Science.gov

Sample records for lipid nanoemulsion resembling

  1. Anti-inflammatory effects of intravenous methotrexate associated with lipid nanoemulsions on antigen-induced arthritis

    PubMed Central

    Mello, Suzana B V; Tavares, Elaine R; Guido, Maria Carolina; Bonfá, Eloisa; Maranhão, Raul C

    2016-01-01

    OBJECTIVE: To test the hypothesis that intravenous use of methotrexate associated with lipid nanoemulsions can achieve superior anti-inflammatory effects in the joints of rabbits with antigen-induced arthritis compared with commercial methotrexate. METHODS: Arthritis was induced in New Zealand rabbits sensitized with methylated bovine serum albumin and subsequently intra-articularly injected with the antigen. A nanoemulsion of methotrexate labeled with 3H-cholesteryl ether (4 mg/kg methotrexate) was then intravenously injected into four rabbits to determine the plasma decaying curves and the biodistribution of the methotrexate nanoemulsion by radioactive counting. Additionally, the pharmacokinetics of the methotrexate nanoemulsion were determined by high-pressure liquid chromatography. Twenty-four hours after arthritis induction, the animals were allocated into three groups, with intravenous injection with saline solution (n=9), methotrexate nanoemulsion (0.5 µmol/kg methotrexate, n=7), or commercial methotrexate (0.5 µmol/kg, n=4). The rabbits were sacrificed 24 h afterward. Synovial fluid was then collected for protein leakage and cell content analyses and synovial membranes were collected for histopathological analysis. RESULTS: The methotrexate nanoemulsion was taken up mainly by the liver and the uptake by arthritic joints was two-fold greater than that by control joints. The methotrexate nanoemulsion treatment reduced leukocyte influx into the synovial fluid by nearly 65%; in particular, mononuclear and polymorphonuclear cells were reduced by 47 and 72%, respectively. In contrast, cell influx was unaffected following treatment with commercial methotrexate. Protein leakage into the arthritic knees of the rabbits was also more limited following methotrexate nanoemulsion treatment than following commercial methotrexate treatment. CONCLUSIONS: The intravenous methotrexate nanoemulsion showed anti-inflammatory effects on the synovia of arthritic joints that were

  2. Delivery of dietary triglycerides to Caenorhabditis elegans using lipid nanoparticles: Nanoemulsion-based delivery systems.

    PubMed

    Colmenares, Daniel; Sun, Quancai; Shen, Peiyi; Yue, Yiren; McClements, D Julian; Park, Yeonhwa

    2016-07-01

    The nematode Caenorhabditis elegans is a powerful tool for studying food bioactives on specific biochemical pathways. However, many food bioactives are highly hydrophobic with extremely low water-solubilities, thereby making them difficult to study using C. elegans. The purpose of this study was to develop nanoemulsion-based systems to deliver hydrophobic molecules in a form that could be ingested by C. elegans. Optical microscopy showed that oil-in-water nanoemulsions with a range of particle diameters (40-500nm) could be ingested by C. elegans. The amount of lipid ingested depended on the size and concentration of the nanoparticles. Fatty acid analysis showed incorporation of conjugated linoleic acid and there was a significant reduction in the fat levels of C. elegans when they were incubated with nanoemulsions containing conjugated linoleic acid, which suggested that this hydrophobic lipid was successfully delivered to the nematodes. The incorporation of hydrophobic molecules into nanoemulsion based-delivery systems may therefore enable their activities to be studied using C. elegans.

  3. In vitro lipid peroxidation of intestinal bile salt-based nanoemulsions: potential role of antioxidants.

    PubMed

    Courraud, J; Charnay, C; Cristol, J P; Berger, J; Avallone, S

    2013-12-01

    Over the last decades, oxidative stress has been described as a deleterious phenomenon contributing to numerous noncommunicable diseases such as cardiovascular disease, diabetes, and cancers. As many authors ascribed the healthy effect of fruit and vegetable consumption mainly to their antioxidant contents, it has been hypothesized that their protection could occur from the gut. Therefore, the aim of this study was to develop an original and physiological model of nanoemulsions to study lipid peroxidation within the intestine and to assess the properties of potential antioxidants in this setting. Several nanoemulsions were compared in terms of physical characteristics and reactivity to 2,2'-azobis-(2-amidinopropane) hydrochloride (AAPH)-induced oxidation. Formulations included different types of lipids, a detergent (a conjugated bile salt or sodium dodecyl sulfate) and, finally, lipophilic antioxidants. Hemin and myoglobin were also tested as relevant potential oxidants. Fatty acid (FA) peroxidation was monitored by gas chromatography while malondialdehyde and antioxidant contents were measured by HPLC. Investigated nanoemulsions were composed of spherical or cylindrical mixed micelles, the latter being the least resistant to oxidation. In the experimental conditions, AAPH was the only efficient oxidant. Alpha-tocopherol and lutein significantly slowed FA degradation from 4 to 1 μM, respectively. On the contrary, beta-carotene did not show any protective capacity at 4 μM. In conclusion, the tested nanoemulsions were appropriate to assess antioxidant capacity during the intestinal phase of digestion.

  4. Formulation and characterization of solid lipid nanoparticles, nanostructured lipid carriers and nanoemulsion of lornoxicam for transdermal delivery.

    PubMed

    Gönüllü, Ümit; Üner, Melike; Yener, Gülgün; Karaman, Ecem Fatma; Aydoğmuş, Zeynep

    2015-03-01

    Solid lipid nanoparticles (SLN), nanostructured lipid carriers (NLC) and nanoemulsion (NE) of lornoxicam (LRX) were prepared for the treatment of painful and inflammatory conditions of the skin. Compritol® 888 ATO, Lanette® O and oleic acid were used as solid and liquid lipids. SLN, NLC and NE were found physically stable at various temperatures for 6 months. Case I diffusional drug release was detected as the dominant mechanism indicating Fickian drug diffusion from nanoparticles and nanoemulsion. The highest rate of drug penetration through rat skin was obtained with NE followed by NLC, SLN and a gel formulation. Nanoformulations significantly increased drug penetration through rat skin compared to the gel (p<0.05). Thus, SLN, NLC and NE of LRX can be suggested for relieving painful and inflammatory conditions of the skin.

  5. Microencapsulation of nanoemulsions: novel Trojan particles for bioactive lipid molecule delivery

    PubMed Central

    Li, Xiang; Anton, Nicolas; Ta, Thi Minh Chau; Zhao, Minjie; Messaddeq, Nadia; Vandamme, Thierry F

    2011-01-01

    Background Nanoemulsions consist of very stable nanodroplets of oil dispersed in an aqueous phase, typically below 300 nm in size. They can be used to obtain a very fine, homogeneous dispersion of lipophilic compounds in water, thus facilitating their handling and use in nanomedicine. However, the drawback is that they are suspended in an aqueous media. This study proposes a novel technique for drying lipid nanoemulsion suspensions to create so-called Trojan particles, ie, polymer microparticles (around 2 μm) which very homogeneously “entrap” the nano-oil droplets (around 150 nm) in their core. Methods Microencapsulation of the nanoemulsions was performed using a spray-drying process and resulted in a dried powder of microparticles. By using a low-energy nanoemulsification method and relatively gentle spray-drying, the process was well suited to sensitive molecules. The model lipophilic molecule tested was vitamin E acetate, encapsulated at around 20% in dried powder. Results We showed that the presence of nanoemulsions in solution before spray-drying had a significant impact on microparticle size, distribution, and morphology. However, the process itself did not destroy the oil nanodroplets, which could easily be redispersed when the powder was put back in contact with water. High-performance liquid chromatography follow-up of the integrity of the vitamin E acetate showed that the molecules were intact throughout the process, as well as when conserved in their dried form. Conclusion This study proposes a novel technique using a spray-drying process to microencapsulate nanoemulsions. The multiscale object formed, so-called Trojan microparticles, were shown to successfully encapsulate, protect, and release the lipid nanodroplets. PMID:21760727

  6. Plasma kinetics of an LDL-like nanoemulsion and lipid transfer to HDL in subjects with glucose intolerance

    PubMed Central

    Bertato, Marina P; Oliveira, Carolina P; Wajchenberg, Bernardo L; Lerario, Antonio C; Maranhão, Raul C

    2012-01-01

    OBJECTIVE: Glucose intolerance is frequently associated with an altered plasma lipid profile and increased cardiovascular disease risk. Nonetheless, lipid metabolism is scarcely studied in normolipidemic glucose-intolerant patients. The aim of this study was to investigate whether important lipid metabolic parameters, such as the kinetics of LDL free and esterified cholesterol and the transfer of lipids to HDL, are altered in glucose-intolerant patients with normal plasma lipids. METHODS: Fourteen glucose-intolerant patients and 15 control patients were studied; none of the patients had cardiovascular disease manifestations, and they were paired for age, sex, race and co-morbidities. A nanoemulsion resembling a LDL lipid composition (LDE) labeled with 14C-cholesteryl ester and 3H-free cholesterol was intravenously injected, and blood samples were collected over a 24-h period to determine the fractional clearance rate of the labels by compartmental analysis. The transfer of free and esterified cholesterol, triglycerides and phospholipids from the LDE to HDL was measured by the incubation of the LDE with plasma and radioactivity counting of the supernatant after chemical precipitation of non-HDL fractions. RESULTS: The levels of LDL, non-HDL and HDL cholesterol, triglycerides, apo A1 and apo B were equal in both groups. The 14C-esterified cholesterol fractional clearance rate was not different between glucose-intolerant and control patients, but the 3H-free- cholesterol fractional clearance rate was greater in glucose-intolerant patients than in control patients. The lipid transfer to HDL was equal in both groups. CONCLUSION: In these glucose-intolerant patients with normal plasma lipids, a faster removal of LDE free cholesterol was the only lipid metabolic alteration detected in our study. This finding suggests that the dissociation of free cholesterol from lipoprotein particles occurs in normolipidemic glucose intolerance and may participate in atherogenic

  7. P-Selectin Targeted Dexamethasone-Loaded Lipid Nanoemulsions: A Novel Therapy to Reduce Vascular Inflammation

    PubMed Central

    Simion, Viorel; Constantinescu, Cristina Ana; Stan, Daniela; Deleanu, Mariana; Tucureanu, Monica Madalina; Butoi, Elena; Manduteanu, Ileana; Simionescu, Maya

    2016-01-01

    Inflammation is a common process associated with numerous vascular pathologies. We hypothesized that targeting the inflamed endothelium by coupling a peptide with high affinity for P-selectin to the surface of dexamethasone-loaded lipid nanoemulsions will highly increase their specific binding to activated endothelial cells (EC) and reduce the cell activation. We developed and characterized dexamethasone-loaded lipid nanoemulsions directed towards P-selectin (PLN-Dex) and monitored their anti-inflammatory effects in vitro using cultured EC (EA.hy926 cells) and in vivo using a mouse model of acute inflammation [lipopolysaccharides (LPS) intravenously administered in C57BL/6 mice]. We found that PLN-Dex bound specifically to the surface of activated EC are efficiently internalized by EC and reduced the expression of proinflammatory genes, thus preventing the monocyte adhesion and transmigration to/through activated EC. Given intravenously in mice with acute inflammation, PLN-Dex accumulated at a significant high level in the lungs (compared to nontargeted nanoemulsions) and significantly reduced mRNA expression level of key proinflammatory cytokines such as IL-1β, IL-6, and MCP-1. In conclusion, the newly developed nanoformulation, PLN-Dex, is functional in vitro and in vivo, reducing selectively the endothelium activation and the consequent monocyte infiltration and diminishing significantly the lungs' inflammation, in a mouse model of acute inflammation. PMID:27703301

  8. The influence of cationic lipid type on in-vitro release kinetic profiles of antisense oligonucleotide from cationic nanoemulsions.

    PubMed

    Hagigit, Tal; Nassar, Taher; Behar-Cohen, Francine; Lambert, Gregory; Benita, Simon

    2008-09-01

    Novel formulations of cationic nanoemulsions based on three different lipids were developed to strengthen the attraction of the polyanionic oligonucleotide (ODN) macromolecules to the cationic moieties on the oil nanodroplets. These formulations were developed to prolong the release of the ODN from the nanoemulsion under appropriate physiological dilutions as encountered in the eye following topical application. Increasing the concentration of the new cationic lipid exhibiting two cationic amine groups (AOA) in the emulsion from 0.05% to 0.4% did not alter markedly the particle size or zeta potential value of the blank cationic nanoemulsion. The extent of ODN association did not vary significantly when the initial concentration of ODN remained constant at 10 microM irrespective of the cationic lipid nature. However, the zeta potential value dropped consistently with the low concentrations of 0.05% and 0.1% of AOA in the emulsions suggesting that an electrostatic attraction occurred between the cationic lipids and the polyanionic ODN molecules at the o/w interface. Only the nanoemulsion prepared with N-[1-(2,3-dioleoyloxy)propyl]-N,N,N-trimethylammonium salts (DOTAP) remained physically stable over time. DOTAP cationic lipid nanoemulsion was the most efficient formulation capable of retaining the ODN despite the high dilution of 1:100 with simulated tear solution (STS). Less than 10% of the ODN was exchanged in contrast to 40-50% with the other cationic nanoemulsions. The in-vitro release kinetic behavior of ODN exchange with physiological anions present in the STS appears to be complex and difficult to characterize using mathematical fitting model equations. Further pharmacokinetic studies are needed to verify our kinetic assumptions and confirm the in-vitro ODN release profile from DOTAP cationic nanoemulsions.

  9. Consequences of lipidic nanoemulsions on membrane integrity and ultrastructural morphology of Staphylococcus aureus

    NASA Astrophysics Data System (ADS)

    Singh, Neeru; Manaswita Verma, Saurabh; Singh, Sandeep Kumar; Ranjan Prasad Verma, Priya

    2014-04-01

    The present study divulges the consequences of lipidic nanoemulsions (cationized and non-cationized) on morphology and membrane integrity of Staphylococcus aureus using transmission electron microscopy, scanning electron microscopy (SEM) and atomic force microscopy (AFM). Transmission electron microscopic (TEM) images reveal that the cationized lipidic emulsions (CLEs) remained adhered even after the hostile treatment to remove nanoemulsions by centrifugation owing to electrostatic attraction between CLE and negatively charged bacterial surface. TEM images portray the extensive cell lyses owing to the release of cytoplasmic content when treated with both CLE and Non-CLE (NCLE). The AFM analysis of the NCLE and CLE treated S. aureus cells showed the root mean square roughness of 11.3 ± 2.8 nm and 17.7 ± 3.2 nm, respectively. The complete losses of bacterial colonies after 45 min of contact with NCLE were observed. No viable bacterial colonies were noticeable after 10 min of contact when treated with CLE, indicating better rate of killing with respect to NCLE. Similar results were obtained in the zone of inhibition studies. Significant (p < 0.05) increase of cytoplasmic material was observed both in NCLE (0.192 ± 0.003) and CLE (0.308 ± 0.012) as compared to control (0.019 ± 0.002). The present finding illustrates that the NCLE and CLE had caused significant membrane disorganization leading to release of cytoplasmic content causing irreversible cell damage, which is in accordance with the TEM, SEM and AFM studies.

  10. Development of an optimized hyaluronic acid-based lipidic nanoemulsion co-encapsulating two polyphenols for nose to brain delivery.

    PubMed

    Nasr, Maha

    2016-05-01

    The development of mucoadhesive lipidic nanoemulsion based on hyaluronic acid, co-encapsulating two polyphenols (resveratrol and curcumin) for the transnasal treatment of neurodegenerative diseases was attempted in the current manuscript. Nanoemulsions were prepared by the spontaneous emulsification method, and were characterized for their particle size, zeta potential, mucoadhesive strength and morphology. The selected formula was tested for its antioxidant potential, in vitro and ex vivo release of the two polyphenols, safety on nasal mucosa and in vivo quantification of the two drugs in rat brains. Its stability was tested by monitoring the change in particle size, zeta potential, drugs' content and antioxidant potential upon storage for 3 months. The optimized hyaluronic acid based nanoemulsion formula displayed a particle size of 115.2 ± 0.15 and a zeta potential of -23.9 ± 1.7. The formula displayed a spherical morphology and significantly higher mucoadhesive strength compared to its non mucoadhesive counterpart. In addition, the nanoemulsion was able to preserve the antioxidant ability of the two polyphenols and protect them from degradation. Diffusion controlled release of the two drugs was achievable till 6 hours, with an ex vivo flux across sheep nasal mucosa of 2.86 and 2.09 µg/cm(2)hr for resveratrol and curcumin, respectively. Moreover, the mucoadhesive nanoemulsion was safe on nasal mucosa and managed to increase the amounts of the two polypehnols in the brain (about 7 and 9 folds increase in AUC0-7 h for resveratrol and curcumin, respectively). Hyaluronic acid based lipidic nanoemulsion proved itself as a successful carrier enhancing the solubility, stability and brain targetability of polyphenols.

  11. The preparation of magnetically guided lipid based nanoemulsions using self-emulsifying technology

    NASA Astrophysics Data System (ADS)

    Bakandritsos, Aristides; Zboril, Radek; Bouropoulos, Nikolaos; Kallinteri, Paraskevi; Favretto, Marco E.; Parker, Terry L.; Mullertz, Anette; Fatouros, Dimitrios G.

    2010-02-01

    This paper reports an easy and highly reproducible preparation route, using self-emulsifying technology, for an orally administered high quality magnetically responsive drug delivery system. Hydrophobic iron oxide nanoparticles of about 5 nm in diameter were prepared and incorporated into the lipid core of the produced oil droplets of a self-nanoemulsifying drug delivery system (MagC18/SNEDDS). The produced nanoemulsion exhibits colloidal stability at high ionic strengths and temperatures. The observed value of the saturation magnetization at 2 K is ≈4.1 emu g-1. The nanoemulsion displayed the magnetic properties of a non-interacting assembly of superparamagnetic particles and a low blocking temperature. Moreover the effect of MagC18/SNEDDS on biological systems in vitro was investigated in rodent fibroblasts (3T3 cells). The cytotoxicity studies show that none of the formulations tested affected cell activity significantly over the 24 h incubation. Such systems might have a potential use for oral delivery of poorly soluble compounds by extending the residence time of the formulation in the small intestine resulting in increased drug absorption values.

  12. Reverse micelle-loaded lipid nano-emulsions: new technology for nano-encapsulation of hydrophilic materials.

    PubMed

    Anton, Nicolas; Mojzisova, Halina; Porcher, Emilien; Benoit, Jean-Pierre; Saulnier, Patrick

    2010-10-15

    This study presents novel, recently patented technology for encapsulating hydrophilic species in lipid nano-emulsions. The method is based on the phase-inversion temperature method (the so-called PIT method), which follows a low-energy and solvent-free process. The nano-emulsions formed are stable for months, and exhibit droplet sizes ranging from 10 to 200 nm. Hydrophilic model molecules of fluorescein sodium salt are encapsulated in the oily core of these nano-emulsion droplets through their solubilisation in the reverse micellar system. As a result, original, multi-scaled nano-objects are generated with a 'hydrophilic molecule in a reverse-micelles-in-oil-in-water' structure. Once fluorescein has been encapsulated it remains stable, for thermodynamic reasons, and the encapsulation yields can reach 90%. The reason why such complex objects can be formed is due to the soft method used (PIT method) which allows the conservation of the structure of the reverse micelles throughout the formulation process, up to their entrapment in the nano-emulsion droplets. In this study, we focus the investigation on the process itself, revealing its potential and limits. Since the formulation of nanocarriers for the encapsulation of hydrophilic substances still remains a challenge, this study may constitute a significant advance in this field.

  13. Functional nanoemulsion-hybrid lipid nanocarriers enhance the bioavailability and anti-cancer activity of lipophilic diferuloylmethane

    NASA Astrophysics Data System (ADS)

    Sun, Lili; Wan, Kun; Hu, Xueyuan; Zhang, Yonghong; Yan, Zijun; Feng, Jiao; Zhang, Jingqing

    2016-02-01

    The purpose of this study was to assess the enhanced physicochemical characteristics, in vitro release behavior, anti-lung cancer activity, gastrointestinal absorption, in vivo bioavailability and bioequivalence of functional nanoemulsion-hybrid lipid nanocarriers containing diferuloylmethane (DNHLNs). The DNHLNs were first fabricated by loading water-in-oil nanoemulsions into hybrid lipid nanosystems using nanoemulsion-thin film-sonication dispersion technologies. The in situ absorption and in vitro and in vivo kinetic features of DNHLNs were measured using an in situ unidirectional perfusion method, a dynamic dialysis method and a plasma concentration-time profile-based method, respectively. The cytotoxic effects of DNHLNs in lung adenocarcinoma A549 cells were examined using MTT colorimetric analysis. The absorptive constants and permeabilities of DNHLNs in four gastrointestinal sections increased by 1.43-3.23 times and by 3.10-7.76 times that of diferuloylmethane (DIF), respectively. The relative bioavailability of DNHLNs to free DIF was 855.02%. DNHLNs inhibited cancer cell growth in a time- and dose-dependent manner. DNHLNs markedly improved the absorption and bioavailability of DIF after oral administration. DNHLNs had stronger inhibitory effects on the viability of A549 cells than that of free DIF. DNHLNs might be potentially promising nanocarriers for DIF delivery via the oral route to address unmet clinical needs.

  14. Nanoemulsions (NEs), liposomes (LPs) and solid lipid nanoparticles (SLNs) for retinyl palmitate: effect on skin permeation.

    PubMed

    Clares, Beatriz; Calpena, Ana C; Parra, Alexander; Abrego, Guadalupe; Alvarado, Helen; Fangueiro, Joana F; Souto, Eliana B

    2014-10-01

    The aim of this study was to develop biocompatible lipid-based nanocarriers for retinyl palmitate (RP) to improve its skin delivery, photostability and biocompatibility, and to avoid undesirable topical side effects. RP loaded nanoemulsions (NEs), liposomes (LPs) and solid lipid nanoparticles (SLNs) were characterized in terms of size, surface electrical charge, pH, drug encapsulation efficiency and morphology. Spherical-shaped nanocarriers with a negatively charged surface (>|40|mV) and mean size lower than 275 nm were produced with adequate skin compatibility. The rheological properties showed that aqueous dispersions of SLNs followed a non-Newtonian behavior, pseudoplastic fluid adjusted to Herschel-Bulkley equation, whereas LPs and NEs exhibited a Newtonian behavior. SLNs offered significantly better photoprotection than LPs and NEs for RP. The cumulative amount of drug permeated through human skin at the end of 38 h was 6.67 ± 1.58 μg, 4.36 ± 0.21 μg and 3.64 ± 0.28 μg for NEs, LPs and SLNs, respectively. NEs flux was significantly higher than SLNs and LPs: NEs (0.37 ± 0.12 μg/h) > LPs (0.15 ± 0.09 μg/h) > SLNs (0.10 ± 0.05 μg/h). LPs offered significant higher skin retention than NEs and SLNs. Finally, even though all developed nanocarriers were found to be biocompatible, according to histological studies, NE was the system that most disrupted the skin. These encouraging findings can guide in proper selection of topical carriers among the diversity of available lipid-based nanocarriers, especially when a dermatologic or cosmetic purpose is desired.

  15. Drug delivery and drug targeting with parenteral lipid nanoemulsions - A review.

    PubMed

    Hörmann, Karl; Zimmer, Andreas

    2016-02-10

    Lipid nanosized emulsions or nanoemulsions (NE) are oil in water dispersions with an oil droplet size of about 200nm. This size of oil droplets dispersed in a continuous water phase is a prerequisite for the parenteral, namely intravenous administration. Many parenteral nutrition and drug emulsions on the market confirm the safe use of NE over years. Parenteral emulsions loaded with APIs (active pharmaceutical ingredients) are considered as drug delivery systems (DDS). DDS focuses on the regulation of the in vivo dynamics, such as absorption, distribution, metabolism, and extended bioavailability, thereby improving the effectiveness and the safety of the drugs. Using an emulsion as a DDS, or through the use of surface diversification of the dispersed oil droplets of emulsions, a targeted increase of the API concentration in some parts of the human body can be achieved. This review focuses on NE similar to the marketed once with no or only low amount of additional surfactants beside the emulsifier from a manufacturing point of view (technique, used raw materials).

  16. Rationalizing lipid nanoemulsion formation for utilization in the food and beverage industry

    NASA Astrophysics Data System (ADS)

    Rao, Jiajia

    There is growing interest in the use of nanoemulsions as delivery systems for lipophilic functional agents in food and beverage products due to their high optical clarity, physical stability and bioavailability. The goal of this research is to establish quantitative structure-function relationships to allow rational formulation of food-grade nanoemulsions for food and beverage applications. Initially, formation of oil-in-water nanoemulsions using a low energy method was examined. Nanoemulsions were formed using the phase inversion temperature (PIT) method, which involves heating a surfactant, oil, water (SOW) systems near the PIT, and then cooling rapidly with stirring. Preliminary experiments were carried out using a model system consisting of a non-ionic surfactant (C12E4), hydrocarbon oil (tetradecane), and water. Nanoemulsions were formed by holding SOW mixtures near their PIT (38.5 °C) and then cooling them rapidly to 10 °C. The PIT was measured using electrical, conductivity and turbidity methods. The optimum storage temperature for PIT-nanoemulsions was about 27 °C lower than the PIT. The stability of PIT-nanoemulsions at ambient temperatures can be improved by adding either Tween 80 (0.2 wt%) or SDS (0.1 wt%) to displace the C12E4 (Brij 30) from the nano-droplet surfaces. Experiments were then carried out to establish if stable nanoemulsions could be formed using the PIT method from food-grade ingredients. Nanoemulsions were fabricated from a non-ionic surfactant (Tween 80) and flavor oil (lemon oil) by heat treatment. Different types of colloidal dispersion could be formed by simple heat treatment (90 °C, 30 minutes) depending on the surfactant-to-oil ratio (SOR): emulsions at SOR < 1; nanoemulsions at 1 < SOR < 2; microemulsions at SOR > 2. The results suggested that there was a kinetic energy barrier in the SOW system at ambient temperature that prevented it from moving from a highly unstable system into a nanoemulsion system. The conditions where

  17. Factorial design applied to the optimization of lipid composition of topical antiherpetic nanoemulsions containing isoflavone genistein

    PubMed Central

    Argenta, Débora Fretes; de Mattos, Cristiane Bastos; Misturini, Fabíola Dallarosa; Koester, Leticia Scherer; Bassani, Valquiria Linck; Simões, Cláudia Maria Oliveira; Teixeira, Helder Ferreira

    2014-01-01

    The aim of this study was to optimize topical nanoemulsions containing genistein, by means of a 23 full factorial design based on physicochemical properties and skin retention. The experimental arrangement was constructed using oil type (isopropyl myristate or castor oil), phospholipid type (distearoylphosphatidylcholine [DSPC] or dioleylphosphaditylcholine [DOPC]), and ionic cosurfactant type (oleic acid or oleylamine) as independent variables. The analysis of variance showed effect of third order for particle size, polydispersity index, and skin retention of genistein. Nanoemulsions composed of isopropyl myristate/DOPC/oleylamine showed the smallest diameter and highest genistein amount in porcine ear skin whereas the formulation composed of isopropyl myristate/DSPC/oleylamine exhibited the lowest polydispersity index. Thus, these two formulations were selected for further studies. The formulations presented positive ζ potential values (>25 mV) and genistein content close to 100% (at 1 mg/mL). The incorporation of genistein in nanoemulsions significantly increased the retention of this isoflavone in epidermis and dermis, especially when the formulation composed by isopropyl myristate/DOPC/oleylamine was used. These results were supported by confocal images. Such formulations exhibited antiherpetic activity in vitro against herpes simplex virus 1 (strain KOS) and herpes simplex virus 22 (strain 333). Taken together, the results show that the genistein-loaded nanoemulsions developed in this study are promising options in herpes treatment. PMID:25336951

  18. Simvastatin increases the antineoplastic actions of paclitaxel carried in lipid nanoemulsions in melanoma-bearing mice

    PubMed Central

    Kretzer, Iara F; Maria, Durvanei A; Guido, Maria C; Contente, Thaís C; Maranhão, Raul C

    2016-01-01

    Purpose Lipid nanoemulsions (LDEs) that bind to low-density lipoprotein (LDL) receptors used as carriers of paclitaxel (PTX) can decrease toxicity and increase PTX antitumoral action. The administration of simvastatin (Simva), which lowers LDL-cholesterol, was tested as an adjuvant to commercial PTX and to PTX associated with LDE (LDE-PTX). Materials and methods B16F10 melanoma-bearing mice were treated with saline solution or LDE (controls), Simva, PTX, PTX and Simva, LDE-PTX, and LDE-PTX and Simva: PTX dose 17.5 μmol/kg (three intraperitoneal injections, 3 alternate days): Simva 50 mg/kg/day by gavage, 9 consecutive days. Results Compared with saline controls, 95% tumor-growth inhibition was achieved by LDE-PTX and Simva, 61% by LDE-PTX, 44% by PTX and Simva, and 43% by PTX. Simva alone had no effect. Metastasis developed in only 37% of the LDE-PTX and Simva, 60% in LDE-PTX, and 90% in PTX and Simva groups. Survival rates were higher in LDE-PTX and Simva and in LDE-PTX groups. The LDE-PTX and Simva group presented tumors with reduced cellular density and increased collagen fibers I and III. Tumors from all groups showed reduction in immunohistochemical expression of ICAM, MCP-1, and MMP-9; LDE-PTX and Simva presented the lowest MMP-9 expression. Expression of p21 was increased in the Simva, LDE-PTX, and LDE-PTX and Simva groups. In the Simva and LDE-PTX and Simva groups, expression of cyclin D1, a proliferation and survival promoter of tumor cells, was decreased. Therapy with LDE-PTX and Simva showed negligible toxicity compared with PTX and Simva, which resulted in weight loss and myelosuppression. Conclusion Simva increased the antitumor activity of PTX carried in LDE but not of PTX commercial presentation, possibly because statins increase the expression of LDL receptors that internalize LDE-PTX. PMID:27022257

  19. A New Application of Lipid Nanoemulsions as Coating Agent, Providing Zero-Order Hydrophilic Drug Release from Tablets

    PubMed Central

    Anton, Nicolas; de Crevoisier, Astrid; Schmitt, Sabrina; Vandamme, Thierry

    2012-01-01

    The objective of the present investigation was to evaluate potential of nanoemulsions as a coating material for the tablets. The nanoemulsion of size less than 100 nm was prepared using a simple and low-energy spontaneous emulsification method. Conventional tablets containing theophylline as a model hydrophilic drug were prepared. The theophylline tablets were coated with the nanoemulsion using a fluid bed coater. The effect of different levels of the nanoemulsion coating on the theophylline release was evaluated. The theophylline tablets containing different levels of the nanoemulsion coating could be successfully prepared. Interestingly, the coating of tablet with the nanoemulsion resulted in zero-order release of theophylline from the tablets. The noncoated theophylline tablets release the entire drug in less than 2 minutes, whereas nanoemulsion coating delayed the release of theophylline from tablets. This investigation establishes the proof of concept for the potential of nanoemulsions as a coating material for tablets. PMID:22272376

  20. Nanoemulsion delivery systems for oil-soluble vitamins: Influence of carrier oil type on lipid digestion and vitamin D3 bioaccessibility.

    PubMed

    Ozturk, Bengu; Argin, Sanem; Ozilgen, Mustafa; McClements, David Julian

    2015-11-15

    The influence of carrier oil type on the bioaccessibility of vitamin D3 encapsulated within oil-in-water nanoemulsions prepared using a natural surfactant (quillaja saponin) was studied using a simulated gastrointestinal tract (GIT) model: mouth; stomach; small intestine. The rate of free fatty acid release during lipid digestion decreased in the following order: medium chain triglycerides (MCT) > corn oil ≈ fish oil > orange oil > mineral oil. Conversely, the measured bioaccessibility of vitamin D3 decreased in the following order: corn oil ≈ fish oil > orange oil > mineral oil > MCT. These results show that carrier oil type has a considerable impact on lipid digestion and vitamin bioaccessibility, which was attributed to differences in the release of bioactives from lipid droplets, and their solubilization in mixed micelles. Nanoemulsions prepared using long chain triglycerides (corn or fish oil) were most effective at increasing vitamin bioaccessibility.

  1. Formulation, Characterisation, and in Vitro Skin Diffusion of Nanostructured Lipid Carriers for Deoxyarbutin Compared to a Nanoemulsion and Conventional Cream

    PubMed Central

    Tofani, Rendra P.; Sumirtapura, Yeyet C.; Darijanto, Sasanti T.

    2016-01-01

    The long-term use of topical hydroquinone as an anti-hyperpigmentation treatment has well-known, unwanted effects. Deoxyarbutin (4-[(tetrahydro-2H-pyran-2-yl)oxy]phenol) is a relatively new tyrosinase inhibitor, with stronger inhibitory potency than hydroquinone, that exhibited decreased cytotoxicity against melanocytes and other cells. This study developed novel nanostructured lipid carriers (NLCs) for improved topical delivery of deoxyarbutin (dArb), leading to improved depigmenting efficacy. dArb is a hydrophobic substance, but it easily degrades in aqueous medium and is thermolabile. Screening and optimisation of the solid lipid, liquid lipid, surfactant, co-surfactant and production methods were performed to choose the optimum particle size and stability for NLCs. One percent dArb NLCs were obtained from a combination of cetyl palmitate (CP) and caprylic/capric tryglicerides (Myr) in 12% total lipids using poloxamer 188 (P-188) and polyethylene glycol (PEG) 400 as a surfactant and co-surfactant, respectively, with a particle diameter of approximately 500 nm and a polydispersity index (PI) <0.4. These NLCs were produced using the simple method of high-shear homogenisation (10,000 rpm, 5 minutes) and ultrasonication (3.5 min). The compatibility between the substances in the formula was evaluated using Fourier Transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC). The morphology of the NLCs was observed using transmission electron microscopy (TEM). In vitro penetration of dArb NLCs was evaluated and compared to the nanoemulsion (NE) and conventional emulsion (CR) delivery methods across Spangler’s membrane (SS). Delivery improvement was clearly observed, and after 8 h of application, dArb gel-NLCs showed the highest dArb penetration, followed by liquid NLCs, NE, and CR.

  2. Anti-Lipid IgG Antibodies Are Produced via Germinal Centers in a Murine Model Resembling Human Lupus

    PubMed Central

    Wong-Baeza, Carlos; Reséndiz-Mora, Albany; Donis-Maturano, Luis; Wong-Baeza, Isabel; Zárate-Neira, Luz; Yam-Puc, Juan Carlos; Calderón-Amador, Juana; Medina, Yolanda; Wong, Carlos; Baeza, Isabel; Flores-Romo, Leopoldo

    2016-01-01

    Anti-lipid IgG antibodies are produced in some mycobacterial infections and in certain autoimmune diseases [such as anti-phospholipid syndrome, systemic lupus erythematosus (SLE)]. However, few studies have addressed the B cell responses underlying the production of these immunoglobulins. Anti-lipid IgG antibodies are consistently found in a murine model resembling human lupus induced by chlorpromazine-stabilized non-bilayer phospholipid arrangements (NPA). NPA are transitory lipid associations found in the membranes of most cells; when NPA are stabilized they can become immunogenic and induce specific IgG antibodies, which appear to be involved in the development of the mouse model of lupus. Of note, anti-NPA antibodies are also detected in patients with SLE and leprosy. We used this model of lupus to investigate in vivo the cellular mechanisms that lead to the production of anti-lipid, class-switched IgG antibodies. In this murine lupus model, we found plasma cells (Gr1−, CD19−, CD138+) producing NPA-specific IgGs in the draining lymph nodes, the spleen, and the bone marrow. We also found a significant number of germinal center B cells (IgD−, CD19+, PNA+) specific for NPA in the draining lymph nodes and the spleen, and we identified in situ the presence of NPA in these germinal centers. By contrast, very few NPA-specific, extrafollicular reaction B cells (B220+, Blimp1+) were found. Moreover, when assessing the anti-NPA IgG antibodies produced during the experimental protocol, we found that the affinity of these antibodies progressively increased over time. Altogether, our data indicate that, in this murine model resembling human lupus, B cells produce anti-NPA IgG antibodies mainly via germinal centers. PMID:27746783

  3. Preparation and characterization of a new lipid nano-emulsion containing two cosurfactants, sodium palmitate for droplet size reduction and sucrose palmitate for stability enhancement.

    PubMed

    Takegami, Shigehiko; Kitamura, Keisuke; Kawada, Hiroto; Matsumoto, Yu; Kitade, Tatsuya; Ishida, Hiroharu; Nagata, Chieyo

    2008-08-01

    A new lipid nano-emulsion (LNE) was prepared from soybean oil and phosphatidylcholine (PC) employing two cosurfactants, sodium palmitate (PA) for reduced droplet size and sucrose palmitate (SP) for stability enhancement. The mean droplet size of LNEs prepared at a PA/PC (w/w) ratio of larger than 1/10 was found to be ca. 50 nm by dynamic light scattering and atomic force microscopy. However, during the 12-month storage, the PA/PC (1/10)-LNE showed an increase in mean droplet size and broadening of the droplet size distribution due to coalescence of the LNE particles. In a saline solution, the coalescence proceeded very rapidly, i.e., the mean droplet size increased to more than 150 nm within 0.5 h. To suppress the coalescence of LNE particles, four sucrose fatty acid esters of different chain lengths were examined as candidate cosurfactants. The results showed that PA/SP/PC (1/4/10)-LNE could maintain a mean droplet size around 50 nm for 12 months. In a saline solution, the mean droplet size could be maintained within 100 nm even after 24 h. Slight formation of flocculation in the LNEs depending on the storage period was suggested by measurement of the 31P nuclear magnetic resonance line width of the LNEs.

  4. Evaluation of nanostructured lipid carriers (NLC) and nanoemulsions as carriers for UV-filters: characterization, in vitro penetration and photostability studies.

    PubMed

    Puglia, Carmelo; Damiani, Elisabetta; Offerta, Alessia; Rizza, Luisa; Tirendi, Giorgia Giusy; Tarico, Maria Stella; Curreri, Sergio; Bonina, Francesco; Perrotta, Rosario Emanuele

    2014-01-23

    The increased awareness of protection against UV radiation damages has led to a rise in the use of topically applied chemical sunscreen agents and to an increased need of innovative carriers designed to achieve the highest protective effect and reduce the toxicological risk resulting from the percutaneous absorption of these substances. In this paper, nanostructured lipid carriers (NLC) and nanoemulsions (NE) were formulated to optimize the topical application of different and widespread UVA or UVB sun filters (ethyl hexyltriazone (EHT), diethylamino hydroxybenzoyl hexyl benzoate (DHHB), bemotrizinol (Tinosorb S), octylmethoxycinnamate (OMC) and avobenzone (AVO)). The preparation and stability parameters of these nanocarriers have been investigated concerning particle size and zeta potential. The release pattern of the sunscreens from NLC and NE was evaluated in vitro, determining their percutaneous absorption through excised human skin. Additional in vitro studies were performed in order to evaluate, after UVA radiation treatment, the spectral stability of the sunfilters once formulated in NLC or NE. From the results obtained, when incorporated in NLC, the skin permeation abilities of the sun filter were drastically reduced, remaining mainly on the surface of the skin. The photostability studies showed that EHT, DHHB and Tinosorb S still retain their photostability when incorporated in these carriers, while OMC and AVO were not photostable as expected. However, no significant differences in terms of photoprotective efficacy between the two carriers were observed.

  5. Size fractionation and size characterization of nanoemulsions of lipid droplets and large unilamellar lipid vesicles by asymmetric-flow field-flow fractionation/multi-angle light scattering and dynamic light scattering.

    PubMed

    Vezočnik, Valerija; Rebolj, Katja; Sitar, Simona; Ota, Katja; Tušek-Žnidarič, Magda; Štrus, Jasna; Sepčić, Kristina; Pahovnik, David; Maček, Peter; Žagar, Ema

    2015-10-30

    Asymmetric-flow field-flow fractionation technique coupled to a multi-angle light-scattering detector (AF4-MALS) was used together with dynamic light-scattering (DLS) in batch mode and transmission electron microscopy (TEM) to study the size characteristics of the trioleoylglycerol lipid droplets covered by a monolayer of sphingomyelin and cholesterol, in water phase. These lipid droplet nanoemulsions (LD) were formed by ultrasonication. In parallel, the size characteristics of large unilamellar lipid vesicles (LUV) prepared by extrusion and composed of sphingomyelin and cholesterol were determined. LD and LUV were prepared at two different molar ratios (1/1, 4/1) of sphingomyelin and cholesterol. In AF4-MALS, various cross-flow conditions and mobile phase compositions were tested to optimize the separation of LD or LUV particles. The particle radii, R, as well as the root-mean-square radii, Rrms, of LD and LUV were determined by AF4-MALS, whereas the hydrodynamic radii, Rh, were obtained by DLS. TEM visualization revealed round shape particles of LD and LUV.

  6. Formulation and optimization of nanoemulsion using antifungal lipid and surfactant for accentuated topical delivery of Amphotericin B.

    PubMed

    Hussain, Afzal; Singh, Vikas Kumar; Singh, Om Prakash; Shafaat, Kausar; Kumar, Sanjay; Ahmad, Farhan Jalees

    2016-10-01

    The objective of the study was to develop, optimize and evaluate a nanoemulsion (NE) of Amphotericin B (AmB) using excipients with inherent antifungal activities (Candida albicans and Aspergillus niger) for topical delivery. AmB-loaded NE was prepared using Capmul PG8 (CPG8), labrasol and polyethylene glycol-400 by spontaneous titration method and evaluated for mean particle size, polydispersity index, zeta potential and zone of inhibition (ZOI). NE6 composed of CPG8 (15%w/w), Smix (24%w/w) and water (61%w/w) was finally selected as optimized NE. AmB-NE6 was studied for improved in vitro release, ex vivo skin permeation and deposition using the Franz diffusion cell across the rat skin followed with drug penetration using confocal laser scanning microscopy (CLSM) as compared to drug solution (DS) and commercial Fungisome(®). The results of in vitro studies exhibited the maximum ZOI value of NE6 as 19.1 ± 1.4 and 22.8 ± 2.0 mm against A. niger and C. albicans, respectively, along with desired globular size (49.5 ± 1.5 nm), zeta potential (-24.59 mV) and spherical morphology. AmB-NE6 revealed slow and sustained release of AmB as compared to DS in buffer solution (pH 7.4). Furthermore, AmB-NE6 elicited the highest flux rate (22.88 ± 1.7 μg/cm(2)/h) as compared to DS (2.7 ± 0.02 μg/cm(2)/h) and Fungisome(®) (11.5 ± 1.0 μg/cm(2)/h). Moreover, the enhancement ratio and drug deposition were found to be highest in AmB-NE6 than DS across the stratum corneum barrier. Finally, CLSM results corroborated enhanced penetration of the AmB-NE6 across the skin as compared to Fungisome(®) and DS suggesting an efficient, stable and sustained topical delivery.

  7. Physical properties and antimicrobial efficacy of thyme oil nanoemulsions: influence of ripening inhibitors.

    PubMed

    Chang, Yuhua; McLandsborough, Lynne; McClements, David Julian

    2012-12-05

    Thyme oil-in-water nanoemulsions (pH 3.5) were prepared as potential antimicrobial delivery systems. The nanoemulsions were highly unstable to droplet growth and phase separation, which was attributed to Ostwald ripening due to the relatively high water solubility of thyme oil. Ostwald ripening could be inhibited by mixing thyme oil with a water-insoluble ripening inhibitor (≥60 wt % corn oil or ≥50 wt % MCT in the lipid phase) before homogenization, yielding nanoemulsions with good physical stability. Physically stable thyme oil nanoemulsions were examined for their antimicrobial activities against an acid-resistant spoilage yeast, Zygosaccharomyces bailii (ZB). Oil phase composition (ripening inhibitor type and concentration) had an appreciable influence on the antimicrobial activity of the thyme oil nanoemulsions. In general, increasing the ripening inhibitor levels in the lipid phase reduced the antimicrobial efficacy of nanoemulsions. For example, for nanoemulsions containing 60 wt % corn oil in the lipid phase, the minimum inhibitory concentration (MIC) of thyme oil to inhibit ZB growth was 375 μg/mL, while for nanoemulsions containing 90 wt % corn oil in the lipid phase, even 6000 μg/mL thyme oil could not inhibit ZB growth. This effect is also dependent on ripening inhibitor types: at the same concentration in the lipid phase, MCT decreased the antimicrobial efficacy of thyme oil more than corn oil. For instance, when the level of ripening inhibitor in the lipid phase was 70 wt %, the MICs of thyme oil for nanoemulsions containing corn oil and MCT were 750 and 3000 μg/mL, respectively. The results of this study have important implications for the design and utilization of nanoemulsions as antimicrobial delivery systems in the food and other industries.

  8. (19)F Nuclear Magnetic Resonance Spectrometric Determination of the Partition Coefficients of Flutamide and Nilutamide (Antiprostate Cancer Drugs) in a Lipid Nano-Emulsion and Prediction of Its Encapsulation Efficiency for the Drugs.

    PubMed

    Takegami, Shigehiko; Kitamura, Keisuke; Ohsugi, Mayuko; Konishi, Atsuko; Kitade, Tatsuya

    2016-12-01

    To design a useful lipid drug carrier having a high encapsulation efficiency (EE%) for the antiprostate cancer drugs flutamide (FT) and nilutamide (NT), a lipid nano-emulsion (LNE) was prepared with soybean oil (SO), phosphatidylcholine (PC), and sodium palmitate, and the partition coefficients (K ps) of the drugs for the LNE were determined by (19)F nuclear magnetic resonance (NMR) spectrometry. The (19)F NMR signal of the trifluoromethyl group of both drugs showed a downfield shift from an internal standard (trifluoroethanol) and broadening according to the increase in the lipid concentration due to their interaction with LNE particles. The difference in the chemical shift (Δδ) of each drug caused by the addition of LNE was measured under different amounts of LNE, and the K p values were calculated from the Δδ values. The results showed that FT has higher lipophilicity than NT. The total lipid concentration (SO + PC) required to encapsulate each drug into LNE with an EE% of more than 95% was calculated from the K p values as 93.3 and 189.9 mmol/L for FT and NT, respectively. For an LNE prepared with the total lipid concentration of 215 mmol/L, the predicted EE% values were 98 and 96% for FT and NT, respectively, while the experimental EE% values determined by a centrifugation method were approximately 99% for both drugs. Thus, the (19)F NMR spectrometric method is a useful technique to obtain the K p values of fluorinated drugs and thereby predict the theoretical lipid concentrations and prepare LNEs with high EE% values.

  9. Reversible lipid accumulation and associated division arrest of Mycobacterium avium in lipoprotein-induced foamy macrophages may resemble key events during latency and reactivation of tuberculosis.

    PubMed

    Caire-Brändli, Irène; Papadopoulos, Alexia; Malaga, Wladimir; Marais, David; Canaan, Stéphane; Thilo, Lutz; de Chastellier, Chantal

    2014-02-01

    During the dormant phase of tuberculosis, Mycobacterium tuberculosis persists in lung granulomas by residing in foamy macrophages (FM) that contain abundant lipid bodies (LB) in their cytoplasm, allowing bacilli to accumulate lipids as intracytoplasmic lipid inclusions (ILI). An experimental model of FM is presented where bone marrow-derived mouse macrophages are infected with M. avium and exposed to very-low-density lipoprotein (VLDL) as a lipid source. Quantitative analysis of detailed electron microscope observations showed the following results. (i) Macrophages became foamy, and mycobacteria formed ILI, for which host triacylglycerides, rather than cholesterol, was essential. (ii) Lipid transfer occurred via mycobacterium-induced fusion between LB and phagosomes. (iii) Mycobacteria showed a thinned cell wall and became elongated but did not divide. (iv) Upon removal of VLDL, LB and ILI declined within hours, and simultaneous resumption of mycobacterial division restored the number of mycobacteria to the same level as that found in untreated control macrophages. This showed that the presence of ILI resulted in a reversible block of division without causing a change in the mycobacterial replication rate. Fluctuation between ILI either partially or fully extending throughout the mycobacterial cytoplasm was suggestive of bacterial cell cycle events. We propose that VLDL-driven FM constitute a well-defined cellular system in which to study changed metabolic states of intracellular mycobacteria that may relate to persistence and reactivation of tuberculosis.

  10. Study on antimicrobial potential of neem oil nanoemulsion against Pseudomonas aeruginosa infection in Labeo rohita.

    PubMed

    Mishra, Prabhakar; R S, Suresh Kumar; Jerobin, Jayakumar; Thomas, John; Mukherjee, Amitava; Chandrasekaran, Natarajan

    2014-01-01

    Presence of several biochemical constituents in neem makes it an efficient antimicrobial agent for pathogenic diseases. The current investigation was aimed to assess the therapeutic potential of neem nanoemulsion as a control measure for Pseudomonas aeruginosa infection in freshwater fish Labeo rohita. The median lethal concentration (LC50) for the neem oil and neem nanoemulsion was 73.9 and 160.3 mg/L, respectively. The biomarker enzymes of treated fish tissues showed a significant difference in the level of glutathione reductase, catalase, and lipid peroxidation in neem oil-treated samples than in neem nanoemulsion-treated samples at P<0.05. The results were corroborative with histopathology and ultrastructural analysis. The bacterial infection of P. aeruginosa treated using neem nanoemulsion was more effective in both in vitro and in vivo methods. Present findings suggest that neem-based nanoemulsion has negligible toxicity to Rohu fishes. This makes neem-based nanoemulsion as an efficient therapeutic agent against P. aeruginosa infection, leading to its possible usage in the aquaculture industry.

  11. Nanoemulsion-Based Delivery Systems to Improve Functionality of Lipophilic Components

    PubMed Central

    Odriozola-Serrano, Isabel; Oms-Oliu, Gemma; Martín-Belloso, Olga

    2014-01-01

    The use of active lipophilic substances such as antimicrobials and health-related compounds in the food industry is still a challenge due to their poor water solubility and instability in food formulations. Nano-sized structures such as nanoemulsions of oil-in-water are regarded as useful tools with a great potential in the food sector to incorporate food ingredients. Reducing the size of the active compounds incorporated within a solution would increase the surface area per mass unit of nanoemulsions, thus enhancing solubility and stability in foods. In addition, the ability of the active lipids to penetrate across biological membranes is also enhanced, thus boosting their biological functionality. An overview of the most significant studies reporting data about the potential benefits of active lipid nanoemulsions over conventional emulsions is presented. PMID:25988126

  12. Nanoemulsions prepared by a low-energy emulsification method applied to edible films

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Catastrophic phase inversion (CPI) was used as a low-energy emulsification method to prepare oil-in-water (O/W) nanoemulsions in a lipid (Acetem)/water/nonionic surfactant (Tween 60) system. CPIs in which water-in-oil emulsions (W/O) are transformed into oil-in-water emulsions (O/W) were induced by ...

  13. Physical Factors Affecting Plasmid DNA Compaction in Stearylamine-Containing Nanoemulsions Intended for Gene Delivery

    PubMed Central

    Silva, André Leandro; Júnior, Francisco Alexandrino; Verissimo, Lourena Mafra; Agnez-Lima, Lucymara Fassarella; Egito, Lucila Carmem Monte; de Oliveira, Anselmo Gomes; do Egito, Eryvaldo Socrates Tabosa

    2012-01-01

    Cationic lipids have been used in the development of non-viral gene delivery systems as lipoplexes. Stearylamine, a cationic lipid that presents a primary amine group when in solution, is able to compact genetic material by electrostatic interactions. In dispersed systems such as nanoemulsions this lipid anchors on the oil/water interface confering a positive charge to them. The aim of this work was to evaluate factors that influence DNA compaction in cationic nanoemulsions containing stearylamine. The influence of the stearylamine incorporation phase (water or oil), time of complexation, and different incubation temperatures were studied. The complexation rate was assessed by electrophoresis migration on agarose gel 0.7%, and nanoemulsion and lipoplex characterization was done by Dynamic Light Scattering (DLS). The results demonstrate that the best DNA compaction process occurs after 120 min of complexation, at low temperature (4 ± 1 °C), and after incorporation of the cationic lipid into the aqueous phase. Although the zeta potential of lipoplexes was lower than the results found for basic nanoemulsions, the granulometry did not change. Moreover, it was demonstrated that lipoplexes are suitable vehicles for gene delivery. PMID:24281666

  14. Physical factors affecting plasmid DNA compaction in stearylamine-containing nanoemulsions intended for gene delivery.

    PubMed

    Silva, André Leandro; Alexandrino, Francisco; Verissimo, Lourena Mafra; Agnez-Lima, Lucymara Fassarella; Egito, Lucila Carmem Monte; de Oliveira, Anselmo Gomes; do Egito, Eryvaldo Socrates Tabosa

    2012-06-18

    Cationic lipids have been used in the development of non-viral gene delivery systems as lipoplexes. Stearylamine, a cationic lipid that presents a primary amine group when in solution, is able to compact genetic material by electrostatic interactions. In dispersed systems such as nanoemulsions this lipid anchors on the oil/water interface confering a positive charge to them. The aim of this work was to evaluate factors that influence DNA compaction in cationic nanoemulsions containing stearylamine. The influence of the stearylamine incorporation phase (water or oil), time of complexation, and different incubation temperatures were studied. The complexation rate was assessed by electrophoresis migration on agarose gel 0.7%, and nanoemulsion and lipoplex characterization was done by Dynamic Light Scattering (DLS). The results demonstrate that the best DNA compaction process occurs after 120 min of complexation, at low temperature (4 ± 1 °C), and after incorporation of the cationic lipid into the aqueous phase. Although the zeta potential of lipoplexes was lower than the results found for basic nanoemulsions, the granulometry did not change. Moreover, it was demonstrated that lipoplexes are suitable vehicles for gene delivery.

  15. Fabrication, stability and efficacy of dual-component antimicrobial nanoemulsions: essential oil (thyme oil) and cationic surfactant (lauric arginate).

    PubMed

    Chang, Yuhua; McLandsborough, Lynne; McClements, David Julian

    2015-04-01

    The influence of a cationic surfactant (lauric arginate, LAE) on the physical properties and antimicrobial efficacy of thyme oil nanoemulsions was investigated. Nanoemulsions prepared from pure thyme oil were highly unstable due to Ostwald ripening, but they could be stabilized by adding a ripening inhibitor (corn oil) to the oil phase prior to homogenisation. The loading capacity and antimicrobial efficacy of thyme oil nanoemulsions were significantly increased by adding LAE. In the absence of LAE, at least 60 wt% corn oil had to be added to the lipid phase to inhibit Ostwald ripening; but in the presence of 0.1 wt% LAE, only 30 wt% corn oil was needed. LAE addition substantially increased the antimicrobial efficacy of the thyme oil nanoemulsions: 200 μg/ml thyme oil was needed to inhibit growth of a spoilage yeast (Zygosaccharomyces bailii) if LAE was added, whereas ⩾ 400 μg/ml was needed in the absence of LAE.

  16. Investigation of the structural organization of cationic nanoemulsion/antisense oligonucleotide complexes.

    PubMed

    Bruxel, Fernanda; Vilela, José Mario Carneiro; Andrade, Margareth Spangler; Malachias, Ângelo; Perez, Carlos A; Magalhães-Paniago, Rogério; Oliveira, Mônica Cristina; Teixeira, Helder F

    2013-12-01

    Atomic force microscopy image analysis and energy dispersive X-ray diffraction experiments were used to investigate the structural organization of cationic nanoemulsion/oligonucleotide complexes. Oligonucleotides targeting topoisomerase II gene were adsorbed on cationic nanoemulsions obtained by means of spontaneous emulsification procedure. Topographical analysis by atomic force microscopy allowed the observation of the nanoemulsion/oligonucleotide complexes through three-dimensional high-resolution images. Flattening of the oil droplets was observed, which was reduced in the complexes obtained at high amount of adsorbed oligonucleotides. In such conditions, complexes exhibit droplet size in the 600nm range. The oligonucleotides molecules were detected on the surface of the droplets, preventing their fusion during aggregation. A lamellar structure organization was identified by energy dispersive X-ray diffraction experiments. The presence of the nucleic acid molecules led to a disorganization of the lipid arrangement and an expansion in the lattice spacing, which was proportional to the amount of oligonucleotides added.

  17. Crystal structures and morphologies of fractionated milk fat in nanoemulsions.

    PubMed

    Truong, Tuyen; Morgan, Garry P; Bansal, Nidhi; Palmer, Martin; Bhandari, Bhesh

    2015-03-15

    The triacylglycerol (TAG) crystal structures and morphologies of fractionated milk lipids in nanoemulsions were investigated at 4°C. Droplet size (0.17 versus 1.20 μm), lipid composition (stearin versus olein) and cooling rate (1 versus 10°C min(-1)) had an influence on the structural properties. Five crystal polymorphs (α, β'1, β'2, β1, and β2) were formed with either triple and/or double chain length structures in the solid phases of the emulsified systems. X-ray scattering peak intensities were reduced with the nanoemulsion particles. The internal structure of TAG exhibited stacking of individual lamellar layers (3.8-4.2 nm). Various anisometric shapes of fat nanoparticles were formed due to a highly sharp curvature of the nano-size droplets. The shape of olein nanoparticles was more polyhedral compared to the stearin. TAG crystals arranged in a planar-layered organisation at the slower cooling rate. These differences imply that the nanometric confinement of oil droplets modifies the fat crystal habit.

  18. On the growth mechanisms of nanoemulsions.

    PubMed

    Nazarzadeh, Elijah; Anthonypillai, Tania; Sajjadi, Shahriar

    2013-05-01

    The shelf stability of nanoemulsions made by ultrasound, phase inversion composition, and the Ouzo effect was studied using a range of hydrocarbons, as the model oils, and surfactants. The cube of the average drop radius of the nanoemulsions displayed a linear increase with time. Both Ostwald ripening and coalescence can exhibit such behaviour. A new approach, based on the time evolution of drop size distribution, is proposed for unravelling the aging mechanism of nanoemulsions. Sequences of fall and rise in the average drop size of nanoemulsions were clearly observed. The decrease in the drop size could unambiguously be attributed to Ostwald ripening, but the increase could be due to either Ostwald ripening or coalescence/flocculation. Coalescence was identified as the dominant growth mechanism at low surfactant concentrations evidenced by drop size distribution broadening with time associated with the rise in the average drop size. Ostwald ripening was the dominant mechanism at higher surfactant concentrations where the drop size distributions broadened with time during the falls and narrowed with time during the rises of the average drop size. The nanoemulsions produced via the Ouzo process, displayed a coalescence-dependent transient stage and an Ostwald ripening dominated asymptotic regime in the absence of surfactant. The nanoemulsion produced via phase inversion was found to be the most stable one, however, still showed vulnerability to Ostwald ripening and flocculation in the long term.

  19. Food-grade nanoemulsions: formulation, fabrication, properties, performance, biological fate, and potential toxicity.

    PubMed

    McClements, David Julian; Rao, Jiajia

    2011-04-01

    Nanoemulsions fabricated from food-grade ingredients are being increasingly utilized in the food industry to encapsulate, protect, and deliver lipophilic functional components, such as biologically-active lipids (e.g., ω-3 fatty acids, conjugated linoleic acid) and oil-soluble flavors, vitamins, preservatives, and nutraceuticals. The small size of the particles in nanoemulsions (r<100 nm) means that they have a number of potential advantages over conventional emulsions-higher stability to droplet aggregation and gravitational separation, high optical clarity, ability to modulate product texture, and, increased bioavailability of lipophilic components. On the other hand, there may also be some risks associated with the oral ingestion of nanoemulsions, such as their ability to change the biological fate of bioactive components within the gastrointestinal tract and the potential toxicity of some of the components used in their fabrication. This review article provides an overview of the current status of nanoemulsion formulation, fabrication, properties, applications, biological fate, and potential toxicity with emphasis on systems suitable for utilization within the food and beverage industry.

  20. Effects of silymarin nanoemulsion against carbon tetrachloride-induced hepatic damage.

    PubMed

    Parveen, Rabea; Baboota, Sanjula; Ali, Javed; Ahuja, Alka; Vasudev, Suruchi S; Ahmad, Sayeed

    2011-05-01

    Silymarin is a complex mixture of four flavonolignan isomers (silybin, isosilybin, silydianin and silychristin) obtained from 'milk thistle' (Silybum marianum). This plant compound is used almost exclusively for hepatoprotection. Because of its low and poor oral bioavailability, silymarin was formulated as a nanoemulsion to increase its solubility (and so its oral bioavailability) as well as therapeutic activity. The present study assessed the hepatoprotective activity on Wistar rats by determining biochemical parameters and histopathological properties of the nanoemulsion formulation of silymarin against carbon tetrachloride (CCl(4))-induced hepatotoxicity. Hepatoprotective activity was evaluated by the activity of serum alkaline phosphatase, alanine transaminase and aspartate transaminase; antioxidative defence markers (concentration of reduced glutathione); oxidative stress parameter (thiobarbituric acid reactive substances) and liver histopathology. The nanoemulsion-treated group showed significant decreases in glutamate oxaloacetate transaminase, pyruvate transaminase, alkaline phosphotase, total bilirubin and tissue lipid peroxides and increased total protein, albumin, globulin and tissue glutathione as compared to toxicant. The results indicate an excellent potential of the nanoemulsion formulation for the reversal of CCl(4)-induced liver toxicity in rats as compared to standard silymarin.

  1. Phytosterol structured algae oil nanoemulsions and powders: improving antioxidant and flavor properties.

    PubMed

    Chen, Xiao-Wei; Chen, Ya-Jun; Wang, Jin-Mei; Guo, Jian; Yin, Shou-Wei; Yang, Xiao-Quan

    2016-09-14

    Algae oil, enriched with omega-3 long-chain polyunsaturated fatty acids (ω-3 LC-PUFA), is known for its health benefits. However, protection against lipid oxidation as well as masking of unpleasant fishy malodors in algae oil enriched foods is a big challenge to achieve. In this study, we firstly achieved a one-pot ultrasound emulsification strategy (alternative heating-homogenization) to prepare phytosterol structured thermosensitive algae oil-in-water nanoemulsion stabilized by quillaja saponin. After spray drying, the resulting algae oil powders from the structured nanoemulsion templates exhibit an excellent reconstructed behavior, even after 30 d of storage. Furthermore, an enhanced oxidative stability was obtained by reducing both the primary and secondary oxidation products through formulation with β-sitosterol and γ-oryzanol, which are natural antioxidants. Following the results of headspace volatiles using dynamic headspace-gas chromatography-mass spectrometry (DHS-GC-MS), it was clear that the structured algae oil-loaded nanoemulsion and powder had lower levels of fishy off-flavour (e.g., (Z)-heptenal, decanal, ethanone, and hexadecenoic acid), whereas the control emulsion and oil powder without structure performed worse. This study demonstrated that the structure from phytosterols is an effective strategy to minimize the fishy off-flavour and maximize oxidative stability of both algae oil nanoemulsions and spray-dried powders, and opens up the possibility of formulation design in polyunsaturated oil encapsulates as novel delivery systems to apply in functional foods and beverages.

  2. A review of multifunctional nanoemulsion systems to overcome oral and CNS drug delivery barriers.

    PubMed

    Ganta, Srinivas; Deshpande, Dipti; Korde, Anisha; Amiji, Mansoor

    2010-10-01

    The oral and central nervous systems (CNS) present a unique set of barriers to the delivery of important diagnostic and therapeutic agents. Extensive research over the past few years has enabled a better understanding of these physical and biological barriers based on tight cellular junctions and expression of active transporters and metabolizing enzymes at the luminal surfaces of the gastrointestinal (GI) tract and the blood-brain barrier (BBB). This review focuses on the recent understanding of transport across the GI tract and BBB and the development of nanotechnology-based delivery strategies that can enhance bioavailability of drugs. Multifunctional lipid nanosystems, such as oil-in-water nanoemulsions, that integrate enhancement in permeability, tissue and cell targeting, imaging, and therapeutic functions are especially promising. Based on strategic choice of edible oils, surfactants and additional surface modifiers, and different types of payloads, rationale design of multifunctional nanoemulsions can serve as a safe and effective delivery vehicle across oral and CNS barriers.

  3. Does Facial Resemblance Enhance Cooperation?

    PubMed Central

    Giang, Trang; Bell, Raoul; Buchner, Axel

    2012-01-01

    Facial self-resemblance has been proposed to serve as a kinship cue that facilitates cooperation between kin. In the present study, facial resemblance was manipulated by morphing stimulus faces with the participants' own faces or control faces (resulting in self-resemblant or other-resemblant composite faces). A norming study showed that the perceived degree of kinship was higher for the participants and the self-resemblant composite faces than for actual first-degree relatives. Effects of facial self-resemblance on trust and cooperation were tested in a paradigm that has proven to be sensitive to facial trustworthiness, facial likability, and facial expression. First, participants played a cooperation game in which the composite faces were shown. Then, likability ratings were assessed. In a source memory test, participants were required to identify old and new faces, and were asked to remember whether the faces belonged to cooperators or cheaters in the cooperation game. Old-new recognition was enhanced for self-resemblant faces in comparison to other-resemblant faces. However, facial self-resemblance had no effects on the degree of cooperation in the cooperation game, on the emotional evaluation of the faces as reflected in the likability judgments, and on the expectation that a face belonged to a cooperator rather than to a cheater. Therefore, the present results are clearly inconsistent with the assumption of an evolved kin recognition module built into the human face recognition system. PMID:23094095

  4. Wound healing effects of nanoemulsion containing clove essential oil.

    PubMed

    Alam, Prawez; Ansari, Mohammad J; Anwer, Md Khalid; Raish, Mohammad; Kamal, Yoonus K T; Shakeel, Faiyaz

    2017-05-01

    The aim of this study was to investigate the wound healing effects of clove oil (CO) via its encapsulation into nanoemulsion. Optimized nanoemulsion (droplet size of 29.10 nm) was selected for wound healing investigation, collagen determination, and histopathological examination in rats. Optimized nanoemulsion presented significant would healing effects in rats as compared to pure CO. Nanoemulsion also presented significant enhancement in leucine content (0.61 mg/g) as compared to pure CO (0.50 mg/g) and negative control (0.31 mg/g). Histopathology of nanoemulsion treated rats showed no signs of inflammatory cells. These results suggested that nanoemulsion of CO was safe and nontoxic.

  5. Influence of emulsifier concentration on nanoemulsion gelation.

    PubMed

    Erramreddy, Vivek Vardhan; Ghosh, Supratim

    2014-09-23

    Nanoemulsion gels are a new class of soft materials that manifest stronger elasticity even at lower dispersed phase volume fraction. In this work, gelation in 40 wt % canola oil-in-water nanoemulsions was investigated as a function of emulsifier type (anionic sodium dodecyl sulfate (SDS) or nonionic Tween 20) and concentration. It was observed that the liquid nanoemulsions transformed into viscoelastic gels at a specific concentration range of SDS, whereas no gelation was observed for Tween 20. The apparent viscosity, yield stress, and storage modulus of the nanogels increased with SDS concentration until 15 times critical micelle concentration (CMC), thereafter decreased steadily as the gelation weakened beginning 20 CMC. Three regimes of colloidal interactions in the presence of emulsifier were proposed. (1) Repulsive gelation: at low SDS concentration (0.5-2 times CMC) the repulsive charge cloud around the nanodroplets acted as interfacial shell layer that significantly increased the effective volume fraction of the dispersed phase (ϕ(eff)). When ϕ(eff) became comparable to the volume fraction required for maximal random jamming, nanoemulsions formed elastic gels. (2) Attractive gelation: as the SDS concentration increased to 5-15 times CMC, ϕ(eff) dropped due to charge screening by more counterions from SDS, but depletion attractions generated by micelles in the continuous phase led to extensive droplet aggregation which immobilized the continuous phase leading to stronger gel formation. (3) Decline in gelation due to oscillatory structural forces (OSF): at very high SDS concentration (20-30 time CMC), structural forces were manifested due to the layered-structuring of excess micelles in the interdroplet regions resulting in loss of droplet aggregation. Tween 20 nanoemulsions, on the other hand, did not show repulsive gelation due to lack of charge cloud, while weak depletion attraction and early commencement of OSF regime leading to liquid-like behavior at

  6. Nanoemulsion: process selection and application in cosmetics--a review.

    PubMed

    Yukuyama, M N; Ghisleni, D D M; Pinto, T J A; Bou-Chacra, N A

    2016-02-01

    In recent decades, considerable and continuous growth in consumer demand in the cosmetics field has spurred the development of sophisticated formulations, aiming at high performance, attractive appearance, sensorial benefit and safety. Yet despite increasing demand from consumers, the formulator faces certain restrictions regarding the optimum equilibrium between the active compound concentration and the formulation base taking into account the nature of the skin structure, mainly concerning to the ideal penetration of the active compound, due to the natural skin barrier. Emulsion is a mixture of two immiscible phases, and the interest in nanoscale emulsion has been growing considerably in recent decades due to its specific attributes such as high stability, attractive appearance and drug delivery properties; therefore, performance is expected to improve using a lipid-based nanocarrier. Nanoemulsions are generated by different approaches: the so-called high-energy and low-energy methods. The global overview of these mechanisms and different alternatives for each method are presented in this paper, along with their benefits and drawbacks. As a cosmetics formulation is reflected in product delivery to consumers, nanoemulsion development with prospects for large-scale production is one of the key attributes in the method selection process. Thus, the aim of this review was to highlight the main high- and low-energy methods applicable in cosmetics and dermatological product development, their specificities, recent research on these methods in the cosmetics and consideration for the process selection optimization. The specific process with regard to inorganic nanoparticles, polymer nanoparticles and nanocapsule formulation is not considered in this paper.

  7. Nanoemulsion-based delivery systems for poorly water-soluble bioactive compounds: Influence of formulation parameters on Polymethoxyflavone crystallization

    PubMed Central

    Li, Yan; Zheng, Jinkai; Xiao, Hang; McClements, David Julian

    2012-01-01

    Polymethoxyflavones (PMFs) extracted from citrus peel exhibit potent anti-cancer activity, but are highly hydrophobic molecules with poor solubility in both water and oil at ambient and body temperature, which limits their bioavailability. The possibility of encapsulating PMFs within nanoemulsion-based delivery systems to facilitate their application in nutraceutical and pharmaceutical products was investigated. The influence of oil type (corn oil, MCT, orange oil), emulsifier type (β-lactoglobulin, lyso-lecithin, Tween, and DTAB), and neutral cosolvents (glycerol and ethanol) on the formation and stability of PMF-loaded nanoemulsions was examined. Nanoemulsions (r < 100 nm) could be formed using high pressure homogenization for all emulsifier types, except DTAB. Lipid droplet charge could be altered from highly cationic (DTAB), to near neutral (Tween), to highly anionic (β-lactoglobulin, lyso-lecithin) by varying emulsifier type. PMF crystals formed in all nanoemulsions after preparation, which had a tendency to sediment during storage. The size, morphology, and aggregation of PMF crystals depended on preparation method, emulsifier type, oil type, and cosolvent addition. These results have important implications for the development of delivery systems for bioactive components that have poor oil and water solubility at application temperatures. PMID:22685367

  8. Curcumin nanoemulsion for transdermal application: formulation and evaluation.

    PubMed

    Rachmawati, Heni; Budiputra, Dewa Ken; Mauludin, Rachmat

    2015-04-01

    The aim of this work is to develop a curcumin nanoemulsion for transdermal delivery. The incorporation of curcumin inside a nanoglobul should improve curcumin stability and permeability. A nanoemulsion was prepared by the self-nanoemulsification method, using an oil phase of glyceryl monooleate, Cremophor RH40 and polyethylene glycol 400. Evaluation of the nanoemulsion included analysis of particle size, polydispersity index, zeta potential, physical stability, Raman spectrum and morphology. In addition, the physical performance of the nanoemulsion in Viscolam AT 100P gel was studied. A modified vertical diffusion cell and shed snake skin of Python reticulatus were used to study the in vitro permeation of curcumin. A spontaneously formed stable nanoemulsion has a loading capacity of 350 mg curcumin/10 g of oil phase. The mean droplet diameter, polydispersity index and zeta potential of optimized nanoemulsion were 85.0 ± 1.5 nm, 0.18 ± 0.0 and -5.9 ± 0.3 mV, respectively. Curcumin in a nanoemulsion was more stable than unencapsulated curcumin. Furthermore, nanoemulsification significantly improved the permeation flux of curcumin from the hydrophilic matrix gel; the release kinetic of curcumin changed from zero order to a Higuchi release profile. Overall, the developed nanoemulsion system not only improved curcumin permeability but also protected the curcumin from chemical degradation.

  9. In vitro scleral lutein distribution by cyclodextrin containing nanoemulsions.

    PubMed

    Liu, Chi-Hsien; Lai, Kuan-Yu; Wu, Wei-Chi; Chen, Yu-Jui; Lee, Wei-Shiou; Hsu, Ching-Yun

    2015-01-01

    Lutein is a macular pigment that contributes to maintaining eye health. The development of lutein-laden nanocarriers for ocular delivery would have the advantages of user friendliness and cost-effectiveness. Nano-scaled vehicles such as cyclodextrin (CD) and nanoemulsion could overcome the barriers caused by the scleral structure. This study focused on the development of hybrid nanocarriers containing nanoemulsion and CD for scleral lutein accumulation. In the presence of the nanoemulsion, CD forms such as βCD and hydroxyethyl (HE) βCD increased the partition of lutein into the porcine sclera. A combination of nanoemulsion and 2% HEβCD enhanced lutein accumulation to 119±6 µg g(-1) h(-1), which was 9.2-fold higher than that with lutein suspension alone. We explored the dose effect of CD in nanoemulsion on scleral lutein and found that the scleral accumulation of lutein was enhanced by increasing the CD content. The novel nanoemulsion had 95% drug-loading efficiency and low cytotoxicity in retinal cells. The CD-modified nanoemulsion not only improved the stability and entrapment efficacy of lutein in the aqueous system but also enhanced scleral lutein accumulation. An increase in the partition coefficient of lutein in porcine sclera when using the CD-modified nanoemulsion was also confirmed.

  10. Formulation and characterization of nanoemulsion of olanzapine for intranasal delivery.

    PubMed

    Kumar, Mukesh; Misra, Ambikanandan; Pathak, Kamla

    2009-01-01

    The objective was to formulate an olanzapine nanoemulsion that could potentially deliver the drug directly to the brain following intranasal administration. The nanoemulsions were prepared using the water titration method. The mucoadhesive character was imparted by the addition of 0.5%w/w chitosan and 0.5%w/w polycarbophil and was characterized for drug content, pH, percentage transmittance, globule size, zeta potential, and PDI. The composition (%w/w) of the optimized olanzapine nanoemulsion was capmul MCM, tween 80, and a mixture of 1:1 ratio of polyethylene glycol 400 and ethanol, and aqueous phase in a ratio of 15:35:17.5:32.5. The optimized olanzapine nanoemulsion exhibited a high diffusion coefficient and no nasal cilio-toxicity. The drug release followed the Higuchi model. The optimized nanoemulsions were found to be stable for 3 months.

  11. Children's Explanations of Family Resemblances.

    ERIC Educational Resources Information Center

    Horobin, Karen D.

    Four studies investigated children's explanations for family resemblance and species-typical characteristics, under different conditions of biological parentage and rearing environment. Participating were 226 children between 3 and 11 years. Children Children were presented with a number of different tasks, some involving people and some domestic…

  12. Development of a nanoemulsion of Phyllanthus emblica L. branch extract.

    PubMed

    Chaiittianan, Rungsiri; Sripanidkulchai, Bungorn

    2014-12-01

    For potential topical administration, we formulated a nanoemulsion containing phenolic constituents of Phyllanthus emblica branch extract. The nanoemulsion has high entrapment efficiency, small particle size, is stable, and can release its main chemical components. Branches of P. emblica were extracted with 50% ethanol (EPE) with 5.4% yield. HPLC analysis indicated several phenolic compounds, including gallic acid, vanillic acid, epigallocatechin (EGC), epigallocatechin gallate (EGCG) and ellagic acid. These were selected as chemical markers of EPE in the nanoemulsion development. The nanoemulsion was prepared by microemulsion techniques with hot high pressure homogenization. A ternary phase diagram was constructed to obtain the optimized nanoemulsion. The obtained transparent EPE nanoemulsion is composed of isopropyl myristate (0.6% w/w), Brij® 78 (0.35% w/w), and 0.15% (w/w) EPE. The optimized EPE nanoemulsion had a median particle size of 191.63 ± 4.07 nm with a narrow particle size distribution, a zeta potential of -10.19 ± 0.54 mV, high entrapment efficiency at 67.99 ± 0.87% and good stability at 4 °C after 90 d of storage. The release of active ingredients from the EPE nanoemulsion was slower than that of the EPE aqueous formulation. The loading ratios of the five phenolic compounds were high, with relative order of EGC > EGCG > vanillic acid > gallic acid > ellagic acid, resulting in slow release profiles of EGC and EGCG in the EPE nanoemulsion. In conclusion, the obtained EPE nanoemulsion has good characteristics for future clinical trials.

  13. Perfluorocarbon nanoemulsions with fluorescent, colloidal and magnetic properties

    PubMed Central

    Janjic, Jelena M.; Shao, Pin; Zhang, Shaojuan; Yang, Xun; Patel, Sravan K.; Bai, Mingfeng

    2014-01-01

    Bimodal imaging agents that combine magnetic resonance imaging (MRI) and nearinfrared (NIR) imaging formulated as nanoemulsions became increasingly popular for imaging inflammation in vivo. Quality of in vivo imaging using nanoemulsions is directly dependent on their integrity and stability. Here we report the design of nanoemulsions for bimodal imaging, where both photostability and colloidal stability are equally addressed. A highly chemically and photo stable quaterrylenediimide dye was introduced into perfluoro-15-crown-5 ether (PCE) nanoemulsions. The nanoemulsions were prepared with PCE and Miglyol 812N mixed at 1:1 v/v ratio as internal phase stabilized by non-ionic surfactants. Data shows exceptional colloidal stability demonstrated as unchanged droplet size (~130 nm) and polydispersity (<0.15) after 182 days follow up at both 4 and 25 °C. Nanoemulsions also sustained the exposure to mechanical and temperature stress, and prolonged exposure to light without changes in droplet size, 19F signal or fluorescence signal. No toxicity was observed in vitro in model inflammatory cells upon 24 h exposure while confocal microscopy showed that nanoemulsions droplets accumulated in the cytoplasm. Overall, our data demonstrates that design of bimodal imaging agents requires consideration of stability of each imaging component and that of the nanosystem as a whole to achieve excellent imaging performance. PMID:24674463

  14. Pentyl Gallate Nanoemulsions as Potential Topical Treatment of Herpes Labialis.

    PubMed

    Kelmann, Regina G; Colombo, Mariana; De Araújo Lopes, Sávia Caldeira; Nunes, Ricardo J; Pistore, Morgana; Dall Agnol, Daniele; Rigotto, Caroline; Silva, Izabella Thais; Roman, Silvane S; Teixeira, Helder F; Oliveira Simões, Cláudia M; Koester, Letícia S

    2016-07-01

    Previous studies have demonstrated the antiherpes activity of pentyl gallate (PG), suggesting that it could be a promising candidate for the topical treatment of human herpes labialis. PG low aqueous solubility represents a major drawback to its incorporation in topical dosage forms. Hence, the feasibility of incorporating PG into nanoemulsions, the ability to penetrate the skin, to inhibit herpes simplex virus (HSV)-1 replication, and to cause dermal sensitization or toxicity were evaluated. Oil/water nanoemulsions containing 0.5% PG were prepared by spontaneous emulsification. The in vitro PG distribution into porcine ear skin after topical application of nanoemulsions was assessed, and the in vitro antiviral activity against HSV-1 replication was evaluated. Acute dermal toxicity and risk of dermal sensitization were evaluated in rat model. Nanoemulsions presented nanometric particle size (from 124.8 to 143.7 nm), high zeta potential (from -50.1 to -66.1 mV), loading efficiency above 99%, and adequate stability during 12 months. All formulations presented anti-HSV-1 activity. PG was able to reach deeper into the dermis more efficiently from the nanoemulsion F4. This formulation as well as PG were considered safe for topical use. Nanoemulsions seem to be a safe and effective approach for topically delivering PG in the treatment of human herpes labialis infection.

  15. Lecithin based nanoemulsions: A comparative study of the influence of non-ionic surfactants and the cationic phytosphingosine on physicochemical behaviour and skin permeation.

    PubMed

    Hoeller, Sonja; Sperger, Andrea; Valenta, Claudia

    2009-03-31

    Charged drug delivery systems are interesting candidates for the delivery of drugs through skin. In the present study, it was possible to create negatively and positively charged oil/water nanoemulsions by using sucrose laureate and polysorbate 80 as non-ionic surfactants. The positively charged nanoemulsions were generated by adding cationic phytosphingosine (PS). The relationship between the physicochemical properties of the nanoemulsions was shown by particle size and zeta potential measurements. These properties were dependent on the type of non-ionic surfactant and the concentration of PS. Furthermore the cationic PS had a positive impact on the skin permeation rates (flux) of the incorporated model drugs fludrocortisone acetate and flumethasone pivalate. An enhancement factor between 1.1 and 1.5 was obtained in relation to the control. The interaction of pre-impregnated porcine skin with positively and negatively charged nanoemulsions was confirmed by DSC analysis. The generated DSC-curves showed a slight difference in the phase transition temperature assigned to the characteristic lipid transition. However, it was not possible to assign the effect to one of the ingredients in the multicomponent system.

  16. Thyme oil nanoemulsions coemulsified by sodium caseinate and lecithin.

    PubMed

    Xue, Jia; Zhong, Qixin

    2014-10-08

    Many nanoemulsions are currently formulated with synthetic surfactants. The objective of the present work was to study the possibility of blending sodium caseinate (NaCas) and lecithin to prepare transparent thyme oil nanoemulsions. Thyme oil was emulsified using NaCas and soy lecithin individually or in combination at neutral pH by shear homogenization. The surfactant combination improved the oil content in transparent/translucent nanoemulsions, from 1.0% to 2.5% w/v for 5% NaCas with and without 1% lecithin, respectively. Nanoemulsions prepared with the NaCas-lecithin blend had hydrodynamic diameters smaller than 100 nm and had significantly smaller and more narrowly distributed droplets than those prepared with NaCas or lecithin alone. Particle dimension and protein surface load data suggested the coadsorption of both surfactants on oil droplets. These characteristics of nanoemulsions minimized destabilization mechanisms of creaming, coalescence, and Ostwald ripening, as evidenced by no significant changes in appearance and particle dimension after 120-day storage at 21 °C.

  17. Investigation of Factors Affecting Aerodynamic Performance of Nebulized Nanoemulsion

    PubMed Central

    Kamali, Hosein; Abbasi, Shayan; Amini, Mohammad Ali; Amani, Amir

    2016-01-01

    This work aimed to prepare a nanoemulsion preparation containing budesonide and assess its aerodynamic behavior in comparison with suspension of budesonide. In-vitro aerodynamic performance of the corresponding micellar solution (ie. nanoemulsion preparation without oil) was investigated too. Nanoemulsions of almond oil containing budesonide, as a hydrophobic model drug molecule, were prepared and optimized. Then, the effect of variation of surfactant/co-surfactant concentration on the aerodynamic properties of the nebulized aerosol was studied. The results indicated that the most physically stable formulation makes the smallest aerodynamic size. The concentration of co-surfactant was also shown to be critical in determination of aerodynamic size. Furthermore, the optimized sample, with 3% w/w almond oil, 20% w/w Tween 80+Span 80 and 2% w/w ethanol showed a smaller MMAD in comparison with the commercially available suspension and the micellar solution. PMID:28243265

  18. Nanoemulsions produced by rotor-stator high speed stirring.

    PubMed

    Scholz, Patrik; Keck, Cornelia M

    2015-03-30

    Nanoemulsions were produced by high speed stirring using an ART MICCRA D27 rotor-stator system. Nanoemulsions with a droplet size of 135 nm and a narrow size distribution were obtained. The emulsions are physically stable for at least three months. Optimized production parameters are a stirring speed of 36,000 rpm (maximum speed) and a production time of 5 min. A further reduction in processing time might be possible with a rotor with ultrafine slit size, i.e., 0.5 mm. The droplet size of the emulsion produced by high speed stirring is slightly larger than droplet sizes obtained by high pressure homogenization. However, the differences in size can be expected to have no influence on the in vivo efficacy of the emulsions. Thus, high speed stirring was found to be a highly effective method for the production of nanoemulsions. The process is fast, cost-effective and can be used for large scale production.

  19. Development of topical hydrogels containing genistein-loaded nanoemulsions.

    PubMed

    de Vargas, Bethânia Andrade; Bidone, Juliana; Oliveira, Laura Karsburg; Koester, Leticia Scherer; Bassani, Valquiria Linck; Teixeira, Helder Ferreira

    2012-04-01

    This article describes the development of topical hydrogels containing genistein-loaded nanoemulsions, obtained by means of spontaneous emulsification. This procedure yielded monodisperse nanoemulsions in a sub 250 nm range exhibiting negative zeta-potential and low viscosity. The formulations were incorporated into acrylic-acid hydrogels in order to have their viscosity adjusted for topical application. The semisolid formulations exhibit non-Newtonian pseudoplastic behavior. The skin permeation/retention of genistein from formulations was carried out using porcine ear skin mounted in Franz diffusion cells under sink conditions. The results showed a slow flow of genistein through the skin. Higher amount of genistein was detected into the skin from the formulation composed by medium chain triglycerides as oily core when compared to the octyldodecanol one. The overall results show that hydrogels containing genistein-loaded nanoemulsions could be considered as a promising formulation to delivery isoflavones into the skin.

  20. Design and Development of Nanoemulsion Systems Containing Interferon Gamma.

    PubMed

    Ribeiro, Elton B; Honorio-França, Adenilda C; França, Eduardo L; Soler, Maria A G

    2016-01-01

    The aim of this study was to design and develop stable nanoemulsion formulations containing IFN-γ to probe their use as an immunomodulating agent. The nanoemulsions comprising distilled water, triglycerides of capric acid/caprylic, sobitan-oleate (SP), polysorbate 80 (TW) and propylene glycol (PG) were prepared through ultra-homogenization and characterized regarding droplet size, polydispersity, surface charge, preliminary and accelerated physical stability, and rheological properties. Stable nanoemulsions were selected to incorporate nano doses of IFN-γ (100 ng.mL-1). The influence of IFN-γ incorporated nanoemulsions on functional activity of mononuclear cell for Escherichia coli enteropathogenic was analyzed through superoxide release, phagocytosis, microbicidal activity and intracellular calcium release. The optimized formulation, comprising aqueous and oily phase of 10 % and 80 %, respectively, and surfactant mix ratio (SP/TW/PG) of 3.5/5.5/1.0, remained stable in extreme conditions during 90 days, displaying oil-in-water characteristics, biocompatible pH value, significant maintenance of its rheological profile, hydrodynamic radius of 205 nm, zeta potential of -40 mV and average dose of IFN-γ 91 ng.mL- The developed formulation did not alter the MN cell viability rates. Increased the superoxide release, phagocytosis index and intracellular calcium release of MN cells of human blood. Our findings indicate that the produced formulation improved the immunomodulatory activity of the IFN-γ.

  1. Characterization of rice bran wax policosanol and its nanoemulsion formulation.

    PubMed

    Ishaka, Aminu; Umar Imam, Mustapha; Mahamud, Rozi; Zuki, Abu Bakar Zakaria; Maznah, Ismail

    2014-01-01

    Policosanol, a mixture of long-chain alcohols found in animal and plant waxes, has several biological effects; however, it has a bioavailability of less than 10%. Therefore, there is a need to improve its bioavailability, and one of the ways of doing this is by nanoemulsion formulation. Different droplet size distributions are usually achieved when emulsions are formed, which solely depends on the preparation method used. Mostly, emulsions are intended for better delivery with maintenance of the characteristics and properties of the leading components. In this study, policosanol was extracted from rice bran wax, its composition was determined by gas chromatography mass spectrophotometry, nanoemulsion was made, and the physical stability characteristics were determined. The results showed that policosanol nanoemulsion has a nanosize particle distribution below 100 nm (92.56-94.52 nm), with optimum charge distribution (-55.8 to -45.12 mV), pH (6.79-6.92) and refractive index (1.50); these were monitored and found to be stable for 8 weeks. The stability of policosanol nanoemulsion confers the potential to withstand long storage times.

  2. Development of an insecticidal nanoemulsion with Manilkara subsericea (Sapotaceae) extract

    PubMed Central

    2014-01-01

    Background Plants have been recognized as a good source of insecticidal agents, since they are able to produce their own defensives to insect attack. Moreover, there is a growing concern worldwide to develop pesticides with low impact to environment and non-target organisms. Hexane-soluble fraction from ethanolic crude extract from fruits of Manilkara subsericea and its triterpenes were considered active against a cotton pest (Dysdercus peruvianus). Several natural products with insecticidal activity have poor water solubility, including triterpenes, and nanotechnology has emerged as a good alternative to solve this main problem. On this context, the aim of the present study was to develop an insecticidal nanoemulsion containing apolar fraction from fruits of Manilkara subsericea. Results It was obtained a formulation constituted by 5% of oil (octyldodecyl myristate), 5% of surfactants (sorbitan monooleate/polysorbate 80), 5% of apolar fraction from M. subsericea and 85% of water. Analysis of mean droplet diameter (155.2 ± 3.8 nm) confirmed this formulation as a nanoemulsion. It was able to induce mortality in D. peruvianus. It was observed no effect against acetylcholinesterase or mortality in mice induced by the formulation, suggesting the safety of this nanoemulsion for non-target organisms. Conclusions The present study suggests that the obtained O/A nanoemulsion may be useful to enhance water solubility of poor water soluble natural products with insecticidal activity, including the hexane-soluble fraction from ethanolic crude extract from fruits of Manilkara subsericea. PMID:24886215

  3. NIR-labeled perfluoropolyether nanoemulsions for drug delivery and imaging

    PubMed Central

    O’Hanlon, Claire E.; Amede, Konjit G.; O’Hear, Meredith R.; Janjic, Jelena M.

    2012-01-01

    Theranostic nanoparticle development recently took center stage in the field of drug delivery nanoreagent design. Theranostic nanoparticles combine therapeutic delivery systems (liposomes, micelles, nanoemulsions, etc.) with imaging reagents (MRI, optical, PET, CT). This combination allows for non-invasive in vivo monitoring of therapeutic nanoparticles in diseased organs and tissues. Here, we report a novel perfluoropolyether (PFPE) nanoemulsion with a water-insoluble lipophilic drug. The formulation enables non-invasive monitoring of nanoemulsion biodistribution using two imaging modalities, 19F MRI and near-infrared (NIR) optical imaging. The nanoemulsion is composed of PFPE-tyramide as a 19F MRI tracer, hydrocarbon oil, surfactants, and a NIR dye. Preparation utilizes a combination of self-assembly and high energy emulsification methods, resulting in droplets with average diameter 180 nm and low polydispersity index (PDI less than 0.2). A model nonsteroidal anti-inflammatory drug (NSAID), celecoxib, was incorporated into the formulation at 0.2 mg/mL. The reported nanoemulsion’s properties, including small particle size, visibility under 19F NMR and NIR fluorescence spectroscopy, and the ability to carry drugs make it an attractive potential theranostic agent for cancer imaging and treatment. PMID:22675234

  4. A new method for the formulation of double nanoemulsions.

    PubMed

    Ding, Shukai; Anton, Nicolas; Akram, Salman; Er-Rafik, Meriem; Anton, Halina; Klymchenko, Andrey; Yu, Wei; Vandamme, Thierry F; Serra, Christophe A

    2017-02-22

    Double emulsions are very attractive systems for many reasons; the most important of these are their capacity to encapsulate hydrophilic and lipophilic molecules simultaneously in a single particle and their potentiality to protect fragile hydrophilic molecules from the continuous phase. Double emulsions represent a technology that is widely present down to the micrometer scale; however, double nanoemulsions, with their new potential applications as nanomedicines or diagnosis agents, currently present a significant challenge. In this study, we propose an original two-step approach for the fabrication of double nanoemulsions with a final size below 200 nm. The process consists of the formulation of a primary water-in-oil (w1/O) nanoemulsion by high-pressure homogenization, followed by the re-emulsification of this primary emulsion by a low-energy method to preserve the double nanostructure. Various characterization techniques were undertaken to confirm the double structure and to evaluate the encapsulation efficiency of a small hydrophilic probe in the inner aqueous droplets. Complementary fluorescence confocal and cryo-TEM microscopy experiments were conducted to characterize and confirm the double structure of the double nanoemulsion.

  5. Characterization of rice bran wax policosanol and its nanoemulsion formulation

    PubMed Central

    Ishaka, Aminu; Umar Imam, Mustapha; Mahamud, Rozi; Zuki, Abu Bakar Zakaria; Maznah, Ismail

    2014-01-01

    Policosanol, a mixture of long-chain alcohols found in animal and plant waxes, has several biological effects; however, it has a bioavailability of less than 10%. Therefore, there is a need to improve its bioavailability, and one of the ways of doing this is by nanoemulsion formulation. Different droplet size distributions are usually achieved when emulsions are formed, which solely depends on the preparation method used. Mostly, emulsions are intended for better delivery with maintenance of the characteristics and properties of the leading components. In this study, policosanol was extracted from rice bran wax, its composition was determined by gas chromatography mass spectrophotometry, nanoemulsion was made, and the physical stability characteristics were determined. The results showed that policosanol nanoemulsion has a nanosize particle distribution below 100 nm (92.56–94.52 nm), with optimum charge distribution (−55.8 to −45.12 mV), pH (6.79–6.92) and refractive index (1.50); these were monitored and found to be stable for 8 weeks. The stability of policosanol nanoemulsion confers the potential to withstand long storage times. PMID:24872689

  6. Essential oil nanoemulsions as antimicrobial agents in food.

    PubMed

    Donsì, Francesco; Ferrari, Giovanna

    2016-09-10

    The crescent interest in the use of essential oils (EOs) as natural antimicrobials and preservatives in the food industry has been driven in the last years by the growing consumers' demand for natural products with improved microbial safety, and fresh-like organoleptic properties. Nanoemulsions efficiently contribute to support the use of EOs in foods by increasing their dispersibility in the food areas where microorganisms grow and proliferate, by reducing the impact on the quality attributes of the product, as well as by enhancing their antimicrobial activity. Understanding how nanoemulsions intervene on the mass transfer of EOs to the cell membrane and on the mechanism of antimicrobial action will support the engineering of more effective delivery systems and foster the application of EOs in real food systems. This review focuses on the enabling contribution of nanoemulsions to the use of EOs as natural preservative agents in food, (a) specifically addressing the formulation and fabrication of stable EO nanoemulsions, (b) critically analyzing the reported antimicrobial activity data, both in vitro and in product, to infer the impact of the delivery system on the mechanisms of action of EOs, as well as (c) discussing the regulatory issues associated with their use in food systems.

  7. Eugenol-loaded antimicrobial nanoemulsion preserves fruit juice against, microbial spoilage.

    PubMed

    Ghosh, Vijayalakshmi; Mukherjee, Amitava; Chandrasekaran, Natarajan

    2014-02-01

    Oil-in-water nanoemulsion was formulated using sesame oil, non-ionic surfactant (Tween20/Tween80) and water by ultrasound cavitation method. Development of nanoemulsion was optimized for process parameters such as surfactant type, surfactant concentration and emulsification time to obtain lower droplet diameter with greater stability. Increase in surfactant concentration and emulsification time resulted in nanoemulsion with minimized droplet diameter. Tween80 was more effective in reducing droplet size when compared to that of Tween20. Selected formulation with optimized process parameter (with oil-surfactant mixing ratio of 1:3 v/v and Tween80 as surfactant) was used for delivery of eugenol. Eugenol-loaded nanoemulsion was formulated with droplet diameter of 13 nm and was stable for more than 1 month. Sesame oil blended eugenol-loaded nanoemulsion demonstrated lower droplet size and higher stability than only-eugenol (without sesame oil) nanoemulsion. Eugenol-loaded nanoemulsion S3E3 exhibited antibacterial activity against Staphylococcus aureus. Inactivation kinetics of S. aureus showed time and concentration killing of bacteria upon treatment with S3E3 nanoemulsion. Fluorescence microscopy results demonstrated that S3E3 nanoemulsion treatment resulted in alteration of membrane permeability. In situ assessment of S3E3 in orange juice exhibited a significant reduction in the native bacteria population.

  8. Nanoemulsion of eucalyptus oil and its larvicidal activity against Culex quinquefasciatus.

    PubMed

    Sugumar, S; Clarke, S K; Nirmala, M J; Tyagi, B K; Mukherjee, A; Chandrasekaran, N

    2014-06-01

    Filariasis is a mosquito-borne disease that causes lymphedema and the main vector is Culex quinquefasciatus. A simple measure was taken to eradicate the vector using nanoemulsion. Eucalyptus oil nanoemulsion was formulated in various ratios comprising of eucalyptus oil, tween 80 and water by ultrasonication. The stability of nanoemulsion was observed over a period of time and 1:2 ratios of eucalyptus oil (6%) and surfactant (12%) was found to be stable. The formulated eucalyptus oil nanoemulsion was characterized by transmission electron microscopy and dynamic light scattering. The nanoemulsion droplets were found to have a Z-average diameter of 9.4 nm and were spherical in shape. The larvicidal activity of eucalyptus oil nanoemulsion and bulk emulsion was tested and compared. Our nanoemulsion showed higher activity when compared to bulk emulsion. The histopathology of larvae-treated and untreated nanoemulsion was analyzed. Furthermore, biochemical assays were carried out to examine the effect of nanoemulsion on biochemical characteristics of larvae. The treated larval homogenate showed decrease in total protein content and a significant reduction in the levels of acetylcholinesterase. The levels of acid and alkaline phosphatase also showed reduction as compared to control larval homogenate.

  9. Phase Change Characteristics of a Nanoemulsion as a Latent Heat Storage Material

    NASA Astrophysics Data System (ADS)

    Fumoto, Koji; Sato, Noriaki; Kawaji, Masahiro; Kawanami, Tsuyoshi; Inamura, Takao

    2014-10-01

    The primary objective of this study was to investigate the fundamental phase change characteristics of a nanoemulsion using differential scanning calorimetry (DSC). Tetradecane, which has a slightly higher melting point than water, was utilized as the phase change material for the nanoemulsion. The melting point of the nanoemulsion, the melting peak temperature, and latent heat were examined in detail. Regarding the fundamental phase change characteristics of the nanoemulsion, it was found that its phase change characteristics were strongly affected by the temperature-scanning rate of the DSC. Moreover, it was confirmed that the phase change behavior does not change with repeated solidification and melting.

  10. Development of food-grade nanoemulsions and emulsions for delivery of omega-3 fatty acids: opportunities and obstacles in the food industry.

    PubMed

    Walker, Rebecca; Decker, Eric A; McClements, David Julian

    2015-01-01

    Consumption of biologically active amounts of omega-3 fatty acids is linked to improved human health, which has partly been attributed to their important role in brain development and cardiovascular health. Western diets are relatively low in omega-3 fatty acids and many consumers turn to supplements or functional foods to increase their intake of these healthy lipids. Fish oil is one of the most widely used sources of omega-3 fatty acid for supplementation and has greater health benefits than plant sources because of its higher concentration of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). The incorporation of omega-3 fatty acids into foods and beverages is often challenging due to their low water-solubility, poor oxidative stability, and variable bioavailability. Nanoemulsions offer a promising way to incorporate omega-3 fatty acids into liquid food systems like beverages, dressing, sauces, and dips. Nanoemulsions are colloidal dispersions that contain small oil droplets (r<100 nm) that may be able to overcome many of the challenges of fortifying foods and beverages with omega-3 fatty acids. The composition and fabrication of nanoemulsions can be optimized to increase the chemical and physical stability of oil droplets, as well as to increase the bioavailability of omega-3 fatty acids.

  11. Physical properties of a frozen yogurt fortified with a nano-emulsion containing purple rice bran oil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objectives of this study were to develop and evaluate a frozen yogurt (FY) fortified with a nano-emulsion containing purple rice bran oil (NPRBO). A nano-emulsion with a droplet size range of 150-300 nm was produced by sonication followed by ultra-shear homogenization. The nano-emulsion was mi...

  12. Modification of palm kernel oil esters nanoemulsions with hydrocolloid gum for enhanced topical delivery of ibuprofen

    PubMed Central

    Salim, Norazlinaliza; Basri, Mahiran; Rahman, Mohd BA; Abdullah, Dzulkefly K; Basri, Hamidon

    2012-01-01

    Introduction During recent years, there has been growing interest in the use of nanoemulsion as a drug-carrier system for topical delivery. A nanoemulsion is a transparent mixture of oil, surfactant and water with a very low viscosity, usually the product of its high water content. The present study investigated the modification of nanoemulsions with different hydrocolloid gums, to enhanced drug delivery of ibuprofen. The in vitro characterization of the initial and modified nanoemulsions was also studied. Methods A palm kernel oil esters nanoemulsion was modified with different hydrocolloid gums for the topical delivery of ibuprofen. Three different hydrocolloids (gellan gum, xanthan gum, and carrageenan) were selected for use. Ternary phase diagrams were constructed using palm kernel oil esters as the oil, Tween 80 as the surfactant, and water. Nanoemulsions were prepared by phase inversion composition, and were gradually mixed with the freshly prepared hydrocolloids. The initial nanoemulsion and modified nanoemulsions were characterized. The abilities of the nanoemulsions to deliver ibuprofen were assessed in vitro, using a Franz diffusion cell fitted with rat skin. Results No significant changes were observed in droplet size (~16–20 nm) but a significant difference in polydispersity indexes were observed before and after the modification of nanoemulsions using gellan gum, carrageenan, and xanthan gum. The zeta potentials of the initial nanoemulsions (−11.0 mV) increased to −19.6 mV, −13.9 mV, and −41.9 mV, respectively. The abilities of both the initial nanoemulsion (T802) and the modified nanoemulsion to deliver ibuprofen through the skin were evaluated in vitro, using Franz diffusion cells fitted with rat skin. The in vitro permeation data showed that the modified nanoemulsion (Kp value of 55.4 × 10−3 cm · h−1) increased the permeability of ibuprofen 4.40 times over T802 (Kp value of 12.6 × 10−3 cm · h−1) (P < 0.05). Conclusion The

  13. Q10-loaded NLC versus nanoemulsions: stability, rheology and in vitro skin permeation.

    PubMed

    Junyaprasert, Varaporn B; Teeranachaideekul, Veerawat; Souto, Eliana B; Boonme, Prapaporn; Müller, Rainer H

    2009-07-30

    In this study, nanoemulsions (NE) of medium chain triacylglycerols (MCT) and nanostructured lipid carriers (NLC) of cetyl palmiate/MCT were produced to load coenzyme Q(10) (Q(10)) and characterized for their stability before and after incorporation into xanthan gum hydrogels. After storage at 4, 25 and 40 degrees C, the particles remained in the nanosize range for 12 months, with zeta potential higher than |40 mV|. Similar results were found in xanthan gum-based hydrogels containing NE or NLC. The crystallinity index of Q(10)-loaded NLC increased after being incorporated into hydrogels. The Q(10) entrapped in NLC and NE remained higher than 90% at all temperatures for 12 months but dramatically decreased when exposed to light. From the rheological studies, both NLC and NE dispersions possessed pseudoplastic flow having more liquid characteristics, whereas NLC and NE hydrogels exhibited plastic flow with thixothopy, showing more elastic rather than viscous properties. The occurrence of a spatial arrangement of lipid molecules was observed in the matrix of NLC when entrapped into hydrogels. From in vitro permeation studies, it could be stated that the amount of Q(10) released and occlusiveness were major keys to promote the deep penetration of Q(10) into the skin.

  14. Enhanced antibacterial effects of clove essential oil by nanoemulsion.

    PubMed

    Anwer, Md Khalid; Jamil, Shahid; Ibnouf, Elmutasim Osman; Shakeel, Faiyaz

    2014-01-01

    The aim of present study was to develop and evaluate nanoemulsion formulations of clove essential oil (CEO) for its antibacterial effects in comparison with pure CEO and standard amikacin antibiotic (positive control). Different nanoemulsions of CEO were developed by aqueous phase titration method via construction of pseudo-ternary phase diagrams and investigated for thermodynamic stability and self-nanoemulsification tests. Selected formulations (F1-F5) were characterized for droplet size distribution, viscosity, zeta potential, transmittance and surface morphology. Based on lowest droplet size (29.1 nm), lowest PI (0.026), lowest viscosity (34.6 cp), optimal zeta potential (-31.4 mV), highest transmittance (99.4 %) and lowest concentration of Triacetin (8 % w/w), CEO nanoemulsion F1 (containing 1 % w/w of CEO, 8 % w/w of Triacetin, 15 % w/w of Tween-80, 15 % w/w of Labrasol and 61 % w/w of water) was subjected to antibacterial studies in comparison with pure oil and standard amikacin. The antibacterial effects of F1 were found to be superior over pure oil against all bacterial strains investigated. However, the antibacterial effects of F1 were highly comparable with standard amikacin against all bacterial strains. The minimum inhibitory concentrations (MICs) of F1 were observed in the range of 0.075-0.300 % w/w as compared to pure oil (MICs 0.130-0.500 % w/w) and standard amikacin (MICs 2-16 μg/ml). These results indicated the potential of nanoemulsions for enhancing the therapeutic efficacy of natural bioactive ingredients such as CEO.

  15. Nanoemulsion-based mucosal adjuvant induces apoptosis in human epithelial cells

    PubMed Central

    Orzechowska, Beata U.; Kukowska-Latallo, Jolanta F.; Coulter, Alexa D.; Szabo, Zsuzsanna; Gamian, Andrzej; Myc, Andrzej

    2015-01-01

    Nanoemulsions (NEs) are adjuvants that enhance antigen penetration of the nasal mucosa, increase cellular uptake of antigens by both epithelial and dendritic cells, and promote the migration of antigen-loaded dendritic cells to regional lymph nodes within 24-hours of vaccine administration. The objective of this study was to elucidate cell death caused by W805EC NE and identify caspases and genes associated with death pathways. Consistent with this aim, we show that exposure of human epithelial cells (EC), both RPMI 2650 and FaDu, to NE results in the activation of caspases (1, 3/7, 6, 8, and 9) and the expression of genes involved in apoptotic as well as authophagy and necrosis pathways. Interestingly, the NE activates caspase 8 which promotes “immunogenic apoptosis”. The rescue assay was employed to investigate the fate of RPMI 2650 cells treated with W805EC NE. After four hour treatment with as little as 0.03% of NE no cells were rescued at 72 hours. Remarkably, immediately after four-hour treatment, the cells morphologically resembled untreated cells and most of the cells were alive. Altogether, these results suggest that NE induces death of human ECs through multiple pathways. Epithelial cell death caused by W805EC may have further implications on antigen uptake, processing, and presentation by DC's. PMID:25817825

  16. Nanoemulsion-based gel formulations of COX-2 inhibitors for enhanced efficacy in inflammatory conditions

    NASA Astrophysics Data System (ADS)

    Lala, R. R.; Awari, N. G.

    2013-01-01

    In the present study, we have investigated the potential of a nanoemulsion (thermodynamically stable transparent dispersions of oil and water having a droplet size <200 nm) formulation for the topical delivery of COX-2 inhibitors using etoricoxib as a model drug. Various oil-in-water nanoemulsions were prepared by the spontaneous emulsification method. The nanoemulsion area was identified by constructing pseudo-ternary phase diagrams. The prepared nanoemulsions were subjected to thermodynamic stability testing. Those that passed these tests were characterized for viscosity, droplet size and differential scanning calorimetry. Topical permeation of etoricoxib through porcine abdominal skin was estimated using the Franz diffusion cell. The ex vivo skin permeation profile of optimized formulations was compared with that of etoricoxib conventional gel. A significant increase in permeability was observed in optimized nanoemulsion formulations consisting of 2 % w/w of etoricoxib, 20 % w/w of Triacetin, 38 % w/w of a surfactant mixture (Cremophor RH 40:Transcutol P), and 42 % w/w of water. The anti-inflammatory effects of this formulation on carrageenan-induced paw edema in rats showed a significant increase in the percent inhibition value (84.61 % with the nanoemulsion gel and 92.30 % with the nanoemulsion) as compared with the conventional gel (69.23 %) after 6 h when compared with etoricoxib conventional gel. These results suggest that nanoemulsions can serve as potential vehicles for improved transdermal delivery of anti-inflammatory agents such as etoricoxib.

  17. Clotrimazole nanoemulsion for malaria chemotherapy. Part I: preformulation studies, formulation design and physicochemical evaluation.

    PubMed

    Borhade, Vivek; Pathak, Sulabha; Sharma, Shobhona; Patravale, Vandana

    2012-07-15

    Clotrimazole was formulated in nanoemulsion based system with the aim of improving its solubility and dissolution, which can further used for its preclinical evaluation. Clotrimazole nanoemulsion was prepared using spontaneous nanoemulsification method. Preformulation studies were preformed to evaluate drug-excipient compatibility, solution state pH stability and pH solubility profile. Solubility of clotrimazole in oils, surfactants and cosurfactants was determined to identify nanoemulsion components. Surfactants and cosurfactants were screened for their ability to emulsify selected oily phases. Phase diagrams were constructed to identify area of nanoemulsification. Influence of clotrimazole and pH of dilution medium on phase behavior were assessed. Drug-excipient chemical compatibility study facilitated to anticipate acid catalyzed degradation of clotrimazole. The pH of nanoemulsion was adjusted to 7.5, which could stabilize clotrimazole. Nanoemulsion composed of Capryol 90, Solutol HS 15 and Gelucire 44/14 enhanced solubility of clotrimazole up to 25mg/ml. The optimized clotrimazole nanoemulsion could withstand the extensive dilution and did not show any phase separation or drug precipitation. The nanoemulsion exhibited mean globule size <25 nm, which was not affected by pH of dilution medium. Dissolution profile of clotrimazole nanoemulsion in various media showed 100% drug release within 15 min irrespective of pH of medium.

  18. Development of a Larvicidal Nanoemulsion with Pterodon emarginatus Vogel Oil

    PubMed Central

    Oliveira, Anna E. M. F. M.; Duarte, Jonatas L.; Amado, Jesus R. R.; Cruz, Rodrigo A. S.; Rocha, Clarice F.; Souto, Raimundo N. P.; Ferreira, Ricardo M. A.; Santos, Karen; da Conceição, Edemilson C.; de Oliveira, Leandra A. R.; Kelecom, Alphonse; Fernandes, Caio P.; Carvalho, José C. T.

    2016-01-01

    Pterodon emarginatus Vogel is a Brazilian species that belongs to the family Fabaceae, popularly known as sucupira. Its oil has several biological activities, including potent larvicidal property against Aedes aegypti. This insect is the vector of dengue, a tropical disease that has been considered a critical health problem in developing countries, such as Brazil. Most of dengue control methods involve larvicidal agents suspended or diluted in water and making active lipophilic natural products available is therefore considered a technological challenge. In this context, nanoemulsions appear as viable alternatives to solve this major problem. The present study describes the development of a novel nanoemulsion with larvicidal activity against A. aegypti along with the required Hydrophile Lipophile Balance determination of this oil. It was suggested that the mechanism of action might involve reversible inhibition of acetylcholinesterase and our results also suggest that the P. emarginatus nanoemulsion is not toxic for mammals. Thus, it contributes significantly to alternative integrative practices of dengue control, as well as to develop sucupira based nanoproducts for application in aqueous media. PMID:26742099

  19. Excipient Nanoemulsions for Improving Oral Bioavailability of Bioactives

    PubMed Central

    Salvia-Trujillo, Laura; Martín-Belloso, Olga; McClements, David Julian

    2016-01-01

    The oral bioavailability of many hydrophobic bioactive compounds found in natural food products (such as vitamins and nutraceuticals in fruits and vegetables) is relatively low due to their low bioaccessibility, chemical instability, or poor absorption. Most previous research has therefore focused on the design of delivery systems to incorporate isolated bioactive compounds into food products. However, a more sustainable and cost-effect approach to enhancing the functionality of bioactive compounds is to leave them within their natural environment, but specifically design excipient foods that enhance their bioavailability. Excipient foods typically do not have functionality themselves but they have the capacity to enhance the functionality of nutrients present in natural foods by altering their bioaccessibility, absorption, and/or chemical transformation. In this review article we present the use of excipient nanoemulsions for increasing the bioavailability of bioactive components from fruits and vegetables. Nanoemulsions present several advantages over other food systems for this application, such as the ability to incorporate hydrophilic, amphiphilic, and lipophilic excipient ingredients, high physical stability, and rapid gastrointestinal digestibility. The design, fabrication, and application of nanoemulsions as excipient foods will therefore be described in this article. PMID:28344274

  20. Study on Tetradecane Nanoemulsion for Thermal Energy Transportation and Storage

    NASA Astrophysics Data System (ADS)

    Fumoto, Koji; Kawaji, Masahiro; Kawanami, Tsuyoshi

    Phase change emulsion (PCE) is a novel fluid used for heat storage and transfer. It has the following characteristics: higher apparent specific heat and higher heat transfer ability in the phase-change temperature range as compared to the conventional single-phase heat transfer fluids. In particular, oil-in-water (O/W) emulsions are latent heat storage materials that have low melting points, thus offering attractive opportunities for heat transfer enhancement and thermal energy transportation and storage. In this paper, milky white oil-in-water emulsions have been formed using water, Tween 80, Span 80, and tetradecane by low-energy emulsification methods (e.g., the phase inversion temperature (PIT) method). The relations between the component ratios of the emulsions and both the particle diameters and the stability of the resulting emulsions have been determined by dynamic light scattering (DLS) and vibration viscometry. The results show that the apparent viscosity of the nanoemulsion is lower than that of an emulsion, which was prepared with the same mixing ratio of surfactant and concentration of phase change material. Moreover, the surfactant concentration is found to contribute to the stability of the phase change nanoemulsion. Results indicate that the phase change nanoemulsion is a promising material for thermal storage applications.

  1. Antioxidant activity and bioaccessibility of size-different nanoemulsions for lycopene-enriched tomato extract.

    PubMed

    Ha, Thi Van Anh; Kim, Saehoon; Choi, Yeri; Kwak, Hae-Soo; Lee, Sung Je; Wen, Jingyuan; Oey, Indrawati; Ko, Sanghoon

    2015-07-01

    Lycopene nanoemulsions were prepared to protect the antioxidant activity and improve the bioaccessibility of lycopene-enriched tomato extract (containing 6% of lycopene) by an emulsification-evaporation method. Lycopene nanoemulsions, with droplet sizes between 100 and 200 nm, exhibited higher anti-radical efficiency and antioxidant activity, than did those smaller than 100 nm. Strong protectability of lycopene in droplets smaller than 100 nm was associated with relatively slower rates of DPPH and ABTS reactions. In vitro bioaccessibility values of lycopene-enriched tomato extract, lycopene nanoemulsions with droplets larger than 100 nm (approximately 150 nm on average), and lycopene nanoemulsions with droplets smaller than 100 nm (69 nm on average) were 0.01, 0.53, and 0.77, respectively. Interestingly, nanoemulsions with droplets smaller than 100 nm showed the highest in vitro bioaccessibility, which could be interpreted as evidence of nanoemulsification enhancing the in vitro bioaccessibility of lycopene.

  2. Biodegradable polymer based encapsulation of neem oil nanoemulsion for controlled release of Aza-A.

    PubMed

    Jerobin, Jayakumar; Sureshkumar, R S; Anjali, C H; Mukherjee, Amitava; Chandrasekaran, Natarajan

    2012-11-06

    Azadirachtin a biological compound found in neem have medicinal and pesticidal properties. The present work reports on the encapsulation of neem oil nanoemulsion using sodium alginate (Na-Alg) by cross linking with glutaraldehyde. Starch and polyethylene glycol (PEG) were used as coating agents for smooth surface of beads. The SEM images showed beads exhibited nearly spherical shape. Swelling of the polymeric beads reduced with coating which in turn decreased the rate of release of Aza-A. Starch coated encapsulation of neem oil nanoemulsion was found to be effective when compared to PEG coated encapsulation of neem oil nanoemulsion. The release rate of neem Aza-A from the beads into an aqueous environment was analyzed by UV-visible spectrophotometer (214 nm). The encapsulated neem oil nanoemulsion have the potential for controlled release of Aza-A. Neem oil nanoemulsion encapsulated beads coated with PEG was found to be toxic in lymphocyte cells.

  3. Ultrasonic emulsification of food-grade nanoemulsion formulation and evaluation of its bactericidal activity.

    PubMed

    Ghosh, Vijayalakshmi; Mukherjee, Amitava; Chandrasekaran, Natarajan

    2013-01-01

    Basil oil (Ocimum basilicum) nanoemulsion was formulated using non-ionic surfactant Tween80 and water by ultrasonic emulsification method. Process of nanoemulsion development was optimized for parameters such as surfactant concentration and emulsification time to achieve minimum droplet diameter with high physical stability. Surfactant concentration was found to have a negative correlation with droplet diameter, whereas emulsification time had a positive correlation with droplet diameter and also with intrinsic stability of the emulsion. Stable basil oil nanoemulsion with droplet diameter 29.3 nm was formulated by ultrasonic emulsification for 15 min. Formulated nanoemulsion was evaluated for antibacterial activity against Escherichia coli by kinetics of killing experiment. Fluorescence microscopy and FT-IR results showed that nanoemulsion treatment resulted alteration in permeability and surface features of bacterial cell membrane.

  4. Transport of lipid nano-droplets through MDCK epithelial cell monolayer.

    PubMed

    Khatri, Pulkit; Shao, Jun

    2017-05-01

    This study aims to investigate the transport of lipid nano-droplets through MDCK epithelial cell monolayer. Nanoemulsions of self-nano-emulsifying drug delivery systems (SNEDDS) labeled with radioactive C18 triglyceride were developed. The effect of droplet size and lipid composition on the transport was investigated. The results showed that the lipid nano-droplet transport through MDCK cell monolayer was as high as 2.5%. The transport of lipid nano-droplets was higher for nanoemulsions of medium chain glycerides than the long chain glycerides. The transport was reduced by more than half when the average lipid nano-droplet size increased from 38nm to 261nm. The droplet size measurement verified the existence of lipid nano-droplets in the receiver chamber only when the nanoemulsions were added to the donor chamber but not when the surfactant or saline solution was added. Cryo-TEM images confirmed the presence of lipid nano-droplets in both donor and receiver chamber at the end of transport study. In conclusion, lipid nano-droplets can be transported through the cell monolayer. This finding may help to further explore the oral and other non-invasive delivery of macromolecules loaded inside SNEDDS.

  5. Organogel-nanoemulsion containing nisin and D-limonene and its antimicrobial activity.

    PubMed

    Bei, Weiya; Zhou, Yan; Xing, Xuya; Zahi, Mohamed Reda; Li, Yuan; Yuan, Qipeng; Liang, Hao

    2015-01-01

    The aim of this study was to investigate a novel delivery system containing D-limonene and nisin by food organogel-nanoemulsion and study its effect on the antimicrobial activity. Organogel-nanoemulsion containing with D-limonene and nisin or without nisin was prepared by a homogenization method. Factors that may affect the droplet size and stability of organogel-nanoemulsion such as pressure and surfactant to oil ratio (SOR) were studied. The average droplet size decreased with pressure, and the organogel-nanoemulsion could achieve good stability at low SOR. Positive effects and outstanding antimicrobial activities of organogel-nanoemulsion containing with D-limonene and nisin were confirmed by minimal inhibitory concentrations comparison, growth curves of bacteria, scanning electron microscopy and determination of cell constituents' release. Furthermore, the organogel-nanoemulsion applied as food preservative in milk also shown excellent antimicrobial performance. Overall, the research described in the current article show that organogel-nanoemulsion containing with D-limonene and nisin may be an effective antimicrobial system for the production and preservation of food.

  6. Quetiapine Nanoemulsion for Intranasal Drug Delivery: Evaluation of Brain-Targeting Efficiency.

    PubMed

    Boche, Mithila; Pokharkar, Varsha

    2016-05-20

    To evaluate the possibility of improved drug delivery of quetiapine fumarate (QTP), a nanoemulsion system was developed for intranasal delivery. Effects of different HLBs of Emalex LWIS 10, PEG 400 and Transcutol P, as co-surfactants, were studied on isotropic region of pseudoternary-phase diagrams of nanoemulsion system composed of capmul MCM (CPM) as oil phase, Tween 80 as surfactant and water. Phase behaviour, globule size, transmission electron microscope (TEM) photographs and brain-targeting efficiency of quetiapine nanoemulsion were investigated. In vitro dissolution study of optimised nanoemulsion formulation, with mean diameter 144 ± 0.5 nm, showed more than twofold increase in drug release as compared with pure drug. According to results of in vivo tissue distribution study in Wistar rats, intranasal administration of QTP-loaded nanoemulsion had shorter T max compared with that of intravenous administration. Higher drug transport efficiency (DTE%) and direct nose-to-brain drug transport (DTP%) was achieved by nanoemulsion. The nanoemulsion system may be a promising strategy for brain-targeted delivery of QTP.

  7. Eugenol improves physical and chemical stabilities of nanoemulsions loaded with β-carotene.

    PubMed

    Guan, Yongguang; Wu, Jine; Zhong, Qixin

    2016-03-01

    Food-grade nanoemulsions are potential vehicles of labile lipophilic compounds such as β-carotene, but much work is needed to improve physical and chemical stabilities. The objective of this work was to study impacts of eugenol on physical and chemical stabilities of β-carotene-loaded nanoemulsions prepared with whey protein and lecithin. The combination of whey protein and lecithin resulted in stable nanoemulsions with eugenol added at 10% mass of soybean oil. Nanoemulsions, especially with eugenol, drastically reduced the degradation of β-carotene during ambient storage, heating at 60 and 80°C, and UV radiation at 254, 302, and 365nm. The droplet diameter of the nanoemulsion without eugenol increased from 153.6 to 227.3nm after 30-day ambient storage, contrasting with no significant changes of nanoemulsions with eugenol. Heating or UV radiation up to 8h did not significantly change the droplet diameter. Therefore, eugenol can be used to improve the stability of nanoemulsion delivery systems.

  8. Organogel-nanoemulsion containing nisin and D-limonene and its antimicrobial activity

    PubMed Central

    Bei, Weiya; Zhou, Yan; Xing, Xuya; Zahi, Mohamed Reda; Li, Yuan; Yuan, Qipeng; Liang, Hao

    2015-01-01

    The aim of this study was to investigate a novel delivery system containing D-limonene and nisin by food organogel-nanoemulsion and study its effect on the antimicrobial activity. Organogel-nanoemulsion containing with D-limonene and nisin or without nisin was prepared by a homogenization method. Factors that may affect the droplet size and stability of organogel-nanoemulsion such as pressure and surfactant to oil ratio (SOR) were studied. The average droplet size decreased with pressure, and the organogel-nanoemulsion could achieve good stability at low SOR. Positive effects and outstanding antimicrobial activities of organogel-nanoemulsion containing with D-limonene and nisin were confirmed by minimal inhibitory concentrations comparison, growth curves of bacteria, scanning electron microscopy and determination of cell constituents’ release. Furthermore, the organogel-nanoemulsion applied as food preservative in milk also shown excellent antimicrobial performance. Overall, the research described in the current article show that organogel-nanoemulsion containing with D-limonene and nisin may be an effective antimicrobial system for the production and preservation of food. PMID:26441935

  9. Formation and stabilization of nanoemulsions using biosurfactants: Rhamnolipids.

    PubMed

    Bai, Long; McClements, David Julian

    2016-10-01

    Nanoemulsions are used in the food, cosmetics, personal care and pharmaceutical industries to provide desirable optical, textural, stability, and delivery characteristics. In many industrial applications, it is desirable to formulate nanoemulsions using natural ingredients so as to develop label-friendly products. Rhamnolipids are biosurfactants isolated from certain microorganisms using fermentation processes. They are glycolipids that have a polar head consisting of rhamnose units and a non-polar tail consisting of a hydrocarbon chain. In this study, the interfacial characteristics of this natural surfactant at medium chain triglyceride (MCT) oil-water interfaces were characterized, and its ability to form nanoemulsions was compared to that of another natural surfactant (quillaja saponins). The influence of rhamnolipid concentration, homogenization pressure, and oil type on the mean droplet diameter of emulsions produced by microfluidization was determined. Rhamnolipids were highly effective at forming small droplets (d32<0.15μm) at low surfactant-to-oil ratios (SOR<1:10) for MCT oil. Rhamnolipids could also be used to form small droplets using long chain triglyceride oils, such as corn and fish oil. Rhamnolipid-coated droplets were stable to aggregation over a range of pH values (5-9), salt concentrations (<100mM NaCl) and temperatures (20-90°C). However, droplet aggregation was observed at highly acidic (pH 2-4) and high ionic strength (200-500mM NaCl) conditions. These effects were attributed to a reduction in electrostatic repulsion at low pH and high salt levels. Rhamnolipid-coated droplets had a high negative charge at neutral pH that decreased in magnitude with decreasing pH. These results indicate that rhamnolipids are effective natural surfactants that may be able to replace synthetic surfactants in certain commercial applications.

  10. Pathogenecity of Pseudomonas aeruginosa in Oreochromis mossambicus and treatment using lime oil nanoemulsion.

    PubMed

    Thomas, John; Thanigaivel, S; Vijayakumar, S; Acharya, Kuntal; Shinge, Dhairyasheel; Seelan, T Samuel Jeba; Mukherjee, Amitava; Chandrasekaran, Natarajan

    2014-04-01

    Fish diseases caused by Pseudomonas aeruginosa, a known pathogenic organism, is responsible for considerable economic losses in the commercial cultivation of Oreochromis mossambicus (Tilapia). The bacteria were injected into healthy fish through intramuscular injection, oral and immersion challenge. Infection was confirmed by histopathological investigation of the infected organs. Lime nanoemulsion was prepared and the effectiveness of the nanoemulsion was studied both in vitro and in vivo by well diffusion assay and in vivo in the artificially infected fish. Results showed that the lime nanoemulsion was effective against the P. aeruginosa infection in O. mossambicus both in vitro and in vivo.

  11. Antimicrobial Activity of Nanoemulsion in Combination with Cetylpyridinium Chloride in Multidrug-Resistant Acinetobacter baumannii

    DTIC Science & Technology

    2013-08-01

    Triton X-100, 25% (vol/vol) soybean oil, and 1% (wt/vol) cetylpyridinium chloride (CPC), showed the best efficacy against A. baumannii in both its...tributyl phosphate, and 16% (vol/vol) soybean oil; nanoemulsion 2 (N2) con- tained 3% (vol/vol) Tween 60, 3% (vol/vol) soy sterol, 30% (vol/vol) soybean ...nanoemulsion 4 (N4) contained 8% (vol/vol) Triton X-100, 8% (vol/vol) tributyl phosphate, 64% (vol/vol) soybean oil, and 50 mol/liter EDTA; nanoemulsion 5 (N5

  12. Interactions Between Antigens and Nanoemulsion Adjuvants: Separation and Characterization Techniques.

    PubMed

    Chan, Michelle Y; Fedor, Dawn M; Phan, Tony; V, Lucien Barnes; Kramer, Ryan M

    2017-01-01

    Determining the association of vaccine components in a formulation is of interest for designing and optimizing well characterized vaccines. Three methods are described to assess interactions between protein antigens and oil-in-water nanoemulsion adjuvants. The methods include (1) ultracentrifugation to measure free versus adjuvant-associated protein, (2) size exclusion chromatography (SEC) to qualitatively assess existing interactions, and (3) Native PAGE as a means to visualize the formulation run in its native state on a polyacrylamide gel. As with many techniques, the methods alone are not definitive, but data from multiple orthogonal assays can provide a more complete picture of protein-adjuvant interactions.

  13. Edible lipid nanoparticles: digestion, absorption, and potential toxicity.

    PubMed

    McClements, David Julian

    2013-10-01

    Food-grade nanoemulsions are being increasingly used in the food and beverage industry to encapsulate, protect, and deliver hydrophobic functional components, such as oil-soluble flavors, colors, preservatives, vitamins, and nutraceuticals. These nanoemulsions contain lipid nanoparticles (radius <100 nm) whose physicochemical characteristics (e.g., composition, dimensions, structure, charge, and physical state) can be controlled by selection of appropriate ingredients and fabrication techniques. Nanoemulsions have a number of potential advantages over conventional emulsions for applications within the food industry: higher stability to particle aggregation and gravitational separation; higher optical transparency; and, increased bioavailability of encapsulated components. On the other hand, there are also some risks associated with consumption of lipid nanoparticles that should be considered before they are widely utilized, such as their ability to alter the fate of bioactive components within the gastrointestinal tract and the potential toxicity of some of the components used in their fabrication (e.g., surfactants and organic solvents). This article provides an overview of the current status of the biological fate and potential toxicity of food-grade lipid nanoparticles suitable for utilization within the food and beverage industry.

  14. Development and Evaluation of a Nanoemulsion Containing Ursolic Acid: a Promising Trypanocidal Agent : Nanoemulsion with Ursolic Acid Against T. cruzi.

    PubMed

    Vargas de Oliveira, Erika Cristina; Carneiro, Zumira Aparecida; de Albuquerque, Sérgio; Marchetti, Juliana Maldonado

    2017-02-21

    Over a hundred years after the discovery of Chagas disease, this ailment continues to affect thousands of people. For more than 40 years, only two drugs have been available to treat it. Ursolic acid is a naturally occurring terpene that has shown a good trypanocidal action. However, the hydrophobicity of this compound presents a challenge for the development of proper delivery systems. Nanostructured systems are a prominent in delivering lipophilic drugs. Thus, a nanoemulsion containing ursolic acid was developed and had its trypanocidal activity and cytotoxicity evaluated. Pseudo-ternary phase diagrams and hydrophilic-lipophilic balance (HLB) system were used in the development. The system was stable throughout 90 days of testing, as evidenced by turbidimetry analysis and measurements of the droplet size (57.3 nm) and polydispersity index (0.24). Fourier transform infrared spectroscopy and mass spectrometry evidenced drug's integrity in the formulation. An in vitro dissolution profile showed 75% of ursolic acid release after 5 min from the nanoemulsion into the alkaline dissolution medium, while only 20% could be released from a physical mixture after 2 h. Trypanocidal activity and cytotoxicity were evaluated on the CL Brener strain and LLC-MK2 (monkey kidney) fibroblast by chlorophenol red-β-D-galactoside (CPRG) method. Biological studies showed that the developed formulation was nontoxic and effective against replicant forms of the parasite. A stable and efficient nanoemulsion could be developed to improve the delivery of a promising drug to treat a threatening illness such as Chagas disease.

  15. Modified Nanoemulsions with Iron Oxide for Magnetic Resonance Imaging

    PubMed Central

    Fan, Yongyi; Guo, Rui; Shi, Xiangyang; Allen, Steven; Cao, Zhengyi; Baker, James R.; Wang, Su He

    2016-01-01

    A nanoemulsion (NE) is a surfactant-based, oil-in-water, nanoscale, high-energy emulsion with a mean droplet diameter of 400–600 nm. When mixed with antigen and applied nasally, a NE acts as a mucosal adjuvant and induces mucosal immune responses. One possible mechanism for the adjuvant effect of this material is that it augments antigen uptake and distribution to lymphoid tissues, where the immune response is generated. Biocompatible iron oxide nanoparticles have been used as a unique imaging approach to study the dynamics of cells or molecular migration. To study the uptake of NEs and track them in vivo, iron oxide nanoparticles were synthesized and dispersed in soybean oil to make iron oxide-modified NEs. Our results show that iron oxide nanoparticles can be stabilized in the oil phase of the nanoemulsion at a concentration of 30 µg/μL and the iron oxide-modified NEs have a mean diameter of 521 nm. In vitro experiments demonstrated that iron oxide-modified NEs can affect uptake by TC-1 cells (a murine epithelial cell line) and reduce the intensity of magnetic resonance (MR) images by shortening the T2 time. Most importantly, in vivo studies demonstrated that iron oxide-modified NE could be detected in mouse nasal septum by both transmission electron microscopy and MR imaging. Altogether these experiments demonstrate that iron oxide-modified NE is a unique tool that can be used to study uptake and distribution of NEs after nasal application. PMID:28335351

  16. X-ray speckle measurements of concentrated nanoemulsions under shear

    NASA Astrophysics Data System (ADS)

    Abidib, Samy; Rogers, Michael; Leheny, Robert; Chen, Kui; Mason, Thomas; Harden, James

    We present in situ X-ray Photon Correlation Spectroscopy (XPCS) measurements of a set of concentrated nanoemulsions subjected to oscillatory shear. The nanoemulsion set contained samples with varying packing fractions of oil droplets (r 20nm) above the jamming transition. In order to study their elasticity, yielding, and flow at various shear amplitudes, we employed stroboscopic coherent X-ray scattering measurements triggered at the maximums of the shear cycle. The degree of correlation between speckle in images taken a full period apart is a direct measurement of particle rearrangements during cycling. A comparison of such XPCS ``echo'' measurements with rheological measurements shows an onset of irreversible particle motion at shear strains below the crossover of the storage and loss moduli, which is typically used to indicate the transition to viscoplastic flow. Moreover, the XPCS echo measurements indicate that particle irreversibility increases rapidly with shear amplitude, in contrast to the comparably smooth transition to yielding shown in bulk rheology measurements. However, the macroscopic yield strain observed in rheology and the microscopic yield strain identified from XPCS, which were strong functions of droplet packing fraction, tracked each other closely.

  17. Successfully Improving Ocular Drug Delivery Using the Cationic Nanoemulsion, Novasorb

    PubMed Central

    Lallemand, Frederic; Daull, Philippe; Benita, Simon; Buggage, Ronald; Garrigue, Jean-Sebastien

    2012-01-01

    Topical ophthalmic delivery of active ingredients can be achieved using cationic nanoemulsions. In the last decade, Novagali Pharma has successfully developed and marketed Novasorb, an advanced pharmaceutical technology for the treatment of ophthalmic diseases. This paper describes the main steps in the development of cationic nanoemulsions from formulation to evaluation in clinical trials. A major challenge of the formulation work was the selection of a cationic agent with an acceptable safety profile that would ensure a sufficient ocular surface retention time. Then, toxicity and pharmacokinetic studies were performed showing that the cationic emulsions were safe and well tolerated. Even in the absence of an active ingredient, cationic emulsions were observed in preclinical studies to have an inherent benefit on the ocular surface. Moreover, clinical trials demonstrated the efficacy and safety of cationic emulsions loaded with cyclosporine A in patients with dry eye disease. Ongoing studies evaluating latanoprost emulsion in patients with ocular surface disease and glaucoma suggest that the beneficial effects on reducing ocular surface damage may also extend to this patient population. The culmination of these efforts has been the marketing of Cationorm, a preservative-free cationic emulsion indicated for the symptomatic treatment of dry eye. PMID:22506123

  18. Size controlled protein nanoemulsions for active targeting of folate receptor positive cells.

    PubMed

    Loureiro, Ana; Nogueira, Eugénia; Azoia, Nuno G; Sárria, Marisa P; Abreu, Ana S; Shimanovich, Ulyana; Rollett, Alexandra; Härmark, Johan; Hebert, Hans; Guebitz, Georg; Bernardes, Gonçalo J L; Preto, Ana; Gomes, Andreia C; Cavaco-Paulo, Artur

    2015-11-01

    Bovine serum albumin (BSA) nanoemulsions were produced by high pressure homogenization with a tri-block copolymer (Poloxamer 407), which presents a central hydrophobic chain of polyoxypropylene (PPO) and two identical lateral hydrophilic chains of polyethylene glycol (PEG). We observed a linear correlation between tri-block copolymer concentration and size - the use of 5mg/mL of Poloxamer 407 yields nanoemulsions smaller than 100nm. Molecular dynamics and fluorescent tagging of the tri-block copolymer highlight their mechanistic role on the size of emulsions. This novel method enables the fabrication of highly stable albumin emulsions in the nano-size range, highly desirable for controlled drug delivery. Folic Acid (FA)-tagged protein nanoemulsions were shown to promote specific folate receptor (FR)-mediated targeting in FR positive cells. The novel strategy presented here enables the construction of size controlled, functionalized protein-based nanoemulsions with excellent characteristics for active targeting in cancer therapy.

  19. Inhibition of colon cancer cell growth by nanoemulsion carrying gold nanoparticles and lycopene

    PubMed Central

    Huang, Rwei-Fen S; Wei, Yi-Jun; Inbaraj, Baskaran Stephen; Chen, Bing-Huei

    2015-01-01

    Lycopene (LP), an important functional compound in tomatoes, and gold nanoparticles (AN), have received considerable attention as potential candidates for cancer therapy. However, the extreme instability and poor bioavailability of LP limits its in vivo application. This study intends to develop a nanoemulsion system incorporating both LP and AN, and to study the possible synergistic effects on the inhibition of the HT-29 colon cancer cell line. LP–nanogold nanoemulsion containing Tween 80 as an emulsifier was prepared, followed by characterization using transmission electron microscopy (TEM), dynamic light scattering (DLS) analysis, ultraviolet spectroscopy, and zeta potential analysis. The particle size as determined by TEM and DLS was 21.3±3.7 nm and 25.0±4.2 nm for nanoemulsion and 4.7±1.1 nm and 3.3±0.6 nm for AN, while the zeta potential of nanoemulsion and AN was −32.2±1.8 mV and −48.5±2.7 mV, respectively. Compared with the control treatment, both the combo (AN 10 ppm plus LP 12 μM) and nanoemulsion (AN 0.16 ppm plus LP 0.4 μM) treatments resulted in a five- and 15-fold rise in early apoptotic cells of HT-29, respectively. Also, the nanoemulsion significantly reduced the expressions of procaspases 8, 3, and 9, as well as PARP-1 and Bcl-2, while Bax expression was enhanced. A fivefold decline in the migration capability of HT-29 cells was observed for this nanoemulsion when compared to control, with the invasion-associated markers being significantly reversed through the upregulation of the epithelial marker E-cadherin and downregulation of Akt, nuclear factor kappa B, pro-matrix metalloproteinase (MMP)-2, and active MMP-9 expressions. The TEM images revealed that numerous nanoemulsion-filled vacuoles invaded cytosol and converged into the mitochondria, resulting in an abnormally elongated morphology with reduced cristae and matrix contents, demonstrating a possible passive targeting effect. The nanoemulsion containing vacuoles were engulfed

  20. Influence of palmitoyl pentapeptide and Ceramide III B on the droplet size of nanoemulsion

    NASA Astrophysics Data System (ADS)

    Sondari, Dewi; Haryono, Agus; Harmami, Sri Budi; Randy, Ahmad

    2010-05-01

    The influence of the Palmitoyl Pentapeptide (PPp) and Ceramide IIIB (Cm III B) as active ingredients on the droplet size of nano-emulsion was studied using different kinds of oil (avocado oil, sweet almond oil, jojoba oil, mineral oil and squalene). The formation of nano-emulsions were prepared in water mixed non ionic surfactant/oils system using the spontaneous emulsification mechanism. The aqueous solution, which consist of water and Tween® 20 as a hydrophilic surfactant was mixed homogenously. The organic solution, which consist of oil and Span® 80 as a lipophilic surfactant was mixed homogenously in ethanol. Ethanol was used as a water miscible solvent, which can help the formation of nano-emulsion. The oil phase (containing the blend of surfactant Span® 80, ethanol, oil and active ingredient) and the aqueous phase (containing water and Tween® 20) were separately prepared at room temperatures. The oil phase was slowly added into aqueous phase under continuous mechanical agitation (18000 rpm). All samples were subsequently homogenized with Ultra-Turrax for 30 minutes. The characterizations of nano-emulsion were carried out using photo-microscope and particle size analyzer. Addition of active ingredients on the formation of nano-emulsion gave smallest droplet size compared without active ingredients addition on the formation of nano-emulsion. Squalene oil with Palmitoyl Pentapeptide (PPm) and Ceramide IIIB (Cm IIIB) gave smallest droplet size (184.0 nm) compared without Palmitoyl Pentapeptide and Ceramide IIIB (214.9 nm), however the droplets size of the emulsion prepared by the other oils still in the range of nano-emulsion (below 500 nm). The stability of nano-emulsion was observed using two methods. In one method, the stability of nano-emulsion was observed for three months at temperature of 5°C and 50°C, while in the other method, the stability nano-emulsion was observed by centrifuged at 12000 rpm for 30 minutes. Nanoemulsion with active ingredient

  1. Parenteral nanoemulsions as promising carriers for brain delivery of risperidone: Design, characterization and in vivo pharmacokinetic evaluation.

    PubMed

    Đorđević, Sanela M; Cekić, Nebojša D; Savić, Miroslav M; Isailović, Tanja M; Ranđelović, Danijela V; Marković, Bojan D; Savić, Saša R; Timić Stamenić, Tamara; Daniels, Rolf; Savić, Snežana D

    2015-09-30

    This paper describes design and evaluation of parenteral lecithin-based nanoemulsions intended for brain delivery of risperidone, a poorly water-soluble psychopharmacological drug. The nanoemulsions were prepared through cold/hot high pressure homogenization and characterized regarding droplet size, polydispersity, surface charge, morphology, drug-vehicle interactions, and physical stability. To estimate the simultaneous influence of nanoemulsion formulation and preparation parameters--co-emulsifier type, aqueous phase type, homogenization temperature--on the critical quality attributes of developed nanoemulsions, a general factorial experimental design was applied. From the established design space and stability data, promising risperidone-loaded nanoemulsions (mean size about 160 nm, size distribution <0.15, zeta potential around -50 mV), containing sodium oleate in the aqueous phase and polysorbate 80, poloxamer 188 or Solutol(®) HS15 as co-emulsifier, were produced by hot homogenization and their ability to improve risperidone delivery to the brain was assessed in rats. Pharmacokinetic study demonstrated erratic brain profiles of risperidone following intraperitoneal administration in selected nanoemulsions, most probably due to their different droplet surface properties (different composition of the stabilizing layer). Namely, polysorbate 80-costabilized nanoemulsion showed increased (1.4-7.4-fold higher) risperidone brain availability compared to other nanoemulsions and drug solution, suggesting this nanoemulsion as a promising carrier worth exploring further for brain targeting.

  2. Anti-inflammatory effects of eugenol nanoemulsion as a topical delivery system.

    PubMed

    Esmaeili, Fariba; Rajabnejhad, Saeid; Partoazar, Ali Reza; Mehr, Shahram Ejtemaei; Faridi-Majidi, Reza; Sahebgharani, Mousa; Syedmoradi, Leila; Rajabnejhad, Mohammad Reza; Amani, Amir

    2016-11-01

    Eugenol is the main constituent of clove oil with anti-inflammatory properties. In this work, for the first time, O/W nanoemulsion of eugenol was designed for the evaluation of anti-inflammatory effects as a topical delivery system. Topical formulations containing 1%, 2% and 4% of eugenol as well as a nanoemulsion system containing 4% eugenol and 0.5% piroxicam were prepared. Further to physicochemical examinations, such as determination of particle size, polydispersity index, zeta potential and physical stability, anti-inflammatory activity was examined in carrageenan-induced paw edema in rats. The optimum formulation was found to contain 2% eugenol (oil phase), 14% Tween 20 (surfactant) and 14% isopropyl alcohol (co-surfactant) in water. Nanoemulsion with polydispersity index of 0.3 and median droplet diameter of 24.4 nm (d50) was obtained. Animal studies revealed that the nanoemulsions exhibited significantly improved anti-inflammatory activity after 1.5 h, compared with marketed piroxicam gel. Additionally, it was shown that increasing the concentration of eugenol did not show higher inhibition of inflammation. Also, the nanoemulsion having piroxicam showed less anti-inflammatory properties compared with the nanoemulsion without piroxicam.

  3. Physiochemical and cytotoxicity study of TPGS stabilized nanoemulsion designed by ultrasonication method.

    PubMed

    Kaur, Khushwinder; Kumar, Raj; Arpita; Goel, Sumit; Uppal, Shivani; Bhatia, Alka; Mehta, S K

    2017-01-01

    The main aim of the present work was to prepare TPGS stabilized D-α-Tocopherol, lemon oil, tween-80, and water nanoemulsion by low cost and highly effective sonication method. The prepared nanoemulsion showed good stability for 60days at variable temperature conditions i.e. 4, 25 and 37°C. The tolerance of the prepared nanoemulsion to salt (50mM-500mM) and pH (pH 2-pH 7.4) was also studied. The morphology and droplet size of pure and quinine loaded nanoemulsion was characterized with transmission electron microscopy. The prepared formulation was transparent and the obtained average particle size ranged between 25nm and 35nm. The nanoemulsion was found to be non toxic. The cell viability study of pure nanoemulsion carried out on Hep G2 cells revealed that the cell viability was 100%. The formulation further exhibited high quinine loading and release capacity with cumulative release up to 76±2% and 65±2% at pH 7.4 and pH 5.5 respectively. The interaction between quinine and vitamins (riboflavin, thiamine and biotin) was also carried out (aqueous medium). The study revealed that riboflavin had strong interaction with quinine and vitamins vis-à-vis thiamine and biotin.

  4. Improving the oral bioavailability of curcumin using novel organogel-based nanoemulsions.

    PubMed

    Yu, Hailong; Huang, Qingrong

    2012-05-30

    Curcumin is a natural bioactive compound with many health-promoting benefits. Its low oral bioavailability limits its application in functional foods. In the present study, novel organogel-based nanoemulsions have been developed for oral delivery of curcumin and improvement of its bioavailability. Recently developed curcumin organogel was used as the oil phase in the curcumin nanoemulsion formulation. Tween 20 was selected as the emulsifier on the basis of maximum in vitro bioaccessibility of curcumin in the nanoemulsion. In vitro lipolysis profile revealed that the digestion of nanoemulsion was significantly faster and more complete than the organogel. Permeation experiments on Caco-2 cell monolayers suggested that digestion-diffusion was the major absorption mechanism for curcumin in the nanoemulsion. Furthermore, in vivo pharmacokinetics analysis on mice confirmed that the oral bioavailability of curcumin in the nanoemulsion was increased by 9-fold compared with unformulated curcumin. This novel formulation approach may also be used for oral delivery of other poorly soluble nutraceuticals with high loading capacity, which has significant impact in functional foods, dietary supplements and pharmaceutical industries.

  5. Multiplexed detection of various breast cancer cells by perfluorocarbon/quantum dot nanoemulsions conjugated with antibodies

    NASA Astrophysics Data System (ADS)

    Bae, Pan Kee; Chung, Bong Hyun

    2014-07-01

    The effective targeting of cancer cell surface antigens is an attractive approach in cancer diagnosis and therapy. Multifunctional nanoprobes with cell-targeting specificity are likely to find important applications in bioanalysis, biomedicine, and clinical diagnosis. In this study, we have fabricated biocompatible perfluorocan/quantum dot nanoemulsions as bimodal imaging nanoprobes for the targeting of breast cancer cells. Perfluorocarbon/quantum dot nanoemulsions conjugated with monoclonal antibodies, as a type of bimodal imaging nanoprobe based on 19 F-MR and optical imaging, have been synthesized and applied for targeted imaging of three different breast cancer cells (SKBR3, MCF-7, MDA-MB 468), respectively. We have shown that the cancer-detection capabilities of antibody-conjugated PFC/QDs nanoemulsions could be successfully applied to target of various breast cancer cells. These modified PFC/QDs nanoemulsions were shown to target the cancer cell surface receptors specially. Conjugation of ligands to nanoemulsions targeting over-expressed cell surface receptors is a promising approach for targeted imaging to tumor cells. We further propose that the PFC/QDs nanoemulsions could be used in targeted imaging of breast cancer cells.

  6. EGFR Targeted Theranostic Nanoemulsion For Image-Guided Ovarian Cancer Therapy

    PubMed Central

    Ganta, Srinivas; Singh, Amit; Kulkarni, Praveen; Keeler, Amanda W.; Piroyan, Aleksandr; Sawant, Rupa R.; Patel, Niravkumar R.; Davis, Barbara; Ferris, Craig; O’Neal, Sara; Zamboni, William; Amiji, Mansoor M.; Coleman, Timothy P.

    2015-01-01

    Purpose Platinum-based therapies are the first line treatments for most types of cancer including ovarian cancer. However, their use is associated with dose-limiting toxicities and resistance. We report initial translational studies of a theranostic nanoemulsion loaded with a cisplatin derivative, myrisplatin and pro-apoptotic agent, C6-ceramide. Methods The surface of the nanoemulsion is annotated with an endothelial growth factor receptor (EGFR) binding peptide to improve targeting ability and gadolinium to provide diagnostic capability for image-guided therapy of EGFR overexpressing ovarian cancers. A high shear microfludization process was employed to produce the formulation with particle size below 150 nm. Results Pharmacokinetic study showed a prolonged blood platinum and gadolinium levels with nanoemulsions in nu/nu mice. The theranostic nanoemulsions also exhibited less toxicity and enhanced the survival time of mice as compared to an equivalent cisplatin treatment. Conclusions Magnetic resonance imaging (MRI) studies indicate the theranostic nanoemulsions were effective contrast agents and could be used to track accumulation in a tumor. The MRI study additionally indicate that significantly more EGFR-targeted theranostic nanoemulsion accumulated in a tumor than non-targeted nanoemulsuion providing the feasibility of using a targeted theranostic agent in conjunction with MRI to image disease loci and quantify the disease progression. PMID:25732960

  7. Mucoadhesive nanoemulsion-based intranasal drug delivery system of olanzapine for brain targeting.

    PubMed

    Kumar, Mukesh; Misra, Ambikanandan; Mishra, A K; Mishra, Pushpa; Pathak, Kamla

    2008-12-01

    The objective of the present study was to optimize olanzapine nanoemulsion (ONE), for nose-to-brain delivery. The nanoemulsions and olanzapine mucoadhesive nanoemulsions (OMNEs) were prepared using water titration method and characterized for technical and electrokinetic properties. Biodistribution of nanoemulsions and olanzapine solution (OS) in the brain and blood of rats following intranasal (intranasal) and intravenous (intravenous) administrations were examined using optimized technetium-labeled ((99m)Tc-labeled) olanzapine formulations. The brain/blood uptake ratios of 0.45, 0.88, 0.80, and 0.04 of OS (intranasal), ONE (intranasal), OMNE (intranasal), ONE (intravenous), respectively, at 0.5 h are indicative of direct nose-to-brain transport (DTP). Higher % drug targeting efficiency (%DTE) and %DTP for mucoadhesive nanoemulsions indicated effective brain targeting of olanzapine among the prepared nanoemulsions. Gamma scintigraphy imaging of the rat brain conclusively demonstrated rapid and larger extent of transport of olanzapine by OMNE (intranasal), when compared with OS (intranasal), ONE (intranasal), and ONE (intravenous), into the rat brain.

  8. Development of EGFR Targeted Nanoemulsion for Imaging and Novel Platinum Therapy of Ovarian Cancer

    PubMed Central

    Ganta, Srinivas; Singh, Amit; Patel, Niravkumar R.; Cacaccio, Joseph; Rawal, Yashesh H.; Davis, Barbara J.; Amiji, Mansoor M.; Coleman, Timothy P.

    2014-01-01

    Purpose Platinum-based chemotherapy is the treatment of choice for malignant epithelial ovarian cancers, but generalized toxicity and platinum resistance limits its use. Theranostic nanoemulsion with a novel platinum prodrug, myrisplatin, and the pro-apoptotic agent, C6-ceramide, were designed to overcome these limitations. Methods The nanoemulsions, including ones with an EGFR binding peptide and gadolinium, were made using generally regarded as safe grade excipients and a high shear microfluidization process. Efficacy was evaluated in ovarian cancer cells, SKOV3, A2780 and A2780CP. Results The nanoemulsion with particle size <150 nm were stable in plasma and parenteral fluids for 24 h. Ovarian cancer cells in vitro efficiently took up the non-targeted and EGFR-targeted nanoemulsions; improved cytotoxicity was observed for the these nanoemulsions with the latter showing a 50-fold drop in the IC50 in SKOV3 cells as compared to cisplatin alone. The addition of gadolinium did not affect cell viability in vitro, but showed relaxation times comparable to Magnevist®. Conclusion The myrisplatin/C6-ceramide nanoemulsion synergistically enhanced in vitro cytotoxicity. An EGFR binding peptide addition further increased in vitro cytotoxicity in EGFR positive cancer cells. The diagnostic version showed MR imaging similar to the clinically relevant Magnevist® and may be suitable as a theranostic for ovarian cancer. PMID:24643932

  9. Body elimination attitude family resemblance in Kuwait.

    PubMed

    Al-Fayez, Ghenaim; Awadalla, Abdelwahid; Arikawa, Hiroko; Templer, Donald I; Hutton, Shane

    2009-12-01

    The purpose of the present study was to determine the family resemblance of attitude toward body elimination in Kuwaiti participants. This study was conceptualized in the context of the theories of moral development, importance of cleanliness in the Muslim religion, cross-cultural differences in personal hygiene practices, previous research reporting an association between family attitudes and body elimination attitude, and health implications. The 24-item Likert-type format Body Elimination Attitude Scale-Revised was administered to 277 Kuwaiti high school students and 437 of their parents. Females scored higher, indicating greater disgust, than the males. Moreover, sons' body elimination attitude correlated more strongly with fathers' attitude (r = .85) than with that of the mothers (r = .64). Daughters' attitude was similarly associated with the fathers' (r = .89) and the mothers' attitude (r = .86). The high correlations were discussed within the context of Kuwait having a collectivistic culture with authoritarian parenting style. The higher adolescent correlations, and in particular the boys' correlation with fathers than with mothers, was explained in terms of the more dominant role of the Muslim father in the family. Public health and future research implications were suggested. A theoretical formulation was advanced in which "ideal" body elimination attitude is relative rather than absolute, and is a function of one's life circumstances, one's occupation, one's culture and subculture, and the society that one lives in.

  10. Development of Food-Grade Curcumin Nanoemulsion and its Potential Application to Food Beverage System: Antioxidant Property and In Vitro Digestion.

    PubMed

    Joung, Hee Joung; Choi, Mi-Jung; Kim, Jun Tae; Park, Seok Hoon; Park, Hyun Jin; Shin, Gye Hwa

    2016-03-01

    Curcumin nanoemulsions (Cur-NEs) were developed with various surfactant concentrations by using high pressure homogenization and finally applied to the commercial milk system. Characterization of Cur-NEs was performed by measuring the droplet size and polydispersity index value at different Tween 20 concentrations. The morphology of the Cur-NEs was observed by confocal laser scanning microscopy and transmission electron microscopy. Antioxidant activity and in vitro digestion ability were tested using 2,2-diphenyl-1-picrylhydrazyl, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt, pH-stat method, and thiobarbituric acid reactive substances assays. Cur-NEs were found to be physically stable for 1 mo at room temperature. The surfactant concentration affects particle formation and droplet size. The mean droplet size decreased from 122 to 90 nm when surfactant concentration increased 3 times. Cur-NEs had shown an effective oxygen scavenging activity. Cur-NEs-fortified milk showed significantly lower lipid oxidation than control (unfortified) milk and milk containing curcumin-free nanoemulsions. These properties make Cur-NEs suitable systems for the beverage industry.

  11. Non-enzymatic glucose detection using magnetic nanoemulsions

    SciTech Connect

    Mahendran, V.; Philip, John

    2014-09-22

    We probe the optical properties and intermolecular interactions in magnetically responsive nanoemulsions in the presence of glucose. The equilibrium interdroplet distance between the emulsion droplets in an one-dimensional array increases by several nanometers in the presence of glucose because of intermolecular hydrogen bonding with sodium dodecyl sulphate molecules at the oil-water interface that gives rise to stretched lamellae-like structure. The observed large red shift in the diffracted Bragg peak (∼50–100 nm) and the linear response in the glucose concentration range of 0.25–25 mM offer a simple, fast, and cost effective non-enzymatic approach for glucose detection.

  12. Design of a phytosphingosine-containing, positively-charged nanoemulsion as a colloidal carrier system for dermal application of ceramides.

    PubMed

    Yilmaz, Erol; Borchert, Hans-Hubert

    2005-05-01

    Positively charged oil/water (o/w) nanoemulsions (PN) are effective vehicles to change the permeability of the skin. This study focused on the preparation and characterisation of phytosphingosine (PS) containing PN (PPN) which serve as colloidal carriers for the dermal application of ceramide IIIB (CIIIB) and the stratum corneum (SC) lipids (PPNSC) such as ceramide III (CIII), cholesterol, and palmitic acid. The investigations were conducted using appropriate emulsification and homogenisation processing conditions to optimise PPNSC with regard to droplet size, physical stability, and solubility of PS, CIII and CIIIB. A decrease in droplet size was observed through eight homogenisation cycles at a pressure of 500 bar and a temperature of 50 degrees C. Above these optimal values, an increase in droplet size was observed. PS and ceramides have low solubilities in oil and water. When Lipoid E-80 (LE80) was added to the oil phase, the solubility of PS and ceramides increased, indicating some interactions shown by DSC measurements. SC lipids and CIIIB could be successfully incorporated in PPN without producing any physical instability. The high stability of PPNSC is probably due to the presence of a hydrophilic (Tween 80) and a lipophilic surfactant (LE80), supported by the lipophilic cosurfactant PS, at the o/w interface. It was shown that PS was responsible for the positive charge and thus supported the high physical stability of PPNSC. This optimised emulsion was selected for further skin absorption evaluation.

  13. Comparison of Nanoemulsion and Aqueous Micelle Systems of Paliperidone for Intranasal Delivery.

    PubMed

    Pidaparthi, Kartika; Suares, Divya

    2016-10-06

    The objective of the study was to develop and compare the efficiency of nanoemulsion and aqueous micelle system of Paliperidone on intranasal administration. Both the formulations were evaluated for physical parameters such as globule size, pH, viscosity, conductivity and in vitro drug release studies. The reduction in spontaneous motor activity of L-dopa and Carbidopa-treated Swiss Albino mice on intranasal administration of nanoemulsion and micellar system of Paliperidone was compared with plain drug suspension. Histopathological evaluation of formulation treated nasal mucosal membrane was performed. Nasal spray device was evaluated for spray pattern and volume per actuation. Globule size of micellar system and nanoemulsion was found to be 16.14 & 38.25 nm, respectively. In vitro release of drug from micellar system was found to be 1.8-fold higher than nanoemulsion. The loading of drug in nanoemulsion was found to be superior (2.5 mg/mL) when compared to micellar system (0.41 mg/mL). The spray pattern of micellar system and nanoemulsion from the device was elliptical and circular, respectively. The locomotor activity of L-dopa and Carbidopa-treated Swiss albino mice was found to be 1096.5±78.49, 551.5±13.43 and 535.5±24.75 counts/min in case of plain drug suspension, micellar system and nanoemulsion, respectively. The intranasal administration of developed formulations showed significant difference (p<0.01) in the locomotor activity when compared to intranasal administration of plain drug. Thus it can be concluded that both the developed formulations have shown improved in vivo activity on intranasal administration and pose great potential for delivery of Paliperidone through intranasal route.

  14. Phase behaviour and formation of fatty acid esters nanoemulsions containing piroxicam.

    PubMed

    Mat Hadzir, Nursyamsyila; Basri, Mahiran; Abdul Rahman, Mohd Basyaruddin; Salleh, Abu Bakar; Raja Abdul Rahman, Raja Noor Zaliha; Basri, Hamidon

    2013-03-01

    Fatty acid esters are long-chain esters, produced from the reaction of fatty acids and alcohols. They possess potential applications in cosmetic and pharmaceutical formulations due to their excellent wetting behaviour at interfaces and a non-greasy feeling when applied on the skin surfaces. This preliminary work was carried out to construct pseudo-ternary phase diagrams for oleyl laurate, oleyl stearate and oleyl oleate with surfactants and piroxicam. Then, the preparation and optimization study via 'One-At-A-Time Approach' were carried out to determine the optimum amount of oil, surfactants and stabilizer using low-energy emulsification method. The results revealed that multi-phase region dominated the three pseudo-ternary phase diagrams. A composition was chosen from each multi-phase region for preparing the nanoemulsions systems containing piroxicam by incorporating a hydrocolloid stabilizer. The results showed that the optimum amount (w/w) of oil for oleyl laurate nanoemulsions was 30 and 20 g (w/w) for oleyl stearate nanoemulsions and oleyl oleate nanoemulsions. For each nanoemulsions system, the amount of mixed surfactants and stabilizer needed for the emulsification to take place was found to be 10 and 0.5 g (w/w), respectively. The emulsification process via high-energy emulsification method successfully produced nano-sized range particles. The nanoemulsions systems passed the centrifugation test and freeze-thaw cycle with no phase failures, and stable for 3 months at various storage temperatures (3°C, 25°C and 45°C). The results proved that the prepared nanoemulsions system cannot be formed spontaneously, and thus, energy input was required to produce nano-sized range particles.

  15. Accelerated Stability Testing of a Clobetasol Propionate-Loaded Nanoemulsion as per ICH Guidelines

    PubMed Central

    Ali, Mohammad Sajid; Alam, Mohammad Sarfaraz; Alam, Nawazish; Anwer, Tarique; Safhi, Mohammed Mohsen A.

    2013-01-01

    The physical and chemical degradation of drugs may result in altered therapeutic efficacy and even toxic effects. Therefore, the objective of this work was to study the stability of clobetasol propionate (CP) in a nanoemulsion. The nanoemulsion formulation containing CP was prepared by the spontaneous emulsification method. For the formulation of the nanoemulsion, Safsol, Tween 20, ethanol, and distilled water were used. The drug was incorporated into an oil phase in 0.05% w/v. The lipophilic nature of the drug led to the O/W nanoemulsion formulation. This was characterized by droplet size, pH, viscosity, conductivity, and refractive index. Stability studies were performed as per ICH guidelines for a period of three months. The shelf life of the nanoemulsion formulation was also determined after performing accelerated stability testing (40°C ± 2°C and 75% ± 5% RH). We also performed an intermediate stability study (30°C ± 2°C/65% RH ± 5% RH). It was found that the droplet size, conductivity, and refractive index were slightly increased, while the viscosity and pH slightly decreased at all storage conditions during the 3-month period. However, the changes in these parameters were not statistically significant (p≥0.05). The degradation (%) of the optimized nanoemulsion of CP was determined and the shelf life was found to be 2.18 years at room temperature. These studies confirmed that the physical and chemical stability of CP were enhanced in the nanoemulsion formulation. PMID:24482775

  16. Layered nanoemulsions as mucoadhesive buccal systems for controlled delivery of oral cancer therapeutics

    PubMed Central

    Gavin, Amy; Pham, Jimmy TH; Wang, Dawei; Brownlow, Bill; Elbayoumi, Tamer A

    2015-01-01

    Oral cavity and oropharyngeal cancers are considered the eighth most common cancer worldwide, with relatively poor prognosis (62% of patients surviving 5 years, after diagnosis). The aim of this study was to develop a proof-of-concept mucoadhesive lozenge/buccal tablet, as a potential platform for direct sustained delivery of therapeutic antimitotic nanomedicines. Our system would serve as an adjuvant therapy for oral cancer patients undergoing full-scale diagnostic and operative treatment plans. We utilized lipid-based nanocarriers, namely nanoemulsions (NEs), containing mixed-polyethoxylated emulsifiers and a tocopheryl moiety–enriched oil phase. Prototype NEs, loaded with the proapoptotic lipophilic drug genistein (Gen), were further processed into buccal tablet formulations. The chitosan polyelectrolyte solution overcoat rendered NE droplets cationic, by acting as a mucoadhesive interfacial NE layer. With approximate size of 110 nm, the positively charged chitosan-layered NE (+25 mV) vs negatively charged chitosan-free/primary aqueous NE (−28 mV) exhibited a controlled-release profile and effective mucoadhesion for liquid oral spray prototypes. When punch-pressed, porous NE-based buccal tablets were physically evaluated for hardness, friability, and swelling in addition to ex vivo tissue mucoadhesion force and retention time measurements. Chitosan-containing NE tablets were found equivalent to primary NE and placebo tablets in compression tests, yet significantly superior in all ex vivo adhesion and in vitro release assays (P≤0.05). Following biocompatibility screening of prototype chitosan-layered NEs, substantial anticancer activity of selected cationic Gen-loaded NE formulations, against two oropahryngeal carcinomas, was observed. The data strongly indicate the potential of such nanomucoadhesive systems as maintenance therapy for oral cancer patients awaiting surgical removal, or postresection of identified cancerous lesions. PMID:25759580

  17. Optimization of Ibuprofen Delivery through Rat Skin from Traditional and Novel Nanoemulsion Formulations.

    PubMed

    Sharif Makhmalzadeh, Behzad; Torabi, Shiva; Azarpanah, Armita

    2012-01-01

    The topical delivery of non-steroidal anti-inflammatory drugs (NSAIDS) such as Ibuprofen has been explored as a potential method of avoiding the first pass effects and the gastric irritation, which may occur when used orally. Ibuprofen is formulated into many topical preparations to reduce the adverse effects and simultaneously avoid the hepatic first-pass metabolism as well. However, it is difficult to obtain an effective concentration through topical delivery of Ibuprofen due to its low skin permeability. The aim of this study was to develop two types of nanoemulsions formulations and focused on the screening of Ibuprofen-loaded nanoemulsions and evaluating the influence of these types of nanoemulsions on the skin permeability of the drug. In both nanoemulsion formulations, oil was similar, but the surfactant and co-surfactant were different. The effect of independent variables on skin permeability parameters was evaluated using full factorial design. Results demonstrate that novel formulations were more effective as skin enhancer than traditional formulation. In case of the novel formulation, any increase in percentage of surfactant and co-surfactant had increasing effect on flux (Jss). On the other hand, the proportion of surfactant/co-surfactant (S/C) demonstrated reverse correlation with Jss. While, in traditional formulations, direct correlation was found between both variables, and Jss. Comparison between two types of nanoemulsion formulations revealed that, novel formulations were more effective as topical Ibuprofen carrier in contrast to traditional type due to lower amounts of surfactant and co-surfactant and less irritating effect.

  18. The effect of nanoemulsion as a carrier of hydrophilic compound for transdermal delivery.

    PubMed

    Tsai, Ming-Jun; Fu, Yaw-Syan; Lin, Yu-Hsuan; Huang, Yaw-Bin; Wu, Pao-Chu

    2014-01-01

    The purpose of the present study was to investigate the effect of nanoemulsions as a carrier vehicle of hydrophilic drug for transdermal delivery. The response surface methodology with a mixture design was used to evaluate the effect of ingredient levels of nanoemulsion formulations including cosurfactant (isopropyl alcohol, 20 ∼ 30%), surfactant (mixed of Brij 30 and Brij 35, 20 ∼ 30%), and distilled-water (34.5 ∼ 50.0%) on properties of the drug-loaded nanoemulsions including physicochemical characters and drug permeability through rat skin. The result showed that the hydrophilic drug in aqueous solution with or without penetration enhancer could not transport across rat skin after 12 h of application. Used nanoemulsions as carrier vehicle, the permeation rate of drug was significantly increased from 0 to 63.23 µg/cm2/h and the lag time was shortened from more than 12 h to about 2.7 ∼ 4.0 h. Moreover, the drug-loaded nanoemulsion formulation also showed physicochemical stability after 3 month storage at 25°C and 40°C.

  19. Effects of tanshinone nanoemulsion and extract on inhibition of lung cancer cells A549.

    PubMed

    Lee, W D; Liang, Y J; Chen, B H

    2016-12-09

    Danshen (Salvia miltiorrhiza), a Chinese medicinal herb, consists of several functional components including tanshinones responsible for prevention of several chronic diseases. This study intends to prepare tanshinone extract and nanoemulsion from danshen and determine their inhibition effect on lung cancer cells A549. A highly stable tanshinone nanoemulsion composed of Capryol 90, Tween 80, ethanol and deionized water with the mean particle size of 14.2 nm was successfully prepared. Tanshinone nanoemulsion was found to be more effective in inhibiting A549 proliferation than tanshinone extract. Both nanoemulsion and extract could penetrate into cytoplasm through endocytosis, with the former being more susceptible than the latter. A dose-dependent response in up-regulation of p-JNK, p53 and p21 and down-regulation of CDK2, cyclin D1 and cyclin E1 expressions was observed with the cell cycle arrested at G0/G1 phase. The cellular microcompartment change of A549 was also investigated. The study demonstrated that tanshinone nanoemulsion may be used as a botanic drug for treatment of lung cancer.

  20. Optimization of ultrasonic emulsification conditions for the production of orange peel essential oil nanoemulsions.

    PubMed

    Hashtjin, Adel Mirmajidi; Abbasi, Soleiman

    2015-05-01

    The aim of the present study was to investigate the influence of emulsifying conditions on some physical and rheological properties of orange peel essential oil (OPEO) in water nanoemulsions. In this regard, using the response surface methodology, the influence of ultrasonication conditions including sonication amplitude (70-100 %), sonication time (90-150 s) and process temperature (5-45 °C) on the mean droplets diameter (Z-average value), polydispersity index (PDI), and viscosity of the OPEO nanoemulsions was evaluated. In addition, the flow behavior and stability of selected nanoemulsions was evaluated during storage (up to 3 months) at different temperatures (5, 25 and 45 °C). Based on the results of the optimization, the optimum conditions for producing OPEO nanoemulsions (Z-average value 18.16 nm) were determined as 94 % (sonication amplitude), 138 s (sonication time) and 37 °C (process temperature). Moreover, analysis of variance (ANOVA) showed high coefficients of determination values (R (2) > 0.95) for the response surface models of the energy input and Z-average. In addition, the flow behavior of produced nanoemulsions was Newtonian, and the effect of time and storage temperature as well as their interactions on the Z-average value was highly significant (P < 0.0001).

  1. Ketoprofen-loaded pomegranate seed oil nanoemulsion stabilized by pullulan: Selective antiglioma formulation for intravenous administration.

    PubMed

    Ferreira, Luana M; Cervi, Verônica F; Gehrcke, Mailine; da Silveira, Elita F; Azambuja, Juliana H; Braganhol, Elizandra; Sari, Marcel H M; Zborowski, Vanessa A; Nogueira, Cristina W; Cruz, Letícia

    2015-06-01

    This study aimed to prepare pomegranate seed oil nanoemulsions containing ketoprofen using pullulan as a polymeric stabilizer, and to evaluate antitumor activity against in vitro glioma cells. Formulations were prepared by the spontaneous emulsification method and different concentrations of pullulan were tested. Nanoemulsions presented adequate droplet size, polydispersity index, zeta potential, pH, ketoprofen content and encapsulation efficiency. Nanoemulsions were able to delay the photodegradation profile of ketoprofen under UVC radiation, regardless of the concentration of pullulan. In vitro release study indicates that nanoemulsions were able to release approximately 95.0% of ketoprofen in 5h. Free ketoprofen and formulations were considered hemocompatible at 1 μg/mL, in a hemolysis study, for intravenous administration. In addition, a formulation containing the highest concentration of pullulan was tested against C6 cell line and demonstrated significant activity, and did not reduce fibroblasts viability. Thus, pullulan can be considered an interesting excipient to prepare nanostructured systems and nanoemulsion formulations can be considered promising alternatives for the treatment of glioma.

  2. Nanoemulsions as novel oral carriers of stiripentol: insights into the protective effect and absorption enhancement

    PubMed Central

    Lu, Rong; Liu, Shan; Wang, Qilin; Li, Xia

    2015-01-01

    Oral administration remains a significant challenge in regards to drugs with serious solubility and stability issues. This article aimed to investigate the suitability of nanoemulsions as oral carriers of stiripentol (STP), an acid-labile drug, for enhancement of stability and bioavailability. STP-loaded nanoemulsions (STP-NEs) were prepared by using a solvent-diffusion/ultrasonication technique. STP-NEs were characterized in a variety of ways such as by particle size, entrapment efficiency, in vitro drug release, and transmission electron microscopy. A bioavailability study was performed in rats after oral administration of either STP-NEs, or commercial formulation (Diacomit®). The resultant nanoemulsions were 146.6 nm in particle size with an entrapment efficiency of 99.47%. It was demonstrated that nanoemulsions significantly improved the biochemical stability and bioavailability of STP. The bioavailability of STP-NEs was up to 206.2% relative to Diacomit®. Nanoemulsions fabricated from poly(ethylene glycol) monooleate/medium-chain triglycerides exhibited excellent performance in drug stabilization and absorption enhancement. The results suggest that STP-NEs are a promising means to solve the problems associated with stability and solubility of STP. PMID:26261418

  3. The Effect of Nanoemulsion as a Carrier of Hydrophilic Compound for Transdermal Delivery

    PubMed Central

    Lin, Yu-Hsuan; Huang, Yaw-Bin; Wu, Pao-Chu

    2014-01-01

    The purpose of the present study was to investigate the effect of nanoemulsions as a carrier vehicle of hydrophilic drug for transdermal delivery. The response surface methodology with a mixture design was used to evaluate the effect of ingredient levels of nanoemulsion formulations including cosurfactant (isopropyl alcohol, 20∼30%), surfactant (mixed of Brij 30 and Brij 35, 20∼30%), and distilled-water (34.5∼50.0%) on properties of the drug-loaded nanoemulsions including physicochemical characters and drug permeability through rat skin. The result showed that the hydrophilic drug in aqueous solution with or without penetration enhancer could not transport across rat skin after 12 h of application. Used nanoemulsions as carrier vehicle, the permeation rate of drug was significantly increased from 0 to 63.23 µg/cm2/h and the lag time was shortened from more than 12 h to about 2.7∼4.0 h. Moreover, the drug-loaded nanoemulsion formulation also showed physicochemical stability after 3 month storage at 25°C and 40°C. PMID:25068531

  4. Antioxidant Effect of Nanoemulsions Containing Extract of Achyrocline satureioides (Lam) D.C.-Asteraceae.

    PubMed

    Zorzi, Giovanni Konat; Caregnato, Fernanda; Moreira, José Cláudio Fonseca; Teixeira, Helder Ferreira; Carvalho, Edison Luis Santana

    2016-08-01

    Ethanolic extracts of Achyrocline satureioides have pronounced antioxidant activity mainly due to the presence of the flavonoid quercetin. However, direct topical application of the extract is not possible due to the presence of high amounts of ethanol. In this sense, nanoemulsions arise as an alternative for topical formulation associating molecules with limited aqueous solubility. This article describes the development of topical nanoemulsions containing either A. satureioides extract or one of its most abundant flavonoid, quercetin. Nanoemulsions composed of octyldodecanol, egg lecithin, water and extract (NEE), or quercetin (NEQ) were prepared by spontaneous emulsification. This process led to monodisperse nanoemulsions presenting a mean droplet size of approximately 200-300 nm, negative zeta potential, and high association efficiency. A study of quercetin skin retention using porcine skin which was performed using a Franz diffusion cell revealed a higher accumulation of quercetin in skin for NEE when compared to NEQ. Finally, the antioxidant activity of formulations was measured by thiobarbituric acid-reactive species and the APPH model. A lower lipoperoxidation for the extract in respect to quercetin solution was observed. However, no difference between NEQ and NEE lipoperoxidation could be seen. The protection against lipoperoxidation by the formulations was also measured in the skin, where lower formation of reactive species was observed after treatment with NEE. In conclusion, this study shows the formulation effect on the physicochemical properties of nanoemulsions as well as on the skin retention and antioxidant activity of quercetin.

  5. Skin intervention of fullerene-integrated nanoemulsion in structural and collagen regeneration against skin aging.

    PubMed

    Ngan, Cheng Loong; Basri, Mahiran; Tripathy, Minaketan; Abedi Karjiban, Roghayeh; Abdul-Malek, Emilia

    2015-04-05

    Despite the fact that intrinsic oxidative stress is inevitable, the extrinsic factor such as ultraviolet radiation enhances reactive oxygen species (ROS) generation resulting in premature skin aging. Nanoemulsion was loaded with fullerene, a strong free radical scavenger, and its efficacy to provide protection and regenerative effect against ROS-induced collagen breakdown in human skin was studied. Stable fullerene nanoemulsions were formulated using high shear homogenization and ultrasonic dispersion technique. An open trial was conducted using fullerene nanoemulsion on skin twice a day for 28 days. The mean collagen score significantly increased (P<0.05) from 36.53±4.39 to 48.69±5.46 with 33.29% increment at the end of the treatment. Biophysical characteristics of skin revealed that skin hydration was increased significantly (P<0.05) from 40.91±7.01 to 58.55±6.08 corneometric units (43.12% increment) and the water was able to contain within the stratum corneum without any increased in transepidermal water loss. In the in vitro safety evaluation, fullerene nanoemulsion showed no acute toxicity on 3T3 fibroblast cell line for 48h and no indication of potential dermal irritation. Hence, the fullerene nanoemulsion may assist in protecting collagen from breakdown with cosmeceutical benefit.

  6. Properties of active gelatin films incorporated with rutin-loaded nanoemulsions.

    PubMed

    Dammak, Ilyes; de Carvalho, Rosemary Aparecida; Trindade, Carmen Sílvia Fávaro; Lourenço, Rodrigo Vinicius; do Amaral Sobral, Paulo José

    2017-05-01

    Physico-chemical, mechanical, barrier, release profiles and antioxidant properties of composite gelatin based-films incorporated with rutin-loaded oil-in-water nanoemulsion, at various concentrations (5, 10, 15, or 20% (based on the weight of the gelatin powder)) were studied. All the gelatin/rutin-loaded nanoemulsion films displayed higher tensile strength and higher elongation at break than the gelatin control film. The composite films did not show significant differences in thickness, color, brightness and transparency. The structural properties evaluated by FTIR showed that the rutin-loaded nanoemulsion achieved complete miscibility within the gelatin matrix. All the gelatin/nanoemulsion films exhibited compact and homogenous microstructure. In addition, these films showed high antioxidant activities monitored by DPPH radical scavenging and reducing power activities. The Korsmeyer-Peppas model described well the rutin release profile. Rutin release was mainly governed by Fickian diffusion with simultaneous interfering swelling and disintegration phenomena. These results indicate that nanoemulsions-in-gelatin systems can function as potential active packaging systems to enhance shelf life of food products and then to provide a high-quality products (fresh/safe).

  7. Chemoprevention of skin cancer using low HLB surfactant nanoemulsion of 5-fluorouracil: a preliminary study.

    PubMed

    Shakeel, Faiyaz; Haq, Nazrul; Al-Dhfyan, Abdullah; Alanazi, Fars K; Alsarra, Ibrahim A

    2015-01-01

    Oral delivery of 5-fluorouracil (5-FU) is difficult due to its serious adverse effects and extremely low bioavailability. Therefore, the aim of present investigation was to develop and evaluate low HLB surfactant nanoemulsion of 5-FU for topical chemoprevention of skin cancer. Low HLB surfactant nanoemulsions were prepared by oil phase titration method. Thermodynamically stable nanoemulsions were characterized in terms of droplet size distribution, zeta potential, viscosity and refractive index. Selected formulations and control were subjected to in vitro skin permeation studies through rat skin using Franz diffusion cells. Optimized formulation F9 was subjected to stability and in vitro cytotoxic studies on melanoma cell lines. Enhancement ratio was found to be 22.33 in formulation F9 compared with control and other formulations. The values of steady state flux and permeability coefficient for formulation F9 were found to be 206.40 ± 14.56 µg cm(-2) h(-1) and 2.064 × 10(-2) ± 0.050 × 10(-2 )cm h(-1), respectively. Optimized formulation F9 was found to be physical stable. In vitro cytotoxicity studies on SK-MEL-5 cancer cells indicated that 5-FU in optimized nanoemulsion is much more efficacious than free 5-FU. From these results, it can be concluded that the developed nanoemulsion might be a promising vehicle for chemoprevention of skin cancer.

  8. Effects of tanshinone nanoemulsion and extract on inhibition of lung cancer cells A549

    NASA Astrophysics Data System (ADS)

    Lee, W. D.; Liang, Y. J.; Chen, B. H.

    2016-12-01

    Danshen (Salvia miltiorrhiza), a Chinese medicinal herb, consists of several functional components including tanshinones responsible for prevention of several chronic diseases. This study intends to prepare tanshinone extract and nanoemulsion from danshen and determine their inhibition effect on lung cancer cells A549. A highly stable tanshinone nanoemulsion composed of Capryol 90, Tween 80, ethanol and deionized water with the mean particle size of 14.2 nm was successfully prepared. Tanshinone nanoemulsion was found to be more effective in inhibiting A549 proliferation than tanshinone extract. Both nanoemulsion and extract could penetrate into cytoplasm through endocytosis, with the former being more susceptible than the latter. A dose-dependent response in up-regulation of p-JNK, p53 and p21 and down-regulation of CDK2, cyclin D1 and cyclin E1 expressions was observed with the cell cycle arrested at G0/G1 phase. The cellular microcompartment change of A549 was also investigated. The study demonstrated that tanshinone nanoemulsion may be used as a botanic drug for treatment of lung cancer.

  9. Physicochemical Characterization and Thermodynamic Studies of Nanoemulsion-Based Transdermal Delivery System for Fullerene

    PubMed Central

    Basri, Mahiran; Tripathy, Minaketan; Abdul-Malek, Emilia

    2014-01-01

    Fullerene nanoemulsions were formulated in palm kernel oil esters stabilized by low amount of mixed nonionic surfactants. Pseudoternary phase diagrams were established in the colloidal system of PKOEs/Tween 80 : Span 80/water incorporated with fullerene as antioxidant. Preformulation was subjected to combination of high and low energy emulsification methods and the physicochemical characteristics of fullerene nanoemulsions were analyzed using electroacoustic spectrometer. Oil-in-water (O/W) nanoemulsions with particle sizes in the range of 70–160 nm were formed. The rheological characteristics of colloidal systems exhibited shear thinning behavior which fitted well into the power law model. The effect of xanthan gum (0.2–1.0%, w/w) and beeswax (1–3%, w/w) in the estimation of thermodynamics was further studied. From the energetic parameters calculated for the viscous flow, a moderate energy barrier for transport process was observed. Thermodynamic study showed that the enthalpy was positive in all xanthan gum and beeswax concentrations indicating that the formation of nanoemulsions could be endothermic in nature. Fullerene nanoemulsions with 0.6% or higher xanthan gum content were found to be stable against creaming and flocculation when exposed to extreme environmental conditions. PMID:25165736

  10. Synthesis of low-melting-point metallic nanoparticles with an ultrasonic nanoemulsion method.

    PubMed

    Han, Z H; Yang, B; Qi, Y; Cumings, J

    2011-05-01

    A one-step, economical nanoemulsion method has been introduced to synthesize low-melting-point metallic nanoparticles. This nanoemulsion technique exploits the extremely high shear rates generated by the ultrasonic agitation and the relatively large viscosity of the continuous phase - polyalphaolefin (PAO), to rupture the molten metal down to diameter below 100 nm. Field's metal nanoparticles and Indium nanoparticles of respective average diameters of 15 nm and 30 nm have been obtained. The nanoparticles size and shape are determined by transmission electron microscopy (TEM). Their phase transition behavior is examined using a differential scanning calorimeter (DSC). It is found that these nanoparticles dispersed in PAO can undergo reversible, melting-freezing phase transition, and exhibit a relatively large hysteresis. The experimental results suggest that the nanoemulsion method is a viable route for mass production of low-melting nanoparticles.

  11. Concurrent study of stability and cytotoxicity of a novel nanoemulsion system - an artificial neural networks approach.

    PubMed

    Seyedhassantehrani, Negar; Karimi, Roya; Tavoosidana, Gholamreza; Amani, Amir

    2017-05-01

    Problems commonly associated with using nanoemulsions are their cytotoxic effects and low stability profiles. Here, for the first time, concentrations of ingredients of a nanoemulsion system were investigated to obtain the most stable nanoemulsion system with the least cytotoxic effect on MCF7 cell line. Artificial neural networks (ANNs) were used to model the experimentally obtained data. Surfactant concentration was found to be the dominant factor in determining the stability - surfactant concentration above a critical point made the preparation unstable, while it appeared not to be influencing the cytotoxicity. Concentration of oil showed a direct relationship to the cytotoxicity with a minimum value required to provide an acceptable safety profile for the preparation. Co-surfactant appeared not to be considerably effective on neither stability nor cytotoxicity. To obtain the optimum preparation with maximum stability and minimum cytotoxicity, surfactant and oil values need to be kept at their maximum and minimum possible, respectively.

  12. Development of Orally Administered γ-Tocotrienol (GT3) Nanoemulsion for Radioprotection

    PubMed Central

    Ledet, Grace A.; Biswas, Shukla; Kumar, Vidya P.; Graves, Richard A.; Mitchner, Demaurian M.; Parker, Taylor M.; Bostanian, Levon A.; Ghosh, Sanchita P.; Mandal, Tarun K.

    2016-01-01

    The purpose of this study was two-fold: (1) to formulate γ-tocotrienol (GT3) in a nanoemulsion formulation as a prophylactic orally administered radioprotective agent; and (2) to optimize the storage conditions to preserve the structural integrity of both the formulation and the compound. γ-tocotrienol was incorporated into a nanoemulsion and lyophilized with lactose. Ultra performance liquid chromatography–mass spectroscopy (UPLC–MS) was used to monitor the chemical stability of GT3 over time, the particle size and ζ potential, and scanning electron microscopy (SEM) were used to study the physical stability of the nanoemulsion. Radioprotective and toxicity studies were performed in mice. The liquid formulation exhibited GT3 degradation at all storage temperatures. Lyophilization, in the presence of lactose, significantly reduced GT3 degradation. Both the liquid and lyophilized nanoemulsions had stable particle size and ζ potential when stored at 4 °C. Toxicity studies of the nanoemulsion resulted in no observable toxicity in mice at an oral dose of 600 mg/kg GT3. The nano-formulated GT3 (300 mg/kg) demonstrated enhanced survival efficacy compared to GT3 alone (200 and 400 mg/kg) in CD2F1 mice exposed to total body gamma radiation. The optimal long-term storage of formulated GT3 is as a powder at −20 °C to preserve drug and formulation integrity. Formulation of GT3 as a nanoemulsion for oral delivery as a prophylactic radioprotectant shows promise and warrants further investigation. PMID:28029115

  13. Cavitation technology - a greener processing technique for the generation of pharmaceutical nanoemulsions.

    PubMed

    Sivakumar, Manickam; Tang, Siah Ying; Tan, Khang Wei

    2014-11-01

    Novel nanoemulsion-based drug delivery systems (DDS) have been proposed as alternative and effective approach for the delivery of various types of poorly water-soluble drugs in the last decade. This nanoformulation strategy significantly improves the cell uptake and bioavailability of numerous hydrophobic drugs by increasing their solubility and dissolution rate, maintaining drug concentration within the therapeutic range by controlling the drug release rate, and reducing systemic side effects by targeting to specific disease site, thus offering a better patient compliance. To date, cavitation technology has emerged to be an energy-efficient and promising technique to generate such nanoscale emulsions encapsulating a variety of highly potent pharmaceutical agents that are water-insoluble. The micro-turbulent implosions of cavitation bubbles tear-off primary giant oily emulsion droplets to nano-scale, spontaneously leading to the formation of highly uniform drug contained nanodroplets. A substantial body of recent literatures in the field of nanoemulsions suggests that cavitation is a facile, cost-reducing yet safer generation tool, remarkably highlighting its industrial commercial viability in the development of designing novel nanocarriers or enhancing the properties of existing pharmaceutical products. In this review, the fundamentals of nanoemulsion and the principles involved in their formation are presented. The underlying mechanisms in the generation of pharmaceutical nanoemulsion under acoustic field as well as the advantages of using cavitation compared to the conventional techniques are also highlighted. This review focuses on recent nanoemulsion-based DDS development and how cavitation through ultrasound and hydrodynamic means is useful to generate the pharmaceutical grade nanoemulsions including the complex double or submicron multiple emulsions.

  14. Enhanced skin permeation of glabridin using eutectic mixture-based nanoemulsion.

    PubMed

    Liu, Chen; Hu, Jin; Sui, Hong; Zhao, Qipeng; Zhang, Xia; Wang, Wenping

    2017-04-01

    This study aimed to investigate the performance of the eutectic mixture of menthol and camphor (1:1, w/w) in nanoemulsion formulation for enhanced transdermal penetration of water-insoluble glabridin. Glabridin solubility in different media was determined by a shaking bottle method. The pseudoternary phase diagrams of the oil phase (drug-loaded eutectic mixture or IPM), the surfactant (Tween 80:glycerol = 2:1, w/w), and water were constructed using the aqueous titration method. The obtained glabridin nanoemulsions were characterized and compared on their particle sizes, in vitro and in vivo penetration performance on rat skin, and storage stability. The nanoemulsion formulation was optimized as 0.25% glabridin, 5% oil phase, 10% Tween 80, 5% glycerol, and 79.75% water. The obtained nanoemulsions showed a mean droplet size of nearly 100 nm for different oil phases. And the stability of both formulations was similar after storage for 3 months. In vitro skin permeation study showed that the nanoemulsion formulation with eutectic mixture exhibited higher skin permeability (28.26 μg/cm(2)) than that with IPM (9.94 μg/cm(2)) or the drug solution formulation (3.82 μg/cm(2)), which was further confirmed by in vivo skin permeation tests on the rat skin and human skin. The eutectic mixture is a preferable solvent for glabridin, and its nanoemulsion can be used as an excellent nanocarrier for enhanced transdermal delivery of glabridin.

  15. Evaluation of a Nanoemulsion Formulation Strategy for Oral Bioavailability Enhancement of Danazol in Rats and Dogs

    PubMed Central

    Devalapally, Harikrishna; Silchenko, Svitlana; Zhou, Feng; McDade, Jessica; Goloverda, Galina; Owen, Albert; Hidalgo, Ismael J.

    2013-01-01

    The objective of this study was to determine whether nanoemulsion formulations constitute a viable strategy to improve the oral bioavailability of danazol, a compound whose poor aqueous solubility limits its oral bioavailability. Danazol-containing oil-in-water nanoemulsions (NE) with and without co-surfactants stearylamine (SA) and deoxycholic acid (DCA) were prepared and characterized. Nanoemulsion droplets size ranging from 238 to 344 nm and with surface charges of −24.8 mV (NE), −26.5 mV (NE-DCA), and +27.8 mV (NE-SA) were reproducibly obtained. Oral bioavailability of danazol in nanoemulsions was compared with other vehicles such as, PEG400, 1% methylcellulose in water (1% MC), Labrafil, and a Labrafil/Tween 80 (9:1) mixture, after intragastric administration to rats and after oral administration of NE-SA, a Labrafil solution, or a Danocrine® tablet to dogs. The absolute bioavailability of danazol was 0.6% (PEG400), 1.2% (1% MC), 6.0% (Labrafil), 7.5% (Labrafil/Tween80), 8.1% (NE-DCA), 14.8% (NE), and 17.4% (NE-SA) in rats, and 0.24% (Danocrine), 6.2% (Labrafil), and 58.7% (NE-SA) in dogs. Overall, danazol bioavailability in any nanoemulsion was higher than any other formulation. Danazol bioavailability from NE and NE-SA was 1.8 to 2.2-fold higher than NE-DCA nanoemulsion and could be due to significant difference in droplet size. PMID:23878097

  16. Ostwald Ripening Stability of Curcumin-Loaded MCT Nanoemulsion: Influence of Various Emulsifiers

    PubMed Central

    Kim, Sun-Hyung; Ji, Yeun-Sun; Lee, Eui-Seok; Hong, Soon-Taek

    2016-01-01

    Curcumin is a flavonoid found in the rhizome of the turmeric plant (Curcuma longa L.) and has recently attracted interest because it has numerous biological functions and therapeutic properties. In the present study, we attempted to incorporate curcumin into medium-chain triglyceride (MCT) nanoemulsions (0.15 wt% curcumin, 10 wt% MCT oil, and 10 wt% emulsifiers) with various emulsifiers [polyoxyethylene (20) sorbitan monolaurate (Tween-20), sorbitan monooleate (SM), and soy lecithin (SL)]. The physicochemical properties of the nanoemulsions including the Ostwald ripening stability were investigated. The initial droplet size was found to be 89.08 nm for the nanoemulsion with 10 wt% Tween-20 (control), and when Tween-20 was partially replaced with SM and SL, the size decreased: 73.43 nm with 4 wt% SM+6 wt% Tween-20 and 67.68 nm with 4 wt% SL+6 wt% Tween-20 (prepared at 15,000 psi). When the nanoemulsions were stored for 28 days at room temperature, the droplet size increased as the storage time increased. The largest increase was observed for the control nanoemulsion, followed by the 4 wt% SL+6 wt% Tween-20 and 4 wt% SM+6 wt% Tween-20 systems. The Turbiscan dispersion stability results strongly supported the relationship between droplet size and storage time. The time-dependent increase in droplet size was attributed to the Ostwald ripening phenomenon. Thus, the Ostwald ripening stability of curcumin-loaded MCT nanoemulsions with Tween-20 was considerably improved by partially replacing the Tween-20 with SM or SL. In addition, curcumin may have acted as an Ostwald ripening inhibitor. PMID:27752506

  17. Preparation, Characterization and Stability Study of Dutasteride Loaded Nanoemulsion for Treatment of Benign Prostatic Hypertrophy

    PubMed Central

    Ali, Mohammad Sajid; Alam, Mohammad Sarfaraz; Alam, Nawazish; Siddiqui, Masoom Raza

    2014-01-01

    Benign prostatic hyperplasia (BPH)is the most common condition in aging men, associated with lower urinary tract symptoms. It is caused due to the augmented levels of the androgen dihydrotestosterone. Dutasteride, a 5α-Reductase inhibitor has been recommended for the treatment of BPH upon oral administration. However, long term oral administration of dutasteride may cause sexual problem in man. Therefore the main objective of this study was to develop transdermal patch having nanoemulsion gel of dutasteride in order to enhance physical and chemical stability and eliminate adverse effect of dutasteride. Optimized nanoemulsion was prepared by aqueous phase-titration method and characterized by droplet size, viscosity and refractive index. In-vitro skin permeation of dutasteride through rat abdominal skin was determined by the Franz diffusion cell.Significant increase in the steady state flux (Jss), permeability coefficient (Kp) and enhancement ratio (Er) was observed in optimized nanoemulsion formulation A1 (p < 0.05). The Er of optimized nanoemulsion A1 was found to be 1.52 times with respect to control which indicates transdermal delivery may be better approach for BPH. Stability studies were performed for the period of 3 months. It was found that droplet size, viscosity and refractive index were slightly increased at refrigerator and room temperature in 3 months period. However, the changes in these parameters were not statistically significant (p ≥ 0.05). The shelf-life of optimized nanoemulsion A1 was found to be 2.18 years at room temperature. These results indicated that both physical as well as chemical stability of dutasteride in nanoemulsion formulation. PMID:25587300

  18. Tunable stability of monodisperse secondary O/W nano-emulsions

    NASA Astrophysics Data System (ADS)

    Vecchione, R.; Ciotola, U.; Sagliano, A.; Bianchini, P.; Diaspro, A.; Netti, P. A.

    2014-07-01

    Stable and biodegradable oil in water (O/W) nano-emulsions can have a huge impact on a wide range of bio-applications, from food to cosmetics and pharmaceuticals. Emulsions, however, are immiscible systems unstable over time; polymer coatings are known to be helpful, but an effective procedure to stabilize monodisperse and biodegradable O/W nano-emulsions is yet to be designed. Here, we coat biodegradable O/W nano-emulsions with a molecular layer of biodegradable polyelectrolytes such as polysaccharides - like chitosan - and polypeptides - like polylysine - and effectively re-disperse and densify the polymer coating at high pressure, thus obtaining monodisperse and stable systems. In particular, focusing on chitosan, our tests show that it is possible to obtain unprecedented ultra-stable O/W secondary nano-emulsions (diameter sizes tunable from ~80 to 160 nm and polydispersion indices below 0.1) by combining this process with high concentrations of polymers. Depending on the polymer concentration, it is possible to control the level of coating that results in a tunable stability ranging from a few weeks to several months. The above range of concentrations has been investigated using a fluorescence-based approach with new insights into the coating evolution.Stable and biodegradable oil in water (O/W) nano-emulsions can have a huge impact on a wide range of bio-applications, from food to cosmetics and pharmaceuticals. Emulsions, however, are immiscible systems unstable over time; polymer coatings are known to be helpful, but an effective procedure to stabilize monodisperse and biodegradable O/W nano-emulsions is yet to be designed. Here, we coat biodegradable O/W nano-emulsions with a molecular layer of biodegradable polyelectrolytes such as polysaccharides - like chitosan - and polypeptides - like polylysine - and effectively re-disperse and densify the polymer coating at high pressure, thus obtaining monodisperse and stable systems. In particular, focusing on

  19. Irreversible shear-induced vitrification of droplets into elastic nanoemulsions by extreme rupturing

    SciTech Connect

    Wilking, James N.; Mason, Thomas G.

    2007-04-15

    Many materials weaken through fracturing when subjected to extreme stresses. By contrast, we show that breaking down repulsive bits of matter dispersed in a viscous liquid can cause a dramatic and irreversible increase in the dispersion's elasticity. Anionically stabilized microscale emulsions subjected to a history of high-pressure microfluidic flow can develop an unusually large elastic modulus as droplets are ruptured to the nanoscale, yielding 'nanonaise'. As the droplet size approaches the Debye screening length, the nanoemulsion vitrifies. Consequently, the onset of elasticity for disordered uniform nanoemulsions can occur at droplet volume fractions far below maximal random jamming of spheres.

  20. Eucalyptus oil nanoemulsion-impregnated chitosan film: antibacterial effects against a clinical pathogen, Staphylococcus aureus, in vitro.

    PubMed

    Sugumar, Saranya; Mukherjee, Amitava; Chandrasekaran, Natarajan

    2015-01-01

    Eucalyptus oil (Eucalyptus globulus) nanoemulsion was formulated using low-and high-energy emulsification methods. Development of nanoemulsion was optimized for system parameters such as emulsifier type, emulsifier concentration, and emulsification methods to obtain a lower droplet size with greater stability. The minimized droplet diameter was achieved using the high-energy method of ultrasonication. Tween 80 was more effective in reducing droplet size and emulsion appearance when compared to Tween 20. Stable nanoemulsion was formulated with Tween 80 as a surfactant, and the particle size was found to be 9.4 nm (1:2 v/v). The eucalyptus oil nanoemulsion was impregnated into chitosan (1%) as a biopolymer in varying concentrations. Further, the film was characterized by moisture content, microscopic study, X-ray diffraction, and Fourier transform infrared spectroscopy. Also, the film with and without nanoemulsion was evaluated against Staphylococcus aureus. The nanoemulsion-impregnated chitosan film showed higher antibacterial activity than chitosan film. These results support the inclusion of nanoemulsion-impregnated chitosan film in wound management studies.

  1. Eucalyptus oil nanoemulsion-impregnated chitosan film: antibacterial effects against a clinical pathogen, Staphylococcus aureus, in vitro

    PubMed Central

    Sugumar, Saranya; Mukherjee, Amitava; Chandrasekaran, Natarajan

    2015-01-01

    Eucalyptus oil (Eucalyptus globulus) nanoemulsion was formulated using low-and high-energy emulsification methods. Development of nanoemulsion was optimized for system parameters such as emulsifier type, emulsifier concentration, and emulsification methods to obtain a lower droplet size with greater stability. The minimized droplet diameter was achieved using the high-energy method of ultrasonication. Tween 80 was more effective in reducing droplet size and emulsion appearance when compared to Tween 20. Stable nanoemulsion was formulated with Tween 80 as a surfactant, and the particle size was found to be 9.4 nm (1:2 v/v). The eucalyptus oil nanoemulsion was impregnated into chitosan (1%) as a biopolymer in varying concentrations. Further, the film was characterized by moisture content, microscopic study, X-ray diffraction, and Fourier transform infrared spectroscopy. Also, the film with and without nanoemulsion was evaluated against Staphylococcus aureus. The nanoemulsion-impregnated chitosan film showed higher antibacterial activity than chitosan film. These results support the inclusion of nanoemulsion-impregnated chitosan film in wound management studies. PMID:26491308

  2. Nanoemulsion as a carrier to improve the topical anti-inflammatory activity of stem bark extract of Rapanea ferruginea

    PubMed Central

    Dal Mas, Juarana; Zermiani, Tailyn; Thiesen, Liliani C; Silveira, Joana LM; da Silva, Kathryn ABS; de Souza, Márcia M; Malheiros, Angela; Bresolin, Tania MB; Lucinda-Silva, Ruth M

    2016-01-01

    The aim of this study was to develop nanoemulsion containing soft extract of stem bark of Rapanea ferruginea to improve the topical delivery and anti-inflammatory activity. The extract of R. ferruginea stem bark was incorporated into the oily phase of the nanoemulsion by the method of phase inversion at low energy. The developed nanoemulsion had an average droplet size of 47.88±8.20 nm and a polydispersibility index of 0.228. Uniformity of size, spherical shape of droplet, and absence of clusters were confirmed by transmission electronic microscopy. The zeta potential was −34.7±1.15 mV. The nanoemulsion showed a moderate degree of skin irritation in the agarose overlay assay in vitro. The content of the extract markers, myrsinoic acids A and B, was 54.10±0.08 and 53.03 μg/g in the formulation, respectively. The formulation demonstrated pseudoplastic and thixotropic rheological behavior. In vitro release of chemical markers was controlled by diffusion mechanism. An extract-loaded nanoemulsion showed a topical anti-inflammatory activity in a croton oil-induced edema ear model, with a decrease in tumor necrosis factor release and myeloperoxidase activity. The nanoemulsion was 160% more efficient than the conventional cream containing 0.13% of the extract. The nanoemulsion showed suitable properties as a carrier for topical use of R. ferruginea extract and the approach for improving the topical anti-inflammatory activity. PMID:27660442

  3. Nanoemulsion of ethanolic extracts of propolis and its antioxidant activity

    NASA Astrophysics Data System (ADS)

    Mauludin, R.; Primaviri, D. S.; Fidrianny, I.

    2015-09-01

    Propolis contains several antioxidant compounds which can be used in topical application to protect skin against free radical and prevent skin cancer and skin aging. Ethanolic extracts of propolis (EEP) provided the greatest antioxidant activity but has very small solubility in water thus was prepared in nanoemulsion (NE). EEP contains steroid/triterpenoid, flavonoid, and saponin. EEP had the value of DPPH scavenging activity 61.14% and IC50 0.41629 ppm. The best NE formulation consisted of 26.25% Kolliphor RH40; 8.75% glycerin; 5% rice bran oil; and 3% EEP. NE was transparent, had particle size of 23.72 nm and polydispersity index of 0.338. Based on TEM morphology, NE was almost spherical and has particle size below 50 nm. NE propolis revealed to be physically stable after stability test within 63 days at 25°C and passed 6 cycles of Freeze and Thaw test without separated. NE propolis reduced around 58% of free radical DPPH similar to antioxidant activity of the original extracts. Antioxidant activity of NE propolis is relatively stable after stored for 6 weeks. NE propolis was proven to be safe by primary irritation test with the value of primary irritation index (OECD) was 0.

  4. Optimization of orange oil nanoemulsion formation by isothermal low-energy methods: influence of the oil phase, surfactant, and temperature.

    PubMed

    Chang, Yuhua; McClements, David Julian

    2014-03-12

    Nanoemulsions are particularly suitable as a platform in the development of delivery systems for lipophilic functional agents. This study shows that transparent orange oil nanoemulsions can be fabricated using an isothermal low-energy method (spontaneous emulsification), which offers the advantage of fabricating flavor oil delivery systems using rapid and simple processing operations. Orange oil nanoemulsions were formed spontaneously by titration of a mixture of orange oil, carrier oil [medium-chain triglyceride (MCT)], and non-ionic surfactant (Tween) into an aqueous solution (5 mM citrate buffer at pH 3.5) with continuous stirring. The oil/emulsion ratio content was kept constant (10 wt %), while the surfactant/emulsion ratio (SER) was varied (2.5-20 wt %). Oil-phase composition (orange oil/MCT ratio), SER, and surfactant type all had an appreciable effect on nanoemulsion formation and stability. Transparent nanoemulsions could be formed under certain conditions: 20% surfactant (Tween 40, 60, or 80) and 10% oil phase (4-6% orange oil + 6-4% MCT). Surfactant type and oil-phase composition also affected the thermal stability of the nanoemulsions. Most of the nanoemulsions broke down after thermal cycling (from 20 to 90 °C and back to 20 °C); however, one system remained transparent after thermal cycling: 20% Tween 80, 5% orange oil, and 5% MCT. The mean droplet size of these nanoemulsions increased over time, but the droplet growth rate was reduced appreciably after dilution. These results have important implications for the design and utilization of nanoemulsions as delivery systems in the food and other industries.

  5. Evaluation of transdermal delivery of nanoemulsions in ex vivo porcine skin using two-photon microscopy and confocal laser-scanning microscopy

    NASA Astrophysics Data System (ADS)

    Choi, Sanghoon; Kim, Jin Woong; Lee, Yong Joong; Delmas, Thomas; Kim, Changhwan; Park, Soyeun; Lee, Ho

    2014-10-01

    This study experimentally evaluates the self-targeting ability of asiaticoside-loaded nanoemulsions compared with nontargeted nanoemulsions in ex vivo experiments with porcine skin samples. Homebuilt two-photon and confocal laser-scanning microscopes were employed to noninvasively examine the transdermal delivery of two distinct nanoemulsions. Prior to the application of nanoemulsions, we noninvasively observed the morphology of porcine skin using two-photon microscopy. We have successfully visualized the distributions of the targeted and nontargeted nanoemulsions absorbed into the porcine skin samples. Asiaticoside-loaded nanoemulsions showed an improved ex vivo transdermal delivery through the stratum corneum compared with nonloaded nanoemulsions. As a secondary measure, nanoemulsions-applied samples were sliced in the depth direction with a surgical knife in order to obtain the complete depth-direction distribution profile of Nile red fluorescence. XZ images demonstrated that asiaticoside-loaded nanoemulsion penetrated deeper into the skin compared with nontargeted nanoemulsions. The basal layer boundary is clearly visible in the case of the asiaticoside-loaded skin sample. These results reaffirm the feasibility of using self-targeting ligands to improve permeation through the skin barrier for cosmetics and topical drug applications.

  6. Production of Nanoemulsions from Palm-Based Tocotrienol Rich Fraction by Microfluidization.

    PubMed

    Goh, Pik Seah; Ng, Mei Han; Choo, Yuen May; Amru, Nasrulhaq Boyce; Chuah, Cheng Hock

    2015-11-05

    In the present study, tocotrienol rich fraction (TRF) nanoemulsions were produced as an alternative approach to improve solubility and absorption of tocotrienols. In the present study, droplet size obtained after 10 cycles of homogenization with increasing pressure was found to decrease from 120 to 65.1 nm. Nanoemulsions stabilized with Tween series alone or emulsifier blend Brij 35:Span 80 (0.6:0.4 w/w) homogenized at 25,000 psi and 10 cycles, produced droplet size less than 100 nm and a narrow size distribution with a polydispersity index (PDI) value lower than 0.2. However blend of Tween series with Span 80 produced nanoemulsions with droplet size larger than 200 nm. This work has also demonstrated the amount of tocols losses in TRF nanoemulsion stabilized Tweens alone or emulsifier blend Brij 35:Span 80 (0.6:0.4 w/w) ranged between 3%-25%. This can be attributed to the interfacial film formed surrounding the droplets exhibited different level of oxidative stability against heat and free radicals created during high pressure emulsification.

  7. Bactericidal action mechanism of negatively charged food grade clove oil nanoemulsions.

    PubMed

    Majeed, Hamid; Liu, Fei; Hategekimana, Joseph; Sharif, Hafiz Rizwan; Qi, Jing; Ali, Barkat; Bian, Yuan-Yuan; Ma, Jianguo; Yokoyama, Wallace; Zhong, Fang

    2016-04-15

    Clove oil (CO) anionic nanoemulsions were prepared with varying ratios of CO to canola oil (CA), emulsified and stabilized with purity gum ultra (PGU), a newly developed succinylated waxy maize starch. Interfacial tension measurements showed that CO acted as a co-surfactant and there was a gradual decrease in interfacial tension which favored the formation of small droplet sizes on homogenization until a critical limit (5:5% v/v CO:CA) was reached. Antimicrobial activity of the negatively charged CO nanoemulsion was determined against Gram positive GPB (Listeria monocytogenes and Staphylococcus aureus) and Gram negative GNB (Escherichia coli) bacterial strains using minimum inhibitory concentration (MIC) and a time kill dynamic method. Negatively charged PGU emulsified CO nanoemulsion showed prolonged antibacterial activities against Gram positive bacterial strains. We concluded that negatively charged CO nanoemulsion droplets self-assemble with GPB cell membrane, and facilitated interaction with cellular components of bacteria. Moreover, no electrostatic interaction existed between negatively charged droplets and the GPB membrane.

  8. Thermal conductivity and viscosity of self-assembled alcohol/polyalphaolefin nanoemulsion fluids

    PubMed Central

    2011-01-01

    Very large thermal conductivity enhancement had been reported earlier in colloidal suspensions of solid nanoparticles (i.e., nanofluids) and more recently also in oil-in-water emulsions. In this study, nanoemulsions of alcohol and polyalphaolefin (PAO) are spontaneously generated by self-assembly, and their thermal conductivity and viscosity are investigated experimentally. Alcohol and PAO have similar thermal conductivity values, so that the abnormal effects, such as particle Brownian motion, on thermal transport could be deducted in these alcohol/PAO nanoemulsion fluids. Small angle neutron-scattering measurement shows that the alcohol droplets are spheres of 0.8-nm radius in these nanoemulsion fluids. Both thermal conductivity and dynamic viscosity of the fluids are found to increase with alcohol droplet loading, as expected from classical theories. However, the measured conductivity increase is very moderate, e.g., a 2.3% increase for 9 vol%, in these fluids. This suggests that no anomalous enhancement of thermal conductivity is observed in the alcohol/PAO nanoemulsion fluids tested in this study. PMID:21711807

  9. Self-assembly formation of palm-based esters nano-emulsion: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Abdul Rahman, Mohd. Basyaruddin; Huan, Qiu-Yi; Tejo, Bimo A.; Basri, Mahiran; Salleh, Abu Bakar; Rahman, Raja Noor Zaliha Abdul

    2009-10-01

    Palm-oil esters (POEs) are unsaturated and non-ionic esters that can be prepared by enzymatic synthesis from palm oil. Their nano-emulsion properties possess great potential to act as drug carrier for transdermal drug delivery system. A ratio of 75:5:20 (water/POEs/Span20) was chosen from homogenous region in the phase diagram of our previous experimental work to undergo molecular dynamics simulation. A 15 ns molecular dynamics simulation of nano-emulsion system (water/POEs/Span20) was carried out using OPLS-AA force field. The aggregations of the oil and surfactant molecules are observed throughout the simulation. After 8 ns of simulation, the molecules start to aggregate to form one spherical micelle where the POEs molecules are surrounded by the non-ionic surfactant (Span20) molecules with an average size of 4.2 ± 0.05 nm. The size of the micelle and the ability of palm-based nano-emulsion to self-assemble suggest that this nano-emulsion can potentially use in transdermal drug delivery system.

  10. Optimization of curcumin nanoemulsion for intranasal delivery using design of experiment and its toxicity assessment.

    PubMed

    Sood, Sumeet; Jain, Kunal; Gowthamarajan, K

    2014-01-01

    The objective of the study was to optimize curcumin nanoemulsion for intranasal delivery using design of experiment. Box-Behnken design was constructed using oil, surfactant and co-surfactant concentration as independent variables and their affect on response y1 (globule size) and y2 (zeta potential) were studied. The ANOVA test identified the significant factors that affected the responses. For globule size, percentage of oil, surfactant and co-surfactant were identified as significant model terms whereas for zeta potential, oil and co-surfactant were found to be significant. Critical factors affecting the responses were identified using perturbation and contour plots. The derived polynomial equation and contour graph aid in predicting the values of selected independent variables for preparation of optimum nanoemulsion with desired properties. Further, 2(4) factorial design was used to study influence of chitosan on particle size and zeta potential. The formulations were subjected to in vitro cytotoxicity using SK-N-SH cell line and nasal ciliotoxicity studies. The developed formulations did not show any toxicity and were safe for intranasal delivery for brain targeting. In vitro diffusion studies revealed that nanoemulsions had a significantly higher release compared to drug solution. Ex vivo diffusion studies were carried out using sheep nasal mucosa fixed onto Franz diffusion cells. Mucoadhesive nanoemulsion showed higher flux and permeation across sheep nasal mucosa.

  11. Antimicrobial eugenol nanoemulsion prepared by gum arabic and lecithin and evaluation of drying technologies.

    PubMed

    Hu, Qiaobin; Gerhard, Hannah; Upadhyaya, Indu; Venkitanarayanan, Kumar; Luo, Yangchao

    2016-06-01

    The purpose of present work was to develop eugenol oil nanoemulsions using gum arabic and lecithin as food grade natural emulsifiers, and study their antimicrobial activity. In addition, our study also evaluated different drying techniques (spray drying and freeze drying) on the morphology and redispersibility of nanoemulsion powders. The optimal fabrication method, physicochemical and structural characterization, stability, and antimicrobial activity were investigated. Results showed that nanoemusions with a particle size of 103.6±7.5nm were obtained by mixing aqueous phase (0.5% gum arabic, 0.5% lecithin, w/v) and eugenol oil (1.25%, w/v), which was premixed with ethanol (as a co-surfactant), followed by high speed homogenization process. The molecular interactions among emulsifiers and eugenol were evidenced by Fourier transform infrared spectroscopy. Buchi B-90 Nano Spray Dryer was evaluated as a powerful tool to obtain ultrafine spherical powders with a size of less than 500nm, compared to flake-like aggregation obtained by freeze-drying. The dried powders exhibited excellent re-dispersibility in water and maintained their physicochemical properties after re-hydration. The nanoemulsions did not adversely affect the antimicrobial activity of eugenol against Listeria monocytogenes and Salmonella Enteritidis. Therefore, the nanoemulsions have the potential to be applied in the food industry as a food preservative or sanitizer.

  12. Preparation and in vitro /ex vivo evaluation of nanoemulsion for transnasal delivery of paliperidone

    NASA Astrophysics Data System (ADS)

    Patel, Mrunali R.; Patel, Mitali H.; Patel, Rashmin B.

    2016-11-01

    Paliperidone was formulated in mucoadhesive nanoemulsion with the aim of improving its solubility and transnasal delivery, which can further utilized for its preclinical evaluation. Solubility of Paliperidone in oils, emulsifiers, co-emulsifiers was determined to identify nanoemulsion components. Emulsifier and co-emulsifiers were screened for their ability to emulsify selected oily phase. Phase diagrams were constructed to identify the area of nanoemulsification. Paliperidone nanoemulsion was formulated using spontaneous nanoemulsification method. The three nanoemulsions (PMNE4, PMNE5, and PMNE6) containing 5.71-6.80 % oleic acid as an oily phase, 47.62-51.63 % labrasol and plurol oleique CC 497 as emulsifier mixture (1:1), 42.86-45.58 % (wt/wt) aqueous phase having a suitable optical transparency of 98.33-99.33 %, globule size of 28.8-43.2 nm and polydispersity of 0.129-0.152 were selected for the incorporation of mucoadhesive polymer. The PMNE6 showed highest flux (5.072 ± 0.13 µg/cm2/min) with enhancement ratio of 1.1 as compared to Paliperidone solution (PS). The diffusion co-efficient of PMNE6 was significantly higher than PMNE5, PMNE4 and PS and followed higuchi model. The formulation was found to be free from nasal cilio toxicity. All formulations were found to be stable for 6 months at room temperature.

  13. Application of an oregano oil nanoemulsion to the control of foodborne bacteria on fresh lettuce.

    PubMed

    Bhargava, Kanika; Conti, Denise S; da Rocha, Sandro R P; Zhang, Yifan

    2015-05-01

    Although antimicrobial activities of plant essential oils are well documented, challenges remain as to their application in fresh produce due to the hydrophobic nature of essential oils. Oregano oil nanoemulsions were formulated with a food-grade emulsifier and evaluated for their efficacy in inactivating the growth of foodborne bacteria on fresh lettuce. Lettuce was artificially inoculated with Listeria monocytogenes, Salmonella Typhimurium and Escherichia coli O157:H7, followed by a one-minute dipping in oregano oil nanoemulsions (0.05% or 0.1%). Samples were stored at 4 °C and enumerated for bacteria at fixed intervals (0 h, 3 h, 24 h, and 72 h). Compared to control, 0.05% nanoemulsion showed an up to 3.44, 2.31, and 3.05 log CFU/g reductions in L. monocytogenes, S. Typhimurium, and E. coli O157:H7, respectively. Up to 3.57, 3.26, and 3.35 log CFU/g reductions were observed on the same bacteria by the 0.1% treatment. Scanning Electron Microscopy (SEM) demonstrated disrupted bacterial membranes due to the oregano oil treatment. The data suggest that applying oregano oil nanoemulsions to fresh produce may be an effective antimicrobial control strategy.

  14. Characteristics of cinnamaldehyde nanoemulsion prepared using APV-high pressure homogenizer and ultra turrax

    NASA Astrophysics Data System (ADS)

    Asmawati, Mustapha, Wan Aida Wan; Yusop, Salma Mohamad; Maskat, Mohamad Yusof; Shamsuddin, Ahmad Fuad

    2014-09-01

    This work aims at determining the optimized parameter to prepare cinnamaldehyde nanoemulsion by using high pressure homogenizer (2 passes at 900 bar) and ultra turrax T25 (12000 rpm for 5 min). Thirteen formulation of cinnamaldehyde nanoemulsion obtained by Design Expert software were prepared at a range of oil and surfactant concentration between of 5% and 10% (v/v). Commercial cinnamaldehyde was blended with deionized water and Tween 80 (emulsifier). The responses used in obtaining the optimized condition were droplet size, polydispersity index (PDI) and emulsion stability (ζ-potential). Result showed that nanoemulsion prepared using 5% (v/v) cinnamaldehyde and 5% (v/v) Tween 80 and homogenized using high pressure homogenizer (APV, Germany) has the smallest size of droplet. The response surface plots for droplet size showed that droplet size (diameter, nm) decreased as the concentration of cinnamaldehyde oil and Tween 80 decreased. However ζ-potential value (mV) showed an increment as the cinnamaldehyde oil concentration decreased and Tween 80 increased. The optimum formulation as predicted by response surface methodology in order to produce a stable cinnamaldehyde nanoemulsion was at 5% cinnamaldehyde oil and 7.11% Tween 80. At this optimized conditions the droplet size and ζ-potential values were 56.56 nm and -4.32 mV, respectively.

  15. Eugenol oil nanoemulsion: antifungal activity against Fusarium oxysporum f. sp. vasinfectum and phytotoxicity on cottonseeds

    NASA Astrophysics Data System (ADS)

    Abd-Elsalam, Kamel A.; Khokhlov, Alexei R.

    2015-02-01

    The current research deals with the formulation and characterization of bio-based oil-in-water nanoemulsion. The formulated eugenol oil nanoemulsion was characterized by dynamic light scattering, stability test, transmission electron microscopy and thin layer chromatography. The nanoemulsion droplets were found to have a Z-average diameter of 80 nm and TEM study reveals the spherical shape of eugenol oil nanoemulsion (EON). The size of the nanoemulsion was found to be physically stable up to more than 1-month when it was kept at room temperature (25 °C). The TEM micrograph showed that the EON was spherical in shape and moderately mono or di-dispersed and was in the range of 50-110 nm. Three concentrations of the nanoformulation were used to evalute the anti-fusarium activity both in vitro and in vivo experiments. SDS-PAGE results of total protein from the Fusarium oxysporum f. sp. vasinfectum (FOV) isolate before and after treatment with eugenol oil nanoemulsion indicate that the content of extra cellular soluble small molecular proteins decreased significantly in EON-treated fungus. Light micrographs of mycelia and spores treated with EON showed the disruption of the fungal structures. The analysis of variance (ANOVA) for Fusarium wilt incidence indicated highly significant ( p = 0.000) effects of concentration, genotype, and their interaction. The difference in wilt incidence between concentrations and control was not the same for each genotype, that is, the genotypes responded differently to concentrations. Effects of three EON concentration on germination percentage, and radicle length, were determined in the laboratory. One very interesting finding in the current study is that cotton genotypes was the most important factors in determining wilt incidence as it accounted for 93.18 % of the explained (model) variation. In vitro experiments were conducted to evaluate the potential phytotoxic effect of three EON concentrations. Concentration, genotype and

  16. Ultrathin cellulose nanosheet membranes for superfast separation of oil-in-water nanoemulsions

    NASA Astrophysics Data System (ADS)

    Zhou, Ke; Zhang, Qiu Gen; Li, Hong Mei; Guo, Nan Nan; Zhu, Ai Mei; Liu, Qing Lin

    2014-08-01

    Oily wastewater is generated in diverse industrial processes, and its treatment has become crucial due to increasing environmental concerns. Herein, novel ultrathin nanoporous membranes of cellulose nanosheets have been fabricated for separation of oil-in-water nanoemulsions. The fabrication approach is facile and environmentally friendly, in which cellulose nanosheets are prepared by freeze-extraction of a very dilute cellulose solution. The as-prepared membranes have a cellulose nanosheet layer with a cut-off of 10-12 nm and a controllable thickness of 80-220 nm. They allow ultrafast water permeation and exhibit excellent size-selective separation properties. A 112 nm-thick membrane has a water flux of 1620 l m-2 h-1 bar-1 and a ferritin rejection of 92.5%. These membranes have been applied to remove oil from its aqueous nanoemulsions successfully, and they show an ultrafast and effective separation of oil-in-water nanoemulsions. The newly developed ultrathin cellulose membranes have a wide application in oily wastewater treatment, separation and purification of nanomaterials.Oily wastewater is generated in diverse industrial processes, and its treatment has become crucial due to increasing environmental concerns. Herein, novel ultrathin nanoporous membranes of cellulose nanosheets have been fabricated for separation of oil-in-water nanoemulsions. The fabrication approach is facile and environmentally friendly, in which cellulose nanosheets are prepared by freeze-extraction of a very dilute cellulose solution. The as-prepared membranes have a cellulose nanosheet layer with a cut-off of 10-12 nm and a controllable thickness of 80-220 nm. They allow ultrafast water permeation and exhibit excellent size-selective separation properties. A 112 nm-thick membrane has a water flux of 1620 l m-2 h-1 bar-1 and a ferritin rejection of 92.5%. These membranes have been applied to remove oil from its aqueous nanoemulsions successfully, and they show an ultrafast and effective

  17. Real-time sono-photoacoustic imaging of gold nanoemulsions

    NASA Astrophysics Data System (ADS)

    Arnal, Bastien; Wei, Chen-Wei; Perez, Camilo; Lombardo, Michael; Pelivanov, Ivan M.; Pozzo, Danilo; O'Donnell, Matthew

    2015-03-01

    Phase transition contrast agents were first introduced in ultrasound (US) in the form of perfluorocarbon droplets. When their size is reduced to the nanoscale, surface tension dominates their stability and high pressure is required to vaporize them using long US emissions at high frequencies. Our group recently showed that nanoemulsion beads (100-300 nm) coated with gold nanopsheres could be used as non-linear contrast agents. Beads can be vaporized with light only, inducing stronger photoacoustic signals by increasing thermal expansion. A photoacoustic cavitation threshold study (US: 1.2 MHz, Laser 750 nm and 10-ns pulse) shows that the vaporization thresholds of NEB-GNS can be greatly reduced using simultaneous light and US excitations. The resulting signal is driven only by the pressure amplitude for a fluence higher than 2.4 mJ/cm2. At diagnostic exposures, it is possible to capture very high signals from the vaporized beads at concentrations reduced to 10 pM with optical absorption smaller than 0.01 cm-1. A real-time imaging mode selectively isolating vaporization signals was implemented on a Verasonics system. A linear US probe (L74, 3 MHz) launched short US bursts before light was emitted from the laser. Vaporization of NEB-GNS resulted in a persistent 30-dB signal enhancement compared to a dye with the same absorption. Specific vaporization signals were retrieved in phantom experiments with US scatterers. This technique, called sonophotoacoustics, has great potential for targeted molecular imaging and therapy using compact nanoprobes with potentially high-penetrability into tissue.

  18. Optimization of homogenization-evaporation process for lycopene nanoemulsion production and its beverage applications.

    PubMed

    Kim, Sang Oh; Ha, Thi Van Anh; Choi, Young Jin; Ko, Sanghoon

    2014-08-01

    Lycopene is a natural antioxidant which has several health benefits. Undesirable oxidation of lycopene compromises its health benefits and also affects the sensory quality of food products containing lycopene. Health benefits associated with lycopene in food preparations can be enhanced by preventing its degradation by incorporating it into the oil phase of an oil-in-water nanoemulsion. In this study, lycopene nanoemulsions were prepared from a low-concentration lycopene extract using an emulsification-evaporation technique. The effects of the concentrations of the lycopene extract (0.015 to 0.085 mg/mL) and emulsifier (0.3 to 0.7 mg/mL), and the number of homogenization cycles (2 to 4) on the droplet size, emulsification efficiency (EE), and nanoemulsion stability were investigated and optimized by statistical analysis using a Box-Behnken design. Regression analysis was used to determine the 2nd-order polynomial model relationship of independent and dependent variables, with multiple regression coefficients (R(2)) of 0.924, 0.933, and 0.872, for the droplet size, EE, and nanoemulsion stability, respectively. Analysis of variance showed that the lycopene extract concentration has the most significant effect on all the response variables. Response surface methodology predicted that a formulation containing 0.085 mg/mL of lycopene extract and 0.7 mg/mL of emulsifier, subjected to 3 homogenization cycles, is optimal for achieving the smallest droplet size, greatest emulsion stability, and acceptable EE. The observed responses were in agreement with the predicted values of the optimized formulation. This study provided important information about the statistical design of lycopene nanoemulsion preparation.

  19. Hyperosmotic nanoemulsions: Development and application of a new antimicrobial treatment for wound care

    NASA Astrophysics Data System (ADS)

    Connell, Sean

    Wound healing is the intricate process that restores function to damaged skin. The process consists of the inflammatory, proliferative and remodeling phases that orchestrate dynamic cellular responses to regenerate the cutaneous barrier. However, microbial contamination of the wound site stimulates a deleterious inflammatory response with the production of endotoxins, exotoxins and proteases that result in secondary injury. The end result is delayed healing, protracted debilitation and increased health care costs. Controlling contamination is critical for proper wound management and reduced burden on the healthcare system. Based on this concern, we developed and applied a new antimicrobial therapeutic that relies on hyperosmotic nanoemulsions (HNE). The biomechanical process consists of a high-energy nanoemulsion component that permeates the protective microbial membrane and a (ii) nonionic hyperosmoticum that facilitates intracellular water extraction to critically dehydrate the pathogen. HNE was shown to be effective against a multitude of pathogens including bacteria, antibiotic-resistant variants, fungi and viruses. Reported non-clinical studies demonstrate that the membrane disrupting nanoemulsion and hyperosmotic component act synergistically to enhance microbicidal activity. Further, results illustrate that pathogen inactivation was rapid as determined by ion and macromolecule leakage assays. Application of HNE in a pre-clinical animal model of wound healing demonstrated the treatment actively promoted healing to reduce treatment times. HNE mitigated wound infection to reduce the inflammatory response and mechanically debrided the wound to facilitate wound closure. Recent work further enhanced the stability of the nanoemulsion component with the addition of surfactant stabilizers using a low-energy spontaneous emulsification process. The refined nanoemulsion composition was stable against physical stressors and long-term storage without disrupting the

  20. Formulation development and optimization of palm kernel oil esters-based nanoemulsions containing sodium diclofenac

    PubMed Central

    Rezaee, Malahat; Basri, Mahiran; Rahman, Raja Noor Zaliha Raja Abdul; Salleh, Abu Bakar; Chaibakhsh, Naz; Karjiban, Roghayeh Abedi

    2014-01-01

    Response surface methodology was employed to study the effect of formulation composition variables, water content (60%–80%, w/w) and oil and surfactant (O/S) ratio (0.17–1.33), as well as high-shear emulsification conditions, mixing rate (300–3,000 rpm) and mixing time (5–30 minutes) on the properties of sodium diclofenac-loaded palm kernel oil esters-nanoemulsions. The two response variables were droplet size and viscosity. Optimization of the conditions according to the four variables was performed for preparation of the nanoemulsions with the minimum values of particle size and viscosity. The results showed that the experimental data could be sufficiently fitted into a third-order polynomial model with multiple regression coefficients (R2) of 0.938 and 0.994 for the particle size and viscosity, respectively. Water content, O/S ratio and mixing time, quadrics of all independent variables, interaction between O/S ratio and mixing rate and between mixing time and rate, as well as cubic term of water content had a significant effect (P<0.05) on the particle size of nanoemulsions. The linear effect of all independent variables, quadrics of water content and O/S ratio, interaction of water content and O/S ratio, as well as cubic term of water content and O/S ratio had significant effects (P<0.05) on the viscosity of all nanoemulsions. The optimum conditions for preparation of sodium diclofenac nanoemulsions were predicted to be: 71.36% water content; 0.69 O/S ratio; 950 rpm mixing rate, and 5 minute mixing time. The optimized formulation showed good storage stability in different temperatures. PMID:24531324

  1. Encapsulation of ω-3 fatty acids in nanoemulsion-based delivery systems fabricated from natural emulsifiers: Sunflower phospholipids.

    PubMed

    Komaiko, Jennifer; Sastrosubroto, Ashtri; McClements, David Julian

    2016-07-15

    Nanoemulsions have considerable potential for encapsulating and delivering ω-3 fatty acids, but they are typically fabricated from synthetic surfactants. This study shows that fish oil-in-water nanoemulsions can be formed from sunflower phospholipids, which have advantages for food applications because they have low allergenicity and do not come from genetically modified organisms. Nanoemulsions containing small droplets (d<150 nm) could be produced using microfluidization, by optimizing phospholipid type and concentration, with the smallest droplets being formed at high phosphatidylcholine levels and at surfactant-to-oil ratios exceeding unity. The physical stability of the nanoemulsions was mainly attributed to electrostatic repulsion, with droplet aggregation occurring at low pH values (low charge magnitude) and at high ionic strengths (electrostatic screening). These results suggest that sunflower phospholipids may be a viable natural emulsifier to deliver ω-3 fatty acids into food and beverage products.

  2. Vitamin E loaded resveratrol nanoemulsion for brain targeting for the treatment of Parkinson’s disease by reducing oxidative stress

    NASA Astrophysics Data System (ADS)

    Pangeni, Rudra; Sharma, Shrestha; Mustafa, Gulam; Ali, Javed; Baboota, Sanjula

    2014-12-01

    Resveratrol, a potent natural antioxidant, possesses a wide range of pharmacological activities, but its oral bioavailability is very low due to its extensive hepatic and presystemic metabolism. The aim of the present study was to formulate a kinetically stable nanoemulsion (o/w) using vitamin E:sefsol (1:1) as the oil phase, Tween 80 as the surfactant and Transcutol P as the co-surfactant for the better management of Parkinson’s disease. The nanoemulsion was prepared by a spontaneous emulsification method, followed by high-pressure homogenization. Ternary phase diagrams were constructed to locate the area of nanoemulsion. The prepared formulations were studied for globule size, zeta potential, refractive index, viscosity, surface morphology and in vitro and ex vivo release. The homogenized formulation, which contained 150 mg ml-1 of resveratrol, showed spherical globules with an average globule diameter of 102 ± 1.46 nm, a least poly dispersity index of 0.158 ± 0.02 and optimal zeta potential values of -35 ± 0.02. The cumulative percentage drug release for the pre-homogenized resveratrol suspension, pre-homogenized nanoemulsion and post-homogenized nanoemulsion were 24.18 ± 2.30%, 54.32 ± 0.95% and 88.57 ± 1.92%, respectively, after 24 h. The ex vivo release also showed the cumulative percentage drug release of 85.48 ± 1.34% at 24 h. The antioxidant activity determined by using a DPPH assay showed high scavenging efficiency for the optimized formulation. Pharmacokinetic studies showed the higher concentration of the drug in the brain (brain/blood ratio: 2.86 ± 0.70) following intranasal administration of the optimized nanoemulsion. Histopathological studies showed decreased degenerative changes in the resveratrol nanoemulsion administered groups. The levels of GSH and SOD were significantly higher, and the level of MDA was significantly lower in the resveratrol nanoemulsion treated group.

  3. Formation and stability of oil-in-water nanoemulsions containing rice bran oil: in vitro and in vivo assessments

    PubMed Central

    2011-01-01

    Background Nanoemulsions have practical application in a multitude of commercial areas, such as the chemical, pharmaceutical and cosmetic industries. Cosmetic industries use rice bran oil in sunscreen formulations, anti ageing products and in treatments for skin diseases. The aim of this study was to create rice bran oil nanoemulsions using low energy emulsification methods and to evaluate their physical stability, irritation potential and moisturising activity on volunteers with normal and diseased skin types. Results The nanoemulsion developed by this phase diagram method was composed of 10% rice bran oil, 10% surfactants sorbitan oleate/PEG-30 castor oil, 0.05% antioxidant and 0.50% preservatives formulated in distilled water. The nanoemulsion was stable over the time course of this study. In vitro assays showed that this formulation has a low irritation potential, and when applied to human skin during in vivo studies, the nanoemulsion improved the skin's moisture and maintained normal skin pH values. Conclusion The results of irritation potential studies and in vivo assessments indicate that this nanoemulsion has potential to be a useful tool to treat skin diseases, such as atopic dermatitis and psoriasis. PMID:21952107

  4. Association efficiency of three ionic forms of oxytetracycline to cationic and anionic oil-in-water nanoemulsions analyzed by diafiltration.

    PubMed

    Orellana, Sandra L; Torres-Gallegos, Cesar; Araya-Hermosilla, Rodrigo; Oyarzun-Ampuero, Felipe; Moreno-Villoslada, Ignacio

    2015-03-01

    The association efficiency of oxytetracycline (OTC) to pharmaceutical available, ionic oil-in-water nanoemulsions is studied. Theoretical mathematical developments allowed us to differentiate by diafiltration (DF) between thermodynamically and kinetically controlled binding of the drug to the nanoemulsions, and relate these important magnitudes to the association efficiency. The nanoemulsions have been prepared by the solvent displacement technique in the presence of cationic and anionic surfactants. The resulting nanoemulsions were stable at 4°C and 25°C for 60 days, have a size of ∼ 200 nm, showing polydispersity indexes ranging between 0.11 and 0.23, and present zeta potentials ranging between -90 and +60 mV, depending on the charge of the surfactants used. The zeta potential of the nanoemulsions influenced the interaction with OTC, having three ionic forms at different pH, namely, cationic, zwitterionic, and anionic. DF proved to be a powerful tool for the quantification of the drug association efficiency, achieving values up to 84%. Furthermore, this technique allowed obtaining different values of the drug fractions reversibly bound (11%-57%) and irreversibly bound (10%-40%) to the nanoemulsions depending on the surfactants used and pH. These findings may be useful for the development of new drug delivery systems, and as routine assays in academia and pharmaceutical industries.

  5. Physicochemical properties of whey protein, lactoferrin and Tween 20 stabilised nanoemulsions: Effect of temperature, pH and salt.

    PubMed

    Teo, Anges; Goh, Kelvin K T; Wen, Jingyuan; Oey, Indrawati; Ko, Sanghoon; Kwak, Hae-Soo; Lee, Sung Je

    2016-04-15

    Oil-in-water nanoemulsions were prepared by emulsification and solvent evaporation using whey protein isolate (WPI), lactoferrin and Tween 20 as emulsifiers. Protein-stabilised nanoemulsions showed a decrease in particle size with increasing protein concentration from 0.25% to 1% (w/w) level with Z-average diameter between 70 and 90 nm. However, larger droplets were produced by Tween 20 (120-450 nm) especially at concentration above 0.75% (w/w). The stability of nanoemulsions to temperature (30-90°C), pH (2-10) and ionic strength (0-500 mM NaCl or 0-90 mM CaCl2) was also tested. Tween 20 nanoemulsions were unstable to heat treatment at 90°C for 15 min. WPI-stabilised nanoemulsions exhibited droplet aggregation near the isoelectric point at pH 4.5 and 5 and they were also unstable at salt concentration above 30 mM CaCl2. These results indicated that stable nanoemulsions can be prepared by careful selection of emulsifiers.

  6. Thermal Degradation and Isomerization of β-Carotene in Oil-in-Water Nanoemulsions Supplemented with Natural Antioxidants.

    PubMed

    Yi, Jiang; Fan, Yuting; Yokoyama, Wallace; Zhang, Yuzhu; Zhao, Liqing

    2016-03-09

    The goal of this study was to see the impact on the retention and isomerization of encapsulated β-carotene (BC) in nanoemulsions fortified with natural antioxidants (α-tocopherol (AT) and l-ascorbic acid (AA)). The physical stability of nanoemulsion, oxidative stability, and isomerization of all-trans-β-carotene (BC) in oil-in-water (O/W) nanoemulsions were determined in the presence or absence of natural antioxidants at 25 and 50 °C at certain intervals of time by high-performance liquid chromatography (HPLC). Sodium caseinate was used as the emulsifier, and corn oil (CO) was more protective than medium-chain triglycerides (MCT) and used for isomerization studies. Mean diameters of control (without antioxidants) and AA- and AT-fortified particles were similar. Mean particle diameter of nanoemulsions increased from 10 to 25 nm at 25 °C and from 40 to 50 nm at 50 °C during 30 days of storage. The isomerization from all-trans-BC to cis-BC isomers was inhibited by antioxidants. The isomerization rates were in the following order: 13-cis-BC > 15-cis-BC > 9-cis-BC. AT had better antioxidant activities than AA in inhibiting BC degradation in O/W nanoemulsions. The results indicated that BC encapsulated in nanoemulsions supplemented with antioxidants could significantly improve BC's chemical stability.

  7. Intentions vs. resemblance: understanding pictures in typical development and autism.

    PubMed

    Hartley, Calum; Allen, Melissa L

    2014-04-01

    Research has debated whether children reflect on artists' intentions when comprehending pictures, or instead derive meaning entirely from resemblance. We explore these hypotheses by comparing how typically developing toddlers and low-functioning children with autism (a population impaired in intentional reasoning) interpret abstract pictures. In Experiment 1, both groups mapped familiar object names onto abstract pictures, however, they related the same representations to different 3-D referents. Toddlers linked abstract pictures with intended referents they did not resemble, while children with autism mapped picture-referent relations based on resemblance. Experiment 2 showed that toddlers do not rely upon linguistic cues to determine intended referential relations. Experiment 3 confirmed that the responding of children with autism was not due to perseveration or associative word learning, and also provided independent evidence of their intention-reading difficulties. We argue that typically developing children derive meaning from the social-communicative intentions underlying pictures when resemblance is an inadequate cue to meaning. By contrast, children with autism do not reflect on artists' intentions and simply relate pictures to whatever they happen to resemble.

  8. Nanotoxicology applied to solid lipid nanoparticles and nanostructured lipid carriers - a systematic review of in vitro data.

    PubMed

    Doktorovova, Slavomira; Souto, Eliana B; Silva, Amélia M

    2014-05-01

    Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) were developed as alternative to other colloidal carriers. They were designed to overcome lipid nanoemulsions and liposomes in stability and ability to control the release of an encapsulated substance, and at the same time to be better tolerated than polymeric nanoparticles. Since the patenting of SLN discovery, large amount of data became available on the behaviour of these systems in vitro. SLN/NLC have many prerequisites to be a well tolerated carrier - the currently available data seem to confirm it, but there are also some contradictory results. In this review, we collected the available data from cytotoxicity, oxidative stress and hemocompatibility studies in vitro and analysed their outcomes. We also provide a summary of the available data in a form of reference table.

  9. Characterization of Stability and Nasal Delivery Systems for Immunization with Nanoemulsion-Based Vaccines

    PubMed Central

    Nigavekar, Shraddha S.; Bielinska, Anna U.; Mank, Nicholas; Shetty, Abhishek M.; Suman, Julie; Knowlton, Jessica; Myc, Andrzej; Rook, Trent; Baker, James R.

    2010-01-01

    Abstract Background Many infectious diseases that cause significant morbidity and mortality, especially in the developing world, could be preventable through vaccination. The effort to produce safe, thermally stable, and needle-free mucosal vaccines has become increasingly important for global health considerations. We have previously demonstrated that a thermally stable nanoemulsion, a mucosal adjuvant for needle-free nasal immunization, is safe and induces protective immunity with a variety of antigens, including recombinant protein. The successful use of nanoemulsion-based vaccines, however, poses numerous challenges. Among the challenges is optimization of the formulation to maintain thermal stability and potency and another is accuracy and efficiency of dispensing the vaccines to the nasal mucosa in the anterior and turbinate region of the nasal cavity or potentially to the nasopharynx-associated lymphoid tissue. Methods We have examined the effects of different diluents [phosphate-buffered saline (PBS) and 0.9% NaCl] on the stability and potency of nanoemulsion-based vaccines. In addition, we have determined the efficiency of delivering them using commercially available nasal spray devices (Pfeiffer SAP-62602 multidose pump and the BD Hypak SCF 0.5 ml unit dose AccusprayTM). Results We report the stability and potency of PBS–diluted ovalbumin–nanomeulsion mixtures for up to 8 months and NaCl-diluted mixtures up to 6 months when stored at room temperature. Significant differences in spray characteristics including droplet size, spray angle, plume width, and ovality ratios were observed between the two pumps. Further, we have demonstrated that the nanoemulsion-based vaccines are not physically or chemically altered and retain potency following actuation with nasal spray devices. Using either device, the measured spray characteristics suggest deposition of nanoemulsion-based vaccines in inductive tissues located in the anterior region of the nasal cavity

  10. In Vitro Study on Antihypertensive and Antihypercholesterolemic Effects of a Curcumin Nanoemulsion

    PubMed Central

    Rachmawati, Heni; Soraya, Irene Surya; Kurniati, Neng Fisheri; Rahma, Annisa

    2016-01-01

    Atherosclerosis and hypertension can potentially progess into dangerous cardiovascular diseases such as myocardial infarction and stroke. Statins are widely used to lower cholesterol levels while antihypertensive agents such as captopril are widely prescribed to treat high blood pressure. Curcumin, a phenolic compound isolated from Curcuma domestica, has been proven effective for a broad spectrum of diseases, including hypertension and hypercholesterolemia. Therefore, curcumin is quite promising as an alternative therapeutic compound. Our previous studies have proven a significant increase in physical properties, bioavailability, and stability of curcumin when encapsulated in a nanoemulsion. The purpose of this study was to assess the ability of the nanoemulsion in enhancing curcumin activity as a antihypertensive and antihypercholesterolemic agent. The formulation and preparation method of the curcumin nanoemulsion have been developed in our previous study. Physical characterization was performed, including measurement of droplet size, polidispersity index, zeta potential, entrapment efficiency, and loading capacity. Antihypertensive activity of curcumin was evaluated by determining Angiotensin Converting Enzyme (ACE) inhibition in vitro. A substrate for ACE, hippuryl-L-histidyl-L-leucine was allowed to react with ACE, resulting in hippuric acid formation as the product. The degree of ACE inhibition by curcumin was represented by the amount of hippuric acid formed. Antihypercholesterolemic activity of curcumin was studied using the HMG-CoA reductase assay equipped with a 96-well UV plate. This assay was based on the spectrophotometric measurement of the decrease in absorbance which represents the oxidation of NADPH by the catalytic subunit of 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) in the presence of the substrate HMG-CoA. Curcumin is known to have no significant difference in inhibiting ACE compared to Captopril, but when it was incorporated in the self

  11. A hypothesis to explain accuracy of wasp resemblances.

    PubMed

    Boppré, Michael; Vane-Wright, Richard I; Wickler, Wolfgang

    2017-01-01

    Mimicry is one of the oldest concepts in biology, but it still presents many puzzles and continues to be widely debated. Simulation of wasps with a yellow-black abdominal pattern by other insects (commonly called "wasp mimicry") is traditionally considered a case of resemblance of unprofitable by profitable prey causing educated predators to avoid models and mimics to the advantage of both (Figure 1a). However, as wasps themselves are predators of insects, wasp mimicry can also be seen as a case of resemblance to one's own potential antagonist. We here propose an additional hypothesis to Batesian and Müllerian mimicry (both typically involving selection by learning vertebrate predators; cf. Table 1) that reflects another possible scenario for the evolution of multifold and in particular very accurate resemblances to wasps: an innate, visual inhibition of aggression among look-alike wasps, based on their social organization and high abundance. We argue that wasp species resembling each other need not only be Müllerian mutualists and that other insects resembling wasps need not only be Batesian mimics, but an innate ability of wasps to recognize each other during hunting is the driver in the evolution of a distinct kind of masquerade, in which model, mimic, and selecting agent belong to one or several species (Figure  1b). Wasp mimics resemble wasps not (only) to be mistaken by educated predators but rather, or in addition, to escape attack from their wasp models. Within a given ecosystem, there will be selection pressures leading to masquerade driven by wasps and/or to mimicry driven by other predators that have to learn to avoid them. Different pressures by guilds of these two types of selective agents could explain the widely differing fidelity with respect to the models in assemblages of yellow jackets and yellow jacket look-alikes.

  12. Recent Techniques and Patents on Solid Lipid Nanoparticles as Novel Carrier for Drug Delivery.

    PubMed

    Khatak, Sunil; Dureja, Harish

    2015-01-01

    The various approaches have been utilized in the treatment of a variety of diseases by applying drug delivery system such as polymeric nanoparticles, self-emulsifying delivery systems, liposomes, microemulsions and micellar solutions. Recently, solid lipid nanoparticles (SLNs), nanostructured lipid carriers (NLCs) and lipid-drug conjugates (LDCs) have been exploited as a carrier of lipophilic and hydrophilic/amphiphilic substances for invasive and non-invasive routes of delivery. SLNs are colloidal drug carrier system and are like nanoemulsion, however, the lipid content in SLNs is solid in nature. These novel type of lipid nanoparticles with solid matrix offers to develop new prototype therapeutics in drug delivery, which could be used for controlled release, drug targeting, gene therapy, physical and chemical stability and site-specific drug delivery and thereby attracted the research groups worldwide. This manuscript overviews the recent patents, advantages, formulation techniques, stability aspects and applications of SLNs.

  13. Dense Cluster Formation during Aggregation and Gelation of Attractive Slippery Nanoemulsion Droplets

    SciTech Connect

    Wilking, J.N.; Graves, S.M.; Chang, C.B.; Meleson, K.; Mason, T.G.; Lin, M.Y.

    2006-01-13

    Using time-resolved small angle neutron scattering, we have measured the wave-number-dependent structure factor S(q) of monodisperse nanoemulsions that aggregate and gel after we suddenly turn on a strong, short-range, slippery attraction between the droplets. At high q, peaks in S(q) appear as dense clusters of droplets form, and S(q) increases strongly toward low q, as these dense clusters become locked into a rigid gel network, despite the fluidity of the films between the droplets. The long-time high-q structure of nanoemulsion gels formed by slippery diffusion-limited cluster aggregation is universal in shape and remarkably independent of the droplet volume fraction, {phi}.

  14. The release and analgesic activities of morphine and its ester prodrug, morphine propionate, formulated by water-in-oil nanoemulsions.

    PubMed

    Wang, Jhi-Joung; Hung, Chi-Feng; Yeh, Chi-Hui; Fang, Jia-You

    2008-05-01

    In this study, we examined the feasibility of water-in-oil (w/o) nanoemulsions as sustained-release systems for morphine, following subcutaneous administration in rats. The ester prodrug of morphine, morphine propionate (MPR), was also utilized in this study. A variety of nanoemulsions were prepared using soybean oil or sesame oil as the external phase. Span 80, Tween 80, Plurol diisostearique and Brij 98 were used as surfactants in the w/o interface. The effects of the formulation variables on the characteristics of the nanoemulsions, such as inner droplet size, zeta potential, viscosity, drug partitioning, drug release and pharmacological effect, were evaluated. Mean sizes of nanoemulsions of 50-200 nm were obtained. The initial surface charge of the emulsions was found to be around - 3 to - 4 mV, except that the Plurol-containing vehicle showed a highly negative charge of - 23 mV. The loading of morphine and MPR into the nanoemulsions resulted in slower sustained-release behavior as compared with the drug/prodrug in aqueous solution. The rate of morphine released across the membrane was found to be highly dependent on the choice of oil and surfactant types. On the other hand, discrepancies in MPR release rates among the various formulations were minimal. The in vivo analgesic duration of morphine by targeting the drug to central nerve system could be prolonged from 1 to 3 h by incorporating the drug into nanoemulsions using Span 80 or Tween 80 as the surfactant. These results suggest that w/o nanoemulsions are well suited to provide sustained morphine delivery for therapeutic purposes.

  15. Ultrasonic emulsification of parenteral valproic acid-loaded nanoemulsion with response surface methodology and evaluation of its stability.

    PubMed

    Tan, Suk Fei; Masoumi, Hamid Reza Fard; Karjiban, Roghayeh Abedi; Stanslas, Johnson; Kirby, Brian P; Basri, Mahiran; Basri, Hamidon Bin

    2016-03-01

    Response surface methodology (RSM) was used to optimize the formulation of a nanoemulsion for central delivery following parenteral administration. A mixture of medium-chain triglyceride (MCT) and safflower seed oil (SSO) was determined as a sole phase from the emulsification properties. Similarly, a natural surfactant (lecithin) and non-ionic surfactant (Tween 80) (ratio 1:2) were used in the formulation. A central composite design (CCD) with three-factor at five-levels was used to optimize the processing method of high energy ultrasonicator. Effects of pre-sonication ultrasonic intensity (A), sonication time (B), and temperature (C) were studied on the preparation of nanoemulsion loaded with valproic acid. Influence of the aforementioned specifically the effects of the ultrasonic processing parameters on droplet size and polydispersity index were investigated. From the analysis, it was found that the interaction between ultrasonic intensity and sonication time was the most influential factor on the droplet size of nanoemulsion formulated. Ultrasonic intensity (A) significantly affects the polydispersity index value. With this optimization method, a favorable droplet size of a nanoemulsion with reasonable polydispersity index was able to be formulated within a short sonication time. A valproic acid loaded nanoemulsion can be obtained with 60% power intensity for 15 min at 60 °C. Droplet size of 43.21±0.11 nm with polydispersity index of 0.211 were produced. The drug content was then increased to 1.5%. Stability study of nanoemulsion containing 1.5% of valproic acid had a good stability as there are no significant changes in physicochemical aspects such as droplet size and polydispersity index. With the characteristisation study of pH, viscosity, transmission electron microscope (TEM) and stability assessment study the formulated nanoemulsion has the potential to penetrate blood-brain barrier in the treatment of epilepsy.

  16. ASL Nominal Constructions Involving Signs That Resemble Pronouns

    ERIC Educational Resources Information Center

    Sloan, Vivion Smith

    2013-01-01

    This dissertation examines six different types of noun phrases that commonly occur in American Sign Language. These noun phrases all include at least a head noun and one of four signs resembling a pronoun. Videos of natural ASL discourses are gathered, multiple instances of the six types of noun phrases are identified, and their meanings are…

  17. Differential grandparental investment - the impact of phenotypic resemblance.

    PubMed

    Schlee, Juliane; Kirchengast, Sylvia

    2015-01-01

    Differential grandparental investment is mainly explained as a result of paternity uncertainty. Phenotypic resemblance may be interpreted as an indicator of genetically relatedness. Consequently the present study focused on the impact of phenotypic resemblance on grandparental investment, i.e. solicitude, contact frequency and quality of relationship. 213 adults persons between the age 19 and 32 years (x = 25.5; SD = 3.4) were enrolled in the study. Data concerning grandparental investment during childhood were collected retrospectively using a 30 item questionnaire. Grandparental investment patterns differed significantly according grandparent category. In detail maternal grandmothers showed the highest contact frequency and the highest solicitude while - as to be expected - the paternal grandfather exhibited the lowest degree of investment. Grandparental investment was independent of grandparent category mainly influenced by residential distance. Phenotypic resemblance had an impact on grandparental investment independent of residential distance. This was first of all true of paternal grandfathers. An impact of phenotypic resemblance on grandparental investment patters can be assumed.

  18. Allergic Contact Dermatitis to Benzoyl Peroxide Resembling Impetigo.

    PubMed

    Kim, Changhyun; Craiglow, Brittany G; Watsky, Kalman L; Antaya, Richard J

    2015-01-01

    A 17-year-old boy presented with recurring severe dermatitis of the face of 5-months duration that resembled impetigo. He had been treated with several courses of antibiotics without improvement. Biopsy showed changes consistent with allergic contact dermatitis and patch testing later revealed sensitization to benzoyl peroxide, which the patient had been using for the treatment of acne vulgaris.

  19. Comparative biodistribution and safety profiling of olmesartan medoxomil oil-in-water oral nanoemulsion.

    PubMed

    Gorain, Bapi; Choudhury, Hira; Tekade, Rakesh Kumar; Karan, Saumen; Jaisankar, P; Pal, Tapan Kumar

    2016-12-01

    Poor aqueous solubility and unfavourable de-esterification of olmesartan medoxomil (a selective angiotensin II receptor blocker), results in low oral bioavailability of less than 26%. Improvement of oral bioavailability with prolonged pharmacodynamics activity of olmesartan in Wistar rats had been approached by nanoemulsification strategy in our previous article [Colloid Surface B, 115, 2014: 286]. In continuation to that work, we herewith report the biodistribution behaviour and 28-day repeated dose sub-chronic toxicity of olmesartan medoxomil nanoemulsion in Wistar rats following oral administration. The levels of olmesartan in collected biological samples were estimated using our validated LC-MS/MS technique. Our biodistribution study showed significantly higher brain concentrations of olmesartan (0.290 ± 0.089 μg/mL, 0.333 ± 0.071 μg/mL and 0.217 ± 0.062 μg/mL at 0.5, 2.0 and 8.0 h post dosing, respectively) when administered orally as nanoemulsion formulation as compared to the aqueous suspension. In addition, the olmesartan nanoemulsion was found to be safe and non-toxic, as it neither produced any lethality nor remarkable haematological, biochemical and structural adverse effects as observed during the 28-days sub-chronic toxicity studies in experimental Wistar rats. It is herewith envisaged that the developed nanoemulsion formulation approach for the delivery of olmesartan medoxomil via oral route can further be explored in memory dysfunction and brain ischemia, for better brain penetration and improved clinical application in stroke patients.

  20. Development and evaluation of zinc phthalocyanine nanoemulsions for use in photodynamic therapy for Leishmania spp.

    NASA Astrophysics Data System (ADS)

    Betzler de Oliveira de Siqueira, Luciana; da Silva Cardoso, Verônica; Almeida Rodrigues, Igor; Lúcia Vazquez-Villa, Ana; Pereira dos Santos, Elisabete; da Costa Leal Ribeiro Guimarães, Bruno; dos Santos Cerqueira Coutinho, Cristal; Vermelho, Alane Beatriz; Ricci Junior, Eduardo

    2017-02-01

    Photodynamic therapy (PDT) combines light with photosensitizers (PS) for production of reactive oxygen species (ROS) that can kill infectious microorganisms such as bacteria, fungi and protozoa. The application of nanotechnology has enabled the advancement of PDT because many PS are insoluble in water, necessitating a nanocarrier as a physiologically acceptable carrier. Nanoemulsions are efficient nanocarriers for solubilizing liposoluble drugs, like the PS, in water. Cutaneous (CL) and mucocutaneous leishmaniasis (ML) are caused by different species of the genus Leishmania, transmitted to humans by sandfly bites. Parasites are hosted in skin macrophages producing ulcerative lesions. Thus, a topical treatment, effective and inexpensive, for CL and ML is preferable to systemic interventions. There are topical treatments like paromomycin and amphotericin B, but they have many local side effects or a very high cost, limiting their use. This work aimed to develop a zinc phthalocyanine (photosensitizer) oil-in-water nanoemulsion, essential clove oil and polymeric surfactant (Pluronic® F127) for the formulation of a topical delivery system for use in PDT against Leishmania amazonensis and Leishmania infantum. The nanoemulsion was produced by a high-energy method and characterized by size, polydispersity, morphology, pH, content and stability studies. The toxicity in the dark and the photobiological activity of the formulations were evaluated in vitro for Leishmania and macrophages. The formulation presented was pH compatible with topical use, approximately 30 nm in size, with a polydispersity index ≤0.1 and remained stable at room and refrigerator temperature during the stability study (60 days). The zinc phthalocyanine nanoemulsion is effective in PDT against Leishmania spp.; use against skin infections can be a future application of this topical formulation, avoiding the use of oral or injectable medications, decreasing systemic adverse effects.

  1. Nanoemulsion drug delivery by ketene based polyester synthesized using electron rich carbon/silica composite surface.

    PubMed

    Swarnalatha, S; Selvi, P K; Ganesh Kumar, A; Sekaran, G

    2008-09-01

    A new carrier matrix for nanoemulsion drug delivery was synthesized from glycine as the raw material, using mesoporous/microporous electron rich carbon-silica composite surface (MAC(800)). MAC(800) was prepared from rice husk in two-stage carbonization. The surface area, pore volume, and pore size distribution of MAC(800) were measured, using nitrogen adsorption isotherms at 77K. The unpaired electron density of MAC(800) was measured in electron spin resonance spectroscopy (ESR), using TEMPOL (4-hydroxy-2,2,6,6-tetramethyl piperidine-1-oxyl) as the reference spin probe. Glycine was converted into ketene at the surface of MAC(800), which further underwent radical polymerization to form a low molecular weight ketene polymer (LMKP) of ester structure. The structure and the properties of LMKP were confirmed through (13)C, (1)H and DEPT nuclear magnetic resonance (NMR) spectroscopy, attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) and size exclusion chromatography (SEC). The two hydrophilic drugs namely ciprofloxacin hydrochloride (CPH) and gentamicin sulphate (GS) were chosen for the nanoemulsion preparation and characterization. They were characterized for morphology, interaction of drugs with the polymer and their crystallinity, using HR-TEM, DSC and XRD, respectively. The encapsulation efficiency of the LMKP towards the drugs ciprofloxacin hydrochloride and gentamicin sulphate were 26% and 12%, respectively. The dissolution studies of the nanoemulsion were carried out for the pH 6.5, 7.4 and 8.0. The cytocompatibility studies were done for LMKP as well as nanoemulsion using Hep2 epithelial cells.

  2. Development and evaluation of zinc phthalocyanine nanoemulsions for use in photodynamic therapy for Leishmania spp.

    PubMed

    de Oliveira de Siqueira, Luciana Betzler; da Silva Cardoso, Verônica; Rodrigues, Igor Almeida; Vazquez-Villa, Ana Lúcia; Dos Santos, Elisabete Pereira; da Costa Leal Ribeiro Guimarães, Bruno; Dos Santos Cerqueira Coutinho, Cristal; Vermelho, Alane Beatriz; Junior, Eduardo Ricci

    2017-02-10

    Photodynamic therapy (PDT) combines light with photosensitizers (PS) for production of reactive oxygen species (ROS) that can kill infectious microorganisms such as bacteria, fungi and protozoa. The application of nanotechnology has enabled the advancement of PDT because many PS are insoluble in water, necessitating a nanocarrier as a physiologically acceptable carrier. Nanoemulsions are efficient nanocarriers for solubilizing liposoluble drugs, like the PS, in water. Cutaneous (CL) and mucocutaneous leishmaniasis (ML) are caused by different species of the genus Leishmania, transmitted to humans by sandfly bites. Parasites are hosted in skin macrophages producing ulcerative lesions. Thus, a topical treatment, effective and inexpensive, for CL and ML is preferable to systemic interventions. There are topical treatments like paromomycin and amphotericin B, but they have many local side effects or a very high cost, limiting their use. This work aimed to develop a zinc phthalocyanine (photosensitizer) oil-in-water nanoemulsion, essential clove oil and polymeric surfactant (Pluronic(®) F127) for the formulation of a topical delivery system for use in PDT against Leishmania amazonensis and Leishmania infantum. The nanoemulsion was produced by a high-energy method and characterized by size, polydispersity, morphology, pH, content and stability studies. The toxicity in the dark and the photobiological activity of the formulations were evaluated in vitro for Leishmania and macrophages. The formulation presented was pH compatible with topical use, approximately 30 nm in size, with a polydispersity index ≤0.1 and remained stable at room and refrigerator temperature during the stability study (60 days). The zinc phthalocyanine nanoemulsion is effective in PDT against Leishmania spp.; use against skin infections can be a future application of this topical formulation, avoiding the use of oral or injectable medications, decreasing systemic adverse effects.

  3. Immunoadjuvant Chemotherapy of Visceral Leishmaniasis in Hamsters Using Amphotericin B-Encapsulated Nanoemulsion Template-Based Chitosan Nanocapsules

    PubMed Central

    Asthana, Shalini; Jaiswal, Anil K.; Gupta, Pramod K.; Pawar, Vivek K.; Dube, Anuradha

    2013-01-01

    The accessible treatment options for life-threatening neglected visceral leishmaniasis (VL) disease have problems with efficacy, stability, adverse effects, and cost, making treatment a complex issue. Here we formulated nanometric amphotericin B (AmB)-encapsulated chitosan nanocapsules (CNC-AmB) using a polymer deposition technique mediated by nanoemulsion template fabrication. CNC-AmB exhibited good steric stability in vitro, where the chitosan content was found to be efficient at preventing destabilization in the presence of protein and Ca2+. A toxicity study on the model cell line J774A and erythrocytes revealed that CNC-AmB was less toxic than commercialized AmB formulations such as Fungizone and AmBisome. The results of in vitro (macrophage-amastigote system; 50% inhibitory concentration [IC50], 0.19 ± 0.04 μg AmB/ml) and in vivo (Leishmania donovani-infected hamsters; 86.1% ± 2.08% parasite inhibition) experiments in conjunction with effective internalization by macrophages illustrated the efficacy of CNC-AmB at augmenting antileishmanial properties. Quantitative mRNA analysis by real-time PCR (RT-PCR) showed that the improved effect was synergized with the upregulation of tumor necrosis factor alpha (TNF-α), interleukin-12 (IL-12), and inducible nitric oxide synthase and with the downregulation of transforming growth factor β (TGF-β), IL-10, and IL-4. These research findings suggest that a cost-effective CNC-AmB immunoadjuvant chemotherapeutic delivery system could be a viable alternative to the current high-cost commercial lipid-based formulations. PMID:23357762

  4. Compared in vivo efficiency of nanoemulsions unloaded and loaded with calixarene and soapy water in the treatment of superficial wounds contaminated by uranium.

    PubMed

    Grivès, Sophie; Phan, Guillaume; Bouvier-Capely, Céline; Suhard, David; Rebière, François; Agarande, Michelle; Fattal, Elias

    2017-04-01

    No emergency decontamination treatment is currently available in the case of radiological skin contamination by uranium compounds. First responders in the workplace or during an industrial nuclear accident must be able to treat internal contamination through skin. For this purpose, a calixarene nanoemulsion was developed for the treatment of intact skin or superficial wounds contaminated by uranium, and the decontamination efficiency of this nanoemulsion was investigated in vitro and ex vivo. The present work addresses the in vivo decontamination efficiency of this nanoemulsion, using a rat model. This efficiency is compared to the radio-decontaminant soapy water currently used in France (Trait rouge(®)) in the workplace. The results showed that both calixarene-loaded nanoemulsion and non-loaded nanoemulsion allowed a significant decontamination efficiency compared to the treatment with soapy water. Early application of the nanoemulsions on contaminated excoriated rat skin allowed decreasing the uranium content by around 85% in femurs, 95% in kidneys and 93% in urines. For skin wounded by microneedles, mimicking wounds by microstings, nanoemulsions allowed approximately a 94% decrease in the uranium retention in kidneys. However, specific chelation of uranium by calixarene molecules within the nanoemulsion was not statistically significant, probably because of the limited calixarene-to-uranium molar ratio in these experiment conditions. Moreover, these studies showed that the soapy water treatment potentiates the transcutaneous passage of uranium, thus making it bioavailable, in particular when the skin is superficially wounded.

  5. Transdermal delivery of imipramine and doxepin from newly oil-in-water nanoemulsions for an analgesic and anti-allodynic activity: development, characterization and in vivo evaluation.

    PubMed

    Sandig, A Gimeno; Campmany, A C Calpena; Campos, F Fernández; Villena, M J Martín; Naveros, B Clares

    2013-03-01

    Antidepressants have been considered by their analgesic activity in numerous studies, and specifically tricyclic antidepressants to possess the greatest efficacy. Imipramine and doxepin have been reported to exhibit local anaesthetic properties. In order to investigate their cutaneous analgesic effect after topical application a nanoemulsion vehicle was developed. This nanoemulsion is composed of propilenglicol, Transcutol, water, Labrasol, Plurol Oleique, isostearyl isostearate, oleic acid, and d-limonene. The final concentration of imipramine or doxepin in the nanoemulsion system was 3% (w/w). The nanoemulsions were characterized by pH, viscosity, droplet size, polydispersity index and finally, a morphological and structural examination was carried out by using transmission electron microscopy. Furthermore, the present work also reports stability studies on the nanoemulsion formulations to evaluate the integrity of the formulation; these indicate that formulations are stable for a period of three months. Moreover ex vivo studies were performed to evaluate permeation behaviour through human skin and predict plasma concentrations concluding that topically applied imipramine and doxepin loaded nanoemulsions were safe for a local effect. Similarly, the in vivo analgesic and anti-allodynic activity in rats was evaluated being stronger for the doxepin loaded nanoemulsion. This study demonstrated that nanoemulsion containing doxepin could be promising as an alternative analgesic therapy with a potential clinical application.

  6. Buffered nanoemulsion for nose to brain delivery of ziprasidone hydrochloride: preformulation and pharmacodynamic evaluation.

    PubMed

    Bahadur, Shiv; Pathak, Kamla

    2012-11-01

    The study was undertaken to develop buffered nanoemulsion of ziprasidone hydrochloride (fifth generation antipshychotic) and evaluate its potential for efficacious nose to brain delivery drug delivery in animal models. Homogeneous buffered ziprasidone nanoemulsions (BZNE) were prepared by aqueous (phosphate buffer, pH 8.0) titration method using capmul MCM, labrasol and transcutol as oil, surfactant and cosurfactant respectively. The NEs (F1-F7) were characterized for pharmaceutical characteristics (% transmittance, PDI value, Zeta potential, globule size, viscosity and diffusion coefficient) and F6 with mean globule size of 145.24 ± 4.75nm (PDI = 0.186 ± 0.40) and diffusion coefficient of 0.1901± 0.04cm2/min was thermodynamically stable and was developed as buffered mucoadhesive nanoemulsions. The buffered mucoadhesive NE (βmax = 0.57) that contained 0.5% by weight of chitosan (BZMNE) exhibited 1.79 times higher diffusion coefficient (0.3418 ± 0.03) than BZNE. Pharmacodynamic study confirmed the superiority of BZMNE over BZNE in locomotor activity test (p < 0.05) and paw test (p < 0.05). Nasal ciliotoxicity study revealed the optimized BZMNE to be free from acute toxicity. Conclusively, a stable and efficacious buffered mucoadhesive NE of ziprasidone hydrochloride, that can be safely administered by intranasal route was developed.

  7. Process optimization of ultrasound-assisted curcumin nanoemulsions stabilized by OSA-modified starch.

    PubMed

    Abbas, Shabbar; Bashari, Mohanad; Akhtar, Waseem; Li, Wei Wei; Zhang, Xiaoming

    2014-07-01

    This study reports on the process optimization of ultrasound-assisted, food-grade oil-water nanoemulsions stabilized by modified starches. In this work, effects of major emulsification process variables including applied power in terms of power density and sonication time, and formulation parameters, that is, surfactant type and concentration, bioactive concentration and dispersed-phase volume fraction were investigated on the mean droplet diameter, polydispersity index and charge on the emulsion droplets. Emulsifying properties of octenyl succinic anhydride modified starches, that is, Purity Gum 2000, Hi-Cap 100 and Purity Gum Ultra, and the size stability of corresponding emulsion droplets during the 1 month storage period were also investigated. Results revealed that the smallest and more stable nanoemulsion droplets were obtained when coarse emulsions treated at 40% of applied power (power density: 1.36 W/mL) for 7 min, stabilized by 1.5% (w/v) Purity Gum Ultra. Optimum volume fraction of oil (medium chain triglycerides) and the concentration of bioactive compound (curcumin) dispersed were 0.05 and 6 mg/mL oil, respectively. These results indicated that the ultrasound-assisted emulsification could be successfully used for the preparation of starch-stabilized nanoemulsions at lower temperatures (40-45 °C) and reduced energy consumption.

  8. In vitro effects of Eucalyptus staigeriana nanoemulsion on Haemonchus contortus and toxicity in rodents.

    PubMed

    Ribeiro, Wesley Lyeverton Correia; Camurça-Vasconcelos, Ana Lourdes Fernandes; Macedo, Iara Tersia Freitas; dos Santos, Jessica Maria Leite; de Araújo-Filho, José Vilemar; Ribeiro, Juliana de Carvalho; Pereira, Vanessa de Abreu; Viana, Daniel de Araújo; de Paula, Haroldo Cesar Beserra; Bevilaqua, Claudia Maria Leal

    2015-09-15

    Strategies for controlling gastrointestinal nematodes have been developed based on the use of numerous alternative methods, including the use of phytotherapy. New formulations of essential oils with anthelmintic activity have been proposed as a means to optimize their biological effects. Thus, the objective of this study was to formulate a nanoemulsion to optimize the nematicide effect of Eucalyptus staigeriana essential oil (EsEO). Initially, physico-chemical analyses were performed to verify the stability of the E. staigeriana nanoemulsion (EsNano). In vitro tests were conducted to evaluate the ovicidal and larvicidal activities of both EsNano and EsEO against Haemonchus contortus, and toxicology tests were then performed on rodents. The EsEO content in the nanoemulsion was 36.4% (v/v), and the mean particle size was 274.3 nm. EsNano and EsEO inhibited larval hatching by 99% and 96.3% at 1 and 2mg/ml concentrations, respectively, and inhibited larval development by 96.3% and 97.3% at 8 mg/ml concentrations. The acute toxicity test revealed that the EsNano and EsEO doses required to kill 50% of the mice (LD50) were 1,603.9 and 3,495.9 mg/ml, respectively. EsNano did not alter the hematological parameters in the rats after treatment.

  9. Nonlinear acoustic enhancement in photoacoustic imaging with wideband absorptive nanoemulsion beads

    NASA Astrophysics Data System (ADS)

    Wei, Chen-wei; Lombardo, Michael; Xia, Jinjun; Pelivanov, Ivan; Perez, Camilo; Larson-Smith, Kjersta; Matula, Thomas J.; Pozzo, Danilo; O'Donnell, Matthew

    2014-03-01

    A nanoemulsion contrast agent with a perfluorohexane core and optically absorptive gold nanospheres (GNSs) assembled on the surface, is presented to improve the specificity of photoacoustic (PA) molecular imaging in differentiating targeted cells or aberrant regions from heterogeneous background signals. Compared to distributed GNSs, clustered GNSs at the emulsion oil-water interface produce a red-shifted and broadened absorption spectrum, exhibiting fairly high absorption in the near-infrared region commonly used for deep tissue imaging. Above a certain laser irradiation fluence threshold, a phase transition creating a microbubble in the emulsion core leads to more than 10 times stronger PA signals compared with conventional thermal-expansion-induced PA signals. These signals are also strongly non-linear, as verified by a differential scheme using recorded PA images at different laser fluences. Assuming a linear relation between laser fluence and the PA signal amplitude, differential processing results in nearly perfect suppression of linear sources, but retains a significant residue for the non-linear nanoemulsion with more than 35 dB enhancement. This result demonstrates that contrast specificity can be improved using the nanoemulsion as a targeting agent in PA molecular imaging by suppressing all background signals related to a linear PA response. Furthermore, combined with a system providing simultaneous laser/ultrasound excitation, cavitation-generated bubbles have the potential to be a highly specific contrast agent for ultrasound molecular imaging and harmonic imaging, as well as a targeted means for noninvasive ultrasound-based therapies.

  10. Paramagnetic fluorinated nanoemulsions for sensitive cellular fluorine-19 magnetic resonance imaging

    PubMed Central

    Kislukhin, Alexander A.; Xu, Hongyan; Adams, Stephen R.; Narsinh, Kazim H.; Tsien, Roger Y.; Ahrens, Eric T.

    2016-01-01

    Fluorine-19 magnetic resonance imaging (19F MRI) probes enable quantitative in vivo detection of cell therapies and inflammatory cells. Here, we describe the formulation of perfluorocarbon-based nanoemulsions with improved sensitivity for cellular MRI. Reduction of the 19F spin-lattice relaxation time (T1) enables rapid imaging and an improved signal-to-noise ratio, thereby improving cell detection sensitivity. We synthesized metal-binding β-diketones conjugated to linear perfluoropolyether (PFPE), formulated these fluorinated ligands as aqueous nanoemulsions, and then metalated them with various transition and lanthanide ions in the fluorous phase. Iron(III) tris-β-diketonate ('FETRIS') nanoemulsions with PFPE have low cytotoxicity (<20%) and superior MRI properties. Moreover, the 19F T1 can readily be reduced by an order of magnitude and tuned by stoichiometric modulation of the iron concentration. The resulting 19F MRI detection sensitivity is enhanced by 3-to-5 fold over previously used tracers at 11.7 T, and is predicted to increase by at least 8-fold at clinical field strength of 3 T. PMID:26974409

  11. Photodynamic therapy mediated by acai oil (Euterpe oleracea Martius) in nanoemulsion: A potential treatment for melanoma.

    PubMed

    Monge-Fuentes, Victoria; Muehlmann, Luis Alexandre; Longo, João Paulo Figueiró; Silva, Jaqueline Rodrigues; Fascineli, Maria Luiza; de Souza, Paulo; Faria, Fernando; Degterev, Igor Anatolievich; Rodriguez, Anselmo; Carneiro, Fabiana Pirani; Lucci, Carolina Madeira; Escobar, Patricia; Amorim, Rivadávio Fernandes Batista; Azevedo, Ricardo Bentes

    2017-01-01

    Melanoma is the most aggressive and lethal form of skin cancer, responsible for >80% of deaths. Standard treatments for late-stage melanoma usually present poor results, leading to life-threatening side effects and low overall survival. Thus, it is necessary to rethink treatment strategies and design new tools for the treatment of this disease. On that ground, we hereby report the use of acai oil in nanoemulsion (NanoA) as a novel photosensitizer for photodynamic therapy (PDT) used to treat melanoma in in vitro and in vivo experimental models. NIH/3T3 normal cells and B16F10 melanoma cell lines were treated with PDT and presented 85% cell death for melanoma cells, while maintaining high viability in normal cells. Flow cytometry indicated that cell death occurred by late apoptosis/necrosis. Tumor bearing C57BL/6 mice treated five times with PDT using acai oil in nanoemulsion showed tumor volume reduction of 82% in comparison to control/tumor group. Necrotic tissue per tumor area reached its highest value in PDT-treated mice, supporting PDT efficacy. Overall, acai oil in nanoemulsion was an effective photosensitizer, representing a promising source of new photosensitizing molecules for PDT treatment of melanoma, a tumor with an inherent tendency to be refractory for this type of therapy.

  12. Statistical Analysis of Optimal Ultrasound Emulsification Parameters in Thistle-Oil Nanoemulsions.

    PubMed

    Miastkowska, Małgorzata A; Banach, Marcin; Pulit-Prociak, Jolanta; Sikora, Elżbieta S; Głogowska, Agata; Zielina, Michał

    2017-01-01

    Thistle oil (INCI: Silybum marianum seed oil) is known as an anti-oxidant, moisturizing and skin regenerating cosmetic raw material. Nanoemulsions are a new form of cosmetic product showing very good user properties (ease of spreading over the skin with no greasy feeling). Moreover, due to their structure, they can also transport both hydrophilic and hydrophobic active substances to the skin. The aim of this work was the preparation and characterization of nanoemulsions, based on thistle oil. The non-ionic surfactants polysorbate 80 (PEG-20 sorbitan monooleate), decyl glucoside, and a polyglyceryl-4 ester blend were applied to stabilize the nanosystems. All formulations were obtained by a high energy method, using an ultrasonic device (Labsonic U, an ultrasound homogenizer). Variations in the emulsification parameters were tested, including surfactants concentration, pre-emulsification time, ultrasound power and sonication time. On the basis of statistical analysis (experimental design, cluster analysis, classification and regression trees) the best emulsification process parameters were determined. In order to verify the results of statistical analysis, once more an experimental study was conducted. The results obtained confirmed that statistical analysis can be a useful method in determining the conditions for obtaining stable nanoemulsions with desired properties. Formulations obtained with the use of Silybum marianum seed oil were characterized by long-term stability, a low polydispersity index, low viscosity and an average droplet size less than 200 nm.

  13. Solid-Nanoemulsion Preconcentrate for Oral Delivery of Paclitaxel: Formulation Design, Biodistribution, and γ Scintigraphy Imaging

    PubMed Central

    Ahmad, Javed; Mir, Showkat R.; Kohli, Kanchan; Chuttani, Krishna; Mishra, Anil K.; Panda, A. K.

    2014-01-01

    Aim of present study was to develop a solid nanoemulsion preconcentrate of paclitaxel (PAC) using oil [propylene glycol monocaprylate/glycerol monooleate, 4 : 1 w/w], surfactant [polyoxyethylene 20 sorbitan monooleate/polyoxyl 15 hydroxystearate, 1 : 1 w/w], and cosurfactant [diethylene glycol monoethyl ether/polyethylene glycol 300, 1 : 1 w/w] to form stable nanocarrier. The prepared formulation was characterized for droplet size, polydispersity index, and zeta potential. Transmission electron microscopy (TEM), differential scanning calorimetry (DSC), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR) were used to assess surface morphology and drug encapsulation and its integrity. Cumulative drug release of prepared formulation through dialysis bag and permeability coefficient through everted gut sac were found to be remarkably higher than the pure drug suspension and commercial intravenous product (Intaxel), respectively. Solid nanoemulsion preconcentrate of PAC exhibited strong inhibitory effect on proliferation of MCF-7 cells in MTT assay. In vivo systemic exposure of prepared formulation through oral administration was comparable to that of Intaxel in γ scintigraphy imaging. Our findings suggest that the prepared solid nanoemulsion preconcentrate can be used as an effective oral solid dosage form to improve dissolution and bioavailability of PAC. PMID:25114933

  14. In vitro characterization and mosquito (Aedes aegypti) repellent activity of essential-oils-loaded nanoemulsions.

    PubMed

    Nuchuchua, Onanong; Sakulku, Usawadee; Uawongyart, Napaporn; Puttipipatkhachorn, Satit; Soottitantawat, Apinan; Ruktanonchai, Uracha

    2009-01-01

    The nanoemulsions composed of citronella oil, hairy basil oil, and vetiver oil with mean droplet sizes ranging from 150 to 220 nm were prepared and investigated both in vitro and in vivo. Larger emulsion droplets (195-220 nm) shifted toward a smaller size (150-160 nm) after high-pressure homogenization and resulted in higher release rate. We proposed that thin films obtained from the nanoemulsions with smaller droplet size would have higher integrity, thus increasing the vaporization of essential oils and subsequently prolonging the mosquito repellant activity. The release rates were fitted with Avrami's equations and n values were in the same range of 0.6 to 1.0, implying that the release of encapsulated limonene was controlled by the diffusion mechanism from the emulsion droplet. By using high-pressure homogenization together with optimum concentrations of 5% (w/w) hairy basil oil, 5% (w/w) vetiver oil (5%), and 10% (w/w) citronella oil could improve physical stability and prolong mosquito protection time to 4.7 h due to the combination of these three essential oils as well as small droplet size of nanoemulsion.

  15. Development of O/W nanoemulsions for ophthalmic administration of timolol.

    PubMed

    Gallarate, M; Chirio, D; Bussano, R; Peira, E; Battaglia, L; Baratta, F; Trotta, M

    2013-01-20

    After an initial screening of ingredients and production methods, nanoemulsions for ocular administration of timolol containing the drug as maleate (TM) or as ion-pair with AOT (TM/AOT) were prepared. The physico-chemical characterization of nanoemulsions, regarding mean diameter, pH, zeta potential, osmolarity, viscosity and surface tension, underlined their feasibility to be instilled into the eyes. Single components and emulsions were tested ex vivo on rabbit corneas to evaluate corneal irritation, that was measured according to opacity test. A marked decrease in corneal opacity was observed using the drug formulated in nanoemulsions rather than in aqueous solutions. Drug permeation and accumulation studies were performed on excised rabbit corneas. An increase in drug permeation through and accumulation into the corneas were observed using TM-AOT compared to TM due to an increase of lipophilicity of the drug as ion-pair. The introduction of chitosan (a positive charged mucoadhesive polymer) into emulsions allowed to increase TM permeation probably due to the interaction of chitosan with corneal epithelial cells.

  16. Synergistic Skin Penetration Enhancer and Nanoemulsion Formulations Promote the Human Epidermal Permeation of Caffeine and Naproxen.

    PubMed

    Abd, Eman; Namjoshi, Sarika; Mohammed, Yousuf H; Roberts, Michael S; Grice, Jeffrey E

    2016-01-01

    We examined the extent of skin permeation enhancement of the hydrophilic drug caffeine and lipophilic drug naproxen applied in nanoemulsions incorporating skin penetration enhancers. Infinite doses of fully characterized oil-in-water nanoemulsions containing the skin penetration enhancers oleic acid or eucalyptol as oil phases and caffeine (3%) or naproxen (2%) were applied to human epidermal membranes in Franz diffusion cells, along with aqueous control solutions. Caffeine and naproxen fluxes were determined over 8 h. Solute solubility in the formulations and in the stratum corneum (SC), as well as the uptake of product components into the SC were measured. The nanoemulsions significantly enhanced the skin penetration of caffeine and naproxen, compared to aqueous control solutions. Caffeine maximum flux enhancement was associated with a synergistic increase in both caffeine SC solubility and skin diffusivity, whereas a formulation-increased solubility in the SC was the dominant determinant for increased naproxen fluxes. Enhancements in SC solubility were related to the uptake of the formulation excipients containing the active compounds into the SC. Enhanced skin penetration in these systems is largely driven by uptake of formulation excipients containing the active compounds into the SC with impacts on SC solubility and diffusivity.

  17. Vitamin E derivative-based multifunctional nanoemulsions for overcoming multidrug resistance in cancer.

    PubMed

    Zheng, Nannan; Gao, Yanan; Ji, Hongyu; Wu, Linhua; Qi, Xuejing; Liu, Xiaona; Tang, Jingling

    2016-08-01

    The multidrug resistance (MDR), including intrinsic and acquired multidrug resistance, is a major problem in tumor chemotherapy. Here, we proposed a strategy for modulating intrinsic and/or acquired multidrug resistance by altering the levels of Bax and Bcl-2 expression and inhibiting the transport function of P-gp, increasing the intracellular concentration of its substrate anticancer drugs. Vitamin E derivative-based nanoemulsions containing paclitaxel (MNEs-PTX) were fabricated in this study, and in vitro anticancer efficacy of the nanoemulsion system was evaluated in the paclitaxel-resistant human ovarian carcinoma cell line A2780/Taxol. The MNEs-PTX exhibited a remarkably enhanced antiproliferation effect on A2780/Taxol cells than free paclitaxel (PTX) (p < 0.01). Compared with that in the Taxol group, MNEs-PTX further decreased mitochondrial potential. Vitamin E derivative-based multifunctional nanoemulsion (MNEs) obviously increased intracellular accumulation of rhodamine 123 (P-gp substrate). Overexpression of Bcl-2 is generally associated with tumor drug resistance, we found that MNEs could reduce Bcl-2 protein level and increase Bax protein level. Taken together, our findings suggest that anticancer drugs associated with MNEs could play a role in the development of MDR in cancers.

  18. Improved absorption and in vivo kinetic characteristics of nanoemulsions containing evodiamine–phospholipid nanocomplex

    PubMed Central

    Hu, Jiangbo; Chen, Dilong; Jiang, Rong; Tan, Qunyou; Zhu, Biyue; Zhang, Jingqing

    2014-01-01

    Purpose The purpose of this study was to assess the improved absorption and in vivo kinetic characteristics of a novel water-in-oil nanoemulsion containing evodiamine–phospholipid nanocomplex (NEEPN) when administered orally. Methods NEEPN was fabricated by loading an evodiamine–phospholipid nanocomplex into a water-in-oil nanoemulsive system. The gastrointestinal absorption of NEEPN was investigated using an in situ perfusion method. The modified in vivo kinetic characteristics of evodiamine (EDA) in NEEPN were also evaluated. Results Compared with EDA or conventional nanoemulsions containing EDA instead of evodiamine–phospholipid complex, NEEPN with its favorable in vivo kinetic characteristics clearly enhanced the gastrointestinal absorption and oral bioavailability of EDA; for example, the relative bioavailability of NEEPN to free EDA was calculated to be 630.35%, and the effective permeability of NEEPN in the colon was 8.64-fold that of EDA. Conclusion NEEPN markedly improved the oral bioavailability of EDA, which was probably due to its increased gastrointestinal absorption. NEEPN also increased efficacy and reduced adverse effects for oral delivery of EDA. Such finding demonstrates great clinical significance as an ideal drug delivery system demands high efficacy and no adverse effects. PMID:25258531

  19. Acoustic Droplet Vaporization, Cavitation, and Therapeutic Properties of Copolymer-Stabilized Perfluorocarbon Nanoemulsions

    SciTech Connect

    Nam, Kweon-Ho; Christensen, Douglas A.; Rapoport, Natalya; Kennedy, Anne M.

    2009-04-14

    Acoustic and therapeutic properties of Doxorubicin (DOX) and paclitaxel (PTX)-loaded perfluorocarbon nanoemulsions have been investigated in a mouse model of ovarian cancer. The nanoemulsions were stabilized by two biodegradable amphiphilic block copolymers that differed in the structure of the hydrophobic block. Acoustic droplet vaporization (ADV) and cavitation parameters were measured as a function of ultrasound frequency, pressure, duty cycles, and temperature. The optimal parameters that induced ADV and inertial cavitation of the formed microbubbles were used in vivo in the experiments on the ultrasound-mediated chemotherapy of ovarian cancer. A combination tumor treatment by intravenous injections of drug-loaded perfluoropentane nanoemulsions and tumor-directed 1-MHz ultrasound resulted in a dramatic decrease of ovarian or breast carcinoma tumor volume and sometimes complete tumor resolution. However, tumors often recurred three to six weeks after the treatment indicating that some cancer cells survived the treatment. The recurrent tumors proved more aggressive and resistant to the repeated therapy than initial tumors suggesting selection for the resistant cells during the first treatment.

  20. Controlled and targeted tumor chemotherapy by ultrasound-activated nanoemulsions/microbubbles

    PubMed Central

    Rapoport, Natalya Y.; Kennedy, Anne M.; Shea, Jill E.; Scaife, Courtney L.; Nam, Kweon-Ho

    2009-01-01

    The paper reports the results of nanotherapy of ovarian, breast, and pancreatic cancerous tumors by paclitaxel-loaded nanoemulsions that convert into microbubbles locally in tumor tissue under the action of tumor-directed therapeutic ultrasound. Tumor accumulation of nanoemulsions was confirmed by ultrasound imaging. Dramatic regression of ovarian, breast, and orthotopic pancreatic tumors was observed in tumor therapy through systemic injections of drug-loaded nanoemulsions combined with therapeutic ultrasound, signifying efficient ultrasound-triggered drug release from tumor-accumulated nanodroplets. The mechanism of drug release in the process of droplet-to-bubble conversion is discussed. No therapeutic effect from the nanodroplet/ultrasound combination was observed without the drug, indicating that therapeutic effect was caused by the ultrasound-enhanced chemotherapeutic action of the tumor-targeted drug, rather than the mechanical or thermal action of ultrasound itself. Tumor recurrence was observed after the completion of the first treatment round; a second treatment round with the same regimen proved less effective, suggesting that drug resistant cells were either developed or selected during the first treatment round. PMID:19477208

  1. Intranasal nanoemulsion-based inactivated respiratory syncytial virus vaccines protect against viral challenge in cotton rats.

    PubMed

    O'Konek, Jessica J; Makidon, Paul E; Landers, Jeffrey J; Cao, Zhengyi; Malinczak, Carrie-Anne; Pannu, Jessie; Sun, Jennifer; Bitko, Vira; Ciotti, Susan; Hamouda, Tarek; Wojcinski, Zbigniew W; Lukacs, Nicholas W; Fattom, Ali; Baker, James R

    2015-01-01

    Respiratory Syncytial Virus is a leading cause of bronchiolitis and pneumonia in infants, the elderly and individuals with compromised immune systems. Despite decades of research, there is currently no available vaccine for RSV. Our group has previously demonstrated that intranasal immunization of mice with RSV inactivated by and adjuvanted with W805EC nanoemulsion elicits robust humoral and cellular immune responses, resulting in protection against RSV infection. This protection was achieved without the induction of airway hyper-reactivity or a Th2-skewed immune response. The cotton rat Sigmodon hispidus has been used for years as an excellent small animal model of RSV disease. Thus, we extended these rodent studies to the more permissive cotton rat model. Intranasal immunization of the nanoemulsion-adjuvanted RSV vaccines induced high antibody titers and a robust Th1-skewed cellular response. Importantly, vaccination provided sterilizing cross-protective immunity against a heterologous RSV challenge and did not induce marked or severe histological effects or eosinophilia in the lung after viral challenge. Overall, these data demonstrate that nanoemulsion-formulated whole RSV vaccines are both safe and effective for immunization in multiple animal models.

  2. Design and formulation of nanoemulsions using 2-(poly(hexafluoropropylene oxide)) perfluoropropyl benzene in combination with linear perfluoro(polyethylene glycol dimethyl ether)

    PubMed Central

    Mountain, Gregory A.; Jelier, Benson J.; Bagia, Christina; Friesen, Chadron M.; Janjic, Jelena M.

    2014-01-01

    This is the first report where PFPAE aromatic conjugates and perfluoro(polyethylene glycol dimethyl ether) are combined and formulated as nanoemulsions with droplet size below 100 nm. A perfluoropolyalkylether (PFPAE) aromatic conjugate, 2-(poly(hexafluoropropylene oxide)) perfluoropropyl benzene, was used as fluorophilic-hydrophilic diblock (FLD) aimed at stabilizing perfluoro(polyethylene glycol dimethyl ether) nanoemulsions. Its effects on colloidal behaviors in triphasic (organic/fluorous/aqueous) nanoemulsions were studied. The addition of FLD construct to fluorous phase led to decrease in PFPAE nanoemulsion droplet size to as low as 85 nm. Prepared nanoemulsions showed high colloidal stability. Our results suggest that these materials represent viable novel approach to fluorous colloid systems design with potential for biomedical and synthetic applications. PMID:24976645

  3. Formation and stability of D-limonene organogel-based nanoemulsion prepared by a high-pressure homogenizer.

    PubMed

    Zahi, Mohamed Reda; Wan, Pingyu; Liang, Hao; Yuan, Qipeng

    2014-12-31

    D-limonene organogel-based nanoemulsion was prepared by high-pressure homogenization technology. The organogelator type had a major role on the formation of the formulations, in which stearic acid has given nanoemulsions with the smallest droplet size. The surfactant type and concentration also had an appreciable effect on droplet formation, with Tween 80 giving a mean droplet diameter (d ≈ 112 nm) among a range of non-ionic surfactants (Tween 20, 40, 60, 80, and 85). In addition, high-pressure homogenization conditions played a key role in the nanoemulsion preparation. The stability of d-limonene organogel-based nanoemulsion was also investigated under two different temperatures (4 and 28 °C) through 2 weeks of storage. Results showed a good stability of the formulations, which is maybe due to the incorporation of D-limonene into the organogel prior to homogenization. This study may have a valuable contribution for the design and use of organogel-based nanoemulsion as a delivery system in food.

  4. Characteristics of spontaneously formed nanoemulsions in octane/AOT/brine systems.

    PubMed

    Kini, Gautam C; Biswal, Sibani Lisa; Wong, Michael S; Miller, Clarence A

    2012-11-01

    Nanoemulsions were formed spontaneously by diluting water-in-oil (W/O) or brine-in-oil (B/O) microemulsions of a hydrocarbon (octane), anionic surfactant (Aerosol-OT or AOT) and water or NaCl brine in varying levels of excess brine. The water-continuous nanoemulsions were characterized by interfacial tension, dynamic light scattering, electrophoresis, optical microscopy and phase-behavior studies. The mechanism of emulsification was local supersaturation and resulting nucleation of oil during inversion. For nanoemulsions formed at low salinities with Winsor I phase behavior, octane drops grew from initial diameters of 150-250 nm to 480-1000 nm over 24h, depending on salinity. Growth was caused by mass transfer but seemed to approach the asymptotic stage of Ostwald ripening described by the Lifshitz-Slyozov-Wagner (LSW) theory only for dilution with salt-free water. Near the higher cross-over salinity (Winsor III), the nanoemulsions showed much slower growth with droplet size consistently remaining below 200 nm over 24h and reaching 250 nm after 1 week. Birefringence indicated the presence of liquid crystal for these conditions, which could have contributed to the slow growth rate. At even higher salinity levels in the Winsor II domain, W/O/W multiple emulsions having drops greater than 1 μm in diameter were consistently recorded for the first 5-7h, after which size decreased to values below 1 μm. The number and size of internal water droplets in multiple emulsion drops was found to decrease over time, suggesting coalescence of internal droplets with the continuous water phase and mass transfer of water from internal droplets to continuous phase as possible mechanisms of the observed drop shrinkage. Electrophoresis studies showed the nanoemulsions to be highly negatively charged (zeta potentials of -60 mV to -120 mV). The high charge on octane droplets helped assure stability to flocculation and coalescence, thereby allowing mass transfer to control growth in the

  5. How can lipid nanocarriers improve transdermal delivery of olanzapine?

    PubMed

    Iqbal, Nimra; Vitorino, Carla; Taylor, Kevin M G

    2016-11-23

    The development of a transdermal nanocarrier drug delivery system with potential for the treatment of psychiatric disorders, such as schizophrenia and bipolar disorder, is described. Lipid nanocarriers (LN), encompassing various solid:liquid lipid compositions were formulated and assessed as potential nanosystems for transdermal delivery of olanzapine. A previously optimized method of hot high pressure homogenization (HPH) was adopted for the production of the LN, which comprised solid lipid nanoparticles (SLN), nanostructured lipid carriers (NLC) and nanoemulsions (NE). Precirol( ®) was selected as the solid lipid for progression of studies. SLN exhibited the best performance for transdermal delivery of olanzapine, based on in vitro release and permeation studies, coupled with results from physicochemical characterization of several solid:liquid lipid formulations. Stability tests, performed to give an indication of long-term storage behavior of the formulations, were in good agreement with previous studies for the best choice of solid:liquid lipid ratio. Overall, these findings highlight the SLN-based formulation as promising for the further inclusion in and production of transdermal patches, representing an innovative therapeutic approach.

  6. Arteriovenous shunts resembling patent ductus arteriosus in dogs: 3 cases.

    PubMed

    Fujii, Yoko; Aoki, Takuma; Takano, Hiroshi; Ishikawa, Ryokichi; Wakao, Yoshito

    2009-12-01

    Three dogs presented for the evaluation of cardiac murmurs were diagnosed with aberrant arteriovenous shunts. All cases demonstrated the following findings: 1) relatively soft continuous murmur loudest at the left heart base resembling patent ductus arteriosus (PDA); 2) shunt flow signals in the pulmonary artery on echocardiography; and 3) no PDA on selective angiography, but evidence of anomalous shunting vessels from thoracic aorta to pulmonary vasculature. An aberrant arteriovenous shunt should be considered when a continuous murmur of relatively small intensity is heard.

  7. Ex vivo uranium decontamination efficiency on wounded skin and in vitro skin toxicity of a calixarene-loaded nanoemulsion.

    PubMed

    Grives, Sophie; Phan, Guillaume; Morat, Guillaume; Suhard, David; Rebiere, Francois; Fattal, Elias

    2015-06-01

    The present work aims at studying the decontamination efficacy of a calixarene-loaded nanoemulsion on two ex vivo wounded skin models mimicking superficial stings or cuts contaminated with uranium, and on a third model using excoriation. The decontaminating formulation was compared with the currently used radio-decontaminating soapy water (Trait rouge®) treatment. Moreover, to assess skin damage potentially induced by the undiluted nanoemulsion, in vitro toxicity studies were conducted on an in vitro reconstructed human epidermis, coupled with three different toxicity tests [3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyl tetrazolium bromide, lactate dehydrogenase, and interleukin-1-α]. This work demonstrated not only a significant decontamination activity of the calixarene nanoemulsion on wounded skin, ranging from 92% to 94% of the applied uranium solution according to the ex vivo model used, but also the absence of side effects of this promising treatment.

  8. Design, Synthesis, and Characterization of Folate-Targeted Platinum-Loaded Theranostic Nanoemulsions for Therapy and Imaging of Ovarian Cancer.

    PubMed

    Patel, Niravkumar R; Piroyan, Aleksandr; Nack, Abbegial H; Galati, Corin A; McHugh, Mackenzi; Orosz, Samantha; Keeler, Amanda W; O'Neal, Sara; Zamboni, William C; Davis, Barbara; Coleman, Timothy P

    2016-06-06

    Platinum (Pt) based chemotherapy is widely used to treat many types of cancer. Pt therapy faces challenges such as dose limiting toxicities, cumulative side effects, and multidrug resistance. Nanoemulsions (NEs) have tremendous potential in overcoming these challenges as they can be designed to improve circulation time, limit non-disease tissue uptake, and enhance tumor uptake by surface modification. We designed novel synthesis of three difattyacid platins, dimyrisplatin, dipalmiplatin, and distearyplatin, suitable for encapsulation in the oil core of an NE. The dimyrisplatin, dipalmiplatin, and distearyplatin were synthesized, characterized, and loaded into the oil core of our NEs, NMI-350, NMI-351, and NMI-352 respectively. Sequestration of the difattyacid platins was accomplished through high energy microfluidization. To target the NE, FA-PEG3400-DSPE was incorporated into the surface during microfluidization. The FA-NEs selectively bind the folate receptor α (FR-α) and utilize receptor mediated endocytosis to deliver Pt past cell surface resistance mechanisms. FR-α is overexpressed in a number of oncological conditions including ovarian cancer. The difattyacid platins, lipidated Gd-DTPA, and lipidated folate were characterized by nuclear magnetic resonance (NMR), mass spectrometry (MS), and elemental analysis. NEs were synthesized using high shear microfluidization process and characterized for size, zeta-potential, and loading efficiency. In vitro cytotoxicity was determined using KB-WT (Pt-sensitive) and KBCR-1000 (Pt-resistant) cancer cells and measured by MTT assay. Pharmacokinetic profiles were studied in CD-1 mice. NEs loaded with difattyacid platins are highly stable and had size distribution in the range of ∼120 to 150 nm with low PDI. Cytotoxicity data indicates the longer the fatty acid chains, the less potent the NEs. The inclusion of C6-ceramide, an apoptosis enhancer, and surface functionalization with folate molecules significantly increased

  9. Enhancement of Anti-Dermatitis Potential of Clobetasol Propionate by DHA [Docosahexaenoic Acid] Rich Algal Oil Nanoemulsion Gel

    PubMed Central

    Sarfaraz Alam, Mohammad; Ali, Mohammad Sajid; Zakir, Foziyah; Alam, Nawazish; Intakhab Alam, Mohammad; Ahmad, Faruque; Siddiqui, Masoom Raza; Ali, Mohammad Daud; Ansari, Mohammad Salahuddin; Ahmad, Sarfaraz; Ali, Maksood

    2016-01-01

    The aim of the present study was to investigate the potential of nanoemulsion formulation for topical delivery of Clobetasol propionate (CP) using algal oil (containing omega-3 fatty acids) as the oil phase. CP has anti-inflammatory, immunomodulatory and antiproliferative activities. However, its clinical use is restricted to some extent due to its poor permeability across the skin. Algal oil was used as the oil phase and was also exploited for its anti-inflammatory effect along with CP in the treatment of inflammation associated with dermatitis. Nanoemulsion formulations were prepared by aqueous phase titration method, using algal oil, tween 20, PEG 200 and water as the oil phase, surfactant, co-surfactant and aqueous phase respectively. Furthermore, different formulations were subjected to evaluate for ex-vivo permeation and in-vivo anti-inflammatory, irritation and contact dermatitis studies. The optimized nanoemulsion was converted into hydrogel-thickened nanoemulsion system (HTN) using carbopol 971 and had a viscosity of 97.57 ± 0.04 PaS. The optimized formulation had small average diameter (120 nm) with zeta potential of -37.01 mV which indicated good long-term stability. In-vivo anti-inflammatory activity indicated 84.55% and 41.04% inhibition of inflammation for drug loaded and placebo formulations respectively. The assessment of skin permeation was done by DSC and histopathology studies which indicated changes in the structure of epidermal membrane of skin. Contact dermatitis reveals that the higher NTPDase activity in the treatment with the CP-loaded nanoemulsion could be related to the higher anti-inflammatory effect in comparison with placebo nanoemulsion gel. PMID:27610146

  10. Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) for application of ascorbyl palmitate.

    PubMed

    Uner, M; Wissing, S A; Yener, G; Müller, R H

    2005-08-01

    The aim of this study was to improve the chemical stability of ascorbyl palmitate (AP) in a colloidal lipid carrier for its topical use. For this purpose, AP-loaded solid lipid nanoparticles (SLN), nanostructured lipid carriers (NLC) and for comparison, a nanoemulsion (NE) were prepared employing the high pressure homogenization technique and stored at room temperature (RT), 4 degrees C and 40 degrees C. During 3 months, physical stability of these formulations compared to placebo formulations which were prepared by the same production method, was studied including recrystallization behaviour of the lipid with differential scanning calorimetry (DSC), particle size distribution and storage stability with photon correlation spectroscopy (PCS) and laser diffractometry (LD). After evaluating data indicating excellent physical stability, AP-loaded SLN, NLC and NE were incorporated into a hydrogel by the same production method as the next step. Degradation of AP by HPLC and physical stability in the same manner were investigated at the same storage temperatures during 3 months. As a result, AP was found most stable in both the NLC and SLN stored at 4 degrees C (p > 0.05) indicating the importance of storage temperature. Nondegraded AP content in NLC, SLN and NE was found to be 71.1% +/- 1.4, 67.6% +/- 2.9 and 55.2% +/- 0.3 after 3 months, respectively. Highest degradation was observed with NE at all the storage temperatures indicating even importance of the carrier structure.

  11. Multiple nanoemulsion system for an oral combinational delivery of oxaliplatin and 5-fluorouracil: preparation and in vivo evaluation

    PubMed Central

    Pangeni, Rudra; Choi, Sang Won; Jeon, Ok-Cheol; Byun, Youngro; Park, Jin Woo

    2016-01-01

    Oxaliplatin (OXA) is a third-generation cisplatin analog that has been approved as first-line chemotherapy in combination with 5-fluorouracil (5-FU) for the treatment of resectable and advanced colorectal cancer. However, the therapeutic efficacy of oral OXA and 5-FU is limited by their low bioavailability due to poor membrane permeability. The aim of the present study was to develop an oral delivery system for OXA and 5-FU. We constructed an ion-pairing complex of OXA with a deoxycholic acid derivative (Nα-deoxycholyl-l-lysyl-methylester, DCK) (OXA/DCK) as a permeation enhancer. Next, we prepared multiple water-in-oil-in-water nanoemulsions incorporating OXA/DCK and 5-FU to enhance their oral absorption. To evaluate their membrane permeability, we assessed in vitro permeabilities of OXA/DCK and 5-FU through an artificial intestinal membrane and Caco-2 cell monolayer. Finally, oral bioavailability in rats and tumor growth inhibition in the colorectal adenocarcinoma cell (CT26)-bearing mouse model were investigated after oral administration of nanoemulsion containing OXA/DCK and 5-FU. The droplet size of the optimized nanoemulsion was 20.3±0.22 nm with a zeta potential of −4.65±1.68 mV. In vitro permeabilities of OXA/DCK and 5-FU from the nanoemulsion through a Caco-2 cell monolayer were 4.80- and 4.30-fold greater than those of OXA and 5-FU, respectively. The oral absorption of OXA/DCK and 5-FU from the nanoemulsion also increased significantly, and the resulting oral bioavailability values of OXA/DCK and 5-FU in the nanoemulsive system were 9.19- and 1.39-fold higher than those of free OXA and 5-FU, respectively. Furthermore, tumor growth in CT26 tumor-bearing mice given the oral OXA/DCK- and 5-FU-loaded nanoemulsion was maximally inhibited by 73.9%, 48.5%, and 38.1%, compared with tumor volumes in the control group and the oral OXA and 5-FU groups, respectively. These findings demonstrate the therapeutic potential of a nanoemulsion incorporating OXA/DCK and

  12. Lipid composition of cyanidium.

    PubMed

    Allen, C F; Good, P; Holton, R W

    1970-11-01

    The major lipids in Cyanidium caldarium Geitler are monogalactosyl diglyceride, digalactosyl diglyceride, plant sulfolipid, lecithin, phosphatidyl glycerol, phosphatidyl inositol, and phosphatidyl ethanolamine. Fatty acid composition varies appreciably among the lipids, but the major ones are palmitic acid, oleic acid, linoleic acid, and moderate amounts of stearic acid. Trace amounts of other acids in the C(14) to C(20) range were also present. Moderate amounts of linolenic acid were found in two strains, but not in a third. The proportion of saturated acid is relatively high in all lipids ranging from about a third in monogalactosyl diglyceride to three-fourths in sulfolipid. This may be a result of the high growth temperature. Lipases forming lysosulfolipid, and lysophosphatidyl glycerol are active in ruptured cells; galactolipid is degraded with loss of both acyl residues. Thus the lipid and fatty acid composition of Cyanidium more closely resembles that of green algae than that of the blue-green algae, although there are differences of possible phylogenetic interest.

  13. Curcuminoids-loaded lipid nanoparticles: novel approach towards malaria treatment.

    PubMed

    Nayak, Aditya P; Tiyaboonchai, Waree; Patankar, Swati; Madhusudhan, Basavaraj; Souto, Eliana B

    2010-11-01

    In the present work, curcuminoids-loaded lipid nanoparticles for parenteral administration were successfully prepared by a nanoemulsion technique employing high-speed homogenizer and ultrasonic probe. For the production of nanoparticles, trimyristin, tristerin and glyceryl monostearate were selected as solid lipids and medium chain triglyceride (MCT) as liquid lipid. Scanning electron microscopy (SEM) revealed the spherical nature of the particles with sizes ranging between 120 and 250 nm measured by photon correlation spectroscopy (PCS). The zeta potential of the particles ranged between -28 and -45 mV depending on the nature of the lipid matrix produced, which also influenced the entrapment efficiency (EE) and drug loading capacity (LC) found to be in the range of 80-94% and 1.62-3.27%, respectively. The LC increased reciprocally on increasing the amount of MCT as confirmed by differential scanning calorimetry (DSC). DSC analyses revealed that increasing imperfections within the lipid matrix allowed for increasing encapsulation parameters. Nanoparticles were further sterilized by filtration process which was found to be superior over autoclaving in preventing thermal degradation of thermo-sensitive curcuminoids. The in vivo pharmacodynamic activity revealed 2-fold increase in antimalarial activity of curcuminoids entrapped in lipid nanoparticles when compared to free curcuminoids at the tested dosage level.

  14. Food protein-stabilized nanoemulsions as potential delivery systems for poorly water-soluble drugs: preparation, in vitro characterization, and pharmacokinetics in rats

    PubMed Central

    He, Wei; Tan, Yanan; Tian, Zhiqiang; Chen, Lingyun; Hu, Fuqiang; Wu, Wei

    2011-01-01

    Nanoemulsions stabilized by traditional emulsifiers raise toxicological concerns for long-term treatment. The present work investigates the potential of food proteins as safer stabilizers for nanoemulsions to deliver hydrophobic drugs. Nanoemulsions stabilized by food proteins (soybean protein isolate, whey protein isolate, β-lactoglobulin) were prepared by high-pressure homogenization. The toxicity of the nanoemulsions was tested in Caco-2 cells using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide viability assay. In vivo absorption in rats was also evaluated. Food protein-stabilized nanoemulsions, with small particle size and good size distribution, exhibited better stability and biocompatibility compared with nanoemulsions stabilized by traditional emulsifiers. Moreover, β-lactoglobulin had a better emulsifying capacity and biocompatibility than the other two food proteins. The pancreatic degradation of the proteins accelerated drug release. It is concluded that an oil/water nanoemulsion system with good biocompatibility can be prepared by using food proteins as emulsifiers, allowing better and more rapid absorption of lipophilic drugs. PMID:21468355

  15. Lipid nanoparticles: drug localization is substance-specific and achievable load depends on the size and physical state of the particles.

    PubMed

    Kupetz, Eva; Bunjes, Heike

    2014-09-10

    Lipid nanoemulsions and -suspensions are being intensively investigated as carriers for poorly water soluble drugs. The question on where model compounds or probes are localized within the dispersions has been the subject of several studies. However, only little data exists for pharmaceutically relevant molecules in dispersions composed of pharmaceutically relevant excipients. In this work, the localization of drugs and drug-like substances was studied in lipid nanoemulsions and -suspensions. Conclusions about the drug localization were drawn from the relations between lipid mass, specific particle surface area and drug load in the dispersions. Additionally, the achievable drug loads of the liquid and the solid lipid particles were compared. Nanoemulsions and -suspensions comprised trimyristin as lipid matrix and poloxamer 188 as emulsifier and were prepared with different well-defined particle sizes. These pre-formed dispersions were passively loaded with either amphotericin B, curcumin, dibucaine, fenofibrate, mefenamic acid, propofol, or a porphyrin derivative. The physico-chemical properties of the particles were characterized; drug load and lipid content were quantified by UV spectroscopy and high performance liquid chromatography, respectively. For all drugs the passive loading procedure was successful in both emulsions and suspensions. Solid particles accommodate drug molecules preferably at the particle surface. Liquid particles can accommodate drugs at the particle surface as well as in the core; the distribution between the two sites is drug specific. It is also drug specific whether solid or liquid particles yield higher drug loads. As a general rule, smaller particles led to higher drug loads than larger ones. Propofol and the porphyrin derivative displayed eutectic interaction with the lipid and crystal growth after loading, respectively.

  16. Lipid-based systems as a promising approach for enhancing the bioavailability of poorly water-soluble drugs.

    PubMed

    Cerpnjak, Katja; Zvonar, Alenka; Gašperlin, Mirjana; Vrečer, Franc

    2013-12-01

    Low oral bioavailability as a consequence of low water solubility of drugs is a growing challenge to the development of new pharmaceutical products. One of the most popular approaches of oral bioavailability and solubility enhancement is the utilization of lipid-based drug delivery systems. Their use in product development is growing due to the versatility of pharmaceutical lipid excipients and drug formulations, and their compatibility with liquid, semi-solid, and solid dosage forms. Lipid formulations, such as self-emulsifying (SEDDS), self-microemulsifying SMEDDS) and self- -nanoemulsifying drug delivery systems (SNEDDS) were explored in many studies as an efficient approach for improving the bioavailability and dissolution rate of poorly water-soluble drugs. One of the greatest advantages of incorporating poorly soluble drugs into such formulations is their spontaneous emulsification and formation of an emulsion, microemulsion or nanoemulsion in aqueous media. This review article focuses on the following topics. First, it presents a classification overview of lipid-based drug delivery systems and mechanisms involved in improving the solubility and bioavailability of poorly water-soluble drugs. Second, the article reviews components of lipid-based drug delivery systems for oral use with their characteristics. Third, it brings a detailed description of SEDDS, SMEDDS and SNEDDS, which are very often misused in literature, with special emphasis on the comparison between microemulsions and nanoemulsions.

  17. Effect of novel bioactive edible coatings based on jujube gum and nettle oil-loaded nanoemulsions on the shelf-life of Beluga sturgeon fillets.

    PubMed

    Gharibzahedi, Seyed Mohammad Taghi; Mohammadnabi, Sara

    2017-02-01

    Effect of jujube gum (JG; 4, 8 and 12% wt)-based nanoemulsions (NEs) containing nettle essential oil (NEO; 2, 3.5 and 5% wt) as new edible coatings was investigated to preserve Beluga sturgeon fillets (BSFs) during 15 day-refrigerated storage at 4°C. Physical (weight loss, cooking loss, color and texture), chemical (pH, FFA, PV, TBARS and TVB-N), microbiological (total and psychrotrophic bacterial counts), and sensorial characteristics of BSFs were kinetically analyzed. Preliminary studies showed that the NEs formulated with NEO lower than 5% at all JG concentrations were able to form stable coating solutions owing to the highest short-term stability (>90%) and entrapment efficiency (94.4-98.3%). Edible NE coating formulated with 12% JG and 3.5% NEO as a novel antimicrobial and antioxidant biomaterial exhibited the lowest weight and cooking losses, pH changes, textural and color deterioration, lipid oxidation and microbial growth in BSFs refrigerated over a period of 15days (P<0.05).

  18. Characterization of Y2BaCuO5 nanoparticles synthesized by nano-emulsion method

    NASA Astrophysics Data System (ADS)

    Li, Fang; Vipulanandan, Cumaraswamy

    2007-10-01

    Nanoscale yttrium-barium-copper oxide (Y2BaCuO5, Y211) particles were synthesized using the emulsion method and the solution method. The basic water-in-oil (w/o) emulsion system consisted of n-octane (continuous oil phase), cetyltrimethylammonium bromide (cationic surfactant), butanol (cosurfactant) and water. The composition of the emulsion system was varied and characterized by measuring the conductivity of the solutions and droplet size. The droplet size of emulsion was determined by using the dynamic light scattering method. The water content, cosurfactant content, and surfactant/ n-octane ratio affected the droplet size which was in the range of 3-8 nm, and hence the w/o emulsion system was referred to as a nano-emulsion system. A model was used to verify the droplet size. The influence of salt (Y2(NO3)3) content on the droplet size was investigated and the addition of salt reduced the droplet size. The effects of reaction time and temperature on the Y211 particle sizes were also investigated. The particles were characterized using the TEM, SEM, and XRD. Nanoparticles produced by the nano-emulsion method were calcined at 850°C to form the Y211 phase as compared to solid state processing temperature of 1050°C. Based on the TEM analysis, the average diameter of the Y211 particles produced using the nano-emulsion method was in the range of 30-100 nm. The effect of adding 15% Y211 nanoparticles to the superconductor YBCO-123 as flux pinning centers, was investigated, and the transition temperature was reduced by 3 K.

  19. Preparation and Thermal Properties of Fatty Alcohol/Surfactant/Oil/Water Nanoemulsions and Their Cosmetic Applications.

    PubMed

    Okamoto, Toru; Tomomasa, Satoshi; Nakajima, Hideo

    2016-01-01

    Physicochemical properties of oil-in-water (O/W) emulsions containing fatty alcohols and surfactants have been investigated with the aim of developing new formulations that are less viscous and more transparent than conventional milky lotions, as well as for providing greater skin-improving effects. O/W-based creams can be converted to low viscosity milky lotions following their emulsification with a homogenizer at temperatures greater than the transition temperatures of their molecular assemblies (α-gel). The stability of the O/W emulsions evaluated in the current study increased as the transition temperatures of the molecular assemblies formed from their fatty alcohol and surfactant constituents increased. A decrease in the emulsion droplet size led to the formation of a new formulation, which was transparent in appearance and showed a very low viscosity. The absence of a molecular assembly (α-gel) formed by the fatty alcohol and surfactant molecules in the aqueous phase allowed for the formation of a stable transparent and low viscosity nanoemulsion. Furthermore, this decrease in droplet size led to an increase in the interfacial area of the emulsion droplets, with almost all of the fatty alcohol and surfactant molecules being adsorbed on the surfaces of the emulsion droplets. This was found to be important for preparing a stable transparent formulation. Notably, this new formulation exhibited high occlusivity, which was equivalent to that of an ordinary cosmetic milky lotion, and consequently provided high skin hydration. The nanoemulsion was destroyed following its application to the skin, which led to the release of the fatty alcohol and surfactant molecules from the surface of the nanoemulsion into the aqueous phase. These results therefore suggest that the fatty alcohol and surfactant molecules organized the molecular assembly (α-gel) and allowed for the reconstruction of the network structure.

  20. [Ion-sensitive nanoemulsion-in situ gel system for ophthalmic delivery of flurbiprofen axetil].

    PubMed

    Shen, Jin-Qiu; Gan, Yong; Gan, Li; Zhu, Chun-Liu; Zhu, Jia-Bi

    2010-01-01

    The aim of the study is to prepare flurbiprofen axetil nanoemulsion-in situ gel system (FBA/NE-ISG) and observe its ocular pharmacokinetics, rheological behavior, TEM images, irritation and cornea retention. Production of nanoemulsion was based on high-speed shear and homogenization process, and then mixed with gellan gum to prepare FBA/NE-ISG. Rheological study showed that FBA/NE-ISG possesses strong gelation capacity and its viscosity and elastic modulus increases by 2 Pa*s and 5 Pa respectively when mixed with artificial tear at the ratio of 40 : 7. TEM images suggested no significant changes in particle morphology of the pre and post gelation. Good ocular compatibility of FBA/NE-ISG was testified by the irritation test based on histological examination. In vivo fluorescence imaging system was applied to investigate the characteristics of cornea retention, and the results indicated that the nanoemulsion-in situ gel (NE-ISG) prolonged the cornea retention time significantly since K(NE-ISG) (0.008 5 min(-1) was much lower compared with flurbiprofen sodium eye drops (FB-Na, 0.03% w/v) of which the K(Eye drops) was 0.105 2 min(-1), indicated that the cornea retention time of NE-ISG was prolonged significantly. Pharmacokinetics of FBA/NE-ISG in rabbit aqueous humor was studied by cornea puncture, the MRT (12.3 h) and AUC(0-12h) (126.8 microg x min x mL(-1)) of FBA/NE-ISG was 2.7 and 2.9 times higher than that of the flurbiprofen sodium eye drops respectively, which meant that the ocular bioavailability was improved greatly by the novel preparation. Therefore, FBA/NE-ISG can enhance the ocular bioavailability by prolonging drug corneal retention significantly. What's more, encapsulated by emulsion droplets prodrug flurbiprofen (FBA) instead of flurbiprofen (FB) can reduce the ocular irritation.

  1. Plum coatings of lemongrass oil-incorporating carnauba wax-based nanoemulsion.

    PubMed

    Kim, In-Hah; Lee, Hanna; Kim, Jung Eun; Song, Kyung Bin; Lee, Youn Suk; Chung, Dae Sung; Min, Sea C

    2013-10-01

    Nanoemulsions containing lemongrass oil (LO) were developed for coating plums and the effects of the nanoemulsion coatings on the microbial safety and physicochemical storage qualities of plums during storage at 4 and 25 °C were investigated. The emulsions used for coating were produced by mixing a carnauba wax-based solution (18%, w/w) with LO at various concentrations (0.5% to 4.0%, w/w) using dynamic high pressure processing at 172 MPa. The coatings were evaluated for their ability to inhibit the growth of Salmonella Typhimurium and Escherichia coli O157:H7 and their ability to preserve various physicochemical qualities of plums. Uniform and continuous coatings on plums, formed with stable emulsions, initially inhibited S. Typhimurium and E. coli O157:H7 by 0.2 to 2.8 and 0.8 to 2.7 log CFU/g, respectively, depending on the concentration of LO and the sequence of coating. The coatings did not significantly alter the flavor, fracturability, or glossiness of the plums. The antimicrobial effects of the coatings against S. Typhimurium and E. coli O157:H7 were demonstrated during storage at 4 and 25 °C. The coatings reduced weight loss and ethylene production by approximately 2 to 3 and 1.4 to 4.0 fold, respectively, and also retarded the changes in lightness and the concentration of phenolic compounds in plums during storage. The firmness of coated plums was generally higher than uncoated plums when stored at 4 °C and plum respiration rates were reduced during storage. Coatings containing nanoemulsions of LO have the potential to inhibit Salmonella and E. coli O157:H7 contamination of plums and may extend plum shelf life.

  2. Dimethyl silicone dry nanoemulsion inhalations: Formulation study and anti-acute lung injury effect.

    PubMed

    Zhu, Lifei; Li, Miao; Dong, Junxing; Jin, Yiguang

    2015-08-01

    Acute lung injury (ALI) is a severe disease, leading to death if not treated quickly. An emergency medicine is necessary for ALI therapy. Dimethyl silicone (DMS) is an effective agent to defoam the bubbles in the lung induced by ALI. However, DMS aerosols, a marketed formulation of DMS, affect environments and will be limited in the future. Here we firstly report a dry nanoemulsion inhalation for pulmonary delivery. Novel DMS dry nanoemulsion inhalations (DSNIs) were developed in this study. The optimal formulation of stable and homogenous DMS nanoemulsions (DSNs) was composed of Cremophor RH40/PEG 400/DMS (4:4:2, w/w/w) and water. The DSNs showed the tiny size of 19.8 nm, the zeta potential of -9.66 mV, and the low polydispersity index (PDI) of 0.37. The type of DSNs was identified as oil-in-water. The DSNs were added with mannitol followed by freeze-drying to obtain the DSNIs that were loose white powders, showed good fluidity, and were capable of rapid reconstitution to DSNs. The DSNs could adhere on the surfaces of lyophilized mannitol crystals. The aerodynamic diameter of DSNIs was 4.82 μm, suitable for pulmonary inhalation. The in vitro defoaming rate of DSNIs was 1.25 ml/s, much faster than those of the blank DSNIs, DMS, and DMS aerosols. The DSNIs showed significantly higher anti-ALI effect on the ALI rat models than the blank DSNIs and the DMS aerosols according to lung appearances, histological sections, and lung wet weight/dry weight ratios. The DSNIs are effective anti-ALI nanomedicines. The novel DMS formulation is a promising replacement of DMS aerosols.

  3. Inertial cavitation in theranostic nanoemulsions with simultaneous pulsed laser and low frequency ultrasound excitation

    NASA Astrophysics Data System (ADS)

    Arnal, Bastien; Wei, Chen-Wei; Xia, Jinjun; Pelivanov, Ivan M.; Lombardo, Michael; Perez, Camilo; Matula, Thomas J.; Pozzo, Danilo; O'Donnell, Matthew

    2014-03-01

    Ultrasound-induced inertial cavitation is a mechanical process used for site-localized therapies such as non-invasive surgery. Initiating cavitation in tissue requires very high intensity focused ultrasound (HIFU) and low-frequencies. Hence, some applications like thrombolysis require targeted contrast agents to reduce peak intensities and the potential for secondary effects. A new type of theranostic nanoemulsion has been developed as a combined ultrasound (US)/photoacoustic(PA) agent for molecular imaging and therapy. It includes a nanoscale emulsion core encapsulated with a layer of gold nanospheres at the water/ oil interface. Its optical absorption exhibits a spectrum broadened up to 1100 nm, opening the possibility that 1064 nm light can excite cavitation nuclei. If optically-excited nuclei are produced at the same time that a low-frequency US wave is at peak negative pressure, then highly localized therapies based on acoustic cavitation may be enabled at very low US pressures. We have demonstrated this concept using a low-cost, low energy, portable 1064 nm fiber laser in conjunction with a 1.24 MHz US transducer for simultaneous laser/US excitation of nanoemulsions. Active cavitation detection from backscattered signals indicated that cavitation can be initiated at very low acoustic pressures (less than 1 MPa) when laser excitation coincides with the rarefaction phase of the acoustic wave, and that no cavitation is produced when light is delivered during the compressive phase. US can sustain cavitation activity during long acoustic bursts and stimulate diffusion of the emulsion, thus increasing treatment speed. An in vitro clot model has been used to demonstrate combined US and laser excitation of the nanoemulsion for efficient thrombolysis.

  4. Preparation, characterization, and evaluation of antitumor effect of Brucea javanica oil cationic nanoemulsions

    PubMed Central

    Liu, Ting-ting; Mu, Li-Qiu; Dai, Wei; Wang, Chuan-bang; Liu, Xin-Yi; Xiang, Da-Xiong

    2016-01-01

    The purpose of this study was to prepare Brucea javanica oil cationic nanoemulsions (BJO-CN) with BJO as drug as well as oil phase and chitosan as cationic inducer, to explore the practical suitability of using cationic nanoemulsions for oral delivery of mixed oil, and to test its bioavailability and antitumor effect. BJO-CN was prepared by chitosan solution stirring method and then characterized physicochemically. The obtained BJO-CN had a spherical morphology with a positive zeta potential of 18.9 mV and an average particle size of 42.36 nm, showing high colloidal stability. The drug loading of BJO-CN was 91.83 mg·mL−1, determined by high-performance liquid chromatography with precolumn derivatization. Pharmacokinetic studies revealed that, compared with BJO emulsion (BJO-E) (the dosage of BJO-CN and BJO-E was equal to 505 mg·kg−1, calculated by oleic acid), BJO-CN exhibited a significant increase in the area under the plasma drug concentration–time curve over the period of 24 hours and relative bioavailability was 1.6-fold. Furthermore, the antitumor effect of BJO-CN in the orthotopic mouse model of lung cancer was evaluated by recording the median survival time and the weight of lung tissue with tumor, hematoxylin and eosin staining, and immunohistochemical technique. Results of anticancer experiments illustrated that, even though the administrated dosage in the BJO-CN group was half of that in the BJO-E group, BJO-CN exhibited similar antitumor effect to BJO-E. Moreover, BJO-CN had good synergistic effect in combination therapy with vinorelbine. These results suggested that cationic nanoemulsions are an effective and promising delivery system to enhance the oral bioavailability and anticancer effect of BJO. PMID:27330293

  5. Extending disorder: essentialism, family resemblance and secondary sense.

    PubMed

    Pickering, Neil

    2013-05-01

    It is commonly thought that mental disorder is a valid concept only in so far as it is an extension of or continuous with the concept of physical disorder. A valid extension has to meet two criteria: determination and coherence. Essentialists meet these criteria through necessary and sufficient conditions for being a disorder. Two Wittgensteinian alternatives to essentialism are considered and assessed against the two criteria. These are the family resemblance approach and the secondary sense approach. Where the focus is solely on the characteristics or attributes of things, both these approaches seem to fail to meet the criteria for valid extension. However, this focus on attributes is mistaken. The criteria for valid extension are met in the case of family resemblance by the pattern of characteristics associated with a concept, and by the limits of intelligibility of applying a concept. Secondary sense, though it may have some claims to be a good account of the relation between physical and mental disorder, cannot claim to meet the two criteria of valid extension.

  6. Ritodrine-induced pustular eruptions distinctly resembling impetigo herpetiformis.

    PubMed

    Kuwabara, Yoshimitsu; Sato, Atsuki; Abe, Hiroko; Abe, Sumino; Kawai, Naoki; Takeshita, Toshiyuki

    2011-01-01

    A 27-year-old nulligravida woman without a history of dermatosis was hospitalized for threatened preterm labor at 29 weeks' gestation; therefore, continuous infusion of ritodrine hydrochloride was started. At 31 weeks' gestation, erythematous plaques appeared and spread over the body surface; therefore, a topical steroid preparation was applied. At 32 weeks' gestation, the eruptions developed into irregular annular areas of erythema with multiple pustules accompanied by severe itching, and oral prednisolone treatment was started. Bacterial cultures of the pustules were negative, and a crural cutaneous biopsy revealed Kogoj's spongiform pustules. Based on the clinicopathological findings, the most likely diagnosis was impetigo herpetiformis, which causes cutaneous symptoms closely resembling pustular psoriasis in pregnant females without a history of psoriasis. To rule out ritodrine-induced pustular eruptions, the ritodrine infusion was stopped and treatment with an MgSO(4) preparation was started at 33 weeks' 3 days' gestation; however, the uterine contractions could not be suppressed. Because of the patient's highly edematous, severely painful feet, a cesarean section was performed the same day. Within several days of delivery, the eruptions began to resolve, and no recurrence was observed after treatment with oral prednisolone was stopped 31 days after delivery. On the basis of a positive patch test for ritodrine, we diagnosed pustular drug eruptions caused by ritodrine hydrochloride. Although ritodrine-induced pathognomonic cutaneous eruptions are rare, we would like to emphasize that ritodrine can cause drug-induced pustular eruptions distinctly resembling life-threatening impetigo herpetiformis.

  7. Nanoemulsion improves the oral bioavailability of baicalin in rats: in vitro and in vivo evaluation

    PubMed Central

    Zhao, Ling; Wei, Yumeng; Huang, Yu; He, Bing; Zhou, Yang; Fu, Junjiang

    2013-01-01

    Baicalin is one of the main bioactive flavone glucuronides derived as a medicinal herb from the dried roots of Scutellaria baicalensis Georgi, and it is widely used for the treatment of fever, inflammation, and other conditions. Due to baicalin’s poor solubility in water, its absolute bioavailability after oral administration is only 2.2%. The objective of this study was to develop a novel baicalin-loaded nanoemulsion to improve the oral bioavailability of baicalin. Based on the result of pseudoternary phase diagram, the nanoemulsion formulation consisting of soy-lecithin, tween-80, polyethylene glycol 400, isopropyl myristate, and water (1:2:1.5:3.75:8.25, w/w) was selected for further study. Baicalin-loaded nanoemulsions (BAN-1 and BAN-2) were prepared by internal or external drug addition and in vivo and in vitro evaluations were performed. The results showed that the mean droplet size, polydispersity index, and drug content of BAN-1 and BAN-2 were 91.2 ± 2.36 nm and 89.7 ± 3.05 nm, 0.313 ± 0.002 and 0.265 ± 0.001, and 98.56% ± 0.79% and 99.40% ± 0.51%, respectively. Transmission electron microscopy revealed spherical globules and confirmed droplet size analysis. After dilution 30-fold with water, the solubilization capacity of BAN-1 and BAN-2 did not change. In vitro release results showed sustained-release characteristics. BAN-1 formulation was stable for at least 6 months and was more stable than BAN-2. In rats, the area under the plasma drug concentration-time curve value of BAN-1 was 1.8-fold and 7-fold greater than those of BAN-2 and free baicalin suspension after oral administration at a dose of 100 mg/kg. In conclusion, these results demonstrated that the baicalin-loaded nanoemulsion formulation, in particular BAN-1, was very effective for improving the oral bioavailability of baicalin and exhibited great potential for future clinical application. PMID:24124365

  8. Skin photoprotection improvement: synergistic interaction between lipid nanoparticles and organic UV filters.

    PubMed

    Nikolić, S; Keck, C M; Anselmi, C; Müller, R H

    2011-07-29

    A photoprotective formulation was developed with an increased sunprotection factor (SPF), compared to a conventional nanoemulsion, but having the same concentration of three molecular sunscreens, namely ethylhexyl triazone, bis-ethylhexyloxyphenol methoxyphenyl triazine, and ethylhexyl methoxycinnamate. The sunscreen mixture was incorporated into nanostructured lipid carriers (NLCs). The ability of nine different solid lipids to yield stable aqueous NLC suspensions was assessed. After the production by hot high pressure homogenization, the NLC were analyzed in terms of particle size, physical state, particle shape, ultraviolet absorbance and stability. The particle size for all NLC was around 200 nm after production. The NLC suspension with carnauba wax had superior UV absorbance, NLC from bees wax showed similar efficiency as the reference emulsion. The NLC formulations were incorporated into hydrogel formulations and the in vitro SPF was measured. This study demonstrated that approximately 45% higher SPF values could be obtained when the organic UV filters were incorporated into carnauba wax NLC, in comparison to the reference nanoemulsion and bees wax NLC. The data showed that the synergistic effect of NLC and incorporated sunscreens depends not only on the solid state of the lipid but also on its type.

  9. A new nano-engineered hierarchical membrane for concurrent removal of surfactant and oil from oil-in-water nanoemulsion

    PubMed Central

    Qin, Detao; Liu, Zhaoyang; Bai, Hongwei; Sun, Darren Delai; Song, Xiaoxiao

    2016-01-01

    Surfactant stabilized oil-in-water nanoemulsions pose a severe threat to both the environment and human health. Recent development of membrane filtration technology has enabled efficient oil removal from oil/water nanoemulsion, however, the concurrent removal of surfactant and oil remains unsolved because the existing filtration membranes still suffer from low surfactant removal rate and serious surfactant-induced fouling issue. In this study, to realize the concurrent removal of surfactant and oil from nanoemulsion, a novel hierarchically-structured membrane is designed with a nanostructured selective layer on top of a microstructured support layer. The physical and chemical properties of the overall membrane, including wettability, surface roughness, electric charge, thickness and structures, are delicately tailored through a nano-engineered fabrication process, that is, graphene oxide (GO) nanosheet assisted phase inversion coupled with surface functionalization. Compared with the membrane fabricated by conventional phase inversion, this novel membrane has four times higher water flux, significantly higher rejections of both oil (~99.9%) and surfactant (as high as 93.5%), and two thirds lower fouling ratio when treating surfactant stabilized oil-in-water nanoemulsion. Due to its excellent performances and facile fabrication process, this nano-engineered membrane is expected to have wide practical applications in the oil/water separation fields of environmental protection and water purification. PMID:27087362

  10. Comparison of process parameter optimization using different designs in nanoemulsion-based formulation for transdermal delivery of fullerene.

    PubMed

    Ngan, Cheng Loong; Basri, Mahiran; Lye, Fui Fang; Fard Masoumi, Hamid Reza; Tripathy, Minaketan; Karjiban, Roghayeh Abedi; Abdul-Malek, Emilia

    2014-01-01

    This research aims to formulate and to optimize a nanoemulsion-based formulation containing fullerene, an antioxidant, stabilized by a low amount of mixed surfactants using high shear and the ultrasonic emulsification method for transdermal delivery. Process parameters optimization of fullerene nanoemulsions was done by employing response surface methodology, which involved statistical multivariate analysis. Optimization of independent variables was investigated using experimental design based on Box-Behnken design and central composite rotatable design. An investigation on the effect of the homogenization rate (4,000-5,000 rpm), sonication amplitude (20%-60%), and sonication time (30-150 seconds) on the particle size, ζ-potential, and viscosity of the colloidal systems was conducted. Under the optimum conditions, the central composite rotatable design model suggested the response variables for particle size, ζ-potential, and viscosity of the fullerene nanoemulsion were 152.5 nm, -52.6 mV, and 44.6 pascal seconds, respectively. In contrast, the Box-Behnken design model proposed that preparation under the optimum condition would produce nanoemulsion with particle size, ζ-potential, and viscosity of 148.5 nm, -55.2 mV, and 39.9 pascal seconds, respectively. The suggested process parameters to obtain optimum formulation by both models yielded actual response values similar to the predicted values with residual standard error of <2%. The optimum formulation showed more elastic and solid-like characteristics due to the existence of a large linear viscoelastic region.

  11. Ex vivo decrease in uranium diffusion through intact and excoriated pig ear skin by a calixarene nanoemulsion.

    PubMed

    Spagnul, Aurélie; Bouvier-Capely, Céline; Phan, Guillaume; Landon, Géraldine; Tessier, Christine; Suhard, David; Rebière, François; Agarande, Michelle; Fattal, Elias

    2011-10-01

    Cutaneous contamination by radionuclides is a major concern in the nuclear industry. In case of skin exposure to uranium, no efficient emergency treatment is available to remove the actinide from the skin. For this purpose, we developed a nanoemulsion containing calixarene molecules displaying good chelating properties towards uranium. In this paper, we describe the ability of this formulation to trap uranium and limit its transfer from the cutaneous contaminated site into the blood. Uranium percutaneous diffusion kinetics was assessed with Franz cells over 24 h through intact and excoriated pig ear skin biopsies, after or without application of the nanoemulsion. Uranium distribution in the skin layers was analysed by SIMS microscopy. The results showed that prompt application of the calixarene nanoemulsion allows a 94% and 98% reduction of the amount of uranium diffused respectively through intact and excoriated skin. The formulation is still efficient in case of delayed application up to 30 minutes since the 24 h-uranium transfer through excoriated skin is reduced by 71%. Besides, no accumulation of uranium or uranium-calixarene chelate was observed in the different skin layers. In conclusion, this study demonstrated the efficiency of the calixarene nanoemulsion, which can be regarded as a promising treatment for uranium cutaneous contamination.

  12. Effect of salts on the phase behavior and the stability of nanoemulsions with rapeseed oil and an extended surfactant.

    PubMed

    Klaus, Angelika; Tiddy, Gordon J T; Solans, Conxita; Harrar, Agnes; Touraud, Didier; Kunz, Werner

    2012-06-05

    For many decades, the solubilization of long-chain triglycerides in water has been a challenge. A new class of amphiphiles has been created to overcome this solubilization problem. The so-called "extended" surfactants contain a hydrophilic-lipophilic linker to reduce the contrast between the surfactant-water and surfactant-oil interfaces. In the present contribution, the effects of different anions and cations on the phase behavior of a mixture containing an extended surfactant (X-AES), a hydrotrope (sodium xylene sulfonate, SXS), water, and rapeseed oil were determined as a function of temperature. Nanoemulsions were obtained and characterized by conductivity measurements, light scattering, and optical microscopy. All salting-out salts show a transition from a clear region (O/W nanoemulsion), to a lamellar liquid crystalline phase region, a clear phase (bicontinuous L(3)), and again to a lamellar liquid crystalline phase region with increasing temperature. For the phase diagrams with NaSCN and Na(2)SO(4), only one clear region (O/W nanoemulsion) was observed, which turns into a lamellar phase region at elevated temperatures. Furthermore, the stability of the nanoemulsions was investigated by time-dependent measurements: the visual observation of phase separation, droplet size by dynamic light scattering (DLS), and optical microscopy. The mechanism of the different phase transitions is also discussed.

  13. A new nano-engineered hierarchical membrane for concurrent removal of surfactant and oil from oil-in-water nanoemulsion

    NASA Astrophysics Data System (ADS)

    Qin, Detao; Liu, Zhaoyang; Bai, Hongwei; Sun, Darren Delai; Song, Xiaoxiao

    2016-04-01

    Surfactant stabilized oil-in-water nanoemulsions pose a severe threat to both the environment and human health. Recent development of membrane filtration technology has enabled efficient oil removal from oil/water nanoemulsion, however, the concurrent removal of surfactant and oil remains unsolved because the existing filtration membranes still suffer from low surfactant removal rate and serious surfactant-induced fouling issue. In this study, to realize the concurrent removal of surfactant and oil from nanoemulsion, a novel hierarchically-structured membrane is designed with a nanostructured selective layer on top of a microstructured support layer. The physical and chemical properties of the overall membrane, including wettability, surface roughness, electric charge, thickness and structures, are delicately tailored through a nano-engineered fabrication process, that is, graphene oxide (GO) nanosheet assisted phase inversion coupled with surface functionalization. Compared with the membrane fabricated by conventional phase inversion, this novel membrane has four times higher water flux, significantly higher rejections of both oil (~99.9%) and surfactant (as high as 93.5%), and two thirds lower fouling ratio when treating surfactant stabilized oil-in-water nanoemulsion. Due to its excellent performances and facile fabrication process, this nano-engineered membrane is expected to have wide practical applications in the oil/water separation fields of environmental protection and water purification.

  14. A new nano-engineered hierarchical membrane for concurrent removal of surfactant and oil from oil-in-water nanoemulsion.

    PubMed

    Qin, Detao; Liu, Zhaoyang; Bai, Hongwei; Sun, Darren Delai; Song, Xiaoxiao

    2016-04-18

    Surfactant stabilized oil-in-water nanoemulsions pose a severe threat to both the environment and human health. Recent development of membrane filtration technology has enabled efficient oil removal from oil/water nanoemulsion, however, the concurrent removal of surfactant and oil remains unsolved because the existing filtration membranes still suffer from low surfactant removal rate and serious surfactant-induced fouling issue. In this study, to realize the concurrent removal of surfactant and oil from nanoemulsion, a novel hierarchically-structured membrane is designed with a nanostructured selective layer on top of a microstructured support layer. The physical and chemical properties of the overall membrane, including wettability, surface roughness, electric charge, thickness and structures, are delicately tailored through a nano-engineered fabrication process, that is, graphene oxide (GO) nanosheet assisted phase inversion coupled with surface functionalization. Compared with the membrane fabricated by conventional phase inversion, this novel membrane has four times higher water flux, significantly higher rejections of both oil (~99.9%) and surfactant (as high as 93.5%), and two thirds lower fouling ratio when treating surfactant stabilized oil-in-water nanoemulsion. Due to its excellent performances and facile fabrication process, this nano-engineered membrane is expected to have wide practical applications in the oil/water separation fields of environmental protection and water purification.

  15. Physicochemical stability and in vitro bioaccessibility of ß-carotene nanoemulsions stabilized with whey protein-dextran conjugates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this study, ß-carotene (BC)-loaded nanoemulsions encapsulated with native whey protein isolate (WPI) and WPI-dextran (DT, 5 kDa, 20 kDa, and 70 kDa) conjugates were prepared and the effects of glycosylation with various molecular weight DTs on the physicochemical property, lipolysis, and BC bioac...

  16. Enhancement of encapsulation efficiency of nanoemulsion-containing aripiprazole for the treatment of schizophrenia using mixture experimental design.

    PubMed

    Masoumi, Hamid Reza Fard; Basri, Mahiran; Samiun, Wan Sarah; Izadiyan, Zahra; Lim, Chaw Jiang

    2015-01-01

    Aripiprazole is considered as a third-generation antipsychotic drug with excellent therapeutic efficacy in controlling schizophrenia symptoms and was the first atypical anti-psychotic agent to be approved by the US Food and Drug Administration. Formulation of nanoemulsion-containing aripiprazole was carried out using high shear and high pressure homogenizers. Mixture experimental design was selected to optimize the composition of nanoemulsion. A very small droplet size of emulsion can provide an effective encapsulation for delivery system in the body. The effects of palm kernel oil ester (3-6 wt%), lecithin (2-3 wt%), Tween 80 (0.5-1 wt%), glycerol (1.5-3 wt%), and water (87-93 wt%) on the droplet size of aripiprazole nanoemulsions were investigated. The mathematical model showed that the optimum formulation for preparation of aripiprazole nanoemulsion having the desirable criteria was 3.00% of palm kernel oil ester, 2.00% of lecithin, 1.00% of Tween 80, 2.25% of glycerol, and 91.75% of water. Under optimum formulation, the corresponding predicted response value for droplet size was 64.24 nm, which showed an excellent agreement with the actual value (62.23 nm) with residual standard error <3.2%.

  17. Hydrogels Containing Nanocapsules and Nanoemulsions of Tea Tree Oil Provide Antiedematogenic Effect and Improved Skin Wound Healing.

    PubMed

    Flores, Fernanda C; De Lima, Julia A; Da Silva, Cássia R; Benvegnú, Dalila; Ferreira, Juliano; Burger, Marilise E; Beck, Ruy C R; Rolim, Clarice M B; Rocha, Maria Isabel U M; Da Veiga, Marcelo L; Da Silva, Cristiane de B

    2015-01-01

    In previous works, we developed nanocapsules and nanoemulsions containing the tea tree oil. The aim of this work was to prepare and characterize hydrogels containing these nanocarriers, and to evaluate their in vivo efficacy in protecting skin damage induced by UVB and cutaneous wound healing. Hydrogels were prepared using Carbopol Ultrez and their physicochemical characteristics were evaluated: macroscopic analysis, pH, spreadability and rheological properties. The in vivo antiedematogenic effect was evaluated by ear thickness measurement after UVB-irradiation. In order to evaluate healing action of hydrogels, we investigated the regression of the cutaneous lesion in rats. Hydrogels showed homogeneous aspect and pH values between 5.6-5.8 and a non-Newtonian behavior. The presence of nanocapsules and nanoemulsions in hydrogels did not change their spreadability profile. The inclusion of tea tree oil in the nanocapsules and nanoemulsions allowed reducing the edema induced by UVB exposure. Hydrogel containing nanocapsules presented a higher reduction of the wound area compared to the hydrogel containing nanoemulsions and hydrogel containing allantoin. This study shows the feasibility of obtained dermatological formulations containing the tea tree oil associated in nanostructured systems. These formulations represent a promising approach to topical treatment of inflammatory disorders and wound healing.

  18. Enhancement of encapsulation efficiency of nanoemulsion-containing aripiprazole for the treatment of schizophrenia using mixture experimental design

    PubMed Central

    Fard Masoumi, Hamid Reza; Basri, Mahiran; Sarah Samiun, Wan; Izadiyan, Zahra; Lim, Chaw Jiang

    2015-01-01

    Aripiprazole is considered as a third-generation antipsychotic drug with excellent therapeutic efficacy in controlling schizophrenia symptoms and was the first atypical anti-psychotic agent to be approved by the US Food and Drug Administration. Formulation of nanoemulsion-containing aripiprazole was carried out using high shear and high pressure homogenizers. Mixture experimental design was selected to optimize the composition of nanoemulsion. A very small droplet size of emulsion can provide an effective encapsulation for delivery system in the body. The effects of palm kernel oil ester (3–6 wt%), lecithin (2–3 wt%), Tween 80 (0.5–1 wt%), glycerol (1.5–3 wt%), and water (87–93 wt%) on the droplet size of aripiprazole nanoemulsions were investigated. The mathematical model showed that the optimum formulation for preparation of aripiprazole nanoemulsion having the desirable criteria was 3.00% of palm kernel oil ester, 2.00% of lecithin, 1.00% of Tween 80, 2.25% of glycerol, and 91.75% of water. Under optimum formulation, the corresponding predicted response value for droplet size was 64.24 nm, which showed an excellent agreement with the actual value (62.23 nm) with residual standard error <3.2%. PMID:26508853

  19. Uterine Tumour Resembling Ovarian Sex Cord Tumour- A Rare Entity

    PubMed Central

    Ilhan, Tolgay Tuyan; Gül, Ayhan; Ugurluoglu, Ceyhan; Çelik, Çetin

    2016-01-01

    Uterine Tumour Resembling Ovarian Sex-Cord Tumours (UTROSCTs) are an extremely rare type of uterine body tumours arising from the endometrial stroma. Epidemiology, aetiology, pathogenesis, management and natural history of UTROSCTs are still a question of debate, as there is little available data in the literature. Although rare, the possibility of UTROSCTs should be kept in mind, when a patient presents with abnormal bleeding and an enlarged uterus. UTROSCTs appear dirty white/cream-coloured, gelatinous, well-circumscribed mass with smooth surface on macroscopic examination. We present a rare case of endometrial stromal tumour with sex-cord-like differentiation which was successfully treated by hysterectomy with bilateral salpingo-oophorectomy. The clinical manifestations, pathologic characteristics, diagnosis and management of these tumours are reviewed here. PMID:28208949

  20. Adenomyomatosis of the gallbladder resembling honeycomb in a child.

    PubMed

    Akçam, Mustafa; Buyukyavuz, Ilker; Ciriş, Metin; Eriş, Naim

    2008-09-01

    Adenomyomatosis of the gallbladder is believed to be an uncommon pathologic condition of the gallbladder in childhood. Only three pediatric cases have been described in the literature up to now. Honeycomb gallbladder has been described in two adult patients; no patients have been reported in childhood until now. To the best of our knowledge, we report here the first case of adenomyomatosis of the gallbladder which resembled honeycomb, in a 9-year-old girl presented with recurrent abdominal pain. The diagnosis was made by ultrasound, and confirmed by magnetic resonance cholangiopancreatography and finally cholecystectomy. In conclusion, ultrasound scanning performed more generally in children presenting with recurrent abdominal pain might lead to accurate diagnosis of adenomyomotosis of the gallbladder during childhood.

  1. Differentiated human stem cells resemble fetal, not adult, β cells.

    PubMed

    Hrvatin, Sinisa; O'Donnell, Charles W; Deng, Francis; Millman, Jeffrey R; Pagliuca, Felicia Walton; DiIorio, Philip; Rezania, Alireza; Gifford, David K; Melton, Douglas A

    2014-02-25

    Human pluripotent stem cells (hPSCs) have the potential to generate any human cell type, and one widely recognized goal is to make pancreatic β cells. To this end, comparisons between differentiated cell types produced in vitro and their in vivo counterparts are essential to validate hPSC-derived cells. Genome-wide transcriptional analysis of sorted insulin-expressing (INS(+)) cells derived from three independent hPSC lines, human fetal pancreata, and adult human islets points to two major conclusions: (i) Different hPSC lines produce highly similar INS(+) cells and (ii) hPSC-derived INS(+) (hPSC-INS(+)) cells more closely resemble human fetal β cells than adult β cells. This study provides a direct comparison of transcriptional programs between pure hPSC-INS(+) cells and true β cells and provides a catalog of genes whose manipulation may convert hPSC-INS(+) cells into functional β cells.

  2. Imperfect Batesian mimicry and the conspicuousness costs of mimetic resemblance.

    PubMed

    Speed, Michael P; Ruxton, Graeme D

    2010-07-01

    We apply signal detection methodology to make predictions about the evolution of Batesian mimicry. Our approach is novel in three ways. First, we applied a deterministic evolutionary modeling system that allows a large number of alternative mimetic morphs to coexist and compete. Second, we considered that there may be natural boundaries to phenotypic expression. Finally, we allowed increasing conspicuousness to impose an increasing detection cost on mimics. In some instances, the model predicts widespread variation in mimetic forms at evolutionary stability. In other situations, rather than a polymorphism the model predicts dimorphisms in which some prey were maximally cryptic and had minimal resemblance to the model, whereas many others were more conspicuous than the model. The biological implications of these results, particularly for our understanding of imperfect mimicry, are discussed.

  3. Muscular dystrophy in a dog resembling human becker muscular dystrophy.

    PubMed

    Baroncelli, A B; Abellonio, F; Pagano, T B; Esposito, I; Peirone, B; Papparella, S; Paciello, O

    2014-05-01

    A 3-year-old, male Labrador retriever dog was presented with clinical signs of progressive exercise intolerance, bilateral elbow extension, rigidity of the forelimbs, hindlimb flexion and kyphosis. Microscopical examination of muscle tissue showed marked variability in myofibre size, replacement of muscle with mature adipose tissue and degeneration/regeneration of muscle fibres, consistent with muscular dystrophy. Immunohistochemical examination for dystrophin showed markedly reduced labelling with monoclonal antibodies specific for the rod domain and the carboxy-terminal of dystrophin, while expression of β-sarcoglycan, γ-sarcoglycan and β-dystroglycan was normal. Immunoblotting revealed a truncated dystrophin protein of approximately 135 kDa. These findings supported a diagnosis of congenital canine muscular dystrophy resembling Becker muscular dystrophy in man.

  4. Influence of the phase behavior on the properties of ionic nanoemulsions prepared by the phase inversion composition method.

    PubMed

    Maestro, Alicia; Solè, Isabel; González, Carmen; Solans, Conxita; Gutiérrez, José M

    2008-11-15

    The low-energy emulsification method phase inversion composition (PIC) was used to prepare O/W nanoemulsions in the W/oleylammonium chloride-oleylamine-C12E10/hexadecane ionic system, where the oleylammonium acted as a cationic surfactant. The results obtained, in terms of phase diagrams and emulsion characteristics, were compared with those obtained in the system W/potassium oleate-oleic acid-C12E10/hexadecane [I. Solè, A. Maestro, C. González, C. Solans, J.M. Gutiérrez, Langmuir 22 (2006) 8326], in which the oleate acted as an anionic surfactant. This study was done in order to extend the application range of the ionic nanoemulsions, not only in anionic systems but also in cationic ones, and in order to deep further into the nanoemulsion formation mechanism. The results show again that to obtain small droplet-sized nanoemulsions it is necessary to cross a direct cubic liquid crystal phase along the emulsification path, and it is also crucial to remain in this phase enough time and to use a proper mixing rate to incorporate all the oil into the liquid crystal. Then, when nanoemulsion forms, the oil is already intimately mixed with all the components, and the nanoemulsification is easier. Structural studies made with both cationic and anionic systems confirmed that the size of the "micelles" that form the cubic phase is the same or slightly smaller than the size of the nanoemulsion droplets obtained, depending on the emulsification path, which seems to point out that the nanoemulsions are formed in both cases by a dilution process of this cubic phase. When further watery solution is added to the cubic liquid crystal, these micelles separate, disrupting the cubic structure, and a small fraction of the surfactant migrates to the water. Moreover, due to the change in pH, the spontaneous curvature increases. Then, the phases in equilibrium are an oil-in-water microemulsion (W(m)) and the oil in excess. However, through this emulsification method, the surfactants can

  5. Nano-emulsions prepared by the phase inversion composition method: preparation variables and scale up.

    PubMed

    Solè, Isabel; Pey, Carmen M; Maestro, Alicia; González, Carmen; Porras, Montserrat; Solans, Conxita; Gutiérrez, José M

    2010-04-15

    The aim of this work is to study, through experimental design, the effect of vessel geometry and scale-up in the properties of nano-emulsions prepared through the phase inversion composition method (PIC). Results show that a proper mixing is crucial for small droplet-sized nano-emulsions, especially when remaining free oil is found together with the key liquid crystal phase formed during the emulsification process. In these cases, mixing must be near the perfect mixed model. Proper geometries must be selected to promote a good mixture. Small addition rates V(ad) and high mixing rates omega promote the necessary mixing level. However, results indicate that, if free oil remains together with liquid crystal formed during emulsification, a too high omega could promote coalescence of oil droplets. When a cubic liquid crystal phase Pm3n is formed instead during emulsification, without free oil, coalescence is not promoted, probably due to the extremely high viscosity. For the system where Pm3n is formed during emulsification, scale-up cannot be done, as it would be expected, maintaining adimensional variables--Reynolds, Re, and adimensional time. A perfect correspondence between scales is observed when the total addition time and the lineal mixing rate are maintained between scales instead. Re, i.e. the ratio between inertial and viscous forces, does not seem adequate to describe the system, as inertial forces are worthless due to the extremely high viscosity.

  6. Quantification and evaluation of thymoquinone loaded mucoadhesive nanoemulsion for treatment of cerebral ischemia.

    PubMed

    Ahmad, Niyaz; Ahmad, Rizwan; Alam, Md Aftab; Samim, Mohd; Iqbal, Zeenat; Ahmad, Farhan Jalees

    2016-07-01

    Stroke is an important cause of deaths worldwide, resulting in an irreversible deterioration of the central nervous system. Finally, production of more free radicals. Therefore, Thymoquinone is having antioxidant property and reported to have a potential role in the amelioration of cerebral ischemia but due to low solubility and poor absorption; they exhibit low serum and tissue levels. Present work aims to prepare nanoemulsions in order enhance the bioavailability of drug and hence evaluate the drug targeting in brain via non-invasive nasal route administration. Thymoquinone Mucoadhesive Nanoemulsion (TMNE) was prepared by ionic gelation method; characterized for particles size, entrapment efficiency, zeta potential, and ex vivo permeation study. Optimized TMNE ended up with a mean globule size 94.8±6.61nm; zeta potential -13.5±1.01mV; drug content 99.86±0.35% and viscosity 110±12cp. Ultra Performance Liquid Chromatography-Photodiode Array (UPLC-PDA) based bioanalytical method was developed and validated for pharmacokinetics, biodistribution, brain-targeting efficiency (628.5786±44.79%) and brain drug-targeting potential (89.97±2.94%) studies via post intranasal administration which revealed enhanced bioavailability of TQ in brain as compared to intravenous administration. Improved neurobehavioural activity (locomotor and grip strength) was observed in middle cerebral artery occlusion induced cerebral ischemic rats after i.n. administration of TMNE.

  7. Trypanocidal activity of the essential oils in their conventional and nanoemulsion forms: in vitro tests.

    PubMed

    Baldissera, Matheus D; Da Silva, Aleksandro S; Oliveira, Camila B; Zimmermann, Carine E P; Vaucher, Rodrigo A; Santos, Roberto C V; Rech, Virginia C; Tonin, Alexandre A; Giongo, Janice L; Mattos, Cristiane B; Koester, Letícia; Santurio, Janio M; Monteiro, Silvia G

    2013-07-01

    The aim of this study was to investigate the susceptibility in vitro of Trypanosoma evansi to the essential oils of andiroba (Carapa guaianensis) and aroeira (Schinus molle), in their conventional and nanostructured forms. For that, pure oils at concentrations of 0.5%, 1.0% and 2.0% were used. A negative control (untreated) and a positive control (diminazene aceturate 0.5%) were used as comparative parameters. Later, the same tests were performed, using nanoemulsions oils at concentrations of 0.5% and 1.0%. The tests were carried out in triplicates and the numbers of parasites were quantified on 1, 3 and 6 h from onset of the study. A dose-dependent reduction in the number of parasites to the forms of two oils tested was observed after 1 h. The concentration of parasites was significantly reduced at low concentrations after 3 h, as well as at 6 h no alive parasites were observed for the essential oils tested. Ours findings indicate, for the first time, that oils of andiroba and aroeira (in their conventional and nanoemulsion forms) have high activity against T. evansi in vitro, leading to the suggestion that these oils may be applied as an alternative treatment for this disease.

  8. Development of Organogel-Derived Capsaicin Nanoemulsion with Improved Bioaccessibility and Reduced Gastric Mucosa Irritation.

    PubMed

    Lu, Muwen; Cao, Yong; Ho, Chi-Tang; Huang, Qingrong

    2016-06-15

    Capsaicin (CAP) is the major active component in chili peppers with health-promoting benefits. However, the low bioavailability and irritating quality of CAP greatly limit its applications in functional foods. The objective of this study was to develop a food-grade nanoemulsion to increase the dissolution and bioaccessibility of CAP and to alleviate its irritating effects. To achieve this goal, CAP was first dissolved in medium-chain triacylglycerol (MCT), followed by the addition of sucrose stearate S-370 as organogelator to develop CAP-loaded organogel. The oil-in-water (O/W) emulsion was formed using organogel as the oil phase and Tween 80 as the emulsifier. After ultrasonication treatment, droplet sizes of emulsion were decreased to 168 nm with enhanced dissolution rate and bioaccessibility. In vivo study further confirmed the reduced rat gastric mucosa irritation caused by CAP. The organogel-derived nanoemulsion was proved to be an effective delivery system for CAP-based functional food products.

  9. Inhibition of lung cancer cells A549 and H460 by curcuminoid extracts and nanoemulsions prepared from Curcuma longa Linnaeus

    PubMed Central

    Chang, Hong-Bin; Chen, Bing-Huei

    2015-01-01

    The objectives of this study were to explore the inhibition mechanism of lung cancer cells A549 and H460 by curcuminoid extracts and nanoemulsions prepared from Curcuma longa Linnaeus. In addition, human bronchus epithelial cell line BEAS-2B (normal cell) was selected for comparison. A high-performance liquid chromatography (HPLC) method was developed to separate and quantify the various curcuminoids in C. longa extract, including curcumin (1,714.5 μg/mL), demethoxycurcumin (1,147.4 μg/mL), and bisdemethoxycurcumin (190.2 μg/mL). A high-stability nanoemulsion composed of Tween 80, water, and curcuminoid extract was prepared, with mean particle size being 12.6 nm. The cell cycle was retarded at G2/M for both the curcuminoid extract and nanoemulsion treatments; however, the inhibition pathway may be different. H460 cells were more susceptible to apoptosis than A549 cells for both curcuminoid extract and nanoemulsion treatments. Growth of BEAS-2B remained unaffected for both the curcuminoid extract and nanoemulsion treatments, with a concentration range from 1 to 4 μg/mL. Also, the activities of caspase-3, caspase-8, and caspase-9 followed a dose-dependent increase for both A549 and H460 cells for both the treatments, accompanied by a dose-dependent increase in cytochrome C expression and a dose-dependent decrease in CDK1 expression. Interestingly, a dose-dependent increase in cyclin B expression was shown for A549 cells for both the treatments, while a reversed trend was found for H460 cells. Both mitochondria and death receptor pathways may be responsible for apoptosis of both A549 and H460 cells. PMID:26345201

  10. Ultrasonic assisted formation and stability of mustard oil in water nanoemulsion: Effect of process parameters and their optimization.

    PubMed

    Carpenter, Jitendra; Saharan, Virendra Kumar

    2017-03-01

    The present work reports the ultrasound assisted preparation of mustard oil in water nanoemulsion stabilized by Span 80 and Tween 80 at different operating conditions. Effects of various operating parameters such as HLB (Hydrophilic Lipophilic Balance) value, surfactant volume fraction (φS), oil volume fraction (φO) and power amplitude were investigated and optimized on the basis of droplet size and stability of nanoemulsions. It was observed that minimum droplet size of about 87.38nm was obtained within 30min of ultrasonication at an optimum HLB value of 10, φS of 0.08 (8%, v/v), φO of 0.1 (10%, v/v) and ultrasonic power amplitude of 40%. The stability of the nanoemulsion was measured through visual observation and it was found that the unstable emulsions got separated within 24h whereas, stable emulsions never showed any separation until 90days. In addition to that, the kinetic stability of the prepared nanoemulsions was also assessed under centrifuge and thermal stress conditions. The emulsion stability was found to be unaffected by these forces as the droplet size remained unchanged. The ultrasound prepared emulsion was found to be long term stable even after 3months of storage at ambient conditions without any visual evidence of creaming and phase separation and also remained kinetically stable. FTIR analysis of the emulsions at different sonication conditions was carried out to examine the possible impact of ultrasonically induced chemical effects on oil structure during emulsification and it was found that the oil molecular structure was unaffected by ultrasonication process. The present work illustrates the formation and stability of mustard oil in water nanoemulsion using ultrasound cavitation which may be useful in food and cosmetic based applications.

  11. PLGA nanoparticles from nano-emulsion templating as imaging agents: Versatile technology to obtain nanoparticles loaded with fluorescent dyes.

    PubMed

    Fornaguera, C; Feiner-Gracia, N; Calderó, G; García-Celma, M J; Solans, C

    2016-11-01

    The interest in polymeric nanoparticles as imaging systems for biomedical applications has increased notably in the last decades. In this work, PLGA nanoparticles, prepared from nano-emulsion templating, have been used to prepare novel fluorescent imaging agents. Two model fluorescent dyes were chosen and dissolved in the oil phase of the nano-emulsions together with PLGA. Nano-emulsions were prepared by the phase inversion composition (PIC) low-energy method. Fluorescent dye-loaded nanoparticles were obtained by solvent evaporation of nano-emulsion templates. PLGA nanoparticles loaded with the fluorescent dyes showed hydrodynamic radii lower than 40nm; markedly lower than those reported in previous studies. The small nanoparticle size was attributed to the nano-emulsification strategy used. PLGA nanoparticles showed negative surface charge and enough stability to be used for biomedical imaging purposes. Encapsulation efficiencies were higher than 99%, which was also attributed to the nano-emulsification approach as well as to the low solubility of the dyes in the aqueous component. Release kinetics of both fluorescent dyes from the nanoparticle dispersions was pH-independent and sustained. These results indicate that the dyes could remain encapsulated enough time to reach any organ and that the decrease of the pH produced during cell internalization by the endocytic route would not affect their release. Therefore, it can be assumed that these nanoparticles are appropriate as systemic imaging agents. In addition, in vitro toxicity tests showed that nanoparticles are non-cytotoxic. Consequently, it can be concluded that the preparation of PLGA nanoparticles from nano-emulsion templating represents a very versatile technology that enables obtaining biocompatible, biodegradable and safe imaging agents suitable for biomedical purposes.

  12. Inhibition of lung cancer cells A549 and H460 by curcuminoid extracts and nanoemulsions prepared from Curcuma longa Linnaeus.

    PubMed

    Chang, Hong-Bin; Chen, Bing-Huei

    2015-01-01

    The objectives of this study were to explore the inhibition mechanism of lung cancer cells A549 and H460 by curcuminoid extracts and nanoemulsions prepared from Curcuma longa Linnaeus. In addition, human bronchus epithelial cell line BEAS-2B (normal cell) was selected for comparison. A high-performance liquid chromatography (HPLC) method was developed to separate and quantify the various curcuminoids in C. longa extract, including curcumin (1,714.5 μg/mL), demethoxycurcumin (1,147.4 μg/mL), and bisdemethoxycurcumin (190.2 μg/mL). A high-stability nanoemulsion composed of Tween 80, water, and curcuminoid extract was prepared, with mean particle size being 12.6 nm. The cell cycle was retarded at G2/M for both the curcuminoid extract and nanoemulsion treatments; however, the inhibition pathway may be different. H460 cells were more susceptible to apoptosis than A549 cells for both curcuminoid extract and nanoemulsion treatments. Growth of BEAS-2B remained unaffected for both the curcuminoid extract and nanoemulsion treatments, with a concentration range from 1 to 4 μg/mL. Also, the activities of caspase-3, caspase-8, and caspase-9 followed a dose-dependent increase for both A549 and H460 cells for both the treatments, accompanied by a dose-dependent increase in cytochrome C expression and a dose-dependent decrease in CDK1 expression. Interestingly, a dose-dependent increase in cyclin B expression was shown for A549 cells for both the treatments, while a reversed trend was found for H460 cells. Both mitochondria and death receptor pathways may be responsible for apoptosis of both A549 and H460 cells.

  13. Nanoemulsions containing a synthetic chalcone as an alternative for treating cutaneous leshmaniasis: optimization using a full factorial design

    PubMed Central

    de Mattos, Cristiane Bastos; Argenta, Débora Fretes; Melchiades, Gabriela de Lima; Sechini Cordeiro, Marlon Norberto; Tonini, Maiko Luis; Moraes, Milene Hoehr; Weber, Tanara Beatriz; Roman, Silvane Souza; Nunes, Ricardo José; Teixeira, Helder Ferreira; Steindel, Mário; Koester, Letícia Scherer

    2015-01-01

    Nanoemulsions are drug delivery systems that may increase the penetration of lipophilic compounds through the skin, enhancing their topical effect. Chalcones are compounds of low water solubility that have been described as promising molecules for the treatment of cutaneous leishmaniasis (CL). In this context, the aim of this work was to optimize the development of a nanoemulsion containing a synthetic chalcone for CL treatment using a 22 full factorial design. The formulations were prepared by spontaneous emulsification and the experimental design studied the influence of two independent variables (type of surfactant – soybean lecithin or sorbitan monooleate and type of co-surfactants – polysorbate 20 or polysorbate 80) on the physicochemical characteristics of the nanoemulsions, as well as on the skin permeation/retention of the synthetic chalcone in porcine skin. In order to evaluate the stability of the systems, the antileishmanial assay was performed against Leishmania amazonensis 24 hours and 60 days after the preparation of the nanoemulsions. The formulation composed of soybean lecithin and polysorbate 20 presented suitable physicochemical characteristics (droplet size 171.9 nm; polydispersity index 0.14; zeta potential −39.43 mV; pH 5.16; and viscosity 2.00 cP), drug content (91.09%) and the highest retention in dermis (3.03 µg·g−1) – the main response of interest – confirmed by confocal microscopy. This formulation also presented better stability of leishmanicidal activity in vitro against L. amazonensis amastigote forms (half maximal inhibitory concentration value 0.32±0.05 µM), which confirmed the potential of the nanoemulsion soybean lecithin and polysorbate 20 for CL treatment. PMID:26366075

  14. Action mechanism of small and large molecule surfactant-based clove oil nanoemulsions against food-borne pathogens and real-time detection of their subpopulations.

    PubMed

    Majeed, Hamid; Antoniou, John; Shoemaker, Charles F; Fang, Zhong

    2015-01-01

    Flow cytometry exactly discriminated three subpopulations, i.e., viable, damage and sublethal cells of L. monocytogenes, S. aureus and E. coli when treated at their MIC values. Purity gum ultra (PGU) a large molecule surfactant-based CO nanoemulsion exerted significant impact on cellular subpopulations of L. monocytogenes and S. aureus, with more membrane-damaged cells. On the other hand, when compared with bulk CO the results showed minimum membrane damage and more viable cells, whereas PGU CO nanoemulsion showed minimum effect on cellular subpopulation and represented more viable than damaged cells in case of E. coli. Similarly, Tween 80 a small molecule surfactant-based CO nanoemulsion showed limited overall activity against three tested microorganisms with more viable cells. We conclude that it was due to sequestration of CO constituents in interfaces, less availability in aqueous phase and finally inhibit bactericidal activity. Moreover, both CO and CO nanoemulsions showed membrane damage as primary inactivation mechanism of tested bacterial cells.

  15. Development of lycopene-loaded nanostructured lipid carriers: effect of rice oil and cholesterol.

    PubMed

    Riangjanapatee, P; Müller, R H; Keck, C M; Okonogi, S

    2013-09-01

    Nanostructured lipid carriers (NLC) were developed using a skin-compatible surfactant and natural lipid materials (rice oil, cholesterol) to incorporate lycopene. Characteristics of the NLC were explored in comparison with nanoemulsions and solid-lipid nanoparticles (SLN). Photon correlation spectroscopy, laser diffractometry (LD) and differential scanning calorimetry were used to determine particle size and thermal stability. Particle size expressed as LD (0.99) was 405 nm for the SLN, 350 nm for the NLC without cholesterol and 287 nm for the NLC with cholesterol. Rice oil and cholesterol enabled the formation of smaller particles, but cholesterol also reduced drug stability in the NLC. To preserve chemical stability of lycopene in the NLC, cholesterol should be avoided and storage should be at 4 degrees C or at room temperature.

  16. Biodistribution of X-ray iodinated contrast agent in nano-emulsions is controlled by the chemical nature of the oily core.

    PubMed

    Attia, Mohamed F; Anton, Nicolas; Chiper, Manuela; Akasov, Roman; Anton, Halina; Messaddeq, Nadia; Fournel, Sylvie; Klymchenko, Andrey S; Mély, Yves; Vandamme, Thierry F

    2014-10-28

    In this study, we investigated the role of the chemical nature of the oil droplet core of nano-emulsions used as contrast agents for X-ray imaging on their pharmacokinetics and biodistribution. To this end, we formulated PEGylated nano-emulsions with two iodinated oils (i.e., iodinated monoglyceride and iodinated castor oil) and compared them with another iodinated nano-emulsion based on iodinated vitamin E. By using dynamic light scattering and transmission electron microscopy, the three iodinated nano-emulsions were found to exhibit comparable morphologies, size, and surface composition. Furthermore, they were shown to be endowed with very high iodine concentration, which leads to stronger X-ray attenuation properties as compared to the commercial iodinated nano-emulsion Fenestra VC. The three nano-emulsions were i.v. administered in mice and monitored by microcomputed tomography (micro-CT). They showed high contrast enhancement in blood with similar half-life around 6 h but very different accumulation sites. While iodinated monoglycerides exhibited low accumulation in liver and spleen, high accumulation in spleen was observed for iodinated castor oil and in liver for vitamin E. These data clearly highlighted the important role of the oil composition of the nano-emulsion core to obtain strong X-ray contrast enhancement in specific targets such as liver, spleen, or only blood. These differences in biodistribution were partly attributed to differences in the uptake of the nanodroplets by the macrophages in vitro. Another key feature of these nano-emulsions is their long half-elimination time (several weeks), which offers sufficient retention for micro-CT imaging. This work paves the way for the design of nanoparticulate contrast agents for X-ray imaging of selected organs.

  17. Combined effect of a nanoemulsion of D-limonene and nisin on Listeria monocytogenes growth and viability in culture media and foods.

    PubMed

    Maté, Javier; Periago, Paula M; Palop, Alfredo

    2016-03-01

    The present work evaluated the antibacterial effect of nanoemulsions from natural compounds d-limonene and nisin against Listeria monocytogenes in tryptic soy broth growth medium, chicken broth, and vegetable cream. Experiments were performed by means of optical density growth curves and studies of viability in culture media and foods. Stability of nanoemulsions was evaluated by a Mastersizer 2000 equipment. Results showed greater effectiveness when applying D-limonene in form of nanoemulsion than when applying it directly, and when using both compounds together, both directly and in the form of nanoemulsion. Concentration of L. monocytogenes decreased at least in three log cycles in all the culture media and foods used within the first 90 min after the addition of the natural antimicrobials combined in form of nanoemulsion. Moreover, the growth of L. monocytogenes was inhibited with the combination of antimicrobials in the four weeks that the experiment lasted. Nanoemulsion technology would solve present problems of solubility and stability of oily antimicrobials in the food industry.

  18. The antitumor immune responses induced by nanoemulsion-encapsulated MAGE1-HSP70/SEA complex protein vaccine following different administration routes.

    PubMed

    Ge, Wei; Hu, Pei-Zhen; Huang, Yang; Wang, Xiao-Ming; Zhang, Xiu-Min; Sun, Yu-Jing; Li, Zeng-Shan; Si, Shao-Yan; Sui, Yan-Fang

    2009-10-01

    Our previous study showed that nanoemulsion-encapsulated MAGE1-HSP70/SEA (MHS) complex protein vaccine elicited MAGE-1 specific immune response and antitumor effects against MAGE-1-expressing tumor and nanoemulsion is a useful vehicle with possible important implications for cancer biotherapy. The purpose of this study was to compare the immune responses induced by nanoemulsion-encapsulated MAGE1-HSP70 and SEA as NE(MHS) vaccine following different administration routes and to find out the new and effective immune routes. Nanoemulsion vaccine was prepared using magnetic ultrasound methods. C57BL/6 mice were immunized with NE(MHS) via po., i.v., s.c. or i.p., besides mice s.c. injected with PBS or NE(-) as control. The cellular immunocompetence was detected by ELISpot assay and LDH release assay. The therapeutic and tumor challenge assay were also examined. The results showed that the immune responses against MAGE-1 expressing murine tumors elicited by NE(MHS) via 4 different routes were approximately similar and were all stronger than that elicited by PBS or NE(-), suggesting that this novel nanoemulsion carrier can exert potent antitumor immunity against antigens encapsulated in it. Especially, the present results indicated that nanoemulsion vaccine adapted to administration via different routes including peroral, and may have broader applications in the future.

  19. A neural network dynamics that resembles protein evolution

    NASA Astrophysics Data System (ADS)

    Ferrán, Edgardo A.; Ferrara, Pascual

    1992-06-01

    We use neutral networks to classify proteins according to their sequence similarities. A network composed by 7 × 7 neurons, was trained with the Kohonen unsupervised learning algorithm using, as inputs, matrix patterns derived from the bipeptide composition of cytochrome c proteins belonging to 76 different species. As a result of the training, the network self-organized the activation of its neurons into topologically ordered maps, wherein phylogenetically related sequences were positioned close to each other. The evolution of the topological map during learning, in a representative computational experiment, roughly resembles the way in which one species evolves into several others. For instance, sequences corresponding to vertebrates, initially grouped together into one neuron, were placed in a contiguous zone of the final neural map, with sequences of fishes, amphibia, reptiles, birds and mammals associated to different neurons. Some apparent wrong classifications are due to the fact that some proteins have a greater degree of sequence identity than the one expected by phylogenetics. In the final neural map, each synaptic vector may be considered as the pattern corresponding to the ancestor of all the proteins that are attached to that neuron. Although it may be also tempting to link real time with learning epochs and to use this relationship to calibrate the molecular evolutionary clock, this is not correct because the evolutionary time schedule obtained with the neural network depends highly on the discrete way in which the winner neighborhood is decreased during learning.

  20. [Crohn's disease with the onset resembling systemic lupus erythematosus].

    PubMed

    Shimizu, T; Nishinarita, S; Son, K; Tomita, Y; Yoshihiro; Matsukawa; Kitamura, N; Horie, T; Baba, M; Hiranuma, M

    1999-06-01

    We described a 37-year-old man with Crohn's disease (CD) resembling systemic lupus erythematosus (SLE) at his disease onset. He was admitted to the municiple Akiru Hospital in October 1986 by fever, aphtous oral ulcerations, sore throat and polyarthralgia. Hematologic examination showed leukocytopenia, lymphocytopenia, positive tests for antinuclear antibody, anti-DNA antibody and LE cell phenomenon. He has had episodes of convulsion and conciousness loss of unknown etiology when he was 17 years old. The diagnosis of SLE was made, and oral medication of prednisolone was started. Several weeks later, most of symptoms and autoantibodies disappeared, although the oral aphtous ulcerations and leukocytopenia remained. In May 1987, he admitted to the other hospital because of bloody vomiting. Endoscopic examination showed the esophagial ulceration, and histology of biopsied-specimen was nonspecific esophagitis. The combination of prednisolone and oral cyclophosphamide or methotrexate was employed thereafter. However, the leukocytopenia, oral aphtous ulceration and esophagial ulceration continued in spite of these treatments. All the immunosuppressive treatment was stopped at March 1992. In October 1995, he admitted to our hospital because of body weight loss and continuous diarrhea with occasional bloody stool. Barium enema and endoscopic examination of the colon revealed the findings compatible with CD. The patient responded favorably to methylprednisolone pulse therapy followed by oral sulphasalazine. This case indicated that cases with inflammatory bowel diseases like CD could show similar clinical signs and symptoms to SLE, and in some cases of CD might satisfied the classification of criteria for SLE.

  1. Localization and Ordering of Lipids Around Aquaporin-0: Protein and Lipid Mobility Effects

    PubMed Central

    Briones, Rodolfo; Aponte-Santamaría, Camilo; de Groot, Bert L.

    2017-01-01

    Hydrophobic matching, lipid sorting, and protein oligomerization are key principles by which lipids and proteins organize in biological membranes. The Aquaporin-0 channel (AQP0), solved by electron crystallography (EC) at cryogenic temperatures, is one of the few protein-lipid complexes of which the structure is available in atomic detail. EC and room-temperature molecular dynamics (MD) of dimyristoylglycerophosphocholine (DMPC) annular lipids around AQP0 show similarities, however, crystal-packing and temperature might affect the protein surface or the lipids distribution. To understand the role of temperature, lipid phase, and protein mobility in the localization and ordering of AQP0-lipids, we used MD simulations of an AQP0-DMPC bilayer system. Simulations were performed at physiological and at DMPC gel-phase temperatures. To decouple the protein and lipid mobility effects, we induced gel-phase in the lipids or restrained the protein. We monitored the lipid ordering effects around the protein. Reducing the system temperature or inducing lipid gel-phase had a marginal effect on the annular lipid localization. However, restraining the protein mobility increased the annular lipid localization around the whole AQP0 surface, resembling EC. The distribution of the inter-phosphate and hydrophobic thicknesses showed that stretching of the DMPC annular layer around AQP0 surface is the mechanism that compensates the hydrophobic mismatch in this system. The distribution of the local area-per-lipid and the acyl-chain order parameters showed particular fluid- and gel-like areas that involved several lipid layers. These areas were in contact with the surfaces of higher and lower protein mobility, respectively. We conclude that the AQP0 surfaces induce specific fluid- and gel-phase prone areas. The presence of these areas might guide the AQP0 lipid sorting interactions with other membrane components, and is compatible with the squared array oligomerization of AQP0 tetramers

  2. Protein-lipid nanohybrids as emerging platforms for drug and gene delivery: Challenges and outcomes.

    PubMed

    Gaber, Mohamed; Medhat, Waseem; Hany, Mark; Saher, Nourhan; Fang, Jia-You; Elzoghby, Ahmed

    2017-03-30

    Nanoparticulate drug delivery systems have been long used to deliver a vast range of drugs and bioactives owing to their ability to demonstrate novel physical, chemical, and/or biological properties. An exponential growth has spurred in research and development of these nanocarriers which led to the evolution of a great number of diverse nanosystems including liposomes, nanoemulsions, solid lipid nanoparticles (SLNs), micelles, dendrimers, polymeric nanoparticles (NPs), metallic NPs, and carbon nanotubes. Among them, lipid-based nanocarriers have made the largest progress whether commercially or under development. Despite this progress, these lipid-based nanocarriers suffer from several limitations that led to the development of many protein-coated lipid nanocarriers. To less extent, protein-based nanocarriers suffer from limitations that led to the fabrication of some lipid bilayer enveloping protein nanocarriers. This review discusses in-depth some limitations associated with the lipid-based or protein-based nanocarriers and the fruitful outcomes brought by protein-lipid hybridization. Also discussed are the various hybridization techniques utilized to formulate these protein-lipid nanohybrids and the mechanisms involved in the drug loading process.

  3. Do iodinated nano-emulsions designed for preclinical vascular imaging alter the vascular reactivity in rat aorta?

    PubMed

    Anton, Nicolas; Atzenhoffer, Marina; Daubeuf, François; Li, Xiang; Schini-Kerth, Valérie B; Delmotte, Barbara; Vandamme, Thierry F; Chataigneau, Thierry

    2013-09-15

    This study proposes a new methodology to evaluate the putative consequences of the long-lasting circulation in the blood pool of nanoparticulate systems widely used in nanomedicine, Indeed, the blood pool contrast agent for micro-computed tomography, i.e. iodinated nano-emulsions, have recently been developed, for their great potential in medical applications such as advanced diagnosis, image-guided surgery, personalized medicine or theragnostics. Stealth nanoparticles exhibit a low recognition by the reticuloendothelial system, resulting in a prolonged circulation in the bloodstream and long-lasting contact with the endothelium. Therefore, the aim of the present study is to determine whether this prolonged interaction could induce an alteration of the vascular reactivity in rat aorta. The Iodinated nano-emulsions were intravenously injected in anesthetized rats. After 1h of contrast agent circulation in the blood pool, the thoracic aorta was removed for the study of vascular reactivity. These animals were compared with control (untreated) rats and a third group of rats receiving an injection of phosphate buffered saline (i.e. dispersing phase of the nano-emulsions). Phenylephrine-induced concentration-dependent contractions of the isolated rat thoracic aorta were not modified whatever the group. Sodium nitroprusside (a nitric oxide (NO) donor)-induced relaxations of endothelium-denuded aorta were also unaltered in response to the different administrations. In contrast, in comparison with control animals, endothelium-dependent NO-mediated relaxations to acetylcholine were significantly impaired in thoracic aorta from PBS-treated rats, but not in animals receiving the iodinated nano-emulsion. In addition, neither isoprenaline-induced nor levcromakalim-induced relaxations were modified in the aorta from the three groups of animals. These findings indicate that even with a long-lasting residence time of the iodinated nano-emulsion in the blood flow, these iodinated

  4. Ventricular Tachycardia and Resembling Acute Coronary Syndrome During Pheochromocytoma Crisis

    PubMed Central

    Li, Shi-jun; Wang, Tao; Wang, Lin; Pang, Zhan-qi; Ma, Ben; Li, Ya-wen; Yang, Jian; Dong, He

    2016-01-01

    Abstract Pheochromocytomas are neuroendocrine tumors, and its cardiac involvement may include transient myocardial dysfunction, acute coronary syndrome (ACS), and even ventricular arrhythmias. A patient was referred for evaluation of stuttering chest pain, and his electrocardiogram showed T-wave inversion over leads V1 to V4. Coronary angiography showed 90% stenosis in the mid-left anterior descending coronary artery (LAD), which was stented. Five days later, the patient had ventricular tachycardia, and severe hypertension, remarkable blood pressure fluctuation between 224/76 and 70/50 mm Hg. The patient felt abdominal pain and his abdominal ultrasound showed suspicious right adrenal gland tumor. Enhanced computed tomography of adrenal gland conformed that there was a tumor in right adrenal gland accompanied by an upset level of aldosterone. The tumor was removed by laparoscope, and the pathological examination showed pheochromocytoma. After the surgery, the blood pressure turned normal gradually. There was no T-wave inversion in lead V1-V4. Our case illustrates a rare pheochromocytoma presentation with a VT and resembling ACS. In our case, the serious stenosis in the mid of LAD could be explained by worsen the clinical course of myocardial ischemia or severe coronary vasospasm by the excessive amounts of catecholamines released from the tumor. Coronary vasospasm was possible because he had no classic coronary risk factors (e.g. family history and smoking habit, essential hypertension, hyperglycemia and abnormal serum lipoprotein, high body mass index). Thus, pheochromocytoma was missed until he revealed the association of his symptoms with abdominalgia. As phaeochromocytomas that present with cardiovascular complications can be fatal, it is necessary to screen for the disease when patients present with symptoms indicating catecholamine excess. PMID:27057898

  5. Gait analysis in a mouse model resembling Leigh disease.

    PubMed

    de Haas, Ria; Russel, Frans G; Smeitink, Jan A

    2016-01-01

    Leigh disease (LD) is one of the clinical phenotypes of mitochondrial OXPHOS disorders and also known as sub-acute necrotizing encephalomyelopathy. The disease has an incidence of 1 in 77,000 live births. Symptoms typically begin early in life and prognosis for LD patients is poor. Currently, no clinically effective treatments are available. Suitable animal and cellular models are necessary for the understanding of the neuropathology and the development of successful new therapeutic strategies. In this study we used the Ndufs4 knockout (Ndufs4(-/-)) mouse, a model of mitochondrial complex I deficiency. Ndusf4(-/-) mice exhibit progressive neurodegeneration, which closely resemble the human LD phenotype. When dissecting behavioral abnormalities in animal models it is of great importance to apply translational tools that are clinically relevant. To distinguish gait abnormalities in patients, simple walking tests can be assessed, but in animals this is not easy. This study is the first to demonstrate automated CatWalk gait analysis in the Ndufs4(-/-) mouse model. Marked differences were noted between Ndufs4(-/-) and control mice in dynamic, static, coordination and support parameters. Variation of walking speed was significantly increased in Ndufs4(-/-) mice, suggesting hampered and uncoordinated gait. Furthermore, decreased regularity index, increased base of support and changes in support were noted in the Ndufs4(-/-) mice. Here, we report the ability of the CatWalk system to sensitively assess gait abnormalities in Ndufs4(-/-) mice. This objective gait analysis can be of great value for intervention and drug efficacy studies in animal models for mitochondrial disease.

  6. Familial resemblance for body composition measures: the HERITAGE Family Study.

    PubMed

    Rice, T; Daw, E W; Gagnon, J; Bouchard, C; Leon, A S; Skinner, J S; Wilmore, J H; Rao, D C

    1997-11-01

    A sex-specific familial correlation model was used to assess the heritable contributions to several measures of body composition in 86 sedentary white families participating in the HERITAGE Family Study. For this study, sedentary families were recruited, tested for a battery of measures, endurance exercise trained for 20 weeks, and remeasured. This sample is unique in that activity level was controlled for in these families at baseline measurement. In this report, three body composition variables measured at baseline were analyzed, two indexing adiposity (total subcutaneous fat based on eight skinfold measurements [SF8] and percent body fat measured by underwater weighing techniques [%BF]) and one assessing fat free mass ([FFM] derived from underwater weighing). The maximal heritabilities for SF8 (34%) and %BF (62%) were consistent with those reported in previous studies. There were no sex nor generation differences in the familial correlations, and the spouse correlation was significant, consistent with the hypothesis that the familial aggregation reflects genetic and familial environmental factors. However, the results for FFM were very different. The most parsimonious pattern of familial resemblance was consistent with mitochondrial inheritance (i.e., mother-offspring and sibling correlations were equal and were larger than those for spouse and father-offspring pairs). Under the mitochondrial hypothesis, 39% of the variance was accounted for by familial/genetic effects. However, under a nonmitochondrial hypothesis, which could not be ruled out, 65% of the FFM phenotypic variance was accounted for by familial/genetic factors. This high heritability level, as compared with results from previous studies, is consistent with the hypothesis that activity may constitute an important environmental determinant of FFM. These alternative hypotheses for FFM warrant further investigation using complex multilocus-multitrait segregation models, which allow for major genetic

  7. New Edible Bionanocomposite Prepared by Pectin and Clove Essential Oil Nanoemulsions.

    PubMed

    Sasaki, Ronaldo S; Mattoso, Luiz H C; de Moura, Márcia Regina

    2016-06-01

    Nanocomposites are being extremely investigated to provide packaging with interesting characteristics for packages. Because of essential oils' natural occurrence and antibacterial activity, they are considered as an alternative for synthetic additives in the food industry. In this paper, we studied an edible bionanocomposite film made up of pectin and clove essential oil nanoemulsion for application as edible package. Mechanical properties, water vapor permeability (WVP), and antibacterial activity were analyzed. From mechanical and WVP analyses, we noticed an interesting improvement in film properties. In the antibacterial activity test, disk diffusion was used to assess the inhibition zones of Escherichia coli and Staphylococcus aureus. With these results, we concluded that the most interesting results were promoted by smaller nanodroplets (diameter of approximately 142 nm).

  8. Separating Oil-Water Nanoemulsions using Flux-Enhanced Hierarchical Membranes

    PubMed Central

    Solomon, Brian R.; Hyder, Md. Nasim; Varanasi, Kripa K.

    2014-01-01

    Membranes that separate oil-water mixtures based on contrasting wetting properties have recently received significant attention. Separation of nanoemulsions, i.e. oil-water mixtures containing sub-micron droplets, still remains a key challenge. Tradeoffs between geometric constraints, high breakthrough pressure for selectivity, high flux, and mechanical durability make it challenging to design effective membranes. In this paper, we fabricate a hierarchical membrane by the phase inversion process that consists of a nanoporous separation skin layer supported by an integrated microporous layer. We demonstrate the separation of water-in-oil emulsions well below 1 μm in size. In addition, we tune the parameters of the hierarchical membrane fabrication to control the skin layer thickness and increase the total flux by a factor of four. These simple yet robust hierarchical membranes with engineered wetting characteristics show promise for large-scale, efficient separation systems. PMID:24980852

  9. Nonlinear contrast enhancement in photoacoustic molecular imaging with gold nanosphere encapsulated nanoemulsions

    SciTech Connect

    Wei, Chen-wei; Lombardo, Michael; Larson-Smith, Kjersta; Perez, Camilo; Xia, Jinjun; Matula, Thomas; Pozzo, Danilo; O'Donnell, Matthew; Pelivanov, Ivan

    2014-01-20

    A composite contrast agent, a nanoemulsion bead with assembled gold nanospheres at the interface, is proposed to improve the specific contrast of photoacoustic molecular imaging. A phase transition in the bead's core is induced by absorption of a nanosecond laser pulse with a fairly low laser fluence (∼3.5 mJ/cm{sup 2}), creating a transient microbubble through dramatically enhanced thermal expansion. This generates nonlinear photoacoustic signals with more than 10 times larger amplitude compared to that of a linear agent with the same optical absorption. By applying a differential scheme similar to ultrasound pulse inversion, more than 40 dB contrast enhancement is demonstrated with suppression of background signals.

  10. Sono-photoacoustic imaging of gold nanoemulsions: Part II. Real time imaging

    PubMed Central

    Arnal, Bastien; Wei, Chen-Wei; Perez, Camilo; Nguyen, Thu-Mai; Lombardo, Michael; Pelivanov, Ivan; Pozzo, Lilo D.; O’Donnell, Matthew

    2015-01-01

    Photoacoustic (PA) imaging using exogenous agents can be limited by degraded specificity due to strong background signals. This paper introduces a technique called sono-photoacoustics (SPA) applied to perfluorohexane nanodroplets coated with gold nanospheres. Pulsed laser and ultrasound (US) excitations are applied simultaneously to the contrast agent to induce a phase-transition ultimately creating a transient microbubble. The US field present during the phase transition combined with the large thermal expansion of the bubble leads to 20–30 dB signal enhancement. Aqueous solutions and phantoms with very low concentrations of this agent were probed using pulsed laser radiation at diagnostic exposures and a conventional US array used both for excitation and imaging. Contrast specificity of the agent was demonstrated with a coherent differential scheme to suppress US and linear PA background signals. SPA shows great potential for molecular imaging with ultrasensitive detection of targeted gold coated nanoemulsions and cavitation-assisted theranostic approaches. PMID:25893170

  11. Sono-photoacoustic imaging of gold nanoemulsions: Part I. Exposure thresholds.

    PubMed

    Arnal, Bastien; Perez, Camilo; Wei, Chen-Wei; Xia, Jinjun; Lombardo, Michael; Pelivanov, Ivan; Matula, Thomas J; Pozzo, Lilo D; O'Donnell, Matthew

    2015-03-01

    Integrating high contrast bubbles from ultrasound imaging with plasmonic absorbers from photoacoustic imaging is investigated. Nanoemulsion beads coated with gold nanopsheres (NEB-GNS) are excited with simultaneous light (transient heat at the GNS's) and ultrasound (rarefactional pressure) resulting in a phase transition achievable under different scenarios, enhancing laser-induced acoustic signals and enabling specific detection of nanoprobes at lower concentration. An automated platform allowed dual parameter scans of both pressure and laser fluence while recording broadband acoustic signals. Two types of NEB-GNS and individual GNS were investigated and showed the great potential of this technique to enhance photoacoustic/acoustic signals. The NEB-GNS size distribution influences vaporization thresholds which can be reached at both permissible ultrasound and light exposures at deep penetration and at low concentrations of targets. This technique, called sono-photoacoustics, has great potential for targeted molecular imaging and therapy using compact nanoprobes with potentially high-penetrability into tissue.

  12. Thermodynamic signature of secondary nano-emulsion formation by isothermal titration calorimetry.

    PubMed

    Fotticchia, Iolanda; Fotticchia, Teresa; Mattia, Carlo Andrea; Netti, Paolo Antonio; Vecchione, Raffaele; Giancola, Concetta

    2014-12-09

    The stabilization of oil in water nano-emulsions by means of a polymer coating is extremely important; it prolongs the shelf life of the product and makes it suitable for a variety of applications ranging from nutraceutics to cosmetics and pharmaceutics. To date, an effective methodology to assess the best formulations in terms of thermodynamic stability has yet to be designed. Here, we perform a complete physicochemical characterization based on isothermal titration calorimetry (ITC) compared to conventional dynamic light scattering (DLS) to identify polymer concentration domains that are thermodynamically stable and to define the degree of stability through thermodynamic functions depending upon any relevant parameter affecting the stability itself, such as type of polymer coating, droplet distance, etc. For instance, the method was proven by measuring the energetics in the case of two different biopolymers, chitosan and poly-L-lysine, and for different concentrations of the emulsion coated with poly-L-lysine.

  13. Nanoemulsion-based intranasal drug delivery system of saquinavir mesylate for brain targeting.

    PubMed

    Mahajan, Hitendra S; Mahajan, Milind S; Nerkar, Pankaj P; Agrawal, Anshuman

    2014-03-01

    The central nervous system (CNS) is an immunological privileged sanctuary site-providing reservoir for HIV-1 virus. Current anti-HIV drugs, although effective in reducing plasma viral levels, cannot eradicate the virus completely from the body. The low permeability of anti-HIV drugs across the blood-brain barrier (BBB) leads to insufficient delivery. Therefore, developing a novel approaches enhancing the CNS delivery of anti-HIV drugs are required for the treatment of neuro-AIDS. The aim of this study was to develop intranasal nanoemulsion (NE) for enhanced bioavailability and CNS targeting of saquinavir mesylate (SQVM). SQVM is a protease inhibitor which is a poorly soluble drug widely used as antiretroviral drug, with oral bioavailability is about 4%. The spontaneous emulsification method was used to prepare drug-loaded o/w nanoemulsion, which was characterized by droplet size, zeta potential, pH, drug content. Moreover, ex-vivo permeation studies were performed using sheep nasal mucosa. The optimized NE showed a significant increase in drug permeation rate compared to the plain drug suspension (PDS). Cilia toxicity study on sheep nasal mucosa showed no significant adverse effect of SQVM-loaded NE. Results of in vivo biodistribution studies show higher drug concentration in brain after intranasal administration of NE than intravenous delivered PDS. The higher percentage of drug targeting efficiency (% DTE) and nose-to-brain drug direct transport percentage (% DTP) for optimized NE indicated effective CNS targeting of SQVM via intranasal route. Gamma scintigraphy imaging of the rat brain conclusively demonstrated transport of drug in the CNS at larger extent after intranasal administration as NE.

  14. Protective role of free and quercetin-loaded nanoemulsion against damage induced by intracerebral haemorrhage in rats

    NASA Astrophysics Data System (ADS)

    Galho, A. R.; Cordeiro, M. F.; Ribeiro, S. A.; Marques, M. S.; Antunes, M. F. D.; Luz, D. C.; Hädrich, G.; Muccillo-Baisch, A. L.; Barros, D. M.; Lima, J. V.; Dora, C. L.; Horn, A. P.

    2016-04-01

    Intracerebral haemorrhage (ICH) is a worldwide public health problem. Experimental studies have shown that oxidative stress plays an important role in the pathogenesis of ICH and could represent a target for its treatment. However, the blood-brain barrier is an obstacle to be overcome, as it hampers the administration of compounds to the central nervous system. In this study, we compared the effects of a quercetin-loaded nanoemulsion (QU-N) with the free form of the drug (QU-SP) in a collagenase-induced ICH rat model. Quercetin (QU) is a polyphenol that has an antioxidant effect in vitro, but due to its high lipophilicity, it has low bioavailability in vivo. In this study, animals submitted or not to ICH were treated with a single intraperitoneal QU dose (free or nanoemulsion) of 30 mg kg-1. Motor assessment was evaluated by the open field, foot fault and beam walking behavioural tests. 72 h after surgery the haematoma size was evaluated and biochemical measurements were performed. Animals treated with QU-N had a significant improvement in the beam walking and open field tests. Also, QU-N was able to reduce the size of the haematoma, preserving the activity of glutathione S-transferase (GST), increasing GSH content, and the total antioxidant capacity. QU-SP recovered locomotor activity and increased the GSH content and the total antioxidant capacity. Thus, it can be observed that QU presented antioxidant activity in both formulations, but the incorporation into nanoemulsions increased its antioxidant effect, which was reflected in the improvement of the motor skills and in the haematoma size decrement. These results suggest that the nanoemulsion containing QU developed in this study could be promising for future studies on treatments for ICH.

  15. Antimicrobial Nanoemulsion Formulation with Improved Penetration of Foliar Spray through Citrus Leaf Cuticles to Control Citrus Huanglongbing.

    PubMed

    Yang, Chuanyu; Powell, Charles A; Duan, Yongping; Shatters, Robert; Zhang, Muqing

    2015-01-01

    Huanglongbing (HLB) is the most serious disease affecting the citrus industry worldwide to date. The causal agent, Candidatus Liberibacter asiaticus (Las), resides in citrus phloem, which makes it difficult to effectively treat with chemical compounds. In this study, a transcuticular nanoemulsion formulation was developed to enhance the permeation of an effective antimicrobial compound (ampicillin; Amp) against HLB disease through the citrus cuticle into the phloem via a foliar spray. The results demonstrated that efficiency of cuticle isolation using an enzymatic method (pectinase and cellulase) was dependent on the citrus cultivar and Las-infection, and it was more difficult to isolate cuticles from valencia orange (Citrus sinensis) and HLB-symptomatic leaves. Of eight adjuvants tested, Brij 35 provided the greatest increase in permeability of the HLB-affected cuticle with a 3.33-fold enhancement of cuticular permeability over water control. An in vitro assay using Bacillus subtilis showed that nanoemulsion formulations containing Amp (droplets size = 5.26 ± 0.04 nm and 94 ± 1.48 nm) coupled with Brij 35 resulted in greater inhibitory zone diameters (5.75 mm and 6.66 mm) compared to those of Brij 35 (4.34 mm) and Amp solution (2.83 mm) alone. Furthermore, the nanoemulsion formulations eliminated Las bacteria in HLB-affected citrus in planta more efficiently than controls. Our study shows that a water in oil (W/O) nanoemulsion formulation may provide a useful model for the effective delivery of chemical compounds into citrus phloem via a foliar spray for controlling citrus HLB.

  16. Antimicrobial Nanoemulsion Formulation with Improved Penetration of Foliar Spray through Citrus Leaf Cuticles to Control Citrus Huanglongbing

    PubMed Central

    Yang, Chuanyu; Powell, Charles A.; Duan, Yongping; Shatters, Robert; Zhang, Muqing

    2015-01-01

    Huanglongbing (HLB) is the most serious disease affecting the citrus industry worldwide to date. The causal agent, Candidatus Liberibacter asiaticus (Las), resides in citrus phloem, which makes it difficult to effectively treat with chemical compounds. In this study, a transcuticular nanoemulsion formulation was developed to enhance the permeation of an effective antimicrobial compound (ampicillin; Amp) against HLB disease through the citrus cuticle into the phloem via a foliar spray. The results demonstrated that efficiency of cuticle isolation using an enzymatic method (pectinase and cellulase) was dependent on the citrus cultivar and Las-infection, and it was more difficult to isolate cuticles from valencia orange (Citrus sinensis) and HLB-symptomatic leaves. Of eight adjuvants tested, Brij 35 provided the greatest increase in permeability of the HLB-affected cuticle with a 3.33-fold enhancement of cuticular permeability over water control. An in vitro assay using Bacillus subtilis showed that nanoemulsion formulations containing Amp (droplets size = 5.26 ± 0.04 nm and 94 ± 1.48 nm) coupled with Brij 35 resulted in greater inhibitory zone diameters (5.75 mm and 6.66 mm) compared to those of Brij 35 (4.34 mm) and Amp solution (2.83 mm) alone. Furthermore, the nanoemulsion formulations eliminated Las bacteria in HLB-affected citrus in planta more efficiently than controls. Our study shows that a water in oil (W/O) nanoemulsion formulation may provide a useful model for the effective delivery of chemical compounds into citrus phloem via a foliar spray for controlling citrus HLB. PMID:26207823

  17. Comparison of process parameter optimization using different designs in nanoemulsion-based formulation for transdermal delivery of fullerene

    PubMed Central

    Ngan, Cheng Loong; Basri, Mahiran; Lye, Fui Fang; Fard Masoumi, Hamid Reza; Tripathy, Minaketan; Karjiban, Roghayeh Abedi; Abdul-Malek, Emilia

    2014-01-01

    This research aims to formulate and to optimize a nanoemulsion-based formulation containing fullerene, an antioxidant, stabilized by a low amount of mixed surfactants using high shear and the ultrasonic emulsification method for transdermal delivery. Process parameters optimization of fullerene nanoemulsions was done by employing response surface methodology, which involved statistical multivariate analysis. Optimization of independent variables was investigated using experimental design based on Box–Behnken design and central composite rotatable design. An investigation on the effect of the homogenization rate (4,000–5,000 rpm), sonication amplitude (20%–60%), and sonication time (30–150 seconds) on the particle size, ζ-potential, and viscosity of the colloidal systems was conducted. Under the optimum conditions, the central composite rotatable design model suggested the response variables for particle size, ζ-potential, and viscosity of the fullerene nanoemulsion were 152.5 nm, −52.6 mV, and 44.6 pascal seconds, respectively. In contrast, the Box–Behnken design model proposed that preparation under the optimum condition would produce nanoemulsion with particle size, ζ-potential, and viscosity of 148.5 nm, −55.2 mV, and 39.9 pascal seconds, respectively. The suggested process parameters to obtain optimum formulation by both models yielded actual response values similar to the predicted values with residual standard error of <2%. The optimum formulation showed more elastic and solid-like characteristics due to the existence of a large linear viscoelastic region. PMID:25258528

  18. Nanoemulsion Therapy for Burn Wounds is Effective as a Topical Antimicrobial Against Gram Negative and Gram Positive Bacteria

    PubMed Central

    Dolgachev, Vladislav A.; Ciotti, Susan M.; Eisma, Rone; Gracon, Stephen; Wilkinson, J. Erby; Baker, James R.; Hemmila, Mark R.

    2014-01-01

    Objective The aim of this study is to investigate the antimicrobial efficacy of two different nanoemulsion formulations against Gram positive and Gram negative bacteria in an in vivo rodent scald burn model. Methods Male Sprague-Dawley rats were anesthetized and received a partial-thickness scald burn. Eight hours following burn injury the wound was inoculated with 1x108 colony forming units of Pseudomonas aeruginosa or Staphylococcus aureus. Treatment groups consisted of two different nanoemulsion formulations (NB-201, NB-402), nanoemulsion vehicle (NE vehicle), or saline. Topical application of the treatment was performed at 16 and 24 hours after burn injury. Animals were euthanized 32 hours after burn injury and skin samples obtained for quantitative wound culture and determination of dermal inflammation markers. In a separate set of experiments, burn wound progression was measured histologically after 72 hours of treatment. Results Both nanoemulsion formulations (NB-201, NB 402) significantly reduced burn wound infections with either Pseudomonas aeruginosa or Staphylococcus aureus, and decreased median bacterial counts at least 3 logs as compared to animals with saline applications (p<0.0001). NB-201 and NB-402 also decreased dermal neutrophil recruitment and sequestration into the wound as measured by myeloperoxidase assay and histopathology (p<0.05). In addition, there was a reduction in the pro-inflammatory dermal cytokines (IL-1β, IL-6 and TNF-α) and the neutrophil chemoattractants CXCL1 and CXCL2. By histology examination, both NB-201 and NB-402 appeared to suppress burn wound progression 72 hours after injury. Conclusions Topically applied NB-201 and NB-402 are effective in decreasing Gram positive and negative bacteria growth in burn wounds, reducing inflammation and abrogating burn wound progression. PMID:26182074

  19. Intranasal delivery of paroxetine nanoemulsion via the olfactory region for the management of depression: formulation, behavioural and biochemical estimation

    NASA Astrophysics Data System (ADS)

    Pandey, Yogendra Raj; Kumar, Shobhit; Gupta, Bijay Kumar; Ali, Javed; Baboota, Sanjula

    2016-01-01

    Paroxetine is a selective serotonin reuptake inhibitor (SSRI) and is used for the treatment of depression and anxiety problems, but suffers from the drawback of poor oral bioavailability (less than 50%) due to its extensive first pass metabolism. The objective of the present study was to develop a paroxetine loaded nanoemulsion (o/w type) for direct nose-to-brain delivery. Nanoemulsions were prepared by the spontaneous emulsification technique using Capmul MCM, Solutol HS 15 and propylene glycol as oil phase, surfactant and co-surfactant, respectively, for delivery of drug directly to the brain through the nasal route for better management of depression. Formulations were studied for droplet size, polydispersity index (PDI), percentage transmittance, refractive index, viscosity, zeta potential, surface morphology and in vitro permeation study. TEM images of optimized formulation showed spherical droplets with a mean diameter of 58.47 ± 3.02 nm, PDI of 0.339 ± 0.007 and zeta potential values of -33 mV. The formulation showed good results for transmittance (100.60 ± 0.577%), refractive index (1.412 ± 0.003) and viscosity (40.85 ± 6.40 cP). Permeation studies revealed a 2.57-fold enhancement in permeation as compared to the paroxetine suspension. Behavioural studies such as the forced swimming test and locomotor activity test were done on Wistar rats to study the antidepressant effect of the optimized formulation. Treatment of depressed rats with paroxetine nanoemulsion (administered intranasally) significantly improved the behavioural activities in comparison to paroxetine suspension (orally administered). Biochemical estimation results revealed that the prepared nanoemulsion was effective in enhancing the depressed levels of glutathione and decreasing the elevated levels of TBARS.

  20. Improvement of drug safety by the use of lipid-based nanocarriers.

    PubMed

    Lim, Sok Bee; Banerjee, Amrita; Önyüksel, Hayat

    2012-10-10

    Drug toxicity is an important factor that contributes significantly to adverse drug events in current healthcare practice. Application of lipid-based nanocarriers in drug formulation is one approach to improve drug safety. Lipid-based delivery systems include micelles, liposomes, solid lipid nanoparticles, nanoemulsions and nanosuspensions. These carriers are generally composed of physiological lipids well tolerated by human body. Delivery of water-insoluble drugs in these formulations increases their solubility and stability in aqueous media and eliminates the need for toxic co-solvents or pH adjustment to solubilize hydrophobic drugs. Association or encapsulation of peptides/proteins within lipid-based carriers protects the labile biologics against enzymatic degradation, hence reducing the therapeutic dose required and risk of dose-dependent toxicity. Most importantly, lipid-based nanocarriers alter the pharmacokinetics and biodistribution of drugs through passive and active targeting, leading to increased drug accumulation at target sites while significantly decreasing non-specific distribution to other tissues. Furthermore, surface modification of these nanocarriers reduces immunogenicity of drug-carrier complexes, imparts stealth by preventing opsonization and removal by phagocytes and minimizes interaction with circulating blood components. In view of heightening attention on drug safety in patient treatment, lipid-based nanocarrier is therefore an important and promising option for formulation of pharmaceutical products to improve treatment safety and efficacy.

  1. Nanoemulsion-based gel formulation of diclofenac diethylamine: design, optimization, rheological behavior and in vitro diffusion studies.

    PubMed

    Hamed, Rania; Basil, Marwa; AlBaraghthi, Tamadur; Sunoqrot, Suhair; Tarawneh, Ola

    2016-12-01

    Chronic oral administration of the non-steroidal anti-inflammatory drug, diclofenac diethylamine (DDEA), is often associated with gastrointestinal ulcers and bleeding. As an alternative to oral administration, a nanoemulsion-based gel (NE gel) formulation of DDEA was developed for topical administration. An optimized formulation for the o/w nanoemulsion of oil, surfactant and cosurfactant was selected based on nanoemulsion mean droplet size, clarity, stability, and flowability, and incorporated into the gelling agent Carbopol® 971P. Rheological studies of the DDEA NE gel were conducted and compared to those of conventional DDEA gel and emulgel. The three gels exhibited an elastic behavior, where G' dominated G″ at all frequencies, indicating the formation of strong gels. NE gel exhibited higher G' values than conventional gel and emulgel, which indicated the formation of a stronger gel network. Strat-M® membrane, a synthetic membrane with diffusion characteristics that are well correlated to human skin, was used for the in vitro diffusion studies. The release of DDEA from conventional gel, emulgel and NE gel showed a controlled release pattern over 12 h, which was consistent with the rheological properties of the gels. DDEA release kinetics from the three gels followed super case II transport as fitted by Korsmeyer-Peppas model.

  2. Optimization of isothermal low-energy nanoemulsion formation: hydrocarbon oil, non-ionic surfactant, and water systems.

    PubMed

    Komaiko, Jennifer; McClements, David Julian

    2014-07-01

    Nanoemulsions can be fabricated using either high-energy or low-energy methods, with the latter being advantageous because of ease of implementation, lower equipment and operation costs, and higher energy efficiency. In this study, isothermal low-energy methods were used to spontaneously produce nanoemulsions using a model system consisting of oil (hexadecane), non-ionic surfactant (Brij 30) and water. Rate and order of addition of surfactant, oil and water into the final mixture were investigated to identify optimal conditions for producing small droplets. The emulsion phase inversion (EPI) and spontaneous emulsion (SE) methods were found to be the most successful, which both require the surfactant to be mixed with the oil phase prior to production. Order of addition and surfactant-to-oil ratio (SOR) influenced the particle size distribution, while addition rate and stirring speed had a minimal effect. Emulsion stability was strongly influenced by storage temperature, with droplet size increasing rapidly at higher temperatures, which was attributed to coalescence near the phase inversion temperature. Nanoemulsions with a mean particle diameter of approximately 60 nm could be produced using both EPI and SE methods at a final composition of 5% hexadecane and 1.9% Brij 30, and were relatively stable to droplet growth at temperatures <25 °C.

  3. Stable poly(St-co-BA) nanoemulsion polymerization for high performance antibacterial coatings in the presence of dioctyldimethylammonium chloride.

    PubMed

    Chen, Zhao; Sun, Xiaowen; Shen, Yan; Ni, Hong; Chai, Shigan; Zou, Qichao; Zhang, Xiuhua; Zhang, Jinzhi

    2015-04-01

    In this study, a stable antibacterial poly(styrene-co-butyl acrylate) (poly(St-co-BA)) nano-latex was prepared in the presence of a dioctyldimethylammonium chloride (D821)-CTAB mixed surfactant and a novel bis-unsaturated Gemini comonomer (i.e., α,ω-hexanediyl bis(dimethyl methacrylamidopropyl ammonium bromide) (GMAP-6-MAP)) using a feasible and mild semicontinuous technology. The effects of the emulsifiers and GMAP-6-MAP on the properties and antibacterial activities of poly(St-co-BA) coatings were systematically investigated. The results indicate that an optimal monodispersed stable nanoemulsion was obtained with Dw=58.24nm and PDI=0.026, the emulsifier amount was 3.75% (D821/CTAB=4:1), and the GMAP-6-MAP amount was 1.5%. CTAB improved the stabilities and antibacterial activities of the poly(St-co-BA) nanoemulsions. The incorporation of GMAP-6-MAP into poly(St-co-BA) can enhance the antibacterial activity, improve the thermal stability of latex films, as well as the consistency among the chain segments, and decrease the roughness of latex films. This nanoemulsion exhibits effective antibacterial activity with MBCs of 2μg·mL(-1) against Staphylococcus aureus and 16μg·mL(-1) against Escherichia coli. The sterilization rates of the optimized latex film reached 100% against S. aureus and 98.74% against E. coli, which indicated that this latex film could be utilized as an outstanding antibacterial coating.

  4. A novel ionic amphiphilic chitosan derivative as a stabilizer of nanoemulsions: Improvement of antimicrobial activity of Cymbopogon citratus essential oil.

    PubMed

    Bonferoni, Maria Cristina; Sandri, Giuseppina; Rossi, Silvia; Usai, Donatella; Liakos, Ioannis; Garzoni, Alice; Fiamma, Maura; Zanetti, Stefania; Athanassiou, Athanassia; Caramella, Carla; Ferrari, Franca

    2017-01-24

    Amphiphilic chitosans have been recently proposed to improve delivery of poorly soluble drugs. In the present paper a derivative obtained by ionic interaction between chitosan and oleic acid was for the first time studied to physically stabilize o/w nanoemulsions of an antimicrobial essential oil, Cymbopogon citratus (Lemongrass), in a low energy and mild conditions emulsification process. The novel combination of spontaneous emulsification process with chitosan oleate amphiphilic properties resulted in a stable dispersion of a few hundred nanometer droplets. Positive zeta potential confirmed the presence of a chitosan shell around the oil droplets, which is responsible for the nanoemulsion physical stabilization and for the maintenance of chitosan bioactive properties, such as mucoadhesion. Cytotoxicity test was performed on four different cell lines (HEp-2, Caco-2, WKD and McCoy cells) showing biocompatibility of the system. The maintenance and in some cases even a clear improvement in the essential oil antimicrobial activity towards nine bacterial and ten fungal strains, all of clinical relevance was verified for Lemongrass nanoemulsion.

  5. p-Tertbutylcalix[4]arene nanoemulsion: preparation, characterization and comparative evaluation of its decontamination efficacy against Technetium-99m, Iodine-131 and Thallium-201.

    PubMed

    Rana, Sudha; Sharma, Navneet; Ojha, Himanshu; Shivkumar, Hosakote Gurumalappa; Sultana, Sarwat; Sharma, Rakesh Kumar

    2014-05-01

    This study aimed to develop p-tertbutylcalix[4]arene o/w nanoemulsion for decontamination of radioisotopes from skin. Formulation was characterized using dynamic light scattering (DLS), transmission electron microscopy (TEM), multi-photon confocal microscopy techniques and in vitro dissolution studies. In vivo evaluation of nano-emulsion was done using nuclear medicine technique. Stability studies and dermal toxicity studies were also carried out. Comparative decontamination efficacy (DE) studies were performed on synthetic human tissue equivalent material and Sprague Dawley rat against three commonly used medical radioisotopes, i.e., Technetium-99m ((99m)Tc), Iodine-131 ((131)I) and Thallium-201 ((201)Tl). Decontamination was performed using cotton swabs soaked in nanoemulsion at different time intervals of contaminants exposure. Whole body imaging and static counts were recorded using gamma camera before and after each decontamination attempt data was analyzed using one way analysis of variance (ANOVA) and found to be statistically significant (p<0.05). DE of the nanoemulsion loaded with p-tertbutylcalix[4]arene was observed to be 88±5%, 90±3% and 89±3% for (99m)Tc, (131)I and (201)Tl respectively. Dermal toxicity studies revealed no significant differences between treated and control animals. Skin histopathology slides with and without API (Active pharmaceutical ingredients) also found to be comparable. p-Tertbutylcalix[4]arene loaded nanoemulsion shows great promise for skin decontamination against broad ranges of radiological contaminants besides being stable and safe.

  6. Optimization of ultrasound induced emulsification on the formulation of palm-olein based nanoemulsions for the incorporation of antioxidant β-D-glucan polysaccharides.

    PubMed

    Alzorqi, Ibrahim; Ketabchi, Mohammad Reza; Sudheer, Surya; Manickam, Sivakumar

    2016-07-01

    Polysaccharides of β-D-glucan configuration have well-known antioxidant activity against reactive free radicals generated from the oxidation of metabolic processes. In this study, β-D-glucan-polysaccharides extracted from Ganoderma lucidum were incorporated in palm olein based nanoemulsions which act as carrier systems to enhance the delivery and bioactivity of these polysaccharides and could be potentially useful for skin care applications. Initially response surface statistical design (Central Composite Design--CCD) was subjected to optimize the formulation variables of oil-in-water (O/W) nanoemulsions induced by ultrasound. The optimal formulation variables as predicted by CCD resulted in considerably improving the physical characteristics of ultrasonically formulated nanoemulsions by minimizing their droplet size, polydispersity index and viscosity. Moreover, the β-D-glucan-loaded nanoemulsions exhibited good stability over 90 days under different storage conditions (4 °C and 25 °C). The studies using palm olein based β-D-glucan-loaded nanoemulsion generated using ultrasound confirm higher antioxidant activity as compared to free β-D-glucan.

  7. Lipid Nanotechnology

    PubMed Central

    Mashaghi, Samaneh; Jadidi, Tayebeh; Koenderink, Gijsje; Mashaghi, Alireza

    2013-01-01

    Nanotechnology is a multidisciplinary field that covers a vast and diverse array of devices and machines derived from engineering, physics, materials science, chemistry and biology. These devices have found applications in biomedical sciences, such as targeted drug delivery, bio-imaging, sensing and diagnosis of pathologies at early stages. In these applications, nano-devices typically interface with the plasma membrane of cells. On the other hand, naturally occurring nanostructures in biology have been a source of inspiration for new nanotechnological designs and hybrid nanostructures made of biological and non-biological, organic and inorganic building blocks. Lipids, with their amphiphilicity, diversity of head and tail chemistry, and antifouling properties that block nonspecific binding to lipid-coated surfaces, provide a powerful toolbox for nanotechnology. This review discusses the progress in the emerging field of lipid nanotechnology. PMID:23429269

  8. Lutein and zeaxanthin: Role as macular pigment and factors that control bioavailability from egg yolks and nanoemulsions

    NASA Astrophysics Data System (ADS)

    Vishwanathan, Rohini

    ) raising serum HDL-C without an adverse affect on serum LDL-C and TC:HDL-C ratio. Increased cholesterol, lutein and zeaxanthin intake from the 2 and 4 egg yolk interventions did not decrease the absorption of other carotenoids, such as alpha-cryptoxanthin, beta-cryptoxanthin, lycopene, alpha-carotene and beta-carotene, tocopherols and retinol from the diet. An unexpected increase was observed in serum alpha-cryptoxanthin and gamma-tocopherol concentrations during the 4 egg yolk phase, these carotenoids are normally present in low concentrations in serum. Lipoprotein distribution of carotenoids and tocopherols was also not affected by the increased egg consumption. In the pursuit of designing a highly bioavailable matrix for lutein/zeaxanthin, similar to the egg yolk micellar matrix, nanoemulsion formulations of lutein were developed using the MicrofluidizerRTM Processor technology. Lutein nanoemulsions are O/W emulsions of lutein which have particle sizes in the nanometer range (≤ 200 nm). Lutein consumed orally as a nanoemulsion was shown to have significantly greater bioavailability than lutein supplement-pills in pilot-scale clinical studies described here. However, lutein nanoemulsions did not raise plasma lutein concentrations to the same extent as egg yolks in a study performed on BALB/c mice. Formation of mixed micelles in the intestinal lumen during digestion and uptake of these micelles by enterocytes are crucial steps that dictate bioavailability i.e. the proportion of ingested lutein/carotenoid that enters the blood circulation and accumulates in the peripheral tissues such as the macula. In-vitro stomach and intestinal digestion experiments showed lutein nanoemulsions have significantly greater micellarization efficiency compared to egg yolks. Nanoemulsions with a phospholipid (PL) emulsifier containing 80% phosphatidyl choline (PC) or Polysorbate 80 as the emulsifier had better ability to form micelles during the intestinal digestion phase compared to a PL

  9. Phase Transitions of Isotropic to Anisotropic Biocompatible Lipid-Based Drug Delivery Systems Overcoming Insoluble Benznidazole Loading

    PubMed Central

    Streck, Letícia; Sarmento, Víctor H. V.; Machado, Paula R. L.; Farias, Kleber J. S.; Fernandes-Pedrosa, Matheus F.; da Silva-Júnior, Arnóbio Antônio

    2016-01-01

    Previous studies reported low benznidazole (BNZ) loading in conventional emulsions due to the weak interaction of the drug with the most common oils used to produce foods or pharmaceuticals. In this study, we focused on how the type of surfactant, surfactant-to-oil ratio w/w (SOR) and oil-to-water ratio w/w (OWR) change the phase behavior of different lipid-based drug delivery systems (LBDDS) produced by emulsion phase inversion. The surfactant mixture composed of soy phosphatidylcholine and sodium oleate (1:7, w/w, hydrophilic lipophilic balance = 16) stabilized medium chain triglyceride in water. Ten formulations with the clear aspect or less turbid dispersions (five with the SOR ranging from 0.5 to 2.5 and five with the OWR from 0.06 to 0.4) were selected from the phase behavior diagram to assess structural features and drug-loading capacity. The rise in the SOR induced the formation of distinct lipid-based drug delivery systems (nanoemulsions and liquid crystal lamellar type) that were identified using rheological measurements and cross-polarized light microscopy images. Clear dispersions of small and narrow droplet-sized liquid-like nanoemulsions, Newtonian flow-type, were produced at SOR from 0.5 to 1.5 and OWR from 0.12 to 0.4, while clear liquid or gel-like liquid crystals were produced at SOR from 1.5 to 2.5. The BNZ loading was improved according to the composition and type of LBDDS produced, suggesting possible drug location among surfactant layers. The cell viability assays proved the biocompatibility for all of the prepared nanoemulsions at SOR less than 1.5 and liquid crystals at SOR less than 2.5, demonstrating their promising features for the oral or parenteral colloidal delivery systems containing benznidazole for Chagas disease treatment. PMID:27376278

  10. Anti-inflammatory effect of geranium nanoemulsion macrophages induced with soluble protein of Candida albicans.

    PubMed

    Giongo, Janice Luehring; de Almeida Vaucher, Rodrigo; Sagrillo, Michele; Vianna Santos, Roberto Christ; Duarte, Marta M M F; Rech, Vírginia Cielo; Soares Lopes, Leonardo Quintana; Beatriz da Cruz, Ivana; Tatsch, Etiane; Moresco, Rafael Noal; Gomes, Patricia; Steppe, Martin

    2017-01-31

    Pelargonium graveolens is a member of the Geraniaceae family and has been used in folk medicine in many countries because of its anti-inflammatory activity. No studies have yet been reported to evaluate the anti-inflammatory activity of a nanoemulsion containing geranium oil (GO) model in macrophages. In this study the anti-inflammatory effect of Geranium nanoemulsion (NEG) macrophages induced with soluble proteins of Candida albicans was investigated. GO presented citronellol (17.74%) and geraniol (14.43%) as main constituents. The characterization in NEG was demonstrated, showing the particle size of 164 ± 3.5 nm, PDI of 0.12 ± 0.006 and zeta potential -10 mV ± 1.7. The MIC obtained for NEG and GO were 3.64 μg ml(-1) and 1.82 μg ml(-1), respectively. The viability of the macrophages treated with NEG and GO concentrations (1/2 x, 1x and 2x MIC) was evaluated. There was a significant reduction of viability and the MTT assay was not confirmed after the LDH assay. Anti-inflammatory activity was evaluated by determining nitric oxide (NO), cytokines (interleukin IL-1, IL-6 and IL-10), tumor necrosis factor-α (TNF) and the expression levels gene of interleukin (IL-2), cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS). The apoptosis inhibition capacity was assessed by determination of INFγ, caspase 3 and caspase 8. The results indicated that there was a significant increase of NO in the levels after treatment with NEG and significantly reduced levels after treatment with GO. The cytokines (IL-1, IL-6, IL-10, and TNF) were evaluated and NEG (½ x, 1x MIC) decreased IL-1 levels by 1.25-1.37 times, respectively. The NEG did not decrease IL-6 levels and a significant increase was observed for IL-10. GO significantly decreased IL-6 and IL-10 levels. There was a significant decrease in IL-2 and COX-2 levels and increased levels of iNOs. The levels of IFNγ and caspase-3 after treatment with NEG decreased indicating an anti

  11. Enhancement of photoprotection potential of catechin loaded nanoemulsion gel against UVA induced oxidative stress.

    PubMed

    Harwansh, Ranjit K; Mukherjee, Pulok K; Kar, Amit; Bahadur, Shiv; Al-Dhabi, Naif Abdullah; Duraipandiyan, V

    2016-07-01

    The present study was aimed to develop a catechin (CA) loaded nanoemulsion based nano-gel for the protection of skin against ultraviolet radiation (UV) induced photo-damage and to ensure its enhanced skin permeability as well as bioavailability through transdermal route. The optimized nanoemulsion (CA-NE4) was prepared by spontaneous nano-emulsification method. It was composed of oil (ethyl oleate), Smix [surfactant (span 80) and co-surfactant (transcutol CG)] and aqueous system in an appropriate ratio of 15:62:23% w/w respectively. The CA-NE4 was characterized through assessment of droplet size, zeta potential, refractive index, transmission electron microscopy (TEM), UV, high performance thin layer chromatography (HPTLC) and Fourier transform infrared spectroscopy (FTIR) analysis. The average droplet size and zeta potential of CA-NE4 were found to be 98.6±1.01nm and -27.3±0.20mV respectively. The enhanced skin permeability was better with CA-NE4 based nano-gel (CA-NG4) [96.62%] compared to conventional gel (CA-CG) [53.01%] for a period of 24h. The enhanced % relative bioavailability (F) of CA (894.73), Cmax (93.79±6.19ngmL(-1)), AUC0-t∞ (2653.99±515.02nghmL(-1)) and Tmax (12.05±0.02h) was significantly obtained with CA-NG4 as compared to oral suspension for extended periods (72h). CA-NG4 could improve the level of cutaneous antioxidant enzymes like superoxide dismutase (SOD), glutathione peroxidase (GPX) and catalase (CAT) and reduce the level of thiobarbituric acid reactive substances (TBRAS) against oxidative stress induced by UVA. Nano-gel formulation of CA showed sustained release profile and enhanced photoprotection potential due to its improved permeability as well as bioavailability (P<0.05) compared to the conventional gel. Therefore, transdermal administration of nano-gel (CA-NG4) of CA offers a better way to develop the endogenous cutaneous protection system and thus could be an effective strategy for decreasing UV-induced oxidative damage in the

  12. Paclitaxel-loaded hyaluronan solid nanoemulsions for enhanced treatment efficacy in ovarian cancer

    PubMed Central

    Kim, Joo-Eun; Park, Young-Joon

    2017-01-01

    Paclitaxel-loaded hyaluronan solid nanoemulsions (PTX-HSNs) were successfully fabricated for the delivery of PTX to improve ovarian cancer treatment via active tumor targeting. PTX-HSNs were fabricated using high-pressure homogenization with a microfluidizer and were lyophilized with d-mannitol. Hyaluronan was coated on the outside of the PTX-HSN sphere. The mean size of the PTX-HSNs was maintained less than 100 nm, with a relatively narrow size distribution. The PTX loading content was 3 mg/mL, and encapsulation efficiency (EE) was close to 100%. In vitro cell affinity studies using SK-OV-3 (cluster of differentiation 44 [CD44+]) and OVCAR-3 (CD44−) cells showed that PTX-HSN had a targeting capability hundredfold higher than that of PTX-loaded solid nanoemulsions (PTX-SNs) without hyaluronan. Further, the in vitro PTX release by PTX-SNs and PTX-HSNs lasted more than 6 days without showing a release burst, which was more sustained than that of Taxol®, suggesting a more constant effect on cancer cells at the tumor site than was observed for Taxol. The in vivo toxicity, in vivo antitumor effects, and pharmacokinetics of PTX-HSNs and Taxol were evaluated in nude mice and rats. The maximum tolerated dose (MTD) for PTX-HSNs, PTX-SNs, and Taxol was determined by measuring changes in clinical symptoms after administering 20–50 mg/kg PTX via the caudal vein. The MTD of PTX-HSNs had a dosing capacity greater than 50 mg PTX/kg, which was 2.5-fold higher than that of Taxol when administered as a PTX injection. In vivo, PTX-HSN treatment effectively inhibited tumor growth and showed less toxicity in tumor-transplanted mice compared to that observed for Taxol treatments. The pharmacokinetic parameters of PTX-HSNs were more desirable than those of Taxol. After PTX-HSN treatment, the circulation time of PTX was prolonged and retention of PTX in ovarian tumor tissues increased. Therefore, PTX-HSN is a highly effective nanosystem with a high MTD for delivering PTX to ovarian

  13. Emotional Family Resemblances? Darwin's Contributions to a Theory of Emotions and Emotional Development.

    ERIC Educational Resources Information Center

    Hesse, Petra

    A family resemblance model of emotions is proposed which uses Darwin's discussion of emotions and Eleanor Rosch's and the philosopher Ludwig Wittgenstein's work on family resemblances. In Darwin's discussion of emotions, certain core features are thought to be widely shared by the members of the respective families of emotions, and more marginal…

  14. Effectiveness of a novel spontaneous carvacrol nanoemulsion against Salmonella enterica Enteritidis and Escherichia coli O157:H7 on contaminated mung bean and alfalfa seeds.

    PubMed

    Landry, Kyle S; Chang, Yuhua; McClements, David Julian; McLandsborough, Lynne

    2014-09-18

    Outbreaks of foodborne illness from consumption of sprouts have been linked to contaminated seeds prior to germination. Due to the long sprouting period at ambient temperatures and high humidity, germinating seeds contaminated with low pathogen levels (0.1logCFU/g) can result in sprouts with high numbers (≥10(8)CFU/g) of pathogens. Currently, the recommended treatment method involves soaking seeds in 20,000ppm (2%) calcium hypochlorite prior to germination. In this study, an alternative treatment involving soaking seeds in a carvacrol nanoemulsion was tested for its efficacy against Salmonella enterica subspecies enterica serovar Enteritidis (ATCC BAA-1045) or EGFP expressing E. coli O157:H7 (ATCC 42895) contaminated mung bean and alfalfa seeds. The antimicrobial treatment was performed by soaking inoculated seed batches in the spontaneous nanoemulsion (4000 or 8000ppm) for 30 or 60min. The spontaneous nanoemulsion was formed by titrating the oil phase (carvacrol and medium chain triglycerides) and water-soluble surfactant (Tween 80®) into sodium citrate buffer. Following treatment, the numbers of surviving cells were determined by suspending the seeds in TSB and performing plate counts and/or Most Probable Number (MPN) enumeration. Treated seeds were sprouted and tested for the presence of the appropriate pathogen. This treatment successfully inactivated low levels (2 and 3logCFU/g) of S. Enteritidis and E. coli on either seed types when soaked for either 30 or 60min at nanoemulsion concentrations corresponding to 4000 (0.4%) or 8000 (0.8%) ppm carvacrol. Inoculated alfalfa seeds treated with 4000ppm nanoemulsion, required a 60min treatment time to show a similar 2-3 log reduction. Complete inactivation was confirmed by germinating treated seeds and performing microbiological testing. Total sprout yield was not compromised by any of the tested treatments. These results show that carvacrol nanoemulsions may be an alternative antimicrobial treatment method for

  15. Design Expert® supported optimization and predictive analysis of selegiline nanoemulsion via the olfactory region with enhanced behavioural performance in Parkinson’s disease

    NASA Astrophysics Data System (ADS)

    Kumar, Shobhit; Ali, Javed; Baboota, Sanjula

    2016-10-01

    Selegiline is a monoamine oxidase B (MAO-B) inhibitor and is used in the treatment of Parkinson’s disease. The main problem associated with its oral administration is its low oral bioavailability (10%) due to its poor aqueous solubility and extensive first pass metabolism. The aim of the present research work was to develop a nanoemulsion loaded with selegiline for direct nose-to-brain delivery for the better management of Parkinson’s disease. A quality by design (QbD) approach was used in a statistical multivariate method for the preparation and optimization of nanoemulsion. In this study, four independent variables were chosen, in which two were compositions and two were process variables, while droplet size, transmittance, zeta potential and drug release were selected as response variables. The optimized formulation was assessed for efficacy in Parkinson’s disease using behavioural studies, namely forced swimming, locomotor, catalepsy, muscle coordination, akinesia and bradykinesia or pole test in Wistar rats. The observed droplet size, polydispersity index (PDI), refractive index, transmittance, zeta potential and viscosity of selegiline nanoemulsion were found to be 61.43 ± 4.10 nm, 0.203 ± 0.005, 1.30 ± 0.01, 99.80 ± 0.04%, -34 mV and 31.85 ± 0.24 mPas respectively. Surface characterization studies demonstrated a spherical shape of nanoemulsion which showed 3.7 times enhancement in drug permeation as compared to drug suspension. The results of behaviour studies showed that treatment of haloperidol induced Parkinson’s disease in rats with selegiline nanoemulsion (administered intranasally) showed significant improvement in behavioural activities in comparison to orally administered drug. These findings demonstrate that nanoemulsion could be a promising new drug delivery carrier for intranasal delivery of selegiline in the treatment of Parkinson’s disease.

  16. Lipid-Based Nanoparticles as Pharmaceutical Drug Carriers: From Concepts to Clinic

    PubMed Central

    Puri, Anu; Loomis, Kristin; Smith, Brandon; Lee, Jae-Ho; Yavlovich, Amichai; Heldman, Eli; Blumenthal, Robert

    2010-01-01

    In recent years, various nanotechnology platforms in the area of medical biology, including both diagnostics and therapy, have gained remarkable attention. Moreover, research and development of engineered multifunctional nanoparticles as pharmaceutical drug carriers have spurred exponential growth in applications to medicine in the last decade. Design principles of these nanoparticles, including nano-emulsions, dendrimers, nano-gold, liposomes, drug-carrier conjugates, antibody-drug complexes, and magnetic nanoparticles, are primarily based on unique assemblies of synthetic, natural, or biological components, including but not limited to synthetic polymers, metal ions, oils, and lipids as their building blocks. However, the potential success of these particles in the clinic relies on consideration of important parameters such as nanoparticle fabrication strategies, their physical properties, drug loading efficiencies, drug release potential, and, most importantly, minimum toxicity of the carrier itself. Among these, lipid-based nanoparticles bear the advantage of being the least toxic for in vivo applications, and significant progress has been made in the area of DNA/RNA and drug delivery using lipid-based nanoassemblies. In this review, we will primarily focus on the recent advances and updates on lipid-based nanoparticles for their projected applications in drug delivery. We begin with a review of current activities in the field of liposomes (the so-called honorary nanoparticles), and challenging issues of targeting and triggering will be discussed in detail. We will further describe nanoparticles derived from a novel class of amphipathic lipids called bolaamphiphiles with unique lipid assembly features that have been recently examined as drug/DNA delivery vehicles. Finally, an overview of an emerging novel class of particles (based on lipid components other than phospholipids), solid lipid nanoparticles and nanostructured lipid carriers will be presented. We

  17. Physicochemical Property and Oxidative Stability of Whey Protein Concentrate Multiple Nanoemulsion Containing Fish Oil.

    PubMed

    Hwang, Jae-Young; Ha, Ho-Kyung; Lee, Mee-Ryung; Kim, Jin Wook; Kim, Hyun-Jin; Lee, Won-Jae

    2017-02-01

    The objectives of this research were to produce whey protein concentrate (WPC) multiple nanoemulsion (MNE) and to study how whey protein concentration level and antioxidant type affected the physicochemical properties and oxidative stability of fish oil in MNE. The morphological and physicochemical characteristics of MNE were investigated by using transmission electron microscopy and particle size analyzer, respectively. The oxidative stability of fish oil in MNEs was assessed by measuring peroxide value (PV), p-anisidine value, and volatile compounds. The spherical forms of emulsions with size ranging from 190 to 210 nm were observed indicating the successful production of MNE. Compared with free fish oil, fish oil in MNE exhibited lower PV, p-anisidine value, and formation of maker of oxidation of fish oil indicating the oxidative stability of fish oil in MNE was enhanced. PV, p-anisidine value, and makers of oxidation of fish oil were decreased with increased WPC concentration level. The combined use of Vitamin C and E in MNE resulted in a reduction in PV and p-anisidine value, and development of maker of oxidation. In conclusion, WPC concentration level and antioxidant type are key factors affecting the droplet size of MNE and oxidative stability of fish oil.

  18. Antibacterial activity of neem nanoemulsion and its toxicity assessment on human lymphocytes in vitro.

    PubMed

    Jerobin, Jayakumar; Makwana, Pooja; Suresh Kumar, R S; Sundaramoorthy, Rajiv; Mukherjee, Amitava; Chandrasekaran, Natarajan

    2015-01-01

    Neem (Azadirachta indica) is recognized as a medicinal plant well known for its antibacterial, antimalarial, antiviral, and antifungal properties. Neem nanoemulsion (NE) (O/W) is formulated using neem oil, Tween 20, and water by high-energy ultrasonication. The formulated neem NE showed antibacterial activity against the bacterial pathogen Vibrio vulnificus by disrupting the integrity of the bacterial cell membrane. Despite the use of neem NE in various biomedical applications, the toxicity studies on human cells are still lacking. The neem NE showed a decrease in cellular viability in human lymphocytes after 24 hours of exposure. The neem NE at lower concentration (0.7-1 mg/mL) is found to be nontoxic while it is toxic at higher concentrations (1.2-2 mg/mL). The oxidative stress induced by the neem NE is evidenced by the depletion of catalase, SOD, and GSH levels in human lymphocytes. Neem NE showed a significant increase in DNA damage when compared to control in human lymphocytes (P<0.05). The NE is an effective antibacterial agent against the bacterial pathogen V. vulnificus, and it was found to be nontoxic at lower concentrations to human lymphocytes.

  19. Tea tree oil nanoemulsions for inhalation therapies of bacterial and fungal pneumonia.

    PubMed

    Li, Miao; Zhu, Lifei; Liu, Boming; Du, Lina; Jia, Xiaodong; Han, Li; Jin, Yiguang

    2016-05-01

    Tea tree oil (TTO) is a natural essential oil with strong antimicrobial efficacy and little drug resistance. However, the biomedical applications of TTO are limited due to its hydrophobicity and formulation problems. Here, we prepared an inhalable TTO nanoemulsion (nanoTTO) for local therapies of bacterial and fungal pneumonia. The optimal formulation of nanoTTOs consisted of TTO/Cremophor EL/water with a mean size of 12.5nm. The nanoTTOs showed strong in vitro antimicrobial activities on Escherichia coli, Acinetobacter baumannii, Klebsiella pneumoniae, Staphylococcus aureus and Candida albicans. After inhalation to the lung, the nanoTTOs had higher anti-fungal effect than fluconazole on the fungal pneumonia rat models with reduced lung injury, highly microbial clearance, blocking of leukocyte recruitment, and decrease of pro-inflammatory mediators. In the case of rat bacterial pneumonia, the nanoTTOs showed slightly lower therapeutic efficacy than penicillin though at a much lower dose. Taken together, our results show that the inhalable nanoTTOs are promising nanomedicines for local therapies of fungal and bacterial pneumonia with no obvious adverse events.

  20. Physical and antimicrobial properties of anise oil loaded nanoemulsions on the survival of foodborne pathogens.

    PubMed

    Topuz, Osman Kadir; Özvural, Emin Burçin; Zhao, Qin; Huang, Qingrong; Chikindas, Michael; Gölükçü, Muharrem

    2016-07-15

    The purpose of this research was to investigate antimicrobial effects of nano emulsions of anise oil (AO) on the survival of common food borne pathogens, Listeria monocytogenes and Escherichia coli O157:H7. Series of emulsions containing different level of anise oil as potential antimicrobial delivery systems were prepared. Antimicrobial activities of bulk anise oil and its emulsions (coarse and nano) was tested by the minimum inhibitory concentration and time kill assay. Our results showed that bulk anise oil reduced the population of E. coli O157:H7 and L. monocytogenes by 1.48 and 0.47 log cfu/ml respectively after 6 h of contact time. However, under the same condition anise oil nanoemulsion (AO75) reduced E. coli O157:H7 and L. monocytogenes count by 2.51 and 1.64 log cfu/ml, respectively. Physicochemical and microbial analyses indicated that both nano and coarse emulsions of anise oil showed better and long-term physicochemical stability and antimicrobial activity compared to bulk anise oil.

  1. Tracking Perfluorocarbon Nanoemulsion Delivery by 19F MRI for Precise High Intensity Focused Ultrasound Tumor Ablation

    PubMed Central

    Shin, Soo Hyun; Park, Eun-Joo; Min, Changki; Choi, Sun Il; Jeon, Soyeon; Kim, Yun-Hee; Kim, Daehong

    2017-01-01

    Perfluorocarbon nanoemulsions (PFCNEs) have recently been undergoing rigorous study to investigate their ability to improve the therapeutic efficacy of tumor ablation by high intensity focused ultrasound (HIFU). For precise control of PFCNE delivery and thermal ablation, their accumulation and distribution in a tumor should be quantitatively analyzed. Here, we used fluorine-19 (19F) magnetic resonance imaging (MRI) to quantitatively track PFCNE accumulation in a tumor, and analyzed how intra-tumoral PFCNE quantities affect the therapeutic efficacy of HIFU treatment. Ablation outcomes were assessed by intra-voxel incoherent motion analysis and bioluminescent imaging up to 14 days after the procedure. Assessment of PFCNE delivery and treatment outcomes showed that 2-3 mg/mL of PFCNE in a tumor produces the largest ablation volume under the same HIFU insonation conditions. Histology showed varying degrees of necrosis depending on the amount of PFCNE delivered. 19F MRI promises to be a valuable platform for precisely guiding PFCNE-enhanced HIFU ablation of tumors. PMID:28255351

  2. Conspicuousness, color resemblance, and toxicity in geographically diverging mimicry: The pan-Amazonian frog Allobates femoralis.

    PubMed

    Amézquita, Adolfo; Ramos, Óscar; González, Mabel Cristina; Rodríguez, Camilo; Medina, Iliana; Simões, Pedro Ivo; Lima, Albertina Pimentel

    2017-01-09

    Predation risk is allegedly reduced in Batesian and Müllerian mimics, because their coloration resembles the conspicuous coloration of unpalatable prey. The efficacy of mimicry is thought to be affected by variation in the unpalatability of prey, the conspicuousness of the signals, and the visual system of predators that see them. Many frog species exhibit small colorful patches contrasting against an otherwise dark body. By measuring toxicity and color reflectance in a geographically variable frog species and the syntopic toxic species, we tested whether unpalatability was correlated with between-species color resemblance and whether resemblance was highest for the most conspicuous components of coloration pattern. Heterospecific resemblance in colorful patches was highest between species at the same locality, but unrelated to concomitant variation in toxicity. Surprisingly, resemblance was lower for the conspicuous femoral patches compared to the inconspicuous dorsum. By building visual models, we further tested whether resemblance was affected by the visual system of model predators. As predicted, mimic-model resemblance was higher under the visual system of simulated predators compared to no visual system at all. Our results indicate that femoral patches are aposematic signals and support a role of mimicry in driving phenotypic divergence or mimetic radiation between localities.

  3. Enhancement of the antimicrobial properties of bacteriophage-K via stabilization using oil-in-water nano-emulsions.

    PubMed

    Esteban, Patricia Perez; Alves, Diana R; Enright, Mark C; Bean, Jessica E; Gaudion, Alison; Jenkins, A T A; Young, Amber E R; Arnot, Tom C

    2014-01-01

    Bacteriophage therapy is a promising new treatment that may help overcome the threat posed by antibiotic-resistant pathogenic bacteria, which are increasingly identified in hospitalized patients. The development of biocompatible and sustainable vehicles for incorporation of viable bacterial viruses into a wound dressing is a promising alternative. This article evaluates the antimicrobial efficacy of Bacteriophage K against Staphylococcus aureus over time, when stabilized and delivered via an oil-in-water nano-emulsion. Nano-emulsions were formulated via thermal phase inversion emulsification, and then bacterial growth was challenged with either native emulsion, or emulsion combined with Bacteriophage K. Bacteriophage infectivity, and the influence of storage time of the preparation, were assessed by turbidity measurements of bacterial samples. Newly prepared Bacteriophage K/nano-emulsion formulations have greater antimicrobial activity than freely suspended bacteriophage. The phage-loaded emulsions caused rapid and complete bacterial death of three different strains of S. aureus. The same effect was observed for preparations that were either stored at room temperature (18-20°C), or chilled at 4°C, for up to 10 days of storage. A response surface design of experiments was used to gain insight on the relative effects of the emulsion formulation on bacterial growth and phage lytic activity. More diluted emulsions had a less significant effect on bacterial growth, and diluted bacteriophage-emulsion preparations yielded greater antibacterial activity. The enhancement of bacteriophage activity when delivered via nano-emulsions is yet to be reported. This prompts further investigation into the use of these formulations for the development of novel anti-microbial wound management strategies.

  4. Lipid mixtures prepared with well-defined synthetic ceramides closely mimic the unique stratum corneum lipid phase behavior.

    PubMed

    de Jager, Miranda W; Gooris, Gert S; Ponec, Maria; Bouwstra, Joke A

    2005-12-01

    Lipid lamellae present in the outermost layer of the skin, the stratum corneum, form the main barrier for the diffusion of molecules through the skin. The presence of a unique 13 nm lamellar phase and its high crystallinity are characteristic for the stratum corneum lipid phase behavior. In the present study, small-angle and wide-angle X-ray diffraction were used to examine the organization in lipid mixtures prepared with a unique set of well-defined synthetic ceramides, varying from each other in head group architecture and acyl chain length. The results show that equimolar mixtures of cholesterol, free fatty acids, and synthetic ceramides (resembling the composition of pig ceramides) closely resemble the lamellar and lateral stratum corneum lipid organization, both at room and higher temperatures. Exclusion of several ceramide classes from the mixture does not affect the lipid organization. However, complete substitution of ceramide 1 (acylceramide with a sphingosine base) with ceramide 9 (acylceramide with a phytosphingosine base) reduces the formation of the long periodicity lamellar phase. This indicates that the head group architecture of acylceramides affects the lipid organization. In conclusion, lipid mixtures prepared with well-defined synthetic ceramides offer an attractive tool with which to unravel the importance of the molecular structure of individual ceramides for proper lipid organization.

  5. Enhanced immune response to gastric cancer specific antigen Peptide by coencapsulation with CpG oligodeoxynucleotides in nanoemulsion.

    PubMed

    Shi, Rui; Hong, Liu; Wu, Daocheng; Ning, Xiaoxuan; Chen, Yu; Lin, Tao; Fan, Daiming; Wu, Kaichun

    2005-02-01

    CpG oligodeoxynucleotides (CpG ODN) have been shown to have potent adjuvant activity for a wide range of antigens. Of particular interest is their improved activity when closely associated with the antigen. The purpose of this study is to construct a nanovaccine coencapsulated with a gastric cancer specific antigen MG7 mimotope peptide and adjuvant CpG ODN 1645 using new nanotechnology as nanoemulsion and evaluate its immunocompetence. Nanoemulsion vaccine was prepared using magnetic ultrasound methods. BALB/c mice were immunized and the in vivo effectiveness was evaluated using tumor challenge assay. It was shown that the tumor masses formed in the mice immunized with coencapsulated nanovaccine (0.0825 g) markedly smaller (P < 0.01) than those formed in the mice immunized with nanovaccine encapsulated with antigen peptide alone (0.4465 g). A tumor inhibiting rate as high as 82.5% of the coencapsulated nanovaccine was obtained, while nanovaccine encapsulated with peptide only could not achieve the same effect (28.5%) (P < 0.01). Enzyme-linked immunospot assay (ELISPOT) showed that immunization using MG7 mimotope peptide coencapsulated with CpG ODN within the same nanoemulsion enhanced the frequency of splenocytes secreting IFN-gamma significantly (P < 0.01) when compared with immunization using MG7 peptide encapsulated in nanoemulsion alone (197spots/1 x 10(6) vs. 73 spots/1 x 10(6)). Cellular ELISA indicated that serum titer of antibody against MG7-Ag was significantly higher (P < 0.01) in mice immunized with coencapsulation form nanovaccine (0.7884) than that in the group immunized with nanovaccine encapsulated with MG7 peptide alone (0.3616). Using intracellular flow cytometric analysis, it was found that the IFN-gamma response was contributed by CD4+ T-cells. Our experiments suggest that a vaccinal approach using nano-delivery system carrying in tumoral epitope and CpG ODN as adjuvant may have important implications for cancer therapy.

  6. Galantamine-loaded PLGA nanoparticles, from nano-emulsion templating, as novel advanced drug delivery systems to treat neurodegenerative diseases

    NASA Astrophysics Data System (ADS)

    Fornaguera, C.; Feiner-Gracia, N.; Calderó, G.; García-Celma, M. J.; Solans, C.

    2015-07-01

    Polymeric nanoparticles could be promising drug delivery systems to treat neurodegenerative diseases. Among the various methods of nanoparticle preparation, nano-emulsion templating was used in the present study to prepare galantamine-loaded nano-emulsions by a low-energy emulsification method followed by solvent evaporation to obtain galantamine-loaded polymeric nanoparticles. This approach was found to be suitable because biocompatible, biodegradable and safe nanoparticles with appropriate features (hydrodynamic radii around 20 nm, negative surface charge and stability higher than 3 months) for their intravenous administration were obtained. Encapsulation efficiencies higher than 90 wt% were obtained with a sustained drug release profile as compared to that from aqueous and micellar solutions. The enzymatic activity of the drug was maintained at 80% after its encapsulation into nanoparticles that were non-cytotoxic at the required therapeutic concentration. Therefore, novel galantamine-loaded polymeric nanoparticles have been designed for the first time using the nano-emulsification approach and showed the appropriate features to become advanced drug delivery systems to treat neurodegenerative diseases.Polymeric nanoparticles could be promising drug delivery systems to treat neurodegenerative diseases. Among the various methods of nanoparticle preparation, nano-emulsion templating was used in the present study to prepare galantamine-loaded nano-emulsions by a low-energy emulsification method followed by solvent evaporation to obtain galantamine-loaded polymeric nanoparticles. This approach was found to be suitable because biocompatible, biodegradable and safe nanoparticles with appropriate features (hydrodynamic radii around 20 nm, negative surface charge and stability higher than 3 months) for their intravenous administration were obtained. Encapsulation efficiencies higher than 90 wt% were obtained with a sustained drug release profile as compared to that from

  7. Lipid Clustering Correlates with Membrane Curvature as Revealed by Molecular Simulations of Complex Lipid Bilayers

    PubMed Central

    Koldsø, Heidi; Shorthouse, David; Hélie, Jean; Sansom, Mark S. P.

    2014-01-01

    Cell membranes are complex multicomponent systems, which are highly heterogeneous in the lipid distribution and composition. To date, most molecular simulations have focussed on relatively simple lipid compositions, helping to inform our understanding of in vitro experimental studies. Here we describe on simulations of complex asymmetric plasma membrane model, which contains seven different lipids species including the glycolipid GM3 in the outer leaflet and the anionic lipid, phosphatidylinositol 4,5-bisphophate (PIP2), in the inner leaflet. Plasma membrane models consisting of 1500 lipids and resembling the in vivo composition were constructed and simulations were run for 5 µs. In these simulations the most striking feature was the formation of nano-clusters of GM3 within the outer leaflet. In simulations of protein interactions within a plasma membrane model, GM3, PIP2, and cholesterol all formed favorable interactions with the model α-helical protein. A larger scale simulation of a model plasma membrane containing 6000 lipid molecules revealed correlations between curvature of the bilayer surface and clustering of lipid molecules. In particular, the concave (when viewed from the extracellular side) regions of the bilayer surface were locally enriched in GM3. In summary, these simulations explore the nanoscale dynamics of model bilayers which mimic the in vivo lipid composition of mammalian plasma membranes, revealing emergent nanoscale membrane organization which may be coupled both to fluctuations in local membrane geometry and to interactions with proteins. PMID:25340788

  8. Lipid clustering correlates with membrane curvature as revealed by molecular simulations of complex lipid bilayers.

    PubMed

    Koldsø, Heidi; Shorthouse, David; Hélie, Jean; Sansom, Mark S P

    2014-10-01

    Cell membranes are complex multicomponent systems, which are highly heterogeneous in the lipid distribution and composition. To date, most molecular simulations have focussed on relatively simple lipid compositions, helping to inform our understanding of in vitro experimental studies. Here we describe on simulations of complex asymmetric plasma membrane model, which contains seven different lipids species including the glycolipid GM3 in the outer leaflet and the anionic lipid, phosphatidylinositol 4,5-bisphophate (PIP2), in the inner leaflet. Plasma membrane models consisting of 1500 lipids and resembling the in vivo composition were constructed and simulations were run for 5 µs. In these simulations the most striking feature was the formation of nano-clusters of GM3 within the outer leaflet. In simulations of protein interactions within a plasma membrane model, GM3, PIP2, and cholesterol all formed favorable interactions with the model α-helical protein. A larger scale simulation of a model plasma membrane containing 6000 lipid molecules revealed correlations between curvature of the bilayer surface and clustering of lipid molecules. In particular, the concave (when viewed from the extracellular side) regions of the bilayer surface were locally enriched in GM3. In summary, these simulations explore the nanoscale dynamics of model bilayers which mimic the in vivo lipid composition of mammalian plasma membranes, revealing emergent nanoscale membrane organization which may be coupled both to fluctuations in local membrane geometry and to interactions with proteins.

  9. Nanostructured lipid carriers system: recent advances in drug delivery.

    PubMed

    Iqbal, Md Asif; Md, Shadab; Sahni, Jasjeet Kaur; Baboota, Sanjula; Dang, Shweta; Ali, Javed

    2012-12-01

    Nanostructured lipid carrier (NLC) is second generation smarter drug carrier system having solid matrix at room temperature. This carrier system is made up of physiological, biodegradable and biocompatible lipid materials and surfactants and is accepted by regulatory authorities for application in different drug delivery systems. The availability of many products in the market in short span of time reveals the success story of this delivery system. Since the introduction of the first product, around 30 NLC preparations are commercially available. NLC exhibit superior advantages over other colloidal carriers viz., nanoemulsions, polymeric nanoparticles, liposomes, SLN etc. and thus, have been explored to more extent in pharmaceutical technology. The whole set of unique advantages such as enhanced drug loading capacity, prevention of drug expulsion, leads to more flexibility for modulation of drug release and makes NLC versatile delivery system for various routes of administration. The present review gives insights on the definitions and characterization of NLC as colloidal carriers including the production techniques and suitable formulations. This review paper also highlights the importance of NLC in pharmaceutical applications for the various routes of drug delivery viz., topical, oral, pulmonary, ocular and parenteral administration and its future perspective as a pharmaceutical carrier.

  10. RESEMBLANCES BETWEEN THE ELECTROMOTOR VARIATIONS OF RHYTHMICALLY REACTING LIVING AND NON-LIVING SYSTEMS.

    PubMed

    Lillie, R S

    1929-09-20

    1. The electromotor variations of pure iron wires, arranged to react rhythmically with nitric acid, are recorded and described. 2. Resemblances between these variations and those of rhythmically reacting living tissues (especially the heart) are pointed out and discussed.

  11. Study of O/W micro- and nano-emulsions based on propylene glycol diester as a vehicle for geranic acid.

    PubMed

    Jaworska, Małgorzata; Sikora, Elżbieta; Ogonowski, Jan; Konieczna, Monika

    2015-01-01

    Nano- and microemulsions containing as the oil phase caprylic/capric propylene glycol diesters (Crodamol PC) were investigated as potential vehicle for controlled release of geranic acid. The influence of emulsifiers and co-surfactants on stability of the emulsions was investigated. Different kind of polysorbates (ethoxylated esters of sorbitan and fatty acids) were applied as the emulsifiers. The short-chain alcohols (ethanol, 1-propanol, 1-butanol) were used as co-surfactants. The emulsions were prepared at ambient temperature (25°C), by the phase inversion composition method (PIC). The stable O/W high dispersed emulsion systems based on Crodamol PC, of mean droplets size less than 200 nm, were prepared. Microemulsions stabilized by the mixture of Polisorbat 80 and 1-butanol were characterized by the largest degree of dispersion (137 nm) and the lowest PDI value (0.094), at surfactant/co-surfactant: oil weight ratio 90:10. The stable nano-emulsion (mean droplet size of 33 nm) was obtained for surfactant: oil (S:O) weight ratio 90:10, without co-surfactant addition. This nano-emulsion was chosen to release studies. The obtained results showed that the prepared stable nano-emulsion can be used as a carrier for controlled release of geranic acid. The active substance release from the nano-emulsion and the oil solution, after 24 hours was 22%.

  12. Beta-carotene chemical stability in Nanoemulsions was improved by stabilized with beta-lactoglobulin-catechin conjugates through free radical method.

    PubMed

    Yi, Jiang; Zhang, Yuzhu; Liang, Rong; Zhong, Fang; Ma, Jianguo

    2015-01-14

    Beta-lactoglobulin (BLG)–catechin conjugates were prepared by a free radical method and investigated with sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), electrospray ionization–mass spectrometry (ESI-MS), and far-UV circular dichroism (CD). Covalent binding between BLG and catechin were confirmed with SDS-PAGE and ESI-MS. About 93% of beta-lactoglobulin was conjugated with catechin or catecin fragments according to the gel intensity analysis software. Far-UV CD results showed that the content of β-sheet decreased with a corresponding increase in unordered structures after grafting. Both nanoemulsions with mean particle size between 160 and 170 nm were prepared. Both the rate of particle growth and the total beta-carotene (BC) loss at 50 °C were significantly greater than at 4 and 25 °C. The retention rates of BC in nanoemulsions were 27.8% and 48.6% for BLG and BLG–catechin conjugates, respectively, after 30 days of storage at 50 °C. The BC retention encapsulated in nanoemulsion was significantly improved using BLG–catechin conjugates, compared with BLG alone. The increase of BC retention in nanoemulsions encapsulated with BLG–catechin conjugates was due to the significant improvement of antioxidative properties (reducing power, free radical scavenging activity, and hydroxyl radical scavenging activity) of BLG after covalent binding with catechin. The results indicated that the proteins modified with polyphenols can be widely used in a labile bioactive compounds encapsulation delivery system.

  13. Preparation of carotenoid extracts and nanoemulsions from Lycium barbarum L. and their effects on growth of HT-29 colon cancer cells.

    PubMed

    Hsu, H J; Huang, R F; Kao, T H; Inbaraj, B S; Chen, B H

    2017-03-07

    Lycium barbarum L., a traditional Chinese herb widely used in Asian countries, has been demonstrated to be protective against chronic diseases such as age-related macular degeneration. The objectives of this study were to determine the carotenoid content in L. barbarum by high-performance liquid chromatography-mass spectrometry, followed by preparation of a carotenoid nanoemulsion to evaluate the mechanism of inhibition on HT-29 colon cancer cells. The highest extraction yield of carotenoids was attained by employing a solvent system of hexane-ethanol-acetone (1:1:1, v/v/v). Nine carotenoids, including neoxanthin (4.47 μg g(-1)), all-trans-zeaxanthin and its cis-isomers (1666.3 μg g(-1)), all-trans-β-cryptoxanthin (51.69 μg g(-1)), all-trans-β-carotene and its cis-isomers (20.11 μg g(-1)), were separated within 45 min and quantified using a YMC C30 column and a gradient mobile phase of methanol-water (9:1, v/v) (A) and methylene chloride (B). A highly stable carotenoid nanoemulsion composed of Capryol(TM) 90, Transcutol(®)HP, Tween 80 and deionized water was prepared with a mean particle size of 15.1 nm. Characterization of zeaxanthin standard, blank nanoemulsion, carotenoid extract and carotenoid nanoemulsion by differential scanning calorimetry curves and Fourier transform infrared spectra revealed a good dispersion of zeaxanthin-dominated carotenoid extract with no significant chemical change after incorporation into nanoemulsion. The in vitro release kinetic study showed a higher release profile at pH 5.2 than at physiological pH 7.4, suggesting a rapid release of carotenoids in the acidic environment (pH 4.5-6.5) characteristic of tumors. Both the carotenoid nanoemulsion and the extract were effective at inhibiting growth of HT-29 colon cancer cells, with an IC50 of 4.5 and 4.9 μg ml(-1), respectively. Also, both treatments could up-regulate p53 and p21 expression and down-regulate CDK2, CDK1, cyclin A and cyclin B expression and arrest the cell

  14. Preparation of carotenoid extracts and nanoemulsions from Lycium barbarum L. and their effects on growth of HT-29 colon cancer cells

    NASA Astrophysics Data System (ADS)

    Hsu, H. J.; Huang, R. F.; Kao, T. H.; Inbaraj, B. S.; Chen, B. H.

    2017-03-01

    Lycium barbarum L., a traditional Chinese herb widely used in Asian countries, has been demonstrated to be protective against chronic diseases such as age-related macular degeneration. The objectives of this study were to determine the carotenoid content in L. barbarum by high-performance liquid chromatography–mass spectrometry, followed by preparation of a carotenoid nanoemulsion to evaluate the mechanism of inhibition on HT-29 colon cancer cells. The highest extraction yield of carotenoids was attained by employing a solvent system of hexane–ethanol–acetone (1:1:1, v/v/v). Nine carotenoids, including neoxanthin (4.47 μg g‑1), all-trans-zeaxanthin and its cis-isomers (1666.3 μg g‑1), all-trans-β-cryptoxanthin (51.69 μg g‑1), all-trans-β-carotene and its cis-isomers (20.11 μg g‑1), were separated within 45 min and quantified using a YMC C30 column and a gradient mobile phase of methanol–water (9:1, v/v) (A) and methylene chloride (B). A highly stable carotenoid nanoemulsion composed of CapryolTM 90, Transcutol®HP, Tween 80 and deionized water was prepared with a mean particle size of 15.1 nm. Characterization of zeaxanthin standard, blank nanoemulsion, carotenoid extract and carotenoid nanoemulsion by differential scanning calorimetry curves and Fourier transform infrared spectra revealed a good dispersion of zeaxanthin-dominated carotenoid extract with no significant chemical change after incorporation into nanoemulsion. The in vitro release kinetic study showed a higher release profile at pH 5.2 than at physiological pH 7.4, suggesting a rapid release of carotenoids in the acidic environment (pH 4.5–6.5) characteristic of tumors. Both the carotenoid nanoemulsion and the extract were effective at inhibiting growth of HT-29 colon cancer cells, with an IC50 of 4.5 and 4.9 μg ml‑1, respectively. Also, both treatments could up-regulate p53 and p21 expression and down-regulate CDK2, CDK1, cyclin A and cyclin B expression and arrest the cell

  15. Who Resembles Whom? Mimetic and Coincidental Look-Alikes among Tropical Reef Fishes

    PubMed Central

    Robertson, D. Ross

    2013-01-01

    Studies of mimicry among tropical reef-fishes usually give little or no consideration to alternative explanations for behavioral associations between unrelated, look-alike species that benefit the supposed mimic. I propose and assess such an alternative explanation. With mimicry the mimic resembles its model, evolved to do so in response to selection by the mimicry target, and gains evolved benefits from that resemblance. In the alternative, the social-trap hypothesis, a coincidental resemblance of the model to the “mimic” inadvertently attracts the latter to it, and reinforcement of this social trapping by learned benefits leads to the “mimic” regularly associating with the model. I examine three well known cases of supposed aggressive mimicry among reef-fishes in relation to nine predictions from these hypotheses, and assess which hypothesis offers a better explanation for each. One case, involving precise and complex morphological and behavioral resemblance, is strongly consistent with mimicry, one is inconclusive, and one is more consistent with a social-trap based on coincidental, imprecise resemblance. Few cases of supposed interspecific mimicry among tropical reef fishes have been examined in depth, and many such associations may involve social traps arising from generalized, coincidental resemblance. Mimicry may be much less common among these fishes than is generally thought. PMID:23372795

  16. Evidence of nose-to-brain delivery of nanoemulsions: cargoes but not vehicles.

    PubMed

    Ahmad, Ejaj; Feng, Yunhai; Qi, Jianping; Fan, Wufa; Ma, Yuhua; He, Haisheng; Xia, Fei; Dong, Xiaochun; Zhao, Weili; Lu, Yi; Wu, Wei

    2017-01-19

    The nose-to-brain pathway has been proven to be a shortcut for direct drug delivery to the brain. However, whether and to what extent nanoparticles can be delivered through this passage is still awaiting validation with evidence. In this study, nose-to-brain transportation of nanoparticles is tracked via fluorescence bioimaging strategies using nanoemulsions (NEs) as model carriers. Identification of NEs in biological tissues is based on the on → off signal switching of a new type of environment-responsive embedded dyes, P2 and P4, and two conventional probes, DiR and coumarin-6 (C6), are embedded to represent the cargoes. Evidence for the translocation of NEs was collected either via live imaging or ex vivo histological examination in rats after nasal administration. Results suggest that NEs with a particle size of about 100 nm, either naked or coated with chitosan, have longer retention duration in nostrils and slower mucociliary clearance than larger ones. P2 signals, representing integral NEs, can be found in mucosa and trigeminal nerves for all size groups, whereas only weak P2 signals are detected in the olfactory bulb for chitosan-coated NEs of 100 nm. Confocal microscopy further confirms the translocation of integral 100 nm NEs in nasal mucosa and along the trigeminal nerve in decremental intensity. Weak signals of the P4 probe, also representing integral NEs, can be detected in the olfactory bulb but few in the brain. NEs as large as 900 nm cannot be transported to the olfactory bulb. However, the DiR or C6 signals that represent the cargoes can be found in significant amounts along the nose-to-brain pathway and finally reach the brain. Evidence shows that integral NEs can be delivered to the olfactory bulb, but few to the brain, whereas the cargoes can be released and permeated into the brain in greater amounts.

  17. Distinct Pathways of Humoral and Cellular Immunity Induced with the Mucosal Administration of a Nanoemulsion Adjuvant

    PubMed Central

    Makidon, Paul E.; Janczak, Katarzyna W.; Blanco, Luz P.; Swanson, Benjamin; Smith, Douglas M.; Pham, Tiffany; Szabo, Zsuzsanna; Kukowska-Latallo, Jolanta F.; Baker, James R.

    2014-01-01

    Nasal administration of an oil-in-water nanoemulsion (NE) adjuvant W805EC produces potent systemic and mucosal, Th-1– and Th-17–balanced cellular responses. However, its molecular mechanism of action has not been fully characterized and is of particular interest because NE does not contain specific ligands for innate immune receptors. In these studies, we demonstrate that W805EC NE adjuvant activates innate immunity, induces specific gene transcription, and modulates NF-κB activity via TLR2 and TLR4 by a mechanism that appears to be distinct from typical TLR agonists. Nasal immunization with NE-based vaccine showed that the TLR2, TLR4, and MyD88 pathways and IL-12 and IL-12Rβ1 expression are not required for an Ab response, but they are essential for the induction of balanced Th-1 polarization and Th-17 cellular immunity. NE adjuvant induces MHC class II, CD80, and CD86 costimulatory molecule expression and dendritic cell maturation. Further, upon immunization with NE, adjuvant mice deficient in the CD86 receptor had normal Ab responses but significantly reduced Th-1 cellular responses, whereas animals deficient in both CD80 and CD86 or lacking CD40 failed to produce either humoral or cellular immunity. Overall, our data show that intranasal administration of Ag with NE induces TLR2 and TLR4 activation along with a MyD88-independent Ab response and a MyD88-dependent Th-1 and Th-17 cell–mediated immune response. These findings suggest that the unique properties of NE adjuvant may offer novel opportunities for understanding previously unrecognized mechanisms of immune activation important for generating effective mucosal and systemic immune responses. PMID:24532579

  18. Formulation Development and Toxicity Assessment of Triacetin Mediated Nanoemulsions as Novel Delivery Systems for Rapamycin

    PubMed Central

    Sobhani, Hamideh; Tarighi, Parastoo; Ostad, Seyed Nasser; Shafaati, Alireza; Nafissi-Varcheh, Nastaran; Aboofazeli, Reza

    2015-01-01

    The aim of this investigation was to design and develop nanoemulsions (NEs) as novel delivery systems for rapamycin. Phase behavior of quaternary systems composed of Traicetin (as oil), various surfactants and co-surfactants and water at different surfactant/co-surfactant weight ratios was investigated by the construction of phase diagrams. Formulations were taken from the o/w NE region of the phase diagrams, depending upon the extent of NE domain. The spontaneous emulsification method was used to prepare various formulations containing 1 mg/mL of the drug. The NEs were characterized and subjected to stability tests at various temperatures over 9-12 months. Cumulative drug release from the selected formulations was determined for a period of 48 h using a dialysis sac. The assay of rapamycin was carried out using an HPLC technique. The effect of NEs on the viability of SKBR-3 cells was evaluated by MTT assay. The integrity of Caco-2 cell monolayers was measured by Transepithelial Electrical Resistance (TEER) and the transport of rapamycin-loaded NEs across Caco-2 cell monolayers was then assessed. The uptake of NEs by SKBR-3 cells was also investigated using florescence microscopy. Maximum drug release was observed in case of 4 formulations prepared with Tween 80 and Tween 20. MTT test results revealed different toxicity of NEs for SKBR-3 cell line and TEER demonstrated that formulations containing Tween 20 caused a more considerable decrease in cell integrity in comparison with those prepared with Tween 80. The results obtained from cellular uptake experiments were in consistent with those obtained from TEER and cytotoxicity experiments. PMID:26185501

  19. Spray-dried powders containing tretinoin-loaded engineered lipid-core nanocapsules: development and photostability study.

    PubMed

    Marchiori, M C L; Ourique, A F; da Silva, C de B; Raffin, R P; Pohlmann, A R; Guterres, S S; Beck, R C R

    2012-03-01

    The influence of the spray-drying process on the ability of engineered lipid-core nanocapsules to protect tretinoin against UV degradation was evaluated. This approach represents a technological alternative to improve the microbiological stability, storage and transport properties of such formulations. Tretinoin-loaded lipid-core nanocapsules or tretinoin-loaded nanoemulsion were dispersed in lactose (10% w/v) and fed in the spray-drier to obtain a solid product (spray-dried powder containing tretinoin-loaded nanocapsules or nanoemulsion--SD-TTN-NCL or SD-TTN-NE, respectively). SD-TTN-NE showed a lower (p < or = 0.05) percentage of encapsulation (89 +/- 1%) compared to SD-TTN-NCL (94 +/- 2%). Redispersed SD-TTN-NCL and SD-TTN-NE showed z-average sizes of 204 +/- 2 nm and 251 +/- 9 nm, which were close to those of the original suspensions (220 +/- 3 nm and 239 +/- 14 nm, respectively). Similar percentage of photodegradation were determined for tretinoin loaded in nanocapsules (26.15 +/- 4.34%) or in the respective redispersed spray-dried powder (28.73 +/- 6.19 min) after 60 min of UVA radiation exposure (p > 0.05). Our experimental design showed for the first time that spray-dried lipid-core nanocapsules are able to protect tretinoin against UVA radiation, suggesting that the drying process did not alter the supramolecular structure of the lipid-core nanocapsules. Such powders are potential intermediate products for the development of nanomedicines containing tretinoin.

  20. Formation of Pegylated polyurethane and Lysine-coated polyurea nanoparticles obtained from O/W nano-emulsions.

    PubMed

    Morral-Ruíz, Genoveva; Solans, Conxita; García, María Luisa; García-Celma, María José

    2012-04-17

    The present work describes the formation of Pegylated polyurethane and Lysine-coated polyurea nanoparticles obtained from O/W nano-emulsions via an interfacial polycondensation process in the aqueous solution/polysorbate 80/diisocyanate/medium chain triglyceride systems. The initial nano-emulsions were prepared using the phase inversion composition (PIC) method. Dynamic light scattering studies revealed the changes in the particle size occurring during the process of nanoparticle formation. Well-defined polymeric nanoparticles with a small particle diameter (below 80 nm) and low polydispersity index were obtained using a highly hydrophilic component (polyethylene glycol or lysine) and an aliphatic diisocyante monomer. FT-IR and AFM studies showed that the polymeric matrix of nanoparticles was built by copolymers derived from reaction between the diisocyanate and the hydroxyl groups of both nonionic surfactant and the highly hydrophilic component. Pegylated-polyurethane and lysine-coated polyurea nanoparticles designed in this study are promising tools for future applications in biomedical sciences.

  1. Production and characterization of cosmetic nanoemulsions containing Opuntia ficus-indica (L.) mill extract as moisturizing agent.

    PubMed

    Ribeiro, Renato Cesar de Azevedo; Barreto, Stella Maria de Andrade Gomes; Ostrosky, Elissa Aarantes; da Rocha-Filho, Pedro Alves; Veríssimo, Lourena Mafra; Ferrari, Márcio

    2015-02-02

    This study aimed to produce and characterize an oil in water (O/W) nanoemulsion containing Opuntia ficus-indica (L.) Mill hydroglycolic extract, as well as evaluate its preliminary and accelerated thermal stability and moisturizing efficacy. The formulations containing 0.5% of xanthan gum (FX) and 0.5% of xanthan gum and 1% of Opuntia ficus-indica MILL extract (FXE) were white, homogeneus and fluid in aspect. Both formulations were stable during preliminary and accelerated stability tests. FX and FXE presented a pH compatible to skin pH (4.5-6.0); droplet size varying from 92.2 to 233.6 nm; a polydispersion index (PDI) around 0.200 and a zeta potential from -26.71 to -47.01 mV. FXE was able to increase the water content of the stratum corneum for 5 h after application on the forearm. The O/W nanoemulsions containing 1% of Opuntia ficus-indica (L.) Mill extract presented suitable stability for at least for 60 days. Besides, this formulation was able to increase the water content of stratum corneum, showing its moisturizing efficacy.

  2. In vitro activities of a novel nanoemulsion against Burkholderia and other multidrug-resistant cystic fibrosis-associated bacterial species.

    PubMed

    LiPuma, John J; Rathinavelu, Sivaprakash; Foster, Bridget K; Keoleian, Jordan C; Makidon, Paul E; Kalikin, Linda M; Baker, James R

    2009-01-01

    Respiratory tract infection, most often involving opportunistic bacterial species with broad-spectrum antibiotic resistance, is the primary cause of death in persons with cystic fibrosis (CF). Species within the Burkholderia cepacia complex are especially problematic in this patient population. We investigated a novel surfactant-stabilized oil-in-water nanoemulsion (NB-401) for activity against 150 bacterial isolates recovered primarily from CF respiratory tract specimens. These specimens included 75 Burkholderia isolates and 75 isolates belonging to other CF-relevant species including Pseudomonas, Achromobacter, Pandoraea, Ralstonia, Stenotrophomonas, and Acinetobacter. Nearly one-third of the isolates were multidrug resistant, and 20 (13%) were panresistant based on standard antibiotic testing. All isolates belonging to the same species were genotyped to ensure that each isolate was a distinct strain. The MIC(90) of NB-401 was 125 microg/ml. We found no decrease in activity against multidrug-resistant or panresistant strains. MBC testing showed no evidence of tolerance to NB-401. We investigated the activity of NB-401 against a subset of strains grown as a biofilm and against planktonic strains in the presence of CF sputum. Although the activity of NB-401 was decreased under both conditions, the nanoemulsion remained bactericidal for all strains tested. These results support NB-401's potential role as a novel antimicrobial agent for the treatment of infection due to CF-related opportunistic pathogens.

  3. O/W nano-emulsion formation using an isothermal low-energy emulsification method in a mixture of polyglycerol polyricinoleate and hexaglycerol monolaurate with glycerol system.

    PubMed

    Wakisaka, Satoshi; Nishimura, Takahisa; Gohtani, Shoichi

    2015-01-01

    We investigated how phase behavior changes by replacing water with glycerol in water/mixture of polyglycerol polyricinoleate (PGPR) and hexaglycerol monolaurate (HGML) /vegetable oil system, and studied the effect of glycerol on o/w nano-emulsion formation using an isothermal low-energy method. In the phase behavior study, the liquid crystalline phase (Lc) + the sponge phase (L3) expanded toward lower surfactant concentration when water was replaced with glycerol in a system containing surfactant HLP (a mixture of PGPR and HGML). O/W nano-emulsions were formed by emulsification of samples in a region of Lc + L3. In the glycerol/surfactant HLP/vegetable oil system, replacing water with glycerol was responsible for the expansion of a region containing Lc + L3 toward lower surfactant concentration, and as a result, in the glycerol/surfactant HLP/vegetable oil system, the region where o/w nano-emulsions or o/w emulsions could be prepared using an isothermal low-energy emulsification method was wide, and the droplet diameter of the prepared o/w emulsions was also smaller than that in the water/surfactant HLP/vegetable oil system. Therefore, glycerol was confirmed to facilitate the preparation of nano-emulsions from a system of surfactant HLP. Moreover, in this study, we could prepare o/w nano-emulsions with a simple one-step addition of water at room temperature without using a stirrer. Thus, the present technique is highly valuable for applications in several industries.

  4. Layer-by-layer encapsulated nano-emulsion of ionic liquid loaded with functional material for extraction of Cd(2+) ions from aqueous solutions.

    PubMed

    Elizarova, Iuliia S; Luckham, Paul F

    2017-04-01

    Ionic liquids can serve as an environmentally-friendly replacement for solvents in emulsions, therefore they are considered suitable to be used as an emulsified medium for various active materials one of which are extractors of metal ions. Increasing the extraction efficiency is considered to be one of the key objectives when working with such extraction systems. One way to improve the extraction efficiency is to increase the contact area between the extractant and the working ionic solution. This can be accomplished by creating a nano-emulsion of ionic liquid containing such an extractant. Since emulsification of ionic liquid is not always possible in the sample itself, there is a necessity of creating a stable emulsion that can be added externally and on demand to samples from which metal ions need to be extracted. We propose a method of fabrication of a highly-stable extractant-loaded ionic liquid-in-water nano-emulsion via a low-energy phase reversal emulsification followed by continuous layer-by-layer polyelectrolyte deposition process to encapsulate the nano-emulsion and enhance the emulsion stability. Such a multilayered stabilized nano-emulsion was tested for extraction of Cd(2+) and Ca(2+) ions in order to determine its extraction efficiency and selectivity. It was found to be effective in the extraction of Cd(2+) ions with near 100% cadmium removal, as well as being selective since no Ca(2+) ions were extracted. The encapsulated emulsion was removed from samples post-extraction using two methods - filtration and magnetic separation, both of which were shown to be viable under different circumstances - larger and mechanically stronger capsules could be removed by filtration, however magnetic separation worked better for both smaller and bigger capsules. The long-term stability of nano-emulsion was also tested being a very important characteristic for its proposed use: it was found to be highly stable after four months of storage time.

  5. Effect of Partnership Status on Preferences for Facial Self-Resemblance

    PubMed Central

    Lindová, Jitka; Little, Anthony C.; Havlíček, Jan; Roberts, S. Craig; Rubešová, Anna; Flegr, Jaroslav

    2016-01-01

    Self-resemblance has been found to have a context-dependent effect when expressing preferences for faces. Whereas dissimilarity preference during mate choice in animals is often explained as an evolutionary adaptation to increase heterozygosity of offspring, self-resemblance can be also favored in humans, reflecting, e.g., preference for kinship cues. We performed two studies, using transformations of facial photographs to manipulate levels of resemblance with the rater, to examine the influence of self-resemblance in single vs. coupled individuals. Raters assessed facial attractiveness of other-sex and same-sex photographs according to both short-term and long-term relationship contexts. We found a preference for dissimilarity of other-sex and same-sex faces in single individuals, but no effect of self-resemblance in coupled raters. No effect of sex of participant or short-term vs. long-term attractiveness rating was observed. The results support the evolutionary interpretation that dissimilarity of other-sex faces is preferred by uncoupled individuals as an adaptive mechanism to avoid inbreeding. In contrast, lower dissimilarity preference of other-sex faces in coupled individuals may reflect suppressed attention to attractiveness cues in potential alternative partners as a relationship maintenance mechanism, and its substitution by attention to cues of kinship and psychological similarity connected with greater likelihood of prosocial behavior acquisition from such persons. PMID:27378970

  6. Development and Evaluation of Lipid Nanoparticles for Drug Delivery: Study of Toxicity In, Vitro and In Vivo.

    PubMed

    Winter, Evelyn; Dal Pizzol, Carine; Locatelli, Claudriana; Crezkynski-Pasa, Tânia Beatriz

    2016-02-01

    Lipid nanoparticles have received considerable attention in the field of drug delivery, due their ability to incorporate lipophilic drugs and to allow controlled drug release. Solid lipid nanoparticles (SLN), nanostructured lipid carriers (NLC), and nanoemulsion (NE) are three different lipid nanostructured systems presenting intrinsically physical properties, which have been widely studied in recent years. Despite the extensive applicability of lipid nanoparticles, the toxicity of these systems has not been sufficiently investigated thus far. It is generally believed that lipids are biocompatible. However, it is known that materials structured in nanoscale might have their intrinsic physicochemical properties modified. Thus, the aim of this study was to evaluate the cytotoxicity of these three nanoparticle systems. To this end, in vitro and in vivo toxicity studies were carried out. Our results indicate that nanoparticles containing the solid lipid GMS (SLN and NLC) induced an important cytotoxicity in vitro, but showed minimal toxicity in vivo--evidenced by the body weight analysis. The NE did not induce in vitro toxicity and did not induce body weight alteration. On the contrary, the SLN and NLC possibly induce an inflammatory process in vivo. All nanoparticle systems induced lipid peroxidation in the animals' livers, but only SLN and NLC induced a decrease of antioxidant defences indicating that the main mechanism of toxicity is the induction of oxidative stress in liver. The higher toxicity induced by SLN and NLC indicates that the solid lipid GMS could be the responsible for this effect. Nevertheless, this study provides important insights for toxicological studies of different lipid nanoparticles systems.

  7. From similitude to success: The effects of facial resemblance on perceptions of team effectiveness.

    PubMed

    Wang, Ze; He, Xin; Liu, Fan

    2016-03-01

    Scant empirical research has focused on how impressions of teams are formed based on members' collective appearance, even though team photos are omnipresent in visual communications and teamwork is a common theme to elicit positive responses. Across 4 studies, we show that a subtle increase in the facial resemblance among team members enhances observers' evaluations of team effectiveness. This resemblance effect is mediated by perceived cooperative intent among team players. Furthermore, we demonstrate a reversal of the resemblance effect through the moderating role of information valence and extend the finding from team perception to behavioral intention. These results hold across different manipulations, contexts, stimuli, and sample characteristics. Collectively, this research presents the first empirical evidence that inferences based on facial morphology persist well beyond evaluations of individuals to influence the way a team, as a whole, is perceived.

  8. Inhibited biofilm formation and improved antibacterial activity of a novel nanoemulsion against cariogenic Streptococcus mutans in vitro and in vivo

    PubMed Central

    Li, Yun Fei; Sun, Hong Wu; Gao, Rong; Liu, Kai Yun; Zhang, Hua Qi; Fu, Qi Huan; Qing, Sheng Li; Guo, Gang; Zou, Quan Ming

    2015-01-01

    The aim of this study was to prepare a novel nanoemulsion loaded with poorly water-soluble chlorhexidine acetate (CNE) to improve its solubility, and specifically enhance the antimicrobial activity against Streptococcus mutans in vitro and in vivo. In this study, a novel CNE nanoemulsion with an average size of 63.13 nm and zeta potential of −67.13 mV comprising 0.5% CNE, 19.2% Tween 80, 4.8% propylene glycol, and 6% isopropyl myristate was prepared by the phase inversion method. Important characteristics such as the content, size, zeta potential, and pH value of CNE did not change markedly, stored at room temperature for 1 year. Also, compared with chlorhexidine acetate water solution (CHX), the release profile results show that the CNE has visibly delayed releasing effect in both phosphate-buffered saline and artificial saliva solutions (P<0.005). The minimum inhibitory concentration and minimum bactericidal concentration of CHX for S. mutans (both 0.8 μg/mL) are both two times those of CNE (0.4 μg/mL). Besides, CNE of 0.8 μg/mL exhibited fast-acting bactericidal efficacy against S. mutans, causing 95.07% death within 5 minutes, compared to CHX (73.33%) (P<0.01). We observed that 5 mg/mL and 2 mg/mL CNE were both superior to CHX, significantly reducing oral S. mutans numbers and reducing the severity of carious lesions in Sprague Dawley rats (P<0.05), in an in vivo test. CNE treatment at a concentration of 0.2 μg/mL inhibited biofilm formation more effectively than CHX, as indicated by the crystal violet staining method, scanning electron microscopy, and atomic force microscopy. The cell membrane of S. mutans was also severely disrupted by 0.2 μg/mL CNE, as indicated by transmission electron microscopy. These results demonstrated that CNE greatly improved the solubility and antimicrobial activity of this agent against S. mutans both in vitro and in vivo. This novel nanoemulsion is a promising medicine for preventing and curing dental caries. PMID:25624759

  9. Effect of glycerol on formation, stability, and properties of vitamin-E enriched nanoemulsions produced using spontaneous emulsification.

    PubMed

    Saberi, Amir Hossein; Fang, Yuan; McClements, David Julian

    2013-12-01

    Oil-in-water nanoemulsions are finding increasing use as delivery systems to encapsulate lipophilic bioactive components in functional food, personal care, and pharmaceutical products. We investigated the influence of a water-soluble cosolvent (glycerol) on the formation, stability, and properties of vitamin E acetate-loaded nanoemulsions (VE-NEs) prepared by spontaneous emulsification. VE-NEs were formed by titration of a mixture of vitamin E acetate, carrier oil (MCT) and non-ionic surfactant (Tween 80) into an aqueous glycerol solution with continuous mixing. Cosolvent concentration had an appreciable effect on the particle size produced, with the smallest mean droplet diameters (d<50 nm) being formed at 40 and 50 wt% glycerol. Nanoemulsions (d<100 nm) containing 10% vitamin E acetate could be produced at relatively low surfactant concentrations (5%) using these high glycerol levels. The turbidity of the NEs decreased at high glycerol concentrations due to the reduction in droplet size and refractive index contrast. The long-term stability of the VE-NEs was strongly influenced by glycerol concentration and storage temperature. VE-NEs containing 40% glycerol were relatively stable to droplet growth when stored at 5 and 20°C, but a rapid increase in droplet size and turbidity occurred during storage at 37°C. Temperature scanning experiments (20-80-20°C) indicated that a steep and irreversible increase in turbidity occurred during heating, which was around 70°C in the absence of glycerol and 60°C in the presence of 40% glycerol. Droplet instability was attributed to an increase in the rate of Ostwald ripening and/or coalescence as the temperature was increased, associated with dehydration of the non-ionic surfactant head-group leading to a reduction in phase inversion temperature. Dilution (100×) of VE-NEs containing glycerol with water considerably improved their stability to droplet growth, especially at high storage temperatures. This study provides

  10. Phase-shift nano-emulsions induced cavitation and ablation during high intensity focused ultrasound exposure

    NASA Astrophysics Data System (ADS)

    Qiao, Yangzi; Yin, Hui; Chang, Nan; Wan, Mingxi

    2017-03-01

    Phase-shift Nano-emulsions (PSNEs) with a small initial diameter in nanoscale have the potential to leak out of the blood vessels and to accumulate at target point of tissue. At desired location, PSNEs can undergo acoustic droplet vaporization (ADV) process, change into gas bubbles and enhance focused ultrasound efficiency. The aim of this work was to provide spatial and temporal information on PSNE induced cavitation and ablation effects during pulsed high intensity focused ultrasound (HIFU) exposure. The PSNEs were composed of perfluorohaxane (PFH) and bovine serum albumin (BSA), and then uniformly distributed in a transparent polyacrylamide phantom. The Sonoluminescence (SL) method was employed to visualize the cavitation distribution and formation process of PSNEs induced cavitation. For the phantom which was used for ablation observation, heat sensitive BSA was added. When the temperature generated by ultrasound exposure was high enough to denature BSA, the transparent phantom would turn out white lesions. The shape of the lesion and the formation process were compared with those of cavitation. Each of the pulse contained 12 cycles for a duration of 10 µs. And the duty cycle changed from 1:10 to 1:40. The total "on" time of HIFU was 2s. PSNE can evidently accelerate cavitation emitting bright SL in pre-focal region. The cavitation was generated layer by layer towards the transducer. The formed bubble wall can block acoustic waves transmitting to the distal end. And the lesion appeared to be separated into two parts. One in pre-focal region stemmed from one point and grew quickly toward the transducer. The other in focal region was formed by merging some small white dots, and grew much slower. The influence of duty cycle has also been examined. The lower duty cycle with longer pulse-off time would generate more intense cavitation, however, smaller lesion. Bubble cloud gradually developed within phantom would greatly influence the cavitation and ablation

  11. Formulation and characterization of nanoemulsion intranasal adjuvants: effects of surfactant composition on mucoadhesion and immunogenicity.

    PubMed

    Wong, Pamela T; Wang, Su He; Ciotti, Susan; Makidon, Paul E; Smith, Douglas M; Fan, Yongyi; Schuler, Charles F; Baker, James R

    2014-02-03

    The development of effective intranasal vaccines is of great interest due to their potential to induce both mucosal and systemic immunity. Here we produced oil-in-water nanoemulsion (NE) formulations containing various cationic and nonionic surfactants for use as adjuvants for the intranasal delivery of vaccine antigens. NE induced immunogenicity and antigen delivery are believed to be facilitated through initial contact interactions between the NE droplet and mucosal surfaces which promote prolonged residence of the vaccine at the site of application, and thus cellular uptake. However, the details of this mechanism have yet to be fully characterized experimentally. We have studied the physicochemical properties of the NE droplet surfactant components and demonstrate that properties such as charge and polar headgroup geometry influence the association of the adjuvant with the mucus protein, mucin. Association of NE droplets with mucin in vitro was characterized by various biophysical and imaging methods including dynamic light scattering (DLS), zeta potential (ZP), and surface plasmon resonance (SPR) measurements as well as transmission electron microscopy (TEM). Emulsion surfactant compositions were varied in a systematic manner to evaluate the effects of hydrophobicity and polar group charge/size on the NE-mucin interaction. Several cationic NE formulations were found to facilitate cellular uptake of the model antigen, ovalbumin (OVA), in a nasal epithelial cell line. Furthermore, fluorescent images of tissue sections from mice intranasally immunized with the same NEs containing green fluorescent protein (GFP) antigen demonstrated that these NEs also enhanced mucosal layer penetration and cellular uptake of antigen in vivo. NE-mucin interactions observed through biophysical measurements corresponded with the ability of the NE to enhance cellular uptake. Formulations that enhanced antigen uptake in vitro and in vivo also led to the induction of a more consistent

  12. Skin moisturizing effect and skin penetration of ascorbyl palmitate entrapped in solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) incorporated into hydrogel.

    PubMed

    Uner, M; Wissing, S A; Yener, G; Müller, R H

    2005-10-01

    This study was performed as a complimentary to our previous study regarding the chemical stability of ascorbyl palmitate (AP) in solid lipid nanoparticles (SLN), nanostructured lipid carriers (NLC) and for comparison, in nanoemulsion (NE) incorporated into a hydrogel produced by high pressure homogenization. AP is known as an effective antioxidant that protects tissue integrity similar to vitamin C. Recently, its moisturizing activity in conventional topical formulations was found to be high. The aim of the present study was to investigate the moisturizing potential of AP in SLN and NLC incorporated into hydrogel as colloidal carrier systems. It has been known that SLN and NLC have occlusive effects, but AP incorporation moisturized skin significantly better than placebo in short-term (p < 0.001) and long-term trials (p < 0.01) for both SLN and NLC. In the second part of the study, SLN and NLC were found to sustain the penetration of AP through excised human skin about 1/2 and 2/3 times compared to NE (p < 0.001 and p < 0.01), respectively, due to the solid state of Witepsol E85 in the lipid phase.

  13. Plasma lipids, lipoprotein metabolism and HDL lipid transfers are equally altered in metabolic syndrome and in type 2 diabetes.

    PubMed

    Silva, Vanessa M; Vinagre, Carmen G C; Dallan, Luis A O; Chacra, Ana P M; Maranhão, Raul C

    2014-07-01

    Metabolic syndrome (MetS) refers to states of insulin resistance that predispose to development of cardiovascular disease and type 2 diabetes (T2DM). The aim was to investigate whether plasma lipids and lipid metabolism differ in MetS patients compared to those with T2DM with poor glycemic control (glycated hemoglobin > 7.0). Eighteen patients with T2DM, 18 with MetS and 14 controls, paired for age (40-70 years) and body mass index (BMI), were studied. Plasma lipids and the kinetics of a triacylglycerol-rich emulsion labeled with [(3)H]-triolein ([(3)H]-TAG) and [(14)C]-cholesteryl esters ([(14)C]-CE) injected intravenously followed by one-hour blood sampling were determined. Lipid transfers from an artificial nanoemulsion donor to high-density lipoprotien (HDL) were assayed in vitro. Low-density lipoprotein (LDL) and HDL cholesterol (mg/dl) were not different in T2DM (128 ± 7; 42 ± 7) and MetS (142 ± 6; 39 ± 3), but triacylglycerols were even higher in MetS (215 ± 13) than in T2DM (161 ±11, p < 0.05). Fractional clearance rate (FCR, in min(1)) of [(3)H]-TAG and [(14)C]-CE were equal in T2DM (0.008 ± 0.018; 0.005 ± 0.024) and MetS (0.010 ± 0.016; 0.006 ± 0.013), and both were reduced compared to controls. The transfer of non-esterified cholesterol, phospholipids and triacylglycerols to HDL was higher in MetS and T2DM than in controls (p < 0.01). Cholesteryl ester transfer and HDL size were equal in all groups. Results imply that MetS is equal to poorly controlled T2DM concerning the disturbances of plasma lipid metabolism examined here, and suggest that there are different thresholds for the insulin action on glucose and lipids. These findings highlight the magnitude of the lipid disturbances in MetS, and may have implications in the prevention of cardiovascular diseases.

  14. The Potential of Microalgae Lipids for Edible Oil Production.

    PubMed

    Huang, Yanfei; Zhang, Dongmei; Xue, Shengzhang; Wang, Meng; Cong, Wei

    2016-10-01

    The objective of this study was to evaluate the potential of oil-rich green algae, Chlorella vulgaris, Scenedesmus obliquus, and Nannochloropsis oceanica, to produce edible oil with respect to lipid and residue properties. The results showed that C. vulgaris and N. oceanica had similarly much higher lipid recovery (about 50 %) in hexane extraction than that of S. obliquus (about 25 %), and C. vulgaris had the highest content of neutral lipids among the three algae. The fatty acid compositions of neutral lipids from C. vulgaris and S. obliquus were mainly C16 and C18, resembling that of vegetable oils. ARA and EPA were the specific valuable fatty acids in lipids of N. oceanica, but the content of which was lower in neutral lipids. Phytol was identified as the major unsaponifiable component in lipids of the three algae. Combined with the evaluation of the ratios in SFA/MUFA/PUFA, (n-6):(n-3) and content of free fatty acids, lipids obtained from C. vulgaris displayed the great potential for edible oil production. Lipids of N. oceanica showed the highest antioxidant activity, and its residue contained the largest amounts of protein as well as the amino acid compositions were greatly beneficial to the health of human beings.

  15. Lipid14: The Amber Lipid Force Field

    PubMed Central

    2015-01-01

    The AMBER lipid force field has been updated to create Lipid14, allowing tensionless simulation of a number of lipid types with the AMBER MD package. The modular nature of this force field allows numerous combinations of head and tail groups to create different lipid types, enabling the easy insertion of new lipid species. The Lennard-Jones and torsion parameters of both the head and tail groups have been revised and updated partial charges calculated. The force field has been validated by simulating bilayers of six different lipid types for a total of 0.5 μs each without applying a surface tension; with favorable comparison to experiment for properties such as area per lipid, volume per lipid, bilayer thickness, NMR order parameters, scattering data, and lipid lateral diffusion. As the derivation of this force field is consistent with the AMBER development philosophy, Lipid14 is compatible with the AMBER protein, nucleic acid, carbohydrate, and small molecule force fields. PMID:24803855

  16. All-Solid-State Textile Batteries Made from Nano-Emulsion Conducting Polymer Inks for Wearable Electronics

    PubMed Central

    Wei, Di; Cotton, Darryl; Ryhänen, Tapani

    2012-01-01

    A rollable and all-solid-state textile lithium battery based on fabric matrix and polymer electrolyte that allows flexibility and fast-charging capability is reported. When immerged into poly(3,4-ethylenedioxythiophene) (PEDOT) nano-emulsion inks, an insulating fabric is converted into a conductive battery electrode for a fully solid state lithium battery with the highest specific energy capacity of 68 mAh/g. This is superior to most of the solid-state conducting polymer primary and/or secondary batteries reported. The bending radius of such a textile battery is less than 1.5 mm while lightening up an LED. This new material combination and inherent flexibility is well suited to provide an energy source for future wearable and woven electronics. PMID:28348307

  17. Children and Adolescents' Understandings of Family Resemblance: A Study of Naive Inheritance Concepts

    ERIC Educational Resources Information Center

    Williams, Joanne M.

    2012-01-01

    This paper aims to provide developmental data on two connected naive inheritance concepts and to explore the coherence of children's naive biology knowledge. Two tasks examined children and adolescents' (4, 7, 10, and 14 years) conceptions of phenotypic resemblance across kin (in physical characteristics, disabilities, and personality traits). The…

  18. Schwannoma of the biliary tract resembling cholangiocarcinoma: A case report and review

    PubMed Central

    Garcia Sanz, I; Muñoz de Nova, JL; Valdés de Anca, A; Martín Pérez, ME

    2016-01-01

    Schwannomas are benign tumours derived from Schwann cells and are extremely rare in the biliary tract. We present the case of a 62-year-old patient with a common bile duct schwannoma that resembled a cholangiocarcinoma. We also review all 17 previously published cases of schwannoma of the biliary tract and discuss the challenges of preoperative diagnosis. PMID:27269434

  19. LINGAM AS A SACRED OBJECT AND THE HEAD-DRESS OF SUFI RESEMBLING IT

    PubMed Central

    Mahdihassan, S.

    1990-01-01

    This study scans into past of ancient man and discusses meticulously how the reproductive organ Lingam became sacred object to Hindus and why a sufi wore a phallus shaped head-dress resembling to it. In this manner the author demystifies here the procreation, the law of nature. PMID:22557692

  20. Protective effect of a hydrogel containing Achyrocline satureioides extract-loaded nanoemulsion against UV-induced skin damage.

    PubMed

    Balestrin, L A; Bidone, J; Bortolin, R C; Moresco, K; Moreira, J C; Teixeira, H F

    2016-10-01

    Achyrocline satureioides is a medicinal plant widely used in South America that exhibits a well-documented antioxidant activity. Such activity has been related to their main aglycone flavonoids quercetin, luteolin, and 3-O-methylquercetin (3MQ). This study addresses the development of antioxidant hydrogels containing an A. satureioides extract-loaded nanoemulsions aimed at topical application. The systems investigated were A. satureioides extract-loaded nanoemulsions (ASNE) obtained by spontaneous emulsification procedure formulated in semisolid hydrogels composed of Carbopol® Ultrez 20 (HASNE). Hydrogels exhibit a non-Newtonian pseudoplastic behavior. A higher release of 3MQ from ASNE (3.61μg/cm(2)/h) was observed when compared with HASNE (2.83μg/cm(2)/h). Different parameters that may have an influence on the retention of flavonoids into the skin were investigated by using a Franz-type diffusion cells. Indeed, the amount of formulation applied on donor compartment was found to play a crucial role. At the optimized conditions, retention of approximately 2μg/cm(2) of flavonoids was detected into the skin. A higher retention of 3MQ was detected (approximately 1.0μg/cm(2)) in comparison with the other flavonoids. Finally, a protection the porcine ear skin by formulations, against oxidative stress generated by UVA/UVB light was demonstrated by means of TBARS, protein carbonylation, and protein thiol content assays. The overall results showed the potential of the formulations developed in this study for the prevention of oxidative stress on the skin.

  1. Potent functional immunogenicity of Plasmodium falciparum transmission-blocking antigen (Pfs25) delivered with nanoemulsion and porous polymeric nanoparticles

    PubMed Central

    Kumar, Rajesh; Ledet, Grace; Graves, Richard; Datta, Dibyadyuti; Robinson, Shana; Bansal, Geetha P.; Mandal, Tarun; Kumar, Nirbhay

    2015-01-01

    Purpose To evaluate functional immunogenicity of CHrPfs25. a malaria transmission blocking vaccine antigen, using nanoemulsion and porous polymeric PLGA nanoparticles. Methods CHrPfs25 was formulated with nanoemulsions (NE) and poly(D,L-lactide-co-glycolide) nanoparticles (PLGA-NP) and evaluated via IM route in mice. Transmission blocking efficacy of antibodies was evaluated by standard mosquito membrane feeding assay using purified IgG from immune sera. Physicochemical properties and stability of various formulations were evaluated by measuring poly-dispersity index, particle size and zeta potential. Results Mice immunized with CHrPfs25 using alum via IP and IM routes induced comparable immune responses. The highest antibody response was obtained with CHrPfs25 formulated in 4% NE as compared to 8% NE and PLGA-NP. No further increases were observed by combining NE with MPL-A and chitosan. 100% transmission blocking activity was demonstrated at 400 μg/ml of IgG for alum groups (both routes IP and IM), 4% NE and NE-MPL-A. Purified IgG from various adjuvant groups at lower doses (100 μg/mL) still exhibited >90% transmission blocking activity, while 52-81% blocking was seen at 50 μg/mL. Conclusion Results suggest that CHrPfs25 delivered in various adjuvants / nanoparticles elicited strong functional immunogenicity in pre-clinical studies in mice. We are now continuing these studies to develop effective vaccine formulations for further evaluation of immune correlates of relative immunogenicity of CHrPfs25 in various adjuvants and clinical trials. PMID:26113235

  2. Anticancer activity of an ultrasonic nanoemulsion formulation of Nigella sativa L. essential oil on human breast cancer cells.

    PubMed

    Periasamy, Vaiyapuri Subbarayan; Athinarayanan, Jegan; Alshatwi, Ali A

    2016-07-01

    Nigella sativa L. (NS) is a plant renowned in traditional holistic medicine systems for almost 1400 years because of its remarkable antioxidant, antimicrobial, anti-inflammatory and anti-cancer properties. The essential oil of N. sativa, in particular, possesses these significant biological properties. However, N. sativa essential oil has many insoluble constituents with properties that have not been fully explored. Nanoemulsion-based insoluble formulations are a widely used carrier system for lipophilic materials. In the present study, we used ultrasonic emulsification, polysorbate 80 and water to formulate a highly stable N. sativa essential oil nanoemulsion (NSEO-NE). To optimize the NSEO-NE preparation, we changed the surfactant concentration, the oil-surfactant mixing ratio and the emulsification time. The droplet size distribution and morphology of the prepared NE was analyzed using dynamic light scattering and scanning electron microscopy, respectively. The droplet size of the NSEO-NE was approximately 20-50 nm in diameter. The anticancer properties of the NE preparation were studied using a modified methyl-thiazolyl-diphenyl tetrazolium bromide (MTT) assay as well as cellular uptake and nuclear morphological analyses. The NSEO-NE significantly reduced the viability of Michigan Cancer Foundation-7 (MCF-7) breast cancer cells. The nucleo-cytoplasmic morphological features of NSEO-NE-treated cells included cell membrane blebbing, cytoplasmic vacuolation, marginalization of chromatin, and fragmentation of the nucleus. The results clearly indicate that NSEO-NE induced apoptosis in MCF-7 cells. These findings support the potential application of NSEO-NE in breast cancer therapy, and also merit future translational research.

  3. Content of lipids in blood and tissues of animals during hypodynamia

    NASA Technical Reports Server (NTRS)

    Federov, I. V.; Rylnikov, Y. P.; Lobova, T. M.

    1980-01-01

    Experiments on 97 rats and 50 rabbits were undertaken to study the influence of hypodynamia on the lipid content in the blood, liver, heart, and in the aorta. Reduction of muscular activity contributed to the increase of cholesterol and beta lipoprotein levels in the blood and to accumulation of cholesterol in the liver and the heart. The total lipid content in these tissues decreased. In the aorta the total lipid content increased, while lecithin and cephalin figures went down. The character of biochemical changes in hypodynamia resembles in many ways the lipid metabolism changes in atherosclerosis.

  4. Anti-angiogenic and anti-cancer evaluation of betulin nanoemulsion in chicken chorioallantoic membrane and skin carcinoma in Balb/c mice.

    PubMed

    Dehelean, Cristina A; Feflea, Stefana; Gheorgheosu, Dorina; Ganta, Srinivas; Cimpean, Anca M; Muntean, Danina; Amiji, Mansoor M

    2013-04-01

    Betulin (Bet), the main component of birch tree bark, has been recently reported to exert anticancer activity in several cell lines; however the underlying mechanisms are only partially elucidated. The aims of the present work were to assess the in vivo effects of betulin administered as nanoemulsion (NE) in two experimental models: (i) the chicken embryo chorioallantoic membrane (CAM) assay for the study of anti-angiogenic effects and (ii) the two-stage model of skin carcinoma induced in mice for the study of anti-tumor and anti-inflammatory effects, respectively. On the CAM of the chicken betulin in nanoemulsion (BetNE) shows a good penetrability at extra-embryonic tissue level, affecting both the chorioallantoic membrane as well as the yolk sac by reducing the capillary density. In the animal model, the potential impact of local application of betulin on the respiratory function of isolated liver mitochondria was further assessed. Topical application of betulin nanoemulsion for 12 weeks together with DMBA (7,12-dimethylbenz[a]anthracene) and TPA (12-O-tetradecanoylphorbol 13-acetate), as tumor initiator and promoter, enhanced the active respiration of isolated liver mitochondria. Betulin also inhibit skin tumor apparition and promotion, proved by histological results and VEGF (vascular endothelial growth factor) expression correlated to non-invasive measurements. Betulin is active in nanoemulsion formulation as a potential inhibitory on the angiogenic process in CAM assay. BetNE can develop a potent anti-inflammatory and anti-carcinogenic activity with a low toxicity at skin level. It can also influence the penetration of carcinogens and reduce damage in main organs (e.g., liver).

  5. Studies on the formation of polymeric nano-emulsions obtained via low-energy emulsification and their use as templates for drug delivery nanoparticle dispersions.

    PubMed

    Calderó, G; Montes, R; Llinàs, M; García-Celma, M J; Porras, M; Solans, C

    2016-09-01

    Ethylcellulose nanoparticles have been obtained from O/W nano-emulsions of the water/polyoxyethylene 10 oleyl ether/[ethyl acetate+4wt% ethylcellulose] system by low energy-energy emulsification at 25°C. Nano-emulsions with droplet sizes below 200nm and high kinetic stability were chosen for solubilising dexamethasone (DXM). Phase behaviour, conductivity and optical analysis studies of the system have evidenced for the first time that both, the polymer and the drug play a role on the structure of the aggregates formed along the emulsification path. Nano-emulsion formation may take place by both, phase inversion and self-emulsification. Spherical polymeric nanoparticles containing surfactant, showing sizes below 160nm have been obtained from the nano-emulsions by organic solvent evaporation. DXM loading in the nanoparticles was high (>90%). The release kinetics of nanoparticle dispersions with similar particle size and encapsulated DXM but different polymer to surfactant ratio were studied and compared to an aqueous DXM solution. Drug release from the nanoparticle dispersions was slower than from the aqueous solution. While the DXM solution showed a Fickian release pattern, the release behaviour from the nanoparticle dispersions was faster than that expected from a pure Fickian release. A coupled diffusion/relaxation model fitted the results very well, suggesting that polymer chains undergo conformational changes enhancing drug release. The contribution of diffusion and relaxation to drug transport in the nanoparticle dispersions depended on their composition and release time. Surfactant micelles present in the nanoparticle dispersion may exert a mild reservoir effect. The small particle size and the prolonged DXM release provided by the ethylcellulose nanoparticle dispersions make them suitable vehicles for controlled drug delivery applications.

  6. Effectiveness of a spontaneous carvacrol nanoemulsion against Salmonella enterica Enteritidis and Escherichia coli O157:H7 on contaminated broccoli and radish seeds.

    PubMed

    Landry, Kyle S; Micheli, Sean; McClements, David Julian; McLandsborough, Lynne

    2015-10-01

    The incidence of foodborne illness associated with the consumption of fresh produce has continued to increase over the past decade. Sprouts, such as mung bean, alfalfa, radish, and broccoli, are minimally processed and have been sources for foodborne illness. Currently, a 20,000 ppm calcium hypochlorite soak is recommended for the treatment of sprouting seeds. In this study, the efficacy of an antimicrobial carvacrol nanoemulsion was tested against Salmonella enterica subspecies enterica serovar Enteritidis (ATCC BAA-1045) or EGFP expressing Escherichia coli O157:H7 (ATCC 42895) contaminated sprouting seeds. Antimicrobial treatments were performed by soaking inoculated seeds in nanoemulsions (4000 or 8000 ppm) for 30 or 60 min. Following treatment, surviving cells were determined by performing plate counts and/or Most Probable Number (MPN) enumeration. Treated seeds were sprouted and tested for the presence of pathogens. Treatment successfully inactivated low levels (2 and 3 log CFU/g) of S. Enteritidis and E. coli on radish seeds when soaked for 60 min at concentrations ≥4000 (0.4%) ppm carvacrol. This treatment method was not affective on contaminated broccoli seeds. Total sprout yield was not influenced by any treatments. These results show that carvacrol nanoemulsions may be an alternative treatment method for contaminated radish seeds.

  7. Kinetic stability and cellular uptake of lutein in WPI-stabilised nanoemulsions and emulsions prepared by emulsification and solvent evaporation method.

    PubMed

    Teo, Anges; Lee, Sung Je; Goh, Kelvin K T; Wolber, Frances M

    2017-04-15

    The particle size and lutein encapsulation efficiency of nanoemulsions prepared by emulsification and solvent evaporation method were 68.8±0.3nm and 80.7±0.8%, respectively, whereas they were 147.3±0.6nm and 86.3±0.3% for conventional emulsions. All the emulsions had no change in their particle size during storage (28days at 5, 20 and 40°C) but their lutein content and emulsion colour decreased, especially at 40°C. The lutein emulsions were analysed using MTT assay on the gut enterocyte cell line Caco-2 and they showed no toxicity as the cell viability was more than 80% at 10times or higher dilution after 24h of incubation. However, there was a higher cellular uptake of lutein by Caco-2 cells in nanoemulsions (872.9±88.3pmol/mgprotein) than conventional emulsions (329.5±214.6pmol/mgprotein). The results of this study indicated that nanoemulsions can be used as a delivery system to improve the cellular uptake of lutein.

  8. Herbal infusions of black seed and wheat germ oil: Their chemical profiles, in vitro bio-investigations and effective formulations as Phyto-Nanoemulsions.

    PubMed

    Gumus, Z Pinar; Guler, Emine; Demir, Bilal; Barlas, F Baris; Yavuz, Murat; Colpankan, Dilara; Senisik, A Murat; Teksoz, Serap; Unak, Perihan; Coskunol, Hakan; Timur, Suna

    2015-09-01

    The reported studies related to black seed oil (BSO) and wheat germ oil (WGO) have illustrated that they have a wide range of biological activities. Therefore, enhancing the amount of bio-active compounds that caused higher cell based anti-oxidative effect as well as cell proliferation, etc. in seed oils, infusion of crude plant material has been gained importance as a traditional technique. Herein, we accomplished the infusion of Calendula flowers that also contains many phyto-constituents into BSO and WGO. After the infusion of oils, the change of phytochemical amount was investigated and evaluated according to the oils by chromatography, radical scavenging activity. Subsequently, for investigating the biological impact upon live cells, cytotoxicity, cell-based antioxidant capacity, wound healing and radioprotective activity were tested with monkey kidney fibroblast like cells (Vero) and HaCaT keratinocytes. In vitro cell based experiments (wound healing and radioprotective activity) confirmed that Calendula infused BSO and WGO have greater bio-activity when compared to those plain forms. The herbal oils prepared with an effective extraction technique were incorporated into nanoemulsion systems which will be then called as 'Phyto-Nanoemulsion'. After herbal oil biomolecules were encapsulated into nanoemulsion based delivery systems, the designed formulations were investigated in terms of biological activities. In conclusion, these preparations could be a good candidate as a part of dermal cosmetic products or food supplements which have the therapeutic efficiency, especially after radio- or chemotherapy.

  9. Production & stability of stavudine solid lipid nanoparticles--from lab to industrial scale.

    PubMed

    Shegokar, R; Singh, K K; Müller, R H

    2011-09-20

    The production of stavudine-loaded solid lipid nanoparticles (SLN) for intravenous injection was scaled up from lab scale (40 g) to medium scale (10 kg) and large scale (20/60 kg). The SLN were produced by high pressure homogenization of stavudine lipid melt dispersed in hot surfactant solution (pre-emulsion) applying 800 bar pressure. Employed were piston-gap homogenizers with increasing capacity (APV Gaulin products LAB 40, LAB 60 and Gaulin 5.5, and Avestin C50), using them in the continuous (circulation) and discontinuous mode. Size analysis was performed by photon correlation spectroscopy (PCS), laser diffractometry and light microscopy. At lab scale a PCS size of 53 nm was obtained. At the same pressure, all homogenizers on larger scale yielded a size in the range of the lab scale product (35-70 nm). Differences were found in the size as a function of circulation time (size increase or size reduction with time) and the number of cycles required (1 or 5) for the optimal product. The stavudine SLN formulation (2% lipid content, high surfactant to lipid ratio) showed a different behavior to conventional higher concentrated SLN suspensions or nanoemulsions (10% or 20% lipid/oil, low surfactant to lipid ratio). In general, smallest sizes were obtained in the discontinuous mode after just one homogenization cycle. The continuous production mode was only efficient with a 10 kg batch size using the LAB 60. In addition, the long-term stability over 1 year was monitored at refrigeration, room temperature and at 40°C to assess a potential effect of the homogenizer type on stability. All batches at room temperature and below were stable, only a negligible increase in size was observed.

  10. A Family Resemblance Approach to the Nature of Science for Science Education

    NASA Astrophysics Data System (ADS)

    Irzik, Gürol; Nola, Robert

    2011-07-01

    Although there is universal consensus both in the science education literature and in the science standards documents to the effect that students should learn not only the content of science but also its nature, there is little agreement about what that nature is. This led many science educators to adopt what is sometimes called "the consensus view" about the nature of science (NOS), whose goal is to teach students only those characteristics of science on which there is wide consensus. This is an attractive view, but it has some shortcomings and weaknesses. In this article we present and defend an alternative approach based on the notion of family resemblance. We argue that the family resemblance approach is superior to the consensus view in several ways, which we discuss in some detail.

  11. Gastrointestinal symptoms resembling ulcerative proctitis caused by larvae of the drone fly Eristalis tenax

    PubMed Central

    Desoubeaux, Guillaume; Gaillard, Julien; Borée-Moreau, Diane; Bailly, Éric; Andres, Christian R; Chandenier, Jacques

    2014-01-01

    We report a case of facultative intestinal myiasis due to larvae of the drone fly Eristalis tenax, also named the rat-tailed maggots. The development of larvae in the lower bowel was responsible for non-specific gastrointestinal symptoms that resembled ulcerative proctitis. The diagnosis was established upon the observation of four spontaneously excreted mobile larvae. The definite identification of the E. tenax species was made possible by scanning electron microscopy. The clinical outcome was satisfactory. PMID:24766340

  12. Gastrointestinal symptoms resembling ulcerative proctitis caused by larvae of the drone fly Eristalis tenax.

    PubMed

    Desoubeaux, Guillaume; Gaillard, Julien; Borée-Moreau, Diane; Bailly, Éric; Andres, Christian R; Chandenier, Jacques

    2014-04-01

    We report a case of facultative intestinal myiasis due to larvae of the drone fly Eristalis tenax, also named the rat-tailed maggots. The development of larvae in the lower bowel was responsible for non-specific gastrointestinal symptoms that resembled ulcerative proctitis. The diagnosis was established upon the observation of four spontaneously excreted mobile larvae. The definite identification of the E. tenax species was made possible by scanning electron microscopy. The clinical outcome was satisfactory.

  13. Identification of Anthrax Toxin Genes in a Bacillus cereus Associated With An Illness Resembling Inhalation Anthrax

    DTIC Science & Technology

    2004-01-01

    Identification of anthrax toxin genes in a Bacillus cereus associated with an illness resembling inhalation anthrax Alex R. Hoffmaster*†, Jacques... Bacillus anthracis is the etiologic agent of anthrax, an acute fatal disease among mammals. It was thought to differ from Bacillus cereus , an...correlation of phenotypic characteristics and their genetic basis. Bacillus cereus and Bacillus anthracis are members of a closelyrelated phylogenetic

  14. Familial resemblance for VO2max in the sedentary state: the HERITAGE family study.

    PubMed

    Bouchard, C; Daw, E W; Rice, T; Pérusse, L; Gagnon, J; Province, M A; Leon, A S; Rao, D C; Skinner, J S; Wilmore, J H

    1998-02-01

    This study investigates the familial resemblance of maximal oxygen uptake (VO2max) based on data from 86 nuclear families of Caucasian descent participating in the HERITAGE Family Study. In the current study, VO2max was measured twice on a cycle ergometer in 429 sedentary individuals (170 parents and 259 of their offspring), aged between 16 and 65 yr. The VO2max was adjusted by regression procedures for the effects of 1) age and sex; 2) age, sex, and body mass; and 3) age, sex, body mass, fat mass, and fat-free mass, as determined by underwater weighing. Evidence for significant familial resemblance was observed for each of the three VO2max phenotypes. Spouse, sibling, and parent-offspring correlations were significant, suggesting that both genetic and environmental factors contribute to the familial resemblance for VO2max. Maximal heritability estimates were at least 50%, a value inflated to an undetermined degree by nongenetic factors. The hypothesis of maternal inheritance, with the father's contribution being environmental, was also found to fit the data with estimates of maternal heritability, potentially associated in part with mitochondrial inheritance, reaching about 30%. These results suggest that genetic and nongenetic factors as well as maternal influences contribute to the familial aggregation of VO2max in sedentary individuals.

  15. Doxorubicin Lipid Complex Injection

    MedlinePlus

    Doxorubicin lipid complex is used to treat ovarian cancer that has not improved or that has worsened after treatment with other medications. Doxorubicin lipid complex is also used to treat Kaposi's sarcoma ( ...

  16. Daunorubicin Lipid Complex Injection

    MedlinePlus

    Daunorubicin lipid complex is used to treat advanced Kaposi's sarcoma (a type of cancer that causes abnormal tissue to ... body) related to acquired immunodeficiency syndrome (AIDS). Daunorubicin lipid complex is in a class of medications called ...

  17. Irinotecan Lipid Complex Injection

    MedlinePlus

    Irinotecan lipid complex is used in combination with other medications to treat pancreatic cancer that has spread to other ... worsened after treatment with other chemotherapy medications. Irinotecan lipid complex is in a class of antineoplastic medications ...

  18. Vincristine Lipid Complex Injection

    MedlinePlus

    Vincristine lipid complex is used to treat a certain type of acute lymphoblastic leukemia (ALL; a type ... at least two different treatments with other medications. Vincristine lipid complex is in a class of medications ...

  19. Preparation of catechin extracts and nanoemulsions from green tea leaf waste and their inhibition effect on prostate cancer cell PC-3.

    PubMed

    Tsai, Yin-Jieh; Chen, Bing-Huei

    2016-01-01

    Green tea is one of the most commonly consumed natural health beverages in Taiwan's market, with the major functional component catechin being shown to possess several biological activities such as antioxidation, anticancer, and prevention of cardiovascular disease. The objectives of this study were to develop a high-performance liquid chromatography-mass spectrometry method to determine the variety and content of catechins in green tea leaf waste, a by-product obtained during processing of tea beverage. In addition, catechin nanoemulsion was prepared to study its inhibition effect on prostate cancer cell PC-3. Results showed that a total of eight catechin standards were separated within 25 minutes by using a Gemini C18 column and a gradient mobile phase of 0.1% formic acid (A) and acetonitrile (B) with flow rate at 1 mL/min, column temperature at 30°C, and detection wavelength at 280 nm. Among various extraction solvents, 50% ethanol generated the highest yield of total catechins from tea leaf waste, of which five catechins were identified and quantified. The catechin nanoemulsion was composed of catechin extract, lecithin, Tween 80, and deionized water in an appropriate proportion, with the mean particle size being 11.45 nm, encapsulation efficiency 88.1%, and zeta potential -66.3 mV. A high stability of catechin nanoemulsion was shown over a storage period of 120 days at 4°C. Both catechin extract and nanoemulsion could inhibit growth of PC-3 tumor cells, with the half maximal inhibitory concentration being 15.4 μg/mL and 8.5 μg/mL, respectively. The PC-3 cell cycle was arrested at S phase through elevation of P27 expression and decline of cyclin A, cyclin B, cyclin-dependent kinase 2, and cyclin-dependent kinase 1 expression. In addition, both catechin extract and nanoemulsion could induce apoptosis of PC-3 cells through decrease in B-cell lymphoma 2 (bcl-2) expression and increase in cytochrome c expression for activation of caspase-3, caspase-8, and

  20. Preparation of catechin extracts and nanoemulsions from green tea leaf waste and their inhibition effect on prostate cancer cell PC-3

    PubMed Central

    Tsai, Yin-Jieh; Chen, Bing-Huei

    2016-01-01

    Green tea is one of the most commonly consumed natural health beverages in Taiwan’s market, with the major functional component catechin being shown to possess several biological activities such as antioxidation, anticancer, and prevention of cardiovascular disease. The objectives of this study were to develop a high-performance liquid chromatography–mass spectrometry method to determine the variety and content of catechins in green tea leaf waste, a by-product obtained during processing of tea beverage. In addition, catechin nanoemulsion was prepared to study its inhibition effect on prostate cancer cell PC-3. Results showed that a total of eight catechin standards were separated within 25 minutes by using a Gemini C18 column and a gradient mobile phase of 0.1% formic acid (A) and acetonitrile (B) with flow rate at 1 mL/min, column temperature at 30°C, and detection wavelength at 280 nm. Among various extraction solvents, 50% ethanol generated the highest yield of total catechins from tea leaf waste, of which five catechins were identified and quantified. The catechin nanoemulsion was composed of catechin extract, lecithin, Tween 80, and deionized water in an appropriate proportion, with the mean particle size being 11.45 nm, encapsulation efficiency 88.1%, and zeta potential −66.3 mV. A high stability of catechin nanoemulsion was shown over a storage period of 120 days at 4°C. Both catechin extract and nanoemulsion could inhibit growth of PC-3 tumor cells, with the half maximal inhibitory concentration being 15.4 μg/mL and 8.5 μg/mL, respectively. The PC-3 cell cycle was arrested at S phase through elevation of P27 expression and decline of cyclin A, cyclin B, cyclin-dependent kinase 2, and cyclin-dependent kinase 1 expression. In addition, both catechin extract and nanoemulsion could induce apoptosis of PC-3 cells through decrease in B-cell lymphoma 2 (bcl-2) expression and increase in cytochrome c expression for activation of caspase-3, caspase-8, and

  1. Thermal activation of superheated lipid-coated perfluorocarbon drops.

    PubMed

    Mountford, Paul A; Thomas, Alec N; Borden, Mark A

    2015-04-28

    This study explored the thermal conditions necessary for the vaporization of superheated perfluorocarbon nanodrops. Droplets C3F8 and C4F10 coated with a homologous series of saturated diacylphosphatidylcholines were formed by condensation of 4 μm diameter microbubbles. These drops were stable at room temperature and atmospheric pressure, but they vaporized back into microbubbles at higher temperatures. The vaporization transition was measured as a function of temperature by laser light extinction. We found that C3F8 and C4F10 drops experienced 90% vaporization at 40 and 75 °C, respectively, near the theoretical superheat limits (80-90% of the critical temperature). We therefore conclude that the metastabilty of these phase-change agents arises not from the droplet Laplace pressure altering the boiling point, as previously reported, but from the metastability of the pure superheated fluid to homogeneous nucleation. The rate of C4F10 drop vaporization was quantified at temperatures ranging from 55 to 75 °C, and an apparent activation energy barrier was calculated from an Arrhenius plot. Interestingly, the activation energy increased linearly with acyl chain length from C14 to C20, indicating that lipid interchain cohesion plays an important role in suppressing the vaporization rate. The vaporized drops (microbubbles) were found to be unstable to dissolution at high temperatures, particularly for C14 and C16. However, proper choice of the fluorocarbon and lipid species provided a nanoemulsion that could undergo at least ten reversible condensation/vaporization cycles. The vaporization properties presented in this study may facilitate the engineering of tunable phase-shift particles for diagnostic imaging, targeted drug delivery, tissue ablation, and other applications.

  2. Nutrients and neurodevelopment: lipids.

    PubMed

    González, Horacio F; Visentin, Silvana

    2016-10-01

    Nutrients, lipids in particular, make up the central nervous system structure and play major functional roles: they stimulate development, migration, and nerve cell differentiation. They are part of gray matter, white matter, nerve nuclei, and synaptogenesis. Breast milk contains lipids which are crucial for infant brain development. The lipid profile of breast milk was used as a guideline for the development of breast milk substitutes. However, to date, no substitute has matched it. Complementary feeding should include docosahexaenoic acid, arachidonic acid, other polyunsaturated fatty acids, saturated fatty acids, and complex lipids found in milk fat. The lipid composition of breast milk depends on maternal intake and nutritional status during pregnancy and breast-feeding. It has a great impact on development. Our goal is to review scientific literature regarding the role of lipids on infant brain development and the importance of breast milk lipid composition, maternal diet, and complementary feeding.

  3. Lipids and Prostate Cancer

    PubMed Central

    Suburu, Janel; Chen, Yong Q.

    2012-01-01

    The role of lipid metabolism has gained particular interest in prostate cancer research. A large body of literature has outlined the unique upregulation of de novo lipid synthesis in prostate cancer. Concordant with this lipogenic phenotype is a metabolic shift, in which cancer cells use alternative enzymes and pathways to facilitate the production of fatty acids. These newly synthesized lipids may support a number of cellular processes to promote cancer cell proliferation and survival. Hence, de novo lipogenesis is under intense investigation as a therapeutic target. Epidemiologic studies suggest dietary fat may also contribute to prostate cancer; however, whether dietary lipids and de novo synthesized lipids are differentially metabolized remains unclear. Here, we highlight the lipogenic nature of prostate cancer, especially the promotion of de novo lipid synthesis, and the significance of various dietary lipids in prostate cancer development and progression. PMID:22503963

  4. The effect of aspirin nanoemulsion on TNFα and iNOS in gastric tissue in comparison with conventional aspirin

    PubMed Central

    Mahmoud, Fatma Abd Elhalim; Hashem, Khalid S; Hussein Elkelawy, Asmaa Mohammed M

    2015-01-01

    Background No dose of aspirin is free of bleeding risk. Even at a dose as low as 75 mg/day, the risk of upper gastrointestinal bleeding is twice as high as among nonusers. Nanoemulsions (NEs) are emulsion systems with droplet size in nanometer scale in which oil or water droplets are finely dispersed in the opposite phase with the help of a suitable surfactant to stabilize the system. Objectives The objective of this study was to determine the effect of aspirin NE in comparison to conventional aspirin. Materials and methods A total of 24 male rats were used in the study and arbitrarily assigned to four groups. Group 1 was the control group, and was given saline. Group 2 was given blank NE 1.5 mL/kg orally. Group 3 was given aspirin 30 mg/kg body weight orally. Group 4 was given aspirin NE 30 mg/kg body weight orally. Rats were killed, and gastric tissue was quickly excised after dissection of the animals. The tissues were divided into three pieces. The first one was kept in formalin 10% for pathological investigation. The second piece was kept in liquid nitrogen for molecular investigation. The third piece was homogenized in ten volumes of ice-cold phosphate-buffered saline (pH 7) using a Teflon homogenizer until a uniform suspension was obtained. The homogenate was centrifuged at 4,000 rpm for 30 minutes at 4°C to separate the supernatant from cellular debris. The supernatant was then used for the estimation of biochemical assays. Results The present study shows that aspirin has a toxic effect on the stomach as a result of inducing marked oxidative damage and the release of reactive oxygen species. This was shown by the significant increase in TNFα, iNOS, prostaglandin E2, and malondialdehyde levels, and also a significant decrease in glutathione, glutathione reductase, glutathione peroxidase, catalase, and superoxide dismutase. In the aspirin-treated group compared to the control group, the NE had a protective effect on the stomach and caused less injury than

  5. Encapsulation of cadmium selenide quantum dots using a self-assembling nanoemulsion (SANE) reduces their in vitro toxicity.

    PubMed

    Edmund, Anton R; Kambalapally, Swetha; Wilson, Thomas A; Nicolosi, Robert J

    2011-02-01

    Although, nanometer-scale semi-conductor quantum dots (QDs) have attracted widespread interest in medical diagnosis and treatment, many can have intrinsic toxicities, especially those composed of CdSe, associated with their elemental composition. Using our self-assembling nanoemulsion (SANE) formulations which we have previously reported to be composed of non-toxic components, i.e., such as vegetable oil, surfactant and water, we hypothesized that their appropriate utilization would reduce the toxicity of QDs by encapsulating the CdSe QDs in our (SANE) system using a modified phase-inversion temperature (PIT) method. SANE encapsulation of the QDs did not alter their emission wavelength of 600nm which remained unchanged during the encapsulation process. In contrast, zeta potential of encapsulated QDs was reduced from -30 to -6.59 mV, which we have previously reported to be associated with beneficial properties (increased bioavailability and efficacy) for SANE-encapsulated bioactives such as pharmaceuticals. Relative to the untreated controls, the viability of HeLa cells exposed for 48 h to un-encapsulated CdSe QDs at a concentration of 115 μg/mL was 22.7±1.7% (p<0.05). In contrast, the percentage of viable HeLa cells following exposure to SANE-encapsulated CdSe QDs at the same concentration was 91.6±3.5% (p<0.05) or a 307% increase in the number of viable cells (p<0.05). When the dose of CdSe QDs was increased to 230 μg/mL, the percentage of viable HeLa cells after exposure to the un-encapsulated CdSe QDs was 16.1±1.3% compared to controls (p<0.05). In contrast, at the same increased concentration (230 μg/mL) of un-encapsulated CdSe QDs, the percentage of viable HeLa cells following exposure to SANE-encapsulated CdSe QDs was 87.9±3.3% relative to controls (p<0.05) or a 448% increase in the number of viable cells (p<0.05). Exposure of HeLa cells to a nanoblank, (nanoemulsion without QDs), showed no significant effect on cell viability (97.2±2.5%) compared to

  6. Resembling a viper: implications of mimicry for conservation of the endangered smooth snake.

    PubMed

    Valkonen, Janne K; Mappes, Johanna

    2014-12-01

    The phenomenon of Batesian mimicry, where a palatable animal gains protection against predation by resembling an unpalatable model, has been a core interest of evolutionary biologists for 150 years. An extensive range of studies has focused on revealing mechanistic aspects of mimicry (shared education and generalization of predators) and the evolutionary dynamics of mimicry systems (co-operation vs. conflict) and revealed that protective mimicry is widespread and is important for individual fitness. However, according to our knowledge, there are no case studies where mimicry theories have been applied to conservation of mimetic species. Theoretically, mimicry affects, for example, frequency dependency of predator avoidance learning and human induced mortality. We examined the case of the protected, endangered, nonvenomous smooth snake (Coronella austriaca) that mimics the nonprotected venomous adder (Vipera berus), both of which occur in the Åland archipelago, Finland. To quantify the added predation risk on smooth snakes caused by the rarity of vipers, we calculated risk estimates from experimental data. Resemblance of vipers enhances survival of smooth snakes against bird predation because many predators avoid touching venomous vipers. Mimetic resemblance is however disadvantageous against human predators, who kill venomous vipers and accidentally kill endangered, protected smooth snakes. We found that the effective population size of the adders in Åland is very low relative to its smooth snake mimic (28.93 and 41.35, respectively).Because Batesian mimicry is advantageous for the mimic only if model species exist in sufficiently high numbers, it is likely that the conservation program for smooth snakes will fail if adders continue to be destroyed. Understanding the population consequences of mimetic species may be crucial to the success of endangered species conservation. We suggest that when a Batesian mimic requires protection, conservation planners should

  7. Multibubble Sonoluminescence Spectra of Water which Resemble Single-Bubble Sonoluminescence

    NASA Astrophysics Data System (ADS)

    Didenko, Y. T.; Gordeychuk, T. V.

    2000-06-01

    Multibubble sonoluminescence (MBSL) spectra of water from cavitation clouds were collected in the presence of different noble gases and at different acoustic intensities. Results show that at high acoustic intensity and with xenon as a dissolved gas the emission of the OH* radical becomes indiscernible from the continuum. These spectra resemble single-bubble sonoluminescence (SBSL) spectra. It is concluded that the source of emission in MBSL and SBSL can be the same, the difference in spectra is due to the higher temperature inside the bubble during SBSL.

  8. Multibubble sonoluminescence spectra of water which resemble single-bubble sonoluminescence

    PubMed

    Didenko; Gordeychuk

    2000-06-12

    Multibubble sonoluminescence (MBSL) spectra of water from cavitation clouds were collected in the presence of different noble gases and at different acoustic intensities. Results show that at high acoustic intensity and with xenon as a dissolved gas the emission of the OH* radical becomes indiscernible from the continuum. These spectra resemble single-bubble sonoluminescence (SBSL) spectra. It is concluded that the source of emission in MBSL and SBSL can be the same, the difference in spectra is due to the higher temperature inside the bubble during SBSL.

  9. A Drosophila gene encoding a protein resembling the human. beta. -amyloid protein precursor

    SciTech Connect

    Rosen, D.R.; Martin-Morris, L.; Luo, L.; White, K. )

    1989-04-01

    The authors have isolated genomic and cDNA clones for a Drosophila gene resembling the human {beta}-amyloid precursor protein (APP). This gene produces a nervous system-enriched 6.5-kilobase transcript. Sequencing of cDNAs derived from the 6.5-kilobase transcript predicts an 886-amino acid polypeptide. This polypeptide contains a putative transmembrane domain and exhibits strong sequence similarity to cytoplasmic and extracellular regions of the human {beta}-amyloid precursor protein. There is a high probability that this Drosophila gene corresponds to the essential Drosophila locus vnd, a gene required for embryonic nervous system development.

  10. Dermatitis and lymphadenitis resembling juvenile cellulitis in a four-year-old dog.

    PubMed

    Neuber, A E; van den Broek, A H M; Brownstein, D; Thoday, K L; Hill, P B

    2004-05-01

    A four-year-old, entire male toy poodle was presented with a two-and-a-half-week history of ocular discharge progressing to periorbital alopecia, depigmentation, alopecia and ulceration around the muzzle. There was also a haemorrhagic discharge from the ears, pyrexia, lethargy and generalised lymphadenopathy. The clinical, cytological, bacteriological and histopathological findings were consistent with a diagnosis of dermatitis resembling juvenile cellulitis in an adult dog. Glucocorticoid therapy led to rapid resolution of the clinical signs and the dog has remained in remission for two years after cessation of treatment.

  11. Purple, stiff lesions resembling varicose veins on lower limb: certainly consider Kaposi sarcoma

    PubMed Central

    Arslan, Gokhan; Cicek, Ali Fuat; Oz, Bilgehan Savas

    2016-01-01

    Kaposi’s sarcoma (KS) typically presents multiple cutaneous lesions of the lower extremities. Lesions can rarely mimic varicose veins without venous insufficiency, vascular or stasis ulcers. As the initial diagnosis of KS is generally determined clinically, a high index of suspicion and palpation of lesions are necessary for all patients with atypical presentations of varicose-like lesions of lower extremities. Tissue biopsy with histological analysis is essential for all uncertain lesions. This is a case of KS occurring in a 79-year-old man who presented with indurated vascular plaques resembling varicose veins on the right foot. PMID:28096842

  12. A Drosophila gene encoding a protein resembling the human beta-amyloid protein precursor.

    PubMed Central

    Rosen, D R; Martin-Morris, L; Luo, L Q; White, K

    1989-01-01

    We have isolated genomic and cDNA clones for a Drosophila gene resembling the human beta-amyloid precursor protein (APP). This gene produces a nervous system-enriched 6.5-kilobase transcript. Sequencing of cDNAs derived from the 6.5-kilobase transcript predicts an 886-amino acid polypeptide. This polypeptide contains a putative transmembrane domain and exhibits strong sequence similarity to cytoplasmic and extracellular regions of the human beta-amyloid precursor protein. There is a high probability that this Drosophila gene corresponds to the essential Drosophila locus vnd, a gene required for embryonic nervous system development. Images PMID:2494667

  13. Right atrial aneurysm with downward displacement of the anterior leaflet that resembled Ebstein's anomaly.

    PubMed

    Yamauchi, Sanae; Suzuki, Yasuyuki; Daitoku, Kazuyuki; Kimura, Masaomi; Okumura, Ken; Fukuda, Ikuo

    2016-06-08

    A 13-year-old boy presented with right atrial aneurysm and downward displacement of the anterior leaflet in the tricuspid valve into the right ventricle, without tricuspid valve regurgitation. Paroxysmal atrial flutter was caused by an abnormal electrical re-entry circuit, which could not be treated using catheter radiofrequency ablation. Therefore, the patient underwent surgical ablation and resection of the enlarged right atrial wall. The anterior leaflet of the tricuspid valve was plastered and displaced downward into the right ventricle, which resembled Ebstein's anomaly. Pathological evaluation revealed a thin wall that contained fibrous tissue with lipomatous degeneration and few muscular elements. No postoperative arrhythmia was observed.

  14. Spectral transformation of the unusual variable star MWC560 to resemble a nova

    NASA Technical Reports Server (NTRS)

    Maran, Stephen P.; Michalitsianos, Andrew G.; Oliversen, Ronald J.; Sonneborn, George

    1991-01-01

    A dramatic change has occurred in the ultraviolet spectrum of the emission-line star MWC560, so that it now closely resembles the spectrum of a nova shortly after outburst. This event may signal a major mass-ejection episode such as presumably occurred in past centuries in the symbiotic star R Aquarii to produce the well-known bipolar nebula, and it may herald the emergence of a standard symbiotic-star emission-line spectrum in MWC560, corresponding to a change in evolutionary state.

  15. Epidermal surface lipids.

    PubMed

    Pappas, Apostolos

    2009-03-01

    A layer of lipids, which are of both sebaceous and keratinocyte origin, covers the surface of the skin. The apparent composition of surface lipids varies depending on the selected method of sampling. Lipids produced by the epidermal cells are an insignificant fraction of the total extractable surface lipid on areas rich in sebaceous glands. Due to the holocrine activity of the sebaceous gland, its product of secretion (sebum) is eventually released to the surface of the skin and coats the fur as well. Lipids of epidermal origin fill the spaces between the cells, like mortar or cement. The sebaceous lipids are primarily non polar lipids as triglycerides, wax esters and squalene, while epidermal lipids are a mixture of ceramides, free fatty acids and cholesterol. The composition of the sebaceous lipids is unique and intriguing and elevated sebum excretion is a major factor involved in the pathophysiology of acne. Recent studies have elucidated the roles that epidermal surface lipids have on normal skin functions and acne.

  16. Epidermal surface lipids

    PubMed Central

    2009-01-01

    A layer of lipids, which are of both sebaceous and keratinocyte origin, covers the surface of the skin. The apparent composition of surface lipids varies depending on the selected method of sampling. Lipids produced by the epidermal cells are an insignificant fraction of the total extractable surface lipid on areas rich in sebaceous glands. Due to the holocrine activity of the sebaceous gland, its product of secretion (sebum) is eventually released to the surface of the skin and coats the fur as well. Lipids of epidermal origin fill the spaces between the cells, like mortar or cement. The sebaceous lipids are primarily non polar lipids as triglycerides, wax esters and squalene, while epidermal lipids are a mixture of ceramides, free fatty acids and cholesterol. The composition of the sebaceous lipids is unique and intriguing and elevated sebum excretion is a major factor involved in the pathophysiology of acne. Recent studies have elucidated the roles that epidermal surface lipids have on normal skin functions and acne. PMID:20224687

  17. Highly antioxidant carotene-lipid nanocarriers: synthesis and antibacterial activity

    NASA Astrophysics Data System (ADS)

    Lacatusu, Ioana; Badea, Nicoleta; Ovidiu, Oprea; Bojin, Dionezie; Meghea, Aurelia

    2012-06-01

    The objective of this study was to explore the potential of two natural oils (squalene—Sq and grape seed oil—GSO) to prepare biocompatible antioxidant nanostructured lipid carriers—NLCs as a safety and protective formulation for sensitive β-carotene. For this purpose different oil-in-water nanoemulsions stabilized by a combination of alkylpolyoxy ethylene sorbitans, lecithin and a block copolymer, were prepared using a melt high-shear homogenization process. The physico-chemical characteristics of the carotene-loaded NLCs were firstly investigated in detail. The smaller lipid nanoparticles have been obtained by using Tween 20 as main non-ionic surfactant, with average diameters of about 85 nm for GSO and 89 nm for Sq, with a polydispersity index <0.19. The developed carotene-NLCs presented an excellent physical stability with almost all zeta potential values ranging between -29 ÷ -40 mV. The differential scanning calorimetry analysis showed that the β-carotene incorporation has led to a perturbation of solid lipid matrix with a less ordered arrangement. By UV-Vis spectroscopy it was evidenced that after encapsulation β-carotene adopts a supramolecular structure demonstrated by appearance of a shoulder at 530 nm related to a β-carotene triplet-triplet absorption. The carotene-NLCs have been also evaluated in terms of in vitro antioxidant properties. The presence of Sq and GSO produced a significant effect on the antioxidant capacity of developed NLCs. The samples prepared with GSO and Tween 80 as main surfactant showed the highest antioxidant activity (AA %) against free oxygen radicals, exhibiting an enhancement of 35 % for loaded NLCs, as comparing to pure carotene. In addition to these properties, the ability of NLCs to manifest antibacterial activity was tested against Escherichia coli bacteria. The antibacterial analysis shown that loaded-NLCs develop an effective inhibition zone against bacteria growth and it was dependent in a higher extent on the

  18. Development and Evaluation of Artesunate-Loaded Chitosan-Coated Lipid Nanocapsule as a Potential Drug Delivery System Against Breast Cancer.

    PubMed

    Tran, Tuan Hiep; Nguyen, Tuan Duc; Poudel, Bijay Kumar; Nguyen, Hanh Thuy; Kim, Jong Oh; Yong, Chul Soon; Nguyen, Chien Ngoc

    2015-12-01

    Artesunate (ART)--a well-known hydrophobic anti-malarial agent was incorporated in a polymer-lipid hybrid nanocolloidal system for anti-cancer therapeutic. The lipid negatively charged nanoemulsion was formulated by modified hot homogenization method then covered with positively charged chitosan via electrostatic interaction to obtain chitosan-coated lipid nanocapsule (ART-CLN). Physical properties of the system were characterized in terms of size, charge, morphology, drug loading capacity, and physical state. In addition, anti-cancer activities were confirmed by conducting MTT assay for ART and ART-CLN on different cancer cell lines. Obtained ART-CLN after coating chitosan revealed positive charge (13.2 ± 0.87 mV), small particle size (160.9 ± 3.5 nm), and spherical shape. High drug entrapment efficiency (95.49 ± 1.13%) and sustained release pattern were observed. Moreover, the good cellular uptake was recorded by flow cytometry as well as confocal image. Finally, ART-CLN exhibited stronger anti-cancer activity than free ART on breast cancer cell lines (MCF-7, MDA-MB-231). These results suggested that by loading ART into lipid core of polymer-lipid hybrid carrier, the activity and physical stability of ART can be significantly increased for cancer chemotherapy.

  19. Nanoemulsion of orange oil with non ionic surfactant produced emulsion using ultrasonication technique: evaluating against food spoilage yeast

    NASA Astrophysics Data System (ADS)

    Sugumar, Saranya; Singh, Sanjay; Mukherjee, Amitava; Chandrasekaran, N.

    2016-01-01

    In recent years, food industries have shown great interest in developing nanoemulsion (NE) using essential oils (EOs) to prevent food spoilage caused by microorganisms. The hydrophobic properties of EOs have lead to reduced solubilization effect of food, which in turn, created a negative impact on the quality of food and its antimicrobial efficacy. Focusing this issue, we attempted a unique NE preparation using orange oil, Tween 80 (organic phase) and water (aqueous phase) by sonication technique. Based on thermodynamic stability studies, the effective diameter was reported to be in the size range from 20 to 30 nm. Saccharomyces cerevisiae was used in testing the anti-yeast effect. Their activity was studied in both growth medium and apple juice. The minimum inhibitory concentration of this NE was determined using broth dilution method. At 2 μl/ml, orange oil NE demonstrated inhibition of tested microorganisms. The kinetics of killing curve, have shown that the NE treated cells had lost its viability within 30 min of interaction. Also, SEM image revealed that the treated cells became distorted in comparison to their control cells. NE treated apple juice showed complete loss of viability even on dilution as compared to their controls.

  20. Neuroprotective effect of docosahexaenoic acid nanoemulsion on erectile function in a rat model of bilateral cavernous nerve injury

    PubMed Central

    Liao, Chun-Hou; Wu, Yi-No; Chen, Bin-Huei; Lin, Ying-Hung; Ho, Hsiu-O; Chiang, Han-Sun

    2016-01-01

    There is an unmet need for treatment of erectile dysfunction resulting from radical prostatectomy and cavernous nerve (CN) injury. Given the neuroprotective properties of docosahexaenoic acid (DHA), we investigated its effect on penile functional and structural recovery in a rat model of bilateral cavernous nerve injury. Rats were subject to CN injury and received intraperitoneal administration of either vehicle or a DHA nanoemulsion (nano-DHA) at 10, 50, or 250 μg/kg. Functional testing and histological analyses were performed at 28 days post-injury. The maximum intracavernosal pressure (ICP) and other measures of erectile function were significantly higher in the nano-DHA groups than in the vehicle group (p < 0.05). The ratio of area of expression of neuronal nitric oxide synthase (nNOS)/β-III tubulin, numbers of axon and smooth muscle cell content were significantly higher in the 50 μg/kg nano-DHA group than in the vehicle group (p < 0.05). A qualitative increase in the smooth muscle cells/collagen ratio and decrease in apoptosis was observed in the nano-DHA groups relative to the vehicle group: however, these differences were not statistically significant. Our data demonstrate that nano-DHA, particularly the 50 μg/kg regimen, improves erectile function after bilateral CN injury in rats by neuroprotection and other anti-fibrotic and anti-apoptotic mechanisms. PMID:27625175

  1. Effect of ultrasonication, pH and heating on stability of apricot gum-lactoglobuline two layer nanoemulsions.

    PubMed

    Shamsara, Omid; Muhidinov, Zayniddin Kamarovich; Jafari, Seid Mahdi; Bobokalonov, Jamshed; Jonmurodov, Abduvaly; Taghvaei, Mostafa; Kumpugdee-Vollrath, Mont

    2015-11-01

    The objectives of this study were to evaluate the effect of apricot gum-lactoglobuline (AG/LgC) ratio, thermal treatment, sonication with different times and amplitudes and pH, on double layer sunflower oil in water emulsion stability. The emulsion stability was determined by the evaluation of emulsion performance indices including particle size, zeta potential, creaming and emulsion volume stability during 10 days of storage. Applying AG and LgC with the ratio of 12.5:1 AG:LgC, in order to obtain double layer oil in water emulsion, could result in a completely stable nano-emulsions during 10 days storage in room temperature. The ultrasound treatment significantly increased the emulsion stability. A 10min ultrasound treatment with the amplitude of 25% was the optimum conditions for ultra-sonication. The best temperature for thermal treatment and the best pH, in order to improve the emulsion's stability, was 50°C and 3, respectively.

  2. Tocotrienol Nanoemulsion Platform of Curcumin Elicit Elevated Apoptosis and Augmentation of Anticancer Efficacy against Breast and Ovarian Carcinomas

    PubMed Central

    Steuber, Nelson; Vo, Kathy; Wadhwa, Ritambhara; Birch, Jordan; Iacoban, Paulina; Chavez, Pedro; Elbayoumi, Tamer A.

    2016-01-01

    Vitamin E (VE) tocotrienols (T3), recognized for their cancer-specific anti-proliferative and pro-apoptotic activities, have been previously fabricated into bio-active nanoemulsion (NE) formulations. Here, our viscosity-adapted δ-T3 NE platform was developed to additionally incorporate curcumin (CUR), which is known for its potent suppression of signaling pathways involved in malignant cell growth, survival and metastasis. Thanks to efficient 70:30 wt % surfactant mix of Lutrol F-127:VE-TPGS, in conjunction with optimal CUR loading, a prototype CUR in δ-T3 NE was successfully prepared. Model CUR/δ-T3 NE demonstrated excellent nano-scale aspects (mean particle size = 261 nm, PDI = 0.27, and ζ-potential = −35 mV), pharmaceutical stability, and controlled release properties. Suitability for systemic administration was also verified via standardized in vitro biocompatibility and hemocompatibility assays. In two human cancer cells (MCF-7 and OVCAR-8), our CUR/δ-T3 NE prominently suppressed constitutive NF-κB activation, and significantly induced apoptosis. Finally, the combined CUR/δ-T3 NE produced superior cytotoxicity profiles, in concentration- and time-dependent manners (p ≤ 0.05), at least three to four folds lower IC50 than in closest CUR control. The strong synergism, estimated in both cultured carcinomas, revealed the augmented therapeutic efficacy of our CUR/δ-T3 NE combined platform, supporting its strong potential towards pharmaceutical development for cancer therapy. PMID:27792193

  3. In vitro evaluation of antitumor activity of doxorubicin-loaded nanoemulsion in MCF-7 human breast cancer cells

    NASA Astrophysics Data System (ADS)

    Alkhatib, Mayson H.; AlBishi, Hayat M.

    2013-03-01

    Doxorubicin (DOX) is an anticancer drug used to treat several cancer diseases. However, it has several dose limitation aspects because of its poor bioavailability, hydrophobicity, and cytotoxicity. In this study, five nanoemulsion (NE) formulations, containing soya phosphatidylcholine/polyoxyethylenglycerol trihydroxy-stearate 40 (EU)/sodium oleate as surfactant, cholesterol (CHO) as oil phase, and Tris-HCl buffer (pH 7.22), were produced. The NE droplets morphologies of the entire blank and DOX-loaded formulations, revealed by the transmission electron microscope, were spherical. The droplet sizes of blank NEs, obtained between 2.9 and 6.4 nm, decreased significantly with the increase in the ratio of surfactant-to-oil, whereas the droplets sizes of DOX-loaded NE formulations were significantly higher and found in the range of 7.7-15.9 nm. The evaluation for both blank and DOX-loaded NE formulations proved that the NE carrier had improved the DOX efficacy and reduced its cytotoxicity. It showed that the cell growth inhibition of the breast cancer cells (MCF-7) have exceeded the commercial DOX by a factor of 1.7 with increased apoptosis activity and minimal cytotoxicity against the normal human foreskin cells (HFS). In contrast, commercial DOX was found to exhibit a significant non-selective toxicity against both MCF-7 and HFS cells. In conclusion, we have developed DOX-loaded NE formulations which selectively and significantly inhibited cell proliferation of MCF-7 cells and increased apoptosis.

  4. Formation and stabilization of nanoemulsion-based vitamin E delivery systems using natural biopolymers: Whey protein isolate and gum arabic.

    PubMed

    Ozturk, Bengu; Argin, Sanem; Ozilgen, Mustafa; McClements, David Julian

    2015-12-01

    Natural biopolymers, whey protein isolate (WPI) and gum arabic (GA), were used to fabricate emulsion-based delivery systems for vitamin E-acetate. Stable delivery systems could be formed when vitamin E-acetate was mixed with sufficient orange oil prior to high pressure homogenization. WPI (d32=0.11 μm, 1% emulsifier) was better than GA (d32=0.38 μm, 10% emulsifier) at producing small droplets at low emulsifier concentrations. However, WPI-stabilized nanoemulsions were unstable to flocculation near the protein isoelectric point (pH 5.0), at high ionic strength (>100mM), and at elevated temperatures (>60 °C), whereas GA-stabilized emulsions were stable. This difference was attributed to differences in emulsifier stabilization mechanisms: WPI by electrostatic repulsion; GA by steric repulsion. These results provide useful information about the emulsifying and stabilizing capacities of natural biopolymers for forming food-grade vitamin-enriched delivery systems.

  5. Photodynamic inactivation of planktonic cultures and biofilms of Candida albicans mediated by aluminum-chloride-phthalocyanine entrapped in nanoemulsions.

    PubMed

    Ribeiro, Ana Paula Dias; Andrade, Mariana Carvalho; da Silva, Julhiany de Fátima; Jorge, Janaina Habib; Primo, Fernando Lucas; Tedesco, Antonio Cláudio; Pavarina, Ana Cláudia

    2013-01-01

    New drug delivery systems, such as nanoemulsions (NE), have been developed to allow the use of hydrophobic drugs on the antimicrobial photodynamic therapy. This study evaluated the photodynamic potential of aluminum-chloride-phthalocyanine (ClAlPc) entrapped in cationic and anionic NE to inactivate Candida albicans planktonic cultures and biofilm compared with free ClAlPc. Fungal suspensions were treated with different delivery systems containing ClAlPc and light emitting diode. For planktonic suspensions, colonies were counted and cell metabolism was evaluated by XTT assay. Flow cytometry evaluated cell membrane damage. For biofilms, the metabolic activity was evaluated by XTT and ClAlPc distribution through biofilms was analyzed by confocal laser scanning microscopy (CLSM). Fungal viability was dependent on the delivery system, superficial charge and light dose. Free ClAlPc caused photokilling of the yeast when combined with 100 J cm(-2). Cationic NE-ClAlPc reduced significantly both colony counts and cell metabolism (P < 0.05). In addition, cationic NE-ClAlPc and free ClAlPc caused significant damage to the cell membrane (P < 0.05). For the biofilms, cationic NE-ClAlPc reduced cell metabolism by 70%. Anionic NE-ClAlPc did not present antifungal activity. CLSM showed different accumulation on biofilms between the delivery systems. Although NE system showed a lower activity for planktonic culture, cationic NE-ClAlPc showed better results for Candida biofilms.

  6. Combination of hyperthermia and photodynamic therapy on mesenchymal stem cell line treated with chloroaluminum phthalocyanine magnetic-nanoemulsion

    NASA Astrophysics Data System (ADS)

    de Paula, Leonardo B.; Primo, Fernando L.; Pinto, Marcelo R.; Morais, Paulo C.; Tedesco, Antonio C.

    2015-04-01

    The present study reports on the preparation and the cell viability assay of two nanoemulsions loaded with magnetic nanoparticle and chloroaluminum phthalocyanine. The preparations contain equal amount of chloroaluminum phthalocyanine (0.05 mg/mL) but different contents of magnetic nanoparticle (0.15×1013 or 1.50×1013 particle/mL). The human bone marrow mesenchymal stem cell line was used as the model to assess the cell viability and this type of cell can be used as a model to mimic cancer stem cells. The cell viability assays were performed in isolated as well as under combined magnetic hyperthermia and photodynamic therapy treatments. We found from the cell viability assay that under the hyperthermia treatment (1 MHz and 40 Oe magnetic field amplitude) the cell viability reduction was about 10%, regardless the magnetic nanoparticle content within the magnetic nanoparticle/chloroaluminum phthalocyanine formulation. However, cell viability reduction of about 50% and 60% were found while applying the photodynamic therapy treatment using the magnetic nanoparticle/chloroaluminum phthalocyanine formulation containing 0.15×1013 or 1.50×1013 magnetic particle/mL, respectively. Finally, an average reduction in cell viability of about 66% was found while combining the hyperthermia and photodynamic therapy treatments.

  7. In Vitro Activity of Melaleuca alternifolia (Tea Tree) in Its Free Oil and Nanoemulsion Formulations Against Pythium insidiosum.

    PubMed

    de Souza Silveira Valente, Júlia; de Oliveira da Silva Fonseca, Anelise; Brasil, Carolina Litchina; Sagave, Lauren; Flores, Fernanda Cramer; de Bona da Silva, Cristiane; Sangioni, Luís Antônio; Pötter, Luciana; Santurio, Janio Morais; de Avila Botton, Sônia; Pereira, Daniela Isabel Brayer

    2016-12-01

    Pythium insidiosum is an important aquatic oomycete which can cause pythiosis in both animals and humans. This microorganism shows low susceptibility to antifungal drugs available. This study analyzed the in vitro antimicrobial activity of Melaleuca alternifolia in its free oil (FO) and nanoemulsion (NE) formulations against Brazilian P. insidiosum isolates. The antimicrobial activity evaluation was performed by the broth microdilution method according to CSLI M38-A2 document adapted to phytopharmaceuticals. Twenty-six P. insidiosum isolates were evaluated, and the minimum inhibitory concentration was determined at 100 % growth inhibition. Melaleuca alternifolia essential oil or FO was obtained commercially. The NE containing 1 % M. alternifolia essential oil was prepared by the spontaneous emulsification method. All P. insidiosum isolates evaluated showed minimum inhibitory concentrations (MIC) ranging from 531.5 to 2125 μg/mL for the FO formulation; MIC50 and MIC90 showed values between 1062.5 and 2125 μg/mL, respectively. When the NE formulation was evaluated, MIC values ranged from 132.7 to 2125 μg/mL and both MIC50 and MIC90 corresponded to 1062.5 μg/mL. FO and NE formulations of M. alternifolia showed antimicrobial activity against P. insidiosum. This study demonstrated that M. alternifolia oil can be an additional therapy in pythiosis treatment; however, further studies are needed to evaluate the applicability of the plant essential oils in the treatment of clinical pythiosis.

  8. Transdermal delivery of 10,11-methylenedioxycamptothecin by hyaluronic acid based nanoemulsion for inhibition of keloid fibroblast.

    PubMed

    Gao, Yuanyuan; Cheng, Xiaojie; Wang, Zhiguo; Wang, Juan; Gao, Tingting; Li, Peng; Kong, Ming; Chen, Xiguang

    2014-11-04

    This study designs an alternative transdermal delivery system for 10,11-methylenedioxycamptothecin(MD-CPT) to inhibit keloid. Hyaluronic acid nanoemulsions (HANs) with nano size, negative charge and good stability were prepared as transdermal carriers. The MD-CPT loaded HANs performed desirable skin permeable capacity across human keloid skin and the drug was transferred directly to keloid lesion area. MD-CPT was delivered percutaneously higher than the control group. FITC-HANs could be successfully internalized by keloid fibroblast (KF) and deliver MD-CPT toward nucleus, inhibited the proliferation of KF, while there was no serious toxicity to normal skin fibroblasts. The growth-inhibitory effect was further clarified upon cell cycle regulation, which arrested cells at G1/S and prevented them entry into mitosis. KF gene expression demonstrated plasminogen activator inhibitor-1 (PAI-1) was significantly down-regulated and Smad7 up-regulated, which was beneficial to inhibit keloid. The study demonstrated that as transdermal delivery of MD-CPT by HANs has potential for inhibition of keloid fibroblast.

  9. Triple nanoemulsion potentiates the effects of topical treatments with microencapsulated retinol and modulates biological processes related to skin aging *

    PubMed Central

    Afornali, Alessandro; de Vecchi, Rodrigo; Stuart, Rodrigo Makowiecky; Dieamant, Gustavo; de Oliveira, Luciana Lima; Brohem, Carla Abdo; Feferman, Israel Henrique Stokfisz; Fabrício, Lincoln Helder Zambaldi; Lorencini, Márcio

    2013-01-01

    BACKGROUND The sum of environmental and genetic factors affects the appearance and function of the skin as it ages. The identification of molecular changes that take place during skin aging provides biomarkers and possible targets for therapeutic intervention. Retinoic acid in different formulations has emerged as an alternative to prevent and repair age-related skin damage. OBJECTIVES To understand the effects of different retinoid formulations on the expression of genes associated with biological processes that undergo changes during skin aging. METHODS Ex-vivo skin samples were treated topically with different retinoid formulations. The modulation of biological processes associated with skin aging was measured by Reverse Transcription quantitative PCR (RT-qPCR). RESULTS A formulation containing microencapsulated retinol and a blend of active ingredients prepared as a triple nanoemulsion provided the best results for the modulation of biological, process-related genes that are usually affected during skin aging. CONCLUSION This association proved to be therapeutically more effective than tretinoin or microencapsulated retinol used singly. PMID:24474102

  10. Erosive rhinitis resembling granulomatosis with polyangiitis (Wegener's granulomatosis) in an Anatolian shepherd dog.

    PubMed

    Böhm, Marlies; Basson, Sandra

    2015-04-21

    Granulomatosis with polyangiitis (Wegener's granulomatosis) is one of the idiopathicimmune-mediated small-vessel vasculitides described in humans which are characterised by the presence of circulating antineutrophil cytoplasmic antibodies. It most commonly involves capillaries, venules and arterioles of the ear, nose and throat, lungs and glomeruli. A case of destructive haemopurulent rhinitis associated with relapsing periods of pyrexia, lethargy and stiffness as well as generalised pulmonary infiltrates in a young Anatolian shepherd dog is presented that closely resembles granulomatosis with polyangiitis (GPA) as reported in humans. Perinuclear antineutrophil cytoplasmic antibodies (pANCA) were detected in the dog's serum. Signs resolved promptly and completely once immunosuppressive doses of prednisone were administered, and have not recurred. This is the first report onthe use of pANCA to investigate rhinitis in dogs. It is also, to the authors' knowledge, the first description of a relapsing haemopurulent lytic rhinitis in this species. The concurrent manifestations of erosive haemopurulent rhinitis, ground-glass opacities on pulmonary computed tomography, pyrexia and listlessness resemble GPA as described in humans.

  11. Sclerosing cholangitis in baboons (Papio spp) resembling primary sclerosing cholangitis of humans.

    PubMed

    Arenas-Gamboa, A M; Bearss, J J; Hubbard, G B; Porter, B F; Owston, M A; Dick, E J

    2012-05-01

    Primary sclerosing cholangitis is a chronic and progressive cholestatic liver disease that has been extensively documented in the human literature. Although it shares many features in common with chronic lymphocytic cholangitis in cats, primary sclerosing cholangitis has never been reported in a nonhuman primate. Primary sclerosing cholangitis is characterized by the presence of intrahepatic and/or extrahepatic inflammation and concentric fibrosis of bile ducts, eventually leading to cirrhosis and hepatic failure. The pathogenesis and cause remain unknown, but the disease likely involves a multifactorial mechanism with genetic- and immune-mediated components. The authors report 2 cases that histologically resemble the condition in humans; they consist of 2 adult male baboons with a clinical history of chronic elevated liver enzymes. In both cases, the liver was histologically characterized by thick bands of fibrosis and mild lymphoplasmacytic periportal cholangiohepatitis with concentric periductal fibrosis, resulting in atrophy and loss of bile ducts. Immunohistochemical analysis revealed positivity of hepatocytes to cytokeratin 7. Masson stain demonstrated marked biliary fibrosis. This is the first report that resembles sclerosing cholangitis in a nonhuman primate, and it suggests that the baboon may provide a useful animal model for this condition in humans.

  12. Cyproheptadine resembles clozapine in vivo following both acute and chronic administration in rats.

    PubMed

    Goudie, Andrew J; Cooper, Gillian D; Cole, Jon C; Sumnall, Harry R

    2007-03-01

    Cyproheptadine is a cheap, widely available anti-allergy drug with a broad receptor binding profile which resembles that of clozapine. In rats discriminating clozapine from vehicle cyproheptadine mimicked clozapine very closely. Acutely it induced full generalization in the absence of response suppression, as observed with clozapine. Chronic administration of clozapine and cyproheptadine induced tolerance and cross-tolerance respectively to the clozapine stimulus. This was characterized by circa 3.5-fold parallel shifts to the right in the clozapine generalization curves. Such tolerance and cross-tolerance was spontaneously reversible, suggesting that it was pharmacodynamic, and that clozapine and cyproheptadine induce similar neuroadaptations when administered chronically. Administration of chlordiazepoxide at a very high dose induced no cross-tolerance to the clozapine stimulus showing the pharmacological specificity of tolerance. The clozapine stimulus is a compound cue involving actions at various receptors, and various clozapine-like antipsychotic (APD) drugs generalize fully to it. These data demonstrate that in vivo cyproheptadine resembles clozapine both acutely and chronically. Our findings, in conjunction with other actions of cyproheptadine -- induction of weight gain, alleviation of clozapine withdrawal, anxiolytic actions, alleviation of 'typical' APD-induced motoric side effects, and some preliminary clinical findings -- suggest that further study of cyproheptadine in conjunction with a 'typical' APD for the possible treatment of schizophrenia is merited at both pre-clinical and clinical levels.

  13. Familial resemblance of borderline personality disorder features: genetic or cultural transmission?

    PubMed

    Distel, Marijn A; Rebollo-Mesa, Irene; Willemsen, Gonneke; Derom, Catherine A; Trull, Timothy J; Martin, Nicholas G; Boomsma, Dorret I

    2009-01-01

    Borderline personality disorder is a severe personality disorder for which genetic research has been limited to family studies and classical twin studies. These studies indicate that genetic effects explain 35 to 45% of the variance in borderline personality disorder and borderline personality features. However, effects of non-additive (dominance) genetic factors, non-random mating and cultural transmission have generally not been explored. In the present study an extended twin-family design was applied to self-report data of twins (N = 5,017) and their siblings (N = 1,266), parents (N = 3,064) and spouses (N = 939) from 4,015 families, to estimate the effects of additive and non-additive genetic and environmental factors, cultural transmission and non-random mating on individual differences in borderline personality features. Results showed that resemblance among biological relatives could completely be attributed to genetic effects. Variation in borderline personality features was explained by additive genetic (21%; 95% CI 17-26%) and dominant genetic (24%; 95% CI 17-31%) factors. Environmental influences (55%; 95% CI 51-60%) explained the remaining variance. Significant resemblance between spouses was observed, which was best explained by phenotypic assortative mating, but it had only a small effect on the genetic variance (1% of the total variance). There was no effect of cultural transmission from parents to offspring.

  14. Low-salt restructured fish products from Atlantic mackerel (Scomber scombrus) with texture resembling turkey breast.

    PubMed

    Martelo-Vidal, M J; Mesas, J M; Vázquez, M

    2012-06-01

    Atlantic mackerel (Scomber scombrus) is a pelagic and migratory species that is usually caught with other fish as bycatch. The aim of this work was to obtain low-salt restructured fish products from Atlantic mackerel resembling turkey breast using transglutaminase (0.2 U/g) as binder. NaCl concentration (0-20 g/kg), temperature (25-40 °C) and time of incubation (30-90 min) were assayed. The texture parameters (Warner-Bratzler force and Warner-Bratzler work) and expressible water were compared to those of turkey breast. Mathematical models were obtained to determine the effect of these variables on the texture of Atlantic mackerel restructured products. Optimal conditions to obtain a similar texture than turkey breast were found. The overall optimization point out that the treatment at 31.8 °C for 63.35 min using a NaCl concentration of 8.45 g/kg allowed to obtain restructured products from Atlantic mackerel with texture and expressible water similar to those of turkey breast. Color parameters (L*, a* and b*) of the product were also similar to those of turkey breast. The results showed the feasibility of producing low-salt restructured products from Atlantic mackerel resembling turkey breast using transglutaminase.

  15. Lipids of mitochondria.

    PubMed

    Horvath, Susanne E; Daum, Günther

    2013-10-01

    A unique organelle for studying membrane biochemistry is the mitochondrion whose functionality depends on a coordinated supply of proteins and lipids. Mitochondria are capable of synthesizing several lipids autonomously such as phosphatidylglycerol, cardiolipin and in part phosphatidylethanolamine, phosphatidic acid and CDP-diacylglycerol. Other mitochondrial membrane lipids such as phosphatidylcholine, phosphatidylserine, phosphatidylinositol, sterols and sphingolipids have to be imported. The mitochondrial lipid composition, the biosynthesis and the import of mitochondrial lipids as well as the regulation of these processes will be main issues of this review article. Furthermore, interactions of lipids and mitochondrial proteins which are highly important for various mitochondrial processes will be discussed. Malfunction or loss of enzymes involved in mitochondrial phospholipid biosynthesis lead to dysfunction of cell respiration, affect the assembly and stability of the mitochondrial protein import machinery and cause abnormal mitochondrial morphology or even lethality. Molecular aspects of these processes as well as diseases related to defects in the formation of mitochondrial membranes will be described.

  16. Phytic acid inhibits lipid peroxidation in vitro.

    PubMed

    Zajdel, Alicja; Wilczok, Adam; Węglarz, Ludmiła; Dzierżewicz, Zofia

    2013-01-01

    Phytic acid (PA) has been recognized as a potent antioxidant and inhibitor of iron-catalyzed hydroxyl radical formation under in vitro and in vivo conditions. Therefore, the aim of the present study was to investigate, with the use of HPLC/MS/MS, whether PA is capable of inhibiting linoleic acid autoxidation and Fe(II)/ascorbate-induced peroxidation, as well as Fe(II)/ascorbate-induced lipid peroxidation in human colonic epithelial cells. PA at 100 μM and 500 μM effectively inhibited the decay of linoleic acid, both in the absence and presence of Fe(II)/ascorbate. The observed inhibitory effect of PA on Fe(II)/ascorbate-induced lipid peroxidation was lower (10-20%) compared to that of autoxidation. PA did not change linoleic acid hydroperoxides concentration levels after 24 hours of Fe(II)/ascorbate-induced peroxidation. In the absence of Fe(II)/ascorbate, PA at 100 μM and 500 μM significantly suppressed decomposition of linoleic acid hydroperoxides. Moreover, PA at the tested nontoxic concentrations (100 μM and 500 μM) significantly decreased 4-hydroxyalkenal levels in Caco-2 cells which structurally and functionally resemble the small intestinal epithelium. It is concluded that PA inhibits linoleic acid oxidation and reduces the formation of 4-hydroxyalkenals. Acting as an antioxidant it may help to prevent intestinal diseases induced by oxygen radicals and lipid peroxidation products.

  17. Phytic Acid Inhibits Lipid Peroxidation In Vitro

    PubMed Central

    Węglarz, Ludmiła; Dzierżewicz, Zofia

    2013-01-01

    Phytic acid (PA) has been recognized as a potent antioxidant and inhibitor of iron-catalyzed hydroxyl radical formation under in vitro and in vivo conditions. Therefore, the aim of the present study was to investigate, with the use of HPLC/MS/MS, whether PA is capable of inhibiting linoleic acid autoxidation and Fe(II)/ascorbate-induced peroxidation, as well as Fe(II)/ascorbate-induced lipid peroxidation in human colonic epithelial cells. PA at 100 μM and 500 μM effectively inhibited the decay of linoleic acid, both in the absence and presence of Fe(II)/ascorbate. The observed inhibitory effect of PA on Fe(II)/ascorbate-induced lipid peroxidation was lower (10–20%) compared to that of autoxidation. PA did not change linoleic acid hydroperoxides concentration levels after 24 hours of Fe(II)/ascorbate-induced peroxidation. In the absence of Fe(II)/ascorbate, PA at 100 μM and 500 μM significantly suppressed decomposition of linoleic acid hydroperoxides. Moreover, PA at the tested nontoxic concentrations (100 μM and 500 μM) significantly decreased 4-hydroxyalkenal levels in Caco-2 cells which structurally and functionally resemble the small intestinal epithelium. It is concluded that PA inhibits linoleic acid oxidation and reduces the formation of 4-hydroxyalkenals. Acting as an antioxidant it may help to prevent intestinal diseases induced by oxygen radicals and lipid peroxidation products. PMID:24260736

  18. Novel bio-active lipid nanocarriers for the stabilization and sustained release of sitosterol

    NASA Astrophysics Data System (ADS)

    Lacatusu, I.; Badea, N.; Stan, R.; Meghea, A.

    2012-11-01

    In this work, new stable and efficiently bio-active lipid nanocarriers (NLCs) with antioxidant properties have been developed for the transport of active ingredients in food. The novel NLCs loaded with β-sitosterol/β-sitosterol and green tea extract (GTE) and prepared by a combination of natural oils (grape seed oil, fish oil and squalene) and biological lipids with food grade surfactants, were physico-chemically examined by DLS, TEM, electrokinetic potential, DSC and HPLC and found to have main diameters less than 200 nm, a spherical morphology, excellent physical stability, an imperfect crystalline lattice and high entrapment efficiency. The novel loaded-NLCs have demonstrated the potential to develop a high blocking action of chain reactions, trapping up to 92% of the free-oxygen radicals, as compared to the native β-sitosterol (AA%=36.5). Another advantage of this study is associated with the quality of bio-active NLCs based on grape seed oil and squalene to manifest a better sitosterol—sustained release behaviour as compared to their related nanoemulsions. By coupling both in vitro results, i.e. the enhanced antioxidant activity and superior release properties, this study emphasizes the sustainability of novel bio-active nanocarriers to gain specific bio-food features for development of functional foods with a high applicability spectrum.

  19. Clindamycin 1% Nano-emulsion Gel Formulation for the Treatment of Acne Vulgaris: Results of a Randomized, Active Controlled, Multicentre, Phase IV Clinical Trial

    PubMed Central

    Bhavsar, Bhavik; Choksi, Bimal; Dogra, Alka; Haq, Rizwan; Mehta, Sudhanshu; Mukherjee, Santanu; Subramanian, V; Sheikh, Shafiq; Mittal, Ravindra

    2014-01-01

    Background: Acne vulgaris of the face is a common dermatological disease with a significant impact on the quality of life, psychosocial development as well as self-esteem of the patients. Nano emulsion gel formulations are said to have various advantages over the conventional formulations. Aim: The present study was conducted to assess the comparative efficacy and safety of a nano-emulsion gel formulation of clindamycin with its conventional formulation in the treatment of acne vulgaris of the face. Materials and Methods: This prospective, active controlled, multicentric, phase IV clinical trial evaluated the treatment of patients with acne vulgaris of the face by a nano emulsion gel formulation or conventional gel formulation of clindamycin (as phosphate) 1% locally applied twice daily for 12 weeks as per random allocation. Acne lesion counts (inflammatory, non-inflammatory and total) and severity grading were carried out on the monthly scheduled visits along with tolerability assessments. Results: A total of 200 patients (97 males) were included for Intention to Treat analysis in the trial with 100 patients in each group. Reductions in total (69.3 vs. 51.9%; p<0.001), inflammatory (73.4 vs. 60.6%; p<0.005) and non inflammatory (65.1 vs. 43.7%; p<0.001) acne lesions were reported to be significantly greater with the nano-emulsion gel formulation as compared to the conventional gel formulation. Significantly more reduction in the mean acne severity score was noticeable with the nano-emulsion gel formulation (-1.6 ± 0.9 vs. -1.0 ± 0.8; p<0.001) than the comparator. A trend towards better safety profile of the nano emulsion gel formulation was reported. Conclusion: In the treatment of acne vulgaris of the face, clindamycin nano emulsion gel formulation appears to be more effective than the conventional gel formulation and is also well tolerated. PMID:25302253

  20. Lipids and lipid metabolism in eukaryotic algae.

    PubMed

    Guschina, Irina A; Harwood, John L

    2006-03-01

    Eukaryotic algae are a very diverse group of organisms which inhabit a huge range of ecosystems from the Antarctic to deserts. They account for over half the primary productivity at the base of the food chain. In recent years studies on the lipid biochemistry of algae has shifted from experiments with a few model organisms to encompass a much larger number of, often unusual, algae. This has led to the discovery of new compounds, including major membrane components, as well as the elucidation of lipid signalling pathways. A major drive in recent research have been attempts to discover genes that code for expression of the various proteins involved in the production of very long-chain polyunsaturated fatty acids such as arachidonic, eicosapentaenoic and docosahexaenoic acids. Such work is described here together with information about how environmental factors, such as light, temperature or minerals, can change algal lipid metabolism and how adaptation may take place.

  1. The heat-pipe resembling action of boiling bubbles in endovenous laser ablation.

    PubMed

    van der Geld, Cees W M; van den Bos, Renate R; van Ruijven, Peter W M; Nijsten, Tamar; Neumann, H A Martino; van Gemert, Martin J C

    2010-11-01

    Endovenous laser ablation (EVLA) produces boiling bubbles emerging from pores within the hot fiber tip and traveling over a distal length of about 20 mm before condensing. This evaporation-condensation mechanism makes the vein act like a heat pipe, where very efficient heat transport maintains a constant temperature, the saturation temperature of 100 degrees C, over the volume where these non-condensing bubbles exist. During EVLA the above-mentioned observations indicate that a venous cylindrical volume with a length of about 20 mm is kept at 100 degrees C. Pullback velocities of a few mm/s then cause at least the upper part of the treated vein wall to remain close to 100 degrees C for a time sufficient to cause irreversible injury. In conclusion, we propose that the mechanism of action of boiling bubbles during EVLA is an efficient heat-pipe resembling way of heating of the vein wall.

  2. Westermarck, Freud, and the incest taboo: does familial resemblance activate sexual attraction?

    PubMed

    Fraley, R Chris; Marks, Michael J

    2010-09-01

    Evolutionary psychological theories assume that sexual aversions toward kin are triggered by a nonconscious mechanism that estimates the genetic relatedness between self and other. This article presents an alternative perspective that assumes that incest avoidance arises from consciously acknowledged taboos and that when awareness of the relationship between self and other is bypassed, people find individuals who resemble their kin more sexually appealing. Three experiments demonstrate that people find others more sexually attractive if they have just been subliminally exposed to an image of their opposite-sex parent (Experiment 1) or if the face being rated is a composite image based on the self (Experiment 2). This finding is reversed when people are aware of the implied genetic relationship (Experiment 3). These findings have implications for a century-old debate between E. Westermarck and S. Freud, as well as contemporary research on evolution, mate choice, and sexual imprinting.

  3. Discovery of crystalline inclusions in Bacillus licheniformis that resemble parasporal crystals of Bacillus thuringiensis.

    PubMed

    Yan, Ming; Roehrl, Michael H; Wang, Julia Y

    2007-09-01

    Crystalline inclusions were discovered in stationary and sporulating cells of the spore-forming bacterium Bacillus licheniformis ATCC 9945a. As detected by electron microscopy, dying or sporulating bacterial cells contain a single crystal of strikingly large size. The crystals in sporulating cells are located next to nascent spores and can be several times larger than the spores. Morphologically, most crystals are rhomboid with uniformly spaced grids. These newly discovered crystalline inclusions of B. licheniformis closely resemble parasporal crystals of Bacillus thuringiensis that are formed by insecticidal toxin proteins and used widely as biopesticides. The taxonomic identity of this strain was verified by its 16S rRNA gene sequence and its fatty acid profile. The finding of crystal proteins in B. licheniformis may lead to the discovery of new protein toxins and may expand our pool of biopesticides.

  4. Acral Peeling Skin Syndrome Resembling Epidermolysis Bullosa Simplex in a 10-Month-Old Boy

    PubMed Central

    Kavaklieva, S.; Yordanova, I.; Bruckner-Tuderman, L.; Has, C.

    2013-01-01

    The acral peeling skin syndrome (APSS) is a rare autosomal recessive disorder clinically characterized by asymptomatic desquamation of the skin limited to the hands and feet and histologically by cleavage at the stratum granulosum and stratum corneum level [Kiritsi et al.: J Invest Dermatol 2010;130:1741–1746]. We report on a 10-month-old boy with a history of skin peeling limited to the hands and feet since 2 months of age. Clinical examination revealed erythematous erosions with peripheral desquamation and flaccid blisters. DNA mutation analysis detected two heterozygous TGM5 mutations: c.2T>C, p.M1T in exon 1 and c.337G>T, p.G113C in exon 3 in keeping with the diagnosis of APSS. The clinical presentation of APSS alone might be confusing and strongly resemble epidermolysis bullosa simplex making the differential diagnosis difficult. PMID:24019772

  5. American alligator proximal pedal phalanges resemble human finger bones: Diagnostic criteria for forensic investigators.

    PubMed

    Ferraro, Joseph V; Binetti, Katie M

    2014-07-01

    A scientific approach to bone and tooth identification requires analysts to pursue the goal of empirical falsification. That is, they may attribute a questioned specimen to element and taxon only after having ruled out all other possible attributions. This requires analysts to possess a thorough understanding of both human and non-human osteology, particularly so for remains that may be morphologically similar across taxa. To date, forensic anthropologists have identified several potential 'mimics' for human skeletal remains, including pig teeth and bear paws. Here we document another possible mimic for isolated human skeletal elements--the proximal pedal phalanges of American alligators (Alligator mississippiensis) closely resemble the proximal and intermediate hand phalanges of adult humans. We detail morphological similarities and differences between these elements, with the goal of providing sufficient information for investigators to confidently falsify the hypothesis that a questioned phalanx is derived from an American alligator.

  6. Frontal lobe epilepsy with atypical seizure semiology resembling shuddering attacks or wet dog shake seizures.

    PubMed

    Jahodova, Alena; Krsek, Pavel; Komarek, Vladimir; Kudr, Martin; Kyncl, Martin; Zamecnik, Josef; Tichy, Michal

    2012-03-01

    We report a girl with a drug-resistant frontal lobe epilepsy caused by focal cortical dysplasia, who exhibited uncommon seizures. The seizures consisted of shoulder or whole body shuddering after a short psychic aura and face grimacing. Consciousness was fully preserved. The seizures resembled "wet dog shake" seizures described in rat models of epilepsy or shuddering attacks in infants. EEG findings were inconclusive, however, MRI showed a clear dysplastic lesion in the right frontal mesial and polar structures. The patient underwent an extended lesionectomy guided by neuronavigation and intraoperative electrocorticography. Focal cortical dysplasia type Ib was histologically confirmed and the patient has been seizure-free for the three years following resection. [Published with video sequences].

  7. Progressive hereditary hearing impairment caused by a MYO6 mutation resembles presbyacusis.

    PubMed

    Oonk, A M M; Leijendeckers, J M; Lammers, E M; Weegerink, N J D; Oostrik, J; Beynon, A J; Huygen, P L M; Kunst, H P M; Kremer, H; Snik, A F M; Pennings, R J E

    2013-05-01

    Since deafness is the most common sensorineural disorder in humans, better understanding of the underlying causes is necessary to improve counseling and rehabilitation. A Dutch family with autosomal dominantly inherited sensorineural hearing loss was clinically and genetically assessed. The MYO6 gene was selected to be sequenced because of similarities with other, previously described DFNA22 phenotypes and a pathogenic c.3610C > T (p.R1204W) mutation was found to co-segregate with the disease. This missense mutation results in a flat configured audiogram with a mild hearing loss, which becomes severe to profound and gently to steeply downsloping later in life. The age-related typical audiograms (ARTA) constructed for this family resemble presbyacusis. Speech audiometry and results of loudness scaling support the hypothesis that the phenotype of this specific MYO6 mutation mimics presbyacusis.

  8. Silica deposits on Mars with features resembling hot spring biosignatures at El Tatio in Chile

    NASA Astrophysics Data System (ADS)

    Ruff, Steven W.; Farmer, Jack D.

    2016-11-01

    The Mars rover Spirit encountered outcrops and regolith composed of opaline silica (amorphous SiO2.nH2O) in an ancient volcanic hydrothermal setting in Gusev crater. An origin via either fumarole-related acid-sulfate leaching or precipitation from hot spring fluids was suggested previously. However, the potential significance of the characteristic nodular and mm-scale digitate opaline silica structures was not recognized. Here we report remarkably similar features within active hot spring/geyser discharge channels at El Tatio in northern Chile, where halite-encrusted silica yields infrared spectra that are the best match yet to spectra from Spirit. Furthermore, we show that the nodular and digitate silica structures at El Tatio that most closely resemble those on Mars include complex sedimentary structures produced by a combination of biotic and abiotic processes. Although fully abiotic processes are not ruled out for the Martian silica structures, they satisfy an a priori definition of potential biosignatures.

  9. Congenital biliary tract malformation resembling biliary cystadenoma in a captive juvenile African lion (Panthera leo).

    PubMed

    Caliendo, Valentina; Bull, Andrew C J; Stidworthy, Mark F

    2012-12-01

    A captive 3-mo-old white African lion (Panthera leo) presented with clinical signs of acute pain and a distended abdomen. Despite emergency treatment, the lion died a few hours after presentation. Postmortem examination revealed gross changes in the liver, spleen, and lungs and an anomalous cystic structure in the bile duct. Histologic examination identified severe generalized multifocal to coalescent necrotizing and neutrophilic hepatitis, neutrophilic splenitis, and mild interstitial pneumonia, consistent with bacterial septicemia. The abnormal biliary structures resembled biliary cystadenoma. However, due to the age of the animal, they were presumed to be congenital in origin. Biliary tract anomalies and cystadenomas have been reported previously in adult lions, and this case suggests that at least some of these examples may have a congenital basis. It is unclear whether the lesion was an underlying factor in the development of hepatitis.

  10. Extraocular muscle dysinnervation disorder resembling Duane retraction syndrome in a 9-month-old French Bulldog.

    PubMed

    Mari, Lorenzo; Blacklock, Benjamin T; Stavinohova, Renata; De Risio, Luisa

    2016-06-18

    A 9-month-old French Bulldog was presented with a chronic history of lateral strabismus and intermittent third eyelid protrusion in the left eye. The neuro-ophthalmological examination revealed mild ptosis of the left upper eyelid, mild lateral strabismus, and external ophthalmoparesis of the left eye. Retraction and ventral deviation of the left eye globe with protrusion of the third eyelid and elevation of the upper eyelid were elicited on attempted voluntary adduction of the left eye. Hematology, serum biochemistry, serology for infectious diseases, magnetic resonance of the head, and cerebrospinal fluid analysis did not reveal significant abnormalities. Forced duction test did not show signs of mechanical restriction in ocular motility. A suspected congenital cranial dysinnervation disorder resembling Duane retraction syndrome in humans was diagnosed based on the typical clinical signs and exclusion of structural abnormalities. The clinical signs remained stable for 9 months until the time of writing this report.

  11. Introduction to membrane lipids.

    PubMed

    Epand, Richard M

    2015-01-01

    Biological membranes are composed largely of lipids and proteins. The most common arrangement of lipids in biological membranes is as a bilayer. This arrangement spontaneously forms a barrier for the passage of polar materials. The bilayer is thin but can have a large area in the dimension perpendicular to its thickness. The physical nature of the bilayer membrane will vary according to the conditions of the environment as well as the chemical structure of the lipid constituents of the bilayer. These physical properties determine the function of the membrane together with specific structural features of the lipids that allow them to have signaling properties. The lipids of the membrane are not uniformly distributed. There is an intrinsic asymmetry between the two monolayers that constitute the bilayer. In addition, some lipids tend to be enriched in particular regions of the membrane, termed domains. There is evidence that certain domains recruit specific proteins into that domain. This has been suggested to be important for allowing interaction among different proteins involved in certain signal transduction pathways. Membrane lipids have important roles in determining the physical properties of the membrane, in modulating the activity of membrane-bound proteins and in certain cases being specific secondary messengers that can interact with specific proteins. A large variety of lipids present in biological membranes result in them possessing many functions.

  12. Lipids in DDGS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Distillers dried grains with soluble (DDGS) are one of the main coproducts of ethanol production from using the dry-grinding process. The lipids from corn or sorghum are not utilized in ethanol production, and are thus concentrated in DDGS. The main lipid components in corn and sorghum DDGS are tr...

  13. Lipids: Absorption and transport

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lipid has long been recognized as an important dietary component. Dietary lipid (fat) is a critical source of metabolic energy and a substrate for the synthesis of metabolically active compounds (essential fatty acids), and serves as a carrier for other nutrients such as the fat-soluble vitamins A, ...

  14. The Effect of Perceived Parent–Child Facial Resemblance on Parents’ Trait Anxiety: The Moderating Effect of Parents’ Gender

    PubMed Central

    Yu, Quanlei; Zhang, Qiuying; Chen, Jianwen; Jin, Shenghua; Qiao, Yuanyuan; Cai, Weiting

    2016-01-01

    Father–child facial resemblance is an important cue for men to evaluate paternity. Previous studies found that fathers’ perceptions of low facial resemblance with offspring lead to low confidence of paternity. Fathers’ uncertainty of paternity could cause psychological stress and anxiety, which, after a long time, may further turn into trait anxiety. Conversely, females can ensure a biological connection with offspring because of internal fertilization. The purpose of this study was thus to examine the role of parents’ gender in the effect of parents’ perceived facial resemblance with child on their trait anxiety. In this study, 151 parents (father or mother) from one-child families reported their facial resemblance with child and their trait anxiety. Results showed that (i) males tended to perceive higher facial similarity with child than did females and (ii) males’ perceived facial resemblance with child significantly predicted trait anxiety, whereas females’ perceived facial resemblance did not. These findings suggested that the uncertainty of paternity contributed to the trait anxiety of fathers, but not mothers. PMID:27199876

  15. Idiopathic bilateral lipid keratopathy.

    PubMed Central

    Alfonso, E.; Arrellanes, L.; Boruchoff, S. A.; Ormerod, L. D.; Albert, D. M.

    1988-01-01

    A 52-year-old Mexican man presented with asymptomatic, bilaterally symmetrical lipid infiltrates of the cornea and adjacent limbus. No evidence of previous ocular disease or systemic disorder of lipid metabolism could be detected. Penetrating keratoplasty of the right eye was required. The cornea was rigid and thick, with posterior bulging into the anterior chamber. Light microscopy revealed deep corneal lipid granules, foamy histiocytes, vascularisation, and chronic non-granulomatous inflammation. Transmission electron microscopy showed extracellular lipid spaces and numerous intracytoplasmic lipid vacuoles in histiocytes, keratocytes, conjunctival epithelium, and the endothelium of blood vessels in the corneal stroma and adjacent limbal conjunctiva. Histochemical analysis revealed the presence of neutral fats, free fatty acids, cholesterol, and phospholipids. Images PMID:3395592

  16. Mitochondrial lipids in neurodegeneration.

    PubMed

    Aufschnaiter, Andreas; Kohler, Verena; Diessl, Jutta; Peselj, Carlotta; Carmona-Gutierrez, Didac; Keller, Walter; Büttner, Sabrina

    2017-01-01

    Mitochondrial dysfunction is a common feature of many neurodegenerative diseases, including proteinopathies such as Alzheimer's or Parkinson's disease, which are characterized by the deposition of aggregated proteins in the form of insoluble fibrils or plaques. The distinct molecular processes that eventually result in mitochondrial dysfunction during neurodegeneration are well studied but still not fully understood. However, defects in mitochondrial fission and fusion, mitophagy, oxidative phosphorylation and mitochondrial bioenergetics have been linked to cellular demise. These processes are influenced by the lipid environment within mitochondrial membranes as, besides membrane structure and curvature, recruitment and activity of different proteins also largely depend on the respective lipid composition. Hence, the interaction of neurotoxic proteins with certain lipids and the modification of lipid composition in different cell compartments, in particular mitochondria, decisively impact cell death associated with neurodegeneration. Here, we discuss the relevance of mitochondrial lipids in the pathological alterations that result in neuronal demise, focussing on proteinopathies.

  17. Iodinated α-tocopherol nano-emulsions as non-toxic contrast agents for preclinical X-ray imaging.

    PubMed

    Li, Xiang; Anton, Nicolas; Zuber, Guy; Zhao, Minjie; Messaddeq, Nadia; Hallouard, François; Fessi, Hatem; Vandamme, Thierry F

    2013-01-01

    Micro-computed tomography (micro-CT) is an emerging imaging modality, due to the low cost of the imagers as well as their efficiency in establishing high-resolution (1-100 μm) three-dimensional images of small laboratory animals and facilitating rapid, structural and functional in vivo visualization. However use of a contrast agent is absolutely necessary when imaging soft tissues. The main limitation of micro-CT is the low efficiency and toxicity of the commercially available blood pool contrast agents. This study proposes new, efficient and non-toxic contrast agents for micro-CT imaging. This formulation consists of iodinated vitamin E (α-tocopheryl 2,3,5-triiodobenzoate) as an oily phase, formulated as liquid nano-emulsion droplets (by low-energy nano-emulsification), surrounded by a hairy PEG layer to confer stealth properties. The originality and strength of these new contrast agents lie not only in their outstanding contrasting properties, biocompatibility and low toxicity, but also in the simplicity of their fabrication: one-step synthesis of highly iodinated oil (iodine constitutes 41.7% of the oil molecule weight) and its spontaneous emulsification. After i.v. administration in mice (8.5% of blood volume), the product shows stealth properties towards the immune system and thus acts as an efficient blood pool contrast agent (t(1/2) = 9.0 h), exhibiting blood clearance following mono-exponential decay. A gradual accumulation predominantly due to hepatocyte uptake is observed and measured in the liver, establishing a strong hepatic contrast, persistent for more than four months. To summarize, in the current range of available or developed contrast agents for preclinical X-ray imaging, this agent appears to be one of the most efficient.

  18. Effects of Carbopol(®) 934 proportion on nanoemulsion gel for topical and transdermal drug delivery: a skin permeation study.

    PubMed

    Zheng, Yin; Ouyang, Wu-Qing; Wei, Yun-Peng; Syed, Shahid Faraz; Hao, Chao-Shuang; Wang, Bo-Zhen; Shang, Yan-Hong

    Nanoemulsions (NEs) are used as transdermal drug delivery systems for systematic therapeutic purposes. We hypothesized that the skin permeation profile of an NE could be modulated by incorporating it into a hydrogel containing differing proportions of thickening agent. The objectives of this study were as follows: 1) to determine the stability and skin irritability of NE gels (NGs) containing 1%, 2%, and 3% (w/w) Carbopol(®) 934 (CP934) (termed NG1, NG2, and NG3, respectively); 2) to compare the skin permeation profiles and drug deposition patterns of the NGs; and 3) to visualize the drug delivery routes of the NGs. Terbinafine and citral were incorporated into the NGs as model drugs. Ex vivo skin permeation tests indicated that the percutaneous flux rates of terbinafine decreased in the order NE (215 μg/cm(2)) > NG1 (213 μg/cm(2)) > NG2 (123 μg/cm(2)) > NG3 (74.3 μg/cm(2)). The flux rates of citral decreased in the order NE (1,026 μg/cm(2)) > NG1 (1,021 μg/cm(2)) > NG2 (541 μg/cm(2)) > NG3 (353 μg/cm(2)). The NGs accumulated greater amounts of the drugs in the stratum corneum and less in the epidermis/dermis than did the NE (P<0.05) over a period of 12 h. Laser scanning confocal microscopy indicated that the NGs altered the main drug delivery routes from skin appendages to intercellular paths. Histological images suggested that perturbations to the skin structure, specifically the size of the epidermal intercellular spaces and the separation distance of dermal collagen bundles, could be significantly minimized by increasing the proportion of CP934. These results suggest that adjustments of the CP934 proportions can be used to modulate the skin permeation profiles of NGs for specific therapeutic purposes.

  19. Omega 3 fatty acid-enriched nanoemulsion of thiocolchicoside for transdermal delivery: formulation, characterization and absorption studies.

    PubMed

    Kumar, Dinesh; Ali, Javed; Baboota, Sanjula

    2016-01-01

    Thiocolchicoside (TCC) is an effective therapeutic agent against the orthopaedic, traumatic and rheumatologic disorders but it suffer from the drawback of poor bioavailability due to extensive first pass metabolism and low permeability via the oral route. The aim of the present study was to evaluate the potential of nanoemulsion (NE) for bioavailability enhancement of TCC through the transdermal route. The NEs were developed using Linseed: sefsol in 1:1 ratio as the oil phase, span 80, Transcutol P and distilled water as surfactant, co-surfactant and aqueous phase. Furthermore, selected formulations were subjected to physical stability and consequently evaluated for in vitro permeation using porcine skin. The optimized formulation had small average globule diameter of 117 nm with polydispersity index of 0.285. The globules were spherical in shape as observed by transmission electron microscopy. The in vitro skin permeation profile of optimized NE was compared with aqueous solution of TCC. Significant increase in permeability parameters were observed in NEs formulation (p < 0.05) as compared to aqueous solution of TCC. The steady-state flux (Jss) and permeability coefficient (Kp) for optimized NE formulation (C1) were found to be 30.63 ± 4.18 µg/cm(2)/h and 15.21 × 10(-3) ± 2.81cm(2)/h, respectively. The results of enhanced permeation through transdermal route suggest that water-in-oil NEs which are compatible with the lipophilic sebum environment of the hair follicle facilitate the transport of TCC, and such transport might be predominantly transfollicular in nature. Overall, these results suggested that water-in-oil NEs are good carriers for transdermal delivery of TCC.

  20. In vitro studies of cutaneous retention of magnetic nanoemulsion loaded with zinc phthalocyanine for synergic use in skin cancer treatment

    NASA Astrophysics Data System (ADS)

    Primo, Fernando L.; Rodrigues, Marcilene M. A.; Simioni, Andreza R.; Bentley, Maria V. L. B.; Morais, Paulo C.; Tedesco, Antonio C.

    In this study was developed a new nano drug delivery system (NDDS) based on association of biodegradable surfactants with biocompatible magnetic fluid of maguemita citrate derivative. This formulation consists in a magnetic emulsion with nanostructured colloidal particles. Preliminary in vitro experiments showed that the formulation presents a great potential for synergic application in the topical release of photosensitizer drug (PS) and excellent target tissue properties in the photodynamic therapy (PDT) combined with hyperthermia (HPT) protocols. The physical chemistry characterization and in vitro assays were carried out by Zn(II) Phtalocyanine (ZnPc) photosensitizer incorporated into NDDS in the absence and the presence of magnetic fluid, showed good results and high biocompatibility. In vitro experiments were accomplished by tape-stripping protocols for quantification of drug association with different skin tissue layers. This technique is a classical method for analyses of drug release in stratum corneum and epidermis+ dermis skin layers. The NDDS formulations were applied directly in pig skin (tissue model) fixed in the cell's Franz device with receptor medium container with a PBS/EtOH 20% solution (10 mM, pH 7.4) at 37 °C. After 12 h of topical administration stratum corneum was removed from fifty tapes and the ZnPc retained was evaluated by solvent extraction in dimetil-sulphoxide under ultrasonic bath. These results indicated that magnetic nanoemulsion (MNE) increase the drug release on the deeper skin layers when compared with classical formulation in the absence of magnetic particles. This could be related with the increase of biocompatibility of NDDS due to the great affinity for the polar extracelullar matrix in the skin and also for the increase in the drug partition inside of corneocites wall.

  1. Factors influencing transfection efficiency of pIDUA/nanoemulsion complexes in a mucopolysaccharidosis type I murine model

    PubMed Central

    Fraga, Michelle; de Carvalho, Talita Giacomet; Bidone, Juliana; Schuh, Roselena Silvestri; Matte, Ursula; Teixeira, Helder Ferreira

    2017-01-01

    Mucopolysaccharidosis type I (MPS I) is an autosomal disease caused by alpha-l-iduronidase (IDUA) deficiency. This study used IDUA knockout mice as a model to evaluate whether parameters such as dose of plasmid and time of treatment could influence the transfection efficiency of complexes formed with PEGylated cationic nanoemulsions and plasmid (pIDUA), which contains the gene that encodes for IDUA. Formulations were composed of medium chain triglycerides, 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine, 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-(amino[polyethylene glycol]-2000), 1,2-dioleoyl-sn-glycero-3-trimethylammonium propane (DOTAP), glycerol, and water and were prepared by the adsorption or encapsulation of preformed pIDUA–DOTAP complexes by high-pressure homogenization. A progressive increase in IDUA expression was observed with an increase in the dose and time of transfection for mice treated with both complexes (adsorbed and encapsulated), especially in the liver. Regardless of the complex administered, a significant increase in IDUA activity was detected in lungs and liver compared with nontreated MPS I when a dose of 60 μg was administered and IDUA activity was measured 7 days postadministration. Tissue sections of major organs showed no presence of cell necrosis, inflammatory infiltrate, or an increase in apoptosis. Furthermore, immunohistochemistry for CD68 showed no difference in the number of macrophage cells in treated and nontreated animals, indicating the absence of inflammatory reaction caused by the treatment. The data set obtained in this study allowed establishing that factors such as dose and time can influence transfection efficiency in different degrees and that these complexes did not lead to any lethal effect in the MPS I murine model used. PMID:28352175

  2. Effects of Carbopol® 934 proportion on nanoemulsion gel for topical and transdermal drug delivery: a skin permeation study

    PubMed Central

    Zheng, Yin; Ouyang, Wu-Qing; Wei, Yun-Peng; Syed, Shahid Faraz; Hao, Chao-Shuang; Wang, Bo-Zhen; Shang, Yan-Hong

    2016-01-01

    Nanoemulsions (NEs) are used as transdermal drug delivery systems for systematic therapeutic purposes. We hypothesized that the skin permeation profile of an NE could be modulated by incorporating it into a hydrogel containing differing proportions of thickening agent. The objectives of this study were as follows: 1) to determine the stability and skin irritability of NE gels (NGs) containing 1%, 2%, and 3% (w/w) Carbopol® 934 (CP934) (termed NG1, NG2, and NG3, respectively); 2) to compare the skin permeation profiles and drug deposition patterns of the NGs; and 3) to visualize the drug delivery routes of the NGs. Terbinafine and citral were incorporated into the NGs as model drugs. Ex vivo skin permeation tests indicated that the percutaneous flux rates of terbinafine decreased in the order NE (215 μg/cm2) > NG1 (213 μg/cm2) > NG2 (123 μg/cm2) > NG3 (74.3 μg/cm2). The flux rates of citral decreased in the order NE (1,026 μg/cm2) > NG1 (1,021 μg/cm2) > NG2 (541 μg/cm2) > NG3 (353 μg/cm2). The NGs accumulated greater amounts of the drugs in the stratum corneum and less in the epidermis/dermis than did the NE (P<0.05) over a period of 12 h. Laser scanning confocal microscopy indicated that the NGs altered the main drug delivery routes from skin appendages to intercellular paths. Histological images suggested that perturbations to the skin structure, specifically the size of the epidermal intercellular spaces and the separation distance of dermal collagen bundles, could be significantly minimized by increasing the proportion of CP934. These results suggest that adjustments of the CP934 proportions can be used to modulate the skin permeation profiles of NGs for specific therapeutic purposes. PMID:27877042

  3. Formulation, High Throughput In Vitro Screening and In Vivo Functional Characterization of Nanoemulsion-Based Intranasal Vaccine Adjuvants

    PubMed Central

    Wong, Pamela T.; Leroueil, Pascale R.; Smith, Douglas M.; Ciotti, Susan; Bielinska, Anna U.; Janczak, Katarzyna W.; Mullen, Catherine H.; Groom, Jeffrey V.; Taylor, Erin M.; Passmore, Crystal; Makidon, Paul E.; O’Konek, Jessica J.; Myc, Andrzej; Hamouda, Tarek; Baker, James R.

    2015-01-01

    Vaccine adjuvants have been reported to induce both mucosal and systemic immunity when applied to mucosal surfaces and this dual response appears important for protection against certain pathogens. Despite the potential advantages, however, no mucosal adjuvants are currently approved for human use. Evaluating compounds as mucosal adjuvants is a slow and costly process due to the need for lengthy animal immunogenicity studies. We have constructed a library of 112 intranasal adjuvant candidate formulations consisting of oil-in-water nanoemulsions that contain various cationic and nonionic surfactants. To facilitate adjuvant development we first evaluated this library in a series of high-throughput, in vitro assays for activities associated with innate and adaptive immune activation in vivo. These in vitro assays screened for the ability of the adjuvant to bind to mucin, induce cytotoxicity, facilitate antigen uptake in epithelial and dendritic cells, and activate cellular pathways. We then sought to determine how these parameters related to adjuvant activity in vivo. While the in vitro assays alone were not enough to predict the in vivo adjuvant activity completely, several interesting relationships were found with immune responses in mice. Furthermore, by varying the physicochemical properties of the surfactant components (charge, surfactant polar head size and hydrophobicity) and the surfactant blend ratio of the formulations, the strength and type of the immune response generated (TH1, TH2, TH17) could be modulated. These findings suggest the possibility of using high-throughput screens to aid in the design of custom adjuvants with unique immunological profiles to match specific mucosal vaccine applications. PMID:25962136

  4. Formulation development of a novel targeted theranostic nanoemulsion of docetaxel to overcome multidrug resistance in ovarian cancer

    PubMed Central

    Ganta, Srinivas; Singh, Amit; Rawal, Yashesh; Cacaccio, Joseph; Patel, Niravkumar R.; Kulkarni, Praveen; Ferris, Craig F.; Amiji, Mansoor M.; Coleman, Timothy P.

    2015-01-01

    Objective Ovarian cancer is a highly lethal disease in which the majority of patients eventually demonstrate multidrug resistance. Develop a novel active targeted theranostic nanomedicine designed to overcome drug efflux mechanisms, using a Generally Regarded As Safe (GRAS) grade nanoemulsion (NE) as a clinically relevant platform. Materials and methods The NEs surface-functionalized with folate and gadolinium, were made using GRAS grade excipients and a high-shear microfluidization process. Efficacy was evaluated in ovarian cancer cells, SKOV3 and SKOV3TR. The NE accumulation in tumors was evaluated in SKOV3 tumor-bearing mice by magnetic resonance imaging (MRI). Results and discussion The NE with particle size <150nm were stable in plasma and parenteral fluids for 24 h. Ovarian cancer cells in vitro efficiently took up the non-targeted and folate-targeted NEs; improved cytotoxicity was observed for the folate-targeted NEs showing a 270- fold drop in the IC50 in SKOV3TR cells as compared to docetaxel alone. The addition of gadolinium did not affect cell viability in vitro, but showed relaxation times comparable to Magnevist®. Folate-targeted NEs accumulated in tumors for prolonged period of time compared to Magnevist® and showed enhanced contrast compared to non-targeted NEs with MRI in SKOV3 tumor-bearing mice suggesting active targeting of NEs due to folate modification. Conclusions A folate-targeted, theranostic NE delivers docetaxel by receptor mediated endocytosis that shows enhanced cytotoxicity capable of overcoming ABC transporter mediated taxane resistance. The diagnostic capability of the targeted nanomedicine showed enhanced contrast in tumors compared to clinically relevant MRI contrast agent Magnevist®. PMID:24901206

  5. Elimination of the biphasic pharmacodynamics of 15d-PGJ2 by controlling its release from a nanoemulsion

    PubMed Central

    Abbasi, Saed; Kajimoto, Kazuaki; Harashima, Hideyoshi

    2016-01-01

    15-Deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2) has a dual action of stimulating anti-inflammation and anti-proliferation when exogenously administered at high doses. However, at lower doses, it can be toxic inducing opposite actions, ie, stimulation of both inflammation and cell proliferation. This biphasic phenomenon of 15d-PGJ2 is believed to be due to its multitarget behavior. In this study, we provide a strategy for controlling such biphasic pharmacodynamics by separating its dual actions while retaining the beneficial one by using a nanoemulsion (NE). The 15d-PGJ2 was encapsulated in the NE composed of triolein/distearoyl phosphatidylcholine/Tween 80 at a high encapsulation ratio (>83%). Furthermore, NE enhanced drug retention by slowing down its release rate, which was, unconventionally, inversely dependent on the total surface area of the NE system. Next, focusing on the biphasic effect on cell proliferation, we found that the 15d-PGJ2-loaded slow-release NE showed only a dose-dependent inhibition of the viability of a mouse macrophage cell line, RAW264.7, although a fast-release NE as well as free 15d-PGJ2 exerted a biphasic effect. The observed slow-release kinetics are believed to be responsible for elimination of the biphasic pharmacodynamics of 15d-PGJ2 mainly for two reasons: 1) a high proportion of 15d-PGJ2 that is retained in the NE was delivered to the cytosol, where proapoptotic targets are located and 2) 15d-PGJ2 was able to bypass cell membrane-associated targets that lead to the induction of cellular proliferation. Collectively, our strategy of eliminating the 15d-PGJ2-induced biphasic pharmacodynamics was based on the delivery of 15d-PGJ2 to its desired site of action, excluding undesired sites, on a subcellular level. PMID:27354798

  6. Nanoemulsion Therapy for Burn Wounds Is Effective as a Topical Antimicrobial Against Gram-Negative and Gram-Positive Bacteria.

    PubMed

    Dolgachev, Vladislav A; Ciotti, Susan M; Eisma, Rone; Gracon, Stephen; Wilkinson, J Erby; Baker, James R; Hemmila, Mark R

    2016-01-01

    The aim of this study is to investigate the antimicrobial efficacy of two different nanoemulsion (NE) formulations against Gram-positive and Gram-negative bacteria in an in vivo rodent scald burn model. Male Sprague-Dawley rats were anesthetized and received a partial-thickness scald burn. Eight hours after burn injury, the wound was inoculated with 1 × 10(8) colony-forming units of Pseudomonas aeruginosa or Staphylococcus aureus. Treatment groups consisted of two different NE formulations (NB-201 and NB-402), NE vehicle, or saline. Topical application of the treatment was performed at 16 and 24 hours after burn injury. Animals were killed 32 hours after burn injury, and skin samples were obtained for quantitative wound culture and determination of dermal inflammation markers. In a separate set of experiments, burn wound progression was measured histologically after 72 hours of treatment. Both NE formulations (NB-201 and NB-402) significantly reduced burn wound infections with either P. aeruginosa or S. aureus and decreased median bacterial counts at least three logs when compared with animals with saline applications (p < .0001). NB-201 and NB-402 also decreased dermal neutrophil recruitment and sequestration into the wound as measured by myeloperoxidase (MPO) assay and histopathology (p < .05). In addition, there was a decrease in the proinflammatory dermal cytokines (interleukin 1-beta [IL-1β], IL-6, and tumor necrosis factor alpha [TNF-α]) and the neutrophil chemoattractants CXCL1 and CXCL2. Using histologic examination, it was found that both NB-201 and NB-402 appeared to suppress burn wound progression 72 hours after injury. Topically applied NB-201 and NB-402 are effective in decreasing Gram-positive and Gram-negative bacteria growth in burn wounds, reducing inflammation, and abrogating burn wound progression.

  7. An Artificial Neural Network Based Analysis of Factors Controlling Particle Size in a Virgin Coconut Oil-Based Nanoemulsion System Containing Copper Peptide

    PubMed Central

    Samson, Shazwani; Basri, Mahiran; Fard Masoumi, Hamid Reza; Abdul Malek, Emilia; Abedi Karjiban, Roghayeh

    2016-01-01

    A predictive model of a virgin coconut oil (VCO) nanoemulsion system for the topical delivery of copper peptide (an anti-aging compound) was developed using an artificial neural network (ANN) to investigate the factors that influence particle size. Four independent variables including the amount of VCO, Tween 80: Pluronic F68 (T80:PF68), xanthan gum and water were the inputs whereas particle size was taken as the response for the trained network. Genetic algorithms (GA) were used to model the data which were divided into training sets, testing sets and validation sets. The model obtained indicated the high quality performance of the neural network and its capability to identify the critical composition factors for the VCO nanoemulsion. The main factor controlling the particle size was found out to be xanthan gum (28.56%) followed by T80:PF68 (26.9%), VCO (22.8%) and water (21.74%). The formulation containing copper peptide was then successfully prepared using optimum conditions and particle sizes of 120.7 nm were obtained. The final formulation exhibited a zeta potential lower than -25 mV and showed good physical stability towards centrifugation test, freeze-thaw cycle test and storage at temperature 25°C and 45°C. PMID:27383135

  8. Phase behavior and formation of o/w nano-emulsion in vegetable oil/ mixture of polyglycerol polyricinoleate and polyglycerin fatty acid ester/water systems.

    PubMed

    Wakisaka, Satoshi; Nakanishi, Masami; Gohtani, Shoichi

    2014-01-01

    It is reported that mixing polyglycerol polyricinoleate (PGPR) and polyglycerol laurilester has a great emulsifying capacity, and consequently fine oil-in-water (o/w) emulsions can be formed. However, the role of PGPR is not clear. The objective of this research is to investigate the phase behavior of vegetable oil/mixture of PGPR and polyglycerol fatty acid ester/water systems, and to clarify the role of PGPR in making a fine emulsion. Phase diagrams were constructed to elucidate the optimal process for preparing fine emulsions. In all the systems examined in this study, the phases, including the liquid crystal phase (L(c)) and sponge phase (L(3)), spread widely in the phase diagrams. We examined droplet size of the emulsions prepared from each phase and found that o/w nano-emulsions with droplet sizes as small as 50 nm were formed by emulsifying either from a single L(3) phase or a two-phase region, L(c) + L(3). These results indicate that a sponge phase L(3) or liquid crystal phase L(c) or both is necessary to form an o/w nano-emulsion whose average droplet diameter is less than 50 nm for PGPR and polyglycerin fatty acid ester mixtures used as surfactant.

  9. An Artificial Neural Network Based Analysis of Factors Controlling Particle Size in a Virgin Coconut Oil-Based Nanoemulsion System Containing Copper Peptide.

    PubMed

    Samson, Shazwani; Basri, Mahiran; Fard Masoumi, Hamid Reza; Abdul Malek, Emilia; Abedi Karjiban, Roghayeh

    2016-01-01

    A predictive model of a virgin coconut oil (VCO) nanoemulsion system for the topical delivery of copper peptide (an anti-aging compound) was developed using an artificial neural network (ANN) to investigate the factors that influence particle size. Four independent variables including the amount of VCO, Tween 80: Pluronic F68 (T80:PF68), xanthan gum and water were the inputs whereas particle size was taken as the response for the trained network. Genetic algorithms (GA) were used to model the data which were divided into training sets, testing sets and validation sets. The model obtained indicated the high quality performance of the neural network and its capability to identify the critical composition factors for the VCO nanoemulsion. The main factor controlling the particle size was found out to be xanthan gum (28.56%) followed by T80:PF68 (26.9%), VCO (22.8%) and water (21.74%). The formulation containing copper peptide was then successfully prepared using optimum conditions and particle sizes of 120.7 nm were obtained. The final formulation exhibited a zeta potential lower than -25 mV and showed good physical stability towards centrifugation test, freeze-thaw cycle test and storage at temperature 25°C and 45°C.

  10. Photothermal-Responsive Single-Walled Carbon Nanotube-Based Ultrathin Membranes for On/Off Switchable Separation of Oil-in-Water Nanoemulsions.

    PubMed

    Hu, Liang; Gao, Shoujian; Ding, Xianguang; Wang, Dong; Jiang, Jiang; Jin, Jian; Jiang, Lei

    2015-05-26

    Oil-contaminated wastewater threatens our environment and health, especially that stabilized by surfactants. Conventional separation protocols become invalid for those surfactant-stabilized nanoemulsions due to their nanometer-sized droplets and extremely high stability. In this paper, photothermal-responsive ultrathin Au nanorods/poly(N-isopropylacrylamide-co-acrylamide) cohybrid single-walled carbon nanotube (SWCNT) nanoporous membranes are constructed. Such membranes are capable of separating oil-in-water nanoemulsions with a maximum flux up to 35 890 m(2)·h(-1)·bar(-1) because they feature hydrophilicity, underwater oleophobicity, and nanometer pore sizes. It is remarkable that the permeation flux can be simply modulated by light illumination during the process of separation, due to the incorporation of thermal-responsive copolymers and Au nanorods. Meanwhile, it shows ultrahigh separation efficiency (>99.99%) and desired antifouling and recyclability properties. We anticipate that our ultrathin photothermal-responsive SWCNT-based membranes provide potential for the generation of point-of-use water treatment devices.

  11. Characterization of catechin-α-lactalbumin conjugates and the improvement in β-carotene retention in an oil-in-water nanoemulsion.

    PubMed

    Yi, Jiang; Fan, Yuting; Zhang, Yuzhu; Zhao, Liqing

    2016-08-15

    The goal of this study was to prepare and characterize α-lactalbumin (ALA)-catechin conjugates as a novel emulsifier in improving the retention of β-carotene (BC) in nanoemulsions via a free radical method. Covalent modification was observed and at least one catechin molecule was binding with ALA according to ESI-MS results. Far-UV CD indicated that the secondary structure of ALA was changed after conjugation. The Z-average particle diameters of nanoemulsions stabilized with ALA and ALA-catechin conjugates were 158.8 and 162.7 nm, respectively. The increase of mean particle size and the degradation of BC at 50°C were both larger than at 25°C during 30 days storage. BC retention stabilized with ALA-catechin conjugates was appreciably greater than ALA (control), which was attributed to the increase of ALA's radicals-scavenging and free metal ion binding ability after grafting with catechin. The chemical antioxidant activities of ALA-catechin conjugates were increased with increasing concentrations from 0.1 to 1.0mg/ml. In general, labile phytochemicals, like BC, can be protected against oxidation during storage by proteins-polyphenols conjugates without any side effects.

  12. Three geese resembling Gray-Bellied Brant/Lawrence's Brant from Long Island, New York

    USGS Publications Warehouse

    Buckley, P.A.; Mitra, S.S.

    2002-01-01

    Three oddly plumaged brant, intermediate in several respects between 'Atlantic' or 'Pale-bellied Brant' (hrota) and ?Black Brant? (nigricans) were photographed and described on western Long Island, New York during 2002 (two in March, the third in October). Their plumage corresponded to that of the little-studied, and apparently genetically distinctive small population known among goose biologists as 'Gray-bellied Brant,' which breeds only on a few islands in the western Canadian High Arctic, stages in migration in the inner Aleutians, and winters in a small portion of the Greater Puget Sound area. But Gray-bellied Brant also wander, having recently been found in winter as far from Puget Sound as Baja California in the west, and Iceland and the British Isles to the east?these strays presumably having migrated southwest with Pacific-wintering nigricans and southeast with Atlantic-wintering hrota, respectively. Despite their tendency to associate with locally wintering hrota and nigricans, mixed pairs or hybrid young involving these vagrants have never been demonstrated in North America?nor have mixed pairs or hybrid young between hrota and nigricans, despite widespread belief to the contrary. Complicating the picture is that the type specimen of nigricans, a distinctive New Jersey specimen collected in 1846, also differs from 'true' Pacific Coast Black Brant in several respects, in a manner qualitatively similar to the LI birds described herein. The appearance of the type, often referred to informally as 'Lawrence?s Brant,' differs from typical Black Brant to such an extent that Delacour and Zimmer (1952) rejected application of nigricans to Pacific Black Brant, to which the name orientalis would have to be applied instead. Recent examination of museum specimens of breeding- and winter-area Gray-bellies confirms that Lawrence?s Brant closely resembles some of them?as do these three Long Island birds. Whatever the ultimate statuses of Gray-bellied and Lawrence's Brant

  13. Effect of facial self-resemblance on the startle response and subjective ratings of erotic stimuli in heterosexual men.

    PubMed

    Lass-Hennemann, Johanna; Deuter, Christian E; Kuehl, Linn K; Schulz, Andre; Blumenthal, Terry D; Schachinger, Hartmut

    2011-10-01

    Cues of kinship are predicted to increase prosocial behavior due to the benefits of inclusive fitness, but to decrease approach motivation due to the potential costs of inbreeding. Previous studies have shown that facial resemblance, a putative cue of kinship, increases prosocial behavior. However, the effects of facial resemblance on mating preferences are equivocal, with some studies finding that facial resemblance decreases sexual attractiveness ratings, while other studies show that individuals choose mates partly on the basis of similarity. To further investigate this issue, a psychophysiological measure of affective processing, the startle response, was used in this study, assuming that differences in approach motivation to erotic pictures will modulate startle. Male volunteers (n = 30) viewed 30 pictures of erotic female nudes while startle eyeblink responses were elicited by acoustic noise probes. The female nude pictures were digitally altered so that the face either resembled the male participant or another participant, or were not altered. Non-nude neutral pictures were also included. Importantly, the digital alteration was undetected by the participants. Erotic pictures were rated as being pleasant and clearly reduced startle eyeblink magnitude as compared to neutral pictures. Participants showed greater startle inhibition to self-resembling than to other-resembling or non-manipulated female nude pictures, but subjective pleasure and arousal ratings did not differ among the three erotic picture categories. Our data suggest that visual facial resemblance of opposite-sex nudes increases approach motivation in men, and that this effect was not due to their conscious evaluation of the erotic stimuli.

  14. Lake Superior lipids

    EPA Pesticide Factsheets

    Fish chemistry data (d13C, d15N, C:N, lipid content) published in Rapid Commun. Mass Spectrom. 2015, 29, 2069??2077 DOI: 10.1002/rcm.7367This dataset is associated with the following publication:Hoffman , J., M. Sierszen , and A. Cotter. Fish tissue lipid-C:N relationships for correcting ä13C values and estimating lipid content in aquatic food web studies. Rapid Communications in Mass Spectrometry. Wiley InterScience, Silver Spring, MD, USA, 29(21): 2069–2077, (2015).

  15. Lipid-absorbing Polymers

    NASA Technical Reports Server (NTRS)

    Marsh, H. E., Jr.; Wallace, C. J.

    1973-01-01

    The removal of bile acids and cholesterol by polymeric absorption is discussed in terms of micelle-polymer interaction. The results obtained with a polymer composed of 75 parts PEO and 25 parts PB plus curing ingredients show an absorption of 305 to 309%, based on original polymer weight. Particle size effects on absorption rate are analyzed. It is concluded that crosslinked polyethylene oxide polymers will absorb water, crosslinked polybutadiene polymers will absorb lipids; neither polymer will absorb appreciable amounts of lipids from micellar solutions of lipids in water.

  16. [Lipid formulations of amphotericin].

    PubMed

    Botero, Martha C; Puentes-Herrera, Marcela; Cortés, Jorge A

    2014-10-01

    Amphotericin B deoxycholate use has increased during the past years in parallel with the increase in the number of immunosuppressed patients suffering invasive fungal infections. This drug is associated with a high rate of side effects, especially renal toxicity. Lipid formulations (liposomal, lipid complex, colloidal suspension and the Indian liposomal formulation) have been developed, which share the same antifungal spectrum but differ in efficacy and toxicity. A review of amphotericin lipid formulations is presented, focusing on differences in efficacy and, especially renal toxicity. The main problem for use of these formulations in Latin America is their highcost.

  17. Investigation of Porphyrin and Lipid Supramolecular Assemblies for Cancer Imaging and Therapy

    NASA Astrophysics Data System (ADS)

    Ng, Kenneth Ka-Seng

    Aerobic life on earth is made possible through the functions of the porphyrin. These colorful and ubiquitous chromophores are efficient at concentrating and converting sunlight into chemical energetic potential which sustain biological life. Humans have had a longstanding fascination with these molecules, especially for their applications in photodynamic therapy. The photophysical properties of porphyrins are highly influenced by their surrounding environment. Intermolecular interactions between these pigments can lead to excited state quenching, energy transfer and large changes to their absorption and fluorescence spectra. This thesis is focused on utilizing molecular self-assembly strategies to develop nanoscale porphyrin and phospholipid structures. The rationale being that intermolecular interactions between porphyrins in these nanostructures can induce changes which can be exploited in novel biomedical imaging and therapeutic applications. Four lipid-based structural platforms are studied including: nanoemulsions, bilayer discs and nanovesicles. In Chapter 1, I provide a background on the photophysics of porphyrins and the effect of intermolecular porphyrin interactions on photophysical properties. I also discuss phospholipids and their self-assembly process. Lastly I review current biomedical photonics techniques and discuss how these strategies can be used in conjugation with porphyrin and lipid supramolecular assemblies. In Chapter 2, I investigate the influence that loading a novel bacteriochlorin photosensitizer into a protein-stabilized lipid emulsion has on its spectral properties. I discovered that while the dye can be incorporated into the lipid emulsion, no changes were observed in its spectral properties. In Chapter 3, an amphipathic alpha-helical protein is used to stabilize and organize porphyrin-lipid molecules into bilayer discs. Close packing between porphyrin molecules causes quenching, which can be reversed by structural degradation of the

  18. The heat-pipe resembling action of boiling bubbles in endovenous laser ablation

    PubMed Central

    van den Bos, Renate R.; van Ruijven, Peter W. M.; Nijsten, Tamar; Neumann, H. A. Martino; van Gemert, Martin J. C.

    2010-01-01

    Endovenous laser ablation (EVLA) produces boiling bubbles emerging from pores within the hot fiber tip and traveling over a distal length of about 20 mm before condensing. This evaporation-condensation mechanism makes the vein act like a heat pipe, where very efficient heat transport maintains a constant temperature, the saturation temperature of 100°C, over the volume where these non-condensing bubbles exist. During EVLA the above-mentioned observations indicate that a venous cylindrical volume with a length of about 20 mm is kept at 100°C. Pullback velocities of a few mm/s then cause at least the upper part of the treated vein wall to remain close to 100°C for a time sufficient to cause irreversible injury. In conclusion, we propose that the mechanism of action of boiling bubbles during EVLA is an efficient heat-pipe resembling way of heating of the vein wall. PMID:20644976

  19. Functional connectivity changes resemble patterns of pTDP-43 pathology in amyotrophic lateral sclerosis

    PubMed Central

    Schulthess, Ines; Gorges, Martin; Müller, Hans-Peter; Lulé, Dorothée; Del Tredici, Kelly; Ludolph, Albert C.; Kassubek, Jan

    2016-01-01

    ‘Resting-state’ fMRI allows investigation of alterations in functional brain organization that are associated with an underlying pathological process. We determine whether abnormal connectivity in amyotrophic lateral sclerosis (ALS) in a priori-defined intrinsic functional connectivity networks, according to a neuropathological staging scheme and its DTI-based tract correlates, permits recognition of a sequential involvement of functional networks. ‘Resting-state’ fMRI data from 135 ALS patients and 56 matched healthy controls were investigated for the motor network (corresponding to neuropathological stage 1), brainstem (stage 2), ventral attention (stage 3), default mode/hippocampal network (stage 4), and primary visual network (as the control network) in a cross-sectional analysis and longitudinally in a subgroup of 27 patients after 6 months. Group comparison from cross-sectional and longitudinal data revealed significantly increased functional connectivity (p < 0.05, corrected) in all four investigated networks (but not in the control network), presenting as a network expansion that was correlated with physical disability. Increased connectivity of functional networks, as investigated in a hypothesis-driven approach, is characterized by network expansions and resembled the pattern of pTDP-43 pathology in ALS. However, our data did not allow for the recognition of a sequential involvement of functional connectivity networks at the individual level. PMID:27929102

  20. Generation of furosine and color in infant/enteral formula-resembling systems.

    PubMed

    Rufián-Henares, José Angel; García-Villanova, Belén; Guerra-Hernández, Eduardo

    2004-08-25

    The extent of the Maillard reaction was studied by measuring furosine and color formation in infant and enteral formula-resembling model systems prepared by mixing calcium caseinate, laboratory-obtained or commercial whey protein with lactose or dextrinomaltose (ingredients similar to those used in infant and enteral formula manufacture) and heating the mixture at 100, 120, or 140 degrees C for 0-30 min. The furosine determination was performed by HPLC and the color determination by measuring colorimetric parameters L, a, and b in a reflection photometer. The first steps of the Maillard reaction could be followed by furosine determination when initial ingredients had low thermal damage. Hence, furosine may be an indicator of low thermal damage in ingredients with <100 mg/100 g of protein. At the concentrations used in these model systems, similar to those in infant and enteral formulas, furosine values (indirect measure of lysine losses) were higher in lactose than in dextrinomaltose systems, in which only glucose, maltose, maltotriose, and maltotetraose among all of the sugars present showed reactivity with casein. Finally, the advanced steps could be followed by color determination when the initial ingredients had high thermal damage or the model systems were heated at high temperature or for a long time. Among the parameters assayed, b was the most sensitive.

  1. Survival of Pseudomonas aeruginosa exposed to sunlight resembles the phenom of persistence.

    PubMed

    Forte Giacobone, Ana F; Oppezzo, Oscar J

    2015-01-01

    During exposure of Pseudomonas aeruginosa stationary phase cells to natural solar radiation, a reduction in the rate of loss of bacterial viability was observed when survival fractions were lower than 1/10,000. This reduction was independent of the growth medium used and of the initial bacterial concentration, and was also observed when irradiation was performed with artificial UVA radiation (365nm, 47Wm(-2)). These results indicate the presence of a small bacterial subpopulation with increased tolerance to radiation. Such a tolerance is non-heritable, since survival curves comparable to those of the parental strain were obtained from survivors to long-term exposure to radiation. The radiation response described here resembles the phenomenon called persistence, which consists of the presence of a small subpopulation of slow-growing cells which are able to survive antibiotic treatment within a susceptible bacterial population. The condition of persister cells is acquired via a reversible switch and involves active defense systems towards oxidative stress. Persistence is probably responsible for biphasic responses of bacteria to several stress conditions, one of which may be exposure to sunlight. The models currently used to analyze the lethal action of sunlight overestimate the effect of high-dose irradiation. These models could be improved by including the potential formation of persister cells.

  2. Mutations in human lymphocytes commonly involve gene duplication and resemble those seen in cancer cells

    SciTech Connect

    Turner, D.R.; Grist, S.A.; Janatipour, M.; Morley, A.A.

    1988-05-01

    Mutations in human lymphocytes are commonly due to gene deletion. To investigate the mechanism of deletion for autosomal genes, the authors immunoselected lymphocytes mutated at the HLA-A locus and clones them for molecular analysis. Of 36 mutant clones that showed deletion of the selected HLA-A allele, 8 had resulted from a simple gene deletion, whereas 28 had resulted from a more complex mutational event involving reduplication of the nonselected HLA-A allele as indicated by hybridization intensity on Southern blots. In 3 of the 28 clones, retention of heterozygosity at the HLA-B locus indicated that the reduplication was due to recombination between the two chromosomes 6; but in the remaining 25 clones, distinction could not be made between recombination and chromosome reduplication. The results indicate that mutations in normal somatic cells frequently result in hemizygosity or homozygosity at gene loci and, thereby, resemble the mutations thought to be important in the etiology of various forms of cancer.

  3. Granular cell ameloblastoma: case report of a particular ameloblastoma histologically resembling oncocytoma.

    PubMed

    Matsushita, Yuki; Fujita, Shuichi; Kawasaki, Goro; Hirota, Yoshinosuke; Rokutanda, Satoshi; Yamashita, Kentaro; Yanamoto, Souichi; Ikeda, Tohru; Umeda, Masahiro

    2015-01-01

    Granular cell ameloblastoma is classified as a histological subtype of solid/multicystic ameloblastoma. Usual granular cell ameloblastoma is histologically characterized by granular changes of stellate-like cells located in the inner portion of the epithelial follicles. Here we report a case of another type of granular cell ameloblastoma, showing predominant anastomosing double-stranded trabeculae of granular cells. This type of granular cell ameloblastoma is extremely rare, and the World Health Organization classification does not contain the entity. We tentatively termed it 'anastomosing granular cell ameloblastoma' in this report. The present case suggests the importance of differential diagnosis because the histology of 'anastomosing granular cell ameloblastoma' resembles that of salivary gland oncocytoma rather than that of usual granular cell ameloblastoma. The trabeculae observed in our case continued to the peripheral cells of a small amount of epithelial sheets of plexiform ameloblastoma, and the tumor cells were positive for CK19, which is regarded as an immunohistochemical marker of odontogenic epithelium. Similar to usual granular cell ameloblastoma, the tumor cells had CD68-positive granules. For precise diagnosis of this condition, immunohistochemistry using CK19 and CD68, as well as detailed histological observation, are recommended.

  4. A Mouse Model of Diet-Induced Obesity Resembling Most Features of Human Metabolic Syndrome

    PubMed Central

    Della Vedova, Maria C.; Muñoz, Marcos D.; Santillan, Lucas D.; Plateo-Pignatari, Maria G.; Germanó, Maria J.; Rinaldi Tosi, Martín E.; Garcia, Silvina; Gomez, Nidia N.; Fornes, Miguel W.; Gomez Mejiba, Sandra E.; Ramirez, Dario C.

    2016-01-01

    Increased chicken-derived fat and fructose consumption in the human diet is paralleled by an increasing prevalence of obesity and metabolic syndrome (MS). Herein, we aimed at developing and characterizing a mouse model of diet-induced obesity (DIO) resembling most of the key features of the human MS. To accomplish this, we fed male C57BL/6J mice for 4, 8, 12, and 16 weeks with either a low-fat diet (LFD) or a high-chicken-fat diet (HFD) and tap water with or without 10% fructose (F). This experimental design resulted in the following four experimental groups: LFD, LFD + F, HFD, and HFD + F. Over the feeding period, and on a weekly basis, the HFD + F group had more caloric intake and gained more weight than the other experimental groups. Compared to the other groups, and at the end of the feeding period, the HFD + F group had a higher adipogenic index, total cholesterol, low-density lipoprotein cholesterol, fasting basal glycemia, insulin resistance, hypertension, and atherogenic index and showed steatohepatitis and systemic oxidative stress/inflammation. A mouse model of DIO that will allow us to study the effect of MS in different organs and systems has been developed and characterized. PMID:27980421

  5. The scurfy mouse mutant has previously unrecognized hematological abnormalities and resembles Wiskott-Aldrich syndrome.

    PubMed Central

    Lyon, M F; Peters, J; Glenister, P H; Ball, S; Wright, E

    1990-01-01

    The X chromosome-linked scurfy (sf) mutant of the mouse is recognized by the scaliness of the skin from which the name is derived and results in death of affected males at about 3-4 weeks of age. Consideration of known man-mouse homologies of the X chromosome prompted hematological studies, which have shown that the blood is highly abnormal. The platelet and erythrocyte counts are both reduced and become progressively lower relative to normal as the disease progresses. There is gastrointestinal bleeding, and most animals appear to die of severe anemia. By contrast, the leukocyte count is consistently raised. Some animals showed signs of infection but it is not yet clear whether there is immunodeficiency. Other features include the scaly skin and apparently reduced lateral growth of the skin, conjunctivitis, and diarrhea in some animals. The mutant resembles Wiskott-Aldrich syndrome in man, which is characterized by thrombocytopenia, eczema, diarrhea, and immunodeficiency. The loci of the human and mouse genes lie in homologous segments of the X chromosome, although apparently in somewhat different positions relative to other gene loci. Scurfy differs from Wiskott-Aldrich syndrome in that scurfy males are consistently hypogonadal. Images PMID:2320565

  6. Epidermal Nbn deletion causes premature hair loss and a phenotype resembling psoriasiform dermatitis

    PubMed Central

    Seidel, Philipp; Remus, Martina; Delacher, Michael; Grigaravicius, Paulius; Reuss, David E.; Frappart, Lucien; von Deimling, Andreas; Feuerer, Markus; Abdollahi, Amir; Frappart, Pierre-Olivier

    2016-01-01

    Nijmegen Breakage Syndrome is a disease caused by NBN mutations. Here, we report a novel function of Nbn in skin homeostasis. We found that Nbn deficiency in hair follicle (HF) progenitors promoted increased DNA damage signaling, stimulating p16Ink4a up-regulation, Trp53 stabilization and cytokines secretion leading to HF-growth arrest and hair loss. At later stages, the basal keratinocytes layer exhibited also enhanced DNA damage response but in contrast to the one in HF progenitor was not associated with pro-inflammatory cytokines expression, but rather increased proliferation, lack of differentiation and immune response resembling psoriasiform dermatitis. Simultaneous Nbn and Trp53 inactivation significantly exacerbated this phenotype, due to the lack of inhibition of pro-inflammatory cytokines secretion by Trp53. Altogether, we demonstrated novel functions of Nbn in HF maintenance and prevention of skin inflammation and we provide a mechanistic explanation that links cell intrinsic DNA maintenance with large scale morphological tissue alterations. PMID:27050272

  7. Human endomembrane H sup + pump strongly resembles the ATP-synthetase of Archaebacteria

    SciTech Connect

    Suedhof, T.C.; Stone, D.K.; Johnston, P.A.; Xie, Xiaosong ); Fried, V.A. )

    1989-08-01

    Preparations of mammalian H{sup +} pumps that acidify intracellular vesicles contain eight or nine polypeptides, ranging in size from 116 to 17 kDa. Biochemical analysis indicates that the 70- and 58-kDa polypeptides are subunits critical for ATP hydrolysis. The amino acid sequences of the major catalytic subunits (58 and 70 kDa) of the endomembrane H{sup +} pump are unknown from animal cells. The authors report here the complete sequence of the 58-kDa subunit derived from a human kidney cDNA clone and partial sequences of the 70- and 58-kDa subunits purified from clathrin-coated vesicles of bovine brain. The amino acid sequences of both proteins strongly resemble the sequences of the corresponding subunits of the vacuolar H{sup +} pumps of Archaebacteria, plants, and fungi. The archaebacterial enzyme is believed to use a H{sup +} gradient to synthesize ATP. Thus, a common ancestral protein has given rise to a H{sup +} pump that synthesizes ATP in one organism and hydrolyzes it in another and is highly conserved from prokaryotes to humans. The same pump appears to mediate the acidification of intracellular organelles, including coated vesicles, lysosomes, and secretory granules, as well as extracellular fluids such as urine.

  8. Transformation of Face Transplants: Volumetric and Morphologic Graft Changes Resemble Aging After Facial Allotransplantation.

    PubMed

    Kueckelhaus, M; Turk, M; Kumamaru, K K; Wo, L; Bueno, E M; Lian, C G; Alhefzi, M; Aycart, M A; Fischer, S; De Girolami, U; Murphy, G F; Rybicki, F J; Pomahac, B

    2016-03-01

    Facial allotransplantation restores normal anatomy to severely disfigured faces. Although >30 such operations performed worldwide have yielded promising short-term results, data on long-term outcomes remain scarce. Three full-face transplant recipients were followed for 40 months. Severe changes in volume and composition of the facial allografts were noted. Data from computed tomography performed 6, 18 and 36 months after transplantation were processed to separate allograft from recipient tissues and further into bone, fat and nonfat soft tissues. Skin and muscle biopsies underwent diagnostic evaluation. All three facial allografts sustained significant volume loss (mean 19.55%) between 6 and 36 months after transplant. Bone and nonfat soft tissue volumes decreased significantly over time (17.22% between months 6 and 18 and 25.56% between months 6 and 36, respectively), whereas fat did not. Histological evaluations showed atrophy of muscle fibers. Volumetric and morphometric changes in facial allografts have not been reported previously. The transformation of facial allografts in this study resembled aging through volume loss but differed substantially from regular aging. These findings have implications for risk-benefit assessment, donor selection and measures counteracting muscle and bone atrophy. Superior long-term outcomes of facial allotransplantation will be crucial to advance toward future clinical routine.

  9. On Learning Natural-Science Categories That Violate the Family-Resemblance Principle.

    PubMed

    Nosofsky, Robert M; Sanders, Craig A; Gerdom, Alex; Douglas, Bruce J; McDaniel, Mark A

    2017-01-01

    The general view in psychological science is that natural categories obey a coherent, family-resemblance principle. In this investigation, we documented an example of an important exception to this principle: Results of a multidimensional-scaling study of igneous, metamorphic, and sedimentary rocks (Experiment 1) suggested that the structure of these categories is disorganized and dispersed. This finding motivated us to explore what might be the optimal procedures for teaching dispersed categories, a goal that is likely critical to science education in general. Subjects in Experiment 2 learned to classify pictures of rocks into compact or dispersed high-level categories. One group learned the categories through focused high-level training, whereas a second group was required to simultaneously learn classifications at a subtype level. Although high-level training led to enhanced performance when the categories were compact, subtype training was better when the categories were dispersed. We provide an interpretation of the results in terms of an exemplar-memory model of category learning.

  10. Loss of epidermal Evi/Wls results in a phenotype resembling psoriasiform dermatitis.

    PubMed

    Augustin, Iris; Gross, Julia; Baumann, Daniel; Korn, Claudia; Kerr, Grainne; Grigoryan, Tamara; Mauch, Cornelia; Birchmeier, Walter; Boutros, Michael

    2013-08-26

    Cells of the epidermis renew constantly from germinal layer stem cells. Although epithelial cell differentiation has been studied in great detail and the role of Wnt signaling in this process is well described, the contribution of epidermal Wnt secretion in epithelial cell homeostasis remains poorly understood. To analyze the role of Wnt proteins in this process, we created a conditional knockout allele of the Wnt cargo receptor Evi/Gpr177/Wntless and studied mice that lacked Evi expression in the epidermis. We found that K14-Cre, Evi-LOF mice lost their hair during the first hair cycle, showing a reddish skin with impaired skin barrier function. Expression profiling of mutant and wild-type skin revealed up-regulation of inflammation-associated genes. Furthermore, we found that Evi expression in psoriatic skin biopsies is down-regulated, suggesting that Evi-deficient mice developed skin lesions that resemble human psoriasis. Immune cell infiltration was detected in Evi-LOF skin. Interestingly, an age-dependent depletion of dendritic epidermal T cells (DETCs) and an infiltration of γδ(low) T cells in Evi mutant epidermis was observed. Collectively, the described inflammatory skin phenotype in Evi-deficient mice revealed an essential role of Wnt secretion in maintaining normal skin homeostasis by enabling a balanced epidermal-dermal cross talk, which affects immune cell recruitment and DETC survival.

  11. Frosted Branch Angiitis Secondary to Familial Mediterranean Fever Resembling Central Retinal Vein Occlusion

    PubMed Central

    Ozdal, Pınar Çakar; Teke, Mehmet Yasin

    2016-01-01

    Purpose. To report a case of unilateral frosted branch angiitis (FBA) resembling central retinal vein occlusion associated with Familial Mediterranean Fever (FMF). Case Report. A 32-year-old woman presented with progressive, painless vision loss in her left eye lasting for 2 days. She was clinically diagnosed with FMF 2 months ago. The best-corrected visual acuity (BCVA) was 20/20 in her right eye and there was light perception in the left. Ophthalmologic examination revealed severe retinal vasculitis showing clinical features of FBA in the left eye. 64 mg/day oral methylprednisolone was started. A significant improvement in retinal vasculitis was observed in two weeks. However, BCVA did not increase significantly due to subhyaloid premacular hemorrhage. Argon laser posterior hyaloidotomy was performed. One week after hyaloidotomy, visual acuity improved to 20/20 and intravitreal hemorrhage disappeared. Four months after the first attack, FBA recurred. Oral methylprednisolone dosage was increased to 64 mg/day and combined with azathioprine 150 mg. At the end of 12-month follow-up, the BCVA was 20/25 and development of epiretinal membrane was observed in the left eye. Conclusions. Frosted branch angiitis may occur with gene abnormalities as an underlying condition. Our case showed that FMF might be a causative disease. PMID:28044118

  12. Multisystemic Eosinophilia Resembling Hypereosinophilic Syndrome in a Colony-Bred Owl Monkey (Aotus vociferans)

    PubMed Central

    Gozalo, Alfonso S; Rosenberg, Helene F; Elkins, William R; Montoya, Enrique J; Weller, Richard E

    2009-01-01

    In animals, multisystemic eosinophilic disease is a rare condition characterized by eosinophilic and lymphoplasmacytic infiltrates in various organs. This disorder resembles the human disease known as hypereosinophilic syndrome, a condition defined by prolonged peripheral eosinophilia in the absence of recognizable etiology and associated with end-organ damage. In this report we describe a research-naïve, colony-born, juvenile female owl monkey (Aotus vociferans) who presented clinically with severe respiratory distress and histologically with multiple end-organ infiltration with phenotypically mature eosinophils, plasma cells, and lymphocytes. No tumors or infectious agents were noted either macroscopically or microscopically. Cultures from lung samples revealed no bacteria or fungi. Histologic examination of lung, heart, thymus, liver, spleen, kidney, adrenal, pancreas, stomach, small intestine, and colon revealed no migrating nematode larvae, other parasites, or foreign material that might trigger eosinophilia, nor was there any evidence of or history consistent with an allergic etiology. Given that we ruled out most exogenous and endogenous triggers of eosinophilia, the signs, symptoms, and pathologic findings support the diagnosis of multisystemic eosinophilic disease. To our knowledge, this report is the first description of presumptive hypereosinophilic syndrome in a nonhuman primate. PMID:19476722

  13. Ad-hoc KEEN-type Waves and their Occasional Resemblance to KdV Waveforms

    NASA Astrophysics Data System (ADS)

    Tyshetskiy, Yuriy; Afeyan, Bedros

    2005-10-01

    Nonlinear kinetic waves of the KEEN type [1] but constructed with two BGK recipes are tested with 1D Vlasov-Poisson simulation (1DVPS). One is that of Allis [2] as modified by Johnston (unpublished), the other is that of Eliasson and Shukla [3]. Strong kinetic waves survive well, but not weaker ones. The potential wave trains resemble those from the Korteweg-deVries equation. This proves to be natural when charge density variation with electrostatic potential is like a quadratic polynomial. For expositions on the physics of ponderomotively driven KEEN waves, consult presentations by Afeyan and Savchenko, this conference. (Part of this work was performed under the auspices of the U.S. Department of Energy under grant number DE-FG03-NA00059.) [1] B. Afeyan et al., ``Kinetic Electrostatic Electron Nonlinear (KEEN) Waves and their interactions driven by the ponderomotive force of crossing laser beams'', Proc. IFSA (Inertial Fusion Sciences and Applications 2003, Monterey, CA), 213, B. Hammel, D. Meyerhofer, J. Meyer-ter-Vehn and H. Azechi, editors, American Nuclear Society, 2004. [2] W.P. Allis, paper 3 (pp.21-42), in ``In Honor of Philip M. Morse'', ed. H. Feshbach and K. Ingard, MIT Press (1969). [3] B. Eliasson and P.K. Shukla, Phys. Rev. E 71, 046402 (2005)

  14. Primary uterine cervix melanoma resembling malignant peripheral nerve sheath tumor: a case report.

    PubMed

    Pusceddu, Sara; Bajetta, Emilio; Buzzoni, Roberto; Carcangiu, Maria Luisa; Platania, Marco; Del Vecchio, Michele; Ditto, Antonino

    2008-10-01

    A rare variant of malignant melanoma (MM) of the uterine cervix that mimics a malignant peripheral nerve sheath tumor (MPNST) is described. A 43-year-old white woman was admitted to the hospital complaining of genital discharge and vaginal bleeding. Neoadjuvant chemotherapy and total abdominal hysterectomy and bilateral salpingo-ovariectomy plus pelvic lymphadenectomy were performed, and the diagnosis was MPNST, FIGO IIB. Pathological examination showed a diffuse proliferation of amelanotic spindle cells and large, highly atypical, frequently multinucleated, bizarre, and S100-, HMB-45-, vimentin-positive cells. The patient remained disease-free for 43 months, when an abdominal computed tomographic scan showed local polypoid vaginal lesions, with histological features of typical MM. A pathological review was obtained in our institution by a gynecological pathologist, who defined the primary neoplasm in the cervix as an MM, with a pattern of growth histologically simulating an MPNST, metastatic to the vagina. To our knowledge, this is the first report in literature of MM of the uterine cervix resembling MPNST. Despite its rarity, this variant of MM should be considered when a diagnosis of cervix MPNST is made. The histological and immunohistochemical features of these different entities should be considered in the differential diagnosis.

  15. Manothermosonication of foods and food-resembling systems: effect on nutrient content and nonenzymatic browning.

    PubMed

    Vercet, A; Burgos, J; López-Buesa, P

    2001-01-01

    The effect of manothermosonication (MTS), an emergent technology for food preservation, on thiamin, riboflavin, carotenoids, and ascorbic acid was evaluated in milk and orange juice. The effect of both heat treatment and MTS on several compounds produced in nonenzymatic browning in model systems was also studied. MTS does not affect significantly the nutrient content studied. However, it changes the behavior of nonenzymatic browning. No formation of 5-(hydroxymethyl)-2-furfuraldehyde (HMF) was detected in fruit juice model systems after heat and MTS treatments at the experimental conditions used. In a milk-resembling system, free HMF formation by MTS is higher compared to that by heat treatment. As the MTS temperature increases, free HMF production by both treatments equaled on another. For bound HMF the production rate is lower by MTS than by heat treatment under the experimental conditions used. Formation kinetics of brown pigments and that of fluorescent compounds are different for both treatments. Fluorescence and brown pigment production are faster in MTS.

  16. Silica deposits on Mars with features resembling hot spring biosignatures at El Tatio in Chile.

    PubMed

    Ruff, Steven W; Farmer, Jack D

    2016-11-17

    The Mars rover Spirit encountered outcrops and regolith composed of opaline silica (amorphous SiO2·nH2O) in an ancient volcanic hydrothermal setting in Gusev crater. An origin via either fumarole-related acid-sulfate leaching or precipitation from hot spring fluids was suggested previously. However, the potential significance of the characteristic nodular and mm-scale digitate opaline silica structures was not recognized. Here we report remarkably similar features within active hot spring/geyser discharge channels at El Tatio in northern Chile, where halite-encrusted silica yields infrared spectra that are the best match yet to spectra from Spirit. Furthermore, we show that the nodular and digitate silica structures at El Tatio that most closely resemble those on Mars include complex sedimentary structures produced by a combination of biotic and abiotic processes. Although fully abiotic processes are not ruled out for the Martian silica structures, they satisfy an a priori definition of potential biosignatures.

  17. Evidence of environmental suppression of familial resemblance: height among US Civil War brothers.

    PubMed

    Lauderdale, D S; Rathouz, P J

    1999-01-01

    This study examines, with historical data, whether within family correlations in height varied across environments and whether variability in height was greater in worse environments. To investigate these hypotheses, brothers were identified who were mustered into the Union Army of the US Civil War, using linked records from the 1850 and 1860 censuses and military and medical records. Heights were available for 3898 men aged 18 and older, of whom 595 were further identified as belonging to 288 family sets of two, three or four brothers. Generalized estimating equations were used to concurrently model the mean height, the variance and the correlation between brothers as a function of county population. Heights decreased as county population size increased (p<0.001). The correlation between brothers' heights decreased significantly (p = 0.032) with increasing county population, and the variance increased (p = 0.026). The correlation ranged approximately from 0.63 in the least populous to 0.24 in the most populous counties. The degree of familial resemblance was lower in environments where mean height was lower, and the variability in height was greater, suggesting that the environmental contribution to the variability in height is of greater relative importance in populations reared, on average, in worse environments.

  18. Digital redesign of uncertain interval systems based on time-response resemblance via particle swarm optimization.

    PubMed

    Hsu, Chen-Chien; Lin, Geng-Yu

    2009-07-01

    In this paper, a particle swarm optimization (PSO) based approach is proposed to derive an optimal digital controller for redesigned digital systems having an interval plant based on time-response resemblance of the closed-loop systems. Because of difficulties in obtaining time-response envelopes for interval systems, the design problem is formulated as an optimization problem of a cost function in terms of aggregated deviation between the step responses corresponding to extremal energies of the redesigned digital system and those of their continuous counterpart. A proposed evolutionary framework incorporating three PSOs is subsequently presented to minimize the cost function to derive an optimal set of parameters for the digital controller, so that step response sequences corresponding to the extremal sequence energy of the redesigned digital system suitably approximate those of their continuous counterpart under the perturbation of the uncertain plant parameters. Computer simulations have shown that redesigned digital systems incorporating the PSO-derived digital controllers have better system performance than those using conventional open-loop discretization methods.

  19. Neurogenesis in Aplysia californica resembles nervous system formation in vertebrates. [Sponges

    SciTech Connect

    Jacob, M.H.

    1984-05-01

    The pattern of neurogenesis of the central nervous system of Aplysia californica was investigated by (/sup 3/H)thymidine autoradiography. Large numbers of animals at a series of early developmental stages were labeled with (/sup 3/H)thymidine for 24 or 48 hr and were subsequently sampled at specific intervals throughout the life cycle. I found that proliferative zones, consisting of columnar and placodal ectodermal cells, are established in regions of the body wall adjacent to underlying mesodermal cells. Mitosis in the proliferative zones generates a population of cells which leave the surface and migrate inward to join the nearby forming ganglia. Tracing specific (/sup 3/H)thymidine-labeled cells from the body wall to a particular ganglion and within the ganglion over time suggests that the final genomic replication of the neuronal precursors occurs before the cells join the ganglion while glial cell precursors and differentiating glial cells continue to divide within the ganglion for some time. Ultrastructural examination of the morphological features of the few mitosing cells observed within the Aplysia central nervous system supports this interpretation. The pattern of neurogenesis in the Aplysia central nervous system resembles the proliferation of cells in the neural tube and the migration of neural crest and ectodermal placode cells in the vertebrate nervous system but differs from the pattern described for other invertebrates.

  20. Uterine tumor resembling ovarian sex cord tumor. Case report and review of literature.

    PubMed

    Stefanovic, A; Jeremic, K; Kadija, S; Mitrovic, M; Filimonovic, D; Jankovic-Raznatovic, S; Tavcar, J

    2013-01-01

    A uterine tumor resembling an ovarian sex cord tumor (UTROSCT) shows a poly phenotypic immunophenotype with coexpression of epithelial, myoid, and sex cord markers, as well as hormone receptors. The authors present a case of a 59-year-old multiparous woman admitted to the Institute of Gynecology and Obstetrics Clinical Centre of Serbia in January 2010 due to prolonged vaginal bleeding and abdominal discomfort. The vaginal ultrasound showed an enlarged uterus size of 100 x 74 x 81 mm, with extended cavity with an unhomogenic content and myomas sized 54 x 69 mm located in fundus with secondary changes. She underwent abdominal hysterectomy with adnexectomy. Microscopic examination revealed submucosal uterine tumor with variabile histological organization that had anastomotic trabeculae with solid cellular grupations. Rare mitotic figures (2/10 HPF) were found. Additional imunohistochemistry showed immunophenotype: the sex cord areas were positive for vimentin(++), aSMA(++), AE1/AE3(+), PR(+), and ER(+). The poly phenotypic immunophenotype can be useful in differential diagnosis from other neoplasms but also suggests an origin of UTROSCT from uncommitted stem cell enabling for multidirectional differentiation.

  1. Epithelial proliferation in small ducts of salivary cystadenoma resembling atypical ductal hyperplasia of breast.

    PubMed

    Fahim, Lisa; Weinreb, Ilan; Alexander, Cherupushpam; Perez Ordoñez, Bayardo

    2008-09-01

    Salivary gland cystadenomas are cystic neoplasms with diverse architecture and cytology. Cystadenomas may have a considerable intracystic epithelial component, but an epithelial proliferation in small ducts and cysts resembling atypical ductal hyperplasia of breast has not been documented. The patient was a 68-year-old man with a slow growing right submandibular mass. He has no recurrence 13 months after resection. The tumor was polycystic and measured 3.0 x 2.5 x 2.5 cm. The epithelium of the larger cysts was composed of flat, cuboidal, columnar, and apocrine-like cells. Many of the larger cysts showed "Roman bridges", epithelial tufting, and papillae. The smaller cysts and ducts had apocrine-like cells forming secondary glandular lumens. The ductal cells were surrounded by clear myoepithelial cells. Nuclear pleomorphism and hyperchromasia was seen in the apocrine-like cells. Adjacent to the larger cysts, there was an adenomatoid proliferation of small ducts surrounded by myoepithelial cells. No mitotic activity, necrosis, or stromal invasion was identified. The ductal cells were diffusely positive for keratin 7 and androgen receptors with focal expression of keratin 19 and high-molecular weight keratin. S-100, estrogen and progesterone receptors, and BRST-2 were negative in the ductal cells. Recognition of a prominent intraductal epithelial component in cystadenomas is important to avoid a misdiagnosis of cystadenocarcinoma or low-grade salivary duct carcinoma. Cystadenomas join the list of salivary gland lesions with microscopic similarities to primary lesions of the breast.

  2. Lipid-Mediated Endocytosis

    PubMed Central

    Ewers, Helge; Helenius, Ari

    2011-01-01

    Receptor-mediated endocytosis is used by a number of viruses and toxins to gain entry into cells. Some have evolved to use specific lipids in the plasma membrane as their receptors. They include bacterial toxins such as Shiga and Cholera toxin and viruses such as mouse polyoma virus and simian virus 40. Through multivalent binding to glycosphingolipids, they induce lipid clustering and changes in membrane properties. Internalization occurs by unusual endocytic mechanisms involving lipid rafts, induction of membrane curvature, trans-bilayer coupling, and activation of signaling pathways. Once delivered to early endosomes, they follow diverse intracellular routes to the lumen of the ER, from which they penetrate into the cytosol. The role of the lipid receptors is central in these well-studied processes. PMID:21576253

  3. Metabolism. Part III: Lipids.

    ERIC Educational Resources Information Center

    Bodner, George M.

    1986-01-01

    Describes the metabolic processes of complex lipids, including saponification, activation and transport, and the beta-oxidation spiral. Discusses fatty acid degradation in regard to biochemical energy and ketone bodies. (TW)

  4. Nonbilayer Phospholipid Arrangements Are Toll-Like Receptor-2/6 and TLR-4 Agonists and Trigger Inflammation in a Mouse Model Resembling Human Lupus

    PubMed Central

    Wong-Baeza, Carlos; Tescucano, Alonso; Astudillo, Horacio; Reséndiz, Albany; Landa, Carla; España, Luis; Serafín-López, Jeanet; Estrada-García, Iris; Estrada-Parra, Sergio; Flores-Romo, Leopoldo; Wong, Carlos; Baeza, Isabel

    2015-01-01

    Systemic lupus erythematosus is characterized by dysregulated activation of T and B cells and autoantibodies to nuclear antigens and, in some cases, lipid antigens. Liposomes with nonbilayer phospholipid arrangements induce a disease resembling human lupus in mice, including IgM and IgG antibodies against nonbilayer phospholipid arrangements. As the effect of these liposomes on the innate immune response is unknown and innate immune system activation is necessary for efficient antibody formation, we evaluated the effect of these liposomes on Toll-like receptor (TLR) signaling, cytokine production, proinflammatory gene expression, and T, NKT, dendritic, and B cells. Liposomes induce TLR-4- and, to a lesser ex