Science.gov

Sample records for lipid membrane composition

  1. Lipid exchange between membranes: effects of membrane surface charge, composition, and curvature.

    PubMed

    Zhu, Tao; Jiang, Zhongying; Ma, Yuqiang

    2012-09-01

    Intermembrane lipid exchange is critical to membrane functions and pharmaceutical applications. The exchange process is not fully understood and it is explored by quartz crystal microbalance with dissipation monitor method in this research. It is found that intermembrane lipid exchange is accelerated with the decrease of vesicle size and the increase of charge and liquid crystalline lipid composition ratio. Vesicle adsorption rate, membrane lateral pressure gradient, and lipid lateral diffusion coefficient are inferred to be critical in deciding the lipid exchange kinetics between membranes. Besides that, the membrane contact situation during lipid exchange is also studied. The maximum total membrane contact area is found to increase with the decrease of vesicle size, charged and liquid crystalline lipid composition ratio. A competition mechanism between the vesicle adsorption rate and the intermembrane lipid exchange rate was proposed to control the maximum total membrane contact area.

  2. Stabilization of composition fluctuations in mixed membranes by hybrid lipids

    NASA Astrophysics Data System (ADS)

    Safran, Samuel; Palmieri, Benoit

    2013-03-01

    A ternary mixture model is proposed to describe composition fluctuations in mixed membranes composed of saturated, unsaturated and hybrid lipids. The asymmetric hybrid lipid has one saturated and one unsaturated hydrocarbon chain and it can reduce the packing incompatibility between saturated and unsaturated lipids. A methodology to recast the free-energy of the lattice in terms of a continuous isotropic field theory is proposed and used to analyze composition fluctuations above the critical temperature. The effect of hybrid lipids on fluctuations domains rich in saturated/unsaturated lipids is predicted. The correlation length of such fluctuations decreases significantly with increasing amounts of hybrids even if the temperature is maintained close to the critical temperature. This provides an upper bound for the domain sizes expected in rafts stabilized by hybrids, above the critical temperature. When the hybrid composition of the membrane is increased further, a crossover value is found above which ``stripe-like'' fluctuations are observed. The wavelength of these fluctuations decreases with increasing hybrid fraction and tends toward a molecular size in a membrane that contains only hybrids.

  3. Adhesion and hemifusion of cytoplasmic myelin lipid membranes are highly dependent on the lipid composition

    PubMed Central

    Banquy, Xavier; Kristiansen, Kai; Lee, Dong Woog; Israelachvili, Jacob N.

    2012-01-01

    We report the effects of calcium ions on the adhesion and hemifusion mechanisms of model supported myelin lipid bilayer membranes of differing lipid composition. As in our previous studies [1, 2], the lipid compositions used mimic “healthy” and “diseased-like” (experimental autoimmune encephalomyelitis, EAE) membranes. Our results show that the interaction forces as a function of membrane separation distance are well described by a generic model that also (and in particular) includes the hydrophobic interaction arising from the hydrophobically exposed (interior) parts of the bilayers. The model is able to capture the mechanical instability that triggers the onset of the hemifusion event, and highlights the primary role of the hydrophobic interaction in membrane fusion. The effects of lipid composition on the fusion mechanism, and the adhesion forces between myelin lipid bilayers, can be summarized as follow: in calcium-free buffer, healthy membranes do not present any signs of adhesion or hemifusion, while diseased membranes hemifuse easily. Addition of 2 mM calcium favors adhesion and hemifusion of the membranes independently of their composition, but the mechanisms involved in the two processes were different: healthy bilayers systematically presented stronger adhesion forces and lower energy barriers to fusion compared to diseased bilayers. These results are of particular relevance for understanding lesion development (demyelination, swelling, vacuolization and/or vesiculation) in myelin associated diseases such as multiple sclerosis and its relationship to lipid domain formation in myelin membranes. PMID:22047743

  4. Influence of membrane lipid composition on flavonoid-membrane interactions: Implications on their biological activity.

    PubMed

    Selvaraj, Stalin; Krishnaswamy, Sridharan; Devashya, Venkappayya; Sethuraman, Swaminathan; Krishnan, Uma Maheswari

    2015-04-01

    The membrane interactions and localization of flavonoids play a vital role in altering membrane-mediated cell signaling cascades as well as influence the pharmacological activities such as anti-tumour, anti-microbial and anti-oxidant properties of flavonoids. Various techniques have been used to investigate the membrane interaction of flavonoids. These include partition coefficient, fluorescence anisotropy, differential scanning calorimetry, NMR spectroscopy, electrophysiological methods and molecular dynamics simulations. Each technique will provide specific information about either alteration of membrane fluidity or localization of flavonoids within the lipid bilayer. Apart from the diverse techniques employed, the concentrations of flavonoids and lipid membrane composition employed in various studies reported in literature also are different and together these variables contribute to diverse findings that sometimes contradict each other. This review highlights different techniques employed to investigate the membrane interaction of flavonoids with special emphasis on erythrocyte model membrane systems and their significance in understanding the nature and extent of flavonoid-membrane interactions. We also attempt to correlate the membrane localization and alteration in membrane fluidity with the biological activities of flavonoids such as anti-oxidant, anti-cancer and anti-microbial properties.

  5. Distribution of Fullerene Nanoparticles between Water and Solid Supported Lipid Membranes: Thermodynamics and Effects of Membrane Composition on Distribution.

    PubMed

    Ha, Yeonjeong; Katz, Lynn E; Liljestrand, Howard M

    2015-12-15

    The distribution coefficient (Klipw) of fullerene between solid supported lipid membranes (SSLMs) and water was examined using different lipid membrane compositions. Klipw of fullerene was significantly higher with a cationic lipid membrane compared to that with a zwitterionic or anionic lipid membrane, potentially due to the strong interactions between negative fullerene dispersions and positive lipid head groups. The higher Klipw for fullerene distribution to ternary lipid mixture membranes was attributed to an increase in the interfacial surface area of the lipid membrane resulting from phase separation. These results imply that lipid composition can be a critical factor that affects bioconcentration of fullerene. Distribution of fullerene into zwitterionic unsaturated lipid membranes was dominated by the entropy contribution (ΔS) and the process was endothermic (ΔH > 0). This result contrasts the partitioning thermodynamics of highly and moderately hydrophobic chemicals indicating that the lipid-water distribution mechanism of fullerene may be different from that of molecular level chemicals. Potential mechanisms for the distribution of fullerene that may explain these differences include adsorption on the lipid membrane surfaces and partitioning into the center of lipid membranes (i.e., absorption).

  6. Lipid composition affects the rate of photosensitized dissipation of cross-membrane diffusion potential on liposomes

    PubMed Central

    Ytzhak, Shany; Wuskell, Joseph P.; Loew, Leslie M.; Ehrenberg, Benjamin

    2010-01-01

    Hydrophobic or amphiphilic tetrapyrrole sensitizers are taken up by cells and are usually located in cellular lipid membranes. Singlet oxygen is photogenerated by the sensitizer and it diffuses in the membrane and causes oxidative damage to membrane components. This damage can occur to membrane lipids and to membrane-localized proteins. Depolarization of the Nernst electric potential on cells’ membranes has been observed in cellular photosensitization, but it was not established whether lipid oxidation is a relevant factor leading to abolishing the resting potential of cells’ membranes and to their death. In this work we studied the effect of liposomes’ lipid composition on the kinetics of hematoporphyrin-photosensitized dissipation of K+-diffusion electric potential that was generated across the membranes. We employed an electrochromic voltage-sensitive spectroscopic probe that possesses a high fluorescence signal response to the potential. We found a correlation between the structure and unsaturation of lipids and the leakage of the membrane, following photosensitization. As the extent of non-conjugated unsaturation of the lipids is increased from 1 to 6 double bonds, the kinetics of depolarization become faster. We also found that the kinetics of depolarization is affected by the percentage of the unsaturated lipids in the liposome: as the fraction of the unsaturated lipids increases the leakage trough the membrane is enhanced. When liposomes are composed of a lipid mixture similar to that of natural membranes and photosensitization is being carried out under usual photodynamic therapy (PDT) conditions, photodamage to the lipids is not likely to cause enhanced permeability of ions through the membrane, which would have been a mechanism that leads to cell death. PMID:20536150

  7. Measuring the composition-curvature coupling in binary lipid membranes by computer simulations

    SciTech Connect

    Barragán Vidal, I. A. Müller, M.; Rosetti, C. M.; Pastorino, C.

    2014-11-21

    The coupling between local composition fluctuations in binary lipid membranes and curvature affects the lateral membrane structure. We propose an efficient method to compute the composition-curvature coupling in molecular simulations and apply it to two coarse-grained membrane models—a minimal, implicit-solvent model and the MARTINI model. Both the weak-curvature behavior that is typical for thermal fluctuations of planar bilayer membranes as well as the strong-curvature regime corresponding to narrow cylindrical membrane tubes are studied by molecular dynamics simulation. The simulation results are analyzed by using a phenomenological model of the thermodynamics of curved, mixed bilayer membranes that accounts for the change of the monolayer area upon bending. Additionally the role of thermodynamic characteristics such as the incompatibility between the two lipid species and asymmetry of composition are investigated.

  8. Comparison of the lipid composition of oat root and coleoptile plasma membranes. [Avena sativa L

    SciTech Connect

    Sandstrom, R.P. ); Cleland, R.E. )

    1989-07-01

    The total lipid composition of plasma membranes (PM), isolated by the phase partitioning method from two different oat (Avena sativa L.) tissues, the root and coleoptile, was compared. In general, the PM lipid composition was not conserved between these two organs of the oat seedling. Oat roots contained 50 mole % phospholipid, 25 mole % glycolipid, and 25 mole % free sterol, whereas comparable amounts in the coleoptile were 42, 39, and 19 mole %, respectively. Individual lipid components within each lipid class also showed large variations between the two tissues. Maximum specific ATPase activity in the root PM was more than double the activity in the coleoptile. Treatment of coleoptile with auxin for 1 hour resulted in no detectable changes in PM lipids or extractable ATPase activity. Differences in the PM lipid composition between the two tissues that may define the limits of ATPase activity are discussed.

  9. The effect of copper ions on the lipid composition of subcellular membranes in Hydrilla verticillata.

    PubMed

    Rozentsvet, Olga A; Nesterov, Viktor N; Sinyutina, Natalia F

    2012-09-01

    The paper studies changes in the content and composition of lipids in the membranes of chloroplasts, mitochondria and microsomes of the aquatic plant Hydrilla verticillata exposed to copper ions (100 μM; 1, 3, 6 and 24 h). The rate of copper accumulation and the coefficient of its extraction by the plant were also determined. The presence of copper in the incubation medium and its accumulation in the plant tissues decreased the content of photosynthetic pigments, stimulated lipid peroxidation and enhanced membrane permeability. The gradual accumulation of copper in the plant tissues was accompanied by specific changes in the composition of lipids: the content of sulfolipids (SQDG) in chloroplasts declined; the content of monogalactosyl diacylglycerols (MGDG), digalactosyl diacylglycerols (DGDG) and phosphatidyl glycerols (PG) in chloroplasts and mitochondria grew after an hour of copper exposure; and the content of all the lipids except phosphatidic acids (PA) decreased after 3 h of exposure. The decline in the content of phosphatidyl cholines (PC) was first observed in the membranes of microsomes (after an hour of exposure) and later in the membranes of chloroplasts and mitochondria (after 3-6 h of exposure). The experiments with incorporation of [2-(14)C]sodium acetate into fatty acids of polar lipids showed that in parallel with lipid destruction, there took place an intensive and specific renewal of the lipid pool of subcellular membrane fractions.

  10. The adrenal specific toxicant mitotane directly interacts with lipid membranes and alters membrane properties depending on lipid composition.

    PubMed

    Scheidt, Holger A; Haralampiev, Ivan; Theisgen, Stephan; Schirbel, Andreas; Sbiera, Silviu; Huster, Daniel; Kroiss, Matthias; Müller, Peter

    2016-06-15

    Mitotane (o,p'.-DDD) is an orphan drug approved for the treatment of adrenocortical carcinoma. The mechanisms, which are responsible for this activity of the drug, are not completely understood. It can be hypothesized that an impact of mitotane is mediated by the interaction with cellular membranes. However, an interaction of mitotane with (lipid) membranes has not yet been investigated in detail. Here, we characterized the interaction of mitotane and its main metabolite o,p'-dichlorodiphenyldichloroacetic acid (o,p'-DDA) with lipid membranes by applying a variety of biophysical approaches of nuclear magnetic resonance, electron spin resonance, and fluorescence spectroscopy. We found that mitotane and o,p'-DDA bind to lipid membranes by inserting into the lipid-water interface of the bilayer. Mitotane but not o,p'-DDA directly causes a disturbance of bilayer structure leading to an increased permeability of the membrane for polar molecules. Mitotane induced alterations of the membrane integrity required the presence of phosphatidylethanolamine and/or cholesterol. Collectively, our data for the first time characterize the impact of mitotane on the lipid membrane structure and dynamics, which may contribute to a better understanding of specific mitotane effects and side effects.

  11. Specific Membrane Lipid Composition Is Important for Plasmodesmata Function in Arabidopsis

    PubMed Central

    Grison, Magali S.; Brocard, Lysiane; Fouillen, Laetitia; Nicolas, William; Wewer, Vera; Dörmann, Peter; Nacir, Houda; Benitez-Alfonso, Yoselin; Claverol, Stéphane; Germain, Véronique; Boutté, Yohann; Mongrand, Sébastien; Bayer, Emmanuelle M.

    2015-01-01

    Plasmodesmata (PD) are nano-sized membrane-lined channels controlling intercellular communication in plants. Although progress has been made in identifying PD proteins, the role played by major membrane constituents, such as the lipids, in defining specialized membrane domains in PD remains unknown. Through a rigorous isolation of “native” PD membrane fractions and comparative mass spectrometry-based analysis, we demonstrate that lipids are laterally segregated along the plasma membrane (PM) at the PD cell-to-cell junction in Arabidopsis thaliana. Remarkably, our results show that PD membranes display enrichment in sterols and sphingolipids with very long chain saturated fatty acids when compared with the bulk of the PM. Intriguingly, this lipid profile is reminiscent of detergent-insoluble membrane microdomains, although our approach is valuably detergent-free. Modulation of the overall sterol composition of young dividing cells reversibly impaired the PD localization of the glycosylphosphatidylinositol-anchored proteins Plasmodesmata Callose Binding 1 and the β-1,3-glucanase PdBG2 and altered callose-mediated PD permeability. Altogether, this study not only provides a comprehensive analysis of the lipid constituents of PD but also identifies a role for sterols in modulating cell-to-cell connectivity, possibly by establishing and maintaining the positional specificity of callose-modifying glycosylphosphatidylinositol proteins at PD. Our work emphasizes the importance of lipids in defining PD membranes. PMID:25818623

  12. Specific membrane lipid composition is important for plasmodesmata function in Arabidopsis.

    PubMed

    Grison, Magali S; Brocard, Lysiane; Fouillen, Laetitia; Nicolas, William; Wewer, Vera; Dörmann, Peter; Nacir, Houda; Benitez-Alfonso, Yoselin; Claverol, Stéphane; Germain, Véronique; Boutté, Yohann; Mongrand, Sébastien; Bayer, Emmanuelle M

    2015-04-01

    Plasmodesmata (PD) are nano-sized membrane-lined channels controlling intercellular communication in plants. Although progress has been made in identifying PD proteins, the role played by major membrane constituents, such as the lipids, in defining specialized membrane domains in PD remains unknown. Through a rigorous isolation of "native" PD membrane fractions and comparative mass spectrometry-based analysis, we demonstrate that lipids are laterally segregated along the plasma membrane (PM) at the PD cell-to-cell junction in Arabidopsis thaliana. Remarkably, our results show that PD membranes display enrichment in sterols and sphingolipids with very long chain saturated fatty acids when compared with the bulk of the PM. Intriguingly, this lipid profile is reminiscent of detergent-insoluble membrane microdomains, although our approach is valuably detergent-free. Modulation of the overall sterol composition of young dividing cells reversibly impaired the PD localization of the glycosylphosphatidylinositol-anchored proteins Plasmodesmata Callose Binding 1 and the β-1,3-glucanase PdBG2 and altered callose-mediated PD permeability. Altogether, this study not only provides a comprehensive analysis of the lipid constituents of PD but also identifies a role for sterols in modulating cell-to-cell connectivity, possibly by establishing and maintaining the positional specificity of callose-modifying glycosylphosphatidylinositol proteins at PD. Our work emphasizes the importance of lipids in defining PD membranes.

  13. Ca(2+) adsorption to lipid membranes and the effect of cholesterol in their composition.

    PubMed

    Iraolagoitia, Ximena L Raffo; Martini, M Florencia

    2010-03-01

    The aim of this work is to determine the binding of ionic calcium (Ca(2+)) to lipid membranes in which the availability of the phosphate groups to the aqueous phase is modified by the degree of saturation of the lipids and the inclusion of cholesterol. The shifts in the phosphate bands observed in the Fourier transform infrared spectroscopy (FTIR) spectra are direct evidence of the interaction of Ca(2+) with phosphate groups. The binding analysis was done by determining the changes in the zeta potential of liposomes suspended in buffer at controlled temperature. The changes produced by the ion on the zeta potential of dioleoylphosphatidylcholine (DOPC); dipalmitoylphosphatidylcholine (DPPC); distearoylphosphatidylcholine (DSPC); dimyristoylphosphatidylethanolamine (DMPE) and their mixers with cholesterol were measured, showing a Langmuir isotherm behavior in all the lipid composition assayed. The results show that the interaction of Ca(2+) to lipid membranes depends on the exposure and the density of phosphate groups at the membrane interphase.

  14. Lateral diffusion of membrane proteins: consequences of hydrophobic mismatch and lipid composition.

    PubMed

    Ramadurai, Sivaramakrishnan; Duurkens, Ria; Krasnikov, Victor V; Poolman, Bert

    2010-09-08

    Biological membranes are composed of a large number lipid species differing in hydrophobic length, degree of saturation, and charge and size of the headgroup. We now present data on the effect of hydrocarbon chain length of the lipids and headgroup composition on the lateral mobility of the proteins in model membranes. The trimeric glutamate transporter (GltT) and the monomeric lactose transporter (LacY) were reconstituted in giant unilamellar vesicles composed of unsaturated phosphocholine lipids of varying acyl chain length (14-22 carbon atoms) and various ratios of DOPE/DOPG/DOPC lipids. The lateral mobility of the proteins and of a fluorescent lipid analog was determined as a function of the hydrophobic thickness of the bilayer (h) and lipid composition, using fluorescence correlation spectroscopy. The diffusion coefficient of LacY decreased with increasing thickness of the bilayer, in accordance with the continuum hydrodynamic model of Saffman-Delbrück. For GltT, the mobility had its maximum at diC18:1 PC, which is close to the hydrophobic thickness of the bilayer in vivo. The lateral mobility decreased linearly with the concentration of DOPE but was not affected by the fraction of anionic lipids from DOPG. The addition of DOPG and DOPE did not affect the activity of GltT. We conclude that the hydrophobic thickness of the bilayer is a major determinant of molecule diffusion in membranes, but protein-specific properties may lead to deviations from the Saffman-Delbrück model.

  15. Changes in membrane lipid composition during saline growth of the fresh water cyanobacterium Synechococcus 6311

    NASA Technical Reports Server (NTRS)

    Huflejt, M. E.; Tremolieres, A.; Pineau, B.; Lang, J. K.; Hatheway, J.; Packer, L.

    1990-01-01

    Growth of Synechococcus 6311 in the presence of 0.5 molar NaCl is accompanied by significant changes in membrane lipid composition. Upon transfer of the cells from a low salt' (0.015 molar NaCl) to high salt' (0.5 molar NaCl) growth medium at different stages of growth, a rapid decrease in palmitoleic acid (C16:1 delta 9) content was accompanied by a concomitant increase in the amount of the two C18:1 acids (C18:1 delta 9, C18:1 delta 11), with the higher increase in oleic acid C18:1 delta 9 content. These changes began to occur within the first hour after the sudden elevation of NaCl and progressed for about 72 hours. The percentage of palmitic acid (C16:0) and stearic acid (C18:0) remained almost unchanged in the same conditions. High salt-dependent changes within ratios of polar lipid classes also occurred within the first 72 hours of growth. The amount of monogalactosyl diacylglycerol (bilayer-destabilizing lipid) decreased and that of the digalactosyl diacylglycerol (bilayer-stabilizing lipid) increased. Consequently, in the three day old cells, the ratio of monogalactosyl diacylglycerol to digalactosyl diacylglycerol in the membranes of high salt-grown cells was about half of that in the membranes of low salt-grown cells. The total content of anionic lipids (phosphatidylglycerol and sulfoquinovosyl diacylglycerol) was always higher in the isolated membranes and the whole cells from high salt-grown cultures compared to that in the cells and membranes from low salt-grown cultures. All the observed rearrangements in the lipid environment occurred in both thylakoid and cytoplasmic membranes. Similar lipid composition changes, however, to a much lesser extent, were also observed in the aging, low salt-grown cultures. The observed changes in membrane fatty acids and lipids composition correlate with the alterations in electron and ion transport activities, and it is concluded that the rearrangement of the membrane lipid environment is an essential part of the

  16. Changes in Membrane Lipid Composition during Saline Growth of the Fresh Water Cyanobacterium Synechococcus 6311 1

    PubMed Central

    Huflejt, Margaret E.; Tremolieres, Antoine; Pineau, Bernard; Lang, Johanna K.; Hatheway, John; Packer, Lester

    1990-01-01

    Growth of Synechococcus 6311 in the presence of 0.5 molar NaCl is accompanied by significant changes in membrane lipid composition. Upon transfer of the cells from a `low salt' (0.015 molar NaCl) to `high salt' (0.5 molar NaCl) growth medium at different stages of growth, a rapid decrease in palmitoleic acid (C16:1Δ9) content was accompanied by a concomitant increase in the amount of the two C18:1 acids (C18:1Δ9, C18:1Δ11), with the higher increase in oleic acid C18:1Δ9 content. These changes began to occur within the first hour after the sudden elevation of NaCl and progressed for about 72 hours. The percentage of palmitic acid (C16:0) and stearic acid (C18:0) remained almost unchanged in the same conditions. High salt-dependent changes within ratios of polar lipid classes also occurred within the first 72 hours of growth. The amount of monogalactosyl diacylglycerol (bilayer-destabilizing lipid) decreased and that of the digalactosyl diacylglycerol (bilayer-stabilizing lipid) increased. Consequently, in the three day old cells, the ratio of monogalactosyl diacylglycerol to digalactosyl diacylglycerol in the membranes of high salt-grown cells was about half of that in the membranes of low salt-grown cells. The total content of anionic lipids (phosphatidylglycerol and sulfoquinovosyl diacylglycerol) was always higher in the isolated membranes and the whole cells from high salt-grown cultures compared to that in the cells and membranes from low salt-grown cultures. All the observed rearrangements in the lipid environment occurred in both thylakoid and cytoplasmic membranes. Similar lipid composition changes, however, to a much lesser extent, were also observed in the aging, low salt-grown cultures. The observed changes in membrane fatty acids and lipids composition correlate with the alterations in electron and ion transport activities, and it is concluded that the rearrangement of the membrane lipid environment is an essential part of the process by which cells

  17. Membrane Binding of HIV-1 Matrix Protein: Dependence on Bilayer Composition and Protein Lipidation

    PubMed Central

    Barros, Marilia; Nanda, Hirsh

    2016-01-01

    -bounded protein lattice that recruits genomic RNA into the virus and forms the shell of a budding immature viral capsid. In binding studies of HIV-1 Gag MA to model membranes with well-controlled lipid composition, we dissect the multiple interactions of the MA domain with its target membrane. This results in a detailed understanding of the thermodynamic aspects that determine membrane association, preferential lipid recruitment to the viral shell, and those aspects of Gag assembly into the membrane-bound protein lattice that are determined by MA. PMID:26912608

  18. Changes in lipid composition of hepatocyte plasma membrane induced by overfeeding in duck.

    PubMed

    Molee, W; Bouillier-Oudot, M; Auvergne, A; Babilé, R

    2005-08-01

    This experiment was carried out to examine the influence of overfeeding ducks with corn on the lipid composition of hepatocyte plasma membrane. Seventy-day-old male Mule ducks (Cairina moschata x Anas platyrhynchos) were overfed with corn for 12.5 days in order to induce fatty livers. The cholesterol and phospholipid contents were approximately 50% higher in hepatocyte plasma membranes from fatty livers compared to those of lean livers obtained from non-overfed ducks. However, the cholesterol/phospholipids molar ratio did not differ between both groups. Overfeeding induced a significant change in phospholipid composition of hepatocyte plasma membrane with a decrease in phosphatidylcholine proportion and conversely an increase in phosphatidylethanolamine. The fatty acid profile of phospholipids was also altered. In fatty hepatocyte plasma membrane, the overall proportion of polyunsaturated fatty acids (PUFA) was decreased and this was due to the decrease of some of, but not all, the PUFA. In addition, the proportions of oleic acid and n-9 series unsaturated fatty acids were higher in fatty than in lean liver membranes. This study provides evidence that overfeeding with a carbohydrate-rich corn-based diet induces a de novo hepatic lipogenesis in Mule duck which predominates over dietary lipid intake to change the lipid composition of the hepatocyte plasma membrane.

  19. Heterogeneity in Lipid Composition of the Outer Membrane and Cytoplasmic Membrane of Pseudomonas BAL-31

    PubMed Central

    Diedrich, D. L.; Cota-Robles, E. H.

    1974-01-01

    The outer membranes and cytoplasmic membranes of the marine bacterium Pseudomonas BAL-31 were separated by washing the cells three times in 0.5 M NaCl and twice in 0.5 M sucrose. Electron microscopy during the removal of membranes revealed that the outer membranes fragmented in a regular manner to give rise to fairly uniform vesicles measuring approximately 140 nm in diameter. Isolated outer membranes had a buoyant density in sucrose of 1.230 g per cm3, whereas the cytoplasmic membranes had a density of 1.194 g per cm3. The removal of the outer membrane during the application of this procedure was monitored by measuring the release of 2-keto-3-deoxyoctulosonic acid and phospholipid. The cells lost 85.5% of their 2-keto-3-deoxyoctulosonic acid and 47.3% of their phospholipid during this treatment. Complete recovery of outer membrane material could be achieved. The removal of 25.5% of the 2-keto-3-deoxyoctulosonic acid and 0.9% of the phospholipid rendered the cells sensitive to lysis with Triton X-100. The phospholipid composition of the outer membrane was calculated to be 78.9% phosphatidylethanolamine and 16.1% phosphatidylglycerol. The phospholipid composition of the cytoplasmic membrane proved to be 71.5% phosphatidylethanolamine and 23.5% phosphatidylglycerol. The fatty acid composition was also found to be quantitatively heterogeneous between the two membranes. Images PMID:4852262

  20. The effect of lipid composition on the permeability of fluorescent markers from photosensitized membranes.

    PubMed

    Ytzhak, Shany; Weitman, Hana; Ehrenberg, Benjamin

    2013-01-01

    There is evidence indicating that the cellular locus of PDT action by amphiphilic sensitizers are the cellular membranes. The photosensitization process causes oxidative damage to membrane components that can result in the cell's death. However, it was not yet established whether lipid oxidation can cause free passage of molecules through the membrane and, as a result, be the primary cause of the cell's death. In this work, we studied the effect of liposomes' lipid composition on the kinetics of the leakage of three fluorescent dyes, calcein, carboxyfluorescein and DTAF, which were trapped in the intraliposomal aqueous phase, after photosensitization with the photosensitizer deuteroporphyrin. We found that as the degree of fatty acid unsaturation increased, the photosensitized passage of these molecules through the lipid bilayer increased. We also found that the rate of leakage of these molecules was affected by their size and bulkiness as well as by their net electric charge. In liposomes that are composed of a lipid mixture similar to that of natural membranes, the observed passage of molecules through the membrane is slow. Thus, the photodynamic damage to lipids does not appear to be severe enough to be an immediate, primary cause of cell death in biological photosensitization.

  1. Clinorotation Effect on Coupling Level and Lipid Composition of Barley Thylakoid Membranes

    NASA Astrophysics Data System (ADS)

    Mykhaylenko, N.; Podorvano, V.; Zolotareva, O.

    Microgravity can induce structural perturbation of plant photosynthetic apparatus. It was shown that space flight conditions caused both pigment content and chloroplast ultrastructure changes in a number of various plant species. The transformations of photosynthetic membrane lipid composition were observed in wheat plants under microgravity as well as in chloroplasts of pea under clinorotation. The photosynthetic apparatus is located in thylakoid membranes of chloroplast and provides plant cell by macroerg compounds (ATP and NADPH) necessary for inorganic carbon fixation and metabolism. ATP is formed in the process of photophosphorylation, the rate of which is determined by a coupling level of thylakoid membranes. The aim of the work was to study the coupling level and lipid composition of thylakoid membranes isolated from barley plants grown under clinorotation. Plants of barley (Hordeum vulgare L.) were grown for 7 days at 22-24°C, at low illumination (143 μ mol m-2 s-1) with a light period of 16 h, on a horizontal clinostat (2 rpm) and in vertical control. Photochemical activity of isolated chloroplasts (class II) was estimated by the following reactions: cyclic and non-cyclic photophosphorylation, coupled and uncoupled electron transfer from water to K3Fe(CN)6. Total lipids were extracted from isolated chloroplasts and individual lipid classes were separated by thin-layer chromatography. Phospholipids were determined in the form of inorganic phosphate after mineralization with perchloric acid. Glycolipids were assayed by monosaccharide content after acidic hydrolysis. Gas chromatography was applied to analyse the fatty acid composition of membrane glycerolipids. The rates of both cyclic and non-cyclic photophosphorylation in chloroplasts isolated from clinorotated plants were lower than those in control samples. At the same time the rate of electron transfer in thylakoid membranes from clinorotated plants was higher. In the presence of protonophoric channel

  2. Plasma zinc status and membrane lipid composition in genetically diabetic mice (db/db)

    SciTech Connect

    Burke, J.P.; Fenton, M.R.

    1986-03-05

    Sex and age matched diabetic C57BL/Ks-db+/db+ mice (db/db) were sacrificed at eight weeks of age. Plasma samples were collected and zinc levels determined. Livers were excised and mitochondrial and microsomal membranes prepared. Aliquots of membrane fractions were subjected to lipid extraction and cholesterol (Cl), phospholipid (PL) and fatty acid analysis (FA) performed. Plasma zinc levels in db/db mice were elevated 25% compared to m/m controls (148.8+/-8.1 ..mu..g/dl vs. 118.9+/-14.9 ..mu..g/dl). Cholesterol and PL levels remained unchanged in both mitochondrial and microsomal membranes. Analysis of PL composition from db/db mitochondria by two dimensional thin layer chromatography revealed no change in the percentage of phosphatidylcholine (PC) and phosphatidylethanolamine (PE) but a 40% decrease in cardiolipin. Slight increases were observed in the percentage of phosphatidylserine and phosphatidylinositol (PS+PI) in microsomes isolated from db/db mice. Fatty acid analysis of microsomal PC and PE showed a decrease of 28% in the 18:1/18:0 ratio as well as a 21% decrease in the ratio of 20:4/18:2 in db/db animals. Analysis of succinate dehydrogenase (mitochondrial) and glucose-6-phosphatase (microsomal) revealed significant decreases in activity in livers of db/db mice. The altered zinc metabolism as well as the changes in membrane lipid composition suggest that this may be a model to study the role of zinc in membrane structure.

  3. The influence of erythrocyte maturity on ion transport and membrane lipid composition in the rat.

    PubMed

    Vokurková, M; Rauchová, H; Dobešová, Z; Loukotová, J; Nováková, O; Kuneš, J; Zicha, J

    2016-01-01

    Significant relationships between ion transport and membrane lipid composition (cholesterol, total phospholipids and sphingomyelins) were found in erythrocytes of salt hypertensive Dahl rats. In these animals mean cellular hemoglobin content correlated negatively with Na(+)-K(+) pump activity and Na(+) leak but positively with Na(+)-K(+) cotransport activity. Immature erythrocytes exhibit lower mean cellular hemoglobin content (MCHC) than mature ones. The aim of the present study was to find a relationship between erythrocyte maturity, membrane lipid composition and ion transport activity in Wistar rats aged three months which were subjected to repeated hemorrhage (blood loss 2 ml/day for 6 days) to enrich circulating erythrocytes with immature forms. Immature and mature erythrocyte fractions in control and hemorrhaged rats were separated by repeated centrifugation. Hemorrhaged rats had increased number of reticulocytes but reduced hematocrit and MCHC compared to control rats. Immature erythrocytes of hemorrhaged rats differed from mature ones of control animals by elevated Na(+)-K(+) pump activity, reduced Na(+)-K(+) cotransport activity and increased Rb(+) leak. These ion transport changes in immature erythrocytes were accompanied by higher concentration of total phospholipids in their cell membranes. Membrane phospholipid content correlated positively with Na(+)-K(+) pump activity and cation leaks but negatively with Na(+)-K(+) cotransport activity. Moreover, they were also negatively related with MCHC which correlated negatively with Na(+)-K(+) pump activity and Rb(+) leak but positively with Na(+)-K(+) cotransport activity. Thus certain abnormalities of erythrocyte ion transport and membrane lipid composition detected in hypertensive animals might be caused by higher incidence of immature cells.

  4. Fatty acid composition of plasma lipids and erythrocyte membranes during simulated extravehicular activity

    NASA Astrophysics Data System (ADS)

    Skedina, M. A.; Katuntsev, V. P.; Buravkova, L. B.; Naidina, V. P.

    Ten subjects (from 27 to 41 years) have been participated in 32 experiments. They were decompressed from ground level to 40-35 kPa in altitude chamber when breathed 100% oxygen by mask and performed repeated cycles of exercises (3.0 Kcal/min). The intervals between decompressions were 3-5 days. Plasma lipid and erythrocyte membrane fatty acid composition was evaluated in the fasting venous blood before and immediately after hypobaric exposure. There were 7 cases decompression sickness (DCS). Venous gas bubbles (GB) were detected in 27 cases (84.4%). Any significant changes in the fatty acid composition of erythrocyte membranes and plasma didn't practically induce after the first decompression. However, by the beginning of the second decompression the total lipid level in erythrocyte membranes decreased from 54.6 mg% to 40.4 mg% in group with DCS symptoms and from 51.2 mg% to 35.2 mg% (p < 0.05) without DCS symptoms. In group with DCS symptoms a tendency to increased level of saturated fatty acids in erythrocyte membranes (16:0, 18:0), the level of the polyunsaturated linoleic fatty acid (18:2) and arachidonic acid (20:4) tended to be decreased by the beginning of the second decompression. Insignificant changes in blood plasma fatty acid composition was observed in both groups. The obtained biochemical data that indicated the simulated extravehicular activity (EVA) condition is accompanied by the certain changes in the blood lipid metabolism, structural and functional state of erythrocyte membranes, which are reversible. The most pronounced changes are found in subjects with DCS symptoms.

  5. A New Method for Measuring Edge Tensions and Stability of Lipid Bilayers: Effect of Membrane Composition

    PubMed Central

    Portet, Thomas; Dimova, Rumiana

    2010-01-01

    We report a novel and facile method for measuring edge tensions of lipid membranes. The approach is based on electroporation of giant unilamellar vesicles and analysis of the pore closure dynamics. We applied this method to evaluate the edge tension in membranes with four different compositions: egg phosphatidylcholine (eggPC), dioleoylphosphatidylcholine (DOPC), and mixtures of DOPC with cholesterol and dioleoylphosphatidylethanolamine. Our data confirm previous results for eggPC and DOPC. The addition of 17 mol % cholesterol to the DOPC membrane causes an increase in the membrane edge tension. On the contrary, when the same fraction of dioleoylphosphatidylethanolamine is added to the membrane, a decrease in the edge tension is observed, which is an unexpected result considering the inverted-cone shape geometry of the molecule. It is presumed that interlipid hydrogen bonding is the origin of this behavior. Furthermore, cholesterol was found to lower the lysis tension of DOPC bilayers. This behavior differs from that observed on bilayers made of stearoyloleoylphosphatidylcholine, suggesting that cholesterol influences the membrane mechanical stability in a lipid-specific manner. PMID:21081074

  6. A moderate change in temperature induces changes in fatty acid composition of storage and membrane lipids in a soil arthropod.

    PubMed

    van Dooremalen, Coby; Ellers, Jacintha

    2010-02-01

    A moderate change in ambient temperature can lead to vital physiological and biochemical adjustments in ectotherms, one of which is a change in fatty acid composition. When temperature decreases, the composition of membrane lipids (phospholipid fatty acids) is expected to become more unsaturated to be able to maintain homeoviscosity. Although different in function, storage lipids (triacylglycerol fatty acids) are expected to respond to temperature changes in a similar way. Age-specific differences, however, could influence this temperature response between different life stages. Here, we investigate if fatty acid composition of membrane and storage lipids responds similarly to temperature changes for two different life stages of Orchesella cincta. Juveniles and adults were cold acclimated (15 degrees C-->5 degrees C) for 28 days and then re-acclimated (5 degrees C-->15 degrees C) for another 28 days. We found adult membranes had a more unsaturated fatty acid composition than juveniles. Membrane lipids became more unsaturated during cold acclimation, and a reversed response occurred during warm acclimation. Membrane lipids, however, showed no warm acclimation, possibly due to the moderate temperature change. The ability to adjust storage lipid composition to moderate changes in ambient temperature may be an underestimated fitness component of temperature adaptation because fluidity of storage lipids permits accessibility of enzymes to energy reserves.

  7. Low temperature alters plasma membrane lipid composition and ATPase activity of pineapple fruit during blackheart development.

    PubMed

    Zhou, Yuchan; Pan, Xiaoping; Qu, Hongxia; Underhill, Steven J R

    2014-02-01

    Plasma membrane (PM) plays central role in triggering primary responses to chilling injury and sustaining cellular homeostasis. Characterising response of membrane lipids to low temperature can provide important information for identifying early causal factors contributing to chilling injury. To this end, PM lipid composition and ATPase activity were assessed in pineapple fruit (Ananas comosus) in relation to the effect of low temperature on the development of blackheart, a form of chilling injury. Chilling temperature at 10 °C induced blackheart development in concurrence with increase in electrolyte leakage. PM ATPase activity was decreased after 1 week at low temperature, followed by a further decrease after 2 weeks. The enzyme activity was not changed during 25 °C storage. Loss of total PM phospholipids was found during postharvest senescence, but more reduction was shown from storage at 10 °C. Phosphatidylcholine and phosphatidylethanolamine were the predominant PM phospholipid species. Low temperature increased the level of phosphatidic acid but decreased the level of phosphatidylinositol. Both phospholipid species were not changed during storage at 25 °C. Postharvest storage at both temperatures decreased the levels of C18:3 and C16:1, and increased level of C18:1. Low temperature decreased the level of C18:2 and increased the level of C14:0. Exogenous application of phosphatidic acid was found to inhibit the PM ATPase activity of pineapple fruit in vitro. Modification of membrane lipid composition and its effect on the functional property of plasma membrane at low temperature were discussed in correlation with their roles in blackheart development of pineapple fruit.

  8. Lipid Bilayer Composition Can Influence the Orientation of Proteorhodopsin in Artificial Membranes

    PubMed Central

    Tunuguntla, Ramya; Bangar, Mangesh; Kim, Kyunghoon; Stroeve, Pieter; Ajo-Franklin, Caroline M.; Noy, Aleksandr

    2013-01-01

    Artificial membrane systems allow researchers to study the structure and function of membrane proteins in a matrix that approximates their natural environment and to integrate these proteins in ex vivo devices such as electronic biosensors, thin-film protein arrays, or biofuel cells. Given that most membrane proteins have vectorial functions, both functional studies and applications require effective control over protein orientation within a lipid bilayer. In this work, we explored the role of the bilayer surface charge in determining transmembrane protein orientation and functionality during formation of proteoliposomes. We reconstituted a model vectorial ion pump, proteorhodopsin, in liposomes of opposite charges and varying charge densities and determined the resultant protein orientation. Antibody-binding assay and proteolysis of proteoliposomes showed physical evidence of preferential orientation, and functional assays verified the vectorial nature of ion transport in this system. Our results indicate that the manipulation of lipid composition can indeed control orientation of an asymmetrically charged membrane protein, proteorhodopsin, in liposomes. PMID:24047990

  9. Chronic cigarette smoking alters erythrocyte membrane lipid composition and properties in male human volunteers.

    PubMed

    Padmavathi, Pannuru; Reddy, Vaddi Damodara; Kavitha, Godugu; Paramahamsa, Maturu; Varadacharyulu, Nallanchakravarthula

    2010-11-01

    Cigarette smoking is a major lifestyle factor influencing the health of human beings. The present study investigates smoking induced alterations on the erythrocyte membrane lipid composition, fluidity and the role of nitric oxide. Thirty experimental and control subjects (age 35+/-8) were selected for the study. Experimental subjects smoke 12+/-2 cigarettes per day for 7-10 years. In smokers elevated nitrite/nitrate levels in plasma and red cell lysates were observed. Smokers showed increased hemolysis, erythrocyte membrane lipid peroxidation, protein carbonyls, C/P ratio (cholesterol and phospholipid ratio), anisotropic (gamma) value with decreased Na(+)/K(+)-ATPase activity and sulfhydryl groups. Alterations in smokers erythrocyte membrane individual phospholipids were also evident from the study. Red cell lysate nitric oxide positively correlated with C/P ratio (r=0.565) and fluorescent anisotropic (gamma) value (r=0.386) in smokers. Smoking induced generation of reactive oxygen/nitrogen species might have altered erythrocyte membrane physico-chemical properties.

  10. Optimization of bicelle lipid composition and temperature for EPR spectroscopy of aligned membranes

    NASA Astrophysics Data System (ADS)

    McCaffrey, Jesse E.; James, Zachary M.; Thomas, David D.

    2015-01-01

    We have optimized the magnetic alignment of phospholipid bilayered micelles (bicelles) for EPR spectroscopy, by varying lipid composition and temperature. Bicelles have been extensively used in NMR spectroscopy for several decades, in order to obtain aligned samples in a near-native membrane environment and take advantage of the intrinsic sensitivity of magnetic resonance to molecular orientation. Recently, bicelles have also seen increasing use in EPR, which offers superior sensitivity and orientational resolution. However, the low magnetic field strength (less than 1 T) of most conventional EPR spectrometers results in homogeneously oriented bicelles only at a temperature well above physiological. To optimize bicelle composition for magnetic alignment at reduced temperature, we prepared bicelles containing varying ratios of saturated (DMPC) and unsaturated (POPC) phospholipids, using EPR spectra of a spin-labeled fatty acid to assess alignment as a function of lipid composition and temperature. Spectral analysis showed that bicelles containing an equimolar mixture of DMPC and POPC homogeneously align at 298 K, 20 K lower than conventional DMPC-only bicelles. It is now possible to perform EPR studies of membrane protein structure and dynamics in well-aligned bicelles at physiological temperatures and below.

  11. Sodium pump molecular activity and membrane lipid composition in two disparate ectotherms, and comparison with endotherms.

    PubMed

    Turner, Nigel; Hulbert, A J; Else, Paul L

    2005-02-01

    Previous research has shown that the lower sodium pump molecular activity observed in tissues of ectotherms compared to endotherms, is largely related to the lower levels of polyunsaturates and higher levels of monounsaturates found in the cell membranes of ectotherms. Marine-based ectotherms, however, have very polyunsaturated membranes, and in the current study, we measured molecular activity and membrane lipid composition in tissues of two disparate ectothermic species, the octopus (Octopus vulgaris) and the bearded dragon lizard (Pogona vitticeps), to determine whether the high level of membrane polyunsaturation generally observed in marine-based ectotherms is associated with an increased sodium pump molecular activity relative to other ectotherms. Phospholipids from all tissues of the octopus were highly polyunsaturated and contained high concentrations of the omega-3 polyunsaturate, docosahexaenoic acid (22:6 (n-3)). In contrast, phospholipids from bearded dragon tissues contained higher proportions of monounsaturates and lower proportions of polyunsaturates. Sodium pump molecular activity was only moderately elevated in tissues of the octopus compared to the bearded dragon, despite the much greater level of polyunsaturation in octopus membranes. When the current data were combined with data for the ectothermic cane toad, a significant (P = 0.003) correlation was observed between sodium pump molecular activity and the content of 22:6 (n-3) in the surrounding membrane. These results are discussed in relation to recent work which shows a similar relationship in endotherms.

  12. Bilayer registry in a multicomponent asymmetric membrane: Dependence on lipid composition and chain length

    SciTech Connect

    Polley, Anirban; Mayor, Satyajit; Rao, Madan E-mail: madan@ncbs.res.in

    2014-08-14

    A question of considerable interest to cell membrane biology is whether phase segregated domains across an asymmetric bilayer are strongly correlated with each other and whether phase segregation in one leaflet can induce segregation in the other. We answer both these questions in the affirmative, using an atomistic molecular dynamics simulation to study the equilibrium statistical properties of a 3-component asymmetric lipid bilayer comprising an unsaturated palmitoyl-oleoyl-phosphatidyl-choline, a saturated sphingomyelin, and cholesterol with different composition ratios. Our simulations are done by fixing the composition of the upper leaflet to be at the coexistence of the liquid ordered (l{sub o})-liquid disordered (l{sub d}) phases, while the composition of the lower leaflet is varied from the phase coexistence regime to the mixed l{sub d} phase, across a first-order phase boundary. In the regime of phase coexistence in each leaflet, we find strong transbilayer correlations of the l{sub o} domains across the two leaflets, resulting in bilayer registry. This transbilayer correlation depends sensitively upon the chain length of the participating lipids and possibly other features of lipid chemistry, such as degree of saturation. We find that the l{sub o} domains in the upper leaflet can induce phase segregation in the lower leaflet, when the latter is nominally in the mixed (l{sub d}) phase.

  13. Using micropatterned lipid bilayer arrays to measure the effect of membrane composition on merocyanine 540 binding.

    PubMed

    Smith, Kathryn A; Conboy, John C

    2011-06-01

    The lipophilic dye merocyanine 540 (MC540) was used to model small molecule-membrane interactions using micropatterned lipid bilayer arrays (MLBAs) prepared using a 3D Continuous Flow Microspotter (CFM). Fluorescence microscopy was used to monitor MC540 binding to fifteen different bilayer compositions simultaneously. MC540 fluorescence was two times greater for bilayers composed of liquid-crystalline (l.c.) phase lipids (1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC),1-stearoyl-2-oleoyl-sn-glycero-3-phosphocholine (SOPC), and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC)) compared to bilayers in the gel phase (1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC)). The effect cholesterol (CHO) had on MC540 binding to the membrane was found to be dependent on the lipid component; cholesterol decreased MC540 binding in DMPC, DPPC and DSPC bilayers while having little to no effect on the remaining l.c. phase lipids. MC540 fluorescence was also lowered when 1,2-dioleoyl-sn-glycero-3-phospho-L-serine (sodium salt) (DOPS) was incorporated into DOPC bilayers. The increase in the surface charge density appears to decrease the occurrence of highly fluorescent monomers and increase the formation of weakly fluorescent dimers via electrostatic repulsion. This paper demonstrates that MLBAs are a useful tool for preparing high density reproducible bilayer arrays to study small molecule-membrane interactions in a high-throughput manner.

  14. Insulin Receptor Processing and Lipid Composition of Erythrocyte Membrane in Patients with Hyperlipidemia.

    PubMed

    Masella, R.; Cantafora, A.; Maffì, D.; Volpe, R.; Ginnetti, M.G.; Ricci, G.; Mace, N.L.; Buxton, G.M.; Peterson, S.W.

    1995-08-01

    The aim of this study was to determine whether the common forms of dyslipidemia could affect either the lipid composition or insulin receptor processing (down-regulation) of erythrocytes. The study included 22 patients with type IIa hypercholesterolemia, 15 patients with type IV hypertriglyceridemia and 12 patients with type IIb hyperlipidemia. Ten normolipidemic subjects were used as controls. Their erythrocyte membranes were analyzed for lipid composition and insulin receptor down-regulation. The results show that all the hyperlipidemias investigated were characterized by significant increases in the cholesterol to phospholipid molar ratio (0.56 +/- 0.08 in controls and 1.11 +/- 0.13, 1.09 +/- 0.14, 1.04 +/- 0.15, p < 0.001, in types IIa, IIb and IV, respectively). Surface insulin receptors of type IIa and IIb patients did not appear to down-regulate when compared to normal subjects, but rather up-regulated (+65.2% in controls, -1.0% and -8.7%, p < 0.001, in type IIa and IIb patients, respectively). Patients with type IV hypertriglyceridemia showed a residual capacity for insulin receptor internalization (10.7% down-regulation). Membranes of all the patients contained a higher proportion of phosphatidylethanolamine; the molar ratio of sphingomyelin to phosphatidylcholine was significantly higher in types IIb than in controls (1.22 +/- 0.11 and 1.12 +/- 0.10, p < 0.05, respectively); all the patients showed a lower content of polyunsaturated fatty acids in the major glycerophospholipid classes. However, type IV hypertriglyceridemics showed less variations, especially in the phosphatidylserine fraction. These results indicate that the alterations in lipoprotein pattern may affect both the lipid membrane equilibria and the processing ability of surface insulin receptors. Copyright 1995 S. Karger AG, Basel

  15. Introduction to membrane lipids.

    PubMed

    Epand, Richard M

    2015-01-01

    Biological membranes are composed largely of lipids and proteins. The most common arrangement of lipids in biological membranes is as a bilayer. This arrangement spontaneously forms a barrier for the passage of polar materials. The bilayer is thin but can have a large area in the dimension perpendicular to its thickness. The physical nature of the bilayer membrane will vary according to the conditions of the environment as well as the chemical structure of the lipid constituents of the bilayer. These physical properties determine the function of the membrane together with specific structural features of the lipids that allow them to have signaling properties. The lipids of the membrane are not uniformly distributed. There is an intrinsic asymmetry between the two monolayers that constitute the bilayer. In addition, some lipids tend to be enriched in particular regions of the membrane, termed domains. There is evidence that certain domains recruit specific proteins into that domain. This has been suggested to be important for allowing interaction among different proteins involved in certain signal transduction pathways. Membrane lipids have important roles in determining the physical properties of the membrane, in modulating the activity of membrane-bound proteins and in certain cases being specific secondary messengers that can interact with specific proteins. A large variety of lipids present in biological membranes result in them possessing many functions.

  16. Crz1p regulates pH homeostasis in Candida glabrata by altering membrane lipid composition.

    PubMed

    Yan, Dongni; Lin, Xiaobao; Qi, Yanli; Liu, Hui; Chen, Xiulai; Liu, Liming; Chen, Jian

    2016-09-23

    The asexual facultative aerobic haploid yeast Candida glabrata is widely used in the industrial production of various organic acids. To elucidate the physiological function of the transcription factor CgCrz1p and its role in tolerance to acid stress we deleted or overexpressed the corresponding gene CgCRZ1 Deletion of CgCRZ1 resulted in a 60% decrease in dry cell weight (DCW) and a 50% drop in cell viability compared to the wild type at pH 2.0. Expression of lipid metabolism-associated genes was also significantly down-regulated. Consequently, the proportion of C18:1 fatty acids, ratio of unsaturated to saturated fatty acids, and ergosterol content decreased by 30%, 46%, and 30%, respectively. Additionally, membrane integrity, fluidity, and H(+)-ATPase activity were reduced by 45%, 9%, and 50%, respectively. In contrast, overexpression of CgCrz1p increased C18:1 and ergosterol content by 16% and 40%, respectively. Overexpression also enhanced membrane integrity, fluidity, and H(+)-ATPase activity by 31%, 6%, and 20%, respectively. Moreover, in the absence of pH buffering, DCW and pyruvate titer increased by 48% and 60%, respectively, compared to the wild type. Together, these results suggest that CgCrz1p regulates tolerance to acidic conditions by altering membrane lipid composition in C. glabrata IMPORTANCE: The present study provides an insight into the metabolism of Candida glabrata under acidic conditions, such as those encountered during industrial production of organic acids. We found that overexpression of the transcription factor CgCrz1p improved viability, biomass, and pyruvate yields at low pH. Analysis of plasma membrane lipid composition indicated that CgCrz1p might play an important role in its integrity and fluidity, and enhanced the pumping of protons in acidic environments. We propose that altering the structure of the cell membrane may provide a successful strategy for increasing C glabrata productivity at low pH.

  17. Nanomechanical properties of composite protein networks of erythroid membranes at lipid surfaces.

    PubMed

    Encinar, Mario; Casado, Santiago; Calzado-Martín, Alicia; Natale, P; San Paulo, Álvaro; Calleja, Montserrat; Vélez, Marisela; Monroy, Francisco; López-Montero, Iván

    2017-01-01

    Erythrocyte membranes have been particularly useful as a model for studies of membrane structure and mechanics. Native erythroid membranes can be electroformed as giant unilamellar vesicles (eGUVs). In the presence of ATP, the erythroid membrane proteins of eGUVs rearrange into protein networks at the microscale. Here, we present a detailed nanomechanical study of individual protein microfilaments forming the protein networks of eGUVs when spread on supporting surfaces. Using Peak Force tapping Atomic Force Microscopy (PF-AFM) in liquid environment we have obtained the mechanical maps of the composite lipid-protein networks supported on solid surface. In the absence of ATP, the protein pool was characterized by a Young's Modulus Epool≈5-15MPa whereas the complex filaments were found softer after protein supramolecular rearrangement; Efil≈0.4MPa. The observed protein softening and reassembling could be relevant for understanding the mechanisms of cytoskeleton reorganization found in pathological erythrocytes or erythrocytes that are affected by biological agents.

  18. Caenorhabditis elegans PAQR-2 and IGLR-2 Protect against Glucose Toxicity by Modulating Membrane Lipid Composition

    PubMed Central

    Svensk, Emma; Devkota, Ranjan; Ståhlman, Marcus; Ranji, Parmida; Rauthan, Manish; Magnusson, Fredrik; Hammarsten, Sofia; Johansson, Maja; Borén, Jan; Pilon, Marc

    2016-01-01

    In spite of the worldwide impact of diabetes on human health, the mechanisms behind glucose toxicity remain elusive. Here we show that C. elegans mutants lacking paqr-2, the worm homolog of the adiponectin receptors AdipoR1/2, or its newly identified functional partner iglr-2, are glucose intolerant and die in the presence of as little as 20 mM glucose. Using FRAP (Fluorescence Recovery After Photobleaching) on living worms, we found that cultivation in the presence of glucose causes a decrease in membrane fluidity in paqr-2 and iglr-2 mutants and that genetic suppressors of this sensitivity act to restore membrane fluidity by promoting fatty acid desaturation. The essential roles of paqr-2 and iglr-2 in the presence of glucose are completely independent from daf-2 and daf-16, the C. elegans homologs of the insulin receptor and its downstream target FoxO, respectively. Using bimolecular fluorescence complementation, we also show that PAQR-2 and IGLR-2 interact on plasma membranes and thus may act together as a fluidity sensor that controls membrane lipid composition. PMID:27082444

  19. Gramicidin Alters the Lipid Compositions of Liquid-Ordered and Liquid-Disordered Membrane Domains

    NASA Astrophysics Data System (ADS)

    Hassan-Zadeh, Ebrahim; Huang, Juyang

    2012-10-01

    The effects of adding 1 mol % of gramicidin A to the well-known DOPC/DSPC/cholesterol lipid mixtures were investigated. 4-component giant unilamellar vesicles (GUV) were prepared using our recently developed Wet-Film method. The phase boundary of liquid-ordered and liquid-disordered (Lo-Ld) coexisting region was determined using video fluorescence microscopy. We found that if cares were not taken, light-induced domain artifacts could significantly distort the measured phase boundary. After testing several fluorescence dyes, we found that the emission spectrum of Nile Red is quite sensitive to membrane composition. By fitting the Nile Red emission spectra at the phase boundary to the spectra in the Lo-Ld coexisting region, the thermodynamic tie-lines were determined. As an active component of lipid membranes, gramicidin not only partitions favorably into the liquid-disordered (Ld) phase, it also alters the phase boundary and thermodynamic tie-lines. Even at as low as 1 mol %, gramicidin decreases the cholesterol mole fraction of Ld phase and increases the area of Lo phase.

  20. Dynamics of multicomponent lipid membranes

    NASA Astrophysics Data System (ADS)

    Camley, Brian Andrew

    We present theoretical and computational descriptions of the dynamics of multicomponent lipid bilayer membranes. These systems are both model systems for "lipid rafts" in cell membranes and interesting physical examples of quasi-two-dimensional fluids. Our chief tool is a continuum simulation that uses a phase field to track the composition of the membrane, and solves the hydrodynamic equations exactly using the appropriate Green's function (Oseen tensor) for the membrane. We apply this simulation to describe the diffusion of domains in phase-separated membranes, the dynamics of domain flickering, and the process of phase separation in lipid membranes. We then derive an analytical theory to describe domain flickering that is consistent with our simulation results, and use this to analyze experimental measurements of membrane domains. Through this method, we measure the membrane viscosity solely from fluorescence microscopy measurements. We study phase separation in quasi-two-dimensional membranes in depth with both simulations and scaling theory, and classify the different scaling regimes and morphologies, which differ from pure two-dimensional fluids. Our results may explain previous inconsistent measurements of the dynamical scaling exponent for phase separation in membranes. We also extend our theory beyond the simplest model, including the possibility that the membrane will be viscoelastic, as well as considering the inertia of the membrane and the fluid surrounding the membrane.

  1. Lipid membranes on nanostructured silicon.

    SciTech Connect

    Slade, Andrea Lynn; Lopez, Gabriel P.; Ista, Linnea K.; O'Brien, Michael J.; Sasaki, Darryl Yoshio; Bisong, Paul; Zeineldin, Reema R.; Last, Julie A.; Brueck, Stephen R. J.

    2004-12-01

    A unique composite nanoscale architecture that combines the self-organization and molecular dynamics of lipid membranes with a corrugated nanotextured silicon wafer was prepared and characterized with fluorescence microscopy and scanning probe microscopy. The goal of this project was to understand how such structures can be assembled for supported membrane research and how the interfacial interactions between the solid substrate and the soft, self-assembled material create unique physical and mechanical behavior through the confinement of phases in the membrane. The nanometer scale structure of the silicon wafer was produced through interference lithography followed by anisotropic wet etching. For the present study, a line pattern with 100 nm line widths, 200 nm depth and a pitch of 360 nm pitch was fabricated. Lipid membranes were successfully adsorbed on the structured silicon surface via membrane fusion techniques. The surface topology of the bilayer-Si structure was imaged using in situ tapping mode atomic force microscopy (AFM). The membrane was observed to drape over the silicon structure producing an undulated topology with amplitude of 40 nm that matched the 360 nm pitch of the silicon structure. Fluorescence recovery after photobleaching (FRAP) experiments found that on the microscale those same structures exhibit anisotropic lipid mobility that was coincident with the silicon substructure. The results showed that while the lipid membrane maintains much of its self-assembled structure in the composite architecture, the silicon substructure indeed influences the dynamics of the molecular motion within the membrane.

  2. Lipid and fatty acid composition of Gluconobacter oxydans before and after intracytoplasmic membrane formation.

    PubMed Central

    Heefner, D L; Claus, G W

    1978-01-01

    Gluconobacter oxydans differentiates by forming quantities of intracytoplasmic membranes at the end of exponential growth, and this formation occurs concurrently with a 60% increase in cellular lipid. The present study was initiated to determine whether this newly synthesized lipid differed from that extracted before intracytoplasmic membrane synthesis. Undifferentiated exponential-phase cells were found to contain 30% phosphatidylcholine, 27.1% caridolipin, 25% phosphatidylethanolamine, 12.5% phosphatidylglycerol, 0.4% phosphatidic acid, 0.2% phosphatidylserine, and four additional unidentified lipids totaling less than 5%. The only change detected after formation of intracytoplasmic membranes was a slight decrease in phosphatidylethanolamine and a corresponding increase in phosphatidylcholine. An examination of lipid hydrolysates revealed 11 different fatty acids in the lipids from each cell type. Hexadecanoic acid and monounsaturated octadecenoic accounted for more than 75% of the total fatty acids for both cell types. Proportional changes were noted in all fatty acids except octadecenoate. Anteiso-pentadecanoate comprised less than 1% of the fatty acids from undifferentiated cells but more than 13% of the total fatty acids from cells containing intracytoplasmic membranes. These results suggest that anteiso-pentadecanoate formation closely parallels the formation of intracytoplasmic membranes. Increased concentrations of this fatty acid may contribute to the fluidity necessary for plasma membrane convolution during intracytoplasmic membrane development. PMID:649571

  3. Exploiting lipopolysaccharide-induced deformation of lipid bilayers to modify membrane composition and generate two-dimensional geometric membrane array patterns

    SciTech Connect

    Adams, Peter G.; Swingle, Kirstie L.; Paxton, Walter F.; Nogan, John J.; Stromberg, Loreen R.; Firestone, Millicent A.; Mukundan, Harshini; Montaño, Gabriel A.

    2015-05-27

    Supported lipid bilayers have proven effective as model membranes for investigating biophysical processes and in development of sensor and array technologies. The ability to modify lipid bilayers after their formation and in situ could greatly advance membrane technologies, but is difficult via current state-of-the-art technologies. Here we demonstrate a novel method that allows the controlled post-formation processing and modification of complex supported lipid bilayer arrangements, under aqueous conditions. We exploit the destabilization effect of lipopolysaccharide, an amphiphilic biomolecule, interacting with lipid bilayers to generate voids that can be backfilled to introduce desired membrane components. We further demonstrate that when used in combination with a single, traditional soft lithography process, it is possible to generate hierarchically-organized membrane domains and microscale 2-D array patterns of domains. Significantly, this technique can be used to repeatedly modify membranes allowing iterative control over membrane composition. This approach expands our toolkit for functional membrane design, with potential applications for enhanced materials templating, biosensing and investigating lipid-membrane processes.

  4. Exploiting lipopolysaccharide-induced deformation of lipid bilayers to modify membrane composition and generate two-dimensional geometric membrane array patterns

    PubMed Central

    Adams, Peter G.; Swingle, Kirstie L.; Paxton, Walter F.; Nogan, John J.; Stromberg, Loreen R.; Firestone, Millicent A.; Mukundan, Harshini; Montaño, Gabriel A.

    2015-01-01

    Supported lipid bilayers have proven effective as model membranes for investigating biophysical processes and in development of sensor and array technologies. The ability to modify lipid bilayers after their formation and in situ could greatly advance membrane technologies, but is difficult via current state-of-the-art technologies. Here we demonstrate a novel method that allows the controlled post-formation processing and modification of complex supported lipid bilayer arrangements, under aqueous conditions. We exploit the destabilization effect of lipopolysaccharide, an amphiphilic biomolecule, interacting with lipid bilayers to generate voids that can be backfilled to introduce desired membrane components. We further demonstrate that when used in combination with a single, traditional soft lithography process, it is possible to generate hierarchically-organized membrane domains and microscale 2-D array patterns of domains. Significantly, this technique can be used to repeatedly modify membranes allowing iterative control over membrane composition. This approach expands our toolkit for functional membrane design, with potential applications for enhanced materials templating, biosensing and investigating lipid-membrane processes. PMID:26015293

  5. Exploiting lipopolysaccharide-induced deformation of lipid bilayers to modify membrane composition and generate two-dimensional geometric membrane array patterns

    DOE PAGES

    Adams, Peter G.; Swingle, Kirstie L.; Paxton, Walter F.; ...

    2015-05-27

    Supported lipid bilayers have proven effective as model membranes for investigating biophysical processes and in development of sensor and array technologies. The ability to modify lipid bilayers after their formation and in situ could greatly advance membrane technologies, but is difficult via current state-of-the-art technologies. Here we demonstrate a novel method that allows the controlled post-formation processing and modification of complex supported lipid bilayer arrangements, under aqueous conditions. We exploit the destabilization effect of lipopolysaccharide, an amphiphilic biomolecule, interacting with lipid bilayers to generate voids that can be backfilled to introduce desired membrane components. We further demonstrate that when usedmore » in combination with a single, traditional soft lithography process, it is possible to generate hierarchically-organized membrane domains and microscale 2-D array patterns of domains. Significantly, this technique can be used to repeatedly modify membranes allowing iterative control over membrane composition. This approach expands our toolkit for functional membrane design, with potential applications for enhanced materials templating, biosensing and investigating lipid-membrane processes.« less

  6. [Change in the lipid composition of the inner mitochondrial membranes in rat organs during adaptation to heat].

    PubMed

    Zubareva, E V; Seferova, R I; Denisova, N A

    1991-01-01

    Under conditions of adaptation to heating lipid composition in mitochondrial membranes of rat inner tissues was altered as follows: an increase in relative concentration of plasmalogenous forms of phospholipids (kidney, heart) and in content of saturated fatty acids (liver tissue), a decrease in the index of fatty acids unsaturation and in the ratio of fatty acids omega-3/omega-6. The alterations observed enabled the membranes to keep sufficient amount of liquidity essential for functional activity of mitochondria in heating.

  7. Zinc deficiency in the rat alters the lipid composition of the erythrocyte membrane Triton shell.

    PubMed

    Driscoll, E R; Bettger, W J

    1992-12-01

    The effect of dietary zinc deficiency on the lipid composition of the erythrocyte membrane Triton shell was determined. Weanling male Wistar rats were fed an egg white-based diet containing < 1.0 mg Zn/kg diet ad libitum. Control rats were either pair-fed or ad libitum-fed the basal diet supplemented with 100 mg Zn/kg diet. A Zn refed group was fed the -Zn diet until day 18 and then pair-fed the +Zn diet until day 21. Dietary Zn deficiency caused an increased cholesterol/phospholipid ratio in Triton shells compared to those from pair-fed controls. Zn deficiency caused a decreased double bond index of fatty acids in phosphatidylinositol (PI) and phosphatidylcholine (PC); there was a decreased proportion of 18:2n-6 and 22:4n-6 in PC and 20:4n-6 in PI as compared to that found in pair-fed controls. All glycerophospholipids that were retained in the shell had a lower double bond index and increased content of 16:0 and/or 18:0 relative to the phospholipid in the intact membrane.

  8. Altered membrane lipid composition and functional parameters of circulating cells in cockles (Cerastoderma edule) affected by disseminated neoplasia.

    PubMed

    Le Grand, Fabienne; Soudant, Philippe; Marty, Yanic; Le Goïc, Nelly; Kraffe, Edouard

    2013-01-01

    Membrane lipid composition and morpho-functional parameters were investigated in circulating cells of the edible cockle (Cerastoderma edule) affected by disseminated neoplasia (neoplastic cells) and compared to those from healthy cockles (hemocytes). Membrane sterol levels, phospholipid (PL) class and subclass proportions and their respective fatty acid (FA) compositions were determined. Morpho-functional parameters were evaluated through total hemocyte count (THC), mortality rate, phagocytosis ability and reactive oxygen species (ROS) production. Both morpho-functional parameters and lipid composition were profoundly affected in neoplastic cells. These dedifferentiated cells displayed higher THC (5×), mortality rate (3×) and ROS production with addition of carbonyl cyanide m-chloro phenylhydrazone (1.7×) but lower phagocytosis ability (½×), than unaffected hemocytes. Total PL amounts were higher in neoplastic cells than in hemocytes (12.3 and 5.1 nmol×10(-6) cells, respectively). However, sterols and a particular subclass of PL (plasmalogens; 1-alkenyl-2-acyl PL) were present in similar amounts in both cell type membranes. This led to a two times lower proportion of these membrane lipid constituents in neoplastic cells when compared to hemocytes (20.5% vs. 42.1% of sterols in total membrane lipids and 21.7% vs. 44.2% of plasmalogens among total PL, respectively). Proportions of non-methylene interrupted FA- and 20:1n-11-plasmalogen molecular species were the most impacted in neoplastic cells when compared to hemocytes (⅓× and ¼×, respectively). These changes in response to this leukemia-like disease in bivalves highlight the specific imbalance of plasmalogens and sterols in neoplastic cells, in comparison to the greater stability of other membrane lipid components.

  9. Chronic administration of ursodeoxycholic and tauroursodeoxycholic acid changes microsomal membrane lipid content and fatty acid compositions in rats.

    PubMed

    Bellentani, S; Chao, Y C; Ferretti, I; Panini, R; Tiribelli, C

    1996-03-27

    We studied the effect of oral supplementation with ursodeoxycholate (UDCA) or tauroursodeoxycholate (TUDCA) on the lipid content and fatty acid composition of rat hepatic microsomes. UDCA and TUDCA significantly increased the total amount of lipids with the exception of cholesteryl-esters. UDCA significantly increased the triglycerides and phosphatidylethanolamine (PE) microsomal content, and decreased the cholesterol/phospholipids and the phosphatidylcholine (PC)/PE ratio. Both treatments increased the percentage oleic acid and of polyunsaturated fatty acids (PUFA) in each class of lipids. UDCA and TUDCA had a different action on PUFA microsomal molar percentage of phospholipids: UDCA increased the relative percentage of PUFA in the PE fraction, while TUDCA increased the relative percentage of PUFA in the PC fraction. These changes in the hepatic lipid content and composition might in part explain both cytoprotective action of these hydrophillic bile acids and their effect on membrane fluidity.

  10. Milk fat content and DGAT1 genotype determine lipid composition of the milk fat globule membrane.

    PubMed

    Argov-Argaman, Nurit; Mida, Kfir; Cohen, Bat-Chen; Visker, Marleen; Hettinga, Kasper

    2013-01-01

    During secretion of milk fat globules, triacylglycerol (TAG) droplets are enveloped by a phospholipid (PL) trilayer. Globule size has been found to be related to polar lipid composition and fat content, and milk fat content and fatty acid composition have been associated with the diacylglycerol acyltransferase 1 (DGAT1) K232A polymorphism; however, the association between the DGAT1 polymorphism and fat globule size and polar lipid composition has not been studied. The ratio between polar and neutral lipids as well as the composition of the polar lipids in milk has industrial as well as nutritional and health implications. Understanding phenotypic and genotypic factors influencing these parameters could contribute to improving milk lipid composition for dairy products. The focus of the present study was to determine the effect of both fat content and DGAT1 polymorphism on PL/TAG ratio, as a marker for milk fat globule size, and detailed PL composition. Milk samples were selected from 200 cows such that there were equal numbers of samples for the different fat contents as well as per DGAT1 genotype. Samples were analyzed for neutral and polar lipid concentration and composition. PL/TAG ratio was significantly associated with both fat content and DGAT1 genotype. Phosphatidylinositol and phosphatidylserine concentrations were associated with fat content*DGAT1 genotype with a stronger association for the AA than the KK genotype. Sphingomyelin concentration tended to interact with fat content*DGAT1 genotype. Phosphatidylethanolamine (PE) concentration showed a biphasic response to fat content, suggesting that multiple biological processes influence its concentration. These results provide a new direction for controlling polar lipid concentration and composition in milk through selective breeding of cows.

  11. Membrane synthesis, specific lipid requirements, and localized lipid composition changes associated with a positive-strand RNA virus RNA replication protein.

    PubMed

    Lee, Wai-Ming; Ahlquist, Paul

    2003-12-01

    Multifunctional RNA replication protein 1a of brome mosaic virus (BMV), a positive-strand RNA virus, localizes to the cytoplasmic face of endoplasmic reticulum (ER) membranes and induces ER lumenal spherules in which viral RNA synthesis occurs. We previously showed that BMV RNA replication in yeast is severely inhibited prior to negative-strand RNA synthesis by a single-amino-acid substitution in the ole1w allele of yeast Delta9 fatty acid (FA) desaturase, which converts saturated FAs (SFAs) to unsaturated FAs (UFAs). Here we further define the relationships between 1a, membrane lipid composition, and RNA synthesis. We show that 1a expression increases total membrane lipids in wild-type (wt) yeast by 25 to 33%, consistent with recent results indicating that the numerous 1a-induced spherules are enveloped by invaginations of the outer ER membrane. 1a did not alter total membrane lipid composition in wt or ole1w yeast, but the ole1w mutation selectively depleted 18-carbon, monounsaturated (18:1) FA chains and increased 16:0 SFA chains, reducing the UFA-to-SFA ratio from approximately 2.5 to approximately 1.5. Thus, ole1w inhibition of RNA replication was correlated with decreased levels of UFA, membrane fluidity, and plasticity. The ole1w mutation did not alter 1a-induced membrane synthesis, 1a localization to the perinuclear ER, or colocalization of BMV 2a polymerase, nor did it block spherule formation. Moreover, BMV RNA replication templates were still recovered from cell lysates in a 1a-induced, 1a- and membrane-associated, and nuclease-resistant but detergent-susceptible state consistent with spherules. However, unlike nearby ER membranes, the membranes surrounding spherules in ole1w cells were not distinctively stained with osmium tetroxide, which interacts specifically with UFA double bonds. Thus, in ole1w cells, spherule-associated membranes were locally depleted in UFAs. This localized UFA depletion helps to explain why BMV RNA replication is more sensitive

  12. Effect of sterol esters on lipid composition and antioxidant status of erythrocyte membrane of hypercholesterolemic rats.

    PubMed

    Sengupta, Avery; Ghosh, Mahua

    2014-01-01

    Hypercholesterolemia is a major cause of coronary heart disease. Erythrocyte membrane is affected during hypercholesterolemia. The effect of EPA-DHA rich sterol ester and ALA rich sterol ester on erythrocyte membrane composition, osmotic fragility in normal and hypercholesterolemic rats and changes in antioxidant status of erythrocyte membrane were studied. Erythrocyte membrane composition, osmotic fragility of the membrane and antioxidant enzyme activities was analyzed. Osmotic fragility data suggested that the erythrocyte membrane of hypercholesterolemia was relatively more fragile than that of the normal rats' membrane which could be reversed with the addition of sterol esters in the diet. The increased plasma cholesterol in hypercholesterolemic rats could also be lowered by the sterol ester administration. There was also marked changes in the antioxidant enzyme activities of the erythrocyte membrane. Antioxidant enzyme levels decreased in the membrane of the hypercholesterolemic subjects were increased with the treatment of the sterol esters. The antioxidative activity of ALA rich sterol ester was better in comparison to EPA-DHA rich sterol ester. In conclusion, rat erythrocytes appear to be deformed and became more fragile in cholesterol rich blood. This deformity and fragility was partially reversed by sterol esters by virtue of their ability to lower the extent of hypercholesterolemia.

  13. Ultrastructure and lipid composition of detergent-resistant membranes derived from mammalian sperm and two types of epithelial cells.

    PubMed

    van Gestel, Renske A; Brouwers, Jos F; Ultee, Anton; Helms, J Bernd; Gadella, Bart M

    2016-01-01

    Lipid rafts are micro-domains of ordered lipids (Lo phase) in biological membranes. The Lo phase of cellular membranes can be isolated from disordered lipids (Ld phase) after treatment with 1 % Triton  X-100 at 4 °C in which the Lo phase forms the detergent-resistant membrane (DRM) fraction. The lipid composition of DRM derived from Madin-Darby canine kidney (MDCK) cells, McArdle cells and porcine sperm is compared with that of the whole cell. Remarkably, the unsaturation and chain length degree of aliphatic chains attached to phospholipids is virtually the same between DRM and whole cells. Cholesterol and sphingomyelin were enriched in DRMs but to a cell-specific molar ratio. Sulfatides (sphingolipids from MDCK cells) were enriched in the DRM while a seminolipid (an alkylacylglycerolipid from sperm) was depleted from the DRM. Treatment with <5 mM methyl-ß-cyclodextrin (MBCD) caused cholesterol removal from the DRM without affecting the composition and amount of the phospholipid while higher levels disrupted the DRM. The substantial amount of (poly)unsaturated phospholipids in DRMs as well as a low stoichiometric amount of cholesterol suggest that lipid rafts in biological membranes are more fluid and dynamic than previously anticipated. Using negative staining, ultrastructural features of DRM were monitored and in all three cell types the DRMs appeared as multi-lamellar vesicular structures with a similar morphology. The detergent resistance is a result of protein-cholesterol and sphingolipid interactions allowing a relatively passive attraction of phospholipids to maintain the Lo phase. For this special issue, the relevance of our findings is discussed in a sperm physiological context.

  14. Lipid composition of membrane rafts, isolated with and without detergent, from the spleen of a mouse model of Gaucher disease.

    PubMed

    Hattersley, Kathryn J; Hein, Leanne K; Fuller, Maria

    2013-12-06

    Biological membranes are composed of functionally relevant liquid-ordered and liquid-disordered domains that coexist. Within the liquid-ordered domains are low-density microdomains known as rafts with a unique lipid composition that is crucial for their structure and function. Lipid raft composition is altered in sphingolipid storage disorders, and here we determined the lipid composition using a detergent and detergent-free method in spleen tissue, the primary site of pathology, in a mouse model of the sphingolipid storage disorder, Gaucher disease. The accumulating lipid, glucosylceramide, was 30- and 50-fold elevated in the rafts with the detergent and detergent-free method, respectively. Secondary accumulation of di- and trihexosylceramide resided primarily in the rafts with both methods. The phospholipids distributed differently with more than half residing in the rafts with the detergent-free method and less than 10% with the detergent method, with the exception of the fully saturated species that were primarily in the rafts. Individual isoforms of sphingomyelin correlated with detergent-free extraction and more than half resided in the raft fractions. However, this correlation was not seen with the detergent extraction method as sphingomyelin species were spread across both the raft and non-raft domains. Therefore caution must be exercised when interpreting phospholipid distribution in raft domains as it differs considerably depending on the method of isolation. Importantly, both methods revealed the same lipid alterations in the raft domains in the spleen of the Gaucher disease mouse model highlighting that either method is appropriate to determine membrane lipid changes in the diseased state.

  15. The C-terminal Cytosolic Region of Rim21 Senses Alterations in Plasma Membrane Lipid Composition: INSIGHTS INTO SENSING MECHANISMS FOR PLASMA MEMBRANE LIPID ASYMMETRY.

    PubMed

    Nishino, Kanako; Obara, Keisuke; Kihara, Akio

    2015-12-25

    Yeast responds to alterations in plasma membrane lipid asymmetry and external alkalization via the sensor protein Rim21 in the Rim101 pathway. However, the sensing mechanism used by Rim21 remains unclear. Here, we found that the C-terminal cytosolic domain of Rim21 (Rim21C) fused with GFP was associated with the plasma membrane under normal conditions but dissociated upon alterations in lipid asymmetry or external alkalization. This indicates that Rim21C contains a sensor motif. Rim21C contains multiple clusters of charged residues. Among them, three consecutive Glu residues (EEE motif) were essential for Rim21 function and dissociation of Rim21C from the plasma membrane in response to changes in lipid asymmetry. In contrast, positively charged residues adjacent to the EEE motif were required for Rim21C to associate with the membrane. We therefore propose an "antenna hypothesis," in which Rim21C moves to or from the plasma membrane and functions as the sensing mechanism of Rim21.

  16. Gramicidin Peptides Alter Global Lipid Compositions and Bilayer Thicknesses of Coexisting Liquid-Ordered and Liquid-Disordered Membrane Domains.

    PubMed

    Hassan-Zadeh, Ebrahim; Hussain, Fazle; Huang, Juyang

    2017-04-04

    Effects of adding 1 mol % of gramicidin-A on the biochemical properties of coexisting liquid-ordered and liquid-disordered (Lo + Ld) membrane domains were investigated. Quaternary giant unilamellar vesicles (GUV) of di18:1PC(DOPC)/di18:0PC(DSPC)/cholesterol/gramicidin-A were prepared using our recently developed damp-film method. The phase boundary of Lo + Ld coexisting region was determined using video fluorescence microscopy. Through fitting Nile Red fluorescence emission spectra, the thermodynamic tie-lines in the Lo + Ld two-phase region were determined. We found that at 1 mol % (i.e., ∼7% of membrane area), gramicidin peptides alter the phase boundary and thermodynamic tie-lines. Gramicidin abolishes the coexisting phases at some lipid compositions but induces phase separation at others. Previous studies of gramicidin emphasize the local perturbation of bilayer thickness adjacent to the protein through the interaction of "hydrophobic mismatch". For the first time, it becomes clear that adding gramicidin produces significant long-range and global effects on the structure of membrane domains: it alters the overall lipid compositions and bilayer thicknesses of coexisting Lo and Ld domains. We also found that gramicidin partitions favorably into the Ld phase. Adding gramicidin decreases cholesterol in the Ld phase and increases cholesterol in the Lo phase. Those compositional changes broaden the bilayer thickness difference between Lo and Ld domains and facilitate preferential partition of gramicidin into thinner Ld domains. Our results demonstrate that membrane proteins play significant roles in determining lipid compositions and bilayer thicknesses of biomembrane domains.

  17. The lipid composition of Legionella dumoffii membrane modulates the interaction with Galleria mellonella apolipophorin III.

    PubMed

    Palusińska-Szysz, Marta; Zdybicka-Barabas, Agnieszka; Reszczyńska, Emilia; Luchowski, Rafał; Kania, Magdalena; Gisch, Nicolas; Waldow, Franziska; Mak, Paweł; Danikiewicz, Witold; Gruszecki, Wiesław I; Cytryńska, Małgorzata

    2016-07-01

    Apolipophorin III (apoLp-III), an insect homologue of human apolipoprotein E (apoE), is a widely used model protein in studies on protein-lipid interactions, and anti-Legionella activity of Galleria mellonella apoLp-III has been documented. Interestingly, exogenous choline-cultured Legionella dumoffii cells are considerably more susceptible to apoLp-III than non-supplemented bacteria. In order to explain these differences, we performed, for the first time, a detailed analysis of L. dumoffii lipids and a comparative lipidomic analysis of membranes of bacteria grown without and in the presence of exogenous choline. (31)P NMR analysis of L. dumoffii phospholipids (PLs) revealed a considerable increase in the phosphatidylcholine (PC) content in bacteria cultured on choline medium and a decrease in the phosphatidylethanolamine (PE) content in approximately the same range. The interactions of G. mellonella apoLp-III with lipid bilayer membranes prepared from PLs extracted from non- and choline-supplemented L. dumoffii cells were examined in detail by means of attenuated total reflection- and linear dichroism-Fourier transform infrared spectroscopy. Furthermore, the kinetics of apoLp-III binding to liposomes formed from L. dumoffii PLs was analysed by fluorescence correlation spectroscopy and fluorescence lifetime imaging microscopy using fluorescently labelled G. mellonella apoLp-III. Our results indicated enhanced binding of apoLp-III to and deeper penetration into lipid membranes formed from PLs extracted from the choline-supplemented bacteria, i.e. characterized by an increased PC/PE ratio. This could explain, at least in part, the higher susceptibility of choline-cultured L. dumoffii to G. mellonella apoLp-III.

  18. Temperature-induced plasticity in membrane and storage lipid composition: thermal reaction norms across five different temperatures.

    PubMed

    Van Dooremalen, Coby; Koekkoek, Jacco; Ellers, Jacintha

    2011-02-01

    Temperature is a key environmental factor inducing phenotypic plasticity in a wide range of behavioral, morphological, and life history traits in ectotherms. The strength of temperature-induced responses in fitness-related traits may be determined by plasticity of the underlying physiological or biochemical traits. Lipid composition may be an important trait underlying fitness response to temperature, because it affects membrane fluidity as well as availability of stored energy reserves. Here, we investigate the effect of temperature on lipid composition of the springtail Orchesella cincta by measuring thermal reaction norms across five different temperatures after four weeks of cold or warm acclimation. Fatty acid composition in storage and membrane lipids showed a highly plastic response to temperature, but the responses of single fatty acids revealed deviations from the expectations based on HVA theory. We found an accumulation of C(18:2n6) and C(18:3n3) at higher temperatures and the preservation of C(20:4n6) across temperatures, which is contrary to the expectation of decreased unsaturation at higher temperatures. The thermal response of these fatty acids in O. cincta differed from the findings in other species, and therefore shows there is interspecific variation in how single fatty acids contribute to HVA. Future research should determine the consequences of such variation in terms of costs and benefits for the thermal performance of species.

  19. Lipid and fatty acid composition of cytoplasmic membranes from Streptomyces hygroscopicus and its stable protoplast-type L form.

    PubMed Central

    Hoischen, C; Gura, K; Luge, C; Gumpert, J

    1997-01-01

    The cells of an L-form strain of Streptomyces hygroscopicus have been grown for 20 years without a cell wall. Their cytoplasmic membranes have high stability and an unusual structural polymorphism. To clarify the importance of the lipid components for these membrane properties, a comparative analysis has been carried out with purified membranes of L-form cells, of parent vegetative hyphal cells (N-form cells), and of protoplasts derived from the latter. The phospholipid classes and fatty acids were determined by thin-layer chromatography (TLC), two-dimensional TLC, high-performance liquid chromatography, gas chromatography, and mass spectrometry. The qualitative compositions of cardiolipin (CL), lyso-cardiolipin (LCL), phosphatidylethanolamine (PE1 and PE2), lyso-phosphatidylethanolamine (LPE), phosphatidylinositolmannoside (PIM), phosphatidic acid (PA), dilyso-cardiolipin-phosphatidylinositol (DLCL-PI), and the 13 main fatty acids were the same in the three membrane types. However, significant quantitative differences were observed in the L-form membrane. They consist of a three- to fourfold-higher content of total, extractable lipids, 20% more phospholipids, an increased content of CL and PIM, and a reduced amount of the component DLCL-PI. Furthermore, the L-form membrane is characterized by a higher content of branched anteiso 15:0 and anteiso 17:0 fatty acids compared to that of the membranes of the walled vegetative cells. These fatty acids have lower melting points than their straight and iso-branched counterparts and make the membrane more fluid. The phospholipid composition of the protoplast membrane differs quantitatively from that of the N form and the L form. Whereas the phospholipid classes are mostly similar to that of the N form, the fatty acid pattern tends to be closer to that of the L-form membrane. The membranes of both the L-form cells and the protoplasts need to be more fluid because of their spherical cell shape and higher degree of curvature

  20. Bacterial membrane lipids: diversity in structures and pathways.

    PubMed

    Sohlenkamp, Christian; Geiger, Otto

    2016-01-01

    For many decades, Escherichia coli was the main model organism for the study of bacterial membrane lipids. The results obtained served as a blueprint for membrane lipid biochemistry, but it is clear now that there is no such thing as a typical bacterial membrane lipid composition. Different bacterial species display different membrane compositions and even the membrane composition of cells belonging to a single species is not constant, but depends on the environmental conditions to which the cells are exposed. Bacterial membranes present a large diversity of amphiphilic lipids, including the common phospholipids phosphatidylglycerol, phosphatidylethanolamine and cardiolipin, the less frequent phospholipids phosphatidylcholine, and phosphatidylinositol and a variety of other membrane lipids, such as for example ornithine lipids, glycolipids, sphingolipids or hopanoids among others. In this review, we give an overview about the membrane lipid structures known in bacteria, the different metabolic pathways involved in their formation, and the distribution of membrane lipids and metabolic pathways across taxonomical groups.

  1. Electrodiffusion of lipids on membrane surfaces

    NASA Astrophysics Data System (ADS)

    Zhou, Y. C.

    2012-05-01

    Lateral translocation of lipids and proteins is a universal process on membrane surfaces. Local aggregation or organization of lipids and proteins can be induced when the random lateral motion is mediated by the electrostatic interactions and membrane curvature. Although the lateral diffusion rates of lipids on membranes of various compositions are measured and the electrostatic free energies of predetermined protein-membrane-lipid systems can be computed, the process of the aggregation and the evolution to the electrostatically favorable states remain largely undetermined. Here we propose an electrodiffusion model, based on the variational principle of the free energy functional, for the self-consistent lateral drift-diffusion of multiple species of charged lipids on membrane surfaces. Finite sizes of lipids are modeled to enforce the geometrical constraint of the lipid concentration on membrane surfaces. A surface finite element method is developed to appropriate the Laplace-Beltrami operators in the partial differential equations of the model. Our model properly describes the saturation of lipids on membrane surfaces, and correctly predicts that the MARCKS peptide can consistently sequester three multivalent phosphatidylinositol 4,5-bisphosphate lipids through its basic amino acid residues, regardless of a wide range of the percentage of monovalent phosphatidylserine in the membrane.

  2. Physical properties, lipid composition and enzyme activities of hepatic subcellular membranes from chick embryo after ethanol treatment

    SciTech Connect

    Sanchez-Amate, M.C.; Marco, C.; Segovia, J.L. )

    1992-01-01

    Exposure of chick embryos to ethanol resulted in significant alterations to the lipid composition of various different hepatic subcellular membranes. A marked decrease in cholesterol levels and an increase in the phospholipid content of microsomes and mitochondria was observed. Ethanol also affected the fatty acid profiles, mainly by decreasing the percentage of oleic acid in phosphatidylcholine and phosphatidylethanolamine in the mitochondria and phosphatidylethanolamine in the microsomes. In spite of these changes ethanol only induced alterations in the fluidity of the mitochondrial membranes, which showed a more rigid core, in contrast to the phospholipid-head region, which was not affected. In accordance with the changes observed in the physical state of the membrane, the enzymes involved in the microsomal electron-transport systems were not modified by ethanol, while cytochrome oxidase activity decreased by 50% compared to the activity in the mitochondria from control chick embryos.

  3. Effects of lipid composition on membrane permeabilization by sticholysin I and II, two cytolysins of the sea anemone Stichodactyla helianthus.

    PubMed

    Valcarcel, C A; Dalla Serra, M; Potrich, C; Bernhart, I; Tejuca, M; Martinez, D; Pazos, F; Lanio, M E; Menestrina, G

    2001-06-01

    Sticholysin I and II (St I and St II), two basic cytolysins purified from the Caribbean sea anemone Stichodactyla helianthus, efficiently permeabilize lipid vesicles by forming pores in their membranes. A general characteristic of these toxins is their preference for membranes containing sphingomyelin (SM). As a consequence, vesicles formed by equimolar mixtures of SM with phosphatidylcholine (PC) are very good targets for St I and II. To better characterize the lipid dependence of the cytolysin-membrane interaction, we have now evaluated the effect of including different lipids in the composition of the vesicles. We observed that at low doses of either St I or St II vesicles composed of SM and phosphatidic acid (PA) were permeabilized faster and to a higher extent than vesicles of PC and SM. As in the case of PC/SM mixtures, permeabilization was optimal when the molar ratio of PA/SM was ~1. The preference for membranes containing PA was confirmed by inhibition experiments in which the hemolytic activity of St I was diminished by pre-incubation with vesicles of different composition. The inclusion of even small proportions of PA into PC/SM LUVs led to a marked increase in calcein release caused by both St I and St II, reaching maximal effect at ~5 mol % of PA. Inclusion of other negatively charged lipids (phosphatidylserine (PS), phosphatidylglycerol (PG), phosphatidylinositol (PI), or cardiolipin (CL)), all at 5 mol %, also elicited an increase in calcein release, the potency being in the order CL approximately PA > PG approximately PI approximately PS. However, some boosting effect was also obtained, including the zwitterionic lipid phosphatidylethanolamine (PE) or even, albeit to a lesser extent, the positively charged lipid stearylamine (SA). This indicated that the effect was not mediated by electrostatic interactions between the cytolysin and the negative surface of the vesicles. In fact, increasing the ionic strength of the medium had only a small inhibitory

  4. Effects of lipid composition on membrane permeabilization by sticholysin I and II, two cytolysins of the sea anemone Stichodactyla helianthus.

    PubMed Central

    Valcarcel, C A; Dalla Serra, M; Potrich, C; Bernhart, I; Tejuca, M; Martinez, D; Pazos, F; Lanio, M E; Menestrina, G

    2001-01-01

    Sticholysin I and II (St I and St II), two basic cytolysins purified from the Caribbean sea anemone Stichodactyla helianthus, efficiently permeabilize lipid vesicles by forming pores in their membranes. A general characteristic of these toxins is their preference for membranes containing sphingomyelin (SM). As a consequence, vesicles formed by equimolar mixtures of SM with phosphatidylcholine (PC) are very good targets for St I and II. To better characterize the lipid dependence of the cytolysin-membrane interaction, we have now evaluated the effect of including different lipids in the composition of the vesicles. We observed that at low doses of either St I or St II vesicles composed of SM and phosphatidic acid (PA) were permeabilized faster and to a higher extent than vesicles of PC and SM. As in the case of PC/SM mixtures, permeabilization was optimal when the molar ratio of PA/SM was ~1. The preference for membranes containing PA was confirmed by inhibition experiments in which the hemolytic activity of St I was diminished by pre-incubation with vesicles of different composition. The inclusion of even small proportions of PA into PC/SM LUVs led to a marked increase in calcein release caused by both St I and St II, reaching maximal effect at ~5 mol % of PA. Inclusion of other negatively charged lipids (phosphatidylserine (PS), phosphatidylglycerol (PG), phosphatidylinositol (PI), or cardiolipin (CL)), all at 5 mol %, also elicited an increase in calcein release, the potency being in the order CL approximately PA >> PG approximately PI approximately PS. However, some boosting effect was also obtained, including the zwitterionic lipid phosphatidylethanolamine (PE) or even, albeit to a lesser extent, the positively charged lipid stearylamine (SA). This indicated that the effect was not mediated by electrostatic interactions between the cytolysin and the negative surface of the vesicles. In fact, increasing the ionic strength of the medium had only a small

  5. The impact of membrane lipid composition on macrophage activation in the immune defense against Rhodococcus equi and Pseudomonas aeruginosa.

    PubMed

    Schoeniger, Axel; Adolph, Stephanie; Fuhrmann, Herbert; Schumann, Julia

    2011-01-01

    Nutritional fatty acids are known to have an impact on membrane lipid composition of body cells, including cells of the immune system, thus providing a link between dietary fatty acid uptake, inflammation and immunity. In this study we reveal the significance of macrophage membrane lipid composition on gene expression and cytokine synthesis thereby highlighting signal transduction processes, macrophage activation as well as macrophage defense mechanisms. Using RAW264.7 macrophages as a model system, we identified polyunsaturated fatty acids (PUFA) of both the n-3 and the n-6 family to down-regulate the synthesis of: (i) the pro-inflammatory cytokines IL-1β, IL-6 and TNF-α; (ii) the co-stimulatory molecule CD86; as well as (iii) the antimicrobial polypeptide lysozyme. The action of the fatty acids partially depended on the activation status of the macrophages. It is particularly important to note that the anti-inflammatory action of the PUFA could also be seen in case of infection of RAW264.7 with viable microorganisms of the genera R. equi and P. aeruginosa. In summary, our data provide strong evidence that PUFA from both the n-3 and the n-6 family down-regulate inflammation processes in context of chronic infections caused by persistent pathogens.

  6. Comparison of the lipid composition of oat root and coleoptile plasma membranes: lack of short-term change in response to auxin

    NASA Technical Reports Server (NTRS)

    Sandstrom, R. P.; Cleland, R. E.

    1989-01-01

    The total lipid composition of plasma membranes (PM), isolated by the phase partitioning method from two different oat (Avena sativa L.) tissues, the root and coleoptile, was compared. In general, the PM lipid composition was not conserved between these two organs of the oat seedling. Oat roots contained 50 mole percent phospholipid, 25 mole percent glycolipid, and 25 mole percent free sterol, whereas comparable amounts in the coleoptile were 42, 39, and 19 mole percent, respectively. Individual lipid components within each lipid class also showed large variations between the two tissues. Maximum specific ATPase activity in the root PM was more than double the activity in the coleoptile. Treatment of coleoptile with auxin for 1 hour resulted in no detectable changes in PM lipids or extractable ATPase activity. Differences in the PM lipid composition between the two tissues that may define the limits of ATPase activity are discussed.

  7. Biosynthesis of archaeal membrane ether lipids

    PubMed Central

    Jain, Samta; Caforio, Antonella; Driessen, Arnold J. M.

    2014-01-01

    A vital function of the cell membrane in all living organism is to maintain the membrane permeability barrier and fluidity. The composition of the phospholipid bilayer is distinct in archaea when compared to bacteria and eukarya. In archaea, isoprenoid hydrocarbon side chains are linked via an ether bond to the sn-glycerol-1-phosphate backbone. In bacteria and eukarya on the other hand, fatty acid side chains are linked via an ester bond to the sn-glycerol-3-phosphate backbone. The polar head groups are globally shared in the three domains of life. The unique membrane lipids of archaea have been implicated not only in the survival and adaptation of the organisms to extreme environments but also to form the basis of the membrane composition of the last universal common ancestor (LUCA). In nature, a diverse range of archaeal lipids is found, the most common are the diether (or archaeol) and the tetraether (or caldarchaeol) lipids that form a monolayer. Variations in chain length, cyclization and other modifications lead to diversification of these lipids. The biosynthesis of these lipids is not yet well understood however progress in the last decade has led to a comprehensive understanding of the biosynthesis of archaeol. This review describes the current knowledge of the biosynthetic pathway of archaeal ether lipids; insights on the stability and robustness of archaeal lipid membranes; and evolutionary aspects of the lipid divide and the LUCA. It examines recent advances made in the field of pathway reconstruction in bacteria. PMID:25505460

  8. The interaction of mefloquine hydrochloride with cell membrane models at the air-water interface is modulated by the monolayer lipid composition.

    PubMed

    Goto, Thiago Eichi; Caseli, Luciano

    2014-10-01

    The antiparasitic properties of antiparasitic drugs are believed to be associated with their interactions with the protozoan membrane, encouraging research on the identification of membrane sites capable of drug binding. In this study, we investigated the interaction of mefloquine hydrochloride, known to be effective against malaria, with cell membrane models represented by Langmuir monolayers of selected lipids. It is shown that even small amounts of the drug affect the surface pressure-area isotherms as well as surface vibrational spectra of some lipid monolayers, which points to a significant interaction. The effects on the latter depend on the electrical charge of the monolayer-forming molecules, with the drug activity being particularly distinctive for negatively charged lipids. Therefore, the lipid composition of the monolayer modulates the interaction with the lipophilic drug, which may have important implications in understanding how the drug acts on specific sites of the protozoan membrane.

  9. Influence of temperature, pH, and salinity on membrane lipid composition and TEX86 of marine planktonic thaumarchaeal isolates

    NASA Astrophysics Data System (ADS)

    Elling, Felix J.; Könneke, Martin; Mußmann, Marc; Greve, Andreas; Hinrichs, Kai-Uwe

    2015-12-01

    Marine ammonia-oxidizing archaea of the phylum Thaumarchaeota are a cosmopolitan group of microorganisms representing a major fraction of the picoplankton in the ocean. The cytoplasmic membranes of Thaumarchaeota consist predominantly of intact polar isoprenoid glycerol dibiphytanyl glycerol tetraether (GDGT) lipids, which may be used as biomarkers for living Thaumarchaeota. Fossil thaumarchaeal GDGT core lipids accumulate in marine sediments and serve as the basis for geochemical proxies such as the TEX86 paleothermometer. Here, we demonstrate that the responses of membrane lipid compositions and resulting TEX86 values to growth temperature strongly diverge in three closely related thaumarchaeal pure cultures, i.e., Nitrosopumilus maritimus and two novel strains isolated from South Atlantic surface water, although the inventories of intact polar lipids and core lipids were overall similar in the three strains. N. maritimus and its closely related strain NAOA6 showed linear relationships of TEX86 and growth temperature but no correlation of TEX86 and temperature was observed in the more distantly related strain NAOA2. In contrast, the weighted average number of cycloalkyl moieties (ring index) was linearly correlated with growth temperature in all strains. This disparate relationship of TEX86 to growth temperature among closely related Thaumarchaeota suggests that the ring index but not the TEX86 ratio represents a universal response to growth temperature in marine planktonic Thaumarchaeota. Furthermore, the distinct TEX86-temperature relationships in the cultivated strains indicate that environmental GDGT signals may include an ecological component, which has important implications for ocean temperature reconstructions using the TEX86 proxy. In contrast, different growth medium salinities in the range 27-51‰ tested for N. maritimus showed no systematic effect on intact polar GDGT composition and TEX86. Similarly, N. maritimus showed only small changes in intact

  10. A Contrast of the Plasma Membrane Lipid Composition of Oat and Rye Leaves in Relation to Freezing Tolerance.

    PubMed Central

    Uemura, M.; Steponkus, P. L.

    1994-01-01

    The lipid composition of the plasma membrane isolated from leaves of spring oat (Avena sativa L. cv Ogle) was vastly different from that of winter rye (Secale cereale L. cv Puma). The plasma membrane of spring oat contained large proportions of phospholipids (28.8 mol% of the total lipids), cerebrosides (27.2 mol%), and acylated sterylglucosides (27.3 mol%) with lesser proportions of free sterols (8.4 mol%) and sterylglucosides (5.6 mol%). In contrast, the plasma membrane of winter rye contained a greater proportion of phospholipids (36.6 mol%), and there was a lower proportion of cerebrosides (16.4 mol%); free sterols (38.1 mol%) were the predominant sterols, with lesser proportions of sterylglucosides (5.6 mol%) and acylated sterylglucosides (2.9 mol%). Although the relative proportions of individual phospholipids, primarily phosphatidylcholine and phosphatidylethanolamine, and the molecular species of these two phospholipids were similar in oat and rye, the relative proportions of di-unsaturated species of these two phospholipids were substantially lower in oat than in rye. The relative proportions of sterol species in oat were different from those in rye; the molecular species of cerebrosides were similar in oat and rye, with only slight differences in the proportions of the individual species. After 4 weeks of cold acclimation, the proportion of phospholipids increased significantly in both oat (from 28.8 to 36.8 mol%) and rye (from 36.6 to 43.3 mol%) as a result of increases in the proportions of phosphatidylcholine and phosphatidylethanolamine. For both oat and rye, the relative proportions of di-unsaturated species increased after cold acclimation, but the increase was greater in rye than in oat. In both oat and rye, this increase occurred largely during the first week of cold acclimation. During the 4 weeks of cold acclimation, there was a progressive decrease in the proportion of cerebrosides in the plasma membrane of rye (from 16.4 to 10.5 mol%), but

  11. Influence of a hyperlipidic diet on the composition of the non-membrane lipid pool of red blood cells of male and female rats

    PubMed Central

    Remesar, Xavier; Antelo, Arantxa; Llivina, Clàudia; Albà, Emma; Berdié, Lourdes; Agnelli, Silvia; Arriarán, Sofía; Fernández-López, José Antonio

    2015-01-01

    Background and objectives. Red blood cells (RBC) are continuously exposed to oxidative agents, affecting their membrane lipid function. However, the amount of lipid in RBCs is higher than the lipids of the cell membrane, and includes triacylglycerols, which are no membrane components. We assumed that the extra lipids originated from lipoproteins attached to the cell surface, and we intended to analyse whether the size and composition of this lipid pool were affected by sex or diet. Experimental design. Adult male and female Wistar rats were fed control or cafeteria diets. Packed blood cells and plasma lipids were extracted and analysed for fatty acids by methylation and GC-MS, taking care of not extracting membrane lipids. Results. The absence of ω3-PUFA in RBC extracts (but not in plasma) suggest that the lipids extracted were essentially those in the postulated lipid surface pool and not those in cell membrane. In cells’ extracts, there was a marked depletion of PUFA (and, in general, of insaturation). Fatty acid patterns were similar for all groups studied, with limited effects of sex and no effects of diet in RBC (but not in plasma) fatty acids. Presence of trans fatty acids was small but higher in RBC lipids, and could not be justified by dietary sources. Conclusions. The presence of a small layer of lipid on the RBC surface may limit oxidative damage to the cell outer structures, and help explain its role in the transport of lipophilic compounds. However, there may be other, so far uncovered, additional functions for this lipid pool. PMID:26213652

  12. DMSO induces dehydration near lipid membrane surfaces.

    PubMed

    Cheng, Chi-Yuan; Song, Jinsuk; Pas, Jolien; Meijer, Lenny H H; Han, Songi

    2015-07-21

    Dimethyl sulfoxide (DMSO) has been broadly used in biology as a cosolvent, a cryoprotectant, and an enhancer of membrane permeability, leading to the general assumption that DMSO-induced structural changes in cell membranes and their hydration water play important functional roles. Although the effects of DMSO on the membrane structure and the headgroup dehydration have been extensively studied, the mechanism by which DMSO invokes its effect on lipid membranes and the direct role of water in this process are unresolved. By directly probing the translational water diffusivity near unconfined lipid vesicle surfaces, the lipid headgroup mobility, and the repeat distances in multilamellar vesicles, we found that DMSO exclusively weakens the surface water network near the lipid membrane at a bulk DMSO mole fraction (XDMSO) of <0.1, regardless of the lipid composition and the lipid phase. Specifically, DMSO was found to effectively destabilize the hydration water structure at the lipid membrane surface at XDMSO <0.1, lower the energetic barrier to dehydrate this surface water, whose displacement otherwise requires a higher activation energy, consequently yielding compressed interbilayer distances in multilamellar vesicles at equilibrium with unaltered bilayer thicknesses. At XDMSO >0.1, DMSO enters the lipid interface and restricts the lipid headgroup motion. We postulate that DMSO acts as an efficient cryoprotectant even at low concentrations by exclusively disrupting the water network near the lipid membrane surface, weakening the cohesion between water and adhesion of water to the lipid headgroups, and so mitigating the stress induced by the volume change of water during freeze-thaw.

  13. The interaction of eugenol with cell membrane models at the air-water interface is modulated by the lipid monolayer composition.

    PubMed

    Gonçalves, Giulia E G; de Souza, Fernanda S; Lago, João Henrique G; Caseli, Luciano

    2015-12-01

    Eugenol, a natural phenylpropanoid derivative with possible action in biological surfaces as microbicide, anesthetic and antioxidant, was incorporated in lipid monolayers of selected lipids at the air-water interface, representing cell membrane models. Interaction of eugenol with the lipids dipalmitoylphosphatidylcholine (DPPC), dioctadecyldimethylammonium bromide (DODAB), and dipalmitoylphosphatidylserine (DPPS) could be inferred by means of surface pressure-area isotherms and Polarization-Modulation Reflection-Absorption Spectroscopy. The interaction showed different effects on the different lipids. A higher monolayer expansion was observed for DPPS and DODAB, while more significant effects on the polar groups of the lipids were observed for DPPS and DPPC. These results pointed to the fact that the interaction of eugenol with lipid monolayers at the air-water interface is modulated by the lipid composition, which may be important to comprehend at the molecular level the interaction of this drug with biological surfaces.

  14. How Membrane-Active Peptides Get into Lipid Membranes.

    PubMed

    Sani, Marc-Antoine; Separovic, Frances

    2016-06-21

    The structure-function relationship for a family of antimicrobial peptides (AMPs) from the skin of Australian tree frogs is discussed and compared with that of peptide toxins from bee and Australian scorpion venoms. Although these membrane-active peptides induce a similar cellular fate by disrupting the lipid bilayer integrity, their lytic activity is achieved via different modes of action, which are investigated in relation to amino acid sequence, secondary structure, and membrane lipid composition. In order to better understand what structural features govern the interaction between peptides and lipid membranes, cell-penetrating peptides (CPPs), which translocate through the membrane without compromising its integrity, are also discussed. AMPs possess membrane lytic activities that are naturally designed to target the cellular membrane of pathogens or competitors. They are extremely diverse in amino acid composition and often show specificity against a particular strain of microbe. Since our antibiotic arsenal is declining precariously in the face of the rise in multiantibiotic resistance, AMPs increasingly are seen as a promising alternative. In an effort to understand their molecular mechanism, biophysical studies of a myriad of AMPs have been reported, yet no unifying mechanism has emerged, rendering difficult the rational design of drug leads. Similarly, a wide variety of cytotoxic peptides are found in venoms, the best known being melittin, yet again, predicting their activity based on a particular amino acid composition or secondary structure remains elusive. A common feature of these membrane-active peptides is their preference for the lipid environment. Indeed, they are mainly unstructured in solution and, in the presence of lipid membranes, quickly adsorb onto the surface, change their secondary structure, eventually insert into the hydrophobic core of the membrane bilayer, and finally disrupt the bilayer integrity. These steps define the molecular

  15. Lipids and Membrane Lateral Organization

    PubMed Central

    Sonnino, Sandro; Prinetti, Alessandro

    2010-01-01

    Shortly after the elucidation of the very basic structure and properties of cellular membranes, it became evident that cellular membranes are highly organized structures with multiple and multi-dimensional levels of order. Very early observations suggested that the lipid components of biological membranes might be active players in the creation of these levels of order. In the late 1980s, several different and diverse experimental pieces of evidence coalesced together giving rise to the lipid raft hypothesis. Lipid rafts became enormously (and, in the opinion of these authors, sometimes acritically) popular, surprisingly not just within the lipidologist community (who is supposed to be naturally sensitive to the fascination of lipid rafts). Today, a PubMed search using the key word “lipid rafts” returned a list of 3767 papers, including 690 reviews (as a term of comparison, searching over the same time span for a very hot lipid-related key word, “ceramide” returned 6187 hits with 799 reviews), and a tremendous number of different cellular functions have been described as “lipid raft-dependent.” However, a clear consensus definition of lipid raft has been proposed only in recent times, and the basic properties, the ruling forces, and even the existence of lipid rafts in living cells has been recently matter of intense debate. The scenario that is gradually emerging from the controversies elicited by the lipid raft hypothesis emphasizes multiple roles for membrane lipids in determining membrane order, that encompass their tendency to phase separation but are clearly not limited to this. In this review, we would like to re-focus the attention of the readers on the importance of lipids in organizing the fine structure of cellular membranes. PMID:21423393

  16. Role of plasma membrane lipid composition on cellular homeostasis: learning from cell line models expressing fatty acid desaturases

    PubMed Central

    Jaureguiberry, María S.; Tricerri, M. Alejandra; Sanchez, Susana A.; Finarelli, Gabriela S.; Montanaro, Mauro A.; Prieto, Eduardo D.; Rimoldi, Omar J.

    2014-01-01

    Experimental evidence has suggested that plasma membrane (PM)-associated signaling and hence cell metabolism and viability depend on lipid composition and organization. The aim of the present work is to develop a cell model to study the endogenous polyunsaturated fatty acids (PUFAs) effect on PM properties and analyze its influence on cholesterol (Chol) homeostasis. We have previously shown that by using a cell line over-expressing stearoyl-CoA-desaturase, membrane composition and organization coordinate cellular pathways involved in Chol efflux and cell viability by different mechanisms. Now, we expanded our studies to a cell model over-expressing both Δ5 and Δ6 desaturases, which resulted in a permanently higher PUFA content in PM. Furthermore, this cell line showed increased PM fluidity, Chol storage, and mitochondrial activity. In addition, human apolipoprotein A-I-mediated Chol removal was less efficient in these cells than in the corresponding control. Taken together, our results suggested that the cell functionality is preserved by regulating PM organization and Chol exportation and homeostasis. PMID:24473084

  17. Role of plasma membrane lipid composition on cellular homeostasis: learning from cell line models expressing fatty acid desaturases.

    PubMed

    Jaureguiberry, María S; Tricerri, M Alejandra; Sanchez, Susana A; Finarelli, Gabriela S; Montanaro, Mauro A; Prieto, Eduardo D; Rimoldi, Omar J

    2014-04-01

    Experimental evidence has suggested that plasma membrane (PM)-associated signaling and hence cell metabolism and viability depend on lipid composition and organization. The aim of the present work is to develop a cell model to study the endogenous polyunsaturated fatty acids (PUFAs) effect on PM properties and analyze its influence on cholesterol (Chol) homeostasis. We have previously shown that by using a cell line over-expressing stearoyl-CoA-desaturase, membrane composition and organization coordinate cellular pathways involved in Chol efflux and cell viability by different mechanisms. Now, we expanded our studies to a cell model over-expressing both Δ5 and Δ6 desaturases, which resulted in a permanently higher PUFA content in PM. Furthermore, this cell line showed increased PM fluidity, Chol storage, and mitochondrial activity. In addition, human apolipoprotein A-I-mediated Chol removal was less efficient in these cells than in the corresponding control. Taken together, our results suggested that the cell functionality is preserved by regulating PM organization and Chol exportation and homeostasis.

  18. Liquid immiscibility in model bilayer lipid membranes

    NASA Astrophysics Data System (ADS)

    Veatch, Sarah L.

    There is growing evidence that cell plasma membranes are laterally organized into "raft" regions in which particular lipids and proteins are concentrated. These domains have sub-micron dimensions and have been implicated in vital cell functions. Similar liquid domains are observed in model bilayer membrane mixtures that mimick cellular lipid compositions. In model membranes, domains can be large (microns) and can readily form in the absence of proteins. This thesis presents studies of liquid immiscibility in model membrane systems using two experimental methods. By fluorescence microscopy, this thesis documents that miscibility transitions occur in a wide variety of ternary lipid mixtures containing high melting temperature (saturated) lipids, low melting temperature (usually unsaturated) lipids, and cholesterol. I have constructed detailed miscibility phase diagrams for three separate ternary lipid mixtures (DOPC/DPPC/Chol, DOPC/PSM/Chol, and POPC/PSM/Chol). Phase separation is also observed in membranes of lipids extracted from human erythrocytes. NMR experiments probe lipid order and verify the coexistence of a saturated lipid and cholesterol rich liquid ordered (Lo) phase with a more disordered, unsaturated lipid rich liquid crystalline (Lalpha) phase at low temperatures. These experiments also find multiple thermodynamic transitions and lipid organization on different length-scales. This complexity is revealed because fluorescence microscopy and NMR probe lipid order at different length-scales (>1mum vs. ˜100nm). NMR detects small domains (˜80nm) at temperatures just below the miscibility transition, even though micron-scale domains are observed by fluorescent microscopy. NMR does detect large-scale ("100nm) demixing, but at a lower temperature. In addition, it has long been known that >10nm length-scale structure is present in many lipid mixtures containing cholesterol and at least one additional lipid species, though it is shown here that only a subset of

  19. Electronic polymers in lipid membranes.

    PubMed

    Johansson, Patrik K; Jullesson, David; Elfwing, Anders; Liin, Sara I; Musumeci, Chiara; Zeglio, Erica; Elinder, Fredrik; Solin, Niclas; Inganäs, Olle

    2015-06-10

    Electrical interfaces between biological cells and man-made electrical devices exist in many forms, but it remains a challenge to bridge the different mechanical and chemical environments of electronic conductors (metals, semiconductors) and biosystems. Here we demonstrate soft electrical interfaces, by integrating the metallic polymer PEDOT-S into lipid membranes. By preparing complexes between alkyl-ammonium salts and PEDOT-S we were able to integrate PEDOT-S into both liposomes and in lipid bilayers on solid surfaces. This is a step towards efficient electronic conduction within lipid membranes. We also demonstrate that the PEDOT-S@alkyl-ammonium:lipid hybrid structures created in this work affect ion channels in the membrane of Xenopus oocytes, which shows the possibility to access and control cell membrane structures with conductive polyelectrolytes.

  20. Mast cell- and dendritic cell-derived exosomes display a specific lipid composition and an unusual membrane organization.

    PubMed Central

    Laulagnier, Karine; Motta, Claude; Hamdi, Safouane; Roy, Sébastien; Fauvelle, Florence; Pageaux, Jean-François; Kobayashi, Toshihide; Salles, Jean-Pierre; Perret, Bertrand; Bonnerot, Christian; Record, Michel

    2004-01-01

    Exosomes are small vesicles secreted from multivesicular bodies, which are able to stimulate the immune system leading to tumour cell eradication. We have analysed lipids of exosomes secreted either upon stimulation from rat mast cells (RBL-2H3 cells), or constitutively from human dendritic cells. As compared with parent cells, exosomes displayed an enrichment in sphingomyelin, but not in cholesterol. Phosphatidylcholine content was decreased, but an enrichment was noted in disaturated molecular species as in phosphatidylethanolamines. Lyso(bis)phosphatidic acid was not enriched in exosomes as compared with cells. Fluorescence anisotropy demonstrated an increase in exosome-membrane rigidity from pH 5 to 7, suggesting their membrane reorganization between the acidic multivesicular body compartment and the neutral outer cell medium. NMR analysis established a bilayer organization of exosome membrane, and ESR studies using 16-doxyl stearic acid demonstrated a higher flip-flop of lipids between the two leaflets as compared with plasma membrane. In addition, the exosome membrane exhibited no asymmetrical distribution of phosphatidylethanolamines. Therefore exosome membrane displays a similar content of the major phospholipids and cholesterol, and is organized as a lipid bilayer with a random distribution of phosphatidylethanolamines. In addition, we observed tight lipid packing at neutral pH and a rapid flip-flop between the two leaflets of exosome membranes. These parameters could be used as a hallmark of exosomes. PMID:14965343

  1. Composite S-layer lipid structures

    PubMed Central

    Schuster, Bernhard; Sleytr, Uwe B.

    2010-01-01

    Designing and utilization of biomimetic membrane systems generated by bottom-up processes is a rapidly growing scientific and engineering field. Elucidation of the supramolecular construction principle of archaeal cell envelopes composed of S-layer stabilized lipid membranes led to new strategies for generating highly stable functional lipid membranes at meso- and macroscopic scale. In this review, we provide a state of the art survey how S-layer proteins, lipids, and polysaccharides may be used as basic building blocks for the assembly of S-layer supported lipid membranes. These biomimetic membrane systems are distinguished by a nanopatterned fluidity, enhanced stability and longevity and thus, provide a dedicated reconstitution matrix for membrane-active peptides and transmembrane proteins. Exciting areas for application of composite S-layer membrane systems concern sensor systems involving specific membrane functions. PMID:19303933

  2. Lipid Polymorphisms and Membrane Shape

    PubMed Central

    Frolov, Vadim A.; Shnyrova, Anna V.; Zimmerberg, Joshua

    2011-01-01

    Morphological plasticity of biological membrane is critical for cellular life, as cells need to quickly rearrange their membranes. Yet, these rearrangements are constrained in two ways. First, membrane transformations may not lead to undesirable mixing of, or leakage from, the participating cellular compartments. Second, membrane systems should be metastable at large length scales, ensuring the correct function of the particular organelle and its turnover during cellular division. Lipids, through their ability to exist with many shapes (polymorphism), provide an adequate construction material for cellular membranes. They can self-assemble into shells that are very flexible, albeit hardly stretchable, which allows for their far-reaching morphological and topological behaviors. In this article, we will discuss the importance of lipid polymorphisms in the shaping of membranes and its role in controlling cellular membrane morphology. PMID:21646378

  3. Film Balance Studies of Membrane Lipids and Related Molecules

    ERIC Educational Resources Information Center

    Cadenhead, D. A.

    1972-01-01

    Discusses apparatus, techniques, and measurements used to determine cell membrane composition. The use of a film balance to study monolayer membranes of selected lipids is described and results reported. (TS)

  4. Crystallizing Membrane Proteins in Lipidic Mesophases. A Host Lipid Screen

    SciTech Connect

    Li, Dianfan; Lee, Jean; Caffrey, Martin

    2011-11-30

    The default lipid for the bulk of the crystallogenesis studies performed to date using the cubic mesophase method is monoolein. There is no good reason, however, why this 18-carbon, cis-monounsaturated monoacylglycerol should be the preferred lipid for all target membrane proteins. The latter come from an array of biomembrane types with varying properties that include hydrophobic thickness, intrinsic curvature, lateral pressure profile, lipid and protein makeup, and compositional asymmetry. Thus, it seems reasonable that screening for crystallizability based on the identity of the lipid creating the hosting mesophase would be worthwhile. For this, monoacylglycerols with differing acyl chain characteristics, such as length and olefinic bond position, must be available. A lipid synthesis and purification program is in place in the author's laboratory to serve this need. In the current study with the outer membrane sugar transporter, OprB, we demonstrate the utility of host lipid screening as a means for generating diffraction-quality crystals. Host lipid screening is likely to prove a generally useful strategy for mesophase-based crystallization of membrane proteins.

  5. Electrospray Ionization Tandem Mass Spectrometry (Esi-Ms/Ms) Analysis of the Lipid Molecular Species Composition of Yeast Subcellular Membranes Reveals Acyl Chain-Based Sorting/Remodeling of Distinct Molecular Species En Route to the Plasma Membrane

    PubMed Central

    Schneiter, Roger; Brügger, Britta; Sandhoff, Roger; Zellnig, Günther; Leber, Andrea; Lampl, Manfred; Athenstaedt, Karin; Hrastnik, Claudia; Eder, Sandra; Daum, Günther; Paltauf, Fritz; Wieland, Felix T.; Kohlwein, Sepp D.

    1999-01-01

    Nano-electrospray ionization tandem mass spectrometry (nano-ESI-MS/MS) was employed to determine qualitative differences in the lipid molecular species composition of a comprehensive set of organellar membranes, isolated from a single culture of Saccharomyces cerevisiae cells. Remarkable differences in the acyl chain composition of biosynthetically related phospholipid classes were observed. Acyl chain saturation was lowest in phosphatidylcholine (15.4%) and phosphatidylethanolamine (PE; 16.2%), followed by phosphatidylserine (PS; 29.4%), and highest in phosphatidylinositol (53.1%). The lipid molecular species profiles of the various membranes were generally similar, with a deviation from a calculated average profile of ∼± 20%. Nevertheless, clear distinctions between the molecular species profiles of different membranes were observed, suggesting that lipid sorting mechanisms are operating at the level of individual molecular species to maintain the specific lipid composition of a given membrane. Most notably, the plasma membrane is enriched in saturated species of PS and PE. The nature of the sorting mechanism that determines the lipid composition of the plasma membrane was investigated further. The accumulation of monounsaturated species of PS at the expense of diunsaturated species in the plasma membrane of wild-type cells was reversed in elo3Δ mutant cells, which synthesize C24 fatty acid-substituted sphingolipids instead of the normal C26 fatty acid-substituted species. This observation suggests that acyl chain-based sorting and/or remodeling mechanisms are operating to maintain the specific lipid molecular species composition of the yeast plasma membrane. PMID:10459010

  6. Impact of Lipid Composition and Receptor Conformation on the Spatio-temporal Organization of μ-Opioid Receptors in a Multi-component Plasma Membrane Model

    PubMed Central

    Marino, Kristen A.; Prada-Gracia, Diego; Provasi, Davide; Filizola, Marta

    2016-01-01

    The lipid composition of cell membranes has increasingly been recognized as playing an important role in the function of various membrane proteins, including G Protein-Coupled Receptors (GPCRs). For instance, experimental and computational evidence has pointed to lipids influencing receptor oligomerization directly, by physically interacting with the receptor, and/or indirectly, by altering the bulk properties of the membrane. While the exact role of oligomerization in the function of class A GPCRs such as the μ-opioid receptor (MOR) is still unclear, insight as to how these receptors oligomerize and the relevance of the lipid environment to this phenomenon is crucial to our understanding of receptor function. To examine the effect of lipids and different MOR conformations on receptor oligomerization we carried out extensive coarse-grained molecular dynamics simulations of crystal structures of inactive and/or activated MOR embedded in an idealized mammalian plasma membrane composed of 63 lipid types asymmetrically distributed across the two leaflets. The results of these simulations point, for the first time, to specific direct and indirect effects of the lipids, as well as the receptor conformation, on the spatio-temporal organization of MOR in the plasma membrane. While sphingomyelin-rich, high-order lipid regions near certain transmembrane (TM) helices of MOR induce an effective long-range attractive force on individual protomers, both long-range lipid order and interface formation are found to be conformation dependent, with a larger number of different interfaces formed by inactive MOR compared to active MOR. PMID:27959924

  7. Mechanics of Lipid Bilayer Membranes

    NASA Astrophysics Data System (ADS)

    Powers, Thomas R.

    All cells have membranes. The plasma membrane encapsulates the cell's interior, acting as a barrier against the outside world. In cells with nuclei (eukaryotic cells), membranes also form internal compartments (organelles) which carry out specialized tasks, such as protein modification and sorting in the case of the Golgi apparatus, and ATP production in the case of mitochondria. The main components of membranes are lipids and proteins. The proteins can be channels, carriers, receptors, catalysts, signaling molecules, or structural elements, and typically contribute a substantial fraction of the total membrane dry weight. The equilibrium properties of pure lipid membranes are relatively well-understood, and will be the main focus of this article. The framework of elasticity theory and statistical mechanics that we will develop will serve as the foundation for understanding biological phenomena such as the nonequilibrium behavior of membranes laden with ion pumps, the role of membrane elasticity in ion channel gating, and the dynamics of vesicle fission and fusion. Understanding the mechanics of lipid membranes is also important for drug encapsulation and delivery.

  8. The β-subunit of cholera toxin has a high affinity for ganglioside GM1 embedded into solid supported lipid membranes with a lipid raft-like composition.

    PubMed

    Margheri, G; D'Agostino, R; Trigari, S; Sottini, S; Del Rosso, M

    2014-02-01

    In this communication, we report on the fabrication of GM1-rich solid-supported bilayer lipid membranes (ssBLM) made of sphingomyelin and cholesterol, the main components of lipid rafts,which are the physiological hosting microenvironment of GM1 on the cell membrane. The functionality of the ganglioside has been checked by measuring the apparent dissociation constant K(D) of the complex formed by the β-subunit of the cholera toxin and GM1. The value found deviates less than one order of magnitude from that measured for in vivo cells, indicating the potential of these ssBLM as optimized in vitro biomimetic platforms.

  9. Stearoyl-CoA Desaturase 1 Is a Key Determinant of Membrane Lipid Composition in 3T3-L1 Adipocytes

    PubMed Central

    Hagen, Rachel; Vidal-Puig, Antonio

    2016-01-01

    Stearoyl-CoA desaturase 1 (SCD1) is a lipogenic enzyme important for the regulation of membrane lipid homeostasis; dysregulation likely contributes to obesity associated metabolic disturbances. SCD1 catalyses the Δ9 desaturation of 12-19 carbon saturated fatty acids to monounsaturated fatty acids. To understand its influence in cellular lipid composition we investigated the effect of genetic ablation of SCD1 in 3T3-L1 adipocytes on membrane microdomain lipid composition at the species-specific level. Using liquid chromatography/electrospray ionisation-tandem mass spectrometry, we quantified 70 species of ceramide, mono-, di- and trihexosylceramide, phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol, bis(monoacylglycero)phosphate, phosphatidylinositol and cholesterol in 3T3-L1 adipocytes in which a 90% reduction in scd1 mRNA expression was achieved with siRNA. Cholesterol content was unchanged although decreases in other lipids resulted in cholesterol accounting for a higher proportion of lipid in the membranes. This was associated with decreased membrane lateral diffusion. An increased ratio of 24:0 to 24:1 in ceramide, mono- and dihexosylceramide, and sphingomyelin likely also contributed to this decrease in lateral diffusion. Of particular interest, we observed a decrease in phospholipids containing arachidonic acid. Given the high degree of structural flexibility of this acyl chain this will influence membrane lateral diffusion, and is likely responsible for the transcriptional activation of Lands’ cycle enzymes lpcat3 and mboat7. Of relevance these profound changes in the lipidome were not accompanied by dramatic changes in gene expression in mature differentiated adipocytes, suggesting that adaptive homeostatic mechanisms to ensure partial maintenance of the biophysical properties of membranes likely occur at a post-transcriptional level. PMID:27632198

  10. Behaviour of Saccharomyces cerevisiae wine strains during adaptation to unfavourable conditions of fermentation on synthetic medium: cell lipid composition, membrane integrity, viability and fermentative activity.

    PubMed

    Mannazzu, Ilaria; Angelozzi, Daniele; Belviso, Simona; Budroni, Marilena; Farris, Giovanni Antonio; Goffrini, Paola; Lodi, Tiziana; Marzona, Mario; Bardi, Laura

    2008-01-15

    During must fermentation wine strains are exposed to a variety of biotic and abiotic stresses which, when prevailing over the cellular defence systems, can affect cell viability with negative consequences on the progression of the fermentative process. To investigate the ability of wine strains to survive and adapt to unfavourable conditions of fermentation, the lipid composition, membrane integrity, cell viability and fermentative activity of three strains of Saccharomyces cerevisiae were analysed during hypoxic growth in a sugar-rich medium lacking lipid nutrients. These are stressful conditions, not unusual during must fermentation, which, by affecting lipid biosynthesis may exert a negative effect on yeast viability. The results obtained showed that the three strains were able to modulate cell lipid composition during fermentation. However, only two of them, which showed highest viability and membrane integrity at the end of the fermentation process, reached a fatty acid composition which seemed to be optimal for a successful adaptation. In particular, C16/TFA and UFA/TFA ratios, more than total lipid and ergosterol contents, seem to be involved in yeast adaptation.

  11. Maintenance or Collapse: Responses of Extraplastidic Membrane Lipid Composition to Desiccation in the Resurrection Plant Paraisometrum mileense

    PubMed Central

    Yu, Buzhu; Yu, Xiaomei; Li, Weiqi

    2014-01-01

    Resurrection plants usually grow in specific or extreme habitats and have the capacity to survive almost complete water loss. We characterized the physiological and biochemical responses of Paraisometrum mileense to extreme desiccation and found that it is a resurrection plant. We profiled the changes in lipid molecular species during dehydration and rehydration in P. mileense, and compared these with corresponding changes in the desiccation-sensitive plant Arabidopsis thaliana. One day of desiccation was lethal for A. thaliana but not for P. mileense. After desiccation and subsequent rewatering, A. thaliana showed dramatic lipid degradation accompanied by large increases in levels of phosphatidic acid (PA) and diacylglycerol (DAG). In contrast, desiccation and rewatering of P. mileense significantly decreased the level of monogalactosyldiacylglycerol and increased the unsaturation of membrane lipids, without changing the level of extraplastidic lipids. Lethal desiccation in P. mileense caused massive lipid degradation, whereas the PA content remained at a low level similar to that of fresh leaves. Neither damage nor repair processes, nor increases in PA, occurred during non-lethal desiccation in P. mileense. The activity of phospholipase D, the main source of PA, was much lower in P. mileense than in A. thaliana under control conditions, or after either dehydration or rehydration. It was demonstrated that low rates of phospholipase D-mediated PA formation in P. mileense might limit its ability to degrade lipids to PA, thereby maintaining membrane integrity following desiccation. PMID:25068901

  12. Maintenance or collapse: responses of extraplastidic membrane lipid composition to desiccation in the resurrection plant Paraisometrum mileense.

    PubMed

    Li, Aihua; Wang, Dandan; Yu, Buzhu; Yu, Xiaomei; Li, Weiqi

    2014-01-01

    Resurrection plants usually grow in specific or extreme habitats and have the capacity to survive almost complete water loss. We characterized the physiological and biochemical responses of Paraisometrum mileense to extreme desiccation and found that it is a resurrection plant. We profiled the changes in lipid molecular species during dehydration and rehydration in P. mileense, and compared these with corresponding changes in the desiccation-sensitive plant Arabidopsis thaliana. One day of desiccation was lethal for A. thaliana but not for P. mileense. After desiccation and subsequent rewatering, A. thaliana showed dramatic lipid degradation accompanied by large increases in levels of phosphatidic acid (PA) and diacylglycerol (DAG). In contrast, desiccation and rewatering of P. mileense significantly decreased the level of monogalactosyldiacylglycerol and increased the unsaturation of membrane lipids, without changing the level of extraplastidic lipids. Lethal desiccation in P. mileense caused massive lipid degradation, whereas the PA content remained at a low level similar to that of fresh leaves. Neither damage nor repair processes, nor increases in PA, occurred during non-lethal desiccation in P. mileense. The activity of phospholipase D, the main source of PA, was much lower in P. mileense than in A. thaliana under control conditions, or after either dehydration or rehydration. It was demonstrated that low rates of phospholipase D-mediated PA formation in P. mileense might limit its ability to degrade lipids to PA, thereby maintaining membrane integrity following desiccation.

  13. Supported lipid bilayers as models for studying membrane domains.

    PubMed

    Kiessling, Volker; Yang, Sung-Tae; Tamm, Lukas K

    2015-01-01

    Supported lipid bilayers have been in use for over 30 years. They have been employed to study the structure, composition, and dynamics of lipid bilayer phases, the binding and distribution of soluble, integral, and lipidated proteins in membranes, membrane fusion, and interactions of membranes with elements of the cytoskeleton. This review focuses on the unique ability of supported lipid bilayers to study liquid-ordered and liquid-disordered domains in membranes. We highlight methods to produce asymmetric lipid bilayers with lipid compositions that mimic those of the extracellular and cytoplasmic leaflets of cell membranes and the functional reconstitution of membrane proteins into such systems. Questions related to interleaflet domain coupling and membrane protein activation have been addressed and answered using advanced reconstitution and imaging procedures in symmetric and asymmetric supported membranes with and without coexisting lipid phase domains. Previously controversial topics regarding anomalous and anisotropic diffusion in membranes have been resolved by using supported membrane approaches showing that the propensity of certain lipid compositions to form "rafts" are important but overlaid with "picket-fence" interactions that are imposed by a subtended cytoskeletal network.

  14. The influence of membrane lipid structure on plasma membrane Ca2+ -ATPase activity.

    PubMed

    Tang, Daxin; Dean, William L; Borchman, Douglas; Paterson, Christopher A

    2006-03-01

    Lipid composition and Ca(2+)-ATPase activity both change with age and disease in many tissues. We explored relationships between lipid composition/structure and plasma membrane Ca(2+)-ATPase (PMCA) activity. PMCA was purified from human erythrocytes and was reconstituted into liposomes prepared from human ocular lens membrane lipids and synthetic lipids. Lens lipids were used in this study as a model for naturally ordered lipids, but the influence of lens lipids on PMCA function is especially relevant to the lens since calcium homeostasis is vital to lens clarity. Compared to fiber cell lipids, epithelial lipids exhibited an ordered to disordered phase transition temperature that was 12 degrees C lower. Reconstitution of PMCA into lipids was essential for maximal activity. PMCA activity was two to three times higher when the surrounding phosphatidylcholine molecules contained acyl chains that were ordered (stiff) compared to disordered (fluid) acyl chains. In a completely ordered lipid hydrocarbon chain environment, PMCA associates more strongly with the acidic lipid phosphatidylserine in comparison to phosphatidylcholine. PMCA associates much more strongly with phosphatidylcholine containing disordered hydrocarbon chains than ordered hydrocarbon chains. PMCA activity is influenced by membrane lipid composition and structure. The naturally high degree of lipid order in plasma membranes such as those found in the human lens may serve to support PMCA activity. The absence of PMCA activity in the cortical region of human lenses is apparently not due to a different lipid environment. Changes in lipid composition such as those observed with age or disease could potentially influence PMCA function.

  15. Ethanol production and maximum cell growth are highly correlated with membrane lipid composition during fermentation as determined by lipidomic analysis of 22 Saccharomyces cerevisiae strains.

    PubMed

    Henderson, Clark M; Lozada-Contreras, Michelle; Jiranek, Vladimir; Longo, Marjorie L; Block, David E

    2013-01-01

    Optimizing ethanol yield during fermentation is important for efficient production of fuel alcohol, as well as wine and other alcoholic beverages. However, increasing ethanol concentrations during fermentation can create problems that result in arrested or sluggish sugar-to-ethanol conversion. The fundamental cellular basis for these problem fermentations, however, is not well understood. Small-scale fermentations were performed in a synthetic grape must using 22 industrial Saccharomyces cerevisiae strains (primarily wine strains) with various degrees of ethanol tolerance to assess the correlation between lipid composition and fermentation kinetic parameters. Lipids were extracted at several fermentation time points representing different growth phases of the yeast to quantitatively analyze phospholipids and ergosterol utilizing atmospheric pressure ionization-mass spectrometry methods. Lipid profiling of individual fermentations indicated that yeast lipid class profiles do not shift dramatically in composition over the course of fermentation. Multivariate statistical analysis of the data was performed using partial least-squares linear regression modeling to correlate lipid composition data with fermentation kinetic data. The results indicate a strong correlation (R(2) = 0.91) between the overall lipid composition and the final ethanol concentration (wt/wt), an indicator of strain ethanol tolerance. One potential component of ethanol tolerance, the maximum yeast cell concentration, was also found to be a strong function of lipid composition (R(2) = 0.97). Specifically, strains unable to complete fermentation were associated with high phosphatidylinositol levels early in fermentation. Yeast strains that achieved the highest cell densities and ethanol concentrations were positively correlated with phosphatidylcholine species similar to those known to decrease the perturbing effects of ethanol in model membrane systems.

  16. The superlattice model of lateral organization of membranes and its implications on membrane lipid homeostasis.

    PubMed

    Somerharju, Pentti; Virtanen, Jorma A; Cheng, Kwan H; Hermansson, Martin

    2009-01-01

    Most biological membranes are extremely complex structures consisting of hundreds of different lipid and protein molecules. According to the famous fluid-mosaic model lipids and many proteins are free to diffuse very rapidly in the plane of the membrane. While such fast diffusion implies that different membrane lipids would be laterally randomly distributed, accumulating evidence indicates that in model and natural membranes the lipid components tend to adopt regular (superlattice-like) distributions. The superlattice model, put forward based on such evidence, is intriguing because it predicts that 1) there is a limited number of allowed compositions representing local minima in membrane free energy and 2) those energy minima could provide set-points for enzymes regulating membrane lipid compositions. Furthermore, the existence of a discrete number of allowed compositions could help to maintain organelle identity in the face of rapid inter-organelle membrane traffic.

  17. Chemopreventive effects of nonsteroidal anti-inflammatory drugs in the membrane lipid composition and fluidity parameters of the 1,2-dimethylhydrazine-induced colon carcinogenesis in rats.

    PubMed

    Kanwar, Shailender Singh; Vaiphei, Kim; Nehru, Bimla; Sanyal, Sankar N

    2007-01-01

    Nonsteroidal anti-inflammatory drugs (NSAIDs) such as aspirin, celecoxib, and etoricoxib are reported to act as chemopreventive agents in experimental colon cancer induced by 1,2-dimethylhydrazine (DMH) as they are known cyclooxygenase (COX) enzyme inhibitors. To determine whether NSAIDs can also effectively modulate the membrane lipid compositions and the fluidity parameters of colonic brush border membrane, rats were injected subcutaneously (s.c.) with DMH 30 mg/kg body weight per week for 6 weeks. The animals were simultaneously treated with NSAIDs orally at the dose of aspirin, 60 mg/kg body weight; celecoxib, 6 mg/kg body weight; and etoricoxib, 0.6 mg/kg body weight. The animals were sacrificed after 6 weeks of treatments. Brush border membrane was isolated from proximal and distal portions of the colon. Membrane lipids were extracted and analyzed while the fluidity parameters were assessed by steady-state fluorescence polarization technique using the membrane extrinsic fluorophore 1,6-diphenyl-1,3,5-hexatriene (DPH). The translational diffusion was measured by using the excimer formation of pyrene incorporated in the membrane. Colonic mucosal changes in DMH alone and DMH+NSAID treated animals were assessed histologically. The results demonstrate that (a) there is a distinct occurrence of premalignant alterations in DMH-induced colon in the form of multiple plaque lesions (MPLs), which were greatly reduced by the NSAIDs used, (b) the membrane lipid changes in DMH-induced colon were completely restored back, (c) the alterations in membrane fluorescence polarization and the fluidity parameters are partially recovered, particularly with etoricoxib, and (d) the pyrene excimer formation process was completely restored. It may be concluded that the NSAIDs, particularly the coxib group of the drugs (COX-2 selective), are effective in chemoprevention in the DMH-induced colon carcinogenesis and membrane alterations.

  18. Composite fuel cell membranes

    DOEpatents

    Plowman, K.R.; Rehg, T.J.; Davis, L.W.; Carl, W.P.; Cisar, A.J.; Eastland, C.S.

    1997-08-05

    A bilayer or trilayer composite ion exchange membrane is described suitable for use in a fuel cell. The composite membrane has a high equivalent weight thick layer in order to provide sufficient strength and low equivalent weight surface layers for improved electrical performance in a fuel cell. In use, the composite membrane is provided with electrode surface layers. The composite membrane can be composed of a sulfonic fluoropolymer in both core and surface layers.

  19. Composite fuel cell membranes

    DOEpatents

    Plowman, Keith R.; Rehg, Timothy J.; Davis, Larry W.; Carl, William P.; Cisar, Alan J.; Eastland, Charles S.

    1997-01-01

    A bilayer or trilayer composite ion exchange membrane suitable for use in a fuel cell. The composite membrane has a high equivalent weight thick layer in order to provide sufficient strength and low equivalent weight surface layers for improved electrical performance in a fuel cell. In use, the composite membrane is provided with electrode surface layers. The composite membrane can be composed of a sulfonic fluoropolymer in both core and surface layers.

  20. Lipid Clustering Correlates with Membrane Curvature as Revealed by Molecular Simulations of Complex Lipid Bilayers

    PubMed Central

    Koldsø, Heidi; Shorthouse, David; Hélie, Jean; Sansom, Mark S. P.

    2014-01-01

    Cell membranes are complex multicomponent systems, which are highly heterogeneous in the lipid distribution and composition. To date, most molecular simulations have focussed on relatively simple lipid compositions, helping to inform our understanding of in vitro experimental studies. Here we describe on simulations of complex asymmetric plasma membrane model, which contains seven different lipids species including the glycolipid GM3 in the outer leaflet and the anionic lipid, phosphatidylinositol 4,5-bisphophate (PIP2), in the inner leaflet. Plasma membrane models consisting of 1500 lipids and resembling the in vivo composition were constructed and simulations were run for 5 µs. In these simulations the most striking feature was the formation of nano-clusters of GM3 within the outer leaflet. In simulations of protein interactions within a plasma membrane model, GM3, PIP2, and cholesterol all formed favorable interactions with the model α-helical protein. A larger scale simulation of a model plasma membrane containing 6000 lipid molecules revealed correlations between curvature of the bilayer surface and clustering of lipid molecules. In particular, the concave (when viewed from the extracellular side) regions of the bilayer surface were locally enriched in GM3. In summary, these simulations explore the nanoscale dynamics of model bilayers which mimic the in vivo lipid composition of mammalian plasma membranes, revealing emergent nanoscale membrane organization which may be coupled both to fluctuations in local membrane geometry and to interactions with proteins. PMID:25340788

  1. Lipid clustering correlates with membrane curvature as revealed by molecular simulations of complex lipid bilayers.

    PubMed

    Koldsø, Heidi; Shorthouse, David; Hélie, Jean; Sansom, Mark S P

    2014-10-01

    Cell membranes are complex multicomponent systems, which are highly heterogeneous in the lipid distribution and composition. To date, most molecular simulations have focussed on relatively simple lipid compositions, helping to inform our understanding of in vitro experimental studies. Here we describe on simulations of complex asymmetric plasma membrane model, which contains seven different lipids species including the glycolipid GM3 in the outer leaflet and the anionic lipid, phosphatidylinositol 4,5-bisphophate (PIP2), in the inner leaflet. Plasma membrane models consisting of 1500 lipids and resembling the in vivo composition were constructed and simulations were run for 5 µs. In these simulations the most striking feature was the formation of nano-clusters of GM3 within the outer leaflet. In simulations of protein interactions within a plasma membrane model, GM3, PIP2, and cholesterol all formed favorable interactions with the model α-helical protein. A larger scale simulation of a model plasma membrane containing 6000 lipid molecules revealed correlations between curvature of the bilayer surface and clustering of lipid molecules. In particular, the concave (when viewed from the extracellular side) regions of the bilayer surface were locally enriched in GM3. In summary, these simulations explore the nanoscale dynamics of model bilayers which mimic the in vivo lipid composition of mammalian plasma membranes, revealing emergent nanoscale membrane organization which may be coupled both to fluctuations in local membrane geometry and to interactions with proteins.

  2. Lipid composition of cyanidium.

    PubMed

    Allen, C F; Good, P; Holton, R W

    1970-11-01

    The major lipids in Cyanidium caldarium Geitler are monogalactosyl diglyceride, digalactosyl diglyceride, plant sulfolipid, lecithin, phosphatidyl glycerol, phosphatidyl inositol, and phosphatidyl ethanolamine. Fatty acid composition varies appreciably among the lipids, but the major ones are palmitic acid, oleic acid, linoleic acid, and moderate amounts of stearic acid. Trace amounts of other acids in the C(14) to C(20) range were also present. Moderate amounts of linolenic acid were found in two strains, but not in a third. The proportion of saturated acid is relatively high in all lipids ranging from about a third in monogalactosyl diglyceride to three-fourths in sulfolipid. This may be a result of the high growth temperature. Lipases forming lysosulfolipid, and lysophosphatidyl glycerol are active in ruptured cells; galactolipid is degraded with loss of both acyl residues. Thus the lipid and fatty acid composition of Cyanidium more closely resembles that of green algae than that of the blue-green algae, although there are differences of possible phylogenetic interest.

  3. Membrane binding mode of intrinsically disordered cytoplasmic domains of T cell receptor signaling subunits depends on lipid composition

    SciTech Connect

    Sigalov, Alexander B.; Hendricks, Gregory M.

    2009-11-13

    Intrinsically disordered cytoplasmic domains of T cell receptor (TCR) signaling subunits including {zeta}{sub cyt} and CD3{epsilon}{sub cyt} all contain one or more copies of an immunoreceptor tyrosine-based activation motif (ITAM), tyrosine residues of which are phosphorylated upon receptor triggering. Membrane binding-induced helical folding of {zeta}{sub cyt} and CD3{epsilon}{sub cyt} ITAMs is thought to control TCR activation. However, the question whether or not lipid binding of {zeta}{sub cyt} and CD3{epsilon}{sub cyt} is necessarily accompanied by a folding transition of ITAMs remains open. In this study, we investigate whether the membrane binding mechanisms of {zeta}{sub cyt} and CD3{epsilon}{sub cyt} depend on the membrane model used. Circular dichroic and fluorescence data indicate that binding of {zeta}{sub cyt} and CD3{epsilon}{sub cyt} to detergent micelles and unstable vesicles is accompanied by a disorder-to-order transition, whereas upon binding to stable vesicles these proteins remain unfolded. Using electron microscopy and dynamic light scattering, we show that upon protein binding, unstable vesicles fuse and rupture. In contrast, stable vesicles remain intact under these conditions. This suggests different membrane binding modes for {zeta}{sub cyt} and CD3{epsilon}{sub cyt} depending on the bilayer stability: (1) coupled binding and folding, and (2) binding without folding. These findings explain the long-standing puzzle in the literature and highlight the importance of the choice of an appropriate membrane model for protein-lipid interactions studies.

  4. Lipid membrane domains in the brain.

    PubMed

    Aureli, Massimo; Grassi, Sara; Prioni, Simona; Sonnino, Sandro; Prinetti, Alessandro

    2015-08-01

    The brain is characterized by the presence of cell types with very different functional specialization, but with the common trait of a very high complexity of structures originated by their plasma membranes. Brain cells bear evident membrane polarization with the creation of different morphological and functional subcompartments, whose formation, stabilization and function require a very high level of lateral order within the membrane. In other words, the membrane specialization of brain cells implies the presence of distinct membrane domains. The brain is the organ with the highest enrichment in lipids like cholesterol, glycosphingolipids, and the most recently discovered brain membrane lipid, phosphatidylglucoside, whose collective behavior strongly favors segregation within the membrane leading to the formation of lipid-driven membrane domains. Lipid-driven membrane domains function as dynamic platforms for signal transduction, protein processing, and membrane turnover. Essential events involved in the development and in the maintenance of the functional integrity of the brain depend on the organization of lipid-driven membrane domains, and alterations in lipid homeostasis, leading to deranged lipid-driven membrane organization, are common in several major brain diseases. In this review, we summarize the forces behind the formation of lipid membrane domains and their biological roles in different brain cells. This article is part of a Special Issue entitled Brain Lipids.

  5. Composite zeolite membranes

    DOEpatents

    Nenoff, Tina M.; Thoma, Steven G.; Ashley, Carol S.; Reed, Scott T.

    2002-01-01

    A new class of composite zeolite membranes and synthesis techniques therefor has been invented. These membranes are essentially defect-free, and exhibit large levels of transmembrane flux and of chemical and isotopic selectivity.

  6. Self-assembled tethered bimolecular lipid membranes.

    PubMed

    Sinner, Eva-Kathrin; Ritz, Sandra; Naumann, Renate; Schiller, Stefan; Knoll, Wolfgang

    2009-01-01

    This chapter describes some of the strategies developed in our group for designing, constructing and structurally and functionally characterizing tethered bimolecular lipid membranes (tBLM). We introduce this platform as a novel model membrane system that complements the existing ones, for example, Langmuir monolayers, vesicular liposomal dispersions and bimolecular ("black") lipid membranes. Moreover, it offers the additional advantage of allowing for studies of the influence of membrane structure and order on the function of integral proteins, for example, on how the composition and organization of lipids in a mixed membrane influence the ion translocation activity of integral channel proteins. The first strategy that we introduce concerns the preparation of tethered monolayers by the self-assembly of telechelics. Their molecular architecture with a headgroup, a spacer unit (the "tether") and the amphiphile that mimics the lipid molecule allows them to bind specifically to the solid support thus forming the proximal layer of the final architecture. After fusion of vesicles that could contain reconstituted proteins from a liposomal dispersion in contact to this monolayer the tethered bimolecular lipid membrane is obtained. This can then be characterized by a broad range of surface analytical techniques, including surface plasmon spectroscopies, the quartz crystal microbalance, fluorescence and IR spectroscopies, and electrochemical techniques, to mention a few. It is shown that this concept allows for the construction of tethered lipid bilayers with outstanding electrical properties including resistivities in excess of 10 MOmega cm2. A modified strategy uses the assembly of peptides as spacers that couple covalently via their engineered sulfhydryl or lipoic acid groups at the N-terminus to the employed gold substrate, while their C-terminus is being activated afterward for the coupling of, for example, dimyristoylphosphatidylethanol amine (DMPE) lipid molecules

  7. Polymer Diffusion in Lipid Membranes

    NASA Astrophysics Data System (ADS)

    Prasad, Ashok

    2005-03-01

    Motivated by experiments on fluorescently labeled DNA molecules on a supported lipid bilayer, we have examined theoretically diffusion of polymers in two dimensions. The key experimental finding we focus on is the scaling of the diffusion constant of the center of mass, D˜1/N. This implies that no effective hydrodynamic coupling exists between the diffusing DNA segments in the membrane. We construct our theoretical model using the phenomenological hydrodynamic model of supported membranes proposed by Evans and Sackmann. Our model is based on the pre-averaged Oseen tensor, and is similar to the model of Komura and Seki, but elaborated and extended to take explicit account of self-avoidance. We find that the 1/N scaling of D can be understood as a consequence of membrane hydrodynamics in the presence of a supporting surface. Further experimental consequences of the model, in particular the diffusion constant for DNA in free standing membranes, will also be discussed. This work was supported by the NSF through grants DMR-9984471 and DMR-0403997. JK is a Cottrell Scholar of Research Corporation.

  8. Thermal Adaptation of the Archaeal and Bacterial Lipid Membranes

    PubMed Central

    Koga, Yosuke

    2012-01-01

    The physiological characteristics that distinguish archaeal and bacterial lipids, as well as those that define thermophilic lipids, are discussed from three points of view that (1) the role of the chemical stability of lipids in the heat tolerance of thermophilic organisms: (2) the relevance of the increase in the proportion of certain lipids as the growth temperature increases: (3) the lipid bilayer membrane properties that enable membranes to function at high temperatures. It is concluded that no single, chemically stable lipid by itself was responsible for the adaptation of surviving at high temperatures. Lipid membranes that function effectively require the two properties of a high permeability barrier and a liquid crystalline state. Archaeal membranes realize these two properties throughout the whole biological temperature range by means of their isoprenoid chains. Bacterial membranes meet these requirements only at or just above the phase-transition temperature, and therefore their fatty acid composition must be elaborately regulated. A recent hypothesis sketched a scenario of the evolution of lipids in which the “lipid divide” emerged concomitantly with the differentiation of archaea and bacteria. The two modes of thermal adaptation were established concurrently with the “lipid divide.” PMID:22927779

  9. Isolation and analysis of membrane lipids and lipid rafts in common carp (Cyprinus carpio L.).

    PubMed

    Brogden, Graham; Propsting, Marcus; Adamek, Mikolaj; Naim, Hassan Y; Steinhagen, Dieter

    2014-03-01

    Cell membranes act as an interface between the interior of the cell and the exterior environment and facilitate a range of essential functions including cell signalling, cell structure, nutrient uptake and protection. It is composed of a lipid bilayer with integrated proteins, and the inner leaflet of the lipid bilayer comprises of liquid ordered (Lo) and liquid disordered (Ld) domains. Lo microdomains, also named as lipid rafts are enriched in cholesterol, sphingomyelin and certain types of proteins, which facilitate cell signalling and nutrient uptake. Lipid rafts have been extensively researched in mammals and the presence of functional lipid rafts was recently demonstrated in goldfish, but there is currently very little knowledge about their composition and function in fish. Therefore a protocol was established for the analysis of lipid rafts and membranous lipids in common carp (Cyprinus carpio L.) tissues. Twelve lipids were identified and analysed in the Ld domain of the membrane with the most predominant lipids found in all tissues being; triglycerides, cholesterol, phosphoethanolamine and phosphatidylcholine. Four lipids were identified in lipid rafts in all tissues analysed, triglycerides (33-62%) always found in the highest concentration followed by cholesterol (24-32%), phosphatidylcholine and sphingomyelin. Isolation of lipid rafts was confirmed by identifying the presence of the lipid raft associated protein flotillin, present at higher concentrations in the detergent resistant fraction. The data provided here build a lipid library of important carp tissues as a baseline for further studies into virus entry, protein trafficking or environmental stress analysis.

  10. Dietary menhaden and corn oils and the red blood cell membrane lipid composition and fluidity in hyper- and normocholesterolemic miniature swine.

    PubMed

    Berlin, E; Bhathena, S J; McClure, D; Peters, R C

    1998-09-01

    Fatty acids in the diet are readily incorporated into lipids in various tissues. However, it is not clear whether all tissues have the same level of incorporation. Second, (n-6) unsaturated fatty acids increase the fluidity of membranes, but this has not been shown for (n-3) fatty acids. In this study, we measured the incorporation of (n-6) and (n-3) fatty acids into erythrocyte membrane lipids and studied their effects on the fluidity of erythrocyte membranes. One group of female miniature swine was made hypercholesterolemic by feeding the swine cholesterol and lard for 2 mo; the other group served as controls and was fed a stock diet. Both groups were then fed either corn oil or menhaden oil or a mixture of the two for 23 additional weeks. Blood was collected at 0, 2, 4, 12 and 23 wk after initialization of the experimental diets, and fatty acid composition of phospholipids was assessed. Membrane phospholipids of pigs fed menhaden oil had elevated (n-3) fatty acids (20:5 and 22:6), and lower 18:2 than those fed corn oil. There was no difference in 20:4 content. The fatty acid changes occurred as early as 2 wk after consumption of the corn oil or menhaden oil in pigs previously fed a stock diet, but it took longer in pigs previously fed lard + cholesterol, indicating residual effects of pretreatment. Menhaden oil increased anisotropy (indicating decreased fluidity) more than corn oil for the nonpolar probe diphenylhexatriene (DPH) at earlier time points, but not at 23 wk. Erythrocyte membrane fluidity was significantly related to membrane polyunsaturate content, with (n-6) fatty acids having a greater influence than (n-3) fatty acids. A comparison of the present red blood cell fatty acid compositions with brain synaptosome fatty acid compositions for the same animals showed poor correlations for some of the fatty acids. There was no significant direct relationship between docosahexaenoate (DHA) concentrations in erythrocyte membranes with DHA concentrations in

  11. Lipid Gymnastics: Tethers and Fingers in membrane

    NASA Astrophysics Data System (ADS)

    Tayebi, Lobat; Miller, Gregory; Parikh, Atul

    2009-03-01

    A significant body of evidence now links local mesoscopic structure (e.g., shape and composition) of the cell membrane with its function; the mechanisms by which cellular membranes adopt the specific shapes remain poorly understood. Among all the different structures adopted by cellular membranes, the tubular shape is one of the most surprising one. While their formation is typically attributed to the reorganization of membrane cytoskeleton, many exceptions exist. We report the instantaneous formation of tubular membrane mesophases following the hydration under specific thermal conditions. The shapes emerge in a bimodal way where we have two distinct diameter ranges for tubes, ˜20μm and ˜1μm, namely fat fingers and narrow tethers. We study the roughening of hydrated drops of 3 lipids in 3 different spontaneous curvatures at various temp. and ionic strength to figure out the dominant effect in selection of tethers and fingers. Dynamics of the tubes are of particular interest where we observe four distinct steps of birth, coiling, uncoiling and retraction with different lifetime on different thermal condition. These dynamics appear to reflect interplay between membrane elasticity, surface adhesion, and thermal or hydrodynamic gradient.

  12. [Germ cell membrane lipids in spermatogenesis].

    PubMed

    Wang, Ting; Shi, Xiao; Quan, Song

    2016-05-01

    Spermatogenesis is a complex developmental process in which a diploid progenitor germ cell transforms into highly specialized spermatozoa. During spermatogenesis, membrane remodeling takes place, and cell membrane permeability and liquidity undergo phase-specific changes, which are all associated with the alteration of membrane lipids. Lipids are important components of the germ cell membrane, whose volume and ratio fluctuate in different phases of spermatogenesis. Abnormal lipid metabolism can cause spermatogenic dysfunction and consequently male infertility. Germ cell membrane lipids are mainly composed of cholesterol, phospholipids and glycolipids, which play critical roles in cell adhesion and signal transduction during spermatogenesis. An insight into the correlation of membrane lipids with spermatogenesis helps us to better understand the mechanisms of spermatogenesis and provide new approaches to the diagnosis and treatment of male infertility.

  13. Polyarylether composition and membrane

    DOEpatents

    Hung, Joyce; Brunelle, Daniel Joseph; Harmon, Marianne Elisabeth; Moore, David Roger; Stone, Joshua James; Zhou, Hongyi; Suriano, Joseph Anthony

    2010-11-09

    A composition including a polyarylether copolymer is provided. The copolymer includes a polyarylether backbone; and a sulfonated oligomeric group bonded to the polyarylether suitable for use as a cation conducting membrane. Method of bonding a sulfonated oligomeric group to the polyarylether backbone to form a polyarylether copolymer. The membrane may be formed from the polyarylether copolymer composition. The chain length of the sulfonated oligomeric group may be controlled to affect or control the ion conductivity of the membrane.

  14. Three-Phase Coexistence in Lipid Membranes.

    PubMed

    Aufderhorst-Roberts, Anders; Chandra, Udayan; Connell, Simon D

    2017-01-24

    Phospholipid ternary systems are useful model systems for understanding lipid-lipid interactions and their influence on biological properties such as cell signaling and protein translocation. Despite extensive studies, there are still open questions relating to membrane phase behavior, particularly relating to a proposed state of three-phase coexistence, due to the difficulty in clearly distinguishing the three phases. We look in and around the region of the phase diagram where three phases are expected and use a combination of different atomic force microscopy (AFM) modes to present the first images of three coexisting lipid phases in biomimetic cell lipid membranes. Domains form through either nucleation or spinodal decomposition dependent upon composition, with some exhibiting both mechanisms in different domains simultaneously. Slow cooling rates are necessary to sufficiently separate mixtures with high proportions of lo and lβ phase. We probe domain heights and mechanical properties and demonstrate that the gel (lβ) domains have unusually low structural integrity in the three-phase region. This finding supports the hypothesis of a "disordered gel" state that has been proposed from NMR studies of similar systems, where the addition of small amounts of cholesterol was shown to disrupt the regular packing of the lβ state. We use NMR data from the literature on chain disorder in different mixtures and estimate an expected step height that is in excellent agreement with the AFM data. Alternatively, the disordered solid phase observed here and in the wider literature could be explained by the lβ phase being out of equilibrium, in a surface kinetically trapped state. This view is supported by the observation of unusual growth of nucleated domains, which we term "tree-ring growth," reflecting compositional heterogeneity in large disordered lβ phase domains.

  15. Human milk fat globules: polar lipid composition and in situ structural investigations revealing the heterogeneous distribution of proteins and the lateral segregation of sphingomyelin in the biological membrane.

    PubMed

    Lopez, Christelle; Ménard, Olivia

    2011-03-01

    Although human milk fat globules (MFG) are of primary importance since they are the exclusive lipid delivery carriers in the gastrointestinal tract of breast-fed infants, they remain the poorly understood aspect of milk. The objectives of this study were to investigate these unique colloidal assemblies and their interfacial properties, i.e. composition and structure of their biological membrane. In mature breast milk, MFG have a mean diameter of 4-5 microm, a surface area of about 2m(2)/g fat and an apparent zeta potential ζ=-6.7 ± 0.5 mV at 37°C. Human MFG contain 3-4mg polar lipids/g fat as quantified by HPLC/ELSD. The main polar lipids are sphingomyelin (SM; 36-45%, w/w), phosphatidylcholine (19-23%, w/w) and phosphatidylethanolamine (10-15%, w/w). In situ structural investigations of human MFG have been performed using light and confocal microscopy with adapted fluorescent probes, i.e. Nile Red, the extrinsic phospholipid Rh-DOPE, Fast Green and the lectin WGA-488. This study revealed a spatial heterogeneity in the human milk fat globule membrane (MFGM), with the lateral segregation of SM in liquid-ordered phase domains of various shapes and sizes surrounded by a liquid-disordered phase composed of the glycerophospholipids in which the proteins are dispersed. The glycocalyx formed by glycoproteins and cytoplasmic remnents have also been characterised around human MFG. A new model for the structure of the human MFGM is proposed and discussed. The unique composition and lateral organisation of the human MFGM components could be of metabolic significance and have health impact for the infants that need to be further explored.

  16. Diapause induces remodeling of the fatty acid composition of membrane and storage lipids in overwintering larvae of Ostrinia nubilalis, Hubn. (Lepidoptera: Crambidae).

    PubMed

    Vukašinović, Elvira L; Pond, David W; Worland, M Roger; Kojić, Danijela; Purać, Jelena; Popović, Željko D; Grubor-Lajšić, Gordana

    2015-06-01

    Seasonal changes in the FA composition of triacylglycerols and phospholipids prepared from the whole bodies of non-diapausing and diapausing fifth instar larvae of Ostrinia nubilalis, Hubn. (Lepidoptera: Crambidae) were determined to evaluate the role of these lipids in diapause. Substantial changes in the FA composition of triacylglycerols and phospholipids were triggered by diapause development. This led to a significant increase in the overall FA unsaturation (UFAs/SFAs ratio), attributable to an increase in the relative proportion of MUFAs and the concomitant decrease in PUFAs and SFAs. In triacylglycerols, the significant changes in the FAs composition are the result of an increase in the relative proportions of MUFAs, palmitoleic acid (16:1n-7) and oleic acid (18:1n-9), and a concomitant reduction in the composition of SFAs and PUFAs, mainly palmitic acid (16:0) and linoleic acid (18:2n-6), respectively. Changes in the composition of phospholipids were more subtle with FAs contributing to the overall increase of FA unsaturation. Differential scanning calorimetry (DSC) analysis revealed that the melt transition temperatures of total lipids prepared from whole larvae, primarily attributable to the triacylglycerol component, were significantly lower during the time course of diapause compared with non-diapause. These observations were correlated to the FA composition of triacylglycerols, most likely enabling them to remain functional during colder winter conditions. We conclude that O. nubilalis undergoes remodeling of FA profiles of both energy storage triacylglycerols and membrane phospholipids as an element of its overwintering physiology which may improve the ability to cold harden during diapause.

  17. Influence of acetic, citric, and lactic acids on Escherichia coli O157:H7 membrane lipid composition, verotoxin secretion, and acid resistance in simulated gastric fluid.

    PubMed

    Yuk, Hyun-Gyun; Marshall, Douglas L

    2005-04-01

    The effect of organic acid (acetic, citric, and lactic acids) adaptation at equivalent initial pH values (6.4 and 5.4) on changes in membrane lipid composition, verotoxin concentration, and acid resistance in simulated gastric fluid (pH 1.5, 37 degrees C) was determined for Escherichia coli O157:H7 ATCC 43895 (HEC) and an rpoS mutant of E. coli O157:H7 ATCC 43895 (RM, FRIK 816-3). For HEC, lactic acid-adapted (pH 5.4) cells had the greatest D-value (32.2 min) and acetic acid-adapted (pH 5.4) cells had the smallest D-value (16.6 min) in simulated gastric fluid. For RM, D-values of citric and acetic acid-adapted cells were similar to those for nonadapted cells grown at pH 7.3, but D-values increased from 13.1 to 27.9 min in lactic acid-adapted cells (from pH 7.3 to pH 5.4). For both strains, the ratio of cis-vaccenic to palmitic acids decreased for citric and lactic acid-adapted cells, but the ratio increased for acetic acid-adapted cells at pH 5.4. Organic acid-adapted cells produced less total verotoxin than did nonadapted cells at approximately 10(8) CFU/ml. Extracellular verotoxin concentration proportionally decreased with decreasing pH for both HEC and RM. Changes in membrane lipid composition, verotoxin concentration, and acid resistance in HEC and RM were dependent on both pH and organic acid. Deletion of the rpoS gene did not affect these changes but did decrease acid resistance in citric acid-adapted cells. Results indicate that decreased membrane fluidity may have caused increased acid resistance and decreased verotoxin secretion.

  18. Characterization of lipid domains in erythrocyte membranes.

    PubMed

    Rodgers, W; Glaser, M

    1991-02-15

    Fluorescence digital imaging microscopy was used to study the lateral distribution of the lipid components in erythrocyte membranes. Intact erythrocytes labeled with phospholipids containing a fluorophore attached to one fatty acid chain showed an uneven distribution of the phospholipids in the membrane thereby demonstrating the presence of membrane domains. The enrichment of the lipotropic compound chlor-promazine in domains in intact erythrocytes also suggested that the domains are lipid-enriched regions. Similar membrane domains were present in erythrocyte ghosts. The phospholipid enrichment was increased in the domains by inducing membrane protein aggregation. Double-labeling experiments were done to determine the relative distributions of different phospholipids in the membrane. Vesicles made from extracted lipids did not show the presence of domains consistent with the conclusion that membrane proteins were responsible for creating the domains. Overall, it was found that large domains exist in the red blood cell membrane with unequal enrichment of the different phospholipid species.

  19. DNA Release from Lipoplexes by Anionic Lipids: Correlation with Lipid Mesomorphism, Interfacial Curvature, and Membrane Fusion

    PubMed Central

    Tarahovsky, Yury S.; Koynova, Rumiana; MacDonald, Robert C.

    2004-01-01

    DNA release from lipoplexes is an essential step during lipofection and is probably a result of charge neutralization by cellular anionic lipids. As a model system to test this possibility, fluorescence resonance energy transfer between DNA and lipid covalently labeled with Cy3 and BODIPY, respectively, was used to monitor the release of DNA from lipid surfaces induced by anionic liposomes. The separation of DNA from lipid measured this way was considerably slower and less complete than that estimated with noncovalently labeled DNA, and depends on the lipid composition of both lipoplexes and anionic liposomes. This result was confirmed by centrifugal separation of released DNA and lipid. X-ray diffraction revealed a clear correlation of the DNA release capacity of the anionic lipids with the interfacial curvature of the mesomorphic structures developed when the anionic and cationic liposomes were mixed. DNA release also correlated with the rate of fusion of anionic liposomes with lipoplexes. It is concluded that the tendency to fuse and the phase preference of the mixed lipid membranes are key factors for the rate and extent of DNA release. The approach presented emphasizes the importance of the lipid composition of both lipoplexes and target membranes and suggests optimal transfection may be obtained by tailoring lipoplex composition to the lipid composition of target cells. PMID:15298910

  20. Tethered bilayer lipid membranes (tBLMs): interest and applications for biological membrane investigations.

    PubMed

    Rebaud, Samuel; Maniti, Ofelia; Girard-Egrot, Agnès P

    2014-12-01

    Biological membranes play a central role in the biology of the cell. They are not only the hydrophobic barrier allowing separation between two water soluble compartments but also a supra-molecular entity that has vital structural functions. Notably, they are involved in many exchange processes between the outside and inside cellular spaces. Accounting for the complexity of cell membranes, reliable models are needed to acquire current knowledge of the molecular processes occurring in membranes. To simplify the investigation of lipid/protein interactions, the use of biomimetic membranes is an approach that allows manipulation of the lipid composition of specific domains and/or the protein composition, and the evaluation of the reciprocal effects. Since the middle of the 80's, lipid bilayer membranes have been constantly developed as models of biological membranes with the ultimate goal to reincorporate membrane proteins for their functional investigation. In this review, after a brief description of the planar lipid bilayers as biomimetic membrane models, we will focus on the construction of the tethered Bilayer Lipid Membranes, the most promising model for efficient membrane protein reconstitution and investigation of molecular processes occurring in cell membranes.

  1. Composite metal membrane

    DOEpatents

    Peachey, N.M.; Dye, R.C.; Snow, R.C.; Birdsell, S.A.

    1998-04-14

    A composite metal membrane including a first metal layer of Group IVB met or Group VB metals, the first metal layer sandwiched between two layers of an oriented metal of palladium, platinum or alloys thereof is provided together with a process for the recovery of hydrogen from a gaseous mixture including contacting a hydrogen-containing gaseous mixture with a first side of a nonporous composite metal membrane including a first metal of Group IVB metals or Group VB metals, the first metal layer sandwiched between two layers of an oriented metal of palladium, platinum or alloys thereof, and, separating hydrogen from a second side of the nonporous composite metal membrane.

  2. Composite metal membrane

    DOEpatents

    Peachey, Nathaniel M.; Dye, Robert C.; Snow, Ronny C.; Birdsell, Stephan A.

    1998-01-01

    A composite metal membrane including a first metal layer of Group IVB met or Group VB metals, the first metal layer sandwiched between two layers of an oriented metal of palladium, platinum or alloys thereof is provided together with a process for the recovery of hydrogen from a gaseous mixture including contacting a hydrogen-containing gaseous mixture with a first side of a nonporous composite metal membrane including a first metal of Group IVB metals or Group VB metals, the first metal layer sandwiched between two layers of an oriented metal of palladium, platinum or alloys thereof, and, separating hydrogen from a second side of the nonporous composite metal membrane.

  3. Lipids and topological rules governing membrane protein assembly☆

    PubMed Central

    Bogdanov, Mikhail; Dowhan, William; Vitrac, Heidi

    2014-01-01

    Membrane protein folding and topogenesis are tuned to a given lipid profile since lipids and proteins have co-evolved to follow a set of interdependent rules governing final protein topological organization. Transmembrane domain (TMD) topology is determined via a dynamic process in which topogenic signals in the nascent protein are recognized and interpreted initially by the translocon followed by a given lipid profile in accordance with the Positive Inside Rule. The net zero charged phospholipid phosphatidylethanolamine and other neutral lipids dampen the translocation potential of negatively charged residues in favor of the cytoplasmic retention potential of positively charged residues (Charge Balance Rule). This explains why positively charged residues are more potent topological signals than negatively charged residues. Dynamic changes in orientation of TMDs during or after membrane insertion are attributed to non-sequential cooperative and collective lipid–protein charge interactions as well as long-term interactions within a protein. The proportion of dual topological conformers of a membrane protein varies in a dose responsive manner with changes in the membrane lipid composition not only in vivo but also in vitro and therefore is determined by the membrane lipid composition. Switching between two opposite TMD topologies can occur in either direction in vivo and also in liposomes (designated as fliposomes) independent of any other cellular factors. Such lipid-dependent post-insertional reversibility of TMD orientation indicates a thermodynamically driven process that can occur at any time and in any cell membrane driven by changes in the lipid composition. This dynamic view of protein topological organization influenced by the lipid environment reveals previously unrecognized possibilities for cellular regulation and understanding of disease states resulting from mis-folded proteins. This article is part of a Special Issue entitled: Protein Trafficking

  4. Characterization of Titratable Amphiphiles in Lipid Membranes by Fluorescence Spectroscopy.

    PubMed

    Pierrat, Philippe; Lebeau, Luc

    2015-11-17

    Understanding the ionization behavior of lipid membranes is a key parameter for successful development of lipid-based drug delivery systems. Accurate determination of the ionization state of a titratable species incorporated in a lipid bilayer however requires special care. Herein we investigated the behavior of titratable lipids in liposomes by fluorescence spectroscopy and determined which extrinsic parameters-i.e., besides those directly related to their molecular structure-determine their ionization state. Two fluorescent dyes, TNS and R18, have been used to investigate basic and acidic titratable lipids, respectively. Our results suggest that the titration behavior of the ionizable lipid in the membrane is more sensitive to the composition of the membrane and to its physical state than to the presence of solutes in the aqueous phase. Essentially overlooked in earlier studies on ionizable lipid assemblies, the concentration of the titratable lipid in the membrane was found to have a major effect on the ionization state of the lipid polar head. This may result in a shift in the apparent pKa value which may be as large as two pKa units and cannot be satisfactorily predicted.

  5. Nonadditive Compositional Curvature Energetics of Lipid Bilayers

    NASA Astrophysics Data System (ADS)

    Sodt, A. J.; Venable, R. M.; Lyman, E.; Pastor, R. W.

    2016-09-01

    The unique properties of the individual lipids that compose biological membranes together determine the energetics of the surface. The energetics of the surface, in turn, govern the formation of membrane structures and membrane reshaping processes, and thus they will underlie cellular-scale models of viral fusion, vesicle-dependent transport, and lateral organization relevant to signaling. The spontaneous curvature, to the best of our knowledge, is always assumed to be additive. We describe observations from simulations of unexpected nonadditive compositional curvature energetics of two lipids essential to the plasma membrane: sphingomyelin and cholesterol. A model is developed that connects molecular interactions to curvature stress, and which explains the role of local composition. Cholesterol is shown to lower the number of effective Kuhn segments of saturated acyl chains, reducing lateral pressure below the neutral surface of bending and favoring positive curvature. The effect is not observed for unsaturated (flexible) acyl chains. Likewise, hydrogen bonding between sphingomyelin lipids leads to positive curvature, but only at sufficient concentration, below which the lipid prefers negative curvature.

  6. Do local anesthetics interact preferentially with membrane lipid rafts? Comparative interactivities with raft-like membranes.

    PubMed

    Tsuchiya, Hironori; Ueno, Takahiro; Mizogami, Maki; Takakura, Ko

    2010-08-01

    Membranous lipid bilayers have been reconsidered as the site of action of local anesthetics (LAs). Recent understanding of biomembranes indicates the existence of lipid raft microdomains enriched in cholesterol and sphingolipids as potential platforms for channels and receptors. Based on the hypothesis that LAs may interact preferentially with lipid rafts over non-raft membranes, we compared their effects on raft model membranes and cardiolipin-containing biomimetic membranes. Liposomes were prepared with phospholipids, sphingomyelin, cerebroside, and cholesterol to have compositions corresponding to lipid rafts and cardiomyocyte mitochondrial membranes. After reacting LAs (50-200 microM) with the membrane preparations, their interactivities were determined by measuring fluorescence polarization with 1,6-diphenyl-1,3,5-hexatriene. Although bupivacaine and lidocaine acted on different raft-like liquid-ordered membranes to reduce polarization values, their effects on biomimetic less ordered membranes were much greater. LAs interacted with biomimetic membranes with the potency being R(+)-bupivacaine > racemic bupivacaine > S(-)-bupivacaine > ropivacaine > lidocaine > prilocaine, which is consistent with the rank order of pharmacotoxicological potency. However, raft model membranes showed neither structure-dependence nor stereoselectivity. The relevance of membrane lipid rafts to LAs is questionable at least in their effects on raft-like liquid-ordered membranes.

  7. Early changes in the fatty acid composition of photosynthetic membrane lipids from Populus nigra grown on a metallurgical landfill.

    PubMed

    Le Guédard, Marina; Faure, Olivier; Bessoule, Jean-Jacques

    2012-07-01

    We compared the fatty acid composition of leaves taken from poplars on a metal-contaminated landfill, and on the uncontaminated roadside bordering this site. For the first time, it is shown that the percentage of linolenic acid, which is mainly associated with thylakoid lipids, was significantly lower in tree species within the landfill than within the control area. A correlation study was carried out to investigate relationships between the C18:3/(C18:0 + C18:1 + C18:2) fatty acid ratios and the metal contents in soils and leaves. Lead and chromium leaf contents were significantly negatively correlated to this fatty acid ratio. The impact of each of these metals remains difficult to evaluate, but chromium in leaf likely plays a major role in toxicity. In addition, the decrease in the C18:3/(C18:0 + C18:1 + C18:2) fatty acid ratio occurred at low leaf metal content, and therefore it is shown that this ratio can be used as an early indicator of the effect of metals.

  8. Thermococcus kodakarensis modulates its polar membrane lipids and elemental composition according to growth stage and phosphate availability

    PubMed Central

    Meador, Travis B.; Gagen, Emma J.; Loscar, Michael E.; Goldhammer, Tobias; Yoshinaga, Marcos Y.; Wendt, Jenny; Thomm, Michael; Hinrichs, Kai-Uwe

    2014-01-01

    We observed significant changes in the elemental and intact polar lipid (IPL) composition of the archaeon Thermococcus kodakarensis (KOD1) in response to growth stage and phosphorus supply. Reducing the amount of organic supplements and phosphate in growth media resulted in significant decreases in cell size and cellular quotas of carbon (C), nitrogen (N), and phosphorus (P), which coincided with significant increases in cellular IPL quota and IPLs comprising multiple P atoms and hexose moieties. Relatively more cellular P was stored as IPLs in P-limited cells (2–8%) compared to control cells (<0.8%). We also identified a specific IPL biomarker containing a phosphatidyl-N-acetylhexoseamine headgroup that was relatively enriched during rapid cell division. These observations serve as empirical evidence of IPL adaptations in Archaea that will help to interpret the distribution of these biomarkers in natural systems. The reported cell quotas of C, N, and P represent the first such data for a specific archaeon and suggest that thermophiles are C-rich compared to the cell carbon-to-volume relationship reported for planktonic bacteria. PMID:24523718

  9. Self-segregation of myelin membrane lipids in model membranes.

    PubMed

    Yurlova, Larisa; Kahya, Nicoletta; Aggarwal, Shweta; Kaiser, Hermann-Josef; Chiantia, Salvatore; Bakhti, Mostafa; Pewzner-Jung, Yael; Ben-David, Oshrit; Futerman, Anthony H; Brügger, Britta; Simons, Mikael

    2011-12-07

    Rapid conduction of nerve impulses requires coating of axons by myelin sheaths, which are multilamellar, lipid-rich membranes produced by oligodendrocytes in the central nervous system. To act as an insulator, myelin has to form a stable and firm membrane structure. In this study, we have analyzed the biophysical properties of myelin membranes prepared from wild-type mice and from mouse mutants that are unable to form stable myelin. Using C-Laurdan and fluorescence correlation spectroscopy, we find that lipids are tightly organized and highly ordered in myelin isolated from wild-type mice, but not from shiverer and ceramide synthase 2 null mice. Furthermore, only myelin lipids from wild-type mice laterally segregate into physically distinct lipid phases in giant unilamellar vesicles in a process that requires very long chain glycosphingolipids. Taken together, our findings suggest that oligodendrocytes exploit the potential of lipids to self-segregate to generate a highly ordered membrane for electrical insulation of axons.

  10. Membrane Structure: Lipid-Protein Interactions in Microsomal Membranes*

    PubMed Central

    Trump, Benjamin F.; Duttera, Sue M.; Byrne, William L.; Arstila, Antti U.

    1970-01-01

    The relationships of phospholipid to membrane structure and function were examined in hepatic microsomes. Findings indicate that normal microsomal membrane structure is dependent on lipid-protein interactions and that it correlates closely with glucose-6-phosphatase activity. Modification of most phospholipid with phospholipase-C is associated with widening of the membrane which can be reversed following readdition of phospholipid. Images PMID:4317915

  11. Pushing the lipid envelope: using bio-inspired nanocomposites to understand and exploit lipid membrane limitations

    NASA Astrophysics Data System (ADS)

    Montano, Gabriel

    Lipids serve as the organizing matrix material for biological membranes, the site of interaction of cells with the external environment. . As such, lipids play a critical role in structure/function relationships of an extraordinary number of critical biological processes. In this talk, we will look at bio-inspired membrane assemblies to better understand the roles of lipids in biological systems as well as attempt to generate materials that can mimic and potentially advance upon biological membrane processes. First, we will investigate the response of lipids to adverse conditions. In particular, I will present data that demonstrates the response of lipids to harsh conditions and how such responses can be exploited to generate nanocomposite rearrangements. I will also show the effect of adding the endotoxin lipopolysaccharide (LPS) to lipid bilayer assemblies and describe implications on our understanding of LPS organization in biological systems as well as describe induced lipid modifications that can be exploited to organize membrane composites with precise, two-dimensional geometric control. Lastly, I will describe the use of amphiphilic block copolymers to create membrane nanocomposites capable of mimicking biological systems. In particular, I will describe the use of our polymer-based membranes in creating artificial photosynthetic assemblies that rival biological systems in function in a more flexible, dynamic matrix.

  12. Stabilization of concentration fluctuations in mixed membranes by hybrid lipids

    NASA Astrophysics Data System (ADS)

    Palmieri, Benoit; Safran, Samuel

    2012-02-01

    Finite-size domains have been observed at the surface of cells. These lipids ``rafts'' are stable nanodomains enriched in saturated lipids and cholesterol. While line tension favors macrodomains, one explanation for raft stabilization suggests that the membrane composition is tuned close to a spinodal temperature. From this point of view, rafts are long-lived concentration fluctuations in the mixed phase. We propose a ternary mixture model for the cell membrane that includes hybrid lipids which have one saturated and one unsaturated hydrocarbon chain. Finite amount of hybrid lipids reduces the packing incompatibility at the saturated/unsaturated lipid interface and stabilizes the concentration fluctuations. Hybrid-Hybrid interactions are included in the model and further increase the life-time of the rafts and decrease their length-scales. Moreover, the hybrid has extra orientational degrees of freedom that may lead to modulated phases.

  13. Electrochemical characterization of bilayer lipid membrane-semiconductor junctions

    SciTech Connect

    Zhao, Xiao Kang; Baral, S.; Fendler, J.H. )

    1990-03-08

    Three different systems of glyceryl monooleate (GMO), bilayer lipid membrane (BLM) supported semiconductor particles have been prepared and characterized. A single composition of particulate semiconductor deposited only on one side of the BLM constituted system A, two different compositions of particulate semiconductors sequentially deposited on the same side of the BLM represented system B, and two different compositions of particulate semiconductors deposited on the opposite sides of the BLM made up system C.

  14. Growth temperature alters Salmonella Enteritidis heat/acid resistance, membrane lipid composition and stress/virulence related gene expression.

    PubMed

    Yang, Yishan; Khoo, Wei Jie; Zheng, Qianwang; Chung, Hyun-Jung; Yuk, Hyun-Gyun

    2014-02-17

    The influence of growth temperature (10, 25, 37, and 42 °C) on the survival of Salmonella Enteritidis in simulated gastric fluid (SGF; pH=2.0) and during heat treatment (54, 56, 58, and 60 °C), on the membrane fatty acid composition, as well as on stress-/virulence-related gene expression was studied. Cells incubated at temperatures lower or higher than 37 °C did not increase their acid resistance, with the maximum D-value of 3.07 min in cells grown at 37 °C; while those incubated at higher temperature increased their heat resistance, with the maximum D60 °C-values of 1.4 min in cells grown at 42 °C. A decrease in the ratio of unsaturated to saturated fatty acids was observed as the growth temperature increased. Compared to the control cells grown at 37 °C, the expression of rpoS was 16.5- and 14.4-fold higher in cells cultivated at 10 and 25 °C, respectively; while the expression of rpoH was 2.9-fold higher in those cultivated at 42 °C. The increased expression of stress response gene rpoH and the decreased ratio of unsaturated to saturated fatty acids correlated with the greater heat resistance of bacteria grown at 42 °C; while the decreased expression of stress response gene rpoS at 42 °C might contribute to the decrease in acid resistance. Virulence related genes-spvR, hilA, avrA-were induced in cells cultivated at 42 °C, except sefA which was induced in the control cells. This study indicates that environmental temperature may affect the virulence potential of S. Enteritidis, thus temperature should be well controlled during food storage.

  15. Overexpression of the phosphatidylinositol synthase gene (ZmPIS) conferring drought stress tolerance by altering membrane lipid composition and increasing ABA synthesis in maize.

    PubMed

    Liu, Xiuxia; Zhai, Shumei; Zhao, Yajie; Sun, Baocheng; Liu, Cheng; Yang, Aifang; Zhang, Juren

    2013-05-01

    Phosphatidylinositol (PtdIns) synthase is a key enzyme in the phospholipid pathway and catalyses the formation of PtdIns. PtdIns is not only a structural component of cell membranes, but also the precursor of the phospholipid signal molecules that regulate plant response to environment stresses. Here, we obtained transgenic maize constitutively overexpressing or underexpressing PIS from maize (ZmPIS) under the control of a maize ubiquitin promoter. Transgenic plants were confirmed by PCR, Southern blotting analysis and real-time RT-PCR assay. The electrospray ionization tandem mass spectrometry (ESI-MS/MS)-based lipid profiling analysis showed that, under drought stress conditions, the overexpression of ZmPIS in maize resulted in significantly elevated levels of most phospholipids and galactolipids in leaves compared with those in wild type (WT). At the same time, the expression of some genes involved in the phospholipid metabolism pathway and the abscisic acid (ABA) biosynthesis pathway including ZmPLC, ZmPLD, ZmDGK1, ZmDGK3, ZmPIP5K9, ZmABA1, ZmNCED, ZmAAO1, ZmAAO2 and ZmSCA1 was markedly up-regulated in the overexpression lines after drought stress. Consistent with these results, the drought stress tolerance of the ZmPIS sense transgenic plants was enhanced significantly at the pre-flowering stages compared with WT maize plants. These results imply that ZmPIS regulates the plant response to drought stress through altering membrane lipid composition and increasing ABA synthesis in maize.

  16. Pantethine Alters Lipid Composition and Cholesterol Content of Membrane Rafts, With Down-Regulation of CXCL12-Induced T Cell Migration.

    PubMed

    van Gijsel-Bonnello, Manuel; Acar, Niyazi; Molino, Yves; Bretillon, Lionel; Khrestchatisky, Michel; de Reggi, Max; Gharib, Bouchra

    2015-10-01

    Pantethine, a natural low-molecular-weight thiol, shows a broad activity in a large range of essential cellular pathways. It has been long known as a hypolipidemic and hypocholesterolemic agent. We have recently shown that it exerts a neuroprotective action in mouse models of cerebral malaria and Parkinson's disease through multiple mechanisms. In the present study, we looked at its effects on membrane lipid rafts that serve as platforms for molecules engaged in cell activity, therefore providing a target against inappropriate cell response leading to a chronic inflammation. We found that pantethine-treated cells showed a significant change in raft fatty acid composition and cholesterol content, with ultimate downregulation of cell adhesion, CXCL12-driven chemotaxis, and transendothelial migration of various T cell types, including human Jurkat cell line and circulating effector T cells. The mechanisms involved include the alteration of the following: (i) CXCL12 binding to its target cells; (ii) membrane dynamics of CXCR4 and CXCR7, the two CXCL12 receptors; and (iii) cell redox status, a crucial determinant in the regulation of the chemokine system. In addition, we considered the linker for activation of T cells molecule to show that pantethine effects were associated with the displacement from the rafts of the acylated signaling molecules which had their palmitoylation level reduced.. In conclusion, the results presented here, together with previously published findings, indicate that due to its pleiotropic action, pantethine can downregulate the multifaceted process leading to pathogenic T cell activation and migration.

  17. Plasma Membrane Lipids and Their Role in Fungal Virulence

    PubMed Central

    Del Poeta, Maurizio

    2016-01-01

    There has been considerable evidence in recent years suggesting that plasma membrane lipids are important regulators of fungal pathogenicity. Various glycolipids have been shown to impart virulent properties in several fungal species, while others have been shown to play a role in host defense. In addition to their role as virulence factors, lipids also contribute to other virulence mechanisms such as drug resistance, biofilm formation, and release of extracellular vesicles. In addition, lipids also affect the mechanical properties of the plasma membrane through the formation of packed microdomains composed mainly of sphingolipids and sterols. Changes in the composition of lipid microdomains has been shown to disrupt the localization of virulence factors and affect fungal pathogenicity. This review gathers evidence on the various roles of plasma membrane lipids in fungal virulence and how lipids might contribute to the different processes that occur during infection and treatment. Insight into the role of lipids in fungal virulence can lead to an improved understanding of the process of fungal pathogenesis and the development of new lipid-mediated therapeutic strategies. PMID:26703191

  18. Effects of static magnetic fields on growth and membrane lipid composition of Salmonella typhimurium wild-type and dam mutant strains.

    PubMed

    Mihoub, Mouadh; El May, Alya; Aloui, Amine; Chatti, Abdelwaheb; Landoulsi, Ahmed

    2012-07-02

    This study was carried out to explore the adaptive mechanisms of S. typhimurium particularly, the implication of the Dam methyltransferase in the remodelling of membrane lipid composition to overcome magnetic field stress. With this aim, we focused our analyses on the increase in viable numbers and membrane lipid modifications of S. typhimurium wild-type and dam mutant cells exposed for 10h to static magnetic fields (SMF; 200 mT). For the wild-type strain, exposure to SMF induced a significant decrease (p<0.05) of CFU at 6h, followed by an increase between 8 and 10h. Growth of the dam mutant was significantly affected (p<0.05) after 6h and no recovery was observed until 10h, highlighting a different behavior of SMF stressed wild-type and dam mutant strains. SMF significantly affected the phospholipid proportions in the two strains. The most affected were those of the acidic phospholipids, cardiolipins (CL). In the dam strain the phospholipid response to SMF followed a globally similar trend as in the wild-type with however lower effects, leading mainly to an unusual accumulation of CL. This would in part explain the different behavior of the wild-type and the dam strain. Results showed a significant increase of membrane cyclic fatty acids Cyc17 and Cyc19 in the wild-type strain but only the Cyc17 in the dam strain and a meaningful increase of the total unsaturated fatty acids (UFAs) to total saturated fatty acids (SFAs) ratios of the exposed cells compared to controls from 3 to 9h (p<0.05) for both strains. The net increase of the total UFAs to total SFAs ratios seemed to result mainly from the increase of (C18:1) proportion (p<0.05) and to a lower extent from that of (C16:1) (p<0.05). These modifications of cyclic and unsaturated fatty acid proportions constitute an adaptive response to SMF stress in S. typhimurium wild-type and dam mutants to maintain an optimum level of membrane fluidity under SMF.

  19. Critical point fluctuations in supported lipid membranes.

    PubMed

    Connell, Simon D; Heath, George; Olmsted, Peter D; Kisil, Anastasia

    2013-01-01

    In this paper, we demonstrate that it is possible to observe many aspects of critical phenomena in supported lipid bilayers using atomic force microscopy (AFM) with the aid of stable and precise temperature control. The regions of criticality were determined by accurately measuring and calculating phase diagrams for the 2 phase L(d)-L(o) region, and tracking how it moves with temperature, then increasing the sampling density around the estimated critical regions. Compositional fluctuations were observed above the critical temperature (T(c)) and characterised using a spatial correlation function. From this analysis, the phase transition was found to be most closely described by the 2D Ising model, showing it is a critical transition. Below T(c) roughening of the domain boundaries occurred due to the reduction in line tension close to the critical point. Smaller scale density fluctuations were also detected just below T(c). At T(c), we believe we have observed fluctuations on length scales greater than 10 microm. The region of critically fluctuating 10-100 nm nanodomains has been found to extend a considerable distance above T(c) to temperatures within the biological range, and seem to be an ideal candidate for the actual structure of lipid rafts in cell membranes. Although evidence for this idea has recently emerged, this is the first direct evidence for nanoscale domains in the critical region.

  20. Unconventional membrane lipid biosynthesis in Xanthomonas campestris.

    PubMed

    Aktas, Meriyem; Narberhaus, Franz

    2015-09-01

    All bacteria are surrounded by at least one bilayer membrane mainly composed of phospholipids (PLs). Biosynthesis of the most abundant PLs phosphatidylethanolamine (PE), phosphatidylglycerol (PG) and cardiolipin (CL) is well understood in model bacteria such as Escherichia coli. It recently emerged, however, that the diversity of bacterial membrane lipids is huge and that not yet explored biosynthesis pathways exist, even for the common PLs. A good example is the plant pathogen Xanthomonas campestris pv. campestris. It contains PE, PG and CL as major lipids and small amounts of the N-methylated PE derivatives monomethyl PE and phosphatidylcholine (PC = trimethylated PE). Xanthomonas campestris uses a repertoire of canonical and non-canonical enzymes for the synthesis of its membrane lipids. In this minireview, we briefly recapitulate standard pathways and integrate three recently discovered pathways into the overall picture of bacterial membrane biosynthesis.

  1. Lipid domains control myelin basic protein adsorption and membrane interactions between model myelin lipid bilayers.

    PubMed

    Lee, Dong Woog; Banquy, Xavier; Kristiansen, Kai; Kaufman, Yair; Boggs, Joan M; Israelachvili, Jacob N

    2014-02-25

    The surface forces apparatus and atomic force microscope were used to study the effects of lipid composition and concentrations of myelin basic protein (MBP) on the structure of model lipid bilayers, as well as the interaction forces and adhesion between them. The lipid bilayers had a lipid composition characteristic of the cytoplasmic leaflets of myelin from "normal" (healthy) and "disease-like" [experimental allergic encephalomyelitis (EAE)] animals. They showed significant differences in the adsorption mechanism of MBP. MBP adsorbs on normal bilayers to form a compact film (3-4 nm) with strong intermembrane adhesion (∼0.36 mJ/m(2)), in contrast to its formation of thicker (7-8 nm) swelled films with weaker intermembrane adhesion (∼0.13 mJ/m(2)) on EAE bilayers. MBP preferentially adsorbs to liquid-disordered submicron domains within the lipid membranes, attributed to hydrophobic attractions. These results show a direct connection between the lipid composition of membranes and membrane-protein adsorption mechanisms that affects intermembrane spacing and adhesion and has direct implications for demyelinating diseases.

  2. Lipid domains in model membranes: a brief historical perspective.

    PubMed

    Mouritsen, Ole G; Bagatolli, Luis A

    2015-01-01

    All biological membranes consist of a complex composite of macromolecules and macromolecular assemblies, of which the fluid lipid-bilayer component is a core element with regard to cell encapsulation and barrier properties. The fluid lipid bilayer also supports the functional machinery of receptors, channels and pumps that are associated with the membrane. This bilayer is stabilized by weak physical and colloidal forces, and its nature is that of a self-assembled system of amphiphiles in water. Being only approximately 5 nm in thickness and still encapsulating a cell that is three orders of magnitude larger in diameter, the lipid bilayer as a material has very unusual physical properties, both in terms of structure and dynamics. Although the lipid bilayer is a fluid, it has a distinct and structured trans-bilayer profile, and in the plane of the bilayer the various molecular components, viz different lipid species and membrane proteins, have the capacity to organize laterally in terms of differentiated domains on different length and time scales. These elements of small-scale structure and order are crucial for the functioning of the membrane. It has turned out to be difficult to quantitatively study the small-scale structure of biological membranes. A major part of the insight into membrane micro- and nano-domains and the concepts used to describe them have hence come from studies of simple lipid bilayers as models of membranes, by use of a wide range of theoretical, experimental and simulational approaches. Many questions remain to be answered as to which extent the result from model studies can carry over to real biological membranes.

  3. Ceramides in the skin lipid membranes: length matters.

    PubMed

    Skolová, Barbora; Janůšová, Barbora; Zbytovská, Jarmila; Gooris, Gert; Bouwstra, Joke; Slepička, Petr; Berka, Pavel; Roh, Jaroslav; Palát, Karel; Hrabálek, Alexandr; Vávrová, Kateřina

    2013-12-17

    Ceramides are essential constituents of the skin barrier that allow humans to live on dry land. Reduced levels of ceramides have been associated with skin diseases, e.g., atopic dermatitis. However, the structural requirements and mechanisms of action of ceramides are not fully understood. Here, we report the effects of ceramide acyl chain length on the permeabilities and biophysics of lipid membranes composed of ceramides (or free sphingosine), fatty acids, cholesterol, and cholesterol sulfate. Short-chain ceramides increased the permeability of the lipid membranes compared to a long-chain ceramide with maxima at 4-6 carbons in the acyl. By a combination of differential scanning calorimetry, Fourier transform infrared spectroscopy, X-ray diffraction, Langmuir monolayers, and atomic force microscopy, we found that the reason for this effect in short ceramides was a lower proportion of tight orthorhombic packing and phase separation of continuous short ceramide-enriched domains with shorter lamellar periodicity compared to native long ceramides. Thus, long acyl chains in ceramides are essential for the formation of tightly packed impermeable lipid lamellae. Moreover, the model skin lipid membranes are a valuable tool to study the relationships between the lipid structure and composition, lipid organization, and the membrane permeability.

  4. Digital holographic microscopy of phase separation in multicomponent lipid membranes

    NASA Astrophysics Data System (ADS)

    Farzam Rad, Vahideh; Moradi, Ali-Reza; Darudi, Ahmad; Tayebi, Lobat

    2016-12-01

    Lateral in-homogeneities in lipid compositions cause microdomains formation and change in the physical properties of biological membranes. With the presence of cholesterol and mixed species of lipids, phospholipid membranes segregate into lateral domains of liquid-ordered and liquid-disordered phases. Coupling of two-dimensional intralayer phase separations and interlayer liquid-crystalline ordering in multicomponent membranes has been previously demonstrated. By the use of digital holographic microscopy (DHMicroscopy), we quantitatively analyzed the volumetric dynamical behavior of such membranes. The specimens are lipid mixtures composed of sphingomyelin, cholesterol, and unsaturated phospholipid, 1,2-dioleoyl-sn-glycero-3-phosphocholine. DHMicroscopy in a transmission mode is an effective tool for quantitative visualization of phase objects. By deriving the associated phase changes, three-dimensional information on the morphology variation of lipid stacks at arbitrary time scales is obtained. Moreover, the thickness distribution of the object at demanded axial planes can be obtained by numerical focusing. Our results show that the volume evolution of lipid domains follows approximately the same universal growth law of previously reported area evolution. However, the thickness of the domains does not alter significantly by time; therefore, the volume evolution is mostly attributed to the changes in area dynamics. These results might be useful in the field of membrane-based functional materials.

  5. Pore dynamics in lipid membranes

    NASA Astrophysics Data System (ADS)

    Gozen, I.; Dommersnes, P.

    2014-09-01

    Transient circular pores can open in plasma membrane of cells due to mechanical stress, and failure to repair such pores lead to cell death. Similar pores in the form of defects also exist among smectic membranes, such as in myelin sheaths or mitochondrial membranes. The formation and growth of membrane defects are associated with diseases, for example multiple sclerosis. A deeper understanding of membrane pore dynamics can provide a more refined picture of membrane integrity-related disease development, and possibly also treatment options and strategies. Pore dynamics is also of great importance regarding healthcare applications such as drug delivery, gene or as recently been implied, cancer therapy. The dynamics of pores significantly differ in stacks which are confined in 2D compared to those in cells or vesicles. In this short review, we will summarize the dynamics of different types of pores that can be observed in biological membranes, which include circular transient, fusion and hemi-fusion pores. We will dedicate a section to floral and fractal pores which were discovered a few years ago and have highly peculiar characteristics. Finally, we will discuss the repair mechanisms of large area pores in conjunction with the current cell membrane repair hypotheses.

  6. Membrane-spanning lipids for an uncompromised monitoring of membrane fusion and intermembrane lipid transfer.

    PubMed

    Schwarzmann, Günter; Breiden, Bernadette; Sandhoff, Konrad

    2015-10-01

    A Förster resonance energy transfer-based fusion and transfer assay was developed to study, in model membranes, protein-mediated membrane fusion and intermembrane lipid transfer of fluorescent sphingolipid analogs. For this assay, it became necessary to apply labeled reporter molecules that are resistant to spontaneous as well as protein-mediated intermembrane transfer. The novelty of this assay is the use of nonextractable fluorescent membrane-spanning bipolar lipids. Starting from the tetraether lipid caldarchaeol, we synthesized fluorescent analogs with fluorophores at both polar ends. In addition, we synthesized radioactive glycosylated caldarchaeols. These labeled lipids were shown to stretch through bilayer membranes rather than to loop within a single lipid layer of liposomes. More important, the membrane-spanning lipids (MSLs) in contrast to phosphoglycerides proved to be nonextractable by proteins. We could show that the GM2 activator protein (GM2AP) is promiscuous with respect to glycero- and sphingolipid transfer. Saposin (Sap) B also transferred sphingolipids albeit with kinetics different from GM2AP. In addition, we could unambiguously show that the recombinant activator protein Sap C x His6 induced membrane fusion rather than intermembrane lipid transfer. These findings showed that these novel MSLs, in contrast with fluorescent phosphoglycerolipids, are well suited for an uncompromised monitoring of membrane fusion and intermembrane lipid transfer.

  7. Membrane-spanning lipids for an uncompromised monitoring of membrane fusion and intermembrane lipid transfer

    PubMed Central

    Schwarzmann, Günter; Breiden, Bernadette; Sandhoff, Konrad

    2015-01-01

    A Förster resonance energy transfer-based fusion and transfer assay was developed to study, in model membranes, protein-mediated membrane fusion and intermembrane lipid transfer of fluorescent sphingolipid analogs. For this assay, it became necessary to apply labeled reporter molecules that are resistant to spontaneous as well as protein-mediated intermembrane transfer. The novelty of this assay is the use of nonextractable fluorescent membrane-spanning bipolar lipids. Starting from the tetraether lipid caldarchaeol, we synthesized fluorescent analogs with fluorophores at both polar ends. In addition, we synthesized radioactive glycosylated caldarchaeols. These labeled lipids were shown to stretch through bilayer membranes rather than to loop within a single lipid layer of liposomes. More important, the membrane-spanning lipids (MSLs) in contrast to phosphoglycerides proved to be nonextractable by proteins. We could show that the GM2 activator protein (GM2AP) is promiscuous with respect to glycero- and sphingolipid transfer. Saposin (Sap) B also transferred sphingolipids albeit with kinetics different from GM2AP. In addition, we could unambiguously show that the recombinant activator protein Sap C x His6 induced membrane fusion rather than intermembrane lipid transfer. These findings showed that these novel MSLs, in contrast with fluorescent phosphoglycerolipids, are well suited for an uncompromised monitoring of membrane fusion and intermembrane lipid transfer. PMID:26269359

  8. Islet Amyloid Polypeptide Membrane Interactions: Effects of Membrane Composition.

    PubMed

    Zhang, Xiaoxue; St Clair, Johnna R; London, Erwin; Raleigh, Daniel P

    2017-01-17

    Amyloid formation by islet amyloid polypeptide (IAPP) contributes to β-cell dysfunction in type 2 diabetes. Perturbation of the β-cell membrane may contribute to IAPP-induced toxicity. We examine the effects of lipid composition, salt, and buffer on IAPP amyloid formation and on the ability of IAPP to induce leakage of model membranes. Even low levels of anionic lipids promote amyloid formation and membrane permeabilization. Increasing the percentage of the anionic lipids, 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-l-serine (POPS) or 1,2-dioleoyl-sn-glycero-3-phospho(1'-rac-glycerol), enhances the rate of amyloid formation and increases the level of membrane permeabilization. The choice of zwitterionic lipid has no noticeable effect on membrane-catalyzed amyloid formation but in most cases affects leakage, which tends to decrease in the following order: 1,2-dioleoyl-sn-glycero-3-phosphocholine > 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine > sphingomyelin. Uncharged lipids that increase the level of membrane order weaken the ability of IAPP to induce leakage. Leakage is due predominately to pore formation rather than complete disruption of the vesicles under the conditions used in these studies. Cholesterol at or below physiological levels significantly reduces the rate of vesicle-catalyzed IAPP amyloid formation and decreases the susceptibility to IAPP-induced leakage. The effects of cholesterol on amyloid formation are masked by 25 mol % POPS. Overall, there is a strong inverse correlation between the time to form amyloid and the extent of vesicle leakage. NaCl reduces the rate of membrane-catalyzed amyloid formation by anionic vesicles, but accelerates amyloid formation in solution. The implications for IAPP membrane interactions are discussed, as is the possibility that the loss of phosphatidylserine asymmetry enhances IAPP amyloid formation and membrane damage in vivo via a positive feedback loop.

  9. Kinetic and thermodynamic aspects of lipid translocation in biological membranes.

    PubMed Central

    Frickenhaus, S; Heinrich, R

    1999-01-01

    A theoretical analysis of the lipid translocation in cellular bilayer membranes is presented. We focus on an integrative model of active and passive transport processes determining the asymmetrical distribution of the major lipid components between the monolayers. The active translocation of the aminophospholipids phosphatidylserine and phosphatidylethanolamine is mathematically described by kinetic equations resulting from a realistic ATP-dependent transport mechanism. Concerning the passive transport of the aminophospholipids as well as of phosphatidylcholine, sphingomyelin, and cholesterol, two different approaches are used. The first treatment makes use of thermodynamic flux-force relationships. Relevant forces are transversal concentration differences of the lipids as well as differences in the mechanical states of the monolayers due to lateral compressions. Both forces, originating primarily from the operation of an aminophospholipid translocase, are expressed as functions of the lipid compositions of the two monolayers. In the case of mechanical forces, lipid-specific parameters such as different molecular surface areas and compression force constants are taken into account. Using invariance principles, it is shown how the phenomenological coefficients depend on the total lipid amounts. In a second approach, passive transport is analyzed in terms of kinetic mechanisms of carrier-mediated translocation, where mechanical effects are incorporated into the translocation rate constants. The thermodynamic as well as the kinetic approach are applied to simulate the time-dependent redistribution of the lipid components in human red blood cells. In the thermodynamic model the steady-state asymmetrical lipid distribution of erythrocyte membranes is simulated well under certain parameter restrictions: 1) the time scales of uncoupled passive transbilayer movement must be different among the lipid species; 2) positive cross-couplings of the passive lipid fluxes are

  10. Hybrid lipids increase nanoscale fluctuation lifetimes in mixed membranes

    NASA Astrophysics Data System (ADS)

    Palmieri, Benoit; Safran, Samuel A.

    2013-09-01

    A recently proposed ternary mixture model is used to predict fluctuation domain lifetimes in the one phase region. The membrane is made of saturated, unsaturated, and hybrid lipids that have one saturated and one unsaturated hydrocarbon chain. The hybrid lipid is a natural linactant which can reduce the packing incompatibility between saturated and unsaturated lipids. The fluctuation lifetimes are predicted as a function of the hybrid lipid fraction and the fluctuation domain size. These lifetimes can be increased by up to three orders of magnitude compared to the case of no hybrids. With hybrid, small length scale fluctuations have sizable amplitudes even close to the critical temperature and, hence, benefit from enhanced critical slowing down. The increase in lifetime is particularly important for nanometer scale fluctuation domains where the hybrid orientation and the other lipids composition are highly coupled.

  11. Hybrid lipids increase nanoscale fluctuation lifetimes in mixed membranes.

    PubMed

    Palmieri, Benoit; Safran, Samuel A

    2013-09-01

    A recently proposed ternary mixture model is used to predict fluctuation domain lifetimes in the one phase region. The membrane is made of saturated, unsaturated, and hybrid lipids that have one saturated and one unsaturated hydrocarbon chain. The hybrid lipid is a natural linactant which can reduce the packing incompatibility between saturated and unsaturated lipids. The fluctuation lifetimes are predicted as a function of the hybrid lipid fraction and the fluctuation domain size. These lifetimes can be increased by up to three orders of magnitude compared to the case of no hybrids. With hybrid, small length scale fluctuations have sizable amplitudes even close to the critical temperature and, hence, benefit from enhanced critical slowing down. The increase in lifetime is particularly important for nanometer scale fluctuation domains where the hybrid orientation and the other lipids composition are highly coupled.

  12. Composite membranes for fluid separations

    DOEpatents

    Blume, Ingo; Peinemann, Klaus-Viktor; Pinnau, Ingo; Wijmans, Johannes G.

    1992-01-01

    A method for designing and making composite membranes having a microporous support membrane coated with a permselective layer. The method involves calculating the minimum thickness of the permselective layer such that the selectivity of the composite membrane is close to the intrinsic selectivity of the perselective layer. The invention also provides high performance membranes with optimized properties.

  13. Composite membranes for fluid separations

    DOEpatents

    Blume, Ingo; Peinemann, Klaus-Viktor; Pinnau, Ingo; Wijmans, Johannes G.

    1991-01-01

    A method for designing and making composite membranes having a microporous support membrane coated with a permselective layer. The method involves calculating the minimum thickness of the permselective layer such that the selectivity of the composite membrane is close to the intrinsic selectivity of the permselective layer. The invention also provides high performance membranes with optimized properties.

  14. Composite membranes for fluid separations

    DOEpatents

    Blume, Ingo; Peinemann, Klaus-Viktor; Pinnau, Ingo; Wijmans, Johannes G.

    1990-01-01

    A method for designing and making composite membranes having a microporous support membrane coated with a permselective layer. The method involves calculating the minimum thickness of the permselective layer such that the selectivity of the composite membrane is close to the intrinsic selectivity of the permselective layer. The invention also provides high performance membranes with optimized properties.

  15. The Interaction of Melittin with Dimyristoyl Phosphatidylcholine-Dimyristoyl Phosphatidylserine Lipid Bilayer Membranes

    SciTech Connect

    Rai, Durgesh K.; Qian, Shuo; Heller, William T.

    2016-08-13

    We report that membrane-active peptides (MAPs), which interact directly with the lipid bilayer of a cell and include toxins and host defense peptides, display lipid composition-dependent activity. Phosphatidylserine (PS) lipids are anionic lipids that are found throughout the cellular membranes of most eukaryotic organisms where they serve as both a functional component and as a precursor to phosphatidylethanolamine lipids. The inner leaflet of the plasma membrane contains more PS than the outer one, and the asymmetry is actively maintained. Here, the impact of the MAP melittin on the structure of lipid bilayer vesicles made of a mixture of phosphatidylcholine and phosphatidylserine was studied. Small-angle neutron scattering of the MAP associated with selectively deuterium-labeled lipid bilayer vesicles revealed how the thickness and lipid composition of phosphatidylserine-containing vesicles change in response to melittin. The peptide thickens the lipid bilayer for concentrations up to P/L = 1/500, but membrane thinning results when P/L = 1/200. The thickness transition is accompanied by a large change in the distribution of DMPS between the leaflets of the bilayer. The change in composition is driven by electrostatic interactions, while the change in bilayer thickness is driven by changes in the interaction of the peptide with the headgroup region of the lipid bilayer. Lastly, the results provide new information about lipid-specific interactions that take place in mixed composition lipid bilayer membranes.

  16. The Interaction of Melittin with Dimyristoyl Phosphatidylcholine-Dimyristoyl Phosphatidylserine Lipid Bilayer Membranes

    DOE PAGES

    Rai, Durgesh K.; Qian, Shuo; Heller, William T.

    2016-08-13

    We report that membrane-active peptides (MAPs), which interact directly with the lipid bilayer of a cell and include toxins and host defense peptides, display lipid composition-dependent activity. Phosphatidylserine (PS) lipids are anionic lipids that are found throughout the cellular membranes of most eukaryotic organisms where they serve as both a functional component and as a precursor to phosphatidylethanolamine lipids. The inner leaflet of the plasma membrane contains more PS than the outer one, and the asymmetry is actively maintained. Here, the impact of the MAP melittin on the structure of lipid bilayer vesicles made of a mixture of phosphatidylcholine andmore » phosphatidylserine was studied. Small-angle neutron scattering of the MAP associated with selectively deuterium-labeled lipid bilayer vesicles revealed how the thickness and lipid composition of phosphatidylserine-containing vesicles change in response to melittin. The peptide thickens the lipid bilayer for concentrations up to P/L = 1/500, but membrane thinning results when P/L = 1/200. The thickness transition is accompanied by a large change in the distribution of DMPS between the leaflets of the bilayer. The change in composition is driven by electrostatic interactions, while the change in bilayer thickness is driven by changes in the interaction of the peptide with the headgroup region of the lipid bilayer. Lastly, the results provide new information about lipid-specific interactions that take place in mixed composition lipid bilayer membranes.« less

  17. Nanosecond Lipid Dynamics in Membranes Containing Cholesterol

    SciTech Connect

    Armstrong, Clare L; Haeussler, Wolfgang; Seydel, Tilo; Katsaras, John; Rheinstadter, Maikel C

    2014-01-01

    Lipid dynamics in the cholesterol-rich (40 mol%) liquid-ordered (lo) phase of dimyristoylphosphatidylcholine membranes were studied using neutron spin-echo and neutron backscattering. Recent theoretical and experimental evidence supports the notion of the liquid-ordered phase in phospholipid membranes as a locally structured liquid, with small ordered domains of a highly dynamic nature in equilibrium with a disordered matrix [S. Meinhardt, R. L. C. Vink and F. Schmid, Proc. Natl. Acad. Sci. U. S. A., 2013, 110(12), 4476 4481, C. L. Armstrong et al., PLoS One, 2013, 8(6), e66162]. This local structure was found to have a pronounced impact on the membranes' dynamical properties. We found that the long-wavelength dynamics in the liquid-ordered phase, associated with the elastic properties of the membranes, were faster by two orders of magnitude as compared to the liquid disordered phase. At the same time, collective nanoscale diffusion was significantly slower. The presence of a soft-mode (a slowing down) in the longwavelength dispersion relationship suggests an upper size limit for the ordered lipid domain of ~220 A. Moreover, from the relaxation rate of the collective lipid diffusion of lipid lipid distances, the lifetime of these domains was estimated to be about 100 nanoseconds.

  18. Composite oxygen transport membrane

    DOEpatents

    Christie, Gervase Maxwell; Lane, Jonathan A.

    2016-11-15

    A method of producing a composite oxygen ion membrane and a composite oxygen ion membrane in which a porous fuel oxidation layer and a dense separation layer and optionally, a porous surface exchange layer are formed on a porous support from mixtures of (Ln.sub.1-xA.sub.x).sub.wCr.sub.1-yB.sub.yO.sub.3-.delta. and a doped zirconia. In the porous fuel oxidation layer and the optional porous surface exchange layer, A is Calcium and in the dense separation layer A is not Calcium and, preferably is Strontium. Preferred materials are (La.sub.0.8Ca.sub.0.2).sub.0.95Cr.sub.0.5Mn.sub.0.5O.sub.3-.delta. for the porous fuel oxidation and optional porous surface exchange layers and (La.sub.0.8Sr.sub.0.2).sub.0.95Cr.sub.0.5Fe.sub.0.5O.sub.3-.delta. for the dense separation layer. The use of such materials allows the membrane to sintered in air and without the use of pore formers to reduce membrane manufacturing costs. The use of materials, as described herein, for forming the porous layers have application for forming any type of porous structure, such as a catalyst support.

  19. Composite oxygen transport membrane

    DOEpatents

    Christie, Gervase Maxwell; Lane, Jonathan A.

    2014-08-05

    A method of producing a composite oxygen ion membrane and a composite oxygen ion membrane in which a porous fuel oxidation layer and a dense separation layer and optionally, a porous surface exchange layer are formed on a porous support from mixtures of (Ln.sub.1-xA.sub.x).sub.wCr.sub.1-yB.sub.yO.sub.3-.delta. and a doped zirconia. In the porous fuel oxidation layer and the optional porous surface exchange layer, A is Calcium and in the dense separation layer A is not Calcium and, preferably is Strontium. Preferred materials are (La.sub.0.8Ca.sub.0.2).sub.0.95Cr.sub.0.5Mn.sub.0.5O.sub.3-.delta. for the porous fuel oxidation and optional porous surface exchange layers and (La.sub.0.8Sr.sub.0.2).sub.0.95Cr.sub.0.5Fe.sub.0.5O.sub.3-.delta. for the dense separation layer. The use of such materials allows the membrane to sintered in air and without the use of pore formers to reduce membrane manufacturing costs. The use of materials, as described herein, for forming the porous layers have application for forming any type of porous structure, such as a catalyst support.

  20. Engineering Lipid Bilayer Membranes for Protein Studies

    PubMed Central

    Khan, Muhammad Shuja; Dosoky, Noura Sayed; Williams, John Dalton

    2013-01-01

    Lipid membranes regulate the flow of nutrients and communication signaling between cells and protect the sub-cellular structures. Recent attempts to fabricate artificial systems using nanostructures that mimic the physiological properties of natural lipid bilayer membranes (LBM) fused with transmembrane proteins have helped demonstrate the importance of temperature, pH, ionic strength, adsorption behavior, conformational reorientation and surface density in cellular membranes which all affect the incorporation of proteins on solid surfaces. Much of this work is performed on artificial templates made of polymer sponges or porous materials based on alumina, mica, and porous silicon (PSi) surfaces. For example, porous silicon materials have high biocompatibility, biodegradability, and photoluminescence, which allow them to be used both as a support structure for lipid bilayers or a template to measure the electrochemical functionality of living cells grown over the surface as in vivo. The variety of these media, coupled with the complex physiological conditions present in living systems, warrant a summary and prospectus detailing which artificial systems provide the most promise for different biological conditions. This study summarizes the use of electrochemical impedance spectroscopy (EIS) data on artificial biological membranes that are closely matched with previously published biological systems using both black lipid membrane and patch clamp techniques. PMID:24185908

  1. TOPICAL REVIEW: The microcalorimetry of lipid membranes

    NASA Astrophysics Data System (ADS)

    Heerklotz, Heiko

    2004-04-01

    Insight into the forces governing a system is essential for understanding its behaviour and function. Calorimetric investigations provide a wealth of information that is not, or is hardly, available by other methods. This paper reviews calorimetric approaches and assays for the study of lipid vesicles (liposomes) and biological membranes. With respect to the instrumentation, differential scanning calorimetry (DSC), pressure perturbation calorimetry (PPC), isothermal titration calorimetry (ITC) and water sorption calorimetry are considered. Applications of these techniques to lipid systems include the measurement of thermodynamic parameters and a detailed characterization of the thermotropic, barotropic, and lyotropic phase behaviour. The membrane binding or partitioning of solutes (proteins, peptides, drugs, surfactants, ions, etc) can also be quantified. Many calorimetric assays are available for studying the effect of proteins and other additives on membranes, characterizing non-ideal mixing, domain formation, stability, curvature strain, permeability, solubilization, and fusion. Studies of membrane proteins in lipid environments elucidate lipid-protein interactions in membranes. The systems are described in terms of enthalpic and entropic forces, equilibrium constants, heat capacities, partial volume changes etc, shedding light also on the stability of structures and the molecular origin and mechanism of structural changes.

  2. Penetration of Cell Membranes and Synthetic Lipid Bilayers by Nanoprobes

    PubMed Central

    Angle, Matthew R.; Wang, Andrew; Thomas, Aman; Schaefer, Andreas T.; Melosh, Nicholas A.

    2014-01-01

    Nanoscale devices have been proposed as tools for measuring and controlling intracellular activity by providing electrical and/or chemical access to the cytosol. Unfortunately, nanostructures with diameters of 50–500 nm do not readily penetrate the cell membrane, and rationally optimizing nanoprobes for cell penetration requires real-time characterization methods that are capable of following the process of membrane penetration with nanometer resolution. Although extensive work has examined the rupture of supported synthetic lipid bilayers, little is known about the applicability of these model systems to living cell membranes with complex lipid compositions, cytoskeletal attachment, and membrane proteins. Here, we describe atomic force microscopy (AFM) membrane penetration experiments in two parallel systems: live HEK293 cells and stacks of synthetic lipid bilayers. By using the same probes in both systems, we were able to clearly identify membrane penetration in synthetic bilayers and compare these events with putative membrane penetration events in cells. We examined membrane penetration forces for three tip geometries and 18 chemical modifications of the probe surface, and in all cases the median forces required to penetrate cellular and synthetic lipid bilayers with nanoprobes were greater than 1 nN. The penetration force was sensitive to the probe's sharpness, but not its surface chemistry, and the force did not depend on cell surface or cytoskeletal properties, with cells and lipid stacks yielding similar forces. This systematic assessment of penetration under various mechanical and chemical conditions provides insights into nanoprobe-cell interactions and informs the design of future intracellular nanoprobes. PMID:25418094

  3. Photoinduced Fusion of Lipid Bilayer Membranes.

    PubMed

    Suzuki, Yui; Nagai, Ken H; Zinchenko, Anatoly; Hamada, Tsutomu

    2017-03-14

    We have developed a novel system for photocontrol of the fusion of lipid vesicles through the use of a photosensitive surfactant containing an azobenzene moiety (AzoTAB). Real-time microscopic observations clarified a change in both the surface area and internal volume of vesicles during fusion. We also determined the optimal cholesterol concentrations and temperature for inducing fusion. The mechanism of fusion can be attributed to a change in membrane tension, which is caused by the solubilization of lipids through the isomerization of AzoTAB. We used a micropipet technique to estimate membrane tension and discuss the mechanism of fusion in terms of membrane elastic energy. The obtained results regarding this novel photoinduced fusion could lead to a better understanding of the mechanism of membrane fusion in living cells and may also see wider applications, such as in drug delivery and biomimetic material design.

  4. Mechanical properties that influence antimicrobial peptide activity in lipid membranes.

    PubMed

    Marín-Medina, Nathaly; Ramírez, Diego Alejandro; Trier, Steve; Leidy, Chad

    2016-12-01

    Antimicrobial peptides are small amphiphilic proteins found in animals and plants as essential components of the innate immune system and whose function is to control bacterial infectious activity. In order to accomplish their function, antimicrobial peptides use different mechanisms of action which have been deeply studied in view of their potential exploitation to treat antibiotic-resistant bacterial infections. One of the main mechanisms of action of these peptides is the disruption of the bacterial membrane through pore formation, which, in some cases, takes place via a monomer to oligomer cooperative transition. Previous studies have shown that lipid composition, and the presence of exogenous components, such as cholesterol in model membranes or carotenoids in bacteria, can affect the potency of distinct antimicrobial peptides. At the same time, considering the membrane as a two-dimensional material, it has been shown that membrane composition defines its mechanical properties which might be relevant in many membrane-related processes. Nevertheless, the correlation between the mechanical properties of the membrane and antimicrobial peptide potency has not been considered according to the importance it deserves. The relevance of these mechanical properties in membrane deformation due to peptide insertion is reviewed here for different types of pores in order to elucidate if indeed membrane composition affects antimicrobial peptide activity by modulation of the mechanical properties of the membrane. This would also provide a better understanding of the mechanisms used by bacteria to overcome antimicrobial peptide activity.

  5. Nonlinear adhesion dynamics of confined lipid membranes

    NASA Astrophysics Data System (ADS)

    To, Tung; Le Goff, Thomas; Pierre-Louis, Olivier

    Lipid membranes, which are ubiquitous objects in biological environments are often confined. For example, they can be sandwiched between a substrate and the cytoskeleton between cell adhesion, or between other membranes in stacks, or in the Golgi apparatus. We present a study of the nonlinear dynamics of membranes in a model system, where the membrane is confined between two flat walls. The dynamics derived from the lubrication approximation is highly nonlinear and nonlocal. The solution of this model in one dimension exhibits frozen states due to oscillatory interactions between membranes caused by the bending rigidity. We develope a kink model for these phenomena based on the historical work of Kawasaki and Otha. In two dimensions, the dynamics is more complex, and depends strongly on the amount of excess area in the system. We discuss the relevance of our findings for experiments on model membranes, and for biological systems. Supported by the grand ANR Biolub.

  6. Atomistic Monte Carlo Simulation of Lipid Membranes

    PubMed Central

    Wüstner, Daniel; Sklenar, Heinz

    2014-01-01

    Biological membranes are complex assemblies of many different molecules of which analysis demands a variety of experimental and computational approaches. In this article, we explain challenges and advantages of atomistic Monte Carlo (MC) simulation of lipid membranes. We provide an introduction into the various move sets that are implemented in current MC methods for efficient conformational sampling of lipids and other molecules. In the second part, we demonstrate for a concrete example, how an atomistic local-move set can be implemented for MC simulations of phospholipid monomers and bilayer patches. We use our recently devised chain breakage/closure (CBC) local move set in the bond-/torsion angle space with the constant-bond-length approximation (CBLA) for the phospholipid dipalmitoylphosphatidylcholine (DPPC). We demonstrate rapid conformational equilibration for a single DPPC molecule, as assessed by calculation of molecular energies and entropies. We also show transition from a crystalline-like to a fluid DPPC bilayer by the CBC local-move MC method, as indicated by the electron density profile, head group orientation, area per lipid, and whole-lipid displacements. We discuss the potential of local-move MC methods in combination with molecular dynamics simulations, for example, for studying multi-component lipid membranes containing cholesterol. PMID:24469314

  7. Theoretical and simulation study of lipid membranes

    NASA Astrophysics Data System (ADS)

    Khelashvili, George

    It has been established that a proper functioning of biological lipid membranes is in large part due to cholesterol's ability to regulate fluidity of a lipid bilayer. In particular, a growing body of evidence suggested that cholesterol participates in the formation of cholesterol- and sphingolipid-enriched phase-separated domains known as "rafts" in the plasma and other membranes of animal cells. Rafts have been identified as important membrane structural components in signal transduction, protein transport and sorting of membrane components. At a molecular level, the detailed, localized behavior of lipid-cholesterol bilayers is unclear. In order to better understand how cholesterols function in lipid membranes it is desirable to built theoretical models. The goal of the present research is to model lipid-cholesterol bilayers on the different length and timescales. In the first part of the work, mixtures of sphingomyelin (SM) lipid and cholesterol at different temperatures and cholesterol concentrations were investigated using Molecular Dynamics and Monte-Carlo simulation techniques. The objective was to study the properties of cholesterol- and SM-enriched raft-like domains at the atomic level. The simulations revealed that, addition of 31% cholesterol induced intermediate degree of organization in the model SM-cholesterol bilayers at temperatures below and above the main phase transition temperature of pure SM bilayer. This intermediate state of fluidity may be necessary for the binding of proteins and other molecules that associate with raft domains. In the second part of the work, dynamical self-consistent mean-field model based on atomistic simulations was developed to investigate phase properties of lipid-cholesterol bilayers on the length and timescales currently unreachable with traditional atomistic level simulation methods. This new technique allows studying systems consisting of 104 or more number of molecules, on microsecond timescales. The model was

  8. Targeting Membrane Lipid a Potential Cancer Cure?

    PubMed Central

    Tan, Loh Teng-Hern; Chan, Kok-Gan; Pusparajah, Priyia; Lee, Wai-Leng; Chuah, Lay-Hong; Khan, Tahir Mehmood; Lee, Learn-Han; Goh, Bey-Hing

    2017-01-01

    Cancer mortality and morbidity is projected to increase significantly over the next few decades. Current chemotherapeutic strategies have significant limitations, and there is great interest in seeking novel therapies which are capable of specifically targeting cancer cells. Given that fundamental differences exist between the cellular membranes of healthy cells and tumor cells, novel therapies based on targeting membrane lipids in cancer cells is a promising approach that deserves attention in the field of anticancer drug development. Phosphatidylethanolamine (PE), a lipid membrane component which exists only in the inner leaflet of cell membrane under normal circumstances, has increased surface representation on the outer membrane of tumor cells with disrupted membrane asymmetry. PE thus represents a potential chemotherapeutic target as the higher exposure of PE on the membrane surface of cancer cells. This feature as well as a high degree of expression of PE on endothelial cells in tumor vasculature, makes PE an attractive molecular target for future cancer interventions. There have already been several small molecules and membrane-active peptides identified which bind specifically to the PE molecules on the cancer cell membrane, subsequently inducing membrane disruption leading to cell lysis. This approach opens up a new front in the battle against cancer, and is of particular interest as it may be a strategy that may be prove effective against tumors that respond poorly to current chemotherapeutic agents. We aim to highlight the evidence suggesting that PE is a strong candidate to be explored as a potential molecular target for membrane targeted novel anticancer therapy. PMID:28167913

  9. Cholesterol effect on the dipole potential of lipid membranes.

    PubMed

    Starke-Peterkovic, Thomas; Turner, Nigel; Vitha, Mark F; Waller, Mark P; Hibbs, David E; Clarke, Ronald J

    2006-06-01

    The effect of cholesterol removal by methyl-beta-cyclodextrin on the dipole potential, psi(d), of membrane vesicles composed of natural membrane lipids extracted from the kidney and brain of eight vertebrate species was investigated using the voltage-sensitive fluorescent probe di-8-ANEPPS. Cyclodextrin treatment reduced cholesterol levels by on average 80% and this was associated with an average reduction in psi(d) of 50 mV. Measurements of the effect of a range of cholesterol derivatives on the psi(d) of DMPC lipid vesicles showed that the magnitude of the effect correlated with the component of the sterol's dipole moment perpendicular to the membrane surface. The changes in psi(d) observed could not be accounted for solely by the electric field originating from the sterols' dipole moments. Additional factors must arise from sterol-induced changes in lipid packing, which changes the density of dipoles in the membrane, and changes in water penetration into the membrane, which changes the effective dielectric constant of the interfacial region. In DMPC membranes, the cholesterol-induced change in psi(d) was biphasic, i.e., a maximum in psi(d) was observed at approximately 35-45 mol %, after which psi(d) started to decrease. We suggest that this could be associated with a maximum in the strength of DMPC-cholesterol intermolecular forces at this composition.

  10. Probing the importance of lipid diversity in cell membranes via molecular simulation.

    PubMed

    Khakbaz, Pouyan; Klauda, Jeffery B

    2015-11-01

    Lipid membranes in prokaryotes and eukaryotes have a wide array of lipids that are necessary for proper membrane structure and function. In this paper, an introduction to lipid diversity in biology and a mini-review on how molecular simulations have been used to model biological membranes (primarily limited to one to three lipid types in most simulation-based models) is provided, which motivates the use of all-atom molecular dynamics (MD) simulations to study the effect of lipid diversity on properties of realistic membrane models of prokaryotes and eukaryotes. As an example, cytoplasmic membrane models of Escherichia coli were developed at different stages of the colony growth cycle (early-log, mid-log, stationary and overnight). The main difference between lipid compositions at each stage was the concentration of a cyclopropane-containing moiety on the sn-2 lipid acyl chain (cyC17:0). Triplicate MD simulations for each stage were run for 300 ns to study the influence of lipid diversity on the surface area per lipid, area compressibility modulus, deuterium order parameters, and electron density profiles. The overnight stage (also known as the death stage) had the highest average surface area per lipid, highest rigidity, and lowest bilayer thickness compare to other stages of E. coli cytoplasmic membrane. Although bilayer thickness did depend on the growth stage, the changes between these were small suggesting that the hydrophobic core of transmembrane proteins fit well with the membrane in all growth stages. Although it is still common practise in MD simulations of membrane proteins to use simple one- or two-component membranes, it can be important to use diverse lipid model membranes when membrane protein structure and function are influenced by changes in lipid membrane composition.

  11. Unique Lipid Chemistry of Synaptic Vesicle and Synaptosome Membrane Revealed Using Mass Spectrometry.

    PubMed

    Lewis, Kenneth T; Maddipati, Krishna R; Naik, Akshata R; Jena, Bhanu P

    2017-03-02

    Synaptic vesicles measuring 30-50 nm in diameter containing neurotransmitters either completely collapse at the presynaptic membrane or dock and transiently fuse at the base of specialized 15 nm cup-shaped lipoprotein structures called porosomes at the presynaptic membrane of synaptosomes to release neurotransmitters. Recent study reports the unique composition of major lipids associated with neuronal porosomes. Given that lipids greatly influence the association and functions of membrane proteins, differences in lipid composition of synaptic vesicle and the synaptosome membrane was hypothesized. To test this hypothesis, the lipidome of isolated synaptosome, synaptosome membrane, and synaptic vesicle preparation were determined by using mass spectrometry in the current study. Results from the study demonstrate the enriched presence of triacyl glycerols and sphingomyelins in synaptic vesicles, as opposed to the enriched presence of phospholipids in the synaptosome membrane fraction, reflecting on the tight regulation of nerve cells in compartmentalization of membrane lipids at the nerve terminal.

  12. Proteomic Profiling of Detergent Resistant Membranes (Lipid Rafts) of Prostasomes.

    PubMed

    Dubois, Louise; Ronquist, Karl K Göran; Ek, Bo; Ronquist, Gunnar; Larsson, Anders

    2015-11-01

    Prostasomes are exosomes derived from prostate epithelial cells through exocytosis by multivesicular bodies. Prostasomes have a bilayered membrane and readily interact with sperm. The membrane lipid composition is unusual with a high contribution of sphingomyelin at the expense of phosphatidylcholine and saturated and monounsaturated fatty acids are dominant. Lipid rafts are liquid-ordered domains that are more tightly packed than the surrounding nonraft phase of the bilayer. Lipid rafts are proposed to be highly dynamic, submicroscopic assemblies that float freely within the liquid disordered membrane bilayer and some proteins preferentially partition into the ordered raft domains. We asked the question whether lipid rafts do exist in prostasomes and, if so, which proteins might be associated with them. Prostasomes of density range 1.13-1.19g/ml were subjected to density gradient ultracentrifugation in sucrose fabricated by phosphate buffered saline (PBS) containing 1% Triton X-100 with capacity for banding at 1.10 g/ml, i.e. the classical density of lipid rafts. Prepared prostasomal lipid rafts (by gradient ultracentrifugation) were analyzed by mass spectrometry. The clearly visible band on top of 1.10g/ml sucrose in the Triton X-100 containing gradient was subjected to liquid chromatography-tandem MS and more than 370 lipid raft associated proteins were identified. Several of them were involved in intraluminal vesicle formation, e.g. tetraspanins, ESCRTs, and Ras-related proteins. This is the first comprehensive liquid chromatography-tandem MS profiling of proteins in lipid rafts derived from exosomes. Data are available via ProteomeXchange with identifier PXD002163.

  13. Effect of Amphotericin B antibiotic on the properties of model lipid membrane

    NASA Astrophysics Data System (ADS)

    Kiryakova, S.; Dencheva-Zarkova, M.; Genova, J.

    2014-12-01

    Model membranes formed from natural and synthetic lipids are an interesting object for scientific investigations due to their similarity to biological cell membrane and their simple structure with controlled composition and properties. Amphotericin B is an important polyene antifungal antibiotic, used for treatment of systemic fungal infections. It is known from the literature that the studied antibiotic has a substantial effect on the transmembrane ionic channel structures. When applied to the lipid membranes it has the tendency to create pores and in this way to affect the structure and the properties of the membrane lipid bilayer. In this work the thermally induced shape fluctuations of giant quasi-spherical liposomes have been used to study the influence of polyene antibiotic amphotericin B on the elastic properties of model lipid membranes. It have been shown experimentally that the presence of 3 mol % of AmB in the lipid membrane reduces the bending elasticity of the lipid membrane for both studied cases: pure SOPC membrane and mixed SOPC-Cholesterol membrane. Interaction of the amphotericin B with bilayer lipid membranes containing channels have been studied in this work. Model membranes were self-assembled using the patch-clamp and tip-dip patch clamp technique. We have found that amphotericin B is an ionophore and reduces the resistance of the lipid bilayer.

  14. Composite oxygen transport membrane

    SciTech Connect

    Lu, Zigui; Plonczak, Pawel J.; Lane, Jonathan A.

    2016-11-08

    A method is described of producing a composite oxygen ion membrane and a composite oxygen ion membrane in which a porous fuel oxidation layer and a dense separation layer and optionally, a porous surface exchange layer are formed on a porous support from mixtures of (Ln.sub.1-xA.sub.x).sub.wCr.sub.1-yB.sub.yO.sub.3-.delta. and a doped zirconia. Preferred materials are (La.sub.0.8Sr.sub.0.2).sub.0.95Cr.sub.0.7Fe.sub.0.3O.sub.3-.delta. for the porous fuel oxidation layer, (La.sub.0.8Sr.sub.0.2).sub.0.95Cr.sub.0.5Fe.sub.0.5O.sub.3-.delta. for the dense separation layer, and (La.sub.0.8Sr.sub.0.2).sub.0.95Cr.sub.0.3Fe.sub.0.7O.sub.3-.delta. for the porous surface exchange layer. Firing the said fuel activation and separation layers in nitrogen atmosphere unexpectedly allows the separation layer to sinter into a fully densified mass.

  15. Accumulation of raft lipids in T-cell plasma membrane domains engaged in TCR signalling

    PubMed Central

    Zech, Tobias; Ejsing, Christer S; Gaus, Katharina; de Wet, Ben; Shevchenko, Andrej; Simons, Kai; Harder, Thomas

    2009-01-01

    Activating stimuli for T lymphocytes are transmitted through plasma membrane domains that form at T-cell antigen receptor (TCR) signalling foci. Here, we determined the molecular lipid composition of immunoisolated TCR activation domains. We observed that they accumulate cholesterol, sphingomyelin and saturated phosphatidylcholine species as compared with control plasma membrane fragments. This provides, for the first time, direct evidence that TCR activation domains comprise a distinct molecular lipid composition reminiscent of liquid-ordered raft phases in model membranes. Interestingly, TCR activation domains were also enriched in plasmenyl phosphatidylethanolamine and phosphatidylserine. Modulating the T-cell lipidome with polyunsaturated fatty acids impaired the plasma membrane condensation at TCR signalling foci and resulted in a perturbed molecular lipid composition. These results correlate the accumulation of specific molecular lipid species with the specific plasma membrane condensation at sites of TCR activation and with early TCR activation responses. PMID:19177148

  16. Overexpression of the phosphatidylinositol synthase gene from Zea mays in tobacco plants alters the membrane lipids composition and improves drought stress tolerance.

    PubMed

    Zhai, Shu-Mei; Gao, Qiang; Xue, Hong-Wei; Sui, Zhen-Hua; Yue, Gui-Dong; Yang, Ai-Fang; Zhang, Ju-Ren

    2012-01-01

    Phosphatidylinositol (PtdIns) is an important lipid because it serves as a key membrane constituent and is the precursor of the inositol-containing lipids that are found in all plants and animals. It is synthesized from cytidine-diphosphodiacylglycerol (CDP-DG) and myo-inositol by PtdIns synthase (PIS). We have previously reported that two putative PIS genes from maize (Zea mays L.), ZmPIS and ZmPIS2, are transcriptionally up-regulated in response to drought (Sui et al., Gene, 426:47-56, 2008). In this work, we report on the characterization of ZmPIS in vitro and in vivo. The ZmPIS gene successfully complemented the yeast pis mutant BY4743, and the determination of PIS activity in the yeast strain further confirmed the enzymatic function of ZmPIS. An ESI-MS/MS-based lipid profiling approach was used to identify and quantify the lipid species in transgenic and wild-type tobacco plants before and after drought treatment. The results show that the overexpression of ZmPIS significantly increases lipid levels in tobacco leaves under drought stress compared to those of wild-type tobacco, which correlated well with the increased drought tolerance of the transgenic plants. Further analysis showed that, under drought stress conditions, ZmPIS overexpressors were found to exhibit increased membrane integrity, thereby enabling the retention of more solutes and water compared with the wild-type and the vector control transgenic lines. Our findings give us new insights into the role of the ZmPIS gene in the response of maize to drought/osmotic stress and the mechanisms by which plants adapt to drought stress.

  17. Anionic lipids and the maintenance of membrane electrostatics in eukaryotes

    PubMed Central

    Platre, Matthieu Pierre

    2017-01-01

    ABSTRACT A wide range of signaling processes occurs at the cell surface through the reversible association of proteins from the cytosol to the plasma membrane. Some low abundant lipids are enriched at the membrane of specific compartments and thereby contribute to the identity of cell organelles by acting as biochemical landmarks. Lipids also influence membrane biophysical properties, which emerge as an important feature in specifying cellular territories. Such parameters are crucial for signal transduction and include lipid packing, membrane curvature and electrostatics. In particular, membrane electrostatics specifies the identity of the plasma membrane inner leaflet. Membrane surface charges are carried by anionic phospholipids, however the exact nature of the lipid(s) that powers the plasma membrane electrostatic field varies among eukaryotes and has been hotly debated during the last decade. Herein, we discuss the role of anionic lipids in setting up plasma membrane electrostatics and we compare similarities and differences that were found in different eukaryotic cells. PMID:28102755

  18. Composite membrane with integral rim

    DOEpatents

    Routkevitch, Dmitri; Polyakov, Oleg G

    2015-01-27

    Composite membranes that are adapted for separation, purification, filtration, analysis, reaction and sensing. The composite membranes can include a porous support structure having elongate pore channels extending through the support structure. The composite membrane also includes an active layer comprising an active layer material, where the active layer material is completely disposed within the pore channels between the surfaces of the support structure. The active layer is intimately integrated within the support structure, thus enabling great robustness, reliability, resistance to mechanical stress and thermal cycling, and high selectivity. Methods for the fabrication of composite membranes are also provided.

  19. Membrane lipids and the origin of life

    NASA Technical Reports Server (NTRS)

    Oro, J.; Holzer, G.; Rao, M.; Tornabene, T. G.

    1981-01-01

    The current state of knowledge regarding the development of biological systems is briefly reviewed. At a crucial stage concerning the evolution of such systems, the mechanisms leading to more complex structures must have evolved within the confines of a protected microenvironment, similar to those provided by the contemporary cell membranes. The major components found normally in biomembranes are phospholipids. The structure of the biomembrane is examined, and attention is given to questions concerning the availability of the structural components which are necessary in the formation of primitive lipid membranes. Two approaches regarding the study of protomembranes are discussed. The probability of obtaining ether lipids under prebiotic conditions is considered, taking into account the formation of cyclic and acyclic isoprenoids by the irradiation of isoprene with UV.

  20. Atomic force microscopy of model lipid membranes.

    PubMed

    Morandat, Sandrine; Azouzi, Slim; Beauvais, Estelle; Mastouri, Amira; El Kirat, Karim

    2013-02-01

    Supported lipid bilayers (SLBs) are biomimetic model systems that are now widely used to address the biophysical and biochemical properties of biological membranes. Two main methods are usually employed to form SLBs: the transfer of two successive monolayers by Langmuir-Blodgett or Langmuir-Schaefer techniques, and the fusion of preformed lipid vesicles. The transfer of lipid films on flat solid substrates offers the possibility to apply a wide range of surface analytical techniques that are very sensitive. Among them, atomic force microscopy (AFM) has opened new opportunities for determining the nanoscale organization of SLBs under physiological conditions. In this review, we first focus on the different protocols generally employed to prepare SLBs. Then, we describe AFM studies on the nanoscale lateral organization and mechanical properties of SLBs. Lastly, we survey recent developments in the AFM monitoring of bilayer alteration, remodeling, or digestion, by incubation with exogenous agents such as drugs, proteins, peptides, and nanoparticles.

  1. Arabidopsis acyl-CoA-binding proteins ACBP4 and ACBP5 are subcellularly localized to the cytosol and ACBP4 depletion affects membrane lipid composition.

    PubMed

    Xiao, Shi; Li, Hong-Ye; Zhang, Jiao-Ping; Chan, Suk-Wah; Chye, Mee-Len

    2008-12-01

    In Arabidopsis thaliana, acyl-CoA-binding proteins (ACBPs) are encoded by six genes, and they display varying affinities for acyl-CoA esters. Recombinant ACBP4 and ACBP5 have been shown to bind oleoyl-CoA esters in vitro. In this study, the subcellular localizations of ACBP4 and ACBP5 were determined by biochemical fractionation followed by western blot analyses using anti-ACBP4 and anti-ACBP5 antibodies and immuno-electron microscopy. Confocal microscopy of autofluorescence-tagged ACBP4 and ACBP5, expressed transiently in onion epidermal cells and in transgenic Arabidopsis, confirmed their expression in the cytosol. Taken together, ACBP4 and ACBP5 are available in the cytosol to bind and transfer cytosolic oleoyl-CoA esters. Lipid profile analysis further revealed that an acbp4 knockout mutant showed decreases in membrane lipids (digalactosyldiacylglycerol, monogalactosyldiacylglycerol, phosphatidylcholine, phosphatidylethanolamine and phosphatidylinositol) while acbp4-complemented lines attained levels similar to wild type, suggesting that ACBP4 plays a role in the biosynthesis of membrane lipids including galactolipids and phospholipids.

  2. The role of ceramide chain length distribution on the barrier properties of the skin lipid membranes.

    PubMed

    Mojumdar, E H; Kariman, Z; van Kerckhove, L; Gooris, G S; Bouwstra, J A

    2014-10-01

    The skin barrier function is provided by the stratum corneum (SC). The lipids in the SC are composed of three lipid classes: ceramides (CERs), cholesterol (CHOL) and free fatty acids (FFAs) which form two crystalline lamellar structures. In the present study, we investigate the effect of CER chain length distribution on the barrier properties of model lipid membranes mimicking the lipid composition and organization of SC. The membranes were prepared with either isolated pig CERs (PCERs) or synthetic CERs. While PCERs have a wide chain length distribution, the synthetic CERs are quite uniform in chain length. The barrier properties were examined by means of permeation studies using hydrocortisone as a model drug. Our studies revealed a reduced barrier in lipid membranes prepared with PCERs compared to synthetic CERs. Additional studies revealed that a wider chain length distribution of PCERs results in an enhanced hexagonal packing and increased conformational disordering of the lipid tails compared to synthetic CERs, while the lamellar phases did not change. This demonstrates that the chain length distribution affects the lipid barrier by reducing the lipid ordering and density within the lipid lamellae. In subsequent studies, the effect of increased levels of FFAs or CERs with a long acyl chain in the PCERs membranes was also studied. These changes in lipid composition enhanced the level of orthorhombic packing, reduced the conformational disordering and increased the barrier of the lipid membranes. In conclusion, the CER chain length distribution is an important key factor for maintaining a proper barrier.

  3. Pore formation in lipid membranes by alamethicin.

    PubMed Central

    Fringeli, U P; Fringeli, M

    1979-01-01

    The conformation of the linear peptide antibiotic alamethicin in dipalmitoyl phosphatidylcholine multilayers was investigated in the absence of an electric field by means of infrared attenuated total reflection spectroscopy. Alamethicin was found to be incorporated into the lipid membrane not only in the dry state but also in an aqueous environment. Its molecular conformation, however, changed from a helix when dry to an extended chain when aqueous. The extended chain aggregated to di- and multimers spanning the lipid bilayer. The equilibrium concentration of alamethicin in the surrounding water was 90 nM, which is in the range of concentrations used in black film experiments. The corresponding molar ratio of lipid to peptide was 80:1. Concerning the molecular mechanism of electric field-induced pore formation, one has to conclude that the dipole model proposed by several authors is very unlikely because it is based on the assumption that the major part of alamethicin is adsorbed on the membrane surface, from which small amounts flip into the membrane under the influence of an electric field. An alternative mechanism is proposed, based on a field-induced conformational change of the peptide from the extended state to a helix. This transition is favored by the resulting dipole moment of the alamethicin helix. PMID:291045

  4. Single Molecule Kinetics of ENTH Binding to Lipid Membranes

    SciTech Connect

    Rozovsky, Sharon; Forstner, Martin B.; Sondermann, Holger; Groves, Jay T.

    2012-04-03

    Transient recruitment of proteins to membranes is a fundamental mechanism by which the cell exerts spatial and temporal control over proteins’ localization and interactions. Thus, the specificity and the kinetics of peripheral proteins’ membrane residence are an attribute of their function. In this article, we describe the membrane interactions of the interfacial epsin N-terminal homology (ENTH) domain with its target lipid phosphatidylinositol (4,5)-bisphosphate (PtdIns(4,5)P2). The direct visualization and quantification of interactions of single ENTH molecules with supported lipid bilayers is achieved using total internal reflection fluorescence microscopy (TIRFM) with a time resolution of 13 ms. This enables the recording of the kinetic behavior of ENTH interacting with membranes with physiologically relevant concentrations of PtdIns(4,5)P2 despite the low effective binding affinity. Subsequent single fluorophore tracking permits us to build up distributions of residence times and to measure ENTH dissociation rates as a function of membrane composition. In addition, due to the high time resolution, we are able to resolve details of the motion of ENTH associated with a simple, homogeneous membrane. In this case ENTH’s diffusive transport appears to be the result of at least three different diffusion processes.

  5. Multichannel taste sensors with lipid, lipid like polymer membranes

    NASA Astrophysics Data System (ADS)

    Szpakowska, M.; Szwacki, J.; Marjańska, E.

    2008-08-01

    The elaboration of a sensitive taste sensor for discrimination of different soft drinks is very important in food industry. The short review of taste sensors described in the literature is presented. Two types of potentiometric taste sensors, one with lipophilic compound-polymer membranes (ISE) and the other with lipid polymer membrane and a conducting polymer film (All solid state electrode, ASSE) were tested in appropriate taste solutions. Five channel ISE sensor was examined in acid, sour and sweet solutions. This sensor was sensitive to bitter and sour substances and not too sensitive to sucrose concentration. It was successfully used for discrimination of different kind of soft drinks. Four channel ASSE sensor was examined in sour solutions. It was found that stability and sensitivity of ASSE are lower than ISE. Therefore, it seems that the previous one cannot be applied in taste sensor.

  6. Reconstitution of a Kv Channel into Lipid Membranes for Structural and Functional Studies

    PubMed Central

    Shi, Liang; Jiang, Qiu-Xing

    2013-01-01

    To study the lipid-protein interaction in a reductionistic fashion, it is necessary to incorporate the membrane proteins into membranes of well-defined lipid composition. We are studying the lipid-dependent gating effects in a prototype voltage-gated potassium (Kv) channel, and have worked out detailed procedures to reconstitute the channels into different membrane systems. Our reconstitution procedures take consideration of both detergent-induced fusion of vesicles and the fusion of protein/detergent micelles with the lipid/detergent mixed micelles as well as the importance of reaching an equilibrium distribution of lipids among the protein/detergent/lipid and the detergent/lipid mixed micelles. Our data suggested that the insertion of the channels in the lipid vesicles is relatively random in orientations, and the reconstitution efficiency is so high that no detectable protein aggregates were seen in fractionation experiments. We have utilized the reconstituted channels to determine the conformational states of the channels in different lipids, record electrical activities of a small number of channels incorporated in planar lipid bilayers, screen for conformation-specific ligands from a phage-displayed peptide library, and support the growth of 2D crystals of the channels in membranes. The reconstitution procedures described here may be adapted for studying other membrane proteins in lipid bilayers, especially for the investigation of the lipid effects on the eukaryotic voltage-gated ion channels. PMID:23892292

  7. Important roles for membrane lipids in haloarchaeal bioenergetics.

    PubMed

    Kellermann, Matthias Y; Yoshinaga, Marcos Y; Valentine, Raymond C; Wörmer, Lars; Valentine, David L

    2016-11-01

    Recent advances in lipidomic analysis in combination with various physiological experiments set the stage for deciphering the structure-function of haloarchaeal membrane lipids. Here we focused primarily on changes in lipid composition of Haloferax volcanii, but also performed a comparative analysis with four other haloarchaeal species (Halobacterium salinarum, Halorubrum lacusprofundi, Halorubrum sodomense and Haloplanus natans) all representing distinctive cell morphologies and behaviors (i.e., rod shape vs. pleomorphic behavior). Common to all five haloarchaea, our data reveal an extraordinary high level of menaquinone, reaching up to 72% of the total lipids. This ubiquity suggests that menaquinones may function beyond their ordinary role as electron and proton transporter, acting simultaneously as ion permeability barriers and as powerful shield against oxidative stress. In addition, we aimed at understanding the role of cations interacting with the characteristic negatively charged surface of haloarchaeal membranes. We propose for instance that by bridging the negative charges of adjacent anionic phospholipids, Mg(2+) acts as surrogate for cardiolipin, a molecule that is known to control curvature stress of membranes. This study further provides a bioenergetic perspective as to how haloarchaea evolved following oxygenation of Earth's atmosphere. The success of the aerobic lifestyle of haloarchaea includes multiple membrane-based strategies that successfully balance the need for a robust bilayer structure with the need for high rates of electron transport - collectively representing the molecular basis to inhabit hypersaline water bodies around the planet.

  8. Composite sensor membrane

    DOEpatents

    Majumdar, Arun; Satyanarayana, Srinath; Yue, Min

    2008-03-18

    A sensor may include a membrane to deflect in response to a change in surface stress, where a layer on the membrane is to couple one or more probe molecules with the membrane. The membrane may deflect when a target molecule reacts with one or more probe molecules.

  9. Redistribution of Cholesterol in Model Lipid Membranes in Response to the Membrane-Active Peptide Alamethicin

    NASA Astrophysics Data System (ADS)

    Heller, William; Qian, Shuo

    2013-03-01

    The cellular membrane is a heterogeneous, dynamic mixture of molecules and macromolecules that self-assemble into a tightly-regulated functional unit that provides a semipermeable barrier between the cell and its environment. Among the many compositional differences between mammalian and bacterial cell membranes that impact its physical properties, one key difference is cholesterol content, which is more prevalent in mammals. Cholesterol is an amphiphile that associates with membranes and serves to maintain its fluidity and permeability. Membrane-active peptides, such as the alpha-helical peptide alamethicin, interact with membranes in a concentration- and composition-dependent manner to form transmembrane pores that are responsible for the lytic action of the peptide. Through the use of small-angle neutron scattering and deuterium labeling, it was possible to observe a redistribution of the lipid and cholesterol in unilamellar vesicles in response to the presence of alamethicin at a peptide-to-lipid ratio of 1/200. The results demonstrate that the membrane remodeling powers of alamethicin reach beyond the membrane thinning effect to altering the localization of specific components in the bilayer, complementing the accepted two-state mechanism of pore formation. Research was supported by U. S. DOE-OBER (CSMB; FWP ERKP291) and the U. S. DOE-BES Scientific User Facilities Division (ORNL's SNS and HFIR).

  10. Sustained Epigenetic Drug Delivery Depletes Cholesterol-Sphingomyelin Rafts from Resistant Breast Cancer Cells, Influencing Biophysical Characteristics of Membrane Lipids.

    PubMed

    Raghavan, Vijay; Vijayaraghavalu, Sivakumar; Peetla, Chiranjeevi; Yamada, Masayoshi; Morisada, Megan; Labhasetwar, Vinod

    2015-10-27

    Cell-membrane lipid composition can greatly influence biophysical properties of cell membranes, affecting various cellular functions. We previously showed that lipid synthesis becomes altered in the membranes of resistant breast cancer cells (MCF-7/ADR); they form a more rigid, hydrophobic lipid monolayer than do sensitive cell membranes (MCF-7). These changes in membrane lipids of resistant cells, attributed to epigenetic aberration, significantly affected drug transport and endocytic function, thus impacting the efficacy of anticancer drugs. The present study's objective was to determine the effects of the epigenetic drug, 5-aza-2'-deoxycytidine (DAC), delivered in sustained-release nanogels (DAC-NGs), on the composition and biophysical properties of membrane lipids of resistant cells. Resistant and sensitive cells were treated with DAC in solution (DAC-sol) or DAC-NGs, and cell-membrane lipids were isolated and analyzed for lipid composition and biophysical properties. In resistant cells, we found increased formation of cholesterol-sphingomyelin (CHOL-SM) rafts with culturing time, whereas DAC treatment reduced their formation. In general, the effect of DAC-NGs was greater in changing the lipid composition than with DAC-sol. DAC treatment also caused a rise in levels of certain phospholipids and neutral lipids known to increase membrane fluidity, while reducing the levels of certain lipids known to increase membrane rigidity. Isotherm data showed increased lipid membrane fluidity following DAC treatment, attributed to decrease levels of CHOL-SM rafts (lamellar beta [Lβ] structures or ordered gel) and a corresponding increase in lipids that form lamellar alpha-structures (Lα, liquid crystalline phase). Sensitive cells showed marginal or insignificant changes in lipid profile following DAC-treatment, suggesting that epigenetic changes affecting lipid biosynthesis are more specific to resistant cells. Since membrane fluidity plays a major role in drug transport

  11. The effect of charged lipids on bacteriorhodopsin membrane reconstitution and its photochemical activities

    SciTech Connect

    Wang Zhen; Bai Jing; Xu Yuhong

    2008-07-11

    Bacteriorhodopsin (BR) was reconstituted into artificial lipid membrane containing various charged lipid compositions. The proton pumping activity of BR under flash and continuous illumination, proton permeability across membrane, as well as the decay kinetics of the photocycle intermediate M{sub 412} were studied. The results showed that lipid charges would significantly affect the orientation of BR inserted into lipid membranes. In liposomes containing anionic lipids, BRs were more likely to take natural orientation as in living cells. In neutral or positively charged liposomes, most BRs were reversely assembled, assuming an inside out orientation. Moreover, the lipids charges also affect BR's M intermediate kinetics, especially the slow component in M intermediate decay. The half-life M{sub 412s} increased significantly in BRs in liposomes containing cationic lipids, while decreased in those in anionic liposomes.

  12. Finite element modeling of lipid bilayer membranes

    NASA Astrophysics Data System (ADS)

    Feng, Feng; Klug, William S.

    2006-12-01

    A numerical simulation framework is presented for the study of biological membranes composed of lipid bilayers based on the finite element method. The classic model for these membranes employs a two-dimensional-fluid-like elastic constitutive law which is sensitive to curvature, and subjects vesicles to physically imposed constraints on surface area and volume. This model is implemented numerically via the use of C1-conforming triangular Loop subdivision finite elements. The validity of the framework is tested by computing equilibrium shapes from previously-determined axisymmetric shape-phase diagram of lipid bilayer vesicles with homogeneous material properties. Some of the benefits and challenges of finite element modeling of lipid bilayer systems are discussed, and it is indicated how this framework is natural for future investigation of biologically realistic bilayer structures involving nonaxisymmetric geometries, binding and adhesive interactions, heterogeneous mechanical properties, cytoskeletal interactions, and complex loading arrangements. These biologically relevant features have important consequences for the shape mechanics of nonidealized vesicles and cells, and their study requires not simply advances in theory, but also advances in numerical simulation techniques, such as those presented here.

  13. Studying lipid organization in biological membranes using liposomes and EPR spin labeling

    PubMed Central

    Subczynski, Witold K.; Raguz, Marija; Widomska, Justyna

    2015-01-01

    Summary Electron paramagnetic resonance (EPR) spin-labeling methods provide a unique opportunity to determine the lateral organization of lipid bilayer membranes by discrimination of coexisting membrane domains or coexisting membrane phases. In some cases, the coexisting membrane domains can be characterized by profiles of alkyl chain order, fluidity, hydrophobicity, and oxygen diffusion-concentration product in situ, without the need for their physical separation. This chapter briefly explains how the EPR spin-labeling methods can be used to obtain the above mentioned profiles across the lipid bilayer membranes (liposomes) derived from the lipid extract of certain biological membranes. These procedures will be illustrated by EPR measurements performed for multilamellar liposomes made of the lipid extracts from cortical and nuclear fractions of the fiber cell plasma membranes of a cow eye lens. To elucidate better the major factors that determine membrane properties, the results for eye lens lipid membranes will be compared with those obtained for simple model membranes resembling basic lipid composition of biological membranes. PMID:20013402

  14. Proving lipid rafts exist: membrane domains in the prokaryote Borrelia burgdorferi have the same properties as eukaryotic lipid rafts.

    PubMed

    LaRocca, Timothy J; Pathak, Priyadarshini; Chiantia, Salvatore; Toledo, Alvaro; Silvius, John R; Benach, Jorge L; London, Erwin

    2013-01-01

    Lipid rafts in eukaryotic cells are sphingolipid and cholesterol-rich, ordered membrane regions that have been postulated to play roles in many membrane functions, including infection. We previously demonstrated the existence of cholesterol-lipid-rich domains in membranes of the prokaryote, B. burgdorferi, the causative agent of Lyme disease [LaRocca et al. (2010) Cell Host & Microbe 8, 331-342]. Here, we show that these prokaryote membrane domains have the hallmarks of eukaryotic lipid rafts, despite lacking sphingolipids. Substitution experiments replacing cholesterol lipids with a set of sterols, ranging from strongly raft-promoting to raft-inhibiting when mixed with eukaryotic sphingolipids, showed that sterols that can support ordered domain formation are both necessary and sufficient for formation of B. burgdorferi membrane domains that can be detected by transmission electron microscopy or in living organisms by Förster resonance energy transfer (FRET). Raft-supporting sterols were also necessary and sufficient for formation of high amounts of detergent resistant membranes from B. burgdorferi. Furthermore, having saturated acyl chains was required for a biotinylated lipid to associate with the cholesterol-lipid-rich domains in B. burgdorferi, another characteristic identical to that of eukaryotic lipid rafts. Sterols supporting ordered domain formation were also necessary and sufficient to maintain B. burgdorferi membrane integrity, and thus critical to the life of the organism. These findings provide compelling evidence for the existence of lipid rafts and show that the same principles of lipid raft formation apply to prokaryotes and eukaryotes despite marked differences in their lipid compositions.

  15. A model for surface diffusion of trans-membrane proteins on lipid bilayers

    NASA Astrophysics Data System (ADS)

    Agrawal, Ashutosh; Steigmann, David J.

    2011-06-01

    The equilibrium theory of lipid membranes is modified to include the effects of a continuous distribution of trans-membrane proteins. These influence membrane shape and evolve in accordance with a diffusive balance law. The model is purely mechanical in the absence of the proteins. Conditions ensuring energy dissipation in the presence of diffusion are given and an example constitutive function is used to simulate the coupled inertia-less interplay between membrane shape and protein distribution. The work extends an earlier continuum theory of equilibrium configurations of composite lipid-protein membranes to accommodate surface diffusion.

  16. Biological Membranes in Extreme Conditions: Simulations of Anionic Archaeal Tetraether Lipid Membranes

    PubMed Central

    Pineda De Castro, Luis Felipe; Dopson, Mark

    2016-01-01

    In contrast to the majority of organisms that have cells bound by di-ester phospholipids, archaeal membranes consist of di- and tetraether phospholipids. Originating from organisms that withstand harsh conditions (e.g., low pH and a wide range of temperatures) such membranes have physical properties that make them attractive materials for biological research and biotechnological applications. We developed force-field parameters based on the widely used Generalized Amber Force Field (GAFF) to enable the study of anionic tetraether membranes of the model archaean Sulfolobus acidocaldarius by computer simulations. The simulations reveal that the physical properties of these unique membranes depend on the number of cyclopentane rings included in each lipid unit, and on the size of cations that are used to ensure charge neutrality. This suggests that the biophysical properties of Sulfolobus acidocaldarius cells depend not only on the compositions of their membranes but also on the media in which they grow. PMID:27167213

  17. A sliding selectivity scale for lipid binding to membrane proteins

    PubMed Central

    Landreh, Michael; Marty, Michael T.; Gault, Joseph; Robinson, Carol V.

    2017-01-01

    Biological membranes form barriers that are essential for cellular integrity and compartmentalisation. Proteins that reside in the membrane have co-evolved with their hydrophobic lipid environment which serves as a solvent for proteins with very diverse requirements. As a result, membrane protein-lipid interactions range from completely non-selective to highly discriminating. Mass spectrometry (MS), in combination with X-ray crystallography and molecular dynamics simulations, enables us to monitor how lipids interact with intact membrane protein complexes and assess their effects on structure and dynamics. Recent studies illustrate the ability to differentiate specific lipid binding, preferential interactions with lipid subsets, and nonselective annular contacts. In this review, we consider the biological implications of different lipid-binding scenarios and propose that binding occurs on a sliding selectivity scale, in line with the view of biological membranes as facilitators of dynamic protein and lipid organization. PMID:27155089

  18. Force Field Development for Lipid Membrane Simulations.

    PubMed

    Lyubartsev, Alexander P; Rabinovich, Alexander L

    2016-10-01

    With the rapid development of computer power and wide availability of modelling software computer simulations of realistic models of lipid membranes, including their interactions with various molecular species, polypeptides and membrane proteins have become feasible for many research groups. The crucial issue of the reliability of such simulations is the quality of the force field, and many efforts, especially in the latest several years, have been devoted to parametrization and optimization of the force fields for biomembrane modelling. In this review, we give account of the recent development in this area, covering different classes of force fields, principles of the force field parametrization, comparison of the force fields, and their experimental validation. This article is part of a Special Issue entitled: Biosimulations edited by Ilpo Vattulainen and Tomasz Róg.

  19. Membrane Contact Sites: Complex Zones for Membrane Association and Lipid Exchange

    PubMed Central

    Quon, Evan; Beh, Christopher T.

    2015-01-01

    Lipid transport between membranes within cells involves vesicle and protein carriers, but as agents of nonvesicular lipid transfer, the role of membrane contact sites has received increasing attention. As zones for lipid metabolism and exchange, various membrane contact sites mediate direct associations between different organelles. In particular, membrane contact sites linking the plasma membrane (PM) and the endoplasmic reticulum (ER) represent important regulators of lipid and ion transfer. In yeast, cortical ER is stapled to the PM through membrane-tethering proteins, which establish a direct connection between the membranes. In this review, we consider passive and facilitated models for lipid transfer at PM–ER contact sites. Besides the tethering proteins, we examine the roles of an additional repertoire of lipid and protein regulators that prime and propagate PM–ER membrane association. We conclude that instead of being simple mediators of membrane association, regulatory components of membrane contact sites have complex and multilayered functions. PMID:26949334

  20. Modulation of Membrane Lipid Composition and Homeostasis in Salmon Hepatocytes Exposed to Hypoxia and Perfluorooctane Sulfonamide, Given Singly or in Combination

    PubMed Central

    Olufsen, Marianne; Cangialosi, Maria V.; Arukwe, Augustine

    2014-01-01

    The relative importance of environmental hypoxia due to global climate change on organismal ability to adapt to chemical insult and/or mechanisms of these responses is not well understood. Therefore, we have studied the effects of combined exposure to perfluorooctane sulfonamide (PFOSA) and chemically induced hypoxia on membrane lipid profile and homeostasis. Primary salmon hepatocytes were exposed to PFOSA at 0, 25 and 50 µM singly or in combination with either cobalt chloride (CoCl2: 0 and 150 µM) or deferroxamine (DFO: 0 and 100 µM) for 24 and 48 h. CoCl2 and DFO were used to induce cellular hypoxia because these two chemicals have been commonly used in animal experiments for this purpose and have been shown to increase hypoxia-inducible factor 1-alpha (HIF-1α) and vascular endothelial growth factor (VEGF) levels. Fatty acid (FA) profiles were determined by GC-MS, while gene expression patterns were determined by quantitative PCR. Hypoxic condition was confirmed with time-related increases of HIF-1α mRNA levels in CoCl2 and DFO exposed cells. In general, significant alterations of genes involved in lipid homeostasis were predominantly observed after 48 h exposure. Gene expression analysis showed that biological responses related to peroxisome proliferation (peroxisome proliferator-activated receptors (PPARs) and acyl coenzyme A (ACOX)) and FA desaturation (Δ5- and Δ6-desaturases: FAD5 and FAD6, respectively) and elongation (FAE) were elevated slightly by single exposure (i.e. either PFOSA, CoCl2 or DFO exposure alone), and these responses were potentiated in combined exposure conditions. Principal component analysis (PCA) showed a clustering of peroxisome proliferation responses at transcript levels and FA desaturation against membrane FAs levels whose changes were explained by PFOSA and chemically induced hypoxia exposures. Overall, our data show that most of the observed responses were stronger in combined stressor exposure conditions, compared to

  1. Lipid-lipid and lipid-drug interactions in biological membranes

    NASA Astrophysics Data System (ADS)

    Martynowycz, Michael W.

    Interactions between lipids and drug molecules in biological membranes help govern proper biological function in organisms. The mechanisms responsible for hydrophobic drug permeation remain elusive. Many small molecule drugs are hydrophobic. These drugs inhibit proteins in the cellular interior. The rise of antibiotic resistance in bacteria is thought to be caused by mutations in protein structure, changing drug kinetics to favor growth. However, small molecule drugs have been shown to have different mechanisms depending in the structure of the lipid membrane of the target cell. Biological membranes are investigated using Langmuir monolayers at the air-liquid interface. These offer the highest level of control in the mimetic system and allow them to be investigated using complementary techniques. Langmuir isotherms and insertion assays are used to determine the area occupied by each lipid in the membrane and the change in area caused by the introduction of a drug molecule, respectively. Specular X-ray reflectivity is used to determine the electron density of the monolayer, and grazing incidence X-ray diffraction is used to determine the in-plane order of the monolayer. These methods determine the affinity of the drug and the mechanism of action. Studies are presented on hydrophobic drugs with mammalian membrane mimics using warfarin along with modified analogues, called superwarfarins. Data shows that toxicity of these modified drugs are modulated by the membrane cholesterol content in cells; explaining several previously unexplained effects of the drugs. Membrane mimics of bacteria are investigated along with their interactions with a hydrophobic antibiotic, novobiocin. Data suggests that permeation of the drug is mediated by modifications to the membrane lipids, and completely ceases translocation under certain circumstances. Circumventing deficiencies in small, hydrophobic drugs is approached by using biologically mimetic oligomers. Peptoids, mimetic of host

  2. Crystallizing Membrane Proteins Using Lipidic Mesophases

    PubMed Central

    Caffrey, Martin; Cherezov, Vadim

    2009-01-01

    A detailed protocol for crystallizing membrane proteins that makes use of lipidic mesophases is described. This has variously been referred to as the lipid cubic phase or in meso method. The method has been shown to be quite general in that it has been used to solve X-ray crystallographic structures of prokaryotic and eukaryotic proteins, proteins that are monomeric, homo- and hetero-multimeric, chromophore-containing and chromophore-free, and α-helical and β-barrel proteins. Its most recent successes are the human engineered β2-adrenergic and adenosine A2A G protein-coupled receptors. Protocols are provided for preparing and characterizing the lipidic mesophase, for reconstituting the protein into the monoolein-based mesophase, for functional assay of the protein in the mesophase, and for setting up crystallizations in manual mode. Methods for harvesting micro-crystals are also described. The time required to prepare the protein-loaded mesophase and to set up a crystallization plate manually is about one hour. PMID:19390528

  3. Biophysical interactions with model lipid membranes: applications in drug discovery and drug delivery

    PubMed Central

    Peetla, Chiranjeevi; Stine, Andrew; Labhasetwar, Vinod

    2009-01-01

    The transport of drugs or drug delivery systems across the cell membrane is a complex biological process, often difficult to understand because of its dynamic nature. In this regard, model lipid membranes, which mimic many aspects of cell-membrane lipids, have been very useful in helping investigators to discern the roles of lipids in cellular interactions. One can use drug-lipid interactions to predict pharmacokinetic properties of drugs, such as their transport, biodistribution, accumulation, and hence efficacy. These interactions can also be used to study the mechanisms of transport, based on the structure and hydrophilicity/hydrophobicity of drug molecules. In recent years, model lipid membranes have also been explored to understand their mechanisms of interactions with peptides, polymers, and nanocarriers. These interaction studies can be used to design and develop efficient drug delivery systems. Changes in the lipid composition of cells and tissue in certain disease conditions may alter biophysical interactions, which could be explored to develop target-specific drugs and drug delivery systems. In this review, we discuss different model membranes, drug-lipid interactions and their significance, studies of model membrane interactions with nanocarriers, and how biophysical interaction studies with lipid model membranes could play an important role in drug discovery and drug delivery. PMID:19432455

  4. Elucidating how bamboo salt interacts with supported lipid membranes: influence of alkalinity on membrane fluidity.

    PubMed

    Jeong, Jong Hee; Choi, Jae-Hyeok; Kim, Min Chul; Park, Jae Hyeon; Herrin, Jason Scott; Kim, Seung Hyun; Lee, Haiwon; Cho, Nam-Joon

    2015-07-01

    Bamboo salt is a traditional medicine produced from sea salt. It is widely used in Oriental medicine and is an alkalizing agent with reported antiinflammatory, antimicrobial and chemotherapeutic properties. Notwithstanding, linking specific molecular mechanisms with these properties has been challenging to establish in biological systems. In part, this issue may be related to bamboo salt eliciting nonspecific effects on components found within these systems. Herein, we investigated the effects of bamboo salt solution on supported lipid bilayers as a model system to characterize the interaction between lipid membranes and bamboo salt. The atomic composition of unprocessed and processed bamboo salts was first analyzed by mass spectrometry, and we identified several elements that have not been previously reported in other bamboo salt preparations. The alkalinity of hydrated samples was also measured and determined to be between pH 10 and 11 for bamboo salts. The effect of processed bamboo salt solutions on the fluidic properties of a supported lipid bilayer on glass was next investigated by fluorescence recovery after photobleaching (FRAP) analysis. It was demonstrated that, with increasing ionic strength of the bamboo salt solution, the fluidity of a lipid bilayer increased. On the contrary, increasing the ionic strength of near-neutral buffer solutions with sodium chloride salt diminished fluidity. To reconcile these two observations, we identified that solution alkalinity is critical for the effects of bamboo salt on membrane fluidity, as confirmed using three additional commercial bamboo salt preparations. Extended-DLVO model calculations support that the effects of bamboo salt on lipid membranes are due to the alkalinity imparting a stronger hydration force. Collectively, the results of this work demonstrate that processing of bamboo salt strongly affects its atomic composition and that the alkalinity of bamboo salt solutions contributes to its effect on membrane

  5. Membrane lipids and sodium pumps of cattle and crocodiles: an experimental test of the membrane pacemaker theory of metabolism.

    PubMed

    Wu, B J; Hulbert, A J; Storlien, L H; Else, P L

    2004-09-01

    The influence of membrane lipid composition on the molecular activity of a major membrane protein (the sodium pump) was examined as a test of the membrane pacemaker theory of metabolism. Microsomal membranes from the kidneys of cattle (Bos taurus) and crocodiles (Crocodylus porosus) were found to possess similar sodium pump concentrations, but cattle membranes showed a four- to fivefold higher enzyme (Na(+)-K(+)-ATPase) activity when measured at 37 degrees C. The molecular activity of the sodium pumps (ATP/min) from both species was fully recoverable when delipidated pumps were reconstituted with membrane from the original source (same species). The results of experiments involving species membrane crossovers showed cattle sodium pump molecular activity to progressively decrease from 3,245 to 1,953 (P < 0.005) to 1,031 (P < 0.003) ATP/min when subjected to two cycles of delipidation and reconstitution with crocodile membrane as a lipid source. In contrast, the molecular activity of crocodile sodium pumps progressively increased from 729 to 908 (P < 0.01) to 1,476 (P = 0.01) ATP/min when subjected to two cycles of delipidation and reconstitution with cattle membrane as a lipid source. The lipid composition of the two membrane preparations showed similar levels of saturated ( approximately 31-34%) and monounsaturated ( approximately 23-25%) fatty acids. Cattle membrane had fourfold more n-3 polyunsaturated fatty acids (11.2 vs. 2.9%) but had a reduced n-6 polyunsaturate content (29 vs. 43%). The results support the membrane pacemaker theory of metabolism and suggest membrane lipids and their polyunsaturates play a significant role in determining the molecular activity of the sodium pump.

  6. Membrane interaction of antimicrobial peptides using E. coli lipid extract as model bacterial cell membranes and SFG spectroscopy.

    PubMed

    Soblosky, Lauren; Ramamoorthy, Ayyalusamy; Chen, Zhan

    2015-04-01

    Supported lipid bilayers are used as a convenient model cell membrane system to study biologically important molecule-lipid interactions in situ. However, the lipid bilayer models are often simple and the acquired results with these models may not provide all pertinent information related to a real cell membrane. In this work, we use sum frequency generation (SFG) vibrational spectroscopy to study molecular-level interactions between the antimicrobial peptides (AMPs) MSI-594, ovispirin-1 G18, magainin 2 and a simple 1,2-dipalmitoyl-d62-sn-glycero-3-phosphoglycerol (dDPPG)/1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol (POPG) bilayer. We compared such interactions to those between the AMPs and a more complex dDPPG/Escherichia coli (E. coli) polar lipid extract bilayer. We show that to fully understand more complex aspects of peptide-bilayer interaction, such as interaction kinetics, a heterogeneous lipid composition is required, such as the E. coli polar lipid extract. The discrepancy in peptide-bilayer interaction is likely due in part to the difference in bilayer charge between the two systems since highly negative charged lipids can promote more favorable electrostatic interactions between the peptide and lipid bilayer. Results presented in this paper indicate that more complex model bilayers are needed to accurately analyze peptide-cell membrane interactions and demonstrates the importance of using an appropriate lipid composition to study AMP interaction properties.

  7. Layered plasma polymer composite membranes

    DOEpatents

    Babcock, W.C.

    1994-10-11

    Layered plasma polymer composite fluid separation membranes are disclosed, which comprise alternating selective and permeable layers for a total of at least 2n layers, where n is [>=]2 and is the number of selective layers. 2 figs.

  8. Composite solid polymer electrolyte membranes

    DOEpatents

    Formato, Richard M.; Kovar, Robert F.; Osenar, Paul; Landrau, Nelson; Rubin, Leslie S.

    2001-06-19

    The present invention relates to composite solid polymer electrolyte membranes (SPEMs) which include a porous polymer substrate interpenetrated with an ion-conducting material. SPEMs of the present invention are useful in electrochemical applications, including fuel cells and electrodialysis.

  9. Composite solid polymer electrolyte membranes

    DOEpatents

    Formato, Richard M.; Kovar, Robert F.; Osenar, Paul; Landrau, Nelson; Rubin, Leslie S.

    2006-05-30

    The present invention relates to composite solid polymer electrolyte membranes (SPEMs) which include a porous polymer substrate interpenetrated with an ion-conducting material. SPEMs of the present invention are useful in electrochemical applications, including fuel cells and electrodialysis.

  10. [Role of membrane lipids in myocardial cytoprotection

    NASA Technical Reports Server (NTRS)

    Grynberg, A.

    2000-01-01

    The cardiomyocyte capacity to regulate ATP production to face any change in energy demand is a major determinant of cardiac function. This process is based on a balanced fatty acid (FA) metabolism, because FA is the main fuel of the heart, although the most expensive one in oxygen. The pathway is, however, weakly controlled by the cardiac myocyte which can well regulate FA mitochondrial entry but not cell FA uptake. For this reason, several pathological situations often result from either harmful accumulation of FA and derivatives or excess FA-oxidation. Control of the FA/glucose balance by decreased energy production from FA would thus offer an alternative strategy in the treatment of ischaemia, providing the cardiomyocytes weak ability in handling the non-metabolised FA is controlled. The initiation and the regulation of cardiac contraction both result from membrane activity; the other major role of lipids in the heart is their contribution to membrane homeostasis through phospholipid synthesis pathways and phospholipases. The anti-anginal activity of Trimetazidine, reported as a cytoprotective effect without a haemo-dynamic component; is associated with reduced use of FA for energy. However, accumulation of FA and derivatives has never been observed. Trimetazidine is reported to increase significantly the synthesis of phospholipids without influencing the other lipid classes, thus increasing the incorporation of FA in membrane structures. This cytoprotection appears to be based on the redirection of the use of FA to phospholipid synthesis, which would decrease their availability for energy production. This class of compounds, with the same properties as Trimetazidine, offers a metabolic approach to the treatment of ischaemia.

  11. Aspirin inhibits formation of cholesterol rafts in fluid lipid membranes.

    PubMed

    Alsop, Richard J; Toppozini, Laura; Marquardt, Drew; Kučerka, Norbert; Harroun, Thad A; Rheinstädter, Maikel C

    2015-03-01

    Aspirin and other non-steroidal anti-inflammatory drugs have a high affinity for phospholipid membranes, altering their structure and biophysical properties. Aspirin has been shown to partition into the lipid head groups, thereby increasing membrane fluidity. Cholesterol is another well known mediator of membrane fluidity, in turn increasing membrane stiffness. As well, cholesterol is believed to distribute unevenly within lipid membranes leading to the formation of lipid rafts or plaques. In many studies, aspirin has increased positive outcomes for patients with high cholesterol. We are interested if these effects may be, at least partially, the result of a non-specific interaction between aspirin and cholesterol in lipid membranes. We have studied the effect of aspirin on the organization of 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC) membranes containing cholesterol. Through Langmuir-Blodgett experiments we show that aspirin increases the area per lipid and decreases compressibility at 32.5 mol% cholesterol, leading to a significant increase of fluidity of the membranes. Differential scanning calorimetry provides evidence for the formation of meta-stable structures in the presence of aspirin. The molecular organization of lipids, cholesterol and aspirin was studied using neutron diffraction. While the formation of rafts has been reported in binary DPPC/cholesterol membranes, aspirin was found to locally disrupt membrane organization and lead to the frustration of raft formation. Our results suggest that aspirin is able to directly oppose the formation of cholesterol structures through non-specific interactions with lipid membranes.

  12. Lipids: architects and regulators of membrane dynamics and trafficking.

    PubMed

    Moreau, Patrick

    2007-05-01

    We have recently shown that an inhibition of sterol synthesis by fenpropimorph leads to an accumulation of sterol precursors, hydroxypalmitic acid-containing glucosylceramides and detergent resistant membranes in the Golgi bodies instead of the plasma membrane, suggesting that the individual molecules or the microdomains were blocked in the Golgi. These results and others from several eukaryotic models link lipid metabolism with membrane morphodynamics that are involved in membrane trafficking. Focus has been expanded to other lipid families, and numerous evidences are given showing lipids and lipid-modifying enzymes as key regulators of membrane homeostasis which can strongly regulate membrane morphodynamics and therefore trafficking. Beside protein-based machineries, lipid-based machineries are also shown as crucial regulatory forces involved in protein transport and sorting.

  13. MOLECULAR GENETIC AND BIOCHEMICAL APPROACHES FOR DEFINING LIPID-DEPENDENT MEMBRANE PROTEIN FOLDING

    PubMed Central

    Dowhan, William; Bogdanov, Mikhail

    2011-01-01

    We provide an overview of lipid-dependent polytopic membrane protein folding and topogenesis. Lipid dependence of this process was determined by employing Escherichia coli cells in which specific lipids can be eliminated, substituted, tightly titrated or controlled temporally during membrane protein synthesis and assembly. The secondary transport protein lactose permease (LacY) was used to establish general principles underlying the molecular basis of lipid-dependent effects on protein domain folding, protein transmembrane domain (TM) orientation, and function. These principles were then extended to several other secondary transport proteins of E. coli. The methods used to follow proper conformational organization of protein domains and the topological organization of protein TMs in whole cells and membranes are described. The proper folding of an extramembrane domain of LacY that is crucial for energy dependent uphill transport function depends on specific lipids acting as non-protein molecular chaperones. Correct TM topogenesis is dependent on charge interactions between the cytoplasmic surface of membrane proteins and a proper balance of the membrane surface net charge defined by the lipid head groups. Short-range interactions between the nascent protein chain and the translocon are necessary but not sufficient for establishment of final topology. After release from the translocon short-range interactions between lipid head groups and the nascent protein chain, partitioning of protein hydrophobic domains into the membrane bilayer, and long–range interactions within the protein thermodynamically drive final membrane protein organization. Given the diversity of membrane lipid compositions throughout nature, it is tempting to speculate that during the course of evolution the physical and chemical properties of proteins and lipids have co-evolved in the context of the lipid environment of membrane systems in which both are mutually depend on each other for

  14. Electroporation of archaeal lipid membranes using MD simulations.

    PubMed

    Polak, Andraž; Tarek, Mounir; Tomšič, Matija; Valant, Janez; Ulrih, Nataša Poklar; Jamnik, Andrej; Kramar, Peter; Miklavčič, Damijan

    2014-12-01

    Molecular dynamics (MD) simulations were used to investigate the electroporation of archaeal lipid bilayers when subjected to high transmembrane voltages induced by a charge imbalance, mimicking therefore millisecond electric pulse experiments. The structural characteristics of the bilayer, a 9:91 mol% 2,3-di-O-sesterterpanyl-sn-glicerol-1-phospho-myo-inositol (AI) and 2,3-di-O-sesterterpanyl-sn-glicerol-1-phospho-1'(2'-O-α-D-glucosyl)-myo-inositol (AGI) were compared to small angle X-ray scattering data. A rather good agreement of the electron density profiles at temperatures of 298 and 343 K was found assessing therefore the validity of the protocols and force fields used in simulations. Compared to dipalmitoyl-phosphatidylcholine (DPPC), the electroporation threshold for the bilayer was found to increase from ~2 V to 4.3 V at 323 K, and to 5.2 V at 298 K. Comparing the electroporation thresholds of the archaeal lipids to those of simple diphytanoyl-phosphatidylcholine (DPhPC) bilayers (2.5 V at 323 K) allowed one to trace back the stability of the membranes to the structure of their lipid head groups. Addition of DPPC in amounts of 50 mol% to the archaeal lipid bilayers decreases their stability and lowers the electroporation thresholds to 3.8 V and 4.1 V at respectively 323 and 298 K. The present study therefore shows how membrane compositions can be selected to cover a wide range of responses to electric stimuli. This provides new routes for the design of liposomes that can be efficiently used as drug delivery carriers, as the selection of their composition allows one to tune in their electroporation threshold for subsequent release of their load.

  15. Membrane lipid profiles of coral responded to zinc oxide nanoparticle-induced perturbations on the cellular membrane.

    PubMed

    Tang, Chuan-Ho; Lin, Ching-Yu; Lee, Shu-Hui; Wang, Wei-Hsien

    2017-03-31

    Zinc oxide nanoparticles (nZnOs) released from popular sunscreens used during marine recreation apparently endanger corals; however, the known biological effects are very limited. Membrane lipids constitute the basic structural element to create cell a dynamic structure according to the circumstance. Nano-specific effects have been shown to mechanically perturb the physical state of the lipid membrane, and the cells accommodating the actions of nZnOs can be involved in the alteration of the membrane lipid composition. To gain insight into the effects of nanoparticles on coral, glycerophosphocholine (GPC) profiling of the coral Seriatopora caliendrum exposed to nZnOs was performed in this study. Increasing lyso-GPCs, docosapentaenoic acid-possessing GPCs and docosahexaenoic acid-possessing GPCs and decreasing arachidonic acid-possessing GPCs were the predominant changes responded to nZnO exposure in the coral. A backfilling of polyunsaturated plasmanylcholines was observed in the coral exposed to nZnO levels over a threshold. These changes can be logically interpreted as an accommodation to nZnOs-induced mechanical disturbances in the cellular membrane based on the biophysical properties of the lipids. Moreover, the coral demonstrated a difference in the changes in lipid profiles between intra-colonial functionally differentiated polyps, indicating an initial membrane composition-dependent response. Based on the physicochemical properties and physiological functions of these changed lipids, some chronic biological effects can be incubated once the coral receives long-term exposure to nZnOs.

  16. Dynamic sorting of lipids and proteins in membrane tubes with a moving phase boundary

    PubMed Central

    Heinrich, Michael; Tian, Aiwei; Esposito, Cinzia; Baumgart, Tobias

    2010-01-01

    Cellular organelle membranes maintain their integrity, global shape, and composition despite vigorous exchange among compartments of lipids and proteins during trafficking and signaling. Organelle homeostasis involves dynamic molecular sorting mechanisms that are far from being understood. In contrast, equilibrium thermodynamics of membrane mixing and sorting, particularly the phase behavior of binary and ternary model membrane mixtures and its coupling to membrane mechanics, is relatively well characterized. Elucidating the continuous turnover of live cell membranes, however, calls for experimental and theoretical membrane models enabling manipulation and investigation of directional mass transport. Here we introduce the phenomenon of curvature-induced domain nucleation and growth in membrane mixtures with fluid phase coexistence. Membrane domains were consistently observed to nucleate precisely at the junction between a strongly curved cylindrical (tube) membrane and a pipette-aspirated giant unilamellar vesicle. This experimental geometry mimics intracellular sorting compartments, because they often show tubular-vesicular membrane regions. Nucleated domains at tube necks were observed to present diffusion barriers to the transport of lipids and proteins. We find that curvature-nucleated domains grow with characteristic parabolic time dependence that is strongly curvature-dependent. We derive an analytical model that reflects the observed growth dynamics. Numerically calculated membrane shapes furthermore allow us to elucidate mechanical details underlying curvature-dependent directed lipid transport. Our observations suggest a novel dynamic membrane sorting principle that may contribute to intracellular protein and lipid sorting and trafficking. PMID:20368457

  17. Membrane lipids in Agrobacterium tumefaciens: biosynthetic pathways and importance for pathogenesis

    PubMed Central

    Aktas, Meriyem; Danne, Linna; Möller, Philip; Narberhaus, Franz

    2014-01-01

    Many cellular processes critically depend on the membrane composition. In this review, we focus on the biosynthesis and physiological roles of membrane lipids in the plant pathogen Agrobacterium tumefaciens. The major components of A. tumefaciens membranes are the phospholipids (PLs), phosphatidylethanolamine (PE), phosphatidylglycerol, phosphatidylcholine (PC) and cardiolipin, and ornithine lipids (OLs). Under phosphate-limited conditions, the membrane composition shifts to phosphate-free lipids like glycolipids, OLs and a betaine lipid. Remarkably, PC and OLs have opposing effects on virulence of A. tumefaciens. OL-lacking A. tumefaciens mutants form tumors on the host plant earlier than the wild type suggesting a reduced host defense response in the absence of OLs. In contrast, A. tumefaciens is compromised in tumor formation in the absence of PC. In general, PC is a rare component of bacterial membranes but amount to ~22% of all PLs in A. tumefaciens. PC biosynthesis occurs via two pathways. The phospholipid N-methyltransferase PmtA methylates PE via the intermediates monomethyl-PE and dimethyl-PE to PC. In the second pathway, the membrane-integral enzyme PC synthase (Pcs) condenses choline with CDP-diacylglycerol to PC. Apart from the virulence defect, PC-deficient A. tumefaciens pmtA and pcs double mutants show reduced motility, enhanced biofilm formation and increased sensitivity towards detergent and thermal stress. In summary, there is cumulative evidence that the membrane lipid composition of A. tumefaciens is critical for agrobacterial physiology and tumor formation. PMID:24723930

  18. Non-additive compositional curvature energetics of lipid bilayers

    PubMed Central

    Sodt, A.J.; Venable, R.M.; Lyman, E.; Pastor, R.W.

    2016-01-01

    The unique properties of the individual lipids that compose biological membranes together determine the energetics of the surface. The energetics of the surface in turn govern the formation of membrane structures and membrane reshaping processes, and will thus underlie cellular-scale models of viral fusion, vesicle-dependent transport, and lateral organization relevant to signaling. The spontaneous curvature, to the best of our knowledge, is always assumed to be additive. The letter describes observations from simulations of unexpected non-additive compositional curvature energetics of two lipids essential to the plasma membrane: sphingomyelin and cholesterol. A model is developed that connects molecular interactions to curvature stress, and which explains the role of local composition. Cholesterol is shown to lower the number of effective Kuhn segments of saturated acyl chains, reducing lateral pressure below the neutral surface of bending and favoring positive curvature. The effect is not observed for unsaturated (flexible) acyl chains. Likewise, hydrogen bonding between sphingomyelin lipids leads to positive curvature, but only at sufficient concentration, below which the lipid prefers negative curvature. PMID:27715135

  19. Polar lipid composition of a new halobacterium

    NASA Technical Reports Server (NTRS)

    Tindall, B. J.; Tomlinson, G. A.; Hochstein, L. I.

    1987-01-01

    Investigations of the polar lipid composition of a new aerobic, extremely halophilic aracheabacterium capable of nitrate reduction have shown that this organism contains two previously unknown phospholycolipids derived from diphytanyl glycerol diethers. Comparison of the lipid pattern from this new isolate with other known strains indicate that this organism is novel. On the basis of the unique polar lipid pattern it can be concluded that this organism represents a new taxon, at least at the species level.

  20. Electrophoretic separation method for membrane pore-forming proteins in multilayer lipid membranes.

    PubMed

    Okamoto, Yukihiro; Tsujimoto, Yusuke; Umakoshi, Hiroshi

    2016-03-01

    In this paper, we report on a novel electrophoretic separation and analysis method for membrane pore-forming proteins in multilayer lipid membranes (MLMs) in order to overcome the problems related to current separation and analysis methods of membrane proteins, and to obtain a high-performance separation method on the basis of specific properties of the lipid membranes. We constructed MLMs, and subsequently characterized membrane pore-forming protein behavior in MLMs. Through the use of these MLMs, we were able to successfully separate and analyze membrane pore-forming proteins in MLMs. To the best of our knowledge, this research is the first example of membrane pore-forming protein separation in lipid membranes. Our method can be expected to be applied for the separation and analysis of other membrane proteins including intrinsic membrane proteins and to result in high-performance by utilizing the specific properties of lipid membranes.

  1. Brain membrane lipids in major depression and anxiety disorders.

    PubMed

    Müller, Christian P; Reichel, Martin; Mühle, Christiane; Rhein, Cosima; Gulbins, Erich; Kornhuber, Johannes

    2015-08-01

    Major depression and anxiety disorders have high prevalence rates and are frequently comorbid. The neurobiological bases for these disorders are not fully understood, and available treatments are not always effective. Current models assume that dysfunctions in neuronal proteins and peptide activities are the primary causes of these disorders. Brain lipids determine the localization and function of proteins in the cell membrane and in doing so regulate synaptic throughput in neurons. Lipids may also leave the membrane as transmitters and relay signals from the membrane to intracellular compartments or to other cells. Here we review how membrane lipids, which play roles in the membrane's function as a barrier and a signaling medium for classical transmitter signaling, contribute to depression and anxiety disorders and how this role may provide targets for lipid-based treatment approaches. Preclinical findings have suggested a crucial role for the membrane-forming n-3 polyunsaturated fatty acids, glycerolipids, glycerophospholipids, and sphingolipids in the induction of depression- and anxiety-related behaviors. These polyunsaturated fatty acids also offer new treatment options such as targeted dietary supplementation or pharmacological interference with lipid-regulating enzymes. While clinical trials support this view, effective lipid-based therapies may need more individualized approaches. Altogether, accumulating evidence suggests a crucial role for membrane lipids in the pathogenesis of depression and anxiety disorders; these lipids could be exploited for improved prevention and treatment. This article is part of a Special Issue entitled Brain Lipids.

  2. Steric Pressure among Membrane-Bound Polymers Opposes Lipid Phase Separation.

    PubMed

    Imam, Zachary I; Kenyon, Laura E; Carrillo, Adelita; Espinoza, Isai; Nagib, Fatema; Stachowiak, Jeanne C

    2016-04-19

    Lipid rafts are thought to be key organizers of membrane-protein complexes in cells. Many proteins that interact with rafts have bulky polymeric components such as intrinsically disordered protein domains and polysaccharide chains. Therefore, understanding the interaction between membrane domains and membrane-bound polymers provides insights into the roles rafts play in cells. Multiple studies have demonstrated that high concentrations of membrane-bound polymeric domains create significant lateral steric pressure at membrane surfaces. Furthermore, our recent work has shown that lateral steric pressure at membrane surfaces opposes the assembly of membrane domains. Building on these findings, here we report that membrane-bound polymers are potent suppressors of membrane phase separation, which can destabilize lipid domains with substantially greater efficiency than globular domains such as membrane-bound proteins. Specifically, we created giant vesicles with a ternary lipid composition, which separated into coexisting liquid ordered and disordered phases. Lipids with saturated tails and poly(ethylene glycol) (PEG) chains conjugated to their head groups were included at increasing molar concentrations. When these lipids were sparse on the membrane surface they partitioned to the liquid ordered phase. However, as they became more concentrated, the fraction of GUVs that were phase-separated decreased dramatically, ultimately yielding a population of homogeneous membrane vesicles. Experiments and physical modeling using compositions of increasing PEG molecular weight and lipid miscibility phase transition temperature demonstrate that longer polymers are the most efficient suppressors of membrane phase separation when the energetic barrier to lipid mixing is low. In contrast, as the miscibility transition temperature increases, longer polymers are more readily driven out of domains by the increased steric pressure. Therefore, the concentration of shorter polymers required

  3. MemProtMD: Automated Insertion of Membrane Protein Structures into Explicit Lipid Membranes

    PubMed Central

    Stansfeld, Phillip J.; Goose, Joseph E.; Caffrey, Martin; Carpenter, Elisabeth P.; Parker, Joanne L.; Newstead, Simon; Sansom, Mark S.P.

    2015-01-01

    Summary There has been exponential growth in the number of membrane protein structures determined. Nevertheless, these structures are usually resolved in the absence of their lipid environment. Coarse-grained molecular dynamics (CGMD) simulations enable insertion of membrane proteins into explicit models of lipid bilayers. We have automated the CGMD methodology, enabling membrane protein structures to be identified upon their release into the PDB and embedded into a membrane. The simulations are analyzed for protein-lipid interactions, identifying lipid binding sites, and revealing local bilayer deformations plus molecular access pathways within the membrane. The coarse-grained models of membrane protein/bilayer complexes are transformed to atomistic resolution for further analysis and simulation. Using this automated simulation pipeline, we have analyzed a number of recently determined membrane protein structures to predict their locations within a membrane, their lipid/protein interactions, and the functional implications of an enhanced understanding of the local membrane environment of each protein. PMID:26073602

  4. Pasting characteristics of starch-lipid composites

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Starch-lipid composites (SLC) have been used as fat replacers and stabilizers in beef patties, dairy products, and baked goods. The SLC are produced by mixing aqueous starch slurry with a lipid source, and steam jet-cooking. The SLC may be dried using a drum drier and then milled in a Retch mill. ...

  5. Photon correlation spectroscopy of bilayer lipid membranes.

    PubMed Central

    Crilly, J F; Earnshaw, J C

    1983-01-01

    Light scattering by thermal fluctuations on simple monoglyceride bilayer membranes has been used to investigate the viscoelastic properties of these structures. Spectroscopic analysis of these fluctuations (capillary waves) permits the nonperturbative measurement of the interfacial tension and a shear interfacial viscosity acting normal to the membrane plane. The methods were established by studies of solvent and nonsolvent bilayers of glycerol monooleate (GMO). Changes in the tension of GMO/n-decane membranes induced by altering the composition of the parent solution were detected and quantified. In a test of the reliability of the technique controlled variations of the viscosity of the aqueous bathing solution were accurately monitored. The technique was applied to solvent-free bilayers formed from dispersions of GMO in squalane. The lower tensions observed attested to the comparative absence of solvent in such bilayers. In contrast to the solvent case, the solvent-free membranes exhibited a significant transverse shear viscosity, indicative of the enhanced intermolecular interactions within the bilayer. PMID:6838962

  6. Membrane proteins, lipids and detergents: not just a soap opera.

    PubMed

    Seddon, Annela M; Curnow, Paul; Booth, Paula J

    2004-11-03

    Studying membrane proteins represents a major challenge in protein biochemistry, with one of the major difficulties being the problems encountered when working outside the natural lipid environment. In vitro studies such as crystallization are reliant on the successful solubilization or reconstitution of membrane proteins, which generally involves the careful selection of solubilizing detergents and mixed lipid/detergent systems. This review will concentrate on the methods currently available for efficient reconstitution and solubilization of membrane proteins through the use of detergent micelles, mixed lipid/detergent micelles and bicelles or liposomes. We focus on the relevant molecular properties of the detergents and lipids that aid understanding of these processes. A significant barrier to membrane protein research is retaining the stability and function of the protein during solubilization, reconstitution and crystallization. We highlight some of the lessons learnt from studies of membrane protein folding in vitro and give an overview of the role that lipids can play in stabilizing the proteins.

  7. Impact of fermentation pH and temperature on freeze-drying survival and membrane lipid composition of Lactobacillus coryniformis Si3.

    PubMed

    Schoug, Asa; Fischer, Janett; Heipieper, Hermann J; Schnürer, Johan; Håkansson, Sebastian

    2008-03-01

    During the industrial stabilization process, lactic acid bacteria are subjected to several stressful conditions. Tolerance to dehydration differs among lactic acid bacteria and the determining factors remain largely unknown. Lactobacillus coryniformis Si3 prevents spoilage by mold due to production of acids and specific antifungal compounds. This strain could be added as a biopreservative in feed systems, e.g. silage. We studied the survival of Lb. coryniformis Si3 after freeze-drying in a 10% skim milk and 5% sucrose formulation following different fermentation pH values and temperatures. Initially, a response surface methodology was employed to optimize final cell density and growth rate. At optimal pH and temperature (pH 5.5 and 34 degrees C), the freeze-drying survival of Lb. coryniformis Si3 was 67% (+/-6%). The influence of temperature or pH stress in late logarithmic phase was dependent upon the nature of the stress applied. Heat stress (42 degrees C) did not influence freeze-drying survival, whereas mild cold- (26 degrees C), base- (pH 6.5), and acid- (pH 4.5) stress significantly reduced survival. Freeze-drying survival rates varied fourfold, with the lowest survival following mild cold stress (26 degrees C) prior to freeze-drying and the highest survival after optimal growth or after mild heat (42 degrees C) stress. Levels of different membrane fatty acids were analyzed to determine the adaptive response in this strain. Fatty acids changed with altered fermentation conditions and the degree of membrane lipid saturation decreased when the cells were subjected to stress. This study shows the importance of selecting appropriate fermentation conditions to maximize freeze-drying viability of Lb. coryniformis as well as the effects of various unfavorable conditions during growth on freeze-drying survival.

  8. Interactions of intrinsically disordered Thellungiella salsuginea dehydrins TsDHN-1 and TsDHN-2 with membranes - synergistic effects of lipid composition and temperature on secondary structure.

    PubMed

    Rahman, Luna N; Chen, Lin; Nazim, Sumaiya; Bamm, Vladimir V; Yaish, Mahmoud W; Moffatt, Barbara A; Dutcher, John R; Harauz, George

    2010-10-01

    Dehydrins are intrinsically disordered (unstructured) proteins that are expressed in plants experiencing stressful conditions such as drought or low temperature. Dehydrins are typically found in the cytosol and nucleus, but also associate with chloroplasts, mitochondria, and the plasma membrane. Although their role is not completely understood, it has been suggested that they stabilize proteins or membrane structures during environmental stress, the latter association mediated by formation of amphipathic α-helices by conserved regions called the K-segments. Thellungiella salsuginea is a crucifer that thrives in the Canadian sub-Arctic (Yukon Territory) where it grows on saline-rich soils and experiences periods of both extreme cold and drought. We have cloned and expressed in Escherichia coli two dehydrins from this plant, denoted TsDHN-1 (acidic) and TsDHN-2 (basic). Here, we show using transmission-Fourier transform infrared (FTIR) spectroscopy that ordered secondary structure is induced and stabilized in these proteins by association with large unilamellar vesicles emulating the lipid compositions of plant plasma and organellar membranes. Moreover, this induced folding is enhanced at low temperatures, lending credence to the hypothesis that dehydrins stabilize plant outer and organellar membranes in conditions of cold.

  9. Counterion-mediated pattern formation in membranes containing anionic lipids

    PubMed Central

    Slochower, David R.; Wang, Yu-Hsiu; Tourdot, Richard W.; Radhakrishnan, Ravi; Janmey, Paul A.

    2014-01-01

    Most lipid components of cell membranes are either neutral, like cholesterol, or zwitterionic, like phosphatidylcholine and sphingomyelin. Very few lipids, such as sphingosine, are cationic at physiological pH. These generally interact only transiently with the lipid bilayer, and their synthetic analogs are often designed to destabilize the membrane for drug or DNA delivery. However, anionic lipids are common in both eukaryotic and prokaryotic cell membranes. The net charge per anionic phospholipid ranges from −1 for the most abundant anionic lipids such has phosphatidylserine, to near −7 for phosphatidylinositol 3,4,5 trisphosphate, although the effective charge depends on many environmental factors. Anionic phospholipids and other negatively charged lipids such as lipopolysaccharides are not randomly distributed in the lipid bilayer, but are highly restricted to specific leaflets of the bilayer and to regions near transmembrane proteins or other organized structures within the plane of the membrane. This review highlights some recent evidence that counterions, in the form of monovalent or divalent metal ions, polyamines, or cationic protein domains, have a large influence of the lateral distribution of anionic lipids within the membrane, and that lateral demixing of anionic lipids has effects on membrane curvature and protein function that are important for biological control. PMID:24556233

  10. Membrane lipids are key modulators of the endocannabinoid-hydrolase FAAH.

    PubMed

    Dainese, Enrico; De Fabritiis, Gianni; Sabatucci, Annalaura; Oddi, Sergio; Angelucci, Clotilde Beatrice; Di Pancrazio, Chiara; Giorgino, Toni; Stanley, Nathaniel; Del Carlo, Michele; Cravatt, Benjamin F; Maccarrone, Mauro

    2014-02-01

    Lipid composition is expected to play an important role in modulating membrane enzyme activity, in particular if the substrates are themselves lipid molecules. A paradigmatic case is FAAH (fatty acid amide hydrolase), an enzyme critical in terminating endocannabinoid signalling and an important therapeutic target. In the present study, using a combined experimental and computational approach, we show that membrane lipids modulate the structure, subcellular localization and activity of FAAH. We report that the FAAH dimer is stabilized by the lipid bilayer and shows a higher membrane-binding affinity and enzymatic activity within membranes containing both cholesterol and the natural FAAH substrate AEA (anandamide). Additionally, co-localization of cholesterol, AEA and FAAH in mouse neuroblastoma cells suggests a mechanism through which cholesterol increases the substrate accessibility of FAAH.

  11. Curvature forces in membrane lipid-protein interactions.

    PubMed

    Brown, Michael F

    2012-12-11

    Membrane biochemists are becoming increasingly aware of the role of lipid-protein interactions in diverse cellular functions. This review describes how conformational changes in membrane proteins, involving folding, stability, and membrane shape transitions, potentially involve elastic remodeling of the lipid bilayer. Evidence suggests that membrane lipids affect proteins through interactions of a relatively long-range nature, extending beyond a single annulus of next-neighbor boundary lipids. It is assumed the distance scale of the forces is large compared to the molecular range of action. Application of the theory of elasticity to flexible soft surfaces derives from classical physics and explains the polymorphism of both detergents and membrane phospholipids. A flexible surface model (FSM) describes the balance of curvature and hydrophobic forces in lipid-protein interactions. Chemically nonspecific properties of the lipid bilayer modulate the conformational energetics of membrane proteins. The new biomembrane model challenges the standard model (the fluid mosaic model) found in biochemistry texts. The idea of a curvature force field based on data first introduced for rhodopsin gives a bridge between theory and experiment. Influences of bilayer thickness, nonlamellar-forming lipids, detergents, and osmotic stress are all explained by the FSM. An increased awareness of curvature forces suggests that research will accelerate as structural biology becomes more closely entwined with the physical chemistry of lipids in explaining membrane structure and function.

  12. Curvature Forces in Membrane Lipid-Protein Interactions

    PubMed Central

    Brown, Michael F.

    2012-01-01

    Membrane biochemists are becoming increasingly aware of the role of lipid-protein interactions in diverse cellular functions. This review describes how conformational changes of membrane proteins—involving folding, stability, and membrane shape transitions—potentially involve elastic remodeling of the lipid bilayer. Evidence suggests that membrane lipids affect proteins through interactions of a relatively long-range nature, extending beyond a single annulus of next-neighbor boundary lipids. It is assumed the distance scale of the forces is large compared to the molecular range of action. Application of the theory of elasticity to flexible soft surfaces derives from classical physics, and explains the polymorphism of both detergents and membrane phospholipids. A flexible surface model (FSM) describes the balance of curvature and hydrophobic forces in lipid-protein interactions. Chemically nonspecific properties of the lipid bilayer modulate the conformational energetics of membrane proteins. The new biomembrane model challenges the standard model (the fluid mosaic model) found in biochemistry texts. The idea of a curvature force field based on data first introduced for rhodopsin gives a bridge between theory and experiment. Influences of bilayer thickness, nonlamellar-forming lipids, detergents, and osmotic stress are all explained by the FSM. An increased awareness of curvature forces suggests that research will accelerate as structural biology becomes more closely entwined with the physical chemistry of lipids in explaining membrane structure and function. PMID:23163284

  13. Effect of lipid structural modifications on their intermolecular hydrogen bonding interactions and membrane functions.

    PubMed

    Boggs, J M

    1986-01-01

    The large number of different membrane lipids with various structural modifications and properties and the characteristic lipid composition of different types of membranes suggest that different lipids have specific functions in the membrane. Many of the varying properties of lipids with different polar head groups and in different ionization states can be attributed to the presence of interactive or repulsive forces between the head groups in the bilayer. The interactive forces are hydrogen bonds between hydrogen bond donating groups such as --P--OH,--OH, and--NH3+ and hydrogen bond accepting groups such as --P--O- and --COO-. These interactions increase the lipid phase transition temperature and can account for the tendency of certain lipids to go into the hexagonal phase and the dependence of this tendency on the pH and ionization state of the lipid. The presence or absence of these interactions can also affect the penetration of hydrophobic substances into the bilayer, including hydrophobic residues of membrane proteins. Evidence for this suggestion has been gathered from studies of the myelin basic protein, a water-soluble protein with a number of hydrophobic residues. In this way the lipid composition can affect the conformation and activity of membrane proteins. Since hydrogen-bonding interactions depend on the ionization state of the lipid, they can be altered by changes in the environment which affect the pK of the ionizable groups. The formation of the hexagonal phase or inverted micelles, the conformation and activity of membrane proteins, and other functions mediated by lipids could thus be regulated in this way.

  14. The Interaction of Polyene Antibiotics with Thin Lipid Membranes

    PubMed Central

    Andreoli, Thomas E.; Monahan, Marcia

    1968-01-01

    Optically black, thin lipid membranes prepared from sheep erythrocyte lipids have a high dc resistance (Rm ≅ 108 ohm-cm2) when the bathing solutions contain NaCl or KCl. The ionic transference numbers (Ti) indicate that these membranes are cation-selective (TNa ≅ 0.85; TCl ≅ 0.15). These electrical properties are independent of the cholesterol content of the lipid solutions from which the membranes are formed. Nystatin, and probably amphotericin B, are cyclic polyene antibiotics containing ≈36 ring atoms and a free amino and carboxyl group. When the lipid solutions used to form membranes contained equimolar amounts of cholesterol and phospholipid, these antibiotics reduced Rm to ≈102 ohm-cm2; concomitantly, TCl became ≅0.92. The slope of the line relating log Rm and log antibiotic concentration was ≅4.5. Neither nystatin (2 x 10-5 M) nor amphotericin B (2 x 10-7 M) had any effect on membrane stability. The antibiotics had no effect on Rm or membrane permselectivity when the lipids used to form membranes were cholesterol-depleted. Filipin (10-5 M), an uncharged polyene with 28 ring atoms, produced striking membrane instability, but did not affect Rm or membrane ionic selectivity. These data suggest that amphotericin B or nystatin may interact with membrane-bound sterols to produce multimolecular complexes which greatly enhance the permeability of such membranes for anions (Cl-, acetate), and, to a lesser degree, cations (Na+, K+, Li+). PMID:5672005

  15. Membranes: a meeting point for lipids, proteins and therapies

    PubMed Central

    Escribá, Pablo V; González-Ros, José M; Goñi, Félix M; Kinnunen, Paavo K J; Vigh, Lászlo; Sánchez-Magraner, Lissete; Fernández, Asia M; Busquets, Xavier; Horváth, Ibolya; Barceló-Coblijn, Gwendolyn

    2008-01-01

    Abstract Membranes constitute a meeting point for lipids and proteins. Not only do they define the entity of cells and cytosolic organelles but they also display a wide variety of important functions previously ascribed to the activity of proteins alone. Indeed, lipids have commonly been considered a mere support for the transient or permanent association of membrane proteins, while acting as a selective cell/organelle barrier. However, mounting evidence demonstrates that lipids themselves regulate the location and activity of many membrane proteins, as well as defining membrane microdomains that serve as spatio-temporal platforms for interacting signalling proteins. Membrane lipids are crucial in the fission and fusion of lipid bilayers and they also act as sensors to control environmental or physiological conditions. Lipids and lipid structures participate directly as messengers or regulators of signal transduction. Moreover, their alteration has been associated with the development of numerous diseases. Proteins can interact with membranes through lipid co-/post-translational modifications, and electrostatic and hydrophobic interactions, van der Waals forces and hydrogen bonding are all involved in the associations among membrane proteins and lipids. The present study reviews these interactions from the molecular and biomedical point of view, and the effects of their modulation on the physiological activity of cells, the aetiology of human diseases and the design of clinical drugs. In fact, the influence of lipids on protein function is reflected in the possibility to use these molecular species as targets for therapies against cancer, obesity, neurodegenerative disorders, cardiovascular pathologies and other diseases, using a new approach called membrane-lipid therapy. PMID:18266954

  16. Membranes: a meeting point for lipids, proteins and therapies.

    PubMed

    Escribá, Pablo V; González-Ros, José M; Goñi, Félix M; Kinnunen, Paavo K J; Vigh, Lászlo; Sánchez-Magraner, Lissete; Fernández, Asia M; Busquets, Xavier; Horváth, Ibolya; Barceló-Coblijn, Gwendolyn

    2008-06-01

    Membranes constitute a meeting point for lipids and proteins. Not only do they define the entity of cells and cytosolic organelles but they also display a wide variety of important functions previously ascribed to the activity of proteins alone. Indeed, lipids have commonly been considered a mere support for the transient or permanent association of membrane proteins, while acting as a selective cell/organelle barrier. However, mounting evidence demonstrates that lipids themselves regulate the location and activity of many membrane proteins, as well as defining membrane microdomains that serve as spatio-temporal platforms for interacting signalling proteins. Membrane lipids are crucial in the fission and fusion of lipid bilayers and they also act as sensors to control environmental or physiological conditions. Lipids and lipid structures participate directly as messengers or regulators of signal transduction. Moreover, their alteration has been associated with the development of numerous diseases. Proteins can interact with membranes through lipid co-/post-translational modifications, and electrostatic and hydrophobic interactions, van der Waals forces and hydrogen bonding are all involved in the associations among membrane proteins and lipids. The present study reviews these interactions from the molecular and biomedical point of view, and the effects of their modulation on the physiological activity of cells, the aetiology of human diseases and the design of clinical drugs. In fact, the influence of lipids on protein function is reflected in the possibility to use these molecular species as targets for therapies against cancer, obesity, neurodegenerative disorders, cardiovascular pathologies and other diseases, using a new approach called membrane-lipid therapy.

  17. Control of lipid membrane stability by cholesterol content.

    PubMed Central

    Raffy, S; Teissié, J

    1999-01-01

    Cholesterol has a concentration-dependent effect on membrane organization. It is able to control the membrane permeability by inducing conformational ordering of the lipid chains. A systematic investigation of lipid bilayer permeability is described in the present work. It takes advantage of the transmembrane potential difference modulation induced in vesicles when an external electric field is applied. The magnitude of this modulation is under the control of the membrane electrical permeability. When brought to a critical value by the external field, the membrane potential difference induces a new membrane organization. The membrane is then permeable and prone to solubilized membrane protein back-insertion. This is obtained for an external field strength, which depends on membrane native permeability. This approach was used to study the cholesterol effect on phosphatidylcholine bilayers. Studies have been performed with lipids in gel and in fluid states. When cholesterol is present, it does not affect electropermeabilization and electroinsertion in lipids in the fluid state. When lipids are in the gel state, cholesterol has a dose-dependent effect. When present at 6% (mol/mol), cholesterol prevents electropermeabilization and electroinsertion. When cholesterol is present at more than 12%, electropermeabilization and electroinsertion are obtained under milder field conditions. This is tentatively explained by a cholesterol-induced alteration of the hydrophobic barrier of the bilayer core. Our results indicate that lipid membrane permeability is affected by the cholesterol content. PMID:10096902

  18. Regulation of Lipid Droplet Size in Mammary Epithelial Cells by Remodeling of Membrane Lipid Composition—A Potential Mechanism

    PubMed Central

    Cohen, Bat-Chen; Shamay, Avi; Argov-Argaman, Nurit

    2015-01-01

    Milk fat globule size is determined by the size of its precursors—intracellular lipid droplets—and is tightly associated with its composition. We examined the relationship between phospholipid composition of mammary epithelial cells and the size of both intracellular and secreted milk fat globules. Primary culture of mammary epithelial cells was cultured in medium without free fatty acids (control) or with 0.1 mM free capric, palmitic or oleic acid for 24 h. The amount and composition of the cellular lipids and the size of the lipid droplets were determined in the cells and medium. Mitochondrial quantity and expression levels of genes associated with mitochondrial biogenesis and polar lipid composition were determined. Cells cultured with oleic and palmitic acids contained similar quantities of triglycerides, 3.1- and 3.8-fold higher than in controls, respectively (P < 0.0001). When cultured with oleic acid, 22% of the cells contained large lipid droplets (>3 μm) and phosphatidylethanolamine concentration was higher by 23 and 63% compared with that in the control and palmitic acid treatments, respectively (P < 0.0001). In the presence of palmitic acid, only 4% of the cells contained large lipid droplets and the membrane phosphatidylcholine concentration was 22% and 16% higher than that in the control and oleic acid treatments, respectively (P < 0.0001). In the oleic acid treatment, approximately 40% of the lipid droplets were larger than 5 μm whereas in that of the palmitic acid treatment, only 16% of the droplets were in this size range. Triglyceride secretion in the oleic acid treatment was 2- and 12-fold higher compared with that in the palmitic acid and control treatments, respectively. Results imply that membrane composition of bovine mammary epithelial cells plays a role in controlling intracellular and secreted lipid droplets size, and that this process is not associated with cellular triglyceride content. PMID:25756421

  19. Quantitative electron microscopy for the nanoscale analysis of membrane lipid distribution.

    PubMed

    Fujita, Akikazu; Cheng, Jinglei; Fujimoto, Toyoshi

    2010-04-01

    An important goal of membrane biology is to define the local heterogeneity of membrane lipid composition. Here we describe a quantitative electron microscopic method that enables the localization of specific membrane lipids at the nanometer scale. The method involves freezing cells rapidly to halt the molecular motion, physically stabilizing membrane molecules in the freeze-fracture replica by the deposition of evaporated platinum and carbon layers and labeling with specific probes for electron microscopic observation. Lipids in both the outer and inner membrane leaflets can thus be labeled, and their distributions can be analyzed quantitatively by statistical methods. A major advantage of this method is that it does not require the expression of artificial probes. Therefore, this method can be applied to any cell in vitro or in vivo, and the whole procedure can be completed in 1-2 d.

  20. Membrane lipids and morphology of brain cortex synaptosomes isolated from hibernating Yakutian ground squirrel.

    PubMed

    Kolomiytseva, Iskra K; Perepelkina, Natalia I; Zharikova, Alevtina D; Popov, Victor I

    2008-12-01

    Synaptosomes were isolated from Yakutian ground squirrel brain cortex of summer and winter hibernating animals in active and torpor states. Synaptosomal membrane cholesterol and phospholipids were determined. The seasonal changes of synaptosomal lipid composition were found. Synaptosomes isolated from hibernating Yakutian ground squirrel brain cortex maintained the cholesterol sphingomyelin, phosphatidylethanolamine, lysophosphatidylcholine, cardiolipin, phosphatidylinositol and phosphatidylserine contents 2.5, 1.8, 2.6, 1.8, 1.6, and 1.3 times less, respectively, and the content of phosphatidylcholine twice as much as the one in summer season. The synaptosomal membrane lipid composition of summer animals was shown to be markedly different from that as hibernating ground squirrels and non-hibernating rodents. It is believed that phenotypic changes of synaptosomal membrane lipid composition in summer Yakutian ground squirrel are the important preparation step for hibernation. The phosphatidylethanolamine content was increased in torpor state compared with winter-active state and the molar ratio of cholesterol/phospholipids in synaptosomal membrane of winter torpor ground squirrels was lower than that in active winter and summer animals. These events were supposed to lead to increase of the synaptosomal membrane fluidity during torpor. Synaptosomes isolated from torpor animals have larger sizes and contain a greater number of synaptic vesicles on the synaptosomal profile area. The synaptosomal membrane lipid composition and synaptosome morphology were involved in phenotypic adaptation of Yakutian ground squirrel to hibernation.

  1. How Lipid Membranes Affect Pore Forming Toxin Activity.

    PubMed

    Rojko, Nejc; Anderluh, Gregor

    2015-12-15

    Pore forming toxins (PFTs) evolved to permeate the plasma membrane of target cells. This is achieved in a multistep mechanism that usually involves binding of soluble protein monomer to the lipid membrane, oligomerization at the plane of the membrane, and insertion of part of the polypeptide chain across the lipid membrane to form a conductive channel. Introduced pores allow uncontrolled transport of solutes across the membrane, inflicting damage to the target cell. PFTs are usually studied from the perspective of structure-function relationships, often neglecting the important role of the bulk membrane properties on the PFT mechanism of action. In this Account, we discuss how membrane lateral heterogeneity, thickness, and fluidity influence the pore forming process of PFTs. In general, lipid molecules are more accessible for binding in fluid membranes due to steric reasons. When PFT specifically binds ordered domains, it usually recognizes a specific lipid distribution pattern, like sphingomyelin (SM) clusters or SM/cholesterol complexes, and not individual lipid species. Lipid domains were also suggested to act as an additional concentration platform facilitating PFT oligomerization, but this is yet to be shown. The last stage in PFT action is the insertion of the transmembrane segment across the membranes to build the transmembrane pore walls. Conformational changes are a spontaneous process, and sufficient free energy has to be available for efficient membrane penetration. Therefore, fluid bilayers are permeabilized more readily in comparison to highly ordered and thicker liquid ordered lipid phase (Lo). Energetically more costly insertion into the Lo phase can be driven by the hydrophobic mismatch between the thinner liquid disordered phase (Ld) and large protein complexes, which are unable to tilt like single transmembrane segments. In the case of proteolipid pores, membrane properties can directly modulate pore size, stability, and even selectivity. Finally

  2. Dynamical Clustering and a Mechanism for Raft-like Structures in a Model Lipid Membrane

    PubMed Central

    Starr, Francis W.; Hartmann, Benedikt; Douglas, Jack F.

    2014-01-01

    We use molecular dynamics simulations to examine the dynamical heterogeneity of a model single-component lipid membrane using a coarse-grained representation of lipid molecules. This model qualitatively reproduces the known phase transitions between disordered, ordered, and gel membrane phases, and the phase transitions are accompanied by significant changes in the nature of the lipid dynamics. In particular, lipid diffusion in the liquid-ordered phase is hindered by the transient trapping of molecules by their neighbors, similar to the dynamics of a liquid approaching its glass transition. This transient molecular caging gives rise to two distinct mobility groups within a single-component membrane: lipids that are transiently trapped, and lipids with displacements on the scale of the intermolecular spacing. Most significantly, lipids within these distinct mobility states spatially segregate, creating transient “islands” of enhanced mobility having a size and time scale compatible with lipid “rafts,” dynamical structures thought to be important for cell membrane function. Although the dynamic lipid clusters that we observe do not themselves correspond to rafts (which are more complex, multicomponent structures), we hypothesize that such rafts may develop from the same universal mechanism, explaining why raft-like regions should arise, regardless of lipid structural or compositional details. These clusters are strikingly similar to the dynamical clusters found in glass-forming fluids, and distinct from phase-separation clusters. Further examination shows that mobile lipid clusters can be dissected into smaller clusters of cooperatively rearranging molecules. The geometry of these clusters can be understood in the context of branched equilibrium polymers, related to the statistics percolation theory. We discuss how these dynamical structures relate to a range observations on the dynamics of lipid membranes. PMID:24695573

  3. Lipids that determine detergent resistance of MDCK cell membrane fractions.

    PubMed

    Manni, Marco M; Cano, Ainara; Alonso, Cristina; Goñi, Félix M

    2015-10-01

    A comparative lipidomic study has been performed of whole Madin-Darby canine kidney epithelial cells and of the detergent-resistant membrane fraction (DRM) obtained after treating the cells with the non-ionic detergent Triton X-100. The DRM were isolated following a standard procedure that is extensively used in cell biology studies. Significant differences were found in the lipid composition of the whole cells and of DRM. The latter were enriched in all the analyzed sphingolipid classes: sphingomyelins, ceramides and hexosylceramides. Diacylglycerols were also preferentially found in DRM. The detergent-resistant fraction was also enriched in saturated over unsaturated fatty acyl chains, and in sn-1 acyl chains containing 16 carbon atoms, over the longer and shorter ones. The glycerophospholipid species phosphatidylethanolamines and phosphatidylinositols, that were mainly unsaturated, did not show a preference for DRM. Phosphatidylcholines were an intermediate case: the saturated, but not the unsaturated species were found preferentially in DRM. The question remains on whether these DRM, recovered from detergent-membrane mixtures by floatation over a sucrose gradient, really correspond to membrane domains existing in the cell membrane prior to detergent treatment.

  4. Effects of dimethyl sulfoxide on lipid membrane electroporation.

    PubMed

    Fernández, M Laura; Reigada, Ramon

    2014-08-07

    Pores can be generated in lipid membranes by the application of an external electric field or by the addition of particular chemicals such as dimethyl sulfoxide (DMSO). Molecular dynamics (MD) has been shown to be a useful tool for unveiling many aspects of pore formation in lipid membranes in both situations. By means of MD simulations, we address the formation of electropores in cholesterol-containing lipid bilayers under the influence of DMSO. We show how a combination of physical and chemical mechanisms leads to more favorable conditions for generating membrane pores and, in particular, how the addition of DMSO to the medium significantly reduces the minimum electric field required to electroporate a lipid membrane. The strong alteration of membrane transversal properties and the energetic stabilization of the hydrophobic pore stage by DMSO provide the physicochemical mechanisms that explain this effect.

  5. Equilibrium microphase separation in the two-leaflet model of lipid membranes

    NASA Astrophysics Data System (ADS)

    Reigada, Ramon; Mikhailov, Alexander S.

    2016-01-01

    Because of the coupling between local lipid composition and the thickness of the membrane, microphase separation in two-component lipid membranes can take place; such effects may underlie the formation of equilibrium nanoscale rafts. Using a kinetic description, this phenomenon is analytically and numerically investigated. The phase diagram is constructed through the stability analysis for linearized kinetic equations, and conditions for microphase separation are discussed. Simulations of the full kinetic model reveal the development of equilibrium membrane nanostructures with various morphologies from the initial uniform state.

  6. Composite membrane, method of preparation and use

    SciTech Connect

    Blume, I.; Pinnau, I.

    1990-10-16

    This paper discusses a membrane for gas separation or pervaporation. The membrane is a composite of a microporous support membrane and an ultrathin permselective membrane, the permselective membrane being made from a polyamide-polyether block copolymer. The membrane is particularly useful in separating polar gases from non-polar gases.

  7. OSBP-Related Protein Family: Mediators of Lipid Transport and Signaling at Membrane Contact Sites.

    PubMed

    Kentala, Henriikka; Weber-Boyvat, Marion; Olkkonen, Vesa M

    2016-01-01

    Oxysterol-binding protein (OSBP) and its related protein homologs, ORPs, constitute a conserved family of lipid-binding/transfer proteins (LTPs) expressed ubiquitously in eukaryotes. The ligand-binding domain of ORPs accommodates cholesterol and oxysterols, but also glycerophospholipids, particularly phosphatidylinositol-4-phosphate (PI4P). ORPs have been implicated as intracellular lipid sensors or transporters. Most ORPs carry targeting determinants for the endoplasmic reticulum (ER) and non-ER organelle membrane. ORPs are located and function at membrane contact sites (MCSs), at which ER is closely apposed with other organelle limiting membranes. Such sites have roles in lipid transport and metabolism, control of Ca(2+) fluxes, and signaling events. ORPs are postulated either to transport lipids over MCSs to maintain the distinct lipid compositions of organelle membranes, or to control the activity of enzymes/protein complexes with functions in signaling and lipid metabolism. ORPs may transfer PI4P and another lipid class bidirectionally. Transport of PI4P followed by its hydrolysis would in this model provide the energy for transfer of the other lipid against its concentration gradient. Control of organelle lipid compositions by OSBP/ORPs is important for the life cycles of several pathogenic viruses. Targeting ORPs with small-molecular antagonists is proposed as a new strategy to combat viral infections. Several ORPs are reported to modulate vesicle transport along the secretory or endocytic pathways. Moreover, antagonists of certain ORPs inhibit cancer cell proliferation. Thus, ORPs are LTPs, which mediate interorganelle lipid transport and coordinate lipid signals with a variety of cellular regimes.

  8. PE and PS Lipids Synergistically Enhance Membrane Poration by a Peptide with Anticancer Properties.

    PubMed

    Leite, Natália Bueno; Aufderhorst-Roberts, Anders; Palma, Mario Sergio; Connell, Simon D; Ruggiero Neto, João; Beales, Paul A

    2015-09-01

    Polybia-MP1 (MP1) is a bioactive host-defense peptide with known anticancer properties. Its activity is attributed to excess serine (phosphatidylserine (PS)) on the outer leaflet of cancer cells. Recently, higher quantities of phosphatidylethanolamine (PE) were also found at these cells' surface. We investigate the interaction of MP1 with model membranes in the presence and absence of POPS (PS) and DOPE (PE) to understand the role of lipid composition in MP1's anticancer characteristics. Indeed we find that PS lipids significantly enhance the bound concentration of peptide on the membrane by a factor of 7-8. However, through a combination of membrane permeability assays and imaging techniques we find that PE significantly increases the susceptibility of the membrane to disruption by these peptides and causes an order-of-magnitude increase in membrane permeability by facilitating the formation of larger transmembrane pores. Significantly, atomic-force microscopy imaging reveals differences in the pore formation mechanism with and without the presence of PE. Therefore, PS and PE lipids synergistically combine to enhance membrane poration by MP1, implying that the combined enrichment of both these lipids in the outer leaflet of cancer cells is highly significant for MP1's anticancer action. These mechanistic insights could aid development of novel chemotherapeutics that target pathological changes in the lipid composition of cancerous cells.

  9. PE and PS Lipids Synergistically Enhance Membrane Poration by a Peptide with Anticancer Properties

    PubMed Central

    Leite, Natália Bueno; Aufderhorst-Roberts, Anders; Palma, Mario Sergio; Connell, Simon D.; Neto, João Ruggiero; Beales, Paul A.

    2015-01-01

    Polybia-MP1 (MP1) is a bioactive host-defense peptide with known anticancer properties. Its activity is attributed to excess serine (phosphatidylserine (PS)) on the outer leaflet of cancer cells. Recently, higher quantities of phosphatidylethanolamine (PE) were also found at these cells’ surface. We investigate the interaction of MP1 with model membranes in the presence and absence of POPS (PS) and DOPE (PE) to understand the role of lipid composition in MP1’s anticancer characteristics. Indeed we find that PS lipids significantly enhance the bound concentration of peptide on the membrane by a factor of 7–8. However, through a combination of membrane permeability assays and imaging techniques we find that PE significantly increases the susceptibility of the membrane to disruption by these peptides and causes an order-of-magnitude increase in membrane permeability by facilitating the formation of larger transmembrane pores. Significantly, atomic-force microscopy imaging reveals differences in the pore formation mechanism with and without the presence of PE. Therefore, PS and PE lipids synergistically combine to enhance membrane poration by MP1, implying that the combined enrichment of both these lipids in the outer leaflet of cancer cells is highly significant for MP1’s anticancer action. These mechanistic insights could aid development of novel chemotherapeutics that target pathological changes in the lipid composition of cancerous cells. PMID:26331251

  10. Nucleic acid-lipid membrane interactions studied by DSC.

    PubMed

    Giatrellis, Sarantis; Nounesis, George

    2011-01-01

    The interactions of nucleic acids with lipid membranes are of great importance for biological mechanisms as well as for biotechnological applications in gene delivery and drug carriers. The optimization of liposomal vectors for clinical use is absolutely dependent upon the formation mechanisms, the morphology, and the molecular organization of the lipoplexes, that is, the complexes of lipid membranes with DNA. Differential scanning calorimetry (DSC) has emerged as an efficient and relatively easy-to-operate experimental technique that can straightforwardly provide data related to the thermodynamics and the kinetics of the DNA-lipid complexation and especially to the lipid organization and phase transitions within the membrane. In this review, we summarize DSC studies considering nucleic acid-membrane systems, accentuating DSC capabilities, and data analysis. Published work involving cationic, anionic, and zwitterionic lipids as well as lipid mixtures interacting with RNA and DNA of different sizes and conformations are included. It is shown that despite limitations, issues such as DNA- or RNA-induced phase separation and microdomain lipid segregation, liposomal aggregation and fusion, alterations of the lipid long-range molecular order, as well as membrane-induced structural changes of the nucleic acids can be efficiently treated by systematic high-sensitivity DSC studies.

  11. Lipid composition of lees from Sherry wine.

    PubMed

    Gómez, Maria Ester; Igartuburu, José M; Pando, Enrique; Luis, Francisco Rodríguez; Mourente, Gabriel

    2004-07-28

    In this paper, we describe the study and characterization of the lipids from lees of Sherry wine, one of the main byproducts from the wine-making industry in the Jerez/Xeres/Sherry denomination of the origin zone in Jerez de la Frontera, Spain. The lipid content, extractability, classification, fatty acid composition, and its main chemical characteristics have been determined in order to evaluate their potential use as a food or food additive.

  12. Mechano-capacitive properties of polarized membranes and the application to conductance measurements of lipid membrane patches

    NASA Astrophysics Data System (ADS)

    Zecchi, Karis A.; Mosgaard, Lars D.; Heimburg, Thomas

    2017-01-01

    Biological membranes are capacitors that can be charged by applying an electric field across the membrane. The charges on the capacitor exert a force on the membrane that leads to electrostriction, i.e., a thinning of the membrane. This effect is especially strong close to chain melting transitions. A consequence is voltage induced pore formation in the lipid membrane. Since the force is quadratic in voltage, negative and positive voltages have an identical influence on the physics of symmetric membranes. This is not the case for a membrane with an asymmetry leading to a permanent electric polarization. Positive and negative voltages of identical magnitude lead to different physical properties. Such an asymmetry can originate from a lipid composition that is different on the two monolayers of the membrane, or from membrane curvature. The latter effect is called flexoelectricity. It was investigated in detail by A.G. Petrov in the recent decades. As a consequence of permanent polarization, the membrane capacitor is discharged at a voltage different from zero. This leads to interesting electrical phenomena such as outward or inward rectification of membrane permeability. The changes in current-voltage relationships are consistent with the known magnitude of the flexoelectric effect.

  13. Lipids of Sarcina lutea III. Composition of the Complex Lipids

    PubMed Central

    Huston, Charles K.; Albro, Phillip W.; Grindey, Gerald B.

    1965-01-01

    Huston, Charles K. (Fort Detrick, Frederick, Md.), Phillip W. Albro, and Gerald B. Grindey. Lipids of Sarcina lutea. III. Composition of the complex lipids. J. Bacteriol. 89:768–775. 1965.—The complex lipids from a strain of Sarcina lutea were isolated and separated into fractions on diethylaminoethyl cellulose acetate and silicic acid columns. These fractions were monitored in several thin-layer chromatography systems. The various lipid types were characterized by their behavior in thin-layer systems and by an analysis of their hydrolysis products. The fatty acid composition of the column fractions was determined by gas-liquid chromatography. A number of components (13) were separated by thin-layer chromatography and characterized. The major components were polyglycerol phosphatide (17.0%), lipoamino acids (15.1%), phosphatidyl glycerol (13.8%), and an incompletely characterized substance (15.0%). Minor constituents included phosphatidyl inositol (5.5%), phosphatidic acid (4.2%), phosphatidyl serine (2.0%), and phosphatidyl choline (1.0%). No phosphatidyl ethanolamine was observed. PMID:14273659

  14. Positioning lipid membrane domains in giant vesicles by micro-organization of aqueous cytoplasm mimic.

    PubMed

    Cans, Ann-Sofie; Andes-Koback, Meghan; Keating, Christine D

    2008-06-11

    We report localization of lipid membrane microdomains to specific "poles" of asymmetric giant vesicles (GVs) in response to local internal composition. Interior aqueous microdomains were generated in a simple model cytoplasm composed of a poly(ethyleneglycol) (PEG)/dextran aqueous two-phase system (ATPS) encapsulated in the vesicles. The GV membrane composition used here was a modification of a DOPC/DPPC/cholesterol mixture known to form micrometer-scale liquid ordered and liquid disordered domains; we added lipids with PEG 2000 Da-modified headgroups. Osmotically induced budding of the ATPS-containing GVs led to structures where the PEG-rich and dextran-rich interior aqueous phases were in contact with different regions of the vesicle membrane. Liquid ordered (L o) membrane domains rich in PEG-terminated lipids preferentially coated the PEG-rich aqueous phase vesicle "body", while coexisting liquid disordered (L d) membrane domains coated the dextran-rich aqueous phase "bud". Membrane domain positioning resulted from interactions between lipid headgroups and the interior aqueous polymer solutions, e.g., PEGylated headgroups with PEG and dextran polymers. Heating resulted first in patchy membranes where L o and L d domains no longer showed any preference for coating the PEG-rich vs dextran-rich interior aqueous volumes, and eventually complete lipid mixing. Upon cooling lipid domains again coated their preferred interior aqueous microvolume. This work shows that nonspecific interactions between interior aqueous contents and the membrane that encapsulates them can drive local chemical heterogeneity, and offers a primitive experimental model for membrane and cytoplasmic polarity in biological cells.

  15. Differential Effect of Plant Lipids on Membrane Organization

    PubMed Central

    Grosjean, Kevin; Mongrand, Sébastien; Beney, Laurent; Simon-Plas, Françoise; Gerbeau-Pissot, Patricia

    2015-01-01

    The high diversity of the plant lipid mixture raises the question of their respective involvement in the definition of membrane organization. This is particularly the case for plant plasma membrane, which is enriched in specific lipids, such as free and conjugated forms of phytosterols and typical phytosphingolipids, such as glycosylinositolphosphoceramides. This question was here addressed extensively by characterizing the order level of membrane from vesicles prepared using various plant lipid mixtures and labeled with an environment-sensitive probe. Fluorescence spectroscopy experiments showed that among major phytosterols, campesterol exhibits a stronger ability than β-sitosterol and stigmasterol to order model membranes. Multispectral confocal microscopy, allowing spatial analysis of membrane organization, demonstrated accordingly the strong ability of campesterol to promote ordered domain formation and to organize their spatial distribution at the membrane surface. Conjugated sterol forms, alone and in synergy with free sterols, exhibit a striking ability to order membrane. Plant sphingolipids, particularly glycosylinositolphosphoceramides, enhanced the sterol-induced ordering effect, emphasizing the formation and increasing the size of sterol-dependent ordered domains. Altogether, our results support a differential involvement of free and conjugated phytosterols in the formation of ordered domains and suggest that the diversity of plant lipids, allowing various local combinations of lipid species, could be a major contributor to membrane organization in particular through the formation of sphingolipid-sterol interacting domains. PMID:25575593

  16. The electrical interplay between proteins and lipids in membranes.

    PubMed

    Richens, Joanna L; Lane, Jordan S; Bramble, Jonathan P; O'Shea, Paul

    2015-09-01

    All molecular interactions that are relevant to cellular and molecular structures are electrical in nature but manifest in a rich variety of forms that each has its own range and influences on the net effect of how molecular species interact. This article outlines how electrical interactions between the protein and lipid membrane components underlie many of the activities of membrane function. Particular emphasis is placed on spatially localised behaviour in membranes involving modulation of protein activity and microdomain structure. The interactions between membrane lipids and membrane proteins together with their role within cell biology represent an enormous body of work. Broad conclusions are not easy given the complexities of the various systems and even consensus with model membrane systems containing two or three lipid types is difficult. By defining two types of broad lipid-protein interaction, respectively Type I as specific and Type II as more non-specific and focussing on the electrical interactions mostly in the extra-membrane regions it is possible to assemble broad rules or a consensus of the dominant features of the interplay between these two fundamentally important classes of membrane component. This article is part of a special issue entitled: Lipid-protein interactions.

  17. Electro-hydrodynamic effects on lipid membranes in giant vesicles

    NASA Astrophysics Data System (ADS)

    Staykova, Margarita; Yamamoto, Tetsuya; Lipowsky, Reinhard; Dimova, Rumiana

    2009-11-01

    Electric fields are widely applied for cell manipulation in numerous micron-scale systems. Here, we show for the first time that alternating electric fields may cause pronounced flows in the membrane of giant lipid vesicles as well as in the surrounding fluid media.^ The lipid vesicles are not only biomimetic model for the cell membrane but also have many potential biotechnological applications, e.g. as drug-delivery systems and micro-reactors. The reported effects should be considered in electric micro-manipulation procedures on cells and vesicles. They might be useful for applications in microfluidic technologies, for lipid mixing, trapping and displacement, as will be demonstrated. We also believe that our method for visualization of the lipid flows by fluorescently labeled intra-membrane domains will be helpful for studies on membrane behavior in vesicles subjected to shear or mechanical stresses.

  18. Membrane deformation controlled by monolayer composition of embedded amphiphilic nanoparticles

    NASA Astrophysics Data System (ADS)

    van Lehn, Reid; Alexander-Katz, Alfredo

    2014-03-01

    In recent work, we have shown that charged, amphiphilic nanoparticles (NPs) can spontaneously insert into lipid bilayers, embedding the NP in a conformation resembling a transmembrane protein. Many embedded membrane proteins exert an influence on surrounding lipids that lead to deformation and membrane-mediated interactions that may be essential for function. Similarly, embedded NPs will also induce membrane deformations related to the same physicochemical forces. Unlike many transmembrane proteins, however, the highly charged NPs may exert preferential interactions on surrounding lipid head groups. In this work, we use atomistic molecular dynamics simulations to show that the membrane around embedded particles may experience local thinning, head group reorientation, and an increase in lipid density depending on the size and surface composition of the NP. We quantify the extent of these deformations and illustrate the complex interplay between lipid tail group and head group interactions that go beyond pure thickness deformations that may be expected from coarse-grained or continuum models. This work thus suggests guidelines for the design of particles that spontaneously partition into lipid bilayers and influence local membrane mechanical properties in a targeted manner.

  19. Lipid Replacement Therapy: a natural medicine approach to replacing damaged lipids in cellular membranes and organelles and restoring function.

    PubMed

    Nicolson, Garth L; Ash, Michael E

    2014-06-01

    Lipid Replacement Therapy, the use of functional oral supplements containing cell membrane phospholipids and antioxidants, has been used to replace damaged, usually oxidized, membrane glycerophospholipids that accumulate during aging and in various clinical conditions in order to restore cellular function. This approach differs from other dietary and intravenous phospholipid interventions in the composition of phospholipids and their defense against oxidation during storage, ingestion, digestion and uptake as well as the use of protective molecules that noncovalently complex with phospholipid micelles and prevent their enzymatic and bile disruption. Once the phospholipids have been taken in by transport processes, they are protected by several natural mechanisms involving lipid receptors, transport and carrier molecules and circulating cells and lipoproteins until their delivery to tissues and cells where they can again be transferred to intracellular membranes by specific and nonspecific transport systems. Once delivered to membrane sites, they naturally replace and stimulate removal of damaged membrane lipids. Various chronic clinical conditions are characterized by membrane damage, mainly oxidative but also enzymatic, resulting in loss of cellular function. This is readily apparent in mitochondrial inner membranes where oxidative damage to phospholipids like cardiolipin and other molecules results in loss of trans-membrane potential, electron transport function and generation of high-energy molecules. Recent clinical trials have shown the benefits of Lipid Replacement Therapy in restoring mitochondrial function and reducing fatigue in aged subjects and patients with a variety of clinical diagnoses that are characterized by loss of mitochondrial function and include fatigue as a major symptom. This Article is Part of a Special Issue Entitled: Membrane Structure and Function: Relevance in the Cell's Physiology, Pathology and Therapy.

  20. Designing lipids for selective partitioning into liquid ordered membrane domains.

    PubMed

    Momin, Noor; Lee, Stacey; Gadok, Avinash K; Busch, David J; Bachand, George D; Hayden, Carl C; Stachowiak, Jeanne C; Sasaki, Darryl Y

    2015-04-28

    Self-organization of lipid molecules into specific membrane phases is key to the development of hierarchical molecular assemblies that mimic cellular structures. While the packing interaction of the lipid tails should provide the major driving force to direct lipid partitioning to ordered or disordered membrane domains, numerous examples show that the headgroup and spacer play important but undefined roles. We report here the development of several new biotinylated lipids that examine the role of spacer chemistry and structure on membrane phase partitioning. The new lipids were prepared with varying lengths of low molecular weight polyethylene glycol (EGn) spacers to examine how spacer hydrophilicity and length influence their partitioning behavior following binding with FITC-labeled streptavidin in liquid ordered (Lo) and liquid disordered (Ld) phase coexisting membranes. Partitioning coefficients (Kp Lo/Ld) of the biotinylated lipids were determined using fluorescence measurements in studies with giant unilamellar vesicles (GUVs). Compared against DPPE-biotin, DPPE-cap-biotin, and DSPE-PEG2000-biotin lipids, the new dipalmityl-EGn-biotin lipids exhibited markedly enhanced partitioning into liquid ordered domains, achieving Kp of up to 7.3 with a decaethylene glycol spacer (DP-EG10-biotin). We further demonstrated biological relevance of the lipids with selective partitioning to lipid raft-like domains observed in giant plasma membrane vesicles (GPMVs) derived from mammalian cells. Our results found that the spacer group not only plays a pivotal role for designing lipids with phase selectivity but may also influence the structural order of the domain assemblies.

  1. Membrane lipid unsaturation as physiological adaptation to animal longevity

    PubMed Central

    Naudí, Alba; Jové, Mariona; Ayala, Victòria; Portero-Otín, Manuel; Barja, Gustavo; Pamplona, Reinald

    2013-01-01

    The appearance of oxygen in the terrestrial atmosphere represented an important selective pressure for ancestral living organisms and contributed toward setting up the pace of evolutionary changes in structural and functional systems. The evolution of using oxygen for efficient energy production served as a driving force for the evolution of complex organisms. The redox reactions associated with its use were, however, responsible for the production of reactive species (derived from oxygen and lipids) with damaging effects due to oxidative chemical modifications of essential cellular components. Consequently, aerobic life required the emergence and selection of antioxidant defense systems. As a result, a high diversity in molecular and structural antioxidant defenses evolved. In the following paragraphs, we analyze the adaptation of biological membranes as a dynamic structural defense against reactive species evolved by animals. In particular, our goal is to describe the physiological mechanisms underlying the structural adaptation of cellular membranes to oxidative stress and to explain the meaning of this adaptive mechanism, and to review the state of the art about the link between membrane composition and longevity of animal species. PMID:24381560

  2. Lipid partitioning at the nuclear envelope controls membrane biogenesis

    PubMed Central

    Barbosa, Antonio Daniel; Sembongi, Hiroshi; Su, Wen-Min; Abreu, Susana; Reggiori, Fulvio; Carman, George M.; Siniossoglou, Symeon

    2015-01-01

    Partitioning of lipid precursors between membranes and storage is crucial for cell growth, and its disruption underlies pathologies such as cancer, obesity, and type 2 diabetes. However, the mechanisms and signals that regulate this process are largely unknown. In yeast, lipid precursors are mainly used for phospholipid synthesis in nutrient-rich conditions in order to sustain rapid proliferation but are redirected to triacylglycerol (TAG) stored in lipid droplets during starvation. Here we investigate how cells reprogram lipid metabolism in the endoplasmic reticulum. We show that the conserved phosphatidate (PA) phosphatase Pah1, which generates diacylglycerol from PA, targets a nuclear membrane subdomain that is in contact with growing lipid droplets and mediates TAG synthesis. We find that cytosol acidification activates the master regulator of Pah1, the Nem1-Spo7 complex, thus linking Pah1 activity to cellular metabolic status. In the absence of TAG storage capacity, Pah1 still binds the nuclear membrane, but lipid precursors are redirected toward phospholipids, resulting in nuclear deformation and a proliferation of endoplasmic reticulum membrane. We propose that, in response to growth signals, activation of Pah1 at the nuclear envelope acts as a switch to control the balance between membrane biogenesis and lipid storage. PMID:26269581

  3. Composite polymeric/ceramic pervaporation membrane reactor

    SciTech Connect

    Zhu, Y.; Tsotsis, T.T.

    1995-12-01

    We have investigated the preparation of composite polymeric/ceramic membranes. We have studied the effect of the preparation techniques on the properties of these composite membranes. A model has been developed to describe the transport characteristics. We have used these membranes in pervaporation membrane reactor applications. Our experimental data and modeling results will be presented.

  4. 3D-Membrane Stacks on Supported Membranes Composed of Diatom Lipids Induced by Long-Chain Polyamines.

    PubMed

    Gräb, Oliver; Abacilar, Maryna; Daus, Fabian; Geyer, Armin; Steinem, Claudia

    2016-10-04

    Long-chain polyamines (LCPAs) are intimately involved in the biomineralization process of diatoms taking place in silica deposition vesicles being acidic compartments surrounded by a lipid bilayer. Here, we addressed the question whether and how LCPAs interact with lipid membranes composed of glycerophospholipids and glyceroglycolipids mimicking the membranes of diatoms and higher plants. Solid supported lipid bilayers and monolayers containing the three major components that are unique in diatoms and higher plants, i.e., monogalactosyldiacylglycerol (MGDG), digalactosyldiacylglycerol (DGDG), and sulfoquinovosyldiacylglycerol (SQDG), were prepared by spreading small unilamellar vesicles. The integrity of the membranes was investigated by fluorescence microscopy and atomic force microscopy showing continuous flat bilayers and monolayers with small protrusions on top of the membrane. The addition of a synthetic polyamine composed of 13 amine groups separated by a propyl spacer (C3N13) results in flat but three-dimensional membrane stacks within minutes. The membrane stacks are connected with the underlying membrane as verified by fluorescence recovery after photobleaching experiments. Membrane stack formation was found to be independent of the lipid composition; i.e., neither glyceroglycolipids nor negatively charged lipids were required. However, the formation process was strongly dependent on the chain length of the polyamine. Whereas short polyamines such as the naturally occurring spermidine, spermine, and the synthetic polyamines C3N4 and C3N5 do not induce stack formation, those containing seven and more amine groups (C3N7, C3N13, and C3N18) do form membrane stacks. The observed stack formation might have implications for the stability and expansion of the silica deposition vesicle during valve and girdle band formation in diatoms.

  5. Lipid rafts and detergent-resistant membranes in epithelial keratinocytes.

    PubMed

    McGuinn, Kathleen P; Mahoney, Mỹ G

    2014-01-01

    Our understanding of the plasma membrane has markedly increased since Singer and Nicolson proposed the fluid mosaic model in 1972. While their revolutionary theory of the lipid bilayer remains largely valid, it is now known that lipids and proteins are not randomly dispersed throughout the plasma membrane but instead may be organized within membrane microdomains, commonly referred to as lipid rafts. Lipid rafts are highly dynamic, detergent resistant, and enriched with both cholesterol and glycosphingolipids. The two main types are flotillin-rich planar lipid rafts and caveolin-rich caveolae. It is proposed that flotillin and caveolin proteins regulate cell communication by compartmentalizing and interacting with signal transduction proteins within their respective lipid microdomains. Consequently, membrane rafts play an important role in vital cellular functions including migration, invasion, and signaling; thus, alterations in their microenvironment can initiate signaling pathways that affect cellular function and behavior. Therefore, the identification of lipid rafts and their associated proteins is integral to the study of transmembrane signaling. Here, we review the current standard protocols and biochemical approaches used to isolate and define raft proteins from epithelial cells and tissues. Furthermore, in Section 3 of this chapter, detailed protocols are offered for isolating lipid rafts by subjection to detergent and sucrose density centrifugation, as well as an approach for selectively isolating caveolae. Methods to manipulate rafts with treatments such as methyl-β-cyclodextrin and flotillin III are also described.

  6. Lipid flow through fusion pores connecting membranes of different tensions.

    PubMed

    Chizmadzhev, Y A; Kumenko, D A; Kuzmin, P I; Chernomordik, L V; Zimmerberg, J; Cohen, F S

    1999-06-01

    When two membranes fuse, their components mix; this is usually described as a purely diffusional process. However, if the membranes are under different tensions, the material will spread predominantly by convection. We use standard fluid mechanics to rigorously calculate the steady-state convective flux of lipids. A fusion pore is modeled as a toroid shape, connecting two planar membranes. Each of the membrane monolayers is considered separately as incompressible viscous media with the same shear viscosity, etas. The two monolayers interact by sliding past each other, described by an intermonolayer viscosity, etar. Combining a continuity equation with an equation that balances the work provided by the tension difference, Deltasigma, against the energy dissipated by flow in the viscous membrane, yields expressions for lipid velocity, upsilon, and area of lipid flux, Phi. These expressions for upsilon and Phi depend on Deltasigma, etas, etar, and geometrical aspects of a toroidal pore, but the general features of the theory hold for any fusion pore that has a roughly hourglass shape. These expressions are readily applicable to data from any experiments that monitor movement of lipid dye between fused membranes under different tensions. Lipid velocity increases nonlinearly from a small value for small pore radii, rp, to a saturating value at large rp. As a result of velocity saturation, the flux increases linearly with pore radius for large pores. The calculated lipid flux is in agreement with available experimental data for both large and transient fusion pores.

  7. Lipid flow through fusion pores connecting membranes of different tensions.

    PubMed Central

    Chizmadzhev, Y A; Kumenko, D A; Kuzmin, P I; Chernomordik, L V; Zimmerberg, J; Cohen, F S

    1999-01-01

    When two membranes fuse, their components mix; this is usually described as a purely diffusional process. However, if the membranes are under different tensions, the material will spread predominantly by convection. We use standard fluid mechanics to rigorously calculate the steady-state convective flux of lipids. A fusion pore is modeled as a toroid shape, connecting two planar membranes. Each of the membrane monolayers is considered separately as incompressible viscous media with the same shear viscosity, etas. The two monolayers interact by sliding past each other, described by an intermonolayer viscosity, etar. Combining a continuity equation with an equation that balances the work provided by the tension difference, Deltasigma, against the energy dissipated by flow in the viscous membrane, yields expressions for lipid velocity, upsilon, and area of lipid flux, Phi. These expressions for upsilon and Phi depend on Deltasigma, etas, etar, and geometrical aspects of a toroidal pore, but the general features of the theory hold for any fusion pore that has a roughly hourglass shape. These expressions are readily applicable to data from any experiments that monitor movement of lipid dye between fused membranes under different tensions. Lipid velocity increases nonlinearly from a small value for small pore radii, rp, to a saturating value at large rp. As a result of velocity saturation, the flux increases linearly with pore radius for large pores. The calculated lipid flux is in agreement with available experimental data for both large and transient fusion pores. PMID:10354423

  8. Aspirin Increases the Solubility of Cholesterol in Lipid Membranes

    NASA Astrophysics Data System (ADS)

    Alsop, Richard; Barrett, Matthew; Zheng, Sonbo; Dies, Hannah; Rheinstadter, Maikel

    2014-03-01

    Aspirin (ASA) is often prescribed for patients with high levels of cholesterol for the secondary prevention of myocardial events, a regimen known as the Low-Dose Aspirin Therapy. We have recently shown that Aspirin partitions in lipid bilayers. However, a direct interplay between ASA and cholesterol has not been investigated. Cholesterol is known to insert itself into the membrane in a dispersed state at moderate concentrations (under ~37.5%) and decrease fluidity of membranes. We prepared model lipid membranes containing varying amounts of both ASA and cholesterol molecules. The structure of the bilayers as a function of ASA and cholesterol concentration was determined using high-resolution X-ray diffraction. At cholesterol levels of more than 40mol%, immiscible cholesterol plaques formed. Adding ASA to the membranes was found to dissolve the cholesterol plaques, leading to a fluid lipid bilayer structure. We present first direct evidence for an interaction between ASA and cholesterol on the level of the cell membrane.

  9. Biomimetic interfaces based on S-layer proteins, lipid membranes and functional biomolecules

    PubMed Central

    Schuster, Bernhard; Sleytr, Uwe B.

    2014-01-01

    Designing and utilization of biomimetic membrane systems generated by bottom-up processes is a rapidly growing scientific and engineering field. Elucidation of the supramolecular construction principle of archaeal cell envelopes composed of S-layer stabilized lipid membranes led to new strategies for generating highly stable functional lipid membranes at meso- and macroscopic scale. In this review, we provide a state-of-the-art survey of how S-layer proteins, lipids and polymers may be used as basic building blocks for the assembly of S-layer-supported lipid membranes. These biomimetic membrane systems are distinguished by a nanopatterned fluidity, enhanced stability and longevity and, thus, provide a dedicated reconstitution matrix for membrane-active peptides and transmembrane proteins. Exciting areas in the (lab-on-a-) biochip technology are combining composite S-layer membrane systems involving specific membrane functions with the silicon world. Thus, it might become possible to create artificial noses or tongues, where many receptor proteins have to be exposed and read out simultaneously. Moreover, S-layer-coated liposomes and emulsomes copying virus envelopes constitute promising nanoformulations for the production of novel targeting, delivery, encapsulation and imaging systems. PMID:24812051

  10. Biomimetic interfaces based on S-layer proteins, lipid membranes and functional biomolecules.

    PubMed

    Schuster, Bernhard; Sleytr, Uwe B

    2014-07-06

    Designing and utilization of biomimetic membrane systems generated by bottom-up processes is a rapidly growing scientific and engineering field. Elucidation of the supramolecular construction principle of archaeal cell envelopes composed of S-layer stabilized lipid membranes led to new strategies for generating highly stable functional lipid membranes at meso- and macroscopic scale. In this review, we provide a state-of-the-art survey of how S-layer proteins, lipids and polymers may be used as basic building blocks for the assembly of S-layer-supported lipid membranes. These biomimetic membrane systems are distinguished by a nanopatterned fluidity, enhanced stability and longevity and, thus, provide a dedicated reconstitution matrix for membrane-active peptides and transmembrane proteins. Exciting areas in the (lab-on-a-) biochip technology are combining composite S-layer membrane systems involving specific membrane functions with the silicon world. Thus, it might become possible to create artificial noses or tongues, where many receptor proteins have to be exposed and read out simultaneously. Moreover, S-layer-coated liposomes and emulsomes copying virus envelopes constitute promising nanoformulations for the production of novel targeting, delivery, encapsulation and imaging systems.

  11. Sorting of amphiphile membrane components in curvature and composition gradients

    NASA Astrophysics Data System (ADS)

    Tian, Aiwei

    Phase and shape heterogeneities in biomembranes are of functional importance. However, it is difficult to elucidate the roles membrane heterogeneities play in maintaining cellular function due to the complexity of biomembranes. Therefore, investigations of phase behavior and composition/curvature coupling in lipid and polymer model membranes offer some advantages. In this thesis, phase properties in lipid and polymer giant vesicles were studied. Line tension at the fluid/fluid phase boundary of giant lipid unilamellar vesicles was determined directly by micropipette aspiration, and found to be composition-dependent. Dynamics of calcium-induced domains within polyanionic vesicles subject to chemical stimuli were investigated, which revealed the strength of molecular interaction and suggested applications in triggered delivery. In addition, curvature sorting of lipids and proteins was examined. Lipid membrane tethers were pulled from giant unilamellar vesicles using two micropipettes and a bead. Tether radius can be controlled and measured in this system. By examining fluorescence intensity of labeled molecules as a function of curvature, we found that DiI dyes (lipid analogues with spontaneous curvatures) had no curvature preference down to radii of 10 nm. Theoretical calculation predicted that the distribution of small lipids was dominated by entropy instead of bending energy. However protein Cholera toxin subunit B was efficiently sorted away from the high positive curvature due to its negative spontaneous curvature. Bending stiffness was determined to decrease as curvature increased in homogeneous membranes with ternary lipid mixtures near a critical consulate point, revealing the strong preferential intermolecular interactions of such mixtures. In addition, diffusion controlled domain growth was observed in tethers pulled from phase-separated vesicles, which provides a new dynamic sorting principle for lipids and proteins in curvature gradients.

  12. Lipid-Sorting Specificity Encoded in K-Ras Membrane Anchor Regulates Signal Output.

    PubMed

    Zhou, Yong; Prakash, Priyanka; Liang, Hong; Cho, Kwang-Jin; Gorfe, Alemayehu A; Hancock, John F

    2017-01-12

    K-Ras is targeted to the plasma membrane by a C-terminal membrane anchor that comprises a farnesyl-cysteine-methyl-ester and a polybasic domain. We used quantitative spatial imaging and atomistic molecular dynamics simulations to examine molecular details of K-Ras plasma membrane binding. We found that the K-Ras anchor binds selected plasma membrane anionic lipids with defined head groups and lipid side chains. The precise amino acid sequence and prenyl group define a combinatorial code for lipid binding that extends beyond simple electrostatics; within this code lysine and arginine residues are non-equivalent and prenyl chain length modifies nascent polybasic domain lipid preferences. The code is realized by distinct dynamic tertiary structures of the anchor on the plasma membrane that govern amino acid side-chain-lipid interactions. An important consequence of this specificity is the ability of such anchors when aggregated to sort subsets of phospholipids into nanoclusters with defined lipid compositions that determine K-Ras signaling output.

  13. High lipid order of Arabidopsis cell-plate membranes mediated by sterol and DYNAMIN-RELATED PROTEIN1A function.

    PubMed

    Frescatada-Rosa, Márcia; Stanislas, Thomas; Backues, Steven K; Reichardt, Ilka; Men, Shuzhen; Boutté, Yohann; Jürgens, Gerd; Moritz, Thomas; Bednarek, Sebastian Y; Grebe, Markus

    2014-12-01

    Membranes of eukaryotic cells contain high lipid-order sterol-rich domains that are thought to mediate temporal and spatial organization of cellular processes. Sterols are crucial for execution of cytokinesis, the last stage of cell division, in diverse eukaryotes. The cell plate of higher-plant cells is the membrane structure that separates daughter cells during somatic cytokinesis. Cell-plate formation in Arabidopsis relies on sterol- and DYNAMIN-RELATED PROTEIN1A (DRP1A)-dependent endocytosis. However, functional relationships between lipid membrane order or lipid packing and endocytic machinery components during eukaryotic cytokinesis have not been elucidated. Using ratiometric live imaging of lipid order-sensitive fluorescent probes, we show that the cell plate of Arabidopsis thaliana represents a dynamic, high lipid-order membrane domain. The cell-plate lipid order was found to be sensitive to pharmacological and genetic alterations of sterol composition. Sterols co-localize with DRP1A at the cell plate, and DRP1A accumulates in detergent-resistant membrane fractions. Modifications of sterol concentration or composition reduce cell-plate membrane order and affect DRP1A localization. Strikingly, DRP1A function itself is essential for high lipid order at the cell plate. Our findings provide evidence that the cell plate represents a high lipid-order domain, and pave the way to explore potential feedback between lipid order and function of dynamin-related proteins during cytokinesis.

  14. Laurdan monitors different lipids content in eukaryotic membrane during embryonic neural development

    PubMed Central

    Bonaventura, Gabriele; Barcellona, Maria Luisa; Golfetto, Ottavia; Nourse, Jamison L.; Flanagan, Lisa A.; Gratton, Enrico

    2014-01-01

    We describe a method based on fluorescence lifetime imaging microscopy (FLIM) to assess the fluidity of various membranes in neuronal cells at different stage of development (day 12 (E12) and day 16 (E16) of gestation). For the FLIM measurements, we use the Laurdan probe which is commonly used to asses membrane water penetration in model and in biological membranes using spectral information. Using the FLIM approach we build a fluidity scale based on calibration with model systems of different lipid composition. In neuronal cells we found a marked difference in fluidity between the internal membranes and the plasma membrane, being the plasma membrane the less fluid. However, we found no significant differences between the two cells groups, E12 and E16. Comparison with NIH3T3 cells show that the plasma membranes of E12 and E16 cells are significantly more fluid than the plasma membrane of the cancer cells. PMID:24839062

  15. Randomization of membrane lipids in relation to transport system assembly in Escherichia coli.

    PubMed

    Thilo, L; Overath, P

    1976-01-27

    The distribution of newly synthesized lipid molecules in the pre-existing lipid phase of the membrane was studied in whole cells of the fatty acid requiring Escheria coli strain K1062. The fluorescence probe N-phenyl-1-naphthylamine revealed reversible lipid phase transitions in cells supplemented with cis-delta9-octadecenoate (transition temperature Tt = 14 degrees C; width of the transition deltaT = 13 degrees C) or trans-delta9-hexadecenoate (Tt = 27 degrees C; deltaT = 7 degrees C). Cells were first grown in the presence of cis-delta9-octadecenoate at 37 degrees C and subsequently for various periods in the presence of trans-delta9-hexadecenoate at 37 or 22 degrees C, i.e. above or below the transition of the newly formed lipids. Reproducible phase transitions with single, well-defined Tt values between 14 and 27 degrees C were observed under both conditions. Beta-Galactoside transport induced in a similar experiment before or during a change in the fatty acid composition showed a single change in activation energy at a temperature close to the lipid transition temperature, Tt. Starvation of cis-delta9-octadecenoate-supplemented cells for this fatty acid led to a gradual rise in the transition temperature, due to an increase in the percentage of saturated acyl chains in the membrane lipids. It is concluded that under all conditions investigated a mixed lipid phase composed of newly synthesized and pre-existing lipid molecules is formed in the membrane. Since conserved domains of newly synthesized lipids surrounding simultaneously formed transport proteins could not be demonstrated, the results do not support a membrane assembly mechanism proposed by N. Tsukagoshi and C. F. Fox [(1973), Biochemistry 12, 2822-2829]. It rather appears that newly formed lipid molecules are continuously released from their sites of synthesis into the lipid matrix by a rapid diffusion-controlled process.

  16. Single Lipid Molecule Dynamics on Supported Lipid Bilayers with Membrane Curvature

    PubMed Central

    Cheney, Philip P.; Weisgerber, Alan W.; Feuerbach, Alec M.; Knowles, Michelle K.

    2017-01-01

    The plasma membrane is a highly compartmentalized, dynamic material and this organization is essential for a wide variety of cellular processes. Nanoscale domains allow proteins to organize for cell signaling, endo- and exocytosis, and other essential processes. Even in the absence of proteins, lipids have the ability to organize into domains as a result of a variety of chemical and physical interactions. One feature of membranes that affects lipid domain formation is membrane curvature. To directly test the role of curvature in lipid sorting, we measured the accumulation of two similar lipids, 1,2-Dihexadecanoyl-sn-glycero-3-phosphoethanolamine (DHPE) and hexadecanoic acid (HDA), using a supported lipid bilayer that was assembled over a nanopatterned surface to obtain regions of membrane curvature. Both lipids studied contain 16 carbon, saturated tails and a head group tag for fluorescence microscopy measurements. The accumulation of lipids at curvatures ranging from 28 nm to 55 nm radii was measured and fluorescein labeled DHPE accumulated more than fluorescein labeled HDA at regions of membrane curvature. We then tested whether single biotinylated DHPE molecules sense curvature using single particle tracking methods. Similar to groups of fluorescein labeled DHPE accumulating at curvature, the dynamics of single molecules of biotinylated DHPE was also affected by membrane curvature and highly confined motion was observed. PMID:28294967

  17. Intrinsic stability of Brassicaceae plasma membrane in relation to changes in proteins and lipids as a response to salinity.

    PubMed

    Chalbi, Najla; Martínez-Ballesta, Ma Carmen; Youssef, Nabil Ben; Carvajal, Micaela

    2015-03-01

    Changes in plasma membrane lipids, such as sterols and fatty acids, have been observed as a result of salt stress. These alterations, together with modification of the plasma membrane protein profile, confer changes in the physical properties of the membrane to be taken into account for biotechnological uses. In our experiments, the relationship between lipids and proteins in three different Brassicaceae species differing in salinity tolerance (Brassica oleracea, B. napus and Cakile maritima) and the final plasma membrane stability were studied. The observed changes in the sterol (mainly an increase in sitosterol) and fatty acid composition (increase in RUFA) in each species led to physical adaptation of the plasma membrane to salt stress. The in vitro vesicles stability was higher in the less tolerant (B. oleracea) plants together with low lipoxygenase activity. These results indicate that the proteins/lipids ratio and lipid composition is an important aspect to take into account for the use of natural vesicles in plant biotechnology.

  18. Hybrid polymer-lipid films as platforms for directed membrane protein insertion.

    PubMed

    Kowal, Justyna; Wu, Dalin; Mikhalevich, Viktoria; Palivan, Cornelia G; Meier, Wolfgang

    2015-05-05

    Hybrids composed of amphiphilic block copolymers and lipids constitute a new generation of biological membrane-inspired materials. Hybrid membranes resulting from self-assembly of lipids and polymers represent adjustable models for interactions between artificial and natural membranes, which are of key importance, e.g., when developing systems for drug delivery. By combining poly(dimethylsiloxane)-block-poly(2-methyl-2-oxazoline) amphiphilic copolymers (PDMS-b-PMOXA) with various phospholipids, we obtained hybrid films with modulated properties and topology, based on phase separation, and the formation of distinct domains. By understanding the factors driving the phase separation in these hybrid lipid-polymer films, we were able to use them as platforms for directed insertion of membrane proteins. Tuning the composition of the polymer-lipids mixtures favored successful insertion of membrane proteins with desired topological distributions (in polymer or/and lipid regions). Controlled insertion and location of membrane proteins in hybrid films make these hybrids ideal candidates for numerous applications where specific spatial functionality is required.

  19. Probing the Lipid Membrane Dipole Potential by Atomic Force Microscopy

    PubMed Central

    Yang, Yi; Mayer, Kathryn M.; Wickremasinghe, Nissanka S.; Hafner, Jason H.

    2008-01-01

    The electrostatic properties of biological membranes can be described by three parameters: the transmembrane potential, the membrane surface potential, and the membrane dipole potential. The first two are well characterized in terms of their magnitudes and biological effects. The dipole potential, however, is not well characterized. Various methods to measure the membrane dipole potential indirectly yield different values, and there is not even agreement on the source of the membrane dipole moment. This ambiguity impedes investigations into the biological effects of the membrane dipole moment, which should be substantial considering the large interfacial fields with which it is associated. Electrostatic analysis of phosphatidylcholine lipid membranes with the atomic force microscope reveals a repulsive force between the negatively charged probe tips and the zwitterionic lipids. This unexpected interaction has been analyzed quantitatively to reveal that the repulsion is due to a weak external field created by the internal membrane dipole potential. The analysis yields a dipole moment of 1.5 Debye per lipid with a dipole potential of +275 mV for supported phosphatidylcholine membranes. This new ability to quantitatively measure the membrane dipole moment in a noninvasive manner with nanometer scale spatial resolution will be useful in identifying the biological effects of the dipole potential. PMID:18805919

  20. Mechanisms of membrane deformation by lipid-binding domains.

    PubMed

    Itoh, Toshiki; Takenawa, Tadaomi

    2009-09-01

    Among an increasing number of lipid-binding domains, a group that not only binds to membrane lipids but also changes the shape of the membrane has been found. These domains are characterized by their strong ability to transform globular liposomes as well as flat plasma membranes into elongated membrane tubules both in vitro and in vivo. Biochemical studies on the structures of these proteins have revealed the importance of the amphipathic helix, which potentially intercalates into the lipid bilayer to induce and/or sense membrane curvature. Among such membrane-deforming domains, BAR and F-BAR/EFC domains form crescent-shaped dimers, suggesting a preference for a curved membrane, which is important for curvature sensing. Bioinformatics in combination with structural analyses has been identifying an increasing number of novel families of lipid-binding domains. This review attempts to summarize the evidence obtained by recent studies in order to gain general insights into the roles of membrane-deforming domains in a variety of biological events.

  1. Anthrax toxin-induced rupture of artificial lipid bilayer membranes

    PubMed Central

    Nablo, Brian J.; Panchal, Rekha G.; Bavari, Sina; Nguyen, Tam L.; Gussio, Rick; Ribot, Wil; Friedlander, Art; Chabot, Donald; Reiner, Joseph E.; Robertson, Joseph W. F.; Balijepalli, Arvind; Halverson, Kelly M.; Kasianowicz, John J.

    2013-01-01

    We demonstrate experimentally that anthrax toxin complexes rupture artificial lipid bilayer membranes when isolated from the blood of infected animals. When the solution pH is temporally acidified to mimic that process in endosomes, recombinant anthrax toxin forms an irreversibly bound complex, which also destabilizes membranes. The results suggest an alternative mechanism for the translocation of anthrax toxin into the cytoplasm. PMID:23947891

  2. Anthrax toxin-induced rupture of artificial lipid bilayer membranes

    NASA Astrophysics Data System (ADS)

    Nablo, Brian J.; Panchal, Rekha G.; Bavari, Sina; Nguyen, Tam L.; Gussio, Rick; Ribot, Wil; Friedlander, Art; Chabot, Donald; Reiner, Joseph E.; Robertson, Joseph W. F.; Balijepalli, Arvind; Halverson, Kelly M.; Kasianowicz, John J.

    2013-08-01

    We demonstrate experimentally that anthrax toxin complexes rupture artificial lipid bilayer membranes when isolated from the blood of infected animals. When the solution pH is temporally acidified to mimic that process in endosomes, recombinant anthrax toxin forms an irreversibly bound complex, which also destabilizes membranes. The results suggest an alternative mechanism for the translocation of anthrax toxin into the cytoplasm.

  3. Experiments With the Role of Lipids in Cell-Membrane Permeability

    ERIC Educational Resources Information Center

    Anderson, O. Roger

    1970-01-01

    Reviews research into the composition and structure of cell membranes. Describes four experiments, suitable for high school students, on the role of lipids in regulating diffusion across cell boundaries. Gives purpose and procedures for each experiment, laboratory data sheets, and the results of classroom trials of the experiments. (EB)

  4. Steady-state compartmentalization of lipid membranes by active proteins.

    PubMed Central

    Sabra, M C; Mouritsen, O G

    1998-01-01

    Using a simple microscopic model of lipid-protein interactions, based on the hydrophobic matching principle, we study some generic aspects of lipid-membrane compartmentalization controlled by a dispersion of active integral membrane proteins. The activity of the proteins is simulated by conformational excitations governed by an external drive, and the deexcitation is controlled by interaction of the protein with its lipid surroundings. In response to the flux of energy into the proteins from the environment and the subsequent dissipation of energy into the lipid bilayer, the lipid-protein assembly reorganizes into a steady-state structure with a typical length scale determined by the strength of the external drive. In the specific case of a mixed dimyristoylphosphatidylcholine-distearoylphosphatidylcholine bilayer in the gel-fluid coexistence region, it is shown explicitly by computer simulation that the activity of an integral membrane protein can lead to a compartmentalization of the lipid-bilayer membrane. The compartmentalization is related to the dynamical process of phase separation and lipid domain formation. PMID:9533687

  5. Starch-lipid composites containing cimmamaldehyde

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The formulation of a starch-lipid composite containing cinnamaldehyde as antimicrobial agent has been studied. Cinnamaldehyde was incorporated as an emulsion using Acetem 90-50K as a carrier and Tween 60 as the emulsifier. Oil in water emulsions were prepared by direct emulsification using a high sh...

  6. G protein-membrane interactions I: Gαi1 myristoyl and palmitoyl modifications in protein-lipid interactions and its implications in membrane microdomain localization.

    PubMed

    Álvarez, Rafael; López, David J; Casas, Jesús; Lladó, Victoria; Higuera, Mónica; Nagy, Tünde; Barceló, Miquel; Busquets, Xavier; Escribá, Pablo V

    2015-11-01

    G proteins are fundamental elements in signal transduction involved in key cell responses, and their interactions with cell membrane lipids are critical events whose nature is not fully understood. Here, we have studied how the presence of myristic and palmitic acid moieties affects the interaction of the Gαi1 protein with model and biological membranes. For this purpose, we quantified the binding of purified Gαi1 protein and Gαi1 protein acylation mutants to model membranes, with lipid compositions that resemble different membrane microdomains. We observed that myristic and palmitic acids not only act as membrane anchors but also regulate Gαi1 subunit interaction with lipids characteristics of certain membrane microdomains. Thus, when the Gαi1 subunit contains both fatty acids it prefers raft-like lamellar membranes, with a high sphingomyelin and cholesterol content and little phosphatidylserine and phosphatidylethanolamine. By contrast, the myristoylated and non-palmitoylated Gαi1 subunit prefers other types of ordered lipid microdomains with higher phosphatidylserine content. These results in part explain the mobility of Gαi1 protein upon reversible palmitoylation to meet one or another type of signaling protein partner. These results also serve as an example of how membrane lipid alterations can change membrane signaling or how membrane lipid therapy can regulate the cell's physiology.

  7. Interactions of Lipid Membranes with Fibrillar Protein Aggregates.

    PubMed

    Gorbenko, Galyna; Trusova, Valeriya; Girych, Mykhailo; Adachi, Emi; Mizuguchi, Chiharu; Saito, Hiroyuki

    2015-01-01

    Amyloid fibrils are an intriguing class of protein aggregates with distinct physicochemical, structural and morphological properties. They display peculiar membrane-binding behavior, thus adding complexity to the problem of protein-lipid interactions. The consensus that emerged during the past decade is that amyloid cytotoxicity arises from a continuum of cross-β-sheet assemblies including mature fibrils. Based on literature survey and our own data, in this chapter we address several aspects of fibril-lipid interactions, including (i) the effects of amyloid assemblies on molecular organization of lipid bilayer; (ii) competition between fibrillar and monomeric membrane-associating proteins for binding to the lipid surface; and (iii) the effects of lipids on the structural morphology of fibrillar aggregates. To illustrate some of the processes occurring in fibril-lipid systems, we present and analyze fluorescence data reporting on lipid bilayer interactions with fibrillar lysozyme and with the N-terminal 83-residue fragment of amyloidogenic mutant apolipoprotein A-I, 1-83/G26R/W@8. The results help understand possible mechanisms of interaction and mutual remodeling of amyloid fibers and lipid membranes, which may contribute to amyloid cytotoxicity.

  8. Why Hydrophilic Water can Permeate Hydrophobic Interior of Lipid Membranes

    NASA Astrophysics Data System (ADS)

    Qiao, Baofu; Olvera de La Cruz, Monica

    2014-03-01

    Water molecules as well as some small molecules have long been found to be able to diffuse across lipid membranes. Such permeation is of significant biological and biotechnological importance. For instance, the permeation of water across lipid membrane plays a important role in regulating ionic concentrations inside of cells. Such water permeation without the assistance of proteins embedded in membranes has been found to be a energetically unfavorable process. We, for the first time, explicitly depict the driving force for such an energetically unfavorable process. Atomistic molecular dynamics simulations are employed to investigate water diffusion in both liquid-crystalline and ordered gel phases of membranes containing zwitterionic DPPC or anionic DLPS lipid. The membrane conformation is calculated to have a critical role in water permeation, regardless of the type of lipid. The fluctuations in the potential energy are found to have a significant, if not the exclusive, role in the transportation of water across lipid membranes. Our results are also informative for the diffusion of small molecules of CO2, O2 and drug molecules, the absence of diffusion of ions, and the diffusion of water into the hydrophobic pores of carbon nanotubes. The authors acknowledge the support from the Office of the Director of Defense Research and Engineering (DDR & E) under Award No. FA9550-10-1-0167.

  9. Edelfosine and miltefosine effects on lipid raft properties: membrane biophysics in cell death by antitumor lipids.

    PubMed

    Castro, Bruno M; Fedorov, Aleksander; Hornillos, Valentin; Delgado, Javier; Acuña, A Ulises; Mollinedo, Faustino; Prieto, Manuel

    2013-07-03

    Edelfosine (1-O-octadecyl-2-O-methyl-sn-glycero-phosphocholine) and miltefosine (hexadecylphosphocholine) are synthetic alkylphospholipids (ALPs) that are reported to selectively accumulate in tumor cell membranes, inducing Fas clustering and activation on lipid rafts, triggering apoptosis. However, the exact mechanism by which these lipids elicit these events is still not fully understood. Recent studies propose that their mode of action might be related with alterations of lipid rafts biophysical properties caused by these lipid drugs. To achieve a clear understanding of this mechanism, we studied the effects of pharmacologically relevant amounts of edelfosine and miltefosine in the properties of model and cellular membranes. The influence of these molecules on membrane order, lateral organization, and lipid rafts molar fraction and size were studied by steady-state and time-resolved fluorescence methods, Förster resonance energy transfer (FRET), confocal and fluorescence lifetime imaging microscopy (FLIM). We found that the global membrane and lipid rafts biophysical properties of both model and cellular membranes were not significantly affected by both the ALPs. Nonetheless, in model membranes, a mild increase in membrane fluidity induced by both alkyl lipids was detected, although this effect was more noticeable for edelfosine than miltefosine. This absence of drastic alterations shows for the first time that ALPs mode of action is unlikely to be directly linked to alterations of lipid rafts biophysical properties caused by these drugs. The biological implications of this result are discussed in the context of ALPs effects on lipid metabolism, mitochondria homeostasis modulation, and their relationship with tumor cell death.

  10. Preparation of supported lipid membranes for aquaporin Z incorporation.

    PubMed

    Li, Xuesong; Wang, Rong; Tang, Chuyang; Vararattanavech, Ardcharaporn; Zhao, Yang; Torres, Jaume; Fane, Tony

    2012-06-01

    There has been a recent surge of interest to mimic the performance of natural cellular membranes by incorporating water channel proteins-aquaporins (AQPs) into various ultrathin films for water filtration applications. To make biomimetic membranes one of the most crucial steps is preparing a defect-free platform for AQPs incorporation on a suitable substrate. In this study two methods were used to prepare supported lipid membranes on NF membrane surfaces under a benign pH condition of 7.8. One method was direct vesicle fusion on a hydrophilic membrane NF-270; the other was vesicle fusion facilitated by hydraulic pressure on a modified hydrophilic NF-270 membrane whose surface has been spin-coated with positively charged lipids. Experiments revealed that the supported lipid membrane without AQPs prepared by the spin coating plus vesicle fusion had a much lower defect density than that prepared by vesicle fusion alone. It appears that the surface roughness and charge are the main factors determining the quality of the supported lipid membrane. Aquaporin Z (AqpZ) proteins were successfully incorporated into 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) liposomes and its permeability was measured by the stopped-flow experimental procedure. However, after the proteoliposomes have been fused onto the modified substrate, the AqpZ function in the resultant membrane was not observed and AFM images showed distinct aggregations of unfused proteoliposomes or AqpZ proteins on the substrate surface. It is speculated that the inhibition of AqpZ function may be caused by the low lipid mobility on the NF membrane surface. Further investigations to evaluate and optimize the structure-performance relationship are required.

  11. Hydrodynamic effects on spinodal decomposition kinetics in planar lipid bilayer membranes

    NASA Astrophysics Data System (ADS)

    Fan, Jun; Han, Tao; Haataja, Mikko

    2010-12-01

    The formation and dynamics of spatially extended compositional domains in multicomponent lipid membranes lie at the heart of many important biological and biophysical phenomena. While the thermodynamic basis for domain formation has been explored extensively in the past, domain growth in the presence of hydrodynamic interactions both within the (effectively) two-dimensional membrane and in the three-dimensional solvent in which the membrane is immersed has received little attention. In this work, we explore the role of hydrodynamic effects on spinodal decomposition kinetics via continuum simulations of a convective Cahn-Hilliard equation for membrane composition coupled to the Stokes equation. Our approach explicitly includes hydrodynamics both within the planar membrane and in the three-dimensional solvent in the viscously dominated flow regime. Numerical simulations reveal that dynamical scaling breaks down for critical lipid mixtures due to distinct coarsening mechanisms for elongated versus more isotropic compositional lipid domains. The breakdown in scaling should be readily observable in experiments on model membrane systems.

  12. Methanothermobacter thermautotrophicus modulates its membrane lipids in response to hydrogen and nutrient availability

    PubMed Central

    Yoshinaga, Marcos Y.; Gagen, Emma J.; Wörmer, Lars; Broda, Nadine K.; Meador, Travis B.; Wendt, Jenny; Thomm, Michael; Hinrichs, Kai-Uwe

    2015-01-01

    Methanothermobacter thermautotrophicus strain ΔH is a model hydrogenotrophic methanogen, for which extensive biochemical information, including the complete genome sequence, is available. Nevertheless, at the cell membrane lipid level, little is known about the responses of this archaeon to environmental stimuli. In this study, the lipid composition of M. thermautotrophicus was characterized to verify how this archaeon modulates its cell membrane components during growth phases and in response to hydrogen depletion and nutrient limitation (potassium and phosphate). As opposed to the higher abundance of phospholipids in the stationary phase of control experiments, cell membranes under nutrient, and energy stress were dominated by glycolipids that likely provided a more effective barrier against ion leakage. We also identified particular lipid regulatory mechanisms in M. thermautotrophicus, which included the accumulation of polyprenols under hydrogen-limited conditions and an increased content of sodiated adducts of lipids in nutrient-limited cells. These findings suggest that M. thermautotrophicus intensely modulates its cell membrane lipid composition to cope with energy and nutrient availability in dynamic environments. PMID:25657645

  13. A Two-Stage Model for Lipid Modulation of the Activity of Integral Membrane Proteins

    PubMed Central

    Dodes Traian, Martín M.; Cattoni, Diego I.; Levi, Valeria; González Flecha, F. Luis

    2012-01-01

    Lipid-protein interactions play an essential role in the regulation of biological function of integral membrane proteins; however, the underlying molecular mechanisms are not fully understood. Here we explore the modulation by phospholipids of the enzymatic activity of the plasma membrane calcium pump reconstituted in detergent-phospholipid mixed micelles of variable composition. The presence of increasing quantities of phospholipids in the micelles produced a cooperative increase in the ATPase activity of the enzyme. This activation effect was reversible and depended on the phospholipid/detergent ratio and not on the total lipid concentration. Enzyme activation was accompanied by a small structural change at the transmembrane domain reported by 1-aniline-8-naphtalenesulfonate fluorescence. In addition, the composition of the amphipilic environment sensed by the protein was evaluated by measuring the relative affinity of the assayed phospholipid for the transmembrane surface of the protein. The obtained results allow us to postulate a two-stage mechanistic model explaining the modulation of protein activity based on the exchange among non-structural amphiphiles at the hydrophobic transmembrane surface, and a lipid-induced conformational change. The model allowed to obtain a cooperativity coefficient reporting on the efficiency of the transduction step between lipid adsorption and catalytic site activation. This model can be easily applied to other phospholipid/detergent mixtures as well to other membrane proteins. The systematic quantitative evaluation of these systems could contribute to gain insight into the structure-activity relationships between proteins and lipids in biological membranes. PMID:22723977

  14. How lipid headgroups sense the membrane environment: an application of ¹⁴N NMR.

    PubMed

    Doux, Jacques P F; Hall, Benjamin A; Killian, J Antoinette

    2012-09-19

    The orientation of lipid headgroups may serve as a powerful sensor of electrostatic interactions in membranes. As shown previously by (2)H NMR measurements, the headgroup of phosphatidylcholine (PC) behaves like an electrometer and varies its orientation according to the membrane surface charge. Here, we explored the use of solid-state (14)N NMR as a relatively simple and label-free method to study the orientation of the PC headgroup in model membrane systems of varying composition. We found that (14)N NMR is sufficiently sensitive to detect small changes in headgroup orientation upon introduction of positively and negatively charged lipids and we developed an approach to directly convert the (14)N quadrupolar splittings into an average orientation of the PC polar headgroup. Our results show that inclusion of cholesterol or mixing of lipids with different length acyl chains does not significantly affect the orientation of the PC headgroup. In contrast, measurements with cationic (KALP), neutral (Ac-KALP), and pH-sensitive (HALP) transmembrane peptides show very systematic changes in headgroup orientation, depending on the amount of charge in the peptide side chains and on their precise localization at the interface, as modulated by varying the extent of hydrophobic peptide/lipid mismatch. Finally, our measurements suggest an unexpectedly strong preferential enrichment of the anionic lipid phosphatidylglycerol around the cationic KALP peptide in ternary mixtures with PC. We believe that these results are important for understanding protein/lipid interactions and that they may help parametrization of membrane properties in computational studies.

  15. Applications of Mass Spectrometry to Lipids and Membranes

    PubMed Central

    Harkewicz, Richard; Dennis, Edward A.

    2012-01-01

    Lipidomics, a major part of metabolomics, constitutes the detailed analysis and global characterization, both spatial and temporal, of the structure and function of lipids (the lipidome) within a living system. As with proteomics, mass spectrometry has earned a central analytical role in lipidomics, and this role will continue to grow with technological developments. Currently, there exist two mass spectrometry-based lipidomics approaches, one based on a division of lipids into categories and classes prior to analysis, the “comprehensive lipidomics analysis by separation simplification” (CLASS), and the other in which all lipid species are analyzed together without prior separation, shotgun. In exploring the lipidome of various living systems, novel lipids are being discovered, and mass spectrometry is helping characterize their chemical structure. Deuterium exchange mass spectrometry (DXMS) is being used to investigate the association of lipids and membranes with proteins and enzymes, and imaging mass spectrometry (IMS) is being applied to the in situ analysis of lipids in tissues. PMID:21469951

  16. Compositional Heterogeneity in Ternary Models for the Cell Membrane

    NASA Astrophysics Data System (ADS)

    Smith, Robin; Heberle, Frederick; Wu, Jing; Feigenson, Gerald

    2010-03-01

    Ternary models for the cell membrane comprised of cholesterol (Chol) plus high and low melting temperature lipids exhibit rich phase behavior as a function of temperature and composition. Of particular interest is a region of coexisting disordered and ordered fluid phases that is thought to indicate how lipids organize to promote protein function in the cell membrane. We have used fluorescence resonance energy transfer to investigate the ternary mixtures DOPC(1,2-dioleoyl-sn-glycero-3-phosphocholine)/bSM (porcine brainsphingomyelin)/Chol and POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine)/bSM/Chol at high compositional resolution. We confirmed liquid coexistence for DOPC/bSM/Chol at 15 and 25C that melts by 35C, but in contrast to previous studies we detected no fluid-phase compositional heterogeneity for POPC/bSM/Chol from 5-35C. If domains exist, they must be smaller than the approximately 5 nm sensitivity provided by the fluorescent lipid analogs employed. We propose electron spin resonance and x-ray scattering for measuring whether liquid-phase compositional heterogeneity occurs for POPC/bSM/Chol. Understanding POPC/bSM/Chol phase behavior will provide a framework for investigating peptide/lipid interactions in a biologically relevant lipid mixture.

  17. Inducing morphological changes in lipid bilayer membranes with microfabricated substrates

    NASA Astrophysics Data System (ADS)

    Liu, Fangjie; Collins, Liam F.; Ashkar, Rana; Heberle, Frederick A.; Srijanto, Bernadeta R.; Collier, C. Patrick

    2016-11-01

    Lateral organization of lipids and proteins into distinct domains and anchoring to a cytoskeleton are two important strategies employed by biological membranes to carry out many cellular functions. However, these interactions are difficult to emulate with model systems. Here we use the physical architecture of substrates consisting of arrays of micropillars to systematically control the behavior of supported lipid bilayers - an important step in engineering model lipid membrane systems with well-defined functionalities. Competition between attractive interactions of supported lipid bilayers with the underlying substrate versus the energy cost associated with membrane bending at pillar edges can be systematically investigated as functions of pillar height and pitch, chemical functionalization of the microstructured substrate, and the type of unilamellar vesicles used for assembling the supported bilayer. Confocal fluorescent imaging and AFM measurements highlight correlations that exist between topological and mechanical properties of lipid bilayers and lateral lipid mobility in these confined environments. This study provides a baseline for future investigations into lipid domain reorganization on structured solid surfaces and scaffolds for cell growth.

  18. Spectral Imaging to Measure Heterogeneity in Membrane Lipid Packing

    PubMed Central

    Sezgin, Erdinc; Waithe, Dominic; Bernardino de la Serna, Jorge; Eggeling, Christian

    2015-01-01

    Physicochemical properties of the plasma membrane have been shown to play an important role in cellular functionality. Among those properties, the molecular order of the lipids, or the lipid packing, is of high importance. Changes in lipid packing are believed to compartmentalize cellular signaling by initiating coalescence and conformational changes of proteins. A common way to infer membrane lipid packing is by using membrane-embedded polarity-sensitive dyes, whose emission spectrum is dependent on the molecular order of the immediate membrane environment. Here, we report on an improved determination of such spectral shifts in the emission spectrum of the polarity-sensitive dyes. This improvement is based on the use of spectral imaging on a scanning confocal fluorescence microscope in combination with an improved analysis, which considers the whole emission spectrum instead of just single wavelength ranges. Using this approach and the polarity-sensitive dyes C-Laurdan or Di-4-ANEPPDHQ, we were able to image—with high accuracy—minute differences in the lipid packing of model and cellular membranes. PMID:25755090

  19. Effect of membrane tension on the physical properties of DOPC lipid bilayer membrane

    PubMed Central

    Reddy, A. Srinivas; Warshaviak, Dora Toledo; Chachisvilis, Mirianas

    2013-01-01

    Molecular dynamics simulations of a dioleoylphosphocholine (DOPC) lipid bilayer were performed to explore its mechanosensitivity. Variations in the bilayer properties, such as area per lipid, volume, thickness, hydration depth (HD), hydration thickness (HT), lateral diffusion coefficient, and changes in lipid structural order were computed in the membrane tension range 0 to 15 dyn/cm. We determined that an increase in membrane tension results in a decrease in the bilayer thickness and HD of ∼5% and ∼5.7% respectively, whereas area per lipid, volume, and HT/HD increased by 6.8%, 2.4%, and 5% respectively. The changes in lipid conformation and orientation were characterized using orientational (S2) and deuterium (SCD) order parameters. Upon increase of membrane tension both order parameters indicated an increase in lipid disorder by 10– 20%, mostly in the tail end region of the hydrophobic chains. The effect of membrane tension on lipid lateral diffusion in the DOPC bilayer was analyzed on three different time scales corresponding to inertial motion, anomalous diffusion and normal diffusion. The results showed that lateral diffusion of lipid molecules is anomalous in nature due to the non-exponential distribution of waiting times. The anomalous and normal diffusion coefficients increased by 20% and 52% when the membrane tension changed from 0 to 15 dyn/cm, respectively. In conclusion, our studies showed that membrane tension causes relatively significant changes in the area per lipid, volume, polarity, membrane thickness, and fluidity of the membrane suggesting multiple mechanisms by which mechanical perturbation of the membrane could trigger mechanosensitive response in cells. PMID:22588133

  20. Laurdan fluorescence senses mechanical strain in the lipid bilayer membrane.

    PubMed

    Zhang, Yan-Liang; Frangos, John A; Chachisvilis, Mirianas

    2006-09-01

    The precise molecular mechanisms by which cells transduce a mechanical stimulus into an intracellular biochemical response have not yet been established. Here, we show for the first time that the fluorescence emission of an environment-sensitive membrane probe Laurdan is modulated by mechanical strain of the lipid bilayer membrane. We have measured fluorescence emission of Laurdan in phospholipid vesicles of 30, 50, and 100 nm diameter to show that osmotically induced membrane tension leads to an increase in polarity (hydration depth) of the phospholipid bilayer interior. Our data indicate that the general polarization of Laurdan emission is linearly dependent on membrane tension. We also show that higher membrane curvature leads to higher hydration levels. We anticipate that the proposed method will facilitate future studies of mechanically induced changes in physical properties of lipid bilayer environment both in vitro and in vivo.

  1. Electronically Conductive Composite Polymer Membranes.

    DTIC Science & Technology

    1985-09-20

    coats the individual fibers which make up the webs. Clearly, at this loading level ( 10 w/w S Nafion in the Gr), only a small fraction of the...NOO014-82K-0612 Task No. NR 627-838 cc TECHNICAL REPORT NO. 10 Mn Electronically Conductive Composite Polymer Membranes I- I by 0 Reginald M. Penner... 10 of Document Control Data - DO Form 1473. Copies of form available from cognizant contract administrator 85 IV, 03 O88 UNCLASSI FIED SECURITY

  2. Interaction between Antibacterial Peptide Apep10 and Escherichia coli Membrane Lipids Evaluated Using Liposome as Pseudo-Stationary Phase

    PubMed Central

    Li, Man

    2017-01-01

    Liposomes constructed from Escherichia coli membrane lipids were used as a pseudo-stationary phase in capillary electrophoresis and immobilised liposome chromatography to evaluate the interaction between antibacterial peptide (ABP) Apep10 and bacterial membrane lipids. The peptide mobility decreased as the concentration of liposomes increased, providing evidence for the existence of this interaction. The binding constant between Apep10 and the Escherichia coli membranes lipid liposome was higher than that of Apep10 with a mixed phospholipids liposome at the same temperature. The capillary electrophoresis results indicate that the binding ability of Apep10 with a liposome was dependent on the liposome’s lipid compositions. Thermodynamic analysis by immobilised liposome chromatography indicated that hydrophobic and electrostatic effects contributed to the partitioning of Apep10 in the membrane lipids. The liposomes constructed from bacterial membrane lipid were more suitable as the model membranes used to study dynamic ABP/membrane interactions than those constructed from specific ratios of particular phospholipids, with its more biomimetic phospholipid composition and contents. This study provides an appropriate model for the evaluation of ABP-membrane interactions. PMID:28052090

  3. Effects of hydrostatic pressure on lipid bilayer membranes. I. Influence on membrane thickness and activation volumes of lipophilic ion transport.

    PubMed Central

    Benz, R; Conti, F

    1986-01-01

    Measurements of membrane capacitance, Cm, were performed on lipid bilayers of different lipidic composition (diphytanoyl phosphatidylcholine PPhPC, dioleoyl phosphatidylcholine DOPE, glycerylmonooleate GMO) and containing n-decane as solvent. In the same membranes, the absorption of the lipophilic ions dipicrylamine (DPA-) and tetraphenylborate (TPhB-), and the kinetics of their translocation between the two membrane faces have been studied. The data were obtained from charge pulse relaxation measurements. Upon increasing pressure the specific capacity Cm increased in a fully reversible and reproducible way reflecting a thinning of the membrane that is attributed to extrusion of n-decane from the black membrane area. High pressure decreased the rate constant, ki, for lipophilic ion translocation. After correcting for changes in the height of the energy barrier for translocation due to membrane thinning the pressure dependence of ki yields an apparent activation volume for translocation of approximately 14 cm3/mol both for DPA- and TPhB-. Changes in lipophilic ion absorption following a step of pressure developed with a rather slow time course due to diffusion limitations in solution. The stationary concentration of membrane absorbed lipophilic ions increased with pressure according to an apparent volume of absorption of about -10 cm3/mol. The relevance of the results for the interpretation of the effects of pressure on nerve membrane physiology is discussed. Images FIGURE 1 PMID:3730509

  4. Amyloid β Ion Channels in a Membrane Comprising Brain Total Lipid Extracts.

    PubMed

    Lee, Joon; Kim, Young Hun; T Arce, Fernando; Gillman, Alan L; Jang, Hyunbum; Kagan, Bruce L; Nussinov, Ruth; Yang, Jerry; Lal, Ratnesh

    2017-02-20

    Amyloid β (Aβ) oligomers are the predominant toxic species in the pathology of Alzheimer's disease. The prevailing mechanism for toxicity by Aβ oligomers includes ionic homeostasis destabilization in neuronal cells by forming ion channels. These channel structures have been previously studied in model lipid bilayers. In order to gain further insight into the interaction of Aβ oligomers with natural membrane compositions, we have examined the structures and conductivities of Aβ oligomers in a membrane composed of brain total lipid extract (BTLE). We utilized two complementary techniques: atomic force microscopy (AFM) and black lipid membrane (BLM) electrical recording. Our results indicate that Aβ1-42 forms ion channel structures in BTLE membranes, accompanied by a heterogeneous population of ionic current fluctuations. Notably, the observed current events generated by Aβ1-42 peptides in BTLE membranes possess different characteristics compared to current events generated by the presence of Aβ1-42 in model membranes comprising a 1:1 mixture of DOPS and POPE lipids. Oligomers of the truncated Aβ fragment Aβ17-42 (p3) exhibited similar ion conductivity behavior as Aβ1-42 in BTLE membranes. However, the observed macroscopic ion flux across the BTLE membranes induced by Aβ1-42 pores was larger than for p3 pores. Our analysis of structure and conductance of oligomeric Aβ pores in a natural lipid membrane closely mimics the in vivo cellular environment suggesting that Aβ pores could potentially accelerate the loss of ionic homeostasis and cellular abnormalities. Hence, these pore structures may serve as a target for drug development and therapeutic strategies for AD treatment.

  5. EDTA-induced membrane fluidization and destabilization: biophysical studies on artificial lipid membranes.

    PubMed

    Prachayasittikul, Virapong; Isarankura-Na-Ayudhya, Chartchalerm; Tantimongcolwat, Tanawut; Nantasenamat, Chanin; Galla, Hans-Joachim

    2007-11-01

    The molecular mechanism of ethylenediaminetetraacetic acid (EDTA)-induced membrane destabilization has been studied using a combination of four biophysical techniques on artificial lipid membranes. Data from Langmuir film balance and epifluorescence microscopy revealed the fluidization and expansion effect of EDTA on phase behavior of monolayers of either 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) or mixtures of DPPC and metal-chelating lipids, such as N(alpha),N(alpha)-Bis[carboxymethyl]-N(epsilon)-[(dioctadecylamino)succinyl]-L-lysine or 1,2-dioleoyl-sn-glycero-3-[N-(5-amino-1-carboxypentyl iminodiacetic acid) succinyl]. A plausible explanation could be drawn from the electrostatic interaction between negatively charged groups of EDTA and the positively charged choline head group of DPPC. Intercalation of EDTA into the lipid membrane induced membrane curvature as elucidated by atomic force microscopy. Growth in size and shape of the membrane protrusion was found to be time-dependent upon exposure to EDTA. Further loss of material from the lipid membrane surface was monitored in real time using a quartz crystal microbalance. This indicates membrane restabilization by exclusion of the protrusions from the surface. Loss of lipid components facilitates membrane instability, leading to membrane permeabilization and lysis.

  6. Two-Phase Contiguous Supported Lipid Bilayer Model for Membrane Rafts via Polymer Blotting and Stenciling.

    PubMed

    Richards, Mark J; Daniel, Susan

    2017-02-07

    The supported lipid bilayer has been portrayed as a useful model of the cell membrane compatible with many biophysical tools and techniques that demonstrate its appeal in learning about the basic features of the plasma membrane. However, some of its potential has yet to be realized, particularly in the area of bilayer patterning and phase/composition heterogeneity. In this work, we generate contiguous bilayer patterns as a model system that captures the general features of membrane domains and lipid rafts. Micropatterned polymer templates of two types are investigated for generating patterned bilayer formation: polymer blotting and polymer lift-off stenciling. While these approaches have been used previously to create bilayer arrays by corralling bilayers patches with various types of boundaries impenetrable to bilayer diffusion, unique to the methods presented here, there are no physical barriers to diffusion. In this work, interfaces between contiguous lipid phases define the pattern shapes, with continuity between them allowing transfer of membrane-bound biomolecules between the phases. We examine effectors of membrane domain stability including temperature and cholesterol content to investigate domain dynamics. Contiguous patterning of supported bilayers as a model of lipid rafts expands the application of the SLB to an area with current appeal and brings with it a useful toolset for characterization and analysis. These combined tools should be helpful to researchers investigating lipid raft dynamics and function and biomolecule partitioning studies. Additionally, this patterning technique may be useful for applications such as bioseparations that exploit differences in lipid phase partitioning or creation of membranes that bind species like viruses preferentially at lipid phase boundaries, to name a few.

  7. Dynamical Clustering and the Origin of Raft-like Structures in a Model Lipid Membrane

    NASA Astrophysics Data System (ADS)

    Starr, Francis

    2014-03-01

    We investigate the dynamical heterogeneity of a model single-component lipid membrane using simulations of a coarse-grained representation of lipid molecules. In the liquid-ordered (LO) phase, lipid diffusion is hindered by the transient trapping of molecules by their neighbors, giving rise to two distinct mobility groups: low-mobility lipids which are temporarily ``caged'', and lipids with displacements on the scale of the intermolecular spacing. The lipid molecules within these distinct mobility states cluster, giving rise to transient ``islands'' of enhanced mobility having the size and time scale expected for lipid ``rafts''. These clusters are strikingly similar to the dynamical clusters found in glass-forming fluids, and distinct from phase-separation clusters. Such dynamic heterogeneity is ubiquitous in disordered condensed-phase systems. Thus, we hypothesize that rafts may originate from this universal mechanism, explaining why raft-like regions should arise, regardless of lipid structural or compositional details. This perspective provides a new approach to understand membrane transport.

  8. Independent adsorption of monovalent cations and cationic polymers at PE/PG lipid membranes

    NASA Astrophysics Data System (ADS)

    Khomich, Daria A.; Nesterenko, Alexey M.; Kostritskii, Andrei Yu; Kondinskaia, Diana A.; Ermakov, Yuri A.; Gurtovenko, Andrey A.

    2017-01-01

    Synthetic cationic polymers constitute a wide class of polymeric biocides. Commonly their antimicrobial effect is associated to their interaction with bacterial membranes. In the present study we analyze the interaction of various cationic polymers with model bacterial membranes comprised of a mixture of phosphatidylethanolamine (PE) and phosphatidylglycerol (PG). We describe a polymer-membrane interaction as a process of modification of the surface charge. It is well known that small monovalent inorganic cations (Na+, K+) cannot overcharge the surface of a bilayer containing anionic lipids. In contrast, polycations are able to overcharge anionic membranes and demonstrate a very large input to the electric field distribution at the membrane-water interface. We aimed here to study the electrostatic effects associated with the interaction of polycations of different types with a model lipid membrane whose composition closely resembles that of bacterial membranes (PE:PG = 1:4). Four different cationic polymers (polyvinylamine, polyallylamine, poly-L-lysine and polyethylenimine) were adsorbed at a model PE/PG bilayer in MD simulations. Adsorption of sodium cations was inspected separately for PE/PG bilayers of different composition and cation’s binding parameters were determined. From computational experiments and consequent theoretical analysis we concluded that sodium adsorption at anionic binding sites does not depend on the presence of polycations. Therefore, we hypothesize that antimicrobial activity of the studied cationic polymers should depend on the ionic composition of the medium.

  9. Probing protein-lipid interactions by FRET between membrane fluorophores

    NASA Astrophysics Data System (ADS)

    Trusova, Valeriya M.; Gorbenko, Galyna P.; Deligeorgiev, Todor; Gadjev, Nikolai

    2016-09-01

    Förster resonance energy transfer (FRET) is a powerful fluorescence technique that has found numerous applications in medicine and biology. One area where FRET proved to be especially informative involves the intermolecular interactions in biological membranes. The present study was focused on developing and verifying a Monte-Carlo approach to analyzing the results of FRET between the membrane-bound fluorophores. This approach was employed to quantify FRET from benzanthrone dye ABM to squaraine dye SQ-1 in the model protein-lipid system containing a polycationic globular protein lysozyme and negatively charged lipid vesicles composed of phosphatidylcholine and phosphatidylglycerol. It was found that acceptor redistribution between the lipid bilayer and protein binding sites resulted in the decrease of FRET efficiency. Quantification of this effect in terms of the proposed methodology yielded both structural and binding parameters of lysozyme-lipid complexes.

  10. Lipid Bilayer Vesicles with Numbers of Membrane-Linking Pores

    NASA Astrophysics Data System (ADS)

    Ken-ichirou Akashi,; Hidetake Miyata,

    2010-06-01

    We report that phospholipid membranes spontaneously formed in aqueous medium giant unilamellar vesicles (GUVs) possessing many membranous wormhole-like structures (membrane-linking pores, MLPs). By phase contract microscopy and confocal fluorescence microscopy, the structures of the MLPs, consisting of lipid bilayer, were resolvable, and a variety of vesicular shapes having many MLPs (a high genus topology) were found. These vesicles were stable but easily deformed by micromanipulation with a microneedle. We also observed the size reduction of the MLPs with the increase in membrane tension, which was qualitatively consistent with a prediction from a simple dynamical model.

  11. Alterations of erythrocyte morphology and lipid composition by hyperbilirubinemia.

    PubMed

    Brito, M A; Silva, R M; Matos, D C; da Silva, A T; Brites, D T

    1996-05-30

    Morphology and membrane lipid composition of erythrocytes from neonates (jaundiced and healthy) and adults (before and after incubation with bilirubin) were studied. The morphological index, expressing the relative proportions of the different stages of cell distortion, and the membrane cholesterol, phospholipids and cholesterol/phospholipids molar ratio, were determined. In jaundiced neonates a significant increase in the morphological index (P < 0.01) was found. After incubation with bilirubin, adult erythrocytes also showed an increase in the morphological index (P < 0.01). Hemolysis occurred under these conditions, and the red cell ghosts obtained (vesicles) showed a rounded morphology. Higher cholesterol/phospholipid ratio and lower phospholipid content were found in jaundiced neonates compared with healthy babies (P < 0.05) and adults (P < 0.01), as well as in the cells (P < 0.05) and vesicles (P < 0.01) obtained after bilirubin incubation. Bilirubin cytotoxicity may occur in a stepwise manner: deposition of bilirubin in membrane produces echinocytosis, which is followed by disintegration of the lipid bilayer with loss of phospholipids from the membrane.

  12. Hypothyroidism modifies lipid composition of polymorphonuclear leukocytes.

    PubMed

    Coria, Mariela J; Carmona Viglianco, Yamila V; Marra, Carlos A; Gomez-Mejiba, Sandra E; Ramirez, Dario C; Anzulovich, Ana C; Gimenez, Maria S

    2012-01-01

    Thyroid hormones are important regulators of lipid metabolism. Polymorphonuclear leukocytes (PMN) are essential components of innate immune response. Our goal was to determine whether hypothyroidism affects lipid metabolism in PMN cells. Wistar rats were made hypothyroid by administrating 0.1 g/L 6-propyl-2-thiouracil (PTU) in drinking water during 30 days. Triacylglycerides (TG), cholesterol and phospholipids were determined in PMN and serum by conventional methods. The mRNA expression of LDL receptor (LDL-R), 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCoAR), sterol regulatory element binding protein 2 (SREBP-2), and diacylglycerol acyltransferase 2 (DGAT-2) were quantified by Real-Time PCR. Cellular neutral lipids were identified by Nile red staining. We found hypothyroidism decreases serum TG whereas it increases them in PMN. This result agrees with those observed in Nile red preparations, however DAGT-2 expression was not modified. Cholesterol synthesizing enzyme HMGCoAR mRNA and protein was reduced in PMN of hypothyroid rats. As expected, cholesterol content decreased in the cells although it increased in serum. Hypothyroidism also reduced relative contents of palmitic, stearic, and arachidonic acids, whereas increased the myristic, linoleic acids, and the unsaturation index in PMN. Thus, hypothyroidism modifies PMN lipid composition. These findings would emphasize the importance of new research to elucidate lipid-induced alterations in specific function(s) of PMN.

  13. Phosphoinositides, Major Actors in Membrane Trafficking and Lipid Signaling Pathways

    PubMed Central

    De Craene, Johan-Owen; Bertazzi, Dimitri L.; Bär, Séverine; Friant, Sylvie

    2017-01-01

    Phosphoinositides are lipids involved in the vesicular transport of proteins and lipids between the different compartments of eukaryotic cells. They act by recruiting and/or activating effector proteins and thus are involved in regulating various cellular functions, such as vesicular budding, membrane fusion and cytoskeleton dynamics. Although detected in small concentrations in membranes, their role is essential to cell function, since imbalance in their concentrations is a hallmark of many cancers. Their synthesis involves phosphorylating/dephosphorylating positions D3, D4 and/or D5 of their inositol ring by specific lipid kinases and phosphatases. This process is tightly regulated and specific to the different intracellular membranes. Most enzymes involved in phosphoinositide synthesis are conserved between yeast and human, and their loss of function leads to severe diseases (cancer, myopathy, neuropathy and ciliopathy). PMID:28294977

  14. Molecular mechanisms of protein and lipid targeting to ciliary membranes

    PubMed Central

    Emmer, Brian T.; Maric, Danijela; Engman, David M.

    2010-01-01

    Cilia are specialized surface regions of eukaryotic cells that serve a variety of functions, ranging from motility to sensation and to regulation of cell growth and differentiation. The discovery that a number of human diseases, collectively known as ciliopathies, result from defective cilium function has expanded interest in these structures. Among the many properties of cilia, motility and intraflagellar transport have been most extensively studied. The latter is the process by which multiprotein complexes associate with microtubule motors to transport structural subunits along the axoneme to and from the ciliary tip. By contrast, the mechanisms by which membrane proteins and lipids are specifically targeted to the cilium are still largely unknown. In this Commentary, we review the current knowledge of protein and lipid targeting to ciliary membranes and outline important issues for future study. We also integrate this information into a proposed model of how the cell specifically targets proteins and lipids to the specialized membrane of this unique organelle. PMID:20145001

  15. Super-resolution optical microscopy of lipid plasma membrane dynamics.

    PubMed

    Eggeling, Christian

    2015-01-01

    Plasma membrane dynamics are an important ruler of cellular activity, particularly through the interaction and diffusion dynamics of membrane-embedded proteins and lipids. FCS (fluorescence correlation spectroscopy) on an optical (confocal) microscope is a popular tool for investigating such dynamics. Unfortunately, its full applicability is constrained by the limited spatial resolution of a conventional optical microscope. The present chapter depicts the combination of optical super-resolution STED (stimulated emission depletion) microscopy with FCS, and why it is an important tool for investigating molecular membrane dynamics in living cells. Compared with conventional FCS, the STED-FCS approach demonstrates an improved possibility to distinguish free from anomalous molecular diffusion, and thus to give new insights into lipid-protein interactions and the traditional lipid 'raft' theory.

  16. Oxygen permeability of the lipid bilayer membrane made of calf lens lipids

    PubMed Central

    Widomska, Justyna; Raguz, Marija; Subczynski, Witold K.

    2007-01-01

    The oxygen permeability coefficient across the membrane made of the total lipid extract from the plasma membrane of calf lens was estimated from the profile of the oxygen transport parameter (local oxygen diffusion-concentration product) and compared with those estimated for membranes made of an equimolar 1-palmitoyl-2-oleoylphosphatidylcholine/cholesterol (POPC/Chol) mixture and of pure POPC. Profiles of the oxygen transport parameter were obtained by observing the collision of molecular oxygen with nitroxide radical spin labels placed at different depths in the membrane using the saturation-recovery EPR technique and were published by us earlier (J. Widomska, M. Raguz, J. Dillon, E. R. Gaillard, W. K. Subczynski, Biochim. Biophys. Acta. Epub 2007 March 20). At 35°C, the estimated oxygen permeability coefficients were 51.3, 49.7, and 157.4 cm/s for lens lipid, POPC/Chol, and POPC membranes, respectively (compared with 53.3 cm/s for a water layer with the same thickness as a membrane). Membrane permeability significantly decreases at lower temperatures. In the lens lipid membrane, resistance to the oxygen transport is located in and near the polar headgroup region of the membrane to the depth of the ninth carbon, which is approximately where the steroid-ring structure of cholesterol reaches into the membrane. In the central region of the membrane, oxygen transport is enhanced, significantly exceeding that in bulk water. It is concluded that the high level of cholesterol in lens lipids is responsible for these unique membrane properties. PMID:17662231

  17. Screening for lipid requirements of membrane proteins by combining cell-free expression with nanodiscs.

    PubMed

    Henrich, Erik; Dötsch, Volker; Bernhard, Frank

    2015-01-01

    Cell-free (CF) protein expression has emerged as one of the most efficient production platforms for membrane proteins. Central bottlenecks prevalent in conventional cell-based expression systems such as mistargeting, inclusion body formation, degradation as well as product toxicity can be addressed by taking advantage of the reduced complexity of CF expression systems. However, the open accessibility of CF reactions offers the possibility to design customized artificial expression environments by supplying synthetic hydrophobic compounds such as micelles or membranes of defined composition. The open nature of CF systems therefore generally allows systematic screening approaches for the identification of efficient cotranslational solubilization environments of membrane proteins. Synergies exist in particular with the recently developed nanodisc (ND) technology enabling the synthesis of stable and highly soluble particles containing membrane discs of defined composition. Specific types of lipids frequently modulate folding, stability, and activity of integrated membrane proteins. One recently reported example are phospho-MurNAc-pentapeptide (MraY) translocases that catalyze a crucial step in bacterial peptidoglycan biosynthesis making them interesting as future drug targets. Production of functionally active MraY homologues from most human pathogens in conventional cellular production systems was so far not successful due to their obviously strict lipid dependency for functionally folding. We demonstrate that the combination of CF expression with ND technologies is an efficient strategy for the production of folded MraY translocases, and we present a general protocol for the rapid screening of lipid specificities of membrane proteins.

  18. Human milk in disease: lipid composition.

    PubMed

    Hamosh, M; Bitman, J

    1992-11-01

    Differences in the lipid composition of human milk have been described in maternal diseases known to affect fat metabolism. Diseases such as diabetes, cystic fibrosis, hypobetalipoproteinemia and Type I hyperlipoproteinemia affect the quantity and quality of human milk fat. Increased fatty acid chain elongation and changes in desaturation (especially delta 6 desaturase), as well as changes in lipid class composition, have been shown in diabetes and cystic fibrosis, whereas compensatory increases in medium-chain fatty acids have been described in hypobetalipoproteinemia and Type I hyperlipoproteinemia. It is important to realize that these observations were made either on single women or on very small groups of women. In infant diseases, such as breast milk jaundice and ectopic eczema, changes in polyunsaturated fatty acids in maternal milk have been described.

  19. Dynamic Response of Model Lipid Membranes to Ultrasonic Radiation Force

    PubMed Central

    Prieto, Martin Loynaz; Oralkan, Ömer; Khuri-Yakub, Butrus T.; Maduke, Merritt C.

    2013-01-01

    Low-intensity ultrasound can modulate action potential firing in neurons in vitro and in vivo. It has been suggested that this effect is mediated by mechanical interactions of ultrasound with neural cell membranes. We investigated whether these proposed interactions could be reproduced for further study in a synthetic lipid bilayer system. We measured the response of protein-free model membranes to low-intensity ultrasound using electrophysiology and laser Doppler vibrometry. We find that ultrasonic radiation force causes oscillation and displacement of lipid membranes, resulting in small (<1%) changes in membrane area and capacitance. Under voltage-clamp, the changes in capacitance manifest as capacitive currents with an exponentially decaying sinusoidal time course. The membrane oscillation can be modeled as a fluid dynamic response to a step change in pressure caused by ultrasonic radiation force, which disrupts the balance of forces between bilayer tension and hydrostatic pressure. We also investigated the origin of the radiation force acting on the bilayer. Part of the radiation force results from the reflection of the ultrasound from the solution/air interface above the bilayer (an effect that is specific to our experimental configuration) but part appears to reflect a direct interaction of ultrasound with the bilayer, related to either acoustic streaming or scattering of sound by the bilayer. Based on these results, we conclude that synthetic lipid bilayers can be used to study the effects of ultrasound on cell membranes and membrane proteins. PMID:24194863

  20. Lamellar biogels: Fluid-membrane-based hydrogels containing polymer lipids

    SciTech Connect

    Warriner, H.E.; Idziak, S.H.J.; Slack, N.L.

    1996-02-16

    A class of lamellar biological hydrogels comprised of fluid membranes of lipids and surfactants with small amounts of low molecular weight poly(ethylene glycol)-derived polymer pipids (PEG-lipids) were studied by x-ray diffraction, polarized light microscopy, and rheometry. In contrast to isotropic hydrogels of polymer networks, these membrane-based birefringent liquid crystalline biogels, labeled L{sub {alpha},g,} form the gel phase when water is added to the liquid-like lamellar L{sub {alpha}} phase, which reenters a liquid-like mixed phase upon further dilution. Furthermore, gels with larger water content require less PEG-lipid to remain stable. Although concentrated ({approx}50 weight percent) mixtures of free PEG (molecular weight, 5000) and water do not gel, gelatin does occur in mixtures containing as little as 0.5 weight percent PEG lipid. A defining signature of the L{sub {alpha}, g} regime as it sets in from the fluid lamellar L{sub {alpha}} phase is the proliferation of layer-dislocation-type defects, which are stabilized by the segregation of PEG-lipids to the defect regions of high membrane curvature that connect the membranes. 32 refs., 5 figs.

  1. Membrane Lipid Metabolism in Germinating Castor Bean Endosperm 1

    PubMed Central

    Donaldson, Robert P.

    1976-01-01

    Castor bean (Ricinus communis L. var. Hale) endosperms, excised after 2 days germination at 30 C, were incubated 5 min to 8 hr with 14C-acetate and 3H-glycerol. Homogenates were fractionated by sucrose gradient centrifugation. Organelles found to be active in lipid synthesis were the lipid bodies and the endoplasmic reticulum. The products of incorporation in the lipid bodies were 3H-diglycerides containing 14C-fatty acids of more than 20 carbons. In contrast, the endoplasmic reticulum produced 3H-phospholipids as well as 3H-diglycerides rich in 14C-linoleate. The phospholipids synthesized and their acyl contents were of the types known to be the major components of organelle membranes in this tissue. Phospholipids and diglycerides containing 14C and 3H were found in the glyoxysomes and mitochondria subsequent to their appearance in the endoplasmic reticulum. The results show that germinating castor bean endosperm synthesizes membrane lipids de novo from acetate rather than reutilizing stored lipid components directly. It is also apparent that the endoplasmic reticulum is responsible for several steps in membrane lipid production. PMID:16659516

  2. Interaction of tau protein with model lipid membranes induces tau structural compaction and membrane disruption

    PubMed Central

    Jones, Emmalee M.; Dubey, Manish; Camp, Phillip J.; Vernon, Briana C.; Biernat, Jacek; Mandelkow, Eckhard; Majewski, Jaroslaw; Chi, Eva Y.

    2012-01-01

    The misfolding and aggregation of the intrinsically disordered, microtubule-associated tau protein into neurofibrillary tangles is implicated in the pathogenesis of Alzheimer's disease. However, the mechanisms of tau aggregation and toxicity remain unknown. Recent work has shown that lipid membrane can induce tau aggregation and that membrane permeabilization may serve as a pathway by which protein aggregates exert toxicity, suggesting that the plasma membrane may play dual roles in tau pathology. This prompted our investigation to assess tau's propensity to interact with membranes and to elucidate the mutually disruptive structural perturbations the interactions induce in both tau and the membrane. We show that although highly charged and soluble, the full-length tau (hTau40) is also highly surface active, selectively inserts into anionic DMPG lipid monolayers and induces membrane morphological changes. To resolve molecular-scale structural details of hTau40 associated with lipid membranes, X-ray and neutron scattering techniques are utilized. X-ray reflectivity indicates hTau40's presence underneath a DMPG monolayer and penetration into the lipid headgroups and tailgroups, whereas grazing incidence X-ray diffraction shows that hTau40 insertion disrupts lipid packing. Moreover, both air/water and DMPG lipid membrane interfaces induce the disordered hTau40 to partially adopt a more compact conformation with density similar to that of a folded protein. Neutron reflectivity shows that tau completely disrupts supported DMPG bilayers while leaving the neutral DPPC bilayer intact. Our results show that hTau40's strong interaction with anionic lipids induces tau structural compaction and membrane disruption, suggesting possible membrane-based mechanisms of tau aggregation and toxicity in neurodegenerative diseases. PMID:22401494

  3. Fatty Acids from Membrane Lipids Become Incorporated into Lipid Bodies during Myxococcus xanthus Differentiation

    PubMed Central

    Bhat, Swapna; Boynton, Tye O.; Pham, Dan; Shimkets, Lawrence J.

    2014-01-01

    Myxococcus xanthus responds to amino acid limitation by producing fruiting bodies containing dormant spores. During development, cells produce triacylglycerides in lipid bodies that become consumed during spore maturation. As the cells are starved to induce development, the production of triglycerides represents a counterintuitive metabolic switch. In this paper, lipid bodies were quantified in wild-type strain DK1622 and 33 developmental mutants at the cellular level by measuring the cross sectional area of the cell stained with the lipophilic dye Nile red. We provide five lines of evidence that triacylglycerides are derived from membrane phospholipids as cells shorten in length and then differentiate into myxospores. First, in wild type cells, lipid bodies appear early in development and their size increases concurrent with an 87% decline in membrane surface area. Second, developmental mutants blocked at different stages of shortening and differentiation accumulated lipid bodies proportionate with their cell length with a Pearson's correlation coefficient of 0.76. Third, peripheral rods, developing cells that do not produce lipid bodies, fail to shorten. Fourth, genes for fatty acid synthesis are down-regulated while genes for fatty acid degradation are up regulated. Finally, direct movement of fatty acids from membrane lipids in growing cells to lipid bodies in developing cells was observed by pulse labeling cells with palmitate. Recycling of lipids released by Programmed Cell Death appears not to be necessary for lipid body production as a fadL mutant was defective in fatty acid uptake but proficient in lipid body production. The lipid body regulon involves many developmental genes that are not specifically involved in fatty acid synthesis or degradation. MazF RNA interferase and its target, enhancer-binding protein Nla6, appear to negatively regulate cell shortening and TAG accumulation whereas most cell-cell signals activate these processes. PMID:24906161

  4. β2-Microglobulin Amyloid Fibril-Induced Membrane Disruption Is Enhanced by Endosomal Lipids and Acidic pH

    PubMed Central

    Goodchild, Sophia C.; Sheynis, Tania; Thompson, Rebecca; Tipping, Kevin W.; Xue, Wei-Feng; Ranson, Neil A.; Beales, Paul A.; Hewitt, Eric W.; Radford, Sheena E.

    2014-01-01

    Although the molecular mechanisms underlying the pathology of amyloidoses are not well understood, the interaction between amyloid proteins and cell membranes is thought to play a role in several amyloid diseases. Amyloid fibrils of β2-microglobulin (β2m), associated with dialysis-related amyloidosis (DRA), have been shown to cause disruption of anionic lipid bilayers in vitro. However, the effect of lipid composition and the chemical environment in which β2m-lipid interactions occur have not been investigated previously. Here we examine membrane damage resulting from the interaction of β2m monomers and fibrils with lipid bilayers. Using dye release, tryptophan fluorescence quenching and fluorescence confocal microscopy assays we investigate the effect of anionic lipid composition and pH on the susceptibility of liposomes to fibril-induced membrane damage. We show that β2m fibril-induced membrane disruption is modulated by anionic lipid composition and is enhanced by acidic pH. Most strikingly, the greatest degree of membrane disruption is observed for liposomes containing bis(monoacylglycero)phosphate (BMP) at acidic pH, conditions likely to reflect those encountered in the endocytic pathway. The results suggest that the interaction between β2m fibrils and membranes of endosomal origin may play a role in the molecular mechanism of β2m amyloid-associated osteoarticular tissue destruction in DRA. PMID:25100247

  5. Membrane lipid composition and stress/virulence related gene expression of Salmonella Enteritidis cells adapted to lactic acid and trisodium phosphate and their resistance to lethal heat and acid stress.

    PubMed

    Yang, Yishan; Kadim, Mellissa Irlianti; Khoo, Wei Jie; Zheng, Qianwang; Setyawati, Magdiel Inggrid; Shin, Yu-Jin; Lee, Seung-Cheol; Yuk, Hyun-Gyun

    2014-11-17

    This study evaluated the acid and heat resistance of Salmonella Enteritidis in simulated gastric fluid (pH 2.0) and during thermal treatment (54-60 °C), respectively, after adaptation to lactic acid (LA) or trisodium phosphate (TSP) at various pHs (pH 5.3-9.0). The changes in membrane lipid composition and expression levels of RpoS and RpoH were examined to elucidate their roles in bacterial stress resistance. Transcriptional profile of several virulence-related genes was also analyzed. Results showed that LA-adapted cells at pH 5.3 and 6.3 had higher acid and heat resistance than control cells and cells adapted to TSP at pH 8.3 and 9.0. LA-adapted cells had the lowest ratio of unsaturated to saturated fatty acids, indicating that they might possess a less fluid membrane. It was observed that the expression levels of RpoH and RpoS were upregulated in TSP-adapted cells but not in LA-adapted cells. Thus, these results indicate that the increased acid and heat resistance of LA-adapted S. Enteritidis was possibly due to the decreased membrane fluidity instead of the upregulation of RpoS and RpoH. About 6.0, 2.1, and 2.46-fold upregulation of spvR, avrA, and hilA were observed in cells adapted to TSP at pH 9.0, except sefA that had its highest expression level in the control cells, indicating that the expression of these virulence genes highly depends on environmental conditions. This is the first study to show that the alteration in the cytoplasmic membrane rather than RpoS and RpoH plays a more crucial role in conferring greater acid and heat resistance on LA-adapted S. Enteritidis, thus providing a better understanding on the bacterial stress response to acidic conditions.

  6. Intermonolayer Friction and Surface Shear Viscosity of Lipid Bilayer Membranes

    PubMed Central

    den Otter, W. K.; Shkulipa, S. A.

    2007-01-01

    The flow behavior of lipid bilayer membranes is characterized by a surface viscosity for in-plane shear deformations, and an intermonolayer friction coefficient for slip between the two leaflets of the bilayer. Both properties have been studied for a variety of coarse-grained double-tailed model lipids, using equilibrium and nonequilibrium molecular dynamics simulations. For lipids with two identical tails, the surface shear viscosity rises rapidly with tail length, while the intermonolayer friction coefficient is less sensitive to the tail length. Interdigitation of lipid tails across the bilayer midsurface, as observed for lipids with two distinct tails, strongly enhances the intermonolayer friction coefficient, but hardly affects the surface shear viscosity. The simulation results are compared against the available experimental data. PMID:17468168

  7. Evaluation of membrane models and their composition for islet amyloid polypeptide-membrane aggregation.

    PubMed

    Caillon, Lucie; Lequin, Olivier; Khemtémourian, Lucie

    2013-09-01

    Human islet amyloid polypeptide (IAPP) forms amyloid fibrils in the pancreatic islets of patients suffering from type 2 diabetes mellitus (T2DM). The formation of IAPP fibrils has been shown to cause membrane damage which most likely is responsible for the death of pancreatic islet β-cells during the pathogenesis of T2DM. Several studies have demonstrated a clear interaction between IAPP and lipid membranes. However the effect of different lipid compositions and of various membrane mimetics (including micelles, bicelles, SUV and LUV) on fibril formation kinetics and fibril morphology has not yet systematically been analysed. Here we report that the interaction of IAPP with various membrane models promoted different processes of fibril formation. Our data reveal that in SDS and DPC micelles, IAPP adopts a stable α-helical structure for several days, suggesting that the micelle models may stabilize monomeric or small oligomeric species of IAPP. In contrast, zwitterionic DMPC/DHPC bicelles and DOPC SUV accelerate the fibril formation compared to zwitterionic DOPC LUV, indicating that the size of the membrane model and its curvature influence the fibrillation process. Negatively charged membranes decrease the lag-time of the fibril formation kinetics while phosphatidylethanolamine and cholesterol have an opposite effect, probably due to the modulation of the physical properties of the membrane and/or due to direct interactions with IAPP within the membrane core. Finally, our results show that the modulation of lipid composition influences not only the growth of fibrils at the membrane surface but also the interactions of β-sheet oligomers with membranes.

  8. The fusogenic lipid phosphatidic acid promotes the biogenesis of mitochondrial outer membrane protein Ugo1

    PubMed Central

    Keller, Michael; Taskin, Asli A.; Horvath, Susanne E.; Guan, Xue Li; Prinz, Claudia; Opalińska, Magdalena; Zorzin, Carina; van der Laan, Martin; Wenk, Markus R.; Schubert, Rolf; Wiedemann, Nils; Holzer, Martin

    2015-01-01

    Import and assembly of mitochondrial proteins depend on a complex interplay of proteinaceous translocation machineries. The role of lipids in this process has been studied only marginally and so far no direct role for a specific lipid in mitochondrial protein biogenesis has been shown. Here we analyzed a potential role of phosphatidic acid (PA) in biogenesis of mitochondrial proteins in Saccharomyces cerevisiae. In vivo remodeling of the mitochondrial lipid composition by lithocholic acid treatment or by ablation of the lipid transport protein Ups1, both leading to an increase of mitochondrial PA levels, specifically stimulated the biogenesis of the outer membrane protein Ugo1, a component of the mitochondrial fusion machinery. We reconstituted the import and assembly pathway of Ugo1 in protein-free liposomes, mimicking the outer membrane phospholipid composition, and found a direct dependency of Ugo1 biogenesis on PA. Thus, PA represents the first lipid that is directly involved in the biogenesis pathway of a mitochondrial membrane protein. PMID:26347140

  9. Interaction of carbonylcyanide p-trifluoromethoxyphenylhydrazone (FCCP) with lipid membrane systems: a biophysical approach with relevance to mitochondrial uncoupling.

    PubMed

    Monteiro, João P; Martins, André F; Lúcio, Marlene; Reis, Salette; Geraldes, Carlos F G C; Oliveira, Paulo J; Jurado, Amália S

    2011-06-01

    FCCP (carbonylcyanide p-trifluoromethoxyphenylhydrazone), a classical uncoupler of mitochondrial oxidative phosphorylation, is used in this study as a model to clarify how interactions of uncouplers with membrane lipid bilayers may influence membrane biophysics and their protonophoric activity itself. In order to disclose putative effects that may be important when considering using uncouplers for pharmacological purposes, an extensive characterization of FCCP membrane lipid interactions using accurate biophysical approaches and simple model lipid systems was carried out. Differential scanning calorimetry studies showed that FCCP molecules disturb lipid bilayers and favor lateral phase separation in mixed lipid systems. (31)P NMR assays indicated that FCCP alters the curvature elastic properties of membrane models containing non-bilayer lipids, favoring lamellar/H(II) transition, probably by alleviation of hydrocarbon-packing constraints in the inverted hexagonal phase. Taking advantage of FCCP quenching effects on the fluorescent probes DPH (1,6-diphenyl-1,3,5-hexatriene) and DPH-PA (3-(p-(6-phenyl)-1,3,5-hexatrienyl)phenylpropionic acid), it is demonstrated that FCCP distributes across the bilayer thickness in both a single and a ternary lipid system mimicking the inner mitochondrial membrane. This behavior is consistent with the ability of the compound to migrate through the thickness of the inner mitochondrial membrane, an event required for its protonophoric activity. Finally, the study of the membrane fluidity in different lipid systems, as reported by the rotational correlation time (θ) of DPH or DPH-PA, showed that the extension at which FCCP disturbs membrane properties associated with the dynamics and the order of lipid molecules depends on the lipid composition of the model lipid system assayed.

  10. Lipid domains in intact fiber-cell plasma membranes isolated from cortical and nuclear regions of human eye lenses of donors from different age groups.

    PubMed

    Raguz, Marija; Mainali, Laxman; O'Brien, William J; Subczynski, Witold K

    2015-03-01

    The results reported here clearly document changes in the properties and the organization of fiber-cell membrane lipids that occur with age, based on electron paramagnetic resonance (EPR) analysis of lens membranes of clear lenses from donors of age groups from 0 to 20, 21 to 40, and 61 to 80 years. The physical properties, including profiles of the alkyl chain order, fluidity, hydrophobicity, and oxygen transport parameter, were investigated using EPR spin-labeling methods, which also provide an opportunity to discriminate coexisting lipid domains and to evaluate the relative amounts of lipids in these domains. Fiber-cell membranes were found to contain three distinct lipid environments: bulk lipid domain, which appears minimally affected by membrane proteins, and two domains that appear due to the presence of membrane proteins, namely boundary and trapped lipid domains. In nuclear membranes the amount of boundary and trapped phospholipids as well as the amount of cholesterol in trapped lipid domains increased with the donors' age and was greater than that in cortical membranes. The difference between the amounts of lipids in domains uniquely formed due to the presence of membrane proteins in nuclear and cortical membranes increased with the donors' age. It was also shown that cholesterol was to a large degree excluded from trapped lipid domains in cortical membranes. It is evident that the rigidity of nuclear membranes was greater than that of cortical membranes for all age groups. The amount of lipids in domains of low oxygen permeability, mainly in trapped lipid domains, were greater in nuclear than cortical membranes and increased with the age of donors. These results indicate that the nuclear fiber cell plasma membranes were less permeable to oxygen than cortical membranes and become less permeable to oxygen with age. In clear lenses, age-related changes in the lens lipid and protein composition and organization appear to occur in ways that increase fiber

  11. Lipid Domains in Intact Fiber-Cell Plasma Membranes Isolated from Cortical and Nuclear Regions of Human Eye Lenses of Donors from Different Age Groups

    PubMed Central

    Raguz, Marija; Mainali, Laxman; O’Brien, William J.; Subczynski, Witold K.

    2015-01-01

    The results reported here clearly document changes in the properties and the organization of fiber-cell membrane lipids that occur with age, based on electron paramagnetic resonance (EPR) analysis of lens membranes of clear lenses from donors of age groups from 0 to 20, 21 to 40, and 61 to 80 years. The physical properties, including profiles of the alkyl chain order, fluidity, hydrophobicity, and oxygen transport parameter, were investigated using EPR spin-labeling methods, which also provide an opportunity to discriminate coexisting lipid domains and to evaluate the relative amounts of lipids in these domains. Fiber-cell membranes were found to contain three distinct lipid environments: bulk lipid domain, which appears minimally affected by membrane proteins, and two domains that appear due to the presence of membrane proteins, namely boundary and trapped lipid domains. In nuclear membranes the amount of boundary and trapped phospholipids as well as the amount of cholesterol in trapped lipid domains increased with the donors’ age and was greater than that in cortical membranes. The difference between the amounts of lipids in domains uniquely formed due to the presence of membrane proteins in nuclear and cortical membranes increased with the donors’ age. It was also shown that cholesterol was to a large degree excluded from trapped lipid domains in cortical membranes. It is evident that the rigidity of nuclear membranes was greater than that of cortical membranes for all age groups. The amount of lipids in domains of low oxygen permeability, mainly in trapped lipid domains, were greater in nuclear than cortical membranes and increased with the age of donors. These results indicate that the nuclear fiber cell plasma membranes were less permeable to oxygen than cortical membranes and become less permeable to oxygen with age. In clear lenses, age-related changes in the lens lipid and protein composition and organization appear to occur in ways that increase fiber

  12. Stabilization of Lipid Membranes With Dendritic Polymers

    DTIC Science & Technology

    2004-12-01

    monolayer coverage was possible using the spin - coating procedure for concentrations of 10-5 w/w dendrimers in solution or lower. Higher coverages...The fluorescence intensity increased as coverage time before spin coating increased and as the dendrimer solution concentration increased (Fig...enhanced the adsorption of lipids to the substrate. Figure 7: Fluorescence intensity as a function of the PAMAM concentration used in the spin

  13. Quantitative characterization of the lateral distribution of membrane proteins within the lipid bilayer.

    PubMed Central

    Freire, E; Snyder, B

    1982-01-01

    The dependence of the lateral distribution of membrane proteins on the size, protein/lipoid molar ratio, and the magnitude of the interaction potentials has been investigated by computer modeling protein-lipid distributions with Monte Carlo calculations. These results have allowed us to develop a quantitative characterization of the distribution of membrane proteins and to correlate these distributions with experimental observables. The topological arrangement of protein domains, protein plus annular lipid domains, and free lipid domains is described in terms of radial distribution, pair connectedness, and cluster distribution functions. The radial distribution functions are used to measure the distribution of intermolecular distances between protein molecules, whereas the pair connectedness functions are used to estimate the physical extension of compositional domains. It is shown that, at characteristic protein/lipid molar ratios, previously isolated domains become connected, forming domain networks that extend over the entire membrane surface. These changes in the lateral connectivity of compositional domains are paralleled by changes in the calculated lateral diffusion coefficients and might have important implications for the regulation of diffusion controlled processes within the membrane. PMID:7074188

  14. Composite membranes and methods for making same

    DOEpatents

    Routkevitch, Dmitri; Polyakov, Oleg G

    2012-07-03

    Composite membranes that are adapted for separation, purification, filtration, analysis, reaction and sensing. The composite membranes can include a porous support structure having elongate pore channels extending through the support structure. The composite membrane also includes an active layer comprising an active layer material, where the active layer material is completely disposed within the pore channels between the surfaces of the support structure. The active layer is intimately integrated within the support structure, thus enabling great robustness, reliability, resistance to mechanical stress and thermal cycling, and high selectivity. Methods for the fabrication of composite membranes are also provided.

  15. Interaction of pristine and functionalized carbon nanotubes with lipid membranes.

    PubMed

    Baoukina, Svetlana; Monticelli, Luca; Tieleman, D Peter

    2013-10-10

    Carbon nanotubes are widely used in a growing number of applications. Their interactions with biological materials, cell membranes in particular, is of interest in applications including drug delivery and for understanding the toxicity of carbon nanotubes. We use extensive molecular dynamics simulations with the MARTINI model to study the interactions of model nanotubes of different thickness, length, and patterns of chemical modification with model membranes. In addition, we characterize the interactions of small bundles of carbon nanotubes with membrane models. Short pristine carbon nanotubes readily insert into membranes and adopt an orientation parallel to the plane of the membrane in the center of the membrane. Larger aggregates and functionalized nanotubes exhibit a range of possible interactions. The distribution and orientation of carbon nanotubes can be controlled by functionalizing the nanotubes. Free energy calculations provide thermodynamic insight into the preferred orientations of different nanotubes and quantify structural defects in the lipid matrix.

  16. Reversible control of current across lipid membranes by local heating

    PubMed Central

    Urban, Patrick; Kirchner, Silke R.; Mühlbauer, Christian; Lohmüller, Theobald; Feldmann, Jochen

    2016-01-01

    Lipid membranes are almost impermeable for charged molecules and ions that can pass the membrane barrier only with the help of specialized transport proteins. Here, we report how temperature manipulation at the nanoscale can be employed to reversibly control the electrical resistance and the amount of current that flows through a bilayer membrane with pA resolution. For this experiment, heating is achieved by irradiating gold nanoparticles that are attached to the bilayer membrane with laser light at their plasmon resonance frequency. We found that controlling the temperature on the nanoscale renders it possible to reproducibly regulate the current across a phospholipid membrane and the membrane of living cells in absence of any ion channels. PMID:26940847

  17. Pore spanning lipid bilayers on silanised nanoporous alumina membranes

    NASA Astrophysics Data System (ADS)

    Md Jani, Abdul M.; Zhou, Jinwen; Nussio, Matthew R.; Losic, Dusan; Shapter, Joe G.; Voelcker, Nicolas H.

    2008-12-01

    The preparation of bilayer lipid membranes (BLMs) on solid surfaces is important for many studies probing various important biological phenomena including the cell barrier properties, ion-channels, biosensing, drug discovery and protein/ligand interactions. In this work we present new membrane platforms based on suspended BLMs on nanoporous anodic aluminium oxide (AAO) membranes. AAO membranes were prepared by electrochemical anodisation of aluminium foil in 0.3 M oxalic acid using a custom-built etching cell and applying voltage of 40 V, at 1oC. AAO membranes with controlled diameter of pores from 30 - 40 nm (top of membrane) and 60 -70 nm (bottom of membrane) were fabricated. Pore dimensions have been confirmed by scanning electron microscopy (SEM) and atomic force microscopy (AFM). AAO membranes were chemically functionalised with 3-aminopropyltriethoxysilane (APTES). Confirmation of the APTES attachment to the AAO membrane was achieved by means of infrared spectroscopy, X-ray photoelectron spectroscopy and contact angle measurements. The Fourier transform infrared (FTIR) spectra of functionalised membranes show several peaks from 2800 to 3000 cm-1 which were assigned to symmetric and antisymmetric CH2 bands. XPS data of the membrane showed a distinct increase in C1s (285 eV), N1s (402 eV) and Si2p (102 eV) peaks after silanisation. The water contact angle of the functionalised membrane was 80o as compared to 20o for the untreated membrane. The formation of BLMs comprising dioleoyl-phosphatidylserine (DOPS) on APTESmodified AAO membranes was carried using the vesicle spreading technique. AFM imaging and force spectroscopy was used to characterise the structural and nanomechanical properties of the suspended membrane. This technique also confirmed the stability of bilayers on the nanoporous alumina support for several days. Fabricated suspended BLMs on nanoporous AAO hold promise for the construction of biomimetic membrane architectures with embedded

  18. Lipids and topological rules of membrane protein assembly: balance between long and short range lipid-protein interactions.

    PubMed

    Vitrac, Heidi; Bogdanov, Mikhail; Heacock, Phil; Dowhan, William

    2011-04-29

    The N-terminal six-transmembrane domain (TM) bundle of lactose permease of Escherichia coli is uniformly inverted when assembled in membranes lacking phosphatidylethanolamine (PE). Inversion is dependent on the net charge of cytoplasmically exposed protein domains containing positive and negative residues, net charge of the membrane surface, and low hydrophobicity of TM VII acting as a molecular hinge between the two halves of lactose permease (Bogdanov, M., Xie, J., Heacock, P., and Dowhan, W. (2008) J. Cell Biol. 182, 925-935). Net neutral lipids suppress the membrane translocation potential of negatively charged amino acids, thus increasing the cytoplasmic retention potential of positively charged amino acids. Herein, TM organization of sucrose permease (CscB) and phenylalanine permease (PheP) as a function of membrane lipid composition was investigated to extend these principles to other proteins. For CscB, topological dependence on PE only becomes evident after a significant increase in the net negative charge of the cytoplasmic surface of the N-terminal TM bundle. High negative charge is required to overcome the thermodynamic block to inversion due to the high hydrophobicity of TM VII. Increasing the positive charge of the cytoplasmic surface of the N-terminal TM hairpin of PheP, which is misoriented in PE-lacking cells, favors native orientation in the absence of PE. PheP and CscB also display co-existing dual topologies dependent on changes in the charge balance between protein domains and the membrane lipids. Therefore, the topology of both permeases is dependent on PE. However, CscB topology is governed by thermodynamic balance between opposing lipid-dependent electrostatic and hydrophobic interactions.

  19. Cholesterol drives aβ(1-42) interaction with lipid rafts in model membranes.

    PubMed

    Seghezza, Silvia; Diaspro, Alberto; Canale, Claudio; Dante, Silvia

    2014-11-25

    The molecular mechanism at the basis of the neurodegenerative process related to Alzheimer's disease (AD) is triggered by the local composition of the neural plasma membrane. The role of cholesterol is controversial. In this investigation the interaction of the AD peptide amyloid-beta (1-42) with model membranes containing lipid rafts has been investigated by atomic force microscopy techniques. Supported lipid membranes made of phospholipids/sphingomyelin/cholesterol have been investigated as a function of the molar content of cholesterol, in a range spanning the phase diagram of the lipid system. The administration of amyloid-beta induced a phase reorganization of the lipid domains, when the cholesterol molar fraction was below 5%. At the same time, a mechanical destabilization and an appreciable thinning of the membrane induced by the peptide were detected. The major interaction was observed in the presence of the gel phase Lβ, and was enhanced by a low cholesterol amount. With the appearance of the liquid ordered phase Lo, the effect was hindered. At high cholesterol content (20% mol), no detectable effects in the bilayer morphology or in its mechanical stability were recorded. These findings give new insights on the molecular mechanism of the amyloid/membrane interaction, highlighting the peculiar role of cholesterol.

  20. Reduced Lateral Mobility of Lipids and Proteins in Crowded Membranes

    PubMed Central

    Goose, Joseph E.; Sansom, Mark S. P.

    2013-01-01

    Coarse-grained molecular dynamics simulations of the E. coli outer membrane proteins FhuA, LamB, NanC, OmpA and OmpF in a POPE/POPG (3∶1) bilayer were performed to characterise the diffusive nature of each component of the membrane. At small observation times (<10 ns) particle vibrations dominate phospholipid diffusion elevating the calculated values from the longer time-scale bulk value (>50 ns) of 8.5×10−7 cm2 s−1. The phospholipid diffusion around each protein was found to vary based on distance from protein. An asymmetry in the diffusion of annular lipids in the inner and outer leaflets was observed and correlated with an asymmetry in charged residues in the vicinity of the inner and outer leaflet head-groups. Protein rotational and translational diffusion were also found to vary with observation time and were inversely correlated with the radius of gyration of the protein in the plane of the bilayer. As the concentration of protein within the bilayer was increased, the overall mobility of the membrane decreased reflected in reduced lipid diffusion coefficients for both lipid and protein components. The increase in protein concentration also resulted in a decrease in the anomalous diffusion exponent α of the lipid. Formation of extended clusters and networks of proteins led to compartmentalisation of lipids in extreme cases. PMID:23592975

  1. Anesthetic diffusion through lipid membranes depends on the protonation rate.

    PubMed

    Pérez-Isidoro, Rosendo; Sierra-Valdez, F J; Ruiz-Suárez, J C

    2014-12-18

    Hundreds of substances possess anesthetic action. However, despite decades of research and tests, a golden rule is required to reconcile the diverse hypothesis behind anesthesia. What makes an anesthetic to be local or general in the first place? The specific targets on proteins, the solubility in lipids, the diffusivity, potency, action time? Here we show that there could be a new player equally or even more important to disentangle the riddle: the protonation rate. Indeed, such rate modulates the diffusion speed of anesthetics into lipid membranes; low protonation rates enhance the diffusion for local anesthetics while high ones reduce it. We show also that there is a pH and membrane phase dependence on the local anesthetic diffusion across multiple lipid bilayers. Based on our findings we incorporate a new clue that may advance our understanding of the anesthetic phenomenon.

  2. Lipid-protein interactions in plasma membranes of fiber cells isolated from the human eye lens.

    PubMed

    Raguz, Marija; Mainali, Laxman; O'Brien, William J; Subczynski, Witold K

    2014-03-01

    The protein content in human lens membranes is extremely high, increases with age, and is higher in the nucleus as compared with the cortex, which should strongly affect the organization and properties of the lipid bilayer portion of intact membranes. To assess these effects, the intact cortical and nuclear fiber cell plasma membranes isolated from human lenses from 41- to 60-year-old donors were studied using electron paramagnetic resonance spin-labeling methods. Results were compared with those obtained for lens lipid membranes prepared from total lipid extracts from human eyes of the same age group [Mainali, L., Raguz, M., O'Brien, W. J., and Subczynski, W. K. (2013) Biochim. Biophys. Acta]. Differences were considered to be mainly due to the effect of membrane proteins. The lipid-bilayer portions of intact membranes were significantly less fluid than lipid bilayers of lens lipid membranes, prepared without proteins. The intact membranes were found to contain three distinct lipid environments termed the bulk lipid domain, boundary lipid domain, and trapped lipid domain. However, the cholesterol bilayer domain, which was detected in cortical and nuclear lens lipid membranes, was not detected in intact membranes. The relative amounts of bulk and trapped lipids were evaluated. The amount of lipids in domains uniquely formed due to the presence of membrane proteins was greater in nuclear membranes than in cortical membranes. Thus, it is evident that the rigidity of nuclear membranes is greater than that of cortical membranes. Also the permeability coefficients for oxygen measured in domains of nuclear membranes were significantly lower than appropriate coefficients measured in cortical membranes. Relationships between the organization of lipids into lipid domains in fiber cells plasma membranes and the organization of membrane proteins are discussed.

  3. Lipid-Protein Interactions in Plasma Membranes of Fiber Cells Isolated from the Human Eye Lens

    PubMed Central

    Raguz, Marija; Mainali, Laxman; O’Brien, William J.; Subczynski, Witold K.

    2014-01-01

    The protein content in human lens membranes is extremely high, increases with age, and is higher in the nucleus as compared with the cortex, which should strongly affect the organization and properties of the lipid bilayer portion of intact membranes. To assess these effects, the intact cortical and nuclear fiber cell plasma membranes isolated from human lenses from 41- to 60-year-old donors were studied using electron paramagnetic resonance spin-labeling methods. Results were compared with those obtained for lens lipid membranes prepared from total lipid extracts from human eyes of the same age group [Mainali,L., Raguz, M., O’Brien, W. J., and Subczynski, W. K. (2013) Biochim. Biophys. Acta]. Differences were considered to be mainly due to the effect of membrane proteins. The lipid-bilayer portions of intact membranes were significantly less fluid than lipid bilayers of lens lipid membranes, prepared without proteins. The intact membranes were found to contain three distinct lipid environments termed the bulk lipid domain, boundary lipid domain, and trapped lipid domain. However, the cholesterol bilayer domain, which was detected in cortical and nuclear lens lipid membranes, was not detected in intact membranes. The relative amounts of bulk and trapped lipids were evaluated. The amount of lipids in domains uniquely formed due to the presence of membrane proteins was greater in nuclear membranes than in cortical membranes. Thus, it is evident that the rigidity of nuclear membranes is greater than that of cortical membranes. Also the permeability coefficients for oxygen measured in domains of nuclear membranes were significantly lower than appropriate coefficients measured in cortical membranes. Relationships between the organization of lipids into lipid domains in fiber cells plasma membranes and the organization of membrane proteins are discussed. PMID:24486794

  4. Micrometer-Scale Membrane Transition of Supported Lipid Bilayer Membrane Reconstituted with Cytosol of Dictyostelium discoideum

    PubMed Central

    Takahashi, Kei; Toyota, Taro

    2017-01-01

    Background: The transformation of the supported lipid bilayer (SLB) membrane by extracted cytosol from living resources, has recently drawn much attention. It enables us to address the question of whether the purified phospholipid SLB membrane, including lipids related to amoeba locomotion, which was discussed in many previous studies, exhibits membrane deformation in the presence of cytosol extracted from amoeba; Methods: In this report, a method for reconstituting a supported lipid bilayer (SLB) membrane, composed of purified phospholipids and cytosol extracted from Dictyostelium discoideum, is described. This technique is a new reconstitution method combining the artificial constitution of membranes with the reconstitution using animate cytosol (without precise purification at a molecular level), contributing to membrane deformation analysis; Results: The morphology transition of a SLB membrane composed of phosphatidylcholines, after the addition of cytosolic extract, was traced using a confocal laser scanning fluorescence microscope. As a result, pore formation in the SLB membrane was observed and phosphatidylinositides incorporated into the SLB membrane tended to suppress pore formation and expansion; Conclusions: The current findings imply that phosphatidylinositides have the potential to control cytoplasm activity and bind to a phosphoinositide-containing SLB membrane. PMID:28272354

  5. LM cell growth and membrane lipid adaptation to sterol structure.

    PubMed

    Rujanavech, C; Silbert, D F

    1986-06-05

    Using a sterol auxotroph of the LM cell mouse fibroblast, we demonstrate that relatively few cholesterol analogues can substitute for cholesterol as a growth factor. The auxotroph grows normally on desmosterol and trans-22-dehydrocholesterol and at reduced rates on dihydrocholesterol, campesterol, and 22,23-dihydrobrassicasterol. It does not grow with beta-sitosterol, stigmasterol, ergosterol, or cis-22-dehydrocholesterol when the sterol is present as sole supplement but does grow at normal rates when the analogue is supplied with suboptimal amounts of cholesterol. Two contrasting types of membrane lipid changes are observed in cells grown on cholesterol analogues. In cells grown with dihydrocholesterol, a marked increase in desaturation and elongation of fatty acids is noted. Conversely, when cells are grown with cis-22-dehydrocholesterol, desaturation and elongation of fatty acids are severely curtailed. Cells grown on alkyl sterols respond like cells grown on cis-22-dehydrocholesterol but in a less pronounced fashion. The effects of sterol substitution in mammalian cells versus in lower eukaryotes are compared, and an explanation for the secondary changes in fatty acid composition in terms of phospholipid phase behavior is suggested.

  6. Determining the pivotal plane of fluid lipid membranes in simulations

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Deserno, Markus

    2015-10-01

    Each leaflet of a curved lipid membrane contains a surface at which the area strain vanishes, the so-called pivotal plane. Its distance z0 from the bilayer's midplane arises in numerous contexts, for instance the connection between monolayer and bilayer moduli, stress-profile moments, or area-difference elasticity theories. Here, we propose two precise methods for determining the location of the pivotal plane in computer simulations, both of which rely on monitoring the lipid imbalance across a curved bilayer. The first method considers the ratio of lipid number between the two leaflets of cylindrical or spherical vesicles; it hence requires lipid flip-flop for equilibration. The second method looks at the leaflet difference across local sections cut out from a buckled membrane; this observable equilibrates even in the absence of flip-flop. We apply our methods to two different coarse-grained lipid models, the generic three-bead solvent-free Cooke model and a ten-bead representation of dimyristoylphosphocholine with the explicit solvent MARTINI model. The Cooke model is amenable to both methods and gives results that agree at the percent level. Using it, we also show that the pivotal plane moves outward as lipid curvature becomes more positive. The MARTINI model can only be analyzed with the buckling method; the obtained value z0 = 0.850(11) nm lies about 0.4 nm inwards of the glycerol backbone and is hence unexpectedly small. We attribute this to limitations of the coarse-grained description, suggesting that the location of the pivotal plane might be a good indicator for how well lipid models capture the microscopic origins of curvature elasticity. Finally, we also show that the pivotal plane position itself moves as the membrane is bent. The leading correction is linear in curvature, dependent on the Poisson ratio, and can matter when analyzing experimental results obtained from highly curved inverse hexagonal phases.

  7. Cyclohexane Rings Reduce Membrane Permeability to Small Ions in Archaea-Inspired Tetraether Lipids.

    PubMed

    Koyanagi, Takaoki; Leriche, Geoffray; Onofrei, David; Holland, Gregory P; Mayer, Michael; Yang, Jerry

    2016-01-26

    Extremophile archaeal organisms overcome problems of membrane permeability by producing lipids with structural elements that putatively improve membrane integrity compared to lipids from other life forms. Herein, we describe a series of lipids that mimic some key structural features of archaeal lipids, such as: 1) single tethering of lipid tails to create fully transmembrane tetraether lipids and 2) the incorporation of small rings into these tethered segments. We found that membranes formed from pure tetraether lipids leaked small ions at a rate that was about two orders of magnitude slower than common bilayer-forming lipids. Incorporation of cyclopentane rings into the tetraether lipids did not affect membrane leakage, whereas a cyclohexane ring reduced leakage by an additional 40 %. These results show that mimicking certain structural features of natural archaeal lipids results in improved membrane integrity, which may help overcome limitations of many current lipid-based technologies.

  8. DNA-Tile Structures Induce Ionic Currents through Lipid Membranes.

    PubMed

    Göpfrich, Kerstin; Zettl, Thomas; Meijering, Anna E C; Hernández-Ainsa, Silvia; Kocabey, Samet; Liedl, Tim; Keyser, Ulrich F

    2015-05-13

    Self-assembled DNA nanostructures have been used to create man-made transmembrane channels in lipid bilayers. Here, we present a DNA-tile structure with a nominal subnanometer channel and cholesterol-tags for membrane anchoring. With an outer diameter of 5 nm and a molecular weight of 45 kDa, the dimensions of our synthetic nanostructure are comparable to biological ion channels. Because of its simple design, the structure self-assembles within a minute, making its creation scalable for applications in biology. Ionic current recordings demonstrate that the tile structures enable ion conduction through lipid bilayers and show gating and voltage-switching behavior. By demonstrating the design of DNA-based membrane channels with openings much smaller than that of the archetypical six-helix bundle, our work showcases their versatility inspired by the rich diversity of natural membrane components.

  9. Polyunsaturation in lipid membranes: dynamic properties and lateral pressure profiles.

    PubMed

    Ollila, Samuli; Hyvönen, Marja T; Vattulainen, Ilpo

    2007-03-29

    We elucidate the influence of unsaturation on single-component membrane properties, focusing on their dynamical aspects and lateral pressure profiles across the membrane. To this end, we employ atomistic molecular dynamics simulations to study five different membrane systems with varying degrees of unsaturation, starting from saturated membranes and systematically increasing the level of unsaturation, ending up with a bilayer of phospholipids containing the docosahexaenoic acid. For an increasing level of unsaturation, we find considerable effects on dynamical properties, such as accelerated dynamics of the phosphocholine head groups and glycerol backbones and speeded up rotational dynamics of the lipid molecules. The lateral pressure profile is found to be altered by the degree of unsaturation. For an increasing number of double bonds, the peak in the middle of the bilayer decreases. This is compensated for by changes in the membrane-water interface region in terms of increasing peak heights of the lateral pressure profile. Implications of the findings are briefly discussed.

  10. Direct Visualization of the Action of Triton X-100 on Giant Vesicles of Erythrocyte Membrane Lipids

    PubMed Central

    Casadei, Bruna R.; Domingues, Cleyton C.; de Paula, Eneida; Riske, Karin A.

    2014-01-01

    The raft hypothesis proposes that microdomains enriched in sphingolipids, cholesterol, and specific proteins are transiently formed to accomplish important cellular tasks. Equivocally, detergent-resistant membranes were initially assumed to be identical to membrane rafts, because of similarities between their compositions. In fact, the impact of detergents in membrane organization is still controversial. Here, we use phase contrast and fluorescence microscopy to observe giant unilamellar vesicles (GUVs) made of erythrocyte membrane lipids (erythro-GUVs) when exposed to the detergent Triton X-100 (TX-100). We clearly show that TX-100 has a restructuring action on biomembranes. Contact with TX-100 readily induces domain formation on the previously homogeneous membrane of erythro-GUVs at physiological and room temperatures. The shape and dynamics of the formed domains point to liquid-ordered/liquid-disordered (Lo/Ld) phase separation, typically found in raft-like ternary lipid mixtures. The Ld domains are then separated from the original vesicle and completely solubilized by TX-100. The insoluble vesicle left, in the Lo phase, represents around 2/3 of the original vesicle surface at room temperature and decreases to almost 1/2 at physiological temperature. This chain of events could be entirely reproduced with biomimetic GUVs of a simple ternary lipid mixture, 2:1:2 POPC/SM/chol (phosphatidylcholine/sphyngomyelin/cholesterol), showing that this behavior will arise because of fundamental physicochemical properties of simple lipid mixtures. This work provides direct visualization of TX-100-induced domain formation followed by selective (Ld phase) solubilization in a model system with a complex biological lipid composition. PMID:24896120

  11. Artificial black membranes from bipolar lipids of thermophilic Archaebacteria.

    PubMed Central

    Gliozzi, A; Rolandi, R; De Rosa, M; Gambacorta, A

    1982-01-01

    The membrane of thermophilic archaebacteria is characterized by the presence of unusual isoprenoid bipolar lipids. The molecular organization of these lipids is still a matter of study. Important information could come from forming artificial black membranes. Black films can be formed from n-alkane or squalene dispersions of bipolar lipids extracted from the membrane of Caldariella acidophila. Membrane formation occurred only above a critical temperature (approximately 70 degrees C) corresponding to the physiological one. At lower temperatures, special solvent systems (n-alkanes or squalene, butanol and n-alkanes or squalene, butanol chloroform) were required. To characterize the physical parameters of these membranes, conductance and capacitance measurements were performed. Conductance was in the range of 10(-8) - 10(-7) omega -1 cm -2 , where specific capacitance at T = 72 degrees C was Cs = 0.685 +/- 0.004 microF/cm2 and Cs = 0.658 +/- 0.08 microF/cm2, corresponding to a dielectric thickness of 27 and 29 A for squalene and dodecane dispersions, respectively. Capacitance was shown to vary as the square of membrane potential, as usual in lipid bilayers. Values of the proportionality constant alpha have been compared to those of solvent-containing and solvent-free bilayers. The behavior of capacitance as a function of temperature is also shown by lowering temperature; the occurrence of complex structural changes was indicated. All the experimental data suggest that the presence of solvent is very low. Two possible molecular configurations of the films are discussed. PMID:6800415

  12. Association of γ-Secretase with Lipid Rafts in Post-Golgi and Endosome Membranes*

    PubMed Central

    Vetrivel, Kulandaivelu S.; Cheng, Haipeng; Lin, William; Sakurai, Takashi; Li, Tong; Nukina, Nobuyuki; Wong, Philip C.; Xu, Huaxi; Thinakaran, Gopal

    2005-01-01

    Alzheimer’s disease-associated β-amyloid peptides (Aβ) are generated by the sequential proteolytic processing of amyloid precursor protein (APP) by β- and γ-secretases. There is growing evidence that cholesterol- and sphingolipid-rich membrane microdomains are involved in regulating trafficking and processing of APP. BACE1, the major γ-secretase in neurons is a palmi-toylated transmembrane protein that resides in lipid rafts. A subset of APP is subject to amyloidogenic processing by BACE1 in lipid rafts, and this process depends on the integrity of lipid rafts. Here we describe the association of all four components of the γ-secretase complex, namely presenilin 1 (PS1)-derived fragments, mature nicastrin, APH-1, and PEN-2, with cholesterol-rich detergent insoluble membrane (DIM) domains of non-neuronal cells and neurons that fulfill the criteria of lipid rafts. In PS1−/−/PS2−/− and NCT−/− fibroblasts, γ-secretase components that still remain fail to become detergent-resistant, suggesting that raft association requires γ-secretase complex assembly. Biochemical evidence shows that subunits of the γ-secretase complex and three TGN/endosome-resident SNAREs cofractionate in sucrose density gradients, and show similar solubility or insolubility characteristics in distinct non-ionic and zwitterionic detergents, indicative of their co-residence in membrane microdomains with similar protein-lipid composition. This notion is confirmed using magnetic immunoisolation of PS1- or syntaxin 6-positive membrane patches from a mixture of membranes with similar buoyant densities following Lubrol WX extraction or sonication, and gradient centrifugation. These findings are consistent with the localization of γ-secretase in lipid raft microdomains of post-Golgi and endosomes, organelles previously implicated in amyloidogenic processing of APP. PMID:15322084

  13. Incorporation of large guest molecules into liposomes via chemical reactions in lipid membranes.

    PubMed

    Tsuchiya, Yuki; Sugikawa, Kouta; Ueda, Masafumi; Ikeda, Atsushi

    2017-02-22

    The incorporation of hydrophobic guest molecules into lipid membranes by the exchange of the guest molecule from a cyclodextrin (CDx) complex to a liposome is limited to guest molecules that can be included in CDxs. To solve this problem, large guest molecules were incorporated into liposomes by chemical reactions of guest molecules in lipid membranes. Stable lipid-membrane-incorporated fullerene derivatives with large substituent(s) were prepared by Diels-Alder reactions in lipid membranes.

  14. Asymmetric Lipid Membranes: Towards More Realistic Model Systems

    PubMed Central

    Marquardt, Drew; Geier, Barbara; Pabst, Georg

    2015-01-01

    Despite the ubiquity of transbilayer asymmetry in natural cell membranes, the vast majority of existing research has utilized chemically well-defined symmetric liposomes, where the inner and outer bilayer leaflets have the same composition. Here, we review various aspects of asymmetry in nature and in model systems in anticipation for the next phase of model membrane studies. PMID:25955841

  15. Controlled Co-reconstitution of Multiple Membrane Proteins in Lipid Bilayer Nanodiscs Using DNA as a Scaffold.

    PubMed

    Raschle, Thomas; Lin, Chenxiang; Jungmann, Ralf; Shih, William M; Wagner, Gerhard

    2015-11-20

    Nanodiscs constitute a tool for the solubilization of membrane proteins in a lipid bilayer, thus offering a near-native membrane environment. Many membrane proteins interact with other membrane proteins; however, the co-reconstitution of multiple membrane proteins in a single nanodisc is a random process that is adversely affected by several factors, including protein aggregation. Here, we present an approach for the controlled co-reconstitution of multiple membrane proteins in a single nanodisc. The temporary attachment of designated oligonucleotides to individual membrane proteins enables the formation of stable, detergent-solubilized membrane protein complexes by base-pairing of complementary oligonucleotide sequences, thus facilitating the insertion of the membrane protein complex into nanodiscs with defined stoichiometry and composition. As a proof of principle, nanodiscs containing a heterodimeric and heterotrimeric membrane protein complex were reconstituted using a fluorescently labeled voltage-gated anion channel (VDAC) as a model system.

  16. Phosphatidylserine lipids and membrane order precisely regulate the activity of Polybia-MP1 peptide.

    PubMed

    Alvares, Dayane S; Neto, João Ruggiero; Ambroggio, Ernesto E

    2017-03-05

    Polybia-MP1 (IDWKKLLDAAKQIL-NH2) is a lytic peptide from the Brazilian wasp venom with known anti-cancer properties. Previous evidence indicates that phosphatidylserine (PS) lipids are relevant for the lytic activity of MP1. In agreement with this requirement, phosphatidylserine lipids are translocated to the outer leaflet of cells, and are available for MP1 binding, depending on the presence of liquid-ordered domains. Here, we investigated the effect of PS on MP1 activity when this lipid is reconstituted in membranes of giant or large liposomes with different lipid-phase states. By monitoring the membrane and soluble luminal content of giant unilamellar vesicles (GUVs), using fluorescence confocal microscopy, we were able to determine that MP1 has a pore-forming activity at the membrane level. Liquid-ordered domains, which were phase-separated within the membrane of GUVs, influenced the pore-forming activity of MP1. Experiments evaluating the membrane-binding and lytic activity of MP1 on large unilamellar vesicles (LUVs), with the same lipid composition as GUVs, demonstrated that there was synergy between liquid-ordered domains and PS, which enhanced both activities. Based on our findings, we propose that the physicochemical properties of cancer cell membranes, which possess a much higher concentration of PS than normal cells, renders them susceptible to MP1 binding and lytic pore formation. These results can be correlated with MP1's potent and selective anti-cancer activity and pave the way for future research to develop cancer therapies that harness and exploit the properties of MP1.

  17. Depletion with Cyclodextrin Reveals Two Populations of Cholesterol in Model Lipid Membranes

    PubMed Central

    Litz, Jonathan P.; Thakkar, Niket; Portet, Thomas; Keller, Sarah L.

    2016-01-01

    Recent results provide evidence that cholesterol is highly accessible for removal from both cell and model membranes above a threshold concentration that varies with membrane composition. Here we measured the rate at which methyl-β-cyclodextrin depletes cholesterol from a supported lipid bilayer as a function of cholesterol mole fraction. We formed supported bilayers from two-component mixtures of cholesterol and a PC (phosphatidylcholine) lipid, and we directly visualized the rate of decrease in area of the bilayers with fluorescence microscopy. Our technique yields the accessibility of cholesterol over a wide range of concentrations (30–66 mol %) for many individual bilayers, enabling fast acquisition of replicate data. We found that the bilayers contain two populations of cholesterol, one with low surface accessibility and the other with high accessibility. A larger fraction of the total membrane cholesterol appears in the more accessible population when the acyl chains of the PC-lipid tails are more unsaturated. Our findings are most consistent with the predictions of the condensed-complex and cholesterol bilayer domain models of cholesterol-phospholipid interactions in lipid membranes. PMID:26840728

  18. Carotenoid binding to proteins: Modeling pigment transport to lipid membranes.

    PubMed

    Reszczynska, Emilia; Welc, Renata; Grudzinski, Wojciech; Trebacz, Kazimierz; Gruszecki, Wieslaw I

    2015-10-15

    Carotenoid pigments play numerous important physiological functions in human organism. Very special is a role of lutein and zeaxanthin in the retina of an eye and in particular in its central part, the macula lutea. In the retina, carotenoids can be directly present in the lipid phase of the membranes or remain bound to the protein-pigment complexes. In this work we address a problem of binding of carotenoids to proteins and possible role of such structures in pigment transport to lipid membranes. Interaction of three carotenoids, beta-carotene, lutein and zeaxanthin with two proteins: bovine serum albumin and glutathione S-transferase (GST) was investigated with application of molecular spectroscopy techniques: UV-Vis absorption, circular dichroism and Fourier transform infrared spectroscopy (FTIR). Interaction of pigment-protein complexes with model lipid bilayers formed with egg yolk phosphatidylcholine was investigated with application of FTIR, Raman imaging of liposomes and electrophysiological technique, in the planar lipid bilayer models. The results show that in all the cases of protein and pigment studied, carotenoids bind to protein and that the complexes formed can interact with membranes. This means that protein-carotenoid complexes are capable of playing physiological role in pigment transport to biomembranes.

  19. Tuning Membrane Thickness Fluctuations in Model Lipid Bilayers

    PubMed Central

    Ashkar, Rana; Nagao, Michihiro; Butler, Paul D.; Woodka, Andrea C.; Sen, Mani K.; Koga, Tadanori

    2015-01-01

    Membrane thickness fluctuations have been associated with a variety of critical membrane phenomena, such as cellular exchange, pore formation, and protein binding, which are intimately related to cell functionality and effective pharmaceuticals. Therefore, understanding how these fluctuations are controlled can remarkably impact medical applications involving selective macromolecule binding and efficient cellular drug intake. Interestingly, previous reports on single-component bilayers show almost identical thickness fluctuation patterns for all investigated lipid tail-lengths, with similar temperature-independent membrane thickness fluctuation amplitude in the fluid phase and a rapid suppression of fluctuations upon transition to the gel phase. Presumably, in vivo functions require a tunability of these parameters, suggesting that more complex model systems are necessary. In this study, we explore lipid tail-length mismatch as a regulator for membrane fluctuations. Unilamellar vesicles of an equimolar mixture of dimyristoylphosphatidylcholine and distearoylphosphatidylcholine molecules, with different tail-lengths and melting transition temperatures, are used as a model system for this next level of complexity. Indeed, this binary system exhibits a significant response of membrane dynamics to thermal variations. The system also suggests a decoupling of the amplitude and the relaxation time of the membrane thickness fluctuations, implying a potential for independent control of these two key parameters. PMID:26153707

  20. Membrane composition influences the topology bias of bacterial integral membrane proteins.

    PubMed

    Bay, Denice C; Turner, Raymond J

    2013-02-01

    Small multidrug resistance (SMR) protein family members confer bacterial resistance to toxic antiseptics and are believed to function as dual topology oligomers. If dual topology is essential for SMR activity, then the topology bias should change as bacterial membrane lipid compositions alter to maintain a "neutral" topology bias. To test this hypothesis, a bioinformatic analysis of bacterial SMR protein sequences was performed to determine a membrane protein topology based on charged amino acid residues within loops, and termini regions according to the positive inside rule. Three bacterial lipid membrane parameters were examined, providing the proportion of polar lipid head group charges at the membrane surface (PLH), the relative hydrophobic fatty acid length (FAL), and the proportion of fatty acid unsaturation (FAU). Our analysis indicates that individual SMR pairs, and to a lesser extent SMR singleton topology biases, are significantly correlated to increasing PLH, FAL and FAU differences validating the hypothesis. Correlations between the topology biases of SMR proteins identified in Gram+ compared to Gram- species and each lipid parameter demonstrated a linear inverse relationship.

  1. Lipid growth requirement and influence of lipid supplement on fatty acid and aldehyde composition of Syntrophococcus sucromutans.

    PubMed Central

    Doré, J; Bryant, M P

    1989-01-01

    Results concerning the ruminal fluid growth requirement of the ruminal acetogen, Syntrophococcus sucromutans, indicate that octadecenoic acid isomers satisfy this essential requirement. Complex lipids, such as triglycerides and phospholipids, can also support growth. The cellular fatty acid and aldehyde composition closely reflects that of the lipid supplement provided to the cells. Up to 98% of the fatty acids and 80% of the fatty aldehydes are identical in chain length and degree of unsaturation to the octadecenoic acid supplement provided in the medium. S. sucromutans shows a tendency to have a greater proportion of the aldehyde form among its 18 carbon chains than it does with the shorter-chain simple lipids, which may be interpreted as a strategy to maintain membrane fluidity. 14C labeling showed that most of the oleic acid taken up from the medium was incorporated into the membrane fraction of the cells. PMID:2729991

  2. Lipid composition of human serum lipoproteins

    PubMed Central

    Skipski, V. P.; Barclay, Marion; Barclay, R. K.; Fetzer, Valentina A.; Good, J. J.; Archibald, F. M.

    1967-01-01

    1. The lipid compositions of the low-density lipoproteins, the high-density lipoproteins and the ultracentrifugal residue of human serum are presented, with emphasis on certain lipoprotein classes and lipid components not previously described. 2. Except for the lipoproteins with the lowest and highest densities, there is a trend for stepwise successive increase or, respectively, decrease in the relative amounts of the main constituents of lipoproteins. 3. High-density lipoprotein-2 and high-density lipoprotein-3 have different amounts of certain lipids; high-density lipoprotein-2 has relatively more free cholesterol and sphingomyelin; high-density lipoprotein-3 has more free fatty acids, diglycerides and ceramide monohexosides. 4. All the lipoproteins contain hydrocarbons of the alkane series. The greatest amount, which averages 4·4% of total lipid extracted, is in the ultracentrifugal residue; n-alkanes comprise 18–50% of the hydrocarbons. 5. All the lipoproteins contain ceramide monohexosides. The highest relative contents of these glycolipids are in high-density lipoprotein-3 and in the ultracentrifugal residue. 6. The ultracentrifugal residue contains 55% of the total quantity of free fatty acids present in serum. The remaining free fatty acids are distributed among the other lipoprotein classes. 7. The choline-containing phospholipids (phosphatidylcholine, lysophosphatidylcholine and sphingomyelin) comprise about 90% of the phospholipids in all the lipoprotein classes except the low-density lipoprotein-2, which contains about 80% of these phospholipids. 8. The presence of a large amount of lysophosphatidylcholine in the ultracentrifugal residue and the successive decrease of sphingomyelin from the low-density lipoprotein-1 to the ultracentrifugal residue was confirmed. 9. The low-density lipoprotein-2 and the ultracentrifugal residue are characterized by relatively high contents of the lower glycerides. PMID:6048776

  3. Buffers affect the bending rigidity of model lipid membranes.

    PubMed

    Bouvrais, Hélène; Duelund, Lars; Ipsen, John H

    2014-01-14

    In biophysical and biochemical studies of lipid bilayers the influence of the used buffer is often ignored or assumed to be negligible on membrane structure, elasticity, or physical properties. However, we here present experimental evidence, through bending rigidity measurements performed on giant vesicles, of a more complex behavior, where the buffering molecules may considerably affect the bending rigidity of phosphatidylcholine bilayers. Furthermore, a synergistic effect on the bending modulus is observed in the presence of both salt and buffer molecules, which serves as a warning to experimentalists in the data interpretation of their studies, since typical lipid bilayer studies contain buffer and ion molecules.

  4. Hyperbaric nitrogen and pentobarbital on synaptosomal membrane lipids and free fatty acids.

    PubMed

    Kostopanagiotou, G; Hamamoto, I; Hartwell, V; Nemoto, E M

    2006-01-01

    Nitrogen at high pressures and anesthetics increase lipid monolayer surface pressure and in turn modulates monolayer associated lipolytic enzyme activity that could alter membrane lipids. We tested the hypothesis that nitrogen at pressures of 5 and 10 megapascals (MPa) and pentobarbital induce alterations in synaptosomal membrane phospholipid and free fatty acid (FFA). Rat cortical synaptosomes in Krebs-Henseleit buffer were placed in steel chambers and incubated for four hours at 37 degrees C: at 5 or 10 MPa of O2/balance N2; at one 0.1 MPa on room air, and with 10 mg pentobarbital. Free fatty acids (FFA) were quantified by thin-layer and gas chromatography, and neutral and acidic lipids by high-pressure thin layer chromatography and protein by Biorad colorimetric assay. Statistical analyses were by ANOVA and posthoc analysis by Neuman-Keuls and Kruskal-Wallis tests at p < 0.05. Sphyngomyelin, phosphatidylcholine, phosphatidylethanolamine, cerebroside and cholesterol were unchanged by 5 and 10 MPa nitrogen and pentobarbital. Free fatty acids (16:00, 18:00, 18:01, 20:00, 22:0, 22:01 and 24:01) at 10 MPa were reduced compared to 5 MPa (p < 0.05) but unaffected by pentobarbital. The decrease in synaptosomal membrane FFA at 10 MPa suggests attenuated hydrolysis of membrane phospholipids without detectable alterations in membrane phospholipid composition.

  5. Structure and dynamics of water and lipid molecules in charged anionic DMPG lipid bilayer membranes

    NASA Astrophysics Data System (ADS)

    Rønnest, A. K.; Peters, G. H.; Hansen, F. Y.; Taub, H.; Miskowiec, A.

    2016-04-01

    Molecular dynamics simulations have been used to investigate the influence of the valency of counter-ions on the structure of freestanding bilayer membranes of the anionic 1,2-dimyristoyl-sn-glycero-3-phosphoglycerol (DMPG) lipid at 310 K and 1 atm. At this temperature, the membrane is in the fluid phase with a monovalent counter-ion and in the gel phase with a divalent counter-ion. The diffusion constant of water as a function of its depth in the membrane has been determined from mean-square-displacement calculations. Also, calculated incoherent quasielastic neutron scattering functions have been compared to experimental results and used to determine an average diffusion constant for all water molecules in the system. On extrapolating the diffusion constants inferred experimentally to a temperature of 310 K, reasonable agreement with the simulations is obtained. However, the experiments do not have the sensitivity to confirm the diffusion of a small component of water bound to the lipids as found in the simulations. In addition, the orientation of the dipole moment of the water molecules has been determined as a function of their depth in the membrane. Previous indirect estimates of the electrostatic potential within phospholipid membranes imply an enormous electric field of 108-109 V m-1, which is likely to have great significance in controlling the conformation of translocating membrane proteins and in the transfer of ions and molecules across the membrane. We have calculated the membrane potential for DMPG bilayers and found ˜1 V (˜2 ṡ 108 V m-1) when in the fluid phase with a monovalent counter-ion and ˜1.4 V (˜2.8 ṡ 108 V m-1) when in the gel phase with a divalent counter-ion. The number of water molecules for a fully hydrated DMPG membrane has been estimated to be 9.7 molecules per lipid in the gel phase and 17.5 molecules in the fluid phase, considerably smaller than inferred experimentally for 1,2-dimyristoyl-sn-glycero-3-phosphorylcholine (DMPC

  6. Membrane lipid rafts and neurobiology: age-related changes in membrane lipids and loss of neuronal function.

    PubMed

    Egawa, Junji; Pearn, Matthew L; Lemkuil, Brian P; Patel, Piyush M; Head, Brian P

    2016-08-15

    A better understanding of the cellular physiological role that plasma membrane lipids, fatty acids and sterols play in various cellular systems may yield more insight into how cellular and whole organ function is altered during the ageing process. Membrane lipid rafts (MLRs) within the plasma membrane of most cells serve as key organizers of intracellular signalling and tethering points of cytoskeletal components. MLRs are plasmalemmal microdomains enriched in sphingolipids, cholesterol and scaffolding proteins; they serve as a platform for signal transduction, cytoskeletal organization and vesicular trafficking. Within MLRs are the scaffolding and cholesterol binding proteins named caveolin (Cav). Cavs not only organize a multitude of receptors including neurotransmitter receptors (NMDA and AMPA receptors), signalling proteins that regulate the production of cAMP (G protein-coupled receptors, adenylyl cyclases, phosphodiesterases (PDEs)), and receptor tyrosine kinases involved in growth (Trk), but also interact with components that modulate actin and tubulin cytoskeletal dynamics (e.g. RhoGTPases and actin binding proteins). MLRs are essential for the regulation of the physiology of organs such as the brain, and age-related loss of cholesterol from the plasma membrane leads to loss of MLRs, decreased presynaptic vesicle fusion, and changes in neurotransmitter release, all of which contribute to different forms of neurodegeneration. Thus, MLRs provide an active membrane domain that tethers and reorganizes the cytoskeletal machinery necessary for membrane and cellular repair, and genetic interventions that restore MLRs to normal cellular levels may be exploited as potential therapeutic means to reverse the ageing and neurodegenerative processes.

  7. Interaction of Spin-Labeled Lipid Membranes with Transition Metal Ions

    PubMed Central

    2015-01-01

    The large values of spin relaxation enhancement (RE) for PC spin-labels in the phospholipid membrane induced by paramagnetic metal salts dissolved in the aqueous phase can be explained by Heisenberg spin exchange due to conformational fluctuations of the nitroxide group as a result of membrane fluidity, flexibility of lipid chains, and, possibly, amphiphilic nature of the nitroxide label. Whether the magnetic interaction occurs predominantly via Heisenberg spin exchange (Ni) or by the dipole–dipole (Gd) mechanism, it is essential for the paramagnetic ion to get into close proximity to the nitroxide moiety for efficient RE. For different salts of Ni the RE in phosphatidylcholine membranes follows the anionic Hofmeister series and reflects anion adsorption followed by anion-driven attraction of paramagnetic cations on the choline groups. This adsorption is higher for chaotropic ions, e.g., perchlorate. (A chaotropic agent is a molecule in water solution that can disrupt the hydrogen bonding network between water molecules.) However, there is no anionic dependence of RE for model membranes made from negatively charged lipids devoid of choline groups. We used Ni-induced RE to study the thermodynamics and electrostatics of ion/membrane interactions. We also studied the effect of membrane composition and the phase state on the RE values. In membranes with cholesterol a significant difference is observed between PC labels with nitroxide tethers long enough vs not long enough to reach deep into the membrane hydrophobic core behind the area of fused cholesterol rings. This study indicates one must be cautious in interpreting data obtained by PC labels in fluid membranes in terms of probing membrane properties at different immersion depths when it can be affected by paramagnetic species at the membrane surface. PMID:26490692

  8. Interaction of Spin-Labeled Lipid Membranes with Transition Metal Ions.

    PubMed

    Dzikovski, Boris; Livshits, Vsevolod; Freed, Jack

    2015-10-22

    The large values of spin relaxation enhancement (RE) for PC spin-labels in the phospholipid membrane induced by paramagnetic metal salts dissolved in the aqueous phase can be explained by Heisenberg spin exchange due to conformational fluctuations of the nitroxide group as a result of membrane fluidity, flexibility of lipid chains, and, possibly, amphiphilic nature of the nitroxide label. Whether the magnetic interaction occurs predominantly via Heisenberg spin exchange (Ni) or by the dipole-dipole (Gd) mechanism, it is essential for the paramagnetic ion to get into close proximity to the nitroxide moiety for efficient RE. For different salts of Ni the RE in phosphatidylcholine membranes follows the anionic Hofmeister series and reflects anion adsorption followed by anion-driven attraction of paramagnetic cations on the choline groups. This adsorption is higher for chaotropic ions, e.g., perchlorate. (A chaotropic agent is a molecule in water solution that can disrupt the hydrogen bonding network between water molecules.) However, there is no anionic dependence of RE for model membranes made from negatively charged lipids devoid of choline groups. We used Ni-induced RE to study the thermodynamics and electrostatics of ion/membrane interactions. We also studied the effect of membrane composition and the phase state on the RE values. In membranes with cholesterol a significant difference is observed between PC labels with nitroxide tethers long enough vs not long enough to reach deep into the membrane hydrophobic core behind the area of fused cholesterol rings. This study indicates one must be cautious in interpreting data obtained by PC labels in fluid membranes in terms of probing membrane properties at different immersion depths when it can be affected by paramagnetic species at the membrane surface.

  9. Physical aspects of heterogeneities in multi-component lipid membranes.

    PubMed

    Komura, Shigeyuki; Andelman, David

    2014-06-01

    Ever since the raft model for biomembranes has been proposed, the traditional view of biomembranes based on the fluid-mosaic model has been altered. In the raft model, dynamical heterogeneities in multi-component lipid bilayers play an essential role. Focusing on the lateral phase separation of biomembranes and vesicles, we review some of the most relevant research conducted over the last decade. We mainly refer to those experimental works that are based on physical chemistry approach, and to theoretical explanations given in terms of soft matter physics. In the first part, we describe the phase behavior and the conformation of multi-component lipid bilayers. After formulating the hydrodynamics of fluid membranes in the presence of the surrounding solvent, we discuss the domain growth-law and decay rate of concentration fluctuations. Finally, we review several attempts to describe membrane rafts as two-dimensional microemulsion.

  10. Photopolymerization of Dienoyl Lipids Creates Planar Supported Poly(lipid) Membranes with Retained Fluidity.

    PubMed

    Orosz, Kristina S; Jones, Ian W; Keogh, John P; Smith, Christopher M; Griffin, Kaitlyn R; Xu, Juhua; Comi, Troy J; Hall, H K; Saavedra, S Scott

    2016-02-16

    Polymerization of substrate-supported bilayers composed of dienoylphosphatidylcholine (PC) lipids is known to greatly enhance their chemical and mechanical stability; however, the effects of polymerization on membrane fluidity have not been investigated. Here planar supported lipid bilayers (PSLBs) composed of dienoyl PCs on glass substrates were examined to assess the degree to which UV-initiated polymerization affects lateral lipid mobility. Fluorescence recovery after photobleaching (FRAP) was used to measure the diffusion coefficients (D) and mobile fractions of rhodamine-DOPE in unpolymerized and polymerized PSLBs composed of bis-sorbyl phosphatidylcholine (bis-SorbPC), mono-sorbyl-phosphatidylcholine (mono-SorbPC), bis-dienoyl-phosphatidylcholine (bis-DenPC), and mono-dienoyl phosphatidylcholine (mono-DenPC). Polymerization was performed in both the Lα and Lβ phase for each lipid. In all cases, polymerization reduced membrane fluidity; however, measurable lateral diffusion was retained which is attributed to a low degree of polymerization. The D values for sorbyl lipids were less than those of the denoyl lipids; this may be a consequence of the distal location of polymerizable group in the sorbyl lipids which may facilitate interleaflet bonding. The D values measured after polymerization were 0.1-0.8 of those measured before polymerization, a range that corresponds to fluidity intermediate between that of a Lα phase and a Lβ phase. This D range is comparable to ratios of D values reported for liquid-disordered (Ld) and liquid-ordered (Lo) lipid phases and indicates that the effect of UV polymerization on lateral diffusion in a dienoyl PSLB is similar to the transition from a Ld phase to a Lo phase. The partial retention of fluidity in UV-polymerized PSLBs, their enhanced stability, and the activity of incorporated transmembrane proteins and peptides is discussed.

  11. Photopolymerization of dienoyl lipids creates planar supported poly(lipid) membranes with retained fluidity

    PubMed Central

    Orosz, Kristina S.; Jones, Ian W.; Keogh, John P.; Smith, Christopher M.; Griffin, Kaitlyn R.; Xu, Juhua; Comi, Troy J.; Hall, H. K.

    2016-01-01

    Polymerization of substrate-supported bilayers composed of dienoyl phosphatidylcholine (PC) lipids is known to greatly enhance their chemical and mechanical stability, however the effects of polymerization on membrane fluidity have not been investigated. Here planar supported lipid bilayers (PSLBs) composed of dienoyl PCs on glass substrates were examined to assess the degree to which UV-initiated polymerization affects lateral lipid mobility. Fluorescence recovery after photobleaching (FRAP) was used to measure the diffusion coefficients (D) and mobile fractions of rhodamine-DOPE in unpolymerized and polymerized PSLBs composed of bis-sorbyl phosphatidylcholine (bis-SorbPC), mono-sorbyl phosphatidylcholine (mono-SorbPC), bis-dienoyl phosphatidylcholine (bis-DenPC) and mono-dienoyl phosphatidylcholine (mono-DenPC). Polymerization was performed in both the Lα and Lβ phase for each lipid. In all cases, polymerization reduced membrane fluidity, however measurable lateral diffusion was retained which is attributed to a low degree of polymerization. The D values for sorbyl lipids were less than those of the denoyl lipids; this may be a consequence of the distal location of polymerizable group in the sorbyl lipids which may facilitate inter-leaflet bonding. The D values measured after polymerization were 0.1 to 0.8 of those measured before polymerization, a range that corresponds to fluidity intermediate between that of a Lα phase and a Lβ phase. This D range is comparable to ratios of D values reported for liquid-disordered (Ld) and liquid-ordered (Lo) lipid phases, and indicates that the effect of UV polymerization on lateral diffusion in a dienoyl PSLB is similar to the transition from a Ld phase to a Lo phase. The partial retention of fluidity in UV polymerized PSLBs, their enhanced stability, and the activity of incorporated transmembrane proteins and peptides is discussed. PMID:26794208

  12. Analysis of membrane lipid biogenesis pathways using yeast genetics.

    PubMed

    Gsell, Martina; Daum, Günther

    2013-01-01

    The yeast Saccharomyces cerevisiae has become a valuable eukaryotic model organism to study biochemical and cellular processes at a molecular basis. A common strategy for such studies is the use of single and multiple mutants constructed by genetic manipulation which are compromised in individual enzymatic steps or certain metabolic pathways. Here, we describe selected examples of yeast research on phospholipid metabolism with emphasis on our own work dealing with investigations of phosphatidylethanolamine synthesis. Such studies start with the selection and construction of appropriate mutants and lead to phenotype analysis, lipid profiling, enzymatic analysis, and in vivo experiments. Comparing results obtained with wild-type and mutant strains allows us to understand the role of gene products and metabolic processes in more detail. Such studies are valuable not only for contributing to our knowledge of the complex network of lipid metabolism, but also of effects of lipids on structure and function of cellular membranes.

  13. Peroxidation of tobacco membrane lipids by the photosensitizing toxin, cercosporin.

    PubMed

    Daub, M E

    1982-06-01

    Cercosporin, a nonspecific toxin from Cercospora species, is a photosensitizing compound which rapidly kills plant cells in the light. Cell death appears to be due to a cercosporin-mediated peroxidation of membrane lipids. Tobacco leaf discs treated with cercosporin showed a large increase in electrolyte leakage 1 to 2 minutes after irradiation with light. All tobacco protoplasts exposed to cercosporin in the light were damaged within 45 minutes. Chloroform:methanol extracts of toxin-treated suspension cultures gave positive reactions for lipid hydroperoxides in the thiobarbituric acid test. Cercosporin-treated leaf discs emitted high concentrations of ethane 12 to 24 hours after incubation in the light. Cercosporin also oxidized solutions of methyl linolenate as determined by the thiobarbituric acid assay and the emission of ethane. alpha-Tocopherol had an inhibitory effect on the cercosporin-mediated lipid peroxidation.

  14. Lipid Composition of Organelles from Germinating Castor Bean Endosperm 1

    PubMed Central

    Donaldson, Robert P.; Beevers, Harry

    1977-01-01

    Glyoxysome, endoplasmic reticulum, mitochondria, and proplastid fractions were isolated from endosperm of castor beans (Ricinus communis) germinated for 5 days at 30 C. Samples from sucrose density gradients were diluted with 0.15 m KCI and the membranes pelleted. Lipid extracts of these membranes were analyzed for phosphoglyceride, acyl lipid, and sterol content. The endoplasmic reticulum contains 1.24 μmol of phosphoglyceride per mg of protein; the mitochondria, 0.65 μmol/mg; and the glyoxysome membranes, 0.55 μmol/mg. Phosphatidyl choline and phosphatidyl ethanolamine are the most abundant lipids in all membranes studied, accounting for 70% or more of the lipid phosphorus and 50% or more of the fatty acid. Glyoxysome membranes and endoplasmic reticulum also contain phosphatidyl inositol (respectively, 9 and 17% of the lipid phosphorus) and free fatty acids (13% of the total fatty acid in each). Compared with other organelles, mitochondrial membranes have more phosphatidyl ethanolamine relative to phosphatidyl choline and are characterized by the presence of cardiolipin, in which 80% of the fatty acid is linoleate. The relative amounts of linoleate, palmitate, oleate, stearate, and linolenate in each of the phosphotoglycerides are constant regardless of the membrane source. Stimasgasterol and β-sitosterol are present in the membranes (1-9 nmol each/mg protein). The data provide further evidence that glyoxysome membranes are derived from the endoplasmic reticulum but at the same time indicate some differentiation. PMID:16659829

  15. Rapid transbilayer movement of the fluorescent sterol dehydroergosterol in lipid membranes.

    PubMed Central

    John, Karin; Kubelt, Janek; Müller, Peter; Wüstner, Daniel; Herrmann, Andreas

    2002-01-01

    This study establishes a new assay for measuring the transbilayer movement of dehydroergosterol (DHE) in lipid membranes. The assay is based on the rapid extraction of DHE by methyl-beta-cyclodextrin (M-CD) from liposomes. The concentration of DHE in the liposomal membrane was measured by using fluorescence resonance energy transfer (FRET) from DHE to dansyl-phosphatidylethanolamine, which is not extracted from liposomes by M-CD. The method was applied to small (SUV) and large (LUV) unilamellar vesicles of different compositions and at various temperatures. From the kinetics of FRET changes upon extraction of DHE from membranes, rates of M-CD mediated extraction and flip-flop of DHE could be deduced and were found to be dependent on the physical state of the lipid phase. For egg phosphocholine and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine in the liquid-crystalline state, halftimes of extraction and transbilayer movement were <5 s and approximately 20-50 s, respectively, at 10 degrees C. For 1,2-dimyristoyl-sn-glycero-3-phosphocholine-SUV being in the gel state at 10 degrees C, the respective halftimes were 28 s and 5-8 min. Surprisingly, DHE could not be extracted from LUV consisting of 1,2-dimyristoyl-sn-glycero-3-phosphocholine. This might be an indication of specific interactions between DHE molecules in membranes depending on the phospholipid composition of the membrane. PMID:12202377

  16. The Comparison of Lipid Compositional Uniformity of Giant Unilamellar Vesicles Synthesized From the Rapid Solvent Exchange liposomes with That From Dry Lipid Film

    NASA Astrophysics Data System (ADS)

    Baykal-Caglar, Eda; Huang, Juyang

    2011-03-01

    Lipid bilayer, which is an important constituent of cell membranes, has been extensively studied. Cell membranes perform many vital cell functions such as signal transduction and transportation of materials needed for the functioning of the cell organelles. Understanding the dynamics of lipid bilayers is important for understanding the processes taking place in cell membranes. Giant Unilamellar Vesicles (GUVs) are cell-sized model systems that allow direct visualization of membrane-related phenomena using fluorescence microscopy. In this study, we synthesized DOPC/DSPC/cholesterol GUVs and diPhyPC/DPPC/cholesterol GUVs by the standard electroformation method using dry lipid film as well as by a modified method using liposomes made from Rapid Solvent Exchange (RSE) method. Second method has a potential of incorporating more varieties of membrane proteins to GUVs. We compare the uniformity of lipid composition of GUVs synthesized by the two methods by measuring the variation of phase transition temperature of individual GUVs through fluorescence microscopy; since a narrower distribution of transition temperature should correspond to a more uniform distribution in GUV lipid composition. We will present the results at several bulk lipid compositions and buffer ionic strengths.

  17. Polymer-Induced Swelling of Solid-Supported Lipid Membranes

    PubMed Central

    Kreuzer, Martin; Trapp, Marcus; Dahint, Reiner; Steitz, Roland

    2015-01-01

    In this paper, we study the interaction of charged polymers with solid-supported 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) membranes by in-situ neutron reflectivity. We observe an enormous swelling of the oligolamellar lipid bilayer stacks after incubation in solutions of poly(allylamine hydrochloride) (PAH) in D2O. The positively charged polyelectrolyte molecules interact with the lipid bilayers and induce a drastic increase in their d-spacing by a factor of ~4. Temperature, time, and pH influence the swollen interfacial lipid linings. From our study, we conclude that electrostatic interactions introduced by the adsorbed PAH are the main cause for the drastic swelling of the lipid coatings. The DMPC membrane stacks do not detach from their solid support at T > Tm. Steric interactions, also introduced by the PAH molecules, are held responsible for the stabilizing effect. We believe that this novel system offers great potential for fundamental studies of biomembrane properties, keeping the membrane’s natural fluidity and freedom, decoupled from a solid support at physiological conditions. PMID:26703746

  18. Lipid membrane-mediated attraction between curvature inducing objects

    PubMed Central

    van der Wel, Casper; Vahid, Afshin; Šarić, Anđela; Idema, Timon; Heinrich, Doris; Kraft, Daniela J.

    2016-01-01

    The interplay of membrane proteins is vital for many biological processes, such as cellular transport, cell division, and signal transduction between nerve cells. Theoretical considerations have led to the idea that the membrane itself mediates protein self-organization in these processes through minimization of membrane curvature energy. Here, we present a combined experimental and numerical study in which we quantify these interactions directly for the first time. In our experimental model system we control the deformation of a lipid membrane by adhering colloidal particles. Using confocal microscopy, we establish that these membrane deformations cause an attractive interaction force leading to reversible binding. The attraction extends over 2.5 times the particle diameter and has a strength of three times the thermal energy (−3.3 kBT). Coarse-grained Monte-Carlo simulations of the system are in excellent agreement with the experimental results and prove that the measured interaction is independent of length scale. Our combined experimental and numerical results reveal membrane curvature as a common physical origin for interactions between any membrane-deforming objects, from nanometre-sized proteins to micrometre-sized particles. PMID:27618764

  19. Lipid membrane-mediated attraction between curvature inducing objects

    NASA Astrophysics Data System (ADS)

    van der Wel, Casper; Vahid, Afshin; Šarić, Anđela; Idema, Timon; Heinrich, Doris; Kraft, Daniela J.

    2016-09-01

    The interplay of membrane proteins is vital for many biological processes, such as cellular transport, cell division, and signal transduction between nerve cells. Theoretical considerations have led to the idea that the membrane itself mediates protein self-organization in these processes through minimization of membrane curvature energy. Here, we present a combined experimental and numerical study in which we quantify these interactions directly for the first time. In our experimental model system we control the deformation of a lipid membrane by adhering colloidal particles. Using confocal microscopy, we establish that these membrane deformations cause an attractive interaction force leading to reversible binding. The attraction extends over 2.5 times the particle diameter and has a strength of three times the thermal energy (‑3.3 kBT). Coarse-grained Monte-Carlo simulations of the system are in excellent agreement with the experimental results and prove that the measured interaction is independent of length scale. Our combined experimental and numerical results reveal membrane curvature as a common physical origin for interactions between any membrane-deforming objects, from nanometre-sized proteins to micrometre-sized particles.

  20. On the Importance of Hydrodynamic Interactions in Lipid Membrane Formation

    PubMed Central

    Ando, Tadashi; Skolnick, Jeffrey

    2013-01-01

    Hydrodynamic interactions (HI) give rise to collective motions between molecules, which are known to be important in the dynamics of random coil polymers and colloids. However, their role in the biological self-assembly of many molecule systems has not been investigated. Here, using Brownian dynamics simulations, we evaluate the importance of HI on the kinetics of self-assembly of lipid membranes. One-thousand coarse-grained lipid molecules in periodic simulation boxes were allowed to assemble into stable bilayers in the presence and absence of intermolecular HI. Hydrodynamic interactions reduce the monomer-monomer association rate by 50%. In contrast, the rate of association of lipid clusters is much faster in the presence of intermolecular HI. In fact, with intermolecular HI, the membrane self-assembly rate is 3–10 times faster than that without intermolecular HI. We introduce an analytical model to describe the size dependence of the diffusive encounter rate of particle clusters, which can qualitatively explain our simulation results for the early stage of the membrane self-assembly process. These results clearly suggest that HI greatly affects the kinetics of self-assembly and that simulations without HI will significantly underestimate the kinetic parameters of such processes. PMID:23332062

  1. The Lipid Composition and Physical Properties of the Yeast Vacuole Affect the Hemifusion-Fusion Transition

    PubMed Central

    Karunakaran, Surya; Fratti, Rutilio A.

    2013-01-01

    Yeast vacuole fusion requires the formation of SNARE bundles between membranes. Although the function of vacuolar SNAREs is controlled in part by regulatory lipids, the exact role of the membrane in regulating fusion remains unclear. Because SNAREs are membrane-anchored and transmit the force required for fusion to the bilayer, we hypothesized that the lipid composition and curvature of the membrane aid in controlling fusion. Here, we examined the effect of altering membrane fluidity and curvature on the functionality of fusion-incompetent SNARE mutants that are thought to generate insufficient force to trigger the hemifusion-fusion transition. The hemifusion-fusion transition was inhibited by disrupting the 3Q:1R stoichiometry of SNARE bundles with the mutant SNARE Vam7pQ283R. Similarly, replacing the transmembrane domain of the syntaxin homolog Vam3p with a lipid anchor allowed hemifusion, but not content mixing. Hemifusion-stalled reactions containing either of the SNARE mutants were stimulated to fuse with chlorpromazine, an amphipathic molecule that alters membrane fluidity and curvature. The activity of mutant SNAREs was also rescued by the overexpression of SNAREs, thus multiplying the force transferred to the membrane. Thus, we conclude that either increasing membrane fluidity, or multiplying SNARE-generated energy restored the fusogenicity of mutant SNAREs that are stalled at hemifusion. We also found that regulatory lipids differentially modulated the complex formation of wild-type SNAREs. Together, these data indicate that the physical properties and the lipid composition of the membrane affect the function of SNAREs in promoting the hemifusion-fusion transition. PMID:23438067

  2. Plasticity of Streptomyces coelicolor Membrane Composition Under Different Growth Conditions and During Development

    PubMed Central

    Sandoval-Calderón, Mario; Nguyen, Don D.; Kapono, Clifford A.; Herron, Paul; Dorrestein, Pieter C.; Sohlenkamp, Christian

    2015-01-01

    Streptomyces coelicolor is a model actinomycete that is well known for the diversity of its secondary metabolism and its complex life cycle. As a soil inhabitant, it is exposed to heterogeneous and frequently changing environmental circumstances. In the present work, we studied the effect of diverse growth conditions and phosphate depletion on its lipid profile and the relationship between membrane lipid composition and development in S. coelicolor. The lipid profile from cultures grown on solid media, which is closer to the natural habitat of this microorganism, does not resemble the previously reported lipid composition from liquid grown cultures of S. coelicolor. Wide variations were also observed across different media, growth phases, and developmental stages indicating active membrane remodeling. Ornithine lipids (OL) are phosphorus-free polar lipids that were accumulated mainly during sporulation stages, but were also major components of the membrane under phosphorus limitation. In contrast, phosphatidylethanolamine, which had been reported as one of the major polar lipids in the genus Streptomyces, is almost absent under these conditions. We identified one of the genes responsible for the synthesis of OL (SCO0921) and found that its inactivation causes the absence of OL, precocious morphological development and actinorhodin production. Our observations indicate a remarkable plasticity of the membrane composition in this bacterial species, reveal a higher metabolic complexity than expected, and suggest a relationship between cytoplasmic membrane components and the differentiation programs in S. coelicolor. PMID:26733994

  3. Electrostatic properties of membrane lipids coupled to metarhodopsin II formation in visual transduction.

    PubMed

    Wang, Yin; Botelho, Ana Vitória; Martinez, Gary V; Brown, Michael F

    2002-07-03

    Changes in lipid composition have recently been shown to exert appreciable influences on the activities of membrane-bound proteins and peptides. We tested the hypothesis that the conformational states of rhodopsin linked to visual signal transduction are related to biophysical properties of the membrane lipid bilayer. For bovine rhodopsin, the meta I-meta II conformational transition was studied in egg phosphatidylcholine (PC) recombinants versus the native rod outer segment (ROS) membranes by means of flash photolysis. Formation of metarhodopsin II was observed by the change in absorbance at 478 nm after a single actinic flash was delivered to the sample. The meta I/meta II ratio was investigated as a function of both temperature and pH. The data clearly demonstrated thermodynamic reversibility of the transition for both the egg PC recombinants and the native ROS membranes. A significant shift of the apparent pK(a) for the acid-base equilibrium to lower values was evident in the egg PC recombinant, with little meta II produced under physiological conditions. Calculations of the membrane surface pH using a Poisson-Boltzmann model suggested the free energies of the meta I and meta II states were significantly affected by electrostatic properties of the bilayer lipids. In the ROS membranes, phosphatidylserine (PS) is needed for full formation of meta II, in combination with phosphatidylethanolamine (PE) and polyunsaturated docosahexaenoic acid (DHA; 22:6omega3) chains. We propose that the PS surface potential leads to an accumulation of hydronium ions, H(3)O(+), in the electrical double layer, which drive the reaction together with the large negative spontaneous curvature (H(0)) conferred by PE plus DHA chains. The elastic stress/strain of the bilayer arises from an interplay of the approximately zero H(0) from PS and the negative H(0) due to the PE headgroups and polyunsaturated chains. The lipid influences are further explained in terms of matching of the bilayer

  4. Dynamics of Crowded Vesicles: Local and Global Responses to Membrane Composition

    PubMed Central

    Holdbrook, Daniel A.; Huber, Roland G.; Piggot, Thomas J.; Bond, Peter J.; Khalid, Syma

    2016-01-01

    The bacterial cell envelope is composed of a mixture of different lipids and proteins, making it an inherently complex organelle. The interactions between integral membrane proteins and lipids are crucial for their respective spatial localization within bacterial cells. We have employed microsecond timescale coarse-grained molecular dynamics simulations of vesicles of varying sizes and with a range of protein and lipid compositions, and used novel approaches to measure both local and global system dynamics, the latter based on spherical harmonics analysis. Our results suggest that both hydrophobic mismatch, enhanced by embedded membrane proteins, and curvature based sorting, due to different modes of undulation, may drive assembly in vesicular systems. Interestingly, the modes of undulation of the vesicles were found to be altered by the specific protein and lipid composition of the vesicle. Strikingly, lipid dynamics were shown to be coupled to proteins up to 6 nm from their surface, a substantially larger distance than has previously been observed, resulting in multi-layered annular rings enriched with particular types of phospholipid. Such large protein-lipid complexes may provide a mechanism for long-range communication. Given the complexity of bacterial membranes, our results suggest that subtle changes in lipid composition may have major implications for lipid and protein sorting under a curvature-based membrane-sorting model. PMID:27310814

  5. Length and sequence dependence in the association of Huntingtin protein with lipid membranes

    NASA Astrophysics Data System (ADS)

    Jawahery, Sudi; Nagarajan, Anu; Matysiak, Silvina

    2013-03-01

    There is a fundamental gap in our understanding of how aggregates of mutant Huntingtin protein (htt) with overextended polyglutamine (polyQ) sequences gain the toxic properties that cause Huntington's disease (HD). Experimental studies have shown that the most important step associated with toxicity is the binding of mutant htt aggregates to lipid membranes. Studies have also shown that flanking amino acid sequences around the polyQ sequence directly affect interactions with the lipid bilayer, and that polyQ sequences of greater than 35 glutamine repeats in htt are a characteristic of HD. The key steps that determine how flanking sequences and polyQ length affect the structure of lipid bilayers remain unknown. In this study, we use atomistic molecular dynamics simulations to study the interactions between lipid membranes of varying compositions and polyQ peptides of varying lengths and flanking sequences. We find that overextended polyQ interactions do cause deformation in model membranes, and that the flanking sequences do play a role in intensifying this deformation by altering the shape of the affected regions.

  6. Effect of Pulsed Electric Field on Membrane Lipids and Oxidative Injury of Salmonella typhimurium

    PubMed Central

    Yun, Ou; Zeng, Xin-An; Brennan, Charles S.; Han, Zhong

    2016-01-01

    Salmonella typhimurium cells were subjected to pulsed electric field (PEF) treatment at 25 kV/cm for 0–4 ms to investigate the effect of PEF on the cytoplasmic membrane lipids and oxidative injury of cells. Results indicated that PEF treatment induced a decrease of membrane fluidity of Salmonella typhimurium (S. typhimuriumi), possibly due to the alterations of fatty acid biosynthesis-associated gene expressions (down-regulation of cfa and fabA gene expressions and the up-regulation of fabD gene expression), which, in turn, modified the composition of membrane lipid (decrease in the content ratio of unsaturated fatty acids to saturated fatty acids). In addition, oxidative injury induced by PEF treatment was associated with an increase in the content of malondialdehyde. The up-regulation of cytochrome bo oxidase gene expressions (cyoA, cyoB, and cyoC) indicated that membrane damage was induced by PEF treatment, which was related to the repairing mechanism of alleviating the oxidative injury caused by PEF treatment. Based on these results, we achieved better understanding of microbial injury induced by PEF, suggesting that micro-organisms tend to decrease membrane fluidity in response to PEF treatment and, thus, a greater membrane fluidity might improve the efficiency of PEF treatment to inactivate micro-organisms. PMID:27556460

  7. FT-IR Investigations Into The Fluidity Of Lipopolysaccharide And Lipid A Membrane Systems

    NASA Astrophysics Data System (ADS)

    Brandenburg, K.; Seydel, U.

    1989-12-01

    Lipopolysaccharides (LPS) are the major amphiphilic components of the outer membrane of Gram-negative bacteria. They are composed of a poly- or oligosaccharide portion being covalently linked to a lipid moiety called lipid A. LPS are also called endotoxins because of their ability to induce harmful effects in organisms. However, they also exhibit beneficial ('adjuvant') activity for example by stimulating the immune system and inducing the production of e.g. the tumor necrosis factor and interleukin 1. The mechanisms leading to a stimulation of the cells of the immune system should mainly be governed by the fluidity and/or the supramolecular structure of the LPS and lipid A assemblies interacting with the cell membrane. In this contribution we report on FT-IR measurements of the fluidity of various LPS and of some lipid A's, and on the influence of the concentration of divalent cations, pH and water content on this parameter. The LPS differ in the headgroup conformation/composition, i.e in the length of the sugar moiety. The lipid A's show variation in their acylation patterns.

  8. Alteration of macrophage membrane lipids following processing of bacterial peptidoglycan

    SciTech Connect

    Polanski, M.; Gray, G.R.

    1986-03-01

    As part of the continuing investigation into the role played by macrophages in antigen presentation and bacterial adjuvant activation, the authors have examined the metabolites produced by macrophages after encounter with peptidoglycan. Peptidoglycan was chosen because it contains N-acetyl-muramyl-L-alanyl-D-isoglutamine (muramyl dipeptide), a known adjuvant whose primary target cell is the macrophage. In previous work, the authors established that a series of muramyl dipeptide-like glycopeptides was released into the medium following phagocytosis of peptidoglycan by a macrophage cell line. Here the authors report on the finding that, additionally, a membrane lipid has been covalently altered by the addition of a peptidoglycan fragment. Bacillus subtilis cell walls which had been radiolabeled in their muramic acid, glucosamine and alanine residues, were incubated with the murine macrophage cell line RAW264. Using standard lipid extraction procedures, a lipid was isolated and found to contain equal molar ratios of alanine, glutamic acid and diaminopimelic acid. Since lipidated peptidoglycan peptides have been shown to be immunoactivators, the isolated lipid derivative may serve as a signal for interactions with other lymphocytes.

  9. Anomalous surface diffusion of protons on lipid membranes.

    PubMed

    Wolf, Maarten G; Grubmüller, Helmut; Groenhof, Gerrit

    2014-07-01

    The cellular energy machinery depends on the presence and properties of protons at or in the vicinity of lipid membranes. To asses the energetics and mobility of a proton near a membrane, we simulated an excess proton near a solvated DMPC bilayer at 323 K, using a recently developed method to include the Grotthuss proton shuttling mechanism in classical molecular dynamics simulations. We obtained a proton surface affinity of -13.0 ± 0.5 kJ mol(-1). The proton interacted strongly with both lipid headgroup and linker carbonyl oxygens. Furthermore, the surface diffusion of the proton was anomalous, with a subdiffusive regime over the first few nanoseconds, followed by a superdiffusive regime. The time- and distance dependence of the proton surface diffusion coefficient within these regimes may also resolve discrepancies between previously reported diffusion coefficients. Our simulations show that the proton anomalous surface diffusion originates from restricted diffusion in two different surface-bound states, interrupted by the occasional bulk-mediated long-range surface diffusion. Although only a DMPC membrane was considered in this work, we speculate that the restrictive character of the on-surface diffusion is highly sensitive to the specific membrane conditions, which can alter the relative contributions of the surface and bulk pathways to the overall diffusion process. Finally, we discuss the implications of our findings for the energy machinery.

  10. A Critical Reassessment of Penetratin Translocation Across Lipid Membranes

    PubMed Central

    Bárány-Wallje, Elsa; Keller, Sandro; Serowy, Steffen; Geibel, Sebastian; Pohl, Peter; Bienert, Michael; Dathe, Margitta

    2005-01-01

    Penetratin is a short, basic cell-penetrating peptide able to induce cellular uptake of a vast variety of large, hydrophilic cargos. We have reassessed the highly controversial issue of direct permeation of the strongly cationic peptide across negatively charged lipid membranes. Confocal laser scanning microscopy on rhodamine-labeled giant vesicles incubated with carboxyfluorescein-labeled penetratin yielded no evidence of transbilayer movement, in contradiction to previously reported results. Confocal fluorescence spectroscopy on black lipid membranes confirmed this finding, which was also not affected by application of a transmembrane electric potential difference. A novel dialysis assay based on tryptophan absorbance and fluorescence spectroscopy demonstrated that the permeability of small and large unilamellar vesicles to penetratin is <10−13 m/s. Taken together, the results show that penetratin is not capable of overcoming model membrane systems irrespective of the bilayer curvature or the presence of a transmembrane voltage. Thus, direct translocation across the hydrophobic core of the plasma membrane cannot account for the efficient uptake of penetratin into live cells, which is in accord with recent in vitro studies underlining the importance of endocytosis in the internalization process of cationic cell-penetrating peptides. PMID:16040762

  11. Interaction of Cytotoxic and Cytoprotective Bile Acids with Model Membranes: Influence of the Membrane Composition.

    PubMed

    Esteves, M; Ferreira, M J; Kozica, A; Fernandes, A C; Gonçalves da Silva, A; Saramago, B

    2015-08-18

    To understand the role of bile acids (BAs) in cell function, many authors have investigated their effect on biomembrane models which are less complex systems, but there are still many open questions. The present study aims to contribute for the deepening of the knowledge of the interaction between BAs and model membranes, in particular, focusing on the effect of BA mixtures. The cytotoxic deoxycholic acid (DCA), the cytoprotective ursodeoxycholic acid (UDCA), and the equimolar mixture (DCA + UDCA) were investigated. Monolayers and liposomes were taken as model membranes with two lipid compositions: an equimolar mixture of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), sphingomyelin (SM), and cholesterol (Chol)) traditionally associated with the formation of lipid rafts and an equimolar POPC/SM binary mixture. The obtained results showed that DCA causes the fluidization of monolayers and bilayers, leading to the eventual rupture of POPC/SM liposomes at high concentration. UDCA may provide a stabilization of POPC/SM membranes but has a negligible effect on the Chol-containing liposomes. In the case of equimolar mixture DCA/UDCA, the interactions depend not only on the lipid composition but also on the design of the experiment. The BA mixture has a greater impact on the monolayers than do pure BAs, suggesting a cooperative DCA-UDCA interaction that enhances the penetration of UDCA in both POPC/SM and POPC/SM/Chol monolayers. For the bilayers, the presence of UDCA in the mixture decreases the disturbing effect of DCA.

  12. MODEL AND CELL MEMBRANE PARTITIONING OF PERFLUOROOCTANESULFONATE IS INDEPENDENT OF THE LIPID CHAIN LENGTH

    PubMed Central

    Xie, Wei; Ludewig, Gabriele; Wang, Kai; Lehmler, Hans-Joachim

    2009-01-01

    Perfluorooctanesulfonic acid (PFOS) is a persistent environmental pollutant that may cause adverse health effects in humans and animals by interacting with and disturbing of the normal properties of biological lipid assemblies. To gain further insights into these interactions, we investigated the effect of PFOS potassium salt on dimyristoyl- (DMPC), dipalmitoyl- (DPPC) and distearoylphosphatidylcholine (DSPC) model membranes using fluorescence anisotropy measurements and differential scanning calorimetry (DSC) and on the cell membrane of HL-60 human leukemia cells and freshly isolated rat alveolar macrophages using fluorescence anisotropy measurements. PFOS caused a concentration-dependent decrease of the main phase transition temperature (Tm) and an increased peak width (ΔTw) in both the fluorescence anisotropy and the DSC experiments, with a rank order DMPC > DPPC > DSPC. PFOS caused a fluidization of the gel phase of all phosphatidylcholines investigated, but had the opposite effect on the liquid crystalline phase. The apparent partition coefficients of PFOS between the phosphatidylcholine bilayer and the bulk aqueous phase were largely independent of the phosphatidylcholine chain length and ranged from 4.4 × 104 to 8.8 × 104. PFOS also significantly increased the fluidity of membranes of cells. These findings suggest that PFOS readily partitions into lipid assemblies, independent of their composition, and may cause adverse biological effects by altering their fluidity in a manner that depends on the membrane cooperativity and state (e.g., gel versus liquid crystalline phase) of the lipid assembly. PMID:19932010

  13. Heat shock protein coinducers with no effect on protein denaturation specifically modulate the membrane lipid phase

    PubMed Central

    Török, Zsolt; Tsvetkova, Nelly M.; Balogh, Gábor; Horváth, Ibolya; Nagy, Enikő; Pénzes, Zoltán; Hargitai, Judit; Bensaude, Olivier; Csermely, Péter; Crowe, John H.; Maresca, Bruno; Vígh, László

    2003-01-01

    The hydroxylamine derivative bimoclomol (BM) has been shown to activate natural cytoprotective homeostatic responses by enhancing the capability of cells to cope with various pathophysiological conditions. It exerts its effect in synergy with low levels of stress to induce the synthesis of members of major stress protein families. We show here that the presence of BM does not influence protein denaturation in the cells. BM and its derivatives selectively interact with acidic lipids and modulate their thermal and dynamic properties. BM acts as a membrane fluidizer at normal temperature, but it is a highly efficient membrane stabilizer, inhibiting the bilayer–nonbilayer phase transitions during severe heat shock. We suggest that BM and the related compounds modify those domains of membrane lipids where the thermally or chemically induced perturbation of lipid phase is sensed and transduced into a cellular signal, leading to enhanced activation of heat shock genes. BM may be a prototype for clinically safe membrane-interacting drug candidates that rebalance the level and composition of heat shock proteins. PMID:12615993

  14. Interaction measurement of particles bound to a lipid membrane

    NASA Astrophysics Data System (ADS)

    Sarfati, Raphael; Dufresne, Eric

    2015-03-01

    The local shape and dynamics of the plasma membrane play important roles in many cellular processes. Local membrane deformations are often mediated by the adsorption of proteins (notably from the BAR family), and their subsequent self-assembly. The emerging hypothesis is that self-assembly arises from long-range interactions of individual proteins through the membrane's deformation field. We study these interactions in a model system of micron-sized colloidal particles adsorbed onto a lipid bilayer. We use fluorescent microscopy, optical tweezers and particle tracking to measure dissipative and conservative forces as a function of the separation between the particles. We find that particles are driven together with forces of order 100 fN and remain bound in a potential well with a stiffness of order 100 fN/micron.

  15. Elasto-plasticity in wrinkled polymerized lipid membranes

    NASA Astrophysics Data System (ADS)

    Chaieb, Sahraoui

    2014-01-01

    Biomembranes shown to behave like elastic sheets, can also suffer plastic deformations. Neutron scattering experiments on partially polymerised wrinkled membranes revealed that when a critical degree of polymerisation is crossed, the wrinkled membranes do not resume their spherical shapes. Instead they remain wrinkled and rigid while their non-polymerised counterparts resume their spherical floppy shapes. The yield stress of these membranes, measured for the first time via the fractal dimension, is intimately related to the degree of polymerisation probably through a 2D disorder that quenches the lateral diffusion of the lipid molecules. This work might shed light on the physical reason behind the irreversible deformation of echinocytes, acanthocytes and malaria infected red blood cells.

  16. Lipid bilayer thickness determines cholesterol's location in model membranes

    SciTech Connect

    Marquardt, Drew; Heberle, Frederick A.; Greathouse, Denise V.; Koeppe, II, Roger E.; Standaert, Robert F.; Van Oosten, Brad J.; Harroun, Thad A.; Kinnun, Jacob J.; Williams, Justin A.; Wassall, Stephen R.; Katsaras, John

    2016-10-11

    Cholesterol is an essential biomolecule of animal cell membranes, and an important precursor for the biosynthesis of certain hormones and vitamins. It is also thought to play a key role in cell signaling processes associated with functional plasma membrane microdomains (domains enriched in cholesterol), commonly referred to as rafts. In all of these diverse biological phenomena, the transverse location of cholesterol in the membrane is almost certainly an important structural feature. Using a combination of neutron scattering and solid-state 2H NMR, we have determined the location and orientation of cholesterol in phosphatidylcholine (PC) model membranes having fatty acids of different lengths and degrees of unsaturation. The data establish that cholesterol reorients rapidly about the bilayer normal in all the membranes studied, but is tilted and forced to span the bilayer midplane in the very thin bilayers. The possibility that cholesterol lies flat in the middle of bilayers, including those made from PC lipids containing polyunsaturated fatty acids (PUFAs), is ruled out. Finally, these results support the notion that hydrophobic thickness is the primary determinant of cholesterol's location in membranes.

  17. Lipid bilayer thickness determines cholesterol's location in model membranes

    DOE PAGES

    Marquardt, Drew; Heberle, Frederick A.; Greathouse, Denise V.; ...

    2016-10-11

    Cholesterol is an essential biomolecule of animal cell membranes, and an important precursor for the biosynthesis of certain hormones and vitamins. It is also thought to play a key role in cell signaling processes associated with functional plasma membrane microdomains (domains enriched in cholesterol), commonly referred to as rafts. In all of these diverse biological phenomena, the transverse location of cholesterol in the membrane is almost certainly an important structural feature. Using a combination of neutron scattering and solid-state 2H NMR, we have determined the location and orientation of cholesterol in phosphatidylcholine (PC) model membranes having fatty acids of differentmore » lengths and degrees of unsaturation. The data establish that cholesterol reorients rapidly about the bilayer normal in all the membranes studied, but is tilted and forced to span the bilayer midplane in the very thin bilayers. The possibility that cholesterol lies flat in the middle of bilayers, including those made from PC lipids containing polyunsaturated fatty acids (PUFAs), is ruled out. Finally, these results support the notion that hydrophobic thickness is the primary determinant of cholesterol's location in membranes.« less

  18. Interactions of lipid-based liquid crystalline nanoparticles with model and cell membranes.

    PubMed

    Barauskas, Justas; Cervin, Camilla; Jankunec, Marija; Spandyreva, Marija; Ribokaite, Kristina; Tiberg, Fredrik; Johnsson, Markus

    2010-05-31

    Lipid-based liquid crystalline nanoparticles (LCNPs) are interesting candidates for drug delivery applications, for instance as solubilizing or encapsulating carriers for intravenous (i.v.) drugs. Here it is important that the carriers are safe and tolerable and do not have, e.g. hemolytic activity. In the present study we have studied LCNP particles of different compositions with respect to their mixing behavior and membrane destabilizing effects in model and cell membrane systems. Different types of non-lamellar LCNPs were studied including cubic phase nanoparticles (Cubosome) based on glycerol monooleate (GMO), hexagonal phase nanoparticles (Hexosome) based on diglycerol monooleate (DGMO) and glycerol dioleate (GDO), sponge phase nanoparticles based on DGMO/GDO/polysorbate 80 (P80) and non-lamellar nanoparticles based on soy phosphatidylcholine (SPC)/GDO. Importantly, the LCNPs based on the long-chain monoacyl lipid, GMO, were shown to display a very fast and complete lipid mixing with model membranes composed of multilamellar SPC liposomes as assessed by a fluorescence energy transfer (FRET) assay. The result correlated well with pronounced hemolytic properties observed when the GMO-based LCNPs were mixed with rat whole blood. In sharp contrast, LCNPs based on mixtures of the long-chain diacyl lipids, SPC and GDO, were found to be practically inert towards both hemolysis in rat whole blood as well as lipid mixing with SPC model membranes. The LCNP dispersions based on a mixture of long-chain monoacyl and diacyl lipids, DGMO/GDO, displayed an intermediate behavior compared to the GMO and SPC/GDO-based systems with respect to both hemolysis and lipid mixing. It is concluded that GMO-based LCNPs are unsuitable for parenteral drug delivery applications (e.g. i.v. administration) while the SPC/GDO-based LCNPs exhibit good properties with limited lipid mixing and hemolytic activity. The correlation between results from lipid mixing or FRET experiments and the in

  19. Raman Imaging in Cell Membranes, Lipid-Rich Organelles, and Lipid Bilayers.

    PubMed

    Syed, Aleem; Smith, Emily A

    2017-03-15

    Raman-based optical imaging is a promising analytical tool for noninvasive, label-free chemical imaging of lipid bilayers and cellular membranes. Imaging using spontaneous Raman scattering suffers from a low intensity that hinders its use in some cellular applications. However, developments in coherent Raman imaging, surface-enhanced Raman imaging, and tip-enhanced Raman imaging have enabled video-rate imaging, excellent detection limits, and nanometer spatial resolution, respectively. After a brief introduction to these commonly used Raman imaging techniques for cell membrane studies, this review discusses selected applications of these modalities for chemical imaging of membrane proteins and lipids. Finally, recent developments in chemical tags for Raman imaging and their applications in the analysis of selected cell membrane components are summarized. Ongoing developments toward improving the temporal and spatial resolution of Raman imaging and small-molecule tags with strong Raman scattering cross sections continue to expand the utility of Raman imaging for diverse cell membrane studies. Expected final online publication date for the Annual Review of Analytical Chemistry Volume 10 is June 12, 2017. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

  20. Genetic Analysis of Arabidopsis Mutants Impaired in Plastid Lipid Import Reveals a Role of Membrane Lipids in Chloroplast Division

    SciTech Connect

    Fan, J.; Xu, C.

    2011-03-01

    The biogenesis of photosynthetic membranes in plants relies largely on lipid import from the endoplasmic reticulum (ER) and this lipid transport process is mediated by TGD proteins in Arabidopsis. Such a dependency of chloroplast biogenesis on ER-to-plastid lipid transport was recently exemplified by analyzing double mutants between tgd1-1 or tgd4-3 and fad6 mutants. The fad6 mutants are defective in the desaturation of membrane lipids in chloroplasts and therefore dependent on import of polyunsaturated lipid precursors from the ER for constructing a competent thylakoid membrane system. In support of a critical role of TGD proteins in ER-to-plastid lipid trafficking, we showed that the introduction of the tgd mutations into fad6 mutant backgrounds led to drastic reductions in relative amounts of thylakoid lipids. Moreover, the tgd1-1 fad6 and tgd4-3 fad6 double mutants were deficient in polyunsaturated fatty acids in chloroplast membrane lipids, and severely compromised in the biogenesis of photosynthetic membrane systems. Here we report that these double mutants are severely impaired in chloroplast division. The possible role of membrane lipids in chloroplast division is discussed.

  1. Membrane lipid physical state and modulation of the Na+,Mg2+-ATPase activity in Acholeplasma laidlawii B.

    PubMed Central

    Silvius, J R; McElhaney, R N

    1980-01-01

    Careful analysis of the Arrhenius plot of the Na+,Mg2+-ATPase (ATP pyrophosphohydrolase, EC 3.6.1.8) activity in Acholeplasma laidlawii B membranes of varying fatty acid composition has been combined with differential thermal analysis of the membrane lipid phase transitions to evaluate the effects of membrane lipid properties on the enzyme activity. Our results indicate that the enzyme is active only in association with liquid-crystalline lipids, exhibiting a significant heat capacity of activation, delta Cp++, for the ATP hydrolytic reaction in this case. Quantitative analyses of Arrhenius plots for the enzyme activity in membranes whose lipids exhibit a gel-to-liquid-crystalline phase transition in the physiological temperature range suggest that the ATPase is inactivated when its boundary lipids undergo a phase transition that is driven by the bulk lipid phase transition but is less cooperative than the latter. Our results suggest that the familiar "biphasic linear" Arrhenius plots obtained for many membrane enzymes may in fact have a more complex shape, analysis of which can furnish useful information regarding the behavior of the enzyme molecule. Images PMID:6445554

  2. Ceramides with a pentadecasphingosine chain and short acyls have strong permeabilization effects on skin and model lipid membranes.

    PubMed

    Školová, Barbora; Janůšová, Barbora; Vávrová, Kateřina

    2016-02-01

    The composition and organization of stratum corneum lipids play an essential role in skin barrier function. Ceramides represent essential components of this lipid matrix; however, the importance of the individual structural features in ceramides is not fully understood. To probe the structure-permeability relationships in ceramides, we prepared analogs of N-lignoceroylsphingosine with shortened sphingosine (15 and 12 carbons) and acyl chains (2, 4 and 6 carbons) and studied their behavior in skin and in model lipid membranes. Ceramide analogs with pentadecasphingosine (15C) chains were more barrier-perturbing than 12C- and 18C-sphingosine ceramides; the greatest effects were found with 4 to 6C acyls (up to 15 times higher skin permeability compared to an untreated control and up to 79 times higher permeability of model stratum corneum lipid membranes compared to native very long-chain ceramides). Infrared spectroscopy using deuterated lipids and X-ray powder diffraction showed surprisingly similar behavior of the short ceramide membranes in terms of lipid chain order and packing, phase transitions and domain formation. The high- and low-permeability membranes differed in their amide I band shape and lamellar organization. These skin and membrane permeabilization properties of some short ceramides may be explored, for example, for the rational design of permeation enhancers for transdermal drug delivery.

  3. Imaging lipid domains in cell membranes: the advent of super-resolution fluorescence microscopy

    PubMed Central

    Owen, Dylan M.; Gaus, Katharina

    2013-01-01

    The lipid bilayer of model membranes, liposomes reconstituted from cell lipids, and plasma membrane vesicles and spheres can separate into two distinct liquid phases to yield lipid domains with liquid-ordered and liquid-disordered properties. These observations are the basis of the lipid raft hypothesis that postulates the existence of cholesterol-enriched ordered-phase lipid domains in cell membranes that could regulate protein mobility, localization and interaction. Here we review the evidence that nano-scaled lipid complexes and meso-scaled lipid domains exist in cell membranes and how new fluorescence microscopy techniques that overcome the diffraction limit provide new insights into lipid organization in cell membranes. PMID:24376453

  4. Cell-Free and Cell-Based Approaches to Explore the Roles of Host Membranes and Lipids in the Formation of Viral Replication Compartment Induced by Tombusviruses.

    PubMed

    Nagy, Peter D; Pogany, Judit; Xu, Kai

    2016-03-03

    Plant positive strand RNA viruses are intracellular infectious agents that take advantage of cellular lipids and membranes to support replication and protect viral RNA from degradation by host antiviral responses. In this review, we discuss how Tomato bushy stunt virus (TBSV) co-opts lipid transfer proteins and modulates lipid metabolism and transport to facilitate the assembly of the membrane-bound viral replicase complexes within intricate replication compartments. Identification and characterization of the proviral roles of specific lipids and proteins involved in lipid metabolism based on results from yeast (Saccharomyces cerevisiae) model host and cell-free approaches are discussed. The review also highlights the advantage of using liposomes with chemically defined composition to identify specific lipids required for TBSV replication. Remarkably, all the known steps in TBSV replication are dependent on cellular lipids and co-opted membranes.

  5. Effects of a high n-3 fatty acid diet on membrane lipid composition of heart and skeletal muscle in normal swine and in swine with the genetic mutation for malignant hyperthermia.

    PubMed

    Otten, W; Iaizzo, P A; Eichinger, H M

    1997-10-01

    Knowledge concerning the genetic defects underlying malignant hyperthermia (MH) has expanded rapidly in recent years. In contrast, our understanding of the accompanying physiological changes is less clear. In this regard, the aim of this study was to determine whether normal swine and swine susceptible to MH (both heterozygous and homozygous animals) differ in their abilities to incorporate n-3 (omega 3) fatty acids into their skeletal and heart muscles. Swine of each genotype were fed either a diet rich in n-3 fatty acids (i.e., 5% fish oil) or an equal caloric diet low in n-3 fatty acids (i.e., 5% coconut oil). All dietary supplementations were given over a 13-week period. Subsequently, for each muscle type the following was determined: 1) the relative fatty acid profiles of eight different phospholipid classes and of neutral lipids, and 2) the total phospholipid and the total lipid content. The incorporation of n-3 fatty acids (i.e., eicosapentaenoic acid and docosahexaenoic acid) occurred within the various phospholipids and neutral lipids without influencing their total lipid content. The increased content of n-3 fatty acids in neutral lipids of skeletal muscle was related to a decreased content of medium-chain saturated fatty acids, whereas an increased incorporation of n-3 fatty acids into the membrane phospholipids was often related to a decreased content of linoleic acid and/or arachidonic acid. In general, the pattern of n-3 fatty acid incorporation was considerably different between the normal animals and the MH homozygous and heterozygous animals. The significant interaction between diet-induced n-3 fatty acid profiles and the stress-susceptible MH genotype may indicate an altered mechanism for fatty acid turnover and a repair mechanism to maintain cellular functions and structure.

  6. Kinetics of enzymatic reactions in lipid membranes containing domains.

    PubMed

    Zhdanov, Vladimir P; Höök, Fredrik

    2015-03-06

    An appreciable part of enzymes operating in vivo is associated with lipid membranes. The function of such enzymes can be influenced by the presence of domains containing proteins and/or composed of different lipids. The corresponding experimental model-system studies can be performed under well controlled conditions, e.g., on a planar supported lipid bilayer or surface-immobilized vesicles. To clarify what may happen in such systems, we propose general kinetic equations describing the enzyme-catalyzed substrate conversion occurring via the Michaelis-Menten (MM) mechanism on a membrane with domains which do not directly participate in reaction. For two generic situations when a relatively slow reaction takes place primarily in or outside domains, we take substrate saturation and lateral substrate-substrate interactions at domains into account and scrutinize the dependence of the reaction rate on the average substrate coverage. With increasing coverage, depending on the details, the reaction rate reaches saturation via an inflection point or monotonously as in the conventional MM case. In addition, we show analytically the types of reaction kinetics occurring primarily at domain boundaries. In the physically interesting situation when the domain growth is fast on the reaction time scale, the latter kinetics are far from conventional. The opposite situation when the reaction is fast and controlled by diffusion has been studied by using the Monte Carlo technique. The corresponding results indicate that the dependence of the reaction kinetics on the domain size may be weak.

  7. An ER protein functionally couples neutral lipid metabolism on lipid droplets to membrane lipid synthesis in the ER.

    PubMed

    Markgraf, Daniel F; Klemm, Robin W; Junker, Mirco; Hannibal-Bach, Hans K; Ejsing, Christer S; Rapoport, Tom A

    2014-01-16

    Eukaryotic cells store neutral lipids such as triacylglycerol (TAG) in lipid droplets (LDs). Here, we have addressed how LDs are functionally linked to the endoplasmic reticulum (ER). We show that, in S. cerevisiae, LD growth is sustained by LD-localized enzymes. When LDs grow in early stationary phase, the diacylglycerol acyl-transferase Dga1p moves from the ER to LDs and is responsible for all TAG synthesis from diacylglycerol (DAG). During LD breakdown in early exponential phase, an ER membrane protein (Ice2p) facilitates TAG utilization for membrane-lipid synthesis. Ice2p has a cytosolic domain with affinity for LDs and is required for the efficient utilization of LD-derived DAG in the ER. Ice2p breaks a futile cycle on LDs between TAG degradation and synthesis, promoting the rapid relocalization of Dga1p to the ER. Our results show that Ice2p functionally links LDs with the ER and explain how cells switch neutral lipid metabolism from storage to consumption.

  8. Lipid flip-flop in binary membranes composed of phosphatidylserine and phosphatidylcholine.

    PubMed

    Brown, Krystal L; Conboy, John C

    2013-12-05

    The kinetics and thermodynamics of lipid flip-flop in bilayers composed of 1,2-dipalmitoyl-sn-glycero-3-phospho-L-serine (DPPS) and 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) were studied using sum-frequency vibrational spectroscopy. The kinetics of DSPC and DPPS flip-flop were examined as a function of temperature and bilayer composition. The rate of DSPC flip-flop did not exhibit any significant dependence on bilayer composition while the rate of DPPS flip-flop was inversely dependent on the mole fraction of DPPS. The transition-state thermodynamics for DSPC and DPPS lipids in these mixed bilayers were determined in order to identify the energetic impact of the phosphatidylserine headgroup on lipid flip-flop. The thermodynamics for the DSPC component remained statistically identical to bilayers composed entirely of DSPC. The activation energy for the DPPS component showed a linear correlation with the mole fraction of DPPS for all bilayer compositions. The enthalpy and entropy for DPPS flip-flop did not increase linearly with the fraction of DPPS but did directly correlate with the molecular area. The DPPS component also exhibited enthalpy-entropy compensation which suggests that lipid hydration may play a significant role in membrane dynamics.

  9. The Role of Tetraether Lipid Composition in the Adaptation of Thermophilic Archaea to Acidity

    PubMed Central

    Boyd, Eric S.; Hamilton, Trinity L.; Wang, Jinxiang; He, Liu; Zhang, Chuanlun L.

    2013-01-01

    Diether and tetraether lipids are fundamental components of the archaeal cell membrane. Archaea adjust the degree of tetraether lipid cyclization in order to maintain functional membranes and cellular homeostasis when confronted with pH and/or thermal stress. Thus, the ability to adjust tetraether lipid composition likely represents a critical phenotypic trait that enabled archaeal diversification into environments characterized by extremes in pH and/or temperature. Here we assess the relationship between geochemical variation, core- and polar-isoprenoid glycerol dibiphytanyl glycerol tetraether (C-iGDGT and P-iGDGT, respectively) lipid composition, and archaeal 16S rRNA gene diversity and abundance in 27 geothermal springs in Yellowstone National Park, Wyoming. The composition and abundance of C-iGDGT and P-iGDGT lipids recovered from geothermal ecosystems were distinct from surrounding soils, indicating that they are synthesized endogenously. With the exception of GDGT-0 (no cyclopentyl rings), the abundances of individual C-iGDGT and P-iGDGT lipids were significantly correlated. The abundance of a number of individual tetraether lipids varied positively with the relative abundance of individual 16S rRNA gene sequences, most notably crenarchaeol in both the core and polar GDGT fraction and sequences closely affiliated with Candidatus Nitrosocaldus yellowstonii. This finding supports the proposal that crenarchaeol is a biomarker for nitrifying archaea. Variation in the degree of cyclization of C- and P-iGDGT lipids recovered from geothermal mats and sediments could best be explained by variation in spring pH, with lipids from acidic environments tending to have, on average, more internal cyclic rings than those from higher pH ecosystems. Likewise, variation in the phylogenetic composition of archaeal 16S rRNA genes could best be explained by spring pH. In turn, the phylogenetic similarity of archaeal 16S rRNA genes was significantly correlated with the similarity

  10. The role of tetraether lipid composition in the adaptation of thermophilic archaea to acidity.

    PubMed

    Boyd, Eric S; Hamilton, Trinity L; Wang, Jinxiang; He, Liu; Zhang, Chuanlun L

    2013-01-01

    Diether and tetraether lipids are fundamental components of the archaeal cell membrane. Archaea adjust the degree of tetraether lipid cyclization in order to maintain functional membranes and cellular homeostasis when confronted with pH and/or thermal stress. Thus, the ability to adjust tetraether lipid composition likely represents a critical phenotypic trait that enabled archaeal diversification into environments characterized by extremes in pH and/or temperature. Here we assess the relationship between geochemical variation, core- and polar-isoprenoid glycerol dibiphytanyl glycerol tetraether (C-iGDGT and P-iGDGT, respectively) lipid composition, and archaeal 16S rRNA gene diversity and abundance in 27 geothermal springs in Yellowstone National Park, Wyoming. The composition and abundance of C-iGDGT and P-iGDGT lipids recovered from geothermal ecosystems were distinct from surrounding soils, indicating that they are synthesized endogenously. With the exception of GDGT-0 (no cyclopentyl rings), the abundances of individual C-iGDGT and P-iGDGT lipids were significantly correlated. The abundance of a number of individual tetraether lipids varied positively with the relative abundance of individual 16S rRNA gene sequences, most notably crenarchaeol in both the core and polar GDGT fraction and sequences closely affiliated with Candidatus Nitrosocaldus yellowstonii. This finding supports the proposal that crenarchaeol is a biomarker for nitrifying archaea. Variation in the degree of cyclization of C- and P-iGDGT lipids recovered from geothermal mats and sediments could best be explained by variation in spring pH, with lipids from acidic environments tending to have, on average, more internal cyclic rings than those from higher pH ecosystems. Likewise, variation in the phylogenetic composition of archaeal 16S rRNA genes could best be explained by spring pH. In turn, the phylogenetic similarity of archaeal 16S rRNA genes was significantly correlated with the similarity

  11. Membrane on a chip: a functional tethered lipid bilayer membrane on silicon oxide surfaces.

    PubMed

    Atanasov, Vladimir; Knorr, Nikolaus; Duran, Randolph S; Ingebrandt, Sven; Offenhäusser, Andreas; Knoll, Wolfgang; Köper, Ingo

    2005-09-01

    Tethered membranes have been proven during recent years to be a powerful and flexible biomimetic platform. We reported in a previous article on the design of a new architecture based on the self-assembly of a thiolipid on ultrasmooth gold substrates, which shows extremely good electrical sealing properties as well as functionality of a bilayer membrane. Here, we describe the synthesis of lipids for a more modular design and the adaptation of the linker part to silane chemistry. We were able to form a functional tethered bilayer lipid membrane with good electrical sealing properties covering a silicon oxide surface. We demonstrate the functional incorporation of the ion carrier valinomycin and of the ion channel gramicidin.

  12. Membrane lipid peroxidation by UV-A: Mechanism and implications

    SciTech Connect

    Bose, B.; Agarwal, S.; Chatterjee, S.N. )

    1990-10-01

    UV-A produced a dose-dependent linear increase of lipid peroxidation in liposomal membrane, as detected by the assay of (i) conjugated dienes, (ii) lipid hydroperoxides, (iii) malondialdehydes (MDA), and (iv) the fluorescent adducts formed by the reaction of MDA with glycine and also a linear dose-dependent increase of ({sup 14}C)glucose efflux from the liposomes. UV-A-induced MDA production could not be inhibited by any significant degree by sodium formate, dimethyl sulfoxide, EDTA, or superoxide dismutase but was very significantly inhibited by butylated hydroxytoluene, alpha-tocopherol, sodium azide, L-histidine, dimethylfuran, and beta-carotene. MDA formation increased with an increase in the D{sub 2}O content in water, leading to a maximal amount of nearly 50% enhancement of lipid peroxidation in 100% D{sub 2}O vis-a-vis water used as dispersion medium. The experimental findings indicate the involvement of singlet oxygen as the initiator of the UV-A-induced lipid peroxidation.

  13. Millimeter microwave effect on ion transport across lipid bilayer membranes.

    PubMed

    Alekseev, S I; Ziskin, M C

    1995-01-01

    The effects of millimeter microwaves in the frequency range of 54-76 GHz on capacitance and conductance of lipid bilayer membranes (BLM) were studied. Some of the membranes were modified by gramicidin A and amphotericin B or by tetraphenylboron anions (TPhB-). The millimeter microwaves were pulse-modulated (PW) at repetition rates ranging from 1 to 100 pps, PW at 1000 pps, or unmodulated continuous waves (CW). The maximum output power at the waveguide outlet was 20 mW. It was found that CW irradiation decreased the unmodified BLM capacitance by 1.2% +/- 0.5%. At the same time, membrane current induced by TPhB- transport increased by 5% +/- 1%. The changes in conductance of ionic channels formed by gramicidin A and amphotericin B were small (0.6% +/- 0.4%). No "resonance-like" effects of mm-wave irradiation on membrane capacitance, ionic channel currents, or TPhB- transport were detected. All changes in membrane capacitance and currents were independent of the modulation employed and were equivalent to heating by approximately 1.1 degrees C.

  14. Solubility and Permeation of Hydrogen Sulfide in Lipid Membranes

    PubMed Central

    Cuevasanta, Ernesto; Denicola, Ana; Alvarez, Beatriz; Möller, Matías N.

    2012-01-01

    Hydrogen sulfide (H2S) is mainly known for its toxicity but has recently been shown to be produced endogenously in mammalian tissues and to be associated with physiological regulatory functions. To better understand the role of biomembranes in modulating its biological distribution and effects; we measured the partition coefficient of H2S in models of biological membranes. The partition coefficients were found to be 2.1±0.2, 1.9±0.5 and 2.0±0.6 in n-octanol, hexane and dilauroylphosphatidylcholine liposome membranes relative to water, respectively (25°C). This two-fold higher concentration of H2S in the membrane translates into a rapid membrane permeability, Pm = 3 cm s−1. We used a mathematical model in three dimensions to gain insight into the diffusion of total sulfide in tissues. This model shows that the sphere of action of sulfide produced by a single cell expands to involve more than 200 neighboring cells, and that the resistance imposed by lipid membranes has a significant effect on the diffusional spread of sulfide at pH 7.4, increasing local concentrations. These results support the role of hydrogen sulfide as a paracrine signaling molecule and reveal advantageous pharmacokinetic properties for its therapeutic applications. PMID:22509322

  15. Impact of lipid content and composition on lipid oxidation and protein carbonylation in experimental fermented sausages.

    PubMed

    Fuentes, Verónica; Estévez, Mario; Ventanas, Jesús; Ventanas, Sonia

    2014-03-15

    This study aims to investigate the effect of lipid content (∼4%, ∼10% and ∼15%) and composition (different lipid sources; animal fat and sunflower oil) on the oxidative stability of proteins and lipids in experimental fermented sausages. Increasing the lipid content of sausages enhanced the susceptibility of lipids to oxidation whereas the effect on the formation of specific carbonyls from protein oxidation was not so evident. Sausages manufactured with different lipid sources affected the susceptibility of lipids and proteins to oxidation as a likely result of the modifications in the fatty acid profile, as well as to the presence of antioxidant compounds. While the fatty acid profile had a major effect on the occurrence and extent of lipid oxidation, the presence of compounds with potential antioxidant activity may be more influential on the extent of protein carbonylation.

  16. Label-free surface-enhanced infrared spectro-electro-chemical analysis of the Redox potential shift of cytochrome c complexed with a cardiolipin-containing lipid membrane of varied composition

    NASA Astrophysics Data System (ADS)

    Liu, Li; Wu, Lie; Zeng, Li; Jiang, Xiu-E.

    2015-12-01

    In this study, a lipid membrane was fabricated by fusing cardiolipin-phosphatidylcholine (CL_PC, 1:4) vesicles onto a hydrophobic surface of 1-dodecanethiol (DT) preadsorbed on a nanostructured gold film. By changing the concentration of the DT adsorption solution, we constructed a series of CL_PC-DT bilayers with different hydrophobicity to study the effects of lipid membrane characteristics on the adsorption conformation of cytochrome c (Cyt c). Electrochemical analysis showed that the formal potential is 0.24 V for Cyt c-CL_PC-DT(10), 0.2 V for Cyt c-CL_PC-DT(20), and 0.16 V for Cyt c-CL_PC-DT(40) — a gradual positive shift with the decreasing DT concentration — relative to the potential of native cyt c (0.02 V). Potential-induced surface-enhanced infrared adsorption difference spectroscopy revealed that the gradual positive shift of the formal potential of CL-bound cyt c is determined by the environment with the gradually lowered dielectric constant for the heme cofactor in CL-bound cyt c (Fe3+). Project supported by the National Natural Science Foundation of China (Grant Nos. 91227114, 21322510, and 21105097), the China Postdoctoral Science Foundation (Grant No. 2013M530998), the Natural Science Foundation of Jilin Province, China (Grant No. 201215092), and the President Funds of the Chinese Academy of Sciences.

  17. Altered lipid composition in cortical lipid rafts occurs at early stages of sporadic Alzheimer's disease and facilitates APP/BACE1 interactions.

    PubMed

    Fabelo, Noemí; Martín, Virginia; Marín, Raquel; Moreno, Dolores; Ferrer, Isidre; Díaz, Mario

    2014-08-01

    The presence of lipid alterations in lipid rafts from the frontal cortex in late stages of Alzheimer's disease (AD) has been recently demonstrated. Here, we have isolated and analyzed the lipid composition of lipid rafts from different brain areas from control and AD subjects at initial neuropathologic stages. We have observed that frontal cortex lipid rafts are profoundly altered in AD brains from the earliest stages of AD, namely AD I/II. These changes in the lipid matrix of lipid rafts affected both lipid classes and fatty acids and were also detected in the entorhinal cortex, but not in the cerebellum from the same subjects. Paralleling these changes, lipid rafts from AD frontal and entorhinal cortices displayed higher anisotropy for environment-sensitive probes, indicating that lipid changes in AD lipid rafts increased membrane order and viscosity in these domains. The pathophysiological consequences of these alterations in the development and progression of AD were strengthened by the significant, and specific, accumulation of β-secretase within the lipid rafts of AD subjects even at the earliest stages. Our results provide a mechanistic connection between lipid alterations in these microdomains and amyloidogenic processing of amyloid precursor protein.

  18. Thermodynamics of sodium dodecyl sulfate partitioning into lipid membranes.

    PubMed

    Tan, Anmin; Ziegler, André; Steinbauer, Bernhard; Seelig, Joachim

    2002-09-01

    The partition equilibria of sodium dodecyl sulfate (SDS) and lithium dodecyl sulfate between water and bilayer membranes were investigated with isothermal titration calorimetry and spectroscopic methods (light scattering, (31)P-nuclear magnetic resonance) in the temperature range of 28 degrees C to 56 degrees C. The partitioning of the dodecyl sulfate anion (DS(-)) into the bilayer membrane is energetically favored by an exothermic partition enthalpy of Delta H(O)(D) = -6.0 kcal/mol at 28 degrees C. This is in contrast to nonionic detergents where Delta H(O)(D) is usually positive. The partition enthalpy decreases linearly with increasing temperature and the molar heat capacity is Delta C(O)(P) = -50 +/- 3 cal mol(-1) K(-1). The partition isotherm is nonlinear if the bound detergent is plotted versus the free detergent concentration in bulk solution. This is caused by the electrostatic repulsion between the DS(-) ions inserted into the membrane and those free in solution near the membrane surface. The surface concentration of DS(-) immediately above the plane of binding was hence calculated with the Gouy-Chapman theory, and a strictly linear relationship was obtained between the surface concentration and the extent of DS(-) partitioning. The surface partition constant K describes the chemical equilibrium in the absence of electrostatic effects. For the SDS-membrane equilibrium K was found to be 1.2 x 10(4) M(-1) to 6 x 10(4) M(-1) for the various systems and conditions investigated, very similar to data available for nonionic detergents of the same chain length. The membrane-micelle phase diagram was also studied. Complete membrane solubilization requires a ratio of 2.2 mol SDS bound per mole of total lipid at 56 degrees C. The corresponding equilibrium concentration of SDS free in solution is C (sat)(D,F) approximately 1.7 mM and is slightly below the critical micelles concentration (CMC) = 2.1 mM (at 56 degrees C and 0.11 M buffer). Membrane saturation occurs at

  19. Direct observation of brownian motion of lipids in a membrane.

    PubMed Central

    Lee, G M; Ishihara, A; Jacobson, K A

    1991-01-01

    Nanovid microscopy, which uses 30- to 40-nm colloidal gold probes combined with video-enhanced contrast, can be used to examine random and directed movements of individual molecules in the plasma membrane of living cells. To validate the technique in a model system, the movements of lipid molecules were followed in a supported, planar bilayer containing fluorescein-conjugated phosphatidylethanolamine (Fl-PtdEtn) labeled with 30-nm gold anti-fluorescein (anti-Fl). Multivalent gold probes were prepared by conjugating only anti-Fl to the gold. Paucivalent probes were prepared by mixing an irrelevant antibody with the anti-Fl prior to conjugation. The membrane-bound gold particles moved in random patterns that were indistinguishable from those produced by computer simulations of two-dimensional random motion. The multivalent gold probes had an average lateral diffusion coefficient (D) of 0.26 x 10(-8) cm2/sec, and paucivalent probes had an average D of 0.73 x 10(-8) cm2/sec. Sixteen percent of the multivalent and 50% of the paucivalent probes had values for D in excess of 0.6 x 10(-8) cm2/sec, which, after allowance for stochastic variation, are consistent with the D of 1.3 x 10(-8) cm2/sec measured by fluorescence recovery after photobleaching of Fl-PtdEtn in the planar bilayer. The effect of valency on diffusion suggests that the multivalent gold binds several lipids forming a disk up to 30-40 nm in diameter, resulting in reduced diffusion with respect to the paucivalent gold, which binds one or a very few lipids. Provided the valency of the gold probe is considered in the interpretation of the results. Nanovid microscopy is a valid method for analyzing the movements of single or small groups of molecules within membranes. Images PMID:1712486

  20. New fluorescent octadecapentaenoic acids as probes of lipid membranes and protein-lipid interactions.

    PubMed Central

    Mateo, C R; Souto, A A; Amat-Guerri, F; Acuña, A U

    1996-01-01

    The chemical and spectroscopic properties of the new fluorescent acids all(E)-8, 10, 12, 14, 16-octadecapentaenoic acid (t-COPA) and its (8Z)-isomer (c-COPA) have been characterized in solvents of different polarity, synthetic lipid bilayers, and lipid/protein systems. These compounds are reasonably photostable in solution, present an intense UV absorption band (epsilon(350 nm) approximately 10(5) M(-1) cm(-1)) strongly overlapped by tryptophan fluorescence and their emission, centered at 470 nm, is strongly polarized (r(O) = 0.385 +/- 0.005) and decays with a major component (85%) of lifetime 23 ns and a faster minor one of lifetime 2 ns (D,L-alpha-dimyristoylphosphatidylcholine (DMPC), 15 degrees C). Both COPA isomers incorporate readily into vesicles and membranes (K(p) approximately 10(6)) and align parallel to the lipids. t-COPA distributes homogeneously between gel and fluid lipid domains and the changes in polarization accurately reflect the lipid T(m) values. From the decay of the fluorescence anisotropy in spherical bilayers of DMPC and POPC it is shown that t-COPA also correctly reflects the lipid order parameters, determined by 2H NMR techniques. Resonance energy transfer from tryptophan to the bound pentaenoic acid in serum albumin in solution, and from the tryptophan residues of gramicidin in lipid bilayers also containing the pentaenoic acid, show that this probe is a useful acceptor of protein tryptophan excitation, with R(O) values of 30-34 A. Images FIGURE 10 PMID:8889194

  1. Synthesis of Carbon Nanotube (CNT) Composite Membranes

    PubMed Central

    Altalhi, Tariq; Ginic-Markovic, Milena; Han, Ninghui; Clarke, Stephen; Losic, Dusan

    2011-01-01

    Carbon nanotubes are attractive approach for designing of new membranes for advanced molecular separation because of their unique transport properties and ability to mimic biological protein channels. In this work the synthetic approach for fabrication of carbon nanotubes (CNTs) composite membranes is presented. The method is based on growth of multi walled carbon nanotubes (MWCNT) using chemical vapour deposition (CVD) on the template of nanoporous alumina (PA) membranes. The influence of experimental conditions including carbon precursor, temperature, deposition time, and PA template on CNT growth process and quality of fabricated membranes was investigated. The synthesis of CNT/PA composites with controllable nanotube dimensions such as diameters (30–150 nm), and thickness (5–100 μm), was demonstrated. The chemical composition and morphological characteristics of fabricated CNT/PA composite membranes were investigated by various characterisation techniques including scanning electron microscopy (SEM), energy-dispersive x-ray spectroscopy (EDXS), high resolution transmission electron microscopy (HRTEM) and x-ray diffraction (XRD). Transport properties of prepared membranes were explored by diffusion of dye (Rose Bengal) used as model of hydrophilic transport molecule. PMID:24957494

  2. Direct affinity of dopamine to lipid membranes investigated by Nuclear Magnetic Resonance spectroscopy.

    PubMed

    Matam, Yashasvi; Ray, Bruce D; Petrache, Horia I

    2016-04-08

    Dopamine, a naturally occurring neurotransmitter, plays an important role in the brain's reward system and acts on sensory receptors in the brain. Neurotransmitters are contained in lipid membraned vesicles and are released by exocytosis. All neurotransmitters interact with transport and receptor proteins in glial cells, on neuronal dendrites, and at the axonal button, and also must interact with membrane lipids. However, the extent of direct interaction between lipid membranes in the absence of receptors and transport proteins has not been extensively investigated. In this report, we use UV and NMR spectroscopy to determine the affinity and the orientation of dopamine interacting with lipid vesicles made of either phosphatidylcholine (PC) or phosphatidylserine (PS) lipids which are primary lipid components of synaptic vesicles. We quantify the interaction of dopamine's aromatic ring with lipid membranes using our newly developed method that involves reference spectra in hydrophobic environments. Our measurements show that dopamine interacts with lipid membranes primarily through the aromatic side opposite to the hydroxyl groups, with this aromatic side penetrating deeper into the hydrophobic region of the membrane. Since dopamine's activity involves its release into extracellular space, we have used our method to also investigate dopamine's release from lipid vesicles. We find that dopamine trapped inside PC and PS vesicles is released into the external solution despite its affinity to membranes. This result suggests that dopamine's interaction with lipid membranes is complex and involves both binding as well as permeation through lipid bilayers, a combination that could be an effective trigger for apoptosis of dopamine-generating cells.

  3. Characterization of the myristoyl lipid modification of membrane-bound GCAP-2 by 2H solid-state NMR spectroscopy.

    PubMed

    Vogel, Alexander; Schröder, Thomas; Lange, Christian; Huster, Daniel

    2007-12-01

    Guanylate cyclase-activating protein-2 (GCAP-2) is a retinal Ca2+ sensor protein. It is responsible for the regulation of both isoforms of the transmembrane photoreceptor guanylate cyclase, a key enzyme of vertebrate phototransduction. GCAP-2 is N-terminally myristoylated and full activation of its target proteins requires the presence of this lipid modification. The structural role of the myristoyl moiety in the interaction of GCAP-2 with the guanylate cyclases and the lipid membrane is currently not well understood. In the present work, we studied the binding of Ca2+-free myristoylated and non-myristoylated GCAP-2 to phospholipid vesicles consisting of dimyristoylphosphatidylcholine or of a lipid mixture resembling the physiological membrane composition by a biochemical binding assay and 2H solid-state NMR. The NMR results clearly demonstrate the full-length insertion of the aliphatic chain of the myristoyl group into the membrane. Very similar geometrical parameters were determined from the 2H NMR spectra of the myristoyl group of GCAP-2 and the acyl chains of the host membranes, respectively. The myristoyl chain shows a moderate mobility within the lipid environment, comparable to the acyl chains of the host membrane lipids. This is in marked contrast to the behavior of other lipid-modified model proteins. Strikingly, the contribution of the myristoyl group to the free energy of membrane binding of GCAP-2 is only on the order of -0.5 kJ/mol, and the electrostatic contribution is slightly unfavorable, which implies that the main driving forces for membrane localization arises through other, mainly hydrophobic, protein side chain-lipid interactions. These results suggest a role of the myristoyl group in the direct interaction of GCAP-2 with its target proteins, the retinal guanylate cyclases.

  4. Revisiting Plant Plasma Membrane Lipids in Tobacco: A Focus on Sphingolipids1

    PubMed Central

    Cacas, Jean-Luc; Grosjean, Kevin; Gerbeau-Pissot, Patricia; Lherminier, Jeannine; Rombouts, Yoann; Maes, Emmanuel; Gronnier, Julien; Furt, Fabienne; Fouillen, Laetitia; Bayer, Emmanuelle; Cluzet, Stéphanie; Schmitter, Jean-Marie; Deleu, Magali; Lins, Laurence; Simon-Plas, Françoise; Mongrand, Sébastien

    2016-01-01

    The lipid composition of plasma membrane (PM) and the corresponding detergent-insoluble membrane (DIM) fraction were analyzed with a specific focus on highly polar sphingolipids, so-called glycosyl inositol phosphorylceramides (GIPCs). Using tobacco (Nicotiana tabacum) ‘Bright Yellow 2’ cell suspension and leaves, evidence is provided that GIPCs represent up to 40 mol % of the PM lipids. Comparative analysis of DIMs with the PM showed an enrichment of 2-hydroxylated very-long-chain fatty acid-containing GIPCs and polyglycosylated GIPCs in the DIMs. Purified antibodies raised against these GIPCs were further used for immunogold-electron microscopy strategy, revealing the distribution of polyglycosylated GIPCs in domains of 35 ± 7 nm in the plane of the PM. Biophysical studies also showed strong interactions between GIPCs and sterols and suggested a role for very-long-chain fatty acids in the interdigitation between the two PM-composing monolayers. The ins and outs of lipid asymmetry, raft formation, and interdigitation in plant membrane biology are finally discussed. PMID:26518342

  5. Effects of interleaflet coupling on the morphologies of multicomponent lipid bilayer membranes

    NASA Astrophysics Data System (ADS)

    Funkhouser, Chloe M.; Mayer, Michael; Solis, Francisco J.; Thornton, K.

    2013-01-01

    We investigate dynamical and stationary compositional and surface morphologies in macroscopically phase-separating multicomponent lipid bilayer membranes using a computational model. We employ a phase-field method for the description of the coexisting phases and treat the two leaflets individually while including interleaflet interactions. The compositional evolution of the two leaflets is coupled to the shape evolution of the membrane via a Helfrich free energy with a composition-dependent spontaneous curvature. We investigate the effects of the interleaflet interaction on the dynamics and stationary states of a system favoring nonzero spontaneous curvatures. Morphological phase diagrams are mapped in composition space using three different interleaflet coupling strengths. We find that characteristics sensitive to the coupling strength include the time required to develop regions of fully separated phases, the prevalence of a stripe morphology, and the shifting of phase compositions to accommodate energetically favorable interactions across leaflets. Characteristics found to be robust with respect to coupling strength include (1) the stripe morphology is favored at nearly equal mixtures and (2) phase separation is prevented in systems where a pair of phases that preferentially interact across leaflets together occupy nearly all or none of the membrane.

  6. Reticulated lipid probe fluorescence reveals MDCK cell apical membrane topography.

    PubMed

    Colarusso, Pina; Spring, Kenneth R

    2002-02-01

    High spatial resolution confocal microscopy of young MDCK cells stained with the lipophilic probe 1,1'-dihexadecyl-3,3,3',3'- tetramethylindocarbocyanine perchlorate (DiIC(16)) revealed a reticulated fluorescence pattern on the apical membrane. DiIC(16) was delivered as crystals to live cells to minimize possible solvent perturbations of the membrane lipids. The ratio of the integrated fluorescence intensities in the bright versus dim regions was 1.6 +/- 0.1 (n = 13). Deconvolved images of the cells were consistent with exclusive plasma membrane staining. Multi-spectral and fluorescence anisotropy microscopy did not reveal differences between bright and dim regions. Bright regions coincided with microvilli and microridges observed by differential interference contrast microscopy and were stable for several minutes. Fluorescence recovery after photobleaching yielded similar diffusion coefficients (pooled D = 1.5 +/- 0.6 x 10(-9) cm(2)/s, n = 40) for both bright and dim regions. Line fluorescence recovery after photobleaching showed that the reticulated pattern was maintained as the fluorescence recovered in the bleached areas. Cytochalasin D did not affect the staining pattern, but the pattern was eliminated by cholesterol depletion with methyl-beta-cyclodextrin. We conclude that the reticulated fluorescence pattern was caused by increased optical path lengths through the microvilli and microridges compared with the flat areas on the apical membrane.

  7. Reticulated lipid probe fluorescence reveals MDCK cell apical membrane topography.

    PubMed Central

    Colarusso, Pina; Spring, Kenneth R

    2002-01-01

    High spatial resolution confocal microscopy of young MDCK cells stained with the lipophilic probe 1,1'-dihexadecyl-3,3,3',3'- tetramethylindocarbocyanine perchlorate (DiIC(16)) revealed a reticulated fluorescence pattern on the apical membrane. DiIC(16) was delivered as crystals to live cells to minimize possible solvent perturbations of the membrane lipids. The ratio of the integrated fluorescence intensities in the bright versus dim regions was 1.6 +/- 0.1 (n = 13). Deconvolved images of the cells were consistent with exclusive plasma membrane staining. Multi-spectral and fluorescence anisotropy microscopy did not reveal differences between bright and dim regions. Bright regions coincided with microvilli and microridges observed by differential interference contrast microscopy and were stable for several minutes. Fluorescence recovery after photobleaching yielded similar diffusion coefficients (pooled D = 1.5 +/- 0.6 x 10(-9) cm(2)/s, n = 40) for both bright and dim regions. Line fluorescence recovery after photobleaching showed that the reticulated pattern was maintained as the fluorescence recovered in the bleached areas. Cytochalasin D did not affect the staining pattern, but the pattern was eliminated by cholesterol depletion with methyl-beta-cyclodextrin. We conclude that the reticulated fluorescence pattern was caused by increased optical path lengths through the microvilli and microridges compared with the flat areas on the apical membrane. PMID:11806917

  8. Detergent interaction with tethered bilayer lipid membranes for protein reconstitution

    NASA Astrophysics Data System (ADS)

    Broccio, Matteo; Zan Goh, Haw; Loesche, Mathias

    2009-03-01

    Tethered bilayer lipid membranes (tBLMs) are self-assembled biomimetic structures in which the membrane is separated from a solid substrate by a nm-thick hydrated submembrane space. These model systems are being used in binding studies of peripheral proteins and exotoxins. Here we aim at their application for the reconstitution of water-insoluble integral membrane proteins. As an alternative to fusion of preformed proteoliposomes we study the direct reconstitution of such proteins for applications in biosensing and pharmaceutical screening. For reconstitution, highly insulating tBLMs (R˜10^5-10^6 φ) were temporarily incubated with a detergent to screen for conditions that keep the detergent-saturated membranestable and ready to incorporate detergent-solubilized proteins. We assess the electrical characteristics, i.e. specific resistance and capacitance, by means of electrochemical impedance spectroscopy (EIS) under timed incubation with decylmaltoside and dodecylmaltoside deterg