidate the principle. Applications of the proposed approach on in vivo examinations in m. soleus and m. tibialis anterior are presented. Fitting the IMCL part of the MFD by a Gaussian lineshape with a linewidth kept fixed with respect to the linewidth of creatine and with the assumption of a smooth but not necessarily symmetrical shape for the EMCL part, the only free fit parameter, the amplitude of the IMCL part, is definite and subtraction leads to the EMCL part in the MFD. This procedure is especially justified for the soleus muscle showing a severely asymmetrical distribution which might lead to a marked overestimation of IMCL using common line fitting procedures.

  1. Determination of General Relations for the Behavior of Turbulent Boundary Layers

    DTIC Science & Technology

    1943-07-01

    c’.osou ’.hi jkr.e.’J ;o the isnontu» Ihe variables that con- le.-.t bound-iry layer ar-par- ptidi uer.si tnal prossure he...all. The purpose of the preaent investigation ic to deter- mine the inportnr.t variables thrt control the behavtcr of turbulent boundary layers and...consistent varia - dx q dx TQ tion with Reynolds number was eliminated. The skin fric- tion was tentatively assumed to bo given by the Squire and Young

  2. Changes of crop rotation in Iowa determined from the USDA-NASS cropland data layer product

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crop rotation is one of the important decisions made independently by numerous farm managers, and is a critical variable in models of crop growth and soil carbon. By combining multiple years (2001-2009) of the USDA National Agricultural Statistics Service (NASS) cropland data layer (CDL), it is pos...

  3. The S-layer protein from Campylobacter rectus: sequence determination and function of the recombinant protein.

    PubMed

    Miyamoto, M; Maeda, H; Kitanaka, M; Kokeguchi, S; Takashiba, S; Murayama, Y

    1998-09-15

    The gene encoding the crystalline surface layer (S-layer) protein from Campylobacter rectus, designated slp, was sequenced and the recombinant gene product was expressed in Escherichia coli. The gene consisted of 4086 nucleotides encoding a protein with 1361 amino acids. The N-terminal amino acid sequence revealed that Slp did not contain a signal sequence, but that the initial methionine residue was processed. The deduced amino acid sequence displayed some common characteristic features of S-layer proteins previously reported. A homology search showed a high similarity to the Campylobacter fetus S-layer proteins, especially in their N-terminus. The C-terminal third of Slp exhibited homology with the RTX toxins from Gram-negative bacteria via the region including the glycine-rich repeats. The Slp protein had the same N-terminal sequence as a 104-kDa cytotoxin isolated from the culture supernatants of C. rectus. However, neither native nor recombinant Slp showed cytotoxicity against HL-60 cells or human peripheral white blood cells. These data support the idea that the N-terminus acts as an anchor to the cell surface components and that the C-terminus is involved in the assembly and/or transport of the protein.

  4. Conformation of ceramide 6 molecules and chain-flip transitions in the lipid matrix of the outermost layer of mammalian skin, the stratum corneum

    NASA Astrophysics Data System (ADS)

    Kiselev, M. A.

    2007-05-01

    Neutron diffraction from oriented multilamellar model stratum corneum (SC) membranes provides information on the internal nanostructure and hydration of the lipid bilayer. The main distinguishing feature of model SC membranes based on ceramide 6 is the extremely small intermembrane space (1 Å). The role of the fully extended (FE) conformation of ceramide 6 molecules in the organization of the nanostructure of the lipid matrix is discussed. The FE conformation gives rise to extremely strong intermembrane attractions (armature reinforcement), which tighten the adjacent bilayers to form steric contacts. Chain-flip transitions in the conformation of ceramide molecules account for structural alterations in native and model SC membranes upon their hydration.

  5. Conformation of ceramide 6 molecules and chain-flip transitions in the lipid matrix of the outermost layer of mammalian skin, the stratum corneum

    SciTech Connect

    Kiselev, M. A.

    2007-05-15

    Neutron diffraction from oriented multilamellar model stratum corneum (SC) membranes provides information on the internal nanostructure and hydration of the lipid bilayer. The main distinguishing feature of model SC membranes based on ceramide 6 is the extremely small intermembrane space (1 A). The role of the fully extended (FE) conformation of ceramide 6 molecules in the organization of the nanostructure of the lipid matrix is discussed. The FE conformation gives rise to extremely strong intermembrane attractions (armature reinforcement), which tighten the adjacent bilayers to form steric contacts. Chain-flip transitions in the conformation of ceramide molecules account for structural alterations in native and model SC membranes upon their hydration.

  6. Summary of experimentally determined facts concerning the behavior of the boundary layer and performance of boundary layer measurements. [considering sailing flight

    NASA Technical Reports Server (NTRS)

    Vanness, W.

    1978-01-01

    A summary report of boundary layer studies is presented. Preliminary results of experimental measurements show that: (1) A very thin layer (approximately 0.4 mm) of the boundary layer seems to be accelerated; (2) the static pressure of the outer flow does not remain exactly constant through the boundary layer; and (3) an oncoming boundary layer which is already turbulent at the suction point can again become laminar behind this point without being completely sucked off.

  7. Genetic determinants of lipid traits in diverse populations from the population architecture using genomics and epidemiology (PAGE) study.

    PubMed

    Dumitrescu, Logan; Carty, Cara L; Taylor, Kira; Schumacher, Fredrick R; Hindorff, Lucia A; Ambite, José L; Anderson, Garnet; Best, Lyle G; Brown-Gentry, Kristin; Bůžková, Petra; Carlson, Christopher S; Cochran, Barbara; Cole, Shelley A; Devereux, Richard B; Duggan, Dave; Eaton, Charles B; Fornage, Myriam; Franceschini, Nora; Haessler, Jeff; Howard, Barbara V; Johnson, Karen C; Laston, Sandra; Kolonel, Laurence N; Lee, Elisa T; MacCluer, Jean W; Manolio, Teri A; Pendergrass, Sarah A; Quibrera, Miguel; Shohet, Ralph V; Wilkens, Lynne R; Haiman, Christopher A; Le Marchand, Loïc; Buyske, Steven; Kooperberg, Charles; North, Kari E; Crawford, Dana C

    2011-06-01

    For the past five years, genome-wide association studies (GWAS) have identified hundreds of common variants associated with human diseases and traits, including high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), and triglyceride (TG) levels. Approximately 95 loci associated with lipid levels have been identified primarily among populations of European ancestry. The Population Architecture using Genomics and Epidemiology (PAGE) study was established in 2008 to characterize GWAS-identified variants in diverse population-based studies. We genotyped 49 GWAS-identified SNPs associated with one or more lipid traits in at least two PAGE studies and across six racial/ethnic groups. We performed a meta-analysis testing for SNP associations with fasting HDL-C, LDL-C, and ln(TG) levels in self-identified European American (~20,000), African American (~9,000), American Indian (~6,000), Mexican American/Hispanic (~2,500), Japanese/East Asian (~690), and Pacific Islander/Native Hawaiian (~175) adults, regardless of lipid-lowering medication use. We replicated 55 of 60 (92%) SNP associations tested in European Americans at p<0.05. Despite sufficient power, we were unable to replicate ABCA1 rs4149268 and rs1883025, CETP rs1864163, and TTC39B rs471364 previously associated with HDL-C and MAFB rs6102059 previously associated with LDL-C. Based on significance (p<0.05) and consistent direction of effect, a majority of replicated genotype-phentoype associations for HDL-C, LDL-C, and ln(TG) in European Americans generalized to African Americans (48%, 61%, and 57%), American Indians (45%, 64%, and 77%), and Mexican Americans/Hispanics (57%, 56%, and 86%). Overall, 16 associations generalized across all three populations. For the associations that did not generalize, differences in effect sizes, allele frequencies, and linkage disequilibrium offer clues to the next generation of association studies for these traits.

  8. Porphyrin Depth in Lipid Bilayers as Determined by Iodide and Parallax Fluorescence Quenching Methods and Its Effect on Photosensitizing Efficiency

    PubMed Central

    Bronshtein, Irena; Afri, Michal; Weitman, Hana; Frimer, Aryeh A.; Smith, Kevin M.; Ehrenberg, Benjamin

    2004-01-01

    Photosensitization by porphyrins and other tetrapyrrole chromophores is used in biology and medicine to kill cells. This light-triggered generation of singlet oxygen is used to eradicate cancer cells in a process dubbed “photodynamic therapy,” or PDT. Most photosensitizers are of amphiphilic character and they partition into cellular lipid membranes. The photodamage that they inflict to the host cell is mainly localized in membrane proteins. This photosensitized damage must occur in competition with the rapid diffusion of singlet oxygen through the lipid phase and its escape into the aqueous phase. In this article we show that the extent of damage can be modulated by employing modified hemato- and protoporphyrins, which have alkyl spacers of varying lengths between the tetrapyrrole ring and the carboxylate groups that are anchored at the lipid/water interface. The chromophore part of the molecule, and the point of generation of singlet oxygen, is thus located at a deeper position in the bilayer. The photosensitization efficiency was measured with 9,10-dimethylanthracene, a fluorescent chemical target for singlet oxygen. The vertical insertion of the sensitizers was assessed by two fluorescence-quenching techniques: by iodide ions that come from the aqueous phase; and by spin-probe-labeled phospholipids, that are incorporated into the bilayer, using the parallax method. These methods also show that temperature has a small effect on the depth when the membrane is in the liquid phase. However, when the bilayer undergoes a phase transition to the solid gel phase, the porphyrins are extruded toward the water interface as the temperature is lowered. These results, together with a previous publication in this journal, represent a unique and precedental case where the vertical location of a small molecule in a membrane has an effect on its membranal activity. PMID:15298918

  9. Genetic Determinants of Long-Term Changes in Blood Lipid Concentrations: 10-Year Follow-Up of the GLACIER Study

    PubMed Central

    Varga, Tibor V.; Sonestedt, Emily; Shungin, Dmitry; Koivula, Robert W.; Hallmans, Göran; Escher, Stefan A.; Barroso, Inês; Nilsson, Peter; Melander, Olle; Orho-Melander, Marju; Renström, Frida; Franks, Paul W.

    2014-01-01

    Recent genome-wide meta-analyses identified 157 loci associated with cross-sectional lipid traits. Here we tested whether these loci associate (singly and in trait-specific genetic risk scores [GRS]) with longitudinal changes in total cholesterol (TC) and triglyceride (TG) levels in a population-based prospective cohort from Northern Sweden (the GLACIER Study). We sought replication in a southern Swedish cohort (the MDC Study; N = 2,943). GLACIER Study participants (N = 6,064) were genotyped with the MetaboChip array. Up to 3,495 participants had 10-yr follow-up data available in the GLACIER Study. The TC- and TG-specific GRSs were strongly associated with change in lipid levels (β = 0.02 mmol/l per effect allele per decade follow-up, P = 2.0×10−11 for TC; β = 0.02 mmol/l per effect allele per decade follow-up, P = 5.0×10−5 for TG). In individual SNP analysis, one TC locus, apolipoprotein E (APOE) rs4420638 (β = 0.12 mmol/l per effect allele per decade follow-up, P = 2.0×10−5), and two TG loci, tribbles pseudokinase 1 (TRIB1) rs2954029 (β = 0.09 mmol/l per effect allele per decade follow-up, P = 5.1×10−4) and apolipoprotein A-I (APOA1) rs6589564 (β = 0.31 mmol/l per effect allele per decade follow-up, P = 1.4×10−8), remained significantly associated with longitudinal changes for the respective traits after correction for multiple testing. An additional 12 loci were nominally associated with TC or TG changes. In replication analyses, the APOE rs4420638, TRIB1 rs2954029, and APOA1 rs6589564 associations were confirmed (P≤0.001). In summary, trait-specific GRSs are robustly associated with 10-yr changes in lipid levels and three individual SNPs were strongly associated with 10-yr changes in lipid levels. PMID:24922540

  10. Genetic determinants of long-term changes in blood lipid concentrations: 10-year follow-up of the GLACIER study.

    PubMed

    Varga, Tibor V; Sonestedt, Emily; Shungin, Dmitry; Koivula, Robert W; Hallmans, Göran; Escher, Stefan A; Barroso, Inês; Nilsson, Peter; Melander, Olle; Orho-Melander, Marju; Renström, Frida; Franks, Paul W

    2014-06-01

    Recent genome-wide meta-analyses identified 157 loci associated with cross-sectional lipid traits. Here we tested whether these loci associate (singly and in trait-specific genetic risk scores [GRS]) with longitudinal changes in total cholesterol (TC) and triglyceride (TG) levels in a population-based prospective cohort from Northern Sweden (the GLACIER Study). We sought replication in a southern Swedish cohort (the MDC Study; N = 2,943). GLACIER Study participants (N = 6,064) were genotyped with the MetaboChip array. Up to 3,495 participants had 10-yr follow-up data available in the GLACIER Study. The TC- and TG-specific GRSs were strongly associated with change in lipid levels (β = 0.02 mmol/l per effect allele per decade follow-up, P = 2.0 × 10(-11) for TC; β = 0.02 mmol/l per effect allele per decade follow-up, P = 5.0 × 10(-5) for TG). In individual SNP analysis, one TC locus, apolipoprotein E (APOE) rs4420638 (β = 0.12 mmol/l per effect allele per decade follow-up, P = 2.0 × 10(-5)), and two TG loci, tribbles pseudokinase 1 (TRIB1) rs2954029 (β = 0.09 mmol/l per effect allele per decade follow-up, P = 5.1 × 10(-4)) and apolipoprotein A-I (APOA1) rs6589564 (β = 0.31 mmol/l per effect allele per decade follow-up, P = 1.4 × 10(-8)), remained significantly associated with longitudinal changes for the respective traits after correction for multiple testing. An additional 12 loci were nominally associated with TC or TG changes. In replication analyses, the APOE rs4420638, TRIB1 rs2954029, and APOA1 rs6589564 associations were confirmed (P ≤ 0.001). In summary, trait-specific GRSs are robustly associated with 10-yr changes in lipid levels and three individual SNPs were strongly associated with 10-yr changes in lipid levels.

  11. Membrane location of apocytochrome c and cytochrome c determined from lipid-protein spin exchange interactions by continuous wave saturation electron spin resonance.

    PubMed Central

    Snel, M M; Marsh, D

    1994-01-01

    Apocytochrome c derived from horse heart cytochrome c was spin-labeled on the cysteine residue at position 14 or 17 in the N-terminal region of the primary sequence, and cytochrome c from yeast was spin-labeled on the single cysteine residue at sequence position 102 in the C-terminal region. The spin-labeled apocytochrome c and cytochrome c were bound to fluid bilayers composed of different negatively charged phospholipids that also contained phospholipid probes that were spin-labeled either in the headgroup or at different positions in the sn-2 acyl chain. The location of the spin-labeled cysteine residues on the lipid-bound proteins was determined relative to the spin-label positions in the different spin-labeled phospholipids by the influence of spin-spin interactions on the microwave saturation properties of the spin-label electron spin resonance spectra. The enhanced spin relaxation observed in the doubly labeled systems arises from Heisenberg spin exchange, which is determined by the accessibility of the spin-label group on the protein to that on the lipid. It is found that the labeled cysteine groups in horse heart apocytochrome c are located closest to the 14-C atom of the lipid acyl chain when the protein is bound to dimyristoyl- or dioleoyl-phosphatidylglycerol, and to that of the 5-C atom when the protein is bound to a dimyristoylphosphatidylglycerol/dimyristoylphosphatidylcholine (15:85 mol/mol mixture. On binding to dioleoylphosphatidylglycerol, the labeled cysteine residue in yeast cytochrome c is located closest to the phospholipid headgroups but possibly between the polar group region and the 5-C atom of the acyl chains. These data determine the extent to which the different regions of the proteins are able to penetrate negatively charged phospholipid bilayers. Images FIGURE 1 PMID:7948687

  12. Model-based Approaches for the Determination of Lipid Bilayer Structure from Small-Angle Neutron and X-ray Scattering Data

    SciTech Connect

    Heberle, Frederick A; Pan, Jianjun; Standaert, Robert F; Drazba, Paul; Kucerka, Norbert; Katsaras, John

    2012-01-01

    Some of our recent work has resulted in the detailed structures of fully hydrated, fluid phase phosphatidylcholine (PC) and phosphatidylglycerol (PG) bilayers. These structures were obtained from the joint refinement of small-angle neutron and X-ray data using the scattering density profile (SDP) models developed by Ku erka et al. (Ku erka et al. 2012; Ku erka et al. 2008). In this review, we first discuss models for the standalone analysis of neutron or X-ray scattering data from bilayers, and assess the strengths and weaknesses inherent in these models. In particular, it is recognized that standalone data do not contain enough information to fully resolve the structure of inherently disordered fluid bilayers, and therefore may not provide a robust determination of bilayer structural parameters, including the much sought after area per lipid. We then discuss the development of matter density-based models (including the SDP model) that allow for the joint refinement of different contrast neutron and X-ray data sets, as well as the implementation of local volume conservation in the unit cell (i.e., ideal packing). Such models provide natural definitions of bilayer thicknesses (most importantly the hydrophobic and Luzzati thicknesses) in terms of Gibbs dividing surfaces, and thus allow for the robust determination of lipid areas through equivalent slab relationships between bilayer thickness and lipid volume. In the final section of this review, we discuss some of the significant findings/features pertaining to structures of PC and PG bilayers as determined from SDP model analyses.

  13. Multilayer Films Electrodes Consisted of Cashew Gum and Polyaniline Assembled by the Layer-by-Layer Technique: Electrochemical Characterization and Its Use for Dopamine Determination.

    PubMed

    Barros, Sergio Bitencourt Araújo; Leite, Cleide Maria da Silva; de Brito, Ana Cristina Facundo; Dos Santos Júnior, José Ribeiro; Zucolotto, Valtencir; Eiras, Carla

    2012-01-01

    We take advantage of polyelectrolyte feature exhibited by natural cashew gum (Anacardium occidentale L.) (CG), found in northeast Brazil, to employ it in the formation of electroactive nanocomposites prepared by layer-by-layer (LbL) technique. We used polyaniline unmodified (PANI) or modified with phosphonic acid (PA), PANI-PA as cationic polyelectrolyte. On the other hand, the CG or polyvinyl sulfonic (PVS) acids were used as anionic polyelectrolytes. The films were prepared with PANI or PANI-PA intercalated with CG or with PVS alternately resulting in four films with different sequences: PANI/CG PANI-PA/CG, PANI/PVS and PANI-PA/PVS, respectively. Analysis by cyclic voltammetry (CV) of the films showed that the presence of gum increases the stability of the films in acidic medium. The performance of the modified electrode of PANI-PA/CG was evaluated in electro analytical determination of dopamine (DA). The tests showed great sensitivity of the film for this analyte that was detected at 10(-5) mol L(-1).

  14. Multilayer Films Electrodes Consisted of Cashew Gum and Polyaniline Assembled by the Layer-by-Layer Technique: Electrochemical Characterization and Its Use for Dopamine Determination

    PubMed Central

    Barros, Sergio Bitencourt Araújo; Leite, Cleide Maria da Silva; de Brito, Ana Cristina Facundo; Dos Santos Júnior, José Ribeiro; Zucolotto, Valtencir; Eiras, Carla

    2012-01-01

    We take advantage of polyelectrolyte feature exhibited by natural cashew gum (Anacardium occidentale L.) (CG), found in northeast Brazil, to employ it in the formation of electroactive nanocomposites prepared by layer-by-layer (LbL) technique. We used polyaniline unmodified (PANI) or modified with phosphonic acid (PA), PANI-PA as cationic polyelectrolyte. On the other hand, the CG or polyvinyl sulfonic (PVS) acids were used as anionic polyelectrolytes. The films were prepared with PANI or PANI-PA intercalated with CG or with PVS alternately resulting in four films with different sequences: PANI/CG PANI-PA/CG, PANI/PVS and PANI-PA/PVS, respectively. Analysis by cyclic voltammetry (CV) of the films showed that the presence of gum increases the stability of the films in acidic medium. The performance of the modified electrode of PANI-PA/CG was evaluated in electro analytical determination of dopamine (DA). The tests showed great sensitivity of the film for this analyte that was detected at 10−5 mol L−1. PMID:22505924

  15. Structural and mechanical properties of cardiolipin lipid bilayers determined using neutron spin echo, small angle neutron and X-ray scattering, and molecular dynamics simulations

    DOE PAGES

    Pan, Jianjun; Cheng, Xiaolin; Sharp, Melissa; ...

    2014-10-29

    We report that the detailed structural and mechanical properties of a tetraoleoyl cardiolipin (TOCL) bilayer were determined using neutron spin echo (NSE) spectroscopy, small angle neutron and X-ray scattering (SANS and SAXS, respectively), and molecular dynamics (MD) simulations. We used MD simulations to develop a scattering density profile (SDP) model, which was then utilized to jointly refine SANS and SAXS data. In addition to commonly reported lipid bilayer structural parameters, component distributions were obtained, including the volume probability, electron density and neutron scattering length density.

  16. Determining the Scattering Properties of Vertically-Structured Nepheloid Layers from the Fusion of Active and Passive Optical Sensors

    DTIC Science & Technology

    2016-06-07

    Determining the Scattering Properties of Vertically- Structured Nepheloid Layers from the Fusion of Active and Passive Optical Sensors Curtis D...and water-column inherent optical properties including, if possible, the retrieval of the vertical structure of water-column and benthic- boundary...kilometers a day, possibly providing estimates of the vertical structure of IOPs, as well as bathymetry and bottom classification, with concomitant

  17. Determinants of carbon release from the active layer and permafrost deposits on the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Chen, Leiyi; Liang, Junyi; Qin, Shuqi; Liu, Li; Fang, Kai; Xu, Yunping; Ding, Jinzhi; Li, Fei; Luo, Yiqi; Yang, Yuanhe

    2016-10-01

    The sign and magnitude of permafrost carbon (C)-climate feedback are highly uncertain due to the limited understanding of the decomposability of thawing permafrost and relevant mechanistic controls over C release. Here, by combining aerobic incubation with biomarker analysis and a three-pool model, we reveal that C quality (represented by a higher amount of fast cycling C but a lower amount of recalcitrant C compounds) and normalized CO2-C release in permafrost deposits were similar or even higher than those in the active layer, demonstrating a high vulnerability of C in Tibetan upland permafrost. We also illustrate that C quality exerts the most control over CO2-C release from the active layer, whereas soil microbial abundance is more directly associated with CO2-C release after permafrost thaw. Taken together, our findings highlight the importance of incorporating microbial properties into Earth System Models when predicting permafrost C dynamics under a changing environment.

  18. Experimental determination of layer cloud edge charging from cosmic ray ionisation

    NASA Astrophysics Data System (ADS)

    Nicoll, K. A.; Harrison, R. G.

    2010-07-01

    The cloud-air transition zone at stratiform cloud edges is an electrically active region where droplet charging has been predicted. Cloud edge droplet charging is expected from vertical flow of cosmic ray generated atmospheric ions in the global electric circuit. Experimental confirmation of stratiform cloud edge electrification is presented here, through charge and droplet measurements made within an extensive layer of supercooled stratiform cloud, using a specially designed electrostatic sensor. Negative space charge up to 35 pC m-3 was found in a thin (<100 m) layer at the lower cloud boundary associated with the clear air-cloud conductivity gradient, agreeing closely with space charge predicted from the measured droplet concentration using ion-aerosol theory. Such charge levels carried by droplets are sufficient to influence collision processes between cloud droplets.

  19. Determinants of carbon release from the active layer and permafrost deposits on the Tibetan Plateau.

    PubMed

    Chen, Leiyi; Liang, Junyi; Qin, Shuqi; Liu, Li; Fang, Kai; Xu, Yunping; Ding, Jinzhi; Li, Fei; Luo, Yiqi; Yang, Yuanhe

    2016-10-05

    The sign and magnitude of permafrost carbon (C)-climate feedback are highly uncertain due to the limited understanding of the decomposability of thawing permafrost and relevant mechanistic controls over C release. Here, by combining aerobic incubation with biomarker analysis and a three-pool model, we reveal that C quality (represented by a higher amount of fast cycling C but a lower amount of recalcitrant C compounds) and normalized CO2-C release in permafrost deposits were similar or even higher than those in the active layer, demonstrating a high vulnerability of C in Tibetan upland permafrost. We also illustrate that C quality exerts the most control over CO2-C release from the active layer, whereas soil microbial abundance is more directly associated with CO2-C release after permafrost thaw. Taken together, our findings highlight the importance of incorporating microbial properties into Earth System Models when predicting permafrost C dynamics under a changing environment.

  20. Nonlinear physical segmentation algorithm for determining the layer boundary from lidar signal.

    PubMed

    Mao, Feiyue; Li, Jun; Li, Chen; Gong, Wei; Min, Qilong; Wang, Wei

    2015-11-30

    Layer boundary (base and top) detection is a basic problem in lidar data processing, the results of which are used as inputs of optical properties retrieval. However, traditional algorithms not only require manual intervention but also rely heavily on the signal-to-noise ratio. Therefore, we propose a robust and automatic algorithm for layer detection based on a novel algorithm for lidar signal segmentation and representation. Our algorithm is based on the lidar equation and avoids most of the limitations of the traditional algorithms. Testing of the simulated and real signals shows that the algorithm is able to position the base and top accurately even with a low signal to noise ratio. Furthermore, the results of the classification are accurate and satisfactory. The experimental results confirm that our algorithm can be used for automatic detection, retrieval, and analysis of lidar data sets.

  1. Using dissolved oxygen concentrations to determine mixed layer depths in the Bellingshausen Sea

    NASA Astrophysics Data System (ADS)

    Castro-Morales, K.; Kaiser, J.

    2012-01-01

    Concentrations of oxygen (O2) and other dissolved gases in the oceanic mixed layer are often used to calculate air-sea gas exchange fluxes. The mixed layer depth (zmix) may be defined using criteria based on temperature or density differences to a reference depth near the ocean surface. However, temperature criteria fail in regions with strong haloclines such as the Southern Ocean where heat, freshwater and momentum fluxes interact to establish mixed layers. Moreover, the time scales of air-sea exchange differ for gases and heat, so that zmix defined using oxygen may be different than zmix defined using temperature or density. Here, we propose to define an O2-based mixed layer depth, zmix(O2), as the depth where the relative difference between the O2 concentration and a reference value at a depth equivalent to 10 dbar equals 0.5 %. This definition was established by analysis of O2 profiles from the Bellingshausen Sea (west of the Antarctic Peninsula) and corroborated by visual inspection. Comparisons of zmix(O2) with zmix based on potential temperature differences, i.e., zmix(0.2 °C) and zmix(0.5 °C), and potential density differences, i.e., zmix(0.03 kg m-3) and zmix(0.125 kg m-3), showed that zmix(O2) closely follows zmix(0.03 kg m-3). Further comparisons with published zmix climatologies and zmix derived from World Ocean Atlas 2005 data were also performed. To establish zmix for use with biological production estimates in the absence of O2 profiles, we suggest using zmix(0.03 kg m-3), which is also the basis for the climatology by de Boyer Montégut et al. (2004).

  2. Further results determining permeability and thickness for a multi-layer five spot tracer test

    SciTech Connect

    Brown, S.L.; Brigham, W.E.

    1981-02-01

    This report presents further results obtained using a computer algorithm developed by Dexter Yuen, which gives an indication of the heterogeneity among the layers of a reservoir. Yuen, Brigham and Cinco-Ley presented a match obtained by this program with field data reported by Brigham and Smith. To find a more accurate fit for these data, the program was modified to allow the selection of up to ten peaks. Results of this more detailed analysis are presented.

  3. Introduction to membrane lipids.

    PubMed

    Epand, Richard M

    2015-01-01

    Biological membranes are composed largely of lipids and proteins. The most common arrangement of lipids in biological membranes is as a bilayer. This arrangement spontaneously forms a barrier for the passage of polar materials. The bilayer is thin but can have a large area in the dimension perpendicular to its thickness. The physical nature of the bilayer membrane will vary according to the conditions of the environment as well as the chemical structure of the lipid constituents of the bilayer. These physical properties determine the function of the membrane together with specific structural features of the lipids that allow them to have signaling properties. The lipids of the membrane are not uniformly distributed. There is an intrinsic asymmetry between the two monolayers that constitute the bilayer. In addition, some lipids tend to be enriched in particular regions of the membrane, termed domains. There is evidence that certain domains recruit specific proteins into that domain. This has been suggested to be important for allowing interaction among different proteins involved in certain signal transduction pathways. Membrane lipids have important roles in determining the physical properties of the membrane, in modulating the activity of membrane-bound proteins and in certain cases being specific secondary messengers that can interact with specific proteins. A large variety of lipids present in biological membranes result in them possessing many functions.

  4. Surface free energy and wettability of silyl layers on silicon determined from contact angle hysteresis.

    PubMed

    Chibowski, Emil J

    2005-05-30

    Using the literature data of the advancing and receding contact angles for water, diiodomethane and hexadecane measured on various hydrophobic silyl layers (mostly monolayers) produced on silicon wafers the apparent surface free energies gamma(s)(tot) were calculated by applying new model of the contact angle hysteresis interpretation. It was found that, for the same silyl layer, the calculated gamma(s)(tot) values to some degree depended on the probe liquid used. Therefore, thus calculated the surface free energies should be considered as apparent ones. Moreover, also the values of the dispersion component gamma(s)(d) of these layers depend on the probe liquid used, but to a less degree. This must be due to the strength of the force field originating from the probe liquid and the spacing between the interacting molecules. The relationships between gamma(s)(tot) and gamma(s)(d) are discussed on the basis of the equations derived. It may be postulated that applying proposed model of the contact angle hysteresis and calculating the apparent total surface free energies and the dispersion contributions better insight into wetting properties of the silyled silicon surface can be achieved.

  5. Use of electrochemical impedance spectroscopy to determine double-layer capacitance in doped nonpolar liquids.

    PubMed

    Yezer, Benjamin A; Khair, Aditya S; Sides, Paul J; Prieve, Dennis C

    2015-07-01

    Electrochemical impedance spectroscopy in a thin cell (10 μm) was used to infer conductivity, permittivity and the differential double-layer capacitance of solutions of dodecane doped with OLOA 11000 [poly(isobutylene) succinimide] for concentrations of dopant between 0.1% and 10% by weight. All spectra (frequencies between 1 Hz and 100 kHz) were well fit by an equivalent circuit having four elements including a constant-phase element representing the double-layer capacitance. Using Gouy-Chapman theory for small zeta potentials and assuming univalent charge carriers, the double-layer capacitances were converted into charge carrier concentration which was found to be directly proportional to the weight percent of dopant with a 1 wt% solution having 87 carriers/μm(3) (the concentration of either positive or negative charges). This is only 17 ppm of the total monomer concentration calculated from the average molecule weight of the dopant. Dividing the measured conductivities by the charge carrier concentration, we inferred the mobility and hydrodynamic diameters for the charged micelles. The hydrodynamic diameters of carriers were significantly larger than the average diameter of all micelles measured independently by dynamic light scattering. This suggests that only large micelles become charged.

  6. Comparison of the Mixing Layer Height determined by ceilometer and Optical Particle Counter and simulated by MM5 model

    NASA Astrophysics Data System (ADS)

    Angelini, F.; Barnaba, F.; Bolzacchini, E.; Caporaso, L.; Curci, G.; Ferrero, L.; Ferretti, R.; Gobbi, G. P.; Landi, T. C.; Stocchi, P.

    2009-09-01

    The atmospheric aerosol is often used as a proxy for the determination of the Mixing Layer Height (MLH). The ceilometer, measuring the aerosol backscattering cross section, is a powerful instrument for determining the MLH, thanks to its high spatial-temporal resolution and the possibility of continuous unattended operation. An automated algorithm for MLH determination has been developed and tested under different conditions. MLH retrieval through the analysis of the aerosol numerical concentration is possible by Balloon Borne Optical Particle Counter (BBOPC) installed aboard a tethered balloon. During summer 2007 and winter 2008, ceilometer and BBOPC data were collected in the Milan urban area (Milano Bicocca), within the framework of the Quitsat project (www.quitsat.it). Observations are compared with the planetary boundary layer height as predicted by the PSU/NCAR mesoscale model (MM5, v3 r3-6) with four-dimensional data assimilation (FDDA), using two different schemes for the boundary layer parameterization: the Gayno-Seaman (GS) and non-local Medium Range Forecast (MRF).

  7. TRPV1 structures in nanodiscs reveal mechanisms of ligand and lipid action.

    PubMed

    Gao, Yuan; Cao, Erhu; Julius, David; Cheng, Yifan

    2016-06-16

    When integral membrane proteins are visualized in detergents or other artificial systems, an important layer of information is lost regarding lipid interactions and their effects on protein structure. This is especially relevant to proteins for which lipids have both structural and regulatory roles. Here we demonstrate the power of combining electron cryo-microscopy with lipid nanodisc technology to ascertain the structure of the rat TRPV1 ion channel in a native bilayer environment. Using this approach, we determined the locations of annular and regulatory lipids and showed that specific phospholipid interactions enhance binding of a spider toxin to TRPV1 through formation of a tripartite complex. Furthermore, phosphatidylinositol lipids occupy the binding site for capsaicin and other vanilloid ligands, suggesting a mechanism whereby chemical or thermal stimuli elicit channel activation by promoting the release of bioactive lipids from a critical allosteric regulatory site.

  8. TRPV1 structures in nanodiscs reveal mechanisms of ligand and lipid action

    PubMed Central

    Gao, Yuan; Cao, Erhu; Julius, David; Cheng, Yifan

    2016-01-01

    When integral membrane proteins are visualized in detergents or other artificial systems, an important layer of information is lost regarding lipid interactions and their effects on protein structure. This is especially relevant to proteins for which lipids play both structural and regulatory roles. Here, we demonstrate the power of combining electron cryo-microscopy with lipid nanodisc technology to ascertain the structure of the TRPV1 ion channel in a native bilayer environment. Using this approach, we determined the locations of annular and regulatory lipids and showed that specific phospholipid interactions enhance binding of a spider toxin to TRPV1 through formation of a tripartite complex. Furthermore, phosphatidylinositol lipids occupy the binding site for capsaicin and other vanilloid ligands, suggesting a mechanism whereby chemical or thermal stimuli elicit channel activation by promoting release of bioactive lipids from a critical allosteric regulatory site. PMID:27281200

  9. A bulk similarity approach in the atmospheric boundary layer using radiometric skin temperature to determine regional surface fluxes

    NASA Technical Reports Server (NTRS)

    Brutsaert, Wilfried; Sugita, Michiaki

    1991-01-01

    Profiles of wind velocity and temperature in the outer region of the atmospheric boundary layer (ABL) were used together with surface temperature measurements, to determine regional shear stress and sensible heat flux by means of transfer parameterizations on the basis of bulk similarity. The profiles were measured by means of radiosondes and the surface temperatures by infrared radiation thermometry over hilly prairie terrain in northeastern Kansas during the First ISLSCP Field Experiment (FIFE). In the analysis, the needed similarity functions were determined and tested.

  10. Harvesting and cryo-cooling crystals of membrane proteins grown in lipidic mesophases for structure determination by macromolecular crystallography.

    PubMed

    Li, Dianfan; Boland, Coilín; Aragao, David; Walsh, Kilian; Caffrey, Martin

    2012-09-02

    An important route to understanding how proteins function at a mechanistic level is to have the structure of the target protein available, ideally at atomic resolution. Presently, there is only one way to capture such information as applied to integral membrane proteins (Figure 1), and the complexes they form, and that method is macromolecular X-ray crystallography (MX). To do MX diffraction quality crystals are needed which, in the case of membrane proteins, do not form readily. A method for crystallizing membrane proteins that involves the use of lipidic mesophases, specifically the cubic and sponge phases(1-5), has gained considerable attention of late due to the successes it has had in the G protein-coupled receptor field(6-21) (www.mpdb.tcd.ie). However, the method, henceforth referred to as the in meso or lipidic cubic phase method, comes with its own technical challenges. These arise, in part, due to the generally viscous and sticky nature of the lipidic mesophase in which the crystals, which are often micro-crystals, grow. Manipulating crystals becomes difficult as a result and particularly so during harvesting(22,23). Problems arise too at the step that precedes harvesting which requires that the glass sandwich plates in which the crystals grow (Figure 2)(24,25) are opened to expose the mesophase bolus, and the crystals therein, for harvesting, cryo-cooling and eventual X-ray diffraction data collection. The cubic and sponge mesophase variants (Figure 3) from which crystals must be harvested have profoundly different rheologies(4,26). The cubic phase is viscous and sticky akin to a thick toothpaste. By contrast, the sponge phase is more fluid with a distinct tendency to flow. Accordingly, different approaches for opening crystallization wells containing crystals growing in the cubic and the sponge phase are called for as indeed different methods are required for harvesting crystals from the two mesophase types. Protocols for doing just that have been

  11. Genetic Determinants of Lipid Traits in Diverse Populations from the Population Architecture using Genomics and Epidemiology (PAGE) Study

    PubMed Central

    Dumitrescu, Logan; Carty, Cara L.; Taylor, Kira; Schumacher, Fredrick R.; Hindorff, Lucia A.; Ambite, José L.; Anderson, Garnet; Best, Lyle G.; Brown-Gentry, Kristin; Bůžková, Petra; Carlson, Christopher S.; Cochran, Barbara; Cole, Shelley A.; Devereux, Richard B.; Duggan, Dave; Eaton, Charles B.; Fornage, Myriam; Franceschini, Nora; Haessler, Jeff; Howard, Barbara V.; Johnson, Karen C.; Laston, Sandra; Kolonel, Laurence N.; Lee, Elisa T.; MacCluer, Jean W.; Manolio, Teri A.; Pendergrass, Sarah A.; Quibrera, Miguel; Shohet, Ralph V.; Wilkens, Lynne R.; Haiman, Christopher A.; Le Marchand, Loïc; Buyske, Steven; Kooperberg, Charles; North, Kari E.; Crawford, Dana C.

    2011-01-01

    For the past five years, genome-wide association studies (GWAS) have identified hundreds of common variants associated with human diseases and traits, including high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), and triglyceride (TG) levels. Approximately 95 loci associated with lipid levels have been identified primarily among populations of European ancestry. The Population Architecture using Genomics and Epidemiology (PAGE) study was established in 2008 to characterize GWAS–identified variants in diverse population-based studies. We genotyped 49 GWAS–identified SNPs associated with one or more lipid traits in at least two PAGE studies and across six racial/ethnic groups. We performed a meta-analysis testing for SNP associations with fasting HDL-C, LDL-C, and ln(TG) levels in self-identified European American (∼20,000), African American (∼9,000), American Indian (∼6,000), Mexican American/Hispanic (∼2,500), Japanese/East Asian (∼690), and Pacific Islander/Native Hawaiian (∼175) adults, regardless of lipid-lowering medication use. We replicated 55 of 60 (92%) SNP associations tested in European Americans at p<0.05. Despite sufficient power, we were unable to replicate ABCA1 rs4149268 and rs1883025, CETP rs1864163, and TTC39B rs471364 previously associated with HDL-C and MAFB rs6102059 previously associated with LDL-C. Based on significance (p<0.05) and consistent direction of effect, a majority of replicated genotype-phentoype associations for HDL-C, LDL-C, and ln(TG) in European Americans generalized to African Americans (48%, 61%, and 57%), American Indians (45%, 64%, and 77%), and Mexican Americans/Hispanics (57%, 56%, and 86%). Overall, 16 associations generalized across all three populations. For the associations that did not generalize, differences in effect sizes, allele frequencies, and linkage disequilibrium offer clues to the next generation of association studies for these traits. PMID:21738485

  12. The role of oxidoreductases in determining the function of the neisserial lipid A phosphoethanolamine transferase required for resistance to polymyxin.

    PubMed

    Piek, Susannah; Wang, Zhirui; Ganguly, Jhuma; Lakey, Adam M; Bartley, Stephanie N; Mowlaboccus, Shakeel; Anandan, Anandhi; Stubbs, Keith A; Scanlon, Martin J; Vrielink, Alice; Azadi, Parastoo; Carlson, Russell W; Kahler, Charlene M

    2014-01-01

    The decoration of the lipid A headgroups of the lipooligosaccharide (LOS) by the LOS phosphoethanolamine (PEA) transferase (LptA) in Neisseria spp. is central for resistance to polymyxin. The structure of the globular domain of LptA shows that the protein has five disulphide bonds, indicating that it is a potential substrate of the protein oxidation pathway in the bacterial periplasm. When neisserial LptA was expressed in Escherichia coli in the presence of the oxidoreductase, EcDsbA, polymyxin resistance increased 30-fold. LptA decorated one position of the E. coli lipid A headgroups with PEA. In the absence of the EcDsbA, LptA was degraded in E. coli. Neisseria spp. express three oxidoreductases, DsbA1, DsbA2 and DsbA3, each of which appear to donate disulphide bonds to different targets. Inactivation of each oxidoreductase in N. meningitidis enhanced sensitivity to polymyxin with combinatorial mutants displaying an additive increase in sensitivity to polymyxin, indicating that the oxidoreductases were required for multiple pathways leading to polymyxin resistance. Correlates were sought between polymyxin sensitivity, LptA stability or activity and the presence of each of the neisserial oxidoreductases. Only meningococcal mutants lacking DsbA3 had a measurable decrease in the amount of PEA decoration on lipid A headgroups implying that LptA stability was supported by the presence of DsbA3 but did not require DsbA1/2 even though these oxidoreductases could oxidise the protein. This is the first indication that DsbA3 acts as an oxidoreductase in vivo and that multiple oxidoreductases may be involved in oxidising the one target in N. meningitidis. In conclusion, LptA is stabilised by disulphide bonds within the protein. This effect was more pronounced when neisserial LptA was expressed in E. coli than in N. meningitidis and may reflect that other factors in the neisserial periplasm have a role in LptA stability.

  13. Buried layer tungsten deposits in porous silicon: Metal penetration depth and film purity determinants

    SciTech Connect

    Blewer, R.S.; Tsao, S.S.; Gutierrez, G.M.

    1987-01-01

    Infiltration of anodically prepared porous silicon with tungsten hexafluoride gas has been investigated as a function of silicon porosity, source gas pressure and carrier gas type and flow rate. The depth of tungsten metallization in the silicon has been shown to depend most sensitively on the WF/sub 6/ partial pressure, and less on the flow rate and carrier gas type. Penetration depths of >30 ..mu..m have been attained. Structural integrity of the tungsten layer is dependent on the porosity of the starting material and the degree of internal oxidation of the porous silicon surface area. 6 refs., 8 figs.

  14. Using dissolved oxygen concentrations to determine mixed layer depths in the Bellingshausen Sea

    NASA Astrophysics Data System (ADS)

    Castro-Morales, K.; Kaiser, J.

    2011-06-01

    Concentrations of oxygen (O2) and other dissolved gases in the oceanic mixed layer are often used to calculate air-sea gas exchange fluxes; for example, in the context of net and gross biological production estimates. The mixed layer depth (zmix) may be defined using criteria based on temperature or density differences to a reference depth near the ocean surface. However, temperature criteria fail in regions with strong haloclines such as the Southern Ocean where heat, freshwater and momentum fluxes interact to establish mixed layers. Moreover, the time scales of air-sea exchange differ for gases and heat, so that zmix defined using O2 may be different to zmix defined using temperature or density. Here, we propose to define an O2-based mixed layer depth, zmix(O2), as the depth where the relative difference between the O2 concentration and a reference value at a depth equivalent to 10 dbar equals 0.5 %. This definition was established by numerical analysis of O2 profiles in coastal areas of the Southern Ocean and corroborated by visual inspection. Comparisons of zmix(O2) with zmix based on potential temperature differences, i.e. zmix(Δθ = 0.2 °C) and zmix(Δθ = 0.5 °C), and potential density differences, i.e. zmix(Δσθ = 0.03 kg m-3) and zmix(Δσθ = 0.125 kg m-3), showed that zmix(O2) closely follows zmix(Δσθ = 0.03 kg m-3). Further comparisons with published zmix climatologies and zmix derived from World Ocean Atlas 2005 data were also performed. To establish zmix for use with biological production estimates in the absence of O2 profiles, we suggest using zmix(Δσθ = 0.03 kg m-3), which is also the basis for the climatology by de Boyer Montégut et al. (2004).

  15. Measurements and determination of the marine coarse aerosol fluxes in near marine boundary layer.

    NASA Astrophysics Data System (ADS)

    Markuszewski, Piotr; Petelski, Tomasz; Zielinski, Tymon; Strzalkowska, Agata; Pakszys, Paulina; Makuch, Przemyslaw; Kowalczyk, Jakub

    2014-05-01

    Studies of production and transport of aerosol over the sea are very important for many areas of knowledge. Marine aerosols emitted from the sea surface help to clean the boundary layer from other aerosol particles. The emitted droplets do not dry out in the highly humid surface layer air and because of their sizes most of them are deposited quickly at the sea surface. Therefore, marine aerosols have many features of rain i.e. the deposition in the marine boundary layer in high wind events is controlled not only by the "dry" processes but also by the "wet" scavenging. During a number of cruises conducted on board of r/v Oceania between 2008 and 2012 we collected much data which were further used to calculate sea salt source function over the Baltic Sea. Measurements were carried out using a gradient method. For this method we used a Laser Particle Counter (PMS model CSASP-100_HV) placed on one of the masts of the boat. Measurements were performed at five different levels above the sea level: 8, 11, 14, 17 and 20 meters. The vertical aerosol concentration gradient was obtained from a minimum of 4 measurement series. Thus each result consists of a 1 hour series with the average sampling time at each elevation equaling to 8 minutes. Based on the averaged vertical concentration, and using the Monin Obukhov theory, profiles of vertical sea spray fluxes in the near water layer were calculated. Using the results from those experiments the sea spray emission fluxes have been calculated for all particles of sizes at ranges from 0.5 μm to 8 μm, as well as for particles of sizes from fifteen channels of 0.5 μm width. Using these fluxes we calculated the Sea Salt Generation Function (SSGF) over the Baltic Sea. This function provides information on the emission of particles of different sizes, depending on environmental parameters. The emission of sea spray depends on the magnitude of energy lost by the wind waves in the process of their collapse. The support for this study

  16. Structure and Dynamics of the Myristoyl Lipid Modification of Src Peptides Determined by 2H Solid-State NMR Spectroscopy

    PubMed Central

    Scheidt, Holger A.; Huster, Daniel

    2009-01-01

    Lipid modifications of proteins are widespread in nature and play an important role in numerous biological processes. The nonreceptor tyrosine kinase Src is equipped with an N-terminal myristoyl chain and a cluster of basic amino acids for the stable membrane association of the protein. We used 2H NMR spectroscopy to investigate the structure and dynamics of the myristoyl chain of myr-Src(2–19), and compare them with the hydrocarbon chains of the surrounding phospholipids in bilayers of varying surface potentials and chain lengths. The myristoyl chain of Src was well inserted in all bilayers investigated. In zwitterionic 1,2-dimyristoyl-sn-glycero-3-phosphocholine membranes, the myristoyl chain of Src was significantly longer and appears “stiffer” than the phospholipid chains. This can be explained by an equilibrium between the attraction attributable to the insertion of the myristoyl chain and the Born repulsion. In a 1,2-dimyristoyl-sn-glycero-3-phosphocholine/1,2-dimyristoyl-sn-glycero-3-[phospho-L-serine] membrane, where attractive electrostatic interactions come into play, the differences between the peptide and the phospholipid chain lengths were attenuated, and the molecular dynamics of all lipid chains were similar. In a much thicker 1,2-dipalmitoyl-sn-glycero-3-phosphocholine/1,2-dipalmitoyl-sn-glycero-3-[phospho-L-serine]/cholesterol membrane, the length of the myristoyl chain of Src was elongated nearly to its maximum, and the order parameters of the Src chain were comparable to those of the surrounding membrane. PMID:19413971

  17. Structure and dynamics of the myristoyl lipid modification of SRC peptides determined by 2H solid-state NMR spectroscopy.

    PubMed

    Scheidt, Holger A; Huster, Daniel

    2009-05-06

    Lipid modifications of proteins are widespread in nature and play an important role in numerous biological processes. The nonreceptor tyrosine kinase Src is equipped with an N-terminal myristoyl chain and a cluster of basic amino acids for the stable membrane association of the protein. We used (2)H NMR spectroscopy to investigate the structure and dynamics of the myristoyl chain of myr-Src(2-19), and compare them with the hydrocarbon chains of the surrounding phospholipids in bilayers of varying surface potentials and chain lengths. The myristoyl chain of Src was well inserted in all bilayers investigated. In zwitterionic 1,2-dimyristoyl-sn-glycero-3-phosphocholine membranes, the myristoyl chain of Src was significantly longer and appears "stiffer" than the phospholipid chains. This can be explained by an equilibrium between the attraction attributable to the insertion of the myristoyl chain and the Born repulsion. In a 1,2-dimyristoyl-sn-glycero-3-phosphocholine/1,2-dimyristoyl-sn-glycero-3-[phospho-L-serine] membrane, where attractive electrostatic interactions come into play, the differences between the peptide and the phospholipid chain lengths were attenuated, and the molecular dynamics of all lipid chains were similar. In a much thicker 1,2-dipalmitoyl-sn-glycero-3-phosphocholine/1,2-dipalmitoyl-sn-glycero-3-[phospho-L-serine]/cholesterol membrane, the length of the myristoyl chain of Src was elongated nearly to its maximum, and the order parameters of the Src chain were comparable to those of the surrounding membrane.

  18. Determination of anesthetic molecule environments by infrared spectroscopy. II. Multiple sites for nitrous oxide in proteins, lipids, and brain tissue.

    PubMed

    Hazzard, J H; Gorga, J C; Caughey, W S

    1985-08-01

    The presence of molecules of the general anesthetic nitrous oxide (N2O) in oils, esters, proteins, red cells, cream, lipid vesicles, and brain tissue upon exposure to the gas was observed by infrared spectroscopy. Analysis of the N-N-O antisymmetric stretch band reveals a distribution of N2O molecules among several sites of differing polarity in these solutions and tissues. The sensitivity of the band intensity and frequency to the number and strength of the dipoles in the solvating molecules is demonstrated by the resolution of N2O-ester and N2O-alkane interactions in acetic acid ethyl ester and oleic acid methyl ester. In all aqueous solutions and in all tissues a population of N2O molecules in water is observed. At least two sites of N2O-protein interaction are observed in purified hemoglobin A and packed red cells; multiple N2O sites may also be present in bovine serum albumin. Two sites of N2O-lipid interaction are observed in whipping cream and in an aqueous suspension of phosphatidylcholine vesicles. The sites providing the least polar immediate environment to N2O in hemoglobin, cream, and vesicles give similar band frequencies to those found in pure alkane solvents. Infrared spectra of bovine brain tissue, upon exposure to N2O, show N2O molecules present in water and in two less-polar environments. Analysis of spectra of N2O in cerebellum tissue removed from a dog under halothane-N2O anesthesia reveals, in addition to N2O in water, a single population of N2O molecules in an alkane-like environment. Infrared spectroscopy provides a unique means of probing the structure of the environment of N2O and should prove useful in correlating anesthetic potency with anesthetic environment under physiological conditions.

  19. Conduction band offset determination between strained CdSe and ZnSe layers using DLTS

    NASA Astrophysics Data System (ADS)

    Rangel-Kuoppa, Victor-Tapio

    2013-12-01

    The conduction band offset between strained CdSe layers embedded in unintentionally n-type doped ZnSe is measured and reported. Two samples, consisting of thirty Ultra Thin Quantum Wells (UTQWs) of CdSe embedded in ZnSe, grown by Atomic Layer Epitaxy, are used for this study. The thicknesses of the UTQWs are one and three monolayers (MLs) in each sample, respectively. As expected, the sample with one ML UTQWs does not show any energy level in the UTQWs due to the small thickness of the UTQWs, while the thickness of the sample with 3 ML UTQWs is large enough to form an energy level inside the UTQWs. This energy level appears as a majority trap with an activation energy of 223.58 ± 9.54 meV. This corresponds to UTQWs with barrier heights (the conduction band offset) between 742 meV and 784 meV. These values suggest that the band gap misfit between strained CdSe and ZnSe is around 70.5 to 74 % in the conduction band.

  20. THz - ToF Optical Layer Analysis (OLA) to determine optical properties of dielectric materials

    NASA Astrophysics Data System (ADS)

    Spranger, Holger; Beckmann, Jörg

    2017-02-01

    Electromagnetic waves with frequencies between 0.1 and 10 THz are described as THz-radiation (T-ray). The ability to penetrate dielectric materials makes T-rays attractive to reveal discontinuities in polymer and ceramic materials. THz-Time Domain Spectroscopy Systems (THz-TDS) are available on the market today which operates with THz-pulses transmitted and received by optically pumped semiconductor antennas. In THz-TDS the travelling time (ToF) and shape of the pulse is changed if it interacts with the dielectric material and its inherent discontinuities. A tomogram of the object under the test can be reconstructed from time of flight diffraction (ToFD) scans if a synthetic focusing aperture (SAFT) algorithm is applied. The knowledge of the base materials shape and optical properties is essential for a proper reconstruction result. To obtain these properties a model is assumed which describes the device under the test as multilayer structure composed of thin layers with different dielectric characteristics. The Optical Layer Analysis (OLA) is able to fulfill these requirements. A short description why the optical properties are crucial for meaningful SAFT reconstruction results will be given first. Afterwards the OLA will be derived and applied on representative samples to discuss and evaluate its benefits and limits.

  1. Conduction band offset determination between strained CdSe and ZnSe layers using DLTS

    SciTech Connect

    Rangel-Kuoppa, Victor-Tapio

    2013-12-04

    The conduction band offset between strained CdSe layers embedded in unintentionally n-type doped ZnSe is measured and reported. Two samples, consisting of thirty Ultra Thin Quantum Wells (UTQWs) of CdSe embedded in ZnSe, grown by Atomic Layer Epitaxy, are used for this study. The thicknesses of the UTQWs are one and three monolayers (MLs) in each sample, respectively. As expected, the sample with one ML UTQWs does not show any energy level in the UTQWs due to the small thickness of the UTQWs, while the thickness of the sample with 3 ML UTQWs is large enough to form an energy level inside the UTQWs. This energy level appears as a majority trap with an activation energy of 223.58 ± 9.54 meV. This corresponds to UTQWs with barrier heights (the conduction band offset) between 742 meV and 784 meV. These values suggest that the band gap misfit between strained CdSe and ZnSe is around 70.5 to 74 % in the conduction band.

  2. Determinants of carbon release from the active layer and permafrost deposits on the Tibetan Plateau

    PubMed Central

    Chen, Leiyi; Liang, Junyi; Qin, Shuqi; Liu, Li; Fang, Kai; Xu, Yunping; Ding, Jinzhi; Li, Fei; Luo, Yiqi; Yang, Yuanhe

    2016-01-01

    The sign and magnitude of permafrost carbon (C)-climate feedback are highly uncertain due to the limited understanding of the decomposability of thawing permafrost and relevant mechanistic controls over C release. Here, by combining aerobic incubation with biomarker analysis and a three-pool model, we reveal that C quality (represented by a higher amount of fast cycling C but a lower amount of recalcitrant C compounds) and normalized CO2–C release in permafrost deposits were similar or even higher than those in the active layer, demonstrating a high vulnerability of C in Tibetan upland permafrost. We also illustrate that C quality exerts the most control over CO2–C release from the active layer, whereas soil microbial abundance is more directly associated with CO2–C release after permafrost thaw. Taken together, our findings highlight the importance of incorporating microbial properties into Earth System Models when predicting permafrost C dynamics under a changing environment. PMID:27703168

  3. Exchange stiffness in ultrathin perpendicularly magnetized CoFeB layers determined using the spectroscopy of electrically excited spin waves

    NASA Astrophysics Data System (ADS)

    Devolder, T.; Kim, J.-V.; Nistor, L.; Sousa, R.; Rodmacq, B.; Diény, B.

    2016-11-01

    We measure the frequencies of spin waves in nm-thick perpendicularly magnetized FeCoB systems, and model the frequencies to deduce the exchange stiffness of this material in the ultrathin limit. For this, we embody the layers in magnetic tunnel junctions patterned into circular nanopillars of diameters ranging from 100 to 300 nm, and we use magneto-resistance to determine which rf-current frequencies are efficient in populating the spin wave modes. Micromagnetic calculations indicate that the ultrathin nature of the layer and the large wave vectors used ensure that the spin wave frequencies are predominantly determined by the exchange stiffness, such that the number of modes in a given frequency window can be used to estimate the exchange stiffness. For 1 nm layers, the experimental data are consistent with an exchange stiffness A = 20 ± 2 pJ/m, which is slightly lower than its bulk counterpart. The thickness dependence of the exchange stiffness has strong implications for the numerous situations that involve ultrathin films hosting strong magnetization gradients, and the micromagnetic description thereof.

  4. Sexually dimorphic genome-wide binding of retinoid X receptor alpha (RXRα) determines male-female differences in the expression of hepatic lipid processing genes in mice.

    PubMed

    Kosters, Astrid; Sun, Deqiang; Wu, Hao; Tian, Feng; Felix, Julio C; Li, Wei; Karpen, Saul J

    2013-01-01

    Many hepatic functions including lipid metabolism, drug metabolism, and inflammatory responses are regulated in a sex-specific manner due to distinct patterns of hepatic gene expression between males and females. Regulation for the majority of these genes is under control of Nuclear Receptors (NRs). Retinoid X Receptor alpha (RXRα) is an obligate partner for multiple NRs and considered a master regulator of hepatic gene expression, yet the full extent of RXRα chromatin binding in male and female livers is unclear. ChIP-Seq analysis of RXRα and RNA Polymerase2 (Pol2) binding was performed livers of both genders and combined with microarray analysis. Mice were gavage-fed with the RXR ligand LG268 for 5 days (30 mg/kg/day) and RXRα-binding and RNA levels were determined by ChIP-qPCR and qPCR, respectively. ChIP-Seq revealed 47,845 (male) and 46,877 (female) RXRα binding sites (BS), associated with ∼12,700 unique genes in livers of both genders, with 91% shared between sexes. RXRα-binding showed significant enrichment for 2227 and 1498 unique genes in male and female livers, respectively. Correlating RXRα binding strength with Pol2-binding revealed 44 genes being male-dominant and 43 female-dominant, many previously unknown to be sexually-dimorphic. Surprisingly, genes fundamental to lipid metabolism, including Scd1, Fasn, Elovl6, and Pnpla3-implicated in Fatty Liver Disease pathogenesis, were predominant in females. RXRα activation using LG268 confirmed RXRα-binding was 2-3 fold increased in female livers at multiple newly identified RXRα BS including for Pnpla3 and Elovl6, with corresponding ∼10-fold and ∼2-fold increases in Pnpla3 and Elovl6 RNA respectively in LG268-treated female livers, supporting a role for RXRα regulation of sexually-dimorphic responses for these genes. RXRα appears to be one of the most widely distributed transcriptional regulators in mouse liver and is engaged in determining sexually-dimorphic expression of key lipid

  5. EFFECT OF TEMPERATURE ON THE C ISOTOPIC VALUE OF MICROBIAL LIPIDS APPLIED TO DETERMINE C USAGE IN MICROBIAL COMMUNITIES

    EPA Science Inventory

    The combination of compound specific stable isotopic analysis with phospholipid fatty acid (PLFAS) analysis is useful in determining the source of organic carbon used by groups of a microbial community. Determination of the effect of certain environmental parameters is important ...

  6. Determination of the altitude of the nitric acid layer from very high resolution ground-based IR solar spectra

    NASA Technical Reports Server (NTRS)

    Blatherwick, R. D.; Murcray, F. J.; Murcray, D. G.; Locker, M. H.

    1991-01-01

    A ground-based solar spectrum at a spectral resolution of about 0.002/cm is used to determine the altitude of the HNO3 layer. The 870/cm spectral region, which is essentially free from absorptions from other species, is employed. The data were obtained with the University of Denver 2.5-m maximum path difference Fourier Transform interferometer spectrometer system. A set of 13 HNO3 vertical profiles were used in the analysis. The best fit obtained for the 'starting' profile (which is centered at 24 km), and the best fit for the profile centered at 26 km are shown. For displacements of greater than 2 km, the discrepancy between the synthetic and observed spectra becomes readily discernible by inspection of the spectra. It is shown that the 'best fit' rms residuals are quite sensitive to the assumed altitude of the HNO3 layer.

  7. Determining the efficiency of subjecting finely dispersed emulsions to physical coagulation in a packed layer under turbulent conditions

    NASA Astrophysics Data System (ADS)

    Laptev, A. G.; Basharov, M. M.; Farakhova, A. I.

    2013-09-01

    The process through which small droplets contained in emulsions are physically coagulated on the surface of random packing elements is considered. The theory of turbulent migration of a finely dispersed phase is used for determining the coagulation efficiency. Expressions for calculating coagulation efficiency and turbulent transfer rate are obtained by applying models of a turbulent boundary layer. An example of calculating the enlargement of water droplets in hydrocarbon medium represented by a wide fraction of light hydrocarbons (also known as natural gas liquid) is given. The process flowchart of a system for removing petroleum products from effluent waters discharged from the Kazan TETs-1 cogeneration station is considered. Replacement of the mechanical filter by a thin-layer settler with a coagulator is proposed.

  8. Two-wavelengths laser-speckle technique for thickness determination of transparent layers on rough surfaces

    NASA Astrophysics Data System (ADS)

    Lettner, J.; Zagar, B. G.

    2013-11-01

    In this work, a non-contacting laser-speckle technique and two different implementations thereof for measuring the thickness of thin transparent liquid layers on optically rough surfaces are presented. The optical system allows large stand-off distances and can be used in harsh environments and industrial applications. The thickness of the (oil) coating can be measured down into the μm range, which is below that of the surface roughness. The distribution of the coating depends on adhesive and cohesive forces, the temperature and primarily on the surface topography itself. The thickness of transparent coatings can be evaluated statistically considering wavelengths and roughness. We describe the two measurement principles and the data processing, present measurement results and discuss the advantages and disadvantages of both methods. For a better understanding, the theoretical considerations of the diffraction of sinusoidal phase gratings in the Fraunhofer region will be given.

  9. On determination of formaldehyde content in atmospheric boundary layer for overcast using DOAS technique

    NASA Astrophysics Data System (ADS)

    Postylyakov, Oleg; Borovski, Alexander; Ivanov, Victor

    2015-11-01

    Formaldehyde (HCHO) is involved in a lot of chemical reactions in the atmosphere. Taking into account that HCHO basically undergo by photolysis and reaction with hydroxyl radical within a few hours, short-lived VOCs and direct HCHO emissions can cause local HCHO enhancement over certain areas, and, hence, exceeding background level of HCHO can be examined as a local pollution of the atmosphere by VOCs or existence of a local HCHO source. Several retrieval algorithms applicable for DOAS measurements in cloudless were previously developed. A new algorithm applicable for overcast and cloudless sky and its error analysis is briefly introduced by this paper. Analysis of our HCHO VCD retrieval for overcast shows that when one know the cloud base height, but doesn't know cloud optical depth, the typical errors of HCHO total content retrieval are less than 10% for snow season, less than 5% for snow-free seasons, and reaches 40-45% for season with non-stable snow cover. In case one knows both the cloud base height and the cloud optical depth, the typical errors are about 5% for snow season, less than 2.5% for snow-free seasons, and are within about 10-30% for season with non-stable snow cover. Given above error estimations are valid if the HCHO layer is below the cloud base. The errors dramatically increase when HCHO layer penetrates into clouds in both cases. The first preliminary results of HCHO VCD retrieval for overcast are shown. The average difference of the HCHO VCDs for wind from Moscow megapolis and wind from few urbanized areas is about 0.8×1016 mol×cm-2 and approximately corresponds to estimates of influence of Moscow megapolis observed in clear-sky conditions.

  10. Prevalence, Specificity and Determinants of Lipid-Interacting PDZ Domains from an In-Cell Screen and In Vitro Binding Experiments

    PubMed Central

    Kashyap, Rudra; Polanowska, Jolanta; Betzi, Stéphane; Lembo, Frédérique; Vermeiren, Elke; Chiheb, Driss; Lenfant, Nicolas; Morelli, Xavier; Borg, Jean-Paul; Reboul, Jérôme; Zimmermann, Pascale

    2013-01-01

    Background PDZ domains are highly abundant protein-protein interaction modules involved in the wiring of protein networks. Emerging evidence indicates that some PDZ domains also interact with phosphoinositides (PtdInsPs), important regulators of cell polarization and signaling. Yet our knowledge on the prevalence, specificity, affinity, and molecular determinants of PDZ-PtdInsPs interactions and on their impact on PDZ-protein interactions is very limited. Methodology/Principal Findings We screened the human proteome for PtdInsPs interacting PDZ domains by a combination of in vivo cell-localization studies and in vitro dot blot and Surface Plasmon Resonance (SPR) experiments using synthetic lipids and recombinant proteins. We found that PtdInsPs interactions contribute to the cellular distribution of some PDZ domains, intriguingly also in nuclear organelles, and that a significant subgroup of PDZ domains interacts with PtdInsPs with affinities in the low-to-mid micromolar range. In vitro specificity for the head group is low, but with a trend of higher affinities for more phosphorylated PtdInsPs species. Other membrane lipids can assist PtdInsPs-interactions. PtdInsPs-interacting PDZ domains have generally high pI values and contain characteristic clusters of basic residues, hallmarks that may be used to predict additional PtdInsPs interacting PDZ domains. In tripartite binding experiments we established that peptide binding can either compete or cooperate with PtdInsPs binding depending on the combination of ligands. Conclusions/Significance Our screen substantially expands the set of PtdInsPs interacting PDZ domains, and shows that a full understanding of the biology of PDZ proteins will require a comprehensive insight into the intricate relationships between PDZ domains and their peptide and lipid ligands. PMID:23390500

  11. Acyl-Lipid Metabolism

    PubMed Central

    Li-Beisson, Yonghua; Shorrosh, Basil; Beisson, Fred; Andersson, Mats X.; Arondel, Vincent; Bates, Philip D.; Baud, Sébastien; Bird, David; DeBono, Allan; Durrett, Timothy P.; Franke, Rochus B.; Graham, Ian A.; Katayama, Kenta; Kelly, Amélie A.; Larson, Tony; Markham, Jonathan E.; Miquel, Martine; Molina, Isabel; Nishida, Ikuo; Rowland, Owen; Samuels, Lacey; Schmid, Katherine M.; Wada, Hajime; Welti, Ruth; Xu, Changcheng; Zallot, Rémi; Ohlrogge, John

    2010-01-01

    Acyl lipids in Arabidopsis and all other plants have a myriad of diverse functions. These include providing the core diffusion barrier of the membranes that separates cells and subcellular organelles. This function alone involves more than 10 membrane lipid classes, including the phospholipids, galactolipids, and sphingolipids, and within each class the variations in acyl chain composition expand the number of structures to several hundred possible molecular species. Acyl lipids in the form of triacylglycerol account for 35% of the weight of Arabidopsis seeds and represent their major form of carbon and energy storage. A layer of cutin and cuticular waxes that restricts the loss of water and provides protection from invasions by pathogens and other stresses covers the entire aerial surface of Arabidopsis. Similar functions are provided by suberin and its associated waxes that are localized in roots, seed coats, and abscission zones and are produced in response to wounding. This chapter focuses on the metabolic pathways that are associated with the biosynthesis and degradation of the acyl lipids mentioned above. These pathways, enzymes, and genes are also presented in detail in an associated website (ARALIP: http://aralip.plantbiology.msu.edu/). Protocols and methods used for analysis of Arabidopsis lipids are provided. Finally, a detailed summary of the composition of Arabidopsis lipids is provided in three figures and 15 tables. PMID:22303259

  12. Acyl-Lipid Metabolism

    PubMed Central

    Li-Beisson, Yonghua; Shorrosh, Basil; Beisson, Fred; Andersson, Mats X.; Arondel, Vincent; Bates, Philip D.; Baud, Sébastien; Bird, David; DeBono, Allan; Durrett, Timothy P.; Franke, Rochus B.; Graham, Ian A.; Katayama, Kenta; Kelly, Amélie A.; Larson, Tony; Markham, Jonathan E.; Miquel, Martine; Molina, Isabel; Nishida, Ikuo; Rowland, Owen; Samuels, Lacey; Schmid, Katherine M.; Wada, Hajime; Welti, Ruth; Xu, Changcheng; Zallot, Rémi; Ohlrogge, John

    2013-01-01

    Acyl lipids in Arabidopsis and all other plants have a myriad of diverse functions. These include providing the core diffusion barrier of the membranes that separates cells and subcellular organelles. This function alone involves more than 10 membrane lipid classes, including the phospholipids, galactolipids, and sphingolipids, and within each class the variations in acyl chain composition expand the number of structures to several hundred possible molecular species. Acyl lipids in the form of triacylglycerol account for 35% of the weight of Arabidopsis seeds and represent their major form of carbon and energy storage. A layer of cutin and cuticular waxes that restricts the loss of water and provides protection from invasions by pathogens and other stresses covers the entire aerial surface of Arabidopsis. Similar functions are provided by suberin and its associated waxes that are localized in roots, seed coats, and abscission zones and are produced in response to wounding. This chapter focuses on the metabolic pathways that are associated with the biosynthesis and degradation of the acyl lipids mentioned above. These pathways, enzymes, and genes are also presented in detail in an associated website (ARALIP: http://aralip.plantbiology.msu.edu/). Protocols and methods used for analysis of Arabidopsis lipids are provided. Finally, a detailed summary of the composition of Arabidopsis lipids is provided in three figures and 15 tables. PMID:23505340

  13. Determination of Optimal Parameters for Dual-Layer Cathode of Polymer Electrolyte Fuel Cell Using Computational Intelligence-Aided Design

    PubMed Central

    Chen, Yi; Huang, Weina; Peng, Bei

    2014-01-01

    Because of the demands for sustainable and renewable energy, fuel cells have become increasingly popular, particularly the polymer electrolyte fuel cell (PEFC). Among the various components, the cathode plays a key role in the operation of a PEFC. In this study, a quantitative dual-layer cathode model was proposed for determining the optimal parameters that minimize the over-potential difference and improve the efficiency using a newly developed bat swarm algorithm with a variable population embedded in the computational intelligence-aided design. The simulation results were in agreement with previously reported results, suggesting that the proposed technique has potential applications for automating and optimizing the design of PEFCs. PMID:25490761

  14. Determination of optimal parameters for dual-layer cathode of polymer electrolyte fuel cell using computational intelligence-aided design.

    PubMed

    Chen, Yi; Huang, Weina; Peng, Bei

    2014-01-01

    Because of the demands for sustainable and renewable energy, fuel cells have become increasingly popular, particularly the polymer electrolyte fuel cell (PEFC). Among the various components, the cathode plays a key role in the operation of a PEFC. In this study, a quantitative dual-layer cathode model was proposed for determining the optimal parameters that minimize the over-potential difference η and improve the efficiency using a newly developed bat swarm algorithm with a variable population embedded in the computational intelligence-aided design. The simulation results were in agreement with previously reported results, suggesting that the proposed technique has potential applications for automating and optimizing the design of PEFCs.

  15. Reduced-Basis Determination of Planetary Boundary-Layer Flow Statistics for a Novel Turbulence Model

    NASA Astrophysics Data System (ADS)

    Skitka, Joseph; Marston, Brad; Fox-Kemper, Baylor

    2016-11-01

    Uncertainty in climate modeling and weather forecasting can largely be attributed to the omission or inaccurate representation of oceanic and atmospheric subgrid processes. Existing subgrid turbulence models are built on assumptions of isotropy, homogeneity, and the locality of correlations. Direct statistical simulation (DSS) using expansion in equal-time cumulants is a novel approach to subgrid modeling that does not make these assumptions. In prior work, a second-order closure, CE2, was shown to capture important vertical turbulent transports in Langmuir turbulence and Rayleigh-Bénard convection, but to run efficiently, this approach to turbulence modeling requires a drastic reduction in dimensionality. The present work addresses how accurately these systems can be represented with a truncated principal orthogonal decomposition (POD). The representation of turbulent transports by truncated POD bases are studied by static projection of fully resolved statistics and dynamical evolution of a reduced model. Results indicate the projected truncated turbulent statistics in these flows are less sensitive to flow details, like mixed-layer depth, than the truncated basis itself. The question of whether POD is an optimal truncation technique for these purposes is considered. NSF DMR 1306806, NSF GCE 1350795, The Institute at Brown for Environment and Society Graduate Student Fellowship.

  16. Comparison of lipid deposition at coronary bifurcations versus at nonbifurcation portions of coronary arteries as determined by near-infrared spectroscopy.

    PubMed

    Townsend, Jacob C; Steinberg, Daniel H; Nielsen, Christopher D; Todoran, Thomas M; Patel, Chetan P; Leonardi, Robert A; Wolf, Bethany J; Brilakis, Emmanouil S; Shunk, Kendrick A; Goldstein, James A; Kern, Morton J; Powers, Eric R

    2013-08-01

    Atherosclerosis has been shown to develop preferentially at sites of coronary bifurcation, yet culprit lesions resulting in ST-elevation myocardial infarction do not occur more frequently at these sites. We hypothesized that these findings can be explained by similarities in intracoronary lipid and that lipid and lipid core plaque would be found with similar frequency in coronary bifurcation and nonbifurcation segments. One hundred seventy bifurcations were identified, 156 of which had comparative nonbifurcation segments proximal and/or distal to the bifurcation. We compared lipid deposition at bifurcation and nonbifurcation segments in coronary arteries using near-infrared spectroscopy (NIRS), a novel method for the in vivo detection of coronary lipid. Any NIRS signal for the presence of lipid was found with similar frequency in bifurcation and nonbifurcation segments (79% vs 74%, p = NS). Lipid core burden index, a measure of total lipid quantity indexed to segment length, was similar across bifurcation segments as well as their proximal and distal controls (lipid core burden index 66.3 ± 106, 67.1 ± 116, and 66.6 ± 104, p = NS). Lipid core plaque, identified as a high-intensity focal NIRS signal, was found in 21% of bifurcation segments, and 20% of distal nonbifurcation segments (p = NS). In conclusion, coronary bifurcations do not appear to have higher levels of intracoronary lipid or lipid core plaque than their comparative nonbifurcation regions.

  17. Orientation of the antimicrobial peptide PGLa in lipid membranes determined from 19F-NMR dipolar couplings of 4-CF3-phenylglycine labels.

    PubMed

    Glaser, Ralf W; Sachse, Carsten; Dürr, Ulrich H N; Wadhwani, Parvesh; Ulrich, Anne S

    2004-05-01

    A highly sensitive solid state (19)F-NMR strategy is described to determine the orientation and dynamics of membrane-associated peptides from specific fluorine labels. Several analogues of the antimicrobial peptide PGLa were synthesized with the non-natural amino acid 4-trifluoromethyl-phenylglycine (CF(3)-Phg) at different positions throughout the alpha-helical peptide chain. A simple 1-pulse (19)F experiment allows the simultaneous measurement of both the anisotropic chemical shift and the homonuclear dipolar coupling within the rotating CF(3)-group in a macroscopically oriented membrane sample. The value and sign of the dipolar splitting determines the tilt of the CF(3)-rotational axis, which is rigidly attached to the peptide backbone, with respect to the external magnetic field direction. Using four CF(3)-labeled peptide analogues (with L-CF(3)-Phg at Ile9, Ala10, Ile13, and Ala14) we confirmed that PGLa is aligned at the surface of lipid membranes with its helix axis perpendicular to the bilayer normal at a peptide:lipid ratio of 1:200. We also determined the azimuthal rotation angle of the helix, which agrees well with the orientation expected from its amphiphilic character. Peptide analogues with a D-CF(3)-Phg label resulting from racemization of the amino acid during synthesis were separately collected by HPLC. Their spectra provide additional information about the PGLa structure and orientation but allow only to discriminate qualitatively between multiple solutions. The structural and functional characterization of the individual CF(3)-labeled peptides by circular dichroism and antimicrobial assays showed only small effects for our four substitutions on the hydrophobic face of the helix, but a significant disturbance was observed in a fifth analogue where Ala8 on the hydrophilic face had been replaced. Even though the hydrophobic CF(3)-Phg side chain cannot be utilized in all positions, it allows highly sensitive NMR measurements over a wide range of

  18. Semiquantitative determination of polychlorinated biphenyls in tissue samples by thin layer chromatography

    USGS Publications Warehouse

    Mulhern, B.M.; Cromartie, E.; Reichel, W.L.; Belisle, A.A.

    1971-01-01

    A method is described for the analysis of polychlorinated biphenyl (PCB) compounds in tissue samples. Cleanup by hexane-aceto-nitrile partitioning and Florisil column chromatography are performed on samples before oxidative treatment to convert DDE to DCBP. PCB components are then determined semi-quantitatively by TLC. No prior separation of PCB from chlorinated pesticides is required. The lower limit of sensitivity is 0.2 ?g.

  19. Comparison of Methods to Determine Tropical Tropopause Layer Cirrus Formation Mechanisms

    SciTech Connect

    Riihimaki, Laura D.; McFarlane, Sally A.; Liang, Calvin; Massie, Steven T.; Beagley, Nathaniel; Toth, Travis D.

    2012-03-30

    A new method of estimating Tropical Tropopause Layer Cirrus (TTLC) formation mechanism (object method) is compared to interpretations of formation from previous studies using back trajectory calculations matched to convection identified from satellites and statistical relationships of TTLC with temperature and water vapor. The object method groups neighboring Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) TTLC cloud profiles into cloud objects and classifies them as convective (35% of TTLC) if they are directly attached to a convective cloud along the CALIPSO track. The percentage of back trajectory calculations that intersect convection (39-95% of TTLC within 5 days) depends strongly on the spatial and temporal resolution of the convection data set, and the manner in which deep convection is identified. Using minimum brightness temperature in 3 hourly, 1{sup o} resolution grid boxes to define convection, 46% of non-convective TTLC (37% of all TTLC) did not trace back to convection within 24 h. Back trajectory calculations of thin cirrus identified by the High Resolution Dynamics Limb Sounder (HIRDLS) gave similar results. Temperature is not a good proxy for formation mechanism as convective and non-convective TTLC frequencies both increase monotonically with decreasing temperature at approximately the same rate. Non-convective TTLC frequencies have a stronger relationship with relative humidity than convective TTLC frequencies, though are not sufficiently different to distinguish object method categories. A decrease in TTL cirrus frequency found at low temperatures in previous studies is caused by insufficient variability in reanalysis temperature data and is not indicative of TTLC formation mechanism.

  20. Comparison of methods to determine Tropical Tropopause Layer cirrus formation mechanisms

    NASA Astrophysics Data System (ADS)

    Riihimaki, Laura D.; McFarlane, Sally A.; Liang, Calvin; Massie, Steven T.; Beagley, Nathaniel; Toth, Travis D.

    2012-03-01

    A new method of estimating Tropical Tropopause Layer Cirrus (TTLC) formation mechanism (object method) is compared to interpretations of formation from previous studies using back trajectory calculations matched to convection identified from satellites and statistical relationships of TTLC with temperature and water vapor. The object method groups neighboring Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) TTLC cloud profiles into cloud objects and classifies them as convective (35% of TTLC) if they are directly attached to a convective cloud along the CALIPSO track. The percentage of back trajectory calculations that intersect convection (39-95% of TTLC within 5 days) depends strongly on the spatial and temporal resolution of the convection data set, and the manner in which deep convection is identified. Using minimum brightness temperature in 3 hourly, 1° resolution grid boxes to define convection, 46% of non-convective TTLC (37% of all TTLC) did not trace back to convection within 24 h. Back trajectory calculations of thin cirrus identified by the High Resolution Dynamics Limb Sounder (HIRDLS) gave similar results. Temperature is not a good proxy for formation mechanism as convective and non-convective TTLC frequencies both increase monotonically with decreasing temperature at approximately the same rate. Non-convective TTLC frequencies have a stronger relationship with relative humidity than convective TTLC frequencies, though are not sufficiently different to distinguish object method categories. A decrease in TTL cirrus frequency found at low temperatures in previous studies is caused by insufficient variability in reanalysis temperature data and is not indicative of TTLC formation mechanism.

  1. Contact-free sheet resistance determination of large area graphene layers by an open dielectric loaded microwave cavity

    SciTech Connect

    Shaforost, O.; Wang, K.; Adabi, M.; Guo, Z.; Hanham, S.; Klein, N.; Goniszewski, S.; Gallop, J.; Hao, L.

    2015-01-14

    A method for contact-free determination of the sheet resistance of large-area and arbitrary shaped wafers or sheets coated with graphene and other (semi) conducting ultrathin layers is described, which is based on an open dielectric loaded microwave cavity. The sample under test is exposed to the evanescent resonant field outside the cavity. A comparison with a closed cavity configuration revealed that radiation losses have no significant influence of the experimental results. Moreover, the microwave sheet resistance results show good agreement with the dc conductivity determined by four-probe van der Pauw measurements on a set of CVD samples transferred on quartz. As an example of a practical application, correlations between the sheet resistance and deposition conditions for CVD graphene transferred on quartz wafers are described. Our method has a high potential as measurement standard for contact-free sheet resistance measurement and mapping of large area graphene samples.

  2. Contact-free sheet resistance determination of large area graphene layers by an open dielectric loaded microwave cavity

    NASA Astrophysics Data System (ADS)

    Shaforost, O.; Wang, K.; Goniszewski, S.; Adabi, M.; Guo, Z.; Hanham, S.; Gallop, J.; Hao, L.; Klein, N.

    2015-01-01

    A method for contact-free determination of the sheet resistance of large-area and arbitrary shaped wafers or sheets coated with graphene and other (semi) conducting ultrathin layers is described, which is based on an open dielectric loaded microwave cavity. The sample under test is exposed to the evanescent resonant field outside the cavity. A comparison with a closed cavity configuration revealed that radiation losses have no significant influence of the experimental results. Moreover, the microwave sheet resistance results show good agreement with the dc conductivity determined by four-probe van der Pauw measurements on a set of CVD samples transferred on quartz. As an example of a practical application, correlations between the sheet resistance and deposition conditions for CVD graphene transferred on quartz wafers are described. Our method has a high potential as measurement standard for contact-free sheet resistance measurement and mapping of large area graphene samples.

  3. NMR-based molecular ruler for determining the depth of intercalants within the lipid bilayer. Part V: a comparison of liposomes, bioliposomes and erythrocyte ghosts.

    PubMed

    Afri, Michal; Alexenberg, Carmit; Bodner, Efrat; Frimer, Aryeh A; Jacob, Abraham I; Naqqash, Miriam E

    2014-12-01

    Afri et al. (2014a,b) have recently reported their mapping of DMPC liposomes using (13)C NMR in conjunction with a wide range of difunctional intercalants: n-ketoesters, n-ketoacids and n-ketophosphatidylcholines. The present study initiates a comparable study of bioliposomes and erythrocyte ghosts. This required the (13)C NMR characterization of these systems for the first time, and further involved a determination of the signals of three doubly (13)C-labeled intercalants, in particular, n-ketophosphatidylcholines where n=4, 8 and 12. This study reveals that DMPC liposomes, bioliposomes and erythrocyte ghosts, with all their structural differences, are not radically different from the perspective of polarity gradient. Any differences observed reflect the additives often naturally present in these lipid systems.

  4. Determining the Polar Cosmic Ray Effect on Cloud Microphysics and the Earth's Ozone Layer

    NASA Astrophysics Data System (ADS)

    Beckie, Charlene Radons

    Earth’s changing climate is an important topic where atmospheric ozone plays a critical role. Ozone has a direct influence on the amount and type of solar radiation received by the Earth. This study addresses how cosmic rays may influence the ozone layer by ionizing Earth’s atmosphere and enhancing the growth of cloud condensation nuclei and rate of chemical reactions on polar ice cloud surfaces. This theory was largely based on the lifetime work by Lu [2010]. The region of interest was centered over the Thule, Greenland neutron monitor station. Using cosmic ray, satellite-based ISCCP and ICARE project cloud data along with TOMS-OMI-SBUV and TEMIS total column ozone data, data comparisons were done. Plots of cosmic rays versus Antarctic atmospheric ozone from Lu [2009] were reproduced using regional Arctic data and extended to include years from 1983 to 2011. Comparisons to the research by Harris et al. [2010] were made by substituting ice cloud optical thickness for the cloud parameter and seasonal total column ozone for winter stratospheric ozone loss. The results of these data evaluations showed that the regional Arctic view matched very closely to Lu’s work from the Antarctic. The ozone 3-point moving average case demonstrated a statistically significant correlation of -0.508. Extending the data duration exposed a cosmic ray data peak that was 14 percent larger than the two previous 11-year cycles. Ice cloud tau / ozone data comparisons did not produce the strong correlations from Harris et al. [2010]. Five years of low stratospheric temperatures and increased volumes of polar stratospheric clouds, identified by Rex et al. [2006], matched significant years of total column ozone minimums. Polar atmospheric CO2 trended along with ice cloud tau and oppositely to total column ozone, suggesting that lower stratospheric temperatures are instrumental in ozone reduction. Future work would involve using more extensive datasets, focusing on parameters such as ice

  5. Swelling and pillaring of the layered precursor IPC-1P: tiny details determine everything.

    PubMed

    Shamzhy, Mariya; Mazur, Michal; Opanasenko, Maksym; Roth, Wieslaw J; Čejka, Jiří

    2014-07-21

    The influence of swelling (i.e. the size of tetraalkylammonium surfactant molecule, the presence of tetrapropylammonium hydroxide (TPAOH), pH) and pillaring (i.e. the ratio between the swollen precursor IPC-1P and tetraethyl orthosilicate) conditions on the structure and textural properties of the resulting materials was studied in detail for IPC-1P, which is the layered precursor of zeolite PCR. The swelling of IPC-1P proceeds efficiently under basic conditions both in mixed C(n)H(2n+1)N(CH3)3Cl/TPAOH systems and in C(n)H(2n+1)N(CH3)3OH (n = 8, 10, 12, 14, 16, 18) solutions at pH = 13-14. The intercalation of C(n)H(2n+1)N(+)(CH3)3 in IPC-1P resulted in the formation of expanded materials with interlayer distances growing with increasing length of the alkyl chain in C(n)H(2n+1)N(CH3)3(+): 1.59-1.86 (n = 8) < 1.89-2.11 (10) < 2.05-2.26 (12) = 2.08-2.26 (14) < 2.37-2.43 (16) < 2.57-2.71 (18) Å. IPC-2 zeolite was formed during calcination of IPC-1P samples swollen in C(n)H(2n+1)N(CH3)3OH solution, while PCR zeolite can be obtained by calcination of IPC-1P treated with either C(n)H(2n+1)N(CH3)3Cl/TPAOH or C(n)H(2n+1)N(CH3)3Cl. The pillaring of IPC-1P samples swollen with C(n)H(2n+1)N(CH3)3OH provided mesoporous materials with narrow pore size distribution in the range 2.5-3.5 nm. Pillared materials derived from the samples swollen in the presence of TPAOH were characterized by a broader pore size distribution. The optimal TEOS/IPC-1PSW ratio being sufficient for the formation of well-ordered pillared derivatives characterized by improved textural properties (S(BET) = 878 m(2) g(-1), V(total) = 0.599 cm(3) g(-1)) was found to be 1 : 1.5.

  6. MO-G-18C-07: Improving T2 Determination and Quantification of Lipid Methylene Protons in Proton Magnetic Resonance Spectroscopy at 3 T

    SciTech Connect

    Breitkreutz, D.; Fallone, B. G.; Yahya, A.

    2014-06-15

    Purpose: To improve proton magnetic resonance spectroscopy (MRS) transverse relaxation (T{sub 2}) determination and quantification of lipid methylene chain (1.3 ppm) protons by rewinding their J-coupling evolution. Methods: MRS experiments were performed on four lipid phantoms, namely, almond, corn, sunflower and oleic acid, using a 3 T Philips MRI scanner with a transmit/receive birdcage head coil. Two PRESS (Point RESolved Spectroscopy) pulse sequences were used. The first PRESS sequence employed standard bandwidth (BW) (∼550 Hz) RF (radiofrequency) refocussing pulses, while the second used refocussing pulses of narrow BW (∼50 Hz) designed to rewind J-coupling evolution of the methylene protons in the voxel of interest. Signal was acquired with each sequence from a 5×5×5 mm{sup 3} voxel, with a repetition time (TR) of 3000 ms, and with echo times (TE) of 100 to 200 ms in steps of 20 ms. 2048 sample points were measured with a 2000 Hz sampling bandwidth. Additionally, 30 mm outer volume suppression slabs were used to suppress signal outside the voxel of interest. The frequency of the RF pulses was set to that of the methylene resonance. Methylene peak areas were calculated and fitted in MATLAB to a monexponentially decaying function of the form M{sub 0}exp(-TE/T{sub 2}), where M{sub 0} is the extrapolated area when TE = 0 ms and yields a measure of concentration. Results: The determined values of M{sub 0} and T{sub 2} increased for all fatty acids when using the PRESS sequence with narrow BW refocussing pulses. M{sub 0} and T{sub 2} values increased by an average amount (over all the phantoms) of 31% and 14%, respectively. Conclusion: This investigation has demonstrated that J-coupling interactions of lipid methylene protons causes non-negligible signal losses which, if not accounted for, Result in underestimations of their levels and T{sub 2} values when performing MRS measurements. Funded by the Natural Sciences and Engineering Research Council of Canada

  7. Immersion transmission ellipsometry (ITE) for the determination of orientation gradients in photoalignment layers

    NASA Astrophysics Data System (ADS)

    Jung, C. C.; Stumpe, J.

    2014-09-01

    The capability of the method of immersion transmission ellipsometry (ITE) (Jung et al. Int Patent WO, 2004/109260) to not only determine three-dimensional refractive indices in anisotropic thin films (which was already possible in the past), but even their gradients along the z-direction (perpendicular to the film plane) is investigated in this paper. It is shown that the determination of orientation gradients in deep-sub-μm films becomes possible by applying ITE in combination with reflection ellipsometry. The technique is supplemented by atomic force microscopy for measuring the film thickness. For a photo-oriented thin film, no gradient was found, as expected. For a photo-oriented film, which was subsequently annealed in a nematic liquid crystalline phase, an order was found similar to the one applied in vertically aligned nematic displays, with a tilt angle varying along the z-direction. For fresh films, gradients were only detected for the refractive index perpendicular to the film plane, as expected.

  8. The effect of noise and lipid signals on determination of Gaussian and non-Gaussian diffusion parameters in skeletal muscle.

    PubMed

    Cameron, Donnie; Bouhrara, Mustapha; Reiter, David A; Fishbein, Kenneth W; Choi, Seongjin; Bergeron, Christopher M; Ferrucci, Luigi; Spencer, Richard G

    2017-04-06

    This work characterizes the effect of lipid and noise signals on muscle diffusion parameter estimation in several conventional and non-Gaussian models, the ultimate objectives being to characterize popular fat suppression approaches for human muscle diffusion studies, to provide simulations to inform experimental work and to report normative non-Gaussian parameter values. The models investigated in this work were the Gaussian monoexponential and intravoxel incoherent motion (IVIM) models, and the non-Gaussian kurtosis and stretched exponential models. These were evaluated via simulations, and in vitro and in vivo experiments. Simulations were performed using literature input values, modeling fat contamination as an additive baseline to data, whereas phantom studies used a phantom containing aliphatic and olefinic fats and muscle-like gel. Human imaging was performed in the hamstring muscles of 10 volunteers. Diffusion-weighted imaging was applied with spectral attenuated inversion recovery (SPAIR), slice-select gradient reversal and water-specific excitation fat suppression, alone and in combination. Measurement bias (accuracy) and dispersion (precision) were evaluated, together with intra- and inter-scan repeatability. Simulations indicated that noise in magnitude images resulted in <6% bias in diffusion coefficients and non-Gaussian parameters (α, K), whereas baseline fitting minimized fat bias for all models, except IVIM. In vivo, popular SPAIR fat suppression proved inadequate for accurate parameter estimation, producing non-physiological parameter estimates without baseline fitting and large biases when it was used. Combining all three fat suppression techniques and fitting data with a baseline offset gave the best results of all the methods studied for both Gaussian diffusion and, overall, for non-Gaussian diffusion. It produced consistent parameter estimates for all models, except IVIM, and highlighted non-Gaussian behavior perpendicular to muscle fibers (

  9. Systematic determination of the thickness of a thin oxide layer on a multilayered structure by using an X-ray reflectivity analysis

    NASA Astrophysics Data System (ADS)

    Lee, Jisung; Park, Sungkyun

    2016-09-01

    X-ray reflectometry was used to determine the chemical structure of oxidized Permalloy films grown at different oxidation times. The oxidation time-dependent thickness, roughness and chemical density of each layer were examined simultaneously using the Parratt formalism. With increasing oxidation time, the Permalloy thickness decreased while forming a new oxide layer. After oxidation for 40 sec, the Permalloy film's thickness remained the same for further oxidation, indicating the formation of an oxidation barrier with a scattering length density much lower than that of the Permalloy. The interfacial roughness between the interface layer and the top protective layer remained the same regardless of the oxidation time.

  10. Determining concentration fields of tracer plumes for layered porous media in flow-tank experiments

    NASA Astrophysics Data System (ADS)

    Yu, Zhongbo; Schwartz, Franklin W.

    In the laboratory, computer-assisted image analysis provides an accurate and efficient way to monitor tracer experiments. This paper describes the determination of detailed temporal concentration distributions of tracers in a flow-tank experiment by analyzing photographs of plumes of Rhodamine dye through the glass wall of the tank. The methodology developed for this purpose consists of four steps: (1) digitally scanning black and white negatives obtained from photographs of the flow-tank experiment; (2) calibrating and normalizing each digitized image to a standard optical-density scale by determining the relation between the optical density and pixel value for each image; (3) constructing standard curves relating the concentration in an optical density from five experimental runs with predetermined concentrations (2-97mg/L) and (4) converting the optical density to concentration. The spatial distribution of concentration for two photographs was determined by applying these calibration and conversion procedures to all pixels of the digitized images. This approach provides an efficient way to study patterns of plume evolution and transport mechanisms. Résumé Au laboratoire, l'analyse d'images assistée par ordinateur est un moyen précis et efficace pour suivre certaines expériences de traçage. Ce papier présente comment sont déterminées dans le détail les distributions temporelles de la concentration en traceur au cours d'une expérience d'écoulement en réservoir au moyen de l'analyse de photographies de panaches de rhodamine à travers la paroi de verre du réservoir. La méthodologie développée dans cette expérience suit quatre étapes: (1) digitalisation par balayage des négatifs noir et blanc des prises de vue de l'expérience d'écoulement en réservoir (2) calibration et normalisation de chaque image digitalisée par rapport à une échelle étalon de densité optique en déterminant la relation entre la densité optique et la valeur des pixels

  11. Protein aggregation in food models: effect of. gamma. -irradiation and lipid oxidation

    SciTech Connect

    Delincee, H.; Paul, P.

    1981-09-01

    Myoglobin and serum albumin have been irradiated in aqueous solution in the presence of varying amounts of carbohydrates and lipids, and the yield of protein aggregates has been determined by gel filtration. With myoglobin the formation of aggregates evolving from the reaction with oxidizing lipids was observed, which was not found for serum albumin. The production of protein-lipid complexes, in which lipid material was occluded in the high-molecular aggregates by physical forces was demonstrated. Gel filtration and gel electrophoresis, both in the presence of SDS, and thin-layer isoelectric focusing revealed distinct structural differenes between the protein aggregates induced by irradiation and the aggregates formed by interaction with oxidizing lipids.

  12. Determination of permeability coefficients of ophthalmic drugs through different layers of porcine, rabbit and bovine eyes.

    PubMed

    Loch, Christian; Zakelj, Simon; Kristl, Albin; Nagel, Stefan; Guthoff, Rudolf; Weitschies, Werner; Seidlitz, Anne

    2012-08-30

    To treat ophthalmic diseases like glaucoma or inflammatory disorders topically applied ophthalmic formulations such as eye drops are usually used. In addition, novel ophthalmic implants releasing drug substances locally into different parts of the eye are available today. In the work presented here, the permeability coefficients of selected drugs (ciprofloxacin hydrochloride, lidocaine hydrochloride, timolol maleate) for ophthalmic tissues were determined using side-by-side diffusion chambers (so-called Ussing chambers). Sclera, conjunctiva, cornea, choroidea-retina-complex and a complex of conjunctiva-sclera-choroidea-retina were excised from fresh porcine, rabbit and bovine eyes. In the porcine eye tissues the highest P(app) values were obtained for conjunctiva with the exception of lidocaine. Therefore, it can be estimated that a certain amount of drug diffuses or is transported through conjunctiva after application. The P(app) values for sclera were also higher than those for cornea and even more, the surface area of sclera which is available for drug absorption is much larger than that of cornea when applying an implant. The obtained permeability coefficients for sclera and conjunctiva indicate that the administration of periocular implants can be an alternative to topically applied formulations. The complexes of the tissues were a significantly (p<0.01) stronger barrier to the investigated substances than the separated tissues. Distinct differences in permeability coefficients between the investigated animal tissues were observed. Overall the highest P(app) values for all mounted tissues were obtained with the rabbit, followed by porcine and bovine eyes. Because of these distinct interspecies differences one must be very careful when selecting the proper animal model for the permeability experiments.

  13. Paternal B Vitamin Intake Is a Determinant of Growth, Hepatic Lipid Metabolism and Intestinal Tumor Volume in Female Apc1638N Mouse Offspring

    PubMed Central

    Sabet, Julia A.; Park, Lara K.; Iyer, Lakshmanan K.; Tai, Albert K.; Koh, Gar Yee; Pfalzer, Anna C.; Parnell, Laurence D.; Mason, Joel B.; Liu, Zhenhua; Byun, Alexander J.; Crott, Jimmy W.

    2016-01-01

    Background The importance of maternal nutrition to offspring health and risk of disease is well established. Emerging evidence suggests paternal diet may affect offspring health as well. Objective In the current study we sought to determine whether modulating pre-conception paternal B vitamin intake alters intestinal tumor formation in offspring. Additionally, we sought to identify potential mechanisms for the observed weight differential among offspring by profiling hepatic gene expression and lipid content. Methods Male Apc1638N mice (prone to intestinal tumor formation) were fed diets containing replete (control, CTRL), mildly deficient (DEF), or supplemental (SUPP) quantities of vitamins B2, B6, B12, and folate for 8 weeks before mating with control-fed wild type females. Wild type offspring were euthanized at weaning and hepatic gene expression profiled. Apc1638N offspring were fed a replete diet and euthanized at 28 weeks of age to assess tumor burden. Results No differences in intestinal tumor incidence or burden were found between male Apc1638N offspring of different paternal diet groups. Although in female Apc1638N offspring there were no differences in tumor incidence or multiplicity, a stepwise increase in tumor volume with increasing paternal B vitamin intake was observed. Interestingly, female offspring of SUPP and DEF fathers had a significantly lower body weight than those of CTRL fed fathers. Moreover, hepatic trigylcerides and cholesterol were elevated 3-fold in adult female offspring of SUPP fathers. Weanling offspring of the same fathers displayed altered expression of several key lipid-metabolism genes. Hundreds of differentially methylated regions were identified in the paternal sperm in response to DEF and SUPP diets. Aside from a few genes including Igf2, there was a striking lack of overlap between these genes differentially methylated in sperm and differentially expressed in offspring. Conclusions In this animal model, modulation of

  14. RF Microalgal lipid content characterization

    PubMed Central

    Ahmad, Mahmoud Al; Al-Zuhair, Sulaiman; Taher, Hanifa; Hilal-Alnaqbi, Ali

    2014-01-01

    Most conventional techniques for the determination of microalgae lipid content are time consuming and in most cases are indirect and require excessive sample preparations. This work presents a new technique that utilizes radio frequency (RF) for rapid lipid quantification, without the need for sample preparation. Tests showed that a shift in the resonance frequency of a RF open-ended coaxial resonator and a gradual increase in its resonance magnitude may occur as the lipids content of microalgae cells increases. These response parameters can be then calibrated against actual cellular lipid contents and used for rapid determination of the cellular lipids. The average duration of lipid quantification using the proposed technique was of about 1 minute, which is significantly less than all other conventional techniques, and was achieved without the need for any time consuming treatment steps. PMID:24870372

  15. Piezoelectric layer embedded-microdiaphragm sensors for the determination of blood viscosity and density

    NASA Astrophysics Data System (ADS)

    Kim, Hye Jin; Kim, Jinsik; Zandieh, Omid; Chae, Myung-Sic; Kim, Tae Song; Lee, Jeong Hoon; Park, Jung Ho; Kim, Seonghwan; Hwang, Kyo Seon

    2014-10-01

    We introduce a lead zirconate titanate [PZT; Pb(Zr0.52Ti0.48)O3] microdiaphragm resonating sensor packaged in a polydimethylsiloxane chip. The proposed sensor can measure the density and viscosity of a liquid that is within the density and viscosity regime of blood (1.060 × 103 kg/m3, 3-4 cP). To verify the basic characteristics of the sensor, viscous solutions were prepared from glycerol and deionized water with a density in the range from 0.998 to 1.263 × 103 kg/m3 and a viscosity in the range from 1 to 1414 cP. We measured the frequency responses of the sensor before and after injecting the viscosity- and density-controlled liquid under the bottom of the microdiaphragm. The resonant frequencies in the (1,1) and (2,2) modes decreased linearly as a function of the liquid density in the range from 0.998 to 1.146 × 103 kg/m3 with a sensitivity of 28.03 Hz/kg.m-3 and 81.85 Hz/kg.m-3, respectively. The full width at half maximum had a logarithmic relationship with the liquid viscosity in the viscosity range from 1 to 8.4 cP. The quality factor (Q-factor) for the 50% glycerol/water mixture was determined to be greater than 20 for both the (1,1) and the (2,2) modes, indicating that the microdiaphragm resonating sensor is suitable for measuring the density and viscosity of a liquid within a density range from 0.998 to 1.1466 × 103 kg/m3 and a viscosity range from 1 to 8.4 cP. These density and viscosity ranges span the regime of possible changes of blood characteristics. The microdiaphragm resonating sensors were also tested with a real human serum to verify that the sensor is suitable for measuring the viscosity and density of blood. Therefore, the PZT microdiaphragm resonating sensor could be utilized for early diagnosis of diseases associated with changes in the physical properties of blood.

  16. Analysis of multi-layered films. [determining dye densities by applying a regression analysis to the spectral response of the composite transparency

    NASA Technical Reports Server (NTRS)

    Scarpace, F. L.; Voss, A. W.

    1973-01-01

    Dye densities of multi-layered films are determined by applying a regression analysis to the spectral response of the composite transparency. The amount of dye in each layer is determined by fitting the sum of the individual dye layer densities to the measured dye densities. From this, dye content constants are calculated. Methods of calculating equivalent exposures are discussed. Equivalent exposures are a constant amount of energy over a limited band-width that will give the same dye content constants as the real incident energy. Methods of using these equivalent exposures for analysis of photographic data are presented.

  17. Iron silicide formation at different layers of (Fe/Si)3 multilayered structures determined by conversion electron Mössbauer spectroscopy

    NASA Astrophysics Data System (ADS)

    Badía-Romano, L.; Rubín, J.; Magén, C.; Bürgler, D. E.; Bartolomé, J.

    2014-07-01

    The morphology and the quantitative composition of the Fe-Si interface layer forming at each Fe layer of a (Fe/Si)3 multilayer have been determined by means of conversion electron Mössbauer spectroscopy (CEMS) and high-resolution transmission electron microscopy (HRTEM). For the CEMS measurements, each layer was selected by depositing the Mössbauer active 57Fe isotope with 95% enrichment. Samples with Fe layers of nominal thickness dFe = 2.6 nm and Si spacers of dSi = 1.5 nm were prepared by thermal evaporation onto a GaAs(001) substrate with an intermediate Ag(001) buffer layer. HRTEM images showed that Si layers grow amorphous and the epitaxial growth of the Fe is good only for the first deposited layer. The CEMS spectra show that at all Fe/Si and Si/Fe interfaces a paramagnetic c-Fe1-xSi phase is formed, which contains 16% of the nominal Fe deposited in the Fe layer. The bottom Fe layer, which is in contact with the Ag buffer, also contains α-Fe and an Fe1-xSix alloy that cannot be attributed to a single phase. In contrast, the other two layers only comprise an Fe1-xSix alloy with a Si concentration of ≃0.15, but no α-Fe.

  18. Locating interfaces in vertically-layered materials and determining concentrations in mixed materials utilizing acoustic-impedance measurements. [Patent application

    DOEpatents

    Not Available

    1981-06-10

    Measurement of the relative and actual value of acoustic characteristic impedances of an unknown substance, location of the interfaces of vertically-layered materials, and the determination of the concentration of a first material mixed in a second material are presented. A highly damped ultrasonic pulse is transmitted into one side of a reference plate, such as a tank wall, where the other side of the reference plate is in physical contact with the medium to be measured. The amplitude of a return signal, which is the reflection of the transmitted pulse from the interface between the other side of the reference plate and the medium, is measured. The amplitude value indicates the acoustic characteristic impedance of the substance relative to that of the reference plate or relative to that of other tested materials. Discontinuities in amplitude with repeated measurements for various heights indicate the location of interfaces in vertically-layered materials. Standardization techniques permit the relative acoustic characteristic impedance of a substance to be converted to an actual value. Calibration techniques for mixtures permit the amplitude to be converted to the concentration of a first material mixed in a second material.

  19. Locating interfaces in vertically-layered materials and determining concentrations in mixed materials utilizing acoustic impedance measurements

    DOEpatents

    Langlois, Gary N.

    1983-09-13

    Measurement of the relative and actual value of acoustic characteristic impedances of an unknown substance, location of the interfaces of vertically-layered materials, and the determination of the concentration of a first material mixed in a second material. A highly damped ultrasonic pulse is transmitted into one side of a reference plate, such as a tank wall, where the other side of the reference plate is in physical contact with the medium to be measured. The amplitude of a return signal, which is the reflection of the transmitted pulse from the interface between the other side of the reference plate and the medium, is measured. The amplitude value indicates the acoustic characteristic impedance of the substance relative to that of the reference plate or relative to that of other tested materials. Discontinuities in amplitude with repeated measurements for various heights indicate the location of interfaces in vertically-layered materials. Standardization techniques permit the relative acoustic characteristic impedance of a substance to be converted to an actual value. Calibration techniques for mixtures permit the amplitude to be converted to the concentration of a first material mixed in a second material.

  20. Locating interfaces in vertically-layered materials and determining concentrations in mixed materials utilizing acoustic impedance measurements

    DOEpatents

    Langlois, G.N.

    1983-09-13

    Measurement of the relative and actual value of acoustic characteristic impedances of an unknown substance, location of the interfaces of vertically-layered materials, and the determination of the concentration of a first material mixed in a second material are disclosed. A highly damped ultrasonic pulse is transmitted into one side of a reference plate, such as a tank wall, where the other side of the reference plate is in physical contact with the medium to be measured. The amplitude of a return signal, which is the reflection of the transmitted pulse from the interface between the other side of the reference plate and the medium, is measured. The amplitude value indicates the acoustic characteristic impedance of the substance relative to that of the reference plate or relative to that of other tested materials. Discontinuities in amplitude with repeated measurements for various heights indicate the location of interfaces in vertically-layered materials. Standardization techniques permit the relative acoustic characteristic impedance of a substance to be converted to an actual value. Calibration techniques for mixtures permit the amplitude to be converted to the concentration of a first material mixed in a second material. 6 figs.

  1. Development and validation of a high performance thin layer chromatographic method for determination of 1, 8-Cineole in Callistemon Citrinus

    PubMed Central

    Shaha, Archana; Salunkhe, Vijay R

    2014-01-01

    A new, simple, precise, rapid, and selective high performance thin layer chromatographic (HPTLC) method has been developed and validated for the estimation of 1, 8-cineole in volatile oil of leaves of Callistemon Citrinus obtained by hydro distillation. The method was validated as per ICH guidelines and can be utilized for routine analysis. The retention factor for 1, 8-cineole was found to be 0.52. The linearity was found to be in the range of 3 μg-12 μg. The recovery obtained for 1, 8-cineole was 98%, which is satisfactory. The result obtained in validation indicate the accuracy, reproducibility, and reliability of the developed HPTLC method for determination of 1, 8-cineole. PMID:24761119

  2. Employing X-ray Photoelectron Spectroscopy for Determining Layer Homogeneity in Mixed Polar Self-Assembled Monolayers

    PubMed Central

    2016-01-01

    Self-assembled monolayers (SAMs) containing embedded dipolar groups offer the particular advantage of changing the electronic properties of a surface without affecting the SAM–ambient interface. Here we show that such systems can also be used for continuously tuning metal work functions by growing mixed monolayers consisting of molecules with different orientations of the embedded dipolar groups. To avoid injection hot-spots when using the SAM-modified electrodes in devices, a homogeneous mixing of the two components is crucial. We show that a combination of high-resolution X-ray photoelectron spectroscopy with state-of-the-art simulations is an ideal tool for probing the electrostatic homogeneity of the layers and thus for determining phase separation processes in polar adsorbate assemblies down to inhomogeneities at the molecular level. PMID:27429041

  3. Employing X-ray Photoelectron Spectroscopy for Determining Layer Homogeneity in Mixed Polar Self-Assembled Monolayers.

    PubMed

    Hehn, Iris; Schuster, Swen; Wächter, Tobias; Abu-Husein, Tarek; Terfort, Andreas; Zharnikov, Michael; Zojer, Egbert

    2016-08-04

    Self-assembled monolayers (SAMs) containing embedded dipolar groups offer the particular advantage of changing the electronic properties of a surface without affecting the SAM-ambient interface. Here we show that such systems can also be used for continuously tuning metal work functions by growing mixed monolayers consisting of molecules with different orientations of the embedded dipolar groups. To avoid injection hot-spots when using the SAM-modified electrodes in devices, a homogeneous mixing of the two components is crucial. We show that a combination of high-resolution X-ray photoelectron spectroscopy with state-of-the-art simulations is an ideal tool for probing the electrostatic homogeneity of the layers and thus for determining phase separation processes in polar adsorbate assemblies down to inhomogeneities at the molecular level.

  4. Determination of heavy metal content and lipid profiles in mussel extracts from two sites on the moroccan atlantic coast and evaluation of their biological activities on MIN6 pancreatic cells.

    PubMed

    Boumhras, M; Ouafik, S; Nury, T; Gresti, J; Athias, A; Ragot, K; Nasser, B; Cherkaoui-Malki, M; Lizard, G

    2014-11-01

    Mussels may concentrate pollutants, with possibly significant side effects on human health. Therefore, mussels (Mytilus galloprovincialis) from two sites of the Moroccan Atlantic coast (Jorf Lasfar [JL], an industrial site, and Oualidia [OL], a vegetable-growing area), were subjected to biochemical analyses to quantify the presence of heavy metals (Cd, Cr, and Pb) and to establish the lipid profile: fatty acid, cholesterol, oxysterol, phytosterol and phospholipid content. In addition, mussel lipid extracts known to accumulate numerous toxic components were tested on murine pancreatic β-cells (MIN6), and their biological activities were measured with various flow cytometric and biochemical methods to determine their impacts on cell death induction, organelle dysfunctions (mitochondria, lysosomes, and peroxisomes), oxidative stress and insulin secretion. The characteristics of JL and OL lipid extracts were compared with those of commercially available mussels from Spain (SP) used for human consumption. OL and JL contained heavy metals, high amounts of phospholipids, and high levels of oxysterols; the [(unsaturated fatty acids)/(saturated fatty acids)] ratio, which can be considered a sign of environmental stress leading to lipid peroxidation, was low. On MIN6 cells, JL and OL lipid extracts were able to trigger cell death. This event was associated with overproduction of H2 O2 , increased catalase activity, a decreased GSH level, lipid peroxidation and stimulation of insulin secretion. These effects were not observed with SP lipid extracts. These data suggest that some components from OL and JL lipid extracts might predispose to pancreatic dysfunctions. Epidemiological studies would be needed to assess the global risk on human health and the metabolic disease incidence in a context of regular seafood consumption from the OL and JL areas.

  5. An Introduction to Lipid Analysis in the Cell Biology Laboratory.

    ERIC Educational Resources Information Center

    Schuh, Timothy J.

    2002-01-01

    Explains a thin-layer chromatography (TLC) experiment that allows students to study complex mixtures of lipids using small volumes. Uses a water-soluble dye to stain lipids that is fast and safe. (YDS)

  6. Lipid profiling of polarized human monocyte-derived macrophages.

    PubMed

    Montenegro-Burke, J Rafael; Sutton, Jessica A; Rogers, Lisa M; Milne, Ginger L; McLean, John A; Aronoff, David M

    2016-12-01

    The highly orchestrated transcriptional and metabolic reprogramming during activation drastically transforms the main functions and physiology of human macrophages across the polarization spectrum. Lipids, for example, can modify protein function by acting remotely as signaling molecules but also locally by altering the physical properties of cellular membranes. These changes play key roles in the functions of highly plastic immune cells due to their involvement in inflammation, immune responses, phagocytosis and wound healing processes. We report an analysis of major membrane lipids of distinct phenotypes of resting (M0), classically activated (M1), alternatively activated (M2a) and deactivated (M2c) human monocyte derived macrophages from different donors. Samples were subjected to supercritical fluid chromatography-ion mobility-mass spectrometry analysis, which allowed separations based on lipid class, facilitating the profiling of their fatty acid composition. Different levels of arachidonic acid mobilization as well as other fatty acid changes were observed for different lipid classes in the distinct polarization phenotypes, suggesting the activation of highly orchestrated and specific enzymatic processes in the biosynthesis of lipid signaling molecules and cell membrane remodeling. Thromboxane A2 production appeared to be a specific marker of M1 polarization. These alterations to the global composition of lipid bi-layer membranes in the cell provide a potential methodology for the definition and determination of cellular and tissue activation states.

  7. In vitro digestion of curcuminoid-loaded lipid nanoparticles

    NASA Astrophysics Data System (ADS)

    Noack, Andreas; Oidtmann, Johannes; Kutza, Johannes; Mäder, Karsten

    2012-09-01

    Curcuminoid-loaded lipid nanoparticles were produced by melt homogenization. The used lipid matrices were medium chain triglycerides, trimyristin (TM), and tristearin. The mean particle size of the preparations was between 130 and 180 nm. The incorporated curcuminoids revealed a good stability over a period of 12 months. The curcuminoid-loaded lipid nanoparticles were intended for the oral delivery of curcuminoids. Therefore, the fate of the triglyceride matrix in simulated gastric and simulated intestinal media under the influence of pepsin and pancreatin, respectively, was assessed. The degradation of the triglycerides was monitored by the pH-stat method and with high performance thin layer chromatography in connection with spectrodensitometry to quantify the different lipid fractions. The TM nanoparticles were not degraded in simulated gastric fluid (SGF), but the decomposition of the triglyceride matrix was rapid in the intestinal media. The digestion process was faster in the simulated fed state medium compared to the simulated fasted state medium. Additionally, the stability of the incorporated drug was tested in the respective physiological media. The curcuminoids showed an overall good stability in the different test media. The release of the curcuminoids from the lipid nanoparticles was determined by fluorescence imaging techniques. A slow release of the drug was found in phosphate buffer. In contrast, a more distinct release of the curcuminoids was verifiable in SGF and in simulated intestinal fluids. Overall, it was considered that the transfer of the drug into the outer media was mainly triggered by the lipid degradation and not by drug release.

  8. Intercomparison of Methods for the Determination of Mixing-Layer Heights Using a New Network of Advanced Ceilometers in Germany

    NASA Astrophysics Data System (ADS)

    Engelbart, D. A. M.; Reichardt, J.; Teschke, G.

    2009-09-01

    The mixing layer height (MLH) is one of the most relevant parameters for modeling and assessing the atmospheric spreading conditions for all kinds of constituents in the boundary layer. For this reason, it has become more and more important to operationally detect and determine MLH with networks of sophisticated observing systems. Such networks can either be used for validation of the output from NWP models, or for the direct assessment of the atmospheric conditions (if the measurements are cost-effective and the results can be proven to be reliable). Typically, MLH is determined from vertical profiles measured with radiosondes, lidar, sodar/RASS, or WPR/RASS. While time resolution of radiosondes is strongly restricted, remote-sensing systems are mostly facing deficits with respect to height coverage or range. Apart from combinations of systems, ceilometers show considerable advantages for monitoring the full daily cycle of the MLH from the surface layer up to more than three kilometers. In 2007, the German Meteorological Service started to install a network of new ceilometers which are being used among other objectives also for MLH detection. In contrast to the previous systems, the new type of ceilometer (JENOPTIK CHM-15K) is based on a diode-pumped Nd:YAG laser and a single-photon-counting detector with considerably higher sensitivity than standard analog-detection systems. Apart from a description of the new type of ceilometers, this contribution focuses on the presentation of a new mathematics-based method for the determination of MLH. In principle, MLH detection is a pattern recognition problem. The basic assumption which is usually made is that the vertical distribution of aerosol can be used as a tracer for finding boundaries. The absolute value of the backscatter is typically not needed since the relevant information seems to be completely coded in the gradient (but possibly of different orders) of the backscatter profile. Currently, two major types of

  9. Localization and Ordering of Lipids Around Aquaporin-0: Protein and Lipid Mobility Effects

    PubMed Central

    Briones, Rodolfo; Aponte-Santamaría, Camilo; de Groot, Bert L.

    2017-01-01

    Hydrophobic matching, lipid sorting, and protein oligomerization are key principles by which lipids and proteins organize in biological membranes. The Aquaporin-0 channel (AQP0), solved by electron crystallography (EC) at cryogenic temperatures, is one of the few protein-lipid complexes of which the structure is available in atomic detail. EC and room-temperature molecular dynamics (MD) of dimyristoylglycerophosphocholine (DMPC) annular lipids around AQP0 show similarities, however, crystal-packing and temperature might affect the protein surface or the lipids distribution. To understand the role of temperature, lipid phase, and protein mobility in the localization and ordering of AQP0-lipids, we used MD simulations of an AQP0-DMPC bilayer system. Simulations were performed at physiological and at DMPC gel-phase temperatures. To decouple the protein and lipid mobility effects, we induced gel-phase in the lipids or restrained the protein. We monitored the lipid ordering effects around the protein. Reducing the system temperature or inducing lipid gel-phase had a marginal effect on the annular lipid localization. However, restraining the protein mobility increased the annular lipid localization around the whole AQP0 surface, resembling EC. The distribution of the inter-phosphate and hydrophobic thicknesses showed that stretching of the DMPC annular layer around AQP0 surface is the mechanism that compensates the hydrophobic mismatch in this system. The distribution of the local area-per-lipid and the acyl-chain order parameters showed particular fluid- and gel-like areas that involved several lipid layers. These areas were in contact with the surfaces of higher and lower protein mobility, respectively. We conclude that the AQP0 surfaces induce specific fluid- and gel-phase prone areas. The presence of these areas might guide the AQP0 lipid sorting interactions with other membrane components, and is compatible with the squared array oligomerization of AQP0 tetramers

  10. Accuracy of determination of position and width of molecular groups in biological and lipid membranes via neutron diffraction.

    PubMed

    Gordeliy, V I; Chernov, N I

    1997-07-01

    Neutron diffraction combined with the deuterium-labelled molecular groups of biological and model membrane components allows one to detect with high accuracy the structure of these objects. Experiments of this kind are only possible at unique high-flux neutron sources, and the planning of neutron-diffraction experiments must take into account some special requirements primarily related to the duration of the experiment and the accuracy of estimation of membrane structure parameters as a result of finite time of the measurements. This paper deals with the question of statistical accuracy of the position x(0) and width v of the distribution of deuterium labels in membranes along the normal of their plane, which are determined in a neutron diffraction experiment. It is shown that the accuracy of x(0) and v estimation does not depend on membrane constitution. It is dependent only on the scattering amplitude of the deuterium label, the label position x(0) and the distribution width v. Analytic calculations show that the statistical errors Deltax(0) and Deltav are inversely proportional to the scattering amplitude of the label and, as usual, to the square root of measurement time. The question of Deltax0 and Deltav dependence on the number of structure factors used in the calculations of x(0) and v is also studied. It is shown that, the accuracy of x(0) estimation is approximately constant with down to four structure factors used, and, with the number of the factors below four, it deteriorates drastically. Analogous is the behaviour of Deltav(h(max)) relation with one exception: abrupt deterioration of the accuracy occurs beginning with five structure factors used. One does not have to measure the highest diffraction reflections which takes a much longer time compared with the first ones. It is an important result. All the problems mentioned above have also been considered for the case of two different deuterium labels in membranes.

  11. Determination of uptake kinetics (sampling rates) by lipid-containing semipermeable membrane devices (SPMDs) for polycyclic aromatic hydrocarbons (PAHs) in water

    USGS Publications Warehouse

    Huckins, J.N.; Petty, J.D.; Orazio, C.E.; Lebo, J.A.; Clark, R.C.; Gibson, V.L.; Gala, W.R.; Echols, K.R.

    1999-01-01

    The use of lipid-containing semipermeable membrane devices (SPMDs) is becoming commonplace, but very little sampling rate data are available for the estimation of ambient contaminant concentrations from analyte levels in exposed SPMDs. We determined the aqueous sampling rates (R(s)s; expressed as effective volumes of water extracted daily) of the standard (commercially available design) 1-g triolein SPMD for 15 of the priority pollutant (PP) polycyclic aromatic hydrocarbons (PAHs) at multiple temperatures and concentrations. Under the experimental conditions of this study, recovery- corrected R(s) values for PP PAHs ranged from ???1.0 to 8.0 L/d. These values would be expected to be influenced by significant changes (relative to this study) in water temperature, degree of biofouling, and current velocity- turbulence. Included in this paper is a discussion of the effects of temperature and octanol-water partition coefficient (K(ow)); the impacts of biofouling and hydrodynamics are reported separately. Overall, SPMDs responded proportionally to aqueous PAH concentrations; i.e., SPMD R(s) values and SPMD-water concentration factors were independent of aqueous concentrations. Temperature effects (10, 18, and 26 ??C) on Rs values appeared to be complex but were relatively small.The use of lipid-containing semipermeable membrane devices (SPMDs) is becoming commonplace, but very little sampling rate data are available for the estimation of ambient contaminant concentrations from analyte levels in exposed SPMDs. We determined the aqueous sampling rates (Rss; expressed as effective volumes of water extracted daily) of the standard (commercially available design) 1-g triolein SPMD for 15 of the priority pollutant (PP) polycyclic aromatic hydrocarbons (PAHs) at multiple temperatures and concentrations. Under the experimental conditions of this study, recovery-corrected Rs values for PP PAHs ranged from ???1.0 to 8.0 L/d. These values would be expected to be influenced by

  12. Model GW determination of band gaps and electronic properties of strained layer InAsSb/InAs superlattices

    NASA Astrophysics Data System (ADS)

    Mannstadt, W.; Asahi, R.; Freeman, A. J.; Picozzi, S.; Continenza, A.

    1998-03-01

    A strong interest is still devoted to the InAs_1-xSb_x/InAs(111) system due to the opportunity to tune the band gap as a function of the growth conditions. Lattice mismatch, strain, alloy composition and layers thickness determine the electronic and transport properies of these systems. We investigated this system using our full-potential linearized augmented plane wave (FLAPW) method for thin films (Wimmer,Krakauer,Weinert and A.J.Freeman, Phys.Rev.B24, 864 (1981)) and bulk solids, to study overlayers, sandwiches and superlattices. Our method includes atomic force and total energy determinations of the equilibrium structures, as well as the model GW approximation(F.Gygi and A.Baldereschi, Phys.Rev.Lett. 62, 2160 (1989)) to obtain accurate band gaps. This allows us to investigate the influence of strain, structural relaxation and alloying on the electronic structure and the band gap. Results for bulk InAs, InSb and InAs_1-xSb_x, at different x compositions and for ordered superlattices will be presented.

  13. The Effect of Optic Disc Center Displacement on Retinal Nerve Fiber Layer Measurement Determined by Spectral Domain Optical Coherence Tomography

    PubMed Central

    Uhm, Ki Bang; Sung, Kyung Rim; Kang, Min Ho; Cho, Hee Yoon; Seong, Mincheol

    2016-01-01

    Purpose To investigate the effect of optic disc center displacement on retinal nerve fiber layer (RNFL) measurement determined by spectral domain optical coherence tomography (SD-OCT). Methods The optic disc center was manipulated at 1-pixel intervals in horizontal, vertical, and diagonal directions. According to the manipulated optic disc center location, the RNFL thickness data were resampled: (1) at a 3.46-mm diameter circle; and (2) between a 2.5-mm diameter circle and 5.4-mm square. Error was calculated between the original and resampled RNFL measurements. The tolerable error threshold of the optic disc center displacement was determined by considering test-retest variability of SD-OCT. The unreliable zone was defined as an area with 10% or more variability. Results The maximum tolerable error thresholds of optic disc center displacement on the RNFL thickness map were distributed from 0.042 to 0.09 mm in 8 directions. The threshold shape was vertically elongated. Clinically important unreliable zones were located: (1) at superior and inferior region in the vertical displacement; (2) at inferotemporal region in the horizontal displacement, and (3) at superotemporal or inferotemporal region in the diagonal displacement. The unreliable zone pattern and threshold limit varied according to the direction of optic disc displacement. Conclusions Optic disc center displacement had a considerable impact on whole RNFL thickness measurements. Understanding the effect of optic disc center displacement could contribute to reliable RNFL measurements. PMID:27783663

  14. High-performance thin-layer chromatographic determination of etoricoxib and thiocolchicoside in combined tablet dosage form.

    PubMed

    Rajmane, Vivek S; Gandhi, Santosh V; Patil, Upasana P; Sengar, Mahima R

    2010-01-01

    A new, simple HPTLC method for determination of etoricoxib (ETO) and thiocolchicoside (THIO) in combined tablet dosage form has been developed and validated. The pharmaceutical dosage form used in this study was Nucoxia-MR tablets. Sample solutions were prepared at concentrations of 25 and 20 microg/mL for ETO and THIO, respectively. The separation was carried out on 20 x 10 cm Merck aluminum sheets precoated with a 250 microm layer of silica gel 60F254 using ethyl acetate-methanol (8 + 2, v/v) as the mobile phase. The calibration curve was linear over a range of 50-250 and 100-500 ng/band for ETO and THIO, respectively. Quantitative determination was done by densitometric scanning of bands at 290 nm. LOD and LOQ values were 10.993 and 33.314 ng/band, respectively, for ETO and 25.133 and 76.161 ng/band, respectively, for THIO. The method was validated with respect to linearity, accuracy, precision, and robustness in accordance with the International Conference on Harmonization guidelines. The method has been successfully applied to the analysis of drugs in the pharmaceutical formulation.

  15. The alternative use of layered double hydroxides as extraction medium coupled with microcomplexation for determination of phosphate in water samples

    NASA Astrophysics Data System (ADS)

    Gissawong, Netsirin; Sansuk, Sira; Srijaranai, Supalax

    2017-02-01

    A simple, rapid, in situ, and green extraction combined with a microcomplexation has been developed for the spectrophotometric determination of phosphate in water samples. Through their formation, layered double hydroxides (LDHs) were employed as the extraction medium, instantly commenced by a rapid addition of a mixed solution of Mg2 + and Al3 + ions into alkaline phosphate solution. After the extraction, LDH precipitate containing phosphate was dissolved by sulfuric acid and the released phosphate was subsequently detected via its complexation with molybdate in the presence of antimonyl and ascorbic acid. Under optimum conditions, the linearity in the range of 5-200 μg L- 1, with the correlation coefficient (r2) of 0.9969, and the enrichment factor (EF) of 14 were obtained. The limit of detection (LOD) of 5 μg L- 1 and good precision, with the relative standard deviations (RSDs) less than 8.16%, were achieved. The proposed method was successfully applied to determine phosphate in water samples and the relative recoveries of 72.97-115.32% were obtained.

  16. The alternative use of layered double hydroxides as extraction medium coupled with microcomplexation for determination of phosphate in water samples.

    PubMed

    Gissawong, Netsirin; Sansuk, Sira; Srijaranai, Supalax

    2017-02-15

    A simple, rapid, in situ, and green extraction combined with a microcomplexation has been developed for the spectrophotometric determination of phosphate in water samples. Through their formation, layered double hydroxides (LDHs) were employed as the extraction medium, instantly commenced by a rapid addition of a mixed solution of Mg(2+) and Al(3+) ions into alkaline phosphate solution. After the extraction, LDH precipitate containing phosphate was dissolved by sulfuric acid and the released phosphate was subsequently detected via its complexation with molybdate in the presence of antimonyl and ascorbic acid. Under optimum conditions, the linearity in the range of 5-200μgL(-1), with the correlation coefficient (r(2)) of 0.9969, and the enrichment factor (EF) of 14 were obtained. The limit of detection (LOD) of 5μgL(-1) and good precision, with the relative standard deviations (RSDs) less than 8.16%, were achieved. The proposed method was successfully applied to determine phosphate in water samples and the relative recoveries of 72.97-115.32% were obtained.

  17. Multivariate image analysis-thin layer chromatography (MIA-TLC) for simultaneous determination of co-eluting components.

    PubMed

    Hemmateenejad, Bahram; Mobaraki, Nabiollah; Shakerizadeh-Shirazi, Fatemeh; Miri, Ramin

    2010-07-01

    This paper addresses the solution of peak overlapping, as a fundamental problem in TLC, by multivariate analysis of the images recorded by a digital camera. We report the results of our study on the application of multivariate image analysis (MIA) for simultaneous determination of several species on thin layer chromatography (TLC) sheet for the first time. An imaging system, composed of a dark cabinet, a digital camera and a multivariate image analysis program, was prepared for recording the images of TLC plates after development of a multi-component solution. The written program was able to produce 2- and 3-dimensional chromatograms of the solutions, which were subsequently used as inputs of partial least squares, as an efficient multivariate calibration method. The ability of the proposed MIA-TLC method for simultaneous determination of the co-eluting components was validated by analysis of ternary synthetic mixtures of indicators of highly overlapped chromatograms (i.e., methyl yellow, bromocresol green and creseol red) and a real mixture of nifedipine and its photo-degradation product. By application of different strategies like principal component analysis and variable selection, models were obtained that could estimate the concentration of indicators in the external prediction set with relative errors of lower than 10% and in most cases lower than 5%.

  18. Quantitative Determination of L-DOPA in Seeds of Mucuna Pruriens Germplasm by High Performance Thin Layer Chromatography.

    PubMed

    Raina, Archana P; Khatri, Renu

    2011-07-01

    Mucuna pruriens Linn. is an important medicinal plant used for treatment of Parkinson's disease and many others in ancient Indian medical system. L-DOPA extracted from seeds of Mucuna is a constituent of more than 200 indigenous drug formulations and is more effective as drug than the synthetic counterpart. A densitometric high performance thin-layer chromatographic (HPTLC) method was developed for quantification of L-DOPA content present in the seeds extract. The method involves separation of L-DOPA on precoated silica gel 60 GF(254) HPTLC plates using a solvent system of n-butanol-acetic-acid-water (4:1:1, v/v) as the mobile phase. Quantification was done at 280 nm using absorbance reflectance mode. Linearity was found in the concentration range of 100 to 1000 ng/spot with the correlation coefficient value of 0.9980. The method was validated for accuracy, precision and repeatability. Mean recovery was 100.89%. The LOD and LOQ for L-DOPA determination were found to be 3.41 ng/spot and 10.35 ng/spot respectively. The proposed HPTLC method was found to be precise, specific and accurate for quantitative determination of L-DOPA. It can be used for rapid screening of large germplasm collections of Mucuna pruriens for L-DOPA content. The method was used to study variation in fifteen accessions of Mucuna germplasm collected from different geographical regions.

  19. [The microanalysis of serum lipoprotein lipids (author's transl)].

    PubMed

    Leiss, O; Murawski, U; Egge, H

    1979-10-01

    A method is described which allows the determination of phospholipids, free and esterified cholesterol, triglycerides and free fatty acids in lipoprotein fractions starting from 50 microliter of serum. Lipoproteins were separated by successive precipitation: VLDL with Heparin/Mg++, LDL with Dextran sulfate/Mg++ and finally HDL with Dextran sulfate/Mn++. Lipids extracted from the precipitated lipoproteins were determined gravimetrically and by densitometry after thin layer chromatography and charring (van Gent, C.M. (1968), Z. Anal. Chem. 236, 344--350; Egge, H. et al. (1970) Z. Klin. Chem. Klin. Biochem. 8, 488--491). The results obtained from the serum of 12 adult healthy persons were compared with those from lipoprotein fractions separated by preparative ultracentrifugation (Havel, R. J. et al. (1955) J. Clin. Invest. 34, 1345--1353). The distribution of lipids in beta-lipoproteins (d less than 1.063 g/ml) and HDL (1.063 less than d less than 1.21 g/ml) prepared by both methods showed good agreement. Some differences were observed between VLDL (d less than 1.006 g/ml) and VHDL (d greater than 1.21 g/ml) prepared either by precipitation or ultracentrifugation. Compared to the total lipid of the sera, recovery rates were 95--105%. Variation coefficients were in the range of 15--20% for VLDL lipids, 5--10% for LDL and HDL lipids and 10--15% for VHDL lipids. Gravimetrically determined total lipids had a variation coefficient of 4 and 6% for LDL and HDL respectively.

  20. Quantitative determination of 3,4-methylenedioxymethamphetamine by thin-layer chromatography in ecstasy illicit pills in Tehran.

    PubMed

    Shetab Boushehri, Seyed Vahid; Tamimi, Maryam; Kebriaeezadeh, Abbas

    2009-11-01

    3,4-Methylenedioxymethamphetamine (MDMA) is the major ingredient of ecstasy illicit pills. It is a hallucinogen, central nervous system stimulant, and serotonergic neurotoxin that strongly releases serotonin from serotonergic nerves terminals. Moreover, it releases norepinephrine and dopamine from nerves terminal, but to a lesser extent than serotonin. Poisoning and even death from abusing MDMA-containing ecstasy illicit pills among abusers is usual. Thus, quantitative determination of MDMA content of ecstasy illicit pills in illicit drug bazaar must be done regularly to find the most high dose ecstasy illicit pills and removing them from illicit drug bazaar. In the present study, MDMA contents of 13 most abundant ecstasy illicit pills were determined by quantitative thin-layer chromatography (TLC). Two procedures for quantitative determination of MDMA contents of ecstasy illicit pills by TLC were used: densitometric and so-called 'scraping off' methods. The former was done in a reflection mode at 285 nm and the latter was done by absorbance measurement of eluted scraped off spots. Limit of detection (LOD), considering signal-to-noise ratio (S/N) of 2, and limit of quantification (LOQ), regarding S/N of 10, of densitometric and scraping off methods were 0.40 microg, 1.20 microg, and 6.87 mug, 20.63 microg, respectively. Repeatabilities (within-laboratory error) of densitometric and scraping off methods were 0.5% and 3.6%, respectively. The results showed that the ecstasy illicit pills contained 24-124.5 mg and 23.9-122.2 mg MDMA by densitometric and scraping off methods, respectively.

  1. Lipid Nanotechnology

    PubMed Central

    Mashaghi, Samaneh; Jadidi, Tayebeh; Koenderink, Gijsje; Mashaghi, Alireza

    2013-01-01

    Nanotechnology is a multidisciplinary field that covers a vast and diverse array of devices and machines derived from engineering, physics, materials science, chemistry and biology. These devices have found applications in biomedical sciences, such as targeted drug delivery, bio-imaging, sensing and diagnosis of pathologies at early stages. In these applications, nano-devices typically interface with the plasma membrane of cells. On the other hand, naturally occurring nanostructures in biology have been a source of inspiration for new nanotechnological designs and hybrid nanostructures made of biological and non-biological, organic and inorganic building blocks. Lipids, with their amphiphilicity, diversity of head and tail chemistry, and antifouling properties that block nonspecific binding to lipid-coated surfaces, provide a powerful toolbox for nanotechnology. This review discusses the progress in the emerging field of lipid nanotechnology. PMID:23429269

  2. Chemical and structural investigation of lipid nanoparticles: drug-lipid interaction and molecular distribution

    NASA Astrophysics Data System (ADS)

    Anantachaisilp, Suranan; Meejoo Smith, Siwaporn; Treetong, Alongkot; Pratontep, Sirapat; Puttipipatkhachorn, Satit; Rungsardthong Ruktanonchai, Uracha

    2010-03-01

    Lipid nanoparticles are a promising alternative to existing carriers in chemical or drug delivery systems. A key challenge is to determine how chemicals are incorporated and distributed inside nanoparticles, which assists in controlling chemical retention and release characteristics. This study reports the chemical and structural investigation of γ-oryzanol loading inside a model lipid nanoparticle drug delivery system composed of cetyl palmitate as solid lipid and Miglyol 812® as liquid lipid. The lipid nanoparticles were prepared by high pressure homogenization at varying liquid lipid content, in comparison with the γ-oryzanol free systems. The size of the lipid nanoparticles, as measured by the photon correlation spectroscopy, was found to decrease with increased liquid lipid content from 200 to 160 nm. High-resolution proton nuclear magnetic resonance (1H-NMR) measurements of the medium chain triglyceride of the liquid lipid has confirmed successful incorporation of the liquid lipid in the lipid nanoparticles. Differential scanning calorimetric and powder x-ray diffraction measurements provide complementary results to the 1H-NMR, whereby the crystallinity of the lipid nanoparticles diminishes with an increase in the liquid lipid content. For the distribution of γ-oryzanol inside the lipid nanoparticles, the 1H-NMR revealed that the chemical shifts of the liquid lipid in γ-oryzanol loaded systems were found at rather higher field than those in γ-oryzanol free systems, suggesting incorporation of γ-oryzanol in the liquid lipid. In addition, the phase-separated structure was observed by atomic force microscopy for lipid nanoparticles with 0% liquid lipid, but not for lipid nanoparticles with 5 and 10% liquid lipid. Raman spectroscopic and mapping measurements further revealed preferential incorporation of γ-oryzanol in the liquid part rather than the solid part of in the lipid nanoparticles. Simple models representing the distribution of γ-oryzanol and

  3. Effect of Different Broad Waveband Lights on Membrane Lipids of a Cyanobacterium, Synechococcus sp., as Determined by UPLC-QToF-MS and Vibrational Spectroscopy.

    PubMed

    Montero, Olimpio; Velasco, Marta; Sanz-Arranz, Aurelio; Rull, Fernando

    2016-05-23

    Differential profile of membrane lipids and pigments of a Synechococcus sp. cyanobacterial strain cells exposed to blue, green, red and white light are determined by means of liquid chromatography and mass spectrometry or diode array detection. Raman and ATR-IR spectra of intact cells under the diverse light wavebands are also reported. Blue light cells exhibited an increased content of photosynthetic pigments as well as specific species of membrane glycerolipids as compared to cells exposed to other wavebands. The A630/A680 ratio indicated an increased content of phycobilisomes (PBS) in the blue light-exposed cells. Some differences in the protein conformation between the four light waveband-exposed cells were deduced from the variable absorbance at specific wavenumbers in the FT-Raman and ATR-FTIR spectra, in particular bands assigned to amide I and amide II. Bands from 1180 to 950 cm(-1) in the ATR-FTIR spectrum suggest degraded outer membrane polysaccharide in the blue light-exposed cells.

  4. Determination of uptake kinetics (sampling rates) by lipid-containing semipermeable membrane devices (SPMDs) for polycyclic aromatic hydrocarbons (PAHs) in water

    SciTech Connect

    Huckins, J.N.; Petty, J.D.; Orazio, C.E.; Lebo, J.A.; Clark, R.C.; Gibson, V.L.; Gala, W.R.; Echols, K.R.

    1999-11-01

    The use of lipid-containing semipermeable membrane devices (SPMDs) is becoming commonplace, but very little sampling rate data are available for the estimation of ambient contaminant concentrations from analyze levels in exposed SPMDs. The authors determined the aqueous sampling rates (R{sub s}s; expressed as effective volumes of water extracted daily) of the standard (commercially available design) 1-g triolein SPMD for 15 of the priority pollutant (PP) polycyclic aromatic hydrocarbons (PAHs) at multiple temperatures and concentrations. Under the experimental conditions of this study, recovery-corrected R{sub s} values for PP PAHs ranged from {approximately}1.0 to 8.0 L/d. These values would be expected to be influenced by significant changes (relative to this study) in water temperature, degree of biofouling, and current velocity-turbulence. Included in this paper is a discussion of the effects of temperature and octanol-water partition coefficient (K{sub ow}); the impacts of biofouling and hydrodynamics are reported separately. Overall, SPMDs responded proportionally to aqueous PAH concentrations; i.e., SPMD R{sub s} values and SPMD-water concentration factors were independent of aqueous concentrations. Temperature effects on R{sub s} values appeared to be complex but were relatively small.

  5. Effect of Different Broad Waveband Lights on Membrane Lipids of a Cyanobacterium, Synechococcus sp., as Determined by UPLC-QToF-MS and Vibrational Spectroscopy

    PubMed Central

    Montero, Olimpio; Velasco, Marta; Sanz-Arranz, Aurelio; Rull, Fernando

    2016-01-01

    Differential profile of membrane lipids and pigments of a Synechococcus sp. cyanobacterial strain cells exposed to blue, green, red and white light are determined by means of liquid chromatography and mass spectrometry or diode array detection. Raman and ATR-IR spectra of intact cells under the diverse light wavebands are also reported. Blue light cells exhibited an increased content of photosynthetic pigments as well as specific species of membrane glycerolipids as compared to cells exposed to other wavebands. The A630/A680 ratio indicated an increased content of phycobilisomes (PBS) in the blue light-exposed cells. Some differences in the protein conformation between the four light waveband-exposed cells were deduced from the variable absorbance at specific wavenumbers in the FT-Raman and ATR-FTIR spectra, in particular bands assigned to amide I and amide II. Bands from 1180 to 950 cm−1 in the ATR-FTIR spectrum suggest degraded outer membrane polysaccharide in the blue light-exposed cells. PMID:27223306

  6. Methodology for determining the influence of soft surface layers in porous solids on compressive behavior: Application to NASA's lightweight ceramic ablator

    NASA Astrophysics Data System (ADS)

    Gray, Mike H. B.; Milstein, Frederick

    2006-02-01

    A methodology is presented for determining the compressive response of a porous material's surface layer. Microscopic strain measurements are combined with an analytical model that describes the strain in the surface layer, at a given compressive stress, as a nonlinear function of surface depth. The model yields the effective thickness of the surface layer, explains quantitatively an increase in apparent material stiffness with increasing sample thickness, and yields accurate stress-strain curves (prior to yielding) for samples of arbitrary thickness. The methodology is applied successfully to silicone impregnated reusable ceramic ablator, a thermal protection system material developed and used by NASA for planetary missions, including the Mars rovers.

  7. (19)F Nuclear Magnetic Resonance Spectrometric Determination of the Partition Coefficients of Flutamide and Nilutamide (Antiprostate Cancer Drugs) in a Lipid Nano-Emulsion and Prediction of Its Encapsulation Efficiency for the Drugs.

    PubMed

    Takegami, Shigehiko; Kitamura, Keisuke; Ohsugi, Mayuko; Konishi, Atsuko; Kitade, Tatsuya

    2016-12-01

    To design a useful lipid drug carrier having a high encapsulation efficiency (EE%) for the antiprostate cancer drugs flutamide (FT) and nilutamide (NT), a lipid nano-emulsion (LNE) was prepared with soybean oil (SO), phosphatidylcholine (PC), and sodium palmitate, and the partition coefficients (K ps) of the drugs for the LNE were determined by (19)F nuclear magnetic resonance (NMR) spectrometry. The (19)F NMR signal of the trifluoromethyl group of both drugs showed a downfield shift from an internal standard (trifluoroethanol) and broadening according to the increase in the lipid concentration due to their interaction with LNE particles. The difference in the chemical shift (Δδ) of each drug caused by the addition of LNE was measured under different amounts of LNE, and the K p values were calculated from the Δδ values. The results showed that FT has higher lipophilicity than NT. The total lipid concentration (SO + PC) required to encapsulate each drug into LNE with an EE% of more than 95% was calculated from the K p values as 93.3 and 189.9 mmol/L for FT and NT, respectively. For an LNE prepared with the total lipid concentration of 215 mmol/L, the predicted EE% values were 98 and 96% for FT and NT, respectively, while the experimental EE% values determined by a centrifugation method were approximately 99% for both drugs. Thus, the (19)F NMR spectrometric method is a useful technique to obtain the K p values of fluorinated drugs and thereby predict the theoretical lipid concentrations and prepare LNEs with high EE% values.

  8. Determining the Origin and Fate of Particulate Plant-Derived Organic Matter in the Rhone River (France) : A Lipid Tracer Review

    NASA Astrophysics Data System (ADS)

    Galeron, M. A.; Amiraux, R.; Charriere, B.; Radakovitch, O.; Raimbault, P.; Garcia, N.; Lagadec, V.; Vaultier, F.; Rontani, J. F.

    2014-12-01

    A number of lipid tracers including fatty acids, hydroxyacids, n-alkanols, sterols and triterpenoids were used to determine the origin and fate of suspended particulate organic matter (POM) collected in the Rhone River (France), with a main focus on phytosterols, such as sitosterol, desmosterol, brassicasterol and cholesterol. This seasonal survey (April 2011 to May 2013) revealed a year-round strong terrigenous contribution to the plant derived particulate organic matter (POM) with significant algal inputs observed in March and attributed to phytoplanktonic blooms likely dominated by diatoms. Specific sitosterol and cholesterol degradation products were quantified and used to estimate the part of biotic and abiotic degradation of POM within the river. Plant-derived organic matter appears to be mainly affected by photo-oxidation and autoxidation (free radical oxidation), while organic matter of human origin, evidenced by the presence of coprostanol, is clearly more prone to bacterial degradation. Despite the involvement of an intense autoxidation inducing homolytic cleavage of peroxy bonds, a significant proportion of hydroperoxides is still intact in higher plant debris. These compounds could play a role in the degradation of terrestrial material by inducing an intense autoxidation upon its arrival at sea. Although sitosterol has been commonly used as a tracer of the terrestrial origin of POM in rivers, we show here that is it also found in phytoplankton, which highlights the need to use different tracers to determine the origin of POM in rivers. As part of the set of tracers we use, we have identified betulin to be an interesting candidate, although limited to a number of angiosperms species. Not only can we trace betulin to an unequivocal terrestrial origin, we also identified its specific degradation products, allowing us to trace the degradation state of angiosperm particulate debris in rivers, as well as the type of degradation undergone.

  9. Conformational flexibility in the apolipoprotein E amino-terminal domain structure determined from three new crystal forms: implications for lipid binding.

    PubMed Central

    Segelke, B. W.; Forstner, M.; Knapp, M.; Trakhanov, S. D.; Parkin, S.; Newhouse, Y. M.; Bellamy, H. D.; Weisgraber, K. H.; Rupp, B.

    2000-01-01

    An amino-terminal fragment of human apolipoprotein E3 (residues 1-165) has been expressed and crystallized in three different crystal forms under similar crystallization conditions. One crystal form has nearly identical cell dimensions to the previously reported orthorhombic (P2(1)2(1)2(1)) crystal form of the amino-terminal 22 kDa fragment of apolipoprotein E (residues 1-191). A second orthorhombic crystal form (P2(1)2(1)2(1) with cell dimensions differing from the first form) and a trigonal (P3(1)21) crystal form were also characterized. The structures of the first orthorhombic and the trigonal form were determined by seleno-methionine multiwavelength anomalous dispersion, and the structure of the second orthorhombic form was determined by molecular replacement using the structure from the trigonal form as a search model. A combination of modern experimental and computational techniques provided high-quality electron-density maps, which revealed new features of the apolipoprotein E structure, including an unambiguously traced loop connecting helices 2 and 3 in the four-helix bundle and a number of multiconformation side chains. The three crystal forms contain a common intermolecular, antiparallel packing arrangement. The electrostatic complimentarity observed in this antiparallel packing resembles the interaction of apolipoprotein E with the monoclonal antibody 2E8 and the low density lipoprotein receptor. Superposition of the model structures from all three crystal forms reveals flexibility and pronounced kinks in helices near one end of the four-helix bundle. This mobility at one end of the molecule provides new insights into the structural changes in apolipoprotein E that occur with lipid association. PMID:10850798

  10. Layer-by-layer cell membrane assembly

    NASA Astrophysics Data System (ADS)

    Matosevic, Sandro; Paegel, Brian M.

    2013-11-01

    Eukaryotic subcellular membrane systems, such as the nuclear envelope or endoplasmic reticulum, present a rich array of architecturally and compositionally complex supramolecular targets that are as yet inaccessible. Here we describe layer-by-layer phospholipid membrane assembly on microfluidic droplets, a route to structures with defined compositional asymmetry and lamellarity. Starting with phospholipid-stabilized water-in-oil droplets trapped in a static droplet array, lipid monolayer deposition proceeds as oil/water-phase boundaries pass over the droplets. Unilamellar vesicles assembled layer-by-layer support functional insertion both of purified and of in situ expressed membrane proteins. Synthesis and chemical probing of asymmetric unilamellar and double-bilayer vesicles demonstrate the programmability of both membrane lamellarity and lipid-leaflet composition during assembly. The immobilized vesicle arrays are a pragmatic experimental platform for biophysical studies of membranes and their associated proteins, particularly complexes that assemble and function in multilamellar contexts in vivo.

  11. Variance Method to Determine Turbulent Fluxes of Momentum And Sensible Heat in The Stable Atmospheric Surface Layer

    NASA Astrophysics Data System (ADS)

    de Bruin, H. A. R.; Hartogensis, O. K.

    2005-08-01

    Evidence is presented that in the stable atmospheric surface layer turbulent fluxes of heat and momentum can be determined from the standard deviations of longitudinal wind velocity and temperature, σ u and σ T respectively, measured at a single level. An attractive aspect of this method is that it yields fluxes from measurements that can be obtained with two-dimensional sonic anemometers. These instruments are increasingly being used at official weather stations, where they replace the standard cup anemometer wind vane system. With methods such as the one described in this note, a widespread, good quality, flux network can be established, which would greatly benefit the modelling community. It is shown that a ‘variance’ dimensionless height (ζ σ) defined from σ u and σ T is highly related to the ‘conventional’ dimensionless stability parameter ζ=z/L, where z is height and L is the Obukhov length. Empirical functions for ζ σ are proposed that allow direct calculation of heat and momentum fluxes from σ u and σ T. The method performs fairly well also during a night of intermittent turbulence.

  12. Using radio-induced fluorescence to determine the horizontal structure of ion layers in the mesosphere and lower thermosphere

    NASA Astrophysics Data System (ADS)

    Bernhardt, Paul A.; Gondarenko, Natalia A.; Guzdar, Parvez N.; Huba, Joseph D.; Ossakow, S. L.; Djuth, Frank T.; Tepley, C. A.; Sulzer, Michael P.; Kagan, Ludmila; Kelley, M. C.

    2002-01-01

    Two-dimensional images of Sporadic-E layers have been produced using a new technique called radio induced fluorescence (RIF). This technique makes the ion layers glow when being stimulated by high power radio waves. Normally the ion-layers do not radiate visible emissions. Experiments on January 1998 at Arecibo Observatory in Puerto Rico have shown that the layers can be made to glow at 557.7 nm and other wavelengths by illuminating them with radio waves at 3.175 MHz with effective radiated powers of 80 megawatts. The regions of the sporadic-E layers that have electron densities greater than the critical density for reflection of the radio waves emit electrons that collide with and excite atmospheric atomic oxygen and molecular nitrogen. A charge-coupled-device (CCD) imager located on the ground is used to capture images of the glowing E-region structures. The camera exposure times were in the range of 15 to 45 seconds. The images obtained using this technique show a wide variety of structures in the sporadic-E layers. Some layers cover the 15 x 30 km region illuminated by the radio wave beam. Other layers show strong modulation of the E-region by neutral wind instabilities. Two-dimensional computer simulations of the coupling between neutral wind turbulence and the ion layers simulate the structure in the images.

  13. Simultaneous Determination of Size and Quantification of Gold Nanoparticles by Direct Coupling Thin layer Chromatography with Catalyzed Luminol Chemiluminescence

    NASA Astrophysics Data System (ADS)

    Yan, Neng; Zhu, Zhenli; He, Dong; Jin, Lanlan; Zheng, Hongtao; Hu, Shenghong

    2016-04-01

    The increasing use of metal-based nanoparticle products has raised concerns in particular for the aquatic environment and thus the quantification of such nanomaterials released from products should be determined to assess their environmental risks. In this study, a simple, rapid and sensitive method for the determination of size and mass concentration of gold nanoparticles (AuNPs) in aqueous suspension was established by direct coupling of thin layer chromatography (TLC) with catalyzed luminol-H2O2 chemiluminescence (CL) detection. For this purpose, a moving stage was constructed to scan the chemiluminescence signal from TLC separated AuNPs. The proposed TLC-CL method allows the quantification of differently sized AuNPs (13 nm, 41 nm and 100 nm) contained in a mixture. Various experimental parameters affecting the characterization of AuNPs, such as the concentration of H2O2, the concentration and pH of the luminol solution, and the size of the spectrometer aperture were investigated. Under optimal conditions, the detection limits for AuNP size fractions of 13 nm, 41 nm and 100 nm were 38.4 μg L‑1, 35.9 μg L‑1 and 39.6 μg L‑1, with repeatabilities (RSD, n = 7) of 7.3%, 6.9% and 8.1% respectively for 10 mg L‑1 samples. The proposed method was successfully applied to the characterization of AuNP size and concentration in aqueous test samples.

  14. Determination of Planetary Boundary Layer Height from Ground Based Wind Profiler and Lidar Measurements using the Covariance Wavelet Transform (CWT)

    NASA Astrophysics Data System (ADS)

    Compton, Jaime Cole

    This thesis documents the application of the Covariance Wavelet Transform (CWT) to lidar and, for the first time to our knowledge, wind profiler data to examine the possibility of accurate and continuous planetary boundary layer height (PBLH) measurements on short temporal resolution (one and fifteen minute averages respectively). Comparisons between PBLHs derived from the Elastic Lidar Facility (ELF) through application of the CWT and daytime radiosonde launches from Beltsville and RFK Stadium as part of the September 2009 NOAA/ARL and NCEP field study show an R2 = 0.84 correlation. PBLHs from ELF aided in diagnosing issues with the automatic PBLH calculation from Aircraft Communications Addressing and Reporting System (ACARS) profiles in the Real-Time Mesoscale Analysis used by plume dispersion modelers. Determining the mixing in the PBL was one goal of a study of the spatial and diurnal variations of the PBL height over Maryland for July 2011, during NASA's Earth Venture mission DISCOVER-AQ. A semi-automated PBLH detection algorithm utilizing the CWT for wind profiler data was developed. This algorithm was tested on data from the 915 MHz wind profiler at Beltsville, Maryland, and compared against PBLHs derived from ground based radiosondes measured at Beltsville. Comparisons were also done between PBLHs derived from ground based lidars at UMBC and Beltsville. Results from the comparison show an R 2 = 0.89, 0.92, and 0.94 correlation between the radiosonde PBLHs and the lidars and wind profiler PBLHs, respectively. Accurate determination of the PBLH by applying the CWT to lidar and wind profilers will allow for improved air quality forecasting and understanding of regional pollution dynamics.

  15. Simultaneous Determination of Size and Quantification of Gold Nanoparticles by Direct Coupling Thin layer Chromatography with Catalyzed Luminol Chemiluminescence

    PubMed Central

    Yan, Neng; Zhu, Zhenli; He, Dong; Jin, Lanlan; Zheng, Hongtao; Hu, Shenghong

    2016-01-01

    The increasing use of metal-based nanoparticle products has raised concerns in particular for the aquatic environment and thus the quantification of such nanomaterials released from products should be determined to assess their environmental risks. In this study, a simple, rapid and sensitive method for the determination of size and mass concentration of gold nanoparticles (AuNPs) in aqueous suspension was established by direct coupling of thin layer chromatography (TLC) with catalyzed luminol-H2O2 chemiluminescence (CL) detection. For this purpose, a moving stage was constructed to scan the chemiluminescence signal from TLC separated AuNPs. The proposed TLC-CL method allows the quantification of differently sized AuNPs (13 nm, 41 nm and 100 nm) contained in a mixture. Various experimental parameters affecting the characterization of AuNPs, such as the concentration of H2O2, the concentration and pH of the luminol solution, and the size of the spectrometer aperture were investigated. Under optimal conditions, the detection limits for AuNP size fractions of 13 nm, 41 nm and 100 nm were 38.4 μg L−1, 35.9 μg L−1 and 39.6 μg L−1, with repeatabilities (RSD, n = 7) of 7.3%, 6.9% and 8.1% respectively for 10 mg L−1 samples. The proposed method was successfully applied to the characterization of AuNP size and concentration in aqueous test samples. PMID:27080702

  16. Using SANS with Contrast-Matched Lipid Bicontinuous Cubic Phases To Determine the Location of Encapsulated Peptides, Proteins, and Other Biomolecules.

    PubMed

    van 't Hag, Leonie; de Campo, Liliana; Garvey, Christopher J; Feast, George C; Leung, Anna E; Yepuri, Nageshwar Rao; Knott, Robert; Greaves, Tamar L; Tran, Nhiem; Gras, Sally L; Drummond, Calum J; Conn, Charlotte E

    2016-07-21

    An understanding of the location of peptides, proteins, and other biomolecules within the bicontinuous cubic phase is crucial for understanding and evolving biological and biomedical applications of these hybrid biomolecule-lipid materials, including during in meso crystallization and drug delivery. While theoretical modeling has indicated that proteins and additive lipids might phase separate locally and adopt a preferred location in the cubic phase, this has never been experimentally confirmed. We have demonstrated that perfectly contrast-matched cubic phases in D2O can be studied using small-angle neutron scattering by mixing fully deuterated and hydrogenated lipid at an appropriate ratio. The model transmembrane peptide WALP21 showed no preferential location in the membrane of the diamond cubic phase of phytanoyl monoethanolamide and was not incorporated in the gyroid cubic phase. While deuteration had a small effect on the phase behavior of the cubic phase forming lipids, the changes did not significantly affect our results.

  17. Iron silicide formation at different layers of (Fe/Si){sub 3} multilayered structures determined by conversion electron Mössbauer spectroscopy

    SciTech Connect

    Badía-Romano, L. Bartolomé, J.; Rubín, J.; Magén, C.; Bürgler, D. E.

    2014-07-14

    The morphology and the quantitative composition of the Fe-Si interface layer forming at each Fe layer of a (Fe/Si){sub 3} multilayer have been determined by means of conversion electron Mössbauer spectroscopy (CEMS) and high-resolution transmission electron microscopy (HRTEM). For the CEMS measurements, each layer was selected by depositing the Mössbauer active {sup 57}Fe isotope with 95% enrichment. Samples with Fe layers of nominal thickness d{sub Fe} = 2.6 nm and Si spacers of d{sub Si} = 1.5 nm were prepared by thermal evaporation onto a GaAs(001) substrate with an intermediate Ag(001) buffer layer. HRTEM images showed that Si layers grow amorphous and the epitaxial growth of the Fe is good only for the first deposited layer. The CEMS spectra show that at all Fe/Si and Si/Fe interfaces a paramagnetic c-Fe{sub 1−x}Si phase is formed, which contains 16% of the nominal Fe deposited in the Fe layer. The bottom Fe layer, which is in contact with the Ag buffer, also contains α-Fe and an Fe{sub 1−x}Si{sub x} alloy that cannot be attributed to a single phase. In contrast, the other two layers only comprise an Fe{sub 1−x}Si{sub x} alloy with a Si concentration of ≃0.15, but no α-Fe.

  18. Layer-by-layer self assembly of a water-soluble phthalocyanine on gold. Application to the electrochemical determination of hydrogen peroxide.

    PubMed

    Koodlur, Lokesh S

    2013-06-01

    A self-assembled molecular film of a water-soluble cobalt tetrasulfophthalocyanine was deposited on a gold substrate premodified with poly(diallyldimethylammonium chloride). The process of layer-by-layer assembly on the gold substrate was characterized using UV-Vis, Raman spectroscopy, ellipsometry, contact angle measurements, atomic force microscopy and electrochemical methods. Results demonstrate the formation of a completely covered phthalocyanine film on the gold surface. UV-Vis spectra indicated the formation of monolayer film of the phthalocyanine on the surface. The functionalized surface is uniformly covered and becomes hydrophilic after modification. The modified gold surface exhibits a reversible redox behavior and acts as an electronic conductor for the electrochemical reduction of hydrogen peroxide in pH 7.0 phosphate buffer. A linear increase in the catalytic current is observed for the reduction of hydrogen peroxide in the concentration range from 1 to 20 μM, with a detection limit of 0.4 μM. Hydrogen peroxide spiked pond water sample showed a recovery of 94% indicating the method is selective and can be applied for various applications. The present method is a simple, cost effective and sensitive electrochemical method for the detection and quantification of hydrogen peroxide.

  19. Lipids and Membrane Lateral Organization

    PubMed Central

    Sonnino, Sandro; Prinetti, Alessandro

    2010-01-01

    Shortly after the elucidation of the very basic structure and properties of cellular membranes, it became evident that cellular membranes are highly organized structures with multiple and multi-dimensional levels of order. Very early observations suggested that the lipid components of biological membranes might be active players in the creation of these levels of order. In the late 1980s, several different and diverse experimental pieces of evidence coalesced together giving rise to the lipid raft hypothesis. Lipid rafts became enormously (and, in the opinion of these authors, sometimes acritically) popular, surprisingly not just within the lipidologist community (who is supposed to be naturally sensitive to the fascination of lipid rafts). Today, a PubMed search using the key word “lipid rafts” returned a list of 3767 papers, including 690 reviews (as a term of comparison, searching over the same time span for a very hot lipid-related key word, “ceramide” returned 6187 hits with 799 reviews), and a tremendous number of different cellular functions have been described as “lipid raft-dependent.” However, a clear consensus definition of lipid raft has been proposed only in recent times, and the basic properties, the ruling forces, and even the existence of lipid rafts in living cells has been recently matter of intense debate. The scenario that is gradually emerging from the controversies elicited by the lipid raft hypothesis emphasizes multiple roles for membrane lipids in determining membrane order, that encompass their tendency to phase separation but are clearly not limited to this. In this review, we would like to re-focus the attention of the readers on the importance of lipids in organizing the fine structure of cellular membranes. PMID:21423393

  20. Determination of absorption changes from moments of distributions of times of flight of photons: optimization of measurement conditions for a two-layered tissue model

    NASA Astrophysics Data System (ADS)

    Liebert, Adam; Wabnitz, Heidrun; Elster, Clemens

    2012-05-01

    Time-resolved near-infrared spectroscopy allows for depth-selective determination of absorption changes in the adult human head that facilitates separation between cerebral and extra-cerebral responses to brain activation. The aim of the present work is to analyze which combinations of moments of measured distributions of times of flight (DTOF) of photons and source-detector separations are optimal for the reconstruction of absorption changes in a two-layered tissue model corresponding to extra- and intra-cerebral compartments. To this end we calculated the standard deviations of the derived absorption changes in both layers by considering photon noise and a linear relation between the absorption changes and the DTOF moments. The results show that the standard deviation of the absorption change in the deeper (superficial) layer increases (decreases) with the thickness of the superficial layer. It is confirmed that for the deeper layer the use of higher moments, in particular the variance of the DTOF, leads to an improvement. For example, when measurements at four different source-detector separations between 8 and 35 mm are available and a realistic thickness of the upper layer of 12 mm is assumed, the inclusion of the change in mean time of flight, in addition to the change in attenuation, leads to a reduction of the standard deviation of the absorption change in the deeper tissue layer by a factor of 2.5. A reduction by another 4% can be achieved by additionally including the change in variance.

  1. Dramatic role of fragility in determining the magnitude of Tg perturbations to ultrathin film layers and near-infinitely dilute blend components

    NASA Astrophysics Data System (ADS)

    Evans, Christopher; Torkelson, John; Northwestern University Team

    2013-03-01

    Using fluorescence, we measure the glass transition temperatures (Tg) of ultrathin (11-14 nm) polystyrene (PS, bulk Tg = 103 °C) layers which can be tuned over ~ 80 °C when sandwiched between two bulk neighboring layers of poly(4-vinyl pyridine) (P4VP), polycarbonate, poly(vinyl chloride) (PVC) or poly(tert-butyl acrylate). Between P4VP, an ultrathin PS layer has its dynamics slaved and reports the Tg of bulk P4VP. In contrast, an ultrathin PS layer is weakly perturbed (Tg = 97 °C) when placed between PVC. These perturbations to the PS Tg become evident even for layers 10s of nanometers in thickness. Additionally, binary blends were prepared with 0.1 wt% PS components surrounded by the same neighboring polymers as in the trilayers. The Tg reported by an ultrathin PS layer and a 0.1 wt% PS blend component are the same for a given polymer pair indicating that the Tg perturbations in these two systems arise from a common physical origin. The strength of perturbations to PS correlate with the fragility of the neighboring domain in both blends and multilayers indicating that it is a key variable in determining the strength of Tg-confinement effects. Fragility also tracks with the magnitude of Tg-confinement effects observed in single layer polymer films supported on silicon wafers.

  2. Determination of the dissociation constants for Ca2+ and calmodulin from the plasma membrane Ca2+ pump by a lipid probe that senses membrane domain changes.

    PubMed

    Mangialavori, Irene; Ferreira-Gomes, Mariela; Pignataro, María F; Strehler, Emanuel E; Rossi, Juan Pablo F C

    2010-01-01

    The purpose of this work was to obtain information about conformational changes of the plasma membrane Ca(2+)-pump (PMCA) in the membrane region upon interaction with Ca(2+), calmodulin (CaM) and acidic phospholipids. To this end, we have quantified labeling of PMCA with the photoactivatable phosphatidylcholine analog [(125)I]TID-PC/16, measuring the shift of conformation E(2) to the auto-inhibited conformation E(1)I and to the activated E(1)A state, titrating the effect of Ca(2+) under different conditions. Using a similar approach, we also determined the CaM-PMCA dissociation constant. The results indicate that the PMCA possesses a high affinity site for Ca(2+) regardless of the presence or absence of activators. Modulation of pump activity is exerted through the C-terminal domain, which induces an apparent auto-inhibited conformation for Ca(2+) transport but does not modify the affinity for Ca(2+) at the transmembrane domain. The C-terminal domain is affected by CaM and CaM-like treatments driving the auto-inhibited conformation E(1)I to the activated E(1)A conformation and thus modulating the transport of Ca(2+). This is reflected in the different apparent constants for Ca(2+) in the absence of CaM (calculated by Ca(2+)-ATPase activity) that sharply contrast with the lack of variation of the affinity for the Ca(2+) site at equilibrium. This is the first time that equilibrium constants for the dissociation of Ca(2+) and CaM ligands from PMCA complexes are measured through the change of transmembrane conformations of the pump. The data further suggest that the transmembrane domain of the PMCA undergoes major rearrangements resulting in altered lipid accessibility upon Ca(2+) binding and activation.

  3. Ethanol production and maximum cell growth are highly correlated with membrane lipid composition during fermentation as determined by lipidomic analysis of 22 Saccharomyces cerevisiae strains.

    PubMed

    Henderson, Clark M; Lozada-Contreras, Michelle; Jiranek, Vladimir; Longo, Marjorie L; Block, David E

    2013-01-01

    Optimizing ethanol yield during fermentation is important for efficient production of fuel alcohol, as well as wine and other alcoholic beverages. However, increasing ethanol concentrations during fermentation can create problems that result in arrested or sluggish sugar-to-ethanol conversion. The fundamental cellular basis for these problem fermentations, however, is not well understood. Small-scale fermentations were performed in a synthetic grape must using 22 industrial Saccharomyces cerevisiae strains (primarily wine strains) with various degrees of ethanol tolerance to assess the correlation between lipid composition and fermentation kinetic parameters. Lipids were extracted at several fermentation time points representing different growth phases of the yeast to quantitatively analyze phospholipids and ergosterol utilizing atmospheric pressure ionization-mass spectrometry methods. Lipid profiling of individual fermentations indicated that yeast lipid class profiles do not shift dramatically in composition over the course of fermentation. Multivariate statistical analysis of the data was performed using partial least-squares linear regression modeling to correlate lipid composition data with fermentation kinetic data. The results indicate a strong correlation (R(2) = 0.91) between the overall lipid composition and the final ethanol concentration (wt/wt), an indicator of strain ethanol tolerance. One potential component of ethanol tolerance, the maximum yeast cell concentration, was also found to be a strong function of lipid composition (R(2) = 0.97). Specifically, strains unable to complete fermentation were associated with high phosphatidylinositol levels early in fermentation. Yeast strains that achieved the highest cell densities and ethanol concentrations were positively correlated with phosphatidylcholine species similar to those known to decrease the perturbing effects of ethanol in model membrane systems.

  4. Stress Induced Domain Formation in Multilamellar Lipid Bilayers

    NASA Astrophysics Data System (ADS)

    Tayebi, Lobat; Gillmore, Sean; Parikh, Atul

    2010-03-01

    Domain formation in lipid mixtures due to phase separation of the components is a well-known phenomenon that has been studied in mono- and bi-molecular lipid configurations. We report same phenomenon, however, in multilamellar configurations consisting of thousands of lamellae where the domain pattern in each layer is interestingly aligned with the other lamellae. In this process, both dehydration and hydration of lipid cake can act as the driving force to separate two phases of liquid ordered and liquid disordered. In a controlled experiment with a stack lipid saturated with water, mechanical perturbation can induce domain formation too. Series of experiments of this kind reaches us to the conclusion that any sort of stress in special condition may cause domain formation. We use a combination of microscopy tools including AFM, fluorescence confocal and bright-field microscopy to determine the influence of interaction between the line tension and key elastic properties of the lipid bilayers. As a particular interest we studied the dynamics of the domain pattern formation and the interactions between the domains such as long-term fusion.

  5. Covalent attachment of functionalized lipid bilayers to planar waveguides for measuring protein binding to biomimetic membranes.

    PubMed Central

    Heyse, S.; Vogel, H.; Sänger, M.; Sigrist, H.

    1995-01-01

    A new method is presented for measuring sensitively the interactions between ligands and their membrane-bound receptors in situ using integrated optics, thus avoiding the need for additional labels. Phospholipid bilayers were attached covalently to waveguides by a novel protocol, which can in principle be used with any glass-like surface. In a first step, phospholipids carrying head-group thiols were covalently immobilized onto SiO2-TiO2 waveguide surfaces. This was accomplished by acylation of aminated waveguides with the heterobifunctional crosslinker N-succinimidyl-3-maleimidopropionate, followed by the formation of thioethers between the surface-grafted maleimides and the synthetic thiolipids. The surface-attached thiolipids served as hydrophobic templates and anchors for the deposition of a complete lipid bilayer either by fusion of lipid vesicles or by lipid self-assembly from mixed lipid/detergent micelles. The step-by-step lipid bilayer formation on the waveguide surface was monitored in situ by an integrated optics technique, allowing the simultaneous determination of optical thickness and one of the two refractive indices of the adsorbed organic layers. Surface coverages of 50-60% were calculated for thiolipid layers. Subsequent deposition of POPC resulted in an overall lipid layer thickness of 45-50 A, which corresponds to the thickness of a fluid bilayer membrane. Specific recognition reactions occurring at cell membrane surfaces were modeled by the incorporation of lipid-anchored receptor molecules into the supported bilayer membranes. (1) The outer POPC layer was doped with biotinylated phosphatidylethanolamine. Subsequent specific binding of streptavidin was optically monitored. (2) A lipopeptide was incorporated in the outer POPC monolayer. Membrane binding of monoclonal antibodies, which were directed against the peptide moiety of the lipopeptide, was optically detected. The specific antibody binding correlated well with the lipopepitde

  6. Electrostatic properties of confluent Caco-2 cell layer correlates to their microvilli growth and determines underlying transcellular flow.

    PubMed

    Vandrangi, P; Lo, D D; Kozaka, R; Ozaki, N; Carvajal, N; Rodgers, V G J

    2013-10-01

    Recently, Rajapaksa et al. (2010) showed that the rate of uptake of potential vaccine delivery nanoparticles in the mucosal layer is a function of the electrostatic properties of the corresponding solvent. This fundamentally implies that the dominant driving forces that may be capitalized on for mucosal vaccine strategies are electrostatic in nature. We hypothesize that the driving force normal to the cell (in the direction from apical to basolateral across the cell) is of particular importance. In addition, it has been theoretically shown that the electrostatic properties of mucosal cells are directly related to their development of brush border. Here we correlate the development of brush border on a human mucosal epithelial model (Caco-2) cultured in DMEM on 3.0 µm pore sized polycarbonate membranes to their corresponding electrostatic properties characterized by measuring their normal zeta potential. Properties of normal streaming potential, hydraulic permeability, and brush border development (as determined by size and number) were monitored for 2, 6, and 16 days (after cells were confluent). Human endothelial cells (HECs), which lack brush border, were used as the control. Our results demonstrate that normal zeta potential of Caco-2 cells significantly changed from -5.7 ± 0.11 mV to -3.4 ± 0.11 mV for a period between 2 and 16 days, respectively. The zeta potential of the control cell line, HECs, stayed constant (statistically not different, P > 0.05) for the duration of the experiments. Our results show that the calculated increase in surface area of the Caco-2 cells with microvilli from 6 to 16 days was directly proportional to the corresponding measured zeta potential difference. These results imply that microvilli alter the electrostatic local environment around Caco-2 cells and, hence, enhance the normal electrostatic selective transport of solute across the mucosal barrier.

  7. Adaptive step-size algorithm for Fourier beam-propagation method with absorbing boundary layer of auto-determined width

    SciTech Connect

    Learn, R.; Feigenbaum, E.

    2016-05-27

    Two algorithms that enhance the utility of the absorbing boundary layer are presented, mainly in the framework of the Fourier beam-propagation method. One is an automated boundary layer width selector that chooses a near-optimal boundary size based on the initial beam shape. Furthermore, the second algorithm adjusts the propagation step sizes based on the beam shape at the beginning of each step in order to reduce aliasing artifacts.

  8. Lignin and lipid impact on sorption and diffusion of trichloroethylene in tree branches for determining contaminant fate during plant sampling and phytoremediation.

    PubMed

    Gopalakrishnan, Gayathri; Burken, Joel G; Werth, Charles J

    2009-08-01

    Plants draw all they need from their surrounding environment and in doing so also draw anthropogenic contaminants from their surroundings. Several natural processes (e.g., active transport, diffusion, sorption, and degradation) occur within trees and affect chemical concentrations in tree samples. This study elucidates tree contaminant chemical interactions on equilibrium sorption and diffusion into branch tissue (i.e., wood core and bark), specifically the impacts of lipid and lignin content. Five tree species were selected to span a range of lignin and lipid contents. Linear isotherms were obtained for all sampled species over a limited concentration range (2 microg/ mL < C(gas) < 12 microg/mL), and equilibrium distribution coefficients (K(d)) were linearly correlated to lipid (R2 > 0.83) but not lignin (R2 < 0.4) content. Lipid content was generally higher in bark than in wood cores, so mass concentrated in this tissue. Diffusion into trees was modeled, showing mass transfer resistance in bark was different from wood cores. Diffusion coefficients for bark were 2-10 times less than those for wood cores for all species, and diffusion was linearly related to lipid content (R2 > 0.96) and sorption coefficients (R2 > 0.83). Data from this study and previous research were used to develop the following correlation between the diffusion coefficient and relevant plant and chemical parameters for branch samples: D = (-7 x 10(-11)) x [f(lipid) x 10 (l.48 x logKow+0.54)] + 4 x 10(-8).

  9. Use of the parallax-quench method to determine the position of the active-site loop of cholesterol oxidase in lipid bilayers.

    PubMed

    Chen, X; Wolfgang, D E; Sampson, N S

    2000-11-07

    To elucidate the cholesterol oxidase-membrane bilayer interaction, a cysteine was introduced into the active site lid at position-81 using the Brevibacterium enzyme. To eliminate the possibility of labeling native cysteine, the single cysteine in the wild-type enzyme was mutated to a serine without any change in activity. The loop-cysteine mutant was then labeled with acrylodan, an environment-sensitive fluorescence probe. The fluorescence increased and blue-shifted upon binding to lipid vesicles, consistent with a change into a more hydrophobic, i.e., lipid, environment. This acrylodan-labeled cholesterol oxidase was used to explore the pH, ionic strength, and headgroup dependence of binding. Between pH 6 and 10, there was no significant change in binding affinity. Incorporation of anionic lipids (phosphatidylserine) into the vesicles did not increase the binding affinity nor did altering the ionic strength. These experiments suggested that the interactions are primarily driven by hydrophobic effects not ionic effects. Using vesicles doped with either 5-doxyl phosphatidylcholine, 10-doxyl phosphatidylcholine, or phosphatidyl-tempocholine, quenching of acrylodan fluorescence was observed upon binding. Using the parallax method of London [Chattopadhyay, A., and London, E. (1987) Biochemistry 26, 39-45], the acrylodan ring is calculated to be 8.1 +/- 2.5 A from the center of the lipid bilayer. Modeling the acrylodan-cysteine residue as an extended chain suggests that the backbone of the loop does not penetrate into the lipid bilayer but interacts with the headgroups, i.e., the choline. These results demonstrate that cholesterol oxidase interacts directly with the lipid bilayer and sits on the surface of the membrane.

  10. Intercalation of small hydrophobic molecules in lipid bilayers containing cholesterol

    SciTech Connect

    Worcester, D.L.; Hamacher, K.; Kaiser, H.; Kulasekere, R.; Torbet, J.

    1994-12-31

    Partitioning of small hydrophobic molecules into lipid bilayers containing cholesterol has been studied using the 2XC diffractometer at the University of Missouri Research Reactor. Locations of the compounds were determined by Fourier difference methods with data from both deuterated and undeuterated compounds introduced into the bilayers from the vapor phase. Data fitting procedures were developed for determining how well the compounds were localized. The compounds were found to be localized in a narrow region at the center of the hydrophobic layer, between the two halves of the bilayer. The structures are therefore intercalated structures with the long axis of the molecules in the plane of the bilayer.

  11. Surface conductivity of Si(100) and Ge(100) surfaces determined from four-point transport measurements using an analytical N -layer conductance model

    NASA Astrophysics Data System (ADS)

    Just, Sven; Soltner, Helmut; Korte, Stefan; Cherepanov, Vasily; Voigtländer, Bert

    2017-02-01

    An analytical N -layer model for charge transport close to a surface is derived from the solution of Poisson's equation and used to describe distance-dependent electrical four-point measurements on the microscale. As the N -layer model comprises a surface channel, multiple intermediate layers, and a semi-infinite bulk, it can be applied to semiconductors in combination with a calculation of the near-surface band bending to model very precisely the measured four-point resistance on the surface of a specific sample and to extract a value for the surface conductivity. For describing four-point measurements on sample geometries with mixed 2D-3D conduction channels, often a very simple parallel-circuit model has so far been used in the literature, but the application of this model is limited, as there are already significant deviations, when it is compared to the lowest possible case of the N -layer model, i.e., the three-layer model. Furthermore, the N -layer model is applied to published distance-dependent four-point resistance measurements obtained with a multitip scanning tunneling microscope (STM) on germanium(100) and silicon(100) with different bulk doping concentrations resulting in the determination of values for the surface conductivities of these materials.

  12. Substrate-supported lipid nanotube arrays.

    SciTech Connect

    Smirnov, A. I.; Poluektov, O. G.; Chemistry; North Carolina State

    2003-07-16

    This Communication describes the self-assembly of phospholipids into lipid nanotubes inside nanoporous anodic aluminum oxide substrate. Orientations of the lipid molecules in such lipid nanoscale structures were verified by high-resolution spin labeling EPR at 95 GHz. The static order parameter of lipids in such nanotube arrays was determined from low-temperature EPR spectra and was found to be exceptionally high, S{sub static} {approx} 0.9. We propose that substrate-supported lipid nanotube arrays have potential for building robust biochips and biosensors in which rigid nanoporous substrates protect the bilayer surface from contamination. The total bilayer surface in the lipid nanotube arrays is much greater than that in the planar substrate-supported membranes. The lipid nanotube arrays seem to be suitable for developing patterned lipid deposition and could be potentially used for patterning of membrane-associated molecules.

  13. Repeatability and Reproducibility of Eight Macular Intra-Retinal Layer Thicknesses Determined by an Automated Segmentation Algorithm Using Two SD-OCT Instruments

    PubMed Central

    Huang, Shenghai; Leng, Lin; Zhu, Dexi; Lu, Fan

    2014-01-01

    Purpose To evaluate the repeatability, reproducibility, and agreement of thickness profile measurements of eight intra-retinal layers determined by an automated algorithm applied to optical coherence tomography (OCT) images from two different instruments. Methods Twenty normal subjects (12 males, 8 females; 24 to 32 years old) were enrolled. Imaging was performed with a custom built ultra-high resolution OCT instrument (UHR-OCT, ∼3 µm resolution) and a commercial RTVue100 OCT (∼5 µm resolution) instrument. An automated algorithm was developed to segment the macular retina into eight layers and quantitate the thickness of each layer. The right eye of each subject was imaged two times by the first examiner using each instrument to assess intra-observer repeatability and once by the second examiner to assess inter-observer reproducibility. The intraclass correlation coefficient (ICC) and coefficients of repeatability and reproducibility (COR) were analyzed to evaluate the reliability. Results The ICCs for the intra-observer repeatability and inter-observer reproducibility of both SD-OCT instruments were greater than 0.945 for the total retina and all intra-retinal layers, except the photoreceptor inner segments, which ranged from 0.051 to 0.643, and the outer segments, which ranged from 0.709 to 0.959. The CORs were less than 6.73% for the total retina and all intra-retinal layers. The total retinal thickness measured by the UHR-OCT was significantly thinner than that measured by the RTVue100. However, the ICC for agreement of the thickness profiles between UHR-OCT and RTVue OCT were greater than 0.80 except for the inner segment and outer segment layers. Conclusions Thickness measurements of the intra-retinal layers determined by the automated algorithm are reliable when applied to images acquired by the UHR-OCT and RTVue100 instruments. PMID:24505345

  14. Microsomal triglyceride transfer protein is required for yolk lipid utilization and absorption of dietary lipids in zebrafish larvae.

    PubMed

    Schlegel, Amnon; Stainier, Didier Y R

    2006-12-26

    Although the absorption, transport, and catabolism of dietary lipids have been studied extensively in great detail in mammals and other vertebrates, a tractable genetic system for identifying novel genes involved in these physiologic processes is not available. To establish such a model, we monitored neutral lipid by staining fixed zebrafish larvae with oil red o (ORO). The head structures, heart, vasculature, and swim bladder stained with ORO until the yolk was consumed 6 days after fertilization (6 dpf). Thereafter, the heart and vasculature no longer had stainable neutral lipids. Following a high-fat meal, ORO stained the intestine and vasculature of 6 dpf larvae, and whole-larval triacylglycerol (TAG) and apolipoprotein B levels increased. Levels of microsomal triglyceride transfer protein (Mtp), the protein responsible for packaging TAG and betalipoproteins into lipoprotein particles, were unchanged by feeding. Since the developing zebrafish embryo expresses mtp in the yolk cell layer, liver, and intestine, we determined the effect of targeted knockdown of Mtp expression using an antisense morpholino oligonucleotide approach (Mtp MO) on the transport of yolk and dietary lipids. Mtp MO injection led to loss of Mtp expression and of lipid staining in the vasculature, heart, and head structures. Mtp MO-injected larvae were smaller than age-matched, uninjected larvae, consumed very little yolk, and did not absorb dietary neutral lipids; however, they absorbed a short chain fatty acid that does not require Mtp for transport. Importantly, the vasculature appeared unaffected in Mtp MO-injected larvae. These studies indicate that zebrafish larvae are suitable for genetic studies of lipid transport and metabolism.

  15. Human Milk Lipids.

    PubMed

    Koletzko, Berthold

    2016-01-01

    Human milk lipids provide the infant with energy and essential vitamins, polyunsaturated fatty acids, and bioactive components. Adding complex lipids and milk fat globule membranes to vegetable oil-based infant formula has the potential to enhance infant development and reduce infections. Cholesterol provision with breastfeeding modulates infant sterol metabolism and may induce long-term benefits. Some 98-99% of milk lipids are comprised by triacylglycerols, whose properties depend on incorporated fatty acids. Attention has been devoted to the roles of the long-chain polyunsaturated fatty acids docosahexaenoic (DHA) and arachidonic (ARA) acids. Recent studies on gene-diet interaction (Mendelian randomization) show that breastfeeding providing DHA and ARA improves cognitive development and reduces asthma risk at school age particularly in those children with a genetically determined lower activity of DHA and ARA synthesis. It appears prudent to follow the biological model of human milk in the design of infant formula as far as feasible, unless conclusive evidence for the suitability and safety of other choices is available. The recent European Union legislative stipulation of a high formula DHA content without required ARA deviates from this concept, and such a novel formula composition has not been adequately evaluated. Great future opportunities arise with significant methodological progress for example in lipidomic analyses and their bioinformatic evaluation, which should enhance understanding of the biology of human milk lipids. Such knowledge might lead to improved dietary advice to lactating mothers as well as to further opportunities to enhance infant formula composition.

  16. Determination of ether extract digestibility and energy content of specialty lipids with variable FA and FFA content, and the effect of lecithin, for nursery pigs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Various specialty lipids are commercially available and used in nursery pig diets, but may have FA profiles and FFA content that affect their caloric value. In each of 2 experiments, 54 barrows (28-d of age) were fed a common diet for 7-d, allotted to dietary treatments and fed their respective expe...

  17. Gastric pre-processing is an important determinant of the ability of medium-chain lipid solution formulations to enhance oral bioavailability in rats.

    PubMed

    Lee, Kathy Wai Yu; Porter, Christopher J H; Boyd, Ben J

    2013-11-01

    The contribution of dispersion and digestion in the stomach to the bioavailability of poorly water-soluble drugs administered in lipid-based formulations was assessed by comparison of intraduodenal (ID) and peroral (p.o.) administration using cinnarizine (CZ) as a model drug. Differences in the dispersion and digestion in the gastric and intestinal compartments for medium-chain triacylglycerides (MCT) and long-chain triacylglycerides (LCT) were observed, leading to differences in the oral bioavailability of CZ. Bypassing gastric processing using ID administration of lipid solution formulations decreased drug bioavailability regardless of lipid type. Overall, bioavailability from LCT formulations was higher than MCT regardless of route of administration, consistent with past data after p.o. administration and previously reported descriptions of increases in drug precipitation after administration of medium-chain lipid formulations. The larger differences between bioavailability after both p.o. and ID administration for MCT compared with LCT formulations suggest that passage through the stomach is more critical for MCT formulations, and that gastric digestion may be more critical for MCT than LCT formulations. For MCT-based formulations, efficient dispersion and partial digestion in the stomach may be required to allow rapid transfer to intestinal-mixed micelles and absorption in the upper small intestine prior to drug precipitation.

  18. Infrared spectroscopy used to determine effects of chia and olive oil incorporation strategies on lipid structure of reduced-fat frankfurters.

    PubMed

    Herrero, A M; Ruiz-Capillas, C; Pintado, T; Carmona, P; Jimenez-Colmenero, F

    2017-04-15

    This article reports an infrared spectroscopic study, using attenuated total reflectance (ATR-FTIR), on the structural characteristics of lipids in frankfurters as affected by different strategies to replace animal fat with chia flour and olive oil. Three incorporation strategies were considered: direct addition (FCO) and addition in a conventional emulsion (non-gelled) (FCE) or an emulsion gel using alginate as a gelling agent (FCEG). Reduced-fat (all-pork-fat) frankfurters (FP) were used as reference. Proximate composition and specific technological properties (pH, processing loss, texture) were also evaluated. FCE and FCEG frankfurters showed a shift to higher frequencies and the highest (p<0.05) half-bandwidth in the νasCH2 and νsCH2 bands. These spectroscopic results could be related to the fact that the lipid chain was more disorderly in these samples, presumably because there were more lipid interactions than in the reference frankfurter. These features of lipid structure correlated significantly with processing loss and textural behaviour.

  19. Overexpression of the Epidermis-Specific Homeodomain-Leucine Zipper IV Transcription Factor OUTER CELL LAYER1 in Maize Identifies Target Genes Involved in Lipid Metabolism and Cuticle Biosynthesis1[C][W

    PubMed Central

    Javelle, Marie; Vernoud, Vanessa; Depège-Fargeix, Nathalie; Arnould, Christine; Oursel, Delphine; Domergue, Frédéric; Sarda, Xavier; Rogowsky, Peter M.

    2010-01-01

    Transcription factors of the homeodomain-leucine zipper IV (HD-ZIP IV) family play crucial roles in epidermis-related processes. To gain further insight into the molecular function of OUTER CELL LAYER1 (OCL1), 14 target genes up- or down-regulated in transgenic maize (Zea mays) plants overexpressing OCL1 were identified. The 14 genes all showed partial coexpression with OCL1 in maize organs, and several of them shared preferential expression in the epidermis with OCL1. They encoded proteins involved in lipid metabolism, defense, envelope-related functions, or cuticle biosynthesis and include ZmWBC11a (for white brown complex 11a), an ortholog of AtWBC11 involved in the transport of wax and cutin molecules. In support of the annotations, OCL1-overexpressing plants showed quantitative and qualitative changes of cuticular wax compounds in comparison with wild-type plants. An increase in C24 to C28 alcohols was correlated with the transcriptional up-regulation of ZmFAR1, coding for a fatty acyl-coenzyme A reductase. Transcriptional activation of ZmWBC11a by OCL1 was likely direct, since transactivation in transiently transformed maize kernels was abolished by a deletion of the activation domain in OCL1 or mutations in the L1 box, a cis-element bound by HD-ZIP IV transcription factors. Our data demonstrate that, in addition to AP2/EREBP and MYB-type transcription factors, members of the HD-ZIP IV family contribute to the transcriptional regulation of genes involved in cuticle biosynthesis. PMID:20605912

  20. Overexpression of the epidermis-specific homeodomain-leucine zipper IV transcription factor Outer Cell Layer1 in maize identifies target genes involved in lipid metabolism and cuticle biosynthesis.

    PubMed

    Javelle, Marie; Vernoud, Vanessa; Depège-Fargeix, Nathalie; Arnould, Christine; Oursel, Delphine; Domergue, Frédéric; Sarda, Xavier; Rogowsky, Peter M

    2010-09-01

    Transcription factors of the homeodomain-leucine zipper IV (HD-ZIP IV) family play crucial roles in epidermis-related processes. To gain further insight into the molecular function of OUTER CELL LAYER1 (OCL1), 14 target genes up- or down-regulated in transgenic maize (Zea mays) plants overexpressing OCL1 were identified. The 14 genes all showed partial coexpression with OCL1 in maize organs, and several of them shared preferential expression in the epidermis with OCL1. They encoded proteins involved in lipid metabolism, defense, envelope-related functions, or cuticle biosynthesis and include ZmWBC11a (for white brown complex 11a), an ortholog of AtWBC11 involved in the transport of wax and cutin molecules. In support of the annotations, OCL1-overexpressing plants showed quantitative and qualitative changes of cuticular wax compounds in comparison with wild-type plants. An increase in C24 to C28 alcohols was correlated with the transcriptional up-regulation of ZmFAR1, coding for a fatty acyl-coenzyme A reductase. Transcriptional activation of ZmWBC11a by OCL1 was likely direct, since transactivation in transiently transformed maize kernels was abolished by a deletion of the activation domain in OCL1 or mutations in the L1 box, a cis-element bound by HD-ZIP IV transcription factors. Our data demonstrate that, in addition to AP2/EREBP and MYB-type transcription factors, members of the HD-ZIP IV family contribute to the transcriptional regulation of genes involved in cuticle biosynthesis.

  1. Determination of Boundary-Layer Transition on Three Symmetrical Airfoils in the NACA Full-Scale Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Silverstein, Abe; Becker, John V

    1938-01-01

    For the purpose of studying the transition from laminar to turbulent flow, boundary-layer measurements were made in the NACA full-scale wind tunnel on three symmetrical airfoils of NACA 0009, 0012, and 0018 sections. The effects of variations in lift coefficient, Reynolds number, and airfoil thickness on transition were investigated. Air speed in the boundary layer was measured by total-head tubes and by hot wires; a comparison of transition as indicated by the two techniques was obtained. The results indicate no unique value of Reynolds number for the transition, whether the Reynolds number is based upon the distance along the chord or upon the thickness of the boundary layer at the transition point. In general, the transition is not abrupt and occurs in a region that varies in length as a function of the test conditions.

  2. Determination of porcine corneal layers with high spatial resolution by simultaneous second and third harmonic generation microscopy.

    PubMed

    Jay, L; Brocas, A; Singh, K; Kieffer, J-C; Brunette, I; Ozaki, T

    2008-10-13

    We describe a dual, second harmonic generation (SHG) and third harmonic generation (THG) microscope, with the aim to obtain large-scale images of the cornea that can simultaneously resolve the micron-thick thin layers. We use an Ytterbium femtosecond laser as the laser source, the longer wavelength of which reduces scattering and allows simultaneous SHG and THG imaging. We measure one-dimensional SHG and THG profiles across the entire thickness of pig cornea, detected in both the forward and backward directions. These profiles allow us to clearly distinguish all the porcine corneal layers (epithelium, stroma, Descemet's membrane and endothelium). From these profiles, longitudinal cross sectional images of the corneal layers are generated, providing large scale topographic information with high-spatial resolution. The ability to obtain both SHG and THG signals in epi-detection on fresh eyes gives promising hopes for in vivo applications.

  3. Stearoyl-CoA Desaturase 1 Is a Key Determinant of Membrane Lipid Composition in 3T3-L1 Adipocytes

    PubMed Central

    Hagen, Rachel; Vidal-Puig, Antonio

    2016-01-01

    Stearoyl-CoA desaturase 1 (SCD1) is a lipogenic enzyme important for the regulation of membrane lipid homeostasis; dysregulation likely contributes to obesity associated metabolic disturbances. SCD1 catalyses the Δ9 desaturation of 12-19 carbon saturated fatty acids to monounsaturated fatty acids. To understand its influence in cellular lipid composition we investigated the effect of genetic ablation of SCD1 in 3T3-L1 adipocytes on membrane microdomain lipid composition at the species-specific level. Using liquid chromatography/electrospray ionisation-tandem mass spectrometry, we quantified 70 species of ceramide, mono-, di- and trihexosylceramide, phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol, bis(monoacylglycero)phosphate, phosphatidylinositol and cholesterol in 3T3-L1 adipocytes in which a 90% reduction in scd1 mRNA expression was achieved with siRNA. Cholesterol content was unchanged although decreases in other lipids resulted in cholesterol accounting for a higher proportion of lipid in the membranes. This was associated with decreased membrane lateral diffusion. An increased ratio of 24:0 to 24:1 in ceramide, mono- and dihexosylceramide, and sphingomyelin likely also contributed to this decrease in lateral diffusion. Of particular interest, we observed a decrease in phospholipids containing arachidonic acid. Given the high degree of structural flexibility of this acyl chain this will influence membrane lateral diffusion, and is likely responsible for the transcriptional activation of Lands’ cycle enzymes lpcat3 and mboat7. Of relevance these profound changes in the lipidome were not accompanied by dramatic changes in gene expression in mature differentiated adipocytes, suggesting that adaptive homeostatic mechanisms to ensure partial maintenance of the biophysical properties of membranes likely occur at a post-transcriptional level. PMID:27632198

  4. Isolation and Chemical Characterization of Lipid A from Gram-negative Bacteria

    PubMed Central

    Henderson, Jeremy C.; O'Brien, John P.; Brodbelt, Jennifer S.; Trent, M. Stephen

    2013-01-01

    Lipopolysaccharide (LPS) is the major cell surface molecule of gram-negative bacteria, deposited on the outer leaflet of the outer membrane bilayer. LPS can be subdivided into three domains: the distal O-polysaccharide, a core oligosaccharide, and the lipid A domain consisting of a lipid A molecular species and 3-deoxy-D-manno-oct-2-ulosonic acid residues (Kdo). The lipid A domain is the only component essential for bacterial cell survival. Following its synthesis, lipid A is chemically modified in response to environmental stresses such as pH or temperature, to promote resistance to antibiotic compounds, and to evade recognition by mediators of the host innate immune response. The following protocol details the small- and large-scale isolation of lipid A from gram-negative bacteria. Isolated material is then chemically characterized by thin layer chromatography (TLC) or mass-spectrometry (MS). In addition to matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) MS, we also describe tandem MS protocols for analyzing lipid A molecular species using electrospray ionization (ESI) coupled to collision induced dissociation (CID) and newly employed ultraviolet photodissociation (UVPD) methods. Our MS protocols allow for unequivocal determination of chemical structure, paramount to characterization of lipid A molecules that contain unique or novel chemical modifications. We also describe the radioisotopic labeling, and subsequent isolation, of lipid A from bacterial cells for analysis by TLC. Relative to MS-based protocols, TLC provides a more economical and rapid characterization method, but cannot be used to unambiguously assign lipid A chemical structures without the use of standards of known chemical structure. Over the last two decades isolation and characterization of lipid A has led to numerous exciting discoveries that have improved our understanding of the physiology of gram-negative bacteria, mechanisms of antibiotic resistance, the human innate

  5. Free flight determination of boundary layer transition on small scale cones in the presence of surface ablation

    NASA Technical Reports Server (NTRS)

    Wilkins, M. E.; Chapman, G. T.

    1972-01-01

    To assess the possibility of achieving extensive laminar flow on conical vehicles during hyperbolic entry, the Ames Research Center has had an ongoing program to study boundary-layer transition on ablating cones. Boundary layer transition results are presented from ballistic range experiments with models that ablated at dimensionless mass transfer rates comparable to those expected for full scale flight at speeds up to 17 km/sec. It was found possible to measure the surface recession and hence more accurately identify regions of laminar, transitional, and turbulent flow along generators of the recovered cones. Some preliminary results using this technique are presented.

  6. Fabrication of layer-by-layer modified multilayer films containing choline and gold nanoparticles and its sensing application for electrochemical determination of dopamine and uric acid.

    PubMed

    Wang, Po; Li, Yongxin; Huang, Xue; Wang, Lun

    2007-09-30

    A novel electrochemical sensor has been constructed by use of a glassy carbon electrode (GCE) coated with a gold nanoparticle/choline (GNP/Ch). Electrochemical impedance spectroscopy (EIS), field emission scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS) were used to characterize the properties of this modified electrode. It was demonstrated that choline was covalently bounded on the surface of glassy carbon electrode, and deposited gold nanoparticles with average size of about 100nm uniformly distributed on the surface of Ch. Moreover, the modified electrode exhibits strong electrochemical catalytic activity toward the oxidation of dopamine (DA), ascorbic acid (AA) and uric acid (UA) with obviously reduction of overpotentials. For the ternary mixture containing DA, AA and UA, these three compounds can be well separated from each other, allowing simultaneously determination of DA and UA under coexistence of AA. The proposed method can be applied to detect DA and UA in real samples with satisfactory results.

  7. Lipid profiling in sewage sludge.

    PubMed

    Zhu, Fenfen; Wu, Xuemin; Zhao, Luyao; Liu, Xiaohui; Qi, Juanjuan; Wang, Xueying; Wang, Jiawei

    2017-03-20

    High value-added reutilization of sewage sludge from wastewater treatment plants (WWTPs) is essential in sustainable development in WWTPs. However, despite the advantage of high value reutilization, this process must be based on a detailed study of organics in sludge. We used the methods employed in life sciences to determine the profile of lipids (cellular lipids, free fatty acids (FFAs), and wax/gum) in five sludge samples obtained from three typical WWTPs in Beijing; these samples include one sludge sample from a primary sedimentation tank, two activated sludge samples from two Anaerobic-Anoxic-Oxic (A2/O) tanks, and two activated sludge samples from two membrane bioreactor tanks. The percentage of total raw lipids varied from 2.90% to 12.3%. Sludge from the primary sedimentation tank showed the highest concentrations of lipid, FFA, and wax/gum and the second highest concentration of cellular lipids. All activated sludge contained an abundance of cellular lipids (>54%). Cells in sludge can from plants, animals, microbes and so on in wastewater. Approximately 14 species of cellular lipids were identified, including considerable high value-potential ceramide (9567-38774 mg/kg), coenzyme (937-3897 mg/kg), and some phosphatidylcholine (75-548 mg/kg). The presence of those lipid constituents would thus require a wider range of recovery methods for sludge. Both cellular lipids and FFAs contain an abundance of C16-C18 lipids at high saturation level, and they serve as good resources for biodiesel production.

  8. In situ determination of the pore opening point during wet-chemical etching of the barrier layer of porous anodic aluminum oxide: nonuniform impurity distribution in anodic oxide.

    PubMed

    Han, Hee; Park, Sang-Joon; Jang, Jong Shik; Ryu, Hyun; Kim, Kyung Joong; Baik, Sunggi; Lee, Woo

    2013-04-24

    Wet-chemical etching of the barrier oxide layer of anodic aluminum oxide (AAO) was systematically investigated by using scanning electron microscopy (SEM), secondary ion mass spectrometry (SIMS), and a newly devised experimental setup that allows accurate in situ determination of the pore opening point during chemical etching of the barrier oxide layer. We found that opening of the barrier oxide layer by wet-chemical etching can be significantly influenced by anodization time (tanodi). According to secondary ion mass spectrometry (SIMS) analysis, porous anodic aluminum oxide (AAO) samples formed by long-term anodization contained a lower level of anionic impurity in the barrier oxide layer compared to the short-term anodized one and consequently exhibited retarded opening of the barrier oxide layer during the wet-chemical etching. The observed compositional dependence on the anodization time (tanodi) in the barrier oxide layer is attributed to the progressive decrease of the electrolyte concentration upon anodization. The etching rate of the outer pore wall at the bottom part is lower than that of the one at the top part due to the lower level of impurity content in that region. This indicates that a concentration gradient of anionic impurity in the outer pore wall oxide may be established along both the vertical and radial directions of cylindrical pores. Apart from the effect of electrolyte concentration on the chemical composition of the barrier oxide layer, significantly decreased current density arising from the lowered concentration of electrolyte during the long-term anodization (~120 h) was found to cause disordering of pores. The results of the present work are expected to provide viable information not only for practical applications of nanoporous AAO in nanotechnology but also for thorough understanding of the self-organized formation of oxide nanopores during anodization.

  9. Experimental determination of the boundary layer at air-sample inlet positions on the NASA CV 990 aircraft

    NASA Technical Reports Server (NTRS)

    Bowen, S. W.; Vedder, J. F.; Condon, E. P.

    1984-01-01

    Full-scale, in-flight measurements of the boundary-layer thickness, velocity profile, and flow angle have been made at several sample collection stations on the fuselage of the NASA CV 990. These results are given as functions of Mach number, Reynolds number, yaw, and angle of attack.

  10. A Laboratory Experiment in Pharmaceutical Analysis: Determination of Drugs of Abuse in Human Urine by Thin-Layer Chromatography.

    ERIC Educational Resources Information Center

    Bailey, Leonard C.

    1979-01-01

    An experiment is described that was developed for a course in Inorganic and Analytical Pharmaceutical Chemistry at Rutgers University to provide pharmacy students with practical experience in the thin-layer chromatography used for the analysis of urine to monitor patient compliance with drug abuse treatment programs. (JMD)

  11. Micrometer-Precise Determination of the Thin Electrolyte Layer of a Spectroelectrochemical Cell by Microelectrode Approach Curves.

    PubMed

    Hiltrop, Dennis; Masa, Justus; Botz, Alexander J R; Lindner, Armin; Schuhmann, Wolfgang; Muhler, Martin

    2017-03-31

    A spectroelectrochemical cell is presented that allows investigations of electrochemical reactions by means of attenuated total reflection infrared (ATR-IR) spectroscopy. The electrode holder for the working (WE), counter and reference electrode as mounted in the IR spectrometer cause the formation of a thin electrolyte layer between the internal reflection element (IRE) and the surface of the WE. The thickness of this thin electrolyte layer (dTL) was estimated by performing a scanning electrochemical microscopy-(SECM) like approach of a Pt microelectrode (ME), which was leveled with the WE toward the IRE surface. The precise lowering of the ME/WE plane toward the IRE was enabled by a micrometer screw. The approach curve was recorded in negative feedback mode of SECM and revealed the contact point of the ME and WE on the IRE, which was used as reference point to perform the electro-oxidation of ethanol over a drop-casted Pd/NCNT catalyst on the WE at different thin-layer thicknesses by cyclic voltammetry. The reaction products were detected in the liquid electrolyte by IR spectroscopy, and the effect of variations in dTL on the current densities and IR spectra were analyzed and discussed. The obtained data identify dTL as an important variable in thin-layer experiments with electrochemical reactions and FTIR readout.

  12. Soil Drying Effects on Soil Strength and Depth of Hardpan Layers as Determined From Cone Index Data

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Site-specific detection of a soil hardpan is an important step in precision farming. Different methods have been developed including the ASAE standard soil cone penetrometer to detect the hardpan layer. Most of the newly developed methods use results obtained by a soil cone penetrometer as a referen...

  13. Composition determination of quaternary GaAsPN layers from single X-ray diffraction measurement of quasi-forbidden (002) reflection

    SciTech Connect

    Tilli, J.-M. Jussila, H.; Huhtio, T.; Sopanen, M.; Yu, K. M.

    2014-05-28

    GaAsPN layers with a thickness of 30 nm were grown on GaP substrates with metalorganic vapor phase epitaxy to study the feasibility of a single X-ray diffraction (XRD) measurement for full composition determination of quaternary layer material. The method is based on the peak intensity of a quasi-forbidden (002) reflection, which is shown to vary with changing arsenic content for GaAsPN. The method works for thin films with a wide range of arsenic contents and shows a clear variation in the reflection intensity as a function of changing layer composition. The obtained thicknesses and compositions of the grown layers are compared with accurate reference values obtained by Rutherford backscattering spectroscopy combined with nuclear reaction analysis measurements. Based on the comparison, the error in the XRD defined material composition becomes larger with increasing nitrogen content and layer thickness. This suggests that the dominating error source is the deteriorated crystal quality due to the nonsubstitutional incorporation of nitrogen into the crystal lattice and strain relaxation. The results reveal that the method overestimates the arsenic and nitrogen content within error margins of about 0.12 and about 0.025, respectively.

  14. Determination of 2,2-dimethyl-N-(2,4,6-trimethoxyphenyl)-dodecanamide, a lipid regulator, in rat plasma and mesenteric lymph by reversed-phase high-performance liquid chromatography.

    PubMed

    Hauss, D J; Martin, P J; Mehta, S C; Radebaugh, G W

    1993-04-02

    2,2-Dimethyl-N-(2,4,6-trimethoxyphenyl)dodecanamide (I, CI-976) has been determined in rat mesenteric lymph and plasma using a rapid and sensitive high-performance liquid chromatographic method. The samples prepared from plasma and lymph by liquid-liquid extraction were analysed on a reversed-phase C18 column isocratic conditions and ultraviolet detection. The method was applied to the determination of levels of I in Wistar rats after intraduodenal administration of 110 mg/kg of I as a lipid emulsion.

  15. A robust post-processing method to determine skin friction in turbulent boundary layers from the velocity profile

    NASA Astrophysics Data System (ADS)

    Rodríguez-López, Eduardo; Bruce, Paul J. K.; Buxton, Oliver R. H.

    2015-04-01

    The present paper describes a method to extrapolate the mean wall shear stress, , and the accurate relative position of a velocity probe with respect to the wall, , from an experimentally measured mean velocity profile in a turbulent boundary layer. Validation is made between experimental and direct numerical simulation data of turbulent boundary layer flows with independent measurement of the shear stress. The set of parameters which minimize the residual error with respect to the canonical description of the boundary layer profile is taken as the solution. Several methods are compared, testing different descriptions of the canonical mean velocity profile (with and without overshoot over the logarithmic law) and different definitions of the residual function of the optimization. The von Kármán constant is used as a parameter of the fitting process in order to avoid any hypothesis regarding its value that may be affected by different initial or boundary conditions of the flow. Results show that the best method provides an accuracy of for the estimation of the friction velocity and for the position of the wall. The robustness of the method is tested including unconverged near-wall measurements, pressure gradient, and reduced number of points; the importance of the location of the first point is also tested, and it is shown that the method presents a high robustness even in highly distorted flows, keeping the aforementioned accuracies if one acquires at least one data point in . The wake component and the thickness of the boundary layer are also simultaneously extrapolated from the mean velocity profile. This results in the first study, to the knowledge of the authors, where a five-parameter fitting is carried out without any assumption on the von Kármán constant and the limits of the logarithmic layer further from its existence.

  16. Stacking sequence determines Raman intensities of observed interlayer shear modes in 2D layered materials--A general bond polarizability model.

    PubMed

    Luo, Xin; Lu, Xin; Cong, Chunxiao; Yu, Ting; Xiong, Qihua; Quek, Su Ying

    2015-10-15

    2D layered materials have recently attracted tremendous interest due to their fascinating properties and potential applications. The interlayer interactions are much weaker than the intralayer bonds, allowing the as-synthesized materials to exhibit different stacking sequences, leading to different physical properties. Here, we show that regardless of the space group of the 2D materials, the Raman frequencies of the interlayer shear modes observed under the typical z(xx)z configuration blue shift for AB stacked materials, and red shift for ABC stacked materials, as the number of layers increases. Our predictions are made using an intuitive bond polarizability model which shows that stacking sequence plays a key role in determining which interlayer shear modes lead to the largest change in polarizability (Raman intensity); the modes with the largest Raman intensity determining the frequency trends. We present direct evidence for these conclusions by studying the Raman modes in few layer graphene, MoS2, MoSe2, WSe2 and Bi2Se3, using both first principles calculations and Raman spectroscopy. This study sheds light on the influence of stacking sequence on the Raman intensities of intrinsic interlayer modes in 2D layered materials in general, and leads to a practical way of identifying the stacking sequence in these materials.

  17. Determination of aflatoxins in air samples of refuse-derived fuel by thin-layer chromatography with laser-induced fluorescence spectrometric detection

    SciTech Connect

    Bicking, M.K.L.; Kniseley, R.N.; Svec, H.J.

    1983-02-01

    An analytical method is described which allows determination of aflatoxins in a complex matrix. An apparatus has been developed that quantitates fluorescent compounds on thin-layer chromatography plates. A nitrogen laser excitation source produces a detection limit of 10 pg for four aflatoxins. Aflatoxin B1 has been found at levels up to 17 ppb in solid samples collected from the air at a plant which produces refuse-derived fuel. 7 figures, 1 table.

  18. Local environment and composition of magnesium gallium layered double hydroxides determined from solid-state 1H and 71Ga NMR spectroscopy

    SciTech Connect

    Petersen, Line B.; Lipton, Andrew S.; Zorin, Vadim; Nielsen, Ulla Gro

    2014-11-01

    Ordering of gallium(III) in a series of magnesium gallium layered double hydroxides (LDH’s), [Mg1-xGax(OH)2(NO3)x yH2O], was determined using solid-state 1H and 71Ga NMR spectroscopy. Depletion of Ga in these LDH’s is demonstrated to be the result of soluble [Ga(OH)4]-complexes formed during synthesis.

  19. Vertical profiling and determination of landscape fluxes of biogenic nonmethane hydrocarbons within the planetary boundary layer in the Peruvian Amazon

    NASA Astrophysics Data System (ADS)

    Helmig, Detlev; Balsley, Ben; Davis, Kenneth; Kuck, Laura R.; Jensen, Mike; Bognar, John; Smith, Tyrrel; Arrieta, Rosaura Vasquez; RodríGuez, Rodolfo; Birks, John W.

    1998-10-01

    Vertical profiles of volatile organic compounds (VOCs) within the convective boundary layer (CBL) were measured at a tropical forest site in the Peruvian Amazon during July 1996 from a tethered balloon sampling platform. A profiling technique based on the collection of VOCs onto solid adsorbent cartridges was used to take samples at altitudes up to 1600 m above ground. VOC analysis was performed by thermal desorption with gas chromatographic separation and mass spectrometric and flame ionization detection. A total of 26 VOCs were structurally identified. VOCs were dominated by biogenic compounds. Highest concentrations were observed for isoprene, followed by α-pinene, p-cymene, and β-pinene. Combined, all monoterpenes accounted for approximately 15-20% of the total carbon from biogenic VOCs (BVOCs). The isoprene oxidation products methacrolein (MAC), methylvinylketone (MVK), and 3-methylfuran were observed throughout the CBL. Besides the ubiquitous chlorofluorocarbons, anthropogenic VOC concentrations were at the lower end of concentration ranges observed in rural air. From the vertical profiles, BVOC surface flux estimates were derived. Emission rates were estimated from five vertical profiles using the mixed-layer gradient and CBL budget methods. Emission estimates varied depending on method and choice of statistics, but were within 3000-8200 μg compound m-2 h-1 for isoprene, 120-370 μg m-2 h-1 for α-pinene, 40-75 μg m-2 h-1 for β-pinene, about 16 μg m-2 h-1 for p-cymene, and 40-50 μg m-2 h-1 for camphene. The changes in the ratios of MAC and MVK to isoprene with altitude were utilized to estimate the mixing times between the surface layer, mixed layer and lower troposphere.

  20. Pattern of inner retinal layers involvement in pigmented paravenous retinochoroidal atrophy as determined by SD-OCT: case report.

    PubMed

    Junqueira, Daniela Laura Melo; Lopes, Flavio Siqueira Santos; Biteli, Luís Gustavo; Prata, Tiago Santos

    2013-01-01

    Pigmented paravenous retinochoroidal atrophy is an ocular disease characterized by outer retina and choroidal atrophy often with overlying intraretinal bone spicule pigment deposition along the retinal veins. As a rare condition, there is scant information in the literature regarding the pattern of inner retinal layers involvement. We present a case of a 41-year-old white man initially referred for a glaucoma evaluation. Fundoscopy revealed patches of retinochoroidal atrophy and light pigmentation extending from the optic nerve head along the inferior-temporal retinal veins in both eyes. Using different spectral-domain optical coherence tomography (SD-OCT) protocols we identified a significant thinning of the inner retinal layers along the inferior-temporal veins, but with a lucid interval surrounding the optic nerve head. Standard automated perimetry revealed a superior absolute arcuate scotoma sparing the central fixation (good structure-functional correlation). This pattern of inner retinal layers involvement was not previously described. We believe SD-OCT added significantly to the anatomical description of this case. Physicians should consider these new anatomical findings and correlate them with functional status while assessing these patients.

  1. The morningside low-latitude boundary layer as determined from electric and magnetic field measurements on Geotail

    NASA Technical Reports Server (NTRS)

    Mozer, F. S.; Hayakawa, H.; Kokubun, S.; Nakamura, M.; Okada, T.; Yamamoto, T.; Tsuruda, K.

    1994-01-01

    On October 17, 1992, the Geotail satellite crossed the dawnside magnetopause approximately 41 times. At the majority of these crossings, the magnetic field and the normal component of the electric field were larger and the plasma density was smaller in a low-latitude boundary layer than they were in either the nearby magnetosheath or in the magnetosphere. These results are intepreted in terms of the Kelvin-Helmholtz instability associated with velocity shear at the magnetopause. Consistent with this interpretation, it is shown that the low-latitude boundary layer was the region where the flow decreased from its magnetosheath to magnetospheric value. Evidence is presented that the magnetopause was locally oriented within less than 20 deg of its nominal geometry on these crossings and that it moved with an amplitude of 1500-6000 kilometers. The thickness of the low-latitude boundary layer averaged 800 kilometers and the electric potential across it averaged 4 kilovolts with a spread of a factor of 2. Thus, the viscous interaction and similar processes are not significant contributors to magnetospheric convection.

  2. Diversity of Lipid Distribution in Fish Skeletal Muscle.

    PubMed

    Kaneko, Gen; Shirakami, Hirohito; Hirano, Yuki; Oba, Moemi; Yoshinaga, Hazuki; Khieokhajonkhet, Anurak; Nagasaka, Reiko; Kondo, Hidehiro; Hirono, Ikuo; Ushio, Hideki

    2016-04-01

    Adipose tissue is a lipid storage organ characterized by the pronounced accumulation of adipocytes. Although adipose tissues are found in various parts of the vertebrate body, it is unclear whether these tissues have a common ancestral origin or have evolved in several phylogenetic lineages by independent adipocyte accumulation events. To gain insight into the evolutionary history of vertebrate adipose tissues, we determined the distribution of adipocytes by oil red O staining in skeletal muscle of 10 teleost species spanning eight orders: Tetraodontiformes, Pleuronectiformes, Spariformes, Salmoniformes, Clupeiformes, Beloniformes, Osmeriformes, and Cypriniformes. Accumulation of adipocytes in the myoseptum was observed in many species, including red seabream, rainbow trout, Pacific herring, Pacific saury, zebrafish and giant danio. We also found some order-, species-, and swimming mode-specific distribution patterns of adipocytes: 1) almost complete absence of intramuscular adipocytes in the order Tetraodontiformes (torafugu and spotted green pufferfish), 2) clear adipocyte accumulation in the inclinator muscles of fin in Japanese flounder, 3) a large intramuscular adipose tissue at the root of the dorsal fin in ayu, and 4) thick lipid layers consisting of subcutaneous adipose tissue and red muscle lipids in pelagic migratory fish (Pacific herring and Pacific saury). Of note, Pacific herring and Pacific saury are phylogenetically distinct species sharing a similar niche and swimming mode, suggesting that their analogous adipocyte/lipid distribution patterns are the consequence of convergent evolution. The potentially heterogeneous origin of adipose tissues has significant implications for the interpretation of their functional diversity.

  3. Covalent Modification of Microsomal Lipids by Thiobenzamide Metabolites in Vivo

    PubMed Central

    Ji, Tao; Ikehata, Keisuke; Koen, Yakov M.; Esch, Steven W.; Williams, Todd D.; Hanzlik, Robert P.

    2008-01-01

    Thiobenzamide (TB) is hepatotoxic in rats causing centrolobular necrosis, steatosis, cholestasis and hyperbilirubinemia. It serves as a model compound for a number of thiocarbonyl compounds that undergo oxidative bioactivation to chemically reactive metabolites. The hepatotoxicity of TB is strongly dependent on the electronic character of substituents in the meta- and para- positions, with Hammett rho values ranging from −4 to −2. On the other hand ortho substituents which hinder nucleophilic addition to the benzylic carbon of S-oxidized TB metabolites abrogate the toxicity and protein covalent binding of TB. This strong linkage between the chemistry of TB and its metabolites and their toxicity suggests that this model is a good one for probing the overall mechanism of chemically-induced biological responses. While investigating the protein covalent binding of TB metabolites we noticed an unusually large amount of radioactivity associated with the lipid fraction of rat liver microsomes. Thin layer chromatography showed that most of the radioactivity was contained in a single spot more polar than the neutral lipids but less polar than the phospholipid fractions. Mass spectral analyses aided by the use of synthetic standards identified the material as N-benzimidoyl derivatives of typical microsomal phosphatidylethanolamine (PE) lipids. Quantitative analysis indicated that up to 25% of total microsomal PE became modified within 5 h after a hepatotoxic dose of TB. Further studies will be required to determine the contribution of lipid modification to the hepatotoxicity of thiobenzamide. PMID:17381136

  4. Determination of thickness of thin turbid painted over-layers using micro-scale spatially offset Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Conti, Claudia; Realini, Marco; Colombo, Chiara; Botteon, Alessandra; Bertasa, Moira; Striova, Jana; Barucci, Marco; Matousek, Pavel

    2016-12-01

    We present a method for estimating the thickness of thin turbid layers using defocusing micro-spatially offset Raman spectroscopy (micro-SORS). The approach, applicable to highly turbid systems, enables one to predict depths in excess of those accessible with conventional Raman microscopy. The technique can be used, for example, to establish the paint layer thickness on cultural heritage objects, such as panel canvases, mural paintings, painted statues and decorated objects. Other applications include analysis in polymer, biological and biomedical disciplines, catalytic and forensics sciences where highly turbid overlayers are often present and where invasive probing may not be possible or is undesirable. The method comprises two stages: (i) a calibration step for training the method on a well characterized sample set with a known thickness, and (ii) a prediction step where the prediction of layer thickness is carried out non-invasively on samples of unknown thickness of the same chemical and physical make up as the calibration set. An illustrative example of a practical deployment of this method is the analysis of larger areas of paintings. In this case, first, a calibration would be performed on a fragment of painting of a known thickness (e.g. derived from cross-sectional analysis) and subsequently the analysis of thickness across larger areas of painting could then be carried out non-invasively. The performance of the method is compared with that of the more established optical coherence tomography (OCT) technique on identical sample set. This article is part of the themed issue "Raman spectroscopy in art and archaeology".

  5. An acpXL Mutant of Rhizobium leguminosarum bv. phaseoli Lacks 27-Hydroxyoctacosanoic Acid in Its Lipid A and Is Developmentally Delayed during Symbiotic Infection of the Determinate Nodulating Host Plant Phaseolus vulgaris ▿

    PubMed Central

    Brown, Dusty B.; Huang, Yu-Chu; Kannenberg, Elmar L.; Sherrier, D. Janine; Carlson, Russell W.

    2011-01-01

    Rhizobium leguminosarum is a Gram-negative bacterium that forms nitrogen-fixing symbioses with compatible leguminous plants via intracellular invasion and establishes a persistent infection within host membrane-derived subcellular compartments. Notably, an unusual very-long-chain fatty acid (VLCFA) is found in the lipid A of R. leguminosarum as well as in the lipid A of the medically relevant pathogens Brucella abortus, Brucella melitensis, Bartonella henselae, and Legionella pneumophila, which are also able to persist within intracellular host-derived membranes. These bacterial symbionts and pathogens each contain a homologous gene region necessary for the synthesis and transfer of the VLCFA to the lipid A. Within this region lies a gene that encodes the specialized acyl carrier protein AcpXL, on which the VLCFA is built. This study describes the biochemical and infection phenotypes of an acpXL mutant which lacks the VLCFA. The mutation was created in R. leguminosarum bv. phaseoli strain 8002, which forms symbiosis with Phaseolus vulgaris, a determinate nodulating legume. Structural analysis using gas chromatography and mass spectrometry revealed that the mutant lipid A lacked the VLCFA. Compared to the parent strain, the mutant was more sensitive to the detergents deoxycholate and dodecyl sulfate and the antimicrobial peptide polymyxin B, suggesting a compromise to membrane stability. In addition, the mutant was more sensitive to higher salt concentrations. Passage through the plant restored salt tolerance. Electron microscopic examination showed that the mutant was developmentally delayed during symbiotic infection of the host plant Phaseolus vulgaris and produced abnormal symbiosome structures. PMID:21764936

  6. The influence of matrix composition and ink layer thickness on iron gall ink determination by the PIXE method

    NASA Astrophysics Data System (ADS)

    Uršič, Mitja; Budnar, Miloš; Simčič, Jure; Pelicon, Primož

    2006-06-01

    The elemental composition of iron gall inks in historical documents can be effectively studied using the non-destructive proton induced X-ray emission (PIXE) method. The in-air proton beam experimental set-up installed at the Microanalytical Centre of the Jožef Stefan Institute was used for this purpose. The aim of the present investigation was to model and evaluate the uncertainties in the analysis due to the incompletely known matrix composition and iron gall ink layer thickness. Estimation of these uncertainties helped in quantifying the accuracy of multi-elemental PIXE analysis of historical documents.

  7. A low-cost thin layer coulometric microfluidic device based on an ion-selective membrane for calcium determination.

    PubMed

    Dorokhin, Denis; Crespo, Gastón A; Afshar, Majid Ghahraman; Bakker, Eric

    2014-01-07

    A prototype of a low-cost and easy-to-use thin layer coulometric microfluidic device based on an ion-selective membrane for calcium detection is described. The microfluidic device was fabricated and consequently assembled with inexpensive materials without using sophisticated and centralized fabrication laboratory facilities. The linear range of the device is found to be 10-100 μM for a 60 s current integration time. Preliminary validations showed that the microfluidic device is suitable for the quantification of calcium in mineral water.

  8. Reducible cationic lipids for gene transfer.

    PubMed Central

    Wetzer, B; Byk, G; Frederic, M; Airiau, M; Blanche, F; Pitard, B; Scherman, D

    2001-01-01

    One of the main challenges of gene therapy remains the increase of gene delivery into eukaryotic cells. We tested whether intracellular DNA release, an essential step for gene transfer, could be facilitated by using reducible cationic DNA-delivery vectors. For this purpose, plasmid DNA was complexed with cationic lipids bearing a disulphide bond. This reduction-sensitive linker is expected to be reduced and cleaved in the reducing milieu of the cytoplasm, thus potentially improving DNA release and consequently transfection. The DNA--disulphide-lipid complexation was monitored by ethidium bromide exclusion, and the size of complexes was determined by dynamic light scattering. It was found that the reduction kinetics of disulphide groups in DNA--lipid complexes depended on the position of the disulphide linker within the lipid molecule. Furthermore, the internal structure of DNA--lipid particles was examined by small-angle X-ray scattering before and after lipid reduction. DNA release from lipid complexes was observed after the reduction of disulphide bonds of several lipids. Cell-transfection experiments suggested that complexes formed with selected reducible lipids resulted in up to 1000-fold higher reporter-gene activity, when compared with their analogues without disulphide bonds. In conclusion, reduction-sensitive groups introduced into cationic lipid backbones potentially allow enhanced DNA release from DNA--lipid complexes after intracellular reduction and represent a tool for improved vectorization. PMID:11389682

  9. Reducible cationic lipids for gene transfer.

    PubMed

    Wetzer, B; Byk, G; Frederic, M; Airiau, M; Blanche, F; Pitard, B; Scherman, D

    2001-06-15

    One of the main challenges of gene therapy remains the increase of gene delivery into eukaryotic cells. We tested whether intracellular DNA release, an essential step for gene transfer, could be facilitated by using reducible cationic DNA-delivery vectors. For this purpose, plasmid DNA was complexed with cationic lipids bearing a disulphide bond. This reduction-sensitive linker is expected to be reduced and cleaved in the reducing milieu of the cytoplasm, thus potentially improving DNA release and consequently transfection. The DNA--disulphide-lipid complexation was monitored by ethidium bromide exclusion, and the size of complexes was determined by dynamic light scattering. It was found that the reduction kinetics of disulphide groups in DNA--lipid complexes depended on the position of the disulphide linker within the lipid molecule. Furthermore, the internal structure of DNA--lipid particles was examined by small-angle X-ray scattering before and after lipid reduction. DNA release from lipid complexes was observed after the reduction of disulphide bonds of several lipids. Cell-transfection experiments suggested that complexes formed with selected reducible lipids resulted in up to 1000-fold higher reporter-gene activity, when compared with their analogues without disulphide bonds. In conclusion, reduction-sensitive groups introduced into cationic lipid backbones potentially allow enhanced DNA release from DNA--lipid complexes after intracellular reduction and represent a tool for improved vectorization.

  10. A novel double-layer molecularly imprinted polymer film based surface plasmon resonance for determination of testosterone in aqueous media

    NASA Astrophysics Data System (ADS)

    Tan, Yuan; Jing, Lijing; Ding, Yonghong; Wei, Tianxin

    2015-07-01

    This work aimed to prepare a novel double-layer structure molecularly imprinted polymer film (MIF) on the surface plasmon resonance (SPR) sensor chips for detection of testosterone in aqueous media. The film was synthesized by in-situ UV photo polymerization. Firstly, the modification of gold surface of SPR chip was performed by 1-dodecanethiol. Then double-layer MIF was generated on the 1-dodecanethiol modified gold surface. The non-modified and imprinted surfaces were characterized by atomic force microscopy (AFM), fourier transform infrared (FTIR) spectroscopy and contact angle measurements. Analysis of SPR spectroscopy showed that the imprinted sensing film displayed good selectivity for testosterone compared to other analogues and the non-imprinted polymer film (NIF). Within the concentrations range of 1 × 10-12-1 × 10-8 mol/L, the coupling angle changes of SPR were linear with the negative logarithm of testosterone concentrations (R2 = 0.993). Based on a signal/noise ratio of three, the detection limit was estimated to be 10-12 mol/L. Finally, the developed MIF was successfully applied to the seawater detection of testosterone. The results in the experiments suggested that a combination of SPR sensing with MIF was a promising alternative method for detection of testosterone in aqueous media.

  11. Quantitative determination of diazepam, nitrazepam and flunitrazepam in tablets using thin-layer chromatography-densitometry technique.

    PubMed

    Bakavoli, Mehdi; Kaykhaii, Massoud

    2003-04-10

    A simple and reliable assay for diazepam, nitrazepam and flunitrazepam in tablets by high-performance liquid chromatography (HPLC) and thin-layer chromatography (TLC)-densitometry is described. A quantity of a ground tablet mass, equal to the average weight of one tablet was sonicated in MeOH, mixed with appropriate internal standard, filtered and either injected directly into the liquid chromatograph, or after evaporation and reconstitution of an aliquot of the extract, was spotted on a silica gel thin-layer plate. A variable UV detector, operated at 254 nm was employed in both procedures. A C18, reversed phase 7 microm column was used for HPLC analysis; the mobile phase was a 1:1 (v/v) mixture of MeOH (40 degrees C) and 0.01 M phosphate buffer (pH 7, 80 degrees C). The TLC plate was developed in an unsaturated chromatographic chamber containing 100 ml chloroform-acetone (9:1); at room temperature, the mobile phase was allowed to travel 15 cm. The percentage of the active ingredient content of each tablet obtained by both procedures, was in the range of the stated amount except for one brand of diazepam tablets which contained approximately 23% less active ingredient than the minimum prescribed amount. The TLC densitometry, although yields slightly higher values than the HPLC method, is preferred due to its simplicity, ease and low cost.

  12. Joint French-German radar measurements for the determination of the refractive index in the maritime boundary layer

    NASA Astrophysics Data System (ADS)

    Essen, Helmut; Danklmayer, Andreas; Förster, Jörg; Behn, Mario; Hurtaud, Yvonick; Fabbro, Vincent; Castanet, Laurent

    2012-10-01

    To predict the performance of coastal and shipborne radars, it is essential to assess the propagation characteristics of electromagnetic waves in the maritime boundary layer. To be independent upon environmental measurements, which are generally not as precise and reliable as they have to be for a proper input to simulation programs, usually based upon parabolic equation models, a method to retrieve the refractive index gradients in the low troposphere is the Refractivity from Clutter (RFC) algorithm. The propagation factor is computed from the received clutter power and is iteratively processed in order to retrieve the refractive index profiles. Under a respective French-German technical agreement a measurement program concerning radar propagation in the maritime boundary layer has been initiated, with contributions from ONERA-CERT, DGA MI / TN, Fraunhofer-FHR and the German Technical Center for Ships and Naval Weapons (WTD 71). The paper gives an overview on the RFC method with examples from the previous campaigns. It describes the experimental set-up and its methodology.

  13. Determination of haloacetic acids in water using layered double hydroxides as a sorbent in dispersive solid-phase extraction followed by liquid chromatography with tandem mass spectrometry.

    PubMed

    Alsharaa, Abdulnaser; Sajid, Muhammad; Basheer, Chanbasha; Alhooshani, Khalid; Lee, Hian Kee

    2016-09-01

    In the present study, highly efficient and simple dispersive solid-phase extraction procedure for the determination of haloacetic acids in water samples has been established. Three different types of layered double hydroxides were synthesized and used as a sorbent in dispersive solid-phase extraction. Due to the interesting behavior of layered double hydroxides in an acidic medium (pH˂4), the analyte elution step was not needed; the layered double hydroxides are simply dissolved in acid immediately after extraction to release the analytes which are then directly introduced into a liquid chromatography with tandem mass spectrometry system for analysis. Several dispersive solid-phase extraction parameters were optimized to increase the extraction efficiency of haloacetic acids such as temperature, extraction time and pH. Under optimum conditions, good linearity was achieved over the concentration range of 0.05-100 μg/L with detection limits in the range of 0.006-0.05 μg/L. The relative standard deviations were 0.33-3.64% (n = 6). The proposed method was applied to different water samples collected from a drinking water plant to determine the concentrations of haloacetic acids.

  14. Specific interaction and two-dimensional crystallization of histidine tagged yeast RNA polymerase I on nickel-chelating lipids.

    PubMed Central

    Bischler, N; Balavoine, F; Milkereit, P; Tschochner, H; Mioskowski, C; Schultz, P

    1998-01-01

    Nickel-chelating lipid monolayers were used to generate two-dimensional crystals from yeast RNA polymerase I that was histidine-tagged on one of its subunits. The interaction of the enzyme with the spread lipid layers was found to be imidazole dependent, and the formation of two-dimensional crystals required small amounts of imidazole, probably to select the specific interaction of the engineered tag with the nickel. Two distinct preparations of RNA polymerase I tagged on different subunits yielded two different crystal forms, indicating that the position of the tag determines the crystallization process. The orientation of the enzyme in both crystal forms is correlated with the location of the tagged subunits in a three-dimensional model which shows that the tagged subunits are in contact with the lipid layer. PMID:9512048

  15. Self-assembly formation of lipid bilayer coatings on bare aluminum oxide: overcoming the force of interfacial water.

    PubMed

    Jackman, Joshua A; Tabaei, Seyed R; Zhao, Zhilei; Yorulmaz, Saziye; Cho, Nam-Joon

    2015-01-14

    Widely used in catalysis and biosensing applications, aluminum oxide has become popular for surface functionalization with biological macromolecules, including lipid bilayer coatings. However, it is difficult to form supported lipid bilayers on aluminum oxide, and current methods require covalent surface modification, which masks the interfacial properties of aluminum oxide, and/or complex fabrication techniques with specific conditions. Herein, we addressed this issue by identifying simple and robust strategies to form fluidic lipid bilayers on aluminum oxide. The fabrication of a single lipid bilayer coating was achieved by two methods, vesicle fusion under acidic conditions and solvent-assisted lipid bilayer (SALB) formation under near-physiological pH conditions. Importantly, quartz crystal microbalance with dissipation (QCM-D) monitoring measurements determined that the hydration layer of a supported lipid bilayer on aluminum oxide is appreciably thicker than that of a bilayer on silicon oxide. Fluorescence recovery after photobleaching (FRAP) analysis indicated that the diffusion coefficient of lateral lipid mobility was up to 3-fold greater on silicon oxide than on aluminum oxide. In spite of this hydrodynamic coupling, the diffusion coefficient on aluminum oxide, but not silicon oxide, was sensitive to the ionic strength condition. Extended-DLVO model calculations estimated the thermodynamics of lipid-substrate interactions on aluminum oxide and silicon oxide, and predict that the range of the repulsive hydration force is greater on aluminum oxide, which in turn leads to an increased equilibrium separation distance. Hence, while a strong hydration force likely contributes to the difficulty of bilayer fabrication on aluminum oxide, it also confers advantages by stabilizing lipid bilayers with thicker hydration layers due to confined interfacial water. Such knowledge provides the basis for improved surface functionalization strategies on aluminum oxide

  16. Microbial diversity of cold-seep sediments in Sagami Bay, Japan, as determined by 16S rRNA gene and lipid analyses.

    PubMed

    Fang, Jiasong; Shizuka, Arakawa; Kato, Chiaki; Schouten, Stefan

    2006-09-01

    Microbial communities in Calyptogena sediment and microbial mats of Sagami Bay, Japan, were characterized using 16S rRNA gene sequencing and lipid biomarker analysis. Characterization of 16S rRNA gene isolated from these samples suggested a predominance of bacterial phylotypes related to Gammaproteobacteria (57-64%) and Deltaproteobacteria (27-29%). The Epsilonproteobacteria commonly found in cold seeps and hydrothermal vents were only detected in the microbial mat sample. Significantly different archaeal phylotypes were found in Calyptogena sediment and microbial mats; the former contained only Crenarchaeota clones (100% of the total archaeal clones) and the latter exclusively Euryarchaeota clones, including the anaerobic oxidation of methane archaeal groups ANME-2a and ANME-2c. Many of these lineages are as yet uncultured and undescribed groups of bacteria and archaea. Phospholipid fatty acid analysis suggested the presence of sulphate-reducing and sulphur-oxidizing bacteria. Results of intact glyceryl dialkyl glyceryl tetraether lipid analysis indicated the presence of nonthermophilic marine planktonic archaea. These results suggest that the microbial community in the Sagami Bay seep site is distinct from previously characterized cold-seep environments.

  17. Determination of molecular groups involved in the interaction of annexin A5 with lipid membrane models at the air-water interface.

    PubMed

    Fezoua-Boubegtiten, Zahia; Desbat, Bernard; Brisson, Alain; Lecomte, Sophie

    2010-06-01

    Annexin A5 (AnxA5) is a member of a family of homologous proteins sharing the ability to bind to negatively charged phospholipid membranes in a Ca(2+)-dependent manner. In this paper, we used polarization-modulated infrared reflection absorption spectroscopy (PMIRRAS), Brewster angle microscopy (BAM), and ellipsometry to investigate changes both in the structure of AnxA5 and phospholipid head groups associated with membrane binding. We found that the secondary structure of AnxA5 in the AnxA5/Ca(2+)/lipid ternary complex is conserved, mainly in alpha-helices and the average orientation of the alpha-helices of the protein is slightly tilted with respect to the normal to the phospholipid monolayer. Upon interaction between AnxA5 and phospholipids, a shift of the nu(as) PO(2)(-) band is observed by PMIRRAS. This reveals that the phosphate group is the main group involved in the binding of AnxA5 to phospholipids via Ca(2+) ions, even when some carboxylate groups are accessible (PS). PMIRRAS spectra also indicate a change of carboxylate orientation in the aspartate and glutamate residues implicated in the association of the AnxA5, which could be linked to the 2D crystallization of protein under the phospholipid monolayer. Finally, we demonstrated that the interaction of AnxA5 with pure carboxylate groups of an oleic acid monolayer is possible, but the orientation of the protein under the lipid is completely different.

  18. Microbial Diversity of Cold-Seep Sediments in Sagami Bay, Japan as Determined by 16S rDNA and Lipid Analyses

    NASA Astrophysics Data System (ADS)

    Fang, J.; Arakawa, S.; Kato, C.; Schouten, S.

    2006-12-01

    Microbial communities in Calyptogena sediment and microbial mats of Sagami Bay, Japan were characterized by using 16S rDNA sequencing and lipid biomarker analysis. Characterization of 16S rDNA isolated from these samples suggested a predominance of bacterial phylotypes related to γ- (57-64%) and δ-subclasses (27-29%) of the Proteobacteria. The ɛ-subclass of the Proteobacteria commonly found in cold seeps and hydrothermal vents were only detected in the microbial mat sample. There are significantly different archaeal phylotypes between Calyptogena sediment and microbial mat; the former contains only Crenarchaeota clones (100% of the total archaeal clones) and the latter exclusively Euryarchaeota clones including the ANME-2a and ANME-2c archaeal groups. Many of these lineages are as yet uncultured and undescribed groups of bacteria and archaea. Phospholipid fatty acid analysis suggests the presence of sulfate-reducing and sulfur-oxidizing bacteria. Results of intact glyceryl dialkyl glyceryl tetraether (GDGT) lipid analysis indicate the presence of nonthermophilic marine planktonic archaea. These results suggest that the microbial community in the Sagami Bay seep site is distinct from previously characterized cold seep environments.

  19. Determination of the Thickness of the Back Dead-Layer of GRETINA Crystals via Comparisons of Measured Photopeak Efficiencies with GEANT4 Simulations

    NASA Astrophysics Data System (ADS)

    Jarvis, L. R.; Stine, C. G.; Riley, L. A.

    2016-09-01

    Measurements of the photopeak efficiency of the GRETINA array up to 3.5 MeV made at the National Superconducting Cyclotron Laboratory with 152Eu and 56Co sources were compared with GEANT 4 simulations. We developed a method of determining the average thickness of the back dead layers of the GRETINA crystals by considering the partial photopeak efficiencies of events including gamma-ray interactions in the back slice of the crystals. The impact of dead-layer thicknesses on the accuracy of simulated photopeak efficiencies and the ratio of photopeak counts measured in the two GRETINA crystal types is discussed. This work was supported by the National Science Foundation under Grant Nos. PHY-1303480 and PHY-1102511 and by the US Department of Energy under Grant No. DE-AC02-05CH11231.

  20. Solid contact ion sensor with conducting polymer layer copolymerized with the ion-selective membrane for determination of calcium in blood serum.

    PubMed

    Abramova, Natalia; Moral-Vico, Javier; Soley, Jordi; Ocaña, Cristina; Bratov, Andrey

    2016-11-02

    A new solid contact ion selective electrode with intermediate conducting polymer (CP) layer formed by electropolymerization on a gold electrode of a bifunctional monomer, n-phenyl-ethylenediamine-methacrylamide (NPEDMA), which contains a methacrylamide group attached to aniline, is presented. The conducting polymer was studied by means of optical spectroscopy, cyclic voltammetry and potentiometric measurements. Ca(2+)-ion-selective membrane based on acrylated urethane polymer was shown to co-polymerize with the CP forming highly adhesive boundary that prevents formation of water layers between the CP and membrane, thus enhancing the stability and life-time of the sensor. The designed ion-selective electrode was successfully used for determination of total calcium ion concentration in blood serum samples.

  1. Synthesis of betulin derivatives and the determination of their relative lipophilicities using reversed-phase thin-layer chromatography.

    PubMed

    Achrem-Achremowicz, Jacek; Kepczyńska, Elzbieta; Zylewski, Marek; Janeczko, Zbigniew

    2010-03-01

    A series of superlipophilic or highly lipophilic semisynthetic betulin derivatives was prepared and their relative lipophilicity was measured by reversed-phase thin-layer chromatography (RP-TLC) at different pH values using 1,4-dioxane-acetate buffer mixtures as mobile phases. Cholesterol, 17beta-estradiol and pure betulin were used as the reference compounds. Linear relationships were found between R(M) values and 1,4-dioxane concentrations in the mobile phases. LogP values were also calculated with computer programs ACD/LogP (ChemSketch 11.0, Advanced Chemistry Development Inc.) and ClogP (Daylight Chemical Information Systems Inc.). The empirical and theoretical data were compared, and the R(M0) values correlated well with logP. Two of the synthesized betulin derivatives are reported for the first time.

  2. Signal Strength Is an Important Determinant of Accuracy of Nerve Fiber Layer Thickness Measurement by Optical Coherence Tomography

    PubMed Central

    Wu, Ziqiang; Huang, Jingjing; Dustin, Laurie; Sadda, Srinivas

    2009-01-01

    Purpose To investigate the effect of signal strength on the measurement of the retinal nerve fiber layer (RNFL) using optical coherence tomography (OCT). Methods Eyes with known or suspected glaucoma or non-glaucomatous optic atrophy were scanned twice within the same visit using Stratus OCT's Fast Nerve Fiber Layer Thickness (FNFLT) protocol. Only those eyes with two high quality scans (signal strengths of at least 5 and different from each other, no error messages, and no obvious segmentation errors) were included in the study. The RNFL thickness measurements from the initial and the repeat scans were compared and then correlated with the differences in signal strength. Subgroup analyses were performed similarly among patients with average RNFL thickness less than 90 microns and those with at least 90 microns. Results Scans with higher signal strengths are associated with greater RNFL thickness measurements if the signal strength is less than 7. Scans with signal strength of at least 7 have higher reproducibility. This is true among all patients as well as subgroups divided on the basis of average RNFL thickness. Additionally, we found that the greater the variability between the initial and repeat scans, the greater the variability in the RNFL thickness measurements. Scans with higher signal strengths have less variability, especially when the optic nerve is relatively healthy. Conclusions When measuring the RNFL thickness with the Stratus OCT, it is important to aim for a signal strength of at least 7. Visual field testing may be more reliable in some patients, especially when the optic nerve is significantly compromised. PMID:19295375

  3. Paleointensity determination of welded tuffs extruded with tephra layers: A new approach to calibration of relative paleointensity stacks

    NASA Astrophysics Data System (ADS)

    Mochizuki, N.; Fujii, S.; Hasegawa, T.; Yamamoto, Y.; Hatakeyama, T.; Okada, M.; Shibuya, H.

    2015-12-01

    For a reliable calibration of a relative paleointensity stack, we proposed a new method for direct comparison of absolute paleointensities (APIs) with relative paleointensities (RPIs) (Mochizuki et al., under review). In the analysis, APIs are directly compared with the RPIs of a RPI stack at six stratigraphic levels: three levels are based on tephrostratigraphic correlations between welded tuffs and corresponding tephra layers in the oxygen isotope stratigraphy, and the other three levels are based on paleomagnetic correlations between RPI minima and transitional geomagnetic fields. In the present study, to increase API data with tephrostratigraphic correlation, we applied the LTD-DHT Shaw paleointensity method (Tsunakawa-Shaw method) to 21 welded tuffs in Japan extruded with widespread tephra layers. We obtained mean paleointensities for 16 of the 21 welded tuffs. Since nine of the 16 welded tuffs were correlated with the tephras recognized in the oxygen isotope stratigraphy, they can be added to the API data used in the direct comparison method. Combining these API data with the reported data, we compared API data with RPIs from the PISO-1500 stack and SINT-800 stack at the 14 stratigraphic levels: eleven levels are based on tephrostratigraphic correlation and the other three levels are based on paleomagnetic correlation. RPIs of the PISO-1500 stack showed a linear relationship with the virtual axial dipole moments (VADMs) calculated from the APIs, indicating that the PISO-1500 stack has a linear relation to the axial dipole moment. PRIs from the SINT-800 stack also have a linear-like trend with the VADMs. This direct comparison method can clarify the relationship between APIs and RPIs of a RPI stack, and thus provide a reliable calibration of the RPI stack to absolute values.

  4. X-ray attenuation measurements in a cavitating mixing layer for instantaneous two-dimensional void ratio determination

    SciTech Connect

    Aeschlimann, Vincent; Barre, Stephane; Legoupil, Samuel

    2011-05-15

    The purpose of this experimental study was to analyze a two-dimensional cavitating shear layer. The global aim of this work was to obtain a better understanding and modeling of cavitation phenomenon in a 2D turbulent sheared flow which can be considered as quite representative of cavitating rocket engine turbopomp inducers. This 2D mixing layer flow provided us a well documented test case which can be used for the characterization of the cavitation effects in sheared flows. The development of a velocity gradient was observed inside a liquid water flow: Kelvin-Helmholtz instabilities developed at the interface. Vaporizations and implosions of cavitating structures inside the vortices were observed. X-ray attenuation measurements were performed to estimate the amount of vapor present inside the mixing area. Instantaneous two-dimensional void ratio fields were acquired. The real spatial resolutions are 0.5 mm with 2000 fps and 1.5 mm with 20 000 fps. The effective time resolution is equal to the camera frame rate up to a 19% void ratio variation between two consecutive images. This seems to be sufficient in the context of the present flow configuration. The two-phase structures present inside the mixing area were analyzed at three different cavitation levels and their behaviors were compared to non-cavitating flow dynamic. Convection velocities and vortices shedding frequencies were estimated. Results show that vapor was transported by the turbulent velocity field. Statistical analysis of the void ratio signal was carried out up to the fourth order moment. This study provided a global understanding of the cavitating structure evolution and of the cavitation effects on turbulent sheared flows.

  5. Microplate assay for quantitation of neutral lipids in extracts from microalgae.

    PubMed

    Higgins, Brendan T; Thornton-Dunwoody, Alexander; Labavitch, John M; VanderGheynst, Jean S

    2014-11-15

    Lipid quantitation is widespread in the algae literature, but popular methods such as gravimetry, gas chromatography and mass spectrometry (GC-MS), and Nile red cell staining suffer drawbacks, including poor quantitation of neutral lipids, expensive equipment, and variable results among algae species, respectively. A high-throughput microplate assay was developed that uses Nile red dye to quantify neutral lipids that have been extracted from algae cells. Because the algal extracts contained pigments that quenched Nile red fluorescence, a mild bleach solution was used to destroy pigments, resulting in a nearly linear response for lipid quantities in the range of 0.75 to 40 μg. Corn oil was used as a standard for quantitation, although other vegetable oils displayed a similar response. The assay was tested on lipids extracted from three species of Chlorella and resulted in close agreement with triacylglycerol (TAG) levels determined by thin layer chromatography. The assay was found to more accurately measure algal lipids conducive to biodiesel production and nutrition applications than the widely used gravimetric assay. Assay response was also consistent among different species, in contrast to Nile red cell staining procedures.

  6. Lipid14: The Amber Lipid Force Field

    PubMed Central

    2015-01-01

    The AMBER lipid force field has been updated to create Lipid14, allowing tensionless simulation of a number of lipid types with the AMBER MD package. The modular nature of this force field allows numerous combinations of head and tail groups to create different lipid types, enabling the easy insertion of new lipid species. The Lennard-Jones and torsion parameters of both the head and tail groups have been revised and updated partial charges calculated. The force field has been validated by simulating bilayers of six different lipid types for a total of 0.5 μs each without applying a surface tension; with favorable comparison to experiment for properties such as area per lipid, volume per lipid, bilayer thickness, NMR order parameters, scattering data, and lipid lateral diffusion. As the derivation of this force field is consistent with the AMBER development philosophy, Lipid14 is compatible with the AMBER protein, nucleic acid, carbohydrate, and small molecule force fields. PMID:24803855

  7. Micelle enhanced fluorimetric and thin layer chromatography densitometric methods for the determination of (+/-) citalopram and its S-enantiomer escitalopram.

    PubMed

    Taha, Elham A; Salama, Nahla N; Wang, Shudong

    2009-04-07

    Two sensitive and validated methods were developed for determination of a racemic mixture citalopram and its enantiomer S-(+) escitalopram. The first method was based on direct measurement of the intrinsic fluorescence of escitalopram using sodium dodecyl sulfate as micelle enhancer. This was further applied to determine escitalopram in spiked human plasma, as well as in the presence of common and co-administrated drugs. The second method was TLC densitometric based on various chiral selectors was investigated. The optimum TLC conditions were found to be sensitive and selective for identification and quantitative determination of enantiomeric purity of escitalopram in drug substance and drug products. The method can be useful to investigate adulteration of pure isomer with the cheap racemic form.

  8. [Experimental determination of radiation scattering and absorption coefficients in a homogeneous layer of highly-dispersive biological medium].

    PubMed

    Danilov, A A; Masloboev, Iu P; Selishchev, S V; Tereshchenko, S A

    2006-01-01

    A method for experimental determination of optical characteristics of a highly-dispersive medium (radiation scattering and absorption coefficients) is described. The method is based on two mathematical models of ultrashort laser pulse propagation through a highly-dispersive medium (HDM), an axial model and a diffusion model. Milk dissolved in water was used as HDM. Dependences of optical characteristics of HDM on the concentration of milk in water are obtained. The limits of applicability of the axial and diffusion models to media with different scattering and absorption characteristics are determined.

  9. Intracellular Targeting Signals and Lipid Specificity Determinants of the ALA/ALIS P4-ATPase Complex Reside in the Catalytic ALA α-Subunit

    PubMed Central

    Poulsen, Lisbeth R.; Hanisch, Susanne; Meffert, Katharina; Buch-Pedersen, Morten J.; Jakobsen, Mia K.; Pomorski, Thomas Günther; Palmgren, Michael G.

    2010-01-01

    Members of the P4 subfamily of P-type ATPases are believed to catalyze flipping of phospholipids across cellular membranes, in this way contributing to vesicle biogenesis in the secretory and endocytic pathways. P4-ATPases form heteromeric complexes with Cdc50-like proteins, and it has been suggested that these act as β-subunits in the P4-ATPase transport machinery. In this work, we investigated the role of Cdc50-like β-subunits of P4-ATPases for targeting and function of P4-ATPase catalytic α-subunits. We show that the Arabidopsis P4-ATPases ALA2 and ALA3 gain functionality when coexpressed with any of three different ALIS Cdc50-like β-subunits. However, the final cellular destination of P4-ATPases as well as their lipid substrate specificity are independent of the nature of the ALIS β-subunit they were allowed to interact with. PMID:20053675

  10. Effect of cell rupturing methods on the drying characteristics and lipid compositions of microalgae.

    PubMed

    Viswanathan, T; Mani, S; Das, K C; Chinnasamy, S; Bhatnagar, A; Singh, R K; Singh, M

    2012-12-01

    This paper investigated the effect of cell rupturing methods on the drying characteristics and the lipid compositions of a green algae consortium grown in an open raceway pond. The ruptured microalgae samples obtained from French press, autoclave and sonication methods were used for conducting thin layer drying experiment at four drying temperatures (30, 50, 70 and 90 °C). The rate of moisture removal at each drying condition was recorded until no change in moisture loss. A typical drying curve for a microalgae consortium indicated that the rate of drying was limited by diffusion. Among three drying models (Newton, Page and Henderson-Pabis) used to fit the drying data, Page model fitted well on the experimental drying data with a coefficient of determination (R(2)) of 0.99. Solvent extraction of French press ruptured cells produced the highest total lipid yield with no significant change in lipid compositions.

  11. Determination of hydrocarbon types in petroleum and coal-derived products by thin-layer chromatography/densitometry.

    PubMed

    Cebolla, V L; Membrado, L; Vela, J; Garriga, R; Henrion, P; Domingo, M P; González, P

    2000-01-01

    Different methodologies based on thin-layer chromatography (TLC)/densitometry were used to separate and quantitate hydrocarbon types in middle distillates (gas oil), heavy distillates (lubricant) from petroleum, and coal-derived products. Thus, petroleum products were separated into saturates and aromatics by development, using n-hexane (9 min) followed by dichloromethane (4.5 min), of silica gel plates impregnated with berberine sulfate. Detection of saturates and aromatics was performed by fluorescence scanning using 365 nm as the excitation wavelength. Alternative detection of aromatics can be performed on either silica gel or berberine-impregnated plates by using ultraviolet (UV) densitometry at 250 nm. On the other hand, polar coal-derived products were separated into aromatics, polar compounds, and uneluted components by using silica gel plates and development with toluene (12 min), followed by dichloromethane-methanol (95 + 5, v/v), with detection by UV densitometry at 250 nm. In all cases, external standard calibration was used for quantitation. Results were validated by using standard methods or well-established techniques of the petrochemical industry. The potential usefulness of TLC/densitometry is discussed.

  12. Experimentally Determined Binding Energies of Astrophysically Relevant Hydrocarbons in Pure and H2O-Layered Ices

    NASA Astrophysics Data System (ADS)

    Behmard, Aida; Graninger, Dawn; Fayolle, Edith; Oberg, Karin I.

    2017-01-01

    Small hydrocarbons represent an important organic reservoir in a variety of interstellar environments. Constraints on desorption temperatures and binding energies of hydrocarbons are thus necessary for accurate predictions of where and in which phase these molecules exist. Through a series of temperature programmed desorption experiments, we determined binding energies of 1, 2, and 3-carbon interstellar hydrocarbons (CH4, C2H2, C2H4, C2H6, C3H4, C3H6, and C3H8) in pure ices and in relation to water ice, the dominant ice constituent during star and planet formation. These empirically determined values can be used to inform observations and models of the molecular spatial distribution in protoplanetary disks, thus providing insight into planetesimal composition. In addition, knowledge of hydrocarbon binding energies will refine simulations of grain surface chemistry, allowing for better predictions of the chemical conditions that lead to the production of complex organic molecules vital for life.

  13. A rapid method for determining arachidonic:eicosapentaenoic acid ratios in whole blood lipids: correlation with erythrocyte membrane ratios and validation in a large Italian population of various ages and pathologies

    PubMed Central

    2010-01-01

    Background Omega-3 and -6 polyunsaturated fatty acids (LCPUFA), are important for good health conditions. They are present in membrane phospholipids. The ratio of total n-6:n-3 LCPUFA and arachidonic acid:eicosapentaenoic acid (AA and EPA), should not exceed 5:1. Increased intake of n-6 and decreased consumption of n-3 has resulted in much higher, ca 10/15:1 ratio in RBC fatty acids with the possible appearance of a pathological "scenario". The determination of RBC phospholipid LCPUFA contents and ratios is the method of choice for assessing fatty acid status but it is labour intensive and time consuming. Aims of the study [i] To describe and validate a rapid method, suitable for large scale population studies, for total blood fatty acid assay; [ii] to verify a possible correlation between total n-6:n-3 ratio and AA:EPA ratios in RBC phospholipids and in whole-blood total lipids, [iii] to assess usefulness of these ratio as biomarkers of LCPUFA status. Methods [1] Healthy volunteers and patients with various pathologies were recruited. [2] Fatty acid analyses by GC of methyl esters from directly derivatized whole blood total lipids and from RBC phospholipids were performed on fasting blood samples from 1432 subjects categorised according to their age, sex and any existing pathologies. AA:EPA ratio and the total n-6:n-3 ratio were determined. Results AA:EPA ratio is a more sensitive and reliable index for determining changes in total blood fatty acid and it is correlated with the ratio derived from extracted RBC phospholipids. Conclusions The described AA:EPA ratio is a simple, rapid and reliable method for determining n-3 fatty acid status. PMID:20105293

  14. Tea tree oil concentration in follicular casts after topical delivery: determination by high-performance thin layer chromatography using a perfused bovine udder model.

    PubMed

    Biju, S S; Ahuja, Alka; Khar, Roop K

    2005-02-01

    Tea tree oil, a popular antimicrobial agent is recommended for the treatment of acne vulgaris, a disease of the pilosebaceous unit. Tea tree oil formulations (colloidal bed, microemulsion, multiple emulsion, and liposomal dispersion containing 5% w/w tea tree oil) were applied to bovine udder skin. The follicular uptake of tea tree oil upon application was determined by a cyanoacrylate method. Tea tree oil was determined by quantifying terpinen-4-ol content using high-performance thin layer chromatography. The accumulation of tea tree oil in the follicular casts was 0.43 +/- 0.01, 0.41 +/- 0.009, 0.21 +/- 0.006, and 0.16 +/- 0.005 percentage by weight (milligram oil/gram of sebum plug) for microemulsion, liposomal dispersion, multiple emulsion, and colloidal bed, respectively. This is the first study of its kind to quantify tea tree oil concentration in the follicles.

  15. Application of the shock layer theory to the determination of the mass transfer rate coefficient and its concentration dependence for proteins on anion exchange columns

    SciTech Connect

    Sajonz, P. ||; Guan-Sajonz, H.; Zhong, G.; Guiochon, G. |

    1997-03-01

    The extension of the shock layer theory to systems having a slow mass transfer kinetics and a concentration-dependent rate coefficient is discussed. Experiments were carried out with bovine serum albumin on two anion exchanges, TSK-GEL-DEAE-5PW and Resource-Q. The adsorption isotherm data, determined by single-step frontal analysis, could be fitted to simplified bi-Langmuir equations with vary small residuals. A lumped kinetic model (solid film linear driving force model, with rate coefficient k{sub f}) was used to account for the mass transfer kinetics. The profile of each breakthrough curve (BC) was fitted to the curve calculated with this transport model and the rate coefficient k{sub f} obtained by identification. A linear dependence of k{sub f} on the average concentration of the step of the BC was found. The shock layer thicknesses (SLT) calculated for different relative concentrations agreed very well with the experimental results. This justifies the use of the SLT for the direct determination of rate coefficients. 19 refs., 9 figs., 2 tabs.

  16. A simple analytical platform based on thin-layer chromatography coupled with paper-based analytical device for determination of total capsaicinoids in chilli samples.

    PubMed

    Dawan, Phanphruk; Satarpai, Thiphol; Tuchinda, Patoomratana; Shiowatana, Juwadee; Siripinyanond, Atitaya

    2017-01-01

    A new analytical platform based on the use of thin-layer chromatography (TLC) coupled with paper-based analytical device (PAD) was developed for the determination of total capsaicinoids in chilli samples. This newly developed TLC-PAD is simple and low-cost without any requirement of special instrument or skillful person. The analysis consisted of two steps, i.e., extraction of capsaicinoids from chilli samples by using ethanol as solvent and separation of capsaicinoids by thin-layer chromatography (TLC) and elution of capsaicinoids from the TLC plate with in situ colorimetric detection of capsaicinoids on the PAD. For colorimetric detection, Folin-Ciocalteu reagent was used to detect phenolic functional group of capsaicinoids yielding the blue color. The blue color on the PAD was imaged by a scanner followed by evaluation of its grayscale intensity value by ImageJ program. This newly developed TLC-PAD method provided a linear range from 50 to 1000mgL(-1) capsaicinoids with the limit of detection as low as 50mgL(-1) capsaicinoids. The proposed method was applied to determine capsaicinoids in dried chilli and seasoning powder samples and the results were in good agreement with those obtained by HPLC method.

  17. Purification of vetiver alcohols and esters for quantitative high-performance thin-layer chromatography determination in Haitian vetiver essential oils and vetiver acetates.

    PubMed

    Paillat, Lionel; Périchet, Christine; Pierrat, Jean-Philippe; Lavoine, Sophie; Filippi, Jean-Jacques; Meierhenrich, Uwe; Fernandez, Xavier

    2012-06-08

    A simple, fast, and efficient High-Performance Thin-Layer Chromatography (HPTLC) method was developed for the simultaneous quantitative determination of alcohols and acetates in Haitian vetiver essential oils (Chryzopogon zizanioides) and its acetylated form. Analytes were separated by using a mixture of n-hexane-chloroform-ethyl acetate (8:6:0.5, v/v/v) as mobile phase under 47% humidity. Quantification was achieved by densitometric evaluation of the analytes in absorbance mode under visible light (λ=530 nm) after staining with a vanillin-sulfuric acid reagent. Reference mixtures of alcohols and acetates were obtained by fractionation of Haitian vetiver oil or vetiver acetates, followed by purification of the fractions of interest by means of Over-Pressured Layer Chromatography (OPLC). The chemical composition of each reference fraction was determined by using GC-MS and GC×GC-MS, and their overall purity was determined by GC/FID and HPTLC. The TLC method provided compact spots for alcohols (R(f2)=0.18±0.01 and R(f1)=0.28±0.01) and acetates (R(f3)=0.65±0.01). Calibration plots showed good linear correlation with r²=0.9995±0.0001 and r²=0.9995±0.0001 for alcohols and r²=0.9996±0.0001 for acetates in a 40-200 ng spot⁻¹ concentration range with respect to peak areas. The method was validated for precision and accuracy. Limit of detection (LOD) and quantification (LOQ) were determined. Method specificity was confirmed using retention factor (R(f)) and GC-MS control of the standards reference mixtures.

  18. Determination of B/A of Biological Media by Measuring and Modeling Nonlinear Distortion of Pulsed Acoustic Wave in Two-Layer System of Media

    NASA Astrophysics Data System (ADS)

    Kujawska, T.; Wójcik, J.; Nowicki, A.

    Knowledge of the acoustic nonlinearity parameter, B/A, of biological fluids or soft tissues is necessary whenever high intensity pressure fields are induced. A numerical model recently developed in our lab is capable of fast predicting the nonlinear distortion of pulsed finite-amplitude acoustic waves generated from axisymmetric sources propagating through multilayer attenuating media. Quantitative analysis of the obtained results enabled developing the alternative method for determination of the B/A of biological media. First, the method involves measuring the nonlinear waveform distortion of the tone burst propagating through water. Then, it involves numerical modeling (in frequency domain) using the Time-Averaged Wave Envelope (TAWE) approach. The numerical simulation results are fitted to the experimental data by adjusting the source boundary conditions to determine accurately the source pressure, effective radius and apodization function being the input parameters to the numerical solver. Next, the method involves measuring the nonlinear distortion of idem tone burst passing through the two-layer system of parallel media. Then, we numerically model nonlinear distortion in two-layer system of media in frequency domain under experimental boundary conditions. The numerical simulation results are fitted to the experimental data by adjusting the B/A value of the tested material. Values of the B/A for 1.3-butanediol at both the ambient (25°C) and physiological (36.6°C) temperatures were determined. The obtained result (B/A = 10.5 ± 5% at 25°C) is in a good agreement with that available in literature. The B/A = 11.5 ± 5% at 36.6°C was determined.

  19. A biosensor based on zucchini (Cucurbita pepo L.) homogenate as a biorecognition layer for ascorbic acid determination.

    PubMed

    Sezgintürk, Mustafa Kemal; Koca, Halit Buğra; Ozben, Yavuz Selim; Dinçkaya, Erhan

    2010-08-01

    An amperometric biosensor based on zucchini (Cucurbita pepo) tissue homogenate is presented. The zucchini tissue homogenate was crosslinked with gelatine using glutaraldehyde and fixed on a pretreated teflon membrane. The zucchini tissue contained the enzyme ascorbate oxidase and this enzyme catalyzed the oxidation of ascorbic acid in the presence of dissolved oxygen. The principle of the measurements was based on the determination of the decrease in the dissolved oxygen level. Determinations were carried out by standard curves, which were obtained by the measurement of the decrease in the oxygen level related to ascorbic acid concentration. Optimization and characterization studies of the biosensor were carried out in detail. First of all, the amounts of zucchini tissue homogenate, gelatin, and glutaraldehyde percentage were optimized. Experimental parameters such as buffer system, pH, buffer concentration, and temperature were also optimized carefully. Thermal stability, storage stability, and repeatability of the biosensor were investigated. A linear response was observed from 5x10(-6) M to 1.2x10(-3) M ascorbic acid. Finally, the results of some plant and drug samples analyzed with the presented biosensor compared with the spectrophotometric method (Tillman reagent) used as a reference.

  20. Lipophilic properties of anti-Alzheimer's agents determined by micellar electrokinetic chromatography and reversed-phase thin-layer chromatography.

    PubMed

    Godyń, Justyna; Hebda, Michalina; Więckowska, Anna; Więckowski, Krzysztof; Malawska, Barbara; Bajda, Marek

    2017-02-07

    Lipophilicity as one of the most important physicochemical properties of the biologically active compounds is closely related to their pharmacokinetic parameters and therefore, it is taken into account at the design stage of new drugs. Among the novel, fast and reliable methods for determination of the lipophilicity of compounds micellar electrokinetic chromatography (MEKC) is considered to be an appropriate one for bioactive molecules, as it closely mimics the physiological conditions. In this paper MEKC was used for the estimation of log P values for 49 derivatives of phthalimide, tetrahydroisochinoline and indole, designed and synthesized as potential anti-Alzheimer's agents with cholinesterase inhibitory activity. RP-TLC method was applied for determination of another lipophilicity descriptor - RM0 . The results of both experimental methods were compared with each other giving satisfactory correlation (R = 0.784), and with computational methods (Marvin, ChemOffice Software) resulting in weaker correlation (R = 0.466 - 0.687). The lipophilicity-activity relationship was finally established, showing significant influence of lipophilicity on cholinesterase inhibition in some subgroups of phthalimide derivatives. This article is protected by copyright. All rights reserved.

  1. Dynamic regulation of cardiolipin by the lipid pump Atp8b1 determines the severity of lung injury in experimental pneumonia.

    PubMed

    Ray, Nancy B; Durairaj, Lakshmi; Chen, Bill B; McVerry, Bryan J; Ryan, Alan J; Donahoe, Michael; Waltenbaugh, Alisa K; O'Donnell, Christopher P; Henderson, Florita C; Etscheidt, Christopher A; McCoy, Diann M; Agassandian, Marianna; Hayes-Rowan, Emily C; Coon, Tiffany A; Butler, Phillip L; Gakhar, Lokesh; Mathur, Satya N; Sieren, Jessica C; Tyurina, Yulia Y; Kagan, Valerian E; McLennan, Geoffrey; Mallampalli, Rama K

    2010-10-01

    Pneumonia remains the leading cause of death from infection in the US, yet fundamentally new conceptual models underlying its pathogenesis have not emerged. We show that humans and mice with bacterial pneumonia have markedly elevated amounts of cardiolipin, a rare, mitochondrial-specific phospholipid, in lung fluid and find that it potently disrupts surfactant function. Intratracheal cardiolipin administration in mice recapitulates the clinical phenotype of pneumonia, including impaired lung mechanics, modulation of cell survival and cytokine networks and lung consolidation. We have identified and characterized the activity of a unique cardiolipin transporter, the P-type ATPase transmembrane lipid pump Atp8b1, a mutant version of which is associated with severe pneumonia in humans and mice. Atp8b1 bound and internalized cardiolipin from extracellular fluid via a basic residue-enriched motif. Administration of a peptide encompassing the cardiolipin binding motif or Atp8b1 gene transfer in mice lessened bacteria-induced lung injury and improved survival. The results unveil a new paradigm whereby Atp8b1 is a cardiolipin importer whose capacity to remove cardiolipin from lung fluid is exceeded during inflammation or when Atp8b1 is defective. This discovery opens the door for new therapeutic strategies directed at modulating the abundance or molecular interactions of cardiolipin in pneumonia.

  2. Bioactive lipid coating of bone allografts directs engraftment and fate determination of bone marrow-derived cells in rat GFP chimeras.

    PubMed

    Das, Anusuya; Segar, Claire E; Chu, Yihsuan; Wang, Tiffany W; Lin, Yong; Yang, Chunxi; Du, Xeujun; Ogle, Roy C; Cui, Quanjun; Botchwey, Edward A

    2015-09-01

    Bone grafting procedures are performed to treat wounds incurred during wartime trauma, accidents, and tumor resections. Endogenous mechanisms of repair are often insufficient to ensure integration between host and donor bone and subsequent restoration of function. We investigated the role that bone marrow-derived cells play in bone regeneration and sought to increase their contributions by functionalizing bone allografts with bioactive lipid coatings. Polymer-coated allografts were used to locally deliver the immunomodulatory small molecule FTY720 in tibial defects created in rat bone marrow chimeras containing genetically-labeled bone marrow for monitoring cell origin and fate. Donor bone marrow contributed significantly to both myeloid and osteogenic cells in remodeling tissue surrounding allografts. FTY720 coatings altered the phenotype of immune cells two weeks post-injury, which was associated with increased vascularization and bone formation surrounding allografts. Consequently, degradable polymer coating strategies that deliver small molecule growth factors such as FTY720 represent a novel therapeutic strategy for harnessing endogenous bone marrow-derived progenitors and enhancing healing in load-bearing bone defects.

  3. Injected Omental Lipids for Treatment of Soft Tissue Injury

    DTIC Science & Technology

    2011-06-02

    indicate a substantial amount of free lipid remained at post-operative day #3 or represents separation of tissue secondary to injection (figure 2...retained at the point of injection (Figure 2). The possible presence of some lipids, but lack of response, may be due to the effect of ischemia and...and strength.3 In a study by Takada et al, ischemic skin flap survival was improved using a topical omental lipid layer suspended in fibrin glue.2

  4. Curvature and Lipid Packing Modulate the Elastic Properties of Lipid Assemblies: Comparing HII and Lamellar Phases.

    PubMed

    Johner, Niklaus; Harries, Daniel; Khelashvili, George

    2014-12-04

    Accumulating evidence indicates that membrane reshaping and fusion processes, as well as regulation of membrane protein function, depend on lipid composition. Although it is widely accepted that cell membranes are under considerable stress and frustration and can be locally highly curved, experimental approaches to determine the material properties of lipids usually rely on their study in a relaxed environment or in flat bilayers. Here, we propose a computational method to determine the elastic properties of lipid assemblies of arbitrarily shaped interfaces and apply it to lipidic mixtures in the inverted hexagonal and lamellar phases. We find that the bending rigidity critically depends on the geometry of the system and correlates with the changes in lipid chain order imposed by the specific environment. Our results are relevant for resolving local lipid properties of deformed, stressed, or frustrated membranes that notably emerge around integral membrane proteins or during different membrane remodeling processes.

  5. A new estimation of the total flavonoids in silkworm cocoon sericin layer through aglycone determination by hydrolysis-assisted extraction and HPLC-DAD analysis

    PubMed Central

    Zhao, Jin-Ge; Zhang, Yu-Qing

    2016-01-01

    Background Silk sericin and a few non-protein components isolated from the cocoon layer including two silk proteins in silkworm Bombyx mori has many bioactivities. The dietary sericin possess antinatural oxidation, anticancer, antihyperlipidemic, and antidiabetic activities. The non-protein components surrounding the sericin layer involve in wax, pigments mainly meaning flavonoids, sugars, and other impurities. However, very few investigations have reported the estimation of the total flavonoids derived from the cocoon layer. The flavonoids are commonly present in their glycosylated forms and mostly exist as quercetin glycosides in the sericin layers of silkworm cocoons. Objective The aim of this study was to find a more accurate method to estimate the level of the total flavonoids in silkworm cocoons. Design An efficient procedure of hydrolysis-assisted extraction (HAE) was first established to estimate the level of the total flavonoids through the determination of their aglycones, quercetin, and kaempferol. Then, a comparison was made between traditional colorimetric method and our method. In addition, the antioxidant activities of hydrolysis-assisted extract sample were determined. Results The average contents of quercetin and kaempferol were 1.98 and 0.42 mg/g in Daizo cocoon. Their recoveries were 99.56 and 99.17%. The total sum of quercetin and kaempferol was detected to be 2.40±0.07 mg/g by HAE-HPLC, while the total flavonoids (2.59±0.48 mg/g) estimated by the traditional colorimetric method were only equivalent to 1.28±0.04 mg/g of quercetin. The HAE sample also exhibits that IC50 values of scavenging ability of diphenyl picryl hydrazinyl (DPPH) radical and hydroxyl radical (HO·) are 243.63 µg/mL and 4.89 mg/mL, respectively. Conclusions These results show that the HAE-HPLC method is specificity of cocoon and far superior to the colorimetric method. Therefore, this study has profound significance for the comprehensive utilization of silkworm cocoon and

  6. Determination of water-soluble hexavalent chromium in clinker samples by wavelength-dispersive X-ray fluorescence spectrometry after concentration in activated layers.

    PubMed

    Marguí, Eva; Fontàs, Claudia; Toribio, Marta; Guillem, Manel; Hidalgo, Manuela; Queralt, Ignacio

    2010-05-01

    The determination of hexavalent chromium (Cr(VI)) in cement-related material extracts is frequently monitored in cement industries to comply with the European Directive (2003/53/EC) that limits the use of cements containing more than 2 mg kg(-1) of water-soluble Cr(VI). In the present work, a rapid and simple method for the determination of water-soluble Cr(VI) in clinker samples has been developed. The analytical methodology is based on the combined use of a low cost Cr(VI) isolation procedure using activated layers followed by their analysis using wavelength-dispersive X-ray fluorescence (WDXRF) spectrometry. WDXRF instrumentation is a common tool used for determining the chemical composition of all materials involved in cement production and also for the quality control of the products produced in cement and concrete factories. Therefore, the presented methodology does not imply the use of additional instrumentation in cement-industries laboratories and can be used as a comparative method to the spectrophotometric reference (EN 196-10:2006). The analytical parameters evaluated (selectivity, limit of detection, linearity, and precision) prove to be suitable for the intended purpose, and the methodology has successfully been applied to determine water-soluble Cr(VI) in several clinker samples.

  7. Doxorubicin Lipid Complex Injection

    MedlinePlus

    Doxorubicin lipid complex is used to treat ovarian cancer that has not improved or that has worsened after treatment with other medications. Doxorubicin lipid complex is also used to treat Kaposi's sarcoma ( ...

  8. Daunorubicin Lipid Complex Injection

    MedlinePlus

    Daunorubicin lipid complex is used to treat advanced Kaposi's sarcoma (a type of cancer that causes abnormal tissue to ... body) related to acquired immunodeficiency syndrome (AIDS). Daunorubicin lipid complex is in a class of medications called ...

  9. Irinotecan Lipid Complex Injection

    MedlinePlus

    Irinotecan lipid complex is used in combination with other medications to treat pancreatic cancer that has spread to other ... worsened after treatment with other chemotherapy medications. Irinotecan lipid complex is in a class of antineoplastic medications ...

  10. Vincristine Lipid Complex Injection

    MedlinePlus

    Vincristine lipid complex is used to treat a certain type of acute lymphoblastic leukemia (ALL; a type ... at least two different treatments with other medications. Vincristine lipid complex is in a class of medications ...

  11. Validation of a Thin-Layer Chromatography for the Determination of Hydrocortisone Acetate and Lidocaine in a Pharmaceutical Preparation

    PubMed Central

    Dołowy, Małgorzata; Kulpińska-Kucia, Katarzyna; Pyka, Alina

    2014-01-01

    A new specific, precise, accurate, and robust TLC-densitometry has been developed for the simultaneous determination of hydrocortisone acetate and lidocaine hydrochloride in combined pharmaceutical formulation. The chromatographic analysis was carried out using a mobile phase consisting of chloroform + acetone + ammonia (25%) in volume composition 8 : 2 : 0.1 and silica gel 60F254 plates. Densitometric detection was performed in UV at wavelengths 200 nm and 250 nm, respectively, for lidocaine hydrochloride and hydrocortisone acetate. The validation of the proposed method was performed in terms of specificity, linearity, limit of detection (LOD), limit of quantification (LOQ), precision, accuracy, and robustness. The applied TLC procedure is linear in hydrocortisone acetate concentration range of 3.75 ÷ 12.50 μg·spot−1, and from 1.00 ÷ 2.50 μg·spot−1 for lidocaine hydrochloride. The developed method was found to be accurate (the value of the coefficient of variation CV [%] is less than 3%), precise (CV [%] is less than 2%), specific, and robust. LOQ of hydrocortisone acetate is 0.198 μg·spot−1 and LOD is 0.066 μg·spot−1. LOQ and LOD values for lidocaine hydrochloride are 0.270 and 0.090 μg·spot−1, respectively. The assay value of both bioactive substances is consistent with the limits recommended by Pharmacopoeia. PMID:24526880

  12. Quantitative Determination of Flavonoids and Chlorogenic Acid in the Leaves of Arbutus unedo L. Using Thin Layer Chromatography

    PubMed Central

    Maleš, Željan; Bojić, Mirza

    2013-01-01

    The plant species Arbutus unedo shows numerous beneficial pharmacological effects (antiseptic, antidiabetic, antidiarrheal, astringent, depurative, antioxidant, antihypertensive, antithrombotic, and anti-inflammatory). For the medicinal use, standardization of extracts is a necessity, as different compounds are responsible for different biological activities. In this paper, we analyze monthly changes in the content of quercitrin, isoquercitrin, hyperoside, and chlorogenic acid. Methanolic extracts of the leaves are analyzed by HPTLC for the identification and quantification of individual polyphenol, and DPPH test is used to determine antioxidant activity. Based on the results obtained, the leaves should be collected in January to obtain the highest concentrations of hyperoside and quercitrin (0.35 mg/g and 1.94 mg/g, resp.), in June, July, and October for chlorogenic acid (1.45–1.46 mg/g), and for the fraction of quercitrin and isoquercitrin in November (1.98 mg/g and 0.33 mg/g, resp.). Optimal months for the collection of leaves with the maximum recovery of individual polyphenol suggested in this work could direct the pharmacological usage of the polyvalent herbal drugs. PMID:23984189

  13. Quantitative Determination of Flavonoids and Chlorogenic Acid in the Leaves of Arbutus unedo L. Using Thin Layer Chromatography.

    PubMed

    Maleš, Zeljan; Sarić, Darija; Bojić, Mirza

    2013-01-01

    The plant species Arbutus unedo shows numerous beneficial pharmacological effects (antiseptic, antidiabetic, antidiarrheal, astringent, depurative, antioxidant, antihypertensive, antithrombotic, and anti-inflammatory). For the medicinal use, standardization of extracts is a necessity, as different compounds are responsible for different biological activities. In this paper, we analyze monthly changes in the content of quercitrin, isoquercitrin, hyperoside, and chlorogenic acid. Methanolic extracts of the leaves are analyzed by HPTLC for the identification and quantification of individual polyphenol, and DPPH test is used to determine antioxidant activity. Based on the results obtained, the leaves should be collected in January to obtain the highest concentrations of hyperoside and quercitrin (0.35 mg/g and 1.94 mg/g, resp.), in June, July, and October for chlorogenic acid (1.45-1.46 mg/g), and for the fraction of quercitrin and isoquercitrin in November (1.98 mg/g and 0.33 mg/g, resp.). Optimal months for the collection of leaves with the maximum recovery of individual polyphenol suggested in this work could direct the pharmacological usage of the polyvalent herbal drugs.

  14. Skin lipids from Saudi Arabian birds

    PubMed Central

    Khan, Haseeb A.; Arif, Ibrahim A.; Williams, Joseph B.; Champagne, Alex M.; Shobrak, Mohammad

    2013-01-01

    Skin lipids play an important role in the regulation of cutaneous water loss (CWL). Earlier studies have shown that Saudi desert birds exhibit a tendency of reduced CWL than birds from temperate environment due to adaptive changes in composition of their skin lipids. In this study, we used thin-layer chromatography (TLC) for separation and detection of non-polar and polar lipids from the skin of six bird species including sooty gull, brown booby, house sparrow, Arabian waxbill, sand partridge, and laughing dove. The lipids were separated and detected on Silica gel G coated TLC plates and quantified by using densitometric image analysis. Rf values of the non-polar lipids were as follows: cholesterol (0.29), free fatty acids (0.58), triacylglycerol (0.69), fatty acids methyl esters (0.84) and cholesterol ester (0.97). Rf values for the polar lipids were: cerebroside (0.42), ceramide (0.55) and cholesterol (0.73). The results showed the abundance of fatty acids methyl esters (47.75–60.46%) followed by triacylglycerol (12.69–24.14%). The remaining lipid compositions were as follows: cholesterol (4.09–13.18%), ceramide (2.18–13.27%), and cerebroside (2.53–12.81%). In conclusion, our findings showed that TLC is a simple and sensitive method for the separation and quantification of skin lipids. We also reported a new protocol for lipid extraction using the zirconia beads for efficient disruption of skin tissues. This study will help us better understand the role of skin lipids in adaptive physiology towards adverse climatic conditions. PMID:24600311

  15. Lipid transport in cholecystokinin knockout mice.

    PubMed

    King, Alexandra; Yang, Qing; Huesman, Sarah; Rider, Therese; Lo, Chunmin C

    2015-11-01

    Cholecystokinin (CCK) is released in response to lipid feeding and regulates pancreatic digestive enzymes vital to the absorption of nutrients. Our previous reports demonstrated that cholecystokinin knockout (CCK-KO) mice fed for 10 weeks of HFD had reduced body fat mass, but comparable glucose uptake by white adipose tissues and skeletal muscles. We hypothesized that CCK is involved in energy homeostasis and lipid transport from the small intestine to tissues in response to acute treatment with dietary lipids. CCK-KO mice with comparable fat absorption had increased energy expenditure and were resistant to HFD-induced obesity. Using intraduodenal infusion of butter fat and intravenous infusion using Liposyn III, we determined the mechanism of lipid transport from the small intestine to deposition in lymph and adipocytes in CCK-KO mice. CCK-KO mice had delayed secretion of Apo B48-chylomicrons, lipid transport to the lymphatic system, and triglyceride (TG)-derived fatty acid uptake by epididymal fat in response to acute treatment of intraduodenal lipids. In contrast, CCK-KO mice had comparable TG clearance and lipid uptake by white adipocytes in response to TGs in chylomicron-like emulsion. Thus, we concluded that CCK is important for lipid transport and energy expenditure to control body weight in response to dietary lipid feeding.

  16. Caenorhabditis elegans as an alternative in vivo model to determine oral uptake, nanotoxicity, and efficacy of melatonin-loaded lipid-core nanocapsules on paraquat damage

    PubMed Central

    Charão, Mariele Feiffer; Souto, Caroline; Brucker, Natália; Barth, Anelise; Jornada, Denise S; Fagundez, Daiandra; Ávila, Daiana Silva; Eifler-Lima, Vera L; Guterres, Silvia S; Pohlmann, Adriana R; Garcia, Solange Cristina

    2015-01-01

    Caenorhabditis elegans is an alternative in vivo model that is being successfully used to assess the pharmacological and toxic effects of drugs. The exponential growth of nanotechnology requires the use of alternative in vivo models to assess the toxic effects of theses nanomaterials. The use of polymeric nanocapsules has shown promising results for drug delivery. Moreover, these formulations have not been used in cases of intoxication, such as in treatment of paraquat (PQ) poisoning. Thus, the use of drugs with properties improved by nanotechnology is a promising approach to overcome the toxic effects of PQ. This research aimed to evaluate the absorption of rhodamine B-labeled melatonin (Mel)-loaded lipid-core nanocapsules (LNC) by C. elegans, the application of this model in nanotoxicology, and the protection of Mel-LNC against PQ damage. The formulations were prepared by self-assembly and characterized by particle sizing, zeta potential, drug content, and encapsulation efficiency. The results demonstrated that the formulations had narrow size distributions. Rhodamine B-labeled Mel-LNC were orally absorbed and distributed in the worms. The toxicity assessment of LNC showed a lethal dose 50% near the highest dose tested, indicating low toxicity of the nanocapsules. Moreover, pretreatment with Mel-LNC significantly increased the survival rate, reduced the reactive oxygen species, and maintained the development in C. elegans exposed to PQ compared to those worms that were either untreated or pretreated with free Mel. These results demonstrated for the first time the uptake and distribution of Mel-LNC by a nematode, and indicate that while LNC is not toxic, Mel-LNC prevents the effects of PQ poisoning. Thus, C. elegans may be an interesting alternative model to test the nanocapsules toxicity and efficacy. PMID:26300641

  17. Caenorhabditis elegans as an alternative in vivo model to determine oral uptake, nanotoxicity, and efficacy of melatonin-loaded lipid-core nanocapsules on paraquat damage.

    PubMed

    Charão, Mariele Feiffer; Souto, Caroline; Brucker, Natália; Barth, Anelise; Jornada, Denise S; Fagundez, Daiandra; Ávila, Daiana Silva; Eifler-Lima, Vera L; Guterres, Silvia S; Pohlmann, Adriana R; Garcia, Solange Cristina

    2015-01-01

    Caenorhabditis elegans is an alternative in vivo model that is being successfully used to assess the pharmacological and toxic effects of drugs. The exponential growth of nanotechnology requires the use of alternative in vivo models to assess the toxic effects of theses nanomaterials. The use of polymeric nanocapsules has shown promising results for drug delivery. Moreover, these formulations have not been used in cases of intoxication, such as in treatment of paraquat (PQ) poisoning. Thus, the use of drugs with properties improved by nanotechnology is a promising approach to overcome the toxic effects of PQ. This research aimed to evaluate the absorption of rhodamine B-labeled melatonin (Mel)-loaded lipid-core nanocapsules (LNC) by C. elegans, the application of this model in nanotoxicology, and the protection of Mel-LNC against PQ damage. The formulations were prepared by self-assembly and characterized by particle sizing, zeta potential, drug content, and encapsulation efficiency. The results demonstrated that the formulations had narrow size distributions. Rhodamine B-labeled Mel-LNC were orally absorbed and distributed in the worms. The toxicity assessment of LNC showed a lethal dose 50% near the highest dose tested, indicating low toxicity of the nanocapsules. Moreover, pretreatment with Mel-LNC significantly increased the survival rate, reduced the reactive oxygen species, and maintained the development in C. elegans exposed to PQ compared to those worms that were either untreated or pretreated with free Mel. These results demonstrated for the first time the uptake and distribution of Mel-LNC by a nematode, and indicate that while LNC is not toxic, Mel-LNC prevents the effects of PQ poisoning. Thus, C. elegans may be an interesting alternative model to test the nanocapsules toxicity and efficacy.

  18. Lipid hydroperoxides in plants.

    PubMed

    Griffiths, G; Leverentz, M; Silkowski, H; Gill, N; Sánchez-Serrano, J J

    2000-12-01

    Hydroperoxides are the primary oxygenated products of polyunsaturated fatty acids and were determined spectrophotometrically based on their reaction with an excess of Fe2+ at low pH in the presence of the dye Xylenol Orange. Triphenylphosphine-mediated hydroxide formation was used to authenticate the signal generated by the hydroperoxides. The method readily detected lipid peroxidation in a range of plant tissues including Phaseolus hypocotyls (26 +/- 5 nmol.g of fresh weight(-1); mean +/- S.D.), Alstroemeria floral tissues (sepals, 66+/-13 nmol.g of fresh weight(-1); petals, 49+/-6 nmol.g of fresh weight(-1)), potato leaves (334+/-75 nmol.g of fresh weight(-1)), broccoli florets (568+/-68 nmol.g of fresh weight(-1)) and Chlamydomonas cells (602+/-40 nmol.g of wet weight(-1)). Relative to the total fatty acid content of the tissues, the percentage hydroperoxide content was within the range of 0.6-1.7% for all tissue types (photosynthetic and non-photosynthetic) and represents the basal oxidation level of membrane fatty acids in plant cells. Leaves of transgenic potato with the fatty acid hydroperoxide lyase enzyme expressed in the antisense orientation were elevated by 38%, indicating a role for this enzyme in the maintenance of cellular levels of lipid hydroperoxides.

  19. Long and Short Lipid Molecules Experience the Same Interleaflet Drag in Lipid Bilayers

    NASA Astrophysics Data System (ADS)

    Horner, Andreas; Akimov, Sergey A.; Pohl, Peter

    2013-06-01

    Membrane interleaflet viscosity ηe affects tether formation, phase separation into domains, cell shape changes, and budding. Contrary to the expected contribution to interleaflet coupling from interdigitation, the slide of lipid patches in opposing monolayers conferred the same value ηe≈3×109Jsm-4 for the friction experienced by the ends of both short and long chain fluorescent lipid analogues. Consistent with the weak dependence of the translational diffusion coefficient on lipid length, the in-layer viscosity was, albeit length dependent, much smaller than ηe.

  20. Waxes: A Forgotten Topic in Lipid Teaching.

    ERIC Educational Resources Information Center

    Dominguez, Eva; Heredia, Antonio

    1998-01-01

    Reviews the biological importance of the lipids categorized as waxes and describes some of the organic chemistry of these compounds. Presents a short laboratory exercise on the extraction of plant waxes and their analysis by thin layer chromatography. (Author/CCM)

  1. Isolation of cellular lipid droplets: two purification techniques starting from yeast cells and human placentas.

    PubMed

    Mannik, Jaana; Meyers, Alex; Dalhaimer, Paul

    2014-04-01

    Lipid droplets are dynamic organelles that can be found in most eukaryotic and certain prokaryotic cells. Structurally, the droplets consist of a core of neutral lipids surrounded by a phospholipid monolayer. One of the most useful techniques in determining the cellular roles of droplets has been proteomic identification of bound proteins, which can be isolated along with the droplets. Here, two methods are described to isolate lipid droplets and their bound proteins from two wide-ranging eukaryotes: fission yeast and human placental villous cells. Although both techniques have differences, the main method-- density gradient centrifugation--is shared by both preparations. This shows the wide applicability of the presented droplet isolation techniques. In the first protocol, yeast cells are converted into spheroplasts by enzymatic digestion of their cell walls. The resulting spheroplasts are then gently lysed in a loose-fitting homogenizer. Ficoll is added to the lysate to provide a density gradient, and the mixture is centrifuged three times. After the first spin, the lipid droplets are localized to the white-colored floating layer of the centrifuge tubes along with the endoplasmic reticulum (ER), the plasma membrane, and vacuoles. Two subsequent spins are used to remove these other three organelles. The result is a layer that has only droplets and bound proteins. In the second protocol, placental villous cells are isolated from human term placentas by enzymatic digestion with trypsin and DNase I. The cells are homogenized in a loose-fitting homogenizer. Low-speed and medium-speed centrifugation steps are used to remove unbroken cells, cellular debris, nuclei, and mitochondria. Sucrose is added to the homogenate to provide a density gradient and the mixture is centrifuged to separate the lipid droplets from the other cellular fractions. The purity of the lipid droplets in both protocols is confirmed by Western Blot analysis. The droplet fractions from both preps

  2. Separation of hydrocarbons and lipid from water using treated bark.

    PubMed

    Haussard, M; Gaballah, I; Kanari, N; de Donato, Ph; Barrès, O; Villieras, F

    2003-01-01

    This paper explores the possibility of using treated bark to remove oily compounds from water. Bark was first biologically or chemically treated and saturated with transition metal ions (TMI) to avoid the release of soluble organic compounds from the bark in the treated effluents. Several experimental parameters affecting the oil removal efficiency (RE) were studied (initial oil concentration, temperature, time, etc.). Saturated bark was characterized using Fourier transform infrared (FTIR) spectroscopy and bark wetting index was determined. Results of the retention of lipids suggested that their removal could exceed 95% of initial oil concentration. The uptake of lipid by treated bark varied from 0.2 to 2.0 g of organic oil/g of dry sorbent. No significant chemical modifications of saturated bark were observed in infrared spectroscopy after the sorption of oleic acid on bark treated with transition metal ions. The structure of adsorbed tridimensional layer of oleic acid molecules seemed to take place through the double bond. The hydrocarbon RE exceeded 95% using oil-water mixture with a hydrocarbon/bark ratio of one. The sorption reaction of hydrocarbons and lipids was quasi-instantaneous and seemed to be influenced by the temperature. This indicated that the retention mechanism was related to the capillary action. Results of FTIR spectroscopy suggested that no chemical bonds between barks and oily compounds were established.

  3. Specific Binding of Adamantane Drugs and Direction of their Polar Amines in the Pore of the Influenza M2 Transmembrane Domain in Lipid Bilayers and Dodecylphosphocholine Micelles Determined by NMR Spectroscopy

    PubMed Central

    Cady, Sarah D.; Wang, Jun; Wu, Yibing; DeGrado, William F.; Hong, Mei

    2011-01-01

    The transmembrane domain of the influenza M2 protein (M2TM) forms a tetrameric proton channel important for the virus lifecycle. The proton-channel activity is inhibited by amine-containing adamantyl drugs amantadine and rimantadine, which have been shown to bind specifically to the pore of M2TM near Ser31. However, whether the polar amine points to the N- or C-terminus of the channel has not yet been determined. Elucidating the polar group direction will shed light on the mechanism by which drug binding inhibits this proton channel and will facilitate rational design of new inhibitors. In this study, we determine the polar amine direction using M2TM reconstituted in lipid bilayers as well as DPC micelles. 13C-2H rotational-echo double-resonance NMR experiments of 13C-labeled M2TM and methyl-deuterated rimantadine in lipid bilayers showed that the polar amine pointed to the C-terminus of the channel, with the methyl group close to Gly34. Solution NMR experiments of M2TM in dodecylphosphocholine (DPC) micelles indicate that drug binding causes significant chemical shift perturbations of the protein that are very similar to those seen for M2TM and M2(18–60) bound to lipid bilayers. Specific 2H-labeling of the drugs permitted the assignment of drug-protein cross peaks, which indicate that amantadine and rimantadine bind to the pore in the same fashion as for bilayer-bound M2TM. These results strongly suggest that adamantyl inhibition of M2TM is achieved not only by direct physical occlusion of the pore but also by perturbing the equilibrium constant of the proton-sensing residue His37. The reproduction of the pharmacologically relevant specific pore-binding site in DPC micelles, which was not observed with a different detergent, DHPC, underscores the significant influence of the detergent environment on the functional structure of membrane proteins. PMID:21381693

  4. Matrix-elimination with steam distillation for determination of short-chain fatty acids in hypersaline waters from pre-salt layer by ion-exclusion chromatography.

    PubMed

    Ferreira, Fernanda N; Carneiro, Manuel C; Vaitsman, Delmo S; Pontes, Fernanda V M; Monteiro, Maria Inês C; Silva, Lílian Irene D da; Neto, Arnaldo Alcover

    2012-02-03

    A method for determination of formic, acetic, propionic and butyric acids in hypersaline waters by ion-exclusion chromatography (IEC), using steam distillation to eliminate matrix-interference, was developed. The steam distillation variables such as type of solution to collect the distillate, distillation time and volume of the 50% v/v H₂SO₄ solution were optimized. The effect of the addition of NaCl different concentrations to the calibration standards on the carboxylic acid recovery was also investigated. Detection limits of 0.2, 0.5, 0.3 and 1.5 mg L⁻¹ were obtained for formic, acetic, propionic and butyric acids, respectively. Produced waters from petroleum reservoirs in the Brazilian pre-salt layer containing about 19% m/v of NaCl were analyzed. Good recoveries (99-108%) were obtained for all acids in spiked produced water samples.

  5. Nickel-aluminum layered double hydroxide as a nanosorbent for selective solid-phase extraction and spectrofluorometric determination of salicylic acid in pharmaceutical and biological samples.

    PubMed

    Abdolmohammad-Zadeh, H; Kohansal, S; Sadeghi, G H

    2011-04-15

    The nickel-aluminum layered double hydroxide (Ni-Al LDH) was synthesized by a simple co-precipitation method and used as a solid-phase extraction (SPE) sorbent for separation and pre-concentration of trace levels of salicylic acid (SA) from aqueous solutions. Extraction of analyte is based on the adsorption of salicylate ions on the Ni-Al (NO(3)(-)) LDH and/or their exchanging with LDH interlayer NO(3)(-) ions. The retained analyte on the LDH was stripped by 3 mol L(-1) NaOH solution and its concentration was subsequently determined spectrofluorometrically at λ(em)=400 nm with excitation at λ(ex)=270 nm. Various parameters affecting the extraction efficiency of SA on the Ni-Al (NO(3)(-)) LDH, such as pH, amount of nano-sorbent, sample loading flow rate, elution conditions, sample volume and matrix effects were investigated. In the optimum experimental conditions, the limit of detection (3s) and enrichment factor were 0.12 μg L(-1) and 40, respectively. The relative standard deviation (RSD) for six replicate determinations of 10 μg L(-1) SA was 2.3%. The calibration graph using the pre-concentration system was linear in the range of 0.3-45 μg L(-1) with a correlation coefficient of 0.9985. The optimized method was successfully applied to the determination of SA in blood serum, willow leaf and aspirin tablet.

  6. Ultratrace determination of arsenic in water samples by electrothermal atomic absorption spectrometry after pre-concentration with Mg-Al-Fe ternary layered double hydroxide nano-sorbent.

    PubMed

    Abdolmohammad-Zadeh, Hossein; Jouyban, Abolghasem; Amini, Roghayeh

    2013-11-15

    A selective solid phase extraction method, based on nano-structured Mg-Al-Fe(NO3(-)) ternary layered double hydroxide as a sorbent, is developed for the pre-concentration of ultra-trace levels of arsenic (As) prior to determination by electrothermal atomic absorption spectrometry. It is found that both As(III) and As(V) could be quantitatively retained on the sorbent within a wide pH range of 4-12. Accordingly, the presented method is applied to determination of total inorganic As in aqueous solutions. Maximum analytical signal of As is achieved when the pyrolysis and atomization temperatures are close to 900 °C and 2300 °C, respectively. Several variables affecting the extraction efficiency including pH, sample flow rate, amount of nano-sorbent, elution conditions and sample volume are optimized. Under the optimized conditions, the limit of detection (3Sb/m) and the relative standard deviation are 4.6 pg mL(-1) and 3.9%, respectively. The calibration graph is linear in the range of 15.0-650 pg mL(-1) with a correlation coefficient of 0.9979, sorption capacity and pre-concentration factor are 8.68 mg g(-1) and 300, respectively. The developed method is validated by the analysis of a standard reference material (SRM 1643e) and is successfully applied to the determination of ultra-trace amounts of As in different water samples.

  7. Effect of drug solubility and lipid carrier on drug release from lipid nanoparticles for dermal delivery.

    PubMed

    Zoubari, Gaith; Staufenbiel, Sven; Volz, Pierre; Alexiev, Ulrike; Bodmeier, Roland

    2017-01-01

    Lipid nanoparticles have gained increased interest in the field of dermal products because of various advantages such as improved drug absorption and controlled drug release. The main objective was to investigate the influence of drug solubility and type of lipid carrier on the in vitro drug release. Drugs of different solubilities in the release medium PBS pH 7.4 (dexamethasone: 0.1mg/ml and diclofenac sodium: 5.0mg/ml) and three different lipids (in which the drugs had the highest solubility), Gelucire® 50/13 (solid lipid, mp: 50°C), Witepsol® S55 (solid lipid, mp: 33.5-35.5°C) and Capryol® 90 (liquid lipid) were chosen. The lipid nanoparticles were prepared by high shear homogenization. All nanosuspensions were in the nanometer range (up to 400nm) and the drug encapsulation efficiency was between 84% and 95%. The drug release was prolonged over 48h without an initial burst release and was dependent on the lipid carrier. Formulations containing a higher amount of solid Gelucire® 50/13 released the drugs slower due to the high affinity of the drugs to this lipid product. Inclusion of the liquid lipid Capryol® 90 resulted in a less organized lipidic structures (softer particles) and therefore a faster drug release. Despite its higher water solubility, diclofenac was released slower than dexamethasone because of its higher solubility in the lipid carriers. DSC studies indicated a partial miscibility between the solid lipids and a good miscibility between the solid and liquid lipids. Primary studies using total internal reflection fluorescence (TIRF) microscopy indicated that it is possible to detect individual fluorescently labeled dexamethasone (DXM-F) molecules dissolved in the liquid lipid Capryol® 90. These studies will allow for the precise determination of the drug distribution within the lipid carrier, and the changes upon drug release. In conclusion, lipid carrier type and drug solubility in the lipid have a large influence on the in vitro drug

  8. Identification of furan fatty acids in the lipids of common carp (Cyprinus carpio L.).

    PubMed

    Chvalová, Daniela; Špička, Jiří

    2016-06-01

    Fatty acid (FA) composition was analyzed in muscle and gonad tissues of marketed common carp (Cyprinus carpio). The extracted lipids were separated into four fractions: polar lipids (PL), diacylglycerols, free fatty acids and triacylglycerols (TAG) using thin layer chromatography. FA content within the lipid fractions was determined by gas chromatography with flame ionization detector (GC/FID). The muscle lipids consisted primarily of TAG (96.9% of total FA), while PL were the major component of both male (67.6%) and female gonad (58.6%) lipids. Polyunsaturated fatty acids predominated in PL of all tissues (52.2-55.8% of total FA); monounsaturated fatty acids were the most abundant FA group in TAG of muscle (51.8%) and female gonads (47.8%) whereas high proportion of furan fatty acids (F-acids) (38.2%) was detected in TAG of male gonads. Eight F-acids were identified by gas chromatography-mass spectrometry (GC/MS) in male gonad samples, including less common 12,15-epoxy-13,14-dimethylnonadeca-12,14-dienoic acid with even-numbered alkyl moiety.

  9. Lipid Composition of Multilamellar Bodies Secreted by Dictyostelium discoideum Reveals Their Amoebal Origin

    PubMed Central

    Paquet, Valérie E.; Lessire, René; Domergue, Frédéric; Fouillen, Laetitia; Filion, Geneviève; Sedighi, Ahmadreza

    2013-01-01

    When they are fed with bacteria, Dictyostelium discoideum amoebae produce and secrete multilamellar bodies (MLBs), which are composed of membranous material. It has been proposed that MLBs are a waste disposal system that allows D. discoideum to eliminate undigested bacterial remains. However, the real function of MLBs remains unknown. Determination of the biochemical composition of MLBs, especially lipids, represents a way to gain information about the role of these structures. To allow these analyses, a protocol involving various centrifugation procedures has been developed to purify secreted MLBs from amoeba-bacterium cocultures. The purity of the MLB preparation was confirmed by transmission electron microscopy and by immunofluorescence using H36, an antibody that binds to MLBs. The lipid and fatty acid compositions of pure MLBs were then analyzed by high-performance thin-layer chromatography (HPTLC) and gas chromatography (GC), respectively, and compared to those of amoebae as well as bacteria used as a food source. While the bacteria were devoid of phosphatidylcholine (PC) and phosphatidylinositol (PI), these two polar lipid species were major classes of lipids in MLBs and amoebae. Similarly, the fatty acid composition of MLBs and amoebae was characterized by the presence of polyunsaturated fatty acids, while cyclic fatty acids were found only in bacteria. These results strongly suggest that the lipids constituting the MLBs originate from the amoebal metabolism rather than from undigested bacterial membranes. This opens the possibility that MLBs, instead of being a waste disposal system, have unsuspected roles in D. discoideum physiology. PMID:23748431

  10. Preparation and Characterization of Stealth Archaeosomes Based on a Synthetic PEGylated Archaeal Tetraether Lipid

    PubMed Central

    Barbeau, Julie; Cammas-Marion, Sandrine; Auvray, Pierrick; Benvegnu, Thierry

    2011-01-01

    The present studies were focused on the formation and characterization of sterically stabilized archaeosomes made from a synthetic PEGylated archaeal lipid. In a first step, a synthetic archaeal tetraether bipolar lipid was functionalized with a poly(ethylene glycol), PEG, and (PEG45-Tetraether) with the aim of coating the archaeosome surface with a sterically stabilizing hydrophilic polymer. In a second step, Egg-PC/PEG45-Tetraether (90/10 wt%) archaeosomes were prepared, and their physicochemical characteristics were determined by dynamic light scattering (size, polydispersity), cryo-TEM (morphology), and by high-performance thin layer chromatography (lipid composition), in comparison with standard Egg-PC/PEG45-DSPE formulations. Further, a fluorescent dye, the carboxyfluorescein, was encapsulated into the prepared archaeosomes in order to evaluate the potential of such nanostructures as drug carriers. Release studies have shown that the stability of Egg-PC/PEG45-Tetraether-based archaeosomes is significantly higher at 37°C than the one of Egg-PC/PEG45-DSPE-based liposomes, as evidenced by the slower release of the dye encapsulated into PEGylated archaeosomes. This enhanced stability could be related to the membrane spanning properties of the archaeal bipolar lipid as already described with natural or synthetic tetraether lipids. PMID:21603209

  11. Nutrients and neurodevelopment: lipids.

    PubMed

    González, Horacio F; Visentin, Silvana

    2016-10-01

    Nutrients, lipids in particular, make up the central nervous system structure and play major functional roles: they stimulate development, migration, and nerve cell differentiation. They are part of gray matter, white matter, nerve nuclei, and synaptogenesis. Breast milk contains lipids which are crucial for infant brain development. The lipid profile of breast milk was used as a guideline for the development of breast milk substitutes. However, to date, no substitute has matched it. Complementary feeding should include docosahexaenoic acid, arachidonic acid, other polyunsaturated fatty acids, saturated fatty acids, and complex lipids found in milk fat. The lipid composition of breast milk depends on maternal intake and nutritional status during pregnancy and breast-feeding. It has a great impact on development. Our goal is to review scientific literature regarding the role of lipids on infant brain development and the importance of breast milk lipid composition, maternal diet, and complementary feeding.

  12. Lipids and Prostate Cancer

    PubMed Central

    Suburu, Janel; Chen, Yong Q.

    2012-01-01

    The role of lipid metabolism has gained particular interest in prostate cancer research. A large body of literature has outlined the unique upregulation of de novo lipid synthesis in prostate cancer. Concordant with this lipogenic phenotype is a metabolic shift, in which cancer cells use alternative enzymes and pathways to facilitate the production of fatty acids. These newly synthesized lipids may support a number of cellular processes to promote cancer cell proliferation and survival. Hence, de novo lipogenesis is under intense investigation as a therapeutic target. Epidemiologic studies suggest dietary fat may also contribute to prostate cancer; however, whether dietary lipids and de novo synthesized lipids are differentially metabolized remains unclear. Here, we highlight the lipogenic nature of prostate cancer, especially the promotion of de novo lipid synthesis, and the significance of various dietary lipids in prostate cancer development and progression. PMID:22503963

  13. Crystallization modifiers in lipid systems.

    PubMed

    Ribeiro, Ana Paula Badan; Masuchi, Monise Helen; Miyasaki, Eriksen Koji; Domingues, Maria Aliciane Fontenele; Stroppa, Valter Luís Zuliani; de Oliveira, Glazieli Marangoni; Kieckbusch, Theo Guenter

    2015-07-01

    Crystallization of fats is a determinant physical event affecting the structure and properties of fat-based products. The stability of these processed foods is regulated by changes in the physical state of fats and alterations in their crystallization behavior. Problems like polymorphic transitions, oil migration, fat bloom development, slow crystallization and formation of crystalline aggregates stand out. The change of the crystallization behavior of lipid systems has been a strategic issue for the processing of foods, aiming at taylor made products, reducing costs, improving quality, and increasing the applicability and stability of different industrial fats. In this connection, advances in understanding the complex mechanisms that govern fat crystallization led to the development of strategies in order to modulate the conventional processes of fat structuration, based on the use of crystallization modifiers. Different components have been evaluated, such as specific triacyglycerols, partial glycerides (monoacylglycerols and diacylglycerols), free fatty acids, phospholipids and emulsifiers. The knowledge and expertise on the influence of these specific additives or minor lipids on the crystallization behavior of fat systems represents a focus of current interest for the industrial processing of oils and fats. This article presents a comprehensive review on the use of crystallization modifiers in lipid systems, especially for palm oil, cocoa butter and general purpose fats, highlighting: i) the removal, addition or fractionation of minor lipids in fat bases; ii) the use of nucleating agents to modify the crystallization process; iii) control of crystallization in lipid bases by using emulsifiers. The addition of these components into lipid systems is discussed in relation to the phenomena of nucleation, crystal growth, morphology, thermal behavior and polymorphism, with the intention of providing the reader with a complete panorama of the associated mechanisms

  14. Membrane-spanning lipids for an uncompromised monitoring of membrane fusion and intermembrane lipid transfer.

    PubMed

    Schwarzmann, Günter; Breiden, Bernadette; Sandhoff, Konrad

    2015-10-01

    A Förster resonance energy transfer-based fusion and transfer assay was developed to study, in model membranes, protein-mediated membrane fusion and intermembrane lipid transfer of fluorescent sphingolipid analogs. For this assay, it became necessary to apply labeled reporter molecules that are resistant to spontaneous as well as protein-mediated intermembrane transfer. The novelty of this assay is the use of nonextractable fluorescent membrane-spanning bipolar lipids. Starting from the tetraether lipid caldarchaeol, we synthesized fluorescent analogs with fluorophores at both polar ends. In addition, we synthesized radioactive glycosylated caldarchaeols. These labeled lipids were shown to stretch through bilayer membranes rather than to loop within a single lipid layer of liposomes. More important, the membrane-spanning lipids (MSLs) in contrast to phosphoglycerides proved to be nonextractable by proteins. We could show that the GM2 activator protein (GM2AP) is promiscuous with respect to glycero- and sphingolipid transfer. Saposin (Sap) B also transferred sphingolipids albeit with kinetics different from GM2AP. In addition, we could unambiguously show that the recombinant activator protein Sap C x His6 induced membrane fusion rather than intermembrane lipid transfer. These findings showed that these novel MSLs, in contrast with fluorescent phosphoglycerolipids, are well suited for an uncompromised monitoring of membrane fusion and intermembrane lipid transfer.

  15. Membrane-spanning lipids for an uncompromised monitoring of membrane fusion and intermembrane lipid transfer

    PubMed Central

    Schwarzmann, Günter; Breiden, Bernadette; Sandhoff, Konrad

    2015-01-01

    A Förster resonance energy transfer-based fusion and transfer assay was developed to study, in model membranes, protein-mediated membrane fusion and intermembrane lipid transfer of fluorescent sphingolipid analogs. For this assay, it became necessary to apply labeled reporter molecules that are resistant to spontaneous as well as protein-mediated intermembrane transfer. The novelty of this assay is the use of nonextractable fluorescent membrane-spanning bipolar lipids. Starting from the tetraether lipid caldarchaeol, we synthesized fluorescent analogs with fluorophores at both polar ends. In addition, we synthesized radioactive glycosylated caldarchaeols. These labeled lipids were shown to stretch through bilayer membranes rather than to loop within a single lipid layer of liposomes. More important, the membrane-spanning lipids (MSLs) in contrast to phosphoglycerides proved to be nonextractable by proteins. We could show that the GM2 activator protein (GM2AP) is promiscuous with respect to glycero- and sphingolipid transfer. Saposin (Sap) B also transferred sphingolipids albeit with kinetics different from GM2AP. In addition, we could unambiguously show that the recombinant activator protein Sap C x His6 induced membrane fusion rather than intermembrane lipid transfer. These findings showed that these novel MSLs, in contrast with fluorescent phosphoglycerolipids, are well suited for an uncompromised monitoring of membrane fusion and intermembrane lipid transfer. PMID:26269359

  16. Lipid metabolic reprogramming in cancer cells

    PubMed Central

    Beloribi-Djefaflia, S; Vasseur, S; Guillaumond, F

    2016-01-01

    Many human diseases, including metabolic, immune and central nervous system disorders, as well as cancer, are the consequence of an alteration in lipid metabolic enzymes and their pathways. This illustrates the fundamental role played by lipids in maintaining membrane homeostasis and normal function in healthy cells. We reviewed the major lipid dysfunctions occurring during tumor development, as determined using systems biology approaches. In it, we provide detailed insight into the essential roles exerted by specific lipids in mediating intracellular oncogenic signaling, endoplasmic reticulum stress and bidirectional crosstalk between cells of the tumor microenvironment and cancer cells. Finally, we summarize the advances in ongoing research aimed at exploiting the dependency of cancer cells on lipids to abolish tumor progression. PMID:26807644

  17. Lipid partitioning in maize (Zea mays L.) endosperm highlights relationships among starch lipids, amylose, and vitreousness.

    PubMed

    Gayral, Mathieu; Bakan, Bénédicte; Dalgalarrondo, Michele; Elmorjani, Khalil; Delluc, Caroline; Brunet, Sylvie; Linossier, Laurent; Morel, Marie-Hélène; Marion, Didier

    2015-04-08

    Content and composition of maize endosperm lipids and their partition in the floury and vitreous regions were determined for a set of inbred lines. Neutral lipids, i.e., triglycerides and free fatty acids, accounted for more than 80% of endosperm lipids and are almost 2 times higher in the floury than in the vitreous regions. The composition of endosperm lipids, including their fatty acid unsaturation levels, as well as their distribution may be related to metabolic specificities of the floury and vitreous regions in carbon and nitrogen storage and to the management of stress responses during endosperm cell development. Remarkably, the highest contents of starch lipids were observed systematically within the vitreous endosperm. These high amounts of starch lipids were mainly due to lysophosphatidylcholine and were tightly linked to the highest amylose content. Consequently, the formation of amylose-lysophosphatidylcholine complexes has to be considered as an outstanding mechanism affecting endosperm vitreousness.

  18. Canine epidermal lipid sampling by skin scrub revealed variations between different body sites and normal and atopic dogs

    PubMed Central

    2014-01-01

    Background Previously, we evaluated a minimally invasive epidermal lipid sampling method called skin scrub, which achieved reproducible and comparable results to skin scraping. The present study aimed at investigating regional variations in canine epidermal lipid composition using the skin scrub technique and its suitability for collecting skin lipids in dogs suffering from certain skin diseases. Eight different body sites (5 highly and 3 lowly predisposed for atopic lesions) were sampled by skin scrub in 8 control dogs with normal skin. Additionally, lesional and non-lesional skin was sampled from 12 atopic dogs and 4 dogs with other skin diseases by skin scrub. Lipid fractions were separated by high performance thin layer chromatography and analysed densitometrically. Results No significant differences in total lipid content were found among the body sites tested in the control dogs. However, the pinna, lip and caudal back contained significantly lower concentrations of ceramides, whereas the palmar metacarpus and the axillary region contained significantly higher amounts of ceramides and cholesterol than most other body sites. The amount of total lipids and ceramides including all ceramide classes were significantly lower in both lesional and non-lesional skin of atopic dogs compared to normal skin, with the reduction being more pronounced in lesional skin. The sampling by skin scrub was relatively painless and caused only slight erythema at the sampled areas but no oedema. Histological examinations of skin biopsies at 2 skin scrubbed areas revealed a potential lipid extraction from the transition zone between stratum corneum and granulosum. Conclusions The present study revealed regional variations in the epidermal lipid and ceramide composition in dogs without skin abnormalities but no connection between lipid composition and predilection sites for canine atopic dermatitis lesions. The skin scrub technique proved to be a practicable sampling method for canine

  19. Functional One-Dimensional Lipid Bilayers on Carbon Nanotube Templates

    SciTech Connect

    Artyukhin, A; Shestakov, A; Harper, J; Bakajin, O; Stroeve, P; Noy, A

    2004-07-23

    We present one-dimensional (1-D) lipid bilayer structures that integrate carbon nanotubes with a key biological environment-phospholipid membrane. Our structures consist of lipid bilayers wrapped around carbon nanotubes modified with a hydrophilic polymer cushion layer. Despite high bilayer curvature, the lipid membrane maintains its fluidity and can sustain repeated damage-recovery cycles. We also present the first evidence of spontaneous insertion of pore-forming proteins into 1-D lipid bilayers. These structures could lead to the development of new classes of biosensors and bioelectronic devices.

  20. Exploring a geophysical process-based attribution technique for the determination of the atmospheric boundary layer depth using aerosol lidar and near-surface meteorological measurements

    NASA Astrophysics Data System (ADS)

    Pal, Sandip; Haeffelin, Martial; Batchvarova, Ekaterina

    2013-08-01

    A new objective method for the determination of the atmospheric boundary layer (ABL) depth using routine vertically pointing aerosol lidar measurements is presented. A geophysical process-based analysis is introduced to improve the attribution of the lidar-derived aerosol gradients, which is so far the most challenging part in any gradient-based technique. Using micrometeorological measurements of Obukhov length scale, both early morning and evening transition periods are determined which help separate the turbulence regimes during well-mixed convective ABL and nocturnal/stable ABL. The lidar-derived aerosol backscatter signal intensity is used to determine the hourly-averaged vertical profiles of variance of the fluctuations of particle backscatter signal providing the location of maximum turbulent mixing within the ABL; thus, obtained mean ABL depth guides the attribution by searching for the appropriate minimum of the gradients. An empirical classification of the ABL stratification patterns into three different types is proposed by determining the changes in the near-surface stability scenarios. First results using the lidar observations obtained between March and July in 2011 at SIRTA atmospheric observatory near Palaiseau (Paris suburb) in France demonstrate that the new attribution technique makes the lidar estimations of ABL depth more physically reliable under a wide spectrum of meteorological conditions. While comparing lidar and nearby radiosonde measurements of ABL depths, an excellent concordance was found with a correlation coefficient of 0.968 and 0.927 for daytime and nighttime measurements, respectively. A brief climatology of the characteristics of the ABL depth, its diurnal cycle, a detailed discussion of the morning and evening transitions are presented.

  1. Near infrared Raman spectra of human brain lipids

    NASA Astrophysics Data System (ADS)

    Krafft, Christoph; Neudert, Lars; Simat, Thomas; Salzer, Reiner

    2005-05-01

    Human brain tissue, in particular white matter, contains high lipid content. These brain lipids can be divided into three principal classes: neutral lipids including the steroid cholesterol, phospholipids and sphingolipids. Major lipids in normal human brain tissue are phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, phosphatidylinositol, phosphatidic acid, sphingomyelin, galactocerebrosides, gangliosides, sulfatides and cholesterol. Minor lipids are cholesterolester and triacylglycerides. During transformation from normal brain tissue to tumors, composition and concentration of lipids change in a specific way. Therefore, analysis of lipids might be used as a diagnostic parameter to distinguish normal tissue from tumors and to determine the tumor type and tumor grade. Raman spectroscopy has been suggested as an analytical tool to detect these changes even under intra-operative conditions. We recorded Raman spectra of the 12 major and minor brain lipids with 785 nm excitation in order to identify their spectral fingerprints for qualitative and quantitative analyses.

  2. Sensitive determination of four camptothecins by solid-phase microextraction-HPLC based on a boronic acid contained polymer monolithic layer.

    PubMed

    Chen, Jishun; Min, Xinwen; Li, Peng; Chen, Wu; Tian, Dawei; Chen, Qinhua

    2015-06-16

    Camptothecin (CPT) and its derivative have been revealed to possess special anti-cancer activity, extraction methods are necessary for trace determination of CPTs in complex samples. In this work, we prepared a high efficient boronic acid-based polymer monolithic layer for microextraction of CPTs. A disposable membrane filter-based extraction device was developed, and boronic acid groups were co-polymerized into a polyporous polymer skeleton and served as the monolithic sorbent. The prepared poly(4-VB-MA-TRIM) showed good stability and great extraction efficiency toward four CPTs. After optimization of extraction conditions, poly(4-VB-MA-TRIM)-based solid-phase microextraction was coupled HPLC for determination of CPTs in biological samples. The method exhibited low limits of detection of 0.05-0.2 ng mL(-1), which is significantly more sensitive than reported HPLC methods. The method also showed wide linear range (0.1-100 and 0.5-200 ng mL(-1)), good linearity (R(2)≥0.9981) and good reproducibility (RSD ≤3.76%). The method has been applied in plasma samples, with good selectivity and good recoveries ranging from 85.1 to 104.7%.

  3. Identification and semi-quantitative determination of anti-oxidants in lubricants employing thin-layer chromatography-spray mass spectrometry.

    PubMed

    Kreisberger, Georg; Himmelsbach, Markus; Buchberger, Wolfgang; Klampfl, Christian W

    2015-02-27

    A quick and simple method for identification and semi-quantitative determination of nine antioxidants commonly used in lubricants is presented. A dual step thin-layer chromatography (TLC) separation, removes in a first step the oil matrix whereas in a second step the antioxidants are separated. Cutting the spots out of the TLC-plate in the form of triangles allows direct-spray mass spectrometric (MS) measurements, providing MS and MS(n) spectra (if an appropriate MS instrument is employed) of the antioxidants, allowing their identification but also giving information about potential oxidation or degradation of these additives. Calibration curves within the concentration range relevant for the analysis of real oil samples (0.2-1.2gL(-1)) were constructed with R(2) values above 0.98 (when using an appropriate internal standard). This allowed the semi-quantitative determination of the selected antioxidants in real oils samples. Comparison with results from HPLC-UV measurement showed acceptable agreement for all analytes.

  4. Determination of alpha-solanine and alpha-chaconine in potatoes by high-performance thin-layer chromatography/densitometry.

    PubMed

    Bodart, P; Kabengera, C; Noirfalise, A; Hubert, P; Angenot, L

    2000-01-01

    A high-performance thin-layer chromatographic (HPTLC) method was used to determine the glycoalkaloids alpha-solanine and alpha-chaconine in potatoes. Alpha-solanine and alpha-chaconine are extracted from dehydrated potatoes with boiling methanol-acetic acid (95 + 5, v/v). The analytes are separated on a Silica Gel 60 F254 HPTLC plate by a saturated mixture of dichloromethane-methanol-water-concentrated ammonium hydroxide (70 + 30 + 4 + 0.4, v/v), which is used for vertical development of the plate up to a distance of 85 mm. For visualization, the plate is dipped 3 times into a modified Carr-Price reagent, 20% (w/v) antimony(III) chloride in acetic acid-dichloromethane (1 + 3, v/v), and subsequently heated on a hot plate at 105 degrees C for 5 min. The glycoalkaloids all appear as red chromatographic zones on a colorless background. Densitometric quantification is performed at 507 nm by reflectance scanning. After determination of the appropriate response function, the proposed method was validated. Good results with respect to linearity, accuracy, and precision were obtained in the concentration range studied.

  5. The development of a gas chromatographic-mass spectrometric analytical procedure for the determination of lipids, proteins and resins in the same paint micro-sample avoiding interferences from inorganic media.

    PubMed

    Bonaduce, Ilaria; Cito, Marcello; Colombini, Maria Perla

    2009-08-07

    This paper presents a GC-MS analytical procedure for determining proteinaceous materials, glycerolipids, natural waxes and terpenoid resins in the same paint micro-sample. The procedure is also reliable when high amounts of interfering inorganic pigments, dryers and charges are present. The characterisation of proteinaceous binders in a paint sample can be subject to analytical interferences by inorganic materials. Such materials may form complexes with functional groups of proteins, thus preventing their efficient derivatisation, which is necessary prior to GC analysis. For this reason an analytical procedure has been developed based on two extractions and a clean-up step, in order to obtain two fractions: a lipid-resinous fraction and a proteinaceous fraction. The lipid-resinous fraction is subjected to salification/saponification assisted by microwaves, followed by acidification, extraction, derivatisation and GC-MS analysis. The proteinaceous fraction is analysed by GC-MS after hydrolysis and derivatisation of the freed amino acids. The desalting step is applied before the hydrolysis, and is based on the use of the monolithic sorbent tip technology with a C4 stationary phase. Reference paint replicas of egg, casein and animal glue were prepared with and without several metals containing pigments, and used to develop and validate the analytical procedure. The procedure proved to be efficient in desalting the proteinaceous materials both from cations and anions. Although non quantitative, it is reliable in the analysis of samples whose content of extractable proteins is <1 microg, thus showing it to be suitable for the characterisation of paint samples. An example of how the analytical procedure was used to characterise a sample from a 15th century panel painting is also discussed.

  6. Simultaneous determination of triamcinolone acetonide palmitate and triamcinolone acetonide in beagle dog plasma by UPLC-MS/MS and its application to a long-term pharmacokinetic study of triamcinolone acetonide palmitate lipid emulsion injection.

    PubMed

    Liu, Hui; Yang, Mingjing; Wu, Panpan; Guan, Jiao; Men, Lei; Lin, Hongli; Tang, Xing; Zhao, Yunli; Yu, Zhiguo

    2015-02-01

    In order to investigate the pharmacokinetics of triamcinolone acetonide palmitate (TAP) which is a lipid-soluble prodrug of triamcinolone acetonide (TA), a rapid, simple, sensitive and reproducible UPLC-MS/MS method has been developed and validated for the simultaneous determination of TAP and TA in beagle dog plasma. After simple liquid-liquid extraction, the analytes and internal standard (dexamethasone, DEX) were separated on Phenomenex Luna C18 column (50 mm × 2.1mm, 1.7 μm) using a mobile phase consisting of solvent A (acetonitrile) and solvent B (0.1% ammonia solution) at a flow rate of 0.2 ml/min with gradient elution. Acquisition of mass spectrometric data was performed in multiple reaction monitoring (MRM) mode via positive electrospray ionization using the ion transitions of m/z 673.5→397.3, 435.3→415.3 and 393.3→355.3 for TAP, TA and IS, respectively. The method was of satisfactory specificity, sensitivity, precision and accuracy over the concentration range of 1-1,000 ng/ml for TAP and 0.5-500 ng/ml for TA. The intra- and inter-day precisions for both TAP and TA were 3.2% to 18.7% and the accuracy was in the range of -8.4% to 6.8%. The mean recoveries of TAP, TA and IS were 86.7-104.7%. The method was successfully applied to a long-term pharmacokinetic study of TAP and TA after 28-day repeated intravenous administration of TAP lipid emulsion injection to beagle dogs.

  7. Application of 1H NMR spectroscopy method for determination of characteristics of thin layers of water adsorbed on the surface of dispersed and porous adsorbents.

    PubMed

    Turov, V V; Leboda, R

    1999-02-01

    The paper presents 1H NMR spectroscopy as a perspective method of the studies of the characteristics of water boundary layers in the hydrated powders and aqueous dispergated suspensions of the adsorbents. The method involves measurements of temperature dependence proton signals intensity in the adsorbed water at temperatures lower than 273 K. Free energy of water molecules at the adsorbent/water interface is diminished due to the adsorption interactions causing the water dosed to the adsorbent surface freezes at T < 273 K. Thickness of a non-freezing layer of water can be determined from the intensity of the water signal of 1H NMR during the freezing-thawing process. Due to a disturbing action of the adsorbent surface, water occurs in the quasi-liquid state. As a result, it is observed in the 1H NMR spectra as a relatively narrow signal. The signal of ice is not registered due to great differences in the transverse relaxation times of the adsorbed water and ice. The method of measuring the free surface energy of the adsorbents from the temperature dependence of the signal intensity of non-freezing water is based on the fact that the temperature of water freezing decreases by the quantity which depends on the surface energy and the distance of the adsorbed molecules from the solid surface. The water at the interface freezes when the free energies of the adsorbed water and ice are equal. To illustrate the applicability of the method under consideration the series of adsorption systems in which the absorbents used differed in the surface chemistry and porous structure. In particular, the behaviour of water on the surface of the following adsorbents is discussed: non-porous and porous silica (aerosils, silica gels); chemically and physically modified non-porous and porous silica (silanization, carbonization, biopolymer deposition); and pyrogeneous Al2O3 and aluminasilicas. The effect of preliminary treatment of the adsorbent (thermal, high pressure, wetting with polar

  8. Lipids of mitochondria.

    PubMed

    Horvath, Susanne E; Daum, Günther

    2013-10-01

    A unique organelle for studying membrane biochemistry is the mitochondrion whose functionality depends on a coordinated supply of proteins and lipids. Mitochondria are capable of synthesizing several lipids autonomously such as phosphatidylglycerol, cardiolipin and in part phosphatidylethanolamine, phosphatidic acid and CDP-diacylglycerol. Other mitochondrial membrane lipids such as phosphatidylcholine, phosphatidylserine, phosphatidylinositol, sterols and sphingolipids have to be imported. The mitochondrial lipid composition, the biosynthesis and the import of mitochondrial lipids as well as the regulation of these processes will be main issues of this review article. Furthermore, interactions of lipids and mitochondrial proteins which are highly important for various mitochondrial processes will be discussed. Malfunction or loss of enzymes involved in mitochondrial phospholipid biosynthesis lead to dysfunction of cell respiration, affect the assembly and stability of the mitochondrial protein import machinery and cause abnormal mitochondrial morphology or even lethality. Molecular aspects of these processes as well as diseases related to defects in the formation of mitochondrial membranes will be described.

  9. Correlation between the properties of the lipid matrix and the degrees of integrity and cohesion in healthy human Stratum corneum.