Science.gov

Sample records for lipid phosphatase pten

  1. ZN2+ INDUCES COX-2 EXPRESSION THROUGH DOWNREGULATION OF LIPID PHOSPHATASE PTEN

    EPA Science Inventory

    Zn2+ Induces COX-2 Expression through Downregulation of Lipid Phosphatase PTEN
    Weidong Wu*, James M. Samet, Philip A. Bromberg*?, Young E. Whang?, and Lee M. Graves* ?
    *CEMALB, ?Department of Medicine, and ?Department of Pharmacology, UNC-Chapel Hill, NC27599; Human Studie...

  2. Phosphoinositide lipid phosphatase SHIP1 and PTEN coordinate to regulate cell migration and adhesion.

    PubMed

    Mondal, Subhanjan; Subramanian, Kulandayan K; Sakai, Jiro; Bajrami, Besnik; Luo, Hongbo R

    2012-04-01

    The second messenger phosphatidylinositol(3,4,5)P(3) (PtdIns(3,4,5)P(3)) is formed by stimulation of various receptors, including G protein-coupled receptors and integrins. The lipid phosphatases PTEN and SHIP1 are critical in regulating the level of PtdIns(3,4,5)P(3) during chemotaxis. Observations that loss of PTEN had minor and loss of SHIP1 resulted in a severe chemotaxis defect in neutrophils led to the belief that SHIP1 rather than PTEN acts as a predominant phospholipid phosphatase in establishing a PtdIns(3,4,5)P(3) compass. In this study, we show that SHIP1 regulates PtdIns(3,4,5)P(3) production in response to cell adhesion and plays a limited role when cells are in suspension. SHIP1((-)/(-)) neutrophils lose their polarity upon cell adhesion and are extremely adherent, which impairs chemotaxis. However, chemo-taxis can be restored by reducing adhesion. Loss of SHIP1 elevates Akt activation following cell adhesion due to increased PtdIns(3,4,5)P(3) production. From our observations, we conclude that SHIP1 prevents formation of top-down PtdIns(3,4,5)P(3) polarity to facilitate proper cell attachment and detachment during chemotaxis.

  3. Interactions of phosphatase and tensin homologue (PTEN) proteins with phosphatidylinositol phosphates: insights from molecular dynamics simulations of PTEN and voltage sensitive phosphatase.

    PubMed

    Kalli, Antreas C; Devaney, Isabel; Sansom, Mark S P

    2014-03-25

    The phosphatase and tensin homologue (PTEN) and the Ciona intestinalis voltage sensitive phosphatase (Ci-VSP) are both phosphatidylinositol phosphate (PIP) phosphatases that contain a C2 domain. PTEN is a tumor suppressor protein that acts as a phosphatase on PIP3 in mammalian cell membranes. It contains two principal domains: a phosphatase domain (PD) and a C2 domain. Despite detailed structural and functional characterization, less is known about its mechanism of interaction with PIP-containing lipid bilayers. Ci-VSP consists of an N-terminal transmembrane voltage sensor domain and a C-terminal PTEN domain, which in turn contains a PD and a C2 domain. The nature of the interaction of the PTEN domain of Ci-VSP with membranes has not been well established. We have used multiscale molecular dynamics simulations to define the interaction mechanisms of PTEN and of the Ci-VSP PTEN domains with PIP-containing lipid bilayers. Our results suggest a novel mechanism of association of the PTEN with such bilayers, in which an initial electrostatics-driven encounter of the protein and bilayer is followed by reorientation of the protein to optimize its interactions with PIP molecules in the membrane. Although a PIP3 molecule binds close to the active site of PTEN, our simulations suggest a further conformational change of the protein may be required for catalytically productive binding to occur. Ci-VSP interacted with membranes in an orientation comparable to that of PTEN but bound directly to PIP-containing membranes without a subsequent reorientation step. Again, PIP3 bound close to the active site of the Ci-VSP PD, but not in a catalytically productive manner. Interactions of Ci-VSP with the bilayer induced clustering of PIP molecules around the protein.

  4. Impact of lipid phosphatases SHIP2 and PTEN on the time- and Akt-isoform-specific amelioration of TNF-alpha-induced insulin resistance in 3T3-L1 adipocytes.

    PubMed

    Ikubo, Mariko; Wada, Tsutomu; Fukui, Kazuhito; Ishiki, Manabu; Ishihara, Hajime; Asano, Tomoichiro; Tsuneki, Hiroshi; Sasaoka, Toshiyasu

    2009-01-01

    TNF-alpha is a major contributor to the pathogenesis of insulin resistance associated with obesity and inflammation by serine phosphorylating and degrading insulin receptor substrate-1. Presently, we further found that pretreatment with TNF-alpha inhibited insulin-induced phosphorylation of Akt2 greater than Akt1. Since lipid phosphatases SH2-containing inositol 5'-phoshatase 2 (SHIP2) and phosphatase and tensin homologs deleted on chromosome 10 (PTEN) are negative regulators of insulin's metabolic signaling at the step downstream of phosphatidylinositol 3-kinase, we investigated the Akt isoform-specific properties of these phosphatases in the negative regulation after short- and long-term insulin treatment and examined the influence of inhibition on the amelioration of insulin resistance caused by TNF-alpha in 3T3-L1 adipocytes. Adenovirus-mediated overexpression of WT-SHIP2 decreased the phosphorylation of Akt2 greater than Akt1 after insulin stimulation up to 15 min. Expression of a dominant-negative DeltaIP-SHIP2 enhanced the phosphorylation of Akt2 up to 120 min. On the other hand, overexpression of WT-PTEN inhibited the phosphorylation of both Akt1 and Akt2 after short- but not long-term insulin treatment. The expression of DeltaIP-PTEN enhanced the phosphorylation of Akt1 at 120 min and that of Akt2 at 2 min. Interestingly, the expression of DeltaIP-SHIP2, but not DeltaIP-PTEN, protected against the TNF-alpha inhibition of insulin-induced phosphorylation of Akt2, GSK3, and AS160, whereas both improved the TNF-alpha inhibition of insulin-induced 2-deoxyglucose uptake. The results indicate that these lipid phosphatases possess different characteristics according to the time and preference of Akt isoform-dependent signaling in the negative regulation of the metabolic actions of insulin, whereas both inhibitions are effective in the amelioration of insulin resistance caused by TNF-alpha.

  5. A novel class of PTEN protein in Arabidopsis displays unusual phosphoinositide phosphatase activity and efficiently binds phosphatidic acid.

    PubMed

    Pribat, Anne; Sormani, Rodnay; Rousseau-Gueutin, Mathieu; Julkowska, Magdalena M; Testerink, Christa; Joubès, Jerôme; Castroviejo, Michel; Laguerre, Michel; Meyer, Christian; Germain, Véronique; Rothan, Christophe

    2012-01-01

    PTEN (phosphatase and tensin homologue deleted on chromosome ten) proteins are dual phosphatases with both protein and phosphoinositide phosphatase activity. They modulate signalling pathways controlling growth, metabolism and apoptosis in animals and are implied in several human diseases. In the present paper we describe a novel class of PTEN pro-teins in plants, termed PTEN2, which comprises the AtPTEN (Arabidopsis PTEN) 2a and AtPTEN2b proteins in Arabidopsis. Both display low in vitro tyrosine phosphatase activity. In addition, AtPTEN2a actively dephosphorylates in vitro the 3' phosphate group of PI3P (phosphatidylinositol 3-phosphate), PI(3,4)P2 (phosphatidylinositol 3,4-bisphosphate) and PI(3,5)P2 (phosphatidylinositol 3,5-bisphosphate). In contrast with animal PTENs, PI(3,4,5)P3 (phosphatidylinositol 3,4,5-trisphosphate) is a poor substrate. Site-directed mutagenesis of AtPTEN2a and molecular modelling of protein-phosphoinositide interactions indicated that substitutions at the PTEN2 core catalytic site of the Lys267 and Gly268 residues found in animals, which are critical for animal PTEN activity, by Met267 and Ala268 found in the eudicot PTEN2 are responsible for changes in substrate specificity. Remarkably, the AtPTEN2a protein also displays strong binding activity for PA (phosphatidic acid), a major lipid second messenger in plants. Promoter::GUS (β-glucuronidase) fusion, transcript and protein analyses further showed the transcriptional regulation of the ubiquitously expressed AtPTEN2a and AtPTEN2b by salt and osmotic stress. The results of the present study suggest a function for this novel class of plant PTEN proteins as an effector of lipid signalling in plants.

  6. The PTEN phosphatase functions cooperatively with the Fanconi anemia proteins in DNA crosslink repair

    PubMed Central

    Vuono, Elizabeth A.; Mukherjee, Ananda; Vierra, David A.; Adroved, Morganne M.; Hodson, Charlotte; Deans, Andrew J.; Howlett, Niall G.

    2016-01-01

    Fanconi anemia (FA) is a genetic disease characterized by bone marrow failure and increased cancer risk. The FA proteins function primarily in DNA interstrand crosslink (ICL) repair. Here, we have examined the role of the PTEN phosphatase in this process. We have established that PTEN-deficient cells, like FA cells, exhibit increased cytotoxicity, chromosome structural aberrations, and error-prone mutagenic DNA repair following exposure to ICL-inducing agents. The increased ICL sensitivity of PTEN-deficient cells is caused, in part, by elevated PLK1 kinase-mediated phosphorylation of FANCM, constitutive FANCM polyubiquitination and degradation, and the consequent inefficient assembly of the FA core complex, FANCD2, and FANCI into DNA repair foci. We also establish that PTEN function in ICL repair is dependent on its protein phosphatase activity and ability to be SUMOylated, yet is independent of its lipid phosphatase activity. Finally, via epistasis analysis, we demonstrate that PTEN and FANCD2 function cooperatively in ICL repair. PMID:27819275

  7. Purinergic receptor-mediated rapid depletion of nuclear phosphorylated Akt depends on pleckstrin homology domain leucine-rich repeat phosphatase, calcineurin, protein phosphatase 2A, and PTEN phosphatases.

    PubMed

    Mistafa, Oras; Ghalali, Aram; Kadekar, Sandeep; Högberg, Johan; Stenius, Ulla

    2010-09-03

    Akt is an important oncoprotein, and data suggest a critical role for nuclear Akt in cancer development. We have previously described a rapid (3-5 min) and P2X7-dependent depletion of nuclear phosphorylated Akt (pAkt) and effects on downstream targets, and here we studied mechanisms behind the pAkt depletion. We show that cholesterol-lowering drugs, statins, or extracellular ATP, induced a complex and coordinated response in insulin-stimulated A549 cells leading to depletion of nuclear pAkt. It involved protein/lipid phosphatases PTEN, pleckstrin homology domain leucine-rich repeat phosphatase (PHLPP1 and -2), protein phosphatase 2A (PP2A), and calcineurin. We employed immunocytology, immunoprecipitation, and proximity ligation assay techniques and show that PHLPP and calcineurin translocated to the nucleus and formed complexes with Akt within 3 min. Also PTEN translocated to the nucleus and then co-localized with pAkt close to the nuclear membrane. An inhibitor of the scaffolding immunophilin FK506-binding protein 51 (FKBP51) and calcineurin, FK506, prevented depletion of nuclear pAkt. Furthermore, okadaic acid, an inhibitor of PP2A, prevented the nuclear pAkt depletion. Chemical inhibition and siRNA indicated that PHLPP, PP2A, and PTEN were required for a robust depletion of nuclear pAkt, and in prostate cancer cells lacking PTEN, transfection of PTEN restored the statin-induced pAkt depletion. The activation of protein and lipid phosphatases was paralleled by a rapid proliferating cell nuclear antigen (PCNA) translocation to the nucleus, a PCNA-p21(cip1) complex formation, and cyclin D1 degradation. We conclude that these effects reflect a signaling pathway for rapid depletion of pAkt that may stop the cell cycle.

  8. Inhibitory effect of atorvastatin on the cell growth of cardiac myxomas via the PTEN and PHLPP2 phosphatase signaling pathway.

    PubMed

    Wu, Xing-Li; Yang, Ding-You; Tan, Duan-Jun; Yao, Heng-Chen; Chai, Wenhui; Peng, Li

    2013-08-01

    Insulin-like growth factor 1 (IGF-1) is a molecule with strong proliferative effects, and statins have been reported to exhibit antitumor effects based on clinical and experimental studies. However, their effects on cardiac myxoma (CM) cells and the underlying signaling mechanism(s) are largely unknown. Therefore, we investigated whether the protein/lipid phosphatases and tensin homolog deleted on chromosome ten (PTEN) and pleckstrin homology domain leucine-rich repeat phosphatase 1 and 2 (PHLPP1 and 2) are involved in the proliferative effect of IGF-1 on CM cells and the pharmacological impact of atorvastatin. The activity of PTEN and PHLPPs was determined using specific substrate diC16PIP3 and pNPP. We found that IGF-1 enhanced CM cell proliferation and inhibited both PTEN and PHLPP2 activity in a concentration- and time-dependent manner. Atorvastatin acted counter to IGF-1 and reversed the above effects mediated by IGF-1. Both IGF-1 and atorvastatin did not affect the activity of PHLPP1 and the protein expression of the three phosphatases. The results suggest that IGF-1 may exert its proliferative effects by negatively regulating the PTEN/PHLPP2 signaling pathway in CM cells, and atorvastatin may be a potential drug for the treatment of CM by enhancing the activity of PTEN and PHLPP2.

  9. Coordinate suppression of B cell lymphoma by PTEN and SHIP phosphatases.

    PubMed

    Miletic, Ana V; Anzelon-Mills, Amy N; Mills, David M; Omori, Sidne A; Pedersen, Irene M; Shin, Dong-Mi; Ravetch, Jeffrey V; Bolland, Silvia; Morse, Herbert C; Rickert, Robert C

    2010-10-25

    The inositol phosphatases phosphatase and tensin homologue (PTEN) and Src homology 2 domain-containing inositol phosphatase (SHIP) negatively regulate phosphatidylinositol-3-kinase (PI3K)-mediated growth, survival, and proliferation of hematopoietic cells. Although deletion of PTEN in mouse T cells results in lethal T cell lymphomas, we find that animals lacking PTEN or SHIP in B cells show no evidence of malignancy. However, concomitant deletion of PTEN and SHIP (bPTEN/SHIP(-/-)) results in spontaneous and lethal mature B cell neoplasms consistent with marginal zone lymphoma or, less frequently, follicular or centroblastic lymphoma. bPTEN/SHIP(-/-) B cells exhibit enhanced survival and express more MCL1 and less Bim. These cells also express low amounts of p27(kip1) and high amounts of cyclin D3 and thus appear poised to undergo proliferative expansion. Unlike normal B cells, bPTEN/SHIP(-/-) B cells proliferate to the prosurvival factor B cell activating factor (BAFF). Interestingly, although BAFF availability may promote lymphoma progression, we demonstrate that BAFF is not required for the expansion of transferred bPTEN/SHIP(-/-) B cells. This study reveals that PTEN and SHIP act cooperatively to suppress B cell lymphoma and provides the first direct evidence that SHIP is a tumor suppressor. As such, assessment of both PTEN and SHIP function are relevant to understanding the etiology of human B cell malignancies that exhibit augmented activation of the PI3K pathway.

  10. Redox Modulation of PTEN Phosphatase Activity by Hydrogen Peroxide and Bisperoxidovanadium Complexes.

    PubMed

    Lee, Chang-Uk; Hahne, Gernot; Hanske, Jonas; Bange, Tanja; Bier, David; Rademacher, Christoph; Hennig, Sven; Grossmann, Tom N

    2015-11-09

    PTEN is a dual-specificity protein tyrosine phosphatase. As one of the central tumor suppressors, a thorough regulation of its activity is essential for proper cellular homeostasis. The precise implications of PTEN inhibition by reactive oxygen species (e.g. H2 O2 ) and the subsequent structural consequences remain elusive. To study the effects of PTEN inhibition, bisperoxidovanadium (bpV) complexes serve as important tools with the potential for the treatment of nerve injury or cardiac ischemia. However, their mode of action is unknown, hampering further optimization and preventing therapeutic applications. Based on protein crystallography, mass spectrometry, and NMR spectroscopy, we elucidate the molecular basis of PTEN inhibition by H2O2 and bpV complexes. We show that both molecules inhibit PTEN via oxidative mechanisms resulting in the formation of the same intramolecular disulfide, therefore enabling the reactivation of PTEN under reductive conditions.

  11. Determinants of the tumor suppressor INPP4B protein and lipid phosphatase activities.

    PubMed

    Lopez, Sandra M; Hodgson, Myles C; Packianathan, Charles; Bingol-Ozakpinar, Ozlem; Uras, Fikriye; Rosen, Barry P; Agoulnik, Irina U

    2013-10-18

    The tumor suppressor INPP4B is an important regulator of phosphatidyl-inositol signaling in the cell. Reduced INPP4B expression is associated with poor outcomes for breast, prostate, and ovarian cancer patients. INPP4B contains a CX5R catalytic motif characteristic of dual-specificity phosphatases, such as PTEN. Lipid phosphatase activity of INPP4B has previously been described. In this report we show that INPP4B can dephosphorylate para-nitrophenyl phosphate (pNPP) and 6,8-difluoro-4-methylumbelliferyl (DiFMUP), synthetic phosphotyrosine analogs, suggesting that INPP4B has protein tyrosine phosphatase (PTP) activity. Using mutagenesis, we examined the functional role of specific amino acids within the INPP4B C842KSAKDR catalytic site. The K843M mutant displayed increased pNPP hydrolysis, the K846M mutant lost lipid phosphatase activity with no effect on PTP activity, and the D847E substitution ablated PTP activity and significantly reduced lipid phosphatase activity. Further, we show that INPP4B but not PTEN is able to reduce tyrosine phosphorylation of Akt1 and both the lipid and PTP activity of INPP4B likely contribute to the reduction of Akt1 phosphorylation. Taken together our data identified key residues in the INPP4B catalytic domain associated with lipid and protein phosphatase activities and found a robust downstream target regulated by INPP4B but not PTEN.

  12. Pten signaling in gliomas.

    PubMed Central

    Knobbe, Christiane B.; Merlo, Adrian; Reifenberger, Guido

    2002-01-01

    In 1997, the PTEN gene (phosphatase and tensin homolog deleted on chromosome 10) was identified as a tumor suppressor gene on the long arm of chromosome 10. Since then, important progress has been made with respect to the understanding of the role of the Pten protein in the normal development of the brain as well as in the molecular pathogenesis of human gliomas. This review summarizes the current state of the art concerning the involvement of aberrant Pten function in the development of different biologic features of malignant gliomas, such as loss of cell-cycle control and uncontrolled cell proliferation, escape from apoptosis, brain invasion, and aberrant neoangiogenesis. Most of the tumor-suppressive properties of Pten are dependent on its lipid phosphatase activity, which inhibits the phosphatidylinositol-3'-kinase (PI3K)/Akt signaling pathway through dephosphorylation of phosphatidylinositol-(3,4,5)-triphosphate. The additional function of Pten as a dual-specificity protein phosphatase may also play a role in glioma pathogenesis. Besides the wealth of data elucidating the functional roles of Pten, recent studies suggest a diagnostic significance of PTEN gene alterations as a molecular marker for poor prognosis in anaplastic astrocytomas and anaplastic oligodendrogliomas. Furthermore, the possibility of selective targeting of PTEN mutant tumor cells by specific pharmacologic inhibitors of members of the Pten/PI3K/Akt pathway opens up new perspectives for a targeted molecular therapy of malignant gliomas. PMID:12084351

  13. Crystal structure of lipid phosphatase Escherichia coli phosphatidylglycerophosphate phosphatase B.

    PubMed

    Fan, Junping; Jiang, Daohua; Zhao, Yan; Liu, Jianfeng; Zhang, Xuejun Cai

    2014-05-27

    Membrane-integrated type II phosphatidic acid phosphatases (PAP2s) are important for numerous bacterial to human biological processes, including glucose transport, lipid metabolism, and signaling. Escherichia coli phosphatidylglycerol-phosphate phosphatase B (ecPgpB) catalyzes removing the terminal phosphate group from a lipid carrier, undecaprenyl pyrophosphate, and is essential for transport of many hydrophilic small molecules across the membrane. We determined the crystal structure of ecPgpB at a resolution of 3.2 Å. This structure shares a similar folding topology and a nearly identical active site with soluble PAP2 enzymes. However, the substrate binding mechanism appears to be fundamentally different from that in soluble PAP2 enzymes. In ecPgpB, the potential substrate entrance to the active site is located in a cleft formed by a V-shaped transmembrane helix pair, allowing lateral movement of the lipid substrate entering the active site from the membrane lipid bilayer. Activity assays of point mutations confirmed the importance of the catalytic residues and potential residues involved in phosphate binding. The structure also suggests an induced-fit mechanism for the substrate binding. The 3D structure of ecPgpB serves as a prototype to study eukaryotic PAP2 enzymes, including human glucose-6-phosphatase, a key enzyme in the homeostatic regulation of blood glucose concentrations.

  14. Phosphoinositide lipid phosphatases: natural regulators of phosphoinositide 3-kinase signaling in T lymphocytes.

    PubMed

    Harris, Stephanie J; Parry, Richard V; Westwick, John; Ward, Stephen G

    2008-02-01

    The phosphoinositide 3-kinase signaling pathway has been implicated in a range of T lymphocyte cellular functions, particularly growth, proliferation, cytokine secretion, and survival. Dysregulation of phosphoinositide 3-kinase-dependent signaling and function in leukocytes, including B and T lymphocytes, has been implicated in many inflammatory and autoimmune diseases. As befits a pivotal signaling cascade, several mechanisms exist to ensure that the pathway is tightly regulated. This minireview focuses on two lipid phosphatases, viz. the 3'-phosphatase PTEN (phosphatase and tensin homolog deleted on chromosome 10) and SHIP (Src homology 2 domain-containing inositol-5-phosphatase). We discuss their role in regulating T lymphocyte signaling as well their potential as future therapeutic targets.

  15. Lipid phosphatase SHIP2 functions as oncogene in colorectal cancer by regulating PKB activation

    PubMed Central

    Hoekstra, Elmer; Das, Asha M.; Willemsen, Marcella; Swets, Marloes; Kuppen, Peter J.K.; van der Woude, Christien J.; Bruno, Marco J.; Shah, Jigisha P.; Hagen, Timo L.M. ten; Chisholm, John D.; Kerr, William G.; Peppelenbosch, Maikel P.; Fuhler, Gwenny M.

    2016-01-01

    Colorectal cancer (CRC) is the second most common cause of cancer-related death, encouraging the search for novel therapeutic targets affecting tumor cell proliferation and migration. These cellular processes are under tight control of two opposing groups of enzymes; kinases and phosphatases. Aberrant activity of kinases is observed in many forms of cancer and as phosphatases counteract such “oncogenic” kinases, it is generally assumed that phosphatases function as tumor suppressors. However, emerging evidence suggests that the lipid phosphatase SH2-domain-containing 5 inositol phosphatase (SHIP2), encoded by the INPPL1 gene, may act as an oncogene. Just like the well-known tumor suppressor gene Phosphatase and Tensin Homolog (PTEN) it hydrolyses phosphatidylinositol (3,4,5) triphosphate (PI(3,4,5)P3). However, unlike PTEN, the reaction product is PI(3,4)P2, which is required for full activation of the downstream protein kinase B (PKB/Akt), suggesting that SHIP2, in contrast to PTEN, could have a tumor initiating role through PKB activation. In this work, we investigated the role of SHIP2 in colorectal cancer. We found that SHIP2 and INPPL1 expression is increased in colorectal cancer tissue in comparison to adjacent normal tissue, and this is correlated with decreased patient survival. Moreover, SHIP2 is more active in colorectal cancer tissue, suggesting that SHIP2 can induce oncogenesis in colonic epithelial cells. Furthermore, in vitro experiments performed on colorectal cancer cell lines shows an oncogenic role for SHIP2, by enhancing chemoresistance, cell migration, and cell invasion. Together, these data indicate that SHIP2 expression contributes to the malignant potential of colorectal cancer, providing a possible target in the fight against this devastating disease. PMID:27716613

  16. Characterization of MTMR3. an inositol lipid 3-phosphatase with novel substrate specificity.

    PubMed

    Walker, D M; Urbé, S; Dove, S K; Tenza, D; Raposo, G; Clague, M J

    2001-10-16

    Inositol lipids play key roles in many fundamental cellular processes that include growth, cell survival, motility, and membrane trafficking. Recent studies on the PTEN and Myotubularin proteins have underscored the importance of inositol lipid 3-phosphatases in cell function. Inactivating mutations in the genes encoding PTEN and Myotubularin are key steps in the progression of some cancers and in the onset of X-linked myotubular myopathy, respectively. Myotubularin-related protein 3 (MTMR3) shows extensive homology to Myotubularin, including the catalytic domain, but additionally possesses a C-terminal extension that includes a FYVE domain. We show that MTMR3 is an inositol lipid 3-phosphatase, with a so-far-unique substrate specificity. It is able to hydrolyze PtdIns3P and PtdIns3,5P2, both in vitro and when heterologously expressed in S. cerevisiae, and to thereby provide the first clearly defined route for the cellular production of PtdIns5P. Overexpression of a catalytically dead MTMR3 (C413S) in mammalian cells induces a striking formation of vacuolar compartments that enclose membranous structures that are highly concentrated in mutant proteins.

  17. A method to control phosphoinositides and to analyze PTEN function in living cells using voltage sensitive phosphatases

    PubMed Central

    Mavrantoni, Angeliki; Thallmair, Veronika; Leitner, Michael G.; Schreiber, Daniela N.; Oliver, Dominik; Halaszovich, Christian R.

    2015-01-01

    Voltage sensitive phosphatases (VSPs), including engineered voltage sensitive PTEN, are excellent tools to rapidly and reversibly alter the phosphoinositide (PI) content of the plasma membrane in vivo and study the tumor suppressor PTEN. However, widespread adoption of these tools is hampered by the requirement for electrophysiological instrumentation to control the activity of VSPs. Additionally, monitoring and quantifying the PI changes in living cells requires sophisticated microscopy equipment and image analysis. Here we present methods that bypass these obstacles. First, we explore technically simple means for activation of VSPs via extracellularly applied agents or light. Secondly, we characterize methods to monitor PI(4,5)P2 and PI(3,4,5)P3 levels using fluorescence microscopy or photometry in conjunction with translocation or FRET based PI probes, respectively. We then demonstrate the application of these techniques by characterizing the effect of known PTEN mutations on its enzymatic activity, analyzing the effect of PTEN inhibitors, and detecting in real time rapid inhibition of protein kinase B following depletion of PI(3,4,5)P3. Thus, we established an approach that does not only allow for rapidly manipulating and monitoring PI(4,5)P2 and PI(3,4,5)P3 levels in a population of cells, but also facilitates the study of PTEN mutants and pharmacological targeting in mammalian cells. PMID:25873899

  18. Identification of novel PTEN-binding partners: PTEN interaction with fatty acid binding protein FABP4.

    PubMed

    Gorbenko, O; Panayotou, G; Zhyvoloup, A; Volkova, D; Gout, I; Filonenko, V

    2010-04-01

    PTEN is a tumor suppressor with dual protein and lipid-phosphatase activity, which is frequently deleted or mutated in many human advanced cancers. Recent studies have also demonstrated that PTEN is a promising target in type II diabetes and obesity treatment. Using C-terminal PTEN sequence in pEG202-NLS as bait, yeast two-hybrid screening on Mouse Embryo, Colon Cancer, and HeLa cDNA libraries was carried out. Isolated positive clones were validated by mating assay and identified through automated DNA sequencing and BLAST database searches. Sequence analysis revealed a number of PTEN-binding proteins linking this phosphatase to a number of different signaling cascades, suggesting that PTEN may perform other functions besides tumor-suppressing activity in different cell types. In particular, the interplay between PTEN function and adipocyte-specific fatty-acid-binding protein FABP4 is of notable interest. The demonstrable tautology of PTEN to FABP4 suggested a role for this phosphatase in the regulation of lipid metabolism and adipocyte differentiation. This interaction was further studied using coimmunoprecipitation and gel-filtration assays. Finally, based on Biacore assay, we have calculated the K(D) of PTEN-FABP4 complex, which is around 2.8 microM.

  19. Protein tyrosine phosphatases PTP-1B, SHP-2, and PTEN facilitate Rb/E2F-associated apoptotic signaling.

    PubMed

    Morales, Liza D; Casillas Pavón, Edgar A; Shin, Jun Wan; Garcia, Alexander; Capetillo, Mario; Kim, Dae Joon; Lieman, Jonathan H

    2014-01-01

    To maintain tissue homeostasis, apoptosis is functionally linked to the cell cycle through the retinoblastoma (Rb)/E2F pathway. When the Rb tumor suppressor protein is functionally inactivated, E2F1 elicits an apoptotic response through both intrinsic (caspase-9 mediated) and extrinsic (caspase-8 mediated) apoptotic pathways in order to eliminate hyperproliferative cells. Rb/E2F-associated apoptosis has been demonstrated to be associated with the loss of constitutive transcriptional repression by Rb/E2F complexes and mediated by caspase-8. Protein tyrosine phosphatases (PTPs) PTP-1B and SHP-2 have been previously shown to be directly activated by loss of Rb/E2F repression during Rb/E2F-associated apoptosis. In this current study, we demonstrate that the PTEN tumor suppressor is also directly activated by loss of Rb/E2F repression. We also demonstrate that PTP-1B, SHP-2, and PTEN play a functional role in Rb/E2F-associated apoptosis. Knockdown of PTP1B, SHP2, or PTEN expression with small interfering RNA (siRNA) in apoptotic cells increases cell viability and rescues cells from the Rb/E2F-associated apoptotic response. Furthermore, rescue from apoptosis coincides with inhibition of caspase-8 and caspase-3 cleavage (activation). Our results indicate PTP-1B, SHP-2, and PTEN all play a functional role in Rb/E2F-associated apoptotic signal transduction and provide further evidence that PTP-1B, SHP-2, and PTEN can contribute to tumor suppression through an Rb/E2F-associated mechanism.

  20. Acid phosphatase and lipid peroxidation in human cataractous lens epithelium.

    PubMed

    Vasavada, A R; Thampi, P; Yadav, S; Rawal, U M

    1993-12-01

    The anterior lens epithelial cells undergo a variety of degenerative and proliferative changes during cataract formation. Acid phosphatase is primarily responsible for tissue regeneration and tissue repair. The lipid hydroperoxides that are obtained by lipid peroxidation of polysaturated or unsaturated fatty acids bring about deterioration of biological membranes at cellular and tissue levels. Acid phosphatase and lipid peroxidation activities were studied on the lens epithelial cells of nuclear cataract, posterior subcapsular cataract, mature cataract, and mixed cataract. Of these, mature cataractous lens epithelium showed maximum activity for acid phosphatase (516.83 moles of p-nitrophenol released/g lens epithelium) and maximum levels of lipid peroxidation (86.29 O.D./min/g lens epithelium). In contrast, mixed cataractous lens epithelium showed minimum activity of acid phosphatase (222.61 moles of p-nitrophenol released/g lens epithelium) and minimum levels of lipid peroxidation (54.23 O.D./min/g lens epithelium). From our study, we correlated the maximum activity of acid phosphatase in mature cataractous lens epithelium with the increased areas of superimposed cells associated with the formation of mature cataract. Likewise, the maximum levels of lipid peroxidation in mature cataractous lens epithelium was correlated with increased permeability of the plasma membrane. Conversely, the minimum levels of lipid peroxidation in mixed cataractous lens epithelium makes us presume that factors other than lipid peroxidation may also account for the formation of mixed type of cataract.

  1. A phosphatase-independent gain-of-function mutation in PTEN triggers aberrant cell growth in astrocytes through an autocrine IGF-1 loop.

    PubMed

    Fernández, S; Genis, L; Torres-Alemán, I

    2014-08-07

    Loss-of-function mutations in the phosphatase PTEN (phosphatase and tensin homolog deleted on chromosome10) contribute to aberrant cell growth in part through upregulation of the mitogenic IGF-1/PI3K/Akt pathway. In turn, this pathway exerts a homeostatic feedback over PTEN. Using mutagenesis analysis to explore a possible impact of this mutual control on astrocyte growth, we found that truncation of the C-terminal region of PTEN (Δ51) associates with a marked increase in NFκB activity, a transcription factor overactivated in astrocyte tumors. Whereas mutations of PTEN are considered to lead to a loss-of-function, PTENΔ51, a truncation that comprises a region frequently mutated in human gliomas, displayed a neomorphic (gain-of-function) activity that was independent of its phosphatase activity. This gain-of-function of PTENΔ51 includes stimulation of IGF-1 synthesis through protein kinase A activation of the IGF-1 promoter. Increased IGF-1 originates an autocrine loop that activates Akt and NFκB. Constitutive activation of NFκB in PTENΔ51-expressing astrocytes leads to aberrant cell growth; astrocytes expressing this mutant PTEN generate colonies in vitro and tumors in vivo. Mutations converting a tumor suppressor such as PTEN into a tumor promoter through a gain-of-function involving IGF-1 production may further our understanding of the role played by this growth factor in glioma growth and help us define druggable targets for personalized therapy.

  2. PTEN inhibits PREX2-catalyzed activation of RAC1 to restrain tumor cell invasion.

    PubMed

    Mense, Sarah M; Barrows, Douglas; Hodakoski, Cindy; Steinbach, Nicole; Schoenfeld, David; Su, William; Hopkins, Benjamin D; Su, Tao; Fine, Barry; Hibshoosh, Hanina; Parsons, Ramon

    2015-03-31

    The tumor suppressor PTEN restrains cell migration and invasion by a mechanism that is independent of inhibition of the PI3K pathway and decreased activation of the kinase AKT. PREX2, a widely distributed GEF that activates the GTPase RAC1, binds to and inhibits PTEN. We used mouse embryonic fibroblasts and breast cancer cell lines to show that PTEN suppresses cell migration and invasion by blocking PREX2 activity. In addition to metabolizing the phosphoinositide PIP₃, PTEN inhibited PREX2-induced invasion by a mechanism that required the tail domain of PTEN, but not its lipid phosphatase activity. Fluorescent nucleotide exchange assays revealed that PTEN inhibited the GEF activity of PREX2 toward RAC1. PREX2 is a frequently mutated GEF in cancer, and examination of human tumor data showed that PREX2 mutation was associated with high PTEN expression. Therefore, we tested whether cancer-derived somatic PREX2 mutants, which accelerate tumor formation of immortalized melanocytes, were inhibited by PTEN. The three stably expressed, somatic PREX2 cancer mutants that we tested were resistant to PTEN-mediated inhibition of invasion but retained the ability to inhibit the lipid phosphatase activity of PTEN. In vitro analysis showed that PTEN did not block the GEF activity of two PREX2 cancer mutants and had a reduced binding affinity for the third. Thus, PTEN antagonized migration and invasion by restraining PREX2 GEF activity, and PREX2 mutants are likely selected in cancer to escape PTEN-mediated inhibition of invasion.

  3. PTEN inhibitors: an evaluation of current compounds.

    PubMed

    Spinelli, Laura; Lindsay, Yvonne E; Leslie, Nicholas R

    2015-01-01

    Small molecule inhibitors of many classes of enzymes, including phosphatases, have widespread use as experimental tools and as therapeutics. Efforts to develop inhibitors against the lipid phosphatase and tumour suppressor, PTEN, was for some time limited by concerns that their use as therapy could result in increased risk of cancer. However, the accumulation of evidence that short term PTEN inhibition may be valuable in conditions such as nerve injury has raised interest. Here we investigate the inhibition of PTEN by four available PTEN inhibitors, bpV(phen), bpV(pic), VO-OHpic and SF1670 and compared this inhibition with that of only 3 other related enzymes, the tyrosine phosphatase SHP1 and the phosphoinositide phosphatases INPP4A and INPP4B. Even with this very small number of comparators, for all compounds, inhibition of multiple enzymes was observed and with all three vanadate compounds, this was similar or more potent than the inhibition of PTEN. In particular, the bisperoxovanadate compounds were found to inhibit PTEN poorly in the presence of reducing agents including the cellular redox buffer glutathione.

  4. Cdh1, a substrate-recruiting component of anaphase-promoting complex/cyclosome (APC/C) ubiquitin E3 ligase, specifically interacts with phosphatase and tensin homolog (PTEN) and promotes its removal from chromatin.

    PubMed

    Choi, Byeong Hyeok; Pagano, Michele; Huang, Chaunshu; Dai, Wei

    2014-06-20

    A pool of PTEN localizes to the nucleus. However, the exact mechanism by which nuclear PTEN is regulated remains unclear. We have recently reported that Plk1 specifically phosphorylates PTEN on Ser-380 during mitosis. Here we report that PTEN also localized to chromatin and that chromatin PTEN was removed by a proteasome-dependent process during mitotic exit. Pulldown analysis revealed that Cdh1, but not Cdc20, was significantly associated with PTEN. Cdh1 interacted with PTEN via two separate domains, and their interaction was enhanced by MG132, a proteasome inhibitor. Cdh1 negatively controlled the stability of chromatin PTEN by polyubiquitination. Phosphorylation of PTEN on Ser-380 impaired its interaction with Cdh1, thus positively regulating PTEN stability on chromatin. Significantly, the PTEN interaction with Cdh1 was phosphatase-independent, and Cdh1 knockdown via RNAi led to significant accumulation of chromatin PTEN, delaying mitotic exit. Combined, our studies identify Cdh1 as an important regulator of nuclear/chromatin PTEN during mitosis.

  5. The tumor suppressor PTEN regulates motor responses to striatal dopamine in normal and Parkinsonian animals.

    PubMed

    Stavarache, Mihaela A; Musatov, Sergei; McGill, Marlon; Vernov, Mary; Kaplitt, Michael G

    2015-10-01

    Phosphatase and Tensin homolog deleted on chromosome 10 (PTEN) is a dual lipid-protein phosphatase known primarily as a growth preventing tumor suppressor. PTEN is also expressed in neurons, and pathways modulated by PTEN can influence neuronal function. Here we report a novel function of PTEN as a regulator of striatal dopamine signaling in a model of Parkinson's disease (PD). Blocking PTEN expression with an adeno-associated virus (AAV) vector expressing a small hairpin RNA (shRNA) resulted in reduced responses of cultured striatal neurons to dopamine, which appeared to be largely due to reduction in D2 receptor activation. Co-expression of shRNA-resistant wild-type and mutant forms of PTEN indicated that the lipid-phosphatase activity was essential for this effect. In both normal and Parkinsonian rats, inhibition of striatal PTEN in vivo resulted in motor dysfunction and impaired responses to dopamine, particularly D2 receptor agonists. Expression of PTEN mutants confirmed the lipid-phosphatase activity as critical, while co-expression of a dominant-negative form of Akt overcame the PTEN shRNA effect. These results identify PTEN as a key mediator of striatal responses to dopamine, and suggest that drugs designed to potentiate PTEN expression or activity, such as cancer chemotherapeutics, may also be useful for improving striatal responses to dopamine in conditions of dopamine depletion such as PD. This also suggests that strategies which increase Akt or decrease PTEN expression or function, such as growth factors to prevent neuronal death, may have a paradoxical effect on neurological functioning by inhibiting striatal responses to dopamine.

  6. Characterization of PTEN mutations in brain cancer reveals that pten mono-ubiquitination promotes protein stability and nuclear localization.

    PubMed

    Yang, Jr-M; Schiapparelli, P; Nguyen, H-N; Igarashi, A; Zhang, Q; Abbadi, S; Amzel, L M; Sesaki, H; Quiñones-Hinojosa, A; Iijima, M

    2017-03-06

    PTEN is a PIP3 phosphatase that antagonizes oncogenic PI3-kinase signalling. Due to its critical role in suppressing the potent signalling pathway, it is one of the most mutated tumour suppressors, especially in brain tumours. It is generally thought that PTEN deficiencies predominantly result from either loss of expression or enzymatic activity. By analysing PTEN in malignant glioblastoma primary cells derived from 16 of our patients, we report mutations that block localization of PTEN at the plasma membrane and nucleus without affecting lipid phosphatase activity. Cellular and biochemical analyses as well as structural modelling revealed that two mutations disrupt intramolecular interaction of PTEN and open its conformation, enhancing polyubiquitination of PTEN and decreasing protein stability. Moreover, promoting mono-ubiquitination increases protein stability and nuclear localization of mutant PTEN. Thus, our findings provide a molecular mechanism for cancer-associated PTEN defects and may lead to a brain cancer treatment that targets PTEN mono-ubiquitination.Oncogene advance online publication, 6 March 2017; doi:10.1038/onc.2016.493.

  7. Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) and PH domain and leucine-rich repeat phosphatase cross-talk (PHLPP) in cancer cells and in transforming growth factor β-activated stem cells.

    PubMed

    Ghalali, Aram; Ye, Zhi-Wei; Högberg, Johan; Stenius, Ulla

    2014-04-25

    Akt kinase controls cell survival, proliferation, and invasive growth and is a critical factor for cancer development. Here we describe a cross-talk between phosphatases that may preserve levels of activated/phosphorylated Akt and confer aggressive growth of cancer cells. In prostatic cancer cells, but not in non-transformed cells or in prostate stem cells, we found that the phosphatase and tensin homolog deleted on chromosome 10 (PTEN) overexpression down-regulated PH domain and leucine-rich repeat phosphatase (PHLPP) and that PHLPP overexpression down-regulated PTEN. We also show that silencing PTEN by siRNA increased the levels of PHLPPs. This cross-talk facilitated invasive migration and was mediated by epigenetic alterations, including activation of miR-190, miR-214, polycomb group of proteins, as well as DNA methylation. A role for the purinergic receptor P2X4, previously associated with wound healing, was indicated. We also show that TGF-β1 induced cross-talk concomitant with epithelial-mesenchymal transition in stem cells. The cross-talk emerged as an integrated part of epithelial-mesenchymal transition. We conclude that cross-talk between PTEN and PHLPPs is silenced in normal prostate cells but activated in TGF-β1 transformed prostate stem and cancer cells and facilitates invasive growth.

  8. Phosphatase and tensin homolog (PTEN) gene mutations and autism: literature review and a case report of a patient with Cowden syndrome, autistic disorder, and epilepsy.

    PubMed

    Conti, Sara; Condò, Maria; Posar, Annio; Mari, Francesca; Resta, Nicoletta; Renieri, Alessandra; Neri, Iria; Patrizi, Annalisa; Parmeggiani, Antonia

    2012-03-01

    Phosphatase and tensin homolog (PTEN) gene mutations are associated with a spectrum of clinical disorders characterized by skin lesions, macrocephaly, hamartomatous overgrowth of tissues, and an increased risk of cancers. Autism has rarely been described in association with these variable clinical features. At present, 24 patients with phosphatase and tensin homolog gene mutation, autism, macrocephaly, and some clinical findings described in phosphatase and tensin homolog syndromes have been reported in the literature. We describe a 14-year-old boy with autistic disorder, focal epilepsy, severe and progressive macrocephaly, and multiple papular skin lesions and palmoplantar punctate keratoses, characteristic of Cowden syndrome. The boy has a de novo phosphatase and tensin homolog gene mutation. Our patient is the first case described to present a typical Cowden syndrome and autism associated with epilepsy.

  9. PTEN posttranslational inactivation and hyperactivation of the PI3K/Akt pathway sustain primary T cell leukemia viability

    PubMed Central

    Silva, Ana; Yunes, J. Andrés; Cardoso, Bruno A.; Martins, Leila R.; Jotta, Patrícia Y.; Abecasis, Miguel; Nowill, Alexandre E.; Leslie, Nick R.; Cardoso, Angelo A.; Barata, Joao T.

    2008-01-01

    Mutations in the phosphatase and tensin homolog (PTEN) gene leading to PTEN protein deletion and subsequent activation of the PI3K/Akt signaling pathway are common in cancer. Here we show that PTEN inactivation in human T cell acute lymphoblastic leukemia (T-ALL) cells is not always synonymous with PTEN gene lesions and diminished protein expression. Samples taken from patients with T-ALL at the time of diagnosis very frequently showed constitutive hyperactivation of the PI3K/Akt pathway. In contrast to immortalized cell lines, most primary T-ALL cells did not harbor PTEN gene alterations, displayed normal PTEN mRNA levels, and expressed higher PTEN protein levels than normal T cell precursors. However, PTEN overexpression was associated with decreased PTEN lipid phosphatase activity, resulting from casein kinase 2 (CK2) overexpression and hyperactivation. In addition, T-ALL cells had constitutively high levels of ROS, which can also downmodulate PTEN activity. Accordingly, both CK2 inhibitors and ROS scavengers restored PTEN activity and impaired PI3K/Akt signaling in T-ALL cells. Strikingly, inhibition of PI3K and/or CK2 promoted T-ALL cell death without affecting normal T cell precursors. Overall, our data indicate that T-ALL cells inactivate PTEN mostly in a nondeletional, posttranslational manner. Pharmacological manipulation of these mechanisms may open new avenues for T-ALL treatment. PMID:18830414

  10. PTEN action in leukemia dictated by the tissue microenvironment

    PubMed Central

    Miething, Cornelius; Scuoppo, Claudio; Bosbach, Benedikt; Appelmann, Iris; Nakitandwe, Joy; Ma, Jing; Wu, Gang; Lintault, Laura; Auer, Martina; Premsrirut, Prem K.; Teruya-Feldstein, Julie; Hicks, James; Benveniste, Helene; Speicher, Michael R.; Downing, James R.; Lowe, Scott W.

    2014-01-01

    PTEN encodes a lipid phosphatase that is underexpressed in many cancers owing to deletions, mutations or gene silencing1–3. PTEN dephosphorylates phosphatidylinositol 3,4,5-triphosphate (PIP3), thereby opposing the activity of class I phosphatidylinositol 3-kinases (PI3Ks) that mediate growth and survival factors signaling through PI3K effectors such as AKT and mTOR2. To determine whether continued PTEN inactivation is required to maintain malignancy, we generated an RNAi-based transgenic mouse model that allows tetracycline-dependent regulation of PTEN in a time- and tissue-specific manner. Postnatal PTEN knockdown in the hematopoietic compartment produced highly disseminated T-cell leukemia (T-ALL). Surprisingly, reactivation of PTEN mainly reduced T-ALL dissemination but had little effect on tumor load in hematopoietic organs. Leukemia infiltration into the intestine was dependent on CCR9 G-protein coupled receptor (GPCR) signaling, which was amplified by PTEN loss. Our results suggest that in the absence of PTEN, GPCRs may play an unanticipated role in driving tumor growth and invasion in an unsupportive environment. They further reveal that the role of PTEN loss in tumor maintenance is not invariant and can be influenced by the tissue microenvironment, thereby producing a form of intratumoral heterogeneity that is independent of cancer genotype. PMID:24805236

  11. PTEN inhibits PREX2-catalyzed activation of RAC1 to restrain tumor cell invasion

    PubMed Central

    Mense, Sarah M.; Barrows, Douglas; Hodakoski, Cindy; Steinbach, Nicole; Schoenfeld, David; Su, William; Hopkins, Benjamin D.; Su, Tao; Fine, Barry; Hibshoosh, Hanina; Parsons, Ramon

    2016-01-01

    The tumor suppressor PTEN restrains cell migration and invasion by a mechanism that is independent of inhibition of the PI3K pathway and decreased activation of the kinase AKT. PREX2, a widely distributed GEF that activates the GTPase RAC1, binds to and inhibits PTEN. We used mouse embryonic fibroblasts and breast cancer cell lines to show that PTEN suppresses cell migration and invasion by blocking PREX2 activity. In addition to metabolizing the phosphoinositide PIP3, PTEN inhibited PREX2-induced invasion by a mechanism that required the tail domain of PTEN, but not its lipid phosphatase activity. Fluorescent nucleotide exchange assays revealed that PTEN inhibited the GEF activity of PREX2 toward RAC1. PREX2 is a frequently mutated GEF in cancer, and examination of human tumor data showed that PREX2 mutation was associated with high PTEN expression. Therefore, we tested whether cancer-derived somatic PREX2 mutants, which accelerate tumor formation of immortalized melanocytes, were inhibited by PTEN. The three stably expressed, somatic PREX2 cancer mutants that we tested were resistant to PTEN-mediated inhibition of invasion but retained the ability to inhibit the lipid phosphatase activity of PTEN. In vitro analysis showed that PTEN did not block the GEF activity of two PREX2 cancer mutants and had a reduced binding affinity for the third. Thus, PTEN antagonized migration and invasion by restraining PREX2 GEF activity, and PREX2 mutants are likely selected in cancer to escape PTEN-mediated inhibition of invasion. PMID:25829446

  12. Subcellular targeting and dynamic regulation of PTEN: implications for neuronal cells and neurological disorders

    PubMed Central

    Kreis, Patricia; Leondaritis, George; Lieberam, Ivo; Eickholt, Britta J.

    2014-01-01

    PTEN is a lipid and protein phosphatase that regulates a diverse range of cellular mechanisms. PTEN is mainly present in the cytosol and transiently associates with the plasma membrane to dephosphorylate PI(3,4,5)P3, thereby antagonizing the PI3-Kinase signaling pathway. Recently, PTEN has been shown to associate also with organelles such as the endoplasmic reticulum (ER), the mitochondria, or the nucleus, and to be secreted outside of the cell. In addition, PTEN dynamically localizes to specialized sub-cellular compartments such as the neuronal growth cone or dendritic spines. The diverse localizations of PTEN imply a tight temporal and spatial regulation, orchestrated by mechanisms such as posttranslational modifications, formation of distinct protein–protein interactions, or the activation/recruitment of PTEN downstream of external cues. The regulation of PTEN function is thus not only important at the enzymatic activity level, but is also associated to its spatial distribution. In this review we will summarize (i) recent findings that highlight mechanisms controlling PTEN movement and sub-cellular localization, and (ii) current understanding of how PTEN localization is achieved by mechanisms controlling posttranslational modification, by association with binding partners and by PTEN structural or activity requirements. Finally, we will discuss the possible roles of compartmentalized PTEN in developing and mature neurons in health and disease. PMID:24744697

  13. Involvement of PTEN in airway hyperresponsiveness and inflammation in bronchial asthma.

    PubMed

    Kwak, Yong-Geun; Song, Chang H; Yi, Ho K; Hwang, Pyoung H; Kim, Jong-Suk; Lee, Kyung S; Lee, Yong C

    2003-04-01

    Phosphatase and tensin homologue deleted on chromosome ten (PTEN) is part of a complex signaling system that affects a variety of important cell functions. PTEN blocks the action of PI3K by dephosphorylating the signaling lipid phosphatidylinositol 3,4,5-triphosphate. We have used a mouse model for asthma to determine the effect of PI3K inhibitors and PTEN on allergen-induced bronchial inflammation and airway hyperresponsiveness. PI3K activity increased significantly after allergen challenge. PTEN protein expression and PTEN activity were decreased in OVA-induced asthma. Immunoreactive PTEN localized in epithelial layers around the bronchioles in control mice. However, this immunoreactive PTEN dramatically disappeared in allergen-induced asthmatic lungs. The increased IL-4, IL-5, and eosinophil cationic protein levels in bronchoalveolar lavage fluids after OVA inhalation were significantly reduced by the intratracheal administration of PI3K inhibitors or adenoviruses carrying PTEN cDNA (AdPTEN). Intratracheal administration of PI3K inhibitors or AdPTEN remarkably reduced bronchial inflammation and airway hyperresponsiveness. These findings indicate that PTEN may play a pivotal role in the pathogenesis of the asthma phenotype.

  14. Mesodermal Pten inactivation leads to alveolar capillary dysplasia- like phenotype.

    PubMed

    Tiozzo, Caterina; Carraro, Gianni; Al Alam, Denise; Baptista, Sheryl; Danopoulos, Soula; Li, Aimin; Lavarreda-Pearce, Maria; Li, Changgong; De Langhe, Stijn; Chan, Belinda; Borok, Zea; Bellusci, Saverio; Minoo, Parviz

    2012-11-01

    Alveolar capillary dysplasia (ACD) is a congenital, lethal disorder of the pulmonary vasculature. Phosphatase and tensin homologue deleted from chromosome 10 (Pten) encodes a lipid phosphatase controlling key cellular functions, including stem/progenitor cell proliferation and differentiation; however, the role of PTEN in mesodermal lung cell lineage formation remains unexamined. To determine the role of mesodermal PTEN in the ontogeny of various mesenchymal cell lineages during lung development, we specifically deleted Pten in early embryonic lung mesenchyme in mice. Pups lacking Pten died at birth, with evidence of failure in blood oxygenation. Analysis at the cellular level showed defects in angioblast differentiation to endothelial cells and an accompanying accumulation of the angioblast cell population that was associated with disorganized capillary beds. We also found decreased expression of Forkhead box protein F1 (Foxf1), a gene associated with the ACD human phenotype. Analysis of human samples for ACD revealed a significant decrease in PTEN and increased activated protein kinase B (AKT). These studies demonstrate that mesodermal PTEN has a key role in controlling the amplification of angioblasts as well as their differentiation into endothelial cells, thereby directing the establishment of a functional gas exchange interface. Additionally, these mice could serve as a murine model of ACD.

  15. Connection between Tumor Suppressor BRCA1 and PTEN in Damaged DNA Repair.

    PubMed

    Minami, Akari; Nakanishi, Atsuko; Ogura, Yasunori; Kitagishi, Yasuko; Matsuda, Satoru

    2014-01-01

    Genomic instability finally induces cell death or apoptosis. The tumor suppressor, phosphatase and tensin homolog on chromosome 10 (PTEN), is a dual-specificity phosphatase, which has protein phosphatase activity and lipid phosphatase activity that antagonizes PI3K activity. Cells that lack PTEN have constitutively higher levels of PIP3 and activated downstream PI3K/AKT targets. BRCA1, a well-known breast cancer tumor suppressor, is to associate with breast cancer risk and genetic susceptibility. Many studies have demonstrated that PTEN, as well as BRCA1, plays a critical role in DNA damage responses. The BRCA1 functionally cooperates with PTEN and might be an essential blockage in the development of several tumors. Actually, the PTEN and BRCA1 genes are recognized as one of the most frequently deleted and/or mutated in many human cancers. The PI3K/AKT pathway is constitutively active in BRCA1-defective human cancer cells. Loss or decrease of these PTEN or BRCA1 function, by either mutation or reduced expression, has a role in various tumor developments. This review summarizes recent findings of the function of BRCA1 and PTEN involved in genomic stability and cancer cell signaling.

  16. Suppression of Prostate Cancer by PTEN and p18(INK4C)

    DTIC Science & Technology

    2005-02-01

    1997). Cyclin-dependent kinases: engines, clocks , and microprocessors. Annu. Rev. Cell Dev. Biol. 13:261-291. 37. Matsushime, H., Roussel, M. F...Approved for Public Release; Distribution Unlimited 13. ABSTRACT (Maximum 200 Words) The Rb pathway suppresses tumorigenesis by constraining G I cell ...lipid phosphatase Pten, which regulates cell growth and survival. The p18-/.;Pten+/- double mutant mice develop prostate cancer in the anterior and

  17. Active β-catenin is regulated by the PTEN/PI3 kinase pathway: a role for protein phosphatase PP2A

    PubMed Central

    Persad, Amit; Venkateswaran, Geetha; Hao, Li; Garcia, Maria E.; Yoon, Jenny; Sidhu, Jaskiran; Persad, Sujata

    2016-01-01

    Dysregulation of Wnt/β-catenin signaling has been associated with the development and progression of many cancers. The stability and subcellular localization of β-catenin, a dual functional protein that plays a role in intracellular adhesion and in regulating gene expression, is tightly regulated. However, little is known about the transcriptionally active form of β-catenin, Active Beta Catenin (ABC), that is unphosphorylated at serine 37 (Ser37) and threonine 41 (Thr41). Elucidating the mechanism by which β-catenin is activated to generate ABC is vital to the development of therapeutic strategies to block β-catenin signaling for cancer treatment. Using melanoma, breast and prostate cancer cell lines, we show that while cellular β-catenin levels are regulated by the Wnt pathway, cellular ABC levels are mainly regulated by the PI3K pathway and are dependent on the phosphatase activity of the protein phosphatase PP2A. Furthermore, we demonstrate that although the PI3K/PTEN pathway does not regulate total β-catenin protein levels within the cell, it plays a role in regulating the subcellular localization of β-catenin. Our results support a novel functional interaction/cross-talk between the PTEN/PI3K and Wnt pathways in the regulation of the subcellular/nuclear levels of ABC, which is crucially important for the protein's activity as a transcription factor and its biological effects in health and disease. PMID:28191283

  18. Comparative phytohormone profiles, lipid kinase and lipid phosphatase activities in barley aleurone, coleoptile, and root tissues.

    PubMed

    Meringer, Maria V; Villasuso, Ana L; Pasquaré, Susana J; Giusto, Norma M; Machado, Estela E; Racagni, Graciela E

    2012-09-01

    We analyzed lipid kinase and lipid phosphatase activities and determined endogenous phytohormone levels by liquid chromatography-tandem mass spectrometry in root and coleoptile tissues following germination of barley (Hordeum vulgare) seeds. The enzymes showing highest activity in aleurone cells were diacylglycerol kinase (DAG-k, EC 2.7.1.107) and phosphatidate kinase (PA-k). The ratio of gibberellins (GAs) to abscisic acid (ABA) was 2-fold higher in aleurone than in coleoptile or root tissues. In coleoptiles, phosphatidylinositol 4-kinase (PI4-k, EC 2.7.1.67) showed the highest enzyme activity, and jasmonic acid (JA) level was higher than in aleurone. In roots, activities of PI4-k, DAG-k, and PA-k were similar, and salicylic acid (SA) showed the highest concentration. In the assays to evaluate the hydrolysis of DGPP (diacylglycerol pyrophosphate) and PA (phosphatidic acid) we observed that PA hydrolysis by LPPs (lipid phosphate phosphatases) was not modified; however, the diacylglycerol pyrophosphate phosphatase (DGPPase) was strikingly higher in coleoptile and root tissues than to aleurone. Relevance of these findings in terms of signaling responses and seedling growth is discussed.

  19. Enzymatic Analysis of PTEN Ubiquitylation by WWP2 and NEDD4-1 E3 Ligases

    PubMed Central

    Chen, Zan; Thomas, Stefani N.; Bolduc, David M.; Jiang, Xuejun; Zhang, Xiangbin; Wolberger, Cynthia; Cole, Philip A.

    2016-01-01

    PTEN is a lipid phosphatase that converts phosphatidylinositol 3,4,5-phosphate (PIP3) to phosphatidylinositol 4,5-phosphate (PIP2) and plays a critical role in the regulation of tumor growth. PTEN is subject to regulation by a variety of post-translational modifications, including phosphorylation on a C-terminal cluster of four Ser/Thr residues (380, 382, 383, and 385) and ubiquitylation by various E3 ligases, including NEDD4-1 and WWP2. It has previously been shown that C-terminal phosphorylation of PTEN can increase its cellular half-life. Using in vitro ubiquitin transfer assays, we show that WWP2 is more active than NEDD4-1 in ubiquitylating unphosphorylated PTEN. The mapping of ubiquitylation sites in PTEN by mass spectrometry showed that both NEDD4-1 and WWP2 can target a broad range of Lys residues in PTEN, although NEDD4-1 versus WWP2 showed a stronger preference for ubiquitylating PTEN's C2 domain. Whereas tetraphosphorylation of PTEN did not significantly affect its ubiquitylation by NEDD4-1, it inhibited PTEN ubiquitylation by WWP2. Single-turnover and pull-down experiments suggested that tetraphosphorylation of PTEN appears to weaken its interaction with WWP2. These studies reveal how the PTEN E3 ligases WWP2 and NEDD4-1 exhibit distinctive properties in Lys selectivity and sensitivity to PTEN phosphorylation. Our findings also provide a molecular mechanism for the connection between PTEN Ser/Thr phosphorylation and PTEN's cellular stability. PMID:27295432

  20. PTEN at 18: Still Growing.

    PubMed

    Gorbenko, Olena; Stambolic, Vuk

    2016-01-01

    Discovered in 1997, PTEN remains one of the most studied tumor suppressors. In this issue of Methods in Molecular Biology, we assembled a series of papers describing various clinical and experimental approaches to studying PTEN function. Due to its broad expression, regulated subcellular localization, and intriguing phosphatase activity, methodologies aimed at PTEN study have often been developed in the context of mutations affecting various aspects of its regulation, found in patients burdened with PTEN loss-driven tumors. PTEN's extensive posttranslational modifications and dynamic localization pose unique challenges for studying PTEN features in isolation and necessitate considerable development of experimental systems to enable controlled characterization. Nevertheless, ongoing efforts towards the development of PTEN knockout and knock-in animals and cell lines, antibodies, and enzymatic assays have facilitated a huge body of work, which continues to unravel the fascinating biology of PTEN.

  1. AIF inhibits tumor metastasis by protecting PTEN from oxidation

    PubMed Central

    Shen, Shao-Ming; Guo, Meng; Xiong, Zhong; Yu, Yun; Zhao, Xu-Yun; Zhang, Fei-Fei; Chen, Guo-Qiang

    2015-01-01

    Apoptosis-inducing factor (AIF) exerts dual roles on cell death and survival, but its substrates as a putative oxidoreductase and roles in tumorigenesis remain elusive. Here, we report that AIF physically interacts with and inhibits the oxidation of phosphatase and tensin homolog on chromosome ten (PTEN), a tumor suppressor susceptible for oxidation-mediated inactivation. More intriguingly, we also identify PTEN as a mitochondrial protein and the ectopic expression of mitochondrial targeting sequence-carrying PTEN almost completely inhibits Akt phosphorylation in PTEN-deficient cells. AIF knockdown causes oxidation-mediated inactivation of the lipid phosphatase activity of PTEN, with ensuing activation of Akt kinase, phosphorylation of the Akt substrate GSK-3β, and activation of β-catenin signaling in cancer cells. Through its effect on β-catenin signaling, AIF inhibits epithelial–mesenchymal transition (EMT) and metastasis of cancer cells in vitro and in orthotopically implanted xenografts. Accordingly, the expression of AIF is correlated with the survival of human patients with cancers of multiple origins. These results identify PTEN as the substrate of AIF oxidoreductase and reveal a novel function for AIF in controlling tumor metastasis. PMID:26415504

  2. Differential Expression and Clinical Significance of DNA Methyltransferase 3B (DNMT3B), Phosphatase and Tensin Homolog (PTEN) and Human MutL Homologs 1 (hMLH1) in Endometrial Carcinomas.

    PubMed

    Li, Wenting; Wang, Ying; Fang, Xinzhi; Zhou, Mei; Li, Yiqun; Dong, Ying; Wang, Ruozheng

    2017-02-21

    BACKGROUND The aim of this study was to investigate the expression and the clinicopathologic significance of DNA methyltransferase 3B (DNMT3B), phosphatase and tensin homolog (PTEN) and human MutL homologs 1 (hMLH1) in endometrial carcinomas between Han and Uygur women in Xinjiang. MATERIAL AND METHODS The expression of DNMT3B, PTEN, and hMLH1 in endometrial carcinomas were assessed by immunohistochemistry, followed by an analysis of their relationship to clinical-pathological features and prognosis. RESULTS There were a 61.7% (95/154) overexpression of DNMT3B, 50.0% (77/154) loss of PTEN expression and 18.2% (28/154) loss of hMLH1 expression. The expression of DNMT3B and PTEN in endometrial carcinomas was statistically significantly different between Uygur women and Han women (p=0.001, p=0.010, respectively). DNMT3B expression was statistically significant based on the grade of endometrial carcinomas (p=0.031). PTEN loss was statistically significant between endometrioid carcinomas (ECs) and non endometrioid carcinomas (NECs) (p=0.040). DNMT3B expression was statistically significant in different myometrial invasion groups in Uygur women (p=0.010). Furthermore, the correlation of DNMT3B and PTEN expression was significant in endometrial carcinomas (p=0.021). PTEN expression was statistically significant in the overall survival (OS) rate of women with endometrial cancers (p=0.041). CONCLUSIONS Our findings suggest that PTEN and DNMT3B possess common regulation features as well as certain ethnic differences in expression between Han women and Uygur women. An interaction may exist in the pathogenesis of endometrial carcinoma. DNMT3B was expressed differently in cases of myometrial invasion and PTEN was associated with OS, which suggested that these molecular markers may be useful in the evaluation of the biological behavior of endometrial carcinomas and may be useful indicators of prognosis in women with endometrial carcinomas.

  3. Allosteric substrate switching in a voltage-sensing lipid phosphatase.

    PubMed

    Grimm, Sasha S; Isacoff, Ehud Y

    2016-04-01

    Allostery provides a critical control over enzyme activity, biasing the catalytic site between inactive and active states. We found that the Ciona intestinalis voltage-sensing phosphatase (Ci-VSP), which modifies phosphoinositide signaling lipids (PIPs), has not one but two sequential active states with distinct substrate specificities, whose occupancy is allosterically controlled by sequential conformations of the voltage-sensing domain (VSD). Using fast fluorescence resonance energy transfer (FRET) reporters of PIPs to monitor enzyme activity and voltage-clamp fluorometry to monitor conformational changes in the VSD, we found that Ci-VSP switches from inactive to a PIP3-preferring active state when the VSD undergoes an initial voltage-sensing motion and then into a second PIP2-preferring active state when the VSD activates fully. This two-step allosteric control over a dual-specificity enzyme enables voltage to shape PIP concentrations in time, and provides a mechanism for the complex modulation of PIP-regulated ion channels, transporters, cell motility, endocytosis and exocytosis.

  4. Allosteric substrate switching in a voltage sensing lipid phosphatase

    PubMed Central

    Grimm, Sasha S.; Isacoff, Ehud Y.

    2016-01-01

    Allostery provides a critical control over enzyme activity, biasing the catalytic site between inactive and active states. We find the Ciona intestinalis voltage-sensing phosphatase (Ci-VSP), which modifies phosphoinositide signaling lipids (PIPs), to have not one but two sequential active states with distinct substrate specificities, whose occupancy is allosterically controlled by sequential conformations of the voltage sensing domain (VSD). Using fast FRET reporters of PIPs to monitor enzyme activity and voltage clamp fluorometry to monitor conformational changes in the VSD, we find that Ci-VSP switches from inactive to a PIP3-preferring active state when the VSD undergoes an initial voltage sensing motion and then into a second PIP2-preferring active state when the VSD activates fully. This novel 2-step allosteric control over a dual specificity enzyme enables voltage to shape PIP concentrations in time, and provides a mechanism for the complex modulation of PIP-regulated ion channels, transporters, cell motility and endo/exocytosis. PMID:26878552

  5. Notch1 receptor regulates AKT protein activation loop (Thr308) dephosphorylation through modulation of the PP2A phosphatase in phosphatase and tensin homolog (PTEN)-null T-cell acute lymphoblastic leukemia cells.

    PubMed

    Hales, Eric C; Orr, Steven M; Larson Gedman, Amanda; Taub, Jeffrey W; Matherly, Larry H

    2013-08-02

    Notch1 activating mutations occur in more than 50% of T-cell acute lymphoblastic leukemia (T-ALL) cases and increase expression of Notch1 target genes, some of which activate AKT. HES1 transcriptionally silences phosphatase and tensin homolog (PTEN), resulting in AKT activation, which is reversed by Notch1 inhibition with γ-secretase inhibitors (GSIs). Mutational loss of PTEN is frequent in T-ALL and promotes resistance to GSIs due to AKT activation. GSI treatments increased AKT-Thr(308) phosphorylation and signaling in PTEN-deficient, GSI-resistant T-ALL cell lines (Jurkat, CCRF-CEM, and MOLT3), suggesting that Notch1 represses AKT independent of its PTEN transcriptional effects. AKT-Thr(308) phosphorylation and downstream signaling were also increased by knocking down Notch1 in Jurkat (N1KD) cells. This was blocked by treatment with the AKT inhibitor perifosine. The PI3K inhibitor wortmannin and the protein phosphatase type 2A (PP2A) inhibitor okadaic acid both impacted AKT-Thr(308) phosphorylation to a greater extent in nontargeted control than N1KD cells, suggesting decreased dephosphorylation of AKT-Thr(308) by PP2A in the latter. Phosphorylations of AMP-activated protein kinaseα (AMPKα)-Thr(172) and p70S6K-Thr(389), both PP2A substrates, were also increased in both N1KD and GSI-treated cells and responded to okadaic acid treatment. A transcriptional regulatory mechanism was implied because ectopic expression of dominant-negative mastermind-like protein 1 increased and wild-type HES1 decreased phosphorylation of these PP2A targets. This was independent of changes in PP2A subunit levels or in vitro PP2A activity, but was accompanied by decreased association of PP2A with AKT in N1KD cells. These results suggest that Notch1 can regulate PP2A dephosphorylation of critical cellular regulators including AKT, AMPKα, and p70S6K.

  6. Cloning and characterization of three Eimeria tenella lipid phosphate phosphatases.

    PubMed

    Guo, Aijiang; Cai, Jianping; Luo, Xuenong; Zhang, Shaohua; Hou, Junling; Li, Hui; Cai, Xuepeng

    2015-01-01

    Although lipid phosphate phosphatases (LPPs) play an important role in cellular signaling in addition to lipid biosynthesis, little is thus far known about parasite LPPs. In this study, we characterized three Eimeria tenella cDNA clones encoding LPP named EtLPP1, EtLPP2 and EtLPP3. Key structural features previously described in LPPs, including the three conserved domains proposed as catalytic sites, a single conserved N-glycosylation site, and putative transmembrane domains were discovered in the three resulting EtLPP amino acid sequences. Expression of His6-tagged EtLPP1, -2, and -3 in HEK293 cells produced immunoreactive proteins with variable molecular sizes, suggesting the presence of multiple forms of each of the three EtLPPs. The two faster-migrating protein bands below each of the three EtLPP proteins were found to be very similar to the porcine 35-kDa LPP enzyme in their molecular size and the extent of their N-glycosylation, suggesting that the three EtLPPs are partially N-glycosylated. Kinetic analyses of the activity of the three enzymes against PA, LPA, C1P and S1P showed that Km values for each of the substrates were (in μM) 284, 46, 28, and 22 for EtLPP1; 369, 179, 237, and 52 for EtLPP2; and 355, 83, and 260 for EtLPP3. However, EtLPP3 showed negligible activity on S1P. These results confirmed that the three EtLPPs have broad substrate specificity. The results also indicated that despite structural similarities, the three EtLPPs may play distinct functions through their different models of substrate preference. Furthermore, particularly high expression levels of the three EtLPP genes were detected in the sporozoite stage of the E. tenella life cycle (p<0.001), suggesting that their encoded proteins might play an important biological function in the sporozoite stage.

  7. PTEN controls immunoreceptor (immunoreceptor tyrosine-based activation motif) signaling and the activation of Rac.

    PubMed

    Kim, Jong Suk; Peng, Xiaodong; De, Pradip K; Geahlen, Robert L; Durden, Donald L

    2002-01-15

    Fcgamma receptor-mediated phagocytosis is a model for the study of immunoreceptor (immunoreceptor tyrosine-based activation motif [ITAM]) signaling and involves the activation of protein tyrosine kinases, protein tyrosine phosphatases, and downstream effectors including phosphatidylinositol-3 (PI-3) kinase. Relatively little is known of the role of lipid phosphatases in the control of ITAM signaling and inflammation. A heterologous COS7 cell system was used to examine the roles played by PI-3 kinase and the dual-specificity phosphatase, phosphatase and tensin homolog deleted on chromosome 10 (PTEN), in the signal transduction pathway leading to Fcgamma receptor IIA-mediated phagocytosis and the activation of Rac. The expression of wildtype PTEN completely abrogated the phagocytosis of immunoglobulin-G-sensitized sheep red blood cells, as compared with the catalytically inactive mutant of PTEN, which had no effect. This is the first direct evidence that PTEN, an inositol 3' phosphatase, regulates Fcgamma receptor-mediated phagocytosis, an ITAM-based signaling event. The data suggest that PTEN exerts control over phagocytosis potentially by controlling the downstream conversion of guanosine diphosphate-Rac to guanosine triphosphate-Rac following ITAM stimulation.

  8. Expression cloning and biochemical characterization of a Rhizobium leguminosarum lipid A 1-phosphatase.

    PubMed

    Karbarz, Mark J; Kalb, Suzanne R; Cotter, Robert J; Raetz, Christian R H

    2003-10-10

    Lipid A of Rhizobium leguminosarum, a nitrogen-fixing plant endosymbiont, displays several significant structural differences when compared with Escherichia coli. An especially striking feature of R. leguminosarum lipid A is that it lacks both the 1- and 4'-phosphate groups. Distinct lipid A phosphatases that attack either the 1 or the 4' positions have previously been identified in extracts of R. leguminosarum and Rhizobium etli but not Sinorhizobium meliloti or E. coli. Here we describe the identification of a hybrid cosmid (pMJK-1) containing a 25-kb R. leguminosarum 3841 DNA insert that directs the overexpression of the lipid A 1-phosphatase. Transfer of pMJK-1 into S. meliloti 1021 results in heterologous expression of 1-phosphatase activity, which is normally absent in extracts of strain 1021, and confers resistance to polymyxin. Sequencing of a 7-kb DNA fragment derived from the insert of pMJK-1 revealed the presence of a lipid phosphatase ortholog (designated LpxE). Expression of lpxE in E. coli behind the T7lac promoter results in the appearance of robust 1-phosphatase activity, which is normally absent in E. coli membranes. Matrix-assisted laser-desorption/time of flight and radiochemical analysis of the product generated in vitro from the model substrate lipid IVA confirms the selective removal of the 1-phosphate group. These findings show that lpxE is the structural gene for the 1-phosphatase. The availability of lpxE may facilitate the re-engineering of lipid A structures in diverse Gram-negative bacteria and allow assessment of the role of the 1-phosphatase in R. leguminosarum symbiosis with plants. Possible orthologs of LpxE are present in some intracellular human pathogens, including Francisella tularensis, Brucella melitensis, and Legionella pneumophila.

  9. Mesodermal Pten inactivation leads to alveolar capillary dysplasia-like phenotype

    PubMed Central

    Tiozzo, Caterina; Carraro, Gianni; Al Alam, Denise; Baptista, Sheryl; Danopoulos, Soula; Li, Aimin; Lavarreda-Pearce, Maria; Li, Changgong; De Langhe, Stijn; Chan, Belinda; Borok, Zea; Bellusci, Saverio; Minoo, Parviz

    2012-01-01

    Alveolar capillary dysplasia (ACD) is a congenital, lethal disorder of the pulmonary vasculature. Phosphatase and tensin homologue deleted from chromosome 10 (Pten) encodes a lipid phosphatase controlling key cellular functions, including stem/progenitor cell proliferation and differentiation; however, the role of PTEN in mesodermal lung cell lineage formation remains unexamined. To determine the role of mesodermal PTEN in the ontogeny of various mesenchymal cell lineages during lung development, we specifically deleted Pten in early embryonic lung mesenchyme in mice. Pups lacking Pten died at birth, with evidence of failure in blood oxygenation. Analysis at the cellular level showed defects in angioblast differentiation to endothelial cells and an accompanying accumulation of the angioblast cell population that was associated with disorganized capillary beds. We also found decreased expression of Forkhead box protein F1 (Foxf1), a gene associated with the ACD human phenotype. Analysis of human samples for ACD revealed a significant decrease in PTEN and increased activated protein kinase B (AKT). These studies demonstrate that mesodermal PTEN has a key role in controlling the amplification of angioblasts as well as their differentiation into endothelial cells, thereby directing the establishment of a functional gas exchange interface. Additionally, these mice could serve as a murine model of ACD. PMID:23023706

  10. The PTEN pathway in Tregs is a critical driver of the suppressive tumor microenvironment

    PubMed Central

    Sharma, Madhav D.; Shinde, Rahul; McGaha, Tracy L.; Huang, Lei; Holmgaard, Rikke B.; Wolchok, Jedd D.; Mautino, Mario R.; Celis, Esteban; Sharpe, Arlene H.; Francisco, Loise M.; Powell, Jonathan D.; Yagita, Hideo; Mellor, Andrew L.; Blazar, Bruce R.; Munn, David H.

    2015-01-01

    The tumor microenvironment is profoundly immunosuppressive. We show that multiple tumor types create intratumoral immune suppression driven by a specialized form of regulatory T cell (Treg) activation dependent on the PTEN (phosphatase and tensin homolog) lipid phosphatase. PTEN acted to stabilize Tregs in tumors, preventing them from reprogramming into inflammatory effector cells. In mice with a Treg-specific deletion of PTEN, tumors grew slowly, were inflamed, and could not create an immunosuppressive tumor microenvironment. In normal mice, exposure to apoptotic tumor cells rapidly elicited PTEN-expressing Tregs, and PTEN-deficient mice were unable to maintain tolerance to apoptotic cells. In wild-type mice with large established tumors, pharmacologic inhibition of PTEN after chemotherapy or immunotherapy profoundly reconfigured the tumor microenvironment, changing it from a suppressive to an inflammatory milieu, and tumors underwent rapid regression. Thus, the immunosuppressive milieu in tumors must be actively maintained, and tumors become susceptible to immune attack if the PTEN pathway in Tregs is disrupted. PMID:26601142

  11. Myeloid-specific deletion of tumor suppressor PTEN augments neutrophil transendothelial migration during inflammation.

    PubMed

    Sarraj, Bara; Massberg, Steffen; Li, Yitang; Kasorn, Anongnard; Subramanian, Kulandayan; Loison, Fabien; Silberstein, Leslie E; von Andrian, Ulrich; Luo, Hongbo R

    2009-06-01

    Phosphatidylinositol 3,4,5-trisphosphate (PIP(3)) is a second messenger that is involved in a number of cell activities including cell growth, proliferation, and motility. PIP(3) is produced by PI3K and regulated by PTEN (phosphatase and tensin homolog deleted on chromosome 10) and SHIP lipid phosphatases. Evidence from our experiments shows that enhanced PIP(3) production results in elevated neutrophil recruitment under inflammatory conditions. However, the mechanism of this elevation is not well understood. We used intravital video microscopy to investigate neutrophil recruitment in the cremaster venules of wild-type and PTEN knockout (KO) mice. Neutrophil transmigration was augmented in PTEN KO mice 4 h after TNF-alpha intrascrotal injection. PTEN KO neutrophils also showed significantly enhanced transmigration 2 h after MIP-2 intrascrotal injection, an effect that dramatically decreased when PI3K or Src kinase inhibitor treatments preceded MIP-2 stimulation. Similarly, fMLP superfusion of the cremaster muscle lead to enhanced emigration in PTEN KO mice. The observed elevation in neutrophil emigration was likely caused by increased speed of crawling, crossing the venular wall, and migrating through the muscular tissue in PTEN KO mice because the effect of PTEN depletion on neutrophil rolling or adhesion was minimal. Interestingly, chemoattractant-induced release of gelatinase and elastase was also elevated in PTEN null neutrophils, providing a potential mechanism for the enhanced neutrophil migration in the PTEN KO mice. Collectively, these results demonstrate that PTEN deletion in neutrophils enhances their invasivity and recruitment to inflamed sites more likely by raising the cell physical capability to cross the vascular and tissue barriers.

  12. Inhibition of phosphatase and tensin homologue (PTEN) in human ovary in vitro results in increased activation of primordial follicles but compromises development of growing follicles.

    PubMed

    McLaughlin, Marie; Kinnell, Hazel L; Anderson, Richard A; Telfer, Evelyn E

    2014-08-01

    In the mammalian ovary a small number of follicles are steadily recruited from the quiescent pool to undergo development. Follicle loss, maintenance and growth are strictly controlled by complex molecular interactions including the phosphoinositide 3-kinase (PI3K)-protein kinase B (Akt) signalling pathway. Stimulation of PI3K promotes phosphorylation of Akt resulting in follicle survival and activation of growth whereas this pathway is suppressed by the actions of the phosphatase and tensin homologue (PTEN). The aim of this study was to determine the effect of dipotassium bisperoxo(5-hydroxypyridine-2-carboxyl)oxovanadate (bpV), a reversible inhibitor of PTEN, on the activation, survival and development of human ovarian follicles in vitro. Biopsied ovarian tissue fragments were obtained from 17 women aged 23-46 years and exposed to 1 µM bpV(HOpic) (n = 146) or control medium (n = 128) for 24 h. Media were then replaced with control medium and all tissue incubated for a further 5 days. Ovarian tissue from each treatment group was fixed after the initial 24 h culture period and phosphorylated Akt was quantified by western blotting. After 6 days incubation all tissue fragments were inspected under light microscopy and any secondary follicles ≥100 µm isolated. Isolated follicles were cultured individually in control medium supplemented with 100 ng/ml recombinant human activin A. Tissue fragments without follicles suitable for isolation were fixed and processed for histological and immunohistochemical analysis. During 6 days culture, follicle activation occurred in tissue samples from both treatment groups but with significantly more follicles progressing to the secondary stage of development in the presence of 1 µM bpV(HOpic) compared with control (31 versus 16%; P < 0.05). Increased activation was associated with increased Akt phosphorylation and increased nuclear export of FOXO3. However isolated and cultured follicles that had been exposed to bpV(HOpic) showed

  13. PTEN regulates cilia through Dishevelled

    PubMed Central

    Shnitsar, Iryna; Bashkurov, Mikhail; Masson, Glenn R.; Ogunjimi, Abiodun A.; Mosessian, Sherly; Cabeza, Eduardo Aguiar; Hirsch, Calley L.; Trcka, Daniel; Gish, Gerald; Jiao, Jing; Wu, Hong; Winklbauer, Rudolf; Williams, Roger L.; Pelletier, Laurence; Wrana, Jeffrey L.; Barrios-Rodiles, Miriam

    2015-01-01

    Cilia are hair-like cellular protrusions important in many aspects of eukaryotic biology. For instance, motile cilia enable fluid movement over epithelial surfaces, while primary (sensory) cilia play roles in cellular signalling. The molecular events underlying cilia dynamics, and particularly their disassembly, are not well understood. Phosphatase and tensin homologue (PTEN) is an extensively studied tumour suppressor, thought to primarily act by antagonizing PI3-kinase signalling. Here we demonstrate that PTEN plays an important role in multicilia formation and cilia disassembly by controlling the phosphorylation of Dishevelled (DVL), another ciliogenesis regulator. DVL is a central component of WNT signalling that plays a role during convergent extension movements, which we show here are also regulated by PTEN. Our studies identify a novel protein substrate for PTEN that couples PTEN to regulation of cilia dynamics and WNT signalling, thus advancing our understanding of potential underlying molecular etiologies of PTEN-related pathologies. PMID:26399523

  14. PTEN function: the long and the short of it.

    PubMed

    Hopkins, Benjamin D; Hodakoski, Cindy; Barrows, Douglas; Mense, Sarah M; Parsons, Ramon E

    2014-04-01

    Phosphatase and tensin homolog deleted on chromosome ten (PTEN) is a phosphatase that is frequently altered in cancer. PTEN has phosphatase-dependent and -independent roles, and genetic alterations in PTEN lead to deregulation of protein synthesis, the cell cycle, migration, growth, DNA repair, and survival signaling. PTEN localization, stability, conformation, and phosphatase activity are controlled by an array of protein-protein interactions and post-translational modifications. Thus, PTEN-interacting and -modifying proteins have profound effects on the tumor suppressive functions of PTEN. Moreover, recent studies identified mechanisms by which PTEN can exit cells, via either exosomal export or secretion, and act on neighboring cells. This review focuses on modes of PTEN protein regulation and ways in which perturbations in this regulation may lead to disease.

  15. Differential Expression and Clinical Significance of DNA Methyltransferase 3B (DNMT3B), Phosphatase and Tensin Homolog (PTEN) and Human MutL Homologs 1 (hMLH1) in Endometrial Carcinomas

    PubMed Central

    Li, Wenting; Wang, Ying; Fang, Xinzhi; Zhou, Mei; Li, Yiqun; Dong, Ying; Wang, Ruozheng

    2017-01-01

    Background The aim of this study was to investigate the expression and the clinicopathologic significance of DNA methyltransferase 3B (DNMT3B), phosphatase and tensin homolog (PTEN) and human MutL homologs 1 (hMLH1) in endometrial carcinomas between Han and Uygur women in Xinjiang. Material/Methods The expression of DNMT3B, PTEN, and hMLH1 in endometrial carcinomas were assessed by immunohistochemistry, followed by an analysis of their relationship to clinical-pathological features and prognosis. Results There were a 61.7% (95/154) overexpression of DNMT3B, 50.0% (77/154) loss of PTEN expression and 18.2% (28/154) loss of hMLH1 expression. The expression of DNMT3B and PTEN in endometrial carcinomas was statistically significantly different between Uygur women and Han women (p=0.001, p=0.010, respectively). DNMT3B expression was statistically significant based on the grade of endometrial carcinomas (p=0.031). PTEN loss was statistically significant between endometrioid carcinomas (ECs) and non endometrioid carcinomas (NECs) (p=0.040). DNMT3B expression was statistically significant in different myometrial invasion groups in Uygur women (p=0.010). Furthermore, the correlation of DNMT3B and PTEN expression was significant in endometrial carcinomas (p=0.021). PTEN expression was statistically significant in the overall survival (OS) rate of women with endometrial cancers (p=0.041). Conclusions Our findings suggest that PTEN and DNMT3B possess common regulation features as well as certain ethnic differences in expression between Han women and Uygur women. An interaction may exist in the pathogenesis of endometrial carcinoma. DNMT3B was expressed differently in cases of myometrial invasion and PTEN was associated with OS, which suggested that these molecular markers may be useful in the evaluation of the biological behavior of endometrial carcinomas and may be useful indicators of prognosis in women with endometrial carcinomas. PMID:28220037

  16. Inositol lipid phosphatases in membrane trafficking and human disease.

    PubMed

    Billcliff, Peter G; Lowe, Martin

    2014-07-15

    The specific interaction of phosphoinositides with proteins is critical for a plethora of cellular processes, including cytoskeleton remodelling, mitogenic signalling, ion channel regulation and membrane traffic. The spatiotemporal restriction of different phosphoinositide species helps to define compartments within the cell, and this is particularly important for membrane trafficking within both the secretory and endocytic pathways. Phosphoinositide homoeostasis is tightly regulated by a large number of inositol kinases and phosphatases, which respectively phosphorylate and dephosphorylate distinct phosphoinositide species. Many of these enzymes have been implicated in regulating membrane trafficking and, accordingly, their dysregulation has been linked to a number of human diseases. In the present review, we focus on the inositol phosphatases, concentrating on their roles in membrane trafficking and the human diseases with which they have been associated.

  17. Regulation of FcεRI signaling by lipid phosphatases.

    PubMed

    Kuhny, Marcel; Zorn, Carolin N; Huber, Michael

    2014-01-01

    Mast cells (MCs) are tissue-resident sentinels of hematopoietic origin that play a prominent role in allergic diseases. They express the high-affinity receptor for IgE (FcεRI), which when cross-linked by multivalent antigens triggers the release of preformed mediators, generation of arachidonic acid metabolites, and the synthesis of cytokines and chemokines. Stimulation of the FcεRI with increasing antigen concentrations follows a characteristic bell-shaped dose-responses curve. At high antigen concentrations, the so-called supra-optimal conditions, repression of FcεRI-induced responses is facilitated by activation and incorporation of negative signaling regulators. In this context, the SH2-containing inositol-5'-phosphatase, SHIP1, has been demonstrated to be of particular importance. SHIP1 with its catalytic and multiple protein interaction sites provides several layers of control for FcεRI signaling. Regulation of SHIP1 function occurs on various levels, e.g., protein expression, receptor and membrane recruitment, competition for protein-protein interaction sites, and activating modifications enhancing the phosphatase function. Apart from FcεRI-mediated signaling, SHIP1 can be activated by diverse unrelated receptor systems indicating its involvement in the regulation of antigen-dependent cellular responses by autocrine feedback mechanisms or tissue-specific and/or (patho-) physiologically determined factors. Thus, pharmacologic engagement of SHIP1 may represent a beneficial strategy for patients suffering from acute or chronic inflammation or allergies.

  18. Dickkopf-1 (DKK1) phosphatase and tensin homolog on chromosome 10 (PTEN) crosstalk via microRNA interference in the diabetic heart.

    PubMed

    Ling, Shukuan; Birnbaum, Yochai; Nanhwan, Manjyot K; Thomas, Bejoy; Bajaj, Mandeep; Li, Yu; Li, Yinghui; Ye, Yumei

    2013-05-01

    Competitive endogenous RNAs (ceRNAs) regulate mRNA transcripts containing common microRNA (miRNA) recognition elements (MREs) through sequestration of shared miRNAs. Interactions of ceRNA have been demonstrated in cancerous cells. However, a paucity of information is available relative to the interactions of ceRNAs interaction in diabetes mellitus and the myocardium. The purpose of this study is to assess the potential role of DKK1 and PTEN in ceRNA regulation utilizing their common miRNAs in diabetic cardiomyocytes. The interactions' regulation between PTEN and DKK1 were determined in two diabetic models in vivo (streptozotocin-induced type-1 DM mice and db/db mice) and in vitro (human cardiomyocytes cells exposed to hyperglycemia). The levels of DKK1 and PTEN (mRNA and protein) were upregulated in parallel in all three diabetic models. DKK1 modulates PTEN protein levels in a miRNA and 3'UTR-dependent manner. RNAi-mediated DKK1 gene silencing resulted in a decreased PTEN expression and vice versa. The effect was blocked when Dicer was inhibited. Silencing either PTEN or DKK1 resulted in an increase of the availabilities of shared miRNAs. The silencing of either PTEN or DKKI resulted in a suppression end of the luciferase-PTEN 3'UTR activity. However, the over expression of DKK1 3'UTR or PTEN 3'UTR resulted in an increase in the activity. The attenuation of DKK1 increased AKT phosphorylation, improved glucose uptake and decreased apoptosis in HCMs exposed to hyperglycemia. The effects were blocked by PI3K inhibition. DKK1 and PTEN transcripts are co-upregulated in DM and hyperglycemia. DKK1 and PTEN serve as ceRNA, affecting the expression of each other via competition for miRNAs binding.

  19. Regulation of the activity of the tumor suppressor PTEN by thioredoxin in Drosophila melanogaster

    SciTech Connect

    Song, Zuohe; Saghafi, Negin; Gokhale, Vijay; Brabant, Marc; Meuillet, Emmanuelle J. . E-mail: emeuillet@azcc.arizona.edu

    2007-04-01

    Human Thioredoxin-1 (hTrx-1) is a small redox protein with a molecular weight of 12 kDa that contains two cysteine residues found in its catalytic site. HTrx-1 plays an important role in cell growth, apoptosis, and cancer patient prognosis. Recently, we have demonstrated that hTrx-1 binds to the C2 domain of the human tumor suppressor, PTEN, in a redox dependent manner. This binding leads to the inhibition of PTEN lipid phosphatase activity in mammalian tissue culture systems. In this study, we show that over-expression of hTrx-1 in Drosophila melanogaster promotes cell growth and proliferation during eye development as measured by eye size and ommatidia size. Furthermore, hTrx-1 rescues the small eye phenotype induced by the over-expression of PTEN. We demonstrate that this rescue of the PTEN-induced eye size phenotype requires cysteine-218 in the C2 domain of PTEN. We also show that hTrx-1 over-expression results in increased Akt phosphorylation in fly head extracts supporting our observations that the hTrx-1-induced eye size increase results from the inhibition of PTEN activity. Our study confirms the redox regulation of PTEN through disulfide bond formation with the hTrx-1 in Drosophila and suggests conserved mechanisms for thioredoxins and their interactions with the phosphatidylinositol-3-kinase signaling pathway in humans and fruit flies.

  20. PTEN function, the long and the short of it

    PubMed Central

    Hopkins, Benjamin D.; Hodakoski, Cindy; Barrows, Doug; Mense, Sarah; Parsons, Ramon E.

    2014-01-01

    Phosphatase and tensin homolog deleted on chromosome ten (PTEN) is a phosphatase that is frequently altered in cancer. PTEN has phosphatase-dependent and - independent roles; and genetic alterations in PTEN lead to deregulation of protein synthesis, cell cycle, migration, growth, DNA repair, and survival signaling. PTEN localization, stability, conformation, and phosphatase activity are controlled by an array of protein-protein interactions and post-translational modifications. Thus, PTEN-interacting and modifying proteins have profound effects on PTEN’s tumor suppressive functions. Moreover, recent studies identified mechanisms by which PTEN can exit cells, either via exosomal export or secretion, and act on neighboring cells. This review focuses on modes of PTEN protein regulation and ways in which perturbations in this regulation may lead to disease. PMID:24656806

  1. PTEN-induction in U251 glioma cells decreases the expression of insulin-like growth factor binding protein-2

    SciTech Connect

    Levitt, Randy J.; Georgescu, Maria-Magdalena; Pollak, Michael . E-mail: michael.pollak@mcgill.ca

    2005-11-04

    PTEN is a tumor suppressor gene whose loss of function is observed in {approx}40-50% of human cancers. Although insulin-like growth factor binding protein-2 (IGFBP-2) was classically described as a growth inhibitor, multiple recent reports have shown an association of overexpression and/or high serum levels of IGFBP-2 with poor prognosis of several malignancies, including gliomas. Using an inducible PTEN expression system in the PTEN-null glioma cell line U251, we demonstrate that PTEN-induction is associated with reduced proliferation, increased apoptosis, and a substantial reduction of the high levels of IGFBP-2 expression. The PTEN-induced decrease in IGFBP-2 expression could be mimicked with the PI3-kinase inhibitor LY294002, indicating that the lipid phosphatase activity of PTEN is responsible for the observed effect. However, the rapamycin analog CCI-779 did not affect IGFBP-2 expression, suggesting that the PTEN-induced decrease in IGFBP-2 expression is not attributable to decreased mTOR signalling. Recombinant human IGFBP-2 was unable to rescue U251-PTEN cells from the antiproliferative effects of PTEN, and IGFBP-2 siRNA did not affect the IGF-dependent or -independent growth of this cell line. These results suggest that the clinical data linking IGFBP-2 expression to poor prognosis may arise, at least in part, because high levels of IGFBP-2 expression correlate with loss of function of PTEN, which is well known to lead to aggressive behavior of gliomas. Our results motivate translational research regarding the relationship between IGFBP-2 expression and loss of function of PTEN.

  2. Simultaneous loss of the DLC1 and PTEN tumor suppressors enhances breast cancer cell migration

    SciTech Connect

    Heering, Johanna; Erlmann, Patrik; Olayioye, Monilola A.

    2009-09-10

    The phosphatase and tensin homolog (PTEN) gene is a tumor suppressor frequently deleted or mutated in sporadic tumors of the breast, prostate, endometrium and brain. The protein acts as a dual specificity phosphatase for lipids and proteins. PTEN loss confers a growth advantage to cells, protects from apoptosis and favors cell migration. The deleted in liver cancer 1 (DLC1) gene has emerged as a novel tumor suppressor downregulated in a variety of tumor types including those of the breast. DLC1 contains a Rho GTPase activating domain that is involved in the inhibition of cell proliferation, migration and invasion. To investigate how simultaneous loss of PTEN and DLC1 contributes to cell transformation, we downregulated both proteins by RNA interference in the non-invasive MCF7 breast carcinoma cell line. Joint depletion of PTEN and DLC1 resulted in enhanced cell migration in wounding and chemotactic transwell assays. Interestingly, both proteins were found to colocalize at the plasma membrane and interacted physically in biochemical pulldowns and coimmunoprecipitations. We therefore postulate that the concerted local inactivation of signaling pathways downstream of PTEN and DLC1, respectively, is required for the tight control of cell migration.

  3. Attenuated virulence of a Francisella mutant lacking the lipid A 4′-phosphatase

    PubMed Central

    Wang, Xiaoyuan; Ribeiro, Anthony A.; Guan, Ziqiang; Abraham, Soman N.; Raetz, Christian R. H.

    2007-01-01

    Francisella tularensis causes tularemia, a highly contagious disease of animals and humans, but the virulence features of F. tularensis are poorly defined. F. tularensis and the related mouse pathogen Francisella novicida synthesize unusual lipid A molecules lacking the 4′-monophosphate group typically found in the lipid A of Gram-negative bacteria. LpxF, a selective phosphatase located on the periplasmic surface of the inner membrane, removes the 4′-phosphate moiety in the late stages of F. novicida lipid A assembly. To evaluate the relevance of the 4′-phosphatase to pathogenesis, we constructed a deletion mutant of lpxF and compared its virulence with wild-type F. novicida. Intradermal injection of 106 wild-type but not 108 mutant F. novicida cells is lethal to mice. The rapid clearance of the lpxF mutant is associated with a stronger local cytokine response and a greater influx of neutrophils compared with wild-type. The F. novicida mutant was highly susceptible to the cationic antimicrobial peptide polymyxin. LpxF therefore represents a kind of virulence factor that confers a distinct lipid A phenotype, preventing Francisella from activating the host innate immune response and preventing the bactericidal actions of cationic peptides. Francisella lpxF mutants may be useful for immunization against tularemia. PMID:17360489

  4. Neuroprotective and Anti-Inflammatory Roles of the Phosphatase and Tensin Homolog Deleted on Chromosome Ten (PTEN) Inhibition in a Mouse Model of Temporal Lobe Epilepsy

    PubMed Central

    Grande, Valentina; Manassero, Giusi; Vercelli, Alessandro

    2014-01-01

    Excitotoxic damage represents the major mechanism leading to cell death in many human neurodegenerative diseases such as ischemia, trauma and epilepsy. Caused by an excess of glutamate that acts on metabotropic and ionotropic excitatory receptors, excitotoxicity activates several death signaling pathways leading to an extensive neuronal loss and a consequent strong activation of astrogliosis. Currently, the search for a neuroprotective strategy is aimed to identify the level in the signaling pathways to block excitotoxicity avoiding the loss of important physiological functions and side effects. To this aim, PTEN can be considered an ideal candidate: downstream the excitatory receptors activated in excitotoxicity (whose inhibition was shown to be not clinically viable), it is involved in neuronal damage and in the first stage of the reactive astrogliosis in vivo. In this study, we demonstrated the involvement of PTEN in excitotoxicity through its pharmacological inhibition by dipotassium bisperoxo (picolinato) oxovanadate [bpv(pic)] in a model of temporal lobe epilepsy, obtained by intraperitoneal injection of kainate in 2-month-old C57BL/6J male mice. We have demonstrated that inhibition of PTEN by bpv(pic) rescues neuronal death and decreases the reactive astrogliosis in the CA3 area of the hippocampus caused by systemic administration of kainate. Moreover, the neurotoxin administration increases significantly the scanty presence of mitochondrial PTEN that is significantly decreased by the administration of the inhibitor 6 hr after the injection of kainate, suggesting a role of PTEN in mitochondrial apoptosis. Taken together, our results confirm the key role played by PTEN in the excitotoxic damage and the strong anti-inflammatory and neuroprotective potential of its inhibition. PMID:25501575

  5. Purification and characterization of the lipid A 1-phosphatase LpxE of Rhizobium leguminosarum.

    PubMed

    Karbarz, Mark J; Six, David A; Raetz, Christian R H

    2009-01-02

    LpxE, a membrane-bound phosphatase found in Rhizobium leguminosarum and some other Gram-negative bacteria, selectively dephosphorylates the 1-position of lipid A on the outer surface of the inner membrane. LpxE belongs to the family of lipid phosphate phosphatases that contain a tripartite active site motif and six predicted transmembrane helices. Here we report the purification and characterization of R. leguminosarum LpxE. A modified lpxE gene, encoding a protein with an N-terminal His6 tag, was expressed in Escherichia coli. The protein was solubilized with Triton X-100 and purified to near-homogeneity. Gel electrophoresis reveals a molecular weight consistent with the predicted 31 kDa. LpxE activity is dependent upon Triton X-100, optimal near pH 6.5, and Mg2+-independent. The H197A and R133A substitutions inactivate LpxE, as does treatment with diethyl pyrocarbonate. In a mixed micelle assay system, the apparent Km for the precursor lipid IV(A) is 11 microm. Substrates containing the 3-deoxy-d-manno-oct-2-ulosonic acid disaccharide are dephosphorylated at similar rates to lipid IV(A), whereas glycerophospholipids like phosphatidic acid or phosphatidylglycerol phosphate are very poor substrates. However, an LpxE homologue present in Agrobacterium tumefaciens is selective for phosphatidylglycerol phosphate, demonstrating the importance of determining substrate specificity before assigning the functions of LpxE-related proteins. The availability of purified LpxE will facilitate the preparation of novel 1-dephosphorylated lipid A molecules that are not readily accessible by chemical methods.

  6. Poly-ADP ribosylation of PTEN by tankyrases promotes PTEN degradation and tumor growth

    PubMed Central

    Li, Nan; Zhang, Yajie; Han, Xin; Liang, Ke; Wang, Jiadong; Feng, Lin; Wang, Wenqi; Songyang, Zhou; Lin, Chunru; Yang, Liuqing; Yu, Yonghao

    2015-01-01

    PTEN [phosphatidylinositol (3,4,5)-trisphosphate phosphatase and tensin homolog deleted from chromosome 10], a phosphatase and critical tumor suppressor, is regulated by numerous post-translational modifications, including phosphorylation, ubiquitination, acetylation, and SUMOylation, which affect PTEN localization and protein stability. Here we report ADP-ribosylation as a new post-translational modification of PTEN. We identified PTEN as a novel substrate of tankyrases, which are members of the poly(ADP-ribose) polymerases (PARPs). We showed that tankyrases interact with and ribosylate PTEN, which promotes the recognition of PTEN by a PAR-binding E3 ubiquitin ligase, RNF146, leading to PTEN ubiquitination and degradation. Double knockdown of tankyrase1/2 stabilized PTEN, resulting in the subsequent down-regulation of AKT phosphorylation and thus suppressed cell proliferation and glycolysis in vitro and tumor growth in vivo. Furthermore, tankyrases were up-regulated and negatively correlated with PTEN expression in human colon carcinomas. Together, our study revealed a new regulation of PTEN and highlighted a role for tankyrases in the PTEN–AKT pathway that can be explored further for cancer treatment. PMID:25547115

  7. Impact of PTEN on the expression of insulin-like growth factors (IGFs) and IGF-binding proteins in human gastric adenocarcinoma cells

    SciTech Connect

    Yi, Ho-Keun; Kim, Sun-Young; Hwang, Pyoung-Han; Kim, Chan-Young; Yang, Doo-Hyun; Oh, Youngman; Lee, Dae-Yeol . E-mail: leedy@chonbuk.ac.kr

    2005-05-13

    PTEN is a tumor suppressor gene that is frequently mutated or deleted in a variety of human cancers including human gastric cancer. PTEN functions primarily as a lipid phosphatase and plays a key role in the regulation of the PI3 kinase/Akt pathway, thereby modulating cell proliferation and cell survival. On the other hand, the IGF system plays an important role in cell proliferation and cell survival via the PI3 kinase/Akt and MAP kinase pathways in many cancer cells. To characterize the impact of PTEN on the IGF-IGFR-IGFBP axis in gastric cancer, we overexpressed PTEN using an adenovirus gene transfer system in human gastric adenocarcinoma cells, SNU-484 and SNU-663, which lack PTEN. Overexpression of PTEN inhibited serum-induced as well as IGF-I-induced cell proliferation as compared to control cells. PTEN overexpression resulted in a significant decrease in the expression of IGF-I, -II, and IGF-IR. Interestingly, amongst the six IGFBPs, only IGFBP-3 was upregulated by PTEN, whereas IGFBP-4 and -6 were reduced. The IGFBP-3 promoter activity assay and Western immunoblotting demonstrate that PTEN regulates IGFBP-3 at the transcriptional level. In addition, the PI3 kinase inhibitor, LY294002, upregulates IGFBP-3 expression but downregulates IGF-I and IGF-II, indicating that PTEN controls IGFBP-3 and IGFs by an Akt-dependent pathway. These findings suggest that PTEN may inhibit antiapoptotic IGF actions not only by blocking the IGF-IGFR-induced Akt activity, but also by regulating expression of components of the IGF system, in particular, upregulation of IGFBP-3, which is known to exert antiproliferative effects through IGF-dependent and IGF-independent mechanisms in cancer cells.

  8. Recent advances in targeting the autotaxin-lysophosphatidate-lipid phosphate phosphatase axis in vivo

    PubMed Central

    Benesch, Matthew G.K.; Tang, Xiaoyun; Venkatraman, Ganesh; Bekele, Raie T.; Brindley, David N.

    2016-01-01

    Abstract Extracellular lysophosphatidate (LPA) is a potent bioactive lipid that signals through six G-protein-coupled receptors. This signaling is required for embryogenesis, tissue repair and remodeling processes. LPA is produced from circulating lysophosphatidylcholine by autotaxin (ATX), and is degraded outside cells by a family of three enzymes called the lipid phosphate phosphatases (LPPs). In many pathological conditions, particularly in cancers, LPA concentrations are increased due to high ATX expression and low LPP activity. In cancers, LPA signaling drives tumor growth, angiogenesis, metastasis, resistance to chemotherapy and decreased efficacy of radiotherapy. Hence, targeting the ATX-LPA-LPP axis is an attractive strategy for introducing novel adjuvant therapeutic options. In this review, we will summarize current progress in targeting the ATX-LPA-LPP axis with inhibitors of autotaxin activity, LPA receptor antagonists, LPA monoclonal antibodies, and increasing low LPP expression. Some of these agents are already in clinical trials and have applications beyond cancer, including chronic inflammatory diseases. PMID:27533936

  9. PTEN degradation after ischemic stroke: a double-edged sword.

    PubMed

    Li, W; Huang, R; Chen, Z; Yan, L-J; Simpkins, J W; Yang, S-H

    2014-08-22

    Tumor suppressor phosphatase and tensin homolog (PTEN) is highly expressed in neurons and PTEN inhibition has been reported to be neuroprotective against ischemic stroke in experimental models. On the other hand, PTEN deletion has been shown to lead to cognitive impairment. In the current study, we examined the expression and functions of PTEN in an ischemic stroke rodent model. We found rapid S-nitrosylation and degradation of PTEN after cerebral ischemia/reperfusion injury. PTEN degradation leads to activation of Akt. PTEN partial deletion or PTEN inhibition increased the expression of GABAA receptor (GABAAR) γ2 subunit and enhanced GABAA receptor current. After cerebral ischemia, increased expression of GABAAR γ2 subunit was observed in the ischemia region and the penumbra area. We also observed PTEN loss in astrocytes after cerebral ischemia. Astrocytic PTEN partial knockout increased astrocyte activation and exacerbated ischemic damage. We speculated that ischemic stroke induced neuronal PTEN degradation, hence enhanced GABAA receptor-medicated neuronal activity inhibition which could attenuate excitotoxicity and provide neuroprotection during the acute phase after stroke, while inhibiting long-term functional recovery and contributing to vascular cognitive impairment after stroke. On the other hand, ischemic stroke induced astrocytic PTEN loss and enhanced ischemic damage and astrogliosis. Taken together, our study indicates that ischemic stroke induces rapid PTEN degradation in both neurons and astrocytes which play both protective and detrimental action in a spatiotemporal- and cell-type-dependent manner. Our study provides critical insight for targeting PTEN signaling pathway for stroke treatment.

  10. Design and synthesis of non-hydrolyzable homoisoprenoid α-monofluorophosphonate inhibitors of PPAPDC family integral membrane lipid phosphatases.

    PubMed

    Subramanian, Thangaiah; Ren, Hongmei; Subramanian, Karunai Leela; Sunkara, Manjula; Onono, Fredrick O; Morris, Andrew J; Spielmann, H Peter

    2014-09-15

    An efficient, diversity oriented synthesis of homoisoprenoid α-monofluorophosphonates utilizing electrophilic fluorination is presented along with their activity as inhibitors of PPAPDC2 family integral membrane lipid phosphatases. These novel phosphatase-resistant analogues of isoprenoid monophosphates are a platform for further structure-activity relationship studies and provide access to other isoprenoid family members where the phosphate ester oxygen is replaced by a α-monofluoromethylene moiety.

  11. Cell Activation-Induced Phosphoinositide 3-Kinase Alpha/Beta Dimerization Regulates PTEN Activity

    PubMed Central

    Pérez-García, Vicente; Redondo-Muñoz, Javier; Kumar, Amit

    2014-01-01

    The phosphoinositide 3-kinase (PI3K)/PTEN (phosphatase and tensin homolog) pathway is one of the central routes that enhances cell survival, division, and migration, and it is frequently deregulated in cancer. PI3K catalyzes formation of phosphatidylinositol 3,4,5-triphosphate [PI(3,4,5)P3] after cell activation; PTEN subsequently reduces these lipids to basal levels. Activation of the ubiquitous p110α isoform precedes that of p110β at several points during the cell cycle. We studied the potential connections between p110α and p110β activation, and we show that cell stimulation promotes p110α and p110β association, demonstrating oligomerization of PI3K catalytic subunits within cells. Cell stimulation also promoted PTEN incorporation into this complex, which was necessary for PTEN activation. Our results show that PI3Ks dimerize in vivo and that PI3K and PTEN activities modulate each other in a complex that controls cell PI(3,4,5)P3 levels. PMID:24958106

  12. Tumour suppressor PTEN enhanced enzyme activity of GPx, SOD and catalase by suppression of PI3K/AKT pathway in non-small cell lung cancer cell lines.

    PubMed

    Akca, Hakan; Demiray, Aydin; Aslan, Mutay; Acikbas, Ibrahim; Tokgun, Onur

    2013-06-01

    Phosphates and tensin homologue deleted on chromosome 10 (PTEN) is a tumour suppressor gene which dephosphorilates phosphoinositol 3,4,5 triphosphates. Therefore PTEN can regulate PI3K/AKT pathway in cells. Because of promoter methylation or gene deletion, PTEN expression is commonly decreased or lost in non-small cell lung cancer (NSCLC) cell lines. Therefore, we hypothesized that PTEN could regulate the activity of superoxide dismutase (CuZnSOD), glutathione peroxidase (GPx) and catalase. We first recreated PTENwt, G129R and G129E expressions in lung cell lines, in which endogenous PTEN expression was not detected. Then, we showed that PTEN could suppress AKT activity by its lipid phosphatase domain. We then examined the effect of recreated PTEN expressions in NSCLC cells. While PTENwt expression caused enhanced activity of SOD, GPx and catalase in transfected cells lines, neither G129R nor G129E expression effected enzyme activities. These results suggest that PTEN can up-regulate SOD, GPx and catalase activity by inhibition of PI3K/AKT pathway in NSCLC cell lines.

  13. Discovery and optimization of new benzimidazole- and benzoxazole-pyrimidone selective PI3Kβ inhibitors for the treatment of phosphatase and TENsin homologue (PTEN)-deficient cancers.

    PubMed

    Certal, Victor; Halley, Frank; Virone-Oddos, Angela; Delorme, Cécile; Karlsson, Andreas; Rak, Alexey; Thompson, Fabienne; Filoche-Rommé, Bruno; El-Ahmad, Youssef; Carry, Jean-Christophe; Abecassis, Pierre-Yves; Lejeune, Pascale; Vincent, Loic; Bonnevaux, Hélène; Nicolas, Jean-Paul; Bertrand, Thomas; Marquette, Jean-Pierre; Michot, Nadine; Benard, Tsiala; Below, Peter; Vade, Isabelle; Chatreaux, Fabienne; Lebourg, Gilles; Pilorge, Fabienne; Angouillant-Boniface, Odile; Louboutin, Audrey; Lengauer, Christoph; Schio, Laurent

    2012-05-24

    Most of the phosphoinositide-3 kinase (PI3K) kinase inhibitors currently in clinical trials for cancer treatment exhibit pan PI3K isoform profiles. Single PI3K isoforms differentially control tumorigenesis, and PI3Kβ has emerged as the isoform involved in the tumorigenicity of PTEN-deficient tumors. Herein we describe the discovery and optimization of a new series of benzimidazole- and benzoxazole-pyrimidones as small molecular mass PI3Kβ-selective inhibitors. Starting with compound 5 obtained from a one-pot reaction via a novel intermediate 1, medicinal chemistry optimization led to the discovery of compound 8, which showed a significant activity and selectivity for PI3Kβ and adequate in vitro pharmacokinetic properties. The X-ray costructure of compound 8 in PI3Kδ showed key interactions and structural features supporting the observed PI3Kβ isoform selectivity. Compound 8 achieved sustained target modulation and tumor growth delay at well tolerated doses when administered orally to SCID mice implanted with PTEN-deficient human tumor xenografts.

  14. Brain patterning perturbations following PTEN loss

    PubMed Central

    Veleva-Rotse, Biliana O.; Barnes, Anthony P.

    2014-01-01

    This review will consider the impact of compromised PTEN signaling in brain patterning. We approach understanding the contribution of PTEN to nervous system development by surveying the findings from the numerous genetic loss-of-function models that have been generated as well as other forms of PTEN inactivation. By exploring the developmental programs influenced by this central transduction molecule, we can begin to understand the molecular mechanisms that shape the developing brain. A wealth of data indicates that PTEN plays critical roles in a variety of stages during brain development. Many of them are considered here including: stem cell proliferation, fate determination, polarity, migration, process outgrowth, myelination and somatic hypertrophy. In many of these contexts, it is clear that PTEN phosphatase activity contributes to the observed effects of genetic deletion or depletion, however recent studies have also ascribed non-catalytic functions to PTEN in regulating cell function. We also explore the potential impact this alternative pool of PTEN may have on the developing brain. Together, these elements begin to form a clearer picture of how PTEN contributes to the emergence of brain structure and binds form and function in the nervous system. PMID:24860420

  15. LipA, a Tyrosine and Lipid Phosphatase Involved in the Virulence of Listeria monocytogenes ▿ †

    PubMed Central

    Kastner, Renate; Dussurget, Olivier; Archambaud, Cristel; Kernbauer, Elisabeth; Soulat, Didier; Cossart, Pascale; Decker, Thomas

    2011-01-01

    Intracellular bacterial pathogens manipulate host cell functions by producing enzymes that stimulate or antagonize signal transduction. The Listeria monocytogenes genome contains a gene, lmo1800, encoding a protein with a conserved motif of conventional tyrosine phosphatases. Here, we report that the lmo1800-encoded protein LipA is secreted by Listeria and displays tyrosine as well as lipid phosphatase activity in vitro. Bacteria lacking LipA are severely attenuated in virulence in vivo, thus revealing a so-far-undescribed enzymatic activity involved in Listeria infection. PMID:21444667

  16. Phosphatase and Tensin Homolog Is a Growth Repressor of Both Rhizoid and Gametophore Development in the Moss Physcomitrella patens.

    PubMed

    Saavedra, Laura; Catarino, Rita; Heinz, Tobias; Heilmann, Ingo; Bezanilla, Magdalena; Malhó, Rui

    2015-12-01

    Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is a lipid phosphatase implicated in cellular proliferation and survival. In animal cells, loss of PTEN leads to increased levels of phosphatidylinositol (3,4,5)-trisphosphate, stimulation of glucose and lipid metabolism, cellular growth, and morphological changes (related to adaptation and survival). Intriguingly, in plants, phosphatidylinositol (3,4,5)-trisphosphate has not been detected, and the enzymes that synthesize it were never reported. In this study we performed a genetic, biochemical, and functional characterization of the moss Physcomitrella patens PTEN gene family. P. patens has four PTENs, which are ubiquitously expressed during the entire moss life cycle. Using a knock-in approach, we show that all four genes are expressed in growing tissues, namely caulonemal and rhizoid cells. At the subcellular level, PpPTEN-green fluorescent protein fusions localized to the cytosol and the nucleus. Analysis of single and double knockouts revealed no significant phenotypes at different developmental stages, indicative of functional redundancy. However, compared with wild-type triple and quadruple pten knockouts, caulonemal cells grew faster, switched from the juvenile protonemal stage to adult gametophores earlier, and produced more rhizoids. Furthermore, analysis of lipid content and quantitative real-time polymerase chain reaction data performed in quadruple mutants revealed altered phosphoinositide levels [increase in phosphatidylinositol (3,5)-bisphosphate and decrease in phosphatidylinositol 3-phosphate] and up-regulation of marker genes from the synthesis phase of the cell cycle (e.g. P. patens proliferating cell nuclear antigen, ribonucleotide reductase, and minichromosome maintenance) and of the retinoblastoma-related protein gene P. patens retinoblastoma-related protein1. Together, these results suggest that PpPTEN is a suppressor of cell growth and morphogenic development in plants.

  17. Diets involved in PPAR and PI3K/AKT/PTEN pathway may contribute to neuroprotection in a traumatic brain injury

    PubMed Central

    2013-01-01

    Traumatic encephalopathy has emerged as a significant public health problem. It is believed that traumatic encephalopathy is caused by exposure to repetitive brain trauma prior to the initial symptoms of neurodegenerative disease. Therefore, prevention is important for the disease. The PI3K/AKT/PTEN (phosphoinositide-3 kinase/AKT/phosphatase and tensin homologue deleted on chromosome 10) pathway has been shown to play a pivotal role in neuroprotection, enhancing cell survival by stimulating cell proliferation and inhibiting apoptosis. PTEN negatively regulates the PI3K/AKT pathways through its lipid phosphatase activity. Although PTEN has been discovered as a tumor suppressor, PTEN is also involved in several other diseases, including diabetes and Alzheimer’s disease. Dietary fish oil rich in polyunsaturated fatty acids may induce the PTEN expression by activation of peroxisome proliferator-activated receptor. Supplementation of these natural compounds may provide a new therapeutic approach to the brain disorder. We review recent studies on the features of several diets and the signaling pathways involved in traumatic encephalopathy. PMID:24074163

  18. Altered Lipid Synthesis by Lack of Yeast Pah1 Phosphatidate Phosphatase Reduces Chronological Life Span.

    PubMed

    Park, Yeonhee; Han, Gil-Soo; Mileykovskaya, Eugenia; Garrett, Teresa A; Carman, George M

    2015-10-16

    In Saccharomyces cerevisiae, Pah1 phosphatidate phosphatase, which catalyzes the dephosphorylation of phosphatidate to yield diacylglycerol, plays a crucial role in the synthesis of the storage lipid triacylglycerol. This evolutionarily conserved enzyme also plays a negative regulatory role in controlling de novo membrane phospholipid synthesis through its consumption of phosphatidate. We found that the pah1Δ mutant was defective in the utilization of non-fermentable carbon sources but not in oxidative phosphorylation; the mutant did not exhibit major changes in oxygen consumption rate, mitochondrial membrane potential, F1F0-ATP synthase activity, or gross mitochondrial morphology. The pah1Δ mutant contained an almost normal complement of major mitochondrial phospholipids with some alterations in molecular species. Although oxidative phosphorylation was not compromised in the pah1Δ mutant, the cellular levels of ATP in quiescent cells were reduced by 2-fold, inversely correlating with a 4-fold increase in membrane phospholipids. In addition, the quiescent pah1Δ mutant cells had 3-fold higher levels of mitochondrial superoxide and cellular lipid hydroperoxides, had reduced activities of superoxide dismutase 2 and catalase, and were hypersensitive to hydrogen peroxide. Consequently, the pah1Δ mutant had a shortened chronological life span. In addition, the loss of Tsa1 thioredoxin peroxidase caused a synthetic growth defect with the pah1Δ mutation. The shortened chronological life span of the pah1Δ mutant along with its growth defect on non-fermentable carbon sources and hypersensitivity to hydrogen peroxide was suppressed by the loss of Dgk1 diacylglycerol kinase, indicating that the underpinning of pah1Δ mutant defects was the excess synthesis of membrane phospholipids.

  19. Dynamic formation of ER–PM junctions presents a lipid phosphatase to regulate phosphoinositides

    PubMed Central

    Jensen, Jill B.; Vivas, Oscar; Kruse, Martin; Traynor-Kaplan, Alexis E.; Hille, Bertil

    2016-01-01

    Endoplasmic reticulum–plasma membrane (ER–PM) contact sites play an integral role in cellular processes such as excitation–contraction coupling and store-operated calcium entry (SOCE). Another ER–PM assembly is one tethered by the extended synaptotagmins (E-Syt). We have discovered that at steady state, E-Syt2 positions the ER and Sac1, an integral ER membrane lipid phosphatase, in discrete ER–PM junctions. Here, Sac1 participates in phosphoinositide homeostasis by limiting PM phosphatidylinositol 4-phosphate (PI(4)P), the precursor of PI(4,5)P2. Activation of G protein–coupled receptors that deplete PM PI(4,5)P2 disrupts E-Syt2–mediated ER–PM junctions, reducing Sac1’s access to the PM and permitting PM PI(4)P and PI(4,5)P2 to recover. Conversely, depletion of ER luminal calcium and subsequent activation of SOCE increases the amount of Sac1 in contact with the PM, depleting PM PI(4)P. Thus, the dynamic presence of Sac1 at ER–PM contact sites allows it to act as a cellular sensor and controller of PM phosphoinositides, thereby influencing many PM processes. PMID:27044890

  20. Lipid phosphate phosphatase-1 expression in cancer cells attenuates tumor growth and metastasis in mice.

    PubMed

    Tang, Xiaoyun; Benesch, Matthew G K; Dewald, Jay; Zhao, Yuan Y; Patwardhan, Neeraj; Santos, Webster L; Curtis, Jonathan M; McMullen, Todd P W; Brindley, David N

    2014-11-01

    Lipid phosphate phosphatase-1 (LPP1) degrades lysophosphatidate (LPA) and attenuates receptor-mediated signaling. LPP1 expression is low in many cancer cells and tumors compared with normal tissues. It was hypothesized from studies with cultured cells that increasing LPP1 activity would decrease tumor growth and metastasis. This hypothesis has never been tested in vivo. To do this, we inducibly expressed LPP1 or a catalytically inactive mutant in cancer cells. Expressing active LPP1 increased extracellular LPA degradation by 5-fold. It also decreased the stimulation of Ca(2+) transients by LPA, a nondephosphorylatable LPA1/2 receptor agonist and a protease-activated receptor-1 peptide. The latter results demonstrate that LPP1 has effects downstream of receptor activation. Decreased Ca(2+) mobilization and Rho activation contributed to the effects of LPP1 in attenuating the LPA-induced migration of MDA-MB-231 breast cancer cells and their growth in 3D culture. Increasing LPP1 expression in breast and thyroid cancer cells decreased tumor growth and the metastasis by up to 80% compared with expression of inactive LPP1 or green fluorescent protein in syngeneic and xenograft mouse models. The present work demonstrates for the first time that increasing the LPP1 activity in three lines of aggressive cancer cells decreases their abilities to produce tumors and metastases in mice.

  1. A PTEN inhibitor displays preclinical activity against hepatocarcinoma cells

    PubMed Central

    Augello, Giuseppa; Puleio, Roberto; Emma, Maria Rita; Cusimano, Antonella; Loria, Guido R.; McCubrey, James A.; Montalto, Giuseppe; Cervello, Melchiorre

    2016-01-01

    ABSTRACT Phosphatase and tensin homolog (PTEN) gene is considered a tumor suppressor gene. However, PTEN mutations rarely occur in hepatocellular carcinoma (HCC), whereas heterozygosity of PTEN, resulting in reduced PTEN expression, has been observed in 32–44% of HCC patients. In the present study, we investigated the effects of the small molecule PTEN inhibitor VO-OHpic in HCC cells. VO-OHpic inhibited cell viability, cell proliferation and colony formation, and induced senescence-associated β-galactosidase activity in Hep3B (low PTEN expression) and to a lesser extent in PLC/PRF/5 (high PTEN expression) cells, but not in PTEN-negative SNU475 cells. VO-OHpic synergistically inhibited cell viability when combined with PI3K/mTOR and RAF/MEK/ERK pathway inhibitors, but only in Hep3B cells, and significantly inhibited tumor growth in nude mice bearing xenografts of Hep3B cells. Therefore, we demonstrated for the first time that VO-OHpic inhibited cell growth and induced senescence in HCC cells with low PTEN expression, and that the combination of VO-OHpic with PI3K/mTOR and RAF/MEK/ERK inhibitors resulted in a more effective tumor cell kill. Our findings, hence, provide proof-of-principle evidence that pharmacological inhibition of PTEN may represent a promising approach for HCC therapy in a subclass of patients with a low PTEN expression. PMID:26794644

  2. Microtubule affinity-regulating kinase 2 (MARK2) turns on phosphatase and tensin homolog (PTEN)-induced kinase 1 (PINK1) at Thr-313, a mutation site in Parkinson disease: effects on mitochondrial transport.

    PubMed

    Matenia, Dorthe; Hempp, Cindy; Timm, Thomas; Eikhof, Annika; Mandelkow, Eva-Maria

    2012-03-09

    The kinase MARK2/Par-1 plays key roles in several cell processes, including neurodegeneration such as Alzheimer disease by phosphorylating tau and detaching it from microtubules. In search of interaction partners of MARK2, we identified phosphatase and tensin homolog (PTEN)-induced kinase 1 (PINK1), which is important for the survival of neurons and whose mutations are linked to familial Parkinson disease (PD). MARK2 phosphorylated and activated the cleaved form of PINK1 (ΔN-PINK1; amino acids 156-581). Thr-313 was the primary phosphorylation site, a residue mutated to a non-phosphorylatable form (T313M) in a frequent variant of PD. Mutation of Thr-313 to Met or Glu in PINK1 showed toxic effects with abnormal mitochondrial distribution in neurons. MARK2 and PINK1 were found to colocalize with mitochondria and regulate their transport. ΔN-PINK1 promoted anterograde transport and increased the fraction of stationary mitochondria, whereas full-length PINK1 promoted retrograde transport. In both cases, MARK2 enhanced the effects. The results identify MARK2 as an upstream regulator of PINK1 and ΔN-PINK1 and provide insights into the regulation of mitochondrial trafficking in neurons and neurodegeneration in PD.

  3. Oncogenic PTEN functions and models in T-cell malignancies.

    PubMed

    Tesio, M; Trinquand, A; Macintyre, E; Asnafi, V

    2016-07-28

    PTEN is a protein phosphatase that is crucial to prevent the malignant transformation of T-cells. Although a numerous mechanisms regulate its expression and function, they are often altered in T-cell acute lymphoblastic leukaemias and T-cell lymphomas. As such, PTEN inactivation frequently occurs in these malignancies, where it can be associated with chemotherapy resistance and poor prognosis. Different Pten knockout models recapitulated the development of T-cell leukaemia/lymphoma, demonstrating that PTEN loss is at the center of a complex oncogenic network that sustains and drives tumorigenesis via the activation of multiple signalling pathways. These aspects and their therapeutic implications are discussed in this review.

  4. Regulation of Cellular Diacylglycerol through Lipid Phosphate Phosphatases Is Required for Pathogenesis of the Rice Blast Fungus, Magnaporthe oryzae

    PubMed Central

    Mir, Albely Afifa; Choi, Jaeyoung; Choi, Jaehyuk; Lee, Yong-Hwan

    2014-01-01

    Considering implication of diacylglycerol in both metabolism and signaling pathways, maintaining proper levels of diacylglycerol (DAG) is critical to cellular homeostasis and development. Except the PIP2-PLC mediated pathway, metabolic pathways leading to generation of DAG converge on dephosphorylation of phosphatidic acid catalyzed by lipid phosphate phosphatases. Here we report the role of such enzymes in a model plant pathogenic fungus, Magnaporthe oryzae. We identified five genes encoding putative lipid phosphate phosphatases (MoLPP1 to MoLPP5). Targeted disruption of four genes (except MoLPP4) showed that MoLPP3 and MoLPP5 are required for normal progression of infection-specific development and proliferation within host plants, whereas MoLPP1 and MoLPP2 are indispensable for fungal pathogenicity. Reintroduction of MoLPP3 and MoLPP5 into individual deletion mutants restored all the defects. Furthermore, exogenous addition of saturated DAG not only restored defect in appressorium formation but also complemented reduced virulence in both mutants. Taken together, our data indicate differential roles of lipid phosphate phosphatase genes and requirement of proper regulation of cellular DAGs for fungal development and pathogenesis. PMID:24959955

  5. High-resolution Structures of Protein-Membrane Complexes by Neutron Reflection and MD Simulation: Membrane Association of the PTEN Tumor Suppressor

    NASA Astrophysics Data System (ADS)

    Lösche, Matthias

    2012-02-01

    The lipid matrix of biomembranes is an in-plane fluid, thermally and compositionally disordered leaflet of 5 nm thickness and notoriously difficult to characterize in structural terms. Yet, biomembranes are ubiquitous in the cell, and membrane-bound proteins are implicated in a variety of signaling pathways and intra-cellular transport. We developed methodology to study proteins associated with model membranes using neutron reflection measurements and showed recently that this approach can resolve the penetration depth and orientation of membrane proteins with ångstrom resolution if their crystal or NMR structure is known. Here we apply this technology to determine the membrane bindung and unravel functional details of the PTEN phosphatase, a key player in the PI3K apoptosis pathway. PTEN is an important regulatory protein and tumor suppressor that performs its phosphatase activity as an interfacial enzyme at the plasma membrane-cytoplasm boundary. Acting as an antagonist to phosphoinositide-3-kinase (PI3K) in cell signaling, it is deleted in many human cancers. Despite its importance in regulating the levels of the phosphoinositoltriphosphate PI(3,4,5)P3, there is little understanding of how PTEN binds to membranes, is activated and then acts as a phosphatase. We investigated the structure and function of PTEN by studying its membrane affinity and localization on in-plane fluid, thermally disordered synthetic membrane models. The membrane association of the protein depends strongly on membrane composition, where phosphatidylserine (PS) and phosphatidylinositol diphosphate (PI(4,5)P2) act synergetically in attracting the enzyme to the membrane surface. Membrane affinities depend strongly on membrane fluidity, which suggests multiple binding sites on the protein for PI(4,5)P2. Neutron reflection measurements show that the PTEN phosphatase ``scoots'' along the membrane surface (penetration < 5 å) but binds the membrane tightly with its two major domains, the C2 and

  6. PTEN sequence analysis in endometrial hyperplasia and endometrial carcinoma in Slovak women.

    PubMed

    Gbelcová, H; Bakeš, P; Priščáková, P; Šišovský, V; Hojsíková, I; Straka, Ľ; Konečný, M; Markus, J; D'Acunto, C W; Ruml, T; Böhmer, D; Danihel, Ľ; Repiská, V

    2015-01-01

    Phosphatase and tensin homolog (PTEN) is a protein that acts as a tumor suppressor by dephosphorylating the lipid second messenger phosphatidylinositol 3,4,5-trisphosphate. Loss of PTEN function has been implicated in the pathogenesis of a number of different tumors, particularly endometrial carcinoma (ECa). ECa is the most common neoplasia of the female genital tract. Our study evaluates an association between the morphological appearance of endometrial hyperplasia and endometrial carcinoma and the degree of PTEN alterations. A total of 45 endometrial biopsies from Slovak women were included in present study. Formalin-fixed and paraffin-embedded tissue samples with simple hyperplasia (3), complex hyperplasia (5), atypical complex hyperplasia (7), endometrioid carcinomas G1 (20) and G3 (5), and serous carcinoma (5) were evaluated for the presence of mutations in coding regions of PTEN gene, the most frequently mutated tumor suppressor gene in endometrial carcinoma. 75% of the detected mutations were clustered in exons 5 and 8. Out of the 39 mutations detected in 24 cases, 20 were frameshifts and 19 were nonsense, missense, or silent mutations. Some specimens harboured more than one mutation. The results of current study on Slovak women were compared to a previous study performed on Polish population. The two sets of results were similar.

  7. Phosphoinositide phosphatases: just as important as the kinases.

    PubMed

    Dyson, Jennifer M; Fedele, Clare G; Davies, Elizabeth M; Becanovic, Jelena; Mitchell, Christina A

    2012-01-01

    Phosphoinositide phosphatases comprise several large enzyme families with over 35 mammalian enzymes identified to date that degrade many phosphoinositide signals. Growth factor or insulin stimulation activates the phosphoinositide 3-kinase that phosphorylates phosphatidylinositol (4,5)-bisphosphate [PtdIns(4,5)P(2)] to form phosphatidylinositol (3,4,5)-trisphosphate [PtdIns(3,4,5)P(3)], which is rapidly dephosphorylated either by PTEN (phosphatase and tensin homologue deleted on chromosome 10) to PtdIns(4,5)P(2), or by the 5-phosphatases (inositol polyphosphate 5-phosphatases), generating PtdIns(3,4)P(2). 5-phosphatases also hydrolyze PtdIns(4,5)P(2) forming PtdIns(4)P. Ten mammalian 5-phosphatases have been identified, which regulate hematopoietic cell proliferation, synaptic vesicle recycling, insulin signaling, and embryonic development. Two 5-phosphatase genes, OCRL and INPP5E are mutated in Lowe and Joubert syndrome respectively. SHIP [SH2 (Src homology 2)-domain inositol phosphatase] 2, and SKIP (skeletal muscle- and kidney-enriched inositol phosphatase) negatively regulate insulin signaling and glucose homeostasis. SHIP2 polymorphisms are associated with a predisposition to insulin resistance. SHIP1 controls hematopoietic cell proliferation and is mutated in some leukemias. The inositol polyphosphate 4-phosphatases, INPP4A and INPP4B degrade PtdIns(3,4)P(2) to PtdIns(3)P and regulate neuroexcitatory cell death, or act as a tumor suppressor in breast cancer respectively. The Sac phosphatases degrade multiple phosphoinositides, such as PtdIns(3)P, PtdIns(4)P, PtdIns(5)P and PtdIns(3,5)P(2) to form PtdIns. Mutation in the Sac phosphatase gene, FIG4, leads to a degenerative neuropathy. Therefore the phosphatases, like the lipid kinases, play major roles in regulating cellular functions and their mutation or altered expression leads to many human diseases.

  8. A glutamate switch controls voltage-sensitive phosphatase function.

    PubMed

    Liu, Lijun; Kohout, Susy C; Xu, Qiang; Müller, Simone; Kimberlin, Christopher R; Isacoff, Ehud Y; Minor, Daniel L

    2012-05-06

    The Ciona intestinalis voltage-sensing phosphatase (Ci-VSP) couples a voltage-sensing domain (VSD) to a lipid phosphatase that is similar to the tumor suppressor PTEN. How the VSD controls enzyme function has been unclear. Here, we present high-resolution crystal structures of the Ci-VSP enzymatic domain that reveal conformational changes in a crucial loop, termed the 'gating loop', that controls access to the active site by a mechanism in which residue Glu411 directly competes with substrate. Structure-based mutations that restrict gating loop conformation impair catalytic function and demonstrate that Glu411 also contributes to substrate selectivity. Structure-guided mutations further define an interaction between the gating loop and linker that connects the phosphatase to the VSD for voltage control of enzyme activity. Together, the data suggest that functional coupling between the gating loop and the linker forms the heart of the regulatory mechanism that controls voltage-dependent enzyme activation.

  9. CD45 phosphatase is crucial for human and murine acute myeloid leukemia maintenance through its localization in lipid rafts.

    PubMed

    Saint-Paul, Laetitia; Nguyen, Chi-Hung; Buffière, Anne; Pais de Barros, Jean-Paul; Hammann, Arlette; Landras-Guetta, Corinne; Filomenko, Rodolphe; Chrétien, Marie-Lorraine; Johnson, Pauline; Bastie, Jean-Noël; Delva, Laurent; Quéré, Ronan

    2016-10-04

    CD45 is a pan-leukocyte protein with tyrosine phosphatase activity involved in the regulation of signal transduction in hematopoiesis. Exploiting CD45 KO mice and lentiviral shRNA, we prove the crucial role that CD45 plays in acute myeloid leukemia (AML) development and maintenance. We discovered that CD45 does not colocalize with lipid rafts on murine and human non-transformed hematopoietic cells. Using a mouse model, we proved that CD45 positioning within lipid rafts is modified during their oncogenic transformation to AML. CD45 colocalized with lipid rafts on AML cells, which contributes to elevated GM-CSF signal intensity involved in proliferation of leukemic cells. We furthermore proved that the GM-CSF/Lyn/Stat3 pathway that contributes to growth of leukemic cells could be profoundly affected, by using a new plasma membrane disrupting agent, which rapidly delocalized CD45 away from lipid rafts. We provide evidence that this mechanism is also effective on human primary AML samples and xenograft transplantation. In conclusion, this study highlights the emerging evidence of the involvement of lipid rafts in oncogenic development of AML and the targeting of CD45 positioning among lipid rafts as a new strategy in the treatment of AML.

  10. CD45 phosphatase is crucial for human and murine acute myeloid leukemia maintenance through its localization in lipid rafts

    PubMed Central

    Saint-Paul, Laetitia; Nguyen, Chi-Hung; Buffière, Anne; de Barros, Jean-Paul Pais; Hammann, Arlette; Landras-Guetta, Corinne; Filomenko, Rodolphe; Chrétien, Marie-Lorraine; Johnson, Pauline; Bastie, Jean-Noël; Delva, Laurent; Quéré, Ronan

    2016-01-01

    CD45 is a pan-leukocyte protein with tyrosine phosphatase activity involved in the regulation of signal transduction in hematopoiesis. Exploiting CD45 KO mice and lentiviral shRNA, we prove the crucial role that CD45 plays in acute myeloid leukemia (AML) development and maintenance. We discovered that CD45 does not colocalize with lipid rafts on murine and human non-transformed hematopoietic cells. Using a mouse model, we proved that CD45 positioning within lipid rafts is modified during their oncogenic transformation to AML. CD45 colocalized with lipid rafts on AML cells, which contributes to elevated GM-CSF signal intensity involved in proliferation of leukemic cells. We furthermore proved that the GM-CSF/Lyn/Stat3 pathway that contributes to growth of leukemic cells could be profoundly affected, by using a new plasma membrane disrupting agent, which rapidly delocalized CD45 away from lipid rafts. We provide evidence that this mechanism is also effective on human primary AML samples and xenograft transplantation. In conclusion, this study highlights the emerging evidence of the involvement of lipid rafts in oncogenic development of AML and the targeting of CD45 positioning among lipid rafts as a new strategy in the treatment of AML. PMID:27579617

  11. PTEN-PDZ domain interactions: binding of PTEN to PDZ domains of PTPN13.

    PubMed

    Sotelo, Natalia S; Schepens, Jan T G; Valiente, Miguel; Hendriks, Wiljan J A J; Pulido, Rafael

    2015-05-01

    Protein modular interactions mediated by PDZ domains are essential for the establishment of functional protein networks controlling diverse cellular functions. The tumor suppressor PTEN possesses a C-terminal PDZ-binding motif (PDZ-BM) that is recognized by a specific set of PDZ domains from scaffolding and regulatory proteins. Here, we review the current knowledge on PTEN-PDZ domain interactions and tumor suppressor networks, describe methodology suitable to analyze these interactions, and report the binding of PTEN and the PDZ domain-containing protein tyrosine phosphatase PTPN13. Yeast two-hybrid and GST pull-down analyses showed that PTEN binds to PDZ2/PTPN13 domain in a manner that depends on the specific PTPN13 PDZ domain arrangement involving the interdomain region between PDZ1 and PDZ2. Furthermore, a specific binding profile of PTEN to PDZ2/PTPN13 domain was observed by mutational analysis of the PTEN PDZ-BM. Our results disclose a PDZ-mediated physical interaction of PTEN and PTPN13 with potential relevance in tumor suppression and cell homeostasis.

  12. PTEN-inhibition by zinc ions augments interleukin-2-mediated Akt phosphorylation.

    PubMed

    Plum, Laura Marie; Brieger, Anne; Engelhardt, Gabriela; Hebel, Silke; Nessel, Andreas; Arlt, Marcus; Kaltenberg, Jennifer; Schwaneberg, Ulrich; Huber, Michael; Rink, Lothar; Haase, Hajo

    2014-07-01

    Free zinc ions (Zn(2+)) participate in several signaling pathways. The aim of the present study was to investigate a potential involvement of Zn(2+) in the PI3K/Akt pathway of interleukin (IL)-2 signaling in T-cells. The IL-2 receptor triggers three major pathways, ERK1/2, JAK/STAT5, and PI3K/Akt. We have previously shown that an IL-2-mediated release of lysosomal Zn(2+) into the cytoplasm activates ERK1/2, but not STAT5. In the present study, Akt phosphorylation in response to IL-2 was abrogated by the Zn(2+) chelator N,N,N',N'-tetrakis-2(pyridyl-methyl)ethylenediamine, and was induced by treatment with Zn(2+) and the ionophore pyrithione. The latter were ineffective in cells that were treated with siRNA against the phosphatase and tensin homolog deleted on chromosome 10 (PTEN), a phosphatase that degrades the lipid second messenger PI(3,4,5)P3, which is produced by PI3K and leads to activation of Akt. Inhibition of recombinant PTEN by Zn(2+)in vitro yielded an IC50 of 0.59 nM. Considering a resting free cytoplasmic Zn(2+) level of 0.2 nM in the T-cell line CTLL-2, this seems ideally suited for dynamic regulation by cellular Zn(2+). Oxidation with H2O2 and supplementation with Zn(2+) led to similar changes in the CD spectrum of PTEN. Moreover, Zn(2+) partially prevented the oxidation of cysteines 71 and 124. Hence, we hypothesize that zinc signals affect the IL-2-dependent PI3K/Akt pathway by inhibiting the negative regulator PTEN through binding with a sub-nanomolar affinity to cysteine residues that are essential for its catalytic activity.

  13. DNMT1-mediated PTEN hypermethylation confers hepatic stellate cell activation and liver fibrogenesis in rats

    SciTech Connect

    Bian, Er-Bao; Huang, Cheng; Ma, Tao-Tao; Tao, Hui; Zhang, Hui; Cheng, Chang; Lv, Xiong-Wen; Li, Jun

    2012-10-01

    Hepatic stellate cell (HSC) activation is an essential event during liver fibrogenesis. Phosphatase and tension homolog deleted on chromosome 10 (PTEN), a tumor suppressor, is a negative regulator of this process. PTEN promoter hypermethylation is a major epigenetic silencing mechanism in tumors. The present study aimed to investigate whether PTEN promoter methylation was involved in HSC activation and liver fibrosis. Treatment of activated HSCs with the DNA methylation inhibitor 5-aza-2′-deoxycytidine (5-azadC) decreased aberrant hypermethylation of the PTEN gene promoter and prevented the loss of PTEN expression that occurred during HSC activation. Silencing DNA methyltransferase 1 (DNMT1) gene also decreased the PTEN gene promoter methylation and upregulated the PTEN gene expression in activated HSC-T6 cells. In addition, knockdown of DNMT1 inhibited the activation of both ERK and AKT pathways in HSC-T6 cells. These results suggest that DNMT1-mediated PTEN hypermethylation caused the loss of PTEN expression, followed by the activation of the PI3K/AKT and ERK pathways, resulting in HSC activation. Highlights: ► PTEN methylation status and loss of PTEN expression ► DNMT1 mediated PTEN hypermethylation. ► Hypermethylation of PTEN contributes to the activation of ERK and AKT pathways.

  14. Systematic lipidomic analysis of yeast protein kinase and phosphatase mutants reveals novel insights into regulation of lipid homeostasis

    PubMed Central

    da Silveira dos Santos, Aline Xavier; Riezman, Isabelle; Aguilera-Romero, Maria-Auxiliadora; David, Fabrice; Piccolis, Manuele; Loewith, Robbie; Schaad, Olivier; Riezman, Howard

    2014-01-01

    The regulatory pathways required to maintain eukaryotic lipid homeostasis are largely unknown. We developed a systematic approach to uncover new players in the regulation of lipid homeostasis. Through an unbiased mass spectrometry–based lipidomic screening, we quantified hundreds of lipid species, including glycerophospholipids, sphingolipids, and sterols, from a collection of 129 mutants in protein kinase and phosphatase genes of Saccharomyces cerevisiae. Our approach successfully identified known kinases involved in lipid homeostasis and uncovered new ones. By clustering analysis, we found connections between nutrient-sensing pathways and regulation of glycerophospholipids. Deletion of members of glucose- and nitrogen-sensing pathways showed reciprocal changes in glycerophospholipid acyl chain lengths. We also found several new candidates for the regulation of sphingolipid homeostasis, including a connection between inositol pyrophosphate metabolism and complex sphingolipid homeostasis through transcriptional regulation of AUR1 and SUR1. This robust, systematic lipidomic approach constitutes a rich, new source of biological information and can be used to identify novel gene associations and function. PMID:25143408

  15. PTEN functions to 'prioritize' chemotactic cues and prevent 'distraction' in migrating neutrophils.

    PubMed

    Heit, Bryan; Robbins, Stephen M; Downey, Charlene M; Guan, Zhiwen; Colarusso, Pina; Miller, B Joan; Jirik, Frank R; Kubes, Paul

    2008-07-01

    Neutrophils encounter and 'prioritize' many chemoattractants in their pursuit of bacteria. Here we tested the possibility that the phosphatase PTEN is responsible for the prioritization of chemoattractants. Neutrophils induced chemotaxis by two separate pathways, the phosphatidylinositol-3-OH kinase (PI(3)K) phosphatase and tensin homolog (PTEN) pathway, and the p38 mitogen-activated protein kinase pathway, with the p38 pathway dominating over the PI(3)K pathway. Pten(-/-) neutrophils could not prioritize chemoattractants and were 'distracted' by chemokines when moving toward bacterial chemoattractants. In opposing gradients, PTEN became distributed throughout the cell circumference, which inhibited all PI(3)K activity, thus permitting 'preferential' migration toward bacterial products via phospholipase A(2) and p38. Such prioritization was defective in Pten(-/-) neutrophils, which resulted in defective bacterial clearance in vivo. Our data identify a PTEN-dependent mechanism in neutrophils to prioritize, 'triage' and integrate responses to multiple chemotactic cues.

  16. Altered Lipid A Structures and Polymyxin Hypersensitivity of Rhizobium etli Mutants Lacking the LpxE and LpxF Phosphatases

    PubMed Central

    Ingram, Brian O.; Sohlenkamp, Christian; Geiger, Otto; Raetz, Christian R. H.

    2010-01-01

    The lipid A of Rhizobium etli, a nitrogen-fixing plant endosymbiont, displays significant structural differences when compared to that of Escherichia coli. An especially striking feature of R. etli lipid A is that it lacks both the 1- and 4′phosphate groups. The 4′-phosphate moiety of the distal glucosamine unit is replaced with a galacturonic acid residue. The dephosphorylated proximal unit is present as a mixture of the glucosamine hemiacetal and an oxidized 2-aminogluconate derivative. Distinct lipid A phosphatases directed to the 1 or the 4′-positions have been identified previously in extracts of R. etli and Rhizobium leguminosarum. The corresponding structural genes, lpxE and lpxF respectively, have also been identified. Here we describe the isolation and characterization of R. etli deletion mutants in each of these phosphatase genes and the construction of a double phosphatase mutant. Mass spectrometry confirmed that the mutant strains completely lacked the wild-type lipid A species and accumulated the expected phosphate-containing derivatives. Moreover, radiochemical analysis revealed that phosphatase activity was absent in membranes prepared from the mutants. Our results indicate that LpxE and LpxF are solely responsible for selectively dephosphorylating the lipid A molecules of R. etli. All the mutant strains showed an increased sensitivity to polymyxin relative to the wild-type. However, despite the presence of altered lipid A species containing one or both phosphate groups, all the phosphatase mutants formed nitrogen-fixing nodules on Phaseolus vulgaris. Therefore, the dephosphorylation of lipid A molecules in R. etli is not required for nodulation but may instead play a role in protecting the bacteria from cationic antimicrobial peptides or other immune responses of plants. PMID:20153447

  17. Activating PTEN by COX-2 inhibitors antagonizes radiation-induced AKT activation contributing to radiosensitization

    SciTech Connect

    Meng, Zhen; Gan, Ye-Hua

    2015-05-01

    Radiotherapy is still one of the most effective nonsurgical treatments for many tumors. However, radioresistance remains a major impediment to radiotherapy. Although COX-2 inhibitors can induce radiosensitization, the underlying mechanism is not fully understood. In this study, we showed that COX-2 selective inhibitor celecoxib enhanced the radiation-induced inhibition of cell proliferation and apoptosis in HeLa and SACC-83 cells. Treatment with celecoxib alone dephosphorylated phosphatase and tensin homolog deleted on chromosome ten (PTEN), promoted PTEN membrane translocation or activation, and correspondingly dephosphorylated or inactivated protein kinase B (AKT). By contrast, treatment with radiation alone increased PTEN phosphorylation, inhibited PTEN membrane translocation and correspondingly activated AKT in the two cell lines. However, treatment with celecoxib or another COX-2 selective inhibitor (valdecoxib) completely blocked radiation-induced increase of PTEN phosphorylation, rescued radiation-induced decrease in PTEN membrane translocation, and correspondingly inactivated AKT. Moreover, celecoxib could also upregulate PTEN protein expression by downregulating Sp1 expression, thereby leading to the activation of PTEN transcription. Our results suggested that COX-2 inhibitors could enhance radiosensitization at least partially by activating PTEN to antagonize radiation-induced AKT activation. - Highlights: • COX-2 inhibitor, celecoxib, could enhance radiosensitization. • Radiation induced PTEN inactivation (phosphorylation) and AKT activation. • COX-2 inhibitor induced PTEN expression and activation, and inactivated AKT. • COX-2 inhibitor enhanced radiosensitization through activating PTEN.

  18. Pten is necessary for the quiescence and maintenance of adult muscle stem cells

    PubMed Central

    Yue, Feng; Bi, Pengpeng; Wang, Chao; Shan, Tizhong; Nie, Yaohui; Ratliff, Timothy L.; Gavin, Timothy P.; Kuang, Shihuan

    2017-01-01

    Satellite cells (SCs) are myogenic stem cells required for regeneration of adult skeletal muscles. A proper balance among quiescence, activation and differentiation is essential for long-term maintenance of SCs and their regenerative function. Here we show a function of Pten (phosphatase and tensin homologue) in quiescent SCs. Deletion of Pten in quiescent SCs leads to their spontaneous activation and premature differentiation without proliferation, resulting in depletion of SC pool and regenerative failure. However, prior to depletion, Pten-null activated SCs can transiently proliferate upon injury and regenerate injured muscles, but continually decline during regeneration, suggesting an inability to return to quiescence. Mechanistically, Pten deletion increases Akt phosphorylation, which induces cytoplasmic translocation of FoxO1 and suppression of Notch signalling. Accordingly, constitutive activation of Notch1 prevents SC depletion despite Pten deletion. Our findings delineate a critical function of Pten in maintaining SC quiescence and reveal an interaction between Pten and Notch signalling. PMID:28094257

  19. Pten Inactivation Accelerates Oncogenic K-ras-Initiated Tumorigenesis in a Mouse Model of Lung Cancer

    PubMed Central

    Iwanaga, Kentaro; Yang, Yanan; Raso, Maria Gabriela; Ma, Lijiang; Hanna, Amy E.; Thilaganathan, Nishan; Moghaddam, Seyed; Evans, Christopher M.; Li, Huaiguang; Cai, Wei-Wen; Sato, Mitsuo; Minna, John D.; Wu, Hong; Creighton, Chad J.; Demayo, Francesco J.; Wistuba, Ignacio I.; Kurie, Jonathan M.

    2009-01-01

    Phosphatase and tensin homologue deleted from chromosome 10 (Pten) is expressed aberrantly in non-small cell lung cancer cells, but the role of Pten in lung neoplasia has not been fully elucidated. In this study, we used a genetic approach to inactivate Pten in the bronchial epithelium of mice. Although, by itself, Pten inactivation had no discernible effect on bronchial epithelial histology, it accelerated lung tumorigenesis initiated by oncogenic K-ras, causing more rapid lethality than that induced by oncogenic K-ras alone (8 weeks versus 24 weeks of median duration of survival, respectively). Lung tumors arose in K-ras mutant, Pten-deficient mice that rapidly obstructed bronchial lumina and replaced alveolar spaces. Relative to K-ras mutant tumors, the K-ras mutant, Pten-deficient tumors exhibited more advanced histologic severity and more prominent inflammation and vascularity. Thus, Pten inactivation cooperated with oncogenic K-ras in promoting lung tumorigenesis. PMID:18281487

  20. 3' Phosphatase activity toward phosphatidylinositol 3,4-bisphosphate [PI(3,4)P2] by voltage-sensing phosphatase (VSP).

    PubMed

    Kurokawa, Tatsuki; Takasuga, Shunsuke; Sakata, Souhei; Yamaguchi, Shinji; Horie, Shigeo; Homma, Koichi J; Sasaki, Takehiko; Okamura, Yasushi

    2012-06-19

    Voltage-sensing phosphatases (VSPs) consist of a voltage-sensor domain and a cytoplasmic region with remarkable sequence similarity to phosphatase and tensin homolog deleted on chromosome 10 (PTEN), a tumor suppressor phosphatase. VSPs dephosphorylate the 5' position of the inositol ring of both phosphatidylinositol 3,4,5-trisphosphate [PI(3,4,5)P(3)] and phosphatidylinositol 4,5-bisphosphate [PI(4,5)P(2)] upon voltage depolarization. However, it is unclear whether VSPs also have 3' phosphatase activity. To gain insights into this question, we performed in vitro assays of phosphatase activities of Ciona intestinalis VSP (Ci-VSP) and transmembrane phosphatase with tensin homology (TPTE) and PTEN homologous inositol lipid phosphatase (TPIP; one human ortholog of VSP) with radiolabeled PI(3,4,5)P(3). TLC assay showed that the 3' phosphate of PI(3,4,5)P(3) was not dephosphorylated, whereas that of phosphatidylinositol 3,4-bisphosphate [PI(3,4)P(2)] was removed by VSPs. Monitoring of PI(3,4)P(2) levels with the pleckstrin homology (PH) domain from tandem PH domain-containing protein (TAPP1) fused with GFP (PH(TAPP1)-GFP) by confocal microscopy in amphibian oocytes showed an increase of fluorescence intensity during depolarization to 0 mV, consistent with 5' phosphatase activity of VSP toward PI(3,4,5)P(3). However, depolarization to 60 mV showed a transient increase of GFP fluorescence followed by a decrease, indicating that, after PI(3,4,5)P(3) is dephosphorylated at the 5' position, PI(3,4)P(2) is then dephosphorylated at the 3' position. These results suggest that substrate specificity of the VSP changes with membrane potential.

  1. Nonalcoholic Fatty Liver Disease Progression in Rats is Accelerated by Splenic Regulation of Liver PTEN/AKT

    PubMed Central

    Wang, Ziming; Li, Naishu; Wang, Biao; Lin, Jianhua

    2015-01-01

    Background/Aim: The spleen has been reported to participate in the development of nonalcoholic fatty liver disease (NAFLD), but the mechanism has not been fully characterized. This study aims to elucidate how the spleen affects the development of NAFLD in a rat model. Materials and Methods: Following either splenectomy or sham operation, male Sprague–Dawley (SD) rats were fed a high-fat diet to drive the development of NAFLD; animals fed a normal diet were used as controls. Two months after surgery, livers and blood samples were collected. Serum lipids were measured; liver histology, phosphatase and tensin homologue deleted on chromosome 10 (PTEN) gene expression, and the ratio of pAkt/Akt were determined. Results: Splenectomy increased serum lipids, except triglyceride (TG) and high-density lipoprotein (HDL), in animals fed either a high-fat or normal diet. Furthermore, splenectomy significantly accelerated hepatic steatosis. Western blot analysis and real-time polymerase chain reaction showed splenectomy induced significant downregulation of PTEN expression and a high ratio of pAkt/Akt in the livers. Conclusions: The spleen appears to play a role in the development of NAFLD, via a mechanism involving downregulation of hepatic PTEN expression. PMID:26228367

  2. Relation of fatty acid composition in lead-exposed mallards to fat mobilization, lipid peroxidation and alkaline phosphatase activity

    USGS Publications Warehouse

    Mateo, R.; Beyer, W.N.; Spann, J.W.; Hoffman, D.J.

    2003-01-01

    The increase of n-6 polyunsaturated fatty acids (PUFA) in animal tissues has been proposed as a mechanism of Pb poisoning through lipid peroxidation or altered eicosanoids metabolism. We have studied fatty acid (FA) composition in liver and brain of mallards (Anas platyrhynchos) feeding for three weeks on diets containing combinations of low or high levels of vitamin E (20 or 200 UI/kg) and Pb (0 or 2 g/kg). Saturated FA, n-6 PUFA and total concentrations of FA were higher in livers of Pb-exposed mallards, but not in their brains. The percentage of n-6 PUFA in liver and brain was slightly higher in Pb-exposed mallards. The increase of n-6 PUFA in liver was associated with increased triglycerides and cholesterol in plasma, thus could be in part attributed to feed refusal and fat mobilization. The hepatic ratios between adrenic acid (22:4 n-6) and arachidonic acid (20:4 n-6) or between adrenic acid and linoleic acid (18:2 n-6) were higher in Pb exposed birds, supporting the existing hypothesis of increased fatty acid elongation by Pb. Among the possible consequences of increased n-6 PUFA concentration in tissues, we found increased lipid peroxidation in liver without important histopathological changes, and decreased plasma alkaline phosphatase activity that may reflect altered bone metabolism in birds.

  3. Mutations of the KIT gene and loss of heterozygosity of the PTEN region in a primary malignant melanoma arising from a mature cystic teratoma of the ovary.

    PubMed

    Tate, Genshu; Tajiri, Takuma; Suzuki, Takao; Mitsuya, Toshiyuki

    2009-04-01

    A tumor suppressor gene at 10q23.3, designated PTEN, encoding a dual-specificity phosphatase with lipid and protein phosphatase activity, has been shown to play a pivotal role in the pathogenesis of a variety of human cancers. A frequent loss of heterozygosity (LOH) at 10q is found in melanoma; however, little is known about the role of PTEN in the pathogenesis of a primary malignant melanoma derived from ovarian mature cystic teratoma, which is an extremely rare melanoma. This study examined the genetic alterations involved in the mitogen-activated protein kinase and phosphatidylinositol 3 kinase pathways in an ovarian malignant melanoma. A LOH analysis revealed hemizygous deletion around and in the PTEN gene not only in the ovarian melanoma but also in a mature cystic teratoma. Another case of ovarian mature cystic teratomas in the absence of melanoma also showed allelic loss of the PTEN region. To date, mutations of BRAF, NRAS, and KIT genes have been reported in malignant melanomas. In the present study, D816H and K558E mutations of the KIT gene were revealed in the melanoma arising from a mature cystic teratoma, but not in a mature cystic teratoma. No mutations of the BRAF and NRAS genes were found in the melanoma. These results indicate that LOH of the PTEN region is one of the molecular alterations of an ovarian mature cystic teratoma and a KIT mutation is an additional promotional event associated with the oncogenesis of a melanoma arising from an ovarian mature cystic teratoma.

  4. AKT activation promotes PTEN hamartoma tumor syndrome–associated cataract development

    PubMed Central

    Sellitto, Caterina; Li, Leping; Gao, Junyuan; Robinson, Michael L.; Lin, Richard Z.; Mathias, Richard T.; White, Thomas W.

    2013-01-01

    Mutations in the human phosphatase and tensin homolog (PTEN) gene cause PTEN hamartoma tumor syndrome (PHTS), which includes cataract development among its diverse clinical pathologies. Currently, it is not known whether cataract formation in PHTS patients is secondary to other systemic problems, or the result of the loss of a critical function of PTEN within the lens. We generated a mouse line with a lens-specific deletion of Pten (PTEN KO) and identified a regulatory function for PTEN in lens ion transport. Specific loss of PTEN in the lens resulted in cataract. PTEN KO lenses exhibited a progressive age-related increase in intracellular hydrostatic pressure, along with, increased intracellular sodium concentrations, and reduced Na+/K+-ATPase activity. Collectively, these defects lead to lens swelling, opacities and ultimately organ rupture. Activation of AKT was highly elevated in PTEN KO lenses compared to WT mice. Additionally, pharmacological inhibition of AKT restored normal Na+/K+-ATPase activity in primary cultured lens cells and reduced lens pressure in intact lenses from PTEN KO animals. These findings identify a direct role for PTEN in the regulation of lens ion transport through an AKT-dependent modulation of Na+/K+-ATPase activity, and provide a new animal model to investigate cataract development in PHTS patients. PMID:24270425

  5. Nuclear trafficking of Pten after brain injury leads to neuron survival not death.

    PubMed

    Goh, Choo-Peng; Putz, Ulrich; Howitt, Jason; Low, Ley-Hian; Gunnersen, Jenny; Bye, Nicole; Morganti-Kossmann, Cristina; Tan, Seong-Seng

    2014-02-01

    There is controversy whether accumulation of the tumor suppressor PTEN protein in the cell nucleus under stress conditions such as trauma and stroke causes cell death. A number of in vitro studies have reported enhanced apoptosis in neurons possessing nuclear PTEN, with the interpretation that its nuclear phosphatase activity leads to reduction of the survival protein phospho-Akt. However, there have been no in vivo studies to show that nuclear PTEN in neurons under stress is detrimental. Using a mouse model of injury, we demonstrate here that brain trauma altered the nucleo-cytoplasmic distribution of Pten, resulting in increased nuclear Pten but only in surviving neurons near the lesion. This event was driven by Ndfip1, an adaptor and activator of protein ubiquitination by Nedd4 E3 ligases. Neurons next to the lesion with nuclear PTEN were invariably negative for TUNEL, a marker for cell death. These neurons also showed increased Ndfip1 which we previously showed to be associated with neuron survival. Biochemical assays revealed that overall levels of Pten in the affected cortex were unchanged after trauma, suggesting that Pten abundance globally had not increased but rather Pten subcellular location in affected neurons had changed. Following experimental injury, the number of neurons with nuclear Pten was reduced in heterozygous mice (Ndfip1(+/-)) although lesion volumes were increased. We conclude that nuclear trafficking of Pten following injury leads to neuron survival not death.

  6. New Functions of the Inositol Polyphosphate 5-Phosphatases in Cancer.

    PubMed

    Erneux, Christophe; Ghosh, Somadri; Ramos, Ana Raquel; Edimo, William's Elong

    2016-01-01

    Inositol polyphosphate 5-phosphatases act on inositol phosphates and phosphoinositides as substrates. They are 10 different isoenzymes and several splice variants in the human genome that are involved in a series of human pathologies such as the Lowe syndrome, the Joubert and MORM syndromes, breast cancer, glioblastoma, gastric cancer and several other type of cancers. Inositol 5-phosphatases can be amplified in human cancer cells, whereas the 3- and 4- phosphatase tumor suppressor PTEN and INPP4B, repectively are often repressed or deleted. The inositol 5-phosphatases are critically involved in a complex network of higly regulated phosphoinositides, affecting the lipid content of PI(3, 4, 5)P3, PI(4, 5)P2 and PI(3, 4)P2. This has an impact on the normal behavior of many intracellular target proteins e.g. protein kinase B (PKB/Akt) or actin binding proteins and final biological responses. The production of PI(3, 4P)2 by dephosphorylation of the substrate PI(3, 4, 5)P3 is particularly important as it produces a new signal messenger in the control of cell migration, invasion and endocytosis. New inhibitors/activators of inositol 5- phosphatases have recently been identified for the possible control of their activity in several human pathologies such as inflamation and cancer.

  7. PTEN induces apoptosis and cavitation via HIF-2-dependent Bnip3 upregulation during epithelial lumen formation

    PubMed Central

    Qi, Y; Liu, J; Saadat, S; Tian, X; Han, Y; Fong, G-H; Pandolfi, P P; Lee, L Y; Li, S

    2015-01-01

    The tumor suppressor phosphatase and tensin homolog (PTEN) dephosphorylates PIP3 and antagonizes the prosurvival PI3K-Akt pathway. Targeted deletion of PTEN in mice led to early embryonic lethality. To elucidate its role in embryonic epithelial morphogenesis and the underlying mechanisms, we used embryonic stem cell-derived embryoid body (EB), an epithelial cyst structurally similar to the periimplantation embryo. PTEN is upregulated during EB morphogenesis in parallel with apoptosis of core cells, which mediates EB cavitation. Genetic ablation of PTEN causes Akt overactivation, apoptosis resistance and cavitation blockade. However, rescue experiments using mutant PTEN and pharmacological inhibition of Akt suggest that the phosphatase activity of PTEN and Akt are not involved in apoptosis-mediated cavitation. Instead, hypoxia-induced upregulation of Bnip3, a proapoptotic BH3-only protein, mediates PTEN-dependent apoptosis and cavitation. PTEN inactivation inhibits hypoxia- and reactive oxygen species-induced Bnip3 elevation. Overexpression of Bnip3 in PTEN-null EBs rescues apoptosis of the core cells. Mechanistically, suppression of Bnip3 following PTEN loss is likely due to reduction of hypoxia-inducible factor-2α (HIF-2α) because forced expression of an oxygen-stable HIF-2α mutant rescues Bnip3 expression and apoptosis. Lastly, we show that HIF-2α is upregulated by PTEN at both transcriptional and posttranscriptional levels. Ablation of prolyl hydroxylase domain-containing protein 2 (PHD2) in normal EBs or inhibition of PHD activities in PTEN-null EBs stabilizes HIF-2α and induces Bnip3 and caspase-3 activation. Altogether, these results suggest that PTEN is required for apoptosis-mediated cavitation during epithelial morphogenesis by regulating the expression of HIF-2α and Bnip3. PMID:25394489

  8. Deficiency of lipid phosphatase SHIP enables long-term reconstitution of hematopoietic inductive bone marrow microenvironment.

    PubMed

    Liang, Olin D; Lu, Jiayun; Nombela-Arrieta, César; Zhong, Jia; Zhao, Li; Pivarnik, Gregory; Mondal, Subhanjan; Chai, Li; Silberstein, Leslie E; Luo, Hongbo R

    2013-05-28

    A dysfunctional bone marrow (BM) microenvironment is thought to contribute to the development of hematologic diseases. However, functional replacement of pathologic BM microenvironment through BM transplantation has not been possible. Furthermore, the study of hematopoietic inductive BM microenvironment is hampered by the lack of a functional nonhematopoietic reconstitution system. Here, we show that a deficiency of SH2-containing inositol-5'-phosphatase-1 (SHIP) in a nonhematopoietic host microenvironment enables its functional reconstitution by wild-type donor cells. This microenvironment reconstitution normalizes hematopoiesis in peripheral blood and BM and alleviates pathology of spleen and lung in the SHIP-deficient recipients. SHIP-deficient BM contains a significantly smaller population of multipotent stromal cells with distinct properties, which may contribute to the reconstitution by wild-type cells. We further demonstrate that it is the nonhematopoietic donor cells that are responsible for the reconstitution. Thus, we have established a nonhematopoietic BM microenvironment reconstitution system to functionally study specific cell types in hematopoietic niches.

  9. Analysis of PTEN ubiquitylation and SUMOylation using molecular traps.

    PubMed

    Lang, Valérie; Aillet, Fabienne; Da Silva-Ferrada, Elisa; Xolalpa, Wendy; Zabaleta, Lorea; Rivas, Carmen; Rodriguez, Manuel S

    2015-05-01

    The function of the tumour suppressor phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is tightly controlled by post-translational modifications (PTMs) including ubiquitin or Small Ubiquitin-related MOdifiers (SUMO). It is known that SUMOylation by SUMO-1, SUMO-2/-3, mono- or polyubiquitylation have a distinct impact on PTEN activity, localisation and/or stability, however the molecular mechanisms governing these processes are still unclear. Studying PTM regulated events has always been a difficult task due to their labile nature. Here, we propose an update on the role of these PTMs on PTEN function, as well as a methodological overview on the use of molecular traps named SUMO Binding Entities (SUBEs) or Tandem Ubiquitin Binding Entities (TUBEs) to capture SUMOylated or Ubiquitylated forms of PTEN respectively. When combined with in vitro SUMOylation or Ubiquitylation assays, the use of molecular traps facilitate the detection of modified forms of PTEN. SUMO and ubiquitin-traps are also suitable to capture endogenously modified forms of PTEN after expression of E3 ligases or treatment with chemical inhibitors. This versatile approach represents an interesting alternative to explore PTEN regulation by SUMO and ubiquitin under physiological or pathological conditions.

  10. Physical Foundations of PTEN/Phosphoinositide Interaction

    NASA Astrophysics Data System (ADS)

    Gericke, Arne; Jiang, Zhiping; Redfern, Roberta E.; Kooijman, Edgar E.; Ross, Alonzo H.

    2009-03-01

    Phosphoinositides act as signaling molecules by recruiting critical effectors to specific subcellular membranes to regulate cell proliferation, apoptosis and cytoskeletal reorganization, which requires a tight regulation of phosphoinositide generation and turnover as well as a high degree of compartmentalization. PTEN is a phosphatase specific for the 3 position of the phosophoinositide ring that is deleted or mutated in many different disease states. PTEN association with membranes requires the interaction of its C2 domain with phosphatidylserine and the interaction of its N-terminal end with phosphatidylinositol-4,5-bisphophate (PI(4,5)P2). We have investigated PTEN/PI(4,5)P2 interaction and found that Lys13 is crucial for the observed binding. We also found that the presence of cholesterol enhances PTEN binding to mixed PI(4,5)P2/POPC vesicles. Fluorescence microscopy experiments utilizing GUVs yielded results consistent with enhanced phosphoinositide domain formation in the presence of cholesterol. These experiments were accompanied by zeta potential measurements and solid state MAS ^31P-NMR experiments aimed at investigating the ionization behavior of phosphoinositides.

  11. Sac phosphatase domain proteins.

    PubMed Central

    Hughes, W E; Cooke, F T; Parker, P J

    2000-01-01

    Advances in our understanding of the roles of phosphatidylinositol phosphates in controlling cellular functions such as endocytosis, exocytosis and the actin cytoskeleton have included new insights into the phosphatases that are responsible for the interconversion of these lipids. One of these is an entirely novel class of phosphatase domain found in a number of well characterized proteins. Proteins containing this Sac phosphatase domain include the yeast Saccharomyces cerevisiae proteins Sac1p and Fig4p. The Sac phosphatase domain is also found within the mammalian phosphoinositide 5-phosphatase synaptojanin and the yeast synaptojanin homologues Inp51p, Inp52p and Inp53p. These proteins therefore contain both Sac phosphatase and 5-phosphatase domains. This review describes the Sac phosphatase domain-containing proteins and their actions, with particular reference to the genetic and biochemical insights provided by study of the yeast Saccharomyces cerevisiae. PMID:10947947

  12. Molecular Evolution of PTEN Pseudogenes in Mammals

    PubMed Central

    Tang, Jingsi; Ning, Ruihong; Zeng, Bo; Li, Ying

    2016-01-01

    Phosphatase and tensin homolog (PTEN) is a tumor-suppressor gene. PTEN pseudogene (PTENp) acts as an endogenous RNA, which regulates its parental gene by competitively binding to the 3’ UTR of PTEN gene in the human. Despite the importance of this pseudogene, little is known about the molecular evolution of PTENp in mammals. In this study, we identified 37 pseudogenes from 65 mammalian genomes. Among them, 32 were from rodents or primates. Phylogenetic analyse showed a complex evolutionary history of this gene family. Some PTENps were shared both in primates and rodents. However, some PTENps were shown to be species-specific, such as the tasmanian devil PTENp1, nine banded armadillo PTENp1 and gibbon PTENp1. Most interestingly, the naked mole rat (NMR), an anticancer model organism, possessed 17 copies of PTENps, which were classified into four clades based on the phylogenetic analyses. Furthermore, we found that all the 3’UTR of PTEN and PTENps shared common microRNA (MicroRNA) binding sites in NMR, based on our prediction of specific MicroRNA binding sites. Our findings suggested that multiple gene duplications have occurred in the formation of PTEN/PTENp gene family during the evolution of mammals. Some PTENps were relatively ancient and were shared by primates and rodents; others were newly originated through species- specific gene duplications. PTENps in NMR may function as competitive endogenous RNAs (ceRNAs) to regulate their counterpart genes by competing for common MicroRNAs, which may be one of the interpretations for the cancer resistance in NMR. PMID:27936183

  13. Molecular Analysis of AFP and HSA Interactions with PTEN Protein.

    PubMed

    Zhu, Mingyue; Lin, Bo; Zhou, Peng; Li, Mengsen

    2015-01-01

    Human cytoplasmic alpha-fetoprotein (AFP) has been classified as a member of the albuminoid gene family. The protein sequence of AFP has significant homology to that of human serum albumin (HSA), but its biological characteristics are vastly different from HSA. The AFP functions as a regulator in the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) pathway, but HSA plays a key role as a transport protein. To probe their molecular mechanisms, we have applied colocalization, coimmunoprecipitation (co-IP), and molecular docking approaches to analyze the differences between AFP and HSA. The data from colocalization and co-IP displayed a strong interaction between AFP and PTEN (phosphatase and tensin homolog), demonstrating that AFP did bind to PTEN, but HSA did not. The molecular docking study further showed that the AFP domains I and III could contact with PTEN. In silicon substitutions of AFP binding site residues at position 490M/K and 105L/R corresponding to residues K490 and R105 in HSA resulted in steric clashes with PTEN residues R150 and K46, respectively. These steric clashes may explain the reason why HSA cannot bind to PTEN. Ultimately, the experimental results and the molecular modeling data from the interactions of AFP and HSA with PTEN will help us to identify targets for designing drugs and vaccines against human hepatocellular carcinoma.

  14. Adenovirus-mediated transfer of the PTEN gene inhibits human colorectal cancer growth in vitro and in vivo.

    PubMed

    Saito, Y; Swanson, X; Mhashilkar, A M; Oida, Y; Schrock, R; Branch, C D; Chada, S; Zumstein, L; Ramesh, R

    2003-11-01

    The tumor-suppressor gene PTEN encodes a multifunctional phosphatase that is mutated in a variety of human cancers. PTEN inhibits the phosphatidylinositol 3-kinase pathway and downstream functions, including activation of Akt/protein kinase B (PKB), cell survival, and cell proliferation in tumor cells carrying mutant- or deletion-type PTEN. In such tumor cells, enforced expression of PTEN decreases cell proliferation through cell-cycle arrest at G1 phase accompanied, in some cases, by induction of apoptosis. More recently, the tumor-suppressive effect of PTEN has been reported in ovarian and thyroid tumors that are wild type for PTEN. In the present study, we examined the tumor-suppressive effect of PTEN in human colorectal cancer cells that are wild type for PTEN. Adenoviral-mediated transfer of PTEN (Ad-PTEN) suppressed cell growth and induced apoptosis significantly in colorectal cancer cells (DLD-1, HT29, and SW480) carrying wtPTEN than in normal colon fibroblast cells (CCD-18Co) carrying wtPTEN. This suppression was induced through downregulation of the Akt/PKB pathway, dephosphorylation of focal adhesion kinase (FAK) and mitogen-activated protein kinase (MAPK) and cell-cycle arrest at the G2/M phase, but not the G1 phase. Furthermore, treatment of human colorectal tumor xenografts (HT-29, and SW480) with Ad-PTEN resulted in significant (P=0.01) suppression of tumor growth. These results indicate that Ad-PTEN exerts its tumor-suppressive effect on colorectal cancer cells through inhibition of cell-cycle progression and induction of cell death. Thus Ad-PTEN may be a potential therapeutic for treatment of colorectal cancers.

  15. Expression of PPARγ and PTEN in human colorectal cancer: An immunohistochemical study using tissue microarray methodology.

    PubMed

    Lin, Mao Song; Huang, Jun Xing; Chen, Wei Chang; Zhang, Bao Feng; Fang, Jing; Zhou, Qiong; Hu, Ying; Gao, Heng Jun

    2011-11-01

    Although aberrations of peroxisome proliferator-activated receptor γ (PPARγ) and phosphatase and tensin homolog (PTEN) expression have been identified in several other cancer types, certain previous studies have revealed that PPARγ is abundant in normal and malignant tissue in the colon. The question of whether aberrant PTEN is involved in the initial stage or is a later event during colorectal carcinogenesis remains controversial. Relatively few studies have focused on the correlation of expression of PPARγ and PTEN in various tissues. In the present study, paraffin-embedded blocks from 139 patients with CRC, 18 adenomatous polyps and 50 paired paracancerous benign mucosas were selected and analysed in 4 tissue microarray (TMA) blocks comprising 104, 72, 130 and 54 cores, respectively. Expression of PPARγ and PTEN was examined using immunohistochemical staining on TMAs. There were no significant differences in the expression of PPARγ (P=0.055) and PTEN (P=0.100) between the colorectal cancers, adenomas and paracancerous mucosas. However, correlations of PPARγ expression with clinical stage (P=0.004) and PTEN expression with histological grade (P=0.006) and distant metastasis (P=0.015) were demonstrated in the CRC specimens. Although the differences in PPARγ and PTEN protein expression in human colorectal cancer may not be considered as early diagnostic markers, our results indicate that CRCs with a low expression or deletion of PTEN may progress towards invasion and even metastasis; thus, PTEN may have potential as a prognostic marker in human CRC.

  16. Prognostic value of PTEN loss in men with conservatively managed localised prostate cancer

    PubMed Central

    Cuzick, J; Yang, Z H; Fisher, G; Tikishvili, E; Stone, S; Lanchbury, J S; Camacho, N; Merson, S; Brewer, D; Cooper, C S; Clark, J; Berney, D M; Møller, H; Scardino, P; Sangale, Z

    2013-01-01

    Background: The natural history of prostate cancer is highly variable and difficult to predict. We report on the prognostic value of phosphatase and tensin homologue (PTEN) loss in a cohort of 675 men with conservatively managed prostate cancer diagnosed by transurethral resection of the prostate. Methods: The PTEN status was assayed by immunohistochemistry (PTEN IHC) and fluorescent in situ hybridisation (PTEN FISH). The primary end point was death from prostate cancer. Results: The PTEN IHC loss was observed in 18% cases. This was significantly associated with prostate cancer death in univariate analysis (hazard ratio (HR)=3.51; 95% CI 2.60–4.73; P=3.1 × 10−14). It was highly predictive of prostate cancer death in the 50% of patients with a low risk score based on Gleason score, PSA, Ki-67 and extent of disease (HR=7.4; 95% CI 2.2–24.6; P=0.012) ), but had no prognostic value in the higher risk patients. The PTEN FISH loss was only weakly associated with PTEN IHC loss (κ=0.5). Both PTEN FISH loss and amplification were univariately predictive of death from prostate cancer, but this was not maintained in the multivariate analyses. Conclusion: In low-risk patients, PTEN IHC loss adds prognostic value to Gleason score, PSA, Ki-67 and extent of disease. PMID:23695019

  17. The nuclear transport receptor Importin-11 is a tumor suppressor that maintains PTEN protein.

    PubMed

    Chen, Muhan; Nowak, Dawid G; Narula, Navneet; Robinson, Brian; Watrud, Kaitlin; Ambrico, Alexandra; Herzka, Tali M; Zeeman, Martha E; Minderer, Matthias; Zheng, Wu; Ebbesen, Saya H; Plafker, Kendra S; Stahlhut, Carlos; Wang, Victoria M Y; Wills, Lorna; Nasar, Abu; Castillo-Martin, Mireia; Cordon-Cardo, Carlos; Wilkinson, John E; Powers, Scott; Sordella, Raffaella; Altorki, Nasser K; Mittal, Vivek; Stiles, Brendon M; Plafker, Scott M; Trotman, Lloyd C

    2017-03-06

    Phosphatase and tensin homologue (PTEN) protein levels are critical for tumor suppression. However, the search for a recurrent cancer-associated gene alteration that causes PTEN degradation has remained futile. In this study, we show that Importin-11 (Ipo11) is a transport receptor for PTEN that is required to physically separate PTEN from elements of the PTEN degradation machinery. Mechanistically, we find that the E2 ubiquitin-conjugating enzyme and IPO11 cargo, UBE2E1, is a limiting factor for PTEN degradation. Using in vitro and in vivo gene-targeting methods, we show that Ipo11 loss results in degradation of Pten, lung adenocarcinoma, and neoplasia in mouse prostate with aberrantly high levels of Ube2e1 in the cytoplasm. These findings explain the correlation between loss of IPO11 and PTEN protein in human lung tumors. Furthermore, we find that IPO11 status predicts disease recurrence and progression to metastasis in patients choosing radical prostatectomy. Thus, our data introduce the IPO11 gene as a tumor-suppressor locus, which is of special importance in cancers that still retain at least one intact PTEN allele.

  18. Selective neuronal PTEN deletion: can we take the brakes off of growth without losing control?

    PubMed

    Gutilla, Erin A; Steward, Oswald

    2016-08-01

    The limited ability for injured adult axons to regenerate is a major cause for limited functional recovery after injury to the nervous system, motivating numerous efforts to uncover mechanisms capable of enhancing regeneration potential. One promising strategy involves deletion or knockdown of the phosphatase and tensin (PTEN) gene. Conditional genetic deletion of PTEN before, immediately following, or several months after spinal cord injury enables neurons of the corticospinal tract (CST) to regenerate their axons across the lesion, which is accompanied by enhanced recovery of skilled voluntary motor functions mediated by the CST. Although conditional genetic deletion or knockdown of PTEN in neurons enables axon regeneration, PTEN is a well-known tumor suppressor and mutations of the PTEN gene disrupt brain development leading to neurological abnormalities including macrocephaly, seizures, and early mortality. The long-term consequences of manipulating PTEN in the adult nervous system, as would be done for therapeutic intervention after injury, are only now being explored. Here, we summarize evidence indicating that long-term deletion of PTEN in mature neurons does not cause evident pathology; indeed, cortical neurons that have lived without PTEN for over 1 year appear robust and healthy. Studies to date provide only a first look at potential negative consequences of PTEN deletion or knockdown, but the absence of any detectable neuropathology supports guarded optimism that interventions to enable axon regeneration after injury are achievable.

  19. Selective neuronal PTEN deletion: can we take the brakes off of growth without losing control?

    PubMed Central

    Gutilla, Erin A.; Steward, Oswald

    2016-01-01

    The limited ability for injured adult axons to regenerate is a major cause for limited functional recovery after injury to the nervous system, motivating numerous efforts to uncover mechanisms capable of enhancing regeneration potential. One promising strategy involves deletion or knockdown of the phosphatase and tensin (PTEN) gene. Conditional genetic deletion of PTEN before, immediately following, or several months after spinal cord injury enables neurons of the corticospinal tract (CST) to regenerate their axons across the lesion, which is accompanied by enhanced recovery of skilled voluntary motor functions mediated by the CST. Although conditional genetic deletion or knockdown of PTEN in neurons enables axon regeneration, PTEN is a well-known tumor suppressor and mutations of the PTEN gene disrupt brain development leading to neurological abnormalities including macrocephaly, seizures, and early mortality. The long-term consequences of manipulating PTEN in the adult nervous system, as would be done for therapeutic intervention after injury, are only now being explored. Here, we summarize evidence indicating that long-term deletion of PTEN in mature neurons does not cause evident pathology; indeed, cortical neurons that have lived without PTEN for over 1 year appear robust and healthy. Studies to date provide only a first look at potential negative consequences of PTEN deletion or knockdown, but the absence of any detectable neuropathology supports guarded optimism that interventions to enable axon regeneration after injury are achievable. PMID:27651754

  20. ΔNp63α regulates keratinocyte proliferation by controlling PTEN expression and localization.

    PubMed

    Leonard, M K; Kommagani, R; Payal, V; Mayo, L D; Shamma, H N; Kadakia, M P

    2011-12-01

    ΔNp63α, implicated as an oncogene, is upregulated by activated Akt, part of a well-known cell survival pathway. Inhibition of Akt activation by phosphatase and tensin homolog deleted on chromosome 10 (PTEN) and the presence of putative p63-binding sites in the pten promoter led us to investigate whether ΔNp63α regulates PTEN expression. Knockdown of ΔNp63α led to increases in PTEN levels and loss of activated Akt, while overexpression of ΔNp63α decreased PTEN levels and elevated active Akt. The repression of PTEN by ΔNp63α occurs independently of p53 status, as loss of ΔNp63α increases PTEN expression in cell lines with and without functional p53. In addition, decreased levels of ΔNp63α resulted in an increase in nuclear PTEN. Conversely, in vivo nuclear PTEN was absent in the proliferative basal layer of the epidermis where ΔNp63α expression is highest. Additionally, we show that in keratinocytes a balance between ΔNp63α and PTEN regulates Akt activation and maintains normal proliferation rates. This balance is disrupted in non-melanoma skin cancers through increased ΔNp63α levels, and could enhance proliferation and subsequent neoplastic development. Our studies show that ΔNp63α negatively regulates PTEN, thereby providing a feedback loop between PTEN, Akt and ΔNp63α, which has an integral role in skin cancer development.

  1. VP22 mediates intercellular trafficking and enhances the in vitro antitumor activity of PTEN.

    PubMed

    Yu, Xian; Xu, Zhengmin; Lei, Jun; Li, Tingting; Wang, Yan

    2015-07-01

    PTEN acts as a phosphatidylinositol phosphatase with a possible role in the phosphatidylinositol 3-kinase (PI3K)/AKT pathway. Mutations in PTEN are frequent and their presence is associated with poor prognosis in breast cancer, which is the most common type of non-cutaneous malignancy in females. Delivery of the tumor suppressor PTEN gene represents a powerful strategy for breast cancer therapy, but a present limitation of gene therapy is the ability to deliver sufficient quantities of active proteins to target cells. The capacity of HSV-1VP22 fusion proteins to spread from the primary transduced cell to surrounding cells could improve gene therapeutics, particularly in cancer. To assess the potential efficacy of VP22 as a gene therapy for breast cancer, expression vectors for N- and C-terminal PTEN-VP22 fusion proteins were constructed. VP22‑mediated intercellular transport and antitumor efficacy in BT549 (PTEN-null) breast tumor cells were investigated. The results showed that PTEN-VP22 has the same spreading abilities as VP22. In cell proliferation and apoptosis assays, PTEN-VP22 gene transfer induces a stronger anti-proliferative effect and apoptotic activity compared with PTEN gene transfer alone. In addition, VP22 enhanced the PTEN‑mediated decrease in the level of phosphorylated AKT. The results show that PTEN-VP22 can spread in vitro and PTEN-VP22 gene induces significantly greater antitumor activity than the PTEN gene alone. This study confirms the utility of VP22-mediated delivery in vitro and suggests that PTEN-VP22 may have applications in breast cancer gene therapy.

  2. The ISG15-specific protease USP18 regulates stability of PTEN

    PubMed Central

    Mustachio, Lisa Maria; Kawakami, Masanori; Lu, Yun; Rodriguez-Canales, Jaime; Mino, Barbara; Behrens, Carmen; Wistuba, Ignacio; Bota-Rabassedas, Neus; Yu, Jun; Lee, J. Jack; Roszik, Jason; Zheng, Lin; Liu, Xi; Freemantle, Sarah J.; Dmitrovsky, Ethan

    2017-01-01

    The ubiquitin-like modifier interferon-stimulated gene 15 (ISG15) is implicated in both oncogenic and tumor suppressive programs. Yet, few ISGylation substrates are known and functionally validated in cancer biology. We previously found specific oncoproteins were substrates of ISGylation and were stabilized by the ISG15-specific deubiquitinase (DUB) ubiquitin specific peptidase 18 (USP18). Using reverse-phase protein arrays (RPPAs), this study reports that engineered loss of the DUB USP18 destabilized the tumor suppressor protein phosphatase and tensin homologue (PTEN) in both murine and human lung cancer cell lines. In contrast, engineered gain of USP18 expression in these same lung cancer cell lines stabilized PTEN protein. Using the protein synthesis inhibitor cycloheximide (CHX), USP18 knockdown was shown to destabilize PTEN whereas USP18 overexpression stabilized PTEN protein. Interestingly, repression of USP18 decreased cytoplasmic PTEN relative to nuclear PTEN protein levels. We sought to identify mechanisms engaged in this PTEN protein destabilization using immunoprecipitation assays and found ISG15 directly conjugated with PTEN. To confirm translational relevance of this work, USP18 and PTEN immunohistochemical expression were compared in comprehensive lung cancer arrays. There was a significant (P < 0.0001) positive correlation and association between PTEN and USP18 protein expression profiles in human lung cancers. Taken together, this study identified PTEN as a previously unrecognized substrate of the ISGylation post-translational modification pathway. The deconjugase USP18 serves as a novel regulator of PTEN stability. This indicates inhibition of ISGylation is therapeutically relevant in cancers. PMID:27980214

  3. Deletion of PTEN produces deficits in conditioned fear and increases fragile X mental retardation protein.

    PubMed

    Lugo, Joaquin N; Smith, Gregory D; Morrison, Jessica B; White, Jessika

    2013-11-15

    The phosphatase and tensin homolog detected on chromosome 10 (PTEN) gene product modulates activation of the phosphatidylinositol 3-kinase (PI3K)/AKT pathway. The PI3K pathway has been found to be involved in the regulation of the fragile X mental retardation protein, which is important for long-term depression and in the formation of new memories. We used delayed fear conditioning and trace fear conditioning to determine learning and memory deficits in neuron subset-specific Pten (NS-Pten) conditional knockout (KO) mice. We found that NS-Pten KO mice had deficits in contextual learning and trace conditioning, but did not have deficits in the ability to learn a conditioned stimulus. Furthermore, we found increased levels in the total and phosphorylated forms of the fragile X mental retardation protein (FMRP) in the hippocampus of NS-Pten KO mice.

  4. Lipid rafts regulate PCB153-induced disruption of occludin and brain endothelial barrier function through protein phosphatase 2A and matrix metalloproteinase-2.

    PubMed

    Eum, Sung Yong; Jaraki, Dima; András, Ibolya E; Toborek, Michal

    2015-09-15

    Occludin is an essential integral transmembrane protein regulating tight junction (TJ) integrity in brain endothelial cells. Phosphorylation of occludin is associated with its localization to TJ sites and incorporation into intact TJ assembly. The present study is focused on the role of lipid rafts in polychlorinated biphenyl (PCB)-induced disruption of occludin and endothelial barrier function. Exposure of human brain endothelial cells to 2,2',4,4',5,5'-hexachlorobiphenyl (PCB153) induced dephosphorylation of threonine residues of occludin and displacement of occludin from detergent-resistant membrane (DRM)/lipid raft fractions within 1h. Moreover, lipid rafts modulated the reduction of occludin level through activation of matrix metalloproteinase 2 (MMP-2) after 24h PCB153 treatment. Inhibition of protein phosphatase 2A (PP2A) activity by okadaic acid or fostriecin markedly protected against PCB153-induced displacement of occludin and increased permeability of endothelial cells. The implication of lipid rafts and PP2A signaling in these processes was further defined by co-immunoprecipitation of occludin with PP2A and caveolin-1, a marker protein of lipid rafts. Indeed, a significant MMP-2 activity was observed in lipid rafts and was increased by exposure to PCB153. The pretreatment of MMP-2 inhibitors protected against PCB153-induced loss of occludin and disruption of lipid raft structure prevented the increase of endothelial permeability. Overall, these results indicate that lipid raft-associated processes, such as PP2A and MMP-2 activation, participate in PCB153-induced disruption of occludin function in brain endothelial barrier. This study contributes to a better understanding of the mechanisms leading to brain endothelial barrier dysfunction in response to exposure to environmental pollutants, such as ortho-substituted PCBs.

  5. Lipid Emulsion Inhibits Vasodilation Induced by a Toxic Dose of Bupivacaine via Attenuated Dephosphorylation of Myosin Phosphatase Target Subunit 1 in Isolated Rat Aorta

    PubMed Central

    Ok, Seong-Ho; Byon, Hyo-Jin; Kwon, Seong-Chun; Park, Jungchul; Lee, Youngju; Hwang, Yeran; Baik, Jiseok; Choi, Mun-Jeoung; Sohn, Ju-Tae

    2015-01-01

    Lipid emulsions are widely used for the treatment of systemic toxicity that arises from local anesthetics. The goal of this in vitro study was to examine the cellular mechanism associated with the lipid emulsion-mediated attenuation of vasodilation induced by a toxic dose of bupivacaine in isolated endothelium-denuded rat aorta. The effects of lipid emulsion on vasodilation induced by bupivacaine, mepivacaine, and verapamil were assessed in isolated aorta precontracted with phenylephrine, the Rho kinase stimulant NaF, and the protein kinase C activator phorbol 12,13-dibutyrate (PDBu). The effects of Rho kinase inhibitor Y-27632 on contraction induced by phenylephrine or NaF were assessed. The effects of bupivacaine on intracellular calcium concentrations ([Ca2+]i) and tension induced by NaF were simultaneously measured. The effects of bupivacaine alone and lipid emulsion plus bupivacaine on myosin phosphatase target subunit 1 (MYPT1) phosphorylation induced by NaF were examined in rat aortic vascular smooth muscle cells. In precontracted aorta, the lipid emulsion attenuated bupivacaine-induced vasodilation but had no effect on mepivacaine-induced vasodilation. Y-27632 attenuated contraction induced by either phenylephrine or NaF. The lipid emulsion attenuated verapamil-induced vasodilation. Compared with phenylephrine-induced precontracted aorta, bupivacaine-induced vasodilation was slightly attenuated in NaF-induced precontracted aorta. The magnitude of the bupivacaine-induced vasodilation was higher than that of a bupivacaine-induced decrease in [Ca2+]i. Bupivacaine attenuated NaF-induced MYPT1 phosphorylation, whereas lipid emulsion pretreatment attenuated the bupivacaine-induced inhibition of MYPT1 phosphorylation induced by NaF. Taken together, these results suggest that lipid emulsions attenuate bupivacaine-induced vasodilation via the attenuation of inhibition of MYPT1 phosphorylation evoked by NaF. PMID:26664257

  6. Lipid Emulsion Inhibits Vasodilation Induced by a Toxic Dose of Bupivacaine via Attenuated Dephosphorylation of Myosin Phosphatase Target Subunit 1 in Isolated Rat Aorta.

    PubMed

    Ok, Seong-Ho; Byon, Hyo-Jin; Kwon, Seong-Chun; Park, Jungchul; Lee, Youngju; Hwang, Yeran; Baik, Jiseok; Choi, Mun-Jeoung; Sohn, Ju-Tae

    2015-01-01

    Lipid emulsions are widely used for the treatment of systemic toxicity that arises from local anesthetics. The goal of this in vitro study was to examine the cellular mechanism associated with the lipid emulsion-mediated attenuation of vasodilation induced by a toxic dose of bupivacaine in isolated endothelium-denuded rat aorta. The effects of lipid emulsion on vasodilation induced by bupivacaine, mepivacaine, and verapamil were assessed in isolated aorta precontracted with phenylephrine, the Rho kinase stimulant NaF, and the protein kinase C activator phorbol 12,13-dibutyrate (PDBu). The effects of Rho kinase inhibitor Y-27632 on contraction induced by phenylephrine or NaF were assessed. The effects of bupivacaine on intracellular calcium concentrations ([Ca(2+)]i) and tension induced by NaF were simultaneously measured. The effects of bupivacaine alone and lipid emulsion plus bupivacaine on myosin phosphatase target subunit 1 (MYPT1) phosphorylation induced by NaF were examined in rat aortic vascular smooth muscle cells. In precontracted aorta, the lipid emulsion attenuated bupivacaine-induced vasodilation but had no effect on mepivacaine-induced vasodilation. Y-27632 attenuated contraction induced by either phenylephrine or NaF. The lipid emulsion attenuated verapamil-induced vasodilation. Compared with phenylephrine-induced precontracted aorta, bupivacaine-induced vasodilation was slightly attenuated in NaF-induced precontracted aorta. The magnitude of the bupivacaine-induced vasodilation was higher than that of a bupivacaine-induced decrease in [Ca(2+)]i. Bupivacaine attenuated NaF-induced MYPT1 phosphorylation, whereas lipid emulsion pretreatment attenuated the bupivacaine-induced inhibition of MYPT1 phosphorylation induced by NaF. Taken together, these results suggest that lipid emulsions attenuate bupivacaine-induced vasodilation via the attenuation of inhibition of MYPT1 phosphorylation evoked by NaF.

  7. Correlation between NDRG1 and PTEN expression in endometrial carcinoma.

    PubMed

    Chen, Jiawei; Li, Shuxia; Yang, Zhaorui; Lu, Guangzhong; Hu, Honghui

    2008-04-01

    N-myc Downstream-Regulated Gene 1 (NDRG1) is known as a differentiation-related gene that plays important roles in cell differentiation, organ formation, and embryonic development. NDRG1 has recently been shown to be associated with carcinogenesis and tumor progression in a wide variety of tumors. Phosphatase and tensin homolog deleted from chromosome (PTEN), a phosphatase and tensin homolog located on chromosome 10, is shown to be a tumor suppressor and is often mutated or deleted in various tumor cells, particularly in endometrial carcinoma. Using an immunohistochemical approach, we investigated the expression of NDRG1 and PTEN in normal endometrium, atypical hyperplasia, and endometrial carcinoma. All tumor tissues harvested in this study were derived from endometrioid carcinoma Type I, that were estrogen-related. Our results demonstrate that the expression of NDRG1 was up-regulated in 5/40 (12.5%), 18/34 (52.94%), and 86/103 (83.5%) normal endometrium, atypical hyperplasia, and endometrial carcinoma cases, respectively (P < 0.01), while in 6/40 (15%), 20/34 (58.82%), and 89/103 (86.41%) normal endometrium, atypical hyperplasia, and endometrial carcinoma cases, respectively. PTEN expression was significantly decreased (P < 0.01). Statistical analyzes demonstrated a positive correlation between NDRG1 up-regulation and PTEN down-regulation (P < 0.01). The expression of NDRG1 had no correlation with the differentiation degree of the tumor cells, lymph-node metastasis, and/or abdominal cavity implantation (P > 0.05). Our results indicated that development of endometrial carcinoma is associated with an overexpression of NDRG1 and the loss of PTEN expression. Identification of changes in the NDRG1 and PTEN expression may be a significant diagnostic tool for the early detection of endometrial carcinoma.

  8. Targeting of Ras-mediated FGF signaling suppresses Pten-deficient skin tumor.

    PubMed

    Mathew, Grinu; Hannan, Abdul; Hertzler-Schaefer, Kristina; Wang, Fen; Feng, Gen-Sheng; Zhong, Jian; Zhao, Jean J; Downward, Julian; Zhang, Xin

    2016-11-15

    Deficiency in PTEN (phosphatase and tensin homolog deleted on chromosome 10) is the underlying cause of PTEN hamartoma tumor syndrome and a wide variety of human cancers. In skin epidermis, we have previously identified an autocrine FGF signaling induced by loss of Pten in keratinocytes. In this study, we demonstrate that skin hyperplasia requires FGF receptor adaptor protein Frs2α and tyrosine phosphatase Shp2, two upstream regulators of Ras signaling. Although the PI3-kinase regulatory subunits p85α and p85β are dispensable, the PI3-kinase catalytic subunit p110α requires interaction with Ras to promote hyperplasia in Pten-deficient skin, thus demonstrating an important cross-talk between Ras and PI3K pathways. Furthermore, genetic and pharmacological inhibition of Ras-MAPK pathway impeded epidermal hyperplasia in Pten animals. These results reveal a positive feedback loop connecting Pten and Ras pathways and suggest that FGF-activated Ras-MAPK pathway is an effective therapeutic target for preventing skin tumor induced by aberrant Pten signaling.

  9. [Effects of wild-type PTEN overexpression and its mutation on F-actin in activated hepatic stellate cells].

    PubMed

    Hao, L S; Liu, Y L; Zhang, G L; Chen, J; Song, X J; Wang, Y L; Wang, J; Jin, L M

    2017-01-20

    Objective: To investigate the effect of overexpression of wild-type phosphatase and tensin homolog (PTEN) deleted on chromosome 10 and its mutant G129E (exhibiting the activity of protein phosphatase and losing the activity of lipid phosphatase) on F-actin in activated hepatic stellate cells (HSCs) cultured in vitro. Methods: The activated hepatic stellate cell-T6 (HSC-T6) cells were cultured in vitro, and activated HSCs were transfected with adenovirus that carried wild-type PTEN gene and G129E gene using transient transfection. The HSCs were divided into the following groups: control group, which was transfected with DMEM medium instead of virus solution; Ad-GFP group, which was transfected with the empty adenovirus vector with the expression of green fluorescent protein (GFP); Ad-PTEN group, which was transfected with the recombinant adenovirus with wild-type PTEN gene and GFP expression; Ad-G129E group, which was transfected with the recombinant adenovirus with G129E gene and GFP expression. Western blot and quantitative real-time PCR were used to measure the protein and mRNA expression of PTEN in activated HSCs; under a laser scanning confocal microscope (LSCM), phalloidine labeled with the fluorescein tetramethylrhodamine isothiocyanate (TRITC) was used to observe the morphology of HSCs, distribution and fluorescence intensity of F-actin, and changes in pseudopodia and stress fibers, and a calcium fluorescence probe (Rhod-2/AM) was used to measure the changes in Ca(2+) concentration in HSCs. A one-way analysis of variance was used for comparison between multiple groups, and the least significant difference test was used for comparison between two groups. Results: Wild-type PTEN and G129E genes were highly expressed in activated HSCs. In the control group and the Ad-GFP group, HSCs had a starlike or polygonal shape, F-actin was reconfigured and formed a large number of stress fibers which stretched across the whole cell, and layered pseudopodia were seen

  10. Lipid rafts regulate PCB153-induced disruption of occludin and brain endothelial barrier function through protein phosphatase 2A and matrix metalloproteinase-2

    SciTech Connect

    Eum, Sung Yong Jaraki, Dima; András, Ibolya E.; Toborek, Michal

    2015-09-15

    Occludin is an essential integral transmembrane protein regulating tight junction (TJ) integrity in brain endothelial cells. Phosphorylation of occludin is associated with its localization to TJ sites and incorporation into intact TJ assembly. The present study is focused on the role of lipid rafts in polychlorinated biphenyl (PCB)-induced disruption of occludin and endothelial barrier function. Exposure of human brain endothelial cells to 2,2′,4,4′,5,5′-hexachlorobiphenyl (PCB153) induced dephosphorylation of threonine residues of occludin and displacement of occludin from detergent-resistant membrane (DRM)/lipid raft fractions within 1 h. Moreover, lipid rafts modulated the reduction of occludin level through activation of matrix metalloproteinase 2 (MMP-2) after 24 h PCB153 treatment. Inhibition of protein phosphatase 2A (PP2A) activity by okadaic acid or fostriecin markedly protected against PCB153-induced displacement of occludin and increased permeability of endothelial cells. The implication of lipid rafts and PP2A signaling in these processes was further defined by co-immunoprecipitation of occludin with PP2A and caveolin-1, a marker protein of lipid rafts. Indeed, a significant MMP-2 activity was observed in lipid rafts and was increased by exposure to PCB153. The pretreatment of MMP-2 inhibitors protected against PCB153-induced loss of occludin and disruption of lipid raft structure prevented the increase of endothelial permeability. Overall, these results indicate that lipid raft-associated processes, such as PP2A and MMP-2 activation, participate in PCB153-induced disruption of occludin function in brain endothelial barrier. This study contributes to a better understanding of the mechanisms leading to brain endothelial barrier dysfunction in response to exposure to environmental pollutants, such as ortho-substituted PCBs. - Highlights: • PCB153 disturbed human brain endothelial barrier through disruption of occludin. • Lipid raft-associated PP

  11. PTEN-β-Catenin Signaling Modulates Regulatory T Cells and Inflammatory Responses in Mouse Liver Ischemia and Reperfusion Injury.

    PubMed

    Zhu, Qiang; Li, Changyong; Wang, Kunpeng; Yue, Shi; Jiang, Longfeng; Ke, Michael; Busuttil, Ronald W; Kupiec-Weglinski, Jerzy W; Zhang, Feng; Lu, Ling; Ke, Bibo

    2017-02-02

    The phosphatase and tensin homolog deleted on chromosome 10 (PTEN) plays an important role in regulating T cell activation during inflammatory response. Activation of β-catenin is crucial for maintaining immune homeostasis. This study investigates the functional roles and molecular mechanisms by which PTEN-β-catenin signaling promotes regulatory T cell (Treg) induction in a mouse model of liver ischemia and reperfusion injury (IRI). We found that mice with myeloid specific PTEN knockout (PTEN(M-KO) ) exhibited reduced liver damage as evidenced by decreased levels of serum ALT, intrahepatic macrophage trafficking, and pro-inflammatory mediators compared to the PTEN-proficient (PTEN(FL/FL) ) controls. Disruption of myeloid PTEN activated β-catenin, which in turn promoted PPARγ-mediated Jagged-1/Notch signaling and induced Foxp3(+) Tregs while inhibiting Th17 cells. However, blocking of Notch signaling by inhibiting γ-secretase reversed myeloid PTEN deficiency-mediated protection in IR-triggered liver inflammation with reduced Foxp3(+) and increased RORγt-mediated IL-17A expression in ischemic livers. Moreover, knockdown of β-catenin or PPARγ in PTEN-deficient macrophages inhibited Jagged-1/Notch activation and reduced Foxp3(+) Treg induction, leading to increased proinflammatory mediators in macrophage/T cell co-cultures. In conclusion, our findings demonstrate that PTEN-β-catenin signaling is a novel regulator involved in modulating Treg development and provides a potential therapeutic target in liver IRI. This article is protected by copyright. All rights reserved.

  12. Lipid Sulfates and Sulfonates Are Allosteric Competitive Inhibitors of the N-Terminal Phosphatase Activity of the Mammalian Soluble Epoxide Hydrolase†

    PubMed Central

    Tran, Katherine L.; Aronov, Pavel A.; Tanaka, Hiromasa; Newman, John W.; Hammock, Bruce D.; Morisseau, Christophe

    2006-01-01

    The EPXH2 gene encodes for the soluble epoxide hydrolase (sEH), a homodimeric enzyme with each monomer containing two domains with distinct activities. The C-terminal domain, containing the epoxide hydrolase activity (Cterm-EH), is involved in the metabolism of arachidonic acid epoxides, endogenous chemical mediators that play important roles in blood pressure regulation, cell growth, and inflammation. We recently demonstrated that the N-terminal domain contains a Mg2+-dependent lipid phosphate phosphatase activity (Nterm-phos). However, the biological role of this activity is unknown. The inability of known phosphatase inhibitors to inhibit the Nterm-phos constitutes a significant barrier to the elucidation of its function. We describe herein sulfate, sulfonate, and phosphonate lipids as novel potent inhibitors of Nterm-phos. These compounds are allosteric competitive inhibitors with KI in the hundred nanomolar range. These inhibitors may provide a valuable tool to investigate the biological role of the Nterm-phos. We found that polyisoprenyl phosphates are substrates of Nterm-phos, suggesting a possible role in sterol synthesis or inflammation. Furthermore, some of these compounds inhibit the C-terminal sEH activity through a noncompetitive inhibition mechanism involving a new binding site on the C-terminal domain. This novel site may play a role in the natural in vivo regulation of epoxide hydrolysis by sEH. PMID:16142916

  13. Lipid sulfates and sulfonates are allosteric competitive inhibitors of the N-terminal phosphatase activity of the mammalian soluble epoxide hydrolase.

    PubMed

    Tran, Katherine L; Aronov, Pavel A; Tanaka, Hiromasa; Newman, John W; Hammock, Bruce D; Morisseau, Christophe

    2005-09-13

    The EPXH2 gene encodes for the soluble epoxide hydrolase (sEH), a homodimeric enzyme with each monomer containing two domains with distinct activities. The C-terminal domain, containing the epoxide hydrolase activity (Cterm-EH), is involved in the metabolism of arachidonic acid epoxides, endogenous chemical mediators that play important roles in blood pressure regulation, cell growth, and inflammation. We recently demonstrated that the N-terminal domain contains a Mg2+-dependent lipid phosphate phosphatase activity (Nterm-phos). However, the biological role of this activity is unknown. The inability of known phosphatase inhibitors to inhibit the Nterm-phos constitutes a significant barrier to the elucidation of its function. We describe herein sulfate, sulfonate, and phosphonate lipids as novel potent inhibitors of Nterm-phos. These compounds are allosteric competitive inhibitors with K(I) in the hundred nanomolar range. These inhibitors may provide a valuable tool to investigate the biological role of the Nterm-phos. We found that polyisoprenyl phosphates are substrates of Nterm-phos, suggesting a possible role in sterol synthesis or inflammation. Furthermore, some of these compounds inhibit the C-terminal sEH activity through a noncompetitive inhibition mechanism involving a new binding site on the C-terminal domain. This novel site may play a role in the natural in vivo regulation of epoxide hydrolysis by sEH.

  14. Nuclear factor of activated T cells (NFAT) signaling regulates PTEN expression and intestinal cell differentiation

    PubMed Central

    Wang, Qingding; Zhou, Yuning; Jackson, Lindsey N.; Johnson, Sara M.; Chow, Chi-Wing; Evers, B. Mark

    2011-01-01

    The nuclear factor of activated T cell (NFAT) proteins are a family of transcription factors (NFATc1–c4) involved in the regulation of cell differentiation and adaptation. Previously we demonstrated that inhibition of phosphatidylinositol 3-kinase or overexpression of PTEN enhanced intestinal cell differentiation. Here we show that treatment of intestinal-derived cells with the differentiating agent sodium butyrate (NaBT) increased PTEN expression, NFAT binding activity, and NFAT mRNA expression, whereas pretreatment with the NFAT signaling inhibitor cyclosporine A (CsA) blocked NaBT-mediated PTEN induction. Moreover, knockdown of NFATc1 or NFATc4, but not NFATc2 or NFATc3, attenuated NaBT-induced PTEN expression. Knockdown of NFATc1 decreased PTEN expression and increased the phosphorylation levels of Akt and downstream targets Foxo1 and GSK-3α/β. Furthermore, overexpression of NFATc1 or the NFATc4 active mutant increased PTEN and p27kip1 expression and decreased Akt phosphorylation. In addition, pretreatment with CsA blocked NaBT-mediated induction of intestinal alkaline phosphatase (IAP) activity and villin and p27kip1 expression; knockdown of either NFATc1 or NFATc4 attenuated NaBT-induced IAP activity. We provide evidence showing that NFATc1 and NFATc4 are regulators of PTEN expression. Importantly, our results suggest that NFATc1 and NFATc4 regulation of intestinal cell differentiation may be through PTEN regulation. PMID:21148296

  15. Planarian PTEN homologs regulate stem cells and regeneration through TOR signaling.

    PubMed

    Oviedo, Néstor J; Pearson, Bret J; Levin, Michael; Sánchez Alvarado, Alejandro

    2008-01-01

    We have identified two genes, Smed-PTEN-1 and Smed-PTEN-2, capable of regulating stem cell function in the planarian Schmidtea mediterranea. Both genes encode proteins homologous to the mammalian tumor suppressor, phosphatase and tensin homolog deleted on chromosome 10 (PTEN). Inactivation of Smed-PTEN-1 and -2 by RNA interference (RNAi) in planarians disrupts regeneration, and leads to abnormal outgrowths in both cut and uncut animals followed soon after by death (lysis). The resulting phenotype is characterized by hyperproliferation of neoblasts (planarian stem cells), tissue disorganization and a significant accumulation of postmitotic cells with impaired differentiation capacity. Further analyses revealed that rapamycin selectively prevented such accumulation without affecting the normal neoblast proliferation associated with physiological turnover and regeneration. In animals in which PTEN function is abrogated, we also detected a significant increase in the number of cells expressing the planarian Akt gene homolog (Smed-Akt). However, functional abrogation of Smed-Akt in Smed-PTEN RNAi-treated animals does not prevent cell overproliferation and lethality, indicating that functional abrogation of Smed-PTEN is sufficient to induce abnormal outgrowths. Altogether, our data reveal roles for PTEN in the regulation of planarian stem cells that are strikingly conserved to mammalian models. In addition, our results implicate this protein in the control of stem cell maintenance during the regeneration of complex structures in planarians.

  16. Rescue of glandular dysmorphogenesis in PTEN-deficient colorectal cancer epithelium by PPARγ-targeted therapy.

    PubMed

    Jagan, I; Fatehullah, A; Deevi, R K; Bingham, V; Campbell, F C

    2013-03-07

    Disruption of glandular architecture associates with poor clinical outcome in high-grade colorectal cancer (CRC). Phosphatase and tensin homolog deleted on chromosome ten (PTEN) regulates morphogenic growth of benign MDCK (Madin Darby Canine Kidney) cells through effects on the Rho-like GTPase cdc42 (cell division cycle 42). This study investigates PTEN-dependent morphogenesis in a CRC model. Stable short hairpin RNA knockdown of PTEN in Caco-2 cells influenced expression or localization of cdc42 guanine nucleotide exchange factors and inhibited cdc42 activation. Parental Caco-2 cells formed regular hollow gland-like structures (glands) with a single central lumen, in three-dimensional (3D) cultures. Conversely, PTEN-deficient Caco-2 ShPTEN cells formed irregular glands with multiple abnormal lumens as well as intra- and/or intercellular vacuoles evocative of the high-grade CRC phenotype. Effects of targeted treatment were investigated. Phosphatidinylinositol 3-kinase (PI3K) modulating treatment did not affect gland morphogenesis but did influence gland number, gland size and/or cell size within glands. As PTEN may be regulated by the nuclear receptor peroxisome proliferator-activated receptor-γ (PPARγ), cultures were treated with the PPARγ ligand rosiglitazone. This treatment enhanced PTEN expression, cdc42 activation and rescued dysmorphogenesis by restoring single lumen formation in Caco-2 ShPTEN glands. Rosiglitazone effects on cdc42 activation and Caco-2 ShPTEN gland development were attenuated by cotreatment with GW9662, a PPARγ antagonist. Taken together, these studies show PTEN-cdc42 regulation of lumen formation in a 3D model of human CRC glandular morphogenesis. Treatment by the PPARγ ligand rosiglitazone, but not PI3K modulators, rescued colorectal glandular dysmorphogenesis of PTEN deficiency.

  17. In prostate cancer needle biopsies, detections of PTEN loss by fluorescence in situ hybridization (FISH) and by immunohistochemistry (IHC) are concordant and show consistent association with upgrading.

    PubMed

    Picanço-Albuquerque, C G; Morais, C L; Carvalho, F L F; Peskoe, S B; Hicks, J L; Ludkovski, O; Vidotto, T; Fedor, H; Humphreys, E; Han, M; Platz, E A; De Marzo, A M; Berman, D M; Lotan, T L; Squire, J A

    2016-05-01

    The prognostic value of phosphatase and tensin homolog (PTEN) loss in prostate cancer has primarily been evaluated by either fluorescence in situ hybridization (FISH) or immunohistochemistry (IHC). Previously, we found that PTEN loss by IHC was associated with increased risk of upgrading from biopsy (Gleason 3 + 3) to prostatectomy (Gleason 7+). Now, using an evaluable subset of 111 patients with adjacent biopsy sections, we analyzed the association between PTEN deletion in cancer and the odds of upgrading by a highly sensitive and specific four-color FISH assay. We also compared the concordance of PTEN loss by IHC and PTEN deletion by FISH. PTEN deletion was found in 27 % (12/45) of upgraded cases compared with 11 % (7/66) of controls (P = 0.03). Cancers with PTEN deletions were more likely to be upgraded than those without deletions (adjusting for age odds ratio = 3.40, 95 % confidence interval 1.14-10.11). With respect to concordance, of 93 biopsies with PTEN protein detected by IHC, 89 (96 %) had no PTEN deletion by FISH, and of 18 biopsies without PTEN protein by IHC, 15 had homozygous or hemizygous PTEN deletion by FISH. Only 4 biopsies of the 93 (4 %) with PTEN protein intact had PTEN deletion by FISH. When the regions of uncertainty in these biopsies were systematically studied by FISH, intra-tumoral variation of PTEN deletion was found, which could account for variation in immunoreactivity. Thus, FISH provides a different approach to determining PTEN loss when IHC is uncertain. Both FISH and IHC are concordant, showing consistent positive associations between PTEN loss and upgrading.

  18. Direct modification and regulation of a nuclear receptor-PIP2 complex by the nuclear inositol-lipid kinase IPMK

    PubMed Central

    Blind, Raymond D.; Suzawa, Miyuki; Ingraham, Holly A.

    2012-01-01

    Phosphatidylinositol (4,5)-bisphosphate (PIP2) is best known as a plasma membrane-bound regulatory lipid. While PIP2 and phosphoinositide-modifying enzymes coexist in the nucleus, their roles in the nucleus remain unclear. Here we show that the nuclear inositol polyphosphate multikinase (IPMK), which functions both as an inositol- and a PI3-kinase, interacts with the nuclear receptor SF-1 (NR5A1) and phosphorylates its bound ligand, PIP2. IPMK failed to recognize SF-1/PIP2 after blocking or displacing PIP2 from SF-1’s large hydrophobic pocket. In contrast to IPMK, p110 catalytic subunits of type 1 PI3-kinases were inactive on SF-1/PIP2. These and other in vitro analyses demonstrated specificity of IPMK for the SF-1/PIP2 protein/lipid complex. Once generated, SF-1/PIP3 is readily dephosphorylated by the lipid phosphatase PTEN. Importantly, decreasing IPMK or increasing PTEN expression greatly reduced SF-1 transcriptional activity. This ability of lipid kinases and phosphatases to alter the activity and directly remodel a non-membrane protein/lipid complex such SF-1/PIP2, establishes a new pathway for promoting lipid-mediated signaling in the nucleus. PMID:22715467

  19. Regulation of PTEN inhibition by the pleckstrin homology domain of P-REX2 during insulin signaling and glucose homeostasis

    PubMed Central

    Hodakoski, Cindy; Hopkins, Benjamin D.; Barrows, Douglas; Mense, Sarah M.; Keniry, Megan; Anderson, Karen E.; Kern, Philip A.; Hawkins, Phillip T.; Stephens, Len R.; Parsons, Ramon

    2014-01-01

    Insulin activation of phosphoinositide 3-kinase (PI3K) signaling regulates glucose homeostasis through the production of phosphatidylinositol 3,4,5-trisphosphate (PIP3). The dual-specificity phosphatase and tensin homolog deleted on chromosome 10 (PTEN) blocks PI3K signaling by dephosphorylating PIP3, and is inhibited through its interaction with phosphatidylinositol 3,4,5-trisphosphate-dependent Rac exchanger 2 (P-REX2). The mechanism of inhibition and its physiological significance are not known. Here, we report that P-REX2 interacts with PTEN via two interfaces. The pleckstrin homology (PH) domain of P-REX2 inhibits PTEN by interacting with the catalytic region of PTEN, and the inositol polyphosphate 4-phosphatase domain of P-REX2 provides high-affinity binding to the postsynaptic density-95/Discs large/zona occludens-1-binding domain of PTEN. P-REX2 inhibition of PTEN requires C-terminal phosphorylation of PTEN to release the P-REX2 PH domain from its neighboring diffuse B-cell lymphoma homology domain. Consistent with its function as a PTEN inhibitor, deletion of Prex2 in fibroblasts and mice results in increased Pten activity and decreased insulin signaling in liver and adipose tissue. Prex2 deletion also leads to reduced glucose uptake and insulin resistance. In human adipose tissue, P-REX2 protein expression is decreased and PTEN activity is increased in insulin-resistant human subjects. Taken together, these results indicate a functional role for P-REX2 PH-domain–mediated inhibition of PTEN in regulating insulin sensitivity and glucose homeostasis and suggest that loss of P-REX2 expression may cause insulin resistance. PMID:24367090

  20. Regulation of PTEN inhibition by the pleckstrin homology domain of P-REX2 during insulin signaling and glucose homeostasis.

    PubMed

    Hodakoski, Cindy; Hopkins, Benjamin D; Barrows, Douglas; Mense, Sarah M; Keniry, Megan; Anderson, Karen E; Kern, Philip A; Hawkins, Phillip T; Stephens, Len R; Parsons, Ramon

    2014-01-07

    Insulin activation of phosphoinositide 3-kinase (PI3K) signaling regulates glucose homeostasis through the production of phosphatidylinositol 3,4,5-trisphosphate (PIP3). The dual-specificity phosphatase and tensin homolog deleted on chromosome 10 (PTEN) blocks PI3K signaling by dephosphorylating PIP3, and is inhibited through its interaction with phosphatidylinositol 3,4,5-trisphosphate-dependent Rac exchanger 2 (P-REX2). The mechanism of inhibition and its physiological significance are not known. Here, we report that P-REX2 interacts with PTEN via two interfaces. The pleckstrin homology (PH) domain of P-REX2 inhibits PTEN by interacting with the catalytic region of PTEN, and the inositol polyphosphate 4-phosphatase domain of P-REX2 provides high-affinity binding to the postsynaptic density-95/Discs large/zona occludens-1-binding domain of PTEN. P-REX2 inhibition of PTEN requires C-terminal phosphorylation of PTEN to release the P-REX2 PH domain from its neighboring diffuse B-cell lymphoma homology domain. Consistent with its function as a PTEN inhibitor, deletion of Prex2 in fibroblasts and mice results in increased Pten activity and decreased insulin signaling in liver and adipose tissue. Prex2 deletion also leads to reduced glucose uptake and insulin resistance. In human adipose tissue, P-REX2 protein expression is decreased and PTEN activity is increased in insulin-resistant human subjects. Taken together, these results indicate a functional role for P-REX2 PH-domain-mediated inhibition of PTEN in regulating insulin sensitivity and glucose homeostasis and suggest that loss of P-REX2 expression may cause insulin resistance.

  1. Disruption of the murine intestinal alkaline phosphatase gene Akp3 impairs lipid transcytosis and induces visceral fat accumulation and hepatic steatosis.

    PubMed

    Nakano, Takanari; Inoue, Ikuo; Koyama, Iwao; Kanazawa, Kenta; Nakamura, Koh-Ichi; Narisawa, Sonoko; Tanaka, Kayoko; Akita, Masumi; Masuyama, Taku; Seo, Makoto; Hokari, Shigeru; Katayama, Shigehiro; Alpers, David H; Millán, José Luis; Komoda, Tsugikazu

    2007-05-01

    Intestinal alkaline phosphatase (IAP) is involved in the process of fat absorption, a conclusion confirmed by an altered lipid transport and a faster body weight gain from 10 to 30 wk in both male and female mice with a homozygous null mutation of the IAP coding gene (Akp3(-/-) mice). This study was aimed to delineate morphologically and quantitatively the accelerated lipid absorption in male Akp3(-/-) mice. Feeding a corn oil bolus produced an earlier peak of triacylglycerol in serum (2 vs. 4 h for Akp3(-/-) and wild-type mice, respectively) and an approximately twofold increase in serum triacylglycerol concentration in Akp3(-/-) mice injected with a lipolysis inhibitor, Triton WR-1339. A corn oil load induced the threefold enlargement of the Golgi vacuoles in male wild-type mice but not in Akp3(-/-) mice, indicating that absorbed lipids rarely reached the Golgi complex and that the transcytosis of lipid droplets does not follow the normal pathway in male Akp3(-/-) mice. Force feeding an exaggerated fat intake by a 30% fat chow for 10 wk induced obesity in both male Akp3(-/-) and wild-type mice, and therefore no phenotypic difference was observed between the two. On the other hand, the forced high-fat chow induced an 18% greater body weight gain, hepatic steatosis, and visceral fat accumulation in female Akp3(-/-) mice but not in female wild-type controls. These results provide further evidence that IAP is involved in the regulation of the lipid absorption process and that its absence leads to progressive metabolic abnormalities in certain fat-forced conditions.

  2. In Vitro and In Vivo Effects of Tumor Suppressor Gene PTEN on Endometriosis: An Experimental Study

    PubMed Central

    Lv, Juan; Zhu, Qiaoying; Jia, Xuemei; Yu, Ningzhu; Li, Qian

    2016-01-01

    Background Endometriosis can cause dysmenorrhea and infertility. Its pathogenesis has not yet been clarified and its treatment continues to pose enormous challenges. The protein tyrosine phosphatase (PTEN) gene is a tumor suppressor gene. The aim of this study was to investigate the role and significance of PTEN protein in the occurrence, development, and treatment of endometriosis through changes in apoptosis rate, cell cycle, and angiogenesis. Material/Methods PTEN was overexpressed and silenced in lentiviral vectors and inserted into primary endometrial cells. The changes in cell cycle and apoptosis in the different PTEN expression groups were evaluated using flow cytometry. Vessel growth mimicry was observed using 3-dimensional culture. A human-mouse chimeric endometriosis model was constructed using SCID mice. Hematoxylin and eosin staining and immunohistochemistry were used to detect pathological changes in ectopic endometrial tissues and the expression of VEGF protein in a human-mouse chimeric endometriosis mouse model. Results PTEN overexpression significantly increased apoptosis and inhibited the cell cycle compared with the silenced and control groups. Furthermore, cells expressing low PTEN levels were better able to undergo vasculogenic mimicry, and exhibited significantly increased angiogenesis compared to cells overexpressing PTEN. We found that ectopic foci were more easily formed in the endometrial tissue of SCID mice with low PTEN expression, and the VEGF expression in this group was relatively high. Conclusions PTEN inhibits the occurrence and development of endometriosis by regulating angiogenesis and the apoptosis and cell cycle of endometrial cells; therefore, we propose that the PTEN gene can be used to treat endometriosis. PMID:27744455

  3. PTEN insufficiency modulates ER+ breast cancer cell cycle progression and increases cell growth in vitro and in vivo.

    PubMed

    Chiang, Kun-Chun; Chen, Huang-Yang; Hsu, Shu-Yuan; Pang, Jong-Hwei S; Wang, Shang-Yu; Hsu, Jun-Te; Yeh, Ta-Sen; Chen, Li-Wei; Kuo, Sheng-Fong; Sun, Chi-Chin; Lee, Jim-Ming; Yeh, Chun-Nan; Juang, Horng-Heng

    2015-01-01

    Phosphatase and tensin homolog (PTEN), a well-known tumor suppressor gene and frequently mutated or lost in breast cancer, possesses the negative regulation function over the PI3K/Akt/mTOR pathway. PTEN insufficiency has been associated with advanced breast cancer and poor prognosis of breast cancer patients. Recently, target therapies aimed at PI3K/Akt/mTOR pathway to treat breast cancer have got popularity. However, the exact effect of PTEN on breast cancer cells is still not well understood. This study demonstrated that PTEN knockdown in MCF-7 cells strengthened the downstream gene expressions, including p-Akt, p-ERK1/2, p-mTOR, p-p70s6k, and p-GSK3β. PTEN knockdown MCF-7 cells had increased cell growth and Ki-67 expression. Further Western blot demonstrated that p27 was repressed obviously with p21 slightly inhibited and CDK1, 2, 4, 6, cyclin A, and Cdc25C were upregulated in MCF-7 PTEN knockdown cells, leading to the higher growth rate. More importantly, PTEN knockdown MCF-7 cells had higher tumorigenesis and tumor growth in vivo. From our current work, we provided more detailed PTEN-mediated mechanisms to stimulate ER+ breast cancer cell growth. Our result may pave the way for further target therapy development used alone or in combination with other drugs for ER+ breast cancer with PTEN insufficiency.

  4. PTEN insufficiency modulates ER+ breast cancer cell cycle progression and increases cell growth in vitro and in vivo

    PubMed Central

    Chiang, Kun-Chun; Chen, Huang-Yang; Hsu, Shu-Yuan; Pang, Jong-Hwei S; Wang, Shang-Yu; Hsu, Jun-Te; Yeh, Ta-Sen; Chen, Li-Wei; Kuo, Sheng-Fong; Sun, Chi-Chin; Lee, Jim-Ming; Yeh, Chun-Nan; Juang, Horng-Heng

    2015-01-01

    Phosphatase and tensin homolog (PTEN), a well-known tumor suppressor gene and frequently mutated or lost in breast cancer, possesses the negative regulation function over the PI3K/Akt/mTOR pathway. PTEN insufficiency has been associated with advanced breast cancer and poor prognosis of breast cancer patients. Recently, target therapies aimed at PI3K/Akt/mTOR pathway to treat breast cancer have got popularity. However, the exact effect of PTEN on breast cancer cells is still not well understood. This study demonstrated that PTEN knockdown in MCF-7 cells strengthened the downstream gene expressions, including p-Akt, p-ERK1/2, p-mTOR, p-p70s6k, and p-GSK3β. PTEN knockdown MCF-7 cells had increased cell growth and Ki-67 expression. Further Western blot demonstrated that p27 was repressed obviously with p21 slightly inhibited and CDK1, 2, 4, 6, cyclin A, and Cdc25C were upregulated in MCF-7 PTEN knockdown cells, leading to the higher growth rate. More importantly, PTEN knockdown MCF-7 cells had higher tumorigenesis and tumor growth in vivo. From our current work, we provided more detailed PTEN-mediated mechanisms to stimulate ER+ breast cancer cell growth. Our result may pave the way for further target therapy development used alone or in combination with other drugs for ER+ breast cancer with PTEN insufficiency. PMID:26316702

  5. Upregulation of PTEN suppresses invasion in Tca8113 tongue cancer cells through repression of epithelial-mesenchymal transition (EMT).

    PubMed

    Xie, Siming; Lu, Zhiyuan; Lin, Yanzhu; Shen, Lijia; Yin, Cao

    2016-05-01

    We previously discovered that the expression of the tumor suppressor phosphatase and tensin homolog (PTEN) was downregulated in the majority patients with tongue squamous cell carcinoma (TSCC). The aim of this study was to investigate the role of PTEN overexpression in the regulation of epithelial-mesenchymal transition (EMT) of the tongue squamous carcinoma cell line Tca8113 as well as explore the underlying mechanism. GV230 (containing the PTEN gene) and empty vectors were transfected into Tca8113 cells. After stable transfection, the messenger RNA (mRNA) and protein levels of PTEN were validated using quantitative real-time PCR (qPCR) and Western blot analysis. The growth and cell cycle were analyzed using Cell Counting Kit-8 (CCK-8) and flow cytometry, respectively. The invasion ability was measured with a transwell assay. The effects of PTEN overexpression on EMT and Hedgehog signaling were assessed by comparing Tca8113-PTEN cells with control and negative control cell groups. We found that PTEN expression was significantly upregulated after transfection. Meanwhile, upregulated PTEN inhibited the proliferation and invasion of Tca8113 cells. In addition, we observed changes in the EMT- and Hedgehog-associated proteins. These data demonstrated that PTEN upregulation could reduce invasion by inhibiting the process of EMT in Tca8113 cells, which might be related to the Hedgehog signaling pathway.

  6. Dysregulation of synaptic plasticity precedes appearance of morphological defects in a Pten conditional knockout mouse model of autism.

    PubMed

    Takeuchi, Koichi; Gertner, Michael J; Zhou, Jing; Parada, Luis F; Bennett, Michael V L; Zukin, R Suzanne

    2013-03-19

    The phosphoinositide signaling system is a crucial regulator of neural development, cell survival, and plasticity. Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) negatively regulates phosphatidylinositol 3-kinase signaling and downstream targets. Nse-Cre Pten conditional knockout mice, in which Pten is ablated in granule cells of the dentate gyrus and pyramidal neurons of the hippocampal CA3, but not CA1, recapitulate many of the symptoms of humans with inactivating PTEN mutations, including progressive hypertrophy of the dentate gyrus and deficits in hippocampus-based social and cognitive behaviors. However, the impact of Pten loss on activity-dependent synaptic plasticity in this clinically relevant mouse model of Pten inactivation remains unclear. Here, we show that two phosphatidylinositol 3-kinase- and protein synthesis-dependent forms of synaptic plasticity, theta burst-induced long-term potentiation and metabotropic glutamate receptor (mGluR)-dependent long-term depression, are dysregulated at medial perforant path-to-dentate gyrus synapses of young Nse-Cre Pten conditional knockout mice before the onset of visible morphological abnormalities. In contrast, long-term potentiation and mGluR-dependent long-term depression are normal at CA3-CA1 pyramidal cell synapses at this age. Our results reveal that deletion of Pten in dentate granule cells dysregulates synaptic plasticity, a defect that may underlie abnormal social and cognitive behaviors observed in humans with Pten inactivating mutations and potentially other autism spectrum disorders.

  7. Long-term consequences of conditional genetic deletion of PTEN in the sensorimotor cortex of neonatal mice.

    PubMed

    Gutilla, Erin A; Buyukozturk, Melda M; Steward, Oswald

    2016-05-01

    Targeted deletion of the phosphatase and tensin homolog on chromosome ten (PTEN) gene in the sensorimotor cortex of neonatal mice enables robust regeneration of corticospinal tract (CST) axons following spinal cord injury as adults. Here, we assess the consequences of long-term conditional genetic PTEN deletion on cortical structure and neuronal morphology and screen for neuropathology. Mice with a LoxP-flanked exon 5 of the PTEN gene (PTENf/f mice) received AAV-Cre injections into the sensorimotor cortex at postnatal day 1 (P1) and were allowed to survive for up to 18months. As adults, mice were assessed for exploratory activity (open field), and motor coordination using the Rotarod®. Some mice received injections of Fluorogold into the spinal cord to retrogradely label the cells of origin of the CST. Brains were prepared for neurohistology and immunostained for PTEN and phospho-S6, which is a downstream marker of mammalian target of rapamycin (mTOR) activation. Immunostaining revealed a focal area of PTEN deletion affecting neurons in all cortical layers, although in some cases PTEN expression was maintained in many small-medium sized neurons in layers III-IV. Neurons lacking PTEN were robustly stained for pS6. Cortical thickness was significantly increased and cortical lamination was disrupted in the area of PTEN deletion. PTEN-negative layer V neurons that give rise to the CST, identified by retrograde labeling, were larger than neurons with maintained PTEN expression, and the relative area occupied by neuropil vs. cell bodies was increased. There was no evidence of tumor formation or other neuropathology. Mice with PTEN deletion exhibited open field activity comparable to controls and there was a trend for impaired Rotarod performance (not statistically significant). Our findings indicate that early postnatal genetic deletion of PTEN that is sufficient to enable axon regeneration by adult neurons causes neuronal hypertrophy but no other detectable

  8. Autistic-Like Traits and Cerebellar Dysfunction in Purkinje Cell PTEN Knock-Out Mice.

    PubMed

    Cupolillo, Dario; Hoxha, Eriola; Faralli, Alessio; De Luca, Annarita; Rossi, Ferdinando; Tempia, Filippo; Carulli, Daniela

    2016-05-01

    Autism spectrum disorders (ASDs) are neurodevelopmental disorders characterized by impaired social interaction, isolated areas of interest, and insistence on sameness. Mutations in Phosphatase and tensin homolog missing on chromosome 10 (PTEN) have been reported in individuals with ASDs. Recent evidence highlights a crucial role of the cerebellum in the etiopathogenesis of ASDs. In the present study we analyzed the specific contribution of cerebellar Purkinje cell (PC) PTEN loss to these disorders. Using the Cre-loxP recombination system, we generated conditional knockout mice in which PTEN inactivation was induced specifically in PCs. We investigated PC morphology and physiology as well as sociability, repetitive behavior, motor learning, and cognitive inflexibility of adult PC PTEN-mutant mice. Loss of PTEN in PCs results in autistic-like traits, including impaired sociability, repetitive behavior and deficits in motor learning. Mutant PCs appear hypertrophic and show structural abnormalities in dendrites and axons, decreased excitability, disrupted parallel fiber and climbing fiber synapses and late-onset cell death. Our results unveil new roles of PTEN in PC function and provide the first evidence of a link between the loss of PTEN in PCs and the genesis of ASD-like traits.

  9. Roles of PTEN with DNA Repair in Parkinson's Disease.

    PubMed

    Ogino, Mako; Ichimura, Mayuko; Nakano, Noriko; Minami, Akari; Kitagishi, Yasuko; Matsuda, Satoru

    2016-06-15

    Oxidative stress is considered to play key roles in aging and pathogenesis of many neurodegenerative diseases such as Parkinson's disease, which could bring DNA damage by cells. The DNA damage may lead to the cell apoptosis, which could contribute to the degeneration of neuronal tissues. Recent evidence suggests that PTEN (phosphatase and tensin homolog on chromosome 10) may be involved in the pathophysiology of the neurodegenerative disorders. Since PTEN expression appears to be one dominant determinant of the neuronal cell death, PTEN should be a potential molecular target of novel therapeutic strategies against Parkinson's disease. In addition, defects in DNA damage response and DNA repair are often associated with modulation of hormone signaling pathways. Especially, many observations imply a role for estrogen in a regulation of the DNA repair action. In the present review, we have attempted to summarize the function of DNA repair molecules at a viewpoint of the PTEN signaling pathway and the hormone related functional modulation of cells, providing a broad interpretation on the molecular mechanisms for treatment of Parkinson's disease. Particular attention will be paid to the mechanisms proposed to explain the health effects of food ingredients against Parkinson's disease related to reduce oxidative stress for an efficient therapeutic intervention.

  10. Deletion of PTEN Produces Deficits in Conditioned Fear and Increases Fragile X Mental Retardation Protein

    ERIC Educational Resources Information Center

    Lugo, Joaquin N.; Smith, Gregory D.; Morrison, Jessica B.; White, Jessika

    2013-01-01

    The phosphatase and tensin homolog detected on chromosome 10 (PTEN) gene product modulates activation of the phosphatidylinositol 3-kinase (PI3K)/AKT pathway. The PI3K pathway has been found to be involved in the regulation of the fragile X mental retardation protein, which is important for long-term depression and in the formation of new…

  11. Impaired B cell function during viral infections due to PTEN-mediated inhibition of the PI3K pathway.

    PubMed

    Getahun, Andrew; Wemlinger, Scott M; Rudra, Pratyaydipta; Santiago, Mario L; van Dyk, Linda F; Cambier, John C

    2017-04-03

    Transient suppression of B cell function often accompanies acute viral infection. However, the molecular signaling circuitry that enforces this hyporesponsiveness is undefined. In this study, experiments identify up-regulation of the inositol phosphatase PTEN (phosphatase and tensin homolog) as primarily responsible for defects in B lymphocyte migration and antibody responses that accompany acute viral infection. B cells from mice acutely infected with gammaherpesvirus 68 are defective in BCR- and CXCR4-mediated activation of the PI3K pathway, and this, we show, is associated with increased PTEN expression. This viral infection-induced PTEN overexpression appears responsible for the suppression of antibody responses observed in infected mice because PTEN deficiency or expression of a constitutively active PI3K rescued function of B cells in infected mice. Conversely, induced overexpression of PTEN in B cells in uninfected mice led to suppression of antibody responses. Finally, we demonstrate that PTEN up-regulation is a common mechanism by which infection induces suppression of antibody responses. Collectively, these findings identify a novel role for PTEN during infection and identify regulation of the PI3K pathway, a mechanism previously shown to silence autoreactive B cells, as a key physiological target to control antibody responses.

  12. Metformin inhibits inflammatory response via AMPK-PTEN pathway in vascular smooth muscle cells.

    PubMed

    Kim, Sun Ae; Choi, Hyoung Chul

    2012-09-07

    Atherosclerosis is a chronic inflammation of the coronary arteries. Vascular smooth muscle cells (VSMCs) stimulated by cytokines and chemokines accelerate the inflammatory response and migrate to the injured endothelium during the progression of atherosclerosis. Activation of AMP activated protein kinase (AMPK), a key sensor maintaining metabolic homeostasis, suppresses the inflammatory response. However, how AMPK regulates the inflammatory response is poorly understood. To identify the mechanism of this response, we focused on phosphatase and tensin homolog (PTEN), which is a negative regulator of inflammation. We investigated that activation of AMPK-induced PTEN expression and suppression of the inflammatory response through the AMPK-PTEN pathway in VSMCs. We treated with the well-known AMPK activator metformin to induce PTEN expression. PTEN was induced by metformin (2mM) and inhibited by compound C (10 μM) and AMPK siRNA. Tumor necrosis factor-alpha (TNF-α) was used to induce inflammation. The inflammatory response was confirmed by cyclooxygenase (COX)-2, inducible nitric oxide synthase (iNOS) expression, and activation of nuclear factor (NF)-κB. Metformin suppressed COX-2 and iNOS mRNA and protein expression dose dependently. Treatment with compound C and bpv (pic) in the presence of metformin, iNOS and COX-2 protein expression increased. NF-κB activation decreased in response to metformin and was restored by inhibiting AMPK and PTEN. Inhibiting AMPK and PTEN restored ROS levels stimulated with TNF-α. Taken together, PTEN could be a possible downstream regulator of AMPK, and the AMPK-PTEN pathway might be important in the regulation of the inflammatory response in VSMCs.

  13. Oxidation of DJ-1-dependent cell transformation through direct binding of DJ-1 to PTEN.

    PubMed

    Kim, Yun-Chul; Kitaura, Hirotake; Taira, Takahiro; Iguchi-Ariga, Sanae M M; Ariga, Hiroyoshi

    2009-12-01

    DJ-1 is an oncogene and also a causative gene for a familial form of Parkinson's disease. DJ-1 has multiple functions, including anti-oxidative stress reaction and cysteine 106 (C106) of DJ-1 is an essential amino acid for DJ-1 to exert its function. While increased expression and secretion of DJ-1 into serum in patients with various cancers and regulation of p53 and PTEN by DJ-1 have been reported, the molecular mechanism underlying oncogenicity of DJ-1 is poorly understood. Here, we analyzed the function of DJ-1 in the PI3'K signaling pathway under an oxidative stress condition, focusing on the interaction of DJ-1 with PTEN. We found that both wild-type (wt) and C106S-DJ-1, a substitution mutant of DJ-1, directly bound to PTEN and inhibited PTEN phosphatase activity but that C106S-DJ-1 more strongly inhibited the activity than did wt-DJ-1. When NIH3T3 cells were treated with H2O2, oxidation of C106 of wt-DJ-1 occurred, accompanied by increased binding of wt-DJ-1 to PTEN, decreased PTEN activity and increased phosphorylation of AKT. C106S-DJ-1 transformed cells more strongly than did wt-DJ-1 and the transforming activity of DJ-1 was enhanced by H2O2 treatment of cells in which increased binding of DJ-1 to PTEN and decreased PTEN activity were observed. Furthermore, TOF-MS analysis of the oxidative status of C106 suggested that DJ-1 activity requires the presence of the reduced form of C106, which accounts for >50% of the total form. These results suggest that the oxidative status of DJ-1 regulates PTEN activity, leading to cell proliferation and transformation.

  14. PTEN functions as a melanoma tumor suppressor by promoting host immune response.

    PubMed

    Dong, Y; Richards, J-Ae; Gupta, R; Aung, P P; Emley, A; Kluger, Y; Dogra, S K; Mahalingam, M; Wajapeyee, N

    2014-09-18

    Cancer cells acquire several traits that allow for their survival and progression, including the ability to evade the host immune response. However, the mechanisms by which cancer cells evade host immune responses remain largely elusive. Here we study the phenomena of immune evasion in malignant melanoma cells. We find that the tumor suppressor phosphatase and tensin homolog (PTEN) is an important regulator of the host immune response against melanoma cells. Mechanistically, PTEN represses the expression of immunosuppressive cytokines by blocking the phosphatidylinositide 3-kinase (PI3K) pathway. In melanoma cells lacking PTEN, signal transducer and activator of transcription 3 activates the transcription of immunosuppressive cytokines in a PI3K-dependent manner. Furthermore, conditioned media from PTEN-deficient, patient-derived short-term melanoma cultures and established melanoma cell lines blocked the production of the interleukin-12 (IL-12) in human monocyte-derived dendritic cells. Inhibition of IL-12 production was rescued by restoring PTEN or using neutralizing antibodies against the immunosuppressive cytokines. Furthermore, we report that PTEN, as an alternative mechanism to promote the host immune response against cancer cells, represses the expression of programmed cell death 1 ligand, a known repressor of the host immune response. Finally, to establish the clinical significance of our results, we analyzed malignant melanoma patient samples with or without brisk host responses. These analyses confirmed that PTEN loss is associated with a higher percentage of malignant melanoma samples with non-brisk host responses compared with samples with brisk host responses. Collectively, these results establish that PTEN functions as a melanoma tumor suppressor in part by regulating the host immune response against melanoma cells and highlight the importance of assessing PTEN status before recruiting melanoma patients for immunotherapies.

  15. Pharmacological Targeting of Phosphoinositide Lipid Kinases and Phosphatases in the Immune System: Success, Disappointment, and New Opportunities

    PubMed Central

    Blunt, Matthew D.; Ward, Stephen G.

    2012-01-01

    The predominant expression of the γ and δ isoforms of PI3K in cells of hematopoietic lineage prompted speculation that inhibitors of these isoforms could offer opportunities for selective targeting of PI3K in the immune system in a range of immune-related pathologies. While there has been some success in developing PI3Kδ inhibitors, progress in developing selective inhibitors of PI3Kγ has been rather disappointing. This has prompted the search for alternative targets with which to modulate PI3K signaling specifically in the immune system. One such target is the SH2 domain-containing inositol-5-phosphatase-1 (SHIP-1) which de-phosphorylates PI(3,4,5)P3 at the D5 position of the inositol ring to create PI(3,4)P2. In this article, we first describe the current state of PI3K isoform-selective inhibitor development. We then focus on the structure of SHIP-1 and its function in the immune system. Finally, we consider the current state of development of small molecule compounds that potently and selectively modulate SHIP activity and which offer novel opportunities to manipulate PI3K mediated signaling in the immune system. PMID:22876243

  16. PTEN expression as a predictor for the response to trastuzumab-based therapy in Her-2 overexpressing metastatic breast cancer

    PubMed Central

    Tan, Yen Y.; Fuchs, Eva-Maria; Hudelist, Gernot; Köstler, Wolfgang J.; Reiner, Angelika; Leser, Carmen; Salama, Mohamed; Attems, Johannes; Deutschmann, Christine; Zielinski, Christoph C.; Singer, Christian F.

    2017-01-01

    Background Even though trastuzumab is an effective therapy in early stage Her-2+ breast cancer, 40–50% of advanced Her-2+ breast cancer patients develop trastuzumab resistance. A potential resistance mechanism is aberrant downstream signal transmission due to loss of phosphatase and tensin homologue (PTEN). This study investigated the relationship between the expression of PTEN and trastuzumab response in Her-2 overexpressing metastatic breast cancer patients. Methods Between 2000 and 2007, 164 patients with Her-2+ metastatic breast cancer received trastuzumab-based therapy in our institution. We analyzed PTEN status by immunohistochemistry of 115 available tumor tissues and analyzed associations with other histopathological parameters, response rate, progression free survival (PFS) and overall survival (OS) with a median follow-up of 60 months. Results Eighty patients were PTEN positive (69.6%) and 35 patients PTEN negative (30.4%). We found a significant association of the expression of PTEN and p53 (p = 0.041), while there was no association with grading, hormone receptor status, IGFR or MIB. We found significantly more cases with progressive disease under trastuzumab-based therapy in patients with PTEN positive breast cancers (p = 0.018), while there was no significant correlation with PFS or OS. Conclusion In Her-2-positive metastatic breast cancers, PTEN positivity was significantly associated with progressive disease, but not with PFS or OS. PMID:28253285

  17. PTEN ameliorates autoimmune arthritis through down-regulating STAT3 activation with reciprocal balance of Th17 and Tregs

    PubMed Central

    Lee, Seung Hoon; Park, Jin-Sil; Byun, Jae-Kyung; Jhun, JooYeon; Jung, KyungAh; Seo, Hyeon-Beom; Moon, Young-Mee; Kim, Ho-Youn; Park, Sung-Hwan; Cho, Mi-La

    2016-01-01

    PTEN is a tyrosine phosphatase with significant function in inhibiting STAT3 activation. Recently, inactivation of STAT3 has been demonstrated as a therapeutic candidate for autoimmune arthritis. The expression of PTEN controlled by p53 regulates autoimmune arthritis through modulating the balance between Th17 and Treg. We hypothesized that PTEN regulated by p53 might reduce CIA severity and inflammatory response via inhibiting STAT3 activation. Our results revealed that PTEN could ameliorate experimental autoimmune arthritis by reducing STAT3 activity and Th17 differentiation. Systemic infusion of PTEN overexpression downregulated CIA severity. In addition, PTEN overexpression decreased the activation of T cells and modulated reciprocal differentiation of Th17 and Treg cells. We observed that PTEN expression downregulated by p53 deficiency induced the activation of STAT3. Loss of p53 exacerbated autoimmune arthritis and dysregulated the population of Th17 and Treg. These data suggest that induction of STAT3-modulatory activity of PTEN may be a therapeutic target for rheumatoid arthritis therapy. PMID:27708408

  18. PTEN ameliorates autoimmune arthritis through down-regulating STAT3 activation with reciprocal balance of Th17 and Tregs.

    PubMed

    Lee, Seung Hoon; Park, Jin-Sil; Byun, Jae-Kyung; Jhun, JooYeon; Jung, KyungAh; Seo, Hyeon-Beom; Moon, Young-Mee; Kim, Ho-Youn; Park, Sung-Hwan; Cho, Mi-La

    2016-10-06

    PTEN is a tyrosine phosphatase with significant function in inhibiting STAT3 activation. Recently, inactivation of STAT3 has been demonstrated as a therapeutic candidate for autoimmune arthritis. The expression of PTEN controlled by p53 regulates autoimmune arthritis through modulating the balance between Th17 and Treg. We hypothesized that PTEN regulated by p53 might reduce CIA severity and inflammatory response via inhibiting STAT3 activation. Our results revealed that PTEN could ameliorate experimental autoimmune arthritis by reducing STAT3 activity and Th17 differentiation. Systemic infusion of PTEN overexpression downregulated CIA severity. In addition, PTEN overexpression decreased the activation of T cells and modulated reciprocal differentiation of Th17 and Treg cells. We observed that PTEN expression downregulated by p53 deficiency induced the activation of STAT3. Loss of p53 exacerbated autoimmune arthritis and dysregulated the population of Th17 and Treg. These data suggest that induction of STAT3-modulatory activity of PTEN may be a therapeutic target for rheumatoid arthritis therapy.

  19. Interaction of E-cadherin and PTEN regulates morphogenesis and growth arrest in human mammary epithelial cells

    SciTech Connect

    Fournier, Marcia V.; Fata, Jimmie E.; Martin, Katherine J.; Yaswen, Paul; Bissell, Mina J.

    2009-06-03

    PTEN is a dual function phosphatase with tumor suppressor function compromised in a wide spectrum of cancers. Because tissue polarity and architecture are crucial modulators of normal and malignant behavior, we postulated that PTEN may play a role in maintenance of tissue integrity. We used two non-malignant human mammary epithelial cell lines (HMECs) that form polarized, growth-arrested structures (acini) when cultured in 3-dimensional laminin-rich extracellular matrix gels (3D lrECM). As acini begin to form, PTEN accumulates in both the cytoplasm, and at cell-cell contacts where it colocalizes with E-cadherin/{beta}-catenin complex. Reduction of PTEN levels by shRNA in lrECM prevents formation of organized breast acini and disrupts growth arrest. Importantly, disruption of acinar polarity and cell-cell contact by E-cadherin function-blocking antibodies reduces endogenous PTEN protein levels and inhibits its accumulation at cell-cell contacts. Conversely, in SKBR3 breast cancer cells lacking endogenous E-cadherin expression, exogenous introduction of E-cadherin gene causes induction of PTEN expression and its accumulation at sites of cell interactions. These studies provide evidence that E-cadherin regulates both the PTEN protein levels and its recruitment to cell-cell junctions in 3D lrECM indicating a dynamic reciprocity between architectural integrity and the levels and localization of PTEN. This interaction thus appears to be a critical integrator of proliferative and morphogenetic signaling in breast epithelial cells.

  20. PI3K isoform dependence of PTEN-deficient tumors can be altered by the genetic context

    PubMed Central

    Schmit, Fabienne; Utermark, Tamara; Zhang, Sen; Wang, Qi; Von, Thanh; Roberts, Thomas M.; Zhao, Jean J.

    2014-01-01

    There has been increasing interest in the use of isoform-selective inhibitors of phosphatidylinositide-3-kinase (PI3K) in cancer therapy. Using conditional deletion of the p110 catalytic isoforms of PI3K to predict sensitivity of cancer types to such inhibitors, we and others have demonstrated that tumors deficient of the phosphatase and tensin homolog (PTEN) are often dependent on the p110β isoform of PI3K. Because human cancers usually arise due to multiple genetic events, determining whether other genetic alterations might alter the p110 isoform requirements of PTEN-null tumors becomes a critical question. To investigate further the roles of p110 isoforms in PTEN-deficient tumors, we used a mouse model of ovarian endometrioid adenocarcinoma driven by concomitant activation of the rat sarcoma protein Kras, which is known to activate p110α, and loss of PTEN. In this model, ablation of p110β had no effect on tumor growth, whereas p110α ablation blocked tumor formation. Because ablation of PTEN alone is often p110β dependent, we wondered if the same held true in the ovary. Because PTEN loss alone in the ovary did not result in tumor formation, we tested PI3K isoform dependence in ovarian surface epithelium (OSE) cells deficient in both PTEN and p53. These cells were indeed p110β dependent, whereas OSEs expressing activated Kras with or without PTEN loss were p110α dependent. Furthermore, isoform-selective inhibitors showed a similar pattern of the isoform dependence in established KrasG12D/PTEN-deficient tumors. Taken together, our data suggest that, whereas in some tissues PTEN-null tumors appear to inherently depend on p110β, the p110 isoform reliance of PTEN-deficient tumors may be altered by concurrent mutations that activate p110α. PMID:24737887

  1. Pten regulates spindle pole movement through Dlg1-mediated recruitment of Eg5 to centrosomes

    PubMed Central

    van Ree, Janine H.; Nam, Hyun-Ja; Jeganathan, Karthik B.; Kanakkanthara, Arun; van Deursen, Jan M.

    2016-01-01

    Phosphatase and tensin homologue (Pten) suppresses neoplastic growth by negatively regulating PI(3)K signalling through its phosphatase activity1. To gain insight into the actions of non-catalytic Pten domains in normal physiological processes and tumorigenesis2,3, we engineered mice lacking the PDZ-binding domain (PDZ-BD). Here, we show that the PDZ-BD regulates centrosome movement and that its heterozygous or homozygous deletion promotes aneuploidy and tumour formation. We found that Pten is recruited to pre-mitotic centrosomes in a Plk1-dependent fashion to create a docking site for protein complexes containing the PDZ-domain-containing protein Dlg1 (also known as Sap97) and Eg5 (also known as Kif11), a kinesin essential for centrosome movement and bipolar spindle formation4. Docking of Dlg1–Eg5 complexes to Pten depended on Eg5 phosphorylation by the Nek9–Nek6 mitotic kinase cascade and Cdk1. PDZ-BD deletion or Dlg1 ablation impaired loading of Eg5 onto centrosomes and spindle pole motility, yielding asymmetrical spindles that are prone to chromosome missegregation. Collectively, these data demonstrate that Pten, through the Dlg1-binding ability of its PDZ-BD, accumulates phosphorylated Eg5 at duplicated centrosomes to establish symmetrical bipolar spindles that properly segregate chromosomes, and suggest that this function contributes to tumour suppression. PMID:27240320

  2. Role of PTEN in Oxidative Stress and DNA Damage in the Liver of Whole-Body Pten Haplodeficient Mice

    PubMed Central

    Bankoglu, Ezgi Eyluel; Tschopp, Oliver; Schmitt, Johannes; Burkard, Philipp; Jahn, Daniel

    2016-01-01

    Type 2 diabetes (T2DM) and obesity are frequently associated with non-alcoholic fatty liver disease (NAFLD) and with an elevated cancer incidence. The molecular mechanisms of carcinogenesis in this context are only partially understood. High blood insulin levels are typical in early T2DM and excessive insulin can cause elevated reactive oxygen species (ROS) production and genomic instability. ROS are important for various cellular functions in signaling and host defense. However, elevated ROS formation is thought to be involved in cancer induction. In the molecular events from insulin receptor binding to genomic damage, some signaling steps have been identified, pointing at the PI3K/AKT pathway. For further elucidation Phosphatase and Tensin homolog (Pten), a tumour suppressor phosphatase that plays a role in insulin signaling by negative regulation of PI3K/AKT and its downstream targets, was investigated here. Dihydroethidium (DHE) staining was used to detect ROS formation in immortalized human hepatocytes. Comet assay and micronucleus test were performed to investigate genomic damage in vitro. In liver samples, DHE staining and western blot detection of HSP70 and HO-1 were performed to evaluate oxidative stress response. DNA double strand breaks (DSBs) were detected by immunohistostaining. Inhibition of PTEN with the pharmacologic inhibitor VO-OHpic resulted in increased ROS production and genomic damage in a liver cell line. Knockdown of Pten in a mouse model yielded increased oxidative stress levels, detected by ROS levels and expression of the two stress-proteins HSP70 and HO-1 and elevated genomic damage in the liver, which was significant in mice fed with a high fat diet. We conclude that PTEN is involved in oxidative stress and genomic damage induction in vitro and that this may also explain the in vivo observations. This further supports the hypothesis that the PI3K/AKT pathway is responsible for damaging effects of high levels of insulin. PMID:27893783

  3. mTOR inhibitors radiosensitize PTEN-deficient non-small-cell lung cancer cells harboring an EGFR activating mutation by inducing autophagy.

    PubMed

    Kim, Eun Ju; Jeong, Jae-Hoon; Bae, Sangwoo; Kang, Seongman; Kim, Cheol Hyeon; Lim, Young-Bin

    2013-06-01

    Clinical resistance to gefitinib, an epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI), in patients with lung cancer has been linked to acquisition of the T790M resistance mutation in activated EGFR or amplification of MET. Phosphatase and tensin homolog (PTEN) loss has been recently reported as a gefitinib resistance mechanism in lung cancer. The aim of this study was to evaluate the efficacy of radiotherapy in non-small-cell lung cancer (NSCLC) with acquired gefitinib resistance caused by PTEN deficiency to suggest radiotherapy as an alternative to EGFR TKIs. PTEN deficient-mediated gefitinib resistance was generated in HCC827 cells, an EGFR TKI sensitive NSCLC cell line, by PTEN knockdown with a lentiviral vector expressing short hairpin RNA-targeting PTEN. The impact of PTEN knockdown on sensitivity to radiation in the presence or absence of PTEN downstream signaling inhibitors was investigated. PTEN knockdown conferred acquired resistance not only to gefitinib but also to radiation on HCC827 cells. mTOR inhibitors alone failed to reduce HCC827 cell viability, regardless of PTEN expression, but ameliorated PTEN knockdown-induced radioresistance. PTEN knockdown-mediated radioresistance was accompanied by repression of radiation-induced cytotoxic autophagy, and treatment with mTOR inhibitors released the repression of cytotoxic autophagy to overcome PTEN knockdown-induced radioresistance in HCC827 cells. These results suggest that inhibiting mTOR signaling could be an effective strategy to radiosensitize NSCLC harboring the EGFR activating mutation that acquires resistance to both TKIs and radiotherapy due to PTEN loss or inactivation mutations.

  4. ROS Enhances CXCR4-mediated Functions through Inactivation of PTEN in Prostate Cancer Cells

    PubMed Central

    Chetram, Mahandranauth A.; Don-Salu-Hewage, Ayesha S.; Hinton, Cimona V.

    2011-01-01

    Inactivation of the tumor suppressor phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is heavily implicated in the tumorigenesis of prostate cancer. Conversely, the upregulation of the chemokine (CXC) receptor 4 (CXCR4) is associated with prostate cancer progression and metastasis. Studies have shown that loss of PTEN permits CXCR4-mediated functions in prostate cancer cells. Loss of PTEN function is typically due to genetic and epigenetic modulations, as well as active site oxidation by reactive oxygen species (ROS); likewise ROS upregulates CXCR4 expression. Herein, we show that ROS accumulation permitted CXCR4-mediated functions through PTEN catalytic inactivation. ROS increased p-AKT and CXCR4 expression, which were abrogated by a ROS scavenger in prostate cancer cells. ROS mediated PTEN inactivation but did not affect expression, yet enhanced cell migration and invasion in a CXCR4-dependent manner. Collectively, our studies add to the body of knowledge on the regulatory role of PTEN in CXCR4-mediated cancer progression, and hopefully, will contribute to the development of therapies that target the tumor microenvironment, which have great potential for the better management of a metastatic disease. PMID:21627959

  5. Glioma cell VEGFR-2 confers resistance to chemotherapeutic and antiangiogenic treatments in PTEN-deficient glioblastoma.

    PubMed

    Kessler, Tobias; Sahm, Felix; Blaes, Jonas; Osswald, Matthias; Rübmann, Petra; Milford, David; Urban, Severino; Jestaedt, Leonie; Heiland, Sabine; Bendszus, Martin; Hertenstein, Anne; Pfenning, Philipp-Niclas; Ruiz de Almodóvar, Carmen; Wick, Antje; Winkler, Frank; von Deimling, Andreas; Platten, Michael; Wick, Wolfgang; Weiler, Markus

    2015-10-13

    Loss of the tumor suppressor phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is a prerequisite for tumor cell-specific expression of vascular endothelial growth factor receptor (VEGFR)-2 in glioblastoma defining a subgroup prone to develop evasive resistance towards antiangiogenic treatments. Immunohistochemical analysis of human tumor tissues showed VEGFR-2 expression in glioma cells in 19% of specimens examined, mainly in the infiltration zone. Glioma cell VEGFR-2 positivity was restricted to PTEN-deficient tumor specimens. PTEN overexpression reduced VEGFR-2 expression in vitro, as well as knock-down of raptor or rictor. Genetic interference with VEGFR-2 revealed proproliferative, antiinvasive and chemoprotective functions for VEGFR-2 in glioma cells. VEGFR-2-dependent cellular effects were concomitant with activation of 'kappa-light-chain-enhancer' of activated B-cells, protein kinase B, and N-myc downstream regulated gene 1. Two-photon in vivo microscopy revealed that expression of VEGFR-2 in glioma cells hampers antiangiogenesis. Bevacizumab induces a proinvasive response in VEGFR-2-positive glioma cells. Patients with PTEN-negative glioblastomas had a shorter survival after initiation of bevacizumab therapy compared with PTEN-positive glioblastomas. Conclusively, expression of VEGFR-2 in glioma cells indicates an aggressive glioblastoma subgroup developing early resistance to temozolomide or bevacizumab. Loss of PTEN may serve as a biomarker identifying those tumors upfront by routine neuropathological methods.

  6. Myeloid PTEN deficiency protects livers from ischemia reperfusion injury by facilitating M2 macrophage differentiation.

    PubMed

    Yue, Shi; Rao, Jianhua; Zhu, Jianjun; Busuttil, Ronald W; Kupiec-Weglinski, Jerzy W; Lu, Ling; Wang, Xuehao; Zhai, Yuan

    2014-06-01

    Although the role of phosphatase and tensin homolog deleted on chromosome 10 (PTEN) in regulating cell proliferation is well established, its function in immune responses remains to be fully appreciated. In the current study, we analyzed myeloid-specific PTEN function in regulating tissue inflammatory immune response in a murine liver partial warm ischemia model. Myeloid-specific PTEN knockout (KO) resulted in liver protection from ischemia reperfusion injury (IRI) by deviating the local innate immune response against ischemia reperfusion toward the regulatory type: expression of proinflammatory genes was selectively decreased and anti-inflammatory IL-10 was simultaneously increased in ischemia reperfusion livers of PTEN KO mice compared with those of wild-type (WT) mice. PI3K inhibitor and IL-10-neutralizing Abs, but not exogenous LPS, recreated liver IRI in these KO mice. At the cellular level, Kupffer cells and peritoneal macrophages isolated from KO mice expressed higher levels of M2 markers and produced lower TNF-α and higher IL-10 in response to TLR ligands than did their WT counterparts. They had enhanced Stat3- and Stat6-signaling pathway activation, but diminished Stat1-signaling pathway activation, in response to TLR4 stimulation. Inactivation of Kupffer cells by gadolinium chloride enhanced proinflammatory immune activation and increased IRI in livers of myeloid PTEN KO mice. Thus, myeloid PTEN deficiency protects livers from IRI by facilitating M2 macrophage differentiation.

  7. PTEN downregulates p75NTR expression by decreasing DNA-binding activity of Sp1

    SciTech Connect

    Rankin, Sherri L.; Guy, Clifford S.; Mearow, Karen M.

    2009-02-13

    p75NTR is expressed throughout the nervous system and its dysregulation is associated with pathological conditions. We have recently demonstrated a signalling cascade initiated by laminin (LN), which upregulates PTEN and downregulates p75NTR. Here we investigate the mechanism by which PTEN modulates p75NTR. Studies using PTEN mutants show that its protein phosphatase activity directly modulates p75NTR protein expression. Nuclear relocalization of PTEN subsequent to LN stimulation suggests transcriptional control of p75NTR expression, which was confirmed following EMSA and ChIP analysis of Sp1 transcription factor binding activity. LN and PTEN independently decrease the DNA-binding ability of PTEN to the p75NTR promoter. Sp1 regulation of p75NTR occurs via dephosphorylation of Sp1, thus reducing p75NTR transcription and protein expression. This mechanism represents a novel regulatory pathway which controls the expression level of a receptor with broad implications not only for the development of the nervous system but also for progression of pathological conditions.

  8. Metformin inhibits inflammatory response via AMPK-PTEN pathway in vascular smooth muscle cells

    SciTech Connect

    Kim, Sun Ae; Choi, Hyoung Chul

    2012-09-07

    Highlights: Black-Right-Pointing-Pointer PTEN was induced by metformin and inhibited by compound C and AMPK siRNA. Black-Right-Pointing-Pointer Metformin suppressed TNF-{alpha}-induced COX-2 and iNOS mRNA expression. Black-Right-Pointing-Pointer Compound C and bpv (pic) increased iNOS and COX-2 protein expression. Black-Right-Pointing-Pointer NF-{kappa}B activation was restored by inhibiting AMPK and PTEN. Black-Right-Pointing-Pointer AMPK and PTEN regulated TNF-{alpha}-induced ROS production in VSMCs. -- Abstract: Atherosclerosis is a chronic inflammation of the coronary arteries. Vascular smooth muscle cells (VSMCs) stimulated by cytokines and chemokines accelerate the inflammatory response and migrate to the injured endothelium during the progression of atherosclerosis. Activation of AMP activated protein kinase (AMPK), a key sensor maintaining metabolic homeostasis, suppresses the inflammatory response. However, how AMPK regulates the inflammatory response is poorly understood. To identify the mechanism of this response, we focused on phosphatase and tensin homolog (PTEN), which is a negative regulator of inflammation. We investigated that activation of AMPK-induced PTEN expression and suppression of the inflammatory response through the AMPK-PTEN pathway in VSMCs. We treated with the well-known AMPK activator metformin to induce PTEN expression. PTEN was induced by metformin (2 mM) and inhibited by compound C (10 {mu}M) and AMPK siRNA. Tumor necrosis factor-alpha (TNF-{alpha}) was used to induce inflammation. The inflammatory response was confirmed by cyclooxygenase (COX)-2, inducible nitric oxide synthase (iNOS) expression, and activation of nuclear factor (NF)-{kappa}B. Metformin suppressed COX-2 and iNOS mRNA and protein expression dose dependently. Treatment with compound C and bpv (pic) in the presence of metformin, iNOS and COX-2 protein expression increased. NF-{kappa}B activation decreased in response to metformin and was restored by inhibiting AMPK

  9. Global DNA methylation and PTEN hypermethylation alterations in lung tissues from human silicosis

    PubMed Central

    Zhang, Xianan; Jia, Xiaowei; Mei, Liangying; Zheng, Min; Yu, Chen

    2016-01-01

    Background Silicosis is a respiratory disease caused by long-term silica dust exposure. Our previous study has demonstrated that silica mediates the activation of phosphatidylinositol 3-kinase (PI3K)/phosphatase and tensin homolog deleted on chromosome 10 (PTEN)/serine or threonine kinase (AKT)/mitogen-activated protein kinases (MAPK)/AP-1 pathway in human embryo lung fibroblasts (HELFs). The purpose of this study is to identify genome-wide aberrant DNA methylation profiling in lung tissues from silicosis patients. Methods We performed Illumina Human Methylation 450K Beadchip arrays to investigate the methylation alteration in formalin-fixed, paraffin-embedded (FFPE) lung specimens, immunohistochemistry to detect the level of c-Jun and PTEN proteins; methylation specific PCR (MS-PCR) to identify PTEN and c-Jun promoter methylation in HELFs. Results We found 86,770 CpG sites and 79,660 CpG sites significantly differed in methylation status in early-stage and advanced-stage compared with GEO normal lung methylation data. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed the methylated status of MAPK signaling pathway was considered changed. The number of PTEN and c-Jun CpG promoter methylated-sites were increased in advanced-stage. Early-stage showed the positive expression of c-Jun and PTEN protein and negative or mild expression in advanced-stage. PTEN promoter was no differentially methylated and c-Jun promoter differed at 12 and 24 h in HELFs. Conclusions Abnormal DNA methylation on genome-scale was implicated in silicosis, and PTEN promoter hypermethylation might be associated with decrease of PTEN protein. PMID:27621875

  10. 5-Stabilized phosphatidylinositol 3,4,5-trisphosphate analogues bind Grp1 PH, inhibit phosphoinositide phosphatases, and block neutrophil migration.

    PubMed

    Zhang, Honglu; He, Ju; Kutateladze, Tatiana G; Sakai, Takahiro; Sasaki, Takehiko; Markadieu, Nicolas; Erneux, Christophe; Prestwich, Glenn D

    2010-02-15

    Metabolically stabilized analogues of PtdIns(3,4,5)P3 have shown long-lived agonist activity for cellular events and selective inhibition of lipid phosphatase activity. We describe an efficient asymmetric synthesis of two 5-phosphatase-resistant analogues of PtdIns(3,4,5)P3, the 5-methylene phosphonate (MP) and 5-phosphorothioate (PT). Furthermore, we illustrate the biochemical and biological activities of five stabilized PtdIns(3,4,5)P3 analogues in four contexts. First, the relative binding affinities of the 3-MP, 3-PT, 5-MP, 5-PT, and 3,4,5-PT3 analogues to the Grp1 PH domain are shown, as determined by NMR spectroscopy. Second, the enzymology of the five analogues is explored, showing the relative efficiency of inhibition of SHIP1, SHIP2, and phosphatase and tensin homologue deleted on chromosome 10 (PTEN), as well as the greatly reduced ability of these phosphatases to process these analogues as substrates as compared to PtdIns(3,4,5)P3. Third, exogenously delivered analogues severely impair complement factor C5a-mediated polarization and migration of murine neutrophils. Finally, the new analogues show long-lived agonist activity in mimicking insulin action in sodium transport in A6 cells.

  11. Connexin43 recruits PTEN and Csk to inhibit c-Src activity in glioma cells and astrocytes

    PubMed Central

    González-Sánchez, Ana; Jaraíz-Rodríguez, Myriam; Domínguez-Prieto, Marta; Herrero-González, Sandra; Medina, José M.; Tabernero, Arantxa

    2016-01-01

    Connexin43 (Cx43), the major protein forming gap junctions in astrocytes, is reduced in high-grade gliomas, where its ectopic expression exerts important effects, including the inhibition of the proto-oncogene tyrosine-protein kinase Src (c-Src). In this work we aimed to investigate the mechanism responsible for this effect. The inhibition of c-Src requires phosphorylation at tyrosine 527 mediated by C-terminal Src kinase (Csk) and dephosphorylation at tyrosine 416 mediated by phosphatases, such as phosphatase and tensin homolog (PTEN). Our results showed that the antiproliferative effect of Cx43 is reduced when Csk and PTEN are silenced in glioma cells, suggesting the involvement of both enzymes. Confocal microscopy and immunoprecipitation assays confirmed that Cx43, in addition to c-Src, binds to PTEN and Csk in glioma cells transfected with Cx43 and in astrocytes. Pull-down assays showed that region 266–283 in Cx43 is sufficient to recruit c-Src, PTEN and Csk and to inhibit the oncogenic activity of c-Src. As a result of c-Src inhibition, PTEN was increased with subsequent inactivation of Akt and reduction of proliferation of human glioblastoma stem cells. We conclude that the recruitment of Csk and PTEN to the region between residues 266 and 283 within the C-terminus of Cx43 leads to c-Src inhibition. PMID:27391443

  12. Posttranslational Regulation of Membrane Type 1-Matrix Metalloproteinase (MT1-MMP) in Mouse PTEN Null Prostate Cancer Cells: Enhanced Surface Expression and Differential O-Glycosylation of MT1-MMP1

    PubMed Central

    Kim, Seaho; Huang, Wei; Mottillo, Emilio P.; Sohail, Anjum; Ham, Yoon-Ah; Conley-LaComb, M. Katie; Kim, Chong Jai; Tzivion, Guri; Kim, Hyeong-Reh Choi; Wang, Shihua; Chen, Yong Q.; Fridman, Rafael

    2010-01-01

    Membrane type 1 (MT1)-matrix metalloproteinase (MT1-MMP) is a membrane-tethered MMP that has been shown to play a key role in promoting cancer cell invasion. MT1-MMP is highly expressed in bone metastasis of prostate cancer (PC) patients and promotes intraosseous tumor growth of PC cells in mice. The majority of metastatic prostate cancers harbor loss-of-function mutations or deletions of the tumor suppressor PTEN (phosphatase and tensin homologue deleted on chromosome ten). However, the role of PTEN inactivation in MT1-MMP expression in PC cells has not been examined. In this study, prostate epithelial cell lines derived from mice that are either heterozygous (PTEN+/-) or homozygous (PTEN-/-) for PTEN deletion or harboring a wild type PTEN (PTEN+/+) were used to investigate the expression of MT1-MMP. We found that biallelic loss of PTEN is associated with posttranslational regulation of MT1-MMP protein in mouse PC cells. PTEN-/- PC cells display higher levels of MT1-MMP at the cell surface when compared to PTEN+/+ and PTEN+/- cells and consequently exhibited enhanced migratory and collagen-invasive activities. MT1-MMP displayed by PTEN-/- cells is differentially O-glycosylated and exhibits a slow rate of turnover. MT1-MMP expression in PTEN-/- cells is under control of the PI3K/AKT signaling pathway, as determined using pharmacological inhibitors. Interestingly, rapamycin, an mTOR inhibitor, up-regulates MT1-MMP expression in PTEN+/+ cells via PI3K activity. Collectively, these data in a mouse prostate cell system uncover for the first time a novel and complex relationship between PTEN loss-mediated PI3K/AKT activation and posttranslational regulation of MT1-MMP, which may play a role in PC progression. PMID:20620173

  13. PTEN and p16 genes as epigenetic biomarkers in oral squamous cell carcinoma (OSCC): a study on south Indian population.

    PubMed

    Sushma, P S; Jamil, Kaiser; Kumar, P Uday; Satyanarayana, U; Ramakrishna, M; Triveni, B

    2016-06-01

    Phosphatase and tensin homolog (PTEN) and p16INK4a (p16) genes are tumor suppressor genes, associated with epigenetic alterations. PTEN and p16 promoter hypermethylation is a major epigenetic silencing mechanism leading to cancer. The cooperation between PTEN and p16 in pathogenesis of cancers suggest that their combination might be considered as potential molecular marker for specific subgroups of patients. Hence, the present study aimed to investigate whether PTEN and p16 promoter methylations were involved in oral squamous cell carcinoma (OSCC) in south Indian subjects. DNA methylation quantitative analyses of the two candidate tumor suppressor genes PTEN and p16 were performed by methylation-specific polymerase chain reaction (MSP). Fifty OSCC biopsy samples and their corresponding non-malignant portions as controls were studied comparatively. The methylation status was correlated with the clinical manifestations. Twelve out of 50 patients (24 %) were found to be methylated for PTEN gene, whereas methylation of the p16 gene occurred in 19 out of 50 cases (38 %). A statistically significant result was obtained (P = <0.0001 and 0.017) for both PTEN and p16 genes. PTEN and p16 promoter methylation may be the main mechanism leading to the low expression of PTEN and p16 genes indicating the progress of tumor development. Our data suggest that a low PTEN and p16 expression due to methylation may contribute to the cancer progression and could be useful for prognosis of OSCC. Therefore, analysis of promoter methylation in such genes may provide a biomarker valuable for early detection of oral cancer.

  14. PTEN enhances G2/M arrest in etoposide-treated MCF‑7 cells through activation of the ATM pathway.

    PubMed

    Zhang, Ruopeng; Zhu, Li; Zhang, Lirong; Xu, Anli; Li, Zhengwei; Xu, Yijuan; He, Pei; Wu, Maoqing; Wei, Fengxiang; Wang, Chenhong

    2016-05-01

    As an effective tumor suppressor, phosphatase and tensin homolog (PTEN) has attracted the increased attention of scientists. Recent studies have shown that PTEN plays unique roles in the DNA damage response (DDR) and can interact with the Chk1 pathway. However, little is known about how PTEN contributes to DDR through the ATM-Chk2 pathway. It is well-known that etoposide induces G2/M arrest in a variety of cell lines, including MCF-7 cells. The DNA damage-induced G2/M arrest results from the activation of protein kinase ataxia telangiectasia mutated (ATM), followed by the activation of Chk2 that subsequently inactivates CDC25C, resulting in G2/M arrest. In the present study, we assessed the contribution of PTEN to the etoposide-induced G2/M cell cycle arrest. PTEN was knocked down in MCF-7 cells by specific shRNA, and the effects of PTEN on the ATM-Chk2 pathway were investigated through various approaches. The results showed that knockdown of PTEN strongly antagonized ATM activation in response to etoposide treatment, and thereby reduced the phosphorylation level of ATM substrates, including H2AX, P53 and Chk2. Furthermore, depletion of PTEN reduced the etoposide-induced phosphorylation of CDC25C and strikingly compromised etoposide-induced G2/M arrest in the MCF-7 cells. Altogether, we demonstrated that PTEN plays a unique role in etoposide-induced G2/M arrest by facilitating the activation of the ATM pathway, and PTEN was required for the proper activation of checkpoints in response to DNA damage in MCF-7 cells.

  15. Suppression of Akt1 phosphorylation by adenoviral transfer of the PTEN gene inhibits hypoxia-induced proliferation of rat pulmonary arterial smooth muscle cells

    SciTech Connect

    Luo, Chunxia; Yi, Bin; Bai, Li; Xia, Yongzhi; Wang, Guansong; Qian, Guisheng; Feng, Hua

    2010-07-02

    Recent findings identify the role of proliferation of pulmonary artery smooth muscle cells (PASMCs) in pulmonary vascular remodeling. Phosphoinositide 3 kinase (PI3K) and serine/threonine kinase (Akt) proteins are expressed in vascular smooth muscle cells. In addition, phosphatase and tensin homolog deleted on chromosome 10 (PTEN) has been identified as a negative regulator of cytokine signaling that inhibits the PI3K-Akt pathway. However, little is known about the role of PTEN/Akt signaling in hypoxia-associated vascular remodeling. In this study, we found that hypoxia-induced the expression of Akt1 mRNA and phosphorylated protein by at least twofold in rat PASMCs. Phospho-PTEN significantly decreased in the nuclei of PASMCs after hypoxic stimulation. After forcing over-expression of PTEN by adenovirus-mediated PTEN (Ad-PTEN) transfection, the expression of phospho-Akt1 was significantly suppressed in PASMCs at all time-points measured. Additionally, we showed here that hypoxia increased proliferation of PASMCs by nearly twofold and over-expression of PTEN significantly inhibited hypoxia-induced PASMCs proliferation. These findings suggest that phospho-PTEN loss in the nuclei of PASMCs under hypoxic conditions may be the major cause of aberrant activation of Akt1 and may, therefore, play an important role in hypoxia-associated pulmonary arterial remodeling. Finally, the fact that transfection with Ad-PTEN inhibits the phosphorylation of Akt1 in PASMCs suggests a potential therapeutic effect on hypoxia-associated pulmonary arterial remodeling.

  16. Immunohistochemical expression of phosphatase and tensin homolog in histologic gradings of oral squamous cell carcinoma

    PubMed Central

    Jasphin, Shiny S. R.; Desai, Dinkar; Pandit, Siddharth; Gonsalves, Nithin M.; Nayak, Preethi B.; Iype, Amal

    2016-01-01

    Context: Phosphatase and tensin homolog (PTEN) is a tumor suppressor gene located on chromosome 10q23. PTEN has its major function in the regulation of cell adhesion, cell cycle arrest, migration, apoptosis programming, and differentiation. This genomic region suffers loss of heterozygosity in many human cancers. Aims: The aim of this study was to compare the immunohistochemical expression of PTEN in normal oral mucosa and oral squamous cell carcinoma (OSCC) and to correlate the PTEN expression in gradings of OSCC. Materials and Methods: Thirty cases of paraffin tissue sections of previously diagnosed OSCC were taken. Of thirty cases, ten were well differentiated, ten were moderately differentiated, and ten were poorly differentiated. As a control, ten paraffin sections of oral normal mucosa tissue specimens were taken from patients undergoing extractions. The sections were stained for immunohistochemical expression of PTEN. The cells stained by PTEN antibody were counted, and an immunohistochemical score was obtained. Statistical Analysis Used: Statistical analysis was done using Mann–Whitney's test and Kruskal–Wallis test. Results: Statistical analysis revealed that there was a significant difference between normal mucosa and OSCC in immunohistochemistry staining. However, there was no significant difference in PTEN expression among gradings of OSCC. Conclusions: The study concluded that there was a decrease in PTEN expression in OSCC than normal mucosa. It also concluded that PTEN is a tumor suppressor gene which has a wide role in oral carcinogenesis. PMID:27994422

  17. Coordinate activation of Shh and PI3K signaling in PTEN-deficient glioblastoma: new therapeutic opportunities.

    PubMed

    Filbin, Mariella Gruber; Dabral, Sukriti K; Pazyra-Murphy, Maria F; Ramkissoon, Shakti; Kung, Andrew L; Pak, Ekaterina; Chung, Jarom; Theisen, Matthew A; Sun, Yanping; Franchetti, Yoko; Sun, Yu; Shulman, David S; Redjal, Navid; Tabak, Barbara; Beroukhim, Rameen; Wang, Qi; Zhao, Jean; Dorsch, Marion; Buonamici, Silvia; Ligon, Keith L; Kelleher, Joseph F; Segal, Rosalind A

    2013-11-01

    In glioblastoma, phosphatidylinositol 3-kinase (PI3K) signaling is frequently activated by loss of the tumor suppressor phosphatase and tensin homolog (PTEN). However, it is not known whether inhibiting PI3K represents a selective and effective approach for treatment. We interrogated large databases and found that sonic hedgehog (SHH) signaling is activated in PTEN-deficient glioblastoma. We demonstrate that the SHH and PI3K pathways synergize to promote tumor growth and viability in human PTEN-deficient glioblastomas. A combination of PI3K and SHH signaling inhibitors not only suppressed the activation of both pathways but also abrogated S6 kinase (S6K) signaling. Accordingly, targeting both pathways simultaneously resulted in mitotic catastrophe and tumor apoptosis and markedly reduced the growth of PTEN-deficient glioblastomas in vitro and in vivo. The drugs tested here appear to be safe in humans; therefore, this combination may provide a new targeted treatment for glioblastoma.

  18. Embryonic epithelial Pten deletion through Nkx2.1-cre leads to thyroid tumorigenesis in a strain-dependent manner

    PubMed Central

    Tiozzo, Caterina; Danopoulos, Soula; Lavarreda-Pearce, Maria; Baptista, Sheryl; Varimezova, Radka; Al Alam, Denise; Warburton, David; Virender, Rehan; De Langhe, Stijn; Di Cristofano, Antonio

    2014-01-01

    Even though the role of the tyrosine phosphatase Pten as a tumor suppressor gene has been well established in thyroid cancer, its role during thyroid development is still elusive. We therefore targeted Pten deletion in the thyroid epithelium by crossing Ptenflox/flox with a newly developed Nkx2.1-cre driver line in the BALB/c and C57BL/6 genetic backgrounds. C57BL/6 homozygous Pten mutant mice died around 2 weeks of age due to tracheal and esophageal compression by a hyperplasic thyroid. By contrast, BALB/c homozygous Pten mutant mice survived up to 2 years, but with a slightly increased thyroid volume. Characterization of the thyroid glands from C57BL/6 homozygous Pten mutant mice at postnatal day 14 (PN14) showed abnormally enlarged tissue with areas of cellular hyperplasia, disruption of the normal architecture, and follicular degeneration. In addition, differing degrees of hypothyroidism, thyroxine (T4) decrease, and thyroid-stimulating hormone elevation between the strains in the mutants and the heterozygous mutant were detected at PN14. Finally, C57BL/6 heterozygous Pten mutant mice developed thyroid tumors after 2 years of age. Our results indicate that Pten has a pivotal role in thyroid development and its deletion results in thyroid tumor formation, with the timing and severity of the tumor depending on the particular genetic background. PMID:22167068

  19. Cell Type-Specific and Inducible PTEN Gene Silencing by a Tetracycline Transcriptional Activator-Regulated Short Hairpin RNA.

    PubMed

    Wang, Shan; Wang, Ting; Wang, Tao; Jia, Lintao

    2015-11-01

    Inducible and reversible gene silencing in desired types of cells is instrumental for deciphering gene functions using cultured cells or in vivo models. However, efficient conditional gene knockdown systems remain to be established. Here, we report the generation of an inducible expression system for short hairpin RNA (shRNA) targeted to PTEN, a well-documented dual-specificity phosphatase involved in tumor suppression and ontogenesis. Upon induction by doxycycline (DOX), the reverse tetracycline transcriptional activator (rtTA) switched on the concomitant expression of GFP and a miR-30 precursor, the subsequent processing of which released the embedded PTEN-targeted shRNA. The efficacy and reversibility of PTEN knockdown by this construct was validated in normal and neoplastic cells, in which PTEN deficiency resulted in accelerated cell proliferation, suppressed apoptosis, and increased invasiveness. Transgenic mice harboring the conditional shRNA-expression cassette were obtained; GFP expression and concurrent PTEN silencing were observed upon ectopic expression of rtTA and induction with Dox. Therefore, this study provides novel tools for the precise dissection of PTEN functions and the generation of PTEN loss of function models in specific subsets of cells during carcinogenesis and ontogenesis.

  20. The role of PTEN in regulation of hepatic macrophages activation and function in progression and reversal of liver fibrosis.

    PubMed

    Cheng, Yahui; Tian, Yuanyao; Xia, Jialu; Wu, Xiaoqin; Yang, Yang; Li, Xiaofeng; Huang, Cheng; Meng, Xiaoming; Ma, Taotao; Li, Jun

    2017-02-15

    Activation of Kupffer cells (KCs) plays a pivotal role in the pathogenesis of liver fibrosis. The progression and reversal of CCl4-induced mouse liver fibrosis showed a mixed induction of hepatic classical (M1) and alternative (M2) macrophage markers. Although the role of phosphatase and tensin homolog deleted on chromosome 10 (PTEN) in modulating myeloid cell activation has recently been identified, its function in macrophage activation during hepatic fibrosis remains to be fully appreciated. In our study, PTEN expression of KCs was remarkably decreased in CCl4-induced mice but increased to a near-normal level in reversed mice. Moreover, PTEN was significantly decreased in IL4-induced RAW 264.7 cells in vitro and lower expression of PTEN was observed in M2 macrophages in vivo. In addition, loss- and gain-of-function studies suggested that PTEN regulates M2 macrophages polarization via activation of PI3K/Akt/STAT6 signaling, but had a limited effect on M1 macrophages polarization in vitro. Additionally, Ly294002, a chemical inhibitor of PI3K/Akt, could dramatically down-regulate the hallmarks of M2 macrophages. In conclusion, PTEN mediates macrophages activation by PI3K/Akt/STAT6 signaling pathway, which provides novel compelling evidences on the potential of PTEN in liver injury and opens new cellular target for the pharmacological therapy of liver fibrosis.

  1. A Type 2C Protein Phosphatase FgPtc3 Is Involved in Cell Wall Integrity, Lipid Metabolism, and Virulence in Fusarium graminearum

    PubMed Central

    Jiang, Jinhua; Yun, Yingzi; Yang, Qianqian; Shim, Won-Bo; Wang, Zhengyi; Ma, Zhonghua

    2011-01-01

    Type 2C protein phosphatases (PP2Cs) play important roles in regulating many biological processes in eukaryotes. Currently, little is known about functions of PP2Cs in filamentous fungi. The causal agent of wheat head blight, Fusarium graminearum, contains seven putative PP2C genes, FgPTC1, -3, -5, -5R, -6, -7 and -7R. In order to investigate roles of these PP2Cs, we constructed deletion mutants for all seven PP2C genes in this study. The FgPTC3 deletion mutant (ΔFgPtc3-8) exhibited reduced aerial hyphae formation and deoxynivalenol (DON) production, but increased production of conidia. The mutant showed increased resistance to osmotic stress and cell wall-damaging agents on potato dextrose agar plates. Pathogencity assays showed that ΔFgPtc3-8 is unable to infect flowering wheat head. All of the defects were restored when ΔFgPtc3-8 was complemented with the wild-type FgPTC3 gene. Additionally, the FgPTC3 partially rescued growth defect of a yeast PTC1 deletion mutant under various stress conditions. Ultrastructural and histochemical analyses showed that conidia of ΔFgPtc3-8 contained an unusually high number of large lipid droplets. Furthermore, the mutant accumulated a higher basal level of glycerol than the wild-type progenitor. Quantitative real-time PCR assays showed that basal expression of FgOS2, FgSLT2 and FgMKK1 in the mutant was significantly higher than that in the wild-type strain. Serial analysis of gene expression in ΔFgPtc3-8 revealed that FgPTC3 is associated with various metabolic pathways. In contrast to the FgPTC3 mutant, the deletion mutants of FgPTC1, FgPTC5, FgPTC5R, FgPTC6, FgPTC7 or FgPTC7R did not show aberrant phenotypic features when grown on PDA medium or inoculated on wheat head. These results indicate FgPtc3 is the key PP2C that plays a critical role in a variety of cellular and biological functions, including cell wall integrity, lipid and secondary metabolisms, and virulence in F. graminearum. PMID:21980420

  2. The association between phosphatase and tensin homolog hypermethylation and patients with breast cancer, a meta-analysis and literature review

    PubMed Central

    Lu, Yi-Min; Cheng, Feng; Teng, Li-Song

    2016-01-01

    The Phosphatase and tensin homolog (PTEN) protein is a negative regulator of the Akt pathway, leading to suppression of apoptois and increased cell survival. Its role as a tumor-suppressor gene has been adequately substantiated, and PTEN hypermethylation has been demonstrated in familial and sporadic cancers. However, the association and clinical significance between PTEN hypermethylation and breast cancer remains unclear. In this study, we systematically reviewed studies of PTEN hypermethylation and breast cancer and quantify the association between PTEN hypermethylation and breast cancer using meta-analysis methods. The pooled OR, 22.30, 95% confidential intervals, CI = 1.98–251.51, P = 0.01, which demonstrates that loss of PTEN expression by hypermethylation plays a critical role in the early tumorigenesis of ductal carcinoma in situ (DCIS). In addition, PTEN hypermethylation also is detected in invasive ductal carcinomas (IDCs) and is significantly higher than in normal controls, OR = 23.32, 95% CI = 10.43–52.13, P < 0.00001. Further analysis did not show significant correlation between PTEN hypermethylation and the progression of breast cancer, estrogen receptor (ER), progesterone receptor (PgR), as well as HER2 status. These results indicate the PTEN hypermethylation is significantly associated with both DCIS and IDCs. The detection of PTEN hypermethylation could be an early tumorigenesis marker for breast cancer patients. PMID:27620353

  3. Glandular epithelial AR inactivation enhances PTEN deletion-induced uterine pathology.

    PubMed

    Choi, Jaesung Peter; Zheng, Yu; Handelsman, David J; Simanainen, Ulla

    2016-05-01

    Phosphatase and tensin homolog (PTEN) deletion induces uterine pathology, whereas androgen actions via androgen receptor (AR) support uterine growth and therefore may modify uterine cancer risk. We hypothesized that the androgen actions mediated via uterine glandular epithelial AR could modify PTEN deletion-induced uterine pathology. To test our hypothesis, we developed uterine glandular epithelium-specific PTEN and/or AR knockout mouse models comparing the uterine pathology among wild-type (WT), glandular epithelium-specific AR inactivation (ugeARKO), PTEN deletion (ugePTENKO), and the combined PTEN and AR knockout (ugePTENARKO) female mice. The double knockout restricted to glandular epithelium showed that AR inactivation enhanced PTEN deletion-induced uterine pathology with development of intraepithelial neoplasia by 20 weeks of age. In ugePTENARKO, 6/10 (60%) developed intraepithelial neoplasia, whereas 3/10 (30%) developed only glandular hyperplasia in ugePTENKO uterus. No uterine pathology was observed in WT (n=8) and ugeARKO (n=7) uteri. Uterine weight was significantly (P=0.002) increased in ugePTENARKO (374±97 mg (mean±s.e.)) compared with WT (97±6 mg), ugeARKO (94±12 mg), and ugePTENKO (205±33 mg). Estrogen receptor alpha (ERα) and P-AKT expression was modified by uterine pathology but did not differ between ugePTENKO and ugePTENARKO, suggesting that its expressions are not directly affected by androgens. However, progesterone receptor (PR) expression was reduced in ugePTENARKO compared to ugePTENKO uterus, suggesting that PR expression could be regulated by glandular epithelial AR inactivation. In conclusion, glandular epithelial AR inactivation (with persistent stromal AR action) enhanced PTEN deletion-induced uterine pathology possibly by downregulating PR expression in the uterus.

  4. Power of PTEN/AKT: Molecular switch between tumor suppressors and oncogenes

    PubMed Central

    XIE, YINGQIU; NAIZABEKOV, SANZHAR; CHEN, ZHANLIN; TOKAY, TURSONJAN

    2016-01-01

    An increasing amount of evidence has shown that tumor suppressors can become oncogenes, or vice versa, but the mechanism behind this is unclear. Recent findings have suggested that phosphatase and tensin homolog (PTEN) is one of the powerful switches for the conversion between tumor suppressors and oncogenes. PTEN regulates a number of cellular processes, including cell death and proliferation, through the phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR) pathway. Furthermore, a number of studies have suggested that PTEN deletions may alter various functions of certain tumor suppressor and oncogenic proteins. The aim of the present review was to analyze specific cases driven by PTEN loss/AKT activation, including aberrant signaling pathways and novel drug targets for clinical application in personalized medicine. The findings illustrate how PTEN loss and/or AKT activation switches MDM2-dependent p53 downregulation, and induces conversion between oncogene and tumor suppressor in enhancer of zeste homolog 2, BTB domain-containing 7A, alternative reading frame 2, p27 and breast cancer 1, early onset, through multiple mechanisms. This review highlights the genetic basis of complex drug targets and provides insights into the rationale of precision cancer therapy. PMID:27347153

  5. Regulation of nuclear TDP-43 by NR2A-containing NMDA receptors and PTEN

    PubMed Central

    Zheng, Mei; Liao, Mingxia; Cui, Tianyuan; Tian, Honglin; Fan, Dong-Sheng; Wan, Qi

    2012-01-01

    The dysfunction of TAR DNA-binding protein-43 (TDP-43) is implicated in neurodegenerative diseases. However, the function of TDP-43 is not fully elucidated. Here we show that the protein level of endogenous TDP-43 in the nucleus is increased in mouse cortical neurons in the early stages, but return to basal level in the later stages after glutamate accumulation-induced injury. The elevation of TDP-43 results from a downregulation of phosphatase and tensin homolog (PTEN). We further demonstrate that activation of NR2A-containing NMDA receptors (NR2ARs) leads to PTEN downregulation and subsequent reduction of PTEN import from the cytoplasm to the nucleus after glutamate accumulation. The decrease of PTEN in the nucleus contributes to its reduced association with TDP-43, and thereby mediates the elevation of nuclear TDP-43. We provide evidence that the elevation of nuclear TDP-43, mediated by NR2AR activation and PTEN downregulation, confers protection against cortical neuronal death in the late stages after glutamate accumulation. Thus, this study reveals a NR2AR–PTEN–TDP-43 signaling pathway by which nuclear TDP-43 promotes neuronal survival. These results suggest that upregulation of nuclear TDP-43 represents a self-protection mechanism to delay neurodegeneration in the early stages after glutamate accumulation and that prolonging the upregulation process of nuclear TDP-43 might have therapeutic significance. PMID:22526419

  6. miR-17 inhibitor suppressed osteosarcoma tumor growth and metastasis via increasing PTEN expression

    SciTech Connect

    Gao, Yong; Luo, Ling-hui; Li, Shuai; Yang, Cao

    2014-02-07

    Highlights: • miR-17 was increased in OS tissues and cell lines. • Inhibition of miR-17 suppressed OS cell proliferation. • Inhibition of miR-17 suppressed OS cell migration and invasion. • PTEN was a target of miR-17. • miR-17 was negatively correlated with PTEN in OS tissues. - Abstract: MicroRNAs (miRNAs) play essential roles in cancer development and progression. Here, we investigated the role of miR-17 in the progression and metastasis of osteosarcoma (OS). miR-17 was frequently increased in OS tissues and cell lines. Inhibition of miR-17 in OS cell lines substantially suppressed cell proliferation, migration, and invasion. Phosphatase and tensin homolog (PTEN) was identified as a target of miR-17, and ectopic expression of miR-17 inhibited PTEN by direct binding to its 3′-untranslated region (3′-UTR). Expression of miR-17 was negatively correlated with PTEN in OS tissues. Together, these findings indicate that miR-17 acts as an oncogenic miRNA and may contribute to the progression and metastasis of OS, suggesting miR-17 as a potential novel diagnostic and therapeutic target of OS.

  7. Best practice for PTEN gene and protein assessment in anatomic pathology.

    PubMed

    Carvalho, Kátia C; Maia, Beatriz M; Omae, Samantha V; Rocha, Antonio A; Covizzi, Luiz P; Vassallo, José; Rocha, Rafael M; Soares, Fernando A

    2014-01-01

    There is a lack of standardization of a best practice protocol for Phosphatase and Tensin Homolog (PTEN) assessment by immunohistochemistry in anatomic pathology routine practice. We performed immunohistochemistry for 19 antibodies against PTEN, eleven of which were excluded during the standardization step. Immunohistochemistry of the remaining eight antibodies was performed on a Tissue Microarray containing 55 prostate and 40 renal carcinoma samples. Fluorescent in situ hybridization (FISH) was used as reference standard for immunohistochemistry specificity evaluation. Concerning nuclear staining, polyclonal (Cat#22034-1-AP); 6H2.1 mMAb (Cat#ABM-2052), Y184 RabMAb (Cat#NB110-57441) and 217702 mMAb antibodies presented the highest agreement with fluorescent in situ hybridization (p<0.001 for all) and with regard to cytoplasmic staining, Y184 RabMAb (Cat#NB110-57441); polyclonal (Cat#22034-1-AP) and 217702 mMAb presented the highest agreement (p<0.001 for all). Our results indicate that several commercially available antibodies do not show reliability of sensitivity and specificity for PTEN evaluation and we propose 6H2.1 mMAb (Cat#ABM-2052) as the antibody of choice for laboratory standardization and best practice in clinical routine, which demonstrated excellent sensitivity for both nuclear and cytoplasmic staining, specificity for PTEN by Western blot and good correlation with PTEN status by FISH with regard to nuclear staining.

  8. Phosphatase and tensin homolog is a differential diagnostic marker between nonalcoholic and alcoholic fatty liver disease

    PubMed Central

    Sanchez-Pareja, Andrea; Clément, Sophie; Peyrou, Marion; Spahr, Laurent; Negro, Francesco; Rubbia-Brandt, Laura; Foti, Michelangelo

    2016-01-01

    AIM: To investigate the protein expression of phosphatase and tensin homolog (PTEN) in human liver biopsies of patients with alcoholic and non-alcoholic liver disease. METHODS: PTEN protein expression was assessed by immunohistochemistry in formalin-fixed, paraffin-embedded liver sections of patients with non-alcoholic fatty liver disease (NAFLD) (n = 44) or alcoholic liver disease (ALD) (n = 25). Liver resections obtained from 3 healthy subjects candidate for partial liver donation served as controls. Histological evaluations were performed by two experienced pathologists, and diagnoses established based on international criteria. The intensity of the PTEN staining in nuclei was compared between steatotic and non-steatotic areas of each liver fragment analyzed. For each liver specimen, the antibody-stained sections were examined and scored blindly by three independent observers, who were unaware of the patients’ clinical history. RESULTS: In healthy individuals, PTEN immunostaining was intense in both the cytoplasm and nuclei of all hepatocytes. However, PTEN was strongly downregulated in both the nucleus and the cytoplasm of hepatocytes from steatotic areas in patients with NAFLD, independently of the disease stage. In contrast, no changes in PTEN protein expression were observed in patients with ALD, regardless of the presence of steatosis or the stage of the disease. The degree of PTEN downregulation in hepatocytes of patients with NAFLD correlated with the percentage of steatosis (r = 0.3061, P = 0.0459) and the BMI (r = 0.4268, P = 0.0043). Hovewer, in patients with ALD, PTEN expression was not correlated with the percentage of steatosis with or without obesity as a confounding factor (P = 0.5574). Finally, PTEN expression level in steatotic areas of ALD patients was significantly different from that seen in steatotic areas of NAFLD patients (P < 0.0001). CONCLUSION: PTEN protein expression is downregulated early in NAFLD, but not in ALD. PTEN

  9. Importin-11 keeps PTEN safe from harm.

    PubMed

    Leslie, Nick R

    2017-03-06

    In this issue, Chen et al. (2017. J. Cell Biol. https://doi.org/10.1083/jcb.201604025) show that Importin-11 traffics the tumor suppressor PTEN into the nucleus and in so doing protects it from cytoplasmic proteins that cause PTEN degradation. This work helps explain the nuclear accumulation of PTEN observed in many healthy tissues and, because Ipo11 mutant mice develop lung tumors, also implicates Importin-11 as a novel tumor suppressor.

  10. PRL-3 promotes the peritoneal metastasis of gastric cancer through the PI3K/Akt signaling pathway by regulating PTEN.

    PubMed

    Xiong, Jianbo; Li, Zhengrong; Zhang, Yang; Li, Daojiang; Zhang, Guoyang; Luo, Xianshi; Jie, Zhigang; Liu, Yi; Cao, Yi; Le, Zhibiao; Tan, Shengxing; Zou, Wenyu; Gong, Peitao; Qiu, Lingyu; Li, Yuanyuan; Wang, Huan; Chen, Heping

    2016-10-01

    Peritoneal metastasis is the most frequent cause of death in patients with advanced gastric carcinoma (GC). The phosphatase of regenerating liver-3 (PRL-3) is recognized as an oncogene and plays an important role in GC peritoneal metastasis. However, the mechanism of how PRL-3 regulates GC invasion and metastasis is unknown. In the present study, we found that PRL-3 presented with high expression in GC with peritoneal metastasis, but phosphatase and tensin homologue (PTEN) was weakly expressed. The p-PTEN/PTEN ratio was also higher in GC with peritoneal metastasis than that in the normal gastric tissues. We also found the same phenomenon when comparing the gastric mucosa cell line with the GC cell lines. After constructing a wild-type and a mutant-type plasmid without enzyme activity and transfecting them into GC SGC7901 cells, we showed that only PRL-3 had enzyme activity to downregulate PTEN and cause PTEN phosphorylation. The results also showed that PRL-3 increased the expression levels of MMP-2/MMP-9 and promoted the migration and invasion of the SGC7901 cells. Knockdown of PRL-3 decreased the expression levels of MMP-2/MMP-9 significantly, which further inhibited the migration and invasion of the GC cells. PRL-3 also increased the expression ratio of p-Akt/Akt, which indicated that PRL-3 may mediate the PI3K/Akt pathway to promote GC metastasis. When we transfected the PTEN siRNA plasmid into the PRL-3 stable low expression GC cells, the expression of p-Akt, MMP-2 and MMP-9 was reversed. In conclusion, our results provide a bridge between PRL-3 and PTEN; PRL-3 decreased the expression of PTEN as well as increased the level of PTEN phosphorylation and inactivated it, consequently activating the PI3K/Akt signaling pathway, and upregulating MMP-2/MMP-9 expression to promote GC cell peritoneal metastasis.

  11. Modeling self-organized spatio-temporal patterns of PIP3 and PTEN during spontaneous cell polarization

    NASA Astrophysics Data System (ADS)

    Knoch, Fabian; Tarantola, Marco; Bodenschatz, Eberhard; Rappel, Wouter-Jan

    2014-08-01

    During spontaneous cell polarization of Dictyostelium discoideum cells, phosphatidylinositol (3,4,5)-triphoshpate (PIP3) and PTEN (phosphatase tensin homolog) have been identified as key signaling molecules which govern the process of polarization in a self-organized manner. Recent experiments have quantified the spatio-temporal dynamics of these signaling components. Surprisingly, it was found that membrane-bound PTEN can be either in a high or low state, that PIP3 waves were initiated in areas lacking PTEN through an excitable mechanism, and that PIP3 was degraded even though the PTEN concentration remained low. Here we develop a reaction-diffusion model that aims to explain these experimental findings. Our model contains bistable dynamics for PTEN, excitable dynamics for PIP3, and postulates the existence of two species of PTEN with different dephosphorylation rates. We show that our model is able to produce results that are in good qualitative agreement with the experiments, suggesting that our reaction-diffusion model underlies the self-organized spatio-temporal patterns observed in experiments.

  12. Herpes simplex virus type 1 VP22-mediated intercellular delivery of PTEN increases the antitumor activity of PTEN in esophageal squamous cell carcinoma cells in vitro and in vivo.

    PubMed

    Yu, Xian; Li, Tingting; Xia, Yifan; Lei, Jun; Wang, Yan; Zhang, Lijuan

    2016-05-01

    In the past decade, studies have revealed that the phosphatase and tensin homolog (PTEN) protein, a tumor suppressor, comprises a potential biological marker and therapeutic target for esophageal squamous cell carcinoma (ESCC). As such, the delivery of the PTEN gene represents a powerful strategy for ESCC therapy. The tegument protein VP22 of herpes simplex virus type 1 (HSV-1) has been reported to act as a transporter of heterologous proteins across the host cell membrane, thereby enhancing the biological functions of these proteins. In the present study, the intercellular delivery and antitumor activity of the fusion protein PTEN-VP22 were examined in the esophageal squamous cell carcinoma cell line Eca109 both in vitro and in vivo. VP22-mediated PTEN intercellular delivery was confirmed in the Eca109 cells by western blot analysis and by quantitation of immunofluorescence. VP22 alone did not exert antiproliferative effects or induce cell cycle arrest, induction of apoptosis, blockage of the Akt and focal adhesion kinase (FAK) pathways, tumor growth inhibition, or antiangiogenic effects in Eca109 cells. However, compared with PTEN alone, PTEN-VP22 exerted significantly higher antiproliferative effects and induced cell cycle arrest at G1 stage, apoptosis and antiangiogenic effects in Eca109 cells. Together, our findings demonstrate that VP22 alone does not exert antitumor activity directly; however, this protein mediates the intercellular delivery of PTEN and thereby increases its intracellular concentration to achieve a therapeutic steady state, leading to an overall increase in the antitumor activity of PTEN. This study provides further experimental data to confirm the potential of VP22-based intercellular delivery strategies for enhancing the efficacy of gene therapy for cancer treatment.

  13. Role of the Tumor Suppressor PTEN in Antioxidant Responsive Element-mediated Transcription and Associated Histone Modifications

    PubMed Central

    Sakamoto, Kensuke; Iwasaki, Kenta; Sugiyama, Hiroyuki

    2009-01-01

    Coordinated regulation of PI3-kinase (PI3K) and the tumor suppressor phosphatase and tensin homologue deleted on chromosome 10 (PTEN) plays a pivotal role in various cell functions. PTEN is deficient in many cancer cells, including Jurkat human leukemia. Here, we demonstrate that the status of PTEN determines cellular susceptibility to oxidative stress through antioxidant-responsive element (ARE)-mediated transcription of detoxification genes. We found that ferritin H transcription was robustly induced in tert-butylhydroquinone (t-BHQ)-treated Jurkat cells via an ARE, and it was due to PTEN deficiency. Chromatin immunoprecipitation assays revealed that p300/CREB-binding protein (CBP) histone acetyltransferases and Nrf2 recruitment to the ARE and Bach1 release were blocked by the PI3K inhibitor LY294002, along with the partial inhibition of Nrf2 nuclear accumulation. Furthermore, acetylations of histone H3 Lys9 and Lys18, and deacetylation of Lys14 were associated with the PI3K-dependent ARE activation. Consistently, PTEN restoration in Jurkat cells inhibited t-BHQ–mediated expression of ferritin H and another ARE-regulated gene NAD(P)H:quinone oxidoreductase 1. Conversely, PTEN knockdown in K562 cells enhanced the response to t-BHQ. The PTEN status under t-BHQ treatment affected hydrogen peroxide-mediated caspase-3 cleavage. The PI3K-dependent ferritin H induction was observed by treatment with other ARE-activating agents ethoxyquin and hemin. Collectively, the status of PTEN determines chromatin modifications leading to ARE activation. PMID:19158375

  14. Analytic validation of a clinical-grade PTEN immunohistochemistry assay in prostate cancer by comparison with PTEN FISH.

    PubMed

    Lotan, Tamara L; Wei, Wei; Ludkovski, Olga; Morais, Carlos L; Guedes, Liana B; Jamaspishvili, Tamara; Lopez, Karen; Hawley, Sarah T; Feng, Ziding; Fazli, Ladan; Hurtado-Coll, Antonio; McKenney, Jesse K; Simko, Jeffrey; Carroll, Peter R; Gleave, Martin; Lin, Daniel W; Nelson, Peter S; Thompson, Ian M; True, Lawrence D; Brooks, James D; Lance, Raymond; Troyer, Dean; Squire, Jeremy A

    2016-08-01

    PTEN loss is a promising prognostic and predictive biomarker in prostate cancer. Because it occurs most commonly via PTEN gene deletion, we developed a clinical-grade, automated, and inexpensive immunohistochemical assay to detect PTEN loss. We studied the sensitivity and specificity of PTEN immunohistochemistry relative to four-color fluorescence in situ hybridization (FISH) for detection of PTEN gene deletion in a multi-institutional cohort of 731 primary prostate tumors. Intact PTEN immunostaining was 91% specific for the absence of PTEN gene deletion (549/602 tumors with two copies of the PTEN gene by FISH showed intact expression of PTEN by immunohistochemistry) and 97% sensitive for the presence of homozygous PTEN gene deletion (absent PTEN protein expression by immunohistochemistry in 65/67 tumors with homozygous deletion). PTEN immunohistochemistry was 65% sensitive for the presence of hemizygous PTEN gene deletion, with protein loss in 40/62 hemizygous tumors. We reviewed the 53 cases where immunohistochemistry showed PTEN protein loss and FISH showed two intact copies of the PTEN gene. On re-review, there was ambiguous immunohistochemistry loss in 6% (3/53) and failure to analyze the same tumor area by both methods in 34% (18/53). Of the remaining discordant cases, 41% (13/32) revealed hemizygous (n=8) or homozygous (n=5) PTEN gene deletion that was focal in most cases (11/13). The remaining 19 cases had two copies of the PTEN gene detected by FISH, representing truly discordant cases. Our automated PTEN immunohistochemistry assay is a sensitive method for detection of homozygous PTEN gene deletions. Immunohistochemistry screening is particularly useful to identify cases with heterogeneous PTEN gene deletion in a subset of tumor glands. Mutations, small insertions, or deletions and/or epigenetic or microRNA-mediated mechanisms may lead to PTEN protein loss in tumors with normal or hemizygous PTEN gene copy number.

  15. Analytic Validation of a Clinical-Grade PTEN Immunohistochemistry Assay in Prostate Cancer by Comparison to PTEN FISH

    PubMed Central

    Lotan, Tamara L.; Wei, Wei; Ludkovski, Olga; Morais, Carlos L.; Guedes, Liana B.; Jamaspishvili, Tamara; Lopez, Karen; Hawley, Sarah T.; Feng, Ziding; Fazli, Ladan; Hurtado-Coll, Antonio; McKenney, Jesse K.; Simko, Jeffrey; Carroll, Peter R.; Gleave, Martin; Lin, Daniel W.; Nelson, Peter S.; Thompson, Ian M.; True, Lawrence D.; Brooks, James D.; Lance, Raymond; Troyer, Dean; Squire, Jeremy A.

    2016-01-01

    PTEN loss is a promising prognostic and predictive biomarker in prostate cancer. Because it occurs most commonly via PTEN gene deletion, we developed a clinical-grade, automated and inexpensive immunohistochemical assay to detect PTEN loss. We studied the sensitivity and specificity of PTEN immunohistochemistry relative to 4-color fluorescence in situ hybridization (FISH) for detection of PTEN gene deletion in a multi-institutional cohort of 731 primary prostate tumors. Intact PTEN immunostaining was 91% specific for absence of PTEN gene deletion, (549/602 tumors with 2 copies of the PTEN gene by FISH showed intact expression of PTEN by immunohistochemistry) and 97% sensitive for presence of homozygous PTEN gene deletion (absent PTEN protein expression by immunohistochemistry in 65/67 tumors with homozygous deletion). PTEN immunohistochemistry was 65% sensitive for presence of hemizygous PTEN gene deletion, with protein loss in 40/62 hemizygous tumors. We reviewed the 53 cases where immunohistochemistry showed PTEN protein loss and FISH showed 2 intact copies of the PTEN gene. On re-review, there was ambiguous immunohistochemistry loss in 6% (3/53) and failure to analyze the same tumor area by both methods in 34% (18/53). Of the remaining discordant cases, 41% (13/32) revealed hemizygous (n=8) or homozygous (n=5) PTEN gene deletion that was focal in most cases (11/13). The remaining 19 cases had 2 copies of the PTEN gene by FISH, representing truly discordant cases. Our automated PTEN immunohistochemistry assay is a sensitive method for detection of homozygous PTEN gene deletions. Immunohistochemistry screening is particularly useful to identify cases with heterogeneous PTEN gene deletion in a subset of tumor glands. Mutations, small insertions or deletions and/or epigenetic or microRNA-mediated mechanisms may lead to PTEN protein loss in tumors with normal or hemizygous PTEN gene copy number. PMID:27174589

  16. Suppression of leukemia development caused by PTEN loss.

    PubMed

    Guo, Wei; Schubbert, Suzanne; Chen, James Y; Valamehr, Bahram; Mosessian, Sherly; Shi, Hubing; Dang, Nhi H; Garcia, Consuelo; Theodoro, Mariana F; Varella-Garcia, Marileila; Wu, Hong

    2011-01-25

    Multiple genetic or molecular alterations are known to be associated with cancer stem cell formation and cancer development. Targeting such alterations, therefore, may lead to cancer prevention. By crossing our previously established phosphatase and tensin homolog (Pten)-null acute T-lymphoblastic leukemia (T-ALL) model onto the recombination-activating gene 1(-/-) background, we show that the lack of variable, diversity and joining [V(D)J] recombination completely abolishes the Tcrα/δ-c-myc translocation and T-ALL development, regardless of β-catenin activation. We identify mammalian target of rapamycin (mTOR) as a regulator of β-selection. Rapamycin, an mTOR-specific inhibitor, alters nutrient sensing and blocks T-cell differentiation from CD4(-)CD8(-) to CD4(+)CD8(+), the stage where the Tcrα/δ-c-myc translocation occurs. Long-term rapamycin treatment of preleukemic Pten-null mice prevents Tcrα/δ-c-myc translocation and leukemia stem cell (LSC) formation, and it halts T-ALL development. However, rapamycin alone fails to inhibit mTOR signaling in the c-Kit(mid)CD3(+)Lin(-) population enriched for LSCs and eliminate these cells. Our results support the idea that preventing LSC formation and selectively targeting LSCs are promising approaches for antileukemia therapies.

  17. Simultaneous inactivation of Par-4 and PTEN in vivo leads to synergistic NF-κB activation and invasive prostate carcinoma

    PubMed Central

    Fernandez-Marcos, Pablo J.; Abu-Baker, Shadi; Joshi, Jayashree; Galvez, Anita; Castilla, Elias A.; Cañamero, Marta; Collado, Manuel; Saez, Carmen; Moreno-Bueno, Gema; Palacios, Jose; Leitges, Michael; Serrano, Manuel; Moscat, Jorge; Diaz-Meco, Maria T.

    2009-01-01

    Prostate cancer is one of the most common neoplasias in men. The tumor suppressor Par-4 is an important negative regulator of the canonical NF-κB pathway and is highly expressed in prostate. Here we show that Par-4 expression is lost in a high percentage of human prostate carcinomas, and this occurs in association with phosphatase and tensin homolog deleted from chromosome 10 (PTEN) loss. Par-4 null mice, similar to PTEN-heterozygous mice, only develop benign prostate lesions, but, importantly, concomitant Par-4 ablation and PTEN-heterozygosity lead to invasive prostate carcinoma in mice. This strong tumorigenic cooperation is anticipated in the preneoplastic prostate epithelium by an additive increase in Akt activation and a synergistic stimulation of NF-κB. These results establish the cooperation between Par-4 and PTEN as relevant for the development of prostate cancer and implicate the NF-κB pathway as a critical event in prostate tumorigenesis. PMID:19470463

  18. PTEN expression is a prognostic marker for patients with non-small cell lung cancer: a systematic review and meta-analysis of the literature

    PubMed Central

    Xiao, Jian; Hu, Cheng-Ping; He, Bi-Xiu; Chen, Xi; Lu, Xiao-Xiao; Xie, Ming-Xuan; Li, Wei; He, Shu-Ya; You, Shao-Jin; Chen, Qiong

    2016-01-01

    Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is a known tumor suppressor in non-small cell lung cancer (NSCLC). By performing a systematic review and meta-analysis of the literature, we determined the prognostic value of decreased PTEN expression in patients with NSCLC. We comprehensively and systematically searched through multiple online databases up to May 22, 2016 for NSCLC studies reporting on PTEN expression and patient survival outcome. Several criteria, including the Newcastle-Ottawa Quality Assessment Scale (NOS), were used to discriminate between studies. In total, 23 eligible studies with a total of 2,505 NSCLC patients were included in our meta-analysis. Our results demonstrated that decreased expression of PTEN correlated with poor overall survival in NSCLC patients and was indicative of a poor prognosis for disease-free survival and progression-free survival in patients with NSCLC. PMID:27506936

  19. Regulation of axonal growth and neuromuscular junction formation by neuronal phosphatase and tensin homologue signaling

    PubMed Central

    Li, Pan P.; Peng, H. Benjamin

    2012-01-01

    During the development of the vertebrate neuromuscular junction (NMJ), motor axon tips stop growing after contacting muscle and transform into presynaptic terminals that secrete the neurotransmitter acetylcholine and activate postsynaptic ACh receptors (AChRs) to trigger muscle contraction. The neuron-intrinsic signaling that retards axonal growth to facilitate stable nerve–muscle interaction and synaptogenesis is poorly understood. In this paper, we report a novel function of presynaptic signaling by phosphatase and tensin homologue (PTEN) in mediating a growth-to-synaptogenesis transition in neurons. In Xenopus nerve–muscle cocultures, axonal growth speed was halved after contact with muscle, when compared with before contact, but when cultures were exposed to the PTEN blocker bisperoxo (1,10-phenanthroline) oxovanadate, axons touching muscle grew ∼50% faster than their counterparts in control cultures. Suppression of neuronal PTEN expression using morpholinos or the forced expression of catalytically inactive PTEN in neurons also resulted in faster than normal axonal advance after contact with muscle cells. Significantly, interference with PTEN by each of these methods also led to reduced AChR clustering at innervation sites in muscle, indicating that disruption of neuronal PTEN signaling inhibited NMJ assembly. We thus propose that PTEN-dependent slowing of axonal growth enables the establishment of stable nerve–muscle contacts that develop into NMJs. PMID:22918949

  20. Bannayan-Riley-Ruvalcaba Syndrome in a Patient with a PTEN Mutation Identified by Chromosomal Microarray Analysis: A Case Report

    PubMed Central

    Lee, Sun Hwa; Tchah, Hann

    2017-01-01

    Bannayan-Riley-Ruvalcaba syndrome (BRRS) is one of the phosphatase and tensin homolog hamartoma tumor syndrome with a PTEN gene mutation. It is a rare dominant autosomal disorder characterized by cutaneous lipomas, macrocephaly, intestinal polyps, and developmental delay. Diagnosing this syndrome is important, because it may represent the pediatric phenotype of Cowden syndrome, in which there is an increased risk for malignant tumors in children. Until now, the prevalence of BRRS is unknown. Several dozen cases have been reported in the medical literature, but no case has been reported in Korea. Here we report a case of a 19-year-old girl who was diagnosed with BRRS because of macrocephaly, intellectual disability, and intestinal polyps. Her mother had similar findings and a PTEN mutation. Neither patient had mutations detected by conventional mutation-detection techniques, but a PTEN gene deletion was demonstrated by chromosomal microarray analysis.

  1. Roles of PTEN with DNA Repair in Parkinson’s Disease

    PubMed Central

    Ogino, Mako; Ichimura, Mayuko; Nakano, Noriko; Minami, Akari; Kitagishi, Yasuko; Matsuda, Satoru

    2016-01-01

    Oxidative stress is considered to play key roles in aging and pathogenesis of many neurodegenerative diseases such as Parkinson’s disease, which could bring DNA damage by cells. The DNA damage may lead to the cell apoptosis, which could contribute to the degeneration of neuronal tissues. Recent evidence suggests that PTEN (phosphatase and tensin homolog on chromosome 10) may be involved in the pathophysiology of the neurodegenerative disorders. Since PTEN expression appears to be one dominant determinant of the neuronal cell death, PTEN should be a potential molecular target of novel therapeutic strategies against Parkinson’s disease. In addition, defects in DNA damage response and DNA repair are often associated with modulation of hormone signaling pathways. Especially, many observations imply a role for estrogen in a regulation of the DNA repair action. In the present review, we have attempted to summarize the function of DNA repair molecules at a viewpoint of the PTEN signaling pathway and the hormone related functional modulation of cells, providing a broad interpretation on the molecular mechanisms for treatment of Parkinson’s disease. Particular attention will be paid to the mechanisms proposed to explain the health effects of food ingredients against Parkinson’s disease related to reduce oxidative stress for an efficient therapeutic intervention. PMID:27314344

  2. NOS1 S-nitrosylates PTEN and inhibits autophagy in nasopharyngeal carcinoma cells

    PubMed Central

    Zhu, Lingqun; Li, Linlin; Zhang, Qianbing; Yang, Xiao; Zou, Zhiwei; Hao, Bingtao; Marincola, Francesco M; Liu, Zhengjun; Zhong, Zhuo; Wang, Meng; Li, Xiaoxuan; Wang, Qianli; Li, Keyi; Gao, Wenwen; Yao, Kaitai; Liu, Qiuzhen

    2017-01-01

    Autophagy is a cellular survival mechanism that involves the catabolic degradation of damaged proteins and organelles during periods of metabolic stress, and when overly stimulated, commonly contributes to cell death. Nitric oxide (NO), a potent cellular messenger, participates in a complex mechanism which assists in controlling autophagy. However, the mechanism by which endogenous NO formed by distinct isoforms of nitric oxide synthase (NOS) helps to regulate autophagy in cancer cells remains unclear. Here we report that NOS1 reduces excessive levels of autophagy and promotes the survival of nasopharyngeal carcinoma cells. We found that inhibition of NOS1 increased cell death resulting from siRNA or the use of pharmacologic agents; and this effect was reversed by the autophagy inhibitor, chloroquine. The role of NOS1 in the autophagy process depended on the activation of AKT/mTOR signaling by S-nitrosylation of phosphatase and tensin homolog (PTEN) proteins. The mechanism by which NOS1 modifies PTEN protein might involve a direct interaction between these two molecules. Moreover, in an in vivo study, the NOS1 inhibitor N(G)-nitro-L-arginine methyl ester activated AKT/mTOR signaling and promoted autophagy in xenograph tumors. Our studies demonstrated that NOS1 prevents excessive autophagy via S-nitrosylation of PTEN, and activation of the AKT/mTOR signaling pathway. PTEN and the AKT/mTOR signaling pathway are promising targets for improving the chemotherapeutic treatment of cancer. PMID:28243469

  3. Self-organized spatiotemporal patterns of PIP3 and PTEN during spontaneous cell polarization

    NASA Astrophysics Data System (ADS)

    Knoch, Fabian; Tarantola, Marco; Rappel, Wouter-Jan; Bodenschatz, Eberhard

    2014-03-01

    During spontaneous cell polarization of Dictyostelium discoideum cells, PIP3 (phosphatidylinositol (3,4,5)-triphoshpate) and PTEN (phosphatase tensin homolog) have been identified as key signaling molecules, which govern the process of polarization in a self-organized manner. Gerisch et al. have shown that randomly triggered excitable PIP3 waves regulate the anti-correlated PTEN concentration. Here we show that this requires a switch-like dynamics of the overall membrane bound PTEN concentration in combination with two species of PTEN differing in their dephosphorylation rates. A quantitative modeling with a coupled reaction-diffusion system shows excellent agreement with experimental results and predicts a ratio σ of dephosphorylation rates acting on PIP3 of σ ~ 80 - 100. Our quantitative analysis suggests that surface-attached cell membrane spanning PIP3 waves are necessary for resetting the global actin network. This is evidenced by the experimentally observed delay between polarization-cycles also quantitatively captured by our analysis. Max Planck Society and Center for Theoretical Biological Physics.

  4. Microemulsion extrusion technique: a new method to produce lipid nanoparticles

    NASA Astrophysics Data System (ADS)

    de Jesus, Marcelo Bispo; Radaic, Allan; Zuhorn, Inge S.; de Paula, Eneida

    2013-10-01

    Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) have been intensively investigated for different applications, including their use as drug and gene delivery systems. Different techniques have been employed to produce lipid nanoparticles, of which high pressure homogenization is the standard technique that is adopted nowadays. Although this method has a high efficiency, does not require the use of organic solvents, and allows large-scale production, some limitations impede its application at laboratory scale: the equipment is expensive, there is a need of huge amounts of surfactants and co-surfactants during the preparation, and the operating conditions are energy intensive. Here, we present the microemulsion extrusion technique as an alternative method to prepare lipid nanoparticles. The parameters to produce lipid nanoparticles using microemulsion extrusion were established, and the lipid particles produced (SLN, NLC, and liposomes) were characterized with regard to size (from 130 to 190 nm), zeta potential, and drug (mitoxantrone) and gene (pDNA) delivery properties. In addition, the particles' in vitro co-delivery capacity (to carry mitoxantrone plus pDNA encoding the phosphatase and tensin homologue, PTEN) was tested in normal (BALB 3T3 fibroblast) and cancer (PC3 prostate and MCF-7 breast) cell lines. The results show that the microemulsion extrusion technique is fast, inexpensive, reproducible, free of organic solvents, and suitable for small volume preparations of lipid nanoparticles. Its application is particularly interesting when using rare and/or costly drugs or ingredients (e.g., cationic lipids for gene delivery or labeled lipids for nanoparticle tracking/diagnosis).

  5. Superoxide anion radicals induce IGF-1 resistance through concomitant activation of PTP1B and PTEN.

    PubMed

    Singh, Karmveer; Maity, Pallab; Krug, Linda; Meyer, Patrick; Treiber, Nicolai; Lucas, Tanja; Basu, Abhijit; Kochanek, Stefan; Wlaschek, Meinhard; Geiger, Hartmut; Scharffetter-Kochanek, Karin

    2015-01-01

    The evolutionarily conserved IGF-1 signalling pathway is associated with longevity, metabolism, tissue homeostasis, and cancer progression. Its regulation relies on the delicate balance between activating kinases and suppressing phosphatases and is still not very well understood. We report here that IGF-1 signalling in vitro and in a murine ageing model in vivo is suppressed in response to accumulation of superoxide anions (O2∙-) in mitochondria, either by chemical inhibition of complex I or by genetic silencing of O2∙--dismutating mitochondrial Sod2. The O2∙--dependent suppression of IGF-1 signalling resulted in decreased proliferation of murine dermal fibroblasts, affected translation initiation factors and suppressed the expression of α1(I), α1(III), and α2(I) collagen, the hallmarks of skin ageing. Enhanced O2∙- led to activation of the phosphatases PTP1B and PTEN, which via dephosphorylation of the IGF-1 receptor and phosphatidylinositol 3,4,5-triphosphate dampened IGF-1 signalling. Genetic and pharmacologic inhibition of PTP1B and PTEN abrogated O2∙--induced IGF-1 resistance and rescued the ageing skin phenotype. We thus identify previously unreported signature events with O2∙-, PTP1B, and PTEN as promising targets for drug development to prevent IGF-1 resistance-related pathologies.

  6. Loss of PTEN expression is associated with increased risk of recurrence after prostatectomy for clinically localized prostate cancer.

    PubMed

    Chaux, Alcides; Peskoe, Sarah B; Gonzalez-Roibon, Nilda; Schultz, Luciana; Albadine, Roula; Hicks, Jessica; De Marzo, Angelo M; Platz, Elizabeth A; Netto, George J

    2012-11-01

    PTEN (phosphatase and tensin homolog on chromosome 10) is one of the most frequently lost tumor suppressor genes in human cancers and it has been described in more than two-thirds of patients with advanced/aggressive prostate cancer. Previous studies suggest that, in prostate cancer, genomic PTEN loss is associated with tumor progression and poor prognosis. Thus, we evaluated whether immunohistochemical PTEN expression in prostate cancer glands was associated with higher risk of recurrence, using a nested case-control study that included 451 men who recurred and 451 men who did not recur with clinically localized prostate cancer treated by radical prostatectomy. Recurrence was defined as biochemical recurrence (serum prostate-specific antigen >0.2 ng/ml) or clinical recurrence (local recurrence, systemic metastases, or prostate cancer-related death). Cases and controls were matched on pathological T stage, Gleason score, race/ethnicity, and age at surgery. Odds ratios of recurrence and 95% confidence intervals were estimated using conditional logistic regression to account for the matching factors and to adjust for year of surgery, preoperative prostate-specific antigen concentrations, and status of surgical margins. Men who recurred had a higher proportion of PTEN negative expression (16 vs 11%, P=0.05) and PTEN loss (40 vs 31%, P=0.02) than controls. Men with markedly decreased PTEN staining had a higher risk of recurrence (odds ratio=1.67; 95% confidence intervals 1.09, 2.57; P=0.02) when compared with all other men. In summary, in patients with clinically localized prostate cancer treated by prostatectomy, decreased PTEN expression was associated with an increased risk of recurrence, independent of known clinicopathological factors.

  7. Difluorinated-curcumin (CDF) restores PTEN expression in colon cancer cells by down-regulating miR-21.

    PubMed

    Roy, Sanchita; Yu, Yingjie; Padhye, Subhash B; Sarkar, Fazlul H; Majumdar, Adhip P N

    2013-01-01

    Despite recent advancement in medicine, nearly 50% of patients with colorectal cancer show recurrence of the disease. Although the reasons for the high relapse are not fully understood, the presence of chemo- and radiotherapy-resistant cancer stem/stem-like cells, where many oncomirs like microRNA-21 (miR-21) are upregulated, could be one of the underlying causes. miR-21 regulates the processes of invasion and metastasis by downregulating multiple tumor/metastatic suppressor genes including PTEN (phosphatase and tensin homolog). Tumor suppressor protein PTEN controls self-renewal of stem cells. Indeed, our current data demonstrate a marked downregulation of PTEN in SCID mice xenografts of miR-21 over-expressing colon cancer HCT116 cells. Colonospheres that are highly enriched in cancer stem/stem like cells reveal increased miR-21 expression and decreased PTEN. Difluorinated curcumin (CDF), a novel analog of the dietary ingredient curcumin, which has been shown to inhibit the growth of 5-Flurouracil + Oxaliplatin resistant colon cancer cells, downregulated miR-21 in chemo-resistant colon cancer HCT116 and HT-29 cells and restored PTEN levels with subsequent reduction in Akt phosphorylation. Similar results were also observed in metastatic colon cancer SW620 cells. Since PTEN-Akt confers drug resistance to different malignancies including colorectal cancer, our observation of normalization of miR-21-PTEN-Akt pathway by CDF suggests that the compound could be a potential therapeutic agent for chemotherapy-resistant colorectal cancer.

  8. Higher methylation intensity induced by EBV LMP1 via NF-κB/DNMT3b signaling contributes to silencing of PTEN gene.

    PubMed

    Peng, Hong; Chen, Yuxiang; Gong, Pinggui; Cai, Longmei; Lyu, Xiaoming; Jiang, Qiang; Wang, Jianguo; Lu, Juan; Yao, Kaitai; Liu, Kunping; Li, Jinbang; Li, Xin

    2016-06-28

    Phosphatase and tensin homolog (PTEN) is a major tumor suppressor and usually silenced via the deletion, insertion and mutation. We previously discovered its inactivation via aberrant CpG island methylation. Here, we provide further evidence that EBV latent membrane protein 1(LMP1) can induce a higher intensity of DNA methylation at PTEN CpG islands, inactivating PTEN at the cellular and molecular level. Initially, increased methylation intensity of PTEN CpG islands was observed in EBV-infected nasopharyngeal carcinoma (NPC) cells, accompanied by decreased PTEN expression. In NPC tissue samples showing the methylation at PTEN promoter, LMP1 was highly expressed in higher methylation intensity group relative to lower intensity group, and DNA methyltransferase 3b (DNMT3b) expression was positively correlated with LMP1 expression. Moreover, transfection of LMP1 gene into EBV-negative NPC cells demonstrated that LMP1 up-regulated DNMT3b expression, leading to a higher intensity of PTEN CpG island methylation. Mechanistically, computational prediction and luciferase reporter assay identified a functional NF-κB binding site on DNMT3b promoter and the mutated NF-κB binding site abolished LMP1-mediated DNMT3b activation. Chromatin immunoprecipitation displayed that NF-κB p65 subunit constitutively bound to DNMT3b promoter, supporting the activation of DNMT3b by EBV LMP1 via NF-κB signaling. Furthermore, the expression level of DNMT3b was observed to be increased in the nuclei of LMP1-expressing NPC cells, and a NF-κB inhibitor, PDTC, counteracted LMP1-mediated DNMT3b overexpression. Thus, this study first reports that LMP1-mediated NF-κB can up-regulate DNMT3b transcription, thereby leading to relatively higher methylation intensity at PTEN CpG islands, and ultimately silencing major tumor suppressor PTEN.

  9. A multicenter study shows PTEN deletion is strongly associated with seminal vesicle involvement and extracapsular extension in localized prostate cancer

    PubMed Central

    Troyer, Dean A; Jamaspishvili, Tamara; Wei, Wei; Feng, Ziding; Good, Jennifer; Hawley, Sarah; Fazli, Ladan; McKenney, Jesse K; Simko, Jeff; Hurtado-Coll, Antonio; Carroll, Peter R; Gleave, Martin; Lance, Raymond; Lin, Daniel W; Nelson, Peter S; Thompson, Ian M; True, Lawrence D; Brooks, James D; Squire, Jeremy A

    2015-01-01

    BACKGROUND Loss of the phosphatase and tensin homolog (PTEN) tumor suppressor gene is a promising marker of aggressive prostate cancer. Active surveillance and watchful waiting are increasingly recommended to patients with small tumors felt to be low risk, highlighting the difficulties of Gleason scoring in this setting. There is an urgent need for predictive biomarkers that can be rapidly deployed to aid in clinical decision-making. Our objectives were to assess the incidence and ability of PTEN alterations to predict aggressive disease in a multicenter study. METHODS We used recently developed probes optimized for sensitivity and specificity in a four-color FISH deletion assay to study the Canary Retrospective multicenter Prostate Cancer Tissue Microarray (TMA). This TMA was constructed specifically for biomarker validation from radical prostatectomy specimens, and is accompanied by detailed clinical information with long-term follow-up. RESULTS In 612 prostate cancers, the overall rate of PTEN deletion was 112 (18.3%). Hemizygous PTEN losses were present in 55/612 (9.0%) of cancers, whereas homozygous PTEN deletion was observed in 57/612 (9.3%) of tumors. Significant associations were found between PTEN status and pathologic stage (P < 0.0001), seminal vesicle invasion (P = 0.0008), extracapsular extension (P < 0.0001), and Gleason score (P = 0.0002). In logistic regression analysis of clinical and pathological variables, PTEN deletion was significantly associated with extracapsular extension, seminal vesicle involvement, and higher Gleason score. In the 406 patients in which clinical information was available, PTEN homozygous (P = 0.009) deletion was associated with worse post-operative recurrence-free survival (number of events = 189), pre-operative prostate specific antigen (PSA) (P < 0.001), and pathologic stage (P = 0.03). CONCLUSION PTEN status assessed by FISH is an independent predictor for recurrence-free survival in

  10. Combination of PTEN and {gamma}-Ionizing Radiation Enhances Cell Death and G{sub 2}/M Arrest Through Regulation of AKT Activity and p21 Induction in Non-Small-Cell Lung Cancer Cells

    SciTech Connect

    Park, Jong Kuk; Jung, Hae-Yun; Park, Seon Ho; Kang, Seung Yi; Yi, Mi-Rang; Um, Hong Duck; Hong, Sung Hee

    2008-04-01

    Purpose: To identify the role of phosphatase and tensin homolog deleted on chromosome 10 (PTEN) during {gamma}-ionizing radiation ({gamma}-IR) treatment for non-small-cell lung cancer cells. Methods and Materials: Wild-type PTEN or mutant forms of PTEN plasmids were transfected to construct stable transfectants of the NCI-H1299 non-small-cell lung cancer cell line. Combined effects of PTEN expression and IR treatment were tested using immunoblot, clonogenic, and cell-counting assays. Related signaling pathways were studied with immunoblot and kinase assays. Results: At steady state, stable transfectants showed almost the same proliferation rate but had different AKT phosphorylation patterns. When treated with {gamma}-IR, wild-type PTEN transfectants showed higher levels of cell death compared with mock vector or mutant transfectants, and showed increased G{sub 2}/M cell-cycle arrest accompanied by p21 induction and CDK1 inactivation. NCI-H1299 cells were treated with phosphosinositide-3 kinase (PI3K)/AKT pathway inhibitor (LY29002), resulting in reduced AKT phosphorylation levels. Treatment of NCI-H1299 cells with LY29002 and {gamma}-IR resulted in increased cell-cycle arrest and p21 induction. Endogenous wild-type PTEN-containing NCI-H460 cells were treated with PTEN-specific siRNA and then irradiated with {gamma}-IR: however reduced PTEN levels did not induce cell-cycle arrest or p21 expression. Conclusions: Taken together, these findings indicate that PTEN may modulate cell death or the cell cycle via AKT inactivation by PTEN and {gamma}-IR treatment. We also propose that a PTEN-PI3K/AKT-p21-CDK1 pathway could regulate cell death and the cell cycle by {gamma}-IR treatment.

  11. The RhoA-ROCK-PTEN pathway as a molecular switch for anchorage dependent cell behavior.

    PubMed

    Yang, Seungwon; Kim, Hyun-Man

    2012-04-01

    The proliferation of anchorage-dependent cells of mesenchymal origin requires the attachment of the cells to substrates. Thus, cells that are poorly attached to substrates exhibit retarded cell cycle progression or apoptotic death. A major disadvantage of most polymers used in tissue engineering is their hydrophobicity; hydrophobic surfaces do not allow cells to attach firmly and, therefore, do not allow normal proliferation rates. In this study, we investigated the molecular mechanism underlying the reduced proliferation rate of cells that are poorly attached to substrates. There was an inverse relationship between the activity of the small GTPase RhoA (RhoA) and the cell proliferation rate. RhoA activity correlated inversely with the strength of cell adhesion to the substrates. The high RhoA activity in the cells poorly attached to substrates caused an increase in the activity of Rho-associated kinase (ROCK), a well-known effector of RhoA that upregulated the activity of phosphatase and tensin homolog (PTEN). The resulting activated PTEN downregulated Akt activity, which is essential for cell proliferation. Thus, the cells that were poorly attached to substrates showed low levels of cell proliferation because the RhoA-ROCK-PTEN pathway was hyperactive. In addition, RhoA activity seemed to be related to focal adhesion kinase (FAK) activity. Weak FAK activity in these poorly attached cells failed to downregulate the high RhoA activity that restrained cell proliferation. Interestingly, reducing the expression of any component of the RhoA-ROCK-PTEN pathway rescued the proliferation rate without physico-chemical surface modifications. Based on these results, we suggest that the RhoA-ROCK-PTEN pathway acts as a molecular switch to control cell proliferation and determine anchorage dependence. In cells that are poorly attached to substrates, its inhibition is sufficient to restore cell proliferation without the need for physico-chemical modification of the material

  12. Pten Regulates Epithelial Cytodifferentiation during Prostate Development

    PubMed Central

    Lokody, Isabel B.; Francis, Jeffrey C.; Gardiner, Jennifer R.; Erler, Janine T.; Swain, Amanda

    2015-01-01

    Gene expression and functional studies have indicated that the molecular programmes involved in prostate development are also active in prostate cancer. PTEN has been implicated in human prostate cancer and is frequently mutated in this disease. Here, using the Nkx3.1:Cre mouse strain and a genetic deletion approach, we investigate the role of Pten specifically in the developing mouse prostate epithelia. In contrast to its role in other developing organs, this gene is dispensable for the initial developmental processes such as budding and branching. However, as cytodifferentiation progresses, abnormal luminal cells fill the ductal lumens together with augmented epithelial proliferation. This phenotype resembles the hyperplasia seen in postnatal Pten deletion models that develop neoplasia at later stages. Consistent with this, gene expression analysis showed a number of genes affected that are shared with Pten mutant prostate cancer models, including a decrease in androgen receptor regulated genes. In depth analysis of the phenotype of these mice during development revealed that loss of Pten leads to the precocious differentiation of epithelial cells towards a luminal cell fate. This study provides novel insight into the role of Pten in prostate development as part of the process of coordinating the differentiation and proliferation of cell types in time and space to form a functional organ. PMID:26076167

  13. Liver-Specific Deletion of Phosphatase and Tensin Homolog Deleted on Chromosome 10 Significantly Ameliorates Chronic EtOH-Induced Increases in Hepatocellular Damage

    PubMed Central

    Orlicky, David J.; McCullough, Rebecca L.; Jiang, Hua; Maclean, Kenneth N.; Mercer, Kelly E.; Stiles, Bangyan L.; Saba, Laura M.; Ronis, Martin J.; Petersen, Dennis R.

    2016-01-01

    Alcoholic liver disease is a significant contributor to global liver failure. In murine models, chronic ethanol consumption dysregulates PTEN/Akt signaling. Hepatospecific deletion of phosphatase and tensin homolog deleted on chromosome 10 (PTENLKO) mice possess constitutive activation of Akt(s) and increased de novo lipogenesis resulting in increased hepatocellular steatosis. This makes PTENLKO a viable model to examine the effects of ethanol in an environment of preexisting steatosis. The aim of this study was to determine the impact of chronic ethanol consumption and the absence of PTEN (PTENLKO) compared to Alb-Cre control mice (PTENf/f) on hepatocellular damage as evidenced by changes in lipid accumulation, protein carbonylation and alanine amino transferase (ALT). In the control PTENf/f animals, ethanol significantly increased ALT, liver triglycerides and steatosis. In contrast, chronic ethanol consumption in PTENLKO mice decreased hepatocellular damage when compared to PTENLKO pair-fed controls. Consumption of ethanol elevated protein carbonylation in PTENf/f animals but had no effect in PTENLKO animals. In PTENLKO mice, overall hepatic mRNA expression of genes that contribute to GSH homeostasis as well as reduced glutathione (GSH) and oxidized glutathione (GSSG) concentrations were significantly elevated compared to respective PTENf/f counterparts. These data indicate that during conditions of constitutive Akt activation and steatosis, increased GSH homeostasis assists in mitigation of ethanol-dependent induction of oxidative stress and hepatocellular damage. Furthermore, data herein suggest a divergence in EtOH-induced hepatocellular damage and increases in steatosis due to polyunsaturated fatty acids downstream of PTEN. PMID:27124661

  14. PTEN mutations and activation of the PI3K/Akt/mTOR signaling pathway in papillary tumors of the pineal region.

    PubMed

    Goschzik, Tobias; Gessi, Marco; Denkhaus, Dorota; Pietsch, Torsten

    2014-08-01

    Papillary tumors of the pineal region (PTPR) are recognized as a distinct entity in the World Health Organization classification of CNS tumors. Papillary tumors of the pineal region frequently show loss of chromosome 10, but no studies have investigated possible target genes on this chromosome. Chromosome 10 harbors the PTEN (phosphatase and tensin homolog) gene, the inactivation of which, by mutation or epigenetic silencing, has been observed in different brain tumors, including high-grade gliomas. In this study, we investigated copy number changes by molecular inversion probe (MIP) analysis and the mutational status of PTEN in 13 PTPR by direct sequencing. MIP analysis of 5 PTPR showed chromosome 10 loss in all cases. In addition, there were losses of chromosomes 3, 14, 22, and X, and gains of whole chromosomes 8, 9, and 12 in more than 1 case. One case had a homozygous PTEN deletion; and 2 point mutations in exon 7 of PTEN (G251D and Q261stop) were found. Immunohistochemistry revealed decrease or loss of the PTEN protein and increased expression of p-Akt and p-S6. These results indicated that PTEN mutations and activation of the PI3K/Akt/mTOR signaling pathway may play a role in the biology of PTPR. This evidence may lead to the possible use of PI3K/Akt/mTOR inhibitors in therapy for patients with PTPR.

  15. Role of PTEN in TNFα induced insulin resistance

    SciTech Connect

    Bulger, David A.; Conley, Jermaine; Conner, Spencer H.; Majumdar, Gipsy; Solomon, Solomon S.

    2015-06-05

    Aims/hypothesis: PTEN may play a reversible role in TNFα induced insulin resistance, which has been linked to obesity-associated insulin resistance (IR). Methods: Western blots for PTEN and p-Akt were performed on H-411E liver cells incubated with insulin, TNFα, and in selected experiments VO-OHpic vanadium complex in the presence and absence of PTEN siRNA. Total PTEN was compared to β-actin loading control and p-Akt was compared to total Akt. Results: Western blot and Real Time RT-PCR experiments showed increased PTEN after TNFα treatment (p = 0.04); slightly decreased PTEN after insulin treatment; and slightly increased PTEN after insulin + TNFα treatment. PTEN siRNA markedly inhibited the TNFα-induced increase in PTEN (p < 0.01) without significantly changing the p-Akt levels. The vanadium complex, exhibiting insulin-like effects, also significantly prevented the TNFα-induced increase in PTEN. Combining insulin and VO-OHpic was additive, providing both proof of concept and insight into mechanism. Discussion: The PTEN increase due to TNFα treatment was reversible by both PTEN siRNA knockdown and VO-OHpic treatment. Thus, PTEN is identified as a potential new therapeutic target for reducing IR in Type 2 DM. - Highlights: • TNFα treatment induced a significant increase in PTEN in H-411E liver cells. • PTEN siRNA knockdown prevented this effect. • VO-OHpic (vanadium complex) treatment, like insulin, decreased PTEN protein levels. • Thus, PTEN is identified as a potential therapeutic target in DM Type 2.

  16. Subtle variations in Pten dose determine cancer susceptibility.

    PubMed

    Alimonti, Andrea; Carracedo, Arkaitz; Clohessy, John G; Trotman, Lloyd C; Nardella, Caterina; Egia, Ainara; Salmena, Leonardo; Sampieri, Katia; Haveman, William J; Brogi, Edi; Richardson, Andrea L; Zhang, Jiangwen; Pandolfi, Pier Paolo

    2010-05-01

    Cancer susceptibility has been attributed to at least one heterozygous genetic alteration in a tumor suppressor gene (TSG). It has been hypothesized that subtle variations in TSG expression can promote cancer development. However, this hypothesis has not yet been definitively supported in vivo. Pten is a TSG frequently lost in human cancer and mutated in inherited cancer-predisposition syndromes. Here we analyze Pten hypermorphic mice (Pten(hy/+)), expressing 80% normal levels of Pten. Pten(hy/+) mice develop a spectrum of tumors, with breast tumors occurring at the highest penetrance. All breast tumors analyzed here retained two intact copies of Pten and maintained Pten levels above heterozygosity. Notably, subtle downregulation of Pten altered the steady-state biology of the mammary tissues and the expression profiles of genes involved in cancer cell proliferation. We present an alterative working model for cancer development in which subtle reductions in the dose of TSGs predispose to tumorigenesis in a tissue-specific manner.

  17. Pharmacological inhibition of PTEN attenuates cognitive deficits caused by neonatal repeated exposures to isoflurane via inhibition of NR2B-mediated tau phosphorylation in rats.

    PubMed

    Tan, Lei; Chen, Xin; Wang, Wei; Zhang, Jianfang; Li, Shiyong; Zhao, Yilin; Wang, Jintao; Luo, Ailin

    2017-03-01

    Evidence has shown that children exposed to repeated anesthesia in early childhood display long-term cognitive disabilities. However, the underlying mechanisms remain largely unclear. Our previous study has indicated the involvement of phosphatase and tensin homolog deleted on chromosome 10 (PTEN) in isoflurane-induced decrease of self-renewal capacity in hippocampal neural precursor cells. Additionally, it is demonstrated by others that PTEN inhibition could protect against cognitive impairment via reduction of tau phosphorylation in the alzheimer's disease model. Therefore, in the present in vivo study, we aimed to examine the effects of PTEN inhibition on the cognitive dysfunction and tau hyperphosphorylation caused by neonatal repeated exposures to isoflurane. Our results showed that the neonatal repeated exposures to isoflurane resulted in the activation of PTEN in the hippocampus. The treatment of PTEN inhibitor BPV (pic) restored PSD-95 synthesis, and attenuated tau phosphorylation as well as the cognitive dysfunction caused by the repeated isoflurane exposures. In addition, BPV (pic) treatment reversed the activation of NR2B-containing NMDARs induced by repeated isoflurane exposures, while in turn, the antagonism of NR2B subunit with ifenprodil alleviated tau phosphorylation, indicating a possible role of NR2B as the downstream of PTEN in mediating tau phosphorylation in the neonatal rats repeatedly exposed to isoflurane. In conclusion, our results reveal a novel role of PTEN in mediating tau phosphorylation and cognitive deficits caused by neonatal repeated exposures to isoflurane, implying that targeting on PTEN may be a potential therapeutic approach for the anesthetic-related cognitive decline in the developing brain.

  18. Variable laterality of corticospinal tract axons that regenerate after spinal cord injury as a result of PTEN deletion or knock-down.

    PubMed

    Willenberg, Rafer; Zukor, Katherine; Liu, Kai; He, Zhigang; Steward, Oswald

    2016-09-01

    Corticospinal tract (CST) axons from one hemisphere normally extend and terminate predominantly in the contralateral spinal cord. We previously showed that deleting the gene phosphatase and tensin homolog (PTEN) in the sensorimotor cortex enables CST axons to regenerate after spinal cord injury and that some regenerating axons extend along the "wrong" side. Here, we characterize the degree of specificity of regrowth in terms of laterality. PTEN was selectively deleted via cortical adeno-associated virus (AAV)-Cre injections in neonatal PTEN-floxed mice. As adults, mice received dorsal hemisection injuries at T12 or complete crush injuries at T9. CST axons from one hemisphere were traced by unilateral biotinylated dextran amine (BDA) injections in PTEN-deleted mice with spinal cord injury and in noninjured PTEN-floxed mice that had not received AAV-Cre. In noninjured mice, 97.9 ± 0.7% of BDA-labeled axons in white matter and 88.5 ± 1.0% of BDA-labeled axons in gray matter were contralateral to the cortex of origin. In contrast, laterality of CST axons that extended past a lesion due to PTEN deletion varied across animals. In some cases, regenerated axons extended predominantly on the ipsilateral side; in other cases, axons extended predominantly contralaterally, and in others, axons were similar in numbers on both sides. Similar results were seen in analyses of cases from previous studies using short hairpin (sh)RNA-mediated PTEN knock-down. These results indicate that CST axons that extend past a lesion due to PTEN deletion or knock-down do not maintain the contralateral rule of the noninjured CST, highlighting one aspect of how the resultant circuitry from regenerating axons may differ from that of the uninjured CST. J. Comp. Neurol. 524:2654-2676, 2016. © 2016 Wiley Periodicals, Inc.

  19. Somatic mutation of PTEN in bladder carcinoma

    PubMed Central

    Aveyard, J S; Skilleter, A; Habuchi, T; Knowles, M A

    1999-01-01

    The tumour suppressor gene PTEN/MMAC1, which is mutated or homozygously deleted in glioma, breast and prostate cancer, is mapped to a region of 10q which shows loss of heterozygosity (LOH) in bladder cancer. We screened 123 bladder tumours for LOH in the region of PTEN. In 53 informative muscle invasive tumours (≥ pT2), allele loss was detected in 13 (24.5%) and allelic imbalance in four tumours (overall frequency 32%). LOH was found in four of 60 (6.6%) informative, non-invasive tumours (pTa/pT1). We screened 63 muscle invasive tumours for PTEN mutations by single-strand conformation polymorphism (SSCP) analysis and for homozygous deletion by duplex quantitative polymerase chain reaction (PCR). Two homozygous deletions were identified but no mutations. Of 15 bladder tumour cell lines analysed, three showed homozygous deletion of all or part of the PTEN gene, but none had mutations detectable by SSCP analysis. Our results indicate that PTEN is involved in the development of some bladder tumours. The low frequency of mutation of the retained allele in tumours with 10q23 LOH suggests that there may be another predominant mechanism of inactivation of the second allele, for example small intragenic deletions, that hemizygosity may be sufficient for phenotypic effect, or that there is another target gene at 10q23. © 1999 Cancer Research Campaign PMID:10360673

  20. AAVshRNA-Mediated Suppression of PTEN in Adult Rats in Combination with Salmon Fibrin Administration Enables Regenerative Growth of Corticospinal Axons and Enhances Recovery of Voluntary Motor Function after Cervical Spinal Cord Injury

    PubMed Central

    2014-01-01

    Conditional genetic deletion of phosphatase and tensin homolog (PTEN) in the sensorimotor cortex of neonatal mice enables regeneration of corticospinal tract (CST) axons after spinal cord injury (SCI). The present study addresses three questions: (1) whether PTEN knockdown in adult rats by nongenetic techniques enables CST regeneration, (2) whether interventions to enable CST regeneration enhance recovery of voluntary motor function, and (3) whether delivery of salmon fibrin into the injury site further enhances CST regeneration and motor recovery. Adult rats were trained in a staircase-reaching task and then received either intracortical injections of AAVshPTEN to delete PTEN or a control vector expressing shRNA for luciferase (AAVshLuc). Rats then received cervical dorsal hemisection injuries and salmon fibrin was injected into the injury site in half the rats, yielding four groups (AAVshPTEN, AAVshLuc, AAVshPTEN + fibrin, and AAVshLuc + fibrin). Forepaw function was assessed for 10 weeks after injury and CST axons were traced by injecting biotin-conjugated dextran amine into the sensorimotor cortex. Rats that received AAVshPTEN alone did not exhibit improved motor function, whereas rats that received AAVshPTEN and salmon fibrin had significantly higher forelimb-reaching scores. Tract tracing revealed that CST axons extended farther caudally in the group that received AAVshPTEN and salmon fibrin versus other groups. There were no significant differences in lesion size between the groups. Together, these data suggest that the combination of PTEN deletion and salmon fibrin injection into the lesion can significantly improve voluntary motor function after SCI by enabling regenerative growth of CST axons. PMID:25057197

  1. AAVshRNA-mediated suppression of PTEN in adult rats in combination with salmon fibrin administration enables regenerative growth of corticospinal axons and enhances recovery of voluntary motor function after cervical spinal cord injury.

    PubMed

    Lewandowski, Gail; Steward, Oswald

    2014-07-23

    Conditional genetic deletion of phosphatase and tensin homolog (PTEN) in the sensorimotor cortex of neonatal mice enables regeneration of corticospinal tract (CST) axons after spinal cord injury (SCI). The present study addresses three questions: (1) whether PTEN knockdown in adult rats by nongenetic techniques enables CST regeneration, (2) whether interventions to enable CST regeneration enhance recovery of voluntary motor function, and (3) whether delivery of salmon fibrin into the injury site further enhances CST regeneration and motor recovery. Adult rats were trained in a staircase-reaching task and then received either intracortical injections of AAVshPTEN to delete PTEN or a control vector expressing shRNA for luciferase (AAVshLuc). Rats then received cervical dorsal hemisection injuries and salmon fibrin was injected into the injury site in half the rats, yielding four groups (AAVshPTEN, AAVshLuc, AAVshPTEN + fibrin, and AAVshLuc + fibrin). Forepaw function was assessed for 10 weeks after injury and CST axons were traced by injecting biotin-conjugated dextran amine into the sensorimotor cortex. Rats that received AAVshPTEN alone did not exhibit improved motor function, whereas rats that received AAVshPTEN and salmon fibrin had significantly higher forelimb-reaching scores. Tract tracing revealed that CST axons extended farther caudally in the group that received AAVshPTEN and salmon fibrin versus other groups. There were no significant differences in lesion size between the groups. Together, these data suggest that the combination of PTEN deletion and salmon fibrin injection into the lesion can significantly improve voluntary motor function after SCI by enabling regenerative growth of CST axons.

  2. Prognostic value of ERG, PTEN, CRISP3 and SPINK1 in predicting biochemical recurrence in prostate cancer

    PubMed Central

    NOH, BYEONG-JOO; SUNG, JI-YOUN; KIM, YOUN WHA; CHANG, SUNG-GOO; PARK, YONG-KOO

    2016-01-01

    The established prognostic factors associated with prostatic adenocarcinoma are the Gleason score, pathological T staging and serum prostatic-specific antigen (PSA) level. However, these prognostic factors alone are not sufficient for predicting prognostic characteristics, including early stage or advanced prostate cancer, presence of metastasis or disease-related mortality. The purpose of the present study was to simultaneously evaluate the prognostic value and associations of four biomarkers, namely, transcriptional regulator ERG (ERG), phosphatase and tensin homolog (PTEN), cysteine-rich secretory protein 3 (CRISP3) and serine protease inhibitor Kazal type I (SPINK1), and to conduct risk stratification of prostate cancer for use in patient management. A total of 68 formalin-fixed, paraffin-embedded, prostate cancer samples from radical prostatectomies were obtained in the Kyung Hee University Hospital (Seoul, Korea) and were studied immunohistochemically for ERG, PTEN, CRISP3 and SPINK1 to determine the proportion and intensity of staining. SPINK1 expression was mutually exclusive of ERG expression (P=0.001). The loss of PTEN and high CRISP3 expression are unfavorable indicators for prostate cancer, as PTEN loss was associated with shorter biochemical recurrence (BCR) (P=0.039), and high CRISP3 expression was associated with increased BCR (P<0.001) and cancer-related mortalities (P=0.011). Using the combination of low PTEN and high CRISP3 expression enables attention to be focused on patients who exhibit a poor prognosis. Subgrouping of patients, into high-risk and low-risk categories, was correlated with BCR-free survival in prostate cancer upon multivariate analysis (P=0.030). Overall, low PTEN and high CRISP3 expression significantly characterize the subgroups of prostate cancer that have a poor prognosis for BCR. PMID:27284364

  3. PI3K/Akt/mTOR signaling & its regulator tumour suppressor genes PTEN & LKB1 in human uterine leiomyomas

    PubMed Central

    Makker, Annu; Goel, Madhu Mati; Mahdi, Abbas Ali; Bhatia, Vikram; Das, Vinita; Agarwal, Anjoo; Pandey, Amita

    2016-01-01

    Background & objectives: Despite their high occurrence and associated significant level of morbidity manifesting as spectrum of clinical symptoms, the pathogenesis of uterine leiomyomas (ULs) remains unclear. We investigated expression profile of tumour suppressor genes PTEN (phosphatase and tensin homolog deleted on chromosome ten) and LKB1 (liver kinase B1), and key signaling components of P13K (phosphatidylinositol 3-kinase)/Akt (protein kinase B)/mTOR (mammalian target of rapamycin) pathway in leiomyomas and adjacent normal myometrium in women of reproductive age, to explore the possibility of targeting this pathway for future therapeutic implications. Methods: Real time PCR (qPCR) was used to quantify relative gene expression levels of PTEN, Akt1, Akt2, mTOR, LKB1 and VEGFA (vascular endothelial growth factor A) in leiomyoma as compared to adjacent normal myometrium. Immunohistochemistry was subsequently performed to analyze expression of PTEN, phospho-Akt, phospho-mTOR, phospho-S6, LKB1 and VEGFA in leiomyoma and adjacent normal myometrium. Results: Significant upregulation of PTEN (2.52 fold; P=0.03) and LKB1 (3.93 fold; P=0.01), and downregulation of VEGFA (2.95 fold; P=0.01) genes were observed in leiomyoma as compared to normal myometrium. Transcript levels of Akt1, Akt2 and mTOR did not vary significantly between leiomyoma and myometrium. An increased immunoexpression of PTEN (P=0.015) and LKB1 (P<0.001) and decreased expression of VEGFA (P=0.01) was observed in leiomyoma as compared to myometrium. Immunostaining for activated (phosphorylated) Akt, mTOR and S6 was absent or low in majority of leiomyoma and myometrium. Interpretation & conclusions: Upregulation of PTEN and LKB1 in concert with negative or low levels of activated Akt, mTOR and S6 indicates that PI3K/Akt/mTOR pathway may not play a significant role in pathogenesis of leiomyoma. PMID:27748285

  4. PTEN methylation involved in benzene-induced hematotoxicity.

    PubMed

    Yang, Jing; Zuo, Xin; Bai, Wenlin; Niu, Piye; Tian, Lin; Gao, Ai

    2014-06-01

    It is well known that benzene is a hematotoxic carcinogen. PTEN promoter methylation is a representative example of transcriptional silencing of tumor suppressor genes. However, the effect of PTEN methylation on benzene-induced hematotoxicity has not yet been elucidated. In this study, the animal model of benzene hematotoxicity was successfully established. WBC significantly decreased in experimental groups (P < 0.01). Compared with the control group, the weight of rats increased slowly and even declined with increasing doses of benzene in the benzene-treated groups. An increase in the level of PTEN methylation was observed in the low dose group, and PTEN methylation level increased significantly in a dose-dependent manner. However, it was interesting that PTEN mRNA expression increased in the low dose group, but declined with increasing doses of benzene. The decrease of tumor suppressor function caused by PTEN methylation may be an important mechanism of benzene hematotoxicity. Furthermore, lymphoblast cell line F32 was incubated by benzene and then treated with 5-aza and TSA, alone or in combination. A dramatic decrease in the PTEN mRNA expression and a significant increase of PTEN methylation level in benzene-treated cells were also shown. PTEN mRNA expression was up regulated and PTEN methylation level was reduced by the epigenetic inhibitors, 5-aza and TSA. In conclusion, PTEN methylation is involved in benzene-induced hematotoxicity through suppressing PTEN mRNA expression.

  5. MC1R is a potent regulator of PTEN after UV exposure in melanocytes.

    PubMed

    Cao, Juxiang; Wan, Lixin; Hacker, Elke; Dai, Xiangpeng; Lenna, Stefania; Jimenez-Cervantes, Celia; Wang, Yongjun; Leslie, Nick R; Xu, George X; Widlund, Hans R; Ryu, Byungwoo; Alani, Rhoda M; Dutton-Regester, Ken; Goding, Colin R; Hayward, Nicholas K; Wei, Wenyi; Cui, Rutao

    2013-08-22

    The individuals carrying melanocortin-1 receptor (MC1R) variants, especially those associated with red hair color, fair skin, and poor tanning ability (RHC trait), are more prone to melanoma; however, the underlying mechanism is poorly defined. Here, we report that UVB exposure triggers phosphatase and tensin homolog (PTEN) interaction with wild-type (WT), but not RHC-associated MC1R variants, which protects PTEN from WWP2-mediated degradation, leading to AKT inactivation. Strikingly, the biological consequences of the failure of MC1R variants to suppress PI3K/AKT signaling are highly context dependent. In primary melanocytes, hyperactivation of PI3K/AKT signaling leads to premature senescence; in the presence of BRAF(V600E), MC1R deficiency-induced elevated PI3K/AKT signaling drives oncogenic transformation. These studies establish the MC1R-PTEN axis as a central regulator for melanocytes' response to UVB exposure and reveal the molecular basis underlying the association between MC1R variants and melanomagenesis.

  6. MicroRNA-22 promotes cell survival upon UV radiation by repressing PTEN.

    PubMed

    Tan, Guangyun; Shi, Yuling; Wu, Zhao-Hui

    2012-01-06

    DNA damage response upon UV radiation involves a complex network of cellular events required for maintaining the homeostasis and restoring genomic stability of the cells. As a new class of players involved in DNA damage response, the regulation and function of microRNAs in response to UV remain poorly understood. Here we show that UV radiation induces a significant increase of miR-22 expression, which appears to be dependent on the activation of DNA damage responding kinase ATM (ataxia telangiectasia mutated). Increased miR-22 expression may result from enhanced miR-22 maturation in cells exposed to UV. We further found that tumor suppressor gene phosphatase and tensin homolog (PTEN) expression was inversely correlated with miR-22 induction and UV-induced PTEN repression was attenuated by overexpression of a miR-22 inhibitor. Moreover, increased miR-22 expression significantly inhibited the activation of caspase signaling cascade, leading to enhanced cell survival upon UV radiation. Collectively, these results indicate that miR-22 is an important player in the cellular stress response upon UV radiation, which may promote cell survival via the repression of PTEN expression.

  7. The Membrane and Lipids as Integral Participants in Signal Transduction: Lipid Signal Transduction for the Non-Lipid Biochemist

    ERIC Educational Resources Information Center

    Eyster, Kathleen M.

    2007-01-01

    Reviews of signal transduction have often focused on the cascades of protein kinases and protein phosphatases and their cytoplasmic substrates that become activated in response to extracellular signals. Lipids, lipid kinases, and lipid phosphatases have not received the same amount of attention as proteins in studies of signal transduction.…

  8. Early Behavioral Abnormalities and Perinatal Alterations of PTEN/AKT Pathway in Valproic Acid Autism Model Mice.

    PubMed

    Yang, Eun-Jeong; Ahn, Sangzin; Lee, Kihwan; Mahmood, Usman; Kim, Hye-Sun

    2016-01-01

    Exposure to valproic acid (VPA) during pregnancy has been linked with increased incidence of autism, and has repeatedly been demonstrated as a useful autism mouse model. We examined the early behavioral and anatomical changes as well as molecular changes in mice prenatally exposed to VPA (VPA mice). In this study, we first showed that VPA mice showed developmental delays as assessed with self-righting, eye opening tests and impaired social recognition. In addition, we provide the first evidence that primary cultured neurons from VPA-treated embryos present an increase in dendritic spines, compared with those from control mice. Mutations in phosphatase and tensin homolog (PTEN) gene are also known to be associated with autism, and mice with PTEN knockout show autistic characteristics. Protein expression of PTEN was decreased and the ratio of p-AKT/AKT was increased in the cerebral cortex and the hippocampus, and a distinctive anatomical change in the CA1 region of the hippocampus was observed. Taken together, our study suggests that prenatal exposure to VPA induces developmental delays and neuroanatomical changes via the reduction of PTEN level and these changes were detectable in the early days of life.

  9. Tyrosine-mutated AAV2-mediated shRNA silencing of PTEN promotes axon regeneration of adult optic nerve

    PubMed Central

    Huang, ZhengRu; Hu, ZiZhong; Xie, Ping; Liu, QingHuai

    2017-01-01

    Activating PI3K/AKT/mTOR signaling pathway via deleting phosphatase and tensin homolog (PTEN) has been confirmed to enhance intrinsic growth capacity of neurons to facilitate the axons regeneration of central nervous system after injury. Considering conditional gene deletion is currently not available in clinical practice, we exploited capsid residue tyrosine 444 to phenylalanine mutated single-stranded adeno-associated virus serotype 2 (AAV2) as a vector delivering short hairpin RNA to silence PTEN to promote retinal ganglion cells (RGCs) survival and axons regeneration in adult rat optic nerve axotomy paradigm. We found that mutant AAV2 displayed higher infection efficiency to RGCs and Müller cells by intravitreal injection, mediated PTEN suppression, resulted in much more RGCs survival and more robust axons regeneration compared with wild type AAV2, due to the different extent of the mTOR complex-1 activation and glutamate aspartate transporter (GLAST) regulation. These results suggest that high efficiency AAV2-mediated PTEN knockdown represents a practicable therapeutic strategy for optic neuropathy. PMID:28323869

  10. Early Behavioral Abnormalities and Perinatal Alterations of PTEN/AKT Pathway in Valproic Acid Autism Model Mice

    PubMed Central

    Yang, Eun-Jeong; Ahn, Sangzin; Lee, Kihwan; Mahmood, Usman; Kim, Hye-Sun

    2016-01-01

    Exposure to valproic acid (VPA) during pregnancy has been linked with increased incidence of autism, and has repeatedly been demonstrated as a useful autism mouse model. We examined the early behavioral and anatomical changes as well as molecular changes in mice prenatally exposed to VPA (VPA mice). In this study, we first showed that VPA mice showed developmental delays as assessed with self-righting, eye opening tests and impaired social recognition. In addition, we provide the first evidence that primary cultured neurons from VPA-treated embryos present an increase in dendritic spines, compared with those from control mice. Mutations in phosphatase and tensin homolog (PTEN) gene are also known to be associated with autism, and mice with PTEN knockout show autistic characteristics. Protein expression of PTEN was decreased and the ratio of p-AKT/AKT was increased in the cerebral cortex and the hippocampus, and a distinctive anatomical change in the CA1 region of the hippocampus was observed. Taken together, our study suggests that prenatal exposure to VPA induces developmental delays and neuroanatomical changes via the reduction of PTEN level and these changes were detectable in the early days of life. PMID:27071011

  11. PTEN Activation by DNA Damage Induces Protective Autophagy in Response to Cucurbitacin B in Hepatocellular Carcinoma Cells

    PubMed Central

    Niu, Yanan; Sun, Wen; Lu, Jin-Jian; Pei, Lixia

    2016-01-01

    Cucurbitacin B (Cuc B), a natural product, induced both protective autophagy and DNA damage mediated by ROS while the detailed mechanisms remain unclear. This study explored the mechanism of Cuc B-induced DNA damage and autophagy. Cuc B decreased cell viability in concentration- and time-dependent manners. Cuc B caused long comet tails and increased expression of γ-H2AX, phosphorylation of ATM/ATR, and Chk1/Chk2. Cuc B induced autophagy as evidenced by monodansylcadaverine (MDC) staining, increased expression of LC3II, phosphorylated ULK1, and decreased expression of phosphorylated AKT, mTOR. Cuc B induced apoptosis mediated by Bcl-2 family proteins and caspase activation. Furthermore, Cuc B induced ROS formation, which was inhibited by N-acetyl-L-cysteine (NAC). NAC pretreatment dramatically reversed Cuc B-induced DNA damage, autophagy, and apoptosis. Cuc B-induced apoptosis was reversed by NAC but enhanced by 3-methyladenine (3-MA), chloroquine (CQ), and silencing phosphatase and tensin homolog (PTEN). 3-MA and CQ showed no effect on Cuc B-induced DNA damage. In addition, Cuc B increased PTEN phosphorylation and silence PTEN restored Cuc B-induced autophagic protein expressions without affecting DNA damage. In summary, Cuc B induced DNA damage, apoptosis, and protective autophagy mediated by ROS. PTEN activation in response to DNA damage bridged DNA damage and prosurvival autophagy. PMID:28042385

  12. MicroRNA-22 promotes cell survival upon UV radiation by repressing PTEN

    SciTech Connect

    Tan, Guangyun; Shi, Yuling; Wu, Zhao-Hui

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer miR-22 is induced in cells treated with UV radiation. Black-Right-Pointing-Pointer ATM is required for miR-22 induction in response to UV. Black-Right-Pointing-Pointer miR-22 targets 3 Prime -UTR of PTEN to repress its expression in UV-treated cells. Black-Right-Pointing-Pointer Upregulated miR-22 inhibits apoptosis in cells exposed to UV. -- Abstract: DNA damage response upon UV radiation involves a complex network of cellular events required for maintaining the homeostasis and restoring genomic stability of the cells. As a new class of players involved in DNA damage response, the regulation and function of microRNAs in response to UV remain poorly understood. Here we show that UV radiation induces a significant increase of miR-22 expression, which appears to be dependent on the activation of DNA damage responding kinase ATM (ataxia telangiectasia mutated). Increased miR-22 expression may result from enhanced miR-22 maturation in cells exposed to UV. We further found that tumor suppressor gene phosphatase and tensin homolog (PTEN) expression was inversely correlated with miR-22 induction and UV-induced PTEN repression was attenuated by overexpression of a miR-22 inhibitor. Moreover, increased miR-22 expression significantly inhibited the activation of caspase signaling cascade, leading to enhanced cell survival upon UV radiation. Collectively, these results indicate that miR-22 is an important player in the cellular stress response upon UV radiation, which may promote cell survival via the repression of PTEN expression.

  13. Potential value of PTEN in predicting cetuximab response in colorectal cancer: An exploratory study

    PubMed Central

    Razis, Evangelia; Briasoulis, Evangelos; Vrettou, Eleni; Skarlos, Dimosthenis V; Papamichael, Dimitrios; Kostopoulos, Ioannis; Samantas, Epaminontas; Xanthakis, Ioannis; Bobos, Mattheos; Galanidi, Eleni; Bai, Maria; Gikonti, Ioanna; Koukouma, Alona; Kafiri, Georgia; Papakostas, Pavlos; Kalogeras, Konstantine T; Kosmidis, Paris; Fountzilas, George

    2008-01-01

    Background The epidermal growth factor receptor (EGFR) is over-expressed in 70–75% of colorectal adenocarcinomas (CRC). The anti-EGFR monoclonal antibody cetuximab has been approved for the treatment of metastatic CRC, however tumor response to cetuximab has not been found to be associated with EGFR over-expression by immunohistochemistry (IHC). The aim of this study was to explore EGFR and the downstream effector phosphatase and tensin homologue deleted on chromosome 10 (PTEN) as potential predictors of response to cetuximab. Methods CRC patients treated with cetuximab by the Hellenic Cooperative Oncology group, whose formalin-fixed paraffin-embedded tumor tissue was available, were included. Tissue was tested for EGFR and PTEN by IHC and fluorescence in situ hybridization (FISH). Results Eighty-eight patients were identified and 72 were included based on the availability of tissue blocks with adequate material for analysis on them. All patients, except one, received cetuximab in combination with chemotherapy. Median follow-up was 53 months from diagnosis and 17 months from cetuximab initiation. At the time of the analysis 53% of the patients had died. Best response was complete response in one and partial response in 23 patients. In 16 patients disease stabilized. Lack of PTEN gene amplification was associated with more responses to cetuximab and longer time to progression (p = 0.042). Conclusion PTEN could be one of the molecular determinants of cetuximab response. Due to the heterogeneity of the population and the retrospective nature of the study, our results are hypothesis generating and should be approached with caution. Further prospective studies are needed to validate this finding. PMID:18700047

  14. Calpain-2-mediated PTEN degradation contributes to BDNF-induced stimulation of dendritic protein synthesis.

    PubMed

    Briz, Victor; Hsu, Yu-Tien; Li, Yi; Lee, Erin; Bi, Xiaoning; Baudry, Michel

    2013-03-06

    Memory consolidation has been suggested to be protein synthesis dependent. Previous data indicate that BDNF-induced dendritic protein synthesis is a key event in memory formation through activation of the mammalian target of rapamycin (mTOR) pathway. BDNF also activates calpain, a calcium-dependent cysteine protease, which has been shown to play a critical role in learning and memory. This study was therefore directed at testing the hypothesis that calpain activity is required for BDNF-stimulated local protein synthesis, and at identifying the underlying molecular mechanism. In rat hippocampal slices, cortical synaptoneurosomes, and cultured neurons, BDNF-induced mTOR pathway activation and protein translation were blocked by calpain inhibition. BDNF treatment rapidly reduced levels of hamartin and tuberin, negative regulators of mTOR, in a calpain-dependent manner. Treatment of brain homogenates with purified calpain-1 and calpain-2 truncated both proteins. BDNF treatment increased phosphorylation of both Akt and ERK, but only the effect on Akt was blocked by calpain inhibition. Levels of phosphatase and tensin homolog deleted on chromosome 10 (PTEN), a phosphatase that inactivates Akt, were decreased following BDNF treatment, and calpain inhibition reversed this effect. Calpain-2, but not calpain-1, treatment of brain homogenates resulted in PTEN degradation. In cultured cortical neurons, knockdown of calpain-2, but not calpain-1, by small interfering RNA completely suppressed the effect of BDNF on mTOR activation. Our results reveal a critical role for calpain-2 in BDNF-induced mTOR signaling and dendritic protein synthesis via PTEN, hamartin, and tuberin degradation. This mechanism therefore provides a link between proteolysis and protein synthesis that might contribute to synaptic plasticity.

  15. Crystal Structure of Phosphatidylglycerophosphatase (PGPase), a Putative Membrane-Bound Lipid Phosphatase, Reveals a Novel Binuclear Metal Binding Site and Two Proton Wires

    SciTech Connect

    Kumaran,D.; Bonnano, J.; Burley, S.; Swaminathan, S.

    2006-01-01

    Phosphatidylglycerophosphatase (PGPase), an enzyme involved in lipid metabolism, catalyzes formation of phosphatidylglycerol from phosphatidylglycerophosphate. Phosphatidylglycerol is a multifunctional phospholipid, found in the biological membranes of many organisms. Here, we report the crystal structure of Listeria monocytogenes PGPase at 1.8 Angstroms resolution. PGPase, an all-helical molecule, forms a homotetramer. Each protomer contains an independent active site with two metal ions, Ca{sup 2+} and Mg{sup 2+}, forming a hetero-binuclear center located in a hydrophilic cavity near the surface of the molecule. The binuclear center, conserved ligands, metal-bound water molecules, and an Asp-His dyad form the active site. The catalytic mechanism of this enzyme is likely to proceed via binuclear metal activated nucleophilic water. The binuclear metal-binding active-site environment of this structure should provide insights into substrate binding and metal-dependent catalysis. A long channel with inter-linked linear water chains, termed 'proton wires', is observed at the tetramer interface. Comparison of similar water chain structures in photosynthetic reaction centers (RCs), Cytochrome f, gramicidin, and bacteriorhodopsin, suggests that PGPase may conduct protons via proton wires.

  16. Conditional genetic deletion of PTEN after a spinal cord injury enhances regenerative growth of CST axons and motor function recovery in mice.

    PubMed

    Danilov, Camelia A; Steward, Oswald

    2015-04-01

    Previous studies indicate that conditional genetic deletion of phosphatase and tensin homolog (PTEN) in neonatal mice enhances the ability of axons to regenerate following spinal cord injury (SCI) in adults. Here, we assessed whether deleting PTEN in adult neurons post-SCI is also effective, and whether enhanced regenerative growth is accompanied by enhanced recovery of voluntary motor function. PTEN(loxP/loxP) mice received moderate contusion injuries at cervical level 5 (C5). One group received unilateral injections of adeno-associated virus expressing CRE (AAV-CRE) into the sensorimotor cortex; controls received a vector expressing green fluorescent protein (AAV-GFP) or injuries only (no vector injections). Forelimb function was tested for 14weeks post-SCI using a grip strength meter (GSM) and a hanging task. The corticospinal tract (CST) was traced by injecting mini-ruby BDA into the sensorimotor cortex. Forelimb gripping ability was severely impaired immediately post-SCI but recovered slowly over time. The extent of recovery was significantly greater in PTEN-deleted mice in comparison to either the AAV-GFP group or the injury only group. BDA tract tracing revealed significantly higher numbers of BDA-labeled axons in caudal segments in the PTEN-deleted group compared to control groups. In addition, in the PTEN-deleted group, there were exuberant collaterals extending from the main tract rostral to the lesion and into and around the scar tissue at the injury site. These results indicate that PTEN deletion in adult mice shortly post-SCI can enhance regenerative growth of CST axons and forelimb motor function recovery.

  17. Redox-Sensitive Oxidation and Phosphorylation of PTEN Contribute to Enhanced Activation of PI3K/Akt Signaling in Rostral Ventrolateral Medulla and Neurogenic Hypertension in Spontaneously Hypertensive Rats

    PubMed Central

    Wu, Kay L.H.; Wu, Chiung-Ai; Wu, Chih-Wei; Chan, Samuel H.H.; Chang, Alice Y.W.

    2013-01-01

    Abstract Aims: The activity of phosphoinositide 3-kinase (PI3K)/serine/threonine protein kinase (Akt) is enhanced under hypertension. The phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is a negative regulator of PI3K signaling, and its activity is redox-sensitive. In the rostral ventrolateral medulla (RVLM), which is responsible for the maintenance of blood pressure, oxidative stress plays a pivotal role in neurogenic hypertension. The present study evaluated the hypothesis that redox-sensitive inactivation of PTEN results in enhanced PI3K/Akt signaling in RVLM, leading to neurogenic hypertension. Results: Compared to age-matched normotensive Wistar-Kyoto (WKY) rats, PTEN inactivation in the form of oxidation and phosphorylation were greater in RVLM of spontaneously hypertensive rats (SHR). PTEN inactivation was accompanied by augmented PI3K activity and PI3K/Akt signaling, as reflected by the increase in phosphorylation of Akt and mammalian target of rapamycin. Intracisternal infusion of tempol or microinjection into the bilateral RVLM of adenovirus encoding superoxide dismutase significantly antagonized the PTEN inactivation and blunted the enhanced PI3K/Akt signaling in SHR. Gene transfer of PTEN to RVLM in SHR also abrogated the enhanced Akt activation and promoted antihypertension. Silencing PTEN expression in RVLM with small-interfering RNA, on the other hand, augmented PI3K/Akt signaling and promoted long-term pressor response in normotensive WKY rats. Innovation: The present study demonstrated for the first time that the redox-sensitive check-and-balance process between PTEN and PI3K/Akt signaling is engaged in the pathogenesis of hypertension. Conclusion: We conclude that an aberrant interplay between the redox-sensitive PTEN and PI3k/Akt signaling in RVLM underpins neural mechanism of hypertension. Antioxid. Redox Signal. 18, 36–50. PMID:22746319

  18. Teaching resources. Protein phosphatases.

    PubMed

    Salton, Stephen R

    2005-03-01

    This Teaching Resource provides lecture notes and slides for a class covering the structure and function of protein phosphatases and is part of the course "Cell Signaling Systems: A Course for Graduate Students." The lecture begins with a discussion of the importance of phosphatases in physiology, recognized by the award of a Nobel Prize in 1992, and then proceeds to describe the two types of protein phosphatases: serine/threonine and tyrosine phosphatases. The information covered includes the structure, regulation, and substrate specificity of protein phosphatases, with an emphasis on their importance in disease and clinical settings.

  19. Salvianolic acid A positively regulates PTEN protein level and inhibits growth of A549 lung cancer cells

    PubMed Central

    BI, LEI; CHEN, JIANPING; YUAN, XIAOJING; JIANG, ZEQUN; CHEN, WEIPING

    2013-01-01

    Salvianolic acid A (Sal A) is an effective compound extracted from Salvia miltiorrhiza which has been used in the treatment of various diseases. Preliminary data indicate that Sal A treatment has a specific anti-lung cancer effect. However, the manner in which Sal A regulates cancer growth remains unknown. In this study, the A549 lung cancer cell line and its response to Sal A treatment was examined. Results showed that Sal A treatment significantly decreased A549 cell growth, promoted partial apoptosis and increased mitochondrial membrane permeability. Western blot analysis showed that Sal A upregulated the phosphatase and tensin homolog (PTEN) protein level, while consistently downregulating Akt phosphorylation. These results indicate that Sal A negatively mediates A549 lung cancer cell line growth or apoptosis, most likely by positively regulating PTEN protein level. PMID:24648921

  20. Identification of the adipocyte acid phosphatase as a PAO-sensitive tyrosyl phosphatase.

    PubMed Central

    Shekels, L. L.; Smith, A. J.; Van Etten, R. L.; Bernlohr, D. A.

    1992-01-01

    We have partially purified an 18-kDa cytoplasmic protein from 3T3-L1 cells, which dephosphorylates pNPP and the phosphorylated adipocyte lipid binding protein (ALBP), and have identified it by virtue of kinetic and immunological criteria as an acid phosphatase (EC 3.1.3.2). The cytoplasmic acid phosphatase was inactivated by phenylarsine oxide (PAO) (Kinact = 10 microM), and the inactivation could be reversed by the dithiol, 2,3-dimercaptopropanol (Kreact = 23 microM), but not the monothiol, 2-mercaptoethanol. Cloning of the human adipocyte acid phosphatase revealed that two isoforms exist, termed HAAP alpha and HAAP beta (human adipocyte acid phosphatase), which are distinguished by a 34-amino acid isoform-specific domain. Sequence analysis shows HAAP alpha and HAAP beta share 74% and 90% identity with the bovine liver acid phosphatase, respectively, and 99% identity with both isoenzymes of the human red cell acid phosphatase but no sequence similarity to the protein tyrosine phosphatases (EC 3.1.3.48). HAAP beta has been cloned into Escherichia coli, expressed, and purified as a glutathione S-transferase fusion protein. Recombinant HAAP beta was shown to dephosphorylate pNPP and phosphoALBP and to be inactivated by PAO and inhibited by vanadate (Ki = 17 microM). These results describe the adipocyte acid phosphatase as a cytoplasmic enzyme containing conformationally vicinal cysteine residues with properties that suggest it may dephosphorylate tyrosyl phosphorylated cellular proteins. PMID:1304913

  1. MicroRNA-152 Targets Phosphatase and Tensin Homolog to Inhibit Apoptosis and Promote Cell Migration of Nasopharyngeal Carcinoma Cells

    PubMed Central

    Huang, Shunde; Li, Xiaohua; Zhu, Haotu

    2016-01-01

    Background Nasopharyngeal carcinoma (NPC) is a type of head and neck cancer with very high prevalence in southern China. Phosphatase and tensin homolog (PTEN), a tumor suppressor, was reported to be downregulated in NPC patients and correlated with pathological grade and clinical stage of NPC. Material/Methods Luciferase reporter assay, qPCR, and Western blot analysis were used to determine if PTEN is a target of miR-152. The function of miR-152 in cell apoptosis and cell proliferation was examined as well. Tissue samples from NPC patients were also analyzed for PTEN and miR-152 expressions. Results Reporter assay indicated miR-152 targets the 3′UTR of PTEN mRNA to inhibit PTEN expression. Transfection of the NPC-derived cell line with miR-152 mimic confirmed these findings. Overexpression of miRNA-152 inhibits apoptosis induced by Cisplatin in NPC cancer cells in vitro. Moreover, overexpression miR-152 also promotes NPC cancer cell invasion and proliferation. Samples from EBV-negative NPC patients demonstrated the down-regulated level of PTEN may be related with overexpression of miR-152. Conclusions The miR-152 targets PETN to inhibit cell apoptosis and promote cancer cell proliferation and migration in NPC development. PMID:27840403

  2. Pulmonary hypertension secondary to left-heart failure involves peroxynitrite-induced downregulation of PTEN in the lung.

    PubMed

    Ravi, Yazhini; Selvendiran, Karuppaiyah; Naidu, Shan K; Meduru, Sarath; Citro, Lucas A; Bognár, Balázs; Khan, Mahmood; Kálai, Tamás; Hideg, Kálmán; Kuppusamy, Periannan; Sai-Sudhakar, Chittoor B

    2013-03-01

    Pulmonary hypertension (PH) that occurs after left-heart failure (LHF), classified as Group 2 PH, involves progressive pulmonary vascular remodeling induced by smooth muscle cell (SMC) proliferation. However, mechanisms involved in the activation of SMCs remain unknown. The objective of this study was to determine the involvement of peroxynitrite and phosphatase-and-tensin homolog on chromosome 10 (PTEN) in vascular SMC proliferation and remodeling in the LHF-induced PH (LHF-PH). LHF was induced by permanent ligation of left anterior descending coronary artery in rats for 4 weeks. MRI, ultrasound, and hemodynamic measurements were performed to confirm LHF and PH. Histopathology, Western blot, and real-time polymerase chain reaction analyses were used to identify key molecular signatures. Therapeutic intervention was demonstrated using an antiproliferative compound, HO-3867. LHF-PH was confirmed by significant elevation of pulmonary artery pressure (mean pulmonary artery pressure/mm Hg: 35.9±1.8 versus 14.8±2.0, control; P<0.001) and vascular remodeling. HO-3867 treatment decreased mean pulmonary artery pressure to 22.6±0.8 mm Hg (P<0.001). Substantially higher levels of peroxynitrite and significant loss of PTEN expression were observed in the lungs of LHF rats when compared with control. In vitro studies using human pulmonary artery SMCs implicated peroxynitrite-mediated downregulation of PTEN expression as a key mechanism of SMC proliferation. The results further established that HO-3867 attenuated LHF-PH by decreasing oxidative stress and increasing PTEN expression in the lung. In conclusion, peroxynitrite and peroxynitrite-mediated PTEN inactivation seem to be key mediators of lung microvascular remodeling associated with PH secondary to LHF.

  3. Systemic elevation of PTEN induces a tumor suppressive metabolic state

    PubMed Central

    Garcia-Cao, Isabel; Song, Min Sup; Hobbs, Robin M.; Laurent, Gaelle; Giorgi, Carlotta; de Boer, Vincent C.J.; Anastasiou, Dimitrios; Ito, Keisuke; Sasaki, Atsuo T.; Rameh, Lucia; Carracedo, Arkaitz; Vander Heiden, Matthew G.; Cantley, Lewis C.; Pinton, Paolo; Haigis, Marcia C.; Pandolfi, Pier Paolo

    2012-01-01

    SUMMARY Decremental loss of PTEN results in cancer susceptibility and tumor progression. In turn this raises the possibility that PTEN elevation might be an attractive option for cancer prevention and therapy. We have generated several transgenic mouse lines with variably elevated PTEN expression levels, taking advantage of BAC (Bacterial Artificial Chromosome)-mediated transgenesis. Super-PTEN mutants are viable and show reduced body size due to decreased cell number, with no effect on cell size. Unexpectedly, PTEN elevation at the organism level results in healthy metabolism characterized by increased energy expenditure and reduced body fat accumulation. Cells derived from these mice show reduced glucose and glutamine uptake, increased mitochondrial oxidative phosphorylation, and are resistant to oncogenic transformation. Mechanistically we find that PTEN elevation orchestrates this metabolic switch by regulating PI3K-dependent and independent pathways, and negatively impacts two of the most pronounced metabolic features of tumor cells: glutaminolysis and the Warburg effect. PMID:22401813

  4. PTEN Plasticity - How the Taming of a Lethal Gene Can Go too Far

    PubMed Central

    Naguib, Adam; Trotman, Lloyd C.

    2013-01-01

    PTEN loss drives many cancers and recent genetic studies reveal that often PTEN is antagonised at the protein level without alteration of DNA or RNA expression. This scenario can already cause malignancy since PTEN is haploinsufficient. We here review normally occurring mechanisms of PTEN protein regulation and discuss three processes where PTEN plasticity is needed: ischaemia, development and wound healing. These situations demand transient PTEN suppression while on the other hand cancer exploits them for continuous proliferation and survival advantages. Therefore increased understanding of PTEN plasticity may help us better interpret tumour development and ultimately lead to drug targets for PTEN supporting cancer therapy. PMID:23578748

  5. PTEN stabilizes TOP2A and regulates the DNA decatenation

    PubMed Central

    Kang, Xi; Song, Chang; Du, Xiao; Zhang, Cong; Liu, Yu; Liang, Ling; He, Jinxue; Lamb, Kristy; Shen, Wen H.; Yin, Yuxin

    2015-01-01

    PTEN is a powerful tumor suppressor that antagonizes the cytoplasmic PI3K-AKT pathway and suppresses cellular proliferation. PTEN also plays a role in the maintenance of genomic stability in the nucleus. Here we report that PTEN facilitates DNA decatenation and controls a decatenation checkpoint. Catenations of DNA formed during replication are decatenated by DNA topoisomerase II (TOP2), and this process is actively monitored by a decatenation checkpoint in G2 phase. We found that PTEN deficient cells form ultra-fine bridges (UFBs) during anaphase and these bridges are generated as a result of insufficient decatenation. We show that PTEN is physically associated with a decatenation enzyme TOP2A and that PTEN influences its stability through OTUD3 deubiquitinase. In the presence of PTEN, ubiquitination of TOP2A is inhibited by OTUD3. Deletion or deficiency of PTEN leads to down regulation of TOP2A, dysfunction of the decatenation checkpoint and incomplete DNA decatenation in G2 and M phases. We propose that PTEN controls DNA decatenation to maintain genomic stability and integrity. PMID:26657567

  6. Structure of Acid phosphatases.

    PubMed

    Araujo, César L; Vihko, Pirkko T

    2013-01-01

    Acid phosphatases are enzymes that have been studied extensively due to the fact that their dysregulation is associated with pathophysiological conditions. This characteristic has been exploited for the development of diagnostic and therapeutic methods. As an example, prostatic acid phosphatase was the first marker for metastatic prostate cancer diagnosis and the dysregulation of tartrate resistant acid phosphatase is associated with abnormal bone resorption linked to osteoporosis. The pioneering crystallization studies on prostatic acid phosphatase and mammalian tartrate-resistant acid phosphatase conformed significant milestones towards the elucidation of the mechanisms followed by these enzymes (Schneider et al., EMBO J 12:2609-2615, 1993). Acid phosphatases are also found in nonmammalian species such as bacteria, fungi, parasites, and plants, and most of them share structural similarities with mammalian acid phosphatase enzymes. Acid phosphatase (EC 3.1.3.2) enzymes catalyze the hydrolysis of phosphate monoesters following the general equation. Phosphate monoester + H2O -->/<-- alcohol + phosphate. The general classification "acid phosphatase" relies only on the optimum acidic pH for the enzymatic activity in assay conditions using non-physiological substrates. These enzymes accept a wide range of substrates in vitro, ranging from small organic molecules to phosphoproteins, constituting a heterogeneous group of enzymes from the structural point of view. These structural differences account for the divergence in cofactor dependences and behavior against substrates, inhibitors, and activators. In this group only the tartrate-resistant acid phosphatase is a metallo-enzyme whereas the other members do not require metal-ion binding for their catalytic activity. In addition, tartrate-resistant acid phosphatase and erythrocytic acid phosphatase are not inhibited by L-(+)-tartrate ion while the prostatic acid phosphatase is tartrate-sensitive. This is an important

  7. An integrative analysis of PIK3CA mutation, PTEN, and INPP4B expression in terms of trastuzumab efficacy in HER2-positive breast cancer.

    PubMed

    Sueta, Aiko; Yamamoto, Yutaka; Yamamoto-Ibusuki, Mutsuko; Hayashi, Mitsuhiro; Takeshita, Takashi; Yamamoto, Satoko; Iwase, Hirotaka

    2014-01-01

    The phosphoinositide-3-kinase (PI3K) pathway is commonly deregulated in breast cancer through several mechanisms, including PIK3CA mutation and loss of phosphatase and tensin homolog (PTEN) and inositol polyphosphate 4-phosphatase-II (INPP4B). We aimed to evaluate the predictive relevance of these biomarkers to trastuzumab efficacy in HER2-positive disease. We evaluated the effect of trastuzumab in 43 breast cancer patients with HER2-overexpression who received neoadjuvant treatment. PIK3CA mutation was examined by direct sequencing and digital PCR assay, and PIK3CA copy number was assessed by digital PCR assay of pretreatment tissues. PTEN, pAkt, and INPP4B were assessed by immunohistochemistry. Direct sequencing detected mutant DNA in 21% of all patients, but the incidence increased to 49% using digital PCR. The pathological complete response (pCR) rate in patients with PIK3CA mutations was 29% compared with 67% for those without PIK3CA mutations (P = 0.093), when the mutation was defined as positive if the mutant proportion was more than 10% of total genetic content by digital PCR. Low PTEN expression was associated with less pCR compared to high expression (33% versus 72%, P = 0.034). There were no significant associations of PIK3CA copy number, pAKt, or INPP4B with trastuzumab efficacy. In multivariate analysis, activation of the PI3K pathway due to either PIK3CA mutation or low PTEN were related to poorer response to trastuzumab (OR of predictive pCR was 0.11, 95%CI; 0.03-0.48). In conclusion, activating the PI3K pathway is associated with low pCR to trastuzumab-based treatment in HER2-positive breast cancer. Combined analysis of PIK3CA mutation and PTEN expression may serve as critical indicators to identify patients unlikely to respond to trastuzumab.

  8. Involvement of IGF-2, IGF-1R, IGF-2R and PTEN in development of human tooth germ - an immunohistochemical study.

    PubMed

    Kero, Darko; Cigic, Livia; Medvedec Mikic, Ivana; Galic, Tea; Cubela, Mladen; Vukojevic, Katarina; Saraga-Babic, Mirna

    2016-07-02

    Insulin-Like Growth Factor 2 (IGF-2) is a peptide hormone essential for prenatal growth and development. IGF-2 exerts its mitogenic effects via Insulin-Like Growth Factor 1 Receptor (IGF-1R), and is eliminated by binding to Insulin-Like Growth Receptor 2 (IGF-2R). IGF-2 is also negatively regulated by Phosphatase and Tensin Homolog (PTEN), a phosphatase mutated in various tumors. Not much is known about the interplay between these factors during human odontogenesis. In this study, expression patterns of IGF-2, IGF-1R, IGF-2R and PTEN were analyzed by double immunofluorescence in incisor human tooth germs during the foetal period of development between the 7(th) and 20(th) gestational week. Throughout the investigated period, IGF-2 was mostly expressed in enamel organ, whereas mild to moderate expression of PTEN could be seen in dental papilla and parts of enamel organ. Expression of IGF-1R was ubiquitous and displayed strong intensity throughout the entire enamel organ. In contrast, expression of IGF-2R had rather erratic pattern in enamel organ and dental papilla alike. Expression patterns of IGF-2, IGF-1R, IGF-2R and PTEN in highly proliferative cervical loops, as well as in differentiating pre-ameloblasts and pre-odontoblasts of cusp tip region during the early and late bell stages when enamel organ acquires definitive shape, indicate importance of these factors in crown morphogenesis of human incisor. Taken together, our data suggest the involvement of IGF-2, IGF-1R, IGF-2R and PTEN in temporo-spatial patterning of basic cellular processes (proliferation, differentiation) during normal tooth development. They are also relevant for improving knowledge of molecular basis of human odontogenesis.

  9. Modulation in Activation and Expression of PTEN, Akt1, and PDK1: Further Evidence Demonstrating Altered Phosphoinositide 3-kinase Signaling in Postmortem Brain of Suicide Subjects

    PubMed Central

    Dwivedi, Yogesh; Rizavi, Hooriyah S.; Zhang, Hui; Roberts, Rosalinda C.; Conley, Robert R.; Pandey, Ghanshyam N.

    2010-01-01

    Background Phosphoinositide 3-kinase (PI 3-K) signaling plays a crucial role in neuronal growth and plasticity. Recently, we demonstrated that suicide brain is associated with decreased activation and expression of selective catalytic and regulatory subunits of PI 3-K. The present investigation examined the regulation and functional significance of compromised PI 3-K in suicide brain at the level of upstream phosphatase and tensin homolog on chromosome ten (PTEN) and downstream substrates 3-phosphoinositide-dependent kinase 1 (PDK1) and Akt. Method mRNA expression of Akt1, Akt3, PTEN, and PDK1 by competitive RT-PCR; protein expression of Akt1, Akt3, PTEN, PDK1, phosphorylated-Akt1 (Ser473), phosphorylated-Akt1(Thr308), phosphorylated-PDK1, and phosphorylated-PTEN by Western blot; and catalytic activities of Akt1, Akt3, and PDK1 by enzymatic assays were determined in prefrontal cortex (PFC) and hippocampus obtained from suicide subjects and nonpsychiatric controls. Results No significant changes in the expression of Akt1 or Akt3 were observed; however, catalytic activity of Akt1, but not of Akt3, was decreased in PFC and hippocampus of suicide subjects, which was associated with decreased phosphorylation of Akt1 at Ser473 and Thr308. The catalytic activity of PDK1 and the level of phosphorylated-PDK1 were also decreased in both brain areas without any change in expression levels of PDK1. On the other hand, mRNA and protein expression of PTEN was increased, whereas the level of phosphorylated-PTEN was decreased. Conclusion Our study demonstrates abnormalities in PI 3-K signaling at several levels in brain of suicide subjects and suggests the possible involvement of aberrant PI 3-K/Akt signaling in the pathogenic mechanisms of suicide. PMID:20163786

  10. Conditional genetic deletion of PTEN after a spinal cord injury enhances regenerative growth of CST axons and motor function recovery in mice

    PubMed Central

    Danilov, Camelia A.; Steward, Oswald

    2015-01-01

    Previous studies indicate that conditional genetic deletion of phosphatase and tensin homolog (PTEN) in neonatal mice enhances the ability of axons to regenerate following spinal cord injury (SCI) in adults. Here, we assessed whether deleting PTEN in adult neurons post-SCI is also effective, and whether enhanced regenerative growth is accompanied by enhanced recovery of voluntary motor function. PTENloxP/loxP mice received moderate contusion injuries at cervical level 5 (C5). One group received unilateral injections of adeno-associated virus expressing CRE (AAV-CRE) into the sensorimotor cortex; controls received a vector expressing green fluorescent protein (AAV-GFP) or injuries only (no vector injections). Forelimb function was tested for 14 weeks post-SCI using a grip strength meter (GSM) and a hanging task. The corticospinal tract (CST) was traced by injecting mini-ruby BDA into the sensorimotor cortex. Forelimb gripping ability was severely impaired immediately post-SCI but recovered slowly over time. The extent of recovery was significantly greater in PTEN-deleted mice in comparison to either the AAV-GFP group or the injury only group. BDA tract tracing revealed significantly higher numbers of BDA-labeled axons in caudal segments in the PTEN-deleted group compared to control groups. In addition, in the PTEN-deleted group, there were exuberant collaterals extending from the main tract rostral to the lesion, into and around the scar tissue at the injury site. These results indicate that PTEN deletion in adult mice shortly post-SCI can enhance regenerative growth of CST axons and forelimb motor function recovery. PMID:25704959

  11. Hepatic stellate cell is activated by microRNA-181b via PTEN/Akt pathway.

    PubMed

    Zheng, Jianjian; Wu, Cunzao; Xu, Ziqiang; Xia, Peng; Dong, Peihong; Chen, Bicheng; Yu, Fujun

    2015-01-01

    Activation of hepatic stellate cells (HSCs) is an essential event in the initiation and progression of liver fibrosis. MicroRNAs have been shown to play a pivotal role in regulating HSC functions such as cell proliferation, differentiation, and apoptosis. Recently, miR-181b has been reported to promote HSCs proliferation by targeting p27. But whether alpha-smooth muscle actin (α-SMA) or collagens could be promoted by miR-181b in activated HSCs is still not clear. Therefore, the understanding of the role of miR-181b in liver fibrosis remains limited. Our results showed that miR-181b expression was increased much higher than miR-181a expression in vitro in transforming growth factor-β1-induced HSC activation as well as in vivo in carbon tetrachloride-induced rat liver fibrosis. Of note, overexpression of miR-181b significantly increased the expressions level of α-SMA and type I collagen, and further promoted HSCs proliferation. Furthermore, phosphatase and tensin homologs deleted on chromosome 10 (PTEN), a negative regulator of PI3K/Akt pathway, were confirmed as a direct target of miR-181b. We demonstrated that miR-181b could suppress PTEN expression and increase Akt phosphorylation in HSCs. Interestingly, the effects of miR-181b on the activation of HSCs were blocked down by Akt inhibitor LY294002. Our results revealed a profibrotic role of miR-181b in HSC activation and demonstrated that miR-181b could activate HSCs, at least in part, via PTEN/Akt pathway.

  12. Synthetic Lethal Gene for PTEN as a Therapeutic Target

    DTIC Science & Technology

    2013-09-01

    patients and prepare PTEN-deficient cells. We will then screen genes that play critical roles in the PTEN pathway using a technique called shRNA library ... screening , with or without radiation treatment of these cells. When we identify a gene, we will then test the effect of such gene in an animal model to

  13. Formononetin inhibits human bladder cancer cell proliferation and invasiveness via regulation of miR-21 and PTEN.

    PubMed

    Wu, Yiying; Zhang, Xing; Li, Zhengzhao; Yan, Haibiao; Qin, Jian; Li, Tianyu

    2017-03-22

    The isoflavone formononetin is the main active component of Astragalus membranaceus and possesses anti-tumorigenic properties. However, the role of formononetin in human bladder cancer (BCa) has not been fully elucidated. The aim of the present study was to investigate the anti-tumor effects of formononetin on BCa cells and its potential molecular mechanism. T24 cells were treated with different concentrations of formononetin, and then the cell proliferation was assessed by MTT assay, cell apoptosis by Hoechst 33258 stain assay, cell invasiveness by transwell invasion assay, microRNA-21 (miR-21) expression by real-time PCR and the protein level of phosphatase and tensin homolog (PTEN) and phosphorylated homolog of Akt (p-Akt) by western blotting. The results showed that formononetin significantly inhibited the proliferation of T24 cells in a time- and dose-dependent manner. T24 cells treated with formononetin displayed obvious morphological changes of apoptosis and lower invasiveness. In addition, miR-21 expression was significantly decreased in formononetin-treated T24 cells, followed by increase of PTEN, and down-regulation of p-Akt. Collectively, these results suggest that formononetin exerts an anti-carcinogenic effect on BCa in vitro, which might be due to miR-21-mediated regulation of the PTEN/Akt pathway.

  14. MiR-21 mediates sorafenib resistance of hepatocellular carcinoma cells by inhibiting autophagy via the PTEN/Akt pathway.

    PubMed

    He, Changjun; Dong, Xuesong; Zhai, Bo; Jiang, Xian; Dong, Deli; Li, Baoxin; Jiang, Hongchi; Xu, Shidong; Sun, Xueying

    2015-10-06

    Sorafenib resistance remains a major obstacle for the effective treatments of hepatocellular carcinoma (HCC). Recent studies indicate that activated Akt contributes to the acquired resistance to sorafenib, and miR-21 dysregulates phosphatase and tensin homolog (PTEN), which inhibits Akt activation. Sorafenib-resistant HCC cells were shown to be refractory to sorafenib-induced growth inhibition and apoptosis. Akt and its downstream factors were highly activated and/or upregulated in sorafenib-resistant cells. Inhibition of autophagy decreased the sensitivity of sorafenib-resistant cells to sorafenib, while its induction had the opposite effect. Differential screening of miRNAs showed higher levels of miR-21 in sorafenib-resistant HCC cells. Exposure of HCC cells to sorafenib led to an increase in miR-21 expression, a decrease in PTEN expression and sequential Akt activation. Transfection of miR-21 mimics in HCC cells restored sorafenib resistance by inhibiting autophagy. Anti-miR-21 oligonucleotides re-sensitized sorafenib-resistant cells by promoting autophagy. Inhibition of miR-21 enhances the efficacy of sorafenib in treating sorafenib-resistant HCC tumors in vivo. We conclude that miR-21 participates in the acquired resistance of sorafenib by suppresing autophagy through the Akt/PTEN pathway. MiR-21 could serve as a therapeutic target for overcoming sorafenib resistance in the treatment of HCC.

  15. A miR-335/COX-2/PTEN axis regulates the secretory phenotype of senescent cancer-associated fibroblasts

    PubMed Central

    Kabir, Tasnuva D.; Leigh, Ross J.; Tasena, Hataitip; Mellone, Massimiliano; Coletta, Ricardo D.; Parkinson, Eric K.; Prime, Stephen S.; Thomas, Gareth J.; Paterson, Ian C.; Zhou, Donghui; McCall, John; Speight, Paul M.; Lambert, Daniel W.

    2016-01-01

    Senescent cancer-associated fibroblasts (CAF) develop a senescence-associated secretory phenotype (SASP) that is believed to contribute to cancer progression. The mechanisms underlying SASP development are, however, poorly understood. Here we examined the functional role of microRNA in the development of the SASP in normal fibroblasts and CAF. We identified a microRNA, miR-335, up-regulated in the senescent normal fibroblasts and CAF and able to modulate the secretion of SASP factors and induce cancer cell motility in co-cultures, at least in part by suppressing the expression of phosphatase and tensin homologue (PTEN). Additionally, elevated levels of cyclo-oxygenase 2 (PTGS2; COX-2) and prostaglandin E2 (PGE2) secretion were observed in senescent fibroblasts, and inhibition of COX-2 by celecoxib reduced the expression of miR-335, restored PTEN expression and decreased the pro-tumourigenic effects of the SASP. Collectively these data demonstrate the existence of a novel miRNA/PTEN-regulated pathway modulating the inflammasome in senescent fibroblasts. PMID:27385366

  16. Transposon mutagenesis identifies genes that cooperate with mutant Pten in breast cancer progression

    PubMed Central

    Rangel, Roberto; Lee, Song-Choon; Hon-Kim Ban, Kenneth; Guzman-Rojas, Liliana; Mann, Michael B.; Newberg, Justin Y.; McNoe, Leslie A.; Selvanesan, Luxmanan; Ward, Jerrold M.; Rust, Alistair G.; Chin, Kuan-Yew; Black, Michael A.; Jenkins, Nancy A.; Copeland, Neal G.

    2016-01-01

    Triple-negative breast cancer (TNBC) has the worst prognosis of any breast cancer subtype. To better understand the genetic forces driving TNBC, we performed a transposon mutagenesis screen in a phosphatase and tensin homolog (Pten) mutant mice and identified 12 candidate trunk drivers and a much larger number of progression genes. Validation studies identified eight TNBC tumor suppressor genes, including the GATA-like transcriptional repressor TRPS1. Down-regulation of TRPS1 in TNBC cells promoted epithelial-to-mesenchymal transition (EMT) by deregulating multiple EMT pathway genes, in addition to increasing the expression of SERPINE1 and SERPINB2 and the subsequent migration, invasion, and metastasis of tumor cells. Transposon mutagenesis has thus provided a better understanding of the genetic forces driving TNBC and discovered genes with potential clinical importance in TNBC. PMID:27849608

  17. Short-Term PTEN Inhibition Improves In Vitro Activation of Primordial Follicles, Preserves Follicular Viability, and Restores AMH Levels in Cryopreserved Ovarian Tissue From Cancer Patients

    PubMed Central

    Novella-Maestre, Edurne; Herraiz, Sonia; Rodríguez-Iglesias, Beatriz; Díaz-García, César; Pellicer, Antonio

    2015-01-01

    Introduction In vitro activation and growth of primordial dormant follicles to produce fertilizable oocytes would provide a useful instrument for fertility preservation. The employment of Phosphatase and TENsin homolog (PTEN) inhibitors, in combination with Protein kinase B (Akt) stimulating molecules, has been previously employed to increase follicular activation through the stimulation of the PTEN-Akt pathway. Methods We aim to establish improved in vitro activation also for cancer patients whose ovarian tissue has already been cryopreserved. Fresh and previously cryopreserved human ovarian cortex were exposed to short-term, low-concentration and ovary-specific treatment with only a PTEN inhibitor. Results Our in vitro activation protocol enhances the activation mechanisms of primordial follicles in both fresh and cryopreserved samples, and enlarges growing populations without inducing apoptosis in either follicles or the surrounding stroma. Treatment augments estradiol secretion and restores the expression levels of the previously diminished Anti-Müllerian hormone by means of cryopreservation procedures. Genomic modulation of the relative expression of PTEN pathway genes was found in treated samples. Conclusion The in vitro activation protocol offers new alternatives for patients with cryopreserved tissue as it increases the pool of viable activated follicles available for in vitro growth procedures. The combination of ovarian tissue cryopreservation and in vitro activation of primordial follicles, the main ovarian reserve component, will be a major advancement in fertility preservation. PMID:26024525

  18. Downregulation of miR-221/222 by a microRNA sponge promotes apoptosis in oral squamous cell carcinoma cells through upregulation of PTEN.

    PubMed

    Zhou, Lijie; Jiang, Fangfang; Chen, Xijuan; Liu, Zifeng; Ouyang, Ying; Zhao, Wei; Yu, Dongsheng

    2016-12-01

    MicroRNA-221 and microRNA-222 (miR-221/222) have been identified as oncogenes and confirmed to be overexpressed in various types of cancer. However, the regulation mechanism of miR-221/222 in oral squamous cell carcinoma (OSCC) remains to be fully elucidated. Previously, an miR-221/222 sponge was successfully constructed and its effect on the downregulation of miR-221/222 expression was investigated. In the present study, the dual luciferase reporter assay revealed a phosphatase and tensin homolog (PTEN) deletion on chromosome 10 to be a target gene of miR-221/222. It was also demonstrated that miR-221/222 suppression by transfection with an miR-221/222 sponge in vitro resulted in upregulation of PTEN. Notably, the proliferation and invasiveness of the miR-221/222 sponge-transfected cells was significantly inhibited, while apoptosis was promoted, when determined by Cell Counting Kit-8, Transwell assays and flow cytometry. The results of the present study prove that miR-221/222 may downregulate the expression of PTEN in OSCC cells and function as oncogenes, providing a novel insight into the underlying mechanism of OSCC tumorigenesis. The present study suggests that upregulating the expression of PTEN by downregulation of miR-221/222 may be a potential treatment for OSCC.

  19. Phosphoinositide 5- and 3-phosphatase activities of a voltage-sensing phosphatase in living cells show identical voltage dependence

    PubMed Central

    Keum, Dongil; Kim, Dong-Il; Suh, Byung-Chang

    2016-01-01

    Voltage-sensing phosphatases (VSPs) are homologs of phosphatase and tensin homolog (PTEN), a phosphatidylinositol 3,4-bisphosphate [PI(3,4)P2] and phosphatidylinositol 3,4,5-trisphosphate [PI(3,4,5)P3] 3-phosphatase. However, VSPs have a wider range of substrates, cleaving 3-phosphate from PI(3,4)P2 and probably PI(3,4,5)P3 as well as 5-phosphate from phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] and PI(3,4,5)P3 in response to membrane depolarization. Recent proposals say these reactions have differing voltage dependence. Using Förster resonance energy transfer probes specific for different PIs in living cells with zebrafish VSP, we quantitate both voltage-dependent 5- and 3-phosphatase subreactions against endogenous substrates. These activities become apparent with different voltage thresholds, voltage sensitivities, and catalytic rates. As an analytical tool, we refine a kinetic model that includes the endogenous pools of phosphoinositides, endogenous phosphatase and kinase reactions connecting them, and four exogenous voltage-dependent 5- and 3-phosphatase subreactions of VSP. We show that apparent voltage threshold differences for seeing effects of the 5- and 3-phosphatase activities in cells are not due to different intrinsic voltage dependence of these reactions. Rather, the reactions have a common voltage dependence, and apparent differences arise only because each VSP subreaction has a different absolute catalytic rate that begins to surpass the respective endogenous enzyme activities at different voltages. For zebrafish VSP, our modeling revealed that 3-phosphatase activity against PI(3,4,5)P3 is 55-fold slower than 5-phosphatase activity against PI(4,5)P2; thus, PI(4,5)P2 generated more slowly from dephosphorylating PI(3,4,5)P3 might never accumulate. When 5-phosphatase activity was counteracted by coexpression of a phosphatidylinositol 4-phosphate 5-kinase, there was accumulation of PI(4,5)P2 in parallel to PI(3,4,5)P3 dephosphorylation

  20. Functional characterization of lysophosphatidic acid phosphatase from Arabidopsis thaliana.

    PubMed

    Reddy, Venky Sreedhar; Rao, D K Venkata; Rajasekharan, Ram

    2010-04-01

    Lysophosphatidic acid (LPA) acts as a signaling molecule that regulates diverse cellular processes and it can rapidly be metabolized by phosphatase and acyltransferase. LPA phosphatase gene has not been identified and characterized in plants so far. The BLAST search revealed that the At3g03520 is similar to phospholipase family, and distantly related to bacterial phosphatases. The conserved motif, (J)4XXXNXSFD, was identified in both At3g03520 like phospholipases and acid phosphatases. In silico expression analysis of At3g03520 revealed a high expression during phosphate starvation and abiotic stresses. This gene was overexpressed in Escherichia coli and shown to posses LPA specific phosphatase activity. These results suggest that this gene possibly plays a role in signal transduction and storage lipid synthesis.

  1. STAT1 Inhibits miR-181a Expression to Suppress Colorectal Cancer Cell Proliferation through PTEN/Akt.

    PubMed

    Zhang, Xingwen; Li, Xiang; Tan, Fengbo; Yu, Nanhui; Pei, Haiping

    2017-03-21

    Signal transducers and activators of transcription 1 (STAT1) exhibits tumor-suppressor properties by inhibiting oncogenic pathways and promoting tumor immunosurveillance. MicroRNAs, a group of non-coding endogenous ones, may regulate gene expression and plays specific roles in tumorigenesis. Recently, miR-181a has been reported to be associated with poor prognosis of colorectal cancer (CRC). Using human colorectal cancer cell lines, we demonstrated that STAT1 suppresses both LoVo and SW480 cell growth by down-regulating miR-181a. STAT1 regulates the expression of miR-181a through binding to the elements in the miR-181a's promoter region. Further, we revealed that miR-181a accelerates CRC cell proliferation through phosphatase and tensin homolog on chromosome ten (PTEN). In addition, PTEN protein was upregulated in response to STAT1 overexpression or miR-181a inhibition, downregulated in response to STAT1 knockdown or miR-181a overexpression. Without changes on the AKT protein level, p-AKT was downregulated by STAT1 overexpression or miR-181a inhibition while upregulated by STAT1 knockdown or miR-181a overexpression, indicating PTEN/Akt pathway activated in STAT1/miR-181a regulation of CRC cell proliferation. Taken together, our findings shed new light on the STAT1/miR-181a/PTEN pathway in colorectal cancer and add new insight regarding the carcinogenesis of colorectal cancer. This article is protected by copyright. All rights reserved.

  2. Role of phosphatase of regenerating liver 1 (PRL1) in spermatogenesis

    PubMed Central

    Bai, Yunpeng; Zhou, Hong-Ming; Zhang, Lujuan; Dong, Yuanshu; Zeng, Qi; Shou, Weinian; Zhang, Zhong-Yin

    2016-01-01

    The PRL phosphatases are oncogenic when overexpressed but their in vivo biological function is less well understood. Previous gene deletion study revealed a role for PRL2 in spermatogenesis. We report here the first knockout mice lacking PRL1, the most related homolog of PRL2. We found that loss of PRL1 does not affect spermatogenesis and reproductive ability of male mice, likely due to functional compensation by the relatively higher expression of PRL2 in the testes. However, PRL1−/−/PRL2+/− male mice show testicular atrophy phenotype similar to PRL2−/− mice. More strikingly, deletion of one PRL1 allele in PRL2−/− male mice causes complete infertility. Mechanistically, the total level of PRL1 and PRL2 is negatively correlated with the PTEN protein level in the testis and PRL1+/−/PRL2−/− mice have the highest level of PTEN, leading to attenuated Akt activation and increased germ cell apoptosis, effectively halting spermatozoa production. These results provide the first evidence that in addition to PRL2, PRL1 is also required for spermatogenesis by downregulating PTEN and promoting Akt signaling. The ability of the PRLs to suppress PTEN expression underscores the biochemical basis for their oncogenic potential. PMID:27666520

  3. Ammonium Increases TRPC1 Expression Via Cav-1/PTEN/AKT/GSK3β Pathway.

    PubMed

    Wang, Wei; Gu, Li; Verkhratsky, Alexei; Peng, Liang

    2017-03-01

    Hyperammonemia occurring following acute liver failure is the primary cause of hepatic encephalopathy. In the brain, ammonium is catabolised by glutamine synthetase expressed exclusively in astroglia; ammonium overload impairs astroglial homeostatic systems. Previously, we had reported that chronic treatment with 3 mM ammonia increased expression of transient receptor potential canonic 1 (TRPC1) channels and Ca(2+) release from intracellular Ca(2+) stores (Liang et al. in Neurochem Res 39:2127-2135, 2014). Glycogen synthase kinase 3β (GSK-3β) has a key role in several astroglial signalling pathways and is known to be affected in various CNS diseases. We have studied the involvement of Cav-1/PTEN/AKT/GSK-3β signalling system in regulation of TRPC1 gene expression by ammonium. Effects of chronic (1-5 days) treatment with ammonium chloride (ammonium), at pathologically relevant concentrations of 1-5 mM were investigated on primary cultures of mouse cerebral astrocytes. We quantified expression of caveolin-1 (Cav-1), membrane content of phosphatase and tensin homologue (PTEN), phosphorylation of AKT and GSK-3β, and expression of TRPC1 channels. Ammonium significantly increased expression of Cav-1 mRNA and protein, mRNA of TRPC1 as well as membrane content of PTEN; conversely phosphorylation of AKT and GSK-3β were significantly decreased. These changes were abolished following astrocytes treatment with siRNA specific to Cav-1, indicating the involvement of Cav-1/PTEN/PI3K/AKT pathway. Similar results were found in the brains of adult mice subjected to intraperitoneal injection of urease (a model for hyperammoniemia) for 1-5 days. In transgenic mice tagged with an astrocyte-specific or neurone-specific markers (used for fluorescence-activated cell sorting of astrocytes vs. neurones) and treated with intraperitoneal injections of urease for 3 days, the Cav-1 gene mRNA expression was up-regulated in astrocytes, but not in neurones. The up-regulation of TRPC1 gene

  4. A PTEN-regulated checkpoint regulates surface delivery of delta opioid receptors.

    PubMed

    Shiwarski, Daniel J; Tipton, Alycia; Giraldo, Melissa D; Schmidt, Brigitte F; Gold, Michael S; Pradhan, Amynah A; Puthenveedu, Manojkumar A

    2017-03-06

    The delta opioid receptor (δR) is a promising alternate target for pain management, because δR agonists show decreased abuse potential compared to current opioid analgesics that target the mu opioid receptor. A critical limitation in developing δR as an analgesic target, however, is that δR agonists show relatively low efficacy in vivo, requiring the use of high doses that often cause adverse effects such as convulsions. Here we tested whether intracellular retention of δR in sensory neurons contributes to this low δR agonist efficacy in vivo by limiting surface δR expression. Using direct visualization of δR trafficking and localization, we define a phosphatase and tensin homolog (PTEN)-regulated checkpoint that retains δR in the Golgi and decreases surface delivery in rat and mice sensory neurons. PTEN inhibition releases δR from this checkpoint and stimulates delivery of exogenous and endogenous δR to the neuronal surface both in vitro and in vivo PTEN inhibition in vivo increases the percentage of TG neurons expressing δR on the surface, and allows efficient δR-mediated antihyperalgesia in mice. Together, we define a critical role for PTEN in regulating the surface delivery and bioavailability of the δR, explain the low efficacy of δR agonists in vivo, and provide evidence that active δR relocation is a viable strategy to increase δR antinociception.SIGNIFICANCE STATEMENTOpioid analgesics like morphine, which target the mu opioid receptor (μR), have been the mainstay of pain management, but their use is highly limited by adverse effects and their variable efficacy in chronic pain. Identifying alternate analgesic targets is therefore of great significance. While the delta opioid receptor (δR) is an attractive option, a critical limiting factor in developing δR as a target has been the low efficacy of δR agonists. Why δR agonists show low efficacy is still under debate. This study provides mechanistic and functional data that intracellular

  5. Identification and Validation of PTEN Complex, Associated Proteins

    DTIC Science & Technology

    2006-11-01

    in [19]. PIP3 is the major substrate of PTEN. PTEN interacts and dephosphorylates the D3 hydroxyl subunit of PI-3,4,5-P (PIP3) to give PI-4,5-P [20...It is also capable of interacting and dephosphorylating other phosphoinositides, like PI-3-P, PI- 3,4-P2, Ins-1,3,4-P3, but with a lower affinity...membrane binding [26, 27]. Our group was the first to demonstrate that PTEN is modified by phosphorylation at the C-terminus by Casein Kinase-2

  6. Human aortic smooth muscle cell-derived exosomal miR-221/222 inhibits autophagy via a PTEN/Akt signaling pathway in human umbilical vein endothelial cells.

    PubMed

    Li, Luocheng; Wang, Zhiwei; Hu, Xiaoping; Wan, Ting; Wu, Hongbing; Jiang, Wanli; Hu, Rui

    2016-10-14

    Dysregulation of autophagy in endothelial cells plays a vital role in cardiovascular dysfunction and atherosclerosis. Accumulating evidence shows that miRNAs regulate autophagy in various cell types by targeting autophagy-related genes. In the present study, we found that a co-culture of human umbilical vein endothelial cells (HUVECs) with human aortic smooth muscle cells (HAoSMCs) inhibited autophagy activity in HUVECs. Furthermore, we isolated exosomes secreted by HAoSMCs, and confirmed that the exosomes contain miR-221/222. We investigated the role of miR-221/222 transferred by HAoSMC-derived exosomes in HUVECs. These exosomes induced an increase of miR-221/222 expression and a down-regulation of phosphatase and tensin homolog deleted on chromosome ten (PTEN) in HUVECs. Dual luciferase reporter assays revealed that miR-221/222 could bind to the 3'UTR of PTEN, which implied that PTEN was a direct target of miR-221/222. The expression of PTEN could be down-regulated by miR-221/222 over-expression. Then, we detected the expression of PTEN, LC3, ATG5, SQSTM1/p62, Beclin-1, Akt, and phospho-Akt in HUVECs transfected with miR-221/222 mimics and inhibitors. Our results demonstrated that miR-221/222 overexpression inhibited the expression of PTEN and subsequently activated Akt signaling, and eventually down-regulated the expression of LC3II, ATG5 and Beclin-1, and elevated the expression of SQSTM1/p62. This phenomenon can be reversed by the transfection of miR-221/222 inhibitors. These data suggested that miR-221/222 from HAoSMC-derived exosomes inhibited autophagy in HUVECs by modulating PTEN/Akt signaling pathway.

  7. Expression of Phosphatase and Tensin Homologue, phospho-Akt, and p53 in Acral Benign and Malignant Melanocytic Neoplasms (Benign Nevi, Dysplastic Nevi, and Acral Melanomas)

    PubMed Central

    Lyu, So Min; Wu, Ju Yeon; Byun, Ji Yeon; Choi, Hae Young; Park, Sang Hee

    2016-01-01

    Background The role of the phosphatidylinositol-3 kinase signaling pathway in the development of acral melanoma has recently gained evidence. Phosphatase and tensin homologue (PTEN), one of the key molecules in the pathway, acts as a tumor suppressor through either an Akt-dependent or Akt-independent pathway. Akt accelerates degradation of p53. Objective We assessed the expression of PTEN, phospho-Akt (p-Akt), and p53 by immunohistochemistry in benign acral nevi, acral dysplastic nevi, and acral melanomas in the radial growth phase and with a vertical growth component. Methods Ten specimens in each group were included. Paraffin-embedded specimens were immunostained with antibodies for PTEN, p-Akt, and p53. We scored both the staining intensity and the proportion of positive cells. The final score was calculated by multiplying the intensity score by the proportion score. Results All specimens of benign acral nevi except one showed some degree of PTEN-negative cells. The numbers of p-Akt and p53-positive cells were higher in acral dysplastic nevi and melanoma than in benign nevi. P-Akt scores were 1.7, 1.8, 2.6, and 4.4, and p53 scores were 2.0, 2.1, 3.8, and 4.1 in each group. PTEN and p-Akt scores in advanced acral melanoma were higher than in the other neoplasms. Conclusion The expression of PTEN was decreased and the expression of p-Akt was increased in acral melanoma, especially in advanced cases. The PTEN-induced pathway appears to affect the late stage of melanomagenesis. Altered expression of p-Akt is thought to be due to secondary changes following the loss of PTEN. PMID:27746632

  8. An inhibitor of mTOR reduces neoplasia and normalizes p70/S6 kinase activity in Pten+/− mice

    PubMed Central

    Podsypanina, Katrina; Lee, Richard T.; Politis, Chris; Hennessy, Ian; Crane, Allison; Puc, Janusz; Neshat, Mehran; Wang, Hong; Yang, Lin; Gibbons, Jay; Frost, Phil; Dreisbach, Valley; Blenis, John; Gaciong, Zbigniew; Fisher, Peter; Sawyers, Charles; Hedrick-Ellenson, Lora; Parsons, Ramon

    2001-01-01

    PTEN phosphatase acts as a tumor suppressor by negatively regulating the phosphoinositide 3-kinase (PI3K) signaling pathway. It is unclear which downstream components of this pathway are necessary for oncogenic transformation. In this report we show that transformed cells of PTEN+/− mice have elevated levels of phosphorylated Akt and activated p70/S6 kinase associated with an increase in proliferation. Pharmacological inactivation of mTOR/RAFT/FRAP reduced neoplastic proliferation, tumor size, and p70/S6 kinase activity, but did not affect the status of Akt. These data suggest that p70/S6K and possibly other targets of mTOR contribute significantly to tumor development and that inhibition of these proteins may be therapeutic for cancer patients with deranged PI3K signaling. PMID:11504907

  9. Networks of protein kinases and phosphatases in the individual phases of contextual fear conditioning in the C57BL/6J mouse.

    PubMed

    Mucic, Goran; Sase, Sunetra; Stork, Oliver; Lubec, Gert; Li, Lin

    2015-03-01

    Although protein kinases and phosphatases have been reported to be involved in fear memory, information about these signalling molecules in the individual phases of contextual fear conditioning (cFC) is limited. C57BL/6J mice were tested in cFC, sacrificed and hippocampi were used for screening of approximately 800 protein kinases and phosphatases by protein microarrays with subsequent Western blot confirmation of threefold higher or lower hippocampal levels as compared to foot shock controls. Immunoblotting of the protein kinases and phosphatases screened out was carried out by Western blotting. A network of protein kinases and phosphatases was generated (STRING 9.1). Animals learned the task in the paradigm and protein kinase and phosphatase levels were determined in the individual phases acquisition, consolidation and retrieval and compared to foot shock controls. Protein kinases discoidin containing receptor 2 (DDR2), mitogen activated protein kinase kinase kinase 7 (TAK1), protein phosphatases dual specificity protein phosphatase (PTEN) and protein phosphatase 2a (PP2A) were modulated in the individual phases of cFC. Phosphatidyl-inositol-3,4,5-triphosphate 3-phosphatase and phosphatidylinositol-3 kinase (PI3K) that is interacting with PTEN were modulated as well. Freezing time was correlating with PP2A levels in the retrieval phase of cFC. The abovementioned protein kinases, phosphatases and inositol-signalling enzymes were not reported so far in cFC and the results are relevant for interpretation of previous and design of future studies in cFC or fear memory. Protein phosphatase PP2A was, however, the only signalling compound tested that was directly linked to retrieval in the cFC.

  10. Downregulation of microRNA-193-3p inhibits tumor proliferation migration and chemoresistance in human gastric cancer by regulating PTEN gene.

    PubMed

    Jian, Bin; Li, Zhongfu; Xiao, Dachun; He, Gan; Bai, Lian; Yang, Qiang

    2016-07-01

    In this study, we investigated the functional mechanisms of microRNA-193-3p (miR-193-3p) in human gastric cancer. Quantitative RT-PCR (qRT-PCR) was used to assess whether miR-193-3p was aberrantly expressed in gastric cancer cells and clinical samples from gastric cancer patients. Gastric cancer cell line AGS and MKN-45 cells were stably transduced with lentivirus to downregulate endogenous miR-193-3p. The modulation of miR-193-3p downregulation on gastric cancer proliferation, migration, chemo-drug responses, and tumor explant were assessed by MTT, wound-healing, 5-FU chemoresistance and in vivo tumorigenicity assays, respectively. Downstream target of miR-193-3p, phosphatase and tensin homolog (PTEN) in gastric cancer, was assessed by dual-luciferase reporter assay, qRT-PCR, and western blot. PTEN was knocked down by siRNA in AGS and MKN-45 cells to assess its direct impact on miR-193-3p modulation in gastric cancer. MiR-193-3p was aberrantly upregulated in both gastric cell lines and human gastric tumors. In AGS and MKN-45 cells, miR-193-3p downregulation reduced cancer proliferation, migration and 5-FU chemoresistance in vitro, and tumorigenicity in vivo. PTEN was confirmed to be targeted by miR-193-3p in gastric cancer. PTEN inhibition in AGS and MKN-45 cells directly reversed the anti-tumor modulations of miR-193-3p downregulation on gastric cancer proliferation, migration, and 5-FU chemoresistance. We presented clear evidence showing miR-193-3p played critical role in regulating human gastric cancer through direct targeting on PTEN gene.

  11. KRAS and BRAF Mutations and PTEN Expression Do Not Predict Efficacy of Cetuximab-Based Chemoradiotherapy in Locally Advanced Rectal Cancer

    SciTech Connect

    Erben, Philipp; Stroebel, Philipp; Horisberger, Karoline; Popa, Juliana; Bohn, Beatrice; Hanfstein, Benjamin; Kaehler, Georg; Kienle, Peter; Post, Stefan; Wenz, Frederik; Hochhaus, Andreas

    2011-11-15

    Purpose: Mutations in KRAS and BRAF genes as well as the loss of expression of phosphatase and tensin homolog (PTEN) (deleted on chromosome 10) are associated with impaired activity of antibodies directed against epidermal growth factor receptor in patients with metastatic colorectal cancer. The predictive and prognostic value of the KRAS and BRAF point mutations as well as PTEN expression in patients with locally advanced rectal cancer (LARC) treated with cetuximab-based neoadjuvant chemoradiotherapy is unknown. Methods and Materials: We have conducted phase I and II trials of the combination of weekly administration of cetuximab and irinotecan and daily doses of capecitabine in conjunction with radiotherapy (45 Gy plus 5.4 Gy) in patients with LARC (stage uT3/4 or uN+). The status of KRAS and BRAF mutations was determined with direct sequencing, and PTEN expression status was determined with immunohistochemistry testing of diagnostic tumor biopsies. Tumor regression was evaluated by using standardized regression grading, and disease-free survival (DFS) was calculated according to the Kaplan-Meier method. Results: A total of 57 patients were available for analyses. A total of 31.6% of patients carried mutations in the KRAS genes. No BRAF mutations were found, while the loss of PTEN expression was observed in 9.6% of patients. Six patients achieved complete remission, and the 3-year DFS rate was 73%. No correlation was seen between tumor regression or DFS rate and a single marker or a combination of all markers. Conclusions: In the present series, no BRAF mutation was detected. The presence of KRAS mutations and loss of PTEN expression were not associated with impaired response to cetuximab-based chemoradiotherapy and 3-year DFS.

  12. Subtle variations in Pten dose determine cancer susceptibility

    PubMed Central

    Alimonti, Andrea; Carracedo, Arkaitz; Clohessy, John G; Trotman, Lloyd C; Nardella, Caterina; Egia, Ainara; Salmena, Leonardo; Sampieri, Katia; Haveman, William J; Brogi, Edi; Richardson, Andrea L; Zhang, Jiangwen; Pandolfi, Pier Paolo

    2010-01-01

    Cancer susceptibility has been attributed to at least one heterozygous genetic alteration in a tumor suppressor gene (TSG)1. It has been hypothesized that subtle variations in TSG expression can promote cancer development2,3. However, this hypothesis has not yet been definitively supported in vivo. PTEN is a TSG frequently lost in human cancer and mutated in inherited cancer-predisposition syndromes4. Here, we analyze Pten hypermorphic mice (Ptenhy/+), expressing 80% normal levels of Pten. Ptenhy/+ mice develop a spectrum of tumors, with breast tumors occurring at the highest penetrance. All breast tumors analyzed here retained two intact copies of Pten and maintained Pten levels above heterozygosis. Notably, subtle downregulation of Pten altered the steady-state biology of the mammary tissues and the expression profiles of genes involved in cancer cell proliferation. We present an alterative working model for cancer development in which subtle reductions in the dose of TSGs predispose to tumorigenesis in a tissue-specific manner. PMID:20400965

  13. Methods to Study PTEN in Mitochondria and Endoplasmic Reticulum.

    PubMed

    Missiroli, Sonia; Morganti, Claudia; Giorgi, Carlotta; Pinton, Paolo

    2016-01-01

    Although PTEN has been widely described as a nuclear and cytosolic protein, in the last 2 years, alternative organelles, such as the endoplasmic reticulum (ER), pure mitochondria, and mitochondria-associated membranes (MAMs), have been recognized as pivotal targets of PTEN activity.Here, we describe different methods that have been used to highlight PTEN subcellular localization.First, a protocol to extract nuclear and cytosolic fractions has been described to assess the "canonical" PTEN localization. Moreover, we describe a protocol for mitochondria isolation with proteinase K (PK) to further discriminate whether PTEN associates with the outer mitochondrial membrane (OMM) or resides within the mitochondria. Finally, we focus our attention on a subcellular fractionation protocol of cells that permits the isolation of MAMs containing unique regions of ER membranes attached to the outer mitochondrial membrane (OMM) and mitochondria without contamination from other organelles. In addition to biochemical fractionations, immunostaining can be used to determine the subcellular localization of proteins; thus, a detailed protocol to obtain good immunofluorescence (IF) is described. The employment of these methodological approaches could facilitate the identification of different PTEN localizations in several physiopathological contexts.

  14. GRP78 as a regulator of liver steatosis and cancer progression mediated by loss of the tumor suppressor PTEN.

    PubMed

    Chen, W-T; Zhu, G; Pfaffenbach, K; Kanel, G; Stiles, B; Lee, A S

    2014-10-16

    Glucose-regulated protein 78 (GRP78), a molecular chaperone widely elevated in human cancers, is critical for endoplasmic reticulum (ER) protein folding, stress signaling and PI3K/AKT activation. Genetic knockout models of GRP78 revealed that GRP78 maintains homeostasis of metabolic organs, including liver, pancreas and adipose tissues. Hepatocellular carcinoma (HCC) and cholangiocarcinoma (CC) are the most common liver cancers. There is a lack of effective therapeutics for HCC and CC, highlighting the need to further understand liver tumorigenic mechanisms. PTEN (phosphatase and tenson homolog deleted on chromosome 10), a tumor suppressor that antagonizes the PI3K/AKT pathway, is inactivated in a wide range of tumors, including 40-50% of human liver cancers. To elucidate the role of GRP78 in liver cancer, we created a mouse model with biallelic liver-specific deletion of Pten and Grp78 mediated by Albumin-Cre-recombinase (cP(f/f)78(f/f)). Interestingly, in contrast to PTEN, deletion of GRP78 was progressive but incomplete. At 3 months, cP(f/f)78(f/f) livers showed hepatomegaly, activation of lipogenic genes, exacerbated steatosis and liver injury, implying that GRP78 protects the liver against PTEN-null-mediated pathogenesis. Furthermore, in response to liver injury, we observed increased proliferation and expansion of bile duct and liver progenitor cells in cP(f/f)78(f/f) livers. Strikingly, bile duct cells in cP(f/f)78(f/f) livers maintained wild-type (WT) GRP78 level, whereas adjacent areas showed GRP78 reduction. Analysis of signaling pathways revealed selective JNK activation, β-catenin downregulation, along with PDGFRα upregulation, which was unique to cP(f/f)78(f/f) livers at 6 months. Development of both HCC and CC was accelerated and was evident in cP(f/f)78(f/f) livers at 8-9 months, coinciding with intense GRP78 expression in the cancer lesions, and GRP78 expression in adjacent normal areas reverted back to the WT level. In contrast, c78(f/f) livers

  15. Qualitative and Quantitative In Vitro Analysis of Phosphatidylinositol Phosphatase Substrate Specificity.

    PubMed

    Ip, Laura Ren Huey; Gewinner, Christina Anja

    2016-01-01

    Phosphoinositides compromise a family of eight membrane lipids which play important roles in many cellular signaling pathways. Signaling through phosphoinositides has been shown in a variety of cellular functions such cell proliferation, cell growth, apoptosis, and vesicle trafficking. Phospholipid phosphatases regulate cell signaling by modifying the concentration of phosphoinositides and their dephosphorylated products. To understand the role of individual lipid phosphatases in phosphoinositide turnover and functional signaling, it is crucial to determine the substrate specificity of the lipid phosphatase of interest. In this chapter we describe how the substrate specificity of an individual lipid phosphatase can be qualitatively and quantitatively measured in an in vitro radiometric assay. In addition, we specify the different expression systems and purification methods required to produce the necessary yield and functionality in order to further characterize these enzymes. The outstanding versatility and sensitivity of this assay system are yet unmatched and are therefore currently considered the standard of the field.

  16. Phosphoinositide 5-phosphatases: How do they affect tumourigenesis?

    PubMed

    Miyazawa, Keiji

    2013-01-01

    The activity of biological molecules is often affected by their phosphorylation state. Regulatory phosphorylation operates as a binary switch and is usually controlled by counteracting kinases and phosphatases. However, phosphatidylinositol (PtdIns) has three phosphorylation sites on its inositol ring. The phosphorylation status of PtdIns is controlled by multiple kinases and phosphatases with distinct substrate specificities, serving as a 'lipid code' or 'phosphoinositide code'. Class I phosphoinositide 3-kinase (PI3K) converts PtdIns(4,5)P₂ to PtdIns(3,4,5)P₃, which plays a pivotal role in signals controlling glucose uptake, cytoskeletal reorganization, cell proliferation and apoptosis. PI3K is pro-oncogenic, whereas phosphoinositide phosphatases that degrade PtdIns(3,4,5)P₃ are not always anti-oncogenic. Recent studies have revealed the unique characteristics of phosphoinositide 5-phosphatases.

  17. PTEN regulates EG5 to control spindle architecture and chromosome congression during mitosis

    PubMed Central

    He, Jinxue; Zhang, Zhong; Ouyang, Meng; Yang, Fan; Hao, Hongbo; Lamb, Kristy L.; Yang, Jingyi; Yin, Yuxin; Shen, Wen H.

    2016-01-01

    Architectural integrity of the mitotic spindle is required for efficient chromosome congression and accurate chromosome segregation to ensure mitotic fidelity. Tumour suppressor PTEN has multiple functions in maintaining genome stability. Here we report an essential role of PTEN in mitosis through regulation of the mitotic kinesin motor EG5 for proper spindle architecture and chromosome congression. PTEN depletion results in chromosome misalignment in metaphase, often leading to catastrophic mitotic failure. In addition, metaphase cells lacking PTEN exhibit defects of spindle geometry, manifested prominently by shorter spindles. PTEN is associated and co-localized with EG5 during mitosis. PTEN deficiency induces aberrant EG5 phosphorylation and abrogates EG5 recruitment to the mitotic spindle apparatus, leading to spindle disorganization. These data demonstrate the functional interplay between PTEN and EG5 in controlling mitotic spindle structure and chromosome behaviour during mitosis. We propose that PTEN functions to equilibrate mitotic phosphorylation for proper spindle formation and faithful genomic transmission. PMID:27492783

  18. Identification of PTEN mutations in metastatic melanoma specimens

    PubMed Central

    Celebi, J. T.; Shendrik, I.; Silvers, D.; Peacocke, M.

    2000-01-01

    CONTEXT—PTEN, a tumour suppressor gene located on chromosome 10q23, develops somatic mutations in various tumours and tumour cell lines including brain, endometrium, prostate, breast, kidney, thyroid, liver, and melanoma.
OBJECTIVES—To investigate the mutational profile of this gene further, as well as its role in tumour progression in melanoma.
DESIGN, SETTINGS—We examined 21 metastatic melanoma samples for 10q23 allelic losses and PTEN sequence alterations. Additionally, we screened these samples for mutations in CDKN2A, a gene in which alterations are well documented in primary melanoma as well as in the germline of familial melanoma.
RESULTS—Loss of heterozygosity (LOH) at 10q23 was observed in 33% (7/21) of the samples tested. We identified four sequence alterations in PTEN (19%) and two in CDKN2A (9.5%). Of interest, only one case showed mutations in both genes.
CONCLUSIONS—These data support the notion that PTEN alterations occur in some metastatic melanomas, and that mutation of this gene plays a role in the progression of some forms of melanoma.


Keywords: PTEN; CDKN2A; melanoma PMID:10978354

  19. PTEN loss in circulating tumour cells correlates with PTEN loss in fresh tumour tissue from castration-resistant prostate cancer patients

    PubMed Central

    Punnoose, Elizabeth A; Ferraldeschi, Roberta; Szafer-Glusman, Edith; Tucker, Eric K; Mohan, Sankar; Flohr, Penelope; Riisnaes, Ruth; Miranda, Susana; Figueiredo, Ines; Rodrigues, Daniel Nava; Omlin, Aurelius; Pezaro, Carmel; Zhu, Jin; Amler, Lukas; Patel, Premal; Yan, Yibing; Bales, Natalee; Werner, Shannon L; Louw, Jessica; Pandita, Ajay; Marrinucci, Dena; Attard, Gerhardt; de Bono, Johann

    2015-01-01

    Background: PTEN gene loss occurs frequently in castration-resistant prostate cancer (CRPC) and may drive progression through activation of the PI3K/AKT pathway. Here, we developed a novel CTC-based assay to determine PTEN status and examined the correlation between PTEN status in CTCs and matched tumour tissue samples. Methods: PTEN gene status in CTCs was evaluated on an enrichment-free platform (Epic Sciences) by fluorescence in situ hybridisation (FISH). PTEN status in archival and fresh tumour tissue was evaluated by FISH and immunohistochemistry. Results: Peripheral blood was collected from 76 patients. Matched archival and fresh cancer tissue was available for 48 patients. PTEN gene status detected in CTCs was concordant with PTEN status in matched fresh tissues and archival tissue in 32 of 38 patients (84%) and 24 of 39 patients (62%), respectively. CTC counts were prognostic (continuous, P=0.001). PTEN loss in CTCs associated with worse survival in univariate analysis (HR 2.05; 95% CI 1.17–3.62; P=0.01) and with high lactate dehydrogenase (LDH) in metastatic CRPC patients. Conclusions: Our results illustrate the potential use of CTCs as a non-invasive, real-time liquid biopsy to determine PTEN gene status. The prognostic and predictive value of PTEN in CTCs warrants investigation in CRPC clinical trials of PI3K/AKT-targeted therapies. PMID:26379078

  20. Phosphatidyl glycerophosphate phosphatase.

    PubMed

    Chang, Y Y; Kennedy, E P

    1967-09-01

    An enzyme (phosphatidyl glycerophosphate phosphatase) that catalyzes the formation of phosphatidyl glycerol from phosphatidyl glycerophosphate has been rendered soluble by treatment of the particulate fraction of E. coli with Triton X-100 in the presence of EDTA, and has been partially purified. The enzyme is specific for phosphatidyl glycerophosphate and does not catalyze the hydrolysis of other simple phosphomonoesters. It requires Mg(++) for activity and is inhibited by sulfhydryl agents. Some other properties of the enzyme are also described.

  1. MiR-26a inhibits proliferation and migration of HaCaT keratinocytes through regulating PTEN expression.

    PubMed

    Yu, Nanze; Yang, Yang; Li, Xiongwei; Zhang, Mingzi; Huang, Jiuzuo; Wang, Xiaojun; Long, Xiao

    2016-12-05

    MicroRNAs (miRNAs) have been shown to be associated with differentiation, migration and apoptosis in keratinocyte. Although it has been reported that microRNA-26a (miR-26a) plays important roles in tumor cells, its biological functions in keratinocytes are still not well elucidated. In this study, we confirmed expression of miR-26a in human keratinocytes using RT-PCR and further studied the role of miR-26a in cell proliferation and cell migration. Ectopic expression of MiR-26a mimic or inhibitor increased or decreased miR-26a expression respectively in HaCaT cells. Proliferation of HaCaT keratinocyte can be suppressed or promoted by overexpression or down-expression of miR-26a. In scratch wound-healing assay and Boyden chamber cell migration assay, upregulating miR-26a expression blocked cell migration, while downregulating miR-26a expression enhanced the migration. Using quantitative RT-PCR (qRT-PCR) and western blot, we further discovered that both mRNA and protein level of phosphatase and tensin homolog deleted from chromosome 10(PTEN) were regulated by miR-26a in HaCaT cells. Meanwhile the level of active form of AKT was also regulated by the miR-26a. In rescue experiment, knockdown of PTEN in the miR-26a mimic transduced cells recovered the migration ability of HaCaT cells. Together these results suggest that miR-26a modulates the proliferation and migration of keratinocytes via regulating PTEN/AKT signaling pathway.

  2. A novel pharmacological strategy by PTEN inhibition for improving metabolic resuscitation and survival after mouse cardiac arrest.

    PubMed

    Li, Jing; Wang, Huashan; Zhong, Qiang; Zhu, Xiangdong; Chen, Sy-Jou; Qian, Yuanyu; Costakis, Jim; Bunney, Gabrielle; Beiser, David G; Leff, Alan R; Lewandowski, E Douglas; ÓDonnell, J Michael; Vanden Hoek, Terry L

    2015-06-01

    Sudden cardiac arrest (SCA) is a leading cause of death in the United States. Despite return of spontaneous circulation, patients die due to post-SCA syndrome that includes myocardial dysfunction, brain injury, impaired metabolism, and inflammation. No medications improve SCA survival. Our prior work suggests that optimal Akt activation is critical for cooling protection and SCA recovery. Here, we investigate a small inhibitor of PTEN, an Akt-related phosphatase present in heart and brain, as a potential therapy in improving cardiac and neurological recovery after SCA. Anesthetized adult female wild-type C57BL/6 mice were randomized to pretreatment of VO-OHpic (VO) 30 min before SCA or vehicle control. Mice underwent 8 min of KCl-induced asystolic arrest followed by CPR. Resuscitated animals were hemodynamically monitored for 2 h and observed for 72 h. Outcomes included heart pressure-volume loops, energetics (phosphocreatine and ATP from (31)P NMR), protein phosphorylation of Akt, GSK3β, pyruvate dehydrogenase (PDH) and phospholamban, circulating inflammatory cytokines, plasma lactate, and glucose as measures of systemic metabolic recovery. VO reduced deterioration of left ventricular maximum pressure, maximum rate of change in the left ventricular pressure, and Petco2 and improved 72 h neurological intact survival (50% vs. 10%; P < 0.05). It reduced plasma lactate, glucose, IL-1β, and Pre-B cell colony enhancing factor, while increasing IL-10. VO increased phosphorylation of Akt and GSK3β in both heart and brain, and cardiac phospholamban phosphorylation while reducing p-PDH. Moreover, VO improved cardiac bioenergetic recovery. We concluded that pharmacologic PTEN inhibition enhances Akt activation, improving metabolic, cardiovascular, and neurologic recovery with increased survival after SCA. PTEN inhibitors may be a novel pharmacologic strategy for treating SCA.

  3. Activation of Casein Kinase II and Inhibition of Phosphatase and Tensin Homologue Deleted on Chromosome 10 Phosphatase by Nerve Growth Factor/p75NTR Inhibit Glycogen Synthase Kinase-3β and Stimulate Axonal Growth

    PubMed Central

    Arevalo, María-Angeles

    2006-01-01

    Axonal elongation and guidance are controlled by extracellular factors such as the neurotrophins. Indeed, nerve growth factor (NGF) seems to promote axon growth through binding to its p75NTR receptor and inactivating RhoA. Furthermore, the local inhibition of glycogen synthase kinase (GSK)-3β by NGF also favors microtubule polymerization and axon extension. Inactivation of GSK-3β may be due to the NGF/TrkA-mediated activation of phosphatidylinositol-3 kinase (PI-3 kinase), which increases the levels of phosphatydilinositol 3-phosphate [PI(3)P]. However, we show here that NGF may inactivate GSK-3β through an alternative mechanism. In cultured hippocampal neurons, the capacity of NGF to promote axon elongation is mostly mediated by p75NTR, and the activation of this pathway leads to the inactivation of GSK-3β. However, the signaling pathway triggered by NGF/p75NTR acts through casein kinase II (CK2). NGF/p75NTR-activated CK2 phosphorylates the phosphatase and tensin homologue deleted on chromosome 10 (PTEN), thus rendering this phosphatase inactive. Like activation of the PI-3 kinase, PTEN inactivation allows PI(3)P levels to increase, thus favoring GSK-3β inactivation and axon outgrowth. This newly disclosed mechanism may help to extend the repertoire of pharmacological agents that activate CK2 or that inhibit PTEN to stimulate axon regeneration after trauma or disease. PMID:16723502

  4. MiR-21 inhibitor suppressed the progression of retinoblastoma via the modulation of PTEN/PI3K/AKT pathway.

    PubMed

    Gui, Fu; Hong, Zhengdong; You, Zhipeng; Wu, Hongxi; Zhang, Yulan

    2016-12-01

    MicroRNA-21 (miR-21) was reported to act as an oncogene during the development of many human tumors. However, little was revealed about the function of miR-21 in retinoblastoma (RB). In this study, we examined the expression of miR-21 in RB tissues and explored the relationship between miR-21 and phosphatase and tensin homolog (PTEN)/phosphatidylinositol-3-OH kinase (PI3K)/AKT signal. Quantitative real-time PCR (qRT-PCR) results showed that the level of miR-21 in RB tissues was higher than that in retinal normal tissues. In Weri-Rb-1 cells, miR-21 inhibitor suppressed the expression of miR-21 and cell viability, but improved cell apoptotic rates by modulating the levels of PDCD4, Bax, and Bcl-2. Meanwhile, miR-21 inhibitor suppressed cell migration and invasion via inhibiting the protein levels of MMP2 and MMP9 and significantly affected the expression of PTEN, PI3K, and p-AKT. Taken together, miR-21 inhibitor suppressed cell proliferation, migration, and invasion via the PTEN/PI3K/AKT signal. These findings revealed the molecular basis of miR-21 functioning in the progression of RB and provided a new means for cell therapy in RB.

  5. Mitochondria-related miR-141-3p contributes to mitochondrial dysfunction in HFD-induced obesity by inhibiting PTEN

    PubMed Central

    Ji, Juan; Qin, Yufeng; Ren, Jing; Lu, Chuncheng; Wang, Rong; Dai, Xiuliang; Zhou, Ran; Huang, Zhenyao; Xu, Miaofei; Chen, Minjian; Wu, Wei; Song, Ling; Shen, Hongbing; Hu, Zhibin; Miao, Dengshun; Xia, Yankai; Wang, Xinru

    2015-01-01

    Mitochondria-related microRNAs (miRNAs) have recently emerged as key regulators of cell metabolism and can modulate mitochondrial fusion and division. In order to investigate the roles of mitochondria-related miRNAs played in obesity, we conducted comprehensive molecular analysis in vitro and in vivo. Based on high-fat-diet (HFD) induced obese mice, we found that hepatic mitochondrial function was markedly altered. Subsequently, we evaluated the expression levels of selected mitochondria-related miRNAs and found that miR-141-3p was up-regulated strikingly in HFD mice. To further verify the role of miR-141-3p in obesity, we carried out gain-and-loss-of-function study in human HepG2 cells. We found that miR-141-3p could modulate ATP production and induce oxidative stress. Through luciferase report gene assay, we identified that phosphatase and tensin homolog (PTEN) was a target of miR-141-3p. Inhibiting PTEN could alter the mitochondrial function, too. Our study suggested that mitochondria-related miR-141-3p induced mitochondrial dysfunction by inhibiting PTEN. PMID:26548909

  6. Anti-cancer effect of ursolic acid activates apoptosis through ROCK/PTEN mediated mitochondrial translocation of cofilin-1 in prostate cancer

    PubMed Central

    Gai, Wen-Tao; Yu, Da-Peng; Wang, Xin-Sheng; Wang, Pei-Tao

    2016-01-01

    Ursolic acid is a type of pentacyclic triterpene compound with multiple pharmacological activities including cancer resistance, protection from liver injury, antisepsis, anti-inflammation and antiviral activity. The present study aimed to investigate the anticancer effect of ursolic acid. Ursolic acid activates cell apoptosis and its pro-apoptotic mechanism remains to be fully elucidated. Cell Counting kit-8 assays, flow cytometric analysis and analysis of caspase-3 and caspase-9 activity were used to estimate the anticancer effect of ursolic acid on DU145 prostate cancer cells. The protein expression of cytochrome c, rho-associated protein kinase (ROCK), phosphatase and tensin homolog (PTEN) and cofilin-1 were examined using western blot analysis. In the present study, ursolic acid significantly suppressed cell growth and induced apoptosis, as well as increasing caspase-3 and caspase-9 activities of DU145 cells. Furthermore, cytoplasmic and mitochondrial cytochrome c protein expression was significantly activated and suppressed, respectively, by ursolic acid. Ursolic acid significantly suppressed the ROCK/PTEN signaling pathway and inhibited cofilin-1 protein expression in DU145 cells. The results of the present study indicate that the anticancer effect of ursolic acid activates cell apoptosis through ROCK/PTEN mediated mitochondrial translocation of cofilin-1 in prostate cancer. PMID:27698874

  7. MicroRNA-494 is required for the accumulation and functions of tumor-expanded myeloid-derived suppressor cells via targeting of PTEN.

    PubMed

    Liu, Yang; Lai, Lihua; Chen, Qingyun; Song, Yinjing; Xu, Sheng; Ma, Feng; Wang, Xiaojian; Wang, Jianli; Yu, Hai; Cao, Xuetao; Wang, Qingqing

    2012-06-01

    Myeloid-derived suppressor cells (MDSCs) potently suppress the anti-tumor immune responses and also orchestrate the tumor microenvironment that favors tumor angiogenesis and metastasis. The molecular networks regulating the accumulation and functions of tumor-expanded MDSCs are largely unknown. In this study, we identified microRNA-494 (miR-494), whose expression was dramatically induced by tumor-derived factors, as an essential player in regulating the accumulation and activity of MDSCs by targeting of phosphatase and tensin homolog (PTEN) and activation of the Akt pathway. TGF-β1 was found to be the main tumor-derived factor responsible for the upregulation of miR-494 in MDSCs. Expression of miR-494 not only enhanced CXCR4-mediated MDSC chemotaxis but also altered the intrinsic apoptotic/survival signal by targeting of PTEN, thus contributing to the accumulation of MDSCs in tumor tissues. Consequently, downregulation of PTEN resulted in increased activity of the Akt pathway and the subsequent upregulation of MMPs for facilitation of tumor cell invasion and metastasis. Knockdown of miR-494 significantly reversed the activity of MDSCs and inhibited the tumor growth and metastasis of 4T1 murine breast cancer in vivo. Collectively, our findings reveal that TGF-β1-induced miR-494 expression in MDSCs plays a critical role in the molecular events governing the accumulation and functions of tumor-expanded MDSCs and might be identified as a potential target in cancer therapy.

  8. Mitochondria-related miR-141-3p contributes to mitochondrial dysfunction in HFD-induced obesity by inhibiting PTEN.

    PubMed

    Ji, Juan; Qin, Yufeng; Ren, Jing; Lu, Chuncheng; Wang, Rong; Dai, Xiuliang; Zhou, Ran; Huang, Zhenyao; Xu, Miaofei; Chen, Minjian; Wu, Wei; Song, Ling; Shen, Hongbing; Hu, Zhibin; Miao, Dengshun; Xia, Yankai; Wang, Xinru

    2015-11-09

    Mitochondria-related microRNAs (miRNAs) have recently emerged as key regulators of cell metabolism and can modulate mitochondrial fusion and division. In order to investigate the roles of mitochondria-related miRNAs played in obesity, we conducted comprehensive molecular analysis in vitro and in vivo. Based on high-fat-diet (HFD) induced obese mice, we found that hepatic mitochondrial function was markedly altered. Subsequently, we evaluated the expression levels of selected mitochondria-related miRNAs and found that miR-141-3p was up-regulated strikingly in HFD mice. To further verify the role of miR-141-3p in obesity, we carried out gain-and-loss-of-function study in human HepG2 cells. We found that miR-141-3p could modulate ATP production and induce oxidative stress. Through luciferase report gene assay, we identified that phosphatase and tensin homolog (PTEN) was a target of miR-141-3p. Inhibiting PTEN could alter the mitochondrial function, too. Our study suggested that mitochondria-related miR-141-3p induced mitochondrial dysfunction by inhibiting PTEN.

  9. Up-regulation of miR-26a promotes neurite outgrowth and ameliorates apoptosis by inhibiting PTEN in bupivacaine injured mouse dorsal root ganglia.

    PubMed

    Cui, Changlei; Xu, Gong; Qiu, Jinpeng; Fan, Xiushuang

    2015-08-01

    Local anesthetic of bupivacaine may inhibit neurite outgrowth and induce apoptosis in mouse dorsal root ganglia (DRG) neurons. In this work, we intended to investigate the functional role of microRNA 26a (miR-26a) in regulating bupivacaine-induced nerve injury in DRG neurons. DRG neurons were extracted from C57BL/6 mice and cultured in vitro. Bupivacaine was applied in vitro and it induced apoptosis, inhibited neurite growth, and significantly down-regulated miR-26a gene in DRG neurons. MiR-26a mimic was then used to up-regulate miR-26a expression in DRG neurons. We found that miR-26a up-regulation promoted neurite outgrowth and reduced apoptosis in bupivacaine-injured DRG neurons. Luciferase assay and Western blot confirmed that Phosphatase and tensin homolog (PTEN) was down-stream target of miR-26a in DRG neurons. Ectopic PTEN up-regulation was then able to reverse the protective effect of miR-26a overexpression on bupivacaine-induced nerve injury in DRG neurons. Overall, this work demonstrated that miR-26a had a functional role in regulating bupivacaine-induced nerve injury in DRG neurons. Up-regulating miR-26a to suppress PTEN signaling pathway may be an effective method to protect local anesthetic-induced nerve injury in spinal cord.

  10. PTEN overexpression improves cisplatin-resistance of human ovarian cancer cells through upregulating KRT10 expression

    SciTech Connect

    Wu, Huijuan; Wang, Ke; Liu, Wenxin; Hao, Quan

    2014-02-07

    Highlights: • Overexpression of PTEN enhanced the sensitivity of C13K cells to cisplatin. • KRT10 is a downstream molecule of PTEN involved in the resistance-reversing effect. • Overexpression of KRT10 enhanced the chemosensitivity of C13K cells to cisplatin. - Abstract: Multi-drug resistance (MDR) is a common cause of the failure of chemotherapy in ovarian cancer. PTEN, a tumor suppressor gene, has been demonstrated to be able to reverse cisplatin-resistance in ovarian cancer cell line C13K. However, the downstream molecules of PTEN involved in the resistance-reversing effect have not been completely clarified. Therefore, we screened the downstream molecules of PTEN and studied their interactions in C13K ovarian cancer cells using a 3D culture model. Firstly, we constructed an ovarian cancer cell line stably expressing PTEN, C13K/PTEN. MTT assay showed that overexpression of PTEN enhanced the sensitivity of C13K cells to cisplatin, but not to paclitaxel. Then we examined the differently expressed proteins that interacted with PTEN in C13K/PTEN cells with or without cisplatin treatment by co-immunoprecipitation. KRT10 was identified as a differently expressed protein in cisplatin-treated C13K/PTEN cells. Further study confirmed that cisplatin could induce upregulation of KRT10 mRNA and protein in C13K/PTEN cells and there was a directly interaction between KRT10 and PTEN. Forced expression of KRT10 in C13K cells also enhanced cisplatin-induced proliferation inhibition and apoptosis of C13K cells. In addition, KRT10 siRNA blocked cisplatin-induced proliferation inhibition of C13K/PTEN cells. In conclusion, our data demonstrate that KRT10 is a downstream molecule of PTEN which improves cisplatin-resistance of ovarian cancer and forced KRT10 overexpression may also act as a therapeutic method for overcoming MDR in ovarian cancer.

  11. Regulation of PI3K effector signalling in cancer by the phosphoinositide phosphatases

    PubMed Central

    Rodgers, Samuel J.; Ferguson, Daniel T.; Mitchell, Christina A.

    2017-01-01

    Class I phosphoinositide 3-kinase (PI3K) generates phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) at the plasma membrane in response to growth factors, activating a signalling cascade that regulates many cellular functions including cell growth, proliferation, survival, migration and metabolism. The PI3K pathway is commonly dysregulated in human cancer, and drives tumorigenesis by promoting aberrant cell growth and transformation. PtdIns(3,4,5)P3 facilitates the activation of many pleckstrin homology (PH) domain-containing proteins including the serine/threonine kinase AKT. There are three AKT isoforms that are frequently hyperactivated in cancer through mutation, amplification or dysregulation of upstream regulatory proteins. AKT isoforms have converging and opposing functions in tumorigenesis. PtdIns(3,4,5)P3 signalling is degraded and terminated by phosphoinositide phosphatases such as phosphatase and tensin homologue (PTEN), proline-rich inositol polyphosphate 5-phosphatase (PIPP) (INPP5J) and inositol polyphosphate 4-phosphatase type II (INPP4B). PtdIns(3,4,5)P3 is rapidly hydrolysed by PIPP to generate phosphatidylinositol 3,4-bisphosphate (PtdIns(3,4)P2), which is further hydrolysed by INPP4B to form phosphatidylinositol 3-phosphate (PtdIns3P). PtdIns(3,4)P2 and PtdIns3P are also important signalling molecules; PtdIns(3,4)P2 together with PtdIns(3,4,5)P3 are required for maximal AKT activation and PtdIns3P activates PI3K-dependent serum and glucocorticoid-regulated kinase (SGK3) signalling. Loss of Pten, Pipp or Inpp4b expression or function promotes tumour growth in murine cancer models through enhanced AKT isoform-specific signalling. INPP4B inhibits PtdIns(3,4)P2-mediated AKT activation in breast and prostate cancer; however, INPP4B expression is increased in acute myeloid leukaemia (AML), melanoma and colon cancer where it paradoxically promotes cell proliferation, transformation and/or drug resistance. This review will discuss how PTEN, PIPP

  12. [Effect of captopril on expression of PTEN in aorta of aortic-induced hypertensive rats].

    PubMed

    Yan, Zhiqiang; Hu, Ya'e; Liu, Bo; Jiang, Zonglai

    2004-12-01

    This study inquired about the role of tumor suppressor PTEN in the arterial remodeling of Ang II induced hypertension. The expression of PTEN of aorta was examined in the aortic-constricted hypertensive rats (hypertension group), in the aortic-constricted hypertensive rats treated with captopril(hypertension and captopril group), and in the rats having undergone sham operation (control group). At day 28 after surgery, the aortas were collected from the groups. The expression of PTEN mRNA was detected by RT-PCR. The expression and location of PTEN protein were determined by immunohistochemistry. The results showed that the expression of PTEN in aorta of the hypertension group was significantly lower than that of the hypertension and captopril group, and similarly lower than that of the control group. The intensity of PTEN-positive immunohistochemical production in aorta of the hypertension group was weaker than that of the hypertension and captopril group, and likewise, it was weaker than the control. PTEN-positive immunohistochemical production was located in VSMC of aorta. The findings indicated that the expression of PTEN is reduced in hypertensive aorta, that the reduced PTEN experession can be reversed by captopril treatment, that AngII and the increased mechanical strain may participate in regulating expression of PTEN, and that PTEN may play a role in the arterial remodeling induced by hypertension.

  13. A pseudogene long noncoding RNA network regulates PTEN transcription and translation in human cells

    PubMed Central

    Johnsson, Per; Ackley, Amanda; Vidarsdottir, Linda; Lui, Weng-Onn; Corcoran, Martin; Grandér, Dan; Morris, Kevin V.

    2013-01-01

    PTEN is a tumor suppressor gene that has been shown to be under the regulatory control of a PTEN pseudogene expressed noncoding RNA, PTENpg1. Here, we characterize a previously unidentified PTENpg1 encoded antisense RNA (asRNA), which regulates PTEN transcription and PTEN mRNA stability. We find two PTENpg1 asRNA isoforms, alpha and beta. The alpha isoform functions in trans, localizes to the PTEN promoter, and epigenetically modulates PTEN transcription by the recruitment of DNMT3a and EZH2. In contrast, the beta isoform interacts with PTENpg1 through an RNA:RNA pairing interaction, which affects PTEN protein output via changes of PTENpg1 stability and microRNA sponge activity. Disruption of this asRNA-regulated network induces cell cycle arrest and sensitizes cells to doxorubicin, suggesting a biological function for the respective PTENpg1 expressed asRNAs. PMID:23435381

  14. MicroRNA-92a promotes growth, metastasis, and chemoresistance in non-small cell lung cancer cells by targeting PTEN.

    PubMed

    Ren, Ping; Gong, Fangchao; Zhang, Yan; Jiang, Jindong; Zhang, Hong

    2016-03-01

    MicroRNA-92a (miR-92a) has been reported to play important roles in tumorigenesis of human various cancers. However, the roles and underlying molecular mechanism of miR-92a in non-small cell lung cancer (NSCLC) have not been totally elucidated. Therefore, the aims of this study were to determine the role of miR-92a and to elucidate its regulatory mechanism in NSCLC. We found that miR-92a was significantly upregulated in NSCLC tissues compared to matched adjacent normal lung tissues, and its expression is significantly associated with clinical characteristics of patients, including tumor, node, and metastasis (TNM) stage; tumor size; and lymph node metastasis (all P < 0.01). Function assays demonstrated that upregulation of miR-92a in NSCLC cells promoted cell proliferation, migration, and invasion, decreased apoptosis and caspase-3 activity, and enhanced chemoresistance of NSCLC cells, whereas downregulation of miR-92a showed the opposite effects. Moreover, phosphatase and tensin homolog (PTEN), a unique tumor suppressor gene, was confirmed as a direct target of miR-92a, and PTEN messenger RNA (mRNA) expression was decreased in NSCLC tissues and was inversely correlated with miR-92a. Downregulation of PTEN could mimic the same effects of miR-92a mimic in NSCLC cells and rescue the effects on NSCLC cells induced by miR-92a inhibitor. Taken together, these findings suggested that miR-92a could promote growth, metastasis, and chemoresistance in NSCLC cells at least partially by targeting PTEN.

  15. The soybean peptide lunasin promotes apoptosis of mammary epithelial cells via induction of tumor suppressor PTEN: similarities and distinct actions from soy isoflavone genistein.

    PubMed

    Pabona, John Mark P; Dave, Bhuvanesh; Su, Ying; Montales, Maria Theresa E; de Lumen, Ben O; de Mejia, Elvira G; Rahal, Omar M; Simmen, Rosalia C M

    2013-01-01

    Breast cancer is the leading cause of cancer deaths in women. Diet and lifestyle are major contributing factors to increased breast cancer risk. While mechanisms underlying dietary protection of mammary tumor formation are increasingly elucidated, there remains a dearth of knowledge on the nature and precise actions of specific bioactive components present in foods with purported health effects. The 43-amino acid peptide lunasin (LUN) is found in soybeans, is bioavailable similar to the isoflavone genistein (GEN), and thus may mediate the beneficial effects of soy food consumption. Here, we evaluated whether LUN displays common and distinct actions from those of GEN in non-malignant (mouse HC11) and malignant (human MCF-7) mammary epithelial cells. In MCF-7 cells, LUN up-regulated tumor suppressor phosphatase and tensin homolog deleted in chromosome ten (PTEN) promoter activity, increased PTEN transcript and protein levels and enhanced nuclear PTEN localization, similar to that shown for GEN in mammary epithelial cells. LUN-induced cellular apoptosis, akin to GEN, was mediated by PTEN, but unlike that for GEN, was p53-independent. LUN promoted E-cadherin and β-catenin non-nuclear localization similar to GEN, but unlike GEN, did not influence the proliferative effects of oncogene Wnt1 on HC11 cells. Further, LUN did not recapitulate GEN inhibitory effects on expansion of the cancer stem-like/progenitor population in MCF-7 cells. Results suggest the concerted actions of GEN and LUN on cellular apoptosis for potential mammary tumor preventive effects and highlight whole food consumption rather than intake of specific dietary supplements with limited biological effects for greater health benefits.

  16. Addition of the p110α inhibitor BYL719 overcomes targeted therapy resistance in cells from Her2-positive-PTEN-loss breast cancer.

    PubMed

    Zhang, Chen; Xu, Bingfei; Liu, Pian

    2016-11-01

    Breast cancer is one of the leading causes of death for women worldwide. Among various subtypes of breast cancer, human epidermal growth factor receptor 2 (HER2)-positive and phosphatase and tensin homolog (PTEN) loss breast cancer is a cause of great concern in terms of its resistance to HER2-targeted therapies and its poor prognosis. Phosphatidylinositol 3-kinase (PI3K)/AKT hyperphosphorylation is considered one of key mechanisms leading to this resistance, thus combination therapy of PI3K inhibitors and HER2 antibodies is promising for overcoming this problem, and more specific regimens should be designed in this age of precision medicine. In this study, we established an HER2-positive and PTEN loss cell line and confirmed it by western blot analysis. This cell line and its orthotopic xenograft models were exposed to p110α-specific inhibitor BYL719, p110β-specific inhibitor AZD6482, or pan-PI3K inhibitor BKM120, respectively, and the results showed sensitivity to both BYL719 and BKM120 but not AZD6482, which indicated a p110α-reliance for HER2-positive-PTEN-loss breast cancer. Then, the addition of BYL719 to HER2 antibody greatly reduced tumor growth both in vitro and in vivo, accompanied by inhibited PI3K effector phosphorylation. Therefore, our findings suggest that the combination of p110α-selective inhibitor BYL719 with HER2 antibody could be a potential strategy for more personalized treatment of HER2-posistive-PTEN-loss breast cancer; and in addition, the optimal schedule of this combination therapy needs to be further explored.

  17. TEP1, the yeast homolog of the human tumor suppressor gene PTEN/MMAC1/TEP1, is linked to the phosphatidylinositol pathway and plays a role in the developmental process of sporulation.

    PubMed

    Heymont, J; Berenfeld, L; Collins, J; Kaganovich, A; Maynes, B; Moulin, A; Ratskovskaya, I; Poon, P P; Johnston, G C; Kamenetsky, M; DeSilva, J; Sun, H; Petsko, G A; Engebrecht, J

    2000-11-07

    PTEN/MMAC1/TEP1 (PTEN, phosphatase deleted on chromosome ten; MMAC1, mutated in multiple advanced cancers; TEP1, tensin-like phosphatase) is a major human tumor suppressor gene whose suppressive activity operates on the phosphatidylinositol pathway. A single homologue of this gene, TEP1 (YNL128w), exists in the budding yeast Saccharomyces cerevisiae. Yeast strains deleted for TEP1 exhibit essentially no phenotype in haploids; however, diploids exhibit resistance to the phosphatidylinositol-3-phosphate kinase inhibitor wortmannin and to lithium ions. Although rates of cancer increase with age, neither tep1 haploids nor diploids have altered life spans. TEP1 RNA is present throughout the cell cycle, and levels are dramatically up-regulated during meiotic development. Although homozygous tep1 mutants initiate the meiotic program and form spores with wild-type kinetics, analysis of the spores produced in tep1 mutants indicates a specific defect in the trafficking or deposition of dityrosine, a major component of yeast spore walls, to the surface. Introduction of a common PTEN mutation found in human tumors into the analogous position in Tep1p produces a nonfunctional protein based on in vivo activity. These studies implicate Tep1p in a specific developmental trafficking or deposition event and suggest that Tep1p, like its mammalian counterpart, impinges on the phosphatidylinositol pathway.

  18. TEP1, the yeast homolog of the human tumor suppressor gene PTEN/MMAC1/TEP1, is linked to the phosphatidylinositol pathway and plays a role in the developmental process of sporulation

    PubMed Central

    Heymont, Jennifer; Berenfeld, Ludmilla; Collins, Jennifer; Kaganovich, Alexandra; Maynes, Bradford; Moulin, Aaron; Ratskovskaya, Irina; Poon, Pak P.; Johnston, Gerald C.; Kamenetsky, Margarita; DeSilva, John; Sun, Hong; Petsko, Gregory A.; Engebrecht, JoAnne

    2000-01-01

    PTEN/MMAC1/TEP1 (PTEN, phosphatase deleted on chromosome ten; MMAC1, mutated in multiple advanced cancers; TEP1, tensin-like phosphatase) is a major human tumor suppressor gene whose suppressive activity operates on the phosphatidylinositol pathway. A single homologue of this gene, TEP1 (YNL128w), exists in the budding yeast Saccharomyces cerevisiae. Yeast strains deleted for TEP1 exhibit essentially no phenotype in haploids; however, diploids exhibit resistance to the phosphatidylinositol-3-phosphate kinase inhibitor wortmannin and to lithium ions. Although rates of cancer increase with age, neither tep1 haploids nor diploids have altered life spans. TEP1 RNA is present throughout the cell cycle, and levels are dramatically up-regulated during meiotic development. Although homozygous tep1 mutants initiate the meiotic program and form spores with wild-type kinetics, analysis of the spores produced in tep1 mutants indicates a specific defect in the trafficking or deposition of dityrosine, a major component of yeast spore walls, to the surface. Introduction of a common PTEN mutation found in human tumors into the analogous position in Tep1p produces a nonfunctional protein based on in vivo activity. These studies implicate Tep1p in a specific developmental trafficking or deposition event and suggest that Tep1p, like its mammalian counterpart, impinges on the phosphatidylinositol pathway. PMID:11070083

  19. Novel, gross chromosomal alterations involving PTEN cooperate with allelic loss in prostate cancer.

    PubMed

    Reid, Alison H M; Attard, Gerhardt; Brewer, Daniel; Miranda, Susana; Riisnaes, Ruth; Clark, Jeremy; Hylands, Lucy; Merson, Sue; Vergis, Roy; Jameson, Charles; Høyer, Søren; Sørenson, Karina Dalsgaard; Borre, Michael; Jones, Chris; de Bono, Johann S; Cooper, Colin S

    2012-06-01

    There is increasing evidence that multiple chromosomal rearrangements occur in prostate cancer. PTEN loss is considered to be a key event in prostate carcinogenesis but the mechanisms of loss remain to be fully elucidated. We hypothesised that gross rearrangements may exist that cause disruption of the PTEN gene in the absence of genomic deletion. We therefore designed a novel fluorescence in situ hybridisation (FISH) assay with probes overlying regions 3' and 5' of PTEN and a third probe overlying the gene. We aimed to identify both genomic deletions and gross rearrangements of PTEN that would be overlooked by previously reported single-probe FISH assays. We proceeded to evaluate a tissue microarray with radical prostatectomy and trans-urethral resection of the prostate specimens from 187 patients. We identified PTEN genomic loss in 45/150 (30%) radical prostatectomy patients and 16/37 (43%) trans-urethral resection of the prostate patients. Importantly, our assay detected novel chromosomal alterations in the PTEN gene (characterised by splitting of FISH signals) in 13 tumours (6.9% of all prostate cancers; 21% of PTEN-lost cancers). All PTEN-rearranged tumours had genomic loss at the other allele and had no expression of PTEN by immunohistochemistry. PTEN-rearranged tumours were significantly more likely to have an underlying ERG rearrangement. Our assay differentiated loss of the probe overlying PTEN in isolation or in combination with either one of or both the probes overlying the 3' and 5' regions. This gave an indication of the size of genomic loss and we observed considerable inter-tumoural heterogeneity in the extent of genomic loss in PTEN-lost tumours. In summary, gross rearrangements of the PTEN locus occur in prostate cancer and can be detected by a 'break-apart' FISH assay. This observation could explain the absence of PTEN protein expression in a subgroup of tumours previously classified as having heterozygous genomic loss using single

  20. The mechanism involved in the loss of PTEN expression in NSCLC tumor cells

    SciTech Connect

    Li, Gang; Zhao, Jingfeng; Peng, Xianjing; Liang, Jian; Deng, Xin; Chen, Yuxiang

    2012-02-17

    Highlights: Black-Right-Pointing-Pointer Radiation stimulates PTEN reexpression in NSCLC independent of p53 activation. Black-Right-Pointing-Pointer PTEN reexpression is mediated by miR-29b overexpression. Black-Right-Pointing-Pointer miR-29b regulates Dnmts expression in NSCLC tumor cells. Black-Right-Pointing-Pointer Target therapy could be established by overexpressing miR-29b expression. -- Abstract: Loss of PTEN expression is observed in most non-small cell lung cancers (NSCLC). However, the mechanism by which PTEN expression is regulated in NSCLC has not been fully elucidated. In this study, we investigated the role of DNA methyltransferases (Dnmts), microRNA-29b (miR-29b), and anti-miR-29b inhibitor in PTEN promoter methylation and PTEN gene expression in H358 NSCLC cells in vitro and in vivo. PTEN mRNA was measured by RT-PCR. PTEN and Dnmts protein levels were measured by Western blot. miR-29b expression was detected by Northern blot. A xenograft H358 tumor mouse model was established by subcutaneously inoculating H358 cells into the right hind limbs of nude mice. We found that radiation induced cell apoptosis and hypomethylation in PTEN promoter, PTEN and miR-29b expression, and downregulation of Dnmt1, 3a and 3b expression in H358 tumor cells. The effect of radiation on gene expression and apoptosis was blocked by anti-miR-29b inhibitor. In the xenograft H358 tumor model, anti-miR-29b inhibitor reversed radiation-induced tumor growth delay, PTEN reexpression and downregulation of Dnmts expression. Our study suggested that miR-29b is an upstream molecule of PTEN. miR-29b regulates PTEN gene expression through downregulating Dnmts expression and subsequently induces hypomethylation in PTEN promoter. Targeting therapy could be established in NSCLC by upregulating miR-29b expression.

  1. A high-throughput screen with isogenic PTEN+/+ and PTEN-/- cells identifies CID1340132 as a novel compound that induces apoptosis in PTEN and PIK3CA mutant human cancer cells.

    PubMed

    Li, Hui-Fang; Keeton, Adam; Vitolo, Michele; Maddox, Clinton; Rasmussen, Lynn; Hobrath, Judith; White, E Lucille; Park, Ben Ho; Piazza, Gary A; Kim, Jung-Sik; Waldman, Todd

    2011-04-01

    The PTEN tumor suppressor gene is one of the most commonly mutated genes in human cancer. Because inactivation of PTEN is a somatic event, PTEN mutations represent an important genetic difference between cancer cells and normal cells and therefore a potential anticancer drug target. However, it remains a substantial challenge to identify compounds that target loss-of-function events such as mutations of tumor suppressors. In an effort to identify small molecules that preferentially kill cells with mutations of PTEN, the authors developed and implemented a high-throughput, paired cell-based screen composed of parental HCT116 cells and their PTEN gene-targeted derivatives. From 138 758 compounds tested, two hits were identified, and one, N'-[(1-benzyl-1H-indol-3-yl)methylene]benzenesulfonohydrazide (CID1340132), was further studied using a variety of cell-based models, including HCT116, MCF10A, and HEC1A cells with targeted deletion of either their PTEN or PIK3CA genes. Preferential killing of PTEN and PIK3CA mutant cells was accompanied by DNA damage, inhibition of DNA synthesis, and apoptosis. Taken together, these data validate a cell-based screening approach for identifying lead compounds that target cells with specific tumor suppressor gene mutations and describe a novel compound with preferential killing activity toward PTEN and PIK3CA mutant cells.

  2. Cholesteryl Ester Accumulation Induced by PTEN Loss and PI3K/AKT Activation Underlies Human Prostate Cancer Aggressiveness

    PubMed Central

    Yue, Shuhua; Li, Junjie; Lee, Seung-Young; Lee, Hyeon Jeong; Shao, Tian; Song, Bing; Cheng, Liang; Masterson, Timothy A.; Liu, Xiaoqi; Ratliff, Timothy L.; Cheng, Ji-Xin

    2014-01-01

    Summary Altered lipid metabolism is increasingly recognized as a signature of cancer cells. Enabled by label-free Raman spectromicroscopy, we performed quantitative analysis of lipogenesis at single cell level in human patient cancerous tissues. Our imaging data revealed an unexpected, aberrant accumulation of esterified cholesterol in lipid droplets of high-grade prostate cancer and metastases. Biochemical study showed that such cholesteryl ester accumulation was a consequence of loss of tumor suppressor PTEN and subsequent activation of PI3K/AKT pathway in prostate cancer cells. Furthermore, we found that such accumulation arose from significantly enhanced uptake of exogenous lipoproteins and required cholesterol esterification. Depletion of cholesteryl ester storage significantly reduced cancer proliferation, impaired cancer invasion capability, and suppressed tumor growth in mouse xenograft models with negligible toxicity. These findings open opportunities for diagnosing and treating prostate cancer by targeting the altered cholesterol metabolism. PMID:24606897

  3. Inositol 5-phosphatases: insights from the Lowe syndrome protein OCRL.

    PubMed

    Pirruccello, Michelle; De Camilli, Pietro

    2012-04-01

    The precise regulation of phosphoinositide lipids in cellular membranes is crucial for cellular survival and function. Inositol 5-phosphatases have been implicated in a variety of disorders, including various cancers, obesity, type 2 diabetes, neurodegenerative diseases and rare genetic conditions. Despite the obvious impact on human health, relatively little structural and biochemical information is available for this family. Here, we review recent structural and mechanistic work on the 5-phosphatases with a focus on OCRL, whose loss of function results in oculocerebrorenal syndrome of Lowe and Dent 2 disease. Studies of OCRL emphasize how the actions of 5-phosphatases rely on both intrinsic and extrinsic membrane recognition properties for full catalytic function. Additionally, structural analysis of missense mutations in the catalytic domain of OCRL provides insight into the phenotypic heterogeneity observed in Lowe syndrome and Dent disease.

  4. [Alkaline phosphatase in Amoeba proteus].

    PubMed

    Sopina, V A

    2005-01-01

    In free-living Amoeba proteus (strain B), 3 phosphatase were found after disc-electrophoresis of 10 microg of protein in PAGE and using 1-naphthyl phosphate as a substrate a pH 9.0. These phosphatases differed in their electrophoretic mobilities - "slow" (1-3 bands), "middle" (one band) and "fast" (one band). In addition to 1-naphthyl phosphate, "slow" phosphatases were able to hydrolyse 2-naphthyl phosphate and p-nitrophenyl phosphate. They were slightly activated by Mg2+, completely inhibited by 3 chelators (EDTA, EGTA and 1,10-phenanthroline), L-cysteine, sodium dodecyl sulfate and Fe2+, Zn2+ and Mn2+ (50 mM), considerably inactivated by orthovanadate, molybdate, phosphatase inhibitor cocktail 1, p-nitrophenyl phosphate, Na2HPO4, DL-dithiothreitol and urea and partly inhibited by H2O2, DL-phenylalanine, 2-mercaptoethanol, phosphatase inhibitor cocktail 2 and Ca2+. Imidazole, L-(+)-tartrate, okadaic acid, NaF and sulfhydryl reagents -p-(hydroxy-mercuri)benzoate and N-ethylmaleimide - had no influence on the activity of "slow" phosphatases. "Middle" and "fast" phosphatases, in contrast to "slow" ones, were not inactivated by 3 chelators. The "middle" phosphatase differed from the "fast" one by smaller resistance to urea, Ca2+, Mn2+, phosphates and H2O2 and greater resistance to dithiothreitol and L-(+)-tartrate. In addition, the "fast" phosphatase was inhibited by L-cysteine but the "middle" one was activated by it. Of 5 tested ions (Mg2+, Cu2+, Mn2+, Ca2+ and Zn2+), only Zn2+ reactivated "slow" phosphatases after their inactivation by EDTA treatment. The reactivation of apoenzyme was only partial (about 35 %). Thus, among phosphatases found in amoebae at pH 9.0, only "slow" ones are Zn-metalloenzymes and may be considered as alkaline phosphatases (EC 3.1.3.1). It still remains uncertain, to which particular phosphatase class "middle" and "fast" phosphatases (pH 9.0) may belong.

  5. Prostatic acid phosphatase degrades lysophosphatidic acid in seminal plasma.

    PubMed

    Tanaka, Masayuki; Kishi, Yasuhiro; Takanezawa, Yasukazu; Kakehi, Yoshiyuki; Aoki, Junken; Arai, Hiroyuki

    2004-07-30

    Lysophosphatidic acid (LPA) is a lipid mediator with multiple biological activities and is detected in various biological fluids, including human seminal plasma. Due to its cell proliferation stimulatory and anti-apoptotic activities, LPA has been implicated in the progression of some cancers such as ovarian cancer and prostate cancer. Here, we show that prostatic acid phosphatase, which is a non-specific phosphatase and which has been implicated in the progression of prostate cancer, inactivates LPA in human seminal plasma. Human seminal plasma contains both an LPA-synthetic enzyme, lysoPLD, which converts lysophospholipids to LPA and is responsible for LPA production in serum, and its major substrate, lysophosphatidylcholine. In serum, LPA accumulated during incubation at 37 degrees C. However, in seminal plasma, LPA did not accumulate. This discrepancy is explained by the presence of a strong LPA-degrading activity. Incubation of LPA with seminal plasma resulted in the disappearance of LPA and an accompanying accumulation of monoglyceride showing that LPA is degraded by phosphatase activity present in the seminal plasma. When seminal plasma was incubated in the presence of a phosphatase inhibitor, sodium orthovanadate, LPA accumulated, indicating that LPA is produced and degraded in the fluid. Biochemical characterization of the LPA-phosphatase activity identified two phosphatase activities in human seminal plasma. By Western blotting analysis in combination with several column chromatographies, the major activity was revealed to be identical to prostatic acid phosphatase. The present study demonstrates active LPA metabolism in seminal plasma and indicates the possible role of LPA signaling in male sexual organs including prostate cancer.

  6. INPP4B and PTEN Loss Leads to PI-3,4-P2 Accumulation and Inhibition of PI3K in TNBC.

    PubMed

    Reed, Darien E; Shokat, Kevan M

    2017-02-14

    Triple-negative breast cancer [TNBC, lacks expression of estrogen receptor (ER), progesterone receptor (PR) and amplification of HER2/Neu] remains one of the most aggressive subtypes, affects the youngest patients and still lacks an effective targeted therapy(1,2). Both phosphatidylinositol-3-kinase (PI3K)-α and -β contribute to oncogenesis of solid tumors, including the development of breast cancer(3). Inositol polyphosphate-4-phosphatase type II (INPP4B) catalyzes the removal of the 4'-phosphate of phosphatidylinositol-(3,4-bisphosphate (PI-3,4-P2) creating phosphatidylinositol-3-phosphate(4). There is debate concerning whether PI-3,4-P2 contributes to Akt and downstream effector activation with the known canonical signaling second messenger, phosphatidylinositol-(3,4,5)-trisphosphate (PIP3) (5-7). If PI-3,4-P2 is a positive effector, INPP4B would be a negative regulator of PI3K signaling and there is some evidence to support this(4,8). Utilizing phosphatase and tensin homolog deleted on chromosome ten (PTEN)-null triple-negative breast tumor cell lines, it was unexpectedly found that silencing INPP4B decreased basal phospho-Akt (pAkt) and cellular proliferation, and in most cases sensitized cells to PI3K-α and -β isoform-specific inhibitors. Conversely, overexpression of INPP4B desensitized cells to PI3K inhibitors in a phosphatase activity-dependent manner. In summary, the current investigation of INPP4B in PTEN-null TNBC suggests new mechanistic insight and the potential for targeted therapy for this aggressive subset of breast cancer.

  7. Functional diversity of voltage‐sensing phosphatases in two urodele amphibians

    PubMed Central

    Mutua, Joshua; Jinno, Yuka; Sakata, Souhei; Okochi, Yoshifumi; Ueno, Shuichi; Tsutsui, Hidekazu; Kawai, Takafumi; Iwao, Yasuhiro; Okamura, Yasushi

    2014-01-01

    Abstract Voltage‐sensing phosphatases (VSPs) share the molecular architecture of the voltage sensor domain (VSD) with voltage‐gated ion channels and the phosphoinositide phosphatase region with the phosphatase and tensin homolog (PTEN), respectively. VSPs enzymatic activities are regulated by the motions of VSD upon depolarization. The physiological role of these proteins has remained elusive, and insights may be gained by investigating biological variations in different animal species. Urodele amphibians are vertebrates with potent activities of regeneration and also show diverse mechanisms of polyspermy prevention. We cloned cDNAs of VSPs from the testes of two urodeles; Hynobius nebulosus and Cynops pyrrhogaster, and compared their expression and voltage‐dependent activation. Their molecular architecture is highly conserved in both Hynobius VSP (Hn‐VSP) and Cynops VSP (Cp‐VSP), including the positively‐charged arginine residues in the S4 segment of the VSD and the enzymatic active site for substrate binding, yet the C‐terminal C2 domain of Hn‐VSP is significantly shorter than that of Cp‐VSP and other VSP orthologs. RT‐PCR analysis showed that gene expression pattern was distinct between two VSPs. The voltage sensor motions and voltage‐dependent phosphatase activities were investigated electrophysiologically by expression in Xenopus oocytes. Both VSPs showed “sensing” currents, indicating that their voltage sensor domains are functional. The phosphatase activity of Cp‐VSP was found to be voltage dependent, as shown by its ability to regulate the conductance of coexpressed GIRK2 channels, but Hn‐VSP lacked such phosphatase activity due to the truncation of its C2 domain. PMID:25347851

  8. A Tailored Approach to Prostate Cancer Therapy Based upon PTEN Status

    DTIC Science & Technology

    2012-05-01

    were to (1) determine the effect of PARP inhibition on the cellular response to ionizing radiation or docetaxel in DU145 PTEN wild-type vs. PC-3 PTEN...moment in comet assay, clonogenic cell survival and apoptosis assay.  H2AX foci assays revealed that ABT888 in combination with radiation therapy (RT...Body Task 1: Determine how PTEN status impacts the response to DNA damage following chemo/ radiation in the absence or presence of PARP inhibition

  9. Molecular cloning and characterization of PTEN in the orange-spotted grouper (Epinephelus coioides).

    PubMed

    Luo, Sheng-Wei; Wang, Wei-Na; Xie, Ren-Chong; Xie, Fu-Xing; Kong, Jing-Rong; Xiao, Yu-Chao; Huang, Di; Sun, Zuo-Ming; Liu, Yuan; Wang, Cong

    2016-11-01

    PTEN is a key tumor suppressor gene that can play a regulatory role in the cellular proliferation, survival and apoptosis. In this study, the full-length PTEN (EcPTEN) was obtained, containing a 5'UTR of 745 bp, an ORF of 1269 bp and a 3'UTR of 106 bp. The EcPTEN gene encoded a polypeptide of 422 amino acids with an estimated molecular mass of 49.14 KDa and a predicted isoelectric point (pI) of 6.34. The deduced amino acid sequence analysis showed that EcPTEN comprised the conserved residues and the characteristic domains known to the critical functionality of PTEN. qRT-PCR analysis revealed that EcPTEN mRNA was broadly expressed in all the examined tissues, while the highest expression level was observed in liver, followed by the expression in blood, kidney, spleen, heart, gill, muscle and intestine. The groupers challenged with Vibrio alginolyticus showed a sharp increase of EcPTEN mRNA expression in immune tissues. In addition, western blotting analysis confirmed that the up-regulation of EcPTEN protein expression was steadily induced in liver. Subcellular localization analysis indicated that EcPTEN was localized in both nucleus and cytoplasm. Overexpression of EcPTEN can activate the apoptotic cascade and abrogate NF-kB, AP-1, Stat3 and Myc promoter activity in Hela cells. These results indicated that EcPTEN harboring highly-conserved domains with a close sequence similarity to those of PTP superfamily may disrupt the mammalian signalings and play a regulatory role in the apoptotic process.

  10. Germline disruption of Pten localization causes enhanced sex-dependent social motivation and increased glial production.

    PubMed

    Tilot, Amanda K; Gaugler, Mary K; Yu, Qi; Romigh, Todd; Yu, Wanfeng; Miller, Robert H; Frazier, Thomas W; Eng, Charis

    2014-06-15

    PTEN Hamartoma Tumor Syndrome (PHTS) is an autosomal-dominant genetic condition underlying a subset of autism spectrum disorder (ASD) with macrocephaly. Caused by germline mutations in PTEN, PHTS also causes increased risks of multiple cancers via dysregulation of the PI3K and MAPK signaling pathways. Conditional knockout models have shown that neural Pten regulates social behavior, proliferation and cell size. Although much is known about how the intracellular localization of PTEN regulates signaling in cancer cell lines, we know little of how PTEN localization influences normal brain physiology and behavior. To address this, we generated a germline knock-in mouse model of cytoplasm-predominant Pten and characterized its behavioral and cellular phenotypes. The homozygous Pten(m3m4) mice have decreased total Pten levels including a specific drop in nuclear Pten and exhibit region-specific increases in brain weight. The Pten(m3m4) model displays sex-specific increases in social motivation, poor balance and normal recognition memory-a profile reminiscent of some individuals with high functioning ASD. The cytoplasm-predominant protein caused cellular hypertrophy limited to the soma and led to increased NG2 cell proliferation and accumulation of glia. The animals also exhibit significant astrogliosis and microglial activation, indicating a neuroinflammatory phenotype. At the signaling level, Pten(m3m4) mice show brain region-specific differences in Akt activation. These results demonstrate that differing alterations to the same autism-linked gene can cause distinct behavioral profiles. The Pten(m3m4) model is the first murine model of inappropriately elevated social motivation in the context of normal cognition and may expand the range of autism-related behaviors replicated in animal models.

  11. Adenovirus mediated homozygous endometrial epithelial Pten deletion results in aggressive endometrial carcinoma

    SciTech Connect

    Joshi, Ayesha; Ellenson, Lora Hedrick

    2011-07-01

    Pten is the most frequently mutated gene in uterine endometriod carcinoma (UEC) and its precursor complex atypical hyperplasia (CAH). Because the mutation frequency is similar in CAH and UEC, Pten mutations are thought to occur relatively early in endometrial tumorigenesis. Previous work from our laboratory using the Pten{sup +/-} mouse model has demonstrated somatic inactivation of the wild type allele of Pten in both CAH and UEC. In the present study, we injected adenoviruses expressing Cre into the uterine lumen of adult Pten floxed mice in an attempt to somatically delete both alleles of Pten specifically in the endometrium. Our results demonstrate that biallelic inactivation of Pten results in an increased incidence of carcinoma as compared to the Pten{sup +/-} mouse model. In addition, the carcinomas were more aggressive with extension beyond the uterus into adjacent tissues and were associated with decreased expression of nuclear ER{alpha} as compared to associated CAH. Primary cultures of epithelial and stromal cells were prepared from uteri of Pten floxed mice and Pten was deleted in vitro using Cre expressing adenovirus. Pten deletion was evident in both the epithelial and stromal cells and the treatment of the primary cultures with estrogen had different effects on Akt activation as well as Cyclin D3 expression in the two purified components. This study demonstrates that somatic biallelic inactivation of Pten in endometrial epithelium in vivo results in an increased incidence and aggressiveness of endometrial carcinoma compared to mice carrying a germline deletion of one allele and provides an important in vivo and in vitro model system for understanding the genetic underpinnings of endometrial carcinoma.

  12. Neuronal RARβ Signaling Modulates PTEN Activity Directly in Neurons and via Exosome Transfer in Astrocytes to Prevent Glial Scar Formation and Induce Spinal Cord Regeneration

    PubMed Central

    Goncalves, Maria B.; Malmqvist, Tony; Clarke, Earl; Hubens, Chantal J.; Grist, John; Hobbs, Carl; Trigo, Diogo; Risling, Mårten; Angeria, Maria; Damberg, Peter; Carlstedt, Thomas P.

    2015-01-01

    Failure of axonal regeneration in the central nervous system (CNS) is mainly attributed to a lack of intrinsic neuronal growth programs and an inhibitory environment from a glial scar. Phosphatase and tensin homolog (PTEN) is a major negative regulator of neuronal regeneration and, as such, inhibiting its activity has been considered a therapeutic target for spinal cord (SC) injuries (SCIs). Using a novel model of rat cervical avulsion, we show that treatment with a retinoic acid receptor β (RARβ) agonist results in locomotor and sensory recovery. Axonal regeneration from the severed roots into the SC could be seen by biotinylated dextran amine labeling. Light micrographs of the dorsal root entry zone show the peripheral nervous system (PNS)–CNS transition of regrown axons. RARβ agonist treatment also resulted in the absence of scar formation. Mechanism studies revealed that, in RARβ-agonist-treated neurons, PTEN activity is decreased by cytoplasmic phosphorylation and increased secretion in exosomes. These are taken up by astrocytes, resulting in hampered proliferation and causing them to arrange in a normal-appearing scaffold around the regenerating axons. Attribution of the glial modulation to neuronal PTEN in exosomes was demonstrated by the use of an exosome inhibitor in vivo and PTEN siRNA in vitro assays. The dual effect of RARβ signaling, both neuronal and neuronal–glial, results in axonal regeneration into the SC after dorsal root neurotmesis. Targeting this pathway may open new avenues for the treatment of SCIs. SIGNIFICANCE STATEMENT Spinal cord injuries (SCIs) often result in permanent damage in the adult due to the very limited capacity of axonal regeneration. Intrinsic neuronal programs and the formation of a glial scar are the main obstacles. Here, we identify a single target, neuronal retinoic acid receptor β (RARβ), which modulates these two aspects of the postinjury physiological response. Activation of RARβ in the neuron inactivates

  13. Mycobacterium tuberculosis-secreted phosphatases: from pathogenesis to targets for TB drug development.

    PubMed

    Wong, Dennis; Chao, Joseph D; Av-Gay, Yossef

    2013-02-01

    Mycobacterium tuberculosis (Mtb) infects human alveolar macrophages and relies on the inhibition of phagosome acidification and maturation. This is, in part, dependent on the disruption of host signaling networks within the macrophage. In recent years, Mtb-secreted protein- and lipid-phosphatases protein-tyrosine phosphatase A (PtpA), PtpB, and secreted acid phosphatase M (SapM) have been shown to contribute to Mtb pathogenicity. Here, we review the current knowledge on PtpA, PtpB, and SapM focusing on their ability to interfere with host functions. We further explore how these phosphatase-dependent host-pathogen interactions can be targeted for novel tuberculosis (TB) drug discovery and examine the ongoing development of inhibitors against these phosphatases.

  14. PTEN is required to maintain luminal epithelial homeostasis and integrity in the adult mammary gland.

    PubMed

    Shore, Amy N; Chang, Chi-Hsuan; Kwon, Oh-Joon; Weston, Matthew C; Zhang, Mei; Xin, Li; Rosen, Jeffrey M

    2016-01-01

    In the mammary gland, PTEN loss in luminal and basal epithelial cells results in differentiation defects and enhanced proliferation, leading to the formation of tumors with basal epithelial characteristics. In breast cancer, PTEN loss is associated with a hormone receptor-negative, basal-like subtype that is thought to originate in a luminal epithelial cell. Here, we show that luminal-specific PTEN loss results in distinct effects on epithelial homeostasis and mammary tumor formation. Luminal PTEN loss increased proliferation of hormone receptor-negative cells, thereby decreasing the percentage of hormone receptor-positive cells. Moreover, luminal PTEN loss led to misoriented cell divisions and mislocalization of cells to the intraluminal space of mammary ducts. Despite their elevated levels of activated AKT, Pten-null intraluminal cells showed increased levels of apoptosis. One year after Pten deletion, the ducts had cleared and no palpable mammary tumors were detected. These data establish PTEN as a critical regulator of luminal epithelial homeostasis and integrity in the adult mammary gland, and further show that luminal PTEN loss alone is not sufficient to promote the progression of mammary tumorigenesis.

  15. Inhibition of microRNA-21 upregulates the expression of programmed cell death 4 and phosphatase tensin homologue in the A431 squamous cell carcinoma cell line

    PubMed Central

    LI, XIAOHONG; HUANG, KAI; YU, JIANBIN

    2014-01-01

    microRNA-21 (miRNA/miR-21) is a well-known oncogenic miRNA that is overexpressed in various carcinomas. The tumor suppressor genes, programmed cell death 4 (PDCD4) and phosphatase tensin homologue (PTEN), which target miR-21, are underexpressed in several types of cancer. However, the expression of miR-21 and its target genes, PDCD4 and PTEN, has not yet been reported in skin squamous cell carcinoma (SCC). In the present study, anti-miR-21 was transfected into the A431 cell line, and the expression of miR-21, PDCD4 and PTEN and the level of cell apoptosis were detected by quantitative polymerase chain reaction, immunocytochemistry and western blotting, and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling, respectively. The expression levels of PDCD4 and PTEN in the A431 cell line transfected with anti-miR-21 were significantly increased (P<0.05) and the apoptotic ratio was significantly increased (P<0.05). The data indicate that miR-21 may play an oncogenic role in the cellular processes of SCC and represent a novel target for effective therapies. PMID:24959246

  16. Identification and Validation of PTEN Complex, Associated Proteins

    DTIC Science & Technology

    2005-11-01

    Rosalia construct was transcribed and translated using a wheat germ lysate transcription/translation system to generate an unphosphorylated protein...efficient using the wheat germ lysate transcription/translation, system the new antisera immunoprecipitated the protein as well as the C54 Ab, especially...pSGL-PTEN was in vitro translated in a Rabbit reticolocyte lysate system (A) or in a wheat germ system (B) in the presence of radioactively labeled

  17. Suppression of Prostate Tumors by INK4C and PTEN

    DTIC Science & Technology

    2007-12-01

    develop pituitary adenomas , as revealed by autopsy, and nearly all lesions develop in the an- terior lobe, not the intermediate lobe (10). The...small size and noninvasive nature. Although the mortality rate is low, pituitary adenomas cause various symptoms, such as inappropriate hormone secretion...vention of both MEN and pituitary adenoma . Accelerated thyroid tumorigenesis in p18/ Pten/ mice. Thyroid tissues contain large follicles

  18. Structural Genomics of Protein Phosphatases

    SciTech Connect

    Almo,S.; Bonanno, J.; Sauder, J.; Emtage, S.; Dilorenzo, T.; Malashkevich, V.; Wasserman, S.; Swaminathan, S.; Eswaramoorthy, S.; et al

    2007-01-01

    The New York SGX Research Center for Structural Genomics (NYSGXRC) of the NIGMS Protein Structure Initiative (PSI) has applied its high-throughput X-ray crystallographic structure determination platform to systematic studies of all human protein phosphatases and protein phosphatases from biomedically-relevant pathogens. To date, the NYSGXRC has determined structures of 21 distinct protein phosphatases: 14 from human, 2 from mouse, 2 from the pathogen Toxoplasma gondii, 1 from Trypanosoma brucei, the parasite responsible for African sleeping sickness, and 2 from the principal mosquito vector of malaria in Africa, Anopheles gambiae. These structures provide insights into both normal and pathophysiologic processes, including transcriptional regulation, regulation of major signaling pathways, neural development, and type 1 diabetes. In conjunction with the contributions of other international structural genomics consortia, these efforts promise to provide an unprecedented database and materials repository for structure-guided experimental and computational discovery of inhibitors for all classes of protein phosphatases.

  19. Simultaneous haploinsufficiency of Pten and Trp53 tumor suppressor genes accelerates tumorigenesis in a mouse model of prostate cancer

    PubMed Central

    Couto, Suzana S.; Cao, Mei; Duarte, Paulo C.; Banach-Petrosky, Whitney; Wang, Shunyou; Romanienko, Peter; Wu, Hong; Cardiff, Robert D.; Abate-Shen, Cory; Cunha, Gerald R.

    2010-01-01

    Tumor suppressor gene PTEN is important in the initiation and progression of human prostate carcinoma, whereas the role of TP53 remains controversial. Since Pten/Trp53 double conditional knockout mice show earlier onset and fast progression of prostate cancer when compared to Pten knockout mice, we asked whether heterozygosity of these two tumor suppressor genes was sufficient to accelerate prostatic tumorigenesis. To answer this question we examined prostatic lesion progression of Pten/Trp53 double heterozygous mice and a series of controls such as Pten heterozygous, Pten conditional knockout, Trp53 heterozygous and Trp53 knockout mice. Tissue recombination of adult prostatic epithelium coupled with embryonic rat seminal vesicle mesenchyme was used as a tool to stimulate prostatic epithelial proliferation. In our study, high-grade prostatic intraepithelial neoplasia (PIN) was found with high frequency at 8 weeks post-tissue recombination transplantation. PIN lesions in Pten/Trp53 double heterozygous mice were more severe than those seen in Pten heterozygous alone. Furthermore, morphologic features attributable to Pten or Trp53 loss appeared to be enhanced in double heterozygous tissues. LOH analysis of Pten and Trp53 in genomic DNA collected from high-grade PIN lesions in Pten heterozygous and Pten/Trp53 double heterozygous mice showed an intact wild-type allele for both genes in all samples examined. In conclusion, simultaneous heterozygosity of Pten and Trp53 accelerates prostatic tumorigenesis in this mouse model of prostate cancer independently of loss of heterozygosity of either gene. PMID:19281769

  20. Timing of the loss of Pten protein determines disease severity in a mouse model of myeloid malignancy

    PubMed Central

    Yan, Yan; Webster, Cody; Shao, Lijian; Lensing, Shelly Y.; Ni, Hongyu; Feng, Wei; Colorado, Natalia; Pathak, Rupak; Xiang, Zhifu; Hauer-Jensen, Martin; Li, Shaoguang; Zhou, Daohong; Emanuel, Peter D.

    2016-01-01

    Juvenile myelomonocytic leukemia (JMML) is an aggressive pediatric mixed myelodysplastic/myeloproliferative neoplasm (MDS/MPN). JMML leukemogenesis is linked to a hyperactivated RAS pathway, with driver mutations in the KRAS, NRAS, NF1, PTPN11, or CBL genes. Previous murine models demonstrated how those genes contributed to the selective hypersensitivity of JMML cells to granulocyte macrophage–colony-stimulating factor (GM-CSF), a unifying characteristic in the disease. However, it is unclear what causes the early death in children with JMML, because transformation to acute leukemia is rare. Here, we demonstrate that loss of Pten (phosphatase and tensin homolog) protein at postnatal day 8 in mice harboring Nf1 haploinsufficiency results in an aggressive MPN with death at a murine prepubertal age of 20 to 35 days (equivalent to an early juvenile age in JMML patients). The death in the mice was due to organ infiltration with monocytes/macrophages. There were elevated activities of protein kinase B (Akt) and mitogen-activated protein kinase (MAPK) in cells at physiological concentrations of GM-CSF. These were more pronounced in mice with Nf1 haploinsufficiency than in littermates with wild-type Nf1, but this model is insufficient to cause cells to be GM-CSF hypersensitive. This new model represents a murine MPN model with features of a pediatric unclassifiable mixed MDS/MPN and mimics many clinical manifestations of JMML in terms of age of onset, aggressiveness, and organ infiltration with monocytes/macrophages. Our data suggest that the timing of the loss of PTEN protein plays a critical role in determining the disease severity in myeloid malignancies. This model may be useful for studying the pathogenesis of pediatric diseases with alterations in the Ras pathway. PMID:26764354

  1. Interleukin-18 augments growth ability of primary human melanocytes by PTEN inactivation through the AKT/NF-κB pathway.

    PubMed

    Zhou, Jia; Shang, Jing; Song, Jing; Ping, Fengfeng

    2013-02-01

    Normal human skin relies on melanocytes to provide photoprotection and thermoregulation by producing melanin. The growth and behavior of melanocytes are controlled by many factors. Interleukin-18 (IL-18) is expressed in both immune and non-immune cells and participates in the adjustment of multitude cellular functions. Nonetheless, the regulative roles of IL-18 in melanogenesis and growth of melanocytes have not been explored. The present study was conducted to investigate the effects of IL-18 on melanocytes and elucidate the underlying mechanisms. We proved that IL-18 increased the tyrosinase activity and melanin content in normal human foreskin-derived epidermal melanocytes (NHEM). Treatment with IL-18 (20 ng/ml) enhanced the expression of c-Kit, microphtalmia-associated transcription factor (MITF) and its downstream tyrosinase-related protein 1 (TRP-1), and TRP-2. In addition, IL-18 induced NHEM migration at concentration of 20 ng/ml. These results indicated a promotive action of IL-18 on melanogenesis in NHEM. Our data revealed that IL-18 stimulated ERK1/2 and NF-κB activation, improved p-Akt, p70 S6K and anti-apoptotic Bcl-2 levels, and deactivated phosphatase and tensin homolog deleted on chromosome 10 (PTEN) in NHEM. Besides, IL-18 increased level of PTEN phosphorylation to protect NHEM from damage induced by H(2)O(2). These results in vitro showed the accommodation of IL-18 in melanocytes growth. Therefore, we suggested an important regulating action of IL-18 to melanogenesis and cell growth ability of skin melanocytes.

  2. PTEN Protein Loss by Immunostaining: Analytic Validation and Prognostic Indicator for a High Risk Surgical Cohort of Prostate Cancer Patients

    PubMed Central

    Lotan, Tamara L.; Gurel, Bora; Sutcliffe, Siobhan; Esopi, David; Liu, Wennuan; Xu, Jianfeng; Hicks, Jessica L.; Park, Ben H.; Humphreys, Elizabeth; Partin, Alan W.; Han, Misop; Netto, George J.; Isaacs, William B.; De Marzo, Angelo M.

    2011-01-01

    Purpose Analytically validated assays to interrogate biomarker status in clinical samples are crucial for personalized medicine. PTEN is a tumor suppressor commonly inactivated in prostate cancer that has been mechanistically linked to disease aggressiveness. Though deletion of PTEN, as detected by cumbersome fluorescence in situ hybridization (FISH) spot counting assays, is associated with poor prognosis, few studies have validated immunohistochemical (IHC) assays to determine whether loss of PTEN protein is associated with unfavorable disease. Experimental Design PTEN IHC was validated by employing formalin fixed and paraffin embedded isogenic human cell lines containing or lacking intact PTEN alleles. PTEN IHC was 100% sensitive and 97.8% specific for detecting genomic alterations in 58 additional cell lines. PTEN protein loss was then assessed on 376 prostate tumor samples, and PTEN FISH or high resolution SNP microarray analysis was performed on a subset of these cases. Results PTEN protein loss, as assessed as a dichotomous IHC variable, was highly reproducible, correlated strongly with adverse pathologic features (e.g. Gleason score and pathological stage), detected between 75% and 86% of cases with PTEN genomic loss, and was found at times in the absence of apparent genomic loss. In a cohort of 217 high risk surgically treated patients, PTEN protein loss was associated with decreased time to metastasis. Conclusions These studies validate a simple method to interrogate PTEN status in clinical specimens and support the utility of this test in future multi-center studies, clinical trials and ultimately perhaps for routine clinical care. PMID:21878536

  3. PTEN regulates apoptotic cell death through PI3-K/Akt/GSK3β signaling pathway in DMH induced early colon carcinogenesis in rat.

    PubMed

    Saini, Manpreet Kaur; Sanyal, Sankar Nath

    2012-08-01

    Phosphatidylinositol 3-kinase (PI3-K) and Akt (protein kinase B), are both essential signaling molecules that are up-regulated in various cancers. Here, we examined the molecular mechanisms by which PI3-K and Akt expression are regulated by glycogen synthase kinase-3β (GSK-3β) and the phosphatase and tensin homolog deleted on chromosome 10 (PTEN) in the early stages of experimental colon carcinogenesis. 1,2-dimethylhydrazine (DMH) was utilized for the induction of colon cancer while piroxicam, a traditional non-steroidal anti-inflammatory drug and c-phycocyanin, a biliprotein from Spirulina platensis (cyanobacterium) as the chemopreventive agents. Western blotting and immunofluorescence results indicated that the expression of PI3-K and Akt was promoted in the DMH group while least apoptosis was detected in this group as analyzed by Hoechst 33342-propidium iodide co-staining. DMH group further detected lower GSK-3β and PTEN expression as compared to other groups. Piroxicam and c-phycocyanin treatment resulted significant apoptotic cell death while showing low PI3-K and Akt expressions. Mitochondrial membrane potential (ΔΨ(M)) alterations (examined by JC-1 and rhodamine 123 labeling of colonocytes) and fluorescence intensity measurement of ROS level, were also analyzed showing the raised ΔΨ(M) while reduced ROS levels in DMH group, however piroxicam and c-phycocyanin treatment resulted in falling of ΔΨ(M) although both stimulated the ROS production as analyzed by flow cytometry. The present study thus identified that piroxicam, a traditional NSAID and c-phycocyanin, a newly discovered COX-2 selective inhibitor, constitute remarkable chemopreventive targets in mediating apoptosis in the DMH induced early rat colon carcinogenesis via regulating PI3-K/Akt/GSK-3β/PTEN signaling pathways. Further, a combination of the two drugs provides a better therapeutic option, than the monotherapy regimen.

  4. Downregulation of miR-382 by propranolol inhibits the progression of infantile hemangioma via the PTEN-mediated AKT/mTOR pathway.

    PubMed

    Li, Dongfan; Li, Peng; Guo, Zhengtuan; Wang, Huaijie; Pan, Weikang

    2017-03-01

    Approximately 10% of infantile hemangiomas (IHs) are the most common vascular tumors affecting children and are characterized by rapid growth, and can have destructive, disfiguring and even life-threatening consequences. Currently, propranolol is considered to be a safe and effective treatment option for problematic proliferating IHs. Recent studies have also revealed that microRNAs (miRNAs or miRs) play important roles in the regulation of angiogenesis. In this study, XPTS‑1 cells were used as a hemangioma-derived endothelial cell line constructed in our laboratory. Through a series of experiments, we discovered that miR‑382 is a novel miRNA associated with IHs, which was overexpressed in XPTS‑1 cells and was conversely downregulated by treatment with propranolol. In addition, we found that miR‑382 contributes to the progression of IHs. Our results revealed that propranolol inhibited XPTS‑1 cell migration and proliferation, and promoted apoptosis, and these effects were reversed by the restoration of miR‑382 expression by transfection of the cells with an miR‑382 overexpression vector. Further experiments revealed that the above-mentioned effects were associated with the phosphatase and tensin homolog (PTEN)-mediated AKT/mammalian target of rapamycin (mTOR) signaling pathway. The expression of PTEN was upregulated, while that of p-AKT, p-mTOR and p-p70S6K was downregulated by propranolol; these effects were partly reversed by the overexpression of miR‑382. On the whole, our study identified that the downregulation of miR‑382 by propranolol inhibits the progression of IHs via the PTEN-mediated AKT/mTOR pathway.

  5. MicroRNA-101 suppresses progression of lung cancer through the PTEN/AKT signaling pathway by targeting DNA methyltransferase 3A

    PubMed Central

    Wang, Lumin; Yao, Jiayi; Sun, Hongfei; He, Kang; Tong, Dongdong; Song, Tusheng; Huang, Chen

    2017-01-01

    It is well established that transcriptional silencing of critical tumor suppressor genes by DNA methylation is a fundamental process in the initiation of lung cancer. However, the involvement of microRNAs (miRNAs) in restoring abnormal DNA methylation patterns in lung cancer is not well understood. Therefore, and since miRNA-101 is complementary to the 3′-untranslated region of DNA methyltransferase 3A (DNMT3A), we investigated whether miRNA-101 could restore normal DNA methylation patterns in lung cancer cell lines. Bioinformatics has indicated that DNMT3A is a major target of miR-101. In addition, the overexpression of miR-101 downregulates DNMT3A. Using a methylation-specific polymerase chain reaction assay, we demonstrated that methylation of the phosphatase and tensin homolog (PTEN) promoter was reduced in A549 cells transfected with miR-101, but not in the transfected control. Furthermore, overexpression of miR-101 and silencing of DNMT3A suppressed lung cell proliferation and S/G2 transition, and increased apoptosis through the PTEN/AKT pathway in vitro. Furthermore, we observed the opposite phenomenon in A549 cells transfected with a miR-101 inhibitor. Subsequent investigation revealed that overexpression of miR-101 significantly inhibited the tumorigenicity of A549 cells in a nude mouse xenograft model. These results demonstrate that miR-101 affects lung cancer progression through the PTEN/AKT signaling pathway by targeting DNMT3A in lung cells, suggesting that miR-101 may be a novel potential therapeutic strategy in lung cancer treatment. PMID:28123563

  6. Soy peptide lunasin induces pten-mediated apoptosis in human breast cancer cells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The tumor suppressor PTEN inhibits the AKT signaling pathway whose unrestrained activity underlies many human malignancies. Previously we showed that dietary intake of soy protein isolate (SPI) enhanced PTEN expression in mammary tissue of rats with lower NMU-induced mammary tumor incidence relative...

  7. Efficacy of targeted AKT inhibition in genetically engineered mouse models of PTEN-deficient prostate cancer.

    PubMed

    De Velasco, Marco A; Kura, Yurie; Yoshikawa, Kazuhiro; Nishio, Kazuto; Davies, Barry R; Uemura, Hirotsugu

    2016-03-29

    The PI3K/AKT pathway is frequently altered in advanced human prostate cancer mainly through the loss of functional PTEN, and presents as potential target for personalized therapy. Our aim was to determine the therapeutic potential of the pan-AKT inhibitor, AZD5363, in PTEN-deficient prostate cancer. Here we used a genetically engineered mouse (GEM) model of PTEN-deficient prostate cancer to evaluate the in vivo pharmacodynamic and antitumor activity of AZD5363 in castration-naïve and castration-resistant prostate cancer. An additional GEM model, based on the concomitant inactivation of PTEN and Trp53 (P53), was established as an aggressive model of advanced prostate cancer and was used to further evaluate clinically relevant endpoints after treatment with AZD5363. In vivo pharmacodynamic studies demonstrated that AZD5363 effectively inhibited downstream targets of AKT. AZD5363 monotherapy significantly reduced growth of tumors in castration-naïve and castration-resistant models of PTEN-deficient prostate cancer. More importantly, AZD5363 significantly delayed tumor growth and improved overall survival and progression-free survival in PTEN/P53 double knockout mice. Our findings demonstrate that AZD5363 is effective against GEM models of PTEN-deficient prostate cancer and provide lines of evidence to support further investigation into the development of treatment strategies targeting AKT for the treatment of PTEN-deficient prostate cancer.

  8. PTEN deficiency reprogrammes human neural stem cells towards a glioblastoma stem cell-like phenotype

    PubMed Central

    Duan, Shunlei; Yuan, Guohong; Liu, Xiaomeng; Ren, Ruotong; Li, Jingyi; Zhang, Weizhou; Wu, Jun; Xu, Xiuling; Fu, Lina; Li, Ying; Yang, Jiping; Zhang, Weiqi; Bai, Ruijun; Yi, Fei; Suzuki, Keiichiro; Gao, Hua; Esteban, Concepcion Rodriguez; Zhang, Chuanbao; Belmonte, Juan Carlos Izpisua; Chen, Zhiguo; Wang, Xiaomin; Jiang, Tao; Qu, Jing; Tang, Fuchou; Liu, Guang-Hui

    2015-01-01

    PTEN is a tumour suppressor frequently mutated in many types of cancers. Here we show that targeted disruption of PTEN leads to neoplastic transformation of human neural stem cells (NSCs), but not mesenchymal stem cells. PTEN-deficient NSCs display neoplasm-associated metabolic and gene expression profiles and generate intracranial tumours in immunodeficient mice. PTEN is localized to the nucleus in NSCs, binds to the PAX7 promoter through association with cAMP responsive element binding protein 1 (CREB)/CREB binding protein (CBP) and inhibits PAX7 transcription. PTEN deficiency leads to the upregulation of PAX7, which in turn promotes oncogenic transformation of NSCs and instates ‘aggressiveness' in human glioblastoma stem cells. In a large clinical database, we find increased PAX7 levels in PTEN-deficient glioblastoma. Furthermore, we identify that mitomycin C selectively triggers apoptosis in NSCs with PTEN deficiency. Together, we uncover a potential mechanism of how PTEN safeguards NSCs, and establish a cellular platform to identify factors involved in NSC transformation, potentially permitting personalized treatment of glioblastoma. PMID:26632666

  9. PI3K/SHIP2/PTEN pathway in cell polarity and hepatitis C virus pathogenesis

    PubMed Central

    Awad, Aline; Gassama-Diagne, Ama

    2017-01-01

    Hepatitis C virus (HCV) infects hepatocytes, polarized cells in the liver. Chronic HCV infection often leads to steatosis, fibrosis, cirrhosis and hepatocellular carcinoma, and it has been identified as the leading cause of liver transplantation worldwide. The HCV replication cycle is dependent on lipid metabolism and particularly an accumulation of lipid droplets in host cells. Phosphoinositides (PIs) are minor phospholipids enriched in different membranes and their levels are tightly regulated by specific PI kinases and phosphatases. PIs are implicated in a vast array of cellular responses that are central to morphogenesis, such as cytoskeletal changes, cytokinesis and the recruitment of downstream effectors to govern mechanisms involved in polarization and lumen formation. Important reviews of the literature identified phosphatidylinositol (PtdIns) 4-kinases, and their lipid products PtdIns(4)P, as critical regulators of the HCV life cycle. SH2-containing inositol polyphosphate 5-phosphatase (SHIP2), phosphoinositide 3-kinase (PI3K) and their lipid products PtdIns(3,4)P2 and PtdIns(3,4,5)P3, respectively, play an important role in the cell membrane and are key to the establishment of apicobasal polarity and lumen formation. In this review, we will focus on these new functions of PI3K and SHIP2, and their deregulation by HCV, causing a disruption of apicobasal polarity, actin organization and extracellular matrix assembly. Finally we will highlight the involvement of this pathway in the event of insulin resistance and nonalcoholic fatty liver disease related to HCV infection. PMID:28105255

  10. Regulation of PtdIns(3,4,5)P3/Akt signalling by inositol polyphosphate 5-phosphatases.

    PubMed

    Eramo, Matthew J; Mitchell, Christina A

    2016-02-01

    The phosphoinositide 3-kinase (PI3K) generated lipid signals, PtdIns(3,4,5)P3 and PtdIns(3,4)P2, are both required for the maximal activation of the serine/threonine kinase proto-oncogene Akt. The inositol polyphosphate 5-phosphatases (5-phosphatases) hydrolyse the 5-position phosphate from the inositol head group of PtdIns(3,4,5)P3 to yield PtdIns(3,4)P2. Extensive work has revealed several 5-phosphatases inhibit PI3K-driven Akt signalling, by decreasing PtdIns(3,4,5)P3 despite increasing cellular levels of PtdIns(3,4)P2. The roles that 5-phosphatases play in suppressing cell proliferation and transformation are slow to emerge; however, the 5-phosphatase PIPP [proline-rich inositol polyphosphate 5-phosphatase; inositol polyphosphate 5-phosphatase (INPP5J)] has recently been identified as a putative tumour suppressor in melanoma and breast cancer and SHIP1 [SH2 (Src homology 2)-containing inositol phosphatase 1] inhibits haematopoietic cell proliferation. INPP5E regulates cilia stability and INPP5E mutations have been implicated ciliopathy syndromes. This review will examine 5-phosphatase regulation of PI3K/Akt signalling, focussing on the role PtdIns(3,4,5)P3 5-phosphatases play in developmental diseases and cancer.

  11. Conjugated linoleic acids attenuate FSH- and IGF1-stimulated cell proliferation; IGF1, GATA4, and aromatase expression; and estradiol-17β production in buffalo granulosa cells involving PPARγ, PTEN, and PI3K/Akt.

    PubMed

    Sharma, Isha; Singh, Dheer

    2012-09-01

    Conjugated linoleic acid (CLA) has drawn much interest in last two decades in the area ranging from anticancer activity to obesity. A number of research papers have been published recently with regard to CLA's additional biological functions as reproductive benefits. However, not much is known how this mixture of isomeric compounds mediates its beneficial effects particularly on fertility. In this study, we demonstrated the cross talk between downstream signaling of CLA and important hormone regulators of endocrine system, i.e. FSH and IGF1, on buffalo granulosa cell function (proliferation and steroidogenesis). Experiments were performed in primary serum-free buffalo granulosa cell culture, where cells were incubated with CLA in combination with FSH (25 ng/ml) and IGF1 (50  ng/ml). Results showed that 10 μM CLA inhibits FSH- and IGF1-induced granulosa cell proliferation; aromatase, GATA4, and IGF1 mRNA; and estradiol-17β production. Western blot analysis of total cell lysates revealed that CLA intervenes the IGF1 signaling by decreasing p-Akt. In addition, CLA was found to upregulate peroxisome proliferator-activated receptor-gamma (PPARG) and phosphatase and tensin homolog (PTEN) level in granulosa cells. Further study using PPARG- and PTEN-specific inhibitors supports the potential role of CLA in granulosa cell proliferation and steroidogenesis involving PPARG, PTEN, and PI3K/Akt pathway.

  12. HER2 overcomes PTEN (loss)-induced senescence to cause aggressive prostate cancer

    PubMed Central

    Ahmad, Imran; Patel, Rachana; Singh, Lukram Babloo; Nixon, Colin; Seywright, Morag; Barnetson, Robert J.; Brunton, Valerie G.; Muller, William J.; Edwards, Joanne; Sansom, Owen J.; Leung, Hing Y.

    2011-01-01

    Prostate cancer (CaP) is the most common cancer among adult men in the Western world. Better insight into its tumor-activating pathways may facilitate the development of targeted therapies. In this study, we show that patients who develop prostate tumors with low levels of PTEN and high levels of HER2/3 have a poor prognosis. This is functionally relevant, as targeting Her2 activation to the murine prostate cooperates with Pten loss and drives CaP progression. Mechanistically, this is associated with activation of the MAPK pathway and abrogation of the Pten loss-induced cellular senescence program. Importantly, inhibition of MEK function strongly suppressed proliferation within these tumors by restoring the Pten loss-induced cellular senescence program. Taken together, these data suggest that stratification of CaP patients for HER2/3 and PTEN status could identify patients with aggressive CaP who may respond favorably to MEK inhibition. PMID:21930937

  13. Nutrient restriction enhances the proliferative potential of cells lacking the tumor suppressor PTEN in mitotic tissues

    PubMed Central

    Nowak, Katarzyna; Seisenbacher, Gerhard; Hafen, Ernst; Stocker, Hugo

    2013-01-01

    How single cells in a mitotic tissue progressively acquire hallmarks of cancer is poorly understood. We exploited mitotic recombination in developing Drosophila imaginal tissues to analyze the behavior of cells devoid of the tumor suppressor PTEN, a negative regulator of PI3K signaling, under varying nutritional conditions. Cells lacking PTEN strongly overproliferated specifically in nutrient restricted larvae. Although the PTEN mutant cells were sensitive to starvation, they successfully competed with neighboring cells by autonomous and non-autonomous mechanisms distinct from cell competition. The overgrowth was strictly dependent on the activity of the downstream components Akt/PKB and TORC1, and a reduction in amino acid uptake by reducing the levels of the amino acid transporter Slimfast caused clones of PTEN mutant cells to collapse. Our findings demonstrate how limiting nutritional conditions impact on cells lacking the tumor suppressor PTEN to cause hyperplastic overgrowth. DOI: http://dx.doi.org/10.7554/eLife.00380.001 PMID:23853709

  14. Administration of a PTEN inhibitor BPV(pic) attenuates early brain injury via modulating AMPA receptor subunits after subarachnoid hemorrhage in rats.

    PubMed

    Chen, Yujie; Luo, Chunxia; Zhao, Mingyue; Li, Qiang; Hu, Rong; Zhang, John H; Liu, Zhi; Feng, Hua

    2015-02-19

    The aim of this study was to investigate whether the phosphatase and tensin homolog deleted on chromosome ten (PTEN) inhibitor dipotassium bisperoxo(pyridine-2-carboxyl) oxovanadate (BPV(pic)) attenuates early brain injury by modulating α-amino-3-hydroxy-5-methyl-4-isoxa-zolep-propionate (AMPA) receptor subunits after subarachnoid hemorrhage (SAH). A standard intravascular perforation model was used to produce the experimental SAH in Sprague-Dawley rats. BPV(pic) treatment (0.2mg/kg) was evaluated for effects on neurological score, brain water content, Evans blue extravasation, hippocampal neuronal death and AMPA receptor subunits alterations after SAH. We found that BPV(pic) is effective in attenuating BBB disruption, lowering edema, reducing hippocampal neural death and improving neurological outcomes. In addition, the AMPA receptor subunit GluR1 protein expression at cytomembrane was downregulated, whereas the expression of GluR2 and GluR3 was upregulated after BPV(pic) treatment. Our results suggest that PTEN inhibited by BPV(pic) plays a neuroprotective role in SAH pathophysiology, possibly by alterations in glutamate AMPA receptor subunits.

  15. Quantitative MRI Establishes the Efficacy of PI3K Inhibitor (GDC-0941) Multi-Treatments in PTEN-deficient Mice Lymphoma

    PubMed Central

    WULLSCHLEGER, STEPHAN; GARCÍA-MARTÍNEZ, JUAN M.; DUCE, SUZANNE L.

    2012-01-01

    Aim To assess the efficacy of multiple treatment of phosphatidylinositol-3-kinase (PI3K) inhibitor on autochthonous tumours in phosphatase and tensin homologue (Pten)-deficient genetically engineered mouse cancer models using a longitudinal magnetic resonance imaging (MRI) protocol. Materials and Methods Using 3D MRI, B-cell follicular lymphoma growth was quantified in a Pten+/−Lkb1+/hypo mouse line, before, during and after repeated treatments with a PI3K inhibitor GDC-0941 (75 mg/kg). Results Mean pre-treatment linear tumour growth rate was 16.5±12.8 mm3/week. Repeated 28-day GDC-0941 administration, with 21 days “off-treatment”, induced average tumour regression of 41±7%. Upon cessation of the second treatment (which was not permanently cytocidal), tumours re-grew with an average linear growth rate of 40.1±15.5 mm3/week. There was no evidence of chemoresistance. Conclusion This protocol can accommodate complex dosing schedules, as well as combine different cancer therapies. It reduces biological variability problems and resulted in a 10-fold reduction in mouse numbers compared with terminal assessment methods. It is ideal for preclinical efficacy studies and for phenotyping molecularly characterized mouse models when investigating gene function. PMID:22287727

  16. PTEN/PI3K/Akt/VEGF signaling and the cross talk to KRIT1, CCM2, and PDCD10 proteins in cerebral cavernous malformations.

    PubMed

    Kar, Souvik; Samii, Amir; Bertalanffy, Helmut

    2015-04-01

    Cerebral cavernous malformations (CCM) are common vascular malformation of the brain and are associated with abnormal angiogenesis. Although the exact etiology and the underlying molecular mechanism are still under investigation, recent advances in the identification of the mutations in three genes and their interactions with different signaling pathways have shed light on our understanding of CCM pathogenesis. The phosphatidylinositol 3-kinase (PI3K)/Akt pathway is known to play a major role in angiogenesis. Studies have shown that the phosphatase and tensin homologue deleted on chromosome ten (PTEN), a tumor suppressor, is an antagonist regulator of the PI3K/Akt pathway and mediates angiogenesis by activating vascular endothelial growth factor (VEGF) expression. Here, we provide an update literature review on the current knowledge of the PTEN/PI3K/Akt/VEGF signaling in angiogenesis, more importantly in CCM pathogenesis. In addition to reviewing the current literatures, this article will also focus on the structural domain of the three CCM proteins and their interacting partners. Understanding the biology of these proteins with respect to their signaling counterpart will help to guide future research towards new therapeutic targets applicable for CCM treatment.

  17. Inositol polyphosphate 4-phosphatase II (INPP4B) is associated with chemoresistance and poor outcome in AML.

    PubMed

    Rijal, Sewa; Fleming, Shaun; Cummings, Nik; Rynkiewicz, Natalie K; Ooms, Lisa M; Nguyen, Nhu-Y N; Teh, Tse-Chieh; Avery, Sharon; McManus, Julie F; Papenfuss, Anthony T; McLean, Catriona; Guthridge, Mark A; Mitchell, Christina A; Wei, Andrew H

    2015-04-30

    Phosphoinositide signaling regulates diverse cellular functions. Phosphoinositide-3 kinase (PI3K) generates PtdIns(3,4,5)P3 and PtdIns(3,4)P2, leading to the activation of proliferative and anti-apoptotic signaling pathways. Termination of phosphoinositide signaling requires hydrolysis of inositol ring phosphate groups through the actions of PtdIns(3,4,5)P3 3-phosphatase (PTEN), PtdIns(3,4,5)P3 5-phosphatases (eg, SHIP), and PtdIns(3,4)P2 4-phosphatases (eg, INPP4B). The biological relevance of most of these phosphoinositide phosphatases in acute myeloid leukemia (AML) remains poorly understood. Mass spectrometry-based gene expression profiling of 3-, 4- and 5-phosphatases in human AML revealed significant overexpression of INPP4B. Analysis of an expanded panel of 205 AML cases at diagnosis revealed INPP4B overexpression in association with reduced responses to chemotherapy, early relapse, and poor overall survival, independent of other risk factors. Ectopic overexpression of INPP4B conferred leukemic resistance to cytosine arabinoside (ara-C), daunorubicin, and etoposide. Expression of a phosphatase inert variant (INPP4B C842A) failed to abrogate resistance of AML cells to chemotherapy in vitro or in vivo. In contrast, targeted suppression of endogenously overexpressed INPP4B by RNA interference sensitized AML cell lines and primary AML to chemotherapy. These findings demonstrate a previously unsuspected and clinically relevant role for INPP4B gain of function as a mediator of chemoresistance and poor survival outcome in AML independent of its phosphoinositide phosphatase function.

  18. Molecular characterization and function of a PTEN gene from Litopenaeus vannamei after Vibrio alginolyticus challenge.

    PubMed

    Xie, C-y; Kong, J-r; Zhao, C-s; Xiao, Y-c; Peng, T; Liu, Y; Wang, W-n

    2016-06-01

    PTEN, a tumor suppressor gene, suppresses cell survival, growth, apoptosis, cell migration and DNA damage repair by inhibiting the PI3K/AKT signaling pathway. In this study, the full-length Litopenaeus vannamei PTEN (LvPTEN) cDNA was obtained, containing a 5'UTR of 59bp, an ORF of 1269bp and a 3'UTR of 146bp besides the poly (A) tail. The PTEN gene encoded a protein of 422 amino acids with an estimated molecular mass of 48.3 KDa and a predicted isoelectric point (pI) of 7.6. Subcellular localization analysis revealed that LvPTEN was distributed in both cytoplasm and nucleus, and the tissue distribution patterns showed that LvPTEN was ubiquitously expressed in all the examined tissues. Vibrio alginolyticus challenge induced upregulation of LvPTEN expression. Moreover, RNAi knock-down of LvPTEN in vivo significantly increased the expression of LvAKT mRNA, while reducing that of the downstream apoptosis genes LvP53 and LvCaspase3. LvPTEN knock-down also caused a sharp increase in cumulative mortality, bacterial numbers, and DNA damage in the hemolymph of L. vannamei following V. alginolyticus challenge, together with a sharp decrease in the total hemocyte count (THC). These results suggested that LvPTEN may participate in apoptosis via the PI3K/AKT signaling pathway in L. vannamei, and play an important role in shrimp innate immunity.

  19. Loss of CDH1 and Pten accelerates cellular invasiveness and angiogenesis in the mouse uterus.

    PubMed

    Lindberg, Mallory E; Stodden, Genna R; King, Mandy L; MacLean, James A; Mann, Jordan L; DeMayo, Francesco J; Lydon, John P; Hayashi, Kanako

    2013-07-01

    E-cadherin (CDH1) is a cell adhesion molecule that coordinates key morphogenetic processes regulating cell growth, cell proliferation, and apoptosis. Loss of CDH1 is a trademark of the cellular event epithelial to mesenchymal transition, which increases the metastatic potential of malignant cells. PTEN is a tumor-suppressor gene commonly mutated in many human cancers, including endometrial cancer. In the mouse uterus, ablation of Pten induces epithelial hyperplasia, leading to endometrial carcinomas. However, loss of Pten alone does not affect longevity until around 5 mo. Similarly, conditional ablation of Cdh1 alone does not predispose mice to cancer. In this study, we characterized the impact of dual Cdh1 and Pten ablation (Cdh1(d/d) Pten(d/d)) in the mouse uterus. We observed that Cdh1(d/d) Pten(d/d) mice died at Postnatal Days 15-19 with massive blood loss. Their uteri were abnormally structured with curly horns, disorganized epithelial structure, and increased cell proliferation. Co-immunostaining of KRT8 and ACTA2 showed invasion of epithelial cells into the myometrium. Further, the uteri of Cdh1(d/d) Pten(d/d) mice had prevalent vascularization in both the endometrium and myometrium. We also observed reduced expression of estrogen and progesterone receptors, loss of cell adherens, and tight junction molecules (CTNNB1 and claudin), as well as activation of AKT in the uteri of Cdh1(d/d) Pten(d/d) mice. However, complex hyperplasia was not found in the uteri of Cdh1(d/d) Pten(d/d) mice. Collectively, these findings suggest that ablation of Pten with Cdh1 in the uterus accelerates cellular invasiveness and angiogenesis and causes early death.

  20. MicroRNA-20b (miR-20b) Promotes the Proliferation, Migration, Invasion, and Tumorigenicity in Esophageal Cancer Cells via the Regulation of Phosphatase and Tensin Homologue Expression

    PubMed Central

    Xiao, Bin

    2016-01-01

    Increasing evidence has indicated that many microRNAs participate in the development and progression of esophageal cancer and gene expression regulation. MicroRNA-20b (miR-20b) has been reported to be aberrantly expressed in various cancers, but its exact role in esophageal cancer cells remains unclear so far. Therefore, we detected the levels of miR-20b in esophageal tumor tissues and their adjacent normal tissues, and various esophageal cancer cell lines by qRT-PCR. We also explored the effects of miR-20b on cell proliferation, migration, invasion and tumorigenicity of esophageal carcinoma cells through transfection with miR-20b mimics or inhibitor to upregulate or downregulate miR-20b expression in the esophageal cancer cells Eca-109 and KYSE-150, respectively. Additionally, the 3'-untranslated region (3'-UTR) of phosphatase and tensin homologue (PTEN) binding with miR-20b was analyzed by dual-luciferase reporter assays. The results indicated that miR-20b expression level in esophageal tumor tissues was significantly increased compared with their neighboring normal tissues, but its expression was inverse with PTEN protein expression. Luciferase assays confirmed that the 3'-UTR of PTEN was a target of miR-20b in esophageal cancer cells. MiR-20b upregulation promoted cell proliferation, migration, invasiveness, and tumor growth, and decreased apoptosis, and reduced PTEN protein level but not mRNA expression in Eca-109 cells. Conversely, downregulation of miR-20b suppressed these processes in KYSE-150 cells, and enhanced PTEN protein expression. These data indicate that miR-20b plays important roles in tumorigenesis of esophageal cancer possibly via regulation of PTEN expression, and it may be a potential therapeutic target for esophageal cancer treatment. PMID:27701465

  1. The structure of phosphoinositide phosphatases: Insights into substrate specificity and catalysis.

    PubMed

    Hsu, FoSheng; Mao, Yuxin

    2015-06-01

    Phosphoinositides (PIs) are a group of key signaling and structural lipid molecules involved in a myriad of cellular processes. PI phosphatases, together with PI kinases, are responsible for the conversion of PIs between distinctive phosphorylation states. PI phosphatases are a large collection of enzymes that are evolved from at least two disparate ancestors. One group is distantly related to endonucleases, which apply divalent metal ions for phosphoryl transfer. The other group is related to protein tyrosine phosphatases, which contain a highly conserved active site motif Cys-X5-Arg (CX5R). In this review, we focus on structural insights to illustrate current understandings of the molecular mechanisms of each PI phosphatase family, with emphasis on their structural basis for substrate specificity determinants and catalytic mechanisms. This article is part of a Special Issue entitled Phosphoinositides.

  2. JQ1 suppresses tumor growth via PTEN/PI3K/AKT pathway in endometrial cancer

    PubMed Central

    Qiu, Haifeng; Li, Jing; Clark, Leslie H.; Jackson, Amanda L.; Zhang, Lu; Guo, Hui; Kilgore, Joshua E.; Gehrig, Paola A.; Zhou, Chunxiao; Bae-Jump, Victoria L.

    2016-01-01

    Overexpression of c-Myc is associated with worse outcomes in endometrial cancer, indicating that c-Myc may be a promising target for endometrial cancer therapy. A novel small molecule, JQ1, has been shown to block BRD4 resulting in inhibition of c-Myc expression and tumor growth. Thus, we investigated whether JQ1 can inhibit endometrial cancer growth in cell culture and xenograft models. In PTEN-positive endometrial cancer cells, JQ1 significantly suppressed cell proliferation via induction of G1 phase arrest and apoptosis in a dose-dependent manner, accompanied by a sharp decline in cyclin D1 and CDK4 protein expression. However, PTEN-negative endometrial cancer cells exhibited intrinsic resistance to JQ1, despite significant c-Myc inhibition. Moreover, we found that PTEN and its downstream PI3K/AKT signaling targets were modulated by JQ1, as evidenced by microarray analysis. Silencing of PTEN in PTEN-positive endometrial cancer cells resulted in resistance to JQ1, while upregulation of PTEN in PTEN-negative endometrial cancer cells increased sensitivity to JQ1. In xenografts models of PTEN-positive and PTEN-knock-in endometrial cancer, JQ1 significantly upregulated the expression of PTEN, blocked the PI3K/AKT signaling pathway and suppressed tumor growth. These effects were attenuated in PTEN-negative and PTEN-knockdown xenograft models. Thus, JQ1 resistance appears to be highly associated with the status of PTEN expression in endometrial cancer. Our findings suggest that targeting BRD4 using JQ1 might serve as a novel therapeutic strategy in PTEN-positive endometrial cancers. PMID:27572308

  3. PTEN opposes negative selection and enables oncogenic transformation of pre-B cells

    PubMed Central

    Shojaee, Seyedmehdi; Chan, Lai N.; Buchner, Maike; Cazzaniga, Valeria; Cosgun, Kadriye Nehir; Geng, Huimin; Qiu, Yi Hua; von Minden, Marcus Dühren; Ernst, Thomas; Hochhaus, Andreas; Cazzaniga, Giovanni; Melnick, Ari; Kornblau, Steven M.; Graeber, Thomas G.; Wu, Hong; Jumaa, Hassan; Müschen, Markus

    2016-01-01

    PTEN is a negative regulator of PI3K-AKT signaling and a potent tumor suppressor in many types of cancer. To test a tumor suppressive role of PTEN in pre-B acute lymphoblastic leukemia (ALL), we induced Cre-mediated deletion of Pten in mouse models of pre-B ALL. In contrast to its role as a tumor suppressor in other cancers, loss of one or both alleles of Pten caused rapid cell death of pre-B ALL cells and was sufficient to clear transplant recipient mice of leukemia. Small molecule inhibition of PTEN in human pre-B ALL cells resulted in AKT hyperactivation, p53 checkpoint activation and cell death. Loss of PTEN function in pre-B ALL cells was functionally equivalent to acute activation of autoreactive pre-BCR signaling, which engaged a deletional checkpoint for removal of autoreactive B cells. We propose that targeted inhibition of PTEN and hyperactivation of AKT triggers a checkpoint for elimination of autoreactive B cells and represents a new strategy to overcome drug-resistance in human ALL. PMID:26974310

  4. PML/RARa inhibits PTEN expression in hematopoietic cells by competing with PU.1 transcriptional activity

    PubMed Central

    Noguera, Nélida Inés; Piredda, Maria Liliana; Taulli, Riccardo; Catalano, Gianfranco; Angelini, Giulia; Gaur, Girish; Nervi, Clara; Voso, Maria Teresa; Lunardi, Andrea; Pandolfi, Pier Paolo; Lo-Coco, Francesco

    2016-01-01

    Acute promyelocitic leukemia (APL) is characterized by the pathognomonic presence in leukemic blasts of the hybrid protein PML/RARA, that acts as a transcriptional repressor impairing the expression of genes that are critical to myeloid differentiation. Here, we show that primary blasts from APL patients express lower levels of the oncosuppressor protein PTEN, as compared to blast cells from other AML subtypes or normal bone marrow, and demonstrate that PML-RARA directly inhibits PTEN expression. We show that All-Trans Retinoic Acid (ATRA) triggers in APL cells an active chromatin status at the core regulatory region of the PTEN promoter, that allows the binding of the myeloid-regulating transcription factor PU.1, and, in turn, the transcriptional induction of PTEN. ATRA, via PML/RARA degradation, also promotes PTEN nuclear re-localization and decreases expression of the PTEN target Aurora A kinase. In conclusion, our findings support the notion that PTEN is one of the primary targets of PML/RARA in APL PMID:27626703

  5. Exclusion of a major role for the PTEN tumour-suppressor gene in breast carcinomas

    PubMed Central

    Freihoff, D; Kempe, A; Beste, B; Wappenschmidt, B; Kreyer, E; Hayashi, Y; Meindl, A; Krebs, D; Wiestler, O D; Deimling, A von; Schmutzler, R K

    1999-01-01

    PTEN is a novel tumour-suppressor gene located on chromosomal band 10q23.3. This region displays frequent loss of heterozygosity (LOH) in a variety of human neoplasms including breast carcinomas. The detection of PTEN mutations in Cowden disease and in breast carcinoma cell lines suggests that PTEN may be involved in mammary carcinogenesis. We here report a mutational analysis of tumour specimens from 103 primary breast carcinomas and constitutive DNA from 25 breast cancer families. The entire coding region of PTEN was screened by single-strand conformation polymorphism (SSCP) analysis and direct sequencing using intron-based primers. No germline mutations could be identified in the breast cancer families and only one sporadic carcinoma carried a PTEN mutation at one allele. In addition, all sporadic tumours were analysed for homozygous deletions by differential polymerase chain reaction (PCR) and for allelic loss using the microsatellite markers D10S215, D10S564 and D10S573. No homozygous deletions were detected and only 10 out of 94 informative tumours showed allelic loss in the PTEN region. These results suggest that PTEN does not play a major role in breast cancer formation. 1999 Cancer Research Campaign PMID:10070865

  6. Breast cancer risk and clinical implications for germline PTEN mutation carriers.

    PubMed

    Ngeow, Joanne; Sesock, Kaitlin; Eng, Charis

    2015-12-23

    PTEN Hamartoma Tumor syndrome (PHTS) encompasses a clinical spectrum of heritable disorders including Cowden syndrome (CS), Bannayan-Riley-Ruvalcaba syndrome, and Proteus and Proteus-like syndrome that are associated with germline mutations in the PTEN tumor suppressor gene. Breast cancer risk estimates (67-85 %) for women with germline PTEN mutations are similar to those quoted for patients with germline mutations in the BRCA1/2 genes. With PTEN on several germline gene testing panels, finding PTEN mutations and variants have increased exponentially. PHTS can be differentiated from other hereditary cancer syndromes including Hereditary Breast Ovarian Cancer syndrome, Lynch syndrome, and hamartomatous polyposis syndromes based on personal as well as family history. However, many of the benign features of CS are common in the general population, making the diagnosis of CS challenging. Breast cancer patients with an identified germline PTEN mutation are at increased risk of endometrial, thyroid, renal, and colorectal cancers as well as a second breast cancer. Increased screening for the various component cancers as well as predictive testing in first-degree relatives is recommended. Prophylactic mastectomy may be considered especially if breast tissue is dense or if repeated breast biopsies have been necessary. Management of women with breast cancer suspected of CS who test negative for germline PTEN mutations should be managed as per a mutation carrier if she meets CS diagnostic criteria, and should be offered enrollment in research to identify other predisposition genes.

  7. LZTS2 and PTEN collaboratively regulate ß-catenin in prostatic tumorigenesis

    PubMed Central

    Kwak, Mi Kyung; Zou, Kang; Luong, Richard; He, Yongfeng

    2017-01-01

    The leucine zipper tumor suppressor 2 (LZTS2) was identified as a tumor susceptibility gene within the 10q24.3 chromosomal region, and is approximately 15Mb from the PTEN locus. This region containing the both loci is frequently deleted in a variety of human malignancies, including prostate cancer. LZTS2 is a ß-catenin-binding protein and a negative regulator of Wnt signaling. Overexpression of PTEN in prostate cancer cell lines reduces ß-catenin-mediated transcriptional activity. In this study, we examined the collaborative effect of PTEN and LZTS2 using multiple in vitro and in vivo approaches. Co-expression of PTEN and LZTS2 in prostate cancer cells shows stronger repressive effect on ß-catenin mediated transcription. Using a newly generated mouse model, we further assessed the effect of simultaneous deletion of Pten and Lzts2 in the murine prostate. We observed that mice with both Lzts2 and Pten deletion have an earlier onset of prostate carcinomas as well as an accelerated tumor progression compared to mice with Pten or Lzts2 deletion alone. Immunohistochemical analyses show that atypical and tumor cells from compound mice with both Pten and Lzts2 deletion are mainly composed of prostate luminal epithelial cells and possess higher levels of cytoplasmic and nuclear β-catenin. These cells also exhibit a higher proliferative capacity than cells isolated from single deletion mice. These data demonstrate the significance of simultaneous Pten and Lzts2 deletion in oncogenic transformation in prostate cells and implicates a new mechanism for the dysregulation of Wnt/β-catenin signaling in prostate tumorigenesis. PMID:28323888

  8. Endogenous S-sulfhydration of PTEN helps protect against modification by nitric oxide

    SciTech Connect

    Ohno, Kazuki; Okuda, Kosaku; Uehara, Takashi

    2015-01-02

    Highlights: • PTEN is S-sulfhydrated endogenously in SH-SY5Y human neuroblastoma cells. • Preventing this modification by knocking down CBS renders PTEN sensitive to NO. • pAkt levels are increased significantly in CBS siRNA-transfected cells. • H{sub 2}S functions as an endogenous regulator of PTEN in neuronal cells. - Abstract: Hydrogen sulfide (H{sub 2}S) is a gaseous regulatory factor produced by several enzymes, and plays a pivotal role in processes such as proliferation or vasodilation. Recent reports demonstrated the physiological and pathophysiological functions of H{sub 2}S in neurons. PTEN is a target of nitric oxide (NO) or hydrogen peroxide, and the oxidative modification of cysteine (Cys) residue(s) attenuates its enzymatic activity. In the present study, we assessed the effect of H{sub 2}S on the direct modification of PTEN and the resulting downstream signaling. A modified biotin switch assay in SH-SY5Y human neuroblastoma cells revealed that PTEN is S-sulfhydrated endogenously. Subsequently, site-directed mutagenesis demonstrated that both Cys71 and Cys124 in PTEN are targets for S-sulfhydration. Further, the knockdown of cystathionine β-synthetase (CBS) using siRNA decreased this modification in a manner that was correlated to amount of H{sub 2}S. PTEN was more sensitive to NO under these conditions. These results suggest that the endogenous S-sulfhydration of PTEN via CBS/H{sub 2}S plays a role in preventing the S-nitrosylation that would inhibition its enzymatic activity under physiological conditions.

  9. Characterization of the Functional Domains of a Mammalian Voltage-Sensitive Phosphatase.

    PubMed

    Rosasco, Mario G; Gordon, Sharona E; Bajjalieh, Sandra M

    2015-12-15

    Voltage-sensitive phosphatases (VSPs) are proteins that directly couple changes in membrane electrical potential to inositol lipid phosphatase activity. VSPs thus couple two signaling pathways that are critical for cellular functioning. Although a number of nonmammalian VSPs have been characterized biophysically, mammalian VSPs are less well understood at both the physiological and biophysical levels. In this study, we aimed to address this gap in knowledge by determining whether the VSP from mouse, Mm-VSP, is expressed in the brain and contains a functional voltage-sensing domain (VSD) and a phosphatase domain. We report that Mm-VSP is expressed in neurons and is developmentally regulated. To address whether the functions of the VSD and phosphatase domain are retained in Mm-VSP, we took advantage of the modular nature of these domains and expressed each independently as a chimeric protein in a heterologous expression system. We found that the Mm-VSP VSD, fused to a viral potassium channel, was able to drive voltage-dependent gating of the channel pore. The Mm-VSP phosphatase domain, fused to the VSD of a nonmammalian VSP, was also functional: activation resulted in PI(4,5)P2 depletion that was sufficient to inhibit the PI(4,5)P2-regulated KCNQ2/3 channels. While testing the functionality of the VSD and phosphatase domain, we observed slight differences between the activities of Mm-VSP-based chimeras and those of nonmammalian VSPs. Although the properties of VSP chimeras may not completely reflect the properties of native VSPs, the differences we observed in voltage-sensing and phosphatase activity provide a starting point for future experiments to investigate the function of Mm-VSP and other mammalian VSPs. In conclusion, our data reveal that both the VSD and the lipid phosphatase domain of Mm-VSP are functional, indicating that Mm-VSP likely plays an important role in mouse neurophysiology.

  10. Restoration of skilled locomotion by sprouting corticospinal axons induced by co-deletion of PTEN and SOCS3

    PubMed Central

    Jin, Duo; Liu, Yuanyuan; Sun, Fang; Wang, Xuhua; Liu, Xuefeng; He, Zhigang

    2015-01-01

    The limited rewiring of the corticospinal tract (CST) only partially compensates the lost functions after stroke, brain trauma and spinal cord injury. Therefore it is important to develop new therapies to enhance the compensatory circuitry mediated by spared CST axons. Here by using a unilateral pyramidotomy model, we find that deletion of cortical suppressor of cytokine signaling 3 (SOCS3), a negative regulator of cytokine-activated pathway, promotes sprouting of uninjured CST axons to the denervated spinal cord. A likely trigger of such sprouting is ciliary neurotrophic factor (CNTF) expressed in local spinal neurons. Such sprouting can be further enhanced by deletion of phosphatase and tensin homolog (PTEN), a mechanistic target of rapamycin (mTOR) negative regulator, resulting in significant recovery of skilled locomotion. Ablation of the corticospinal neurons with sprouting axons abolishes the improved behavioural performance. Furthermore, by optogenetics-based specific CST stimulation, we show a direct limb motor control by sprouting CST axons, providing direct evidence for the reformation of a functional circuit. PMID:26598325

  11. MicroRNA-21 accelerates hepatocyte proliferation in vitro via PI3K/Akt signaling by targeting PTEN

    SciTech Connect

    Yan-nan, Bai; Zhao-yan, Yu; Li-xi, Luo; Jiang, Yi; Qing-jie, Xia

    2014-01-17

    Highlights: •miRNAs-expression patterns of primary hepatocytes under proliferative status. •miR-21 expression level peaked at 12 h after stimulated by EGF. •miR-21 drive rapid S phase entry of primary hepatocytes. •PI3K/Akt signaling was modulated via targeting PTEN by miR-21. -- Abstract: MicroRNAs (miRNAs) are involved in controlling hepatocyte proliferation during liver regeneration. In this study, we established the miRNAs-expression patterns of primary hepatocytes in vitro under stimulation of epidermal growth factor (EGF), and found that microRNA-21 (miR-21) was appreciably up-regulated and peaked at 12 h. In addition, we further presented evidences indicating that miR-21 promotes primary hepatocyte proliferation through in vitro transfecting with miR-21 mimics or inhibitor. We further demonstrated that phosphatidylinositol 3′-OH kinase (PI3K)/Akt signaling was altered accordingly, it is, by targeting phosphatase and tensin homologue deleted on chromosome 10, PI3K/Akt signaling is activated by miR-21 to accelerate hepatocyte rapid S-phase entry and proliferation in vitro.

  12. Alkaline phosphatase of Physarum polycephalum is insoluble.

    PubMed

    Furuhashi, Kiyoshi

    2008-02-01

    The plasmodia of Physarum polycephalum grow as multinucleated cells in the presence of sufficient humidity and nutriment. Under non-illuminating conditions, stresses such as low temperature or high concentrations of salts transform the plasmodia into spherules whereas dehydration induces sclerotization. Some phosphatases including protein phosphatase and acid phosphatase have been purified from the plasmodia, but alkaline phosphatase remains to be elucidated. Phosphatase of the plasmodia, spherules and sclerotia was visualized by electrophoresis gel-staining assay using 5-bromo-4-chloro-3-indolyl phosphate. Insoluble fractions of the sclerotia were abundant in phosphatase activity. The phosphatase which was extracted by nonionic detergent was subjected to column chromatography and preparative electrophoresis. Purified phosphatase showed the highest activity at pH 8.8, indicating that this enzyme belongs to alkaline phosphatase. The apparent molecular mass from sodium dodecyl sulfate-polyacrylamide gel electrophoresis under non-reducing condition was estimated to be 100 kDa whereas that under reducing was 105 kDa. An amount of 1% sodium dodecyl sulfate or 0.5 M NaCl had no effects on the activity although the phosphatase showed heat instability, Mg(2+)-dependency and sensitivity to 2-glycerophosphate or NaF. The extracting conditions and enzymatic properties suggest that this alkaline phosphatase which is in a membrane-bound form plays important roles in phosphate metabolism.

  13. Protein tyrosine phosphatase: enzymatic assays.

    PubMed

    Montalibet, Jacqueline; Skorey, Kathryn I; Kennedy, Brian P

    2005-01-01

    Activity assays for tyrosine phosphatases are based on the hydrolysis of a arylphosphate moiety from a synthetic substrate yielding a spectroscopically active product. Many different substrates can be used for these assays with p-nitrophenyl phosphate (pNPP), fluorescein diphosphate (FDP), and 6,8-difluoro-4-methylumbellyferyl phosphate (DiFMUP) being the most efficient and versatile. Equally, larger molecules such as phosphotyrosyl peptides can also be used to mimic more natural substrates. Activity assays include the determinations of the rate of dephosphorylation and calculations of kinetic constants such as k(cat) and K(M). These assays are useful to identify and characterize tyrosine phosphatases and are commonly used to evaluate the efficiency of inhibitors.

  14. The glucose-6-phosphatase system.

    PubMed Central

    van Schaftingen, Emile; Gerin, Isabelle

    2002-01-01

    Glucose-6-phosphatase (G6Pase), an enzyme found mainly in the liver and the kidneys, plays the important role of providing glucose during starvation. Unlike most phosphatases acting on water-soluble compounds, it is a membrane-bound enzyme, being associated with the endoplasmic reticulum. In 1975, W. Arion and co-workers proposed a model according to which G6Pase was thought to be a rather unspecific phosphatase, with its catalytic site oriented towards the lumen of the endoplasmic reticulum [Arion, Wallin, Lange and Ballas (1975) Mol. Cell. Biochem. 6, 75--83]. Substrate would be provided to this enzyme by a translocase that is specific for glucose 6-phosphate, thereby accounting for the specificity of the phosphatase for glucose 6-phosphate in intact microsomes. Distinct transporters would allow inorganic phosphate and glucose to leave the vesicles. At variance with this substrate-transport model, other models propose that conformational changes play an important role in the properties of G6Pase. The last 10 years have witnessed important progress in our knowledge of the glucose 6-phosphate hydrolysis system. The genes encoding G6Pase and the glucose 6-phosphate translocase have been cloned and shown to be mutated in glycogen storage disease type Ia and type Ib respectively. The gene encoding a G6Pase-related protein, expressed specifically in pancreatic islets, has also been cloned. Specific potent inhibitors of G6Pase and of the glucose 6-phosphate translocase have been synthesized or isolated from micro-organisms. These as well as other findings support the model initially proposed by Arion. Much progress has also been made with regard to the regulation of the expression of G6Pase by insulin, glucocorticoids, cAMP and glucose. PMID:11879177

  15. Role of phosphatase activity of soluble epoxide hydrolase in regulating simvastatin-activated endothelial nitric oxide synthase.

    PubMed

    Hou, Hsin-Han; Liao, Yi-Jen; Hsiao, Sheng-Huang; Shyue, Song-Kun; Lee, Tzong-Shyuan

    2015-08-25

    Soluble epoxide hydrolase (sEH) has C-terminal epoxide hydrolase and N-terminal lipid phosphatase activity. Its hydrolase activity is associated with endothelial nitric oxide synthase (eNOS) dysfunction. However, little is known about the role of sEH phosphatase in regulating eNOS activity. Simvastatin, a clinical lipid-lowering drug, also has a pleiotropic effect on eNOS activation. However, whether sEH phosphatase is involved in simvastatin-activated eNOS activity remains elusive. We investigated the role of sEH phosphatase activity in simvastatin-mediated activation of eNOS in endothelial cells (ECs). Simvastain increased the phosphatase activity of sEH, which was diminished by pharmacological inhibitors of sEH phosphatase. In addition, pharmacological inhibition of sEH phosphatase or overexpressing the inactive phosphatase domain of sEH enhanced simvastatin-induced NO bioavailability, tube formation and phosphorylation of eNOS, Akt, and AMP-activated protein kinase (AMPK). In contrast, overexpressing the phosphatase domain of sEH limited the simvastatin-increased NO biosynthesis and eNOS phosphorylation at Ser1179. Simvastatin evoked epidermal growth factor receptor-c-Src-increased Tyr phosphorylation of sEH and formation of an sEH-Akt-AMPK-eNOS complex, which was abolished by the c-Src kinase inhibitor PP1 or c-Src dominant-negative mutant K298M. These findings suggest that sEH phosphatase activity negatively regulates simvastatin-activated eNOS by impeding the Akt-AMPK-eNOS signaling cascade.

  16. Role of phosphatase activity of soluble epoxide hydrolase in regulating simvastatin-activated endothelial nitric oxide synthase

    PubMed Central

    Hou, Hsin-Han; Liao, Yi-Jen; Hsiao, Sheng-Huang; Shyue, Song-Kun; Lee, Tzong-Shyuan

    2015-01-01

    Soluble epoxide hydrolase (sEH) has C-terminal epoxide hydrolase and N-terminal lipid phosphatase activity. Its hydrolase activity is associated with endothelial nitric oxide synthase (eNOS) dysfunction. However, little is known about the role of sEH phosphatase in regulating eNOS activity. Simvastatin, a clinical lipid-lowering drug, also has a pleiotropic effect on eNOS activation. However, whether sEH phosphatase is involved in simvastatin-activated eNOS activity remains elusive. We investigated the role of sEH phosphatase activity in simvastatin-mediated activation of eNOS in endothelial cells (ECs). Simvastain increased the phosphatase activity of sEH, which was diminished by pharmacological inhibitors of sEH phosphatase. In addition, pharmacological inhibition of sEH phosphatase or overexpressing the inactive phosphatase domain of sEH enhanced simvastatin-induced NO bioavailability, tube formation and phosphorylation of eNOS, Akt, and AMP-activated protein kinase (AMPK). In contrast, overexpressing the phosphatase domain of sEH limited the simvastatin-increased NO biosynthesis and eNOS phosphorylation at Ser1179. Simvastatin evoked epidermal growth factor receptor–c-Src–increased Tyr phosphorylation of sEH and formation of an sEH–Akt–AMPK–eNOS complex, which was abolished by the c-Src kinase inhibitor PP1 or c-Src dominant-negative mutant K298M. These findings suggest that sEH phosphatase activity negatively regulates simvastatin-activated eNOS by impeding the Akt–AMPK–eNOS signaling cascade. PMID:26304753

  17. A Tailored Approach to Prostate Cancer Therapy Based upon PTEN Status

    DTIC Science & Technology

    2012-11-01

    effect of PARP inhibition on the cellular response to ionizing radiation or docetaxel in DU145 PTEN wild-type vs. PC-3 PTEN-null cells. and (2...clonogenic cell survival and apoptosis assay. Additionally, qPCR was performed to assess changes in DNA repair gene expression following radiation and/or...drug treatments. H2AX foci assays revealed that ABT888 in combination with radiation therapy (RT) increased the level of DNA damage compared to

  18. Inositol polyphosphate phosphatases in human disease.

    PubMed

    Hakim, Sandra; Bertucci, Micka C; Conduit, Sarah E; Vuong, David L; Mitchell, Christina A

    2012-01-01

    Phosphoinositide signalling molecules interact with a plethora of effector proteins to regulate cell proliferation and survival, vesicular trafficking, metabolism, actin dynamics and many other cellular functions. The generation of specific phosphoinositide species is achieved by the activity of phosphoinositide kinases and phosphatases, which phosphorylate and dephosphorylate, respectively, the inositol headgroup of phosphoinositide molecules. The phosphoinositide phosphatases can be classified as 3-, 4- and 5-phosphatases based on their specificity for dephosphorylating phosphates from specific positions on the inositol head group. The SAC phosphatases show less specificity for the position of the phosphate on the inositol ring. The phosphoinositide phosphatases regulate PI3K/Akt signalling, insulin signalling, endocytosis, vesicle trafficking, cell migration, proliferation and apoptosis. Mouse knockout models of several of the phosphoinositide phosphatases have revealed significant physiological roles for these enzymes, including the regulation of embryonic development, fertility, neurological function, the immune system and insulin sensitivity. Importantly, several phosphoinositide phosphatases have been directly associated with a range of human diseases. Genetic mutations in the 5-phosphatase INPP5E are causative of the ciliopathy syndromes Joubert and MORM, and mutations in the 5-phosphatase OCRL result in Lowe's syndrome and Dent 2 disease. Additionally, polymorphisms in the 5-phosphatase SHIP2 confer diabetes susceptibility in specific populations, whereas reduced protein expression of SHIP1 is reported in several human leukaemias. The 4-phosphatase, INPP4B, has recently been identified as a tumour suppressor in human breast and prostate cancer. Mutations in one SAC phosphatase, SAC3/FIG4, results in the degenerative neuropathy, Charcot-Marie-Tooth disease. Indeed, an understanding of the precise functions of phosphoinositide phosphatases is not only

  19. PTEN deletion from adult-generated dentate granule cells disrupts granule cell mossy fiber axon structure

    PubMed Central

    LaSarge, Candi L.; Santos, Victor R; Danzer, Steve C.

    2015-01-01

    Dysregulation of the mTOR-signaling pathway is implicated in the development of temporal lobe epilepsy. In mice, deletion of PTEN from hippocampal dentate granule cells leads to mTOR hyperactivation and promotes the rapid onset of spontaneous seizures. The mechanism by which these abnormal cells initiate epileptogenesis, however, is unclear. PTEN-knockout granule cells develop abnormally, exhibiting morphological features indicative of increased excitatory input. If these cells are directly responsible for seizure genesis, it follows that they should also possess increased output. To test this prediction, dentate granule cell axon morphology was quantified in control and PTEN-knockout mice. Unexpectedly, PTEN deletion increased giant mossy fiber bouton spacing along the axon length, suggesting reduced innervation of CA3. Increased width of the mossy fiber axon pathway in stratum lucidum, however, which likely reflects an unusual increase in mossy fiber axon collateralization in this region, offset the reduction in boutons per axon length. These morphological changes predicts a net increase in granule cell >> CA3 innervation. Increased diameter of axons from PTEN-knockout cells would further enhance granule cell >> CA3 communication. Altogether, these findings suggest that amplified information flow through the hippocampal circuit contributes to seizure occurrence in the PTEN-knockout mouse model of temporal lobe epilepsy. PMID:25600212

  20. Dormant Intestinal Stem Cells are Regulated by PTEN and Nutritional Status

    PubMed Central

    Richmond, Camilla A.; Shah, Manasvi S.; Deary, Luke T.; Trotier, Danny C.; Thomas, Horatio; Ambruzs, Dana M.; Jiang, Lijie; Whiles, Bristol B.; Rickner, Hannah D.; Montgomery, Robert K.; Tovaglieri, Alessio; Carlone, Diana L.; Breault, David T.

    2015-01-01

    The cellular and molecular mechanisms underlying adaptive changes to physiological stress within the intestinal epithelium remain poorly understood. Here, we show that PTEN, a negative regulator of the PI3K→AKT→mTORC1 signaling pathway, is an important regulator of dormant intestinal stem cells (dISCs). Acute nutrient deprivation leads to transient PTEN phosphorylation within d-ISCs and a corresponding increase in their number. This release of PTEN inhibition renders d-ISCs functionally poised to contribute to the regenerative response during re-feeding via cell-autonomous activation of the PI3K→AKT→mTORC1 pathway. Consistent with its role in mediating cell survival, PTEN is required for d-ISC maintenance at baseline, and intestines lacking PTEN have diminished regenerative capacity following irradiation. Our results highlight a PTEN-dependent mechanism for d-ISC maintenance and further demonstrate the role of d-ISCs in the intestinal response to stress. PMID:26686631

  1. PTENα, a PTEN isoform translated through alternative initiation, regulates mitochondrial function and energy metabolism.

    PubMed

    Liang, Hui; He, Shiming; Yang, Jingyi; Jia, Xinying; Wang, Pan; Chen, Xi; Zhang, Zhong; Zou, Xiajuan; McNutt, Michael A; Shen, Wen Hong; Yin, Yuxin

    2014-05-06

    PTEN is one of the most frequently mutated genes in human cancer. It is known that PTEN has a wide range of biological functions beyond tumor suppression. Here, we report that PTENα, an N-terminally extended form of PTEN, functions in mitochondrial metabolism. Translation of PTENα is initiated from a CUG codon upstream of and in-frame with the coding region of canonical PTEN. Eukaryotic translation initiation factor 2A (eIF2A) controls PTENα translation, which requires a CUG-centered palindromic motif. We show that PTENα induces cytochrome c oxidase activity and ATP production in mitochondria. TALEN-mediated somatic deletion of PTENα impairs mitochondrial respiratory chain function. PTENα interacts with canonical PTEN to increase PINK1 protein levels and promote energy production. Our studies demonstrate the importance of eIF2A-mediated alternative translation for generation of protein diversity in eukaryotic systems and provide insights into the mechanism by which the PTEN family is involved in multiple cellular processes.

  2. EGR1-dependent PTEN upregulation by 2-benzoyloxycinnamaldehyde attenuates cell invasion and EMT in colon cancer.

    PubMed

    Kim, Jinkyung; Kang, Hye Suk; Lee, Yu-Jin; Lee, Heon-Jin; Yun, Jieun; Shin, Jung Hyu; Lee, Chang Woo; Kwon, Byoung-Mog; Hong, Su-Hyung

    2014-07-10

    There has been little evidence to support EGR1 and PTEN function on the EMT of cancer cells. We tried to evaluate how these genes affect cancer cell invasion and EMT through investigating the molecular mechanism(s) of 2'-benzoyloxycinnamaldehyde (BCA). Matrigel invasion and wound healing assay, and in vivo mice model were used to evaluate the effect of BCA on colon cancer cell migration. The molecular mechanism(s) of BCA were evaluated by knock-down or overexpression of EGR1 and PTEN. BCA at 50 nM increased E-cadherin and EGR1 expression without cytotoxicity. Cell migration was inhibited significantly by BCA both in vitro and in vivo. Moreover, BCA inhibits Snail and Vimentin expression, as well as β-catenin nuclear accumulation. Suppression of EGR1 by siRNA attenuated the inhibition of matrigel invasion by BCA, indicating that EGR1 is responsible for BCA effect. PTEN was upregulated by BCA treatment or EGR1 overexpression. In addition, shPTEN transfection stimulated EMT and cell invasion in vitro. Our data suggest that BCA leads to a remarkable upregulation of EGR1 expression, and that EMT and invasion is decreased via EGR1-dependent PTEN activation. These data showed a critical role of EGR1-PTEN signaling pathway in the EMT of colon cancer, as well as metastasis.

  3. Pancreas-specific Pten deficiency causes partial resistance to diabetes and elevated hepatic AKT signaling.

    PubMed

    Tong, Zan; Fan, Yan; Zhang, Weiqi; Xu, Jun; Cheng, Jing; Ding, Mingxiao; Deng, Hongkui

    2009-06-01

    PTEN, a negative regulator of the phosphatidylinositol-3-kinase/AKT pathway, is an important modulator of insulin signaling. To determine the metabolic function of pancreatic Pten, we generated pancreas-specific Pten knockout (PPKO) mice. PPKO mice had enlarged pancreas and elevated proliferation of acinar cells. They also exhibited hypoglycemia, hypoinsulinemia, and altered amino metabolism. Notably, PPKO mice showed delayed onset of streptozotocin (STZ)-induced diabetes and sex-biased resistance to high-fat-diet (HFD)-induced diabetes. To investigate the mechanism for the resistance to HFD-induced hyperglycemia in PPKO mice, we evaluated AKT phosphorylation in major insulin-responsive tissues: the liver, muscle, and fat. We found that Pten loss in the pancreas causes the elevation of AKT signaling in the liver. The phosphorylation of AKT and its downstream substrate GSK3beta was increased in the liver of PPKO mice, while PTEN level was decreased without detectable excision of Pten allele in the liver of PPKO mice. Proteomics analysis revealed dramatically decreased level of 78-kDa glucose-regulated protein (GRP78) in the liver of PPKO mice, which may also contribute to the lower blood glucose level of PPKO mice fed with HFD. Together, our findings reveal a novel response in the liver to pancreatic defect in metabolic regulation, adding a new dimension to understanding diabetes resistance.

  4. Pharmacologic targeting of S6K1 in PTEN-deficient neoplasia

    PubMed Central

    Liu, Hongqi; Feng, Xizhi; Ennis, Kelli N.; Behrmann, Catherine A.; Sarma, Pranjal; Jiang, Tony T.; Kofuji, Satoshi; Niu, Liang; Stratton, Yiwen; Thomas, Hala Elnakat; Yoon, Sang-Oh; Sasaki, Atsuo T.; Plas, David R.

    2017-01-01

    SUMMARY Genetic S6K1 inactivation can induce apoptosis in PTEN-deficient cells. We analyzed the therapeutic potential of S6K1 inhibitors in PTEN-deficient T cell leukemia and glioblastoma. Results revealed that the S6K1 inhibitor LY-2779964 was relatively ineffective as a single agent, while S6K1-targeting AD80 induced cytotoxicity selectively in PTEN-deficient cells. In vivo, AD80 rescued 50% of mice transplanted with PTEN-deficient leukemia cells. Cells surviving LY-2779964 treatment exhibited inhibitor-induced S6K1 phosphorylation due to increased mTOR-S6K1 co-association, which primed rapid recovery of S6K1 signaling. In contrast, AD80 avoided S6K1 phosphorylation and mTOR co-association, resulting in durable suppression of S6K1-induced signaling and protein synthesis. Kinome analysis revealed that AD80 coordinately inhibits S6K1 together with the TAM family tyrosine kinase AXL. TAM suppression by BMS-777607 or genetic knockdown potentiated cytotoxic responses to LY-2779964 in PTEN-deficient glioblastoma cells. These results reveal that combination targeting of S6K1 and TAMs is a potential strategy for treatment of PTEN-deficient malignancy. PMID:28249155

  5. TIEG1 deficiency confers enhanced myocardial protection in the infarcted heart by mediating the Pten/Akt signalling pathway

    PubMed Central

    Cen, Mingqiu; Hu, Pengfei; Cai, Zhaobin; Fang, Tianfu; Zhang, Jiancheng; Lu, Ming

    2017-01-01

    The transforming growth factor (TGF)-β-inducible early gene-1 (TIEG1) plays a crucial role in modulating cell apoptosis and proliferation in a number of diseases, including pancreatic cancer, leukaemia and osteoporosis. However, the functional role of TIEG1 in the heart has not been fully defined. In this study, we first investigated the role of TIEG1 in ischaemic heart disease. For in vitro experiments, cardiomyocytes were isolated from both TIEG1 knockout (KO) and wile-type (WT) mice, and the apoptotic ratios were evaluated after a 48-h ischaemic insult. A cell proliferation assay was performed after 7 days of incubation under normoxic conditions. In addition, the angiogenic capacity of endothelial cells was determined by tube formation assay. For in vivo experiments, a model of myocardial infarction (MI) was established using both TIEG1 KO and WT mice. Echocardiography was performed at 3 and 28 days post-MI, whereas the haemodynamics test was performed 28 days post-MI. Histological analyses of apoptosis, proliferation, angiogenesis and infarct zone assessments were performed using terminal deoxynucleotidyltransferase-mediated dUTP nick-end labelling (TUNEL) staining, BrdU immunostaining, α-smooth muscle actin (α-SMA)/CD31 immunostaining and Masson's trichrome staining, respectively. Changes in the expression of related proteins caused by TIEG1 deficiency were confirmed using both reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blot analysis. Our results demonstrated that the absence of TIEG1 prevented cardiomyocytes from undergoing apoptosis and promoted higher proliferation; it stimulated the proliferation of endothelial cells in vitro and in vivo. Improved cardiac function and less scar formation were observed in TIEG1 KO mice, and we also observed the altered expression of phosphatase and tensin homolog (Pten), Akt and Bcl-2/Bax, as well as vascular endothelial growth factor (VEGF). On the whole, our findings indicate

  6. PTEN negatively regulates mTORC2 formation and signaling in grade IV glioma via Rictor hyperphosphorylation at Thr1135 and direct the mode of action of an mTORC1/2 inhibitor

    PubMed Central

    Bhattacharya, K; Maiti, S; Mandal, C

    2016-01-01

    To investigate the role of PTEN (phosphatase and tensin homolog) in mammalian target of rapamycin complex 2 (mTORC2) signaling in glioblastoma multiforme (GBM), we found higher activation of mTORC2 in PTENmu cells, as evidenced by enhanced phosphorylation of mTOR (Ser2481), AKT (Ser473) and glycogen synthase kinase 3 beta (GSK3β) (Ser9) as compared with PTENwt cells. In addition, PTENwt cells upon PTEN depletion showed mTORC2 activation. The reduced mTORC2 signaling in PTENwt cells was related to higher Rictor phosphorylation at Thr1135 residue. Phosphorylation of Rictor at Thr1135 inhibited its association with mTORC and thus there was a reduction in mTORC2 complex formation. In addition, PTENwt cells expressing mutated Rictor in which Thr1135 was substituted with alanine, showed enhanced mTORC2 formation and signaling. This enhanced mTORC2 signaling promoted inactivation of GSK3β. Thus, we established the reciprocal activation of mTORC2 and GSK3β in GBM. To the best of our knowledge, this is the first report describing role of PTEN in mTORC2 formation by promoting Rictor phosphorylation (Thr1135) in GBM. Furthermore, the drug sensitivity of mTORC2 was evaluated. A newly identified carbazole alkaloid, mahanine, showed cytotoxicity in both PTENmu and PTENwt cells. It inhibited both mTORC1/2 and AKT completely in PTENmu cells, whereas it inhibited only mTORC1 in PTENwt cells. Cytotoxity and AKT-inhibitory activity of the mTORC1/2 inhibitor was increased either by depleting PTEN or in combination with phosphatidylinositol 3 kinase inhibitors in PTENwt cells. In contrast, depletion of Rictor decreased the cytotoxicity of the mTORC1/2 inhibitor in PTENmu cells. Thus, PTEN has an important role in mTORC2 formation and also influences the effectiveness of an mTORC1/2 inhibitor in GBM. PMID:27239959

  7. [Protein phosphatases: structure and function].

    PubMed

    Bulanova, E G; Budagian, V M

    1994-01-01

    The process of protein and enzyme systems phosphorylation is necessary for cell growth, differentiation and preparation for division and mitosis. The conformation changes of protein as a result of phosphorylation lead to increased enzyme activity and enhanced affinity to substrates. A large group of enzymes--protein kinases--is responsible for phosphorylation process in cell, which are divided into tyrosine- and serine-threonine-kinases depending on their ability to phosphorylate appropriate amino acid residues. In this review has been considered the functional importance and structure of protein phosphatases--enzymes, which are functional antagonists of protein kinases.

  8. Phosphatidylinositolphosphate phosphatase activities and cancer

    PubMed Central

    Rudge, Simon A.; Wakelam, Michael J. O.

    2016-01-01

    Signaling through the phosphoinositide 3-kinase pathways mediates the actions of a plethora of hormones, growth factors, cytokines, and neurotransmitters upon their target cells following receptor occupation. Overactivation of these pathways has been implicated in a number of pathologies, in particular a range of malignancies. The tight regulation of signaling pathways necessitates the involvement of both stimulatory and terminating enzymes; inappropriate activation of a pathway can thus result from activation or inhibition of the two signaling arms. The focus of this review is to discuss, in detail, the activities of the identified families of phosphoinositide phosphatase expressed in humans, and how they regulate the levels of phosphoinositides implicated in promoting malignancy. PMID:26302980

  9. Biochemistry and structure of phosphoinositide phosphatases.

    PubMed

    Kim, Young Jun; Jahan, Nusrat; Bahk, Young Yil

    2013-01-01

    Phosphoinositides are the phosphorylated derivatives of phosphatidylinositol, and play a very significant role in a diverse range of signaling processes in eukaryotic cells. A number of phosphoinositide-metabolizing enzymes, including phosphoinositide-kinases and phosphatases are involved in the synthesis and degradation of these phospholipids. Recently, the function of various phosphatases in the phosphatidylinositol signaling pathway has been of great interest. In the present review we summarize the structural insights and biochemistry of various phosphatases in regulating phosphoinositide metabolism.

  10. Esophageal cancer in a family with hamartomatous tumors and germline PTEN frameshift and SMAD7 missense mutations.

    PubMed

    Sherman, Scott K; Maxwell, Jessica E; Qian, Qining; Bellizzi, Andrew M; Braun, Terry A; Iannettoni, Mark D; Darbro, Benjamin W; Howe, James R

    2015-01-01

    Germline mutations in the PTEN tumor-suppressor gene cause autosomal-dominant conditions such as Cowden and Bannayan-Riley-Ruvalcaba syndromes with variable presentations, including hamartomatous gastrointestinal tumors, dermatologic abnormalities, neurologic symptoms, and elevated cancer risk. We describe a father and son with extensive hamartomatous gastrointestinal polyposis who both developed early-onset esophageal cancer. Exome sequencing identified a novel germline PTEN frameshift mutation (c.568_569insC, p.V191Sfs*11). In addition, a missense mutation of SMAD7 (c.115G>A, p.G39R) with an allele frequency of 0.3% in the Exome Variant Server was detected in both affected individuals. Fluorescence in situ hybridization for PTEN in the resected esophageal cancer specimen demonstrated no PTEN copy loss in malignant cells; however, results of an immunohistochemical analysis demonstrated a loss of PTEN protein expression. While the risks of many cancers are elevated in the PTEN hamartoma tumor syndromes, association between esophageal adenocarcinoma and these syndromes has not been previously reported. Esophageal adenocarcinoma and extensive polyposis/ganglioneuromatosis could represent less common features of these syndromes, potentially correlating with this novel PTEN frameshift and early protein termination genotype. Alternatively, because simultaneous disruption of both the PTEN and TGF-β/SMAD4 pathways is associated with development of esophageal cancer in a mouse model and because SMAD4 mutations cause gastrointestinal hamartomas in juvenile polyposis syndrome, the SMAD7 mutation may represent an additional modifier of these individuals' PTEN-mutant phenotype.

  11. Serum Response Factor Regulates Expression of PTEN through a Micro-RNA Network in Vascular Smooth Muscle Cells

    PubMed Central

    Horita, Henrick N; Simpson, Peter A.; Ostriker, Allison; Furgeson, Seth; Van Putten, Vicki; Weiser-Evans, Mary C.M.; Nemenoff, Raphael A.

    2011-01-01

    Objective Serum response factor (SRF) is a critical transcription factor in smooth muscle cells (SMC) controlling differentiation and proliferation. Our previous work demonstrated that depleting SRF in cultured SMC decreased expression of SMC markers, but increased proliferation and inflammatory mediators. A similar phenotype has been observed in SMC silenced for PTEN, suggesting that SRF and PTEN may lie on a common pathway. Our goal was to determine the effect of SRF depletion on PTEN levels, and define mechanisms mediating this effect. Methods and Results In SRF-silenced SMC, PTEN protein, but not mRNA levels were decreased, suggesting post-transcriptional regulation. Re-introduction of PTEN into SRF-depleted SMC reversed increases in proliferation and cytokine/chemokine production, but had no effect on SMC marker expression. SRF-depleted cells showed decreased levels of miR-143, and increased miR-21, which was sufficient to suppress PTEN. Increased miR-21 expression was dependent on induction of FRA-1, which is a direct target of miR-143. Introducing miR-143 into SRF-depleted SMC reduced FRA-1 expression and miR-21 levels and restored PTEN expression. Conclusions SRF regulates PTEN expression in SMC through a miR network involving miR-143, targeting FRA-1, which regulates miR-21. Cross talk between SRF and PTEN likely represents a critical axis in phenotypic remodeling of SMC. PMID:21940949

  12. A Critical Role of the PTEN/PDGF Signaling Network for the Regulation of Radiosensitivity in Adenocarcinoma of the Prostate

    SciTech Connect

    Christensen, Michael; Najy, Abdo J.; Snyder, Michael; Movilla, Lisa S.; Kim, Hyeong-Reh Choi

    2014-01-01

    Purpose: Loss or mutation of the phosphate and tensin homologue (PTEN) is a common genetic abnormality in prostate cancer (PCa) and induces platelet-derived growth factor D (PDGF D) signaling. We examined the role of the PTEN/PDGF axis on radioresponse using a murine PTEN null prostate epithelial cell model. Methods and Materials: PTEN wild-type (PTEN{sup +/+}) and PTEN knockout (PTEN{sup −/−}) murine prostate epithelial cell lines were used to examine the relationship between the PTEN status and radiosensitivity and also to modulate the PDGF D expression levels. PTEN{sup −/−} cells were transduced with a small hairpin RNA (shRNA) lentiviral vector containing either scrambled nucleotides (SCRM) or sequences targeted to PDGF D (shPDGF D). Tumorigenesis and morphogenesis of these cell lines were evaluated in vivo via subcutaneous injection of male nude mice and in vitro using Matrigel 3-dimensional (3D) culture. Effects of irradiation on clonogenic survival, cell migration, and invasion were measured with respect to the PTEN status and the PDGF D expression level. In addition, apoptosis and cell cycle redistribution were examined as potential mechanisms for differences seen. Results: PTEN{sup −/−} cells were highly tumorigenic in animals and effectively formed foci in 3D culture. Importantly, loss of PDGF D in these cell lines drastically diminished these phenotypes. Furthermore, PTEN{sup −/−} cells demonstrated increased clonogenic survival in vitro compared to PTEN{sup +/+}, and attenuation of PDGF D significantly reversed this radioresistant phenotype. PTEN{sup −/−} cells displayed greater migratory and invasive potential at baseline as well as after irradiation. Both the basal and radiation-induced migratory and invasive phenotypes in PTEN{sup −/−} cells required PDGF D expression. Interestingly, these differences were independent of apoptosis and cell cycle redistribution, as they showed no significant difference. Conclusions: We propose

  13. Insulin-receptor phosphotyrosyl-protein phosphatases.

    PubMed Central

    King, M J; Sale, G J

    1988-01-01

    Calmodulin-dependent protein phosphatase has been proposed to be an important phosphotyrosyl-protein phosphatase. The ability of the enzyme to attack autophosphorylated insulin receptor was examined and compared with the known ability of the enzyme to act on autophosphorylated epidermal-growth-factor (EGF) receptor. Purified calmodulin-dependent protein phosphatase was shown to catalyse the complete dephosphorylation of phosphotyrosyl-(insulin receptor). When compared at similar concentrations, 32P-labelled EGF receptor was dephosphorylated at greater than 3 times the rate of 32P-labelled insulin receptor; both dephosphorylations exhibited similar dependence on metal ions and calmodulin. Native phosphotyrosyl-protein phosphatases in cell extracts were also characterized. With rat liver, heart or brain, most (75%) of the native phosphatase activity against both 32P-labelled insulin and EGF receptors was recovered in the particulate fraction of the cell, with only 25% in the soluble fraction. This subcellular distribution contrasts with results of previous studies using artificial substrates, which found most of the phosphotyrosyl-protein phosphatase activity in the soluble fraction of the cell. Properties of particulate and soluble phosphatase activity against 32P-labelled insulin and EGF receptors are reported. The contribution of calmodulin-dependent protein phosphatase activity to phosphotyrosyl-protein phosphatase activity in cell fractions was determined by utilizing the unique metal-ion dependence of calmodulin-dependent protein phosphatase. Whereas Ni2+ (1 mM) markedly activated the calmodulin-dependent protein phosphatase, it was found to inhibit potently both particulate and soluble phosphotyrosyl-protein phosphatase activity. In fractions from rat liver, brain and heart, total phosphotyrosyl-protein phosphatase activity against both 32P-labelled receptors was inhibited by 99.5 +/- 6% (mean +/- S.E.M., 30 observations) by Ni2+. Results of Ni2+ inhibition

  14. Apc, but not obesity, synergizes with PTEN to drive intestinal stem cell tumors.

    PubMed

    Tabrizian, Tahmineh; Wang, Donghai; Guan, Fangxia; Hu, Zunju; Beck, Amanda; Delahaye, Fabien; Huffman, Derek M

    2017-03-28

    Obesity is a major risk factor for colorectal cancer and can accelerate Lgr5+ intestinal stem cell (ISC)-derived tumorigenesis following inactivation of Apc. However, whether non-canonical pathways involving PI3K-Akt signaling in ISCs can lead to tumor formation, and if this can be further exacerbated by obesity is unknown. Despite the synergy between Pten and Apc inactivation in epithelial cells on intestinal tumor formation, their combined role in Lgr5+-ISCs, which are the most rapidly dividing ISC population in the intestine, is unknown. Lgr5+-GFP mice were provided low-fat diet (LFD) or high-fat diet (HFD) for 8 mo and the transcriptome was evaluated in Lgr5+-ISCs. For tumor studies, Lgr5+-GFP and Lgr5+-GFP Ptenflox/flox mice were tamoxifen treated to inactivate Pten in ISCs and provided LFD or HFD until 14-15 mo of age. Finally, various combinations of Lgr5+-ISC specific, Apc and Pten-deleted mice were generated, and evaluated for histopathology and survival. HFD did not overtly alter Akt signaling in ISCs, but did increase other metabolic pathways. Pten deficiency, but not HFD, increased BrdU positive cells in the small intestine (P<0.05). However, combining Pten and Apc deficiency synergistically increased proliferative markers, tumor pathology and mortality, in a dose-dependent fashion (P<0.05). In summary, we show that HFD alone fails to drive Akt signaling in ISCs and that Pten deficiency, is dispensable as a tumor suppressor in Lgr5+-ISCs. However, combining Pten and Apc deficiency in ISCs synergistically increases proliferation, tumor formation, and mortality. Thus, aberrant Wnt/β-catenin, rather than PI3K-Akt signaling, is requisite for obesity to drive Lgr5+ISC-derived tumorigenesis.

  15. Male breast cancer in Cowden syndrome patients with germline PTEN mutations

    PubMed Central

    Fackenthal, J.; Marsh, D.; Richardson, A.; Cummings, S.; Eng, C.; Robinson, B.; Olopade, O.

    2001-01-01

    Cowden syndrome (CS) (OMIM 158350) is a multiple hamartoma syndrome associated with germline mutations in the PTEN tumour suppressor gene. While CS is characterised most commonly by non-cancerous lesions (mucocutaneous trichilemmomas, acral and palmoplantar keratoses, and papillomatous papules), it is also associated with an increased susceptibility to breast cancer (in females) and thyroid cancer, as well as non-cancerous conditions of the breast and thyroid. Here we report two cases of male breast cancer occurring in patients with classical CS phenotypes and germline PTEN mutations. The first subject was diagnosed with CS indicated primarily by mucocutaneous papillomatosis, facial trichilemmomas, and macrocephaly with frontal bossing at the age of 31 years. He developed breast cancer at 41 years and subsequently died of the disease. A PTEN mutation, c.802delG, was identified in this subject, yet none of his family members showed evidence of a CS phenotype, suggesting that this PTEN mutation may be a de novo occurrence. The second subject had a CS phenotype including multiple trichilemmomas and thyroid adenoma, developed male breast cancer at 43 years, and died of the disease at 57 years. He was a carrier of a PTEN mutation c.347-351delACAAT that cosegregated with the CS phenotype in affected family members. These two cases of male breast cancer associated with germline PTEN mutations and the CS phenotype suggest that CS may be associated with an increased risk of early onset male as well as female breast cancer.


Keywords: PTEN; male breast cancer; Cowden syndrome PMID:11238682

  16. Rb1 and Pten Co-Deletion in Osteoblast Precursor Cells Causes Rapid Lipoma Formation in Mice

    PubMed Central

    Filtz, Emma A.; Emery, Ann; Lu, Huarui; Forster, Colleen L.; Karasch, Chris; Hallstrom, Timothy C.

    2015-01-01

    The Rb and Pten tumor suppressor genes are important regulators of bone development and both are frequently mutated in the bone cancer osteosarcoma (OS). To determine if Rb1 and Pten synergize as tumor suppressor genes for osteosarcoma, we co-deleted them in osteoprogenitor cells. Surprisingly, we observed rapid development of adipogenic but not osteosarcoma tumors in the ΔRb1/Pten mice. ΔPten solo deleted mice also developed lipoma tumors but at a much reduced frequency and later onset than those co-deleted for Rb1. Pten deletion also led to a marked increase in adipocytes in the bone marrow. To better understand the function of Pten in bone development in vivo, we conditionally deleted Pten in OSX+ osteoprogenitor cells using OSX-Cre mice. μCT analysis revealed a significant thickening of the calvaria and an increase in trabeculae volume and number in the femur, consistent with increased bone formation in these mice. To determine if Pten and Rb1 deletion actively promotes adipogenic differentiation, we isolated calvarial cells from Ptenfl/fl and Ptenfl/fl; Rb1fl/fl mice, infected them with CRE or GFP expressing adenovirus, treated with differentiation media. We observed slightly increased adipogenic, and osteogenic differentiation in the ΔPten cells. Both phenotypes were greatly increased upon Rb1/Pten co-deletion. This was accompanied by an increase in expression of genes required for adipogenesis. These data indicate that Pten deletion in osteoblast precursors is sufficient to promote frequent adipogenic, but only rare osteogenic tumors. Rb1 hetero- or homo-zygous co-deletion greatly increases the incidence and the rapidity of onset of adipogenic tumors, again, with only rare osteosarcoma tumors. PMID:26317218

  17. MiR-21 controls in situ expansion of CCR6⁺ regulatory T cells through PTEN/AKT pathway in breast cancer.

    PubMed

    Hu, Yan; Wang, Chunhong; Li, Yongju; Zhao, Juanjuan; Chen, Chao; Zhou, Ya; Tao, Yijin; Guo, Mengmeng; Qin, Nalin; Ren, Tao; Wen, Zhenke; Xu, Lin

    2015-09-01

    Our recent evidence showed that prior expansion of CCR6(+) Foxp3(+) regulatory T cells (Tregs) was important for their dominant enrichment in tumor tissue, which was closely related to poor prognosis of breast cancer patients. However, the underlying regulation mechanism of expansion of CCR6(+) Tregs in situ remains largely unknown. In this study, we reported that miR-21 was highly expressed in CCR6(+) Tregs in tumor tissues from a murine breast cancer model. And silencing of miR-21 could significantly reduce the proliferation of CCR6(+) Tregs in vitro. Adoptive cell-transfer assay further showed that silencing of miR-21 could alter the enrichment of CCR6(+) Tregs in the tumor mass and endow effectively antitumor effect of CD8(+) T cells using a murine breast cancer model. Mechanistic evidence showed that silencing of miR-21 enhanced the expression of its target phosphatase and tensin homolog deleted on chromosome ten (PTEN) and subsequently altered the activation of Akt pathway, which was ultimately responsible for reduced proliferation activity of CCR6(+) Tregs. Finally, we further revealed that miR-21 was also highly expressed on CCR6(+) Tregs in clinical breast cancer patients. Therefore, miR-21 can act as a fine tuner in the regulation of PTEN/Akt pathway transduction in the expansion of CCR6(+) Tregs in tumor sites and provided a novel insight into the development of therapeutic strategies for promoting T-cell immunity by regulating distinct subset of Tregs through targeting specific miRNAs.

  18. Ubiquitin-specific protease 8 links the PTEN-Akt-AIP4 pathway to the control of FLIPS stability and TRAIL sensitivity in glioblastoma multiforme.

    PubMed

    Panner, Amith; Crane, Courtney A; Weng, Changjiang; Feletti, Alberto; Fang, Shanna; Parsa, Andrew T; Pieper, Russell O

    2010-06-15

    The antiapoptotic protein FLIP(S) is a key suppressor of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis in human glioblastoma multiforme (GBM) cells. We previously reported that a novel phosphatase and tensin homologue (PTEN)-Akt-atrophin-interacting protein 4 (AIP4) pathway regulates FLIP(S) ubiquitination and stability, although the means by which PTEN and Akt were linked to AIP4 activity were unclear. Here, we report that a second regulator of ubiquitin metabolism, the ubiquitin-specific protease 8 (USP8), is a downstream target of Akt, and that USP8 links Akt to AIP4 and the regulation of FLIP(S) stability and TRAIL resistance. In human GBM xenografts, levels of USP8 correlated inversely with pAkt levels, and genetic or pharmacologic manipulation of Akt regulated USP8 levels in an inverse manner. Overexpression of wild-type USP8, but not catalytically inactive USP8, increased FLIP(S) ubiquitination, decreased FLIP(S) half-life, decreased FLIP(S) steady-state levels, and decreased TRAIL resistance, whereas short interfering RNA (siRNA)-mediated suppression of USP8 levels had the opposite effect. Because high levels of the USP8 deubiquitinase correlated with high levels of FLIP(S) ubiquitination, USP8 seemed to control FLIP(S) ubiquitination through an intermediate target. Consistent with this idea, overexpression of wild-type USP8 decreased the ubiquitination of the FLIP(S) E3 ubiquitin ligase AIP4, an event previously shown to increase AIP4-FLIP(S) interaction, whereas siRNA-mediated suppression of USP8 increased AIP4 ubiquitination. Furthermore, the suppression of FLIP(S) levels by USP8 overexpression was reversed by the introduction of siRNA targeting AIP4. These results show that USP8, a downstream target of Akt, regulates the ability of AIP4 to control FLIP(S) stability and TRAIL sensitivity.

  19. Modulatory effect of silymarin on inflammatory mediators in experimentally induced benign prostatic hyperplasia: emphasis on PTEN, HIF-1α, and NF-κB.

    PubMed

    Atawia, Reem T; Mosli, Hala H; Tadros, Mariane G; Khalifa, Amani E; Mosli, Hisham A; Abdel-Naim, Ashraf B

    2014-12-01

    The current study aimed to investigate the potential role of the anti-inflammatory effects of silymarin (SIL) in inhibiting experimentally induced benign prostatic hyperplasia (BPH) in rats. Rats were injected testosterone (3 mg/kg/day, subcutaneously (s.c.)) for 2 weeks. In the treatment group, SIL (50 mg/kg, per orally (p.o.)) was administered daily to rats concomitantly with testosterone. Rats were killed 72 h after the last testosterone injection. Then, prostate tissues were dissected out, weighed, and subjected to histological, immunohistochemical, and biochemical examinations. Rats treated with testosterone showed marked increase in prostate weight and prostate weight/body weight with histopathological picture of inflammation and hyperplasia as well as increased collagen deposition. Co-treatment with SIL significantly alleviated these pathological changes. Further, SIL attenuated testosterone-induced nuclear factor-kappa B (NF-κB), cyclooxygenase-II (COX-II), and inducible nitric oxide synthase (iNOS) upregulation, and blunted testosterone-mediated increase in nitric oxide level and messenger RNA (mRNA) expression of interleukin-6 (IL-6) and IL-8. Testosterone-induced downregulation of phosphatase and tensin homolog (PTEN) and upregulation of hypoxia-inducible factor 1α (HIF-1α) were alleviated by SIL. Our findings highlight the anti-inflammatory properties of SIL as a crucial mechanism of its preventive actions against experimental BPH. This can be attributed to, at least partly, attenuating the expression of NF-kB and the subsequent inflammatory cascade, ameliorating the expression of PTEN, and mitigating that of HIF-1α. These data warrant further investigations for the potential use of SIL in the management of BPH.

  20. USP8 links the PTEN-Akt-AIP4 pathway to the control of FLIPS stability and TRAIL sensitivity in glioblastoma multiforme

    PubMed Central

    Panner, Amith; Crane, Courtney A.; Weng, Changjiang; Feletti, Alberto; Fang, Shanna; Parsa, Andrew T.; Pieper, Russell O.

    2010-01-01

    The anti-apoptotic protein FLIPS is a key suppressor of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) -induced apoptosis in human glioblastoma multiforme (GBM) cells. We previously reported that a novel phosphatase and tensin homolog (PTEN)-Akt-atrophin interacting protein 4 (AIP4) pathway regulates FLIPS ubiquitination and stability, although the means by which PTEN and Akt were linked to AIP4 activity were unclear. We here report that a second regulator of ubiquitin metabolism, the ubiquitin-specific protease (USP) 8, is a downstream target of Akt, and that USP8 links Akt to AIP4 and the regulation of FLIPS stability and TRAIL resistance. In human GBM xenografts, levels of USP8 correlated inversely with pAkt levels, and genetic or pharmacologic manipulation of Akt regulated USP8 levels in an inverse manner. Over-expression of WT USP8, but not catalytically inactive USP8, increased FLIPS ubiquitination, decreased FLIPS half-life, decreased FLIPS steady-state levels, and decreased TRAIL resistance, while siRNA-mediated suppression of USP8 levels had the opposite effects. Because high levels of the USP8 deubiquitinase correlated with high levels of FLIPS ubiquitination, USP8 appeared to control FLIPS ubiquitination through an intermediate target. Consistent with this idea, over-expression of WT USP8 decreased ubiquitination of the FLIPS E3 ubiquitin ligase AIP4, an event previously shown to increase AIP4-FLIPS interaction, while siRNA-mediated suppression of USP8 increased AIP4 ubiquitination. Furthermore, the suppression of FLIPS levels by USP8 over-expression was reversed by introduction of siRNA targeting AIP4. These results show that USP8, a downstream target of Akt, regulates the ability of AIP4 to control FLIPS stability and TRAIL sensitivity. PMID:20484045

  1. MicroRNA 744-3p promotes MMP-9-mediated metastasis by simultaneously suppressing PDCD4 and PTEN in laryngeal squamous cell carcinoma

    PubMed Central

    Li, John Zeng-Hong; Gao, Wei; Lei, Wen-Bin; Zhao, Jing; Chan, Jimmy Yu-Wai; Wei, William Ignace; Ho, Wei-Kuen; Wong, Thian-Sze

    2016-01-01

    MicroRNA controls cancer invasion by governing the expression of gene regulating migration and invasion. Here, we reported a novel regulatory pathway controlled by miR-744-3p, which enhanced expression of matrix metallopeptidase 9 (MMP-9) in laryngeal squamous cell carcinoma (LSCC). We profiled the differential micoRNA expression pattern in LSCC cell lines and normal epithelial cultures derived from the head and neck mucosa using microRNA microarray. MiR-7-1-3p, miR-196a/b and miR-744-3p were expressed differentially in the LSCC cell lines. Subsequent validation using real-time PCR revealed that high miR-744-3p level was positively correlated with regional lymph node metastasis of LSCC. Real-time cellular kinetic analysis showed that suppressing miR-744-3p could inhibit migration and invasion of LSCC cell lines and reduce the number of lung metastatic nodules in nude mice modules. In silico analysis revealed that miR-744-3p targeted 2 distinct signaling cascades which eventually upregulated MMP-9 expression in LSCC. First, miR-744-3p could suppress programmed cell death 4 (PDCD4), a direct suppressor of NF-κB (p65). PDCD4 could also prevent AKT activation and suppress MMP-9 expression. Further, suppressing miR-744-3p expression could restore phosphatase and tensin homolog (PTEN) expression. PTEN could inhibit AKT activation and inhibit MMP-9 expression in LSCC cells. The results revealed that suppressing miR-744-3p was effective to inhibit LSCC metastasis by inactivating AKT/mTOR and NF-κB (p65) signaling cascade. Targeting miR-744-3p could be a valuable therapeutic intervention to suppress the aggressiveness of LSCC. PMID:27533461

  2. TSC but not PTEN loss in starving cones of retinitis pigmentosa mice leads to an autophagy defect and mTORC1 dissociation from the lysosome

    PubMed Central

    Venkatesh, A; Ma, S; Punzo, C

    2016-01-01

    Understanding the mechanisms that contribute to secondary cone photoreceptor loss in retinitis pigmentosa (RP) is critical to devise strategies to prolong vision in this neurodegenerative disease. We previously showed that constitutive activation of the mammalian target of rapamycin complex 1 (mTORC1), by loss of its negative regulator the tuberous sclerosis complex protein 1 (Tsc1; also known as Hamartin), was sufficient to promote robust survival of nutrient-stressed cones in two mouse models of RP by improving glucose uptake and utilization. However, while cone protection remained initially stable for several weeks, eventually cone loss resumed. Here we show that loss of Tsc1 in the cones of RP mice causes a defect in autophagy, leading to the accumulation of ubiquitinated aggregates. We demonstrate that this defect was not due to an inhibition of autophagy initiation, but due to an accumulation of autolysosomes, suggesting a defect in the end-stage of the process causing an amino-acid shortage in cones, thereby hampering long-term cone survival. Because cells with TSC loss fail to completely inhibit mTORC1 and properly activate autophagy in the absence of amino acids, we sporadically administered the mTORC1 inhibitor rapamycin, which was sufficient to correct the defects seen in cones, further enhancing the efficiency of cone survival mediated by Tsc1 loss. Concordantly, activation of mTORC1 by loss of the phosphatase and tensin homolog (Pten) did not affect autophagy and amino-acid metabolism, leading to a more sustained long-term protection of cones. As loss of Pten, which in cones results in less robust mTORC1 activation when compared with loss of Tsc1, still affords long-term cone survival, therapeutic interventions with mTORC1 activators or gene therapy with selected mTORC1 targets that improve glucose metabolism are potential strategies to delay vision loss in patients with RP. PMID:27362797

  3. Hydrogen sulfide prevents hydrogen peroxide-induced activation of epithelial sodium channel through a PTEN/PI(3,4,5)P3 dependent pathway.

    PubMed

    Zhang, Jianing; Chen, Shuo; Liu, Huibin; Zhang, Bingkun; Zhao, Ying; Ma, Ke; Zhao, Dan; Wang, Qiushi; Ma, Heping; Zhang, Zhiren

    2013-01-01

    Sodium reabsorption through the epithelial sodium channel (ENaC) at the distal segment of the kidney plays an important role in salt-sensitive hypertension. We reported previously that hydrogen peroxide (H2O2) stimulates ENaC in A6 distal nephron cells via elevation of phosphatidylinositol 3,4,5-trisphosphate (PI(3,4,5)P3) in the apical membrane. Here we report that H2S can antagonize H2O2-induced activation of ENaC in A6 cells. Our cell-attached patch-clamp data show that ENaC open probability (PO ) was significantly increased by exogenous H2O2, which is consistent with our previous finding. The aberrant activation of ENaC induced by exogenous H2O2 was completely abolished by H2S (0.1 mM NaHS). Pre-treatment of A6 cells with H2S slightly decreased ENaC P(O); however, in these cells H2O2 failed to elevate ENaC PO . Confocal microscopy data show that application of exogenous H2O2 to A6 cells significantly increased intracellular reactive oxygen species (ROS) level and induced accumulation of PI(3,4,5)P3 in the apical compartment of the cell membrane. These effects of exogenous H2O2 on intracellular ROS levels and on apical PI(3,4,5)P3 levels were almost completely abolished by treatment of A6 cells with H2S. In addition, H2S significantly inhibited H2O2-induced oxidative inactivation of the tumor suppressor phosphatase and tensin homolog (PTEN) which is a negative regulator of PI(3,4,5)P3. Moreover, BPV(pic), a specific inhibitor of PTEN, elevated PI(3,4,5)P3 and ENaC activity in a manner similar to that of H2O2 in A6 cells. Our data show, for the first time, that H2S prevents H2O2-induced activation of ENaC through a PTEN-PI(3,4,5)P3 dependent pathway.

  4. Hydrogen Sulfide Prevents Hydrogen Peroxide-Induced Activation of Epithelial Sodium Channel through a PTEN/PI(3,4,5)P3 Dependent Pathway

    PubMed Central

    Zhang, Jianing; Chen, Shuo; Liu, Huibin; Zhang, Bingkun; Zhao, Ying; Ma, Ke; Zhao, Dan; Wang, Qiushi; Ma, Heping; Zhang, Zhiren

    2013-01-01

    Sodium reabsorption through the epithelial sodium channel (ENaC) at the distal segment of the kidney plays an important role in salt-sensitive hypertension. We reported previously that hydrogen peroxide (H2O2) stimulates ENaC in A6 distal nephron cells via elevation of phosphatidylinositol 3,4,5-trisphosphate (PI(3,4,5)P3) in the apical membrane. Here we report that H2S can antagonize H2O2-induced activation of ENaC in A6 cells. Our cell-attached patch-clamp data show that ENaC open probability (PO) was significantly increased by exogenous H2O2, which is consistent with our previous finding. The aberrant activation of ENaC induced by exogenous H2O2 was completely abolished by H2S (0.1 mM NaHS). Pre-treatment of A6 cells with H2S slightly decreased ENaC PO; however, in these cells H2O2 failed to elevate ENaC PO. Confocal microscopy data show that application of exogenous H2O2 to A6 cells significantly increased intracellular reactive oxygen species (ROS) level and induced accumulation of PI(3,4,5)P3 in the apical compartment of the cell membrane. These effects of exogenous H2O2 on intracellular ROS levels and on apical PI(3,4,5)P3 levels were almost completely abolished by treatment of A6 cells with H2S. In addition, H2S significantly inhibited H2O2-induced oxidative inactivation of the tumor suppressor phosphatase and tensin homolog (PTEN) which is a negative regulator of PI(3,4,5)P3. Moreover, BPV(pic), a specific inhibitor of PTEN, elevated PI(3,4,5)P3 and ENaC activity in a manner similar to that of H2O2 in A6 cells. Our data show, for the first time, that H2S prevents H2O2-induced activation of ENaC through a PTEN-PI(3,4,5)P3 dependent pathway. PMID:23741314

  5. A High-Throughput Screen with Isogenic PTEN+/+ and PTEN−/− Cells Identifies CID1340132 as a Novel Compound That Induces Apoptosis in PTEN and PIK3CA Mutant Human Cancer Cells

    PubMed Central

    Li, Hui-Fang; Keeton, Adam; Vitolo, Michele; Maddox, Clinton; Rasmussen, Lynn; Hobrath, Judith; White, E. Lucille; Park, Ben Ho; Piazza, Gary A.; Kim, Jung-Sik; Waldman, Todd

    2013-01-01

    The PTEN tumor suppressor gene is one of the most commonly mutated genes in human cancer. Because inactivation of PTEN is a somatic event, PTEN mutations represent an important genetic difference between cancer cells and normal cells and therefore a potential anticancer drug target. However, it remains a substantial challenge to identify compounds that target loss-of-function events such as mutations of tumor suppressors. In an effort to identify small molecules that preferentially kill cells with mutations of PTEN, the authors developed and implemented a high-throughput, paired cell-based screen composed of parental HCT116 cells and their PTEN gene-targeted derivatives. From 138 758 compounds tested, two hits were identified, and one, N′-[(1-benzyl-1H-indol-3-yl)methylene]benzenesulfonohydrazide (CID1340132), was further studied using a variety of cell-based models, including HCT116, MCF10A, and HEC1A cells with targeted deletion of either their PTEN or PIK3CA genes. Preferential killing of PTEN and PIK3CA mutant cells was accompanied by DNA damage, inhibition of DNA synthesis, and apoptosis. taken together, these data validate a cell-based screening approach for identifying lead compounds that target cells with specific tumor suppressor gene mutations and describe a novel compound with preferential killing activity toward PTEN and PIK3CA mutant cells. PMID:21335596

  6. Constitutively expressed COX-2 in osteoblasts positively regulates Akt signal transduction via suppression of PTEN activity.

    PubMed

    Li, Ching-Ju; Chang, Je-Ken; Wang, Gwo-Jaw; Ho, Mei-Ling

    2011-02-01

    Cyclooxygenase-2 (COX-2) is thought to be an inducible enzyme, but increasing reports indicate that COX-2 is constitutively expressed in several organs. The status of COX-2 expression in bone and its physiological role remains undefined. Non-selective non-steroidal anti-inflammatory drugs (NSAIDs) and selective COX-2 inhibitors, which commonly suppress COX-2 activity, were reported to suppress osteoblast proliferation via Akt/FOXO3a/p27(Kip1) signaling, suggesting that COX-2 may be the key factor of the suppressive effects of NSAIDs on proliferation. Although Akt activation correlates with PTEN deficiency and cell viability, the role of COX-2 on PTEN/Akt regulation remains unclear. In this study, we hypothesized that COX-2 may be constitutively expressed in osteoblasts and regulate PTEN/Akt-related proliferation. We examined the localization and co-expression of COX-2 and p-Akt in normal mouse femurs and in cultured mouse (mOBs) and human osteoblasts (hOBs). Our results showed that osteoblasts adjacent to the trabeculae, periosteum and endosteum in mouse femurs constitutively expressed COX-2, while COX-2 co-expressed with p-Akt in osteoblasts sitting adjacent to trabeculae in vivo, and in mOBs and hOBs in vitro. We further used COX-2 siRNA to test the role of COX-2 in Akt signaling in hOBs; COX-2 silencing significantly inhibited PTEN phosphorylation, enhanced PTEN activity, and suppressed p-Akt level and proliferation. However, replenishment of the COX-2 enzymatic product, PGE2, failed to reverse COX-2-dependent Akt phosphorylation. Furthermore, transfection with recombinant human COX-2 (rhCOX-2) significantly reversed COX-2 siRNA-suppressed PTEN phosphorylation, but this effect was reduced when the enzymatic activity of rhCOX-2 was blocked. This finding indicated that the effect of COX-2 on PTEN/Akt signaling is not related to PGE2 but still dependent on COX-2 enzymatic activity. Conversely, COX-1 silencing did not affect PTEN/Akt signaling. Our findings provide

  7. HuPho: the human phosphatase portal.

    PubMed

    Liberti, Susanna; Sacco, Francesca; Calderone, Alberto; Perfetto, Livia; Iannuccelli, Marta; Panni, Simona; Santonico, Elena; Palma, Anita; Nardozza, Aurelio P; Castagnoli, Luisa; Cesareni, Gianni

    2013-01-01

    Phosphatases and kinases contribute to the regulation of protein phosphorylation homeostasis in the cell. Phosphorylation is a key post-translational modification underlying the regulation of many cellular processes. Thus, a comprehensive picture of phosphatase function and the identification of their target substrates would aid a systematic approach to a mechanistic description of cell signalling. Here we present a website designed to facilitate the retrieval of information about human protein phosphatases. To this end we developed a search engine to recover and integrate information annotated in several publicly available web resources. In addition we present a text-mining-assisted annotation effort aimed at extracting phosphatase related data reported in the scientific literature. The HuPho (human phosphatases) website can be accessed at http://hupho.uniroma2.it.

  8. PTEN Regulates Glutamine Flux to Pyrimidine Synthesis and Sensitivity to Dihydroorotate Dehydrogenase Inhibition.

    PubMed

    Mathur, Deepti; Stratikopoulos, Elias; Ozturk, Sait; Steinbach, Nicole; Pegno, Sarah; Schoenfeld, Sarah; Yong, Raymund; Murty, Vundavalli V; Asara, John M; Cantley, Lewis C; Parsons, Ramon

    2017-04-01

    Metabolic changes induced by oncogenic drivers of cancer contribute to tumor growth and are attractive targets for cancer treatment. Here, we found that increased growth of PTEN-mutant cells was dependent on glutamine flux through the de novo pyrimidine synthesis pathway, which created sensitivity to the inhibition of dihydroorotate dehydrogenase, a rate-limiting enzyme for pyrimidine ring synthesis. S-phase PTEN-mutant cells showed increased numbers of replication forks, and inhibitors of dihydroorotate dehydrogenase led to chromosome breaks and cell death due to inadequate ATR activation and DNA damage at replication forks. Our findings indicate that enhanced glutamine flux generates vulnerability to dihydroorotate dehydrogenase inhibition, which then causes synthetic lethality in PTEN-deficient cells due to inherent defects in ATR activation. Inhibition of dihydroorotate dehydrogenase could thus be a promising therapy for patients with PTEN-mutant cancers.Significance: We have found a prospective targeted therapy for PTEN-deficient tumors, with efficacy in vitro and in vivo in tumors derived from different tissues. This is based upon the changes in glutamine metabolism, DNA replication, and DNA damage response which are consequences of inactivation of PTENCancer Discov; 7(4); 380-90. ©2017 AACR.See related article by Brown et al., p. 391This article is highlighted in the In This Issue feature, p. 339.

  9. Reciprocal positive regulation between TRPV6 and NUMB in PTEN-deficient prostate cancer cells

    SciTech Connect

    Kim, Sung-Young; Hong, Chansik; Wie, Jinhong; Kim, Euiyong; Kim, Byung Joo; Ha, Kotdaji; Cho, Nam-Hyuk; Kim, In-Gyu; Jeon, Ju-Hong; So, Insuk

    2014-04-25

    Highlights: • TRPV6 interacts with tumor suppressor proteins. • Numb has a selective effect on TRPV6, depending on the prostate cancer cell line. • PTEN is a novel regulator of TRPV6–Numb complex. - Abstract: Calcium acts as a second messenger and plays a crucial role in signaling pathways involved in cell proliferation. Recently, calcium channels related to calcium influx into the cytosol of epithelial cells have attracted attention as a cancer therapy target. Of these calcium channels, TRPV6 is overexpressed in prostate cancer and is considered an important molecule in the process of metastasis. However, its exact role and mechanism is unclear. NUMB, well-known tumor suppressor gene, is a novel interacting partner of TRPV6. We show that NUMB and TRPV6 have a reciprocal positive regulatory relationship in PC-3 cells. We repeated this experiment in two other prostate cancer cell lines, DU145 and LNCaP. Interestingly, there were no significant changes in TRPV6 expression following NUMB knockdown in DU145. We revealed that the presence or absence of PTEN was the cause of NUMB–TRPV6 function. Loss of PTEN caused a positive correlation of TRPV6–NUMB expression. Collectively, we determined that PTEN is a novel interacting partner of TRPV6 and NUMB. These results demonstrated a novel relationship of NUMB–TRPV6 in prostate cancer cells, and show that PTEN is a novel regulator of this complex.

  10. Synthetic essentiality of chromatin remodelling factor CHD1 in PTEN-deficient cancer.

    PubMed

    Zhao, Di; Lu, Xin; Wang, Guocan; Lan, Zhengdao; Liao, Wenting; Li, Jun; Liang, Xin; Chen, Jasper Robin; Shah, Sagar; Shang, Xiaoying; Tang, Ming; Deng, Pingna; Dey, Prasenjit; Chakravarti, Deepavali; Chen, Peiwen; Spring, Denise J; Navone, Nora M; Troncoso, Patricia; Zhang, Jianhua; Wang, Y Alan; DePinho, Ronald A

    2017-02-23

    Synthetic lethality and collateral lethality are two well-validated conceptual strategies for identifying therapeutic targets in cancers with tumour-suppressor gene deletions. Here, we explore an approach to identify potential synthetic-lethal interactions by screening mutually exclusive deletion patterns in cancer genomes. We sought to identify 'synthetic-essential' genes: those that are occasionally deleted in some cancers but are almost always retained in the context of a specific tumour-suppressor deficiency. We also posited that such synthetic-essential genes would be therapeutic targets in cancers that harbour specific tumour-suppressor deficiencies. In addition to known synthetic-lethal interactions, this approach uncovered the chromatin helicase DNA-binding factor CHD1 as a putative synthetic-essential gene in PTEN-deficient cancers. In PTEN-deficient prostate and breast cancers, CHD1 depletion profoundly and specifically suppressed cell proliferation, cell survival and tumorigenic potential. Mechanistically, functional PTEN stimulates the GSK3β-mediated phosphorylation of CHD1 degron domains, which promotes CHD1 degradation via the β-TrCP-mediated ubiquitination-proteasome pathway. Conversely, PTEN deficiency results in stabilization of CHD1, which in turn engages the trimethyl lysine-4 histone H3 modification to activate transcription of the pro-tumorigenic TNF-NF-κB gene network. This study identifies a novel PTEN pathway in cancer and provides a framework for the discovery of 'trackable' targets in cancers that harbour specific tumour-suppressor deficiencies.

  11. The role of the inositol polyphosphate 5-phosphatases in cellular function and human disease.

    PubMed

    Ooms, Lisa M; Horan, Kristy A; Rahman, Parvin; Seaton, Gillian; Gurung, Rajendra; Kethesparan, Dharini S; Mitchell, Christina A

    2009-04-01

    Phosphoinositides are membrane-bound signalling molecules that regulate cell proliferation and survival, cytoskeletal reorganization and vesicular trafficking by recruiting effector proteins to cellular membranes. Growth factor or insulin stimulation induces a canonical cascade resulting in the transient phosphorylation of PtdIns(4,5)P(2) by PI3K (phosphoinositide 3-kinase) to form PtdIns(3,4,5)P(3), which is rapidly dephosphorylated either by PTEN (phosphatase and tensin homologue deleted on chromosome 10) back to PtdIns(4,5)P(2), or by the 5-ptases (inositol polyphosphate 5-phosphatases), generating PtdIns(3,4)P(2). The 5-ptases also hydrolyse PtdIns(4,5)P(2), forming PtdIns4P. Ten mammalian 5-ptases have been identified, which share a catalytic mechanism similar to that of the apurinic/apyrimidinic endonucleases. Gene-targeted deletion of 5-ptases in mice has revealed that these enzymes regulate haemopoietic cell proliferation, synaptic vesicle recycling, insulin signalling, endocytosis, vesicular trafficking and actin polymerization. Several studies have revealed that the molecular basis of Lowe's syndrome is due to mutations in the 5-ptase OCRL (oculocerebrorenal syndrome of Lowe). Futhermore, the 5-ptases SHIP [SH2 (Src homology 2)-domain-containing inositol phosphatase] 2, SKIP (skeletal muscle- and kidney-enriched inositol phosphatase) and 72-5ptase (72 kDa 5-ptase)/Type IV/Inpp5e (inositol polyphosphate 5-phosphatase E) are implicated in negatively regulating insulin signalling and glucose homoeostasis in specific tissues. SHIP2 polymorphisms are associated with a predisposition to insulin resistance. Gene profiling studies have identified changes in the expression of various 5-ptases in specific cancers. In addition, 5-ptases such as SHIP1, SHIP2 and 72-5ptase/Type IV/Inpp5e regulate macrophage phagocytosis, and SHIP1 also controls haemopoietic cell proliferation. Therefore the 5-ptases are a significant family of signal-modulating enzymes that govern a

  12. PTEN/PIK3CA genes are frequently mutated in spontaneous and medroxyprogesterone acetate-accelerated 7,12-dimethylbenz(a)anthracene-induced mammary tumours of tree shrews.

    PubMed

    Xia, Hou-Jun; He, Bao-Li; Wang, Chun-Yan; Zhang, Hai-Lin; Ge, Guang-Zhe; Zhang, Yuan-Xu; Lv, Long-Bao; Jiao, Jian-Lin; Chen, Ceshi

    2014-12-01

    Tree shrew has increasingly become an attractive experimental animal model for human diseases, particularly for breast cancer due to spontaneous breast tumours and their close relationship to primates and by extension to humans. However, neither normal mammary glands nor breast tumours have been well characterised in the Chinese tree shrew (Tupaia belangeri chinensis). In this study, normal mammary glands from four different developmental stages and 18 spontaneous breast tumours were analysed. Haematoxylin and eosin (H&E) staining and immunohistochemistry (IHC) showed that normal mammary gland morphology and structures of tree shrews were quite similar to those found in humans. Spontaneous breast tumours of tree shrews were identified as being intraductal papilloma, papillary carcinoma, and invasive ductal carcinoma with or without lung metastasis. To further analyse breast cancer tumours among tree shrews, 40 3-4 month-old female tree shrews were orally administrated 20 mg 7,12-dimethylbenz(a)anthracene (DMBA) or peanut oil thrice, and then, 15 of these DMBA administrated tree shrews were implanted with medroxyprogesterone acetate (MPA) pellets. DMBA was shown to induce breast tumours (12%) while the addition of MPA increased the tumour incidence (50%). Of these, three induced breast tumours were intraductal papillary carcinomas and one was invasive ductal carcinoma (IDC). The PTEN/PIK3CA (phosphatase and tensin homologue/phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha), but not TP53 and GATA3, genes are frequently mutated in breast tumours, and the PTEN/PIK3CA gene mutation status correlated with the expression of pAKT in tree shrew breast tumours. These results suggest that tree shrews may be a promising animal model for a subset of human breast cancers with PTEN/PIK3CA gene mutations.

  13. Specificity of a protein phosphatase inhibitor from rabbit skeletal muscle.

    PubMed Central

    Cohen, P; Nimmo, G A; Antoniw, J F

    1977-01-01

    A hear-stable protein, which is a specific inhibitor of protein phosphatase-III, was purified 700-fold from skeletal muscle by a procedure that involved heat-treatment at 95 degrees C, chromatography on DEAE-cellulose and gel filtration on Sephadex G-100. The final step completely resolved the protein phosphatase inhibitor from the protein inhibitor of cyclic AMP-dependent protein kinase. The phosphorylase phosphatase, beta-phosphorylase kinase phosphatase, glycogen synthase phosphatase-1 and glycogen synthase phosphatase-2 activities of protein phosphatase-III [Antoniw, J. F., Nimmo, H. G., Yeaman, S. J. & Cohen, P.(1977) Biochem.J. 162, 423-433] were inhibited in a very similar manner by the protein phosphatase inhibitor and at least 95% inhibition was observed at high concentrations of inhibitor. The two forms of protein phosphatase-III, termed IIIA and IIIB, were equally susceptible to the protein phosphatase inhibitor. The protein phosphatase inhibitor was at least 200 times less effective in inhibiting the activity of protein phosphatase-I and protein phosphatase-II. The high degree of specificity of the inhibitor for protein phosphatase-III was used to show that 90% of the phosphorylase phosphatase and glycogen synthase phosphatase activities measured in muscle extracts are catalysed by protein phosphatase-III. Protein phosphatase-III was tightly associated with the protein-glycogen complex that can be isolated from skeletal muscle, whereas the protein phosphatase inhibitor and protein phosphatase-II were not. The results provide further evidence that the enzyme that catalyses the dephosphorylation of the alpha-subunit of phosphorylase kinase (protein phosphatase-II) and the enzyme that catalyses the dephosphorylation of the beta-subunit of phosphorylase kinase (protein phosphatase-III) are distinct. The results suggest that the protein phosphatase inhibitor may be a useful probe for differentiating different classes of protein phosphatases in mammalian

  14. PTEN status is a crucial determinant of the functional outcome of combined MEK and mTOR inhibition in cancer

    PubMed Central

    Milella, Michele; Falcone, Italia; Conciatori, Fabiana; Matteoni, Silvia; Sacconi, Andrea; De Luca, Teresa; Bazzichetto, Chiara; Corbo, Vincenzo; Simbolo, Michele; Sperduti, Isabella; Benfante, Antonina; Del Curatolo, Anais; Cesta Incani, Ursula; Malusa, Federico; Eramo, Adriana; Sette, Giovanni; Scarpa, Aldo; Konopleva, Marina; Andreeff, Michael; McCubrey, James Andrew; Blandino, Giovanni; Todaro, Matilde; Stassi, Giorgio; De Maria, Ruggero; Cognetti, Francesco; Del Bufalo, Donatella; Ciuffreda, Ludovica

    2017-01-01

    Combined MAPK/PI3K pathway inhibition represents an attractive, albeit toxic, therapeutic strategy in oncology. Since PTEN lies at the intersection of these two pathways, we investigated whether PTEN status determines the functional response to combined pathway inhibition. PTEN (gene, mRNA, and protein) status was extensively characterized in a panel of cancer cell lines and combined MEK/mTOR inhibition displayed highly synergistic pharmacologic interactions almost exclusively in PTEN-loss models. Genetic manipulation of PTEN status confirmed a mechanistic role for PTEN in determining the functional outcome of combined pathway blockade. Proteomic analysis showed greater phosphoproteomic profile modification(s) in response to combined MEK/mTOR inhibition in PTEN-loss contexts and identified JAK1/STAT3 activation as a potential mediator of synergistic interactions. Overall, our results show that PTEN-loss is a crucial determinant of synergistic interactions between MAPK and PI3K pathway inhibitors, potentially exploitable for the selection of cancer patients at the highest chance of benefit from combined therapeutic strategies. PMID:28220839

  15. Prostate tumorigenesis induced by PTEN deletion involves estrogen receptor β repression.

    PubMed

    Mak, Paul; Li, Jiarong; Samanta, Sanjoy; Chang, Cheng; Jerry, D Joseph; Davis, Roger J; Leav, Irwin; Mercurio, Arthur M

    2015-03-31

    The role of ERβ in prostate cancer is unclear, although loss of ERβ is associated with aggressive disease. Given that mice deficient in ERβ do not develop prostate cancer, we hypothesized that ERβ loss occurs as a consequence of tumorigenesis caused by other oncogenic mechanisms and that its loss is necessary for tumorigenesis. In support of this hypothesis, we found that ERβ is targeted for repression in prostate cancer caused by PTEN deletion and that loss of ERβ is important for tumor formation. ERβ transcription is repressed by BMI-1, which is induced by PTEN deletion and important for prostate tumorigenesis. This finding provides a mechanism for how ERβ expression is regulated in prostate cancer. Repression of ERβ contributes to tumorigenesis because it enables HIF-1/VEGF signaling that sustains BMI-1 expression. These data reveal a positive feedback loop that is activated in response to PTEN loss and sustains BMI-1.

  16. The tumor suppressor PTEN and the PDK1 kinase regulate formation of the columnar neural epithelium.

    PubMed

    Grego-Bessa, Joaquim; Bloomekatz, Joshua; Castel, Pau; Omelchenko, Tatiana; Baselga, José; Anderson, Kathryn V

    2016-01-26

    Epithelial morphogenesis and stability are essential for normal development and organ homeostasis. The mouse neural plate is a cuboidal epithelium that remodels into a columnar pseudostratified epithelium over the course of 24 hr. Here we show that the transition to a columnar epithelium fails in mutant embryos that lack the tumor suppressor PTEN, although proliferation, patterning and apical-basal polarity markers are normal in the mutants. The Pten phenotype is mimicked by constitutive activation of PI3 kinase and is rescued by the removal of PDK1 (PDPK1), but does not depend on the downstream kinases AKT and mTORC1. High resolution imaging shows that PTEN is required for stabilization of planar cell packing in the neural plate and for the formation of stable apical-basal microtubule arrays. The data suggest that appropriate levels of membrane-associated PDPK1 are required for stabilization of apical junctions, which promotes cell elongation, during epithelial morphogenesis.

  17. Brown Seaweed Fucoidan Inhibits Cancer Progression by Dual Regulation of mir-29c/ADAM12 and miR-17-5p/PTEN Axes in Human Breast Cancer Cells

    PubMed Central

    Wu, Szu-Yuan; Yan, Ming-De; Wu, Alexander T.H.; Yuan, Kevin Sheng-Po; Liu, Shing Hwa

    2016-01-01

    In this study, we observed that brown seaweed fucoidan inhibited human breast cancer progression by upregulating microRNA (miR)-29c and downregulating miR-17-5p, thereby suppressing their target genes, a disintegrin and metalloproteinase 12 (ADAM12) and phosphatase and tensin homolog (PTEN), respectively. Moreover, fucoidan reduced the luciferase activity of 3'-untranslated region reporter; treatment of cells with the miR-29c mimic or miR-17-5p inhibitor also produced similar results. These effects of fucoidan inhibited the epithelial-mesenchymal transition in breast cancer cells, as evidenced by an increase in E-cadherin and a drop in N-cadherin, and inhibited breast cancer cell survival, as evidenced by the activation of the phosphoinositide 3-kinase/Akt pathway. Taken together, these findings demonstrate that fucoidan inhibits breast cancer progression by regulating the miR-29c/ADAM12 and miR-17-5p/PTEN axes. Fucoidan is a potential chemopreventive/chemotherapeutic agent for breast cancer. PMID:27994679

  18. Differential thiol oxidation of the signaling proteins Akt, PTEN or PP2A determines whether Akt phosphorylation is enhanced or inhibited by oxidative stress in C2C12 myotubes derived from skeletal muscle.

    PubMed

    Tan, Pearl Lin; Shavlakadze, Tea; Grounds, Miranda D; Arthur, Peter G

    2015-05-01

    Oxidative stress, caused by excess reactive oxygen species (ROS), has been hypothesized to cause or exacerbate skeletal muscle wasting in a number of diseases and chronic conditions. ROS, such as hydrogen peroxide, have the potential to affect signal transduction pathways such as the phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3 K)/Akt pathway that regulates protein synthesis. Previous studies have found contradictory outcomes for the effect of ROS on the PI3K/Akt signaling pathway, where oxidative stress can either enhance or inhibit Akt phosphorylation. The apparent contradictions could reflect differences in experimental cell types or types of ROS treatments. We replicate both effects in myotubes of cultured skeletal muscle C2C12 cells, and show that increased oxidative stress can either inhibit or enhance Akt phosphorylation. This differential response could be explained: thiol oxidation of Akt, but not the phosphatases PTEN or PP2A, caused a decline in Akt phosphorylation; whereas the thiol oxidation of Akt, PTEN and PP2A increased Akt phosphorylation. These observations indicate that a more complete understanding of the effects of oxidative stress on a signal transduction pathway comes not only from identifying the proteins susceptible to thiol oxidation, but also their relative sensitivity to ROS.

  19. Brown Seaweed Fucoidan Inhibits Cancer Progression by Dual Regulation of mir-29c/ADAM12 and miR-17-5p/PTEN Axes in Human Breast Cancer Cells.

    PubMed

    Wu, Szu-Yuan; Wu, Alexander T H; Yuan, Kevin Sheng-Po; Liu, Shing Hwa

    2016-01-01

    In this study, we observed that brown seaweed fucoidan inhibited human breast cancer progression by upregulating microRNA (miR)-29c and downregulating miR-17-5p, thereby suppressing their target genes, a disintegrin and metalloproteinase 12 (ADAM12) and phosphatase and tensin homolog (PTEN), respectively. Moreover, fucoidan reduced the luciferase activity of 3'-untranslated region reporter; treatment of cells with the miR-29c mimic or miR-17-5p inhibitor also produced similar results. These effects of fucoidan inhibited the epithelial-mesenchymal transition in breast cancer cells, as evidenced by an increase in E-cadherin and a drop in N-cadherin, and inhibited breast cancer cell survival, as evidenced by the activation of the phosphoinositide 3-kinase/Akt pathway. Taken together, these findings demonstrate that fucoidan inhibits breast cancer progression by regulating the miR-29c/ADAM12 and miR-17-5p/PTEN axes. Fucoidan is a potential chemopreventive/chemotherapeutic agent for breast cancer.

  20. Bovine Intestinal Alkaline Phosphatase Reduces Inflammation After Induction of Acute Myocardial Infarction in Mice

    PubMed Central

    Fiechter, Danielle; Kats, Suzanne; Brands, Ruud; van Middelaar, Ben; Pasterkamp, Gerard; de Kleijn, Dominique; Seinen, Willem

    2011-01-01

    Background There has been increasing evidence suggesting that lipopolysaccharide or endotoxin may be an important activator of the innate immune system after acute myocardial infarction. Bovine intestinal alkaline phosphatase reduces inflammation in several endotoxin mediated diseases by dephosphorylation of the lipid A moiety of lipopolysaccharide. The aim of this study was to investigate the effect of bovine intestinal alkaline phosphatase on reducing inflammation after acute myocardial infarction. Methods Just before permanent ligation of the left anterior descending coronary (LAD) artery to induce acute myocardial infarction in Balb/c mice, bovine intestinal alkaline phosphatase (bIAP) was administrated intravenously. After 4 hours, mice were sacrificed and the inflammatory response was assessed. Acute myocardial infarction induced the production of different cytokines, which were measured in blood. Results Treatment with bovine intestinal alkaline phosphatase resulted in a significant reduction of the pro-inflammatory cytokines IL-6, IL-1β and the chymase mouse mast cell protease-1. No difference in the production of the anti-inflammatory cytokine IL-10 was observed between the control group and the bovine intestinal alkaline phosphatase treated group. Conclusion In a mouse model of permanent LAD coronary artery ligation, bIAP diminishes the pro-inflammatory responses but does not have an effect on the anti-inflammatory response in the acute phase after acute myocardial infarction.

  1. Protein tyrosine phosphatases as potential therapeutic targets

    PubMed Central

    He, Rong-jun; Yu, Zhi-hong; Zhang, Ruo-yu; Zhang, Zhong-yin

    2014-01-01

    Protein tyrosine phosphorylation is a key regulatory process in virtually all aspects of cellular functions. Dysregulation of protein tyrosine phosphorylation is a major cause of human diseases, such as cancers, diabetes, autoimmune disorders, and neurological diseases. Indeed, protein tyrosine phosphorylation-mediated signaling events offer ample therapeutic targets, and drug discovery efforts to date have brought over two dozen kinase inhibitors to the clinic. Accordingly, protein tyrosine phosphatases (PTPs) are considered next-generation drug targets. For instance, PTP1B is a well-known targets of type 2 diabetes and obesity, and recent studies indicate that it is also a promising target for breast cancer. SHP2 is a bona-fide oncoprotein, mutations of which cause juvenile myelomonocytic leukemia, acute myeloid leukemia, and solid tumors. In addition, LYP is strongly associated with type 1 diabetes and many other autoimmune diseases. This review summarizes recent findings on several highly recognized PTP family drug targets, including PTP1B, Src homology phosphotyrosyl phosphatase 2(SHP2), lymphoid-specific tyrosine phosphatase (LYP), CD45, Fas associated phosphatase-1 (FAP-1), striatal enriched tyrosine phosphatases (STEP), mitogen-activated protein kinase/dual-specificity phosphatase 1 (MKP-1), phosphatases of regenerating liver-1 (PRL), low molecular weight PTPs (LMWPTP), and CDC25. Given that there are over 100 family members, we hope this review will serve as a road map for innovative drug discovery targeting PTPs. PMID:25220640

  2. PTEN Loss Does Not Predict for Response to RAD001 (Everolimus) in a Glioblastoma Orthotopic Xenograft Test Panel

    PubMed Central

    Yang, Lin; Clarke, Michelle J.; Carlson, Brett L.; Mladek, Ann C.; Schroeder, Mark A.; Decker, Paul; Wu, Wenting; Kitange, Gaspar J.; Grogan, Patrick T.; Goble, Jennie M.; Uhm, Joon; Galanis, Evanthia; Giannini, Caterina; Lane, Heidi A.; James, C. David; Sarkaria, Jann N.

    2014-01-01

    Purpose Hyperactivation of the phosphatidylinositol 3-kinase/Akt signaling through disruption of PTEN function is common in glioblastoma multiforme, and these genetic changes are predicted to enhance sensitivity to mammalian target of rapamycin (mTOR) inhibitors such as RAD001 (everolimus). Experimental Design To test whether PTEN loss could be used as a predictive marker for mTOR inhibitor sensitivity, the response of 17 serially transplantable glioblastoma multiforme xenografts was evaluated in an orthotopic therapy evaluation model. Of these 17 xenograft lines, 7 have either genomic deletion or mutation of PTEN. Results Consistent with activation of Akt signaling, there was a good correlation between loss of PTEN function and elevated levels of Akt phosphorylation. However, of the 7 lines with disrupted PTEN function, only 1 tumor line (GBM10) was significantly sensitive to RAD001 therapy (25% prolongation in median survival), whereas1 of 10 xenograft lines with wild-type PTEN was significantly sensitive to RAD001 (GS22; 34% prolongation in survival). Relative to placebo, 5 days of RAD001 treatment was associated with a marked 66% reduction in the MIB1 proliferation index in the sensitive GBM10 line (deleted PTEN) compared with a 25% and 7% reduction in MIB1 labeling index in the insensitive GBM14 (mutant PTEN) and GBM15 (wild-type PTEN) lines, respectively. Consistent with a cytostatic antitumor effect, bioluminescent imaging of luciferase-transduced intracranial GBM10 xenografts showed slowed tumor growth without significant tumor regression during RAD001 therapy. Conclusion These data suggest that loss of PTEN function is insufficient to adequately predict responsiveness to mTOR inhibitors in glioblastoma multiforme. PMID:18559622

  3. Expression of survivin, PTEN and p27 in normal, hyperplastic, and carcinomatous endometrium.

    PubMed

    Erkanli, S; Kayaselcuk, F; Kuscu, E; Bagis, T; Bolat, F; Haberal, A; Demirhan, B

    2006-01-01

    We aimed to investigate if expressions of survivin and p27 proteins are involved in the development of endometrioid carcinoma, along with whether there are any correlations between these proteins and loss of wild-type PTEN that is found in up to 80% of endometrial carcinomas. We also studied their correlations with classical prognostic factors and survival in endometrial carcinoma. To our knowledge, this is the first time survivin expression is investigated in endometrial hyperplasia along with endometrioid adenocarcinoma. For immunohistochemical analysis, 29 endometrioid adenocarcinoma, 38 endometrial hyperplasia, and 10 proliferative endometrium tissue samples were selected in the pathology archives. Staining of cells was scored as +2 if >50%, +1 if <50%, and negative if none were stained positive. Survivin expression increased from proliferative to hyperplasia to carcinoma cases. PTEN and p27 expressions decreased in hyperplasia and carcinoma cases with respect to proliferative endometrium. All these differences were statistically significant (P < 0.05). PTEN positively correlated to p27 (P < 0.05); however, neither was correlated with survivin. None of these genes were correlated with classical prognostic factors such as grade and myometrial invasion in endometrioid adenocarcinoma. However, mean survival was statistically significantly higher in PTEN-positive cases (46.6 vs 16.4 months) (P < 0.05). Survivin overexpression might be one of the important mechanisms in the development of endometrioid adenocarcinoma along with lost or decreased activity of PTEN and p27. However, survivin seems to exert its role in ways different from those of PTEN or p27 in the development of endometrioid adenocarcinoma. These findings on the role of survivin in endometrioid adenocarcinoma should be confirmed and the pathways through which survivin acts in endometrioid adenocarcinoma studied further with a larger sample size.

  4. Oncogenic microRNA-4534 regulates PTEN pathway in prostate cancer

    PubMed Central

    Nip, Hannah; Dar, Altaf A.; Saini, Sharanjot; Colden, Melissa; Varahram, Shahryari; Chowdhary, Harshika; Yamamura, Soichiro; Mitsui, Yozo; Tanaka, Yuichiro; Kato, Taku; Hashimoto, Yutaka; Shiina, Marisa; Kulkarni, Priyanka; Dasgupta, Pritha; Imai-Sumida, Mitsuho; Tabatabai, Z. Laura; Greene, Kirsten; Deng, Guoren; Dahiya, Rajvir; Majid, Shahana

    2016-01-01

    Prostate carcinogenesis involves alterations in several signaling pathways, the most prominent being the PI3K/AKT pathway. This pathway is constitutively active and drives prostate cancer (PCa) progression to advanced metastatic disease. PTEN, a critical tumor and metastasis suppressor gene negatively regulates cell survival, proliferation, migration and angiogenesis via the PI3K/Akt pathway. PTEN is mutated, downregulated/dysfunctional in many cancers and its dysregulation correlates with poor prognosis in PCa. Here, we demonstrate that microRNA-4534 (miR-4534) is overexpressed in PCa and show that miR-4534 is hypermethylated in normal tissues and cell lines compared to PCa tissues/cells. miR-4534 exerts its oncogenic effects partly by downregulating the tumor suppressor PTEN gene. Knockdown of miR-4534 impaired cell proliferation, migration/invasion and induced G0/G1 cell cycle arrest and apoptosis in PCa. Suppression of miR-4534 and its effects on tumor growth was confirmed in a xenograft mouse model. We performed parallel experiments in non-cancer RWPE1 cells by overexpessing miR-4534 followed by functional assays. Overexpression of miR-4534 induced pro-cancerous characteristics in this non-cancer cell line. Statistical analyses revealed that miR-4534 has potential to independently distinguish malignant from normal tissues and positively correlated with poor overall and PSA recurrence free survival. Taken together, our results show that depletion of miR-4534 in PCa induces a tumor suppressor phenotype partly through induction of PTEN. These results have important implications for identifying and defining the role of new PTEN regulators such as microRNAs in prostate tumorigenesis. Understanding aberrantly overexpressed miR-4534 and its downregulation of PTEN will provide mechanistic insight and therapeutic targets for PCa therapy. PMID:27634912

  5. Regeneration of diabetic axons is enhanced by selective knockdown of the PTEN gene

    PubMed Central

    Singh, Bhagat; Singh, Vandana; Krishnan, Anand; Koshy, Kurien; Martinez, Jose A.; Cheng, Chu; Almquist, Chris

    2014-01-01

    Diabetes mellitus renders both widespread and localized irreversible damage to peripheral axons while imposing critical limitations on their ability to regenerate. A major failure of regenerative capacity thereby imposes a ‘double hit’ in diabetic patients who frequently develop focal neuropathies such as carpal tunnel syndrome in addition to generalized diffuse polyneuropathy. The mechanisms of diabetic neuron regenerative failure have been speculative and few approaches have offered therapeutic opportunities. In this work we identify an unexpected but major role for PTEN upregulation in diabetic peripheral neurons in attenuating axon regrowth. In chronic diabetic neuropathy models in mice, we identified significant PTEN upregulation in peripheral sensory neurons of messenger RNA and protein compared to littermate controls. In vitro, sensory neurons from these mice responded to PTEN knockdown with substantial rises in neurite outgrowth and branching. To test regenerative plasticity in a chronic diabetic model with established neuropathy, we superimposed an additional focal sciatic nerve crush injury and assessed morphological, electrophysiological and behavioural recovery. Knockdown of PTEN in dorsal root ganglia ipsilateral to the side of injury was achieved using a unique form of non-viral short interfering RNA delivery to the ipsilateral nerve injury site and paw. In comparison with scrambled sequence control short interfering RNA, PTEN short interfering RNA improved several facets of regeneration: recovery of compound muscle action potentials, reflecting numbers of reconnected motor axons to endplates, conduction velocities of both motor and sensory axons, reflecting their maturation during regrowth, numbers and calibre of regenerating myelinated axons distal to the injury site, reinnervation of the skin by unmyelinated epidermal axons and recovery of mechanical sensation. Collectively, these findings identify a novel therapeutic approach, potentially

  6. Oncogenic microRNA-4534 regulates PTEN pathway in prostate cancer.

    PubMed

    Nip, Hannah; Dar, Altaf A; Saini, Sharanjot; Colden, Melissa; Varahram, Shahryari; Chowdhary, Harshika; Yamamura, Soichiro; Mitsui, Yozo; Tanaka, Yuichiro; Kato, Taku; Hashimoto, Yutaka; Shiina, Marisa; Kulkarni, Priyanka; Dasgupta, Pritha; Imai-Sumida, Mitsuho; Tabatabai, Z Laura; Greene, Kirsten; Deng, Guoren; Dahiya, Rajvir; Majid, Shahana

    2016-10-18

    Prostate carcinogenesis involves alterations in several signaling pathways, the most prominent being the PI3K/AKT pathway. This pathway is constitutively active and drives prostate cancer (PCa) progression to advanced metastatic disease. PTEN, a critical tumor and metastasis suppressor gene negatively regulates cell survival, proliferation, migration and angiogenesis via the PI3K/Akt pathway. PTEN is mutated, downregulated/dysfunctional in many cancers and its dysregulation correlates with poor prognosis in PCa. Here, we demonstrate that microRNA-4534 (miR-4534) is overexpressed in PCa and show that miR-4534 is hypermethylated in normal tissues and cell lines compared to PCa tissues/cells. miR-4534 exerts its oncogenic effects partly by downregulating the tumor suppressor PTEN gene. Knockdown of miR-4534 impaired cell proliferation, migration/invasion and induced G0/G1 cell cycle arrest and apoptosis in PCa. Suppression of miR-4534 and its effects on tumor growth was confirmed in a xenograft mouse model. We performed parallel experiments in non-cancer RWPE1 cells by overexpessing miR-4534 followed by functional assays. Overexpression of miR-4534 induced pro-cancerous characteristics in this non-cancer cell line. Statistical analyses revealed that miR-4534 has potential to independently distinguish malignant from normal tissues and positively correlated with poor overall and PSA recurrence free survival. Taken together, our results show that depletion of miR-4534 in PCa induces a tumor suppressor phenotype partly through induction of PTEN. These results have important implications for identifying and defining the role of new PTEN regulators such as microRNAs in prostate tumorigenesis. Understanding aberrantly overexpressed miR-4534 and its downregulation of PTEN will provide mechanistic insight and therapeutic targets for PCa therapy.

  7. The expression profile for the tumour suppressor gene PTEN and associated polymorphic markers

    PubMed Central

    Hamilton, J A; Stewart, L M D; Ajayi, L; Gray, I C; Gray, N E; Roberts, K G; Watson, G J; Kaisary, A V; Snary, D

    2000-01-01

    PTEN, a putative tumour suppressor gene associated with prostate and other cancers, is known to be located within the chromosomal region 10q23.3. Transcription of the PTEN gives rise to multiple mRNA species. Analyses by Northern blots, using cell lines which express PTEN together with cell lines which have lost the PTEN or carry a truncated version of the gene, has allowed us to demonstrate that the pseudogene is not transcribed. In addition, 3′ RACE studies confirmed that the multiple mRNA species arising from the gene probably result from the use of alternative polyadenylation sites. No evidence for tissue- or cell-specific patterns of transcription was found. Analysis by 5′ RACE placed the putative site for the start of transcription around 830 bp upstream of the start codon. A map of the location of the PTEN gene with a series of overlapping YAC, BAC and PACs has been constructed and the relative position of eight microsatellite markers sited. Two known and one novel marker have been positioned within the gene, the others are in flanking regions. The more accurate location of these markers should help in future studies of the extent of gene loss. Several polymorphisms were also identified, all were within introns. Four of the common polymorphisms appear to be linked. In blood, DNA from 200 individuals, including normal, BPH and prostate cancer patients, confirmed this link. Only two samples of 200 did not carry the linked haplotype, both were patients with advanced prostate cancer. It is possible that such rearrangements within PTEN could be evidence of predisposition to prostate cancer in this small number of cases. © 2000 Cancer Research Campaign PMID:10817502

  8. A novel deleterious PTEN mutation in a patient with early-onset bilateral breast cancer

    PubMed Central

    2014-01-01

    Background An early age at Breast Cancer (BC) onset may be a hallmark of inherited predisposition, but BRCA1/2 mutations are only found in a minority of younger BC patients. Among the others, a fraction may carry mutations in rarer BC genes, such as TP53, STK11, CDH1 and PTEN. As the identification of women harboring such mutations allows for targeted risk-management, the knowledge of associated manifestations and an accurate clinical and family history evaluation are warranted. Case presentation We describe the case of a woman who developed an infiltrating ductal carcinoma of the right breast at the age of 32, a contralateral BC at age 36 and another BC of the right breast at 40. When she was 39 years-old, during a dermatological examination, mucocutaneous features suggestive of Cowden Syndrome, a disorder associated to germ-line PTEN mutations, were noticed. PTEN genetic testing revealed the novel c.71A > T (p.Asp24Val) mutation, whose deleterious effect, suggested by conservation data and in silico tools, was definitely demonstrated by the incapacity of mutant PTEN to inhibit Akt phosphorylation when used to complement PTEN-null cells. In BC tissue, despite the absence of LOH or somatic mutations of PTEN, Akt phosphorylation was markedly increased in comparison to normal tissue, thus implying additional somatic events into the deregulation of the PI3K/Akt/mTOR pathway and, presumably, into carcinogenesis. Hence, known oncogenic mutations in PIK3CA (exons 10 and 21) and AKT1 (exon 2) were screened in tumor DNA with negative results, which suggests that the responsible somatic event(s) is a different, uncommon one. Conclusion This case stresses the importance of clinical/genetic assessment of early-onset BC patients in order to identify mutation carriers, who are at high risk of new events, so requiring tailored management. Moreover, it revealed a novel PTEN mutation with pathogenic effect, pointing out, however, the need for further efforts to elucidate the

  9. Evolution of alkaline phosphatases in primates.

    PubMed Central

    Goldstein, D J; Rogers, C; Harris, H

    1982-01-01

    Alkaline phosphatase [orthophosphoric-monoester phosphohydrolase (alkaline optimum), EC 3.1.3.1] in placenta, intestine, liver, kidney, bone, and lung from a variety of primate species has been characterized by quantitative inhibition, thermostability, and immunological studies. Characteristic human placental-type alkaline phosphatase occurs in placentas of great apes (chimpanzee and orangutan) but not in placentas of other primates, including gibbon. It is also present in trace amounts in human lung but not in lung or other tissues of various Old and New World monkeys. However, a distinctive alkaline phosphatase resembling it occurs in substantial amounts in lungs from Old World monkeys but not New World monkeys. It appears that duplication of alkaline phosphatase genes and mutations of genetic elements controlling their tissue expression have occurred relatively recently in mammalian evolution. Images PMID:6950431

  10. Multiple Functions of the Eya Phosphotyrosine Phosphatase

    PubMed Central

    2015-01-01

    Eyes absent (Eya), a protein conserved from plants to humans and best characterized as a transcriptional coactivator, is also the prototype for a novel class of eukaryotic aspartyl protein tyrosine phosphatases. This minireview discusses recent breakthroughs in elucidating the substrates and cellular events regulated by Eya's tyrosine phosphatase function and highlights some of the complexities, new questions, and surprises that have emerged from efforts to understand how Eya's unusual multifunctionality influences developmental regulation and signaling. PMID:26667035

  11. Analysis of Smad Phosphatase Activity In Vitro.

    PubMed

    Shen, Tao; Qin, Lan; Lin, Xia

    2016-01-01

    Phosphorylation of Smad1/5/8 at the C-terminal SXS motif by BMP type I receptors is one of the most critical events in BMP signaling. Conversely, protein phosphatases that dephosphorylate phospho-Smad1/5/8 can consequently prevent or terminate BMP signaling. PPM1H is an undercharacterized phosphatase in the PPM family. We recently demonstrated that PPM1H can dephosphorylate Smad1 in the cytoplasm and block BMP signaling responses in cellular assays. Here we describe in vitro method showing that PPM1H is a bona fide phosphatase for Smad1/5/8. PPM1H is produced as GST fusion protein in E. coli, and purified against glutathione sepharose beads. Bacterially purified recombinant PPM1H possesses phosphatase activity toward artificial substrate para-nitrophenyl phosphate (pNPP). Recombinant PPM1H also dephosphorylates immuno-purified phosphorylated Smad1 in test tubes. These direct in vitro phosphatase assays provide convincing evidence demonstrating the role of PPM1H as a specific phosphatase for P-Smad1.

  12. PTEN loss is associated with worse outcome in HER2-amplified breast cancer patients but is not associated with trastuzumab resistance

    PubMed Central

    Stern, Howard M.; Gardner, Humphrey; Burzykowski, Tomasz; Elatre, Wafaa; O’Brien, Carol; Lackner, Mark R.; Pestano, Gary A.; Santiago, Angela; Villalobos, Ivonne; Eiermann, Wolfgang; Pienkowski, Tadeusz; Martin, Miguel; Robert, Nicholas; Crown, John; Nuciforo, Paolo; Bee, Valerie; Mackey, John; Slamon, Dennis J.; Press, Michael F.

    2015-01-01

    Purpose To investigate the clinical relevance of PTEN in HER2-amplified and HER2-non-amplified disease. Experimental Design We assessed PTEN status in two large adjuvant breast cancer trials (BCIRG-006 and BCIRG-005) using a PTEN IHC assay that was previously validated in a panel of 33 breast cancer cell lines and prostate cancer tissues with known PTEN gene deletion. Results In the HER2-positive patient population, absence of tumor cell PTEN staining occurred at a rate of 5.4% and was independent of ER/PR status. In contrast, 15.9% of HER2-negative patients exhibited absence of PTEN staining with the highest frequency seen in triple negative breast cancer (TNBC) subgroup versus ER/PR-positive patients (35.1% vs. 10.9%). Complete absence of PTEN staining in tumor cells was associated with poor clinical outcome in HER2-positive disease. Those patients whose cancers demonstrated absent PTEN staining had a significant decrease in disease-free survival (DFS) and overall survival (OS) compared to patients with tumors exhibiting any PTEN staining patterns (low, moderate or high). Trastuzumab appeared to provide clinical benefit even for patients lacking PTEN staining. In the HER2-negative population there were no statistically significant differences in clinical outcome based on PTEN status. Conclusions This study is the largest to date examining PTEN status in breast cancer and the data suggest that the rate and significance of PTEN status differ between HER2-positive and HER2-negative disease. Furthermore, the data clearly suggest that HER2-positive patients with PTEN loss still benefit from trastuzumab. PMID:25649019

  13. Inhibition of Notch pathway arrests PTEN-deficient advanced prostate cancer by triggering p27-driven cellular senescence

    PubMed Central

    Revandkar, Ajinkya; Perciato, Maria Luna; Toso, Alberto; Alajati, Abdullah; Chen, Jingjing; Gerber, Hermeto; Dimitrov, Mitko; Rinaldi, Andrea; Delaleu, Nicolas; Pasquini, Emiliano; D'Antuono, Rocco; Pinton, Sandra; Losa, Marco; Gnetti, Letizia; Arribas, Alberto; Fraering, Patrick; Bertoni, Francesco; Nepveu, Alain; Alimonti, Andrea

    2016-01-01

    Activation of NOTCH signalling is associated with advanced prostate cancer and treatment resistance in prostate cancer patients. However, the mechanism that drives NOTCH activation in prostate cancer remains still elusive. Moreover, preclinical evidence of the therapeutic efficacy of NOTCH inhibitors in prostate cancer is lacking. Here, we provide evidence that PTEN loss in prostate tumours upregulates the expression of ADAM17, thereby activating NOTCH signalling. Using prostate conditional inactivation of both Pten and Notch1 along with preclinical trials carried out in Pten-null prostate conditional mouse models, we demonstrate that Pten-deficient prostate tumours are addicted to the NOTCH signalling. Importantly, we find that pharmacological inhibition of γ-secretase promotes growth arrest in both Pten-null and Pten/Trp53-null prostate tumours by triggering cellular senescence. Altogether, our findings describe a novel pro-tumorigenic network that links PTEN loss to ADAM17 and NOTCH signalling, thus providing the rational for the use of γ-secretase inhibitors in advanced prostate cancer patients. PMID:27941799

  14. Differential nuclear and cytoplasmic expression of PTEN in normal thyroid tissue, and benign and malignant epithelial thyroid tumors.

    PubMed

    Gimm, O; Perren, A; Weng, L P; Marsh, D J; Yeh, J J; Ziebold, U; Gil, E; Hinze, R; Delbridge, L; Lees, J A; Mutter, G L; Robinson, B G; Komminoth, P; Dralle, H; Eng, C

    2000-05-01

    Germline mutations in PTEN (MMAC1/TEP1) are found in patients with Cowden syndrome, a familial cancer syndrome which is characterized by a high risk of breast and thyroid neoplasia. Although somatic intragenic PTEN mutations have rarely been found in benign and malignant sporadic thyroid tumors, loss of heterozygosity (LOH) has been reported in up to one fourth of follicular thyroid adenomas (FAs) and carcinomas. In this study, we examined PTEN expression in 139 sporadic nonmedullary thyroid tumors (55 FA, 27 follicular thyroid carcinomas, 35 papillary thyroid carcinomas, and 22 undifferentiated thyroid carcinomas) using immunohistochemistry and correlated this to the results of LOH studies. Normal follicular thyroid cells showed a strong to moderate nuclear or nuclear membrane signal although the cytoplasmic staining was less strong. In FAs the neoplastic nuclei had less intense PTEN staining, although the cytoplasmic PTEN-staining intensity did not differ significantly from that observed in normal follicular cells. In thyroid carcinomas as a group, nuclear PTEN immunostaining was mostly weak in comparison with normal thyroid follicular cells and FAs. The cytoplasmic staining was more intense than the nuclear staining in 35 to 49% of carcinomas, depending on the histological type. Among 81 informative tumors assessed for LOH, there seemed to be an associative trend between decreased nuclear and cytoplasmic staining and 10q23 LOH (P = 0.003, P = 0.008, respectively). These data support a role for PTEN in the pathogenesis of follicular thyroid tumors.

  15. Overexpression of miR-21 promotes the proliferation and migration of cervical cancer cells via the inhibition of PTEN.

    PubMed

    Xu, Jingjie; Zhang, Wei; Lv, Qiongying; Zhu, Dingjun

    2015-06-01

    The oncogenic miR-21 has been widely recognized to promote the development and progression of various types of malignant tumors, but not cervical cancers. The aim of this study was to examine the expression of miR-21 and PTEN in cervical cancer specimens using quantitative PCR. The miR-21 level was then manipulated in the cervical cancer lines and the regulation of miR-21 on the proliferation, migration and invasion of cervical cancer cells was determined. Additionally, we determined the role of PTEN in the miR-21-regulated proliferation, migration and invasion of cervical cancer cells. miR-21 was upregulated in the cervical cancer specimens, negatively correlating with the PTEN mRNA level. Transfection of the miR-21 mimics was markedly promoted, whereas the miR-21 inhibitor suppressed the proliferation, migration and invasion of cervical cancer cells, with a significant inhibition of PTEN expression. In addition, the overexpression of PTEN markedly inhibited the proliferation and migration of the cervical cancer cells. The present study showed the upregulation of miR-21 in invasive cervical cancers, and confirmed the promotion of miR-21 with regard to the proliferation, migration and invasion in cervical cancer cells via inhibiting the PTEN expression. To the best of our knowledge, this is the first study to confirm that the miR-21/PTEN pathway promotes cervical cancer.

  16. Mechanistic Rationale to Target PTEN-Deficient Tumor Cells with Inhibitors of the DNA Damage Response Kinase ATM.

    PubMed

    McCabe, Nuala; Hanna, Conor; Walker, Steven M; Gonda, David; Li, Jie; Wikstrom, Katarina; Savage, Kienan I; Butterworth, Karl T; Chen, Clark; Harkin, D Paul; Prise, Kevin M; Kennedy, Richard D

    2015-06-01

    Ataxia telangiectasia mutated (ATM) is an important signaling molecule in the DNA damage response (DDR). ATM loss of function can produce a synthetic lethal phenotype in combination with tumor-associated mutations in FA/BRCA pathway components. In this study, we took an siRNA screening strategy to identify other tumor suppressors that, when inhibited, similarly sensitized cells to ATM inhibition. In this manner, we determined that PTEN and ATM were synthetically lethal when jointly inhibited. PTEN-deficient cells exhibited elevated levels of reactive oxygen species, increased endogenous DNA damage, and constitutive ATM activation. ATM inhibition caused catastrophic DNA damage, mitotic cell cycle arrest, and apoptosis specifically in PTEN-deficient cells in comparison with wild-type cells. Antioxidants abrogated the increase in DNA damage and ATM activation in PTEN-deficient cells, suggesting a requirement for oxidative DNA damage in the mechanism of cell death. Lastly, the ATM inhibitor KU-60019 was specifically toxic to PTEN mutant cancer cells in tumor xenografts and reversible by reintroduction of wild-type PTEN. Together, our results offer a mechanistic rationale for clinical evaluation of ATM inhibitors in PTEN-deficient tumors.

  17. PTEN mediates the cross talk between breast and glial cells in brain metastases leading to rapid disease progression

    PubMed Central

    Hohensee, Ina; Chuang, Han-Ning; Grottke, Astrid; Werner, Stefan; Schulte, Alexander; Horn, Stefan; Lamszus, Katrin; Bartkowiak, Kai; Witzel, Isabell; Westphal, Manfred; Matschke, Jakob; Glatzel, Markus; Jücker, Manfred; Pukrop, Tobias; Pantel, Klaus; Wikman, Harriet

    2017-01-01

    Despite improvement of therapeutic treatments for breast cancer, the development of brain metastases has become a major limitation to life expectancy for many patients. Brain metastases show very commonly alterations in EGFR and HER2 driven pathways, of which PTEN is an important regulator. Here, we analyzed PTEN expression in 111 tissue samples of breast cancer brain metastases (BCBM). Loss of PTEN was found in a substantial proportion of BCBM samples (48.6%) and was significantly associated with triple-negative breast cancer (67.5%, p = 0.001) and a shorter survival time after surgical resection of brain metastases (p = 0.048). Overexpression of PTEN in brain-seeking MDA-MB-231 BR cells in vitro reduced activation of the AKT pathway, notably by suppression of Akt1 kinase activity. Furthermore, the migration of MDA-MB-231 BR cells in vitro was promoted by co-culturing with both astrocytes and microglial cells. Interestingly, when PTEN was overexpressed the migration was significantly inhibited. Moreover, in an ex vivo organotypic brain slice model, PTEN overexpression reduced invasion of tumor cells. This was accompanied by reduced astrocyte activation that was mediated by autocrine and paracrine activation of GM-CSF/ CSF2RA and AKT/ PTEN pathways. In conclusion, loss of PTEN is frequently detected in triple-negative BCBM patients and associated with poor prognosis. The findings of our functional studies suggest that PTEN loss promotes a feedback loop between tumor cells and glial cells, which might contribute to disease progression. PMID:28008153

  18. Prostate Cancer-Specific and Potent Antitumor Effect of a DD3-Controlled Oncolytic Virus Harboring the PTEN Gene

    PubMed Central

    Ding, Miao; Cao, Xin; Xu, Hai-neng; Fan, Jun-kai; Huang, Hong-ling; Yang, Dong-qin; Li, Yu-hua; Wang, Jian; Li, Runsheng; Liu, Xin-Yuan

    2012-01-01

    Prostate cancer is a major health problem for men in Western societies. Here we report a Prostate Cancer-Specific Targeting Gene-Viro-Therapy (CTGVT-PCa), in which PTEN was inserted into a DD3-controlled oncolytic viral vector (OV) to form Ad.DD3.E1A.E1B(Δ55)-(PTEN) or, briefly, Ad.DD3.D55-PTEN. The woodchuck post-transcriptional element (WPRE) was also introduced at the downstream of the E1A coding sequence, resulting in much higher expression of the E1A gene. DD3 is one of the most prostate cancer-specific genes and has been used as a clinical bio-diagnostic marker. PTEN is frequently inactivated in primary prostate cancers, which is crucial for prostate cancer progression. Therefore, the Ad.DD3.D55-PTEN has prostate cancer specific and potent antitumor effect. The tumor growth rate was almost completely inhibited with the final tumor volume after Ad.DD3.D55-PTEN treatment less than the initial volume at the beginning of Ad.DD3.D55-PTEN treatment, which shows the powerful antitumor effect of Ad.DD3.D55-PTEN on prostate cancer tumor growth. The CTGVT-PCa construct reported here killed all of the prostate cancer cell lines tested, such as DU145, 22RV1 and CL1, but had a reduced or no killing effect on all the non-prostate cancer cell lines tested. The mechanism of action of Ad.DD3.D55-PTEN was due to the induction of apoptosis, as detected by TUNEL assays and flow cytometry. The apoptosis was mediated by mitochondria-dependent and -independent pathways, as determined by caspase assays and mitochondrial membrane potential. PMID:22509396

  19. MicroRNA-103 promotes colorectal cancer by targeting tumor suppressor DICER and PTEN.

    PubMed

    Geng, Li; Sun, Bing; Gao, Bo; Wang, Zheng; Quan, Cheng; Wei, Feng; Fang, Xue-Dong

    2014-05-13

    MicroRNAs (miRNAs) are a class of small, noncoding RNAs that act as key regulators in various physiological and pathological processes. However, the regulatory mechanisms for miRNAs in colorectal cancer remain largely unknown. Here, we found that miR-103 is up-regulated in colorectal cancer and its overexpression is closely associated with tumor proliferation and migration. In addition, repressing the expression of miR-103 apparently inhibits colorectal cancer cell proliferation and migration in vitro and HCT-116 xenograft tumor growth in vivo. Subsequent software analysis and dual-luciferase reporter assay identified two tumor suppressor genes DICER and PTEN as direct targets of miR-103, and up-regulation of DICER and PTEN obtained similar results to that occurred in the silencing of miR-103. In addition, restoration of DICER and PTEN can inhibit miR-103-induced colorectal cancer cell proliferation and migration. Our data collectively demonstrate that miR-103 is an oncogene miRNA that promotes colorectal cancer proliferation and migration through down-regulation of the tumor suppressor genes DICER and PTEN. Thus, miR-103 may represent a new potential diagnostic and therapeutic target for colorectal cancer treatment.

  20. PTEN Mediates the Antioxidant Effect of Resveratrol at Nutritionally Relevant Concentrations

    PubMed Central

    Inglés, Marta; Gambini, Juan; Miguel, M. Graça; Bonet-Costa, Vicent; Abdelaziz, Kheira M.; El Alami, Marya; Viña, Jose; Borrás, Consuelo

    2014-01-01

    Introduction. Antioxidant properties of resveratrol have been intensively studied for the last years, both in vivo and in vitro. Its bioavailability after an oral dose is very low and therefore it is very important to make sure that plasma concentrations of free resveratrol are sufficient enough to be active as antioxidant. Aims. In the present study, using nutritionally relevant concentrations of resveratrol, we aim to confirm its antioxidant capacity on reducing peroxide levels and look for the molecular pathway involved in this antioxidant effect. Methods. We used mammary gland tumor cells (MCF-7), which were pretreated with different concentrations of resveratrol for 48 h, and/or a PTEN inhibitor (bpV: bipy). Hydrogen peroxide levels were determined by fluorimetry, PTEN levels and Akt phosphorylation by Western Blotting, and mRNA expression of antioxidant genes by real-time reverse transcriptase-polymerase chain reaction (RT-PCR). Results. Resveratrol treatment for 48 h lowered peroxide levels in MCF-7, even at low nutritional concentrations (1 nM). This effect was mediated by the activation of PTEN/Akt pathway, which resulted in an upregulation of catalase and MnSOD mRNA levels. Conclusion. Resveratrol acts as an antioxidant at nutritionally relevant concentrations by inducing the expression of antioxidant enzymes, through a mechanism involving PTEN/Akt signaling pathway. PMID:24812624

  1. Loss of PTEN promotes resistance to T cell-mediated immunotherapy

    PubMed Central

    Peng, Weiyi; Chen, Jie Qing; Liu, Chengwen; Malu, Shruti; Creasy, Caitlin; Tetzlaff, Michael T; Xu, Chunyu; McKenzie, Jodi A; Zhang, Chunlei; Liang, Xiaoxuan; Williams, Leila J; Deng, Wanleng; Chen, Guo; Mbofung, Rina; Lazar, Alexander J; Torres-Cabala, Carlos A; Cooper, Zachary A; Chen, Pei-Ling; Tieu, Trang N; Spranger, Stefani; Yu, Xiaoxing; Bernatchez, Chantale; Forget, Marie-Andree; Haymaker, Cara; Amaria, Rodabe; McQuade, Jennifer L; Glitza, Isabella C; Cascone, Tina; Li, Haiyan S; Kwong, Lawrence N; Heffernan, Timothy P; Hu, Jianhua; Bassett, Roland L; Bosenberg, Marcus W; Woodman, Scott E; Overwijk, Willem W; Lizée, Gregory; Roszik, Jason; Gajewski, Thomas F; Wargo, Jennifer A; Gershenwald, Jeffrey E; Radvanyi, Laszlo; Davies, Michael A; Hwu, Patrick

    2015-01-01

    T cell-mediated immunotherapies are promising cancer treatments. However, most patients still fail to respond to these therapies. The molecular determinants of immune resistance are poorly understood. We show that loss of PTEN in tumor cells in preclinical models of melanoma inhibits T cell-mediated tumor killing and decreases T cell trafficking into tumors. In patients, PTEN loss correlates with decreased T cell infiltration at tumor sites, reduced likelihood of successful T cell expansion from resected tumors, and inferior outcomes with PD-1 inhibitor therapy. PTEN loss in tumor cells increased the expression of immunosuppressive cytokines, resulting in decreased T cell infiltration in tumors, and inhibited autophagy, which decreased T cell-mediated cell death. Treatment with a selective PI3Kβ inhibitor improved the efficacy of both anti-PD-1 and anti-CTLA4 antibodies in murine models. Together these findings demonstrate that PTEN loss promotes immune resistance and support the rationale to explore combinations of immunotherapies and PI3K-AKT pathway inhibitors. PMID:26645196

  2. miR-1297 mediates PTEN expression and contributes to cell progression in LSCC

    SciTech Connect

    Li, Xin; Wang, Hong-liang; Peng, Xin; Zhou, Hui-fang; Wang, Xin

    2012-10-19

    Highlights: Black-Right-Pointing-Pointer miR-1297 was found to be overexpressed in LSCC and contribute to the cell progression. Black-Right-Pointing-Pointer PTEN was confirmed to be a target gene of miR-1297. Black-Right-Pointing-Pointer Downregulation of PTEN can rescue the proliferation and invasion ability of miR-1297 downregulated Hep-2 cells. Black-Right-Pointing-Pointer Downregulation of miR-1297 inhibits tumor growth in vivo. -- Abstract: MicroRNAs (miRNAs) are small noncoding RNAs that regulate gene expression after transcription, and are involved in cancer development. Laryngeal squamous cell carcinoma (LSCC) is one of the most common malignant neoplasms with increasing incidence in recent years. In this paper, we report the overexpression of miR-1297 in LSCC and Hep-2 cells. In addition, PTEN was identified to be directly regulated by miR-1297 through western blot and luciferase activity assay. Furthermore, downregulation of miR-1297 in Hep-2 cells was shown to inhibit cancer cell proliferation, migration, and tumor genesis. Our results document a new epigenetic mechanism for PTEN regulation in LSCC, which is crucial for the development of these tumors.

  3. Pten and EphB4 regulate the establishment of perisomatic inhibition in mouse visual cortex

    PubMed Central

    Baohan, Amy; Ikrar, Taruna; Tring, Elaine; Xu, Xiangmin; Trachtenberg, Joshua T.

    2016-01-01

    Perisomatic inhibition of pyramidal neurons is established by fast-spiking, parvalbumin-expressing interneurons (PV cells). Failure to assemble adequate perisomatic inhibition is thought to underlie the aetiology of neurological dysfunction in seizures, autism spectrum disorders and schizophrenia. Here we show that in mouse visual cortex, strong perisomatic inhibition does not develop if PV cells lack a single copy of Pten. PTEN signalling appears to