Sample records for lipophilic cationic compounds

  1. P-glycoprotein (Mdr1a/1b) and breast cancer resistance protein (Bcrp) decrease the uptake of hydrophobic alkyl triphenylphosphonium cations by the brain

    PubMed Central

    Porteous, Carolyn M.; Menon, David K.; Aigbirhio, Franklin I.; Smith, Robin A.J.; Murphy, Michael P.

    2013-01-01

    Background Mitochondrial dysfunction contributes to degenerative neurological disorders, consequently there is a need for mitochondria-targeted therapies that are effective within the brain. One approach to deliver pharmacophores is by conjugation to the lipophilic triphenylphosphonium (TPP) cation that accumulates in mitochondria driven by the membrane potential. While this approach has delivered TPP-conjugated compounds to the brain, the amounts taken up are lower than by other organs. Methods To discover why uptake of hydrophobic TPP compounds by the brain is relatively poor, we assessed the role of the P-glycoprotein (Mdr1a/b) and breast cancer resistance protein (Bcrp) ATP binding cassette (ABC) transporters, which drive the efflux of lipophilic compounds from the brain thereby restricting the uptake of lipophilic drugs. We used a triple transgenic mouse model lacking two isoforms of P-glycoprotein (Mdr1a/1b) and the Bcrp. Results There was a significant increase in the uptake into the brain of two hydrophobic TPP compounds, MitoQ and MitoF, in the triple transgenics following intra venous (IV) administration compared to control mice. Greater amounts of the hydrophobic TPP compounds were also retained in the liver of transgenic mice compared to controls. The uptake into the heart, white fat, muscle and kidneys was comparable between the transgenic mice and controls. Conclusion Efflux of hydrophobic TPP compounds by ABC transporters contributes to their lowered uptake into the brain and liver. General significance These findings suggest that strategies to bypass ABC transporters in the BBB will enhance delivery of mitochondria-targeted antioxidants, probes and pharmacophores to the brain. PMID:23454352

  2. Functional characteristics of a renal H+/lipophilic cation antiport system in porcine LLC-PK1 cells and rats.

    PubMed

    Matsui, Ryutaro; Hattori, Ryutaro; Usami, Youhei; Koyama, Masumi; Hirayama, Yuki; Matsuba, Emi; Hashimoto, Yukiya

    2018-02-01

    We have recently found an H + /quinidine (a lipophilic cation, QND) antiport system in Madin-Darby canine kidney (MDCK) cells. The primary aim of the present study was to evaluate whether the H + /lipophilic cation antiport system is expressed in porcine LLC-PK 1 cells. That is, we investigated uptake and/or efflux of QND and another cation, bisoprolol, in LLC-PK 1 cells. In addition, we studied the renal clearance of bisoprolol in rats. Uptake of QND into LLC-PK 1 cells was decreased by acidification of the extracellular pH or alkalization of the intracellular pH. Cellular uptake of QND from the apical side was much greater than from the basolateral side. In addition, apical efflux of QND from LLC-PK 1 cells was increased by acidification of the extracellular pH. Furthermore, lipophilic cationic drugs significantly reduced uptake of bisoprolol in LLC-PK 1 cells. Renal clearance of bisoprolol in rats was approximately 7-fold higher than that of creatinine, and was markedly decreased by alkalization of the urine pH. The present study suggests that the H + /lipophilic cation antiport system is expressed in the apical membrane of LLC-PK 1 cells. Moreover, the H + /lipophilic cation antiport system may be responsible for renal tubular secretion of bisoprolol in rats. Copyright © 2017 The Japanese Society for the Study of Xenobiotics. Published by Elsevier Ltd. All rights reserved.

  3. Mechanistic review of drug-induced steatohepatitis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schumacher, Justin D., E-mail: Justin.d.schumacher@rutgers.edu; Guo, Grace L.

    Drug-induced steatohepatitis is a rare form of liver injury known to be caused by only a handful of compounds. These compounds stimulate the development of steatohepatitis through their toxicity to hepatocyte mitochondria; inhibition of beta-oxidation, mitochondrial respiration, and/or oxidative phosphorylation. Other mechanisms discussed include the disruption of phospholipid metabolism in lysosomes, prevention of lipid egress from hepatocytes, targeting mitochondrial DNA and topoisomerase, decreasing intestinal barrier function, activation of the adenosine pathway, increasing fatty acid synthesis, and sequestration of coenzyme A. It has been found that the majority of compounds that induce steatohepatitis have cationic amphiphilic structures; a lipophilic ring structuremore » with a side chain containing a cationic secondary or tertiary amine. Within the last decade, the ability of many chemotherapeutics to cause steatohepatitis has become more evident coining the term chemotherapy-associated steatohepatitis (CASH). The mechanisms behind drug-induced steatohepatitis are discussed with a focus on cationic amphiphilic drugs and chemotherapeutic agents. - Highlights: • Reviewed the mechanisms underlying drug-induced steatohepatitis for many compounds • Mitochondrial dysfunction is critical in the development of drug-induced steatohepatitis. • Majority of drugs that induce steatohepatitis are cationic amphiphilic drugs. • Chemotherapeutics that induce CASH are cationic amphiphilic drugs. • Majority of drugs that induce steatohepatitis are carnitine palmitoyltransferase-I inhibitors.« less

  4. Propranolol transport across the inner blood-retinal barrier: potential involvement of a novel organic cation transporter.

    PubMed

    Kubo, Yoshiyuki; Shimizu, Yoshimi; Kusagawa, Yusuke; Akanuma, Shin-Ichi; Hosoya, Ken-Ichi

    2013-09-01

    The influx transport of propranolol across the inner blood-retinal barrier (BRB) was investigated. In the in vivo analysis of carotid artery single-injection method, [(3) H]propranolol uptake by the retina was greater than that of an internal reference compound, and was reduced by several organic cations. In the in vitro uptake study, TR-iBRB2 cells, an in vitro model of the inner BRB, showed a time-, concentration-, pH- and temperature-dependent [(3) H]propranolol uptake, suggesting the involvement of a carrier-mediated transport process in the influx of propranolol across the inner BRB. In the inhibition study, various organic cations, including drugs and candidates for the treatment of the retinal diseases, inhibited the [(3) H]propranolol uptake by TR-iBRB2 cells with no significant effects by the substrates and inhibitors of well-characterized organic cation transporters, suggesting that the influx transport of propranolol is performed by a novel transporter at the inner BRB. An analysis of the relationship between the inhibitory effect and the lipophilicity of inhibitors suggests a lipophilicity-dependent inhibitory effect of amines on the [(3) H]propranolol uptake by TR-iBRB2 cells. These results showed that influx transport of propranolol across the inner BRB is performed by a carrier-mediated transport process, suggesting the involvement of a novel organic cation transporter. Copyright © 2013 Wiley Periodicals, Inc.

  5. Electrochemical ion transfer mediated by a lipophilic Os(ii)/Os(iii) dinonyl bipyridyl probe incorporated in thin film membranes.

    PubMed

    Jansod, Sutida; Wang, Lu; Cuartero, Maria; Bakker, Eric

    2017-09-28

    A new lipophilic dinonyl bipyridyl Os(ii)/Os(iii) complex successfully mediates ion transfer processes across voltammetric thin membranes. An added lipophilic cation-exchanger may impose voltammetric anion or cation transfer waves of Gaussian shape that are reversible and repeatable. The peak potential is found to shift with the ion concentration in agreement with the Nernst equation. The addition of tridodecylmethylammonium nitrate to the polymeric film dramatically reduces the peak separation from 240 mV to 65 mV, and the peak width to a near-theoretical value of 85 mV, which agrees with a surface confined process. It is suggested that the cationic additive serves as a phase transfer catalyst.

  6. Novel lipophilic chloroquine analogues for a highly efficient gene transfer into gynecological tumors.

    PubMed

    Keil, O; Bojar, H; Prisack, H B; Dall, P

    2001-10-08

    Liposomal vectors based on cationic lipids have been proven to be an attractive alternative to viral vectors in gene therapy protocols with regard to safety and manufacturing concerns. In order to improve the transfection efficiency we have synthesized two novel carboxycholesteryl-modified chloroquine analogues. Due to their potential endosomal buffering capacity these compounds enable the efficient transfection of various gynecological tumors and therefore are promising reagents in gene therapy applications.

  7. Radiopharmaceuticals for imaging the heart

    DOEpatents

    Green, Mark A.; Tsang, Brenda W.

    1994-01-01

    Radiopharmaceuticals for imaging myocardial tissues are prepared by forming lipophilic, cationic complexes of radioactive metal ions with metal chelating ligands comprising the Schiff base adducts of triamines and tetraamines with optionally substituted salicylaldehydes. The lipophilic, cationic, radioactive complexes of the invention exhibit high uptake and retention in myocardial tissues. Preferred gallium-68(III) complexes in accordance with this invention can be used to image the heart using positron emission tomography.

  8. Radiopharmaceuticals for imaging the heart

    DOEpatents

    Green, M.A.; Tsang, B.W.

    1994-06-28

    Radiopharmaceuticals for imaging myocardial tissues are prepared by forming lipophilic, cationic complexes of radioactive metal ions with metal chelating ligands comprising the Schiff base adducts of triamines and tetraamines with optionally substituted salicylaldehydes. The lipophilic, cationic, radioactive complexes of the invention exhibit high uptake and retention in myocardial tissues. Preferred gallium-68(III) complexes in accordance with this invention can be used to image the heart using positron emission tomography. 6 figures.

  9. Study of the interaction of 1,4-dihydropyridine derivatives with glucocorticoid hormone receptors from the rat liver.

    PubMed

    Vaitkuviene, Aida; Ulinskaite, Audrone; Meskys, Rolandas; Duburs, Gunars; Klusa, Vija; Liutkevicius, Evaldas

    2006-01-01

    Seventeen derivatives of 1,4-dihydropyridine (DHP) series were tested in vitro for their ability to inhibit [1,2,4-(3)H]-dexamethasone binding to glucocorticoid receptor from the rat liver cytosol. Depending on structural features and inhibiting activities, the compounds can be divided into three groups. The first group (nifedipine, foridone, J-6-163, OSI-4164 and OSI-7724) had the highest activity: they inhibited specific ligand-receptor binding by 70-80% at concentrations of 10(-5) M and 10(-4) M, with apparent IC(50)values of 1.5-6.0 muM. The second group (cerebrocrast, diethone, OSI-1211 and OSI-7265) was active at concentration of 10(-4) M, and their IC(50) values were 23-45 muM; compound OSI-5003 was almost inactive. Both groups are compounds with scarce water solubility, more or less lipophilic. The third group of compounds comprises ionogenic compounds (organic cations or anions with corresponding inorganic counterions): most of them are water-soluble (glutapyrone, carbatone, gammapyrone, OSI-2780, OSI-1580, OSI-2140) or liposome-forming (A-74). They lack the above-mentioned activity. Among the first two groups, compounds possessing more bulky substituents in positions 3 and 5 are less active. The aromatic ring in the position 4 is essential for the optimal activity. It seems that there is a bell-shaped dependence of activity upon lipophilicity. In general, the compounds of the first group are strong Ca-antagonists, while the second group includes moderate Ca-antagonists, but each group comprises also compounds which lack Ca antagonistic activity. All compounds of the third group lack Ca antagonistic properties.

  10. Antiplasmodial activities of gold(I) complexes involving functionalized N-heterocyclic carbenes.

    PubMed

    Hemmert, Catherine; Ramadani, Arba Pramundita; Boselli, Luca; Fernández Álvarez, Álvaro; Paloque, Lucie; Augereau, Jean-Michel; Gornitzka, Heinz; Benoit-Vical, Françoise

    2016-07-01

    A series of twenty five molecules, including imidazolium salts functionalized by N-, O- or S-containing groups and their corresponding cationic, neutral or anionic gold(I) complexes were evaluated on Plasmodium falciparum in vitro and then on Vero cells to determine their selectivity. Among them, eight new compounds were synthesized and fully characterized by spectroscopic methods. The X-ray structures of three gold(I) complexes are presented. Except one complex (18), all the cationic gold(I) complexes show potent antiplasmodial activity with IC50 in the micro- and submicromolar range, correlated with their lipophilicity. Structure-activity relationships enable to evidence a lead-complex (21) displaying a good activity (IC50=210nM) close to the value obtained with chloroquine (IC50=514nM) and a weak cytotoxicity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Role of charge screening and delocalization for lipophilic cation permeability of model and mitochondrial membranes.

    PubMed

    Trendeleva, Tatiana A; Sukhanova, Evgenia I; Rogov, Anton G; Zvyagilskaya, Renata A; Seveina, Inna I; Ilyasova, Tatiana M; Cherepanov, Dmitry A; Skulachev, Vladimir P

    2013-09-01

    The effects of the mitochondria-targeted lipophilic cation dodecyltriphenylphosphonium (C12TPP, the charge is delocalized and screened by bulky hydrophobic residues) and those of lipophilic cations decyltriethylammonium bromide and cetyltrimethylammonium bromide (C10TEA and C16TMA, the charges are localized and screened by less bulky residues) on bilayer planar phospholipid membranes and tightly-coupled mitochondria from the yeast Yarrowia lipolytica have been compared. In planar membranes, C12TPP was found to generate a diffusion potential as if it easily penetrates these membranes. In the presence of palmitate, C12TPP induced H(+) permeability like plastoquinonyl decyltriphenilphosphonium that facilitates transfer of fatty acid anions (Severin et al., PNAS, 2010, 107, 663-668). C12TPP was shown to stimulate State 4 respiration of mitochondria and caused a mitochondrial membrane depolarization with a half-maximal effect at 6μM. Besides, C12TPP profoundly potentiated the uncoupling effect of endogenous or added fatty acids. C10TEA and C16TMA inhibited State 4 respiration and decreased the membrane potential, though at much higher concentrations than C12TPP, and they did not promote the uncoupling action of fatty acids. These relationships were modeled by molecular dynamics. They can be explained by different membrane permeabilities for studied cations, which in turn are due to different availabilities of the positive charge in these cations to water dipoles. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Highly efficient one-pot labeling of new phosphonium cations with fluorine-18 as potential PET agents for myocardial perfusion imaging.

    PubMed

    Zhao, Zuoquan; Yu, Qian; Mou, Tiantian; Liu, Chang; Yang, Wenjiang; Fang, Wei; Peng, Cheng; Lu, Jie; Liu, Yu; Zhang, Xianzhong

    2014-11-03

    Lipophilic cations such as phosphonium salts can accumulate in mitochondria of heart in response to the negative inner-transmembrane potentials. Two phosphonium salts [(18)F]FMBTP and [(18)F]mFMBTP were prepared and evaluated as potential myocardial perfusion imaging (MPI) agents in this study. The cations were radiolabeled via a simplified one-pot method starting from [(18)F]fluoride and followed by physicochemical property tests, in vitro cellular uptake assay, ex vivo mouse biodistribution, and in vivo rat microPET imaging. The total radiosynthesis time was less than 60 min including HPLC purification. The [(18)F] labeled compounds were obtained in high radiolabeling yield (∼50%) and good radiochemical purity (>99%). Both compounds were electropositive, and their log P values at pH 7.4 were 1.16 ± 0.003 (n = 3) and 1.05 ± 0.01 (n = 3), respectively. Both [(18)F]FMBTP and [(18)F]mFMBTP had high heart uptake (25.24 ± 2.97% ID/g and 31.02 ± 0.33% ID/g at 5 min postinjection (p.i.)) in mice with good retention (28.99 ± 3.54% ID/g and 26.82 ± 3.46% ID/g at 120 min p.i.). From the PET images in rats, the cations exhibited high myocardium uptake and fast clearance from liver and small intestine to give high-contrast images across all time points. These phosphonium cations were radiosynthesized via a highly efficient one-pot procedure for potential MPI offering high heart accumulation and rapid nontarget clearance.

  13. Structures of BmrR-Drug Complexes Reveal a Rigid Multidrug Binding Pocket And Transcription Activation Through Tyrosine Expulsion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Newberry, K.J.; Huffman, J.L.; Miller, M.C.

    2009-05-22

    BmrR is a member of the MerR family and a multidrug binding transcription factor that up-regulates the expression of the bmr multidrug efflux transporter gene in response to myriad lipophilic cationic compounds. The structural mechanism by which BmrR binds these chemically and structurally different drugs and subsequently activates transcription is poorly understood. Here, we describe the crystal structures of BmrR bound to rhodamine 6G (R6G) or berberine (Ber) and cognate DNA. These structures reveal each drug stacks against multiple aromatic residues with their positive charges most proximal to the carboxylate group of Glu-253 and that, unlike other multidrug binding pockets,more » that of BmrR is rigid. Substitution of Glu-253 with either alanine (E253A) or glutamine (E253Q) results in unpredictable binding affinities for R6G, Ber, and tetraphenylphosphonium. Moreover, these drug binding studies reveal that the negative charge of Glu-253 is not important for high affinity binding to Ber and tetraphenylphosphonium but plays a more significant, but unpredictable, role in R6G binding. In vitro transcription data show that E253A and E253Q are constitutively active, and structures of the drug-free E253A-DNA and E253Q-DNA complexes support a transcription activation mechanism requiring the expulsion of Tyr-152 from the multidrug binding pocket. In sum, these data delineate the mechanism by which BmrR binds lipophilic, monovalent cationic compounds and suggest the importance of the redundant negative electrostatic nature of this rigid drug binding pocket that can be used to discriminate against molecules that are not substrates of the Bmr multidrug efflux pump.« less

  14. Electrochemically Switchable Polymeric Membrane Ion-Selective Electrodes.

    PubMed

    Zdrachek, Elena; Bakker, Eric

    2018-06-07

    We present here for the first time a solid contact ion-selective electrode suitable for the simultaneous sensing of cations (tetrabutylammonium) and anions (hexafluorophosphate), achieved by electrochemical switching. The membrane is based on a thin plasticized polyurethane membrane deposited on poly(3-octylthiophene) (POT) and contains a cation exchanger and lipophilic electrolyte (ETH 500). The cation exchanger is initially in excess; the ion-selective electrode exhibits an initial potentiometric response to cations. During an oxidative current pulse, POT is converted into POT + , which results in the expulsion of cations from the membrane followed by the extraction of anions from the sample solution to fulfill the electroneutrality condition. This creates a defined excess of lipophilic cation in the membrane, resulting in a potentiometric anion response. A reductive current pulse restores the original cation response by triggering the conversion of POT + back into POT, which is accompanied by the expulsion of anions from the membrane and the extraction of cations from the sample solution. Various current pulse magnitudes and durations are explored, and the best results in terms of response slope values and signal stability were observed with an oxidation current pulse of 140 μA cm -2 applied for 8 s and a reduction current pulse of -71 μA cm -2 applied for 8 s.

  15. Relative contributions of active mediated transport and passive diffusion of fluoroquinolones with various lipophilicities in a Calu-3 lung epithelial cell model.

    PubMed

    Brillault, Julien; De Castro, Whocely Victor; Couet, William

    2010-01-01

    The transport characteristics of six fluoroquinolones (FQs) with various lipophilicities were compared in a Calu-3 cell model. For each FQ, an active polarized transport was observed in the direction of the apical side. However, the apparent permeability of FQs resulted from active transport and passive diffusion that were highly variable between compounds and mainly governed by lipophilicity. Therefore, active transport was predominant for compounds with relatively low lipophilicity but minor for FQs with higher lipophilicity.

  16. Enhancement of bismuth antibacterial activity with lipophilic thiol chelators.

    PubMed Central

    Domenico, P; Salo, R J; Novick, S G; Schoch, P E; Van Horn, K; Cunha, B A

    1997-01-01

    The antibacterial properties of bismuth are greatly enhanced when bismuth is combined with certain lipophilic thiol compounds. Antibacterial activity was enhanced from 25- to 300-fold by the following seven different thiols, in order of decreasing synergy: 1,3-propanedithiol, dimercaprol (BAL), dithiothreitol, 3-mercapto-2-butanol, beta-mercaptoethanol, 1-monothioglycerol, and mercaptoethylamine. The dithiols produced the greatest synergy with bismuth at optimum bismuth-thiol molar ratios of from 3:1 to 1:1. The monothiols were generally not as synergistic and required molar ratios of from 1:1 to 1:4 for optimum antibacterial activity. The most-active mono- or dithiols were also the most soluble in butanol. The intensity of the yellow formed by bismuth-thiol complexes reflected the degree of chelation and correlated with antibacterial potency at high molar ratios. The bismuth-BAL compound (BisBAL) was active against most bacteria, as assessed by broth dilution, agar diffusion, and agar dilution analyses. Staphylococci (MIC, 5 to 7 microM Bi3+) and Helicobacter pylori (MIC, 2.2 microM) were among the most sensitive bacteria. Gram-negative bacteria were sensitive (MIC, < 17 microM). Enterococci were relatively resistant (MIC, 63 microM Bi3+). The MIC range for anaerobes was 15 to 100 microM Bi3+, except for Clostridium difficile (MIC, 7.5 microM). Bactericidal activity averaged 29% above the MIC. Bactericidal activity increased with increasing pH and/or increasing temperature. Bismuth-thiol solubility, stability, and antibacterial activity depended on pH and the bismuth-thiol molar ratio. BisBAL was stable but ineffective against Escherichia coli at pH 4. Activity and instability (reactivity) increased with increasing alkalinity. BisBAL was acid soluble at a molar ratio of greater than 3:2 and alkaline soluble at a molar ratio of less than 2:3. In conclusion, certain lipophilic thiol compounds enhanced bismuth antibacterial activity against a broad spectrum of bacteria. The activity, solubility, and stability of BisBAL were strongly dependent on the pH, temperature, and molar ratio. Chelation of bismuth with certain thiol agents enhanced the solubility and lipophilicity of this cationic heavy metal, thereby significantly enhancing its potency and versatility as an antibacterial agent. PMID:9257744

  17. Target-Independent Prediction of Drug Synergies Using Only Drug Lipophilicity

    PubMed Central

    2015-01-01

    Physicochemical properties of compounds have been instrumental in selecting lead compounds with increased drug-likeness. However, the relationship between physicochemical properties of constituent drugs and the tendency to exhibit drug interaction has not been systematically studied. We assembled physicochemical descriptors for a set of antifungal compounds (“drugs”) previously examined for interaction. Analyzing the relationship between molecular weight, lipophilicity, H-bond donor, and H-bond acceptor values for drugs and their propensity to show pairwise antifungal drug synergy, we found that combinations of two lipophilic drugs had a greater tendency to show drug synergy. We developed a more refined decision tree model that successfully predicted drug synergy in stringent cross-validation tests based on only lipophilicity of drugs. Our predictions achieved a precision of 63% and allowed successful prediction for 58% of synergistic drug pairs, suggesting that this phenomenon can extend our understanding for a substantial fraction of synergistic drug interactions. We also generated and analyzed a large-scale synergistic human toxicity network, in which we observed that combinations of lipophilic compounds show a tendency for increased toxicity. Thus, lipophilicity, a simple and easily determined molecular descriptor, is a powerful predictor of drug synergy. It is well established that lipophilic compounds (i) are promiscuous, having many targets in the cell, and (ii) often penetrate into the cell via the cellular membrane by passive diffusion. We discuss the positive relationship between drug lipophilicity and drug synergy in the context of potential drug synergy mechanisms. PMID:25026390

  18. Cationic permethylated 6-monoamino-6-monodeoxy-β-cyclodextrin as chiral selector of dansylated amino acids in capillary electrophoresis.

    PubMed

    Németh, Krisztina; Domonkos, Celesztina; Sarnyai, Virág; Szemán, Julianna; Jicsinszky, László; Szente, Lajos; Visy, Júlia

    2014-10-01

    The resolution power of permethylated 6-monoamino-6-monodeoxy-βCD (PMMABCD) - a single isomer, cationic CD derivative - developed previously for chiral analyses in capillary electrophoresis was further studied here. Dansylated amino acids (Dns-AA) were chosen as amphoteric chiral model compounds. Changes in the resolutions of Dns-AAs by varying pH and selector concentrations were investigated and correlated with their structures and chemical properties (isoelectric point and lipophilicity). Maximal resolutions could be achieved at pH 6 or pH 4. The separations improved with increasing concentration of the selector. Baseline or substantially better resolution for 8 pairs of these Dns-AAs could be achieved. Low CD concentration was enough for the separation of the most apolar Dns-AAs. Chiral discrimination ability of PMMABCD was demonstrated by the separation of an artificial mixture of 8 Dns-AA pairs. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Transformation of alpha-tocopherol (vitamin E) and related chromanol model compounds into their phenoxonium ions by chemical oxidation with the nitrosonium cation.

    PubMed

    Lee, Stephen B; Lin, Ching Yeh; Gill, Peter M W; Webster, Richard D

    2005-12-09

    [reaction: see text] Alpha-tocopherol (alpha-TOH), the main oil component making up vitamin E, and its nonnatural solid 6-hydroxy-2,2,5,7,8-pentamethylchroman and 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid structurally related analogues were oxidized quantitatively with 2 mol equiv of NO+ SbF6(-) in CH3CN at 233 K to form phenoxonium cations (alpha-TO+ SbF6(-)) in a chemically reversible two-electron/one-proton process. Solution-phase infrared spectroscopy, 1H and 13C NMR spectroscopy, and corresponding theoretical calculations of the spectroscopic data using density-based and wave-function-based models support the identity of the remarkably stable phenoxonium cations. The presence of an oxygen atom in the para position to the hydroxyl group and the chromanol ring structure appear to be important factors in stabilization of the phenoxonium ions, which raises the interesting possibility that the cations play a crucial role in the mode of action of vitamin E in biological systems. Although the phenoxonium cations are reactive toward nucleophiles such as water, they may be moderately stable in the hydrophobic (lipophilic) environment where vitamin E is known to occur naturally.

  20. Blocking of valinomycin-mediated bilayer membrane conductance by substituted benzimidazoles.

    PubMed Central

    Kuo, K H; Fukuto, T R; Miller, T A; Bruner, L J

    1976-01-01

    Valinomycin selectively transports alkali cations, e.g. potassium ions, across lipid bilayer membranes. The blocking of this carrier-mediated transport by four substituted benzimidazoles has been investigated. The compounds are 4,5,6,7-tetrachloro-2-trifluoromethylbenzimidazole, (TTFB); 4,5,6,7,-tetrachloro-2-methylbenzimidazole, (TMB); 2-trifluoromethylbenzimidazole, (TFB); and 2-methylbenzimidazole, (MBM). Because of its low acidic dissociation constant (pKa = 5.04), the blocking efficiency of TTFB in both neutral and anionic forms in the aqueous phase could be studied. The compounds exhibit the blocking efficiency sequence, TTFB- greater than TTFB0 greater than TMB0 greater than TFB0 greater than MBM0. The corresponding scale of decreasing lipophilicity, as determined by octanol/water partitioning, is TTFB0 greater than TMB0 greater than TTFB- greater than TFB0 greater than MBM0. Comparison of neutral species establishes a positive correlation of blocking efficiency with lipophilicity, with the latter being conferred primarily by chlorination of the benzenoid nucleus. Anionic TTFB, on the other hand, is the most effective blocking agent studied in spite of the fact that its dissociation in the aqueous phase markedly impedes its entry (presumably as a neutral species) into a bulk hydrocarbon phase. This observation suggests that the blocking of valinomycin-mediated bilayer membrane conductance takes place at the membrane/solution interface. PMID:1247644

  1. Solubility, ionization, and partitioning behavior of unsymmetrical disulfide compounds: alkyl 2-imidazolyl disulfides.

    PubMed

    Hashash, Ahmad; Kirkpatrick, D Lynn; Lazo, John S; Block, Lawrence H

    2002-07-01

    Alkyl 2-imidazolyl disulfide compounds are novel antitumor agents, one of which is currently being evaluated in Phase I clinical trials. These molecules contain an unsymmetrical disulfide fragment, the lipophilic and electronic contributions of which are still not defined in the literature. Lipophilicity, ionization, and solubility of a number of alkyl 2-imidazolyl disulfides were studied. Based on the additivity of lipophilicity and ionization properties, the contribution of the unsymmetrical disulfide fragment to lipophilicity and ionization was elucidated. The unsymmetrical disulfide fragment contributed a Rekker's hydrophobic constant of 0.761 to the lipophilicity of these compounds and an approximated Hammett constant (sigma) of 0.30 to their ionization. The applicability of the general solubility equation (GSE) proposed by Jain and Yalkowsky in predicting the aqueous solubility of these analogs was evaluated. The GSE correctly ranked the aqueous solubilities of these compounds and estimated their log molar solubilities with an average absolute error of 0.35. Copyright 2002 Wiley-Liss Inc.

  2. Effect of molecular characteristics on cellular uptake, subcellular localization, and phototoxicity of Zn(II) N-alkylpyridylporphyrins.

    PubMed

    Ezzeddine, Rima; Al-Banaw, Anwar; Tovmasyan, Artak; Craik, James D; Batinic-Haberle, Ines; Benov, Ludmil T

    2013-12-20

    Tetra-cationic Zn(II) meso-tetrakis(N-alkylpyridinium-2 (or -3 or -4)-yl)porphyrins (ZnPs) with progressively increased lipophilicity were synthesized to investigate how the tri-dimensional shape and lipophilicity of the photosensitizer (PS) affect cellular uptake, subcellular distribution, and photodynamic efficacy. The effect of the tri-dimensional shape of the molecule was studied by shifting the N-alkyl substituent attached to the pyridyl nitrogen from ortho to meta and para positions. Progressive increase of lipophilicity from shorter hydrophilic (methyl) to longer amphiphilic (hexyl) alkyl chains increased the phototoxicity of the ZnP PSs. PS efficacy was also increased for all derivatives when the alkyl substituents were shifted from ortho to meta, and from meta to para positions. Both cellular uptake and subcellular distribution of the PSs were affected by the lipophilicity and the position of the alkyl chains on the periphery of the porphyrin ring. Whereas the hydrophilic ZnPs demonstrated mostly lysosomal distribution, the amphiphilic hexyl derivatives were associated with mitochondria, endoplasmic reticulum, and plasma membrane. A comparison of hexyl isomers revealed that cellular uptake and partition into membranes followed the order para > meta > ortho. Varying the position and length of the alkyl substituents affects (i) the exposure of cationic charges for electrostatic interactions with anionic biomolecules and (ii) the lipophilicity of the molecule. The charge, lipophilicity, and the tri-dimensional shape of the PS are the major factors that determine cellular uptake, subcellular distribution, and as a consequence, the phototoxicity of the PSs.

  3. Effect of Molecular Characteristics on Cellular Uptake, Subcellular Localization, and Phototoxicity of Zn(II) N-Alkylpyridylporphyrins*

    PubMed Central

    Ezzeddine, Rima; Al-Banaw, Anwar; Tovmasyan, Artak; Craik, James D.; Batinic-Haberle, Ines; Benov, Ludmil T.

    2013-01-01

    Tetra-cationic Zn(II) meso-tetrakis(N-alkylpyridinium-2 (or -3 or -4)-yl)porphyrins (ZnPs) with progressively increased lipophilicity were synthesized to investigate how the tri-dimensional shape and lipophilicity of the photosensitizer (PS) affect cellular uptake, subcellular distribution, and photodynamic efficacy. The effect of the tri-dimensional shape of the molecule was studied by shifting the N-alkyl substituent attached to the pyridyl nitrogen from ortho to meta and para positions. Progressive increase of lipophilicity from shorter hydrophilic (methyl) to longer amphiphilic (hexyl) alkyl chains increased the phototoxicity of the ZnP PSs. PS efficacy was also increased for all derivatives when the alkyl substituents were shifted from ortho to meta, and from meta to para positions. Both cellular uptake and subcellular distribution of the PSs were affected by the lipophilicity and the position of the alkyl chains on the periphery of the porphyrin ring. Whereas the hydrophilic ZnPs demonstrated mostly lysosomal distribution, the amphiphilic hexyl derivatives were associated with mitochondria, endoplasmic reticulum, and plasma membrane. A comparison of hexyl isomers revealed that cellular uptake and partition into membranes followed the order para > meta > ortho. Varying the position and length of the alkyl substituents affects (i) the exposure of cationic charges for electrostatic interactions with anionic biomolecules and (ii) the lipophilicity of the molecule. The charge, lipophilicity, and the tri-dimensional shape of the PS are the major factors that determine cellular uptake, subcellular distribution, and as a consequence, the phototoxicity of the PSs. PMID:24214973

  4. Relative lipophilicities and structural-pharmacological considerations of various angiotensin-converting enzyme (ACE) inhibitors.

    PubMed

    Ranadive, S A; Chen, A X; Serajuddin, A T

    1992-11-01

    Lipophilicities of seven structurally diverse angiotensin-converting enzyme (ACE) inhibitors, viz., captopril, zofenoprilat, enalaprilat, ramiprilat, lisinopril, fosinoprilat, and ceronapril (SQ29852), were compared by determining their octanol-water distribution coefficients (D) under physiological pH conditions. The distribution co-efficients of zofenopril, enalapril, ramipril and fosinopril, which are the prodrug forms of zofenoprilat, enalaprilat, ramiprilat, and fosinoprilat, respectively, were also determined. Attempts were made to correlate lipophilicities with the reported data for oral absorption, protein binding, ACE inhibitory activity, propensity for biliary excretion, and penetration across the blood-brain barrier for these therapeutic entities. Better absorption of prodrugs compared to their respective active forms is in agreement with their greater lipophilicities. Captopril, lisinopril, and ceronapril are orally well absorbed despite their low lipophilicities, suggesting involvement of other factors such as a carrier-mediated transport process. Of all the compounds studied, the two most lipophilic ACE inhibitors, fosinoprilat and zofenoprilat, exhibit a rank-order correlation with respect to biliary excretion. This may explain the dual routes of elimination (renal and hepatic) observed with fosinoprilat in humans. The more lipophilic compounds also exhibit higher protein binding. Both the lipophilicity and a carrier-mediated process may be involved in penetration of some of these drugs into brain. For structurally similar compounds, in vitro ACE inhibitory activity increased with the increase in lipophilicity. However, no clear correlation between lipophilicity and ACE inhibitory activity emerged when different types of inhibitors are compared, possibly because their interactions with enzymes are primarily ionic in nature.

  5. Correlation of antimutagenic activity and suppression of CYP1A with the lipophilicity of alkyl gallates and other phenolic compounds.

    PubMed

    Feng, Qing; Kumagai, Takeshi; Nakamura, Yoshimasa; Uchida, Koji; Osawa, Toshihiko

    2003-05-09

    Alkyl gallates are widely used as food antioxidants. Methyl, ethyl, propyl, lauryl, and cetyl gallates showed antimutagenicity to activated 2-aminoanthracene (2AA)-induced SOS responses in Salmonella typhimurium TA1535/pSK1002. They also exhibited a suppressive effect on 3-methylcholanthrene (3-MC)-induced cytochrome P450 1A (CYP1A) in human hepatoma HepG2 cells, as indexed by the 7-ethoxyresorufin-O-deethylase (EROD) activity, and on CYP1A protein level. Both antimutagenicity and suppression of CYP1A appeared to be dependent on alkyl chain lengths, which suggested lipophilicity dependence. Based on those results, we investigated 26 other phenolic compounds for their lipophilicity, antimutagenicity and inhibition of EROD activity. The lipophilicity correlated well with the inhibition of EROD activity (r=0.78), and the inhibition of EROD activity correlated with the antimutagenicity of those compounds (r=0.71). The results suggest that the lipophilicity of the phenolic compounds may be an important factor in their ability to inhibit EROD activity.

  6. Occupational Asthma Due to Inhalation of Aerosolized Lipophilic Coating Materials.

    PubMed

    Suresh, Karthik; Belchis, Deborah; Askin, Fred; Pearse, David B; Terry, Peter B

    2016-10-01

    We present a case of onset of severe asthma in a 59-year-old patient who worked in an aerospace plant. He was noted to have wheezing on exam and obstruction on PFTs. Review of his occupational history revealed exposure to lipophilic industrial compounds. We outline the radiographic and histologic findings that were found in the patient, and discuss occupational asthma due to inhalation of lipophilic compounds.

  7. π-Cation Interactions in Molecular Recognition: Perspectives on Pharmaceuticals and Pesticides.

    PubMed

    Liang, Zhibin; Li, Qing X

    2018-04-04

    The π-cation interaction that differs from the cation-π interaction is a valuable concept in molecular design of pharmaceuticals and pesticides. In this Perspective we present an up-to-date review (from 1995 to 2017) on bioactive molecules involving π-cation interactions with the recognition site, and categorize into systems of inhibitor-enzyme, ligand-receptor, ligand-transporter, and hapten-antibody. The concept of π-cation interactions offers use of π systems in a small molecule to enhance the binding affinity, specificity, selectivity, lipophilicity, bioavailability, and metabolic stability, which are physiochemical features desired for drugs and pesticides.

  8. Inhibition of trypanosome alternative oxidase without its N-terminal mitochondrial targeting signal (ΔMTS-TAO) by cationic and non-cationic 4-hydroxybenzoate and 4-alkoxybenzaldehyde derivatives active against T. brucei and T. congolense.

    PubMed

    Ebiloma, Godwin U; Ayuga, Teresa Díaz; Balogun, Emmanuel O; Gil, Lucía Abad; Donachie, Anne; Kaiser, Marcel; Herraiz, Tomás; Inaoka, Daniel K; Shiba, Tomoo; Harada, Shigeharu; Kita, Kiyoshi; de Koning, Harry P; Dardonville, Christophe

    2018-04-25

    African trypanosomiasis is a neglected parasitic disease that is still of great public health relevance, and a severe impediment to agriculture in endemic areas. The pathogens possess certain unique metabolic features that can be exploited for the development of new drugs. Notably, they rely on an essential, mitochondrially-localized enzyme, Trypanosome Alternative Oxidase (TAO) for their energy metabolism, which is absent in the mammalian hosts and therefore an attractive target for the design of safe drugs. In this study, we cloned, expressed and purified the physiologically relevant form of TAO, which lacks the N-terminal 25 amino acid mitochondrial targeting sequence (ΔMTS-TAO). A new class of 32 cationic and non-cationic 4-hydroxybenzoate and 4-alkoxybenzaldehyde inhibitors was designed and synthesized, enabling the first structure-activity relationship studies on ΔMTS-TAO. Remarkably, we obtained compounds with enzyme inhibition values (IC 50 ) as low as 2 nM, which were efficacious against wild type and multidrug-resistant strains of T. brucei and T. congolense. The inhibitors 13, 15, 16, 19, and 30, designed with a mitochondrion-targeting lipophilic cation tail, displayed trypanocidal potencies comparable to the reference drugs pentamidine and diminazene, and showed no cross-resistance with the critical diamidine and melaminophenyl arsenical classes of trypanocides. The cationic inhibitors 15, 16, 19, 20, and 30 were also much more selective (900 - 344,000) over human cells than the non-targeted neutral derivatives (selectivity >8-fold). A preliminary in vivo study showed that modest doses of 15 and 16 reduced parasitaemia of mice infected with T. b. rhodesiense (STIB900). These compounds represent a promising new class of potent and selective hits against African trypanosomes. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  9. Predictive modeling studies for the ecotoxicity of ionic liquids towards the green algae Scenedesmus vacuolatus.

    PubMed

    Das, Rudra Narayan; Roy, Kunal

    2014-06-01

    Hazardous potential of ionic liquids is becoming an issue of high concern with increasing application of these compounds in various industrial processes. Predictive toxicological modeling on ionic liquids provides a rational assessment strategy and aids in developing suitable guidance for designing novel analogues. The present study attempts to explore the chemical features of ionic liquids responsible for their ecotoxicity towards the green algae Scenedesmus vacuolatus by developing mathematical models using extended topochemical atom (ETA) indices along with other categories of chemical descriptors. The entire study has been conducted with reference to the OECD guidelines for QSAR model development using predictive classification and regression modeling strategies. The best models from both the analyses showed that ecotoxicity of ionic liquids can be decreased by reducing chain length of cationic substituents and increasing hydrogen bond donor feature in cations, and replacing bulky unsaturated anions with simple saturated moiety having less lipophilic heteroatoms. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. [Effects of sub-micro emulsion composition on cellular disposition of incorporated lipophilic drug].

    PubMed

    Sun, Xiao-Yi; Xiang, Zhi-Qiang; Wu, Shuo; Lv, Yuan-Yuan; Liang, Wen-Quan

    2013-09-01

    To investigate the effects of sub-micro emulsion composition on cellular uptake and disposition of incorporated lipophilic drug. Sub-micro emulsions containing 10 % oil, 1.2 % lecithin and 2.25 % glycerol were prepared, and the fluorescent agent coumarin 6 was used as a model drug. The effects of oil types, co-surfactants and cationic lipid on uptake and elimination kinetics of 6-coumarin in HeLa cells were studied. The uptake mechanism of sub-micro emulsions was further investigated. Oil type and Tweens had no influence on the cellular uptake. Modifications of surfactants with Span series increased the cellular influx, among which Span 20 with hydrophilic-lipophilic balance (HLB) value of 8.6 was the best enhancer. The intracellular drug level reached up to (46.09 ± 1.98)ng/μg protein which had significant difference with control group [(38.54 ± 0.34)ng/μg protein]. The positively charged emulsions significantly increased the uptake rate constant and elimination rate constant which were 4 times and 1.5 times of those in anionic groups, respectively. The uptake enhancement was also observed in cationic emulsions, cellular concentrations at plateau were (42.73 ± 0.84)ng/μg protein, which was about 3 times of that in anionic emulsions [(15.71 ± 0.74)ng/μg protein], when extracellular drug concentration kept at 100 ng/ml. Cationic emulsions delivered the payload mainly by direct drug transfer to contacted cells, while the negative ones depended on both drug passive diffusion and clathrin-mediated endocytosis of drug containing oil droplets which accounted for 20% of the intracellular drug. Interfacial characteristic of sub-micro emulsions such as co-surfactants HLB as well as zeta potentials can influence lipophilic drug both in cellular uptake and elimination.

  11. Synthesis, lipophilicity and antimicrobial activity evaluation of some new thiazolyl-oxadiazolines

    PubMed Central

    STOICA, CRISTINA IOANA; IONUȚ, IOANA; PÎRNĂU, ADRIAN; POP, CARMEN; ROTAR, ANCUȚA; VLASE, LAURIAN; ONIGA, SMARANDA; ONIGA, OVIDIU

    2015-01-01

    Background and aims Synthesis of new potential antimicrobial agents and evaluation of their lipophilicity. Methods Ten new thiazolyl-oxadiazoline derivatives were synthesized and their structures were validated by 1H-NMR and mass spectrometry. The lipophilicity of the compounds was evaluated using the principal component analysis (PCA) method. The necessary data for applying this method were obtained by reverse-phase thin-layer chromatography (RP-TLC). The antimicrobial activities were tested in vitro against four bacterial strains and one fungal strain. Results The lipophilicity varied with the structure but could not be correlated with the antimicrobial activity, since this was modest. Conclusions We have synthesized ten new heterocyclic compounds. After their physical and chemical characterization, we determined their lipophilicity and screened their antimicrobial activity. PMID:26733751

  12. Unified model for the corneal permeability of related and diverse compounds with respect to their physicochemical properties.

    PubMed

    Yoshida, F; Topliss, J G

    1996-08-01

    Corneal permeability data taken from the literature were analyzed for possible quantitative relationships with physicochemical properties. Although a parabolic relationship was obtained with good correlation between lipophilicity, as expressed by the 1-octanol-water partition coefficients, log Poctanol (or the distribution coefficients, log D for ionizable compounds), and the permeability in individual analyses of compound classes such as beta-adrenoceptor blockers and steroids, the correlation was reduced when taken together. However, delta log P (i.e., log Poctanol-log Palkane) correlated inversely with the combined permeability data for beta-blockers and steroids and played a key role as a unifying variable. To a lesser extent, lipophilicity itself also contributes positively to corneal permeation. Even with the addition of miscellaneous compounds such as methanol and ibuprofen, the delta log P and lipophilicity terms were still significant. However, small molecules were likely to be underestimated, which is consistent with penetration via another pathway besides that governed by delta log P and lipophilicity.

  13. Enhancing effect of alpha-hydroxyacids on "in vitro" permeation across the human skin of compounds with different lipophilicity.

    PubMed

    Copoví, A; Díez-Sales, O; Herráez-Domínguez, J V; Herráez-Domínguez, M

    2006-05-11

    The percutaneous penetration-enhancing effects of glycolic acid, lactic acid and sodium lauryl sulphate through the human epidermis was investigated using 5-fluorouracil as a hydrophilic model permeant and three compounds belonging to the phenylalcohols: 2-phenyl-ethanol, 4-phenyl-butanol and 5-phenyl-pentanol. The lipophilicity values of the compounds ranged from log Poct -0.95 to 2.89. The effect of the enhancer concentration was also studied. Skin pretreatment with aqueous solutions of the three enhancers did not increase the permeability coefficient of the most lipophilic compound (log Poct = 2.89). For the other compounds assayed, the increase in the permeability coefficients depended on the concentration used in skin pretreatment, and on the lipophilicity of the compounds tested-and was always greater for the most hydrophilic compound (5-fluorouracil), for which lactic acid exerted a greater enhancer effect than glycolic acid or sodium lauryl sulphate. Primary irritation testing of the three enhancers was also carried out at the two concentrations used in skin pretreatment for diffusional experiments (1% and 5%, w/w). The least irritant capacity corresponded to lactic acid; consequently, this alpha-hydroxyacid could be proposed as a percutaneous penetration enhancer for hydrophilic molecules that are of interest for transdermal administration.

  14. Synthesis and biological activity of lipophilic analogs of the cationic antimicrobial active peptide anoplin.

    PubMed

    Chionis, Kostas; Krikorian, Dimitrios; Koukkou, Anna-Irini; Sakarellos-Daitsiotis, Maria; Panou-Pomonis, Eugenia

    2016-11-01

    Anoplin is a short natural cationic antimicrobial peptide which is derived from the venom sac of the solitary wasp, Anoplius samariensis. Due to its short sequence G 1 LLKR 5 IKT 8 LL-NH 2 , it is ideal for research tests. In this study, novel analogs of anoplin were prepared and examined for their antimicrobial, hemolytic activity, and proteolytic stability. Specific substitutions were introduced in amino acids Gly 1 , Arg 5 , and Thr 8 and lipophilic groups with different lengths in the N-terminus in order to investigate how these modifications affect their antimicrobial activity. These cationic analogs exhibited higher antimicrobial activity than the native peptide; they are also nontoxic at their minimum inhibitory concentration (MIC) values and resistant to enzymatic degradation. The substituted peptide GLLKF 5 IKK 8 LL-NH 2 exhibited high activity against Gram-negative bacterium Zymomonas mobilis (MIC = 7 µg/ml), and the insertion of octanoic, decanoic, and dodecanoic acid residues in its N-terminus increased the antimicrobial activity against Gram-positive and Gram-negative bacteria (MIC = 5 µg/ml). The conformational characteristics of the peptide analogs were studied by circular dichroism. Structure activity studies revealed that the substitution of specific amino acids and the incorporation of lipophilic groups enhanced the amphipathic α-helical conformation inducing better antimicrobial effects. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.

  15. Lipophilic extracts of Cynara cardunculus L. var. altilis (DC): a source of valuable bioactive terpenic compounds.

    PubMed

    Ramos, Patrícia A B; Guerra, Ângela R; Guerreiro, Olinda; Freire, Carmen S R; Silva, Artur M S; Duarte, Maria F; Silvestre, Armando J D

    2013-09-04

    Lipophilic extracts of Cynara cardunculus L. var. altilis (DC) from the south of Portugal (Baixo Alentejo) were studied by gas chromatography-mass spectrometry. One sesquiterpene lactone, four pentacyclic triterpenes, and four sterols were reported for the first time as cultivated cardoon components, namely, deacylcynaropicrin, β- and α-amyrin, lupenyl and ψ-taraxasteryl acetates, stigmasterol, 24-methylenecholesterol, campesterol, and Δ(5)-avenasterol. In addition, other new compounds were identified: ten fatty acids, eight long-chain aliphatic alcohols, and six aromatic compounds. Four triterpenyl fatty acid esters were also detected. Sesquiterpene lactones and pentacyclic triterpenes were the major lipophilic families, representing respectively 2-46% and 10-89% of the detected compounds. Cynaropicrin was the most abundant sesquiterpene lactone, while taraxasteryl acetate was the main pentacyclic triterpene. Fatty acids and sterols, mainly hexadecanoic acid and β-sitosterol, were present at lower amounts (1-20% and 1-11% of the detected compounds). Long-chain aliphatic alcohols and aromatic compounds were detected at reduced abundances (1-6% of the detected compounds).

  16. Bioconcentration of lipophilic compounds by some aquatic organisms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hawker, D.W.; Connell, D.W.

    1986-04-01

    With nondegradable, lipophilic compounds having log P values ranging from 2 to 6, direct linear relationships have been found between the logarithms of the equilibrium bioconcentration factors, and also reciprocal clearance rate constants, with log P for daphnids and molluscs. These relationships permit calculation of the times required for equilibrium and significant bioconcentration of lipophilic chemicals. Compared with fish, these time periods are successively shorter for molluscs, then daphnids. The equilibrium biotic concentration was found to decrease with increasing chemical hydrophobicity for both molluscs and daphnids. Also, new linear relationships between the logarithm of the bioconcentration factor and log Pmore » were found for compounds not attaining equilibrium within finite exposure times.« less

  17. Profiling of lipophilic and phenolic phytochemicals of four cultivars from cherimoya (Annona cherimola Mill.).

    PubMed

    Santos, Sónia A O; Vilela, Carla; Camacho, João F; Cordeiro, Nereida; Gouveia, Manuela; Freire, Carmen S R; Silvestre, Armando J D

    2016-11-15

    The lipophilic and phenolic extractives of the ripe mesocarp of four cherimoya cultivars ('Perry Vidal', 'Mateus I', 'Mateus III' and 'Funchal') from Madeira Island, were studied for the first time. The predominant lipophilic compounds are kaurene diterpenes (42.2-59.6%), fatty acids (18.0-35.6%) and sterols (9.6-23.7%). Kaur-16-en-19-oic acid is the major lipophilic component of all cultivars accounting between 554 and 1350mgkg(-1) of dry material. The studied fruits also contain a high variety of flavan-3-ols, including galloylated and non-galloylated compounds. Five phenolic compounds were identified for the first time: catechin, (epi)catechin-(epi)gallocatechin, (epi)gallocatechin, (epi)afzelechin-(epi)catechin and procyanidin tetramer. 'Mateus I' and 'Mateus III' cultivars present the highest content of phenolic compounds (6299 and 9603mgkg(-1) of dry weight, respectively). These results support the use of this fruit as a rich source of health-promoting components, with the capacity to prevent or delay the progress of oxidative-stress related disorders. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Combined microplate-ABTS and HPLC-ABTS analysis of tomato and pepper extracts reveals synergetic and antagonist effects of their lipophilic antioxidative components.

    PubMed

    Le Grandois, Julie; Guffond, Delphine; Hamon, Erwann; Marchioni, Eric; Werner, Dalal

    2017-05-15

    The antioxidant capacity of 9 pure lipophilic compounds was examined by microplate-ABTS and HPLC-ABTS, using similar experimental conditions. Results obtained showed that HPLC-ABTS method can be used for a rapid determination of individual antioxidant capacity of compounds in standard solutions or complex mixtures. The application of both methods to real lipophilic extracts from tomato (Solanum lycopersicum L.), green and red peppers (Capsicum annuum) reveals possible interactions between antioxidants. Thus, synthetic mixtures of two compounds identified in tomato and peppers were measured using microplate-ABTS and HPLC-ABTS. Synergistic effects were observed between (β-carotene-capsanthin) (1:9) and (1:1), (α-tocopherol-capsanthin) (1:9), (lutein-lycopene) (9:1) and (capsanthin-δ-tocopherol) (9:1). On the contrary, antagonistic effects were observed for (lutein-δ-tocopherol) and (α-tocopherol-δ-tocopherol). The interactions observed with two-compound mixtures are not systematically observed in the natural lipophilic extracts from tomato, green and red peppers, probably since extracts are more complex and are susceptible to cause interferences. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Evaluation of in silico pharmacokinetic properties and in vitro cytotoxic activity of selected newly synthesized N-succinimide derivatives.

    PubMed

    Milosevic, Natasa P; Kojic, Vesna; Curcic, Jelena; Jakimov, Dimitar; Milic, Natasa; Banjac, Nebojsa; Uscumlic, Gordana; Kaliszan, Roman

    2017-04-15

    Design of a new drug entity is usually preceded by analysis of quantitative structure activity (properties) relationships, QSA(P)R. Six newly synthesized succinimide derivatives have been determined for (i) in silico physico-chemical descriptors, pharmacokinetic and toxicity predictors, (ii) in vitro biological activity on four different carcinoma cell lines and on normal fetal lung cells and (iii) lipophilicity on liquid chromatography. All compounds observed were predicted for good permeability and solubility, good oral absorption rate and moderate volume of distribution as well as for modest blood brain permeation, followed by acceptable observed toxicity. In silico determined lipophilicity, permeability through jejunum and aqueous solubility were correlated with experimentally obtained lipophilic constants (by use of high pressure liquid chromatography) and linear correlations were obtained. Absorption rate and volume of distribution were predicted by chromatographic lipophilicity measurements while permeation through blood bran barrier was predicted dominantly by molecular size defined with molecular weight. Five compounds have demonstrated antiproliferative activity toward cervix carcinoma HeLa cell lines; three were cytotoxic against breast carcinoma MCF-7 cells, while one inhibited proliferation of colon carcinoma HT-29 cell lines. Only one compound was cytotoxic toward normal cell lines, while other compounds were proven as safe. Antiproliferative potential against HeLa cells was described as exponential function of lipophilicity. Based on obtained results, lead compounds were selected. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Effect of drying methods on total antioxidant capacity of bitter gourd (momordica charantia) fruit

    NASA Astrophysics Data System (ADS)

    Tan, Ee Shian; Abdullah, Aminah; Maskat, Mohammad Yusof

    2013-11-01

    The effect of thermal and non-thermal drying methods on hydrophilic and lipophilic antioxidant capacities of bitter gourd fruit was investigated in this study. The bitter gourd fruits were dried by following methods: (i) oven drying 40°C, (ii) oven drying 50°C, (iii) oven drying 60°C, (iv) microwave drying (medium low power), (v) microwave drying (medium power) and (vi) freeze drying. Pure acetone and hexane were used to extract the hydrophilic and lipophilic antioxidant compounds from dried bitter gourd fruits. Freeze dried extracts reported to have highest values in DPPH scavenging activity (hydrophilic and lipophilic fractions), FRAP (lipophilic fraction) and TPC (hydrophilic and lipophilic fraction). Thermal drying slightly increased the values of DPPH scavenging activity, FRAP and TPC assays for hydrophilic extracts. Results concluded bitter gourd fruit is a good source of natural antioxidants and its total antioxidant quality was most preserved by freeze drying. Additionally, the higher value reported in DPPH scavenging activity, FRAP and TPC assays for lipophilic extracts than the hydrophilic extracts suggested that the lipophilic antioxidant compounds of bitter gourd fruit might possess stronger antioxidant power than its counterpart.

  1. HPTLC and magnetochromatography of new complexes of carboxylates with transition metals or rare earth elements and their ligands - study of lipophilicity.

    PubMed

    Malinowska, Irena; Wronka, Agnieszka; Ferenc, Wiesława

    2017-05-01

    Nineteen new complexes of carboxylates with transition and rare elements as central ions and their ligands were characterized by chromatographic analyses. The parameter of relative lipophilicity (R M0 ) of the tested compounds was determined experimentally by the reversed-phase high-performance thin layer chromatography method with mixtures of various organic modifiers (acetonitrile, acetone, dioxane) and water as a mobile phase. The extrapolated R M0 values were compared with the logP values calculated from the molecular structures of tested solutes. Similarities between the lipophilicity indices were analysed by principal component analysis and linear regression. Thin-layer chromatography combined with a magnetic field has been proposed as a complementary method for determination of lipophilicity of the investigated compounds. The chromatograms in the field and outside it were developed simultaneously in two identical chromatographic chambers. One of them was placed in the external magnetic field of 0.4 T inductivity. We proved that chelation causes a drastic change in compound lipophilicity, but all complexes did not exhibit enhanced activity as compared with the parent ligand. Also in the magnetic field the retention of some complexes changed, which means that the presence of the field influences the physicochemical properties of the compounds and their interactions with the stationary phase. Copyright © 2016 John Wiley & Sons, Ltd.

  2. Synthesis, Characterization, and Anticancer Activity of Novel Lipophilic Emodin Cationic Derivatives.

    PubMed

    Yang, Xiang; Zhao, Wenna; Hu, Xiufang; Hao, Xianxiao; Hong, Fang; Wang, Jianlong; Xiang, Liping; Zhu, Yunhui; Yuan, Yaofeng; Ho, Rodney J Y; Wang, Wenfeng; Shao, Jingwei

    2015-12-01

    Seventeen novel emodin derivatives were synthesized, and the structures were confirmed by IR, H NMR, MS, and elemental analysis. The cytotoxic activity of the derivatives was evaluated against A375, BGC-823, HepG2, and HELF cells by MTT assay. Compound 9a with highest potency and low toxicity was selected to further investigate its detailed molecular mechanism. The lead compound 9a induced a loss of the mitochondrial transmembrane potential (▵Ψm), an increase in reactive oxygen species (ROS), release of cytochrome c and activation of caspase-3 and caspase-9. In addition, the confocal study showed that emodin derivative 9a (containing asymmetric hydrocarbon tails) was mainly localized in mitochondria, demonstrating a key role of the mitochondria-mediated apoptosis pathway in cancer cells. Taken together, the results demonstrate that embodin derivative 9a preferentially regulates the ROS-mediated apoptosis in A375 cells through the induction of cytochrome c expression and activation of caspase-3 and caspase-9 proteins. © 2015 John Wiley & Sons A/S.

  3. Structure-Activity and Lipophilicity Relationships of Selected Antibacterial Natural Flavones and Flavanones of Chilean Flora.

    PubMed

    Echeverría, Javier; Opazo, Julia; Mendoza, Leonora; Urzúa, Alejandro; Wilkens, Marcela

    2017-04-10

    In this study, we tested eight naturally-occurring flavonoids-three flavanones and five flavones-for their possible antibacterial properties against four Gram-positive and four Gram-negative bacteria. Flavonoids are known for their antimicrobial properties, and due their structural diversity; these plant-derived compounds are a good model to study potential novel antibacterial mechanisms. The lipophilicity and the interaction of antibacterial compounds with the cell membrane define the success or failure to access its target. Therefore, through the determination of partition coefficients in a non-polar/aqueous phase, lipophilicity estimation and the quantification of the antibacterial activity of different flavonoids, flavanones, and flavones, a relationship between these parameters was assessed. Active flavonoids presented diffusion coefficients between 9.4 × 10 -10 and 12.3 × 10 -10 m²/s and lipophilicity range between 2.0 to 3.3. Active flavonoids against Gram-negative bacteria showed a narrower range of lipophilicity values, compared to active flavonoids against Gram-positive bacteria, which showed a wide range of lipophilicity and cell lysis. Galangin was the most active flavonoid, whose structural features are the presence of two hydroxyl groups located strategically on ring A and the absence of polar groups on ring B. Methylation of one hydroxyl group decreases the activity in 3- O -methylgalangin, and methylation of both hydroxyl groups caused inactivation, as shown for 3,7- O -dimethylgalangin. In conclusion, the amphipathic features of flavonoids play a crucial role in the antibacterial activity. In these compounds, hydrophilic and hydrophobic moieties must be present and could be predicted by lipophilicity analysis.

  4. Ring-substituted 4-hydroxy-1H-quinolin-2-ones: preparation and biological activity.

    PubMed

    Jampilek, Josef; Musiol, Robert; Pesko, Matus; Kralova, Katarina; Vejsova, Marcela; Carroll, James; Coffey, Aidan; Finster, Jacek; Tabak, Dominik; Niedbala, Halina; Kozik, Violetta; Polanski, Jaroslaw; Csollei, Jozef; Dohnal, Jiri

    2009-03-13

    In the study, a series of twelve ring-substituted 4-hydroxy-1H-quinolin-2-one derivatives were prepared. The procedures for synthesis of the compounds are presented. The compounds were analyzed using RP-HPLC to determine lipophilicity and tested for their photosynthesis-inhibiting activity using spinach (Spinacia oleracea L.) chloroplasts. All the synthesized compounds were also evaluated for antifungal activity using in vitro screening with eight fungal strains. For all the compounds, the relationships between the lipophilicity and the chemical structure of the studied compounds are discussed, as well as their structure-activity relationships (SAR).

  5. Fast gradient HPLC method to determine compounds binding to human serum albumin. Relationships with octanol/water and immobilized artificial membrane lipophilicity.

    PubMed

    Valko, Klara; Nunhuck, Shenaz; Bevan, Chris; Abraham, Michael H; Reynolds, Derek P

    2003-11-01

    A fast gradient HPLC method (cycle time 15 min) has been developed to determine Human Serum Albumin (HSA) binding of discovery compounds using chemically bonded protein stationary phases. The HSA binding values were derived from the gradient retention times that were converted to the logarithm of the equilibrium constants (logK HSA) using data from a calibration set of molecules. The method has been validated using literature plasma protein binding data of 68 known drug molecules. The method is fully automated, and has been used for lead optimization in more than 20 company projects. The HSA binding data obtained for more than 4000 compounds were suitable to set up global and project specific quantitative structure binding relationships that helped compound design in early drug discovery. The obtained HSA binding of known drug molecules were compared to the Immobilized Artificial Membrane binding data (CHI IAM) obtained by our previously described HPLC-based method. The solvation equation approach has been used to characterize the normal binding ability of HSA, and this relationship shows that compound lipophilicity is a significant factor. It was found that the selectivity of the "baseline" lipophilicity governing HSA binding, membrane interaction, and octanol/water partition are very similar. However, the effect of the presence of positive or negative charges have very different effects. It was found that negatively charged compounds bind more strongly to HSA than it would be expected from the lipophilicity of the ionized species at pH 7.4. Several compounds showed stronger HSA binding than can be expected from their lipophilicity alone, and comparison between predicted and experimental binding affinity allows the identification of compounds that have good complementarities with any of the known binding sites. Copyright 2003 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 92:2236-2248, 2003

  6. Does lipophilicity of toxic compounds determine effects on drought tolerance of the soil collembolan Folsomia candida?

    PubMed

    Skovlund, Gitte; Damgaard, Christian; Bayley, Mark; Holmstrup, Martin

    2006-12-01

    The ability of Collembola to survive drought stress is crucial for their distribution in the terrestrial environment. Previous studies have suggested that several toxic compounds affect the drought tolerance of Folsomia candida in a synergistic manner and that these compounds have the feature in common that they elicit their toxicity by causing membrane damage. We hypothesised that the detrimental effect of toxic chemicals on drought tolerance in F. candida depends on the lipophilicity (log K(ow)) of the compound because a higher log K(ow) would mean a closer interaction with membranes. In this study the three chemicals 4-nonylphenol, pyrene and p,p'-DDE were tested. Surprisingly, 4-nonylphenol, with the lowest log K(ow), was the most potent with respect to reducing drought tolerance followed by pyrene, suggesting that interactions between drought tolerance and chemical stress do not depend on lipophilicity alone.

  7. Fine-tuning the hydrophobicity of a mitochondria-targeted antioxidant.

    PubMed

    Asin-Cayuela, Jordi; Manas, Abdul-Rahman B; James, Andrew M; Smith, Robin A J; Murphy, Michael P

    2004-07-30

    The mitochondria-targeted antioxidant MitoQ comprises a ubiquinol moiety covalently attached through an aliphatic carbon chain to the lipophilic triphenylphosphonium cation. This cation drives the membrane potential-dependent accumulation of MitoQ into mitochondria, enabling the ubiquinol antioxidant to prevent mitochondrial oxidative damage far more effectively than untargeted antioxidants. We sought to fine-tune the hydrophobicity of MitoQ so as to control the extent of its membrane binding and penetration into the phospholipid bilayer, and thereby regulate its partitioning between the membrane and aqueous phases within mitochondria and cells. To do this, MitoQ variants with 3, 5, 10 and 15 carbon aliphatic chains were synthesised. These molecules had a wide range of hydrophobicities with octan-1-ol/phosphate buffered saline partition coefficients from 2.8 to 20000. All MitoQ variants were accumulated into mitochondria driven by the membrane potential, but their binding to phospholipid bilayers varied from negligible for MitoQ3 to essentially total for MitoQ15. Despite the span of hydrophobicites, all MitoQ variants were effective antioxidants. Therefore, it is possible to fine-tune the degree of membrane association of MitoQ and other mitochondria targeted compounds, without losing antioxidant efficacy. This indicates how the uptake and distribution of mitochondria-targeted compounds within mitochondria and cells can be controlled, thereby facilitating investigations of mitochondrial oxidative damage.

  8. Synthesis of lipophilic tyrosyl esters derivatives and assessment of their antimicrobial and antileishmania activities

    PubMed Central

    2012-01-01

    Background Preparation of tyrosyl lipophilic derivatives was carried out as a response to the food, cosmetic and pharmaceutical industries' increasing demand for new lipophilic antioxidants. Results A large series of tyrosyl esters (TyC2 to TyC18:1) with increasing lipophilicity was synthesized in a good yield using lipase from Candida antarctica (Novozyme 435). Spectroscopic analyses of purified esters showed that the tyrosol was esterified on the primary hydroxyl group. Synthetized compounds were evaluated for either their antimicrobial activity, by both diffusion well and minimal inhibition concentration (MIC) methods, or their antileishmanial activity against Leishmania major and Leishmania infantum parasite species. Among all the tested compounds, our results showed that only TyC8, TyC10 and TyC12 exhibited antibacterial and antileishmanial activities. When MIC and IC50 values were plotted against the acyl chain length of each tyrosyl derivative, TyC10 showed a parabolic shape with a minimum value. This nonlinear dependency with the increase of the chain length indicates that biological activities are probably associated to the surfactant effectiveness of lipophilic derivatives. Conclusion These results open up potential applications to use medium tyrosyl derivatives surfactants, antioxidants, antimicrobial and antileishmanial compounds in cosmetic, food and pharmaceutical industries. PMID:22264330

  9. Sea buckthorn (Hippophae rhamnoides L.) vegetative parts as an unconventional source of lipophilic antioxidants.

    PubMed

    Górnaś, Paweł; Šnē, Elga; Siger, Aleksander; Segliņa, Dalija

    2016-07-01

    The profile of lipophilic antioxidants in different vegetative parts (leaves, shoots, buds and berries) was studied in sea buckthorn (Hippophae rhamnoides L.) male and female plants collected in the end of spring. Five lipophilic compounds, i.e. three tocopherol homologues (α, β and γ), plastochromanol-8 and β-carotene, were identified in each vegetative part of male and female sea buckthorn plants at the following concentrations: 7.25-35.41, 0.21-2.43, 0.41-1.51, 0.19-1.79 and 4.43-24.57 mg/100 g dry weight basis. Additionally, significant amounts of α-tocotrienol (1.99 mg/100 g dry weight basis) were detected in buds. The α-tocopherol and β-carotene were predominant lipophilic antioxidants in each vegetative part, accounting for 78.3-97.0% of identified compounds. The greatest amounts of lipophilic antioxidants were found in leaves, especially of female plants. Nevertheless, apart from leaves, also shoots of plants of both sexes seem to be a good source of α-tocopherol and β-carotene.

  10. Investigating biological activity spectrum for novel styrylquinazoline analogues.

    PubMed

    Jampilek, Josef; Musiol, Robert; Finster, Jacek; Pesko, Matus; Carroll, James; Kralova, Katarina; Vejsova, Marcela; O'Mahony, Jim; Coffey, Aidan; Dohnal, Jiri; Polanski, Jaroslaw

    2009-10-23

    In this study, series of ring-substituted 2-styrylquinazolin-4(3H)-one and 4-chloro-2-styrylquinazoline derivatives were prepared. The syntheses of the discussed compounds are presented. The compounds were analyzed by RP-HPLC to determine lipophilicity. They were tested for their inhibitory activity on photosynthetic electron transport (PET) in spinach (Spinacia oleracea L.) chloroplasts. Primary in vitro screening of the synthesized compounds was also performed against four mycobacterial strains and against eight fungal strains. Several compounds showed biological activity comparable with or higher than that of the standard isoniazid. It was found that the electronic properties of the R substituent, and not the total lipophilicity of the compound, were decisive for the photosynthesis-inhibiting activity of tested compounds.

  11. A review of the basics of mitochondrial bioenergetics, metabolism, and related signaling pathways in cancer cells: Therapeutic targeting of tumor mitochondria with lipophilic cationic compounds.

    PubMed

    Kalyanaraman, Balaraman; Cheng, Gang; Hardy, Micael; Ouari, Olivier; Lopez, Marcos; Joseph, Joy; Zielonka, Jacek; Dwinell, Michael B

    2018-04-01

    The present review is a sequel to the previous review on cancer metabolism published in this journal. This review focuses on the selective antiproliferative and cytotoxic effects of mitochondria-targeted therapeutics (MTTs) in cancer cells. Emerging research reveals a key role of mitochondrial respiration on tumor proliferation. Previously, a mitochondria-targeted nitroxide was shown to selectively inhibit colon cancer cell proliferation at submicromolar levels. This review is centered on the therapeutic use of MTTs and their bioenergetic profiling in cancer cells. Triphenylphosphonium cation conjugated to a parent molecule (e.g., vitamin-E or chromanol, ubiquinone, and metformin) via a linker alkyl chain is considered an MTT. MTTs selectively and potently inhibit proliferation of cancer cells and, in some cases, induce cytotoxicity. MTTs inhibit mitochondrial complex I activity and induce mitochondrial stress in cancer cells through generation of reactive oxygen species. MTTs in combination with glycolytic inhibitors synergistically inhibit tumor cell proliferation. This review discusses how signaling molecules traditionally linked to tumor cell proliferation affect tumor metabolism and bioenergetics (glycolysis, TCA cycle, and glutaminolysis). Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  12. Effect of menthone and related compounds on skin permeation of drugs with different lipophilicity and molecular organization of stratum corneum lipids.

    PubMed

    Lan, Yi; Wang, Jingyan; Li, Hui; Zhang, Yewen; Chen, Yanyan; Zhao, Bochen; Wu, Qing

    2016-01-01

    The objective of this article was to investigate the enhancing effect of menthone, menthol and pulegone on the transdermal absorption of drugs with different lipophilicity and probe their mechanisms of action at molecular level. Five model drugs, namely osthole, tetramethylpyrazine, ferulic acid, puerarin and geniposide, which were selected based on their lipophilicity denoted by logKo/w, were tested using in vitro permeation studies in which Franz diffusion cells and rat skin were employed. Infrared spectroscopy and molecular dynamic simulation were used to investigate the effect of these enhancers on the stratum corneum (SC) lipids, respectively. Three compounds could effectively promote the transdermal absorption of drugs with different lipophilicity, and the overall promoting capacities were in the following increasing order: pulegone < menthol < menthone. The penetration enhancement ratio was roughly in parabolic curve relationships with the drug lipophilicity after treatment with menthol or menthone, while the penetration enhancement effect of pulegone hardly changed with the alteration of the drug lipophilicity. The molecular mechanism studies suggested that menthone and menthol enhanced the skin permeability by disordering the ordered organization of SC lipids and extracted part of SC lipids, while pulegone appeared to promote drug transport across the skin only by extracting part of SC lipids.

  13. Factors determining accumulation of bisphenol A and alkylphenols at a low trophic level as exemplified by mussels Mytilus trossulus.

    PubMed

    Staniszewska, Marta; Graca, Bożena; Sokołowski, Adam; Nehring, Iga; Wasik, Andrzej; Jendzul, Anna

    2017-01-01

    The aim of the study was to investigate abiotic and biotic factors influencing the accumulation of endocrine disrupting compounds (EDCs) such as bisphenol A (BPA), 4-tert-octylphenol (OP) and 4-nonylphenol (NP) in mussels Mytilus trossulus from the Gulf of Gdansk (Southern Baltic). The key abiotic factor influencing BPA, OP and NP accumulation in mussels is their hydrophilicity/lipophilicity, which affects their main assimilation routes - by digestive tract for the more lipophilic OP and NP, and additionally by the gills for the less lipophilic BPA. As a result, high condition index (i.e. higher soft tissue weight) is more often correlated with high concentrations of OP and NP in mussels than with BPA. Furthermore, alkylphenols have 6-8 times greater accumulative potential than BPA. Concentration of the studied compounds was lower in females than in males following spawning, and the effect lasted longer for BPA than for alkylphenols. The influence of season and hydrological conditions on BPA, OP, NP in the mussel was more pronounced than the proximity of external sources of these compounds. An increase in water temperature in summer probably stimulated the solubility of BPA, the least lipophilic of the studied compounds, and led to increased assimilation of this compound from water (through gills). On the other hand, high OP and NP concentrations in mussels occurred in spring, which was caused by increased surface run-off and sediments resuspension. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Chemical basis for the phytotoxicity of N-aryl hydroxamic acids and acetanilide analogues.

    PubMed

    Bravo, Héctor R; Villarroel, Elisa; Copaja, Sylvia V; Argandoña, Victor H

    2008-01-01

    Germination inhibition activity of N-aryl hydroxamic acids and acetanilide analogues was measured on lettuce seeds (Lactuca sativa). Lipophilicity of the compounds was determined by HPLC. A correlation between lipophilicity values and percentage of germination inhibition was established. A model mechanism of action for auxin was used for analyzing the effect of the substituent at the alpha carbon atom (Ca) on the polarization of hydroxamic and amide functions in relation to the germination inhibition activity observed. Results suggest that the lipophilic and acidic properties play an important role in the phytotoxicity of the compounds. A test with the microalga Chlorella vulgaris was used to evaluate the potential herbicide activity of the hydroxamic acids and acetanilides.

  15. Extravascular transport of drugs in tumor tissue: effect of lipophilicity on diffusion of tirapazamine analogues in multicellular layer cultures.

    PubMed

    Pruijn, Frederik B; Sturman, Joanna R; Liyanage, H D Sarath; Hicks, Kevin O; Hay, Michael P; Wilson, William R

    2005-02-24

    The extravascular diffusion of antitumor agents is a key determinant of their therapeutic activity, but the relationships between physicochemical properties of drugs and their extravascular transport are poorly understood. It is well-known that drug lipophilicity plays an important role in transport across biological membranes, but the net effect of lipophilicity on transport through multiple layers of tumor cells is less clear. This study examines the influence of lipophilicity (measured as the octanol-water partition coefficient P) on the extravascular transport properties of the hypoxic cytotoxin tirapazamine (TPZ, 1) and a series of 13 neutral analogues, using multicellular layers (MCLs) of HT29 human colon carcinoma cells as an in vitro model for the extravascular compartment of tumors. Flux of drugs across MCLs was determined using diffusion chambers, with the concentration-time profile on both sides of the MCL measured by HPLC. Diffusion coefficients in the MCLs (D(MCL)) were inversely proportional to M(r)(0.5) (M(r), relative molecular weight), although this was a minor contributor to differences between compounds over the narrow M(r) range investigated. Differences in lipophilicity had a larger effect, with a sigmoidal dependence of D(MCL) on log P. Correcting for M(r) differences, lipophilic compounds (log P > 1.5) had ca. 15-fold higher D(MCL) than hydrophilic compounds (log P < -1). Using a pharmacokinetic/pharmacodynamic (PK/PD) model in which diffusion in the extravascular compartment of tumors is considered explicitly, we demonstrated that hypoxic cell kill is very sensitive to changes in extravascular diffusion coefficient of TPZ analogues within this range. This study shows that simple monosubstitution of TPZ can alter log P enough to markedly improve extravascular transport and activity against target cells, especially if rates of metabolic activation are also optimized.

  16. Bioactive Phytochemicals from Wild Arbutus unedo L. Berries from Different Locations in Portugal: Quantification of Lipophilic Components

    PubMed Central

    Fonseca, Daniela F. S.; Salvador, Ângelo C.; Santos, Sónia A. O.; Vilela, Carla; Freire, Carmen S. R.; Silvestre, Armando J. D.; Rocha, Sílvia M.

    2015-01-01

    The lipophilic composition of wild Arbutus unedo L. berries, collected from six locations in Penacova (center of Portugal), as well as some general chemical parameters, namely total soluble solids, pH, titratable acidity, total phenolic content and antioxidant activity was studied in detail to better understand its potential as a source of bioactive compounds. The chemical composition of the lipophilic extracts, focused on the fatty acids, triterpenoids, sterols, long chain aliphatic alcohols and tocopherols, was investigated by gas chromatography–mass spectrometry (GC–MS) analysis of the dichloromethane extracts. The lipophilic extractives of the ripe A. unedo berries ranged from 0.72% to 1.66% (w/w of dry weight), and consisted mainly of triterpenoids, fatty acids and sterols. Minor amounts of long chain aliphatic alcohols and tocopherols were also identified. Forty-one compounds were identified and among these, ursolic acid, lupeol, α-amyrin, linoleic and α-linolenic acids, and β-sitosterol were highlighted as the major components. To the best of our knowledge the current research study provides the most detailed phytochemical repository for the lipophilic composition of A. unedo, and offers valuable information for future valuation and exploitation of these berries. PMID:26110390

  17. Treatment of Gram-negative bacterial infections by potentiation of antibiotics.

    PubMed

    Zabawa, Thomas P; Pucci, Michael J; Parr, Thomas R; Lister, Troy

    2016-10-01

    Infections caused by antibiotic-resistant pathogens, particularly Gram-negative bacteria, represent significant treatment challenges for physicians resulting in high rates of morbidity and mortality. The outer membrane of Gram-negative bacteria acts as a permeability barrier to many compounds that would otherwise be effective antibacterial agents, including those effective against Gram-positive pathogens. Potentiator molecules disrupt this barrier allowing entry of otherwise impermeant molecules, thus providing a strategy to render multi-drug resistant pathogens susceptible to a broader range of antibiotics. Potentiator molecules are cationic and the mechanism of disruption involves interaction with the negatively charged outer membrane. This physical attribute, along with an often high degree of lipophilicity typically endears these molecules with unacceptable toxicity. Presented herein are examples of advanced potentiator molecules being evaluated for use in combination therapy for the treatment of resistant Gram-negative infections. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Study on the Preparation and Antileukemic Activity of New Lipophilic 1-β-D-arabinofuranosylcytosine Derivatives

    NASA Astrophysics Data System (ADS)

    Chu, Yanyan; Tian, Zhenhua; Hou, Yingwei; Li, Wenbao

    2018-04-01

    Cytarabine (1-β-D-arabinofuranosylcytosine, Ara-C), isolated from a Caribbean sponge species Tethyacrypta, is the first antitumor drug from a marine resource. In 1980, the US Food and Drug Administration approved this drug for the treatment of different types of leukemia. This drug has a short plasma half-life, low stability, limited bioavailability, and severe side effects. To improve stability and bioavailability, we synthesized nine novel derivatives by blocking the cytarabine metabolic sites and improving lipophilicity. The cLogP values of the newly synthesized compounds were calculated. All the synthesized compounds were more lipophilic than cytarabine, resulting in membrane permeability and bioavailability improvement. The antitumor activities against leukemia cell line HL-60 were evaluated by using the MTT assay. The bioassay results revealed that the IC50 values of compounds 5, 8 and 9 were 0.080, 0.090 and 0.057 μmol L-1, respectively, which was similar with that of cytarabine (0.056 μmol L-1). In comparison, compound 4 with a phosphate group at O5' was inactive. Because phosphoester bonds are easily hydrolyzed by alkaline phosphatase and are commonly used in producing prodrug strategies, compound 4 might also be metabolized in vivo and generate compound 3 or even cytarabine through a multi-step reaction. Thus, compound 4 might be a promising compound to be developed as a prodrug.

  19. Effectiveness of water-air and octanol-air partition coefficients to predict lipophilic flavor release behavior from O/W emulsions.

    PubMed

    Tamaru, Shunji; Igura, Noriyuki; Shimoda, Mitsuya

    2018-01-15

    Flavor release from food matrices depends on the partition of volatile flavor compounds between the food matrix and the vapor phase. Thus, we herein investigated the relationship between released flavor concentrations and three different partition coefficients, namely octanol-water, octanol-air, and water-air, which represented the oil, water, and air phases present in emulsions. Limonene, 2-methylpyrazine, nonanal, benzaldehyde, ethyl benzoate, α-terpineol, benzyl alcohol, and octanoic acid were employed. The released concentrations of these flavor compounds from oil-in-water (O/W) emulsions were measured under equilibrium using static headspace gas chromatography. The results indicated that water-air and octanol-air partition coefficients correlated with the logarithms of the released concentrations in the headspace for highly lipophilic flavor compounds. Moreover, the same tendency was observed over various oil volume ratios in the emulsions. Our findings therefore suggest that octanol-air and water-air partition coefficients can be used to predict the released concentration of lipophilic flavor compounds from O/W emulsions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Synthesis and Characterization of a Novel Phenolic Lipid for Use as Potential Lipophilic Antioxidant and as a Prodrug of Butyric Acid.

    PubMed

    Kaki, Shiva Shanker; Kunduru, Konda Reddy; Kanjilal, Sanjit; Narayana Prasad, Rachapudi Badari

    2015-01-01

    Ferulic acid was modified to produce a novel phenolipid containing butyl chains. Ferulic acid was esterified with butanol to produce butyl ferulate which was further dihydroxylated followed by esterification with butyric anhydride to produce the phenolipid containing butyric acid. IR, NMR and MS techniques confirmed the structure of the synthesized structured lipophilic phenolic compound. The synthesized compound was tested for in vitro antioxidant and antimicrobial activities. The produced phenolipid showed moderate antioxidant activity in DPPH (2, 2-diphenyl-1-picrylhydrazyl) radical scavenging assay but in linoleic acid oxidation method, it exhibited good activity compared with the parent compound and the reference compounds. The prepared derivative could find applications as antioxidant in lipophilic systems and also as a potential prodrug of butyric acid. It also showed antibacterial effect against the four bacterial strains studied. The drug-likeness properties of the prepared molecule calculated were in the acceptable ranges according to Lipinski's rule of 5 and suggest that it has potential to cross the blood-brain barrier.

  1. Enhancement of Skin Penetration of Hydrophilic and Lipophilic Compounds by pH-sensitive Liposomes.

    PubMed

    Tokudome, Yoshihiro; Nakamura, Kaoru; Itaya, Yurina; Hashimoto, Fumie

    2015-01-01

    Enhance skin penetration of hydrophilic and lipophilic compounds using liposomes that are responsible to the pH of the skin surface. pH-sensitive liposomes were prepared by a thin layer and freeze-thaw method with dioleoyl phosphatidyl ethanolamine and cholesteryl hemisuccinate. Liposomal fusion with stratum corneum lipid liposomes was measured using fluorescence resonance energy transfer. Particle diameter and zeta potential of the liposomes after fusion were measured by dynamic light scattering and electrophoresis. Under neutral pH conditions, the diameter of the pH-sensitive liposomes was 130 nm and their zeta potential was -70 mV. In weakly acidic conditions, the diameter was larger than 3,000 nm and the zeta potential was -50 mV. In contrast, the particle diameter and the zeta potential of the non-pH-sensitive liposomes remained constant under various pH conditions. A skin penetration study was performed on hairless mice skin using vertical diffusion cells, showing that the fusion ability of pH-sensitive liposomes was higher than that of non-pH-sensitive liposomes. In the skin penetration study was carried out using hydrophilic (calcein) and lipophilic (N-(7-nitrobenz- 2-oxa-1,3-diazol-4yl)-PE) (NBD-PE) model compounds which were applied to the skin with pH-sensitive liposomes as carrier. The fluorescent compounds contained within the pH-sensitive liposomes permeated the skin more effectively than those within non-pH-sensitive liposomes, and this ability was further enhanced with the lipophilic compound. These studies suggest that pH-sensitive liposomes have potential as an important tool for delivery of compounds into the skin.

  2. Activity-guided identification of acetogenins as novel lipophilic antioxidants present in avocado pulp (Persea americana).

    PubMed

    Rodríguez-Sánchez, Dariana; Silva-Platas, Christian; Rojo, Rocío P; García, Noemí; Cisneros-Zevallos, Luis; García-Rivas, Gerardo; Hernández-Brenes, Carmen

    2013-12-30

    Avocado fruit is a rich source of health-related lipophilic phytochemicals such as monounsaturated fatty acids, tocopherols, carotenes, acetogenins and sterols. However, limited information is available on the contribution of specific phytochemicals to the overall antioxidant capacity (AOC) of the fruit. Centrifugal partition chromatography was used as fractionation tool, guided by an in vitro chemical assay of oxygen radical absorbance capacity (ORAC). Subsequent experiments focused on isolation and characterization of the chemical nature of the main contributors to lipophilic AOC of avocado pulp. ORAC values obtained for acetogenins were contrasted with results from an isolated kidney mitochondria membrane lipid peroxidation bioassay. The present study established that lipophilic AOC of the pulp was significantly higher than its hydrophilic AOC. Our results confirmed the presence of acetogenins in the fractions with highest lipophilic AOC, and for the first time linked them as contributors to lipophilic-ORAC values. Further HPLC-PDA/MS-TOF analysis led to structural elucidation of two novel acetogenins, not previously reported as present in avocado pulp, along with five already known related-compounds. Antioxidant properties observed for avocado pulp acetogenins by the ORAC assay suggested that, in the presence of an emulsifying agent, acetogenins could serve as novel lipophilic antioxidants in a food matrix. Results from isolated mitochondria lipid peroxidation bioassay, indicated that L-ORAC values which may have relevance for food matrix applications, should not be interpreted to have a direct relevance in health-related claims, compounds need to be evaluated considering the complexity of biological systems. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Prediction of Log "P": ALOGPS Application in Medicinal Chemistry Education

    ERIC Educational Resources Information Center

    Kujawski, Jacek; Bernard, Marek K.; Janusz, Anna; Kuzma, Weronika

    2012-01-01

    Molecular hydrophobicity (lipophilicity), usually quantified as log "P" where "P" is the partition coefficient, is an important molecular characteristic in medicinal chemistry and drug design. The log "P" coefficient is one of the principal parameters for the estimation of lipophilicity of chemical compounds and pharmacokinetic properties. The…

  4. Design of a serotonin 4 receptor radiotracer with decreased lipophilicity for single photon emission computed tomography.

    PubMed

    Fresneau, Nathalie; Dumas, Noé; Tournier, Benjamin B; Fossey, Christine; Ballandonne, Céline; Lesnard, Aurélien; Millet, Philippe; Charnay, Yves; Cailly, Thomas; Bouillon, Jean-Philippe; Fabis, Frédéric

    2015-04-13

    With the aim to develop a suitable radiotracer for the brain imaging of the serotonin 4 receptor subtype (5-HT4R) using single photon emission computed tomography (SPECT), we synthesized and evaluated a library of di- and triazaphenanthridines with lipophilicity values which were in the range expected to favour brain penetration, and which demonstrated specific binding to the target of interest. Adding additional nitrogen atoms to previously described phenanthridine ligands exhibiting a high unspecific binding, we were able to design a radioiodinated compound [(125)I]14. This compound exhibited a binding affinity value of 0.094 nM toward human 5-HT4R and a high selectivity over other serotonin receptor subtypes (5-HTR). In vivo SPECT imaging studies and competition experiments demonstrated that the decreased lipophilicity (in comparison with our previously reported compounds 4 and 5) allowed a more specific labelling of the 5-HT4R brain-containing regions. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  5. New potentially active pyrazinamide derivatives synthesized under microwave conditions.

    PubMed

    Jandourek, Ondrej; Dolezal, Martin; Kunes, Jiri; Kubicek, Vladimir; Paterova, Pavla; Pesko, Matus; Buchta, Vladimir; Kralova, Katarina; Zitko, Jan

    2014-07-03

    A series of 18 N-alkyl substituted 3-aminopyrazine-2-carboxamides was prepared in this work according to previously experimentally set and proven conditions using microwave assisted synthesis methodology. This approach for the aminodehalogenation reaction was chosen due to higher yields and shorter reaction times compared to organic reactions with conventional heating. Antimycobacterial, antibacterial, antifungal and photosynthetic electron transport (PET) inhibiting in vitro activities of these compounds were investigated. Experiments for the determination of lipophilicity were also performed. Only a small number of substances with alicyclic side chain showed activity against fungi which was the same or higher than standards and the biological efficacy of the compounds increased with rising lipophilicity. Nine pyrazinamide derivatives also inhibited PET in spinach chloroplasts and the IC50 values of these compounds varied in the range from 14.3 to 1590.0 μmol/L. The inhibitory activity was connected not only with the lipophilicity, but also with the presence of secondary amine fragment bounded to the pyrazine ring. Structure-activity relationships are discussed as well.

  6. Effect of a high-fat meal on absorption and disposition of lipophilic compounds: the importance of degree of association with triglyceride-rich lipoproteins.

    PubMed

    Gershkovich, Pavel; Hoffman, Amnon

    2007-09-01

    Following a high-fat meal, triglyceride-rich lipoproteins (TRL) are assembled in the gut and absorbed via the lymph into the blood circulation, producing a temporal hyperlipidemia. The purpose of this study is to verify the hypothesis that this transient acute postprandial hyperlipidemia affects the pharmacokinetics of lipophilic drugs on both absorption and disposition levels by the same underlying mechanism, namely the association of active lipophilic compounds with TRL in the plasma (disposition) or within the enterocyte (lymphatic transport). This concept was assessed in rats using two model compounds, DDT with high affinity to chylomicrons and diazepam which does not bind to chylomicrons. Oral administration of peanut oil significantly increased the AUC of plasma DDT concentrations following its IV bolus administration in comparison to a water treated group. On the other hand, the AUC of diazepam following IV bolus administration was the same in oil and water treated rats. While DDT is known to have significant lymphatic bioavailability, diazepam has negligible intestinal lymphatic transport (0.014+/-0.004% of a given dose). In conclusion, lipophilic molecules that bind extensively to TRL will be prone to both intestinal lymphatic transport and to post-absorptive changes in disposition (decrease in clearance and volume of distribution) following a high-fat meal.

  7. Biological activity of aldose reductase and lipophilicity of pyrrolyl-acetic acid derivatives

    NASA Astrophysics Data System (ADS)

    Kumari, A.; Kumari, R.; Kumar, R.; Gupta, M.

    2011-12-01

    Quantitative Structure-Activity Relationship modeling is a powerful approach for correlating an organic compound to its lipophilicity. In this paper QSAR models are established for estimation of correlation of the lipophilicity of a series of pyrrolyl-acetic acid derivatives, inhibitors of the aldose reductase enzyme, in the n-octanol-water system with biological activity of aldose reductase. Lipophilicity, expressed by the logarithm of n-octnol-water partition coefficient log P and biological activity of aldose reductase inhibitory activity by log it. Result obtained by QSAR modeling of compound series reveal a definite trend in biological activity and a further improvement in quantitative relationships are established if, beside log P, Hammett electronic constant σ and connectivity index chi-3 (3 χ) term included in the regression equation. The tri-parametric model with log P, 3 χ and σ as correlating parameters have been found to be the best which gives a variance of 87% ( R 2 = 0.8743). A compound has been found to be serious outlier and when the same has been excluded the model explains about 94% variance of the data set ( R 2 = 0.9447). The topological index (3 χ) has been found to be a good parameter for modeling the biological activity.

  8. Effect of lipophilicity of Mn (III) ortho N-alkylpyridyl- and diortho N, N'-diethylimidazolylporphyrins in two in-vitro models of oxygen and glucose deprivation-induced neuronal death.

    PubMed

    Wise-Faberowski, Lisa; Warner, David S; Spasojevic, Ivan; Batinic-Haberle, Ines

    2009-04-01

    In vivo investigations have confirmed the beneficial effects of hydrophilic, cationic Mn(III) porphyrin-based catalytic antioxidants in different models of oxidative stress. Using a cell culture model of rat mixed neuronal/glial cells, this study investigated the effect of MnTnOct-2-PyP5+ on oxygen and glucose deprivation (OGD)-induced cell death as compared to the effects of widely studied hydrophilic analogues MnTE-2-PyP5+ and MnTDE-2-ImP5+ and a standard compound, dizocilpine (MK-801). It was hypothesized that the octylpyridylporphyrin, MnTnOct-2-PyP5+, a lipophilic but equally potent antioxidant as the other two porphyrins, would be more efficacious in reducing OGD-induced cell death due to its higher bioavailability. Cell death was evaluated at 24 h using lactate dehydrogenase (LDH) release and propidium iodide staining. At concentrations from 3-100 microM, all three porphyrins reduced cell death as compared to cultures exposed to OGD alone, the effects depending upon the concentrations and type of treatment. To assess the effect of lipophilicity the additional experiments were performed using submicromolar concentrations of MnTnOct-2-PyP5+ in an organotypic hippocampal slice model of OGD with propidium iodide and Sytox staining. When compared to oxygen and glucose deprivation alone, concentrations of MnTnOct-2-PyP5+ as low as 0.01 microM significantly (p<0.001; power 1.0) reduced neuronal cells similar to control. This is the first in vitro study on the mammalian cells which indicates that MnTnOct-2-PyP5+ is up to 3000-fold more efficacious than equally potent hydrophilic analogues, due entirely to its increased bioavailability. Such remarkable increase in efficacy parallels 5.7-orders of magnitude increase in lipophilicity of MnTnOct-2-PyP5+ (log P=-0.77) when compared to MnTE-2-PyP5+ (log POW=-6.43), POW being partition coefficient between n-octanol and water.

  9. Using semipermeable membrane devices (SPMDs) to assess the toxicity and teratogenicity of aquatic amphibian habitats

    USGS Publications Warehouse

    Bridges, C.M.; Little, E.E.; Linder, Gregory L.; Krest, S.; Sparling, Don; Little, Edward

    2003-01-01

    Environmental contamination has been suspected of being partially responsible for recent declines in amphibian populations. It is often not feasible to identify all of the compounds in an environment, nor the concentrations in which they are present. SPMDs are passive sampling devices that uptake lipophilic compounds from the environment in a manner similar to aquatic organisms. The extracts from the SPMDs, therefore, contain a composite sample of the compounds that are present in the environment. In this paper, we outline the methods from studies in which we have used extracts from SPMDs in toxicity tests on amphibian larvae. Using SPMD extracts makes it possible to establish potential links between amphibian deformities and declines and environmental contamination by lipophilic compounds.

  10. Molecular Strategies for Targeting Antioxidants to Mitochondria: Therapeutic Implications

    PubMed Central

    2015-01-01

    Abstract Mitochondrial function and specifically its implication in cellular redox/oxidative balance is fundamental in controlling the life and death of cells, and has been implicated in a wide range of human pathologies. In this context, mitochondrial therapeutics, particularly those involving mitochondria-targeted antioxidants, have attracted increasing interest as potentially effective therapies for several human diseases. For the past 10 years, great progress has been made in the development and functional testing of molecules that specifically target mitochondria, and there has been special focus on compounds with antioxidant properties. In this review, we will discuss several such strategies, including molecules conjugated with lipophilic cations (e.g., triphenylphosphonium) or rhodamine, conjugates of plant alkaloids, amino-acid- and peptide-based compounds, and liposomes. This area has several major challenges that need to be confronted. Apart from antioxidants and other redox active molecules, current research aims at developing compounds that are capable of modulating other mitochondria-controlled processes, such as apoptosis and autophagy. Multiple chemically different molecular strategies have been developed as delivery tools that offer broad opportunities for mitochondrial manipulation. Additional studies, and particularly in vivo approaches under physiologically relevant conditions, are necessary to confirm the clinical usefulness of these molecules. Antioxid. Redox Signal. 22, 686–729. PMID:25546574

  11. Lipophilic extracts from banana fruit residues: a source of valuable phytosterols.

    PubMed

    Oliveira, Lúcia; Freire, Carmen S R; Silvestre, Armando J D; Cordeiro, Nereida

    2008-10-22

    The chemical composition of the lipophilic extracts of unripe pulp and peel of banana fruit 'Dwarf Cavendish' was studied by gas chromatography-mass spectrometry. Fatty acids, sterols, and steryl esters are the major families of lipophilic components present in banana tissues, followed by diacylglycerols, steryl glucosides, long chain fatty alcohols, and aromatic compounds. Fatty acids are more abundant in the banana pulp (29-90% of the total amount of lipophilic extract), with linoleic, linolenic, and oleic acids as the major compounds of this family. In banana peel, sterols represent about 49-71% of the lipophilic extract with two triterpenic ketones (31-norcyclolaudenone and cycloeucalenone) as the major components. The detection of high amounts of steryl esters (469-24405 mg/kg) and diacylglycerols (119-878 mg/kg), mainly present in the banana peel extract, explains the increase in the abundance of fatty acids and sterols after alkaline hydrolysis. Several steryl glucosides were also found in significative amounts (273-888 mg/kg), particularly in banana pulp (888 mg/kg). The high content of sterols (and their derivatives) in the 'Dwarf Cavendish' fruit can open new strategies for the valorization of the banana residues as a potential source of high-value phytochemicals with nutraceutical and functional food additive applications.

  12. The Study of Anti-/Pro-Oxidant, Lipophilic, Microbial and Spectroscopic Properties of New Alkali Metal Salts of 5-O-Caffeoylquinic Acid

    PubMed Central

    Kalinowska, Monika; Bajko, Ewelina; Matejczyk, Marzena; Kaczyński, Piotr; Łozowicka, Bożena; Lewandowski, Włodzimierz

    2018-01-01

    Lithium, sodium, potassium, rubidium and caesium salts of 5-O-caffeoylquinic acid (chlorogenic acid, 5-CQA) were synthesized and described by FT-IR (infrared spectroscopy), FT-Raman (Raman spectroscopy), UV (UV absorption spectroscopy), 1H (400.15 MHz), 13C (100.63 MHz) NMR (nuclear magnetic resonance spectroscopy). The quantum–chemical calculations at the B3LYP/6-311++G** level were done in order to obtain the optimal structures, IR spectra, NBO (natural bond orbital) atomic charges, HOMO (highest occupied molecular orbital) and LUMO (lowest unoccupied molecular orbital) orbitals and chemical reactivity parameters for 5-CQA and Li, Na and K 5-CQAs (chlorogenates). The DPPH (α, α-diphenyl-β-picrylhydrazyl) and FRAP (ferric reducing antioxidant power) assays were used for the preliminary estimation of the antioxidant properties of alkali metal chlorogenates and chlorogenic acid. In the DPPH assay the EC50 parameter were equal to 7.39 μM for 5-CQA and was in the range of 4.50–5.89 μM for salts. The FRAP values for two different concentrations (5 and 2.5 μM) of the studied compounds were respectively 114.22 and 72.53 μM Fe2+ for 5-CQA, whereas for salts they were 106.92–141.13 and 78.93–132.00 μM Fe2+. The 5-CQA and its alkali metal salts possess higher antioxidant properties than commonly applied antioxidants (BHA, BHT, l-ascorbic acid). The pro-oxidant action of these compounds on trolox oxidation was studied in the range of their concentration 0.05–0.35 μM. The lipophilicity (logkw) of chlorogenates and chlorogenic acid was determined by RP-HPLC (reverse phase—high performance liquid chromatography) using five different columns (C8, PHE (phenyl), CN (cyano), C18, IAM (immobilized artificial membrane)). The compounds were screened for their in vitro antibacterial activity against E. coli, Bacillus sp., Staphylococcus sp., Streptococcus pyogenes and antifungal activity against Candida sp. The 5-CQA possessed lower antibacterial (minimal inhibitory concentration, MIC = 7.06 mM) and antifungal (MIC = 14.11 mM) properties than its alkali metal salts (MIC values: 6.46–2.63 mM and 12.91–5.27mM, respectively). The synthesized chlorogenates possessed better antioxidant, lipophilic, antimicrobial as well as lower pro-oxidant properties than the ligand alone. Moreover, a systematic change of the activity of alkali metal salts along the series Li→Cs suggests that there are correlations between the studied biological properties. The type of metal cation in the carboxylate group of chlorogenate is crucial for the activity of studied compounds. PMID:29401704

  13. In Silico Study of Chromatographic Lipophilicity Parameters of 3-(4-Substituted Benzyl)-5-Phenylhydantoins.

    PubMed

    Sekulic, Tatjana Djakovic; Keleman, Svetlana; Tot, Kristina; Tot, Jadranka; Trisovic, Nemanja; Uscumlic, Gordana

    2016-01-01

    New synthesized compounds, particularly those with biological activity, are potential drug candidates. This article describes experimental studies performed to estimate lipophilicity parameters of new 3-(4-substituted benzyl)-5-phenylhydantoins. Lipophilicity, as one of the most important molecular characteristics for the activity, was determined using the reversed-phase liquid chromatography (RP-18 stationary phase and methanol-water mobile phase). Molecular structures were used to generate in silico data which were used to estimate pharmacokinetic properties of the investigated compounds. The results show that generally, the investigated compounds attain good bioavailability properties. A more detailed analysis shows that the presence of a nitro, methoxy and tert-butyl group in the molecule is indicated as unfavorable for the oral bioavailability of hydantoins. Multivariate exploratory analysis was used in order to visualize grouping patterns among molecular descriptors as well as among the investigated compounds. Molecular docking study performed for two hydantoins with the highest bioavailability scores shows high binding affinity to tyrosine kinase receptor IGF-1R. The results achieved can be useful as a template for future development and further derivation or modification to obtain more potent and selective antitumor agents.

  14. Parallel screening of drug-like natural compounds using Caco-2 cell permeability QSAR model with applicability domain, lipophilic ligand efficiency index and shape property: A case study of HIV-1 reverse transcriptase inhibitors

    NASA Astrophysics Data System (ADS)

    Patel, Rikin D.; Kumar, Sivakumar Prasanth; Patel, Chirag N.; Shankar, Shetty Shilpa; Pandya, Himanshu A.; Solanki, Hitesh A.

    2017-10-01

    The traditional drug design strategy centrally focuses on optimizing binding affinity with the receptor target and evaluates pharmacokinetic properties at a later stage which causes high rate of attrition in clinical trials. Alternatively, parallel screening allows evaluation of these properties and affinity simultaneously. In a case study to identify leads from natural compounds with experimental HIV-1 reverse transcriptase (RT) inhibition, we integrated various computational approaches including Caco-2 cell permeability QSAR model with applicability domain (AD) to recognize drug-like natural compounds, molecular docking to study HIV-1 RT interactions and shape similarity analysis with known crystal inhibitors having characteristic butterfly-like model. Further, the lipophilic properties of the compounds refined from the process with best scores were examined using lipophilic ligand efficiency (LLE) index. Seven natural compound hits viz. baicalien, (+)-calanolide A, mniopetal F, fagaronine chloride, 3,5,8-trihydroxy-4-quinolone methyl ether derivative, nitidine chloride and palmatine, were prioritized based on LLE score which demonstrated Caco-2 well absorption labeling, encompassment in AD structural coverage, better receptor affinity, shape adaptation and permissible AlogP value. We showed that this integrative approach is successful in lead exploration of natural compounds targeted against HIV-1 RT enzyme.

  15. A selective optical sensor based on [9]mercuracarborand-3, a new type of ionophore with a chloride complexing cavity

    NASA Technical Reports Server (NTRS)

    Badr, I. H.; Johnson, R. D.; Diaz, M.; Hawthorne, M. F.; Bachas, L. G.; Daunert, S. (Principal Investigator)

    2000-01-01

    A highly selective optical sensor for chloride, based on the multidentate Lewis acid ionophore [9]mercuracarborand-3, is described herein. This sensor is constructed by embedding the mercuracarborand ionophore, a suitable pH-sensitive lipophilic dye, and lipophilic cationic sites in a plasticized polymeric membrane. The multiple complementary interactions offered by the preorganized complexing cavity of [9]mercuracarborand-3 is shown to control the anion selectivity pattern of the optical film. The film exhibits a significantly enhanced selectivity for chloride over a variety of lipophilic anions such as perchlorate, nitrate, salicylate, and thiocyanate. Furthermore, the optical selectivity coefficients obtained for chloride over other biologically relevant anions are shown to meet the selectivity requirements for the determination of chloride in physiological fluids, unlike previously reported chloride optical sensors. In addition, the optical film responds to chloride reversibly over a wide dynamic range (16 microM-136 mM) with fast response and recovery times.

  16. Discovery of a Potent Free Fatty Acid 1 Receptor Agonist with Low Lipophilicity, Low Polar Surface Area, and Robust in Vivo Efficacy.

    PubMed

    Hansen, Steffen V F; Christiansen, Elisabeth; Urban, Christian; Hudson, Brian D; Stocker, Claire J; Due-Hansen, Maria E; Wargent, Ed T; Shimpukade, Bharat; Almeida, Reinaldo; Ejsing, Christer S; Cawthorne, Michael A; Kassack, Matthias U; Milligan, Graeme; Ulven, Trond

    2016-03-24

    The free fatty acid receptor 1 (FFA1 or GPR40) is established as an interesting potential target for treatment of type 2 diabetes. However, to obtain optimal ligands, it may be necessary to limit both lipophilicity and polar surface area, translating to a need for small compounds. We here describe the identification of 24, a potent FFA1 agonist with low lipophilicity and very high ligand efficiency that exhibit robust glucose lowering effect.

  17. Heterogeneous transport of digitalis-like compounds by P-glycoprotein in vesicular and cellular assays.

    PubMed

    Gozalpour, Elnaz; Wilmer, Martijn J; Bilos, Albert; Masereeuw, Rosalinde; Russel, Frans G M; Koenderink, Jan B

    2016-04-01

    Digitalis-like compounds (DLCs), the ancient medication of heart failure and Na,K-ATPase inhibitors, are characterized by their toxicity. Drug-drug interactions (DDIs) at absorption and excretion levels play a key role in their toxicity, hence, knowledge about the transporters involved might prevent these unwanted interactions. In the present study, the transport of fourteen DLCs with human P-glycoprotein (P-gp; ABCB1) was studied using a liquid chromatography-mass spectrometry (LC-MS) quantification method. DLC transport by P-gp overexpressing Madin-Darby canine kidney (MDCK) and immortalized human renal cells (ciPTEC) was compared to vesicular DLC transport. Previously, we identified convallatoxin as a substrate using membrane vesicles overexpressing P-gp; however, we could not measure transport of other DLCs in this assay (Gozalpour et al., 2014a). Here, we showed that lipophilic digitoxin, digoxigenin, strophanthidin and proscillaridin A are P-gp substrates in cellular accumulation assays, whereas the less lipophilic convallatoxin was not. P-gp function in the cellular accumulation assays depends on the entrance of lipophilic compounds by passive diffusion, whereas the vesicular transport assay is more appropriate for hydrophilic substrates. In conclusion, we identified digitoxin, digoxigenin, strophanthidin and proscillaridin A as P-gp substrates using cellular accumulation assays and recognized lipophilicity as an important factor in selecting a suitable transport assay. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Lipophilic stinging nettle extracts possess potent anti-inflammatory activity, are not cytotoxic and may be superior to traditional tinctures for treating inflammatory disorders.

    PubMed

    Johnson, Tyler A; Sohn, Johann; Inman, Wayne D; Bjeldanes, Leonard F; Rayburn, Keith

    2013-01-15

    Extracts of four plant portions (roots, stems, leaves and flowers) of Urtica dioica (the stinging nettle) were prepared using accelerated solvent extraction (ASE) involving water, hexanes, methanol and dichloromethane. The extracts were evaluated for their anti-inflammatory and cytotoxic activities in an NF-κB luciferase and MTT assay using macrophage immune (RAW264.7) cells. A standardized commercial ethanol extract of nettle leaves was also evaluated. The methanolic extract of the flowering portions displayed significant anti-inflammatory activity on par with a standard compound celastrol (1) but were moderately cytotoxic. Alternatively, the polar extracts (water, methanol, ethanol) of the roots, stems and leaves displayed moderate to weak anti-inflammatory activity, while the methanol and especially the water soluble extracts exhibited noticeable cytotoxicity. In contrast, the lipophilic dichloromethane extracts of the roots, stems and leaves exhibited potent anti-inflammatory effects greater than or equal to 1 with minimal cytotoxicity to RAW264.7 cells. Collectively these results suggest that using lipophilic extracts of stinging nettle may be more effective than traditional tinctures (water, methanol, ethanol) in clinical evaluations for the treatment of inflammatory disorders especially arthritis. A chemical investigation into the lipophilic extracts of stinging nettle to identify the bioactive compound(s) responsible for their observed anti-inflammatory activity is further warranted. Published by Elsevier GmbH.

  19. Cell-penetrating cationic siRNA and lipophilic derivatives efficient at nanomolar concentrations in the presence of serum and albumin.

    PubMed

    Perche, Phanélie; Nothisen, Marc; Bagilet, Jérémy; Behr, Jean-Paul; Kotera, Mitsuharu; Remy, Jean-Serge

    2013-08-28

    Despite its considerable interest in human therapy, in vivo siRNA delivery is still suffering from hurdles of vectorization. We have shown recently efficient gene silencing by non-vectorized cationic siRNA. Here, we describe the synthesis and in vitro evaluation of new amphiphilic cationic siRNA. C₁₂-, (C₁₂)₂- and cholesteryl-spermine(x)-siRNA were capable of luciferase knockdown at nanomolar concentrations without vectorization (i.e. one to two orders of magnitude more potent than commercially available cholesteryl siRNA). Moreover, incubation in the presence of serum did not impair their efficiency. Finally, amphiphilic cationic siRNA was pre-loaded on albumin. In A549Luc cells in the presence of serum, these siRNA conjugates were highly effective and had low toxicity. Copyright © 2013. Published by Elsevier B.V.

  20. Supercritical Carbon Dioxide and Microwave-Assisted Extraction of Functional Lipophilic Compounds from Arthrospira platensis

    PubMed Central

    Esquivel-Hernández, Diego A.; López, Víctor H.; Rodríguez-Rodríguez, José; Alemán-Nava, Gibrán S.; Cuéllar-Bermúdez, Sara P.; Rostro-Alanis, Magdalena; Parra-Saldívar, Roberto

    2016-01-01

    Arthrospira platensis biomass was used in order to obtain functional lipophilic compounds through green extraction technologies such as supercritical carbon dioxide fluid extraction (SFE) and microwave-assisted extraction (MAE). The temperature (T) factor was evaluated for MAE, while for SFE, pressure (P), temperature (T), and co-solvent (ethanol) (CS) were evaluated. The maximum extraction yield of the obtained oleoresin was (4.07% ± 0.14%) and (4.27% ± 0.10%) for SFE and MAE, respectively. Extracts were characterized by gas chromatography mass spectrometry (GC-MS) and gas chromatography flame ionization detector (GC-FID). The maximum contents of functional lipophilic compounds in the SFE and MAE extracts were: for carotenoids 283 ± 0.10 μg/g and 629 ± 0.13 μg/g, respectively; for tocopherols 5.01 ± 0.05 μg/g and 2.46 ± 0.09 μg/g, respectively; and for fatty acids 34.76 ± 0.08 mg/g and 15.88 ± 0.06 mg/g, respectively. In conclusion, the SFE process at P 450 bar, T 60 °C and CS 53.33% of CO2 produced the highest yield of tocopherols, carotenoids and fatty acids. The MAE process at 400 W and 50 °C gives the best extracts in terms of tocopherols and carotenoids. For yield and fatty acids, the MAE process at 400 W and 70 °C produced the highest values. Both SFE and MAE showed to be suitable green extraction technologies for obtaining functional lipophilic compounds from Arthrospira platensis. PMID:27164081

  1. Determination of reversed-phase high performance liquid chromatography based octanol-water partition coefficients for neutral and ionizable compounds: Methodology evaluation.

    PubMed

    Liang, Chao; Qiao, Jun-Qin; Lian, Hong-Zhen

    2017-12-15

    Reversed-phase liquid chromatography (RPLC) based octanol-water partition coefficient (logP) or distribution coefficient (logD) determination methods were revisited and assessed comprehensively. Classic isocratic and some gradient RPLC methods were conducted and evaluated for neutral, weak acid and basic compounds. Different lipophilicity indexes in logP or logD determination were discussed in detail, including the retention factor logk w corresponding to neat water as mobile phase extrapolated via linear solvent strength (LSS) model from isocratic runs and calculated with software from gradient runs, the chromatographic hydrophobicity index (CHI), apparent gradient capacity factor (k g ') and gradient retention time (t g ). Among the lipophilicity indexes discussed, logk w from whether isocratic or gradient elution methods best correlated with logP or logD. Therefore logk w is recommended as the preferred lipophilicity index for logP or logD determination. logk w easily calculated from methanol gradient runs might be the main candidate to replace logk w calculated from classic isocratic run as the ideal lipophilicity index. These revisited RPLC methods were not applicable for strongly ionized compounds that are hardly ion-suppressed. A previously reported imperfect ion-pair RPLC method was attempted and further explored for studying distribution coefficients (logD) of sulfonic acids that totally ionized in the mobile phase. Notably, experimental logD values of sulfonic acids were given for the first time. The IP-RPLC method provided a distinct way to explore logD values of ionized compounds. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Supercritical Carbon Dioxide and Microwave-Assisted Extraction of Functional Lipophilic Compounds from Arthrospira platensis.

    PubMed

    Esquivel-Hernández, Diego A; López, Víctor H; Rodríguez-Rodríguez, José; Alemán-Nava, Gibrán S; Cuéllar-Bermúdez, Sara P; Rostro-Alanis, Magdalena; Parra-Saldívar, Roberto

    2016-05-05

    Arthrospira platensis biomass was used in order to obtain functional lipophilic compounds through green extraction technologies such as supercritical carbon dioxide fluid extraction (SFE) and microwave-assisted extraction (MAE). The temperature (T) factor was evaluated for MAE, while for SFE, pressure (P), temperature (T), and co-solvent (ethanol) (CS) were evaluated. The maximum extraction yield of the obtained oleoresin was (4.07% ± 0.14%) and (4.27% ± 0.10%) for SFE and MAE, respectively. Extracts were characterized by gas chromatography mass spectrometry (GC-MS) and gas chromatography flame ionization detector (GC-FID). The maximum contents of functional lipophilic compounds in the SFE and MAE extracts were: for carotenoids 283 ± 0.10 μg/g and 629 ± 0.13 μg/g, respectively; for tocopherols 5.01 ± 0.05 μg/g and 2.46 ± 0.09 μg/g, respectively; and for fatty acids 34.76 ± 0.08 mg/g and 15.88 ± 0.06 mg/g, respectively. In conclusion, the SFE process at P 450 bar, T 60 °C and CS 53.33% of CO₂ produced the highest yield of tocopherols, carotenoids and fatty acids. The MAE process at 400 W and 50 °C gives the best extracts in terms of tocopherols and carotenoids. For yield and fatty acids, the MAE process at 400 W and 70 °C produced the highest values. Both SFE and MAE showed to be suitable green extraction technologies for obtaining functional lipophilic compounds from Arthrospira platensis.

  3. Nanostructuring Biomaterials with Specific Activities towards Digestive Enzymes for Controlled Gastrointestinal Absorption of Lipophilic Bioactive Molecules.

    PubMed

    Joyce, Paul; Whitby, Catherine P; Prestidge, Clive A

    2016-11-01

    This review describes the development of novel lipid-based biomaterials that modulate fat digestion for the enhanced uptake of encapsulated lipophilic bioactive compounds (e.g. drugs and vitamins). Specific focus is directed towards analysing how key material characteristics affect the biological function of digestive lipases and manipulate lipolytic digestion. The mechanism of lipase action is a complex, interfacial process, whereby hydrolysis can be controlled by the ability for lipase to access and adsorb to the lipid-in-water interface. However, significant conjecture exists within the literature regarding parameters that influence the activities of digestive lipases. Important findings from recent investigations that strategically examined the interplay between the interfacial composition of the lipid microenvironment and lipolysis kinetics in simulated biophysical environments are presented. The correlation between lipolysis and the rate of solubilisation and absorption of lipophilic compounds in the gastrointestinal tract (GIT) is detailed. Greater insights into the mechanism of lipase action have provided a new approach for designing colloidal carriers that orally deliver poorly soluble compounds, directly impacting the pharmaceutical and food industries. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Miscanthus x giganteus bark organosolv fractionation: fate of lipophilic components and formation of valuable phenolic byproducts.

    PubMed

    Villaverde, Juan José; De Vega, Alberto; Ligero, Pablo; Freire, Carmen S R; Neto, Carlos Pascoal; Silvestre, Armando J D

    2010-07-28

    The behavior of Miscanthus x giganteus bark lipophilic extractives during three acid organosolv pulping processes (Acetosolv, formic acid fractionation, and Milox) was investigated. It was demonstrated that nearly 90% of the lipophilic extractives were removed from pulps by either dissolution in the organosolv liquors (fatty acids and alcohols) or extensive degradation (sterols). The organosolv liquors were found to be rich in vanillin, syringaldehyde, and ferulic, vanillic, and p-coumaric acids. The Acetosolv fractionation process was found to be the most efficient in the removal of lipophilic components from pulps, and it was also the process that generated higher amounts of valuable monomeric phenolic compounds that could be exploited within the biorefinery context.

  5. Evaluation of a Silicone Membrane as an Alternative to Human Skin for Determining Skin Permeation Parameters of Chemical Compounds.

    PubMed

    Uchida, Takashi; Yakumaru, Masafumi; Nishioka, Keisuke; Higashi, Yoshihiro; Sano, Tomohiko; Todo, Hiroaki; Sugibayashi, Kenji

    2016-01-01

    We evaluated the effectiveness of a silicone membrane as an alternative to human skin using the skin permeation parameters of chemical compounds. An in vitro permeation study using 15 model compounds was conducted, and permeation parameters comprising permeability coefficient (P), diffusion parameter (DL(-2)), and partition parameter (KL) were calculated from each permeation profile. Significant correlations were obtained in log P, log DL(-2), and log KL values between the silicone membrane and human skin. DL(-2) values of model compounds, except flurbiprofen, in the silicone membrane were independent of the lipophilicity of the model compounds and were 100-fold higher than those in human skin. For antipyrine and caffeine, which are hydrophilic, KL values in the silicone membrane were 100-fold lower than those in human skin, and P values, calculated as the product of a DL(-2) and KL, were similar. For lipophilic compounds, such as n-butyl paraben and flurbiprofen, KL values for silicone were similar to or 10-fold higher than those in human skin, and P values for silicone were 100-fold higher than those in human skin. Furthermore, for amphiphilic compounds with log Ko/w values from 0.5 to 3.5, KL values in the silicone membrane were 10-fold lower than those in human skin, and P values for silicone were 10-fold higher than those in human skin. The silicone membrane was useful as a human skin alternative in an in vitro skin permeation study. However, depending on the lipophilicity of the model compounds, some parameters may be over- or underestimated.

  6. Lipophilic metabolite profiling of maize and sorghum seeds and seedlings, and their pest spotted stem borer larvae: a standardized GC-MS based approach.

    PubMed

    Kumar, Sandeep; Dhillon, Mukesh K

    2015-03-01

    In order to better understand the biochemical interactions and to identify new biomarkers for plant resistance against insects, we proposed a suitable lipophilic profiling method for insects and their host plants. The critical components of GC-MS based analysis are: sample amount, extraction, derivatization, temperature gradient, run time, and identification of peaks. For lipophilic metabolite profiling of maize and sorghum, and their insect pest, spotted stem borer larvae, we recommend 100 mg sample weight for seeds and insect samples (whole insect body), and 200 mg for seedlings. Maize and sorghum seeds required less time for fat extraction in comparison to their seedlings and the pest fed on these seedlings. GC-MS was standardized for better separation and intensity of peaks using different temperature gradients in the range of 180-300 C. A total of 48 lipophilic compounds encompassing various classes based on their functional groups such as fatty acids, fatty alcohols, hydrocarbons, sterols and terpenoids, vitamin derivative, etc. were separated in the seedlings (30), seeds (14), and the pest (26) in the retention time range of 3.22 to 29.41 min. This method could be useful to study nutritional aspects of different field crops in relation to various stresses apart from the analysis of lipophilic compounds for better understanding of insect-plant interactions.

  7. Molecular Insights into the Local Anesthetic Receptor within Voltage-Gated Sodium Channels Using Hydroxylated Analogs of Mexiletine

    PubMed Central

    Desaphy, Jean-François; Dipalma, Antonella; Costanza, Teresa; Carbonara, Roberta; Dinardo, Maria Maddalena; Catalano, Alessia; Carocci, Alessia; Lentini, Giovanni; Franchini, Carlo; Camerino, Diana Conte

    2011-01-01

    We previously showed that the β-adrenoceptor modulators, clenbuterol and propranolol, directly blocked voltage-gated sodium channels, whereas salbutamol and nadolol did not (Desaphy et al., 2003), suggesting the presence of two hydroxyl groups on the aromatic moiety of the drugs as a molecular requisite for impeding sodium channel block. To verify such an hypothesis, we synthesized five new mexiletine analogs by adding one or two hydroxyl groups to the aryloxy moiety of the sodium channel blocker and tested these compounds on hNav1.4 channels expressed in HEK293 cells. Concentration–response relationships were constructed using 25-ms-long depolarizing pulses at −30 mV applied from an holding potential of −120 mV at 0.1 Hz (tonic block) and 10 Hz (use-dependent block) stimulation frequencies. The half-maximum inhibitory concentrations (IC50) were linearly correlated to drug lipophilicity: the less lipophilic the drug, minor was the block. The same compounds were also tested on F1586C and Y1593C hNav1.4 channel mutants, to gain further information on the molecular interactions of mexiletine with its receptor within the sodium channel pore. In particular, replacement of Phe1586 and Tyr1593 by non-aromatic cysteine residues may help in the understanding of the role of π–π or π–cation interactions in mexiletine binding. Alteration of tonic block suggests that the aryloxy moiety of mexiletine may interact either directly or indirectly with Phe1586 in the closed sodium channel to produce low-affinity binding block, and that this interaction depends on the electrostatic potential of the drug aromatic tail. Alteration of use-dependent block suggests that addition of hydroxyl groups to the aryloxy moiety may modify high-affinity binding of the drug amine terminal to Phe1586 through cooperativity between the two pharmacophores, this effect being mainly related to drug lipophilicity. Mutation of Tyr1593 further impaired such cooperativity. In conclusion, these results confirm our former hypothesis by showing that the presence of hydroxyl groups to the aryloxy moiety of mexiletine greatly reduced sodium channel block, and provide molecular insights into the intimate interaction of local anesthetics with their receptor. PMID:22403541

  8. Improvement of lipophilicity and membrane transport of cefuroxime using in vitro models.

    PubMed

    Mrestani, Yahya; Mrestani-Klaus, Carmen; Bretschneider, Beate; Neubert, Reinhard H H

    2004-11-01

    Most beta-lactam antibiotics cannot be absorbed orally and, therefore, must be administered intravenously (i.v.) or intramuscularly (i.m.). Because of the obvious drawbacks of drug delivery by injection, the development of alternatives with enhanced oral bioavailability is receiving much attention in pharmaceutical research. Cefuroxime exhibiting significant advantages in the parental treatment of common infections, was used as model drug in the present study. The effect of the cationic absorption enhancers (four quaternary ammonium salts) on the lipophilicity of cefuroxime was investigated by means of the n-octanol/water system. The results on partitioning coefficients in the n-octanol/buffer system were confirmed using an in vitro transport model with artificial (dodecanol collodium membrane) and biological membranes (Charles-River guinea pig).

  9. Synthesis and hypoglycemic activity of 9-O-(lipophilic group substituted) berberine derivatives.

    PubMed

    Zhang, Shanshan; Wang, Xiaohong; Yin, Weicheng; Liu, Zhenbao; Zhou, Mi; Xiao, Daipeng; Liu, Yanfei; Peng, Dongming

    2016-10-01

    A series of 9-O-(lipophilic group substituted) berberine derivatives were synthesized and evaluated for their cytotoxicity and hypoglycemic activity against HepG2 cells. All the results indicated that most of the synthesized compounds exhibited lower cytotoxicity and a certain degree of hypoglycemic activity. Especially the compounds 5g and 5h displayed dramatically increased hypoglycemic activity compared with berberine, and the cytotoxicity maintained or even lower than berberine, indicating that they are potential candidates for new anti-type 2 diabetes mellitus drugs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Degradable gene delivery systems based on Pluronics-modified low-molecular-weight polyethylenimine: preparation, characterization, intracellular trafficking, and cellular distribution

    PubMed Central

    Fan, Wei; Wu, Xin; Ding, Baoyue; Gao, Jing; Cai, Zhen; Zhang, Wei; Yin, Dongfeng; Wang, Xiang; Zhu, Quangang; Liu, Jiyong; Ding, Xueying; Gao, Shen

    2012-01-01

    Background Cationic copolymers consisting of polycations linked to nonionic amphiphilic block polymers have been evaluated as nonviral gene delivery systems, and a large number of different polymers and copolymers of linear, branched, and dendrimeric architectures have been tested in terms of their suitability and efficacy for in vitro and in vivo transfection. However, the discovery of new potent materials still largely relies on empiric approaches rather than a rational design. The authors investigated the relationship between the polymers’ structures and their biological performance, including DNA compaction, toxicity, transfection efficiency, and the effect of cellular uptake. Methods This article reports the synthesis and characterization of a series of cationic copolymers obtained by grafting polyethyleneimine with nonionic amphiphilic surfactant polyether-Pluronic® consisting of hydrophilic ethylene oxide and hydrophobic propylene oxide blocks. Transgene expression, cytotoxicity, localization of plasmids, and cellular uptake of these copolymers were evaluated following in vitro transfection of HeLa cell lines with various individual components of the copolymers. Results Pluronics can exhibit biological activity including effects on enhancing DNA cellular uptake, nuclear translocation, and gene expression. The Pluronics with a higher hydrophilic-lipophilic balance value lead to homogeneous distribution in the cytoplasm; those with a lower hydrophilic-lipophilic balance value prefer to localize in the nucleus. Conclusion This Pluronic-polyethyleneimine system may be worth exploring as components in the cationic copolymers as the DNA or small interfering RNA/microRNA delivery system in the near future. PMID:22403492

  11. In Vitro Plasma Stability, Permeability and Solubility of Mercaptoacetamide Histone Deacetylase Inhibitors

    PubMed Central

    Konsoula, Roula; Jung, Mira

    2008-01-01

    Histone deacetylase inhibitors (HDACIs) are emerging as a new class of therapeutic agents with potent antitumor activities in a broad spectrum of human cancers. In this study, the in vitro plasma stability, permeability, solubility, and lipophilicity (logD) of two mercaptoacetamide-based HDACIs (coded as W2 and S2) were evaluated and compared to Vorinostat (SAHA). The results demonstrated that the compounds manifested high solubility in HCl (pH 1.2) but lower in PBS (pH 7.4) than SAHA. Moreover, mercaptoacetamide-based HDACIs exhibited higher lipophilicity values compared to SAHA. The permeability of these compounds was evaluated using the Caco-2 cell monolayer as a model of the intestinal mucosa. The Caco-2 studies revealed that the compounds S2 and W2 are highly permeable with apparent permeability coefficients (Papp) in the apical to basolateral direction of 7.33 × 10−6 and 15.0 × 10−6 cm/s, respectively. The in vitro stability was determined in human, mouse, porcine and rat plasma. Data showed that the compound W2 is more stable in human and rat plasma and the S2 is more stable in all plasma species than SAHA. Taken together, these results indicate that the mercaptoacetamide-based HDACIs possess favorable solubility, lipophilicity, permeability and plasma stability features. PMID:18562136

  12. An Assessment of the Intestinal Lumen as a Site for Intervention in Reducing Body Burdens of Organochlorine Compounds

    PubMed Central

    Jandacek, Ronald J.; Genuis, Stephen J.

    2013-01-01

    Many individuals maintain a persistent body burden of organochlorine compounds (OCs) as well as other lipophilic compounds, largely as a result of airborne and dietary exposures. Ingested OCs are typically absorbed from the small intestine along with dietary lipids. Once in the body, stored OCs can mobilize from adipose tissue storage sites and, along with circulating OCs, are delivered into the small intestine via hepatic processing and biliary transport. Retained OCs are also transported into both the large and small intestinal lumen via non-biliary mechanisms involving both secretion and desquamation from enterocytes. OCs and some other toxicants can be reabsorbed from the intestine, however, they take part in enterohepatic circulation(EHC). While dietary fat facilitates the absorption of OCs from the small intestine, it has little effect on OCs within the large intestine. Non-absorbable dietary fats and fat absorption inhibitors, however, can reduce the re-absorption of OCs and other lipophiles involved in EHC and may enhance the secretion of these compounds into the large intestine—thereby hastening their elimination. Clinical studies are currently underway to determine the efficacy of using non-absorbable fats and inhibitors of fat absorption in facilitating the elimination of persistent body burdens of OCs and other lipophilic human contaminants. PMID:23476122

  13. An assessment of the intestinal lumen as a site for intervention in reducing body burdens of organochlorine compounds.

    PubMed

    Jandacek, Ronald J; Genuis, Stephen J

    2013-01-01

    Many individuals maintain a persistent body burden of organochlorine compounds (OCs) as well as other lipophilic compounds, largely as a result of airborne and dietary exposures. Ingested OCs are typically absorbed from the small intestine along with dietary lipids. Once in the body, stored OCs can mobilize from adipose tissue storage sites and, along with circulating OCs, are delivered into the small intestine via hepatic processing and biliary transport. Retained OCs are also transported into both the large and small intestinal lumen via non-biliary mechanisms involving both secretion and desquamation from enterocytes. OCs and some other toxicants can be reabsorbed from the intestine, however, they take part in enterohepatic circulation(EHC). While dietary fat facilitates the absorption of OCs from the small intestine, it has little effect on OCs within the large intestine. Non-absorbable dietary fats and fat absorption inhibitors, however, can reduce the re-absorption of OCs and other lipophiles involved in EHC and may enhance the secretion of these compounds into the large intestine--thereby hastening their elimination. Clinical studies are currently underway to determine the efficacy of using non-absorbable fats and inhibitors of fat absorption in facilitating the elimination of persistent body burdens of OCs and other lipophilic human contaminants.

  14. Analysis of Lipophilic and Hydrophilic Bioactive Compounds Content in Sea Buckthorn (Hippophaë rhamnoides L.) Berries.

    PubMed

    Teleszko, Mirosława; Wojdyło, Aneta; Rudzińska, Magdalena; Oszmiański, Jan; Golis, Tomasz

    2015-04-29

    The aim of this study was to determine selected phytochemicals in berries of eight sea buckthorn (Hippophaë rhamnoides subsp. mongolica) cultivars, including lipophilic and hydrophilic compounds. In the experiment chromatographic analyses, GC (phytosterols and fatty acids), UPLC-PDA-FL, LC-MS (polyphenols), and HPLC (L-ascorbic acid), as well spectrophotometric method (total carotenoids) were used. The lipid fraction isolated from whole fruit contained 14 phytosterols (major compounds β-sitosterol > 24-methylenecykloartanol > squalene) and 11 fatty acids in the order MUFAs > SFAs > PUFAs. Carotenoids occurred in concentrations between 6.19 and 23.91 mg/100 g fresh weight (fw) (p < 0.05). The major polyphenol group identified in berries was flavonols (mean content of 311.55 mg/100 g fw), with the structures of isorhamnetin (six compounds), quercetin (four compounds), and kaempferol (one compound) glycosides. Examined sea buckthorn cultivars were characterized also by a high content of L-ascorbic acid in a range from 52.86 to 130.97 mg/100 g fw (p < 0.05).

  15. Mitochondria: Targeting mitochondrial reactive oxygen species with mitochondriotropic polyphenolic-based antioxidants.

    PubMed

    Teixeira, José; Deus, Cláudia M; Borges, Fernanda; Oliveira, Paulo J

    2018-04-01

    Mitochondrial function and regulation of redox balance is fundamental in controlling cellular life and death pathways. Antioxidants have been used to counteract disruption of redox networks, normally associated with progressive loss of cell homeostasis and disease pathophysiology, although therapeutic success is limited mainly due to pharmacokinetic drawbacks. Attempts to improve mitochondrial function in a range of diseases spurred active drug discovery efforts. Currently, the most effective strategy to deliver drugs to mitochondria is the covalent link of lipophilic cations to the bioactive compound. Although targeting mitochondrial oxidative stress with antioxidants has been demonstrated, clinical use has been hampered by several challenges, with no FDA-approved drug so far. Development of new mitochondriotropic antioxidant agents based on dietary polyphenols has recently gained momentum. Due to their nature, mitochondria-targeted multi-functional antioxidants can trigger stress responses and contribute to tissue protection through hormesis mechanisms, inhibiting excessive mitochondrial ROS production and associated diseases. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Around the macrolide - Impact of 3D structure of macrocycles on lipophilicity and cellular accumulation.

    PubMed

    Koštrun, Sanja; Munic Kos, Vesna; Matanović Škugor, Maja; Palej Jakopović, Ivana; Malnar, Ivica; Dragojević, Snježana; Ralić, Jovica; Alihodžić, Sulejman

    2017-06-16

    The aim of this study was to investigate lipophilicity and cellular accumulation of rationally designed azithromycin and clarithromycin derivatives at the molecular level. The effect of substitution site and substituent properties on a global physico-chemical profile and cellular accumulation of investigated compounds was studied using calculated structural parameters as well as experimentally determined lipophilicity. In silico models based on the 3D structure of molecules were generated to investigate conformational effect on studied properties and to enable prediction of lipophilicity and cellular accumulation for this class of molecules based on non-empirical parameters. The applicability of developed models was explored on a validation and test sets and compared with previously developed empirical models. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  17. Mechanisms of membrane toxicity of hydrocarbons.

    PubMed Central

    Sikkema, J; de Bont, J A; Poolman, B

    1995-01-01

    Microbial transformations of cyclic hydrocarbons have received much attention during the past three decades. Interest in the degradation of environmental pollutants as well as in applications of microorganisms in the catalysis of chemical reactions has stimulated research in this area. The metabolic pathways of various aromatics, cycloalkanes, and terpenes in different microorganisms have been elucidated, and the genetics of several of these routes have been clarified. The toxicity of these compounds to microorganisms is very important in the microbial degradation of hydrocarbons, but not many researchers have studied the mechanism of this toxic action. In this review, we present general ideas derived from the various reports mentioning toxic effects. Most importantly, lipophilic hydrocarbons accumulate in the membrane lipid bilayer, affecting the structural and functional properties of these membranes. As a result of accumulated hydrocarbon molecules, the membrane loses its integrity, and an increase in permeability to protons and ions has been observed in several instances. Consequently, dissipation of the proton motive force and impairment of intracellular pH homeostasis occur. In addition to the effects of lipophilic compounds on the lipid part of the membrane, proteins embedded in the membrane are affected. The effects on the membrane-embedded proteins probably result to a large extent from changes in the lipid environment; however, direct effects of lipophilic compounds on membrane proteins have also been observed. Finally, the effectiveness of changes in membrane lipid composition, modification of outer membrane lipopolysaccharide, altered cell wall constituents, and active excretion systems in reducing the membrane concentrations of lipophilic compounds is discussed. Also, the adaptations (e.g., increase in lipid ordering, change in lipid/protein ratio) that compensate for the changes in membrane structure are treated. PMID:7603409

  18. Polyphenolic Compounds and Antioxidant Activity of Cold-Pressed Seed Oil from Finola Cultivar of Cannabis sativa L.

    PubMed

    Smeriglio, Antonella; Galati, Enza M; Monforte, Maria T; Lanuzza, Francesco; D'Angelo, Valeria; Circosta, Clara

    2016-08-01

    The aim of this study was to characterize the polyphenolic compounds and antioxidant activity of cold-pressed seed oil from Finola cultivar of industrial hemp (Cannabis sativa L.). Several methodologies have been employed to evaluate the in vitro antioxidant activity of Finola hempseed oil (FHSO) and both lipophilic (LF) and hydrophilic fractions (HF). The qualitative and quantitative composition of the phenolic fraction of FHSO was performed by HPLC analyses. From the results is evident that FHSO has high antioxidative activity, as measured by DPPH radical (146.76 mmol of TE/100 g oil), inhibited β-carotene bleaching, quenched a chemically generated peroxyl radical in vitro and showed high ferrous ion chelating activity. Reactivity towards 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) radical cation and ferric-reducing antioxidant power values were 695.2 µmol of TE/100g oil and 3690.6 µmol of TE/100 g oil respectively. FHSO contains a significant amount of phenolic compounds of which 2780.4 mg of quercetin equivalent/100 g of total flavonoids. The whole oil showed higher antioxidant activity compared with LF and HF. Our findings indicate that the significant antioxidant properties shown from Finola seed oil might generally depend on the phenolic compounds, especially flavonoids, such as flavanones, flavonols, flavanols and isoflavones. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  19. CF3 Derivatives of the Anticancer Ru(III) Complexes KP1019, NKP-1339, and Their Imidazole and Pyridine Analogues Show Enhanced Lipophilicity, Albumin Interactions, and Cytotoxicity.

    PubMed

    Chang, Stephanie W; Lewis, Andrew R; Prosser, Kathleen E; Thompson, John R; Gladkikh, Margarita; Bally, Marcel B; Warren, Jeffrey J; Walsby, Charles J

    2016-05-16

    The Ru(III) complexes indazolium [trans-RuCl4(1H-indazole)2] (KP1019) and sodium [trans-RuCl4(1H-indazole)2] (NKP-1339) are leading candidates for the next generation of metal-based chemotherapeutics. Trifluoromethyl derivatives of these compounds and their imidazole and pyridine analogues were synthesized to probe the effect of ligand lipophilicity on the pharmacological properties of these types of complexes. Addition of CF3 groups also provided a spectroscopic handle for (19)F NMR studies of ligand exchange processes and protein interactions. The lipophilicities of the CF3-functionalized compounds and their unsubstituted parent complexes were quantified by the shake-flask method to give the distribution coefficient D at pH 7.4 (log D7.4). The solution behavior of the CF3-functionalized complexes was characterized in phosphate-buffered saline (PBS) using (19)F NMR, electron paramagnetic resonance (EPR), and UV-vis spectroscopies. These techniques, along with fluorescence competition experiments, were also used to characterize interactions with human serum albumin (HSA). From these studies it was determined that increased lipophilicity correlates with reduced solubility in PBS but enhancement of noncoordinate interactions with hydrophobic domains of HSA. These protein interactions improve the solubility of the complexes and inhibit the formation of oligomeric species. EPR measurements also demonstrated the formation of HSA-coordinated species with longer incubation. (19)F NMR spectra show that the trifluoromethyl complexes release axial ligands in PBS and in the presence of HSA. In vitro testing showed that the most lipophilic complexes had the greatest cytotoxic activity. Addition of CF3 groups enhances the activity of the indazole complex against A549 nonsmall cell lung carcinoma cells. Furthermore, in the case of the pyridine complexes, the parent compound was inactive against the HT-29 human colon carcinoma cell line but showed strong cytotoxicity with CF3 functionalization. Overall, these studies demonstrate that lipophilicity may be a determining factor in the anticancer activity and pharmacological behavior of these types of Ru(III) complexes.

  20. Lipophilicity, antifungal and antioxidant properties of persilben.

    PubMed

    Smolarz, Helena D; Kosikowska, Urszula; Baraniak, Barbara; Malm, Anna; Persona, Andrzej

    2005-01-01

    The lipophilicity of persilben, an important parameter influencing the penetration of the compound through biological membranes, was determined experimentally by dynamic method and was theoretically calculated according to the fragmentation methods introduced by Crippen, Broto and Viswanadhan. The higher value of partition coefficient (log P = 3.89) obtained for persilben than that for resveratrol points to potentially higher ease of penetration of persilben into cells of living organism. Antimicrobial and antioxidant activities of persilben were tested. The obtained data suggest that this compound possesses some antioxidant activity. Persilben appears to have also some inhibitory effect against some species of dermatophytes from Tnichophyton genus but only at high concentrations.

  1. The Brown Alga Stypopodium zonale (Dictyotaceae): A Potential Source of Anti-Leishmania Drugs

    PubMed Central

    Soares, Deivid Costa; Szlachta, Marcella Macedo; Teixeira, Valéria Laneuville; Soares, Angelica Ribeiro; Saraiva, Elvira Maria

    2016-01-01

    This study evaluated the anti-Leishmania amazonensis activity of a lipophilic extract from the brown alga Stypopodium zonale and atomaric acid, its major compound. Our initial results revealed high inhibitory activity for intracellular amastigotes in a dose-dependent manner and an IC50 of 0.27 μg/mL. Due to its high anti-Leishmania activity and low toxicity toward host cells, we fractionated the lipophilic extract. A major meroditerpene in this extract, atomaric acid, and its methyl ester derivative, which was obtained by a methylation procedure, were identified by nuclear magnetic resonance (NMR) spectroscopy. Both compounds inhibited intracellular amastigotes, with IC50 values of 20.2 μM (9 μg/mL) and 22.9 μM (10 μg/mL), and selectivity indexes of 8.4 μM and 11.5 μM. The leishmanicidal activity of both meroditerpenes was independent of nitric oxide (NO) production, but the generation of reactive oxygen species (ROS) may be at least partially responsible for the amastigote killing. Our results suggest that the lipophilic extract of S. zonale may represent an important source of compounds for the development of anti-Leishmania drugs. PMID:27618071

  2. Synthesis and in vitro transfection efficiency of spermine-based cationic lipids with different central core structures and lipophilic tails.

    PubMed

    Niyomtham, Nattisa; Apiratikul, Nuttapon; Suksen, Kanoknetr; Opanasopit, Praneet; Yingyongnarongkul, Boon-Ek

    2015-02-01

    Twelve spermine-based cationic lipids with four different central core structures (di(oxyethyl)amino, di(oxyethyl)amino carboxy, 3-amino-1,2-dioxypropyl and 2-amino-1,3-dioxypropyl) and three hydrophobic tails (lauric acid, myristic acid and palmitic acid) were synthesized. The liposomes containing lipids and DOPE showed moderate to good in vitro DNA delivery into HeLa cells. GFP expression experiments revealed that liposomes composed of lipids with 3-amino-1,2-dioxypropyl as a central core structure exhibited highest transfection efficiency under serum-free condition. Whereas, lipid with 2-amino-1,3-dioxypropyl core structure showed highest transfection under 10% serum condition. Moreover, the liposomes and lipoplexes composted of these cationic lipids exhibited low cytotoxicity. Copyright © 2015. Published by Elsevier Ltd.

  3. Estimation hydrophilic-lipophilic balance number of surfactants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pawignya, Harsa, E-mail: harsa-paw@yahoo.co.id; Chemical Engineering Departement University of Pembangunan Nasional Yogyakarta; Prasetyaningrum, Aji, E-mail: ajiprasetyaningrum@gmail.com

    Any type of surfactant has a hydrophilic-lipophilic balance number (HLB number) of different. There are several methods for determining the HLB number, with ohysical properties of surfactant (solubility cloud point and interfacial tension), CMC methods and by thermodynamics properties (Free energy Gibbs). This paper proposes to determined HLB numbers from interfelation methods. The result of study indicated that the CMC method described by Hair and Moulik espesially for nonionic surfactant. The application of exess Gibbs free energy and by implication activity coefficient provides the ability to predict the behavior of surfactants in multi component mixtures of different concentration. Determination ofmore » HLB number by solubility and cloud point parameter is spesific for anionic and nonionic surfactant but this methods not available for cationic surfactants.« less

  4. Light and dark-activated biocidal activity of conjugated polyelectrolytes.

    PubMed

    Ji, Eunkyung; Corbitt, Thomas S; Parthasarathy, Anand; Schanze, Kirk S; Whitten, David G

    2011-08-01

    This Spotlight on Applications provides an overview of a research program that has focused on the development and mechanistic study of cationic conjugated polyelectrolytes (CPEs) that function as light- and dark-active biocidal agents. Investigation has centered on poly-(phenylene ethynylene) (PPE) type conjugated polymers that are functionalized with cationic quaternary ammonium solubilizing groups. These polymers are found to interact strongly with Gram-positive and Gram-negative bacteria, and upon illumination with near-UV and visible light act to rapidly kill the bacteria. Mechanistic studies suggest that the cationic PPE-type polymers efficiently sensitize singlet oxygen ((1)O(2)), and this cytotoxic agent is responsible for initiating the sequence of events that lead to light-activated bacterial killing. Specific CPEs also exhibit dark-active antimicrobial activity, and this is believed to arise due to interactions between the cationic/lipophilic polymers and the negatively charged outer membrane characteristic of Gram-negative bacteria. Specific results are shown where a cationic CPE with a degree of polymerization of 49 exhibits pronounced light-activated killing of E. coli when present in the cell suspension at a concentration of 1 μg mL(-1).

  5. Semisynthesis, Cytotoxic Activity, and Oral Availability of New Lipophilic 9-Substituted Camptothecin Derivatives

    PubMed Central

    2013-01-01

    Despite that 9-substituted camptothecins are promising candidates in cancer therapy, the limited accessibility to this position has reduced the studies of these derivatives to a few standard modifications. We report herein a novel semisynthetic route based on the Tscherniac–Einhorn reaction to synthesize new lipophilic camptothecin derivatives with amidomethyl and imidomethyl substitutions in position 9. Compounds were evaluated for their antiproliferative activity, topoisomerase I inhibition, and oral availability. Preliminary data demonstrated that bulky imidomethyl modification is an appropriate lipophilic substitution for an effective oral administration relative to topotecan. In addition, this general procedure paves the way for obtaining new camptothecin derivatives. PMID:24900725

  6. Lipophilic Cationic Cyanines Are Potent Complex I Inhibitors and Specific in Vitro Dopaminergic Toxins with Mechanistic Similarities to Both Rotenone and MPP(.).

    PubMed

    Kadigamuwa, Chamila C; Mapa, Mapa S T; Wimalasena, Kandatege

    2016-09-19

    We have recently reported that simple lipophilic cationic cyanines are specific and potent dopaminergic toxins with a mechanism of toxicity similar to that of the Parkinsonian toxin MPP(+). In the present study, a group of fluorescent lipophilic cyanines have been used to further exploit the structure-activity relationship of the specific dopaminergic toxicity of cyanines. Here, we report that all cyanines tested were highly toxic to dopaminergic MN9D cells with IC50s in the range of 60-100 nM and not toxic to non-neuronal HepG2 cells parallel to that previously reported for 2,2'- and 4,4'-cyanines. All cyanines nonspecifically accumulate in the mitochondria of both MN9D and HepG2 cells at high concentrations, inhibit the mitochondrial complex I with the inhibition potencies similar to the potent complex I inhibitor, rotenone. They increase the reactive oxygen species (ROS) production specifically in dopaminergic cells causing apoptotic cell death. These and other findings suggest that the complex I inhibition, the expression of low levels of antioxidant enzymes, and presence of high levels of oxidatively labile radical propagator, dopamine, could be responsible for the specific increase in ROS production in dopaminergic cells. Thus, the predisposition of dopaminergic cells to produce high levels of ROS in response to mitochondrial toxins together with their inherent greater demand for energy may contribute to their specific vulnerability toward these toxins. The novel findings that cyanines are an unusual class of potent mitochondrial toxins with specific dopaminergic toxicity suggest that their presence in the environment could contribute to the etiology of PD similar to that of MPP(+) and rotenone.

  7. Diverse functions of cationic Mn(III) substituted N-pyridylporphyrins, known as SOD mimics

    PubMed Central

    Batinic-Haberle, Ines; Rajic, Zrinka; Tovmasyan, Artak; Ye, Xiaodong; Leong, Kam W.; Dewhirst, Mark W.; Vujaskovic, Zeljko; Benov, Ludmil; Spasojevic, Ivan

    2011-01-01

    Oxidative stress, a redox imbalance between the endogenous reactive species and antioxidant systems, is common to numerous pathological conditions such as cancer, central nervous system injuries, radiation injury, diabetes etc. Therefore, compounds able to reduce oxidative stress have been actively sought for over 3 decades. Superoxide is the major species involved in oxidative stress either in its own right or through its progeny, such as ONOO−, H2O2, ·OH, CO3·−, and ·NO2. Therefore, the very first compounds developed in the late 1970-ies were the superoxide dismutase (SOD) mimics. Thus far the most potent mimics have been the cationic meso Mn(III) N-substituted pyridylporphyrins and N,N′-disubstituted imidazolylporphyrins (MnPs), some of them with kcat(O2·−) similar to the kcat of SOD enzymes. Most frequently studied are ortho isomers MnTE-2-PyP5+, MnTnHex-2-PyP5+, and MnTDE-2-ImP5+. The ability to disproportionate O2·− parallels their ability to remove the other major oxidizing species, peroxynitrite, ONOO−. The same structural feature that gives rise to the high kcat (O2·−) and kred (ONOO−), allows MnPs to strongly impact the activation of the redox-sensitive transcription factors, HIF-1α, NF-κB, AP-1, and SP-1, and therefore modify the excessive inflammatory and immune responses. Coupling with cellular reductants and other redox-active endogenous proteins seems to be involved in the actions of Mn porphyrins. While hydrophilic analogues, such as MnTE-2-PyP5+ and MnTDE-2-ImP5+ are potent in numerous animal models of diseases, the lipophilic analogues were developed to cross blood brain barrier and target central nervous system and critical cellular compartment, mitochondria. The modification of its structure, aimed to preserve the SOD-like potency and lipophilicity, and diminish the toxicity, has presently been pursued. The pulmonary radioprotection by MnTnHex-2-PyP5+ was the first efficacy study performed successfully with non-human primates. The Phase I toxicity clinical trials were done on amyotrophic lateral sclerosis patients with N,N′-diethylimidazolium analogue, MnTDE-2-ImP5+ (AEOL10150). Its aggressive development as a wide spectrum radioprotector by Aeolus Pharmaceuticals has been supported by USA Federal government. The latest generation of compounds, bearing oxygens in pyridyl substituents is presently under aggressive development for cancer and CNS injuries at Duke University and is supported by Duke Translational Research Institute, The Wallace H. Coulter Translational Partners Grant Program, Preston Robert Tisch Brain Tumor Center at Duke, and National Institute of Allergy and Infectious Diseases. Metal center of cationic manganese porphyrins easily accepts and donates electrons as exemplified in the catalysis of O2·− dismutation. Thus such compounds may be equally good anti- and pro-oxidants; in either case the beneficial therapeutic effects may be observed. Moreover, while the in vivo effects may appear antioxidative, the mechanism of action of MnPs that produced such effects may be pro-oxidative; the most obvious example being the inhibition of NF-κB. The experimental data therefore teach us that we need to distinguish between the mechanism/s of action/s of MnPs and the effects we observe. A number of factors impact the type of action of MnPs leading to favorable therapeutic effects: levels of reactive species and oxygen, levels of endogenous antioxidants (enzymes and low-molecular compounds), levels of MnPs, their site of accumulation, and the mutual encounters of all of those species. The complexity of in vivo redox systems and the complex redox chemistry of MnPs challenge and motivate us to further our understanding of the physiology of the normal and diseased cell with ultimate goal to successfully treat human diseases. PMID:21616142

  8. Machine learning models for lipophilicity and their domain of applicability.

    PubMed

    Schroeter, Timon; Schwaighofer, Anton; Mika, Sebastian; Laak, Antonius Ter; Suelzle, Detlev; Ganzer, Ursula; Heinrich, Nikolaus; Müller, Klaus-Robert

    2007-01-01

    Unfavorable lipophilicity and water solubility cause many drug failures; therefore these properties have to be taken into account early on in lead discovery. Commercial tools for predicting lipophilicity usually have been trained on small and neutral molecules, and are thus often unable to accurately predict in-house data. Using a modern Bayesian machine learning algorithm--a Gaussian process model--this study constructs a log D7 model based on 14,556 drug discovery compounds of Bayer Schering Pharma. Performance is compared with support vector machines, decision trees, ridge regression, and four commercial tools. In a blind test on 7013 new measurements from the last months (including compounds from new projects) 81% were predicted correctly within 1 log unit, compared to only 44% achieved by commercial software. Additional evaluations using public data are presented. We consider error bars for each method (model based error bars, ensemble based, and distance based approaches), and investigate how well they quantify the domain of applicability of each model.

  9. Root Uptake of Lipophilic Zinc−Rhamnolipid Complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stacey, Samuel P.; McLaughlin, Michael J.; Cakmak, Ismail

    This study investigated the formation and plant uptake of lipophilic metal-rhamnolipid complexes. Monorhamnosyl and dirhamnosyl rhamnolipids formed lipophilic complexes with copper (Cu), manganese (Mn), and zinc (Zn). Rhamnolipids significantly increased Zn absorption by Brassica napus var. Pinnacle roots in {sup 65}Zn-spiked ice-cold solutions, compared with ZnSO{sub 4} alone. Therefore, rhamnolipid appeared to facilitate Zn absorption via a nonmetabolically mediated pathway. Synchrotron XRF and XAS showed that Zn was present in roots as Zn-phytate-like compounds when roots were treated with Zn-free solutions, ZnSO{sub 4}, or Zn-EDTA. With rhamnolipid application, Zn was predominantly found in roots as the Zn-rhamnolipid complex. When appliedmore » to a calcareous soil, rhamnolipids increased dry matter production and Zn concentrations in durum (Triticum durum L. cv. Balcali-2000) and bread wheat (Triticum aestivum L. cv. BDME-10) shoots. Rhamnolipids either increased total plant uptake of Zn from the soil or increased Zn translocation by reducing the prevalence of insoluble Zn-phytate-like compounds in roots.« less

  10. Does lipophilicity affect the effectiveness of a transmembrane anion transporter? Insight from squaramido-functionalized bis(choloyl) conjugates.

    PubMed

    Li, Zhi; Deng, Li-Qun; Chen, Jin-Xiang; Zhou, Chun-Qiong; Chen, Wen-Hua

    2015-12-28

    Six squaramido-functionalized bis(choloyl) conjugates were synthesized and fully characterized on the basis of NMR ((1)H and (13)C) and ESI MS (LR and HR) data. Their transmembrane anionophoric activity was investigated in detail by means of chloride ion selective electrode technique and pyranine assay. The data indicate that this set of compounds is capable of promoting the transmembrane transport of anions presumably via proton/anion symport and anion exchange processes, and that lipophilicity in terms of clog P from 3.90 to 8.32 affects the apparent ion transport rate in a concentration-dependent fashion. Detailed kinetic analysis on the data obtained from both the chloride efflux and pH discharge experiments reveals that there may exist an optimum clog P range for the intrinsic ion transport rate. However, lipophilicity exhibits little effect on the effectiveness of this set of compounds in terms of either k2/Kdiss or EC50 values.

  11. Accumulation of pyrethroid compounds in primary cultures of rat cortical neurons

    EPA Science Inventory

    Recent studies have demonstrated that lipophilic compounds (e.g. methylmercury, polychlorinated biphenyls (PCBs) and polybrominated diphenylethers (PBDEs)) rapidly accumulate in cells in culture to concentrations much higher than in the surrounding media. Primary cultures of neur...

  12. Structure-property studies on the antioxidant activity of flavonoids present in diet.

    PubMed

    Teixeira, Susana; Siquet, Christophe; Alves, Carla; Boal, Isabel; Marques, M Paula; Borges, Fernanda; Lima, José L F C; Reis, Salette

    2005-10-15

    The screening of natural flavonoids for their bioactivity as antioxidants is usually carried out by determinination of their profile as chain-breaking antioxidants, by the evaluation of their direct free radical-scavenging activity as hydrogen- or electron-donating compounds. Since this may not be the only mechanism underlying the antioxidant activity it is important to check the ability of these compounds to act as chelators of transition metal ions. Accordingly, in the present study the acidity constants of catechin and taxifolin, as well as the formation constants of the corresponding copper (II) complexes, were investigated by potentiometry and/or spectrophotometry. Moreover, a detailed quantitative examination of the coordination species formed is presented. In addition, the partition coefficients of both catechin and taxifolin in a biomimetic system (micelles) were determined, since these properties may also contribute to the antioxidant behavior of this type of compound. The log P values determined depend on the electrostatic interactions of the compounds with the differently charged micelles (the highest values were obtained for zwitterionic and cationic micelles). The prooxidant behavior of the compounds was assessed through the oxidation of 2'-deoxyguanosine, induced by a Fenton reaction, catalyzed by copper. The data obtained reveal that the flavonoids under study did not present prooxidant activity, in this particular system. The results obtained are evidence of a clear difference among the pKa, the complexation properties, and the lipophilicity of the flavonoids studied, which can partially explain their distinct antioxidant activity. The most stable geometries of the free compounds were determined by theoretical (ab initio) methods, in order to properly account for the electron correlation effects which occur in these systems, thus allowing a better interpretation of the experimental data.

  13. A novel method of estimation of lipophilicity using distance-based topological indices: dominating role of equalized electronegativity.

    PubMed

    Agrawal, Vijay K; Gupta, Madhu; Singh, Jyoti; Khadikar, Padmakar V

    2005-03-15

    Attempt is made to propose yet another method of estimating lipophilicity of a heterogeneous set of 223 compounds. The method is based on the use of equalized electronegativity along with topological indices. It was observed that excellent results are obtained in multiparametric regression upon introduction of indicator parameters. The results are discussed critically on the basis various statistical parameters.

  14. Human Intestinal Fluid Layer Separation: The Effect On Colloidal Structures & Solubility Of Lipophilic Compounds.

    PubMed

    Danny, Riethorst; Amitava, Mitra; Filippos, Kesisoglou; Wei, Xu; Jan, Tack; Joachim, Brouwers; Patrick, Augustijns

    2018-05-23

    In addition to individual intestinal fluid components, colloidal structures are responsible for enhancing the solubility of lipophilic compounds. The present study investigated the link between as well as the variability in the ultrastructure of fed state human intestinal fluids (FeHIF) and their solubilizing capacity for lipophilic compounds. For this purpose, FeHIF samples from 10 healthy volunteers with known composition and ultrastructure were used to determine the solubility of four lipophilic compounds. In light of the focus on solubility and ultrastructure, the study carefully considered the methodology of solubility determination in relation to colloid composition and solubilizing capacity of FeHIF. To determine the solubilizing capacity of human and simulated intestinal fluids, the samples were saturated with the compound of interest, shaken for 24 h, and centrifuged. When using FeHIF, solubilities were determined in the micellar layer of FeHIF, i.e. after removing the upper (lipid) layer (standard procedure), as well as in 'full' FeHIF (without removal of the upper layer). Compound concentrations were determined using HPLC-UV/fluorescence. To link the solubilizing capacity with the ultrastructure, all human and simulated fluids were imaged using transmission electron microscopy (TEM) before and after centrifugation and top layer (lipid) removal. Comparing the ultrastructure and solubilizing capacity of individual FeHIF samples demonstrated a high intersubject variability in postprandial intestinal conditions. Imaging of FeHIF after removal of the upper layer clearly showed that only micellar structures remain in the lower layer. This observation suggests that larger colloids such as vesicles and lipid droplets are contained in the upper, lipid layer. The solubilizing capacity of most FeHIF samples substantially increased with inclusion of this lipid layer. The relative increase in solubilizing capacity upon inclusion of the lipid layer was most pronounced in samples that contained mainly vesicles alongside the micelles. Current fed state simulated intestinal fluids do not contain the larger colloids observed in the lipid layer of FeHIF and can only simulate the solubilizing capacity of the micellar layer of FeHIF. While the importance of drug molecules solubilized in the micellar layer of postprandial intestinal fluids for absorption has been extensively demonstrated previously, the in-vivo relevance of drug solubilization in the lipid layer is currently unclear. In the dynamic environment of the human gastrointestinal tract, drug initially entrapped in larger postprandial colloids may become available for absorption upon lipid digestion and uptake. The current study, demonstrating the substantial solubilization of lipophilic compounds in the larger colloids of postprandial intestinal fluids, warrants further research in this field. Copyright © 2018. Published by Elsevier B.V.

  15. Differences in lung local dosimetry of the carcinogens benzo(a)pyrene and NNK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dahl, A.R.; Muggenburg, B.A.; Thornton-Manning, J.R.

    1996-12-31

    A diffusion model predicts that highly lipophilic toxicants penetrate the comparatively thick epithelium of the conducting airways much more slowly than less lipophilic toxicants. To validate this model, the tracheal walls of a Beagle dog were sprayed with very small quantities of tritiated, highly lipophilic benzo(a)pyrene (BaP), moderately lipophilic pyrene, or slightly lipophilic 4-(methylnitrosamino)-1-(3 pyridyl)-1-butanone-(NNK). The concentration of the hydrocarbons and their metabolites were measured in the circulating blood for up to 6 hr, and tissue retention was determined at the end of the experiment. Differences in absorption of these compounds into blood were manifested in several independent measurements. Themore » highly lipophilic toxicant manifested: (1) a much slower penetration into azygous vein blood, the principal drainage system from the exposed area of the trachea; (2) a much slower appearance in the systemic circulation and (3) a much greater retention in the tracheal tissues at the end of the exposure. Increased retention mm in the airway mucosa allowed a grew fraction of lipophilic toxicants to be metabolized locally in the airway walls. This finding led us to conclude that, for example, if the carcinogens BaP and NNK are deposited at the same surface density on the airway mucosa, the highly lipophilic BaP will reach a far higher concentration in the airway epithelium than will the less lipophilic NNK. Such sharp differences in local dosimetry should be considered in order to improve the accuracy of risk assessment models for inhalants.« less

  16. Clathrin to Lipid Raft-Endocytosis via Controlled Surface Chemistry and Efficient Perinuclear Targeting of Nanoparticle.

    PubMed

    Chakraborty, Atanu; Jana, Nikhil R

    2015-09-17

    Nanoparticle interacts with live cells depending on their surface chemistry, enters into cell via endocytosis, and is commonly trafficked to an endosome/lysozome that restricts subcellular targeting options. Here we show that nanoparticle surface chemistry can be tuned to alter their cell uptake mechanism and subcellular trafficking. Quantum dot based nanoprobes of 20-30 nm hydrodynamic diameters have been synthesized with tunable surface charge (between +15 mV to -25 mV) and lipophilicity to influence their cellular uptake processes and subcellular trafficking. It is observed that cationic nanoprobe electrostatically interacts with cell membrane and enters into cell via clathrin-mediated endocytosis. At lower surface charge (between +10 mV to -10 mV), the electrostatic interaction with cell membrane becomes weaker, and additional lipid raft endocytosis is initiated. If a lipophilic functional group is introduced on a weakly anionic nanoparticle surface, the uptake mechanism shifts to predominant lipid raft-mediated endocytosis. In particular, the zwitterionic-lipophilic nanoprobe has the unique advantage as it weakly interacts with anionic cell membrane, migrates toward lipid rafts for interaction through lipophilic functional group, and induces lipid raft-mediated endocytosis. While predominate or partial clathrin-mediated entry traffics most of the nanoprobes to lysozome, predominate lipid raft-mediated entry traffics them to perinuclear region, particularly to the Golgi apparatus. This finding would guide in designing appropriate nanoprobe for subcellular targeting and delivery.

  17. MALDI mass spectrometry of biomolecules and synthetic polymers using alkali hexacyanoferrate (II) complexes and glycerol as matrix

    NASA Astrophysics Data System (ADS)

    Zollner, Peter; Stubiger, Gerald; Schmid, Erich; Pittenauer, Ernst; Allmaier, Gunter

    1997-12-01

    K4[Fe(CN)6]/glycerol and Na4[Fe(CN)6]/glycerol have been investigated as liquid matrix systems for UV-MALDI MS applying a N2 laser. Analyte molecules were detected as sodium or potassium adduct ions and, in the case of proteins, as well as protonated molecular ions. Mass accuracies were comparable to those found with standard solid matrix systems with -0.06 to +0.05% deviation in the reflectron mode and with -0.24 to +0.13% in the linear mode. Useful results could be obtained within a mass range of 15 000 Da for single-charged proteins and 8000 Da for potassium cationized polyethylene glycols. Detection limits were found for hydrophilic compounds in the low picomol range and for lipophilic compounds as triacylglycerols or peracetylated and partially benzylated carbohydrates in the low femtomol range. As shown by scanning electron microscopic investigations, the generation of a thin homogenous matrix layer was essential for a successful mass spectrometric experiment. A very careful cleaning of the target surface with glacial acid prior to matrix deposition improved the formation of such a matrix film that maximum sensitivity as well as good reproducibility of the experiments could be achieved.

  18. Impacts of compound properties and sediment characteristics on the sorption behaviour of pharmaceuticals in aquatic systems.

    PubMed

    Al-Khazrajy, Omar S A; Boxall, Alistair B A

    2016-11-05

    Sorption is a key factor in determining the persistence, attenuation and bioavailability of sediment-associated contaminants. However, our understanding of the sorption behaviour of pharmaceuticals in sediments is poor. In this study, we investigated the sorption behaviour of a diverse set of pharmaceuticals in a range sediment types. Sorption affinity of pharmaceuticals for all sediments was found to increase in the order mefenamic acid

  19. Human serum albumin binding of certain antimalarials

    NASA Astrophysics Data System (ADS)

    Marković, Olivera S.; Cvijetić, Ilija N.; Zlatović, Mario V.; Opsenica, Igor M.; Konstantinović, Jelena M.; Terzić Jovanović, Nataša V.; Šolaja, Bogdan A.; Verbić, Tatjana Ž.

    2018-03-01

    Interactions between eight in-house synthesized aminoquinolines, along with well-known chloroquine, and human serum albumin (HSA) have been studied by fluorescence spectroscopy. The synthesized aminoquinolines, despite being structurally diverse, were found to be very potent antimalarials. Fluorescence measurements indicate that three compounds having additional thiophene or benzothiophene substructure bind more strongly to HSA than other studied compounds. Competitive binding experiments indicate that these three compounds bind significantly stronger to warfarin compared to diazepam binding site. Fluorescence quenching at three temperatures (20, 25, and 37 °C) was analyzed using classical Stern-Volmer equation, and a static quenching mechanism was proposed. The enthalpy and entropy changes upon sulphur-containing compound-HSA interactions were calculated using Van't Hoff equation. Positive values of enthalpy and entropy changes indicate that non-specific, hydrophobic interactions are the main contributors to HSA-compound interaction. Molecular docking and calculated lipophilicity descriptors indicate the same, pointing out that the increased lipophilicity of sulphur-containing compounds might be a reason for their better binding to HSA. Obtained results might contribute to design of novel derivatives with improved pharmacokinetic properties and drug efficacy.

  20. Mechanochemical Synthesis and Thermoelectric Properties of Magnesium Silicide and Related Alloys

    NASA Technical Reports Server (NTRS)

    Bux, Sabah K. (Inventor); Fleurial, Jean-Pierre (Inventor); Kaner, Richard B. (Inventor)

    2013-01-01

    The present invention provides a method of making a substantially phase pure compound including a cation and an anion. The compound is made by mixing in a ball-milling device a first amount of the anion with a first amount of the cation that is less than the stoichiometric amount of the cation, so that substantially all of the first amount of the cation is consumed. The compound is further made by mixing in a ball-milling device a second amount of the cation that is less than the stoichiometric amount of the cation with the mixture remaining in the device. The mixing is continued until substantially all of the second amount of the cation and any unreacted portion of anion X are consumed to afford the substantially phase pure compound.

  1. Lipophilic Compound-Mediated Gene Expression and Implication for Intervention in Reactive Oxygen Species (ROS)-Related Diseases: Mini-review

    PubMed Central

    Nakamura, Yukiko K.; Omaye, Stanley T.

    2010-01-01

    In addition to exhibiting antioxidant properties, conjugated linoleic acid (CLA) and vitamin E may modulate gene expression of endogenous antioxidant enzymes. Depending on cellular microenvironments, such modulation reflects either antioxidant or prooxidant outcomes. Although epidemiological/experimental studies have indicated that CLA and vitamin E have health promoting properties, recent findings from clinical trials have been inconclusive. Discrepancies between the results found from prospective studies and recent clinical trials might be attributed to concentration-dependent cellular microenvironment alterations. We give a perspective of possible molecular mechanisms of actions of these lipophilic compounds and their implications for interventions of reactive oxygen species (ROS)-related diseases. PMID:22254050

  2. Lipophilization and MS characterization of the main anthocyanins purified from hibiscus flowers.

    PubMed

    Grajeda-Iglesias, Claudia; Salas, Erika; Barouh, Nathalie; Baréa, Bruno; Figueroa-Espinoza, Maria Cruz

    2017-09-01

    Hibiscus sabdariffa flowers represent an interesting source of anthocyanins, one of the most important plant pigments, which are responsible of the intense red color of the calyces, and have potential as natural colorants for food applications. Nevertheless, anthocyanins are highly hydrosoluble and unstable compounds. On this basis, the aim of this work was to increase the lipophilicity of the hibiscus anthocyanins by lipophilization, in order to obtain amphiphilic colorants, which could be easily incorporated in lipid-rich food matrices. Octanoyl derivatives of delphinidin-3-O-sambubioside and cyanidin-3-O-sambubioside were chemically obtained for the first time, and characterized by means of HPLC-ESI-MS data. Copyright © 2017. Published by Elsevier Ltd.

  3. Kv11.1 (hERG)-induced cardiotoxicity: a molecular insight from a binding kinetics study of prototypical Kv11.1 (hERG) inhibitors

    PubMed Central

    Yu, Z; IJzerman, A P; Heitman, L H

    2015-01-01

    Background and Purpose Drug-induced arrhythmia due to blockade of the Kv11.1 channel (also known as the hERG K+ channel) is a frequent side effect. Previous studies have primarily focused on equilibrium parameters, i.e. affinity or potency, of drug candidates at the channel. The aim of this study was to determine the kinetics of the interaction with the channel for a number of known Kv11.1 blockers and to explore a possible correlation with the affinity or physicochemical properties of these compounds. Experimental Approach The affinity and kinetic parameters of 15 prototypical Kv11.1 inhibitors were evaluated in a number of [3H]-dofetilide binding assays. The lipophilicity (logKW-C8) and membrane partitioning (logKW-IAM) of these compounds were determined by means of HPLC analysis. Key Results A novel [3H]-dofetilide competition association assay was set up and validated, which allowed us to determine the binding kinetics of the Kv11.1 blockers used in this study. Interestingly, the compounds' affinities (Ki values) were correlated to their association rates rather than dissociation rates. Overall lipophilicity or membrane partitioning of the compounds were not correlated to their affinity or rate constants for the channel. Conclusions and Implications A compound's affinity for the Kv11.1 channel is determined by its rate of association with the channel, while overall lipophilicity and membrane affinity are not. In more general terms, our findings provide novel insights into the mechanism of action for a compound's activity at the Kv11.1 channel. This may help to elucidate how Kv11.1-induced cardiotoxicity is governed and how it can be circumvented in the future. PMID:25296617

  4. Entrapment of a volatile lipophilic aroma compound (d-limonene) in spray dried water-washed oil bodies naturally derived from sunflower seeds (Helianthus annus)☆

    PubMed Central

    Fisk, Ian D.; Linforth, Robert; Trophardy, Gil; Gray, David

    2013-01-01

    Oil bodies are natural emulsions that can be extracted from oil seeds and have previously been shown to be stable after spray drying. The aim of the study was to evaluate for the first time if spray dried water-washed oil bodies are an effective carrier for volatile lipophilic actives (the flavour compound d-limonene was used as an example aroma compound). Water-washed oil bodies were blended with maltodextrin and d-limonene and spray dried using a Buchi B-191 laboratory spray dryer. Lipid and d-limonene retention was 89–93% and 24–27%. Samples were compared to processed emulsions containing sunflower oil and d-limonene and stabilised by either lecithin or Capsul. Lecithin and Capsul processed emulsions had a lipid and d-limonene retention of 82–89%, 7.7–9.1% and 48–50%, 55–59% respectively indicating that water-washed oil bodies could retain the most lipids and Capsul could retain the most d-limonene. This indicates that whilst additional emulsifiers may be required for future applications of water-washed oil bodies as carriers of lipophilic actives, oil bodies are excellent agents for lipid encapsulation. PMID:24235784

  5. Comparative study of lipophilic and hydrophilic antioxidants from in vivo and in vitro grown Coriandrum sativum.

    PubMed

    Dias, Maria Inês; Barros, Lillian; Sousa, Maria João; Ferreira, Isabel C F R

    2011-06-01

    Coriander is commonly used for medicinal purposes, food applications, cosmetics and perfumes. Herein, the production of antioxidants in vegetative parts (leaves and stems) of in vivo and in vitro grown samples was compared. In vitro samples were clone A- with notorious purple pigmentation in stems and leaves and clone B- green. Seeds were also studied as they are used to obtain in vivo and in vitro vegetative parts. Lipophilic (tocopherols, carotenoids and chlorophylls) and hydrophilic (sugars, ascorbic acid, phenolics, flavonols and anthocyanins) compounds were quantified. The antioxidant activity was evaluated by radical scavenging activity, reducing power and lipid peroxidation inhibition. The in vivo sample showed the highest antioxidant activity mainly due to its highest levels of hydrophilic compounds. Otherwise, in vitro samples, mainly clone A, gave the highest concentration in lipophilic compounds but a different profile when compared to the in vivo sample. Clones A and B revealed a lack of β-carotene, β- and δ-tocopherols, a decrease in α-tocopherol, and an increase in γ-tocopherol and clorophylls in comparison to the in vivo sample. In vitro culture might be useful to explore the plants potentialities for industrial applications, controlling environmental conditions to produce higher amounts of some bioactive products.

  6. The physicochemical parameters of marker compounds and vehicles for use in in vitro percutaneous absorption studies.

    PubMed

    Kaca, Monika; Bock, Udo; Tawfik Jalal, Mohamed; Harms, Meike; Hoffmann, Christine; Müller-Goymann, Christel; Netzlaff, Frank; Schäfer, Ulrich; Lehr, Claus-Michael; Haltner-Ukomadu, Eleonore

    2008-05-01

    In order to prepare for a validation study to compare percutaneous absorption through reconstructed human epidermis with ex vivo skin absorption through human and animal skin, nine test compounds, covering a wide range of physicochemical properties were selected, namely: benzoic acid; caffeine; clotrimazole; digoxin; flufenamic acid; ivermectin; mannitol; nicotine; and testosterone. The donor and receptor media for the test substances, the addition of a solubiliser for the lipophilic compounds, as well as the stability and solubility of the test substances in the vehicles, were systematically analysed. Hydrophilic molecules, being freely soluble in water, were applied in buffered saline solutions. In order to overcome solubility restrictions for lipophilic compounds, the non-ionic surfactant, Igepal CA-630, was added to the donor vehicle, and, in the case of clotrimazole and ivermectin, also to the receptor fluid. The model molecules showed a suitable solubility and stability in the selected donor and receptor media throughout the whole duration of the test.

  7. Comparison of the Microbicidal activity of monochloramine and iodine.

    PubMed

    Arnitz, R; Nagl, M; Gottardi, W

    2015-12-01

    Recently, we showed that monochloramine (NH2 Cl) has a significantly stronger bactericidal and fungicidal activity than chloramine T despite its lower oxidizing power. This phenomenon was explained by increased penetration because of the higher lipophilicity and smaller bulk of NH2 Cl. As iodine (I2 ) has an even fivefold higher bulk than NH2 Cl, a comparison of both compounds regarding their microbicidal activity became the aim of this study. Aqueous solutions of I2 at a concentration of 10·7 μmol l(-1) killed 10(6) colony forming units per millilitre (CFU ml(-1) ) of Escherichia coli, Staphylococcus aureus or Pseudomonas aeruginosa to the detection limit of 10(2) CFU ml(-1) within 1 min at 20°C and pH 7·1, while a concentration of 36-355 μmol l(-1) of NH2 Cl was needed to achieve the same effect. Aspergillus fumigatus was inactivated within 5 min by 36 μmol l(-1) I2 and by 355 μmol l(-1) NH2 Cl, Candida albicans within 1 min by 10·7 μmol l(-1) I2 and by 355 μmol l(-1) NH2 Cl. The lipophilicity of I2 , determined with the octanol/water method, was three powers of 10 higher than that of NH2 Cl. The at least 10-fold stronger microbicidal activity of iodine suggests that the hindrance of penetration of the bulky molecule is outweighed by enhanced lipophilicity. The microbicidal activity of active halogen compounds increases not only with their reactivity, but also with higher lipophilicity and lower bulk, as shown recently. In this study, iodine showed a higher microbicidal activity than monochloramine and a 1000-fold higher lipophilicity. Therefore, the lipophilicity of a disinfectant may be more important than the bulk for bactericidal activity. These facts should be considered upon the design of new antiseptics and their clinical application. © 2015 The Society for Applied Microbiology.

  8. Chemical composition of barks from Quercus faginea trees and characterization of their lipophilic and polar extracts.

    PubMed

    Ferreira, Joana P A; Miranda, Isabel; Sousa, Vicelina B; Pereira, Helena

    2018-01-01

    The bark from Quercus faginea mature trees from two sites was chemically characterized for the first time. The barks showed the following composition: ash 14.6%, total extractives 13.2%, suberin 2.9% and lignin 28.2%. The polysaccharides were composed mainly of glucose and xylose (50.3% and 35.1% of all monosaccharides respectively) with 4.8% of uronic acids. The suberin composition was: ω-hydroxyacids 46.3% of total compounds, ɑ,ω-alkanoic diacids 22.3%, alkanoic acids 5.9%, alkanols 6.7% and aromatics 6.9% (ferulic acid 4.0%). Polar extracts (ethanol-water) had a high phenolic content of 630.3 mg of gallic acid equivalents (GAE)/g of extract, condensed tannins 220.7 mg of catechin equivalents (CE)/g extract, and flavonoids 207.7 mg CE/g of extract. The antioxidant activity was very high corresponding to 1567 mg Trolox equivalents/g of extract, and an IC50 of 2.63 μg extract/ml. The lipophilic extracts were constituted mainly by glycerol and its derivatives (12.3% of all compounds), alkanoic acids (27.8%), sterols (11.5%) and triterpenes (17.8%). In view of an integrated valorization, Quercus faginea barks are interesting sources of polar compounds including phenols and polyphenols with possible interesting bioactivities, while the sterols and triterpenes contained in the lipophilic extracts are also valuable bioactive compounds or chemical intermediates for specific high-value market niches, such as cosmetics, pharmaceuticals and biomedicine.

  9. Chemical composition of barks from Quercus faginea trees and characterization of their lipophilic and polar extracts

    PubMed Central

    2018-01-01

    The bark from Quercus faginea mature trees from two sites was chemically characterized for the first time. The barks showed the following composition: ash 14.6%, total extractives 13.2%, suberin 2.9% and lignin 28.2%. The polysaccharides were composed mainly of glucose and xylose (50.3% and 35.1% of all monosaccharides respectively) with 4.8% of uronic acids. The suberin composition was: ω-hydroxyacids 46.3% of total compounds, ɑ,ω-alkanoic diacids 22.3%, alkanoic acids 5.9%, alkanols 6.7% and aromatics 6.9% (ferulic acid 4.0%). Polar extracts (ethanol-water) had a high phenolic content of 630.3 mg of gallic acid equivalents (GAE)/g of extract, condensed tannins 220.7 mg of catechin equivalents (CE)/g extract, and flavonoids 207.7 mg CE/g of extract. The antioxidant activity was very high corresponding to 1567 mg Trolox equivalents/g of extract, and an IC50 of 2.63 μg extract/ml. The lipophilic extracts were constituted mainly by glycerol and its derivatives (12.3% of all compounds), alkanoic acids (27.8%), sterols (11.5%) and triterpenes (17.8%). In view of an integrated valorization, Quercus faginea barks are interesting sources of polar compounds including phenols and polyphenols with possible interesting bioactivities, while the sterols and triterpenes contained in the lipophilic extracts are also valuable bioactive compounds or chemical intermediates for specific high-value market niches, such as cosmetics, pharmaceuticals and biomedicine. PMID:29763441

  10. Lipophilic stinging nettle extracts possess potent anti-inflammatory activity, are not cytotoxic and may be superior to traditional tinctures for treating inflammatory disorders

    PubMed Central

    Johnson, Tyler A.; Sohn, Johann; Inman, Wayne D.; Bjeldanes, Leonard F.; Rayburn, Keith

    2012-01-01

    Extracts of four plant portions (roots, stems, leaves and flowers) of Urtica dioica, (the stinging nettle) were prepared using accelerated solvent extraction (ASE) involving water, hexanes, methanol and dichloromethane. The extracts were evaluated for their anti-inflammatory and cytotoxic activity in an NF-κB luciferase and MTT assay using macrophage immune (RAW264.7) cells. A standardized commercial ethanol extract of nettle leaves were also evaluated. The methanolic extract of the flowering portions displayed significant anti-inflammatory activity on par with the standard anti-inflammatory agent celastrol (1) but was moderately cytotoxic. Alternatively, the polar extracts (water, methanol, ethanol) of the roots, stems and leaves plant portions displayed moderate to weak anti-inflammatory activity, while the methanol and especially the water soluble extracts exhibited noticeable cytotoxicity. In contrast, the lipophilic dichloromethane extracts of the roots, stems and leaves exhibited potent anti-inflammatory effects ≥ 1 with minimal cytotoxicity to RAW264.7 cells. Collectively these results suggest that using lipophilic extracts of the roots, stems or leaves of stinging nettle may be more effective then traditional tinctures (water, methanol, ethanol) to undergo clinical evaluations for the treatment of inflammatory disorders including arthritis. A chemical investigation into the lipophillic extracts of stinging nettle to identify the bioactive compound(s) responsible for their observed anti-inflammatory activity is further warranted. PMID:23092723

  11. Alternative measures of lipophilicity: from octanol-water partitioning to IAM retention.

    PubMed

    Giaginis, Costas; Tsantili-Kakoulidou, Anna

    2008-08-01

    This review describes lipophilicity parameters currently used in drug design and QSAR studies. After a short historical overview, the complex nature of lipophilicity as the outcome of polar/nonpolar inter- and intramolecular interactions is analysed and considered as the background for the discussion of the different lipophilicity descriptors. The first part focuses on octanol-water partitioning of neutral and ionisable compounds, evaluates the efficiency of predictions and provides a short description of the experimental methods for the determination of distribution coefficients. A next part is dedicated to reversed-phase chromatographic techniques, HPLC and TLC in lipophilicity assessment. The two methods are evaluated for their efficiency to simulate octanol-water and the progress achieved in the refinement of suitable chromatographic conditions, in particular in the field of HPLC, is outlined. Liposomes as direct models of biological membranes are examined and phospolipophilicity is compared to the traditional lipophilicity concept. Difficulties associated with liposome-water partitioning are discussed. The last part focuses on Immobilised Artificial Membrane (IAM) chromatography as an alternative which combines membrane simulation with rapid measurements. IAM chromatographic retention is compared to octanol-water and liposome-water partitioning as well as to reversed-phase retention and its potential to predict biopartitioning and biological activities is discussed.

  12. Double Transfer Voltammetry in Two-Polarizable Interface Systems: Effects of the Lipophilicity and Charge of the Target and Compensating Ions.

    PubMed

    Molina, Ángela; Laborda, Eduardo; Olmos, José Manuel; Millán-Barrios, Enrique

    2018-03-06

    Analytical expressions are obtained for the study of the net current and individual fluxes across macro- and micro-liquid/liquid interfaces in series as those found in ion sensing with solvent polymeric membranes and in ion-transfer batteries. The mathematical solutions deduced are applicable to any voltammetric technique, independently of the lipophilicity and charge number of the target and compensating ions. When supporting electrolytes of semihydrophilic ions are employed, the so-called double transfer voltammograms have a tendency to merge into a single signal, which complicates notably the modeling and analysis of the electrochemical response. The present theoretical results point out that the appearance of one or two voltammetric waves is highly dependent on the size of the interfaces and on the viscosity of the organic solution. Hence, the two latter can be adjusted experimentally in order to "split" the voltammograms and extract information about the ions involved. This has been illustrated in this work with the experimental study in water | 1,2-dichloroethane | water cells of the transfer of the monovalent tetraethylammonium cation compensated by anions of different lipophilicity, and also of the divalent hexachloroplatinate anion.

  13. Simultaneous microencapsulation of hydrophilic and lipophilic bioactives in liposomes produced by an ecofriendly supercritical fluid process.

    PubMed

    Tsai, Wen-Chyan; Rizvi, Syed S H

    2017-09-01

    Organic solvent residues are always a concern with the liposomes produced by traditional techniques. Our objectives were to encapsulate hydrophilic and lipophilic compounds in liposomes using a newly designed supercritical fluid process coupled with vacuum-driven cargo loading. Supercritical carbon dioxide was chosen as the phospholipid-dissolving medium and an ecofriendly substitute for organic solvents. Liposomal microencapsulation was conducted via a 1000-μm expansion nozzle at 12.41MPa, 90°C, and aqueous cargo loading rate of 0.25ml/s. Vitamins C and E were selected as model hydrophilic and lipophilic compounds encapsulated in the integrated liposomes. The average vesicle size was 951.02nm with a zeta potential of -51.87mV. The encapsulation efficiency attained was 32.97% for vitamin C and 99.32% for vitamin E. Good emulsion stability was maintained during storage at 4°C for 20days. Simultaneous microencapsulation in the liposomes was successfully achieved with this supercritical fluid process. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. The influence of natural organic matter and cations on the rejection of endocrine disrupting and pharmaceutically active compounds by nanofiltration.

    PubMed

    Comerton, Anna M; Andrews, Robert C; Bagley, David M

    2009-02-01

    The impact of natural organic matter (NOM) and cations on the rejection of five endocrine disrupting compounds (EDCs) and pharmaceutically active compounds (PhACs) (acetaminophen, carbamazepine, estrone, gemfibrozil, oxybenzone) by nanofiltration (NF) was examined. The water matrices included membrane bioreactor (MBR) effluent, Lake Ontario water and laboratory-prepared waters modelled to represent the characteristics of the Lake Ontario water. The impact of cations in natural waters on compound rejection was also examined by doubling the natural cation concentration (calcium, magnesium, sodium) in both the Lake Ontario water and the MBR effluent. The presence of Suwannee River NOM spiked into laboratory-grade water was found to cause an increase in compound NF rejection. In addition, the presence of cations alone in laboratory-grade water did not have a significant impact on rejection with the exception of the polar compound gemfibrozil. However, when cation concentration in natural waters was increased, a significant decrease in the rejection of EDCs and PhACs was observed. This suggests that the presence of cations may result in a reduction in the association of EDCs and PhACs with NOM.

  15. SOIL SORPTION OF VOLATILE AND SEMIVOLATILE ORGANIC COMPOUNDS IN A MIXTURE

    EPA Science Inventory

    Studies were conducted to evaluate lipophilicity as a predictor sorption for a mixture of organic compounds with high vapor pressures commonly present at hazardous waste sites. Sorption partition coefficients (Kp) for the mixture of 16 volatile and semivolatile ...

  16. Lipophilicity plays a major role in modulating the inhibition of monoamine oxidase B by 7-substituted coumarins.

    PubMed

    Carotti, Angelo; Altomare, Cosimo; Catto, Marco; Gnerre, Carmela; Summo, Luciana; De Marco, Agostino; Rose, Sarah; Jenner, Peter; Testa, Bernard

    2006-02-01

    A series of coumarin derivatives (1-22), bearing at the 7-position ether, ketone, ester, carbamate, or amide functions of varying size and lipophilicity, were synthesized and investigated for their in vitro monoamine oxidase-A and -B (MAO-A and -B) inhibitory activities. Most of the compounds acted preferentially as MAO-B inhibitors, with IC(50) values in the micromolar to low-nanomolar range. A structure-activity-relationship (SAR) study highlighted lipophilicity as an important property modulating the MAO-B inhibition potency of 7-substituted coumarins, as shown by a linear correlation (n=20, r(2)=0.72) between pIC(50) and calculated log P values. The stability of ester-containing coumarin derivatives in rat plasma provided information on factors that either favor (lipophilicity) or decrease (steric hindrance) esterase-catalyzed hydrolysis. Two compounds (14 and 22) were selected to investigate how lipophilicity and enzymatic stability may affect in vivo MAO activities, as assayed ex vivo in rat. The most-potent and -selective MAO-B inhibitor 22 (=7-[(3,4-difluorobenzyl)oxy]-3,4-dimethyl-1-benzopyran-2(2H)-one) within the examined series significantly inhibited (>60%) ex vivo rat-liver and striatal MAO-B activities 1 h after intraperitoneal administration of high doses (100 and 300 mumol kg(-1)), revealing its ability to cross the blood-brain barrier. At the same doses, liver and striatum MAO-A was less inhibited in vivo, somehow reflecting MAO-B selectivity, as assessed in vitro. In contrast, the metabolically less stable derivative 14, bearing an isopropyl ester in the lateral chain, had a weak effect on hepatic MAO-B activity in vivo, and none on striatal MAO-B, but, surprisingly, displayed inhibitory effects on MAO-A in both peripheral and brain tissues.

  17. Lipophilicity of some guaianolides isolated from two endemic subspecies of Amphoricarpos neumayeri (Asteraceae) from Montenegro.

    PubMed

    Atrrog, Abubaker A B; Natić, Maja; Tosti, Tomislav; Milojković-Opsenica, Dusanka; Dordević, Iris; Tesević, Vele; Jadranin, Milka; Milosavljević, Slobodan; Lazić, Milan; Radulović, Sinisa; Tesić, Zivoslav

    2009-03-01

    In this study 10 guaianolide-type sesquiterpene gamma-lactones named amphoricarpolides, isolated from the aerial parts of two endemic subspecies of Amphoricarpos neumayeri (ssp. neumayeri and ssp. murbeckii Bosnjak), were investigated by means of reversed-phase thin-layer chromatography. Methanol-water and tetrahydrofuran-water binary mixtures were used as mobile phase in order to determine lipophilicity parameters R (0) (M) and C(0). Some of the investigated compounds were screened for their cytotoxic activity against HeLa and B16 cells. Chromatographically obtained lipophilicity parameters were correlated with calculated logP values and IC(50) values. Principal component analysis identified the dominant pattern in the chromatographically obtained data. 2008 John Wiley & Sons, Ltd.

  18. 2[prime] and 3[prime] Carboranyl uridines and their diethyl ether adducts

    DOEpatents

    Soloway, A.H.; Barth, R.F.; Anisuzzaman, A.K.; Alam, F.; Tjarks, W.

    1992-12-15

    A process is described for preparing carboranyl uridine nucleoside compounds and their diethyl ether adducts, which exhibit a tenfold increase in boron content over prior art boron containing nucleoside compounds. The carboranyl uridine nucleoside compounds exhibit enhanced lipophilicity and hydrophilic properties adequate to enable solvation in aqueous media for subsequent incorporation of the compounds in methods for boron neutron capture therapy in mammalian tumor cells. No Drawings

  19. 2' and 3' Carboranyl uridines and their diethyl ether adducts

    DOEpatents

    Soloway, Albert H.; Barth, Rolf F.; Anisuzzaman, Abul K.; Alam, Fazlul; Tjarks, Werner

    1992-01-01

    There is disclosed a process for preparing carboranyl uridine nucleoside compounds and their diethyl ether adducts, which exhibit a tenfold increase in boron content over prior art boron containing nucleoside compounds. Said carboranyl uridine nucleoside compounds exhibit enhanced lipophilicity and hydrophilic properties adequate to enable solvation in aqueous media for subsequent incorporation of said compounds in methods for boron neutron capture therapy in mammalian tumor cells.

  20. Fluorination utilizing thermodynamically unstable fluorides and fluoride salts thereof

    DOEpatents

    Bartlett, Neil; Whalen, J. Marc; Chacon, Lisa

    2000-12-12

    A method for fluorinating a carbon compound or cationic carbon compound utilizes a fluorination agent selected from thermodynamically unstable nickel fluorides and salts thereof in liquid anhydrous hydrogen fluoride. The desired carbon compound or cationic organic compound to undergo fluorination is selected and reacted with the fluorination agent by contacting the selected organic or cationic organic compound and the chosen fluorination agent in a reaction vessel for a desired reaction time period at room temperature or less.

  1. Behavior of platinum(iv) complexes in models of tumor hypoxia: cytotoxicity, compound distribution and accumulation.

    PubMed

    Schreiber-Brynzak, Ekaterina; Pichler, Verena; Heffeter, Petra; Hanson, Buck; Theiner, Sarah; Lichtscheidl-Schultz, Irene; Kornauth, Christoph; Bamonti, Luca; Dhery, Vineet; Groza, Diana; Berry, David; Berger, Walter; Galanski, Markus; Jakupec, Michael A; Keppler, Bernhard K

    2016-04-01

    Hypoxia in solid tumors remains a challenge for conventional cancer therapeutics. As a source for resistance, metastasis development and drug bioprocessing, it influences treatment results and disease outcome. Bioreductive platinum(iv) prodrugs might be advantageous over conventional metal-based therapeutics, as biotransformation in a reductive milieu, such as under hypoxia, is required for drug activation. This study deals with a two-step screening of experimental platinum(iv) prodrugs with different rates of reduction and lipophilicity with the aim of identifying the most appropriate compounds for further investigations. In the first step, the cytotoxicity of all compounds was compared in hypoxic multicellular spheroids and monolayer culture using a set of cancer cell lines with different sensitivities to platinum(ii) compounds. Secondly, two selected compounds were tested in hypoxic xenografts in SCID mouse models in comparison to satraplatin, and, additionally, (LA)-ICP-MS-based accumulation and distribution studies were performed for these compounds in hypoxic spheroids and xenografts. Our findings suggest that, while cellular uptake and cytotoxicity strongly correlate with lipophilicity, cytotoxicity under hypoxia compared to non-hypoxic conditions and antitumor activity of platinum(iv) prodrugs are dependent on their rate of reduction.

  2. Sorption of99mTc radiopharmaceutical compounds by soils

    USGS Publications Warehouse

    Jurisson, S.; Gawenis, J.; Landa, E.R.

    2004-01-01

    Study of the sorption of 99mTc radiopharmaceutical compounds by soils has assessed the fate of these compounds in the event of a surface spill and examined the potential of these compounds as hydrologic tracers. Sorption from deionized water, filtered Missouri River water, and artificial seawater by five surface soils was investigated. For all water types, the Tc radiopharmaceutical compounds showed greater sorption than the uncomplexed pertechnetate. The most lipophilic complexes showed the highest sorption on soils.

  3. Lipophilic phytochemicals from banana fruits of several Musa species.

    PubMed

    Vilela, Carla; Santos, Sónia A O; Villaverde, Juan J; Oliveira, Lúcia; Nunes, Alberto; Cordeiro, Nereida; Freire, Carmen S R; Silvestre, Armando J D

    2014-11-01

    The chemical composition of the lipophilic extract of ripe pulp of banana fruit from several banana cultivars belonging to the Musa acuminata and Musa balbisiana species (namely 'Chinese Cavendish', 'Giant Cavendish', 'Dwarf Red', 'Grand Nain', 'Eilon', 'Gruesa', 'Silver', 'Ricasa', 'Williams' and 'Zelig') was studied by gas chromatography-mass spectrometry for the first time. The banana cultivars showed similar amounts of lipophilic extractives (ca. 0.4% of dry material weight) as well as qualitative chemical compositions. The major groups of compounds identified in these fractions were fatty acids and sterols making up 68.6-84.3% and 11.1-28.0%, respectively, of the total amount of lipophilic components. Smaller amounts of long chain aliphatic alcohols and α-tocopherol were also identified. These results are a relevant contribution for the valorisation of these banana cultivars as sources of valuable phytochemicals (ω-3 and ω-6 fatty acids, and sterols) with well-established beneficial nutritional and health effects. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. [Screening of anti-lung cancer bioactive compounds from Curcuma longa by target cell extraction and UHPLC/LTQ Orbitrap MS].

    PubMed

    Zhou, Jian-Liang; Wu, Ye-Qing; Tan, Chun-Mei; Zhu, Ming; Ma, Lin-Ke

    2016-10-01

    A target cell extraction-chemical profiling method based on human alveolar adenocarcinoma cell line (A549 cells) and UHPLC/LTQ Orbitrap MS for screening the anti-lung cancer bioactive compounds from Curcuma longa has been developed in this paper. According to the hypothesis that when cells are incubated together with the extract of Curcuma longa, the potential bioactive compounds in the extract should selectively combine with the cells, then the cell-binding compounds could be separated and analyzed by LC-MS. The bioactive compounds in C. longa are lipophilic components. They intend to be absorbed on the inner wall of cell culture flask when they were incubated with A549 cells, which will produce interference in the blank solution. In this paper, by using cells digestion and multi-step centrifugation and transfer strategy, the interference problem has been solved. Finally, using the developed method, three cell-binding compounds were screened out and were identified as bisdemethoxycurcumin, demethoxycurcumin, and curcumin. These compounds are the main bioactive compounds with anti-lung cancer bioactivity in C. longa. The improved method developed in this paper could avoid the false positive results due to the absorption of lipophilic compounds on the inner wall of cell culture flask, which will to be an effective complementary method for current target cell extraction-chemical profiling technology. Copyright© by the Chinese Pharmaceutical Association.

  5. Amino acid conjugated antimicrobial drugs: Synthesis, lipophilicity- activity relationship, antibacterial and urease inhibition activity.

    PubMed

    Ullah, Atta; Iftikhar, Fatima; Arfan, Muhammad; Batool Kazmi, Syeda Tayyaba; Anjum, Muhammad Naveed; Haq, Ihsan-Ul; Ayaz, Muhammad; Farooq, Sadia; Rashid, Umer

    2018-02-10

    Present work describes the in vitro antibacterial evaluation of some new amino acid conjugated antimicrobial drugs. Structural modification was attempted on the three existing antimicrobial pharmaceuticals namely trimethoprim, metronidazole, isoniazid. Twenty one compounds from seven series of conjugates of these drugs were synthesized by coupling with some selected Boc-protected amino acids. The effect of structural features and lipophilicity on the antibacterial activity was investigated. The synthesized compounds were evaluated against five standard American type culture collection (ATCC) i.e. Staphylococcus aureus, Bacillus subtilis, Escherichia coli, Pseudomonas aeruginosa and Salmonella typhi strains of bacteria. Our results identified a close relationship between the lipophilicity and the activity. Triazine skeleton proved beneficial for the increase in hydrophobicity and potency. Compounds with greater hydrophobicity have shown excellent activities against Gram-negative strains of bacteria than Gram-positive. 4-amino unsubstituted trimethoprim-triazine derivative 7b have shown superior activity with MIC = 3.4 μM (2 μg/mL) for S. aureus and 1.1 μM (0.66 μg/mL) for E. coli. The synthesized compounds were also evaluated for their urease inhibition study. Microbial urease from Bacillus pasteurii was chosen for this study. Triazine derivative 7a showed excellent inhibition with IC 50  = 6.23 ± 0.09 μM. Docking studies on the crystal structure of B. pasteurii urease (PDB ID 4UBP) were carried out. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  6. A comparison of octanol-water partitioning between organic chemicals and their metabolites in mammals.

    PubMed

    Pirovano, Alessandra; Borile, Nicolò; Jan Hendriks, A

    2012-08-01

    Bioaccumulation models take various elimination and uptake processes into account, estimating rates from chemical lipophilicity, expressed as the octanol-water partition ratio (K(ow)). Here, we focussed on metabolism, which transforms parent compounds into usually more polar metabolites, thus enhancing elimination. The aim of this study was to quantify the change in lipophilicity of relevant organic pollutants undergoing various biotransformation reactions in mammals. We considered oxidation reactions catalyzed by three enzyme groups: cytochrome P450 (CYP), alcohol dehydrogenase (ADH), and aldehyde dehydrogenase (ALDH). Estimated logK(ow) values of a selected dataset of parent compounds were compared with the logK(ow) of their first metabolites. The logK(ow) decreased by a factor that varies between 0 and -2, depending on the metabolic pathway. For reactions mediated by CYP, the decrease in K(ow) was one order of magnitude for hydroxylated and epoxidated compounds and two orders of magnitude for dihydroxylated and sulphoxidated xenobiotics. On the other hand, no significant change in lipophilicity was observed for compounds N-hydroxylated by CYP and for alcohols and aldehydes metabolized by ADH and ALDH. These trends could be anticipated by the calculus method of logK(ow). Yet, they were validated using experimental logK(ow) values, when available. These relationships estimate the extent to which the elimination of pollutants is increased by biotransformation. Thus, the quantification of the K(ow) reduction can be considered as a first necessary step in an alternative approach to anticipate biotransformation rates, which are hard to estimate with existing methods. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Food matrix and processing influence on carotenoid bioaccessibility and lipophilic antioxidant activity of fruit juice-based beverages.

    PubMed

    Rodríguez-Roque, María Janeth; de Ancos, Begoña; Sánchez-Vega, Rogelio; Sánchez-Moreno, Concepción; Cano, M Pilar; Elez-Martínez, Pedro; Martín-Belloso, Olga

    2016-01-01

    The biological activity of carotenoids depends on their bioaccessibility and solubilization in the gastrointestinal tract. These compounds are poorly dispersed in the aqueous media of the digestive tract due to their lipophilic nature. Thus, it is important to analyze the extent to which some factors, such as the food matrix and food processing, may improve their bioaccessibility. Beverages formulated with a blend of fruit juices and water (WB), milk (MB) or soymilk (SB) were treated by high-intensity pulsed electric fields (HIPEF) (35 kV cm(-1) with 4 μs bipolar pulses at 200 Hz for 1800 μs), high-pressure processing (HPP) (400 MPa at 40 °C for 5 min) or thermal treatment (TT) (90 °C for 1 min) in order to evaluate the influence of food matrix and processing on the bioaccessibility of carotenoids and on the lipophilic antioxidant activity (LAA). The bioaccessibility of these compounds diminished after applying any treatment (HIPEF, HPP and TT), with the exception of cis-violaxanthin + neoxanthin, which increased by 79% in HIPEF and HPP beverages. The lowest carotenoid bioaccessibility was always obtained in TT beverages (losses up to 63%). MB was the best food matrix for improving the bioaccessibility of carotenoids, as well as the LAA. The results demonstrate that treatment and food matrix modulated the bioaccessibility of carotenoids as well as the lipophilic antioxidant potential of beverages. Additionally, HIPEF and HPP could be considered as promising technologies to obtain highly nutritional and functional beverages.

  8. Tremetone and structurally related compounds in white snakeroot (Ageratina altissima): A plant associated with trembles and milk sickness

    USDA-ARS?s Scientific Manuscript database

    Ingestion of white snakeroot (Ageratina altissima) can cause trembles in livestock and milk sickness in humans. The toxicity has been associated with tremetol, a relatively crude, multi-component lipophilic extract of the plant. In this study, 11 different compounds were isolated from white snaker...

  9. Bovine and Porcine Transscleral Solute Transport: Influence of Lipophilicity and the Choroid–Bruch’s Layer

    PubMed Central

    Cheruvu, Narayan P. S.; Kompella, Uday B.

    2012-01-01

    Purpose To determine the influence of the choroid–Bruch’s layer and solute lipophilicity on in vitro transscleral drug permeability in bovine and porcine eyes. Methods The in vitro permeability of two VEGF inhibitory drugs, budesonide and celecoxib, which are lipophilic and neutral at physiologic pH, and of three marker solutes, 3H-mannitol (hydrophilic, neutral), sodium fluorescein (hydrophilic, anionic), and rhodamine 6G (lipophilic, cationic), were determined across freshly excised scleras, with or without the underlying choroid–Bruch’s layer. Select studies were performed using porcine sclera with and without choroid–Bruch’s layer. Neural retina was removed by exposure of the eyecup to isotonic buffer and wherever required, the retinal pigment epithelial (RPE) layer of the preparation was disrupted and removed by exposure to hypertonic buffer. Because of the poor solubility of celecoxib and budesonide, permeability studies were conducted with 5% wt/vol of hydroxypropyl-β-cyclodextrin (HPβCD). For other solutes, permeability studies were conducted, with and without HPβCD. Partitioning of the solutes into bovine sclera and choroid–Bruch’s layer was also determined. Results The calculated log (distribution coefficient) values were −2.89, −0.68, 2.18, 3.12, and 4.02 for mannitol, sodium fluorescein, budesonide, celecoxib, and rhodamine 6G, respectively. Removal of RPE was confirmed by transmission electron microscopy and differences in the transport of mannitol. The order of the permeability coefficients (Papp) across sclera and sclera–choroid–Bruch’s layers in bovine and porcine models was 3H-mannitol > fluorescein > budesonide > celecoxib > rhodamine 6G, with HPβCD, and 3H-mannitol > fluorescein > rhodamine 6G, without HPβCD. The presence of choroid–Bruch’s layer reduced the bovine scleral permeability by 2-, 8-, 16-, 36-, and 50-fold and porcine tissue permeability by 2-, 7-, 15-, 33-, and 40-fold, respectively, for mannitol, sodium fluorescein, budesonide, celecoxib, and rhodamine 6G. The partition coefficients measured in bovine tissues correlated positively with the log (distribution coefficient) and exhibited a trend opposite that of transport. The partition coefficient ratio of bovine choroid–Bruch’s layer to sclera was ~1, 1.5, 1.7, 2, and 3.5, respectively, for the solutes, as listed earlier. Conclusions The choroid–Bruch’s layer is a more significant barrier to drug transport than is sclera. It hinders the transport of lipophilic solutes, especially a cationic solute, more than hydrophilic solutes and in a more dramatic way than does sclera. The reduction in transport across this layer directly correlates with solute binding to the tissue. Understanding the permeability properties of sclera and underlying layers would be beneficial in designing better drugs for transscleral delivery. PMID:17003447

  10. Experimental validation of a model for diffusion-controlled absorption of organic compounds in the trachea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerde, P.; Muggenburg, B.A.; Thornton-Manning, J.R.

    1995-12-01

    Most chemically induced lung cancer originates in the epithelial cells in the airways. Common conceptions are that chemicals deposited on the airway surface are rapidly absorbed through mucous membranes, limited primarily by the rate of blood perfusion in the mucosa. It is also commonly thought that for chemicals to induce toxicity at the site of entry, they must be either rapidly reactive, readily metabolizable, or especially toxic to the tissues at the site of entry. For highly lipophilic toxicants, there is a third option. Our mathematical model predicts that as lipophilicity increases, chemicals partition more readily into the cellular lipidmore » membranes and diffuse more slowly through the tissues. Therefore, absorption of very lipophilic compounds will be almost entirely limited by the rate of diffusion through the epithelium rather than by perfusion of the capillary bed in the subepithelium. We have reported on a preliminary model for absorption through mucous membranes of any substance with a lipid/aqueous partition coefficient larger than one. The purpose of this work was to experimentally validate the model in Beagle dogs. This validated model on toxicant absorption in the airway mucosa will improve risk assessment of inhaled« less

  11. Evaluation of Organogel Nanoparticles as Drug Delivery System for Lipophilic Compounds.

    PubMed

    Martin, Baptiste; Brouillet, Fabien; Franceschi, Sophie; Perez, Emile

    2017-05-01

    The purpose of the study was to evaluate organogel nanoparticles as a drug delivery system by investigating their stability, according to the formulation strategy, and their release profile. The gelled nanoparticles were prepared by hot emulsification (above the gelation temperature) of an organogel in water, and cooling at room temperature. In the first step, we used DLS and DSC to select the most suitable formulations by optimizing the proportion of ingredients (HSA, PVA, castor oil) to obtain particles of the smallest size and greatest stability. Then, two lipophilic drug models, indomethacin and ketoconazole were entrapped in the nanoparticles made of castor oil gelled by 12-hydroxystearic acid. Thermal studies (DSC) confirmed that there was no significant alteration of gelling due to the entrapped drugs, even at 3% w/w. Very stable dispersions were obtained (>3 months), with gelled oil nanoparticles presenting a mean diameter between 250 and 300 nm. High encapsulation efficiency (>98%) was measured for indomethacin and ketoconazole. The release profile determined by in vitro dialysis showed an immediate release of the drug from the organogel nanoparticles, due to rapid diffusion. The study demonstrates the interest of these gelled oil nanoparticles for the encapsulation and the delivery of lipophilic active compounds.

  12. Multi-parameter optimization of aza-follow-ups to BI 207524, a thumb pocket 1 HCV NS5B polymerase inhibitor. Part 2: Impact of lipophilicity on promiscuity and in vivo toxicity.

    PubMed

    Beaulieu, Pierre L; Bolger, Gordon; Deon, Dan; Duplessis, Martin; Fazal, Gulrez; Gagnon, Alexandre; Garneau, Michel; LaPlante, Steven; Stammers, Timothy; Kukolj, George; Duan, Jianmin

    2015-03-01

    We describe our efforts to identify analogs of thumb pocket 1 HCV NS5B inhibitor 1 (aza-analog of BI 207524) with improved plasma to liver partitioning and a predicted human half-life consistent with achieving a strong antiviral effect at a reasonable dose in HCV-infected patients. Compounds 3 and 7 were identified that met these criteria but exhibited off-target promiscuity in an in vitro pharmacology screen and in vivo toxicity in rats. High lipophilicity in this class was found to correlate with increased probability for promiscuous behavior and toxicity. The synthesis of an 8×11 matrix of analogs allowed the identification of C3, an inhibitor that displayed comparable potency to 1, improved partitioning to the liver and reduced lipophilicity. Although C3 displayed reduced propensity for in vitro off-target inhibition and the toxicity profile in rats was improved, the predicted human half-life of this compound was short, resulting in unacceptable dosing requirements to maintain a strong antiviral effect in patients. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Fast log P determination by ultra-high-pressure liquid chromatography coupled with UV and mass spectrometry detections.

    PubMed

    Henchoz, Yveline; Guillarme, Davy; Martel, Sophie; Rudaz, Serge; Veuthey, Jean-Luc; Carrupt, Pierre-Alain

    2009-08-01

    Ultra-high-pressure liquid chromatography (UHPLC) systems able to work with columns packed with sub-2 microm particles offer very fast methods to determine the lipophilicity of new chemical entities. The careful development of the most suitable experimental conditions presented here will help medicinal chemists for high-throughput screening (HTS) log P(oct) measurements. The approach was optimized using a well-balanced set of 38 model compounds and a series of 28 basic compounds such as beta-blockers, local anesthetics, piperazines, clonidine, and derivatives. Different organic modifiers and hybrid stationary phases packed with 1.7-microm particles were evaluated in isocratic as well as gradient modes, and the advantages and limitations of tested conditions pointed out. The UHPLC approach offered a significant enhancement over the classical HPLC methods, by a factor 50 in the lipophilicity determination throughput. The hyphenation of UHPLC with MS detection allowed a further increase in the throughput. Data and results reported herein prove that the UHPLC-MS method can represent a progress in the HTS-measurement of lipophilicity due to its speed (at least a factor of 500 with respect to HPLC approaches) and to an extended field of application.

  14. Determination of the n-octanol/water partition coefficients of weakly ionizable basic compounds by reversed-phase high-performance liquid chromatography with neutral model compounds.

    PubMed

    Liang, Chao; Han, Shu-ying; Qiao, Jun-qin; Lian, Hong-zhen; Ge, Xin

    2014-11-01

    A strategy to utilize neutral model compounds for lipophilicity measurement of ionizable basic compounds by reversed-phase high-performance liquid chromatography is proposed in this paper. The applicability of the novel protocol was justified by theoretical derivation. Meanwhile, the linear relationships between logarithm of apparent n-octanol/water partition coefficients (logKow '') and logarithm of retention factors corresponding to the 100% aqueous fraction of mobile phase (logkw ) were established for a basic training set, a neutral training set and a mixed training set of these two. As proved in theory, the good linearity and external validation results indicated that the logKow ''-logkw relationships obtained from a neutral model training set were always reliable regardless of mobile phase pH. Afterwards, the above relationships were adopted to determine the logKow of harmaline, a weakly dissociable alkaloid. As far as we know, this is the first report on experimental logKow data for harmaline (logKow = 2.28 ± 0.08). Introducing neutral compounds into a basic model training set or using neutral model compounds alone is recommended to measure the lipophilicity of weakly ionizable basic compounds especially those with high hydrophobicity for the advantages of more suitable model compound choices and convenient mobile phase pH control. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Partitioning of nitroxides in dispersed systems investigated by ultrafiltration, EPR and NMR spectroscopy.

    PubMed

    Krudopp, Heimke; Sönnichsen, Frank D; Steffen-Heins, Anja

    2015-08-15

    The partitioning behavior of paramagnetic nitroxides in dispersed systems can be determined by deconvolution of electron paramagnetic resonance (EPR) spectra giving equivalent results with the validated methods of ultrafiltration techniques (UF) and pulsed-field gradient nuclear magnetic resonance spectroscopy (PFG-NMR). The partitioning behavior of nitroxides with increasing lipophilicity was investigated in anionic, cationic and nonionic micellar systems and 10 wt% o/w emulsions. Apart from EPR spectra deconvolution, the PFG-NMR was used in micellar solutions as a non-destructive approach, while UF based on separation of very small volume of the aqueous phase. As a function of their substituent and lipophilicity, the proportions of nitroxides that were solubilized in the micellar or emulsion interface increased with increasing nitroxide lipophilicity for all emulsifier used. Comparing the different approaches, EPR deconvolution and UF revealed comparable nitroxide proportions that were solubilized in the interfaces. Those proportions were higher than found with PFG-NMR. For PFG-NMR self-diffusion experiments the reduced nitroxides were used revealing a high dynamic of hydroxylamines and emulsifiers. Deconvolution of EPR spectra turned out to be the preferred method for measuring the partitioning behavior of paramagnetic molecules as it enables distinguishing between several populations at their individual solubilization sites. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Muscarinic receptor subtype selectivity of novel heterocyclic QNB analogues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baumgold, J.; Cohen, V.I.; Paek, R.

    1991-01-01

    In an effort at synthesizing centrally-active subtype-selective antimuscarinic agents, the authors derivatized QNB (quinuclidinyl benzilate), a potent muscarinic antagonist, by replacing one of the phenyl groups with less lipophilic heterocyclic moieties. The displacement of ({sup 3}H)-N-methyl scopolamine binding by these novel compounds to membranes from cells expressing ml - m4 receptor subtypes was determined. Most of the novel 4-bromo-QNB analogues were potent and slightly selective for ml receptors. The 2-thienyl derivative was the most potent, exhibiting a 2-fold greater potency than BrQNB at ml receptors, and a 4-fold greater potency than BrQNB at ml receptors, and a 4-fold greater potencymore » at m2 receptors. This compound was also considerably less lipophilic than BrQNB as determined from its retention time on C18 reverse phase HPLC. This compound may therefore be useful both for pharmacological studies and as a candidate for a radioiodinated SPECT imaging agent for ml muscarinic receptors in human brain.« less

  17. Investigating biological activity spectrum for novel quinoline analogues 2: hydroxyquinolinecarboxamides with photosynthesis-inhibiting activity.

    PubMed

    Musiol, Robert; Tabak, Dominik; Niedbala, Halina; Podeszwa, Barbara; Jampilek, Josef; Kralova, Katarina; Dohnal, Jiri; Finster, Jacek; Mencel, Agnieszka; Polanski, Jaroslaw

    2008-04-15

    Two series of amides based on quinoline scaffold were designed and synthesized in search of photosynthesis inhibitors. The compounds were tested for their photosynthesis-inhibiting activity against Spinacia oleracea L. and Chlorella vulgaris Beij. The compounds lipophilicity was determined by the RP-HPLC method. Several compounds showed biological activity similar or even higher than that of the standard (DCMU). The structure-activity relationships are discussed.

  18. Enantio-selective optrode for optical isomers of biologically active amines using a new lipophilic aromatic carrier

    NASA Astrophysics Data System (ADS)

    He, Huarui; Uray, Georg; Wolfbeis, Otto S.

    1991-09-01

    This paper presents a method for optically sensing enantiomers (optical isomers) of biological amines such as norephedrine, and drugs such as the (Beta) -blocker propranolol. It is based on the use of a new lipophilic aromatic ammonium ion carrier (DODD) and a highly fluorescent lipophilic proton carrier (DZ 49) dissolved in a pvc membrane. Recognition of one of the enantiomers is accomplished by specific interaction of the amine with the optically active lipophilic substrate in a pvc membrane. The amine, which is present as an ammonium ion at physiological pH, is carried into the pvc membranes. Simultaneously, a proton is released from the proton carrier (a lipophilic xanthene dye) that thereby undergoes a change in both color and fluorescence intensity. The sensors respond to three analytes in the concentration range from 0.01 to 10 mM for propranolol, 0.3 to 100 mM for norephedrine, and 1 to 100 mM for 1-phenylethylamine. The selectivity coefficients (Kopt) are 0.8, 0.7, and 0.8 for propranolol, norephedrine,a nd 1-phenylethylamine, respectively. It is of potential utility for specifically recognizing one out of several isomers, in particular bioactive amines, where one form usually is active only. The carrier showed stronger affinity for compounds which contain naphthyl rather than phenyl substituents.

  19. Absorption of nitro-polycyclic aromatic hydrocarbons by biomembrane models: effect of the medium lipophilicity.

    PubMed

    Castelli, Francesco; Micieli, Dorotea; Ottimo, Sara; Minniti, Zelica; Sarpietro, Maria Grazia; Librando, Vito

    2008-10-01

    To demonstrate the relationship between the structure of nitro-polycyclic aromatic hydrocarbons and their effect on biomembranes, we have investigated the influence of three structurally different nitro-polycyclic aromatic hydrocarbons, 2-nitrofluorene, 2,7-dinitrofluorene and 3-nitrofluoranthene, on the thermotropic behavior of dimyristoylphosphatidylcholine multilamellar vesicles, used as biomembrane models, by means of differential scanning calorimetry. The obtained results indicate that the studied nitro-polycyclic aromatic hydrocarbons affected the thermotropic behavior of multilamellar vesicles to various extents, modifying the pretransition and the main phase transition peaks and shifting them to lower temperatures. The effect of the aqueous and lipophilic medium on the absorption process of these compounds by the biomembrane models has been also investigated revealing that the process is hindered by the aqueous medium but strongly allowed by the lipophilic medium.

  20. Discovery of Clinical Candidate 1-{[(2 S ,3 S ,4 S )-3-Ethyl-4-fluoro-5-oxopyrrolidin-2-yl]methoxy}-7-methoxyisoquinoline-6-carboxamide (PF-06650833), a Potent, Selective Inhibitor of Interleukin-1 Receptor Associated Kinase 4 (IRAK4), by Fragment-Based Drug Design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Katherine L.; Ambler, Catherine M.; Anderson, David R.

    Through fragment-based drug design focused on engaging the active site of IRAK4 and leveraging three-dimensional topology in a ligand-efficient manner, a micromolar hit identified from a screen of a Pfizer fragment library was optimized to afford IRAK4 inhibitors with nanomolar potency in cellular assays. The medicinal chemistry effort featured the judicious placement of lipophilicity, informed by co-crystal structures with IRAK4 and optimization of ADME properties to deliver clinical candidate PF-06650833 (compound 40). This compound displays a 5-unit increase in lipophilic efficiency from the fragment hit, excellent kinase selectivity, and pharmacokinetic properties suitable for oral administration.

  1. Octanol/water partitioning simulation by RP-HPLC for structurally diverse acidic drugs: comparison of three columns in the presence and absence of n-octanol as the mobile phase additive.

    PubMed

    Giaginis, Costas; Theocharis, Stamatios; Tsantili-Kakoulidou, Anna

    2013-12-01

    The advantageous effect of n-octanol as a mobile phase additive for lipophilicity assessment of structurally diverse acidic drugs both in the neutral and ionized form was explored. Two RP C18 columns, ABZ+ and Aquasil, were used for the determination of logkw indices, and the results were compared with those previously reported on a base-deactivated silica column. At pH 2.5, the use of n-octanol-saturated buffer as the mobile phase aqueous component led to high-quality 1:1 correlation between logkw and logP for the ABZ+ column, while inferior statistics were obtained for Aquasil. At physiological pH, the correlations were significantly improved if strongly ionized acidic drugs were treated separately from weakly ionized ones. In the latter case, 1:1 correlations between logD7.4 and logkw(oct) indices were obtained in the presence of 0.25% n-octanol. Concerning strongly ionized compounds, adequate correlations were established under the same conditions; however, slopes were significantly lower than unity, while large negative intercepts were obtained. According to the absolute difference (diff = logD7.4 – logkw) pattern, base-deactivated silica showed a better performance than ABZ+, however, the latter seems more efficient for the lipophilicity assessment of highly lipophilic acidic compounds. Aquasil may be the column of choice if logD7.4<3 with the limitation, however, that very hydrophilic compounds cannot be measured.

  2. Novel Substrate-Based Inhibitors of Human Glutamate Carboxypeptidase II with Enhanced Lipophilicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plechanovová, Anna; Byun, Youngjoo; Alquicer, Glenda

    2012-10-09

    Virtually all low molecular weight inhibitors of human glutamate carboxypeptidase II (GCPII) are highly polar compounds that have limited use in settings where more lipophilic molecules are desired. Here we report the identification and characterization of GCPII inhibitors with enhanced liphophilicity that are derived from a series of newly identified dipeptidic GCPII substrates featuring nonpolar aliphatic side chains at the C-terminus. To analyze the interactions governing the substrate recognition by GCPII, we determined crystal structures of the inactive GCPII(E424A) mutant in complex with selected dipeptides and complemented the structural data with quantum mechanics/molecular mechanics calculations. Results reveal the importance ofmore » nonpolar interactions governing GCPII affinity toward novel substrates as well as formerly unnoticed plasticity of the S1' specificity pocket. On the basis of those data, we designed, synthesized, and evaluated a series of novel GCPII inhibitors with enhanced lipophilicity, with the best candidates having low nanomolar inhibition constants and clogD > -0.3. Our findings offer new insights into the design of more lipophilic inhibitors targeting GCPII.« less

  3. Water Soluble Phosphane-Gold(I) Complexes. Applications as Recyclable Catalysts in a Three-component Coupling Reaction and as Antimicrobial and Anticancer Agents

    PubMed Central

    Elie, Benelita T.; Levine, Chaya; Ubarretxena-Belandia, Iban; Varela-Ramírez, Armando; Aguilera, Renato J.; Ovalle, Rafael; Contel, María

    2013-01-01

    Water-soluble compounds of the type [AuCl(PR3)] with alkyl-bis-(m-sulfonated-phenyl)-(mC6H4SO3Na)2 and dialkyl-(m-sulfonated-phenyl)-(mC6H4SO3Na) (R = nBu, Cp) phosphanes have been prepared. Dialkyl-phosphane compounds generate water-soluble nanoparticles of 10-15 nm radius when dissolved in water. These air-stable complexes have been evaluated as catalysts in the synthesis of propargylamines via a three-component coupling reaction of aldehydes, amines and alkynes in water. The antimicrobial activity of the new complexes against Gram-positive and Gram-negative bacteria and yeast has been evaluated. The new compounds display moderate to high antibacterial activity. The more lipophilic compounds are also potent against fungi. Their cytotoxic properties have been analyzed in vitro utilizing human Jurkat T-cell acute lymphoblastic leukemia cells. Compounds with dialkyl-(m-sulfonated-phenyl)-(mC6H4SO3Na) phosphanes displayed moderate to high cytotoxicity on this cell line. Death cell mechanism occurs mainly by early apoptosis. The catalytic/biological activity of the previously described compound with commercial m-trisulfonated-triphenylphosphine [AuCl(TPPTS)] (6) has been also evaluated to compare the effects of the higher basicity and lipophilicity of the alkyl- and di-alkyl-(m-sulfonated-phenyl) phosphanes on these new compounds. PMID:23524957

  4. USE OF CATIONIC SURFACTANTS TO MODIFY SOIL SURFACES TO PROMOTE SORPTION AND RETARD MIGRATION OF HYDROPHOBIC ORGANIC COMPOUNDS

    EPA Science Inventory

    Cationic surfactants can be used to modify surfaces of soils and subsurface materials to promote adsorption of hydrophobic organic compounds (HOC). Batch and column experiments were performed to investigate this phenomenon with the cationic surfactant dodecylpyridinium (DP), a se...

  5. Structures of a Na+-coupled, substrate-bound MATE multidrug transporter

    PubMed Central

    Lu, Min; Symersky, Jindrich; Radchenko, Martha; Koide, Akiko; Guo, Yi; Nie, Rongxin; Koide, Shohei

    2013-01-01

    Multidrug transporters belonging to the multidrug and toxic compound extrusion (MATE) family expel dissimilar lipophilic and cationic drugs across cell membranes by dissipating a preexisting Na+ or H+ gradient. Despite its clinical relevance, the transport mechanism of MATE proteins remains poorly understood, largely owing to a lack of structural information on the substrate-bound transporter. Here we report crystal structures of a Na+-coupled MATE transporter NorM from Neisseria gonorrheae in complexes with three distinct translocation substrates (ethidium, rhodamine 6G, and tetraphenylphosphonium), as well as Cs+ (a Na+ congener), all captured in extracellular-facing and drug-bound states. The structures revealed a multidrug-binding cavity festooned with four negatively charged amino acids and surprisingly limited hydrophobic moieties, in stark contrast to the general belief that aromatic amino acids play a prominent role in multidrug recognition. Furthermore, we discovered an uncommon cation–π interaction in the Na+-binding site located outside the drug-binding cavity and validated the biological relevance of both the substrate- and cation-binding sites by conducting drug resistance and transport assays. Additionally, we uncovered potential rearrangement of at least two transmembrane helices upon Na+-induced drug export. Based on our structural and functional analyses, we suggest that Na+ triggers multidrug extrusion by inducing protein conformational changes rather than by directly competing for the substrate-binding amino acids. This scenario is distinct from the canonical antiport mechanism, in which both substrate and counterion compete for a shared binding site in the transporter. Collectively, our findings provide an important step toward a detailed and mechanistic understanding of multidrug transport. PMID:23341609

  6. Simultaneous total antioxidant capacity assay of lipophilic and hydrophilic antioxidants in the same acetone-water solution containing 2% methyl-beta-cyclodextrin using the cupric reducing antioxidant capacity (CUPRAC) method.

    PubMed

    Ozyürek, Mustafa; Bektaşoğlu, Burcu; Güçlü, Kubilay; Güngör, Nilay; Apak, Reşat

    2008-12-07

    Antioxidants are health beneficial compounds that can protect cells from the damage caused by unstable molecules known as reactive oxygen species (ROS). This work reports the capacity assay of both lipophilic and hydrophilic antioxidants simultaneously, by making use of their 'host-guest' complexes with methyl-beta-cyclodextrin (M-beta-CD), a cyclic oligosaccharide, in acetonated aqueous medium using the cupric reducing antioxidant capacity (CUPRAC) method. Thus the order of antioxidant potency of various compounds irrespective of their lipophilicity could be established in the same solvent medium. M-beta-CD was introduced as the water solubility enhancer for lipophilic antioxidants. Two percent M-beta-CD (w/v) in an acetone-H(2)O (9:1, v/v) mixture was found to sufficiently solubilize beta-carotene, lycopene, vitamin E, vitamin C, synthetic antioxidants and other phenolic antioxidants. This assay was validated through linearity, additivity, precision, and recovery. The validation results demonstrate that the CUPRAC assay is reliable and robust. In acetonated aqueous solution of M-beta-CD, only CUPRAC and 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) assays were capable of measuring carotenoids together with hydrophilic antioxidants. The CUPRAC antioxidant capacities of a wide range of polyphenolics and flavonoids were experimentally reported in this work as trolox equivalent antioxidant capacity (TEAC) in the CUPRAC assay, and compared to those found by reference methods, ABTS/horseradish peroxidase (HRP)-H(2)O(2) and ferric reducing antioxidant power (FRAP) assays.

  7. Bismuth heterocycles based on a diphenyl sulfone scaffold: synthesis and substituent effect on the antifungal activity against Saccharomyces cerevisiae.

    PubMed

    Murafuji, Toshihiro; Fujiwara, Yudai; Yoshimatsu, Daisuke; Miyakawa, Isamu; Migita, Kouto; Mikata, Yuji

    2011-02-01

    A series of heterocyclic organobismuth(III) compounds 2 [ClBi(5-R-C6H(3)-2-SO2C6H(4)-1'-): R=Me, Ph, MeO, Cl, H, t-Bu, CF3, F, Me2N] was synthesized in order to study the relative importance of structure and specific substitutions in relation to their lipophilicity and antifungal activity against the yeast Saccharomyces cerevisiae. A clear structure-activity relationship between the size of the inhibition zone and the value of ClogP was found for 2. These results suggest that the higher the lipophilicity, the lower the antifungal activity. Thus, 2e (R=H) and 2h (R=F), which had ClogP values of 1.18 and 1.45, respectively, were most active. In contrast, 2b (R=Ph) and 2f (R=t-Bu) had ClogP values of 3.06 and 3.00, respectively, and exhibited no antifungal activity. Compound 6b ClBi[5-(OH)C6H(3)-2-SO(2)-5'-(OH)C6H(3)-1'-] had an estimated ClogP value of 0.81 but exhibited only low activity in spite of its low ClogP value, suggesting that such a considerable decrease in lipophilicity lowers inhibition activity. Bismuth carboxylate 7b derived from p-nitrobenzoic acid and 2e exhibited inhibition activity comparable to those of 2e and 2h despite its higher lipophilicity (ClogP=2.68). Copyright © 2010 Elsevier Masson SAS. All rights reserved.

  8. Structure and cation ordering in La 2UO 6, Ce 2UO 6, LaUO 4, and CeUO 4 by first principles calculations

    DOE PAGES

    Casillas-Trujillo, Luis; Xu, H.; McMurray, Jake W.; ...

    2016-07-06

    In the present work, we have used density functional theory (DFT) and DFT+U to investigate the crystal structure and phase stability of four model compounds in the Ln 2O 3-UO 2-UO 3 ternary oxide system: La2UO 6, Ce 2UO 6, LaUO 4, CeUO 4, due to the highly-correlated nature of the f-electrons in uranium. We have considered both hypothetical ordered compounds and compounds in which the cations randomly occupy atomic sites in a fluorite-like lattice. We determined that ordered compounds are stable and are energetically favored compared to disordered configurations, though the ordering tendencies are weak. To model and analyzemore » the structures of these complex oxides, we have used supercells based on a layered atomic model. In the layer model, the supercell is composed of alternating planes of anions and cations. We have considered two different ordering motifs for the cations, namely single species (isoatomic) cation layers versus mixed species cation layers. Energy differences between various ordered cationic arrangements were found to be small. This may have implications regarding radiation stability, since cationic arrangements should be able to change under irradiation with little cost in energy.« less

  9. Lipophilic Super-Absorbent Swelling Gels as Cleaners for Use on Weapons Systems and Platforms

    DTIC Science & Technology

    2011-08-18

    polymer gel systems. Further research will address the post-cleaning gel removal method, the use of non- fluorinated compounds in gel synthesis, and...be proposed to address other issues including the method for removing the gels after swelling, the use of non- fluorinated compounds in gel...strength. Elimination of fluorinated compounds in the gel synthesis was the focus of this and subsequent phases of this research. TECHNICAL APPROACH

  10. Triclosan resistance reversion by encapsulation in chitosan-coated-nanocapsule containing α-bisabolol as core: development of wound dressing

    PubMed Central

    De Marchi, João Guilherme B; Jornada, Denise S; Silva, Fernanda K; Freitas, Ana L; Fuentefria, Alexandre M; Pohlmann, Adriana R; Guterres, Silvia S

    2017-01-01

    The use of nanoparticles may be particularly advantageous in treating bacterial infections due to their multiple simultaneous mechanisms of action. Nanoencapsulation is particularly useful for lipophilic drugs. In this scenario, triclosan is considered a good candidate due to its lipophilicity, broad-spectrum activity, and safety. In the present study, we have developed and characterized an antimicrobial suspension of triclosan and α-bisabolol against pathogenic strains that are resistant (Pseudomonas aeruginosa) and susceptible (Escherichia coli, Staphylococcus aureus, and Candida albicans) to triclosan. We also aimed to determine the minimum inhibitory concentration, using serial microdilution adapted from a CLSI methodology (Clinical and Laboratory Standards Institute). Challenge test was used to confirm the antimicrobial effectiveness of the nanocapsule formulation, as well as after its incorporation into a commercial wound dressing (Veloderm®). The zeta potential of P. aeruginosa before and after contact with cationic nanocapsules and the ratio between the number of nanocapsules per colony forming unit (CFU) were determined to evaluate a possible interaction between nanocapsules and bacteria. The results showed that nanoencapsulation has improved the antimicrobial activity when tested with two different methodologies. The number of nanocapsules per CFU was high even in great dilutions and the zeta potential was reverted after being in contact with the cationic nanocapsules. The nanocapsules were able to improve the activity of triclosan, even when tested within 28 days and when dried in the wound dressing. PMID:29123398

  11. Diversity of compounds in femoral secretions of Galápagos iguanas (genera: Amblyrhynchus and Conolophus), and their potential role in sexual communication in lek-mating marine iguanas (Amblyrhynchus cristatus).

    PubMed

    Ibáñez, Alejandro; Menke, Markus; Quezada, Galo; Jiménez-Uzcátegui, Gustavo; Schulz, Stefan; Steinfartz, Sebastian

    2017-01-01

    Chemical signals are widely used in the animal kingdom, enabling communication in various social contexts, including mate selection and the establishment of dominance. Femoral glands, which produce and release waxy secretions into the environment, are organs of central importance in lizard chemical communication. The Galápagos marine iguana ( Amblyrhynchus cristatus ) is a squamate reptile with a lek-mating system. Although the lekking behaviour of marine iguanas has been well-studied, their potential for sexual communication via chemical cues has not yet been investigated. Here we describe the diversity of the lipophilic fraction of males' femoral gland secretions among 11 island populations of marine iguanas, and compare it with the composition of its sister species, the Galápagos land iguana ( Conolophus subcristatus ). We also conducted behavioural observations in marine iguana territorial males in order to explore the possible function of these substances in the context of male dominance in leks. Femoral secretions were analysed by gas chromatography coupled to mass spectrometry (GC-MS), and chromatography with a flame ionisation detector (GC-FID) in order to characterise the lipophilic composition. To understand the potential role of femoral secretions in marine iguana intraspecific communication, territorial males were sampled for their femoral glands and monitored to record their head bob rate-a territorial display behaviour in males-as well as the number of females present in their leks. We found that the gland secretions were composed of ten saturated and unsaturated carboxylic acids ranging in chain length between C 16 and C 24 , as well as three sterols. Cholesterol was the main compound found. Intriguingly, land iguanas have a higher diversity of lipophilic compounds, with structural group of lipids (i.e. aldehydes) entirely absent in marine iguanas; overall the chemical signals of both species were strongly differentiated. Lipid profiles also differed among populations of marine iguanas from different islands, with some islands demonstrating a high diversity of lipophilic compounds (i.e. full spectra of compounds), and others lacking one or more compounds. Among the compounds most frequently found missing were 11- and 13-eicosenoic acids. Gland secretions of males with a better body condition and with a higher dominance status (i.e. those accompanied by females and with higher head bob display) were proportionately richer in C 20 -unsaturated fatty acids (11-eicosenoic acid). Land and marine iguanas strongly diverged in their chemical composition of the femoral glands likely due to ecological differences between both species. Despite that marine iguana populations varied in their femoral gland composition that was not related to their genetic structure. Our results indicated that 11-eicosenoic acid may play an important role in intraspecific chemical communication in marine iguanas.

  12. Increased Degree of Unsaturation in the Lipid of Antifungal Cationic Amphiphiles Facilitates Selective Fungal Cell Disruption.

    PubMed

    Steinbuch, Kfir B; Benhamou, Raphael I; Levin, Lotan; Stein, Reuven; Fridman, Micha

    2018-05-11

    Antimicrobial cationic amphiphiles derived from aminoglycosides act through cell membrane permeabilization but have limited selectivity for microbial cell membranes. Herein, we report that an increased degree of unsaturation in the fatty acid segment of antifungal cationic amphiphiles derived from the aminoglycoside tobramycin significantly reduced toxicity to mammalian cells. A collection of tobramycin-derived cationic amphiphiles substituted with C 18 lipid chains varying in degree of unsaturation and double bond configuration were synthesized. All had potent activity against a panel of important fungal pathogens including strains with resistance to a variety of antifungal drugs. The tobramycin-derived cationic amphiphile substituted with linolenic acid with three cis double bonds (compound 6) was up to an order of magnitude less toxic to mammalian cells than cationic amphiphiles composed of lipids with a lower degree of unsaturation and than the fungal membrane disrupting drug amphotericin B. Compound 6 was 12-fold more selective (red blood cell hemolysis relative to antifungal activity) than compound 1, the derivative with a fully saturated lipid chain. Notably, compound 6 disrupted the membranes of fungal cells without affecting the viability of cocultured mammalian cells. This study demonstrates that the degree of unsaturation and the configuration of the double bond in lipids of cationic amphiphiles are important parameters that, if optimized, result in compounds with broad spectrum and potent antifungal activity as well as reduced toxicity toward mammalian cells.

  13. Influence of naturally occurring dissolved organic matter, colloids, and cations on nanofiltration of pharmaceutically active and endocrine disrupting compounds.

    PubMed

    Sadmani, A H M Anwar; Andrews, Robert C; Bagley, David M

    2014-12-01

    This study examined the rejection of selected pharmaceutically active (PhAC) and endocrine disrupting compounds (EDCs) when using nanofiltration as a function of naturally occurring dissolved organic matter (DOM), colloidal particles, cations and their interactions. Lake Ontario water served as a source of natural DOM and colloidal particles. PhAC/EDC rejection experiments were conducted using raw Lake Ontario water and Lake Ontario water that was pre-treated with either ultrafiltration to remove colloidal particles, or fluidized ion exchange resins to remove DOM. Additionally, the concentration of cations (Ca(2+), Mg(2+), and Na(+)) in the raw and pre-treated water matrices was varied. While ionic PhACs and EDCs exhibited high rejections from all the water matrices examined, neutral compounds were most effectively rejected in water containing DOM and no colloids, and least effectively rejected from colloid-containing water with increased cations but no DOM. The presence of DOM significantly improved compound rejection and the increase in cation concentration significantly decreased rejection. The presence of colloids had comparatively little effect except to mitigate the impact of increased cation concentration, apparently providing some cation-buffering capacity. The sequence in which constituents are removed from waters during treatment may significantly impact PhAC and EDC removal, especially of neutral compounds. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. ENVIRONMENTAL RESEARCH BRIEF: USE OF CATIONIC SURFACTANTS TO MODIFY AQUIFER MATERIALS TO REDUCE THE MOBILITY OF HYDROPHOBIC ORGANIC COMPOUNDS

    EPA Science Inventory

    Cationic surfactants can be used to modify surfaces of soils and subsurface materials to promote sorption of hydrophobic organic compounds (HOC) and retard their migration. For example, cationic surfactants could be injected into an aquifer downgradient from a source of HOC conta...

  15. Lipophilicity assessment of basic drugs (log P(o/w) determination) by a chromatographic method.

    PubMed

    Pallicer, Juan M; Sales, Joaquim; Rosés, Martí; Ràfols, Clara; Bosch, Elisabeth

    2011-09-16

    A previously reported chromatographic method to determine the 1-octanol/water partition coefficient (log P(o/w)) of organic compounds is used to estimate the hydrophobicity of bases, mainly commercial drugs with diverse chemical nature and pK(a) values higher than 9. For that reason, mobile phases buffered at high pH to avoid the ionization of the solutes and three different columns (Phenomenex Gemini NX, Waters XTerra RP-18 and Waters XTerra MS C(18)) with appropriate alkaline-resistant stationary phases have been used. Non-ionizable substances studied in previous works were also included in the set of compounds to evaluate the consistency of the method. The results showed that all the columns provide good estimations of the log P(o/w) for most of the compounds included in this study. The Gemini NX column has been selected to calculate log P(o/w) values of the set of studied drugs, and really good correlations between the determined log P(o/w) values and those considered as reference were obtained, proving the ability of the procedure for the lipophilicity assessment of bioactive compounds with very different structures and functionalities. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Transport of the highly charged myo-inositol hexakisphosphate molecule across the red blood cell membrane: a phase transfer and biological study.

    PubMed

    Vincent, Stéphane P; Lehn, Jean-Marie; Lazarte, Jaime; Nicolau, Claude

    2002-09-01

    To address the problem of delivering highly charged small molecules, such as phytic acid (InsP(6) or IHP), across biological membranes, we investigated an approach based on a non-covalent interaction between transport molecule(s) and IHP. Thus, we synthesized a collection of compounds containing IHP ionically bound to lipophilic (but non-lipidic) ammonium or poly-ammonium cations. First, we assessed the ability of these water-soluble salts to cross a biological membrane by measuring the partition coefficients between human serum and 1-octanol. In view of the ability of IHP to act as potent effector for oxygen release, the O(2)-hemoglobin dissociation curves were then measured for the most efficient salts on whole blood. From both the biological and the physical properties of IHP-ammonium salts we determined that cycloalkylamines (or poly-amines) were the best transport molecules, especially cycloheptyl- and cyclooctylamine. Indeed, the octanol/serum partition coefficient of IHP undecacyclooctylammonium salt, is superior to 1, which is very favorable for potential uptake into the red blood cell membrane. A qualitative correlation was found between the partitioning experiments and the biological evaluations performed on whole blood.

  17. Modulating lipophilicity of rohitukine via prodrug approach: Preparation, characterization, and in vitro enzymatic hydrolysis in biorelevant media.

    PubMed

    Kumar, Vikas; Bharate, Sonali S; Vishwakarma, Ram A

    2016-09-20

    Rohitukine is a medicinally important natural product which has inspired the discovery of two anticancer clinical candidates. Rohitukine is highly hydrophilic in nature which hampers its oral bioavailability. Thus, herein our objective was to improve the drug-like properties of rohitukine via prodrug-strategy. Various ester prodrugs were synthesized and studied for solubility, lipophilicity, chemical stability and enzymatic hydrolysis in plasma/esterase. All prodrugs displayed lower aqueous solubility and improved lipophilicity compared with rohitukine, which was in accordance with the criteria of compounds in drug-discovery. The stability of synthesized prodrugs was evaluated in buffers at different pH, SGF, SIF, rat plasma and in esterase enzyme. The rate of hydrolysis in all incubation media was dependent primarily on the acyl promoieties. Hexanoyl ester prodrug of rohitukine, 3d, was stable under chemical conditions; however it was completely hydrolyzed to rohitukine, in plasma and in esterase in 4h. Hexanoate ester 3d appeared to be the most promising prodrug as it remained intact at gastric/intestinal pH and was completely transformed to the parent compound in plasma as desired for an ideal prodrug. The data presented herein, will help in designing prodrugs with desired physicochemical properties in future in structurally similar chemotypes. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Analysis of Organohalogen Products From Chlorination of Natural Waters Under Simulated Biofouling Control Conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bean, R. M.; Mann, D. C.; Riley, R. G.

    1980-06-01

    The products of low-level chlorination of natural waters from ten locations across the continental United States have been studied, with emphasis on volatile and lipophilic organohalogen components. A specially designed apparatus permitted continuous sampling and chlorination of water in a manner analogous to some types of cooling water treatments. Volatile components were analyzed using headspace, purge-and-trap, and resin adsorption methods. The less-volatile components were collected by passing large volumes of the chlorinated water over XAD-2 columns. Total organic halogen collected on XAD resins was compared with the halogen contribution of haloform compounds. The XAD samples were further separated into fractionsmore » according to molecular weight and polarity using liquid chrOmatography. These studies indicate that haloforms are the most abundant lipophilic halogenated products formed from low-level chlorination of natural waters, but that other halogenated lipophilic material is also formed.« less

  19. Organosolv pretreatment by crude glycerol from oleochemicals industry for enzymatic hydrolysis of wheat straw.

    PubMed

    Sun, Fubao; Chen, Hongzhang

    2008-09-01

    In order to defray the cost of biodiesel production, the ensuing work was to further investigate utilization of the crude glycerol (CG) from oleochemicals industry in the atmospheric autocatalytic organosolv pretreatment (AAOP) to enhance enzymatic hydrolysis. The AAOP-CG enabled wheat straw to achieve with reasonable enzymatic hydrolysis yields, reaching 75% for the wet substrate and 63% for the dried. Lipophilic compounds from the CG formed pitch deposition on the fiber, which was responsible for low delignification (30%) and also troublesome in practical operation. Pitch deposits itself had no significant role on enzymatic hydrolysis. A striking finding of the lignin recondensation and/or lignin-carbohydrate complex helped explain why dried pretreated wheat straw had a low enzymatic hydrolysis yield. The CG was suitable for the AAOP to enhance enzymatic hydrolysis of lignocellulosic biomass. But it was advisable to remove lipophilic compounds from crude glycerol before utilization.

  20. Testing a chemical series inspired by plant stress oxylipin signalling agents for herbicide safening activity

    PubMed Central

    Brazier‐Hicks, Melissa; Knight, Kathryn M; Sellars, Jonathan D

    2018-01-01

    Abstract BACKGROUND Herbicide safening in cereals is linked to a rapid xenobiotic response (XR), involving the induction of glutathione transferases (GSTs). The XR is also invoked by oxidized fatty acids (oxylipins) released during plant stress, suggesting a link between these signalling agents and safening. To examine this relationship, a series of compounds modelled on the oxylipins 12‐oxophytodienoic acid and phytoprostane 1, varying in lipophilicity and electrophilicity, were synthesized. Compounds were then tested for their ability to invoke the XR in Arabidopsis and protect rice seedlings exposed to the herbicide pretilachlor, as compared with the safener fenclorim. RESULTS Of the 21 compounds tested, three invoked the rapid GST induction associated with fenclorim. All compounds possessed two electrophilic carbon centres and a lipophilic group characteristic of both oxylipins and fenclorim. Minor effects observed in protecting rice seedlings from herbicide damage positively correlated with the XR, but did not provide functional safening. CONCLUSION The design of safeners based on the characteristics of oxylipins proved successful in deriving compounds that invoke a rapid XR in Arabidopsis but not in providing classical safening in a cereal. The results further support a link between safener and oxylipin signalling, but also highlight species‐dependent differences in the responses to these compounds. © 2018 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. PMID:29330904

  1. Assessment of the chromatographic lipophilicity of eight cephalosporins on different stationary phases.

    PubMed

    Dąbrowska, Monika; Starek, Małgorzata; Komsta, Łukasz; Szafrański, Przemysław; Stasiewicz-Urban, Anna; Opoka, Włodzimierz

    2017-04-01

    The retention behaviors were investigated for a series of eight cephalosporins in thin-layer chromatography (TLC) using stationary phases of RP-2, RP-8, RP-18, NH 2 , DIOL, and CN chemically bonded silica gel. Additionally, various binary mobile phases (water/methanol and water/acetone) were used in different volume proportions. The retention behavior of the analyzed molecules was defined by R M0 constant. In addition, reversed phase high performance liquid chromatography (RP-HPLC) was performed in lipophilicity studies by using immobilized artificial membrane (IAM) stationary phase. Obtained chromatographic data (R M0 and logk' IAM ) were correlated with the lipophilicity, expressed as values of the log calculated (logP calc ) and experimental (logP exp(shake-flask) ) partition coefficient. Principal component analysis (PCA) was applied in order to obtain an overview of similarity or dissimilarity among the analyzed compounds. Hierarchical cluster analysis (HCA) was performed to compare the separation characteristics of the applied stationary phases. This study was undertaken to identify the best chromatographic system and chromatographic data processing method to enable the prediction of logP values. A comprehensive chromatographic investigation into the retention of the analyzed cephalosporins revealed a similar behavior on RP-18, RP-8 and CN stationary phases. The weak correlations obtained between experimental and certain computed lipophilicity indices revealed that R M0 and PC1/RM are relevant lipophilicity parameters and the RP-8, CN and RP-18 plates are appropriate stationary phases for lipophilicity investigation, whereas computational approaches still cannot fully replace experimentation. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Animal and human studies with the mitochondria-targeted antioxidant MitoQ.

    PubMed

    Smith, Robin A J; Murphy, Michael P

    2010-07-01

    As mitochondrial oxidative damage contributes to a wide range of human diseases, antioxidants designed to be accumulated by mitochondria in vivo have been developed. The most extensively studied of these mitochondria-targeted antioxidants is MitoQ, which contains the antioxidant quinone moiety covalently attached to a lipophilic triphenylphosphonium cation. MitoQ has now been used in a range of in vivo studies in rats and mice and in two phase II human trials. Here, we review what has been learned from these animal and human studies with MitoQ.

  3. The mitochondrial antioxidants MitoE(2) and MitoQ(10) increase mitochondrial Ca(2+) load upon cell stimulation by inhibiting Ca(2+) efflux from the organelle.

    PubMed

    Leo, Sara; Szabadkai, György; Rizzuto, Rosario

    2008-12-01

    Mitochondrial reactive oxygen species (ROS) production is recognized as a major pathogenic event in a number of human diseases, and mitochondrial scavenging of ROS appears a promising therapeutic approach. Recently, two mitochondrial antioxidants have been developed; conjugating alpha-tocopherol and the ubiquinol moiety of coenzyme Q to the lipophilic triphenylphosphonium cation (TPP+), denominated MitoE(2) and MitoQ(10), respectively. We have investigated the effect of these compounds on mitochondrial Ca(2+) homeostasis, which controls processes as diverse as activation of mitochondrial dehydrogenases and pro-apoptotic morphological changes of the organelle. We demonstrate that treatment of HeLa cells with both MitoE(2) and MitoQ(10) induces (albeit with different efficacy) a major enhancement of the increase in matrix Ca(2+) concentration triggered by cell stimulation with the inositol 1,4,5-trisphosphate-generating agonist histamine. The effect is a result of the inhibition of Ca(2+) efflux from the organelle and depends on the TPP+ moiety of these compounds. Overall, the data identify an effect independent of their antioxidant activity, that on the one hand may be useful in addressing disorders in which mitochondrial Ca(2+) handling is impaired (e.g., mitochondrial diseases) and on the other may favor mitochondrial Ca(2+) overload and thus increase cell sensitivity to apoptosis (thus possibly counteracting the benefits of the antioxidant activity).

  4. The development of structure-activity relationships for mitochondrial dysfunction: uncoupling of oxidative phosphorylation.

    PubMed

    Naven, Russell T; Swiss, Rachel; Klug-McLeod, Jacquelyn; Will, Yvonne; Greene, Nigel

    2013-01-01

    Mitochondrial dysfunction has been implicated as an important factor in the development of idiosyncratic organ toxicity. An ability to predict mitochondrial dysfunction early in the drug development process enables the deselection of those drug candidates with potential safety liabilities, allowing resources to be focused on those compounds with the highest chance of success to the market. A database of greater than 2000 compounds was analyzed to identify structural and physicochemical features associated with the uncoupling of oxidative phosphorylation (herein defined as an increase in basal respiration). Many toxicophores associated with potent uncoupling activity were identified, and these could be divided into two main mechanistic classes, protonophores and redox cyclers. For the protonophores, potent uncoupling activity was often promoted by high lipophilicity and apparent stabilization of the anionic charge resulting from deprotonation of the protonophore. The potency of redox cyclers did not appear to be prone to variations in lipophilicity. Only 11 toxicophores were of sufficient predictive performance that they could be incorporated into a structural-alert model. Each alert was associated with one of three confidence levels (high, medium, and low) depending upon the lipophilicity-activity profile of the structural class. The final model identified over 68% of those compounds with potent uncoupling activity and with a value for specificity above 99%. We discuss the advantages and limitations of this approach and conclude that although structural alert methodology is useful for identifying toxicophores associated with mitochondrial dysfunction, they are not a replacement for the mitochondrial dysfunction assays in early screening paradigms.

  5. Eyelid skin as a potential site for drug delivery to conjunctiva and ocular tissues.

    PubMed

    See, Gerard Lee; Sagesaka, Ayano; Sugasawa, Satoko; Todo, Hiroaki; Sugibayashi, Kenji

    2017-11-25

    The feasibility of topical application onto the (lower) eyelid skin to deliver hydrophilic and lipophilic compounds into the conjunctiva and ocular tissues was evaluated by comparing with conventional eye drop application. Skin permeation and the concentration of several model compounds, and skin impedance were determined utilizing eyelid skin from hairless rats, as well as abdominal skin in the same animals for comparison. In vitro static diffusion cells were used to assess the skin permeation in order to provide key insights into the relationship between the skin sites and drugs. The obtained results revealed that drug permeation through the eyelid skin was much higher than that through abdominal skin regardless of the drug lipophilicity. Specifically, diclofenac sodium salt and tranilast exhibited approximately 6-fold and 11-fold higher permeability coefficients, respectively, through eyelid skin compared with abdominal skin. Histomorphological evaluation and in vivo distribution of model fluorescent dyes were also examined in the conjunctiva and skin after eyelid administration by conventional microscope and confocal laser scanning microscope analyses. The result revealed that eyelid skin has a thinner stratum corneum, thereby showing lower impedance, which could be the reason for the higher drug permeation through eyelid skin. Comparative evaluation of lipophilic and hydrophilic model compounds administered via the eyelid skin over 8h revealed stronger fluorescence intensity in the skin and surrounding tissues compared with eye drop administration. These results suggested that the (lower) eyelid skin is valuable as a prospective site for ophthalmic medicines. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Enhanced Antibacterial Activity of Ent-Labdane Derivatives of Salvic Acid (7α-Hydroxy-8(17)-ent-Labden-15-Oic Acid): Effect of Lipophilicity and the Hydrogen Bonding Role in Bacterial Membrane Interaction.

    PubMed

    Echeverría, Javier; Urzúa, Alejandro; Sanhueza, Loreto; Wilkens, Marcela

    2017-06-23

    In the present study, the antibacterial activity of several ent -labdane derivatives of salvic acid (7α-hydroxy-8(17)- ent -labden-15-oic acid) was evaluated in vitro against the Gram-negative bacterium Escherichia coli and the Gram-positive bacteria Staphylococcus aureus and Bacillus cereus . For all of the compounds, the antibacterial activity was expressed as the minimum inhibitory concentration (MIC) in liquid media and minimum inhibitory amount (MIA) in solid media. Structure activity relationships (SAR) were employed to correlate the effect of the calculated lipophilicity parameters (logP ow ) on the inhibitory activity. Employing a phospholipidic bilayer (POPG) as a bacterial membrane model, ent -labdane-membrane interactions were simulated utilizing docking studies. The results indicate that (i) the presence of a carboxylic acid in the C-15 position, which acted as a hydrogen-bond donor (HBD), was essential for the antibacterial activity of the ent -labdanes; (ii) an increase in the length of the acylated chain at the C-7 position improved the antibacterial activity until an optimum length of five carbon atoms was reached; (iii) an increase in the length of the acylated chain by more than five carbon atoms resulted in a dramatic decrease in activity, which completely disappeared in acyl chains of more than nine carbon atoms; and (iv) the structural factors described above, including one HBD at C-15 and a hexanoyloxi moiety at C-7, had a good fit to a specific lipophilic range and antibacterial activity. The lipophilicity parameter has a predictive characteristic feature on the antibacterial activity of this class of compounds, to be considered in the design of new biologically active molecules.

  7. Ultra-trace level determination of diquat and paraquat residues in surface and drinking water using ion-pair liquid chromatography with tandem mass spectrometry: a comparison of direct injection and solid-phase extraction methods.

    PubMed

    Oh, Jin-Aa; Lee, Jun-Bae; Lee, Soo-Hyung; Shin, Ho-Sang

    2014-10-01

    Direct injection and solid-phase extraction methods for the determination of diquat and paraquat in surface and drinking water were developed using liquid chromatography with tandem mass spectrometry. The signal intensities of analytes based on six ion-pairing reagents were compared with each other, and 12.5 mM nonafluoropentanoic acid was selected as the best suited amongst them. A clean-up method was developed using Oasis hydrophilic-lipophilic balance; this was compared to the direct injection method, with respect to limits of detection, interference, precision, and accuracy. Limits of quantification of diquat and paraquat were 0.03 and 0.01 μg/L using the direct injection method, and 0.002 and 0.001 μg/L using the hydrophilic-lipophilic balance method. When the hydrophilic-lipophilic balance method was used to analyze target compounds in 114 surface water and 30 drinking water samples, paraquat and diquat were detected within a concentration range of 0.001-0.12 and 0.002-0.038 μg/L in surface water, respectively. When the direct injection method was used to analyze target compounds in the same samples, the detected concentrations of paraquat and diquat were within 25% in samples being >0.015 μg/L using the hydrophilic-lipophilic balance method. The liquid chromatography with tandem mass spectrometry method using direct injection can thus be used for routine monitoring of paraquat and diquat in surface and drinking water. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Mechanism of transdermal permeation promotion of lipophilic drugs by ethosomes.

    PubMed

    Yang, Li; Wu, Lifang; Wu, Dongze; Shi, Deshun; Wang, Tai; Zhu, Xiaoliang

    2017-01-01

    Ethosomes can promote the penetration of lipophilic drugs into the skin, but the underlying mechanism is still unknown. The purpose of this study was to investigate the mechanism of transdermal permeation promotion of lipophilic drugs by ethosomes. The formulation of ethosomes was optimized using the Box-Behnken experimental design, in which Rhodamine B and 1-palmitoyl-2-{12-[(7-nitro-2-1,3-benzoxadiazol-4-yl)amino]dodecanoyl}- sn -glycero-3-phosphocholine were used to simulate a model lipophilic drug and act as a fluorescent tracer of ethosomal phospholipids, respectively. Liposomes with the same phospholipid concentration and a hydroethanolic solution with the same ethanol concentration were also prepared as controls. The percutaneous progression of the above fluorescent preparations was observed by confocal laser scanning microscopy, and the fluorescence intensity of the images was analyzed. The optimized ethosome formulation consisted of 2.45% yolk phospholipids, 30% ethanol, and 67.55% distilled water. The percutaneous permeation of Rhodamine B in the optimized ethosomes was superior to that in hydroethanolic solution ( P <0.05) and liposomes ( P <0.05). The ethosomes could penetrate the skin via the percutaneous pathway of the hair follicle and stratum corneum, while during the process of penetration, the vesicles were broken and the phospholipids were retained in the upper epidermis, with the test compounds penetrating gradually. The superior percutaneous penetration of ethosomes was linked to the synergistic effects of their ingredients. The percutaneous pathways of ethosomes included open hair follicles and stratum corneum pathways. In addition, the vesicles might break up during percutaneous penetration in the superficial layer of the skin, allowing the test compounds to keep permeating into the deeper layer alone, while the phospholipid was retained in the upper epidermis.

  9. Mobilisation of lipophilic pollutants from blubber in northern elephant seal pups (Mirounga angustirostris) during the post-weaning fast

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Louis, Caroline; Dirtu, Alin C.; Department of Chemistry, “Al. I. Cuza” University of Iasi, 700506 Iasi

    Northern elephant seals (NES) (Mirounga angustirostris) from the Año Nuevo State Reserve (CA, USA) were longitudinally sampled during the post-weaning fast in order to study the mobilisation and redistribution of various classes of persistent organic pollutants (POPs), such as polybrominated diphenyl ethers (PBDEs), polychlorinated biphenyls (PCBs), dichlorodiphenyldichloroethylene (p,p′-DDE) and hexachlorobenzene (HCB) between blubber and blood. Inner and outer blubber layers were analysed separately. Organohalogenated compounds were detected in all blubber samples in the decreasing order of their concentrations: p,p′-DDE>PCBs⪢HCB>PBDEs. The concentrations of all studied compounds were homogeneously distributed in the blubber layer at early fast, since the concentrations of POPsmore » were statistically not different in the inner and outer layers. With the progression of the fast, the concentrations of PBDEs, PCBs and p,p′-DDE increased more sharply in inner blubber than in outer blubber. As a result, their levels became significantly higher in inner blubber as compared to outer blubber at late fast. The rise of pollutant concentrations in blubber might result from a less efficient mobilisation than triglycerides and/or a reuptake by adipocytes of some of the pollutants released into the circulation. The mobilisation of pollutants from blubber was higher at late fast. An increase of pollutant concentrations was observed in serum between early and late fast. Lower halogenated congeners (i.e. tetra-CBs) were present in higher proportions in serum, whereas the higher halogenated congeners (i.e. hepta-CBs) were mainly found in the inner and outer blubber layers. The transfer ratios of both PBDEs and PCBs from inner blubber to serum decreased with the number of chlorine and bromine atoms. In addition, the distribution of both types of compounds between serum and blubber was strongly influenced by their lipophilic character (log K{sub ow} values), with more lipophilic compounds being less efficiently released from blubber to serum. - Highlights: • The POP concentrations were evenly distributed in blubber layers at early fast. • The POP concentrations were higher in inner than in outer blubber at late fast. • The POP concentrations increased in blubber and serum over the fast. • POPs were less efficiently mobilised from blubber than triglycerides. • The mobilisation of POPs from blubber was influenced by their lipophilic character.« less

  10. Correlations between chromatographic parameters and bioactivity predictors of potential herbicides.

    PubMed

    Janicka, Małgorzata

    2014-08-01

    Different liquid chromatography techniques, including reversed-phase liquid chromatography on Purosphere RP-18e, IAM.PC.DD2 and Cosmosil Cholester columns and micellar liqud chromatography with a Purosphere RP-8e column and using buffered sodium dodecyl sulfate-acetonitrile as the mobile phase, were applied to study the lipophilic properties of 15 newly synthesized phenoxyacetic and carbamic acid derivatives, which are potential herbicides. Chromatographic lipophilicity descriptors were used to extrapolate log k parameters (log kw and log km) and log k values. Partitioning lipophilicity descriptors, i.e., log P coefficients in an n-octanol-water system, were computed from the molecular structures of the tested compounds. Bioactivity descriptors, including partition coefficients in a water-plant cuticle system and water-human serum albumin and coefficients for human skin partition and permeation were calculated in silico by ACD/ADME software using the linear solvation energy relationship of Abraham. Principal component analysis was applied to describe similarities between various chromatographic and partitioning lipophilicities. Highly significant, predictive linear relationships were found between chromatographic parameters and bioactivity descriptors. © The Author [2013]. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Effect of fluorine substitution on the interaction of lipophilic ions with the plasma membrane of mammalian cells.

    PubMed Central

    Kürschner, M; Nielsen, K; von Langen, J R; Schenk, W A; Zimmermann, U; Sukhorukov, V L

    2000-01-01

    The effects of the anionic tungsten carbonyl complex [W(CO)(5)SC(6)H(5)](-) and its fluorinated analog [W(CO)(5)SC(6)F(5)](-) on the electrical properties of the plasma membrane of mouse myeloma cells were studied by the single-cell electrorotation technique. At micromolar concentrations, both compounds gave rise to an additional antifield peak in the rotational spectra of cells, indicating that the plasma membrane displayed a strong dielectric dispersion. This means that both tungsten derivatives act as lipophilic ions that are able to introduce large amounts of mobile charges into the plasma membrane. The analysis of the rotational spectra allowed the evaluation not only of the passive electric properties of the plasma membrane and cytoplasm, but also of the ion transport parameters, such as the surface concentration, partition coefficient, and translocation rate constant of the lipophilic anions dissolved in the plasma membrane. Comparison of the membrane transport parameters for the two anions showed that the fluorine-substituted analog was more lipophilic, but its translocation across the plasma membrane was slower by at least one order of magnitude than that of the parent hydrogenated anion. PMID:10969010

  12. Lipophilicity indices derived from the liquid chromatographic behavior observed under bimodal retention conditions (reversed phase/hydrophilic interaction): application to a representative set of pyridinium oximes.

    PubMed

    Voicu, Victor; Sârbu, Costel; Tache, Florentin; Micăle, Florina; Rădulescu, Ştefan Flavian; Sakurada, Koichi; Ohta, Hikoto; Medvedovici, Andrei

    2014-05-01

    The liquid chromatographic behavior observed under bimodal retention conditions (reversed phase and hydrophilic interaction) offers a new basis for the determination of some derived lipophilicity indices. The experiments were carried out on a representative group (30 compounds) of pyridinium oximes, therapeutically tested in acetylcholinesterase reactivation, covering a large range of lipophilic character. The chromatographic behavior was observed on a mixed mode acting stationary phase, resulting from covalent functionalization of high purity spherical silica with long chain alkyl groups terminated by a polar environment created through the vicinal diol substitution at the lasting carbon atoms (Acclaim Mixed Mode HILIC 1 column). Elution was achieved by combining different proportions of 5 mM ammonium formiate solutions in water and acetonitrile. The derived lipophilicity indices were compared with logP values resulting from different computational algorithms. The correlations between experimental and computed data sets are significant. To obtain a better insight on the transition from reversed phase to hydrophilic interaction retention mechanisms, the variation of the thermodynamic parameters determined through the van׳t Hoff approach was also discussed. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Mesophase stabilization in ionic liquid crystals through pairing equally shaped mesogenic cations and anions

    DOE PAGES

    Stappert, Kathrin; Lipinski, Gregor; Kopiec, Gabriel; ...

    2015-07-23

    The synthesis and properties of a set of novel ionic liquid crystals with congruently shaped cations and anions are reported to check whether pairing mesogenic cations with mesogenic anions leads to a stabilization of a liquid crystalline phase. To that avail 1-alkyl-3-methyl-triazolium cations with an alkyl chain length of 10, 12, and 14 carbon atoms have been combined with p-alkyloxy-benzenesulfonate anions with different alkyl chain lengths (n = 10, 12, and 14). The corresponding triazolium iodides have been synthesized as reference compounds where the cation and anion have strong size and shape mismatch. The mesomorphic behavior of all compounds ismore » studied by differential scanning calorimetry and polarizing optical microscopy. All compounds except 1-methyl-3-decyltriazolium iodide, which qualifies as an ionic liquid, are thermotropic ionic liquid crystals. All other compounds adopt smectic A phases. As a result, a comparison of the thermal phase behavior of the 1-methyl-3-decyltriazolium bromides to the corresponding p-alkoxy-benzensulfonates reveals that definitely the mesophase is stabilized by pairing the rod-shaped 1-alkyl-3-methyltriazolium cation with a rod-like anion of similar size.« less

  14. A new SOD mimic, Mn(III) ortho N-butoxyethylpyridylporphyrin combines superb potency and lipophilicity with low toxicity

    PubMed Central

    Rajic, Zrinka; Tovmasyan, Artak; Spasojevic, Ivan; Sheng, Huaxin; Lu, Miaomiao; Li, Alice M.; Gralla, Edith B.; Warner, David S.; Benov, Ludmil; Batinic-Haberle, Ines

    2012-01-01

    The Mn porphyrins of kcat(O2˙−) as high as that of a superoxide dismutase enzyme, and of optimized lipophilicity have already been synthesized. Their exceptional in vivo potency is at least in part due to their ability to mimic site and location of mitochondrial superoxide dismutase, MnSOD. MnTnHex-2-PyP5+ is the most studied among lipophilic Mn porphyrins. It is of remarkable efficacy in animal models of oxidative stress injuries and particularly in central nervous system diseases. However, when used at high single and multiple doses it becomes toxic. The toxicity of MnTnHex-2-PyP5+ has been in part attributed to its micellar properties, i.e. the presence of polar cationic nitrogens and hydrophobic alkyl chains. The replacement of a CH2 group by oxygen atom in each of the four alkyl chains was meant to disrupt the porphyrin micellar character. When such modification occurs at the end of long alkyl chains, the oxygens become heavily solvated, which leads to a significant drop in the lipophilicity of porphyrin. However, when the oxygen atoms are buried deeper within the long heptyl chains, their excessive solvation is precluded and the lipophilicity preserved. The presence of oxygens and the high lipophilicity bestow the exceptional chemical and physical properties to Mn(III) meso-tetrakis(N-n-butoxyethylpyridinium-2-yl)porphyrin, MnTnBuOE-2-PyP5+. The high SOD-like activity is fully preserved and somewhat enhanced: log kcat(O2˙−) = 7.83 vs 7.48 and 7.65 for MnTnHex-2-PyP5+ and MnTnHep-2-PyP5+, respectively. MnTnBuOE-2-PyP5+ was tested in an O2˙− - specific in vivo assay – aerobic growth of SOD-deficient yeast, Saccharomyces cerevisiae, where it was fully protective in the range of 5 – 30 µM. MnTnHep-2-PyP5+ was already toxic at 5 µM, and MnTnHex-2-PyP5+ became toxic at 30 µM. In a mouse toxicity study, MnTnBuOE-2-PyP5+ was several-fold less toxic than either MnTnHex-2-PyP5+ or MnTnHep-2-PyP5+. PMID:22336516

  15. Lipophilic super-absorbent polymer gels as surface cleaners for oil and grease

    USDA-ARS?s Scientific Manuscript database

    Increasingly stringent environmental regulations on volatile organic compounds (VOCs) and hazardous air pollutants (HAPs) demand the development of disruptive technologies for cleaning weapons systems and platforms. Currently employed techniques such as vapor degreasing, solvent, aqueous, or blast ...

  16. A mass balance approach for calculation of recovery and binding enables the use of ultrafiltration as a rapid method for measurement of plasma protein binding for even highly lipophilic compounds.

    PubMed

    Wang, Changguang; Williams, Noelle S

    2013-03-05

    The aim of this study is to further validate the use of ultrafiltration (UF) as a method for determining plasma protein binding (PPB) by demonstrating that non-specific binding (NSB) is not a limitation, even for highly lipophilic compounds, because NSB sites on the apparatus are passivated in the presence of plasma. Mass balance theory was used to calculate recovery of 20 commercial and seven investigational compounds during ultrafiltration in the presence and absence of plasma. PPB was also measured using this mass balance approach for comparison to PPB determined by rapid equilibrium dialysis (RED) and as found in the literature. Compound recovery during UF was dramatically different in the presence and absence of plasma for compounds with high NSB in PBS only. A comparison of PPB calculated by ultrafiltration with literature values or calculated by RED gave concordant results. Discrepancies could be explained by changes in pH, insufficient time to equilibrium, or compound instability during RED, problems which were circumvented by ultrafiltration. Therefore, NSB, as measured by the traditional incubation of compound in PBS, need not be an issue when choosing UF as a PPB assay method. It is more appropriate to calculate compound recovery from the device in plasma as measured by mass balance to determine the suitability of the method for an individual compound. The speed with which UF can be conducted additionally avoids changes in pH or compound loss that can occur with other methods. The mass balance approach to UF is thus a preferred method for rapid determination of PPB. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Optimal choice of pH for toxicity and bioaccumulation studies of ionizing organic chemicals.

    PubMed

    Rendal, Cecilie; Kusk, Kresten Ole; Trapp, Stefan

    2011-11-01

    It is recognized that the pH of exposure solutions can influence the toxicity and bioaccumulation of ionizing compounds. The present study investigates whether it can be considered a general rule that an ionizable compound is more toxic and more bioaccumulative when in the neutral state. Three processes were identified to explain the behavior of ionizing compounds with changing pH: the change in lipophilicity when a neutral compound becomes ionized, electrical attraction, and the ion trap. The literature was screened for bioaccumulation and toxicity tests of ionizing organic compounds performed at multiple pH levels. Toxicity and bioconcentration factors (BCFs) were higher for acids at lower pH values, whereas the opposite was true for bases. The effect of pH was most pronounced when pH - pK(a) was in the range of -1 to 3 for acids, and -3 to 1 for bases. The factor by which toxicity and BCF changed with pH was correlated with the lipophilicity of the compound (log K(OW) of the neutral compound). For both acids and bases, the correlation was positive, but it was significant only for acids. Because experimental data in the literature were limited, results were supplemented with model simulations using a dynamic flux model based on the Fick-Nernst-Planck diffusion equation known as the cell model. The cell model predicts that bases with delocalized charges may in some cases show declining bioaccumulation with increasing pH. Little information is available for amphoteric and zwitterionic compounds; however, based on simulations with the cell model, it is expected that the highest toxicity and bioaccumulation of these compounds will be found where the compounds are most neutral, at the isoelectric point. Copyright © 2011 SETAC.

  18. Diversity of compounds in femoral secretions of Galápagos iguanas (genera: Amblyrhynchus and Conolophus), and their potential role in sexual communication in lek-mating marine iguanas (Amblyrhynchus cristatus)

    PubMed Central

    Menke, Markus; Quezada, Galo; Jiménez-Uzcátegui, Gustavo; Steinfartz, Sebastian

    2017-01-01

    Background Chemical signals are widely used in the animal kingdom, enabling communication in various social contexts, including mate selection and the establishment of dominance. Femoral glands, which produce and release waxy secretions into the environment, are organs of central importance in lizard chemical communication. The Galápagos marine iguana (Amblyrhynchus cristatus) is a squamate reptile with a lek-mating system. Although the lekking behaviour of marine iguanas has been well-studied, their potential for sexual communication via chemical cues has not yet been investigated. Here we describe the diversity of the lipophilic fraction of males’ femoral gland secretions among 11 island populations of marine iguanas, and compare it with the composition of its sister species, the Galápagos land iguana (Conolophus subcristatus). We also conducted behavioural observations in marine iguana territorial males in order to explore the possible function of these substances in the context of male dominance in leks. Methods Femoral secretions were analysed by gas chromatography coupled to mass spectrometry (GC–MS), and chromatography with a flame ionisation detector (GC-FID) in order to characterise the lipophilic composition. To understand the potential role of femoral secretions in marine iguana intraspecific communication, territorial males were sampled for their femoral glands and monitored to record their head bob rate—a territorial display behaviour in males—as well as the number of females present in their leks. Results We found that the gland secretions were composed of ten saturated and unsaturated carboxylic acids ranging in chain length between C16 and C24, as well as three sterols. Cholesterol was the main compound found. Intriguingly, land iguanas have a higher diversity of lipophilic compounds, with structural group of lipids (i.e. aldehydes) entirely absent in marine iguanas; overall the chemical signals of both species were strongly differentiated. Lipid profiles also differed among populations of marine iguanas from different islands, with some islands demonstrating a high diversity of lipophilic compounds (i.e. full spectra of compounds), and others lacking one or more compounds. Among the compounds most frequently found missing were 11- and 13-eicosenoic acids. Gland secretions of males with a better body condition and with a higher dominance status (i.e. those accompanied by females and with higher head bob display) were proportionately richer in C20-unsaturated fatty acids (11-eicosenoic acid). Discussion Land and marine iguanas strongly diverged in their chemical composition of the femoral glands likely due to ecological differences between both species. Despite that marine iguana populations varied in their femoral gland composition that was not related to their genetic structure. Our results indicated that 11-eicosenoic acid may play an important role in intraspecific chemical communication in marine iguanas. PMID:28828277

  19. Interaction of N-benzoyl-D-phenylalanine and related compounds with the sulphonylurea receptor of beta-cells.

    PubMed

    Schwanstecher, C; Meyer, M; Schwanstecher, M; Panten, U

    1998-03-01

    1. The structure activity relationships for the insulin secretagogues N-benzoyl-D-phenylalanine (NBDP) and related compounds were examined at the sulphonylurea receptor level by use of cultured HIT-T15 and mouse pancreatic beta-cells. The affinities of these compounds for the sulphonylurea receptor were compared with their potencies for K(ATP)-channel inhibition. In addition, the effects of cytosolic nucleotides on K(ATP)-channel inhibition by NBDP were investigated. 2. NBDP displayed a dissociation constant for binding to the sulphonylurea receptor (K(D) value) of 11 microM and half-maximally effective concentrations of K(ATP)-channel inhibition (EC50 values) between 2 and 4 microM (in the absence of cytosolic nucleotides or presence of 0.1 mM GDP or 1 mM ADP). 3. In the absence of cytosolic nucleotides or presence of GDP (0.1 mM) maximally effective concentrations of NBDP (0.1-1 mM) reduced K(ATP)-channel activity to 47% and 44% of control, respectively. In the presence of ADP (1 mM), K(ATP)-channel activity was completely suppressed by 0.1 mM NBDP. 4. The L-isomer of N-benzoyl-phenylalanine displayed a 20 fold lower affinity and an 80 fold lower potency than the D-isomer. 5. Introduction of a p-nitro substituent in the D-phenylalanine moiety of NBDP did not decrease lipophilicity but lowered affinity and potency by more than 30 fold. 6. Introduction of a p-amino substituent in the D-phenylalanine moiety of NBDP (N-benzoyl-p-amino-D-phenylalanine, NBADP) reduced lipophilicity and lowered affinity and potency by about 10 fold. This loss of affinity and potency was compensated for by formation of the phenylpropionic acid derivative of NBADP. A similar difference in affinity was observed for the sulphonylurea carbutamide and its phenylpropionic acid derivative. 7. Replacing the benzene ring in the D-phenylalanine moiety of NBDP by a cyclohexyl ring increased lipophilicity, and the K(D) and EC50 values were slightly lower than for NBDP. Exchange of both benzene rings in NBDP by cyclohexyl rings further increased lipophilicity without altering affinity and potency. 8. This study shows that N-acylphenylalanines interact with the sulphonylurea receptor of pancreatic beta-cells in a stereospecific manner. Their potency depends on lipophilic but not aromatic properties of their benzene rings. As observed for sulphonylureas, interaction of N-acylphenylalanines with the sulphonylurea receptor does not induce complete inhibition of K(ATP)-channel activity in the absence of inhibitory cytosolic nucleotides.

  20. Interaction of N-benzoyl-D-phenylalanine and related compounds with the sulphonylurea receptor of β-cells

    PubMed Central

    Schwanstecher, Christina; Meyer, Miriam; Schwanstecher, Mathias; Panten, Uwe

    1998-01-01

    The structure activity relationships for the insulin secretagogues N-benzoyl-D-phenylalanine (NBDP) and related compounds were examined at the sulphonylurea receptor level by use of cultured HIT-T15 and mouse pancreatic β-cells. The affinities of these compounds for the sulphonylurea receptor were compared with their potencies for KATP-channel inhibition. In addition, the effects of cytosolic nucleotides on KATP-channel inhibition by NBDP were investigated.NBDP displayed a dissociation constant for binding to the sulphonylurea receptor (KD value) of 11 μM and half-maximally effective concentrations of KATP-channel inhibition (EC50 values) between 2 and 4 μM (in the absence of cytosolic nucleotides or presence of 0.1 mM GDP or 1 mM ADP).In the absence of cytosolic nucleotides or presence of GDP (0.1 mM) maximally effective concentrations of NBDP (0.1–1 mM) reduced KATP-channel activity to 47% and 44% of control, respectively. In the presence of ADP (1 mM), KATP-channel activity was completely suppressed by 0.1 mM NBDP.The L-isomer of N-benzoyl-phenylalanine displayed a 20 fold lower affinity and an 80 fold lower potency than the D-isomer.Introduction of a p-nitro substituent in the D-phenylalanine moiety of NBDP did not decrease lipophilicity but lowered affinity and potency by more than 30 fold.Introduction of a p-amino substituent in the D-phenylalanine moiety of NBDP (N-benzoyl-p-amino-D-phenylalanine, NBADP) reduced lipophilicity and lowered affinity and potency by about 10 fold. This loss of affinity and potency was compensated for by formation of the phenylpropionic acid derivative of NBADP. A similar difference in affinity was observed for the sulphonylurea carbutamide and its phenylpropionic acid derivative.Replacing the benzene ring in the D-phenylalanine moiety of NBDP by a cyclohexyl ring increased lipophilicity, and the KD and EC50 values were slightly lower than for NBDP. Exchange of both benzene rings in NBDP by cyclohexyl rings further increased lipophilicity without altering affinity and potency.This study shows that N-acylphenylalanines interact with the sulphonylurea receptor of pancreatic β-cells in a stereospecific manner. Their potency depends on lipophilic but not aromatic properties of their benzene rings. As observed for sulphonylureas, interaction of N-acylphenylalanines with the sulphonylurea receptor does not induce complete inhibition of KATP-channel activity in the absence of inhibitory cytosolic nucleotides. PMID:9559882

  1. Encapsulation of porphyrins and chlorins in biodegradable nanoparticles: the effect of dye lipophilicity on the extravasation and the photothrombic activity. A comparative study.

    PubMed

    Pegaz, Bernadette; Debefve, Elodie; Borle, Francois; Ballini, Jean-Pierre; van den Bergh, Hubert; Kouakou-Konan, Yvette Niamien

    2005-07-01

    In the present work, we performed a preclinical inter-comparison study using several photosensitizers with the goal of optimizing photodynamic therapy (PDT) for the treatment of choroidal neovascularization (CNV) associated with age-related macular degeneration. The tested molecules were the porphyrins meso-tetraphenylporphyrin (TPP) and meso-tetra-(4-carboxyphenyl)-porphyrin (TCPP), and the chlorins pheophorbide-a (Pheo-a) and chlorin e(6) (Ce(6)). Each of these molecules was entrapped in biodegradable nanoparticles (NP) based on poly(d,l-lactic acid). The influence of the degree of lipophilicity on the incorporation efficiency of the drug in the NPs, and on the dye leakage from blood vessels as well as on the photothrombic efficiency was investigated using the chick chorioallantoic membrane (CAM) as in vivo model. NP characterization showed that the dye was more effectively entrapped in the polymeric matrix when its degree of lipophilicity increased. While less lipophilic compounds (TCPP, Ce(6)) extravasate rather easily, the more lipophilic dyes (TPP, Pheo-a) tend to remain inside the blood vessels. After injection of a drug dose of 1 mg/kg body weight and a drug-light application interval of 1 min, irradiation with light doses ranging from 5 to 20 J/cm(2) led to the highest photothrombic efficiency when using the NPs loaded with the most lipophilic molecule (TPP). The latter induced vascular damage, which was significantly higher than that observed with the other molecules tested. Thus, in addition to minimal leakage from blood vessels, the TPP in NP formulation exhibited photothrombic efficiency similar to Visudyne which was also tested in the CAM model.

  2. A lipophilic nitric oxide donor and a lipophilic antioxidant compound protect rat heart against ischemia-reperfusion injury if given as hybrid molecule but not as a mixture.

    PubMed

    Rastaldo, Raffaella; Raffaella, Rastaldo; Cappello, Sandra; Sandra, Cappello; Di Stilo, Antonella; Antonella, Di Stilo; Folino, Anna; Anna, Folino; Losano, Gianni; Gianni, Losano; Pagliaro, Pasquale; Pasquale, Pagliaro

    2012-03-01

    Low concentrations of a hydrophilic nitric oxide donor (NOD) are reported to reduce myocardial reperfusion injury only when combined with a lipophilic antioxidant (AOX) to form a hybrid molecule (HYB). Here we tested whether liposoluble NOD requires to be combined with AOX to be protective. Isolated rat hearts underwent 30 minutes of ischemia and 120 minutes of reperfusion. To induce postconditioning, 1 μM solutions of the following liposoluble compounds were given during the first 20 minutes of reperfusion: NOD with weak (w-NOD) or strong NO-releasing potency (s-NOD); weak HYB built up with w-NOD and a per se ineffective AOX lead; strong HYB built up with s-NOD and the same AOX; mixtures of w-NOD plus AOX or s-NOD plus AOX. A significant reduction of infarct size with improved recovery of cardiac function was obtained only with weak HYB. We suggest that w-NOD requires the synergy with a per se ineffective AOX to protect. The synergy is possible only if the 2 moieties enter the cell simultaneously as a hybrid, but not as a mixture. It seems that strong HYB was ineffective because an excessive intracellular NO release produces a large amount of reactive species, as shown from the increased nitrotyrosine production.

  3. Biorelevant physicochemical profiling of (E)- and (Z)-resveratrol determined from isomeric mixtures.

    PubMed

    Orgován, Gábor; Gonda, Imre; Noszál, Béla

    2017-05-10

    Biorelevant, isomer-specific physicochemical parameters of resveratrol, a multifunctional component in red wines, with cardioprotective, anti-Alzheimer and several other pharmacologic activities were determined. The parameters include site-specific basicities, lipophilicities, solubilities and diffusion constants for the two geometric isomers. The protonation equilibria of (E)- and (Z)-resveratrol were monitored by 1 H NMR-pH titrations. Five closely related auxiliary compounds ((E)-pinostilbene, (Z)-pinostilbene, (E)-pterostilbene, (Z)-pterostilbene and resorcinol) were also studied. Combining the datasets, the group-specific protonation constants of resveratrol isomers were determined. The results show that (Z)-resveratrol is more basic at every protonation site than the (E)-isomer. Lipophilicities are quantified in terms of logP values and were determined by octanol/water partition experiments and quantitative NMR spectroscopy: (E)-resveratrol was found to be more lipophilic. Since the molecular geometries of the isomers differ, diffusion ordered NMR spectroscopy (DOSY) experiments were also carried out to quantify the diffusion capabilities of the isomers: (Z)-resveratrol of bent shape has a slightly higher diffusion coefficient than its extended (E) counterpart. A striking 10-fold difference of water solubility was found in favor of the (Z) isomer, due obviously to the reduced water-repellent character in the more compact molecule. This is so far the greatest recorded solubility difference between geometric isomers of any compounds. Copyright © 2016. Published by Elsevier B.V.

  4. Characterization of Ascentis RP-Amide column: Lipophilicity measurement and linear solvation energy relationships.

    PubMed

    Benhaim, Deborah; Grushka, Eli

    2010-01-01

    This study investigates lipophilicity determination by chromatographic measurements using the polar embedded Ascentis RP-Amide stationary phase. As a new generation of amide-functionalized silica stationary phase, the Ascentis RP-Amide column is evaluated as a possible substitution to the n-octanol/water partitioning system for lipophilicity measurements. For this evaluation, extrapolated retention factors, log k'w, of a set of diverse compounds were determined using different methanol contents in the mobile phase. The use of n-octanol enriched mobile phase enhances the relationship between the slope (S) of the extrapolation lines and the extrapolated log k'w (the intercept of the extrapolation),as well as the correlation between log P values and the extrapolated log k'w (1:1 correlation, r2 = 0.966).In addition, the use of isocratic retention factors, at 40% methanol in the mobile phase, provides a rapid tool for lipophilicity determination. The intermolecular interactions that contribute to the retention process in the Ascentis RP-Amide phase are characterized using the solvation parameter model of Abraham.The LSER system constants for the column are very similar to the LSER constants of the n-octanol/water extraction system. Tanaka radar plots are used for quick visual comparison of the system constants of the Ascentis RP-Amide column and the n-octanol/water extraction system. The results all indicate that the Ascentis RP-Amide stationary phase can provide reliable lipophilic data. Copyright 2009 Elsevier B.V. All rights reserved.

  5. Chromatographic and computational assessment of lipophilicity using sum of ranking differences and generalized pair-correlation.

    PubMed

    Andrić, Filip; Héberger, Károly

    2015-02-06

    Lipophilicity (logP) represents one of the most studied and most frequently used fundamental physicochemical properties. At present there are several possibilities for its quantitative expression and many of them stems from chromatographic experiments. Numerous attempts have been made to compare different computational methods, chromatographic methods vs. computational approaches, as well as chromatographic methods and direct shake-flask procedure without definite results or these findings are not accepted generally. In the present work numerous chromatographically derived lipophilicity measures in combination with diverse computational methods were ranked and clustered using the novel variable discrimination and ranking approaches based on the sum of ranking differences and the generalized pair correlation method. Available literature logP data measured on HILIC, and classical reversed-phase combining different classes of compounds have been compared with most frequently used multivariate data analysis techniques (principal component and hierarchical cluster analysis) as well as with the conclusions in the original sources. Chromatographic lipophilicity measures obtained under typical reversed-phase conditions outperform the majority of computationally estimated logPs. Oppositely, in the case of HILIC none of the many proposed chromatographic indices overcomes any of the computationally assessed logPs. Only two of them (logkmin and kmin) may be selected as recommended chromatographic lipophilicity measures. Both ranking approaches, sum of ranking differences and generalized pair correlation method, although based on different backgrounds, provides highly similar variable ordering and grouping leading to the same conclusions. Copyright © 2015. Published by Elsevier B.V.

  6. Uptake of pesticides from water by curly waterweed Lagarosiphon major and lesser duckweed Lemna minor.

    PubMed

    de Carvalho, Renato F; Bromilow, Richard H; Greenwood, Richard

    2007-08-01

    The uptake of pesticides from water by two aquatic plants, the submersed Lagarosiphon major (Ridley) Moss and the floating duckweed Lemna minor L., was measured over periods of up to 72 h. Twelve non-ionised pesticides and analogues, chosen to span a wide range of physicochemical properties, and one analogue (3,5-D) of the phenoxyacetic acid herbicide 2,4-D were studied. Concentrations of the parent compound were determined in the plants following extraction and separation by chromatography. Quantification was by liquid scintillation counting for the (14)C-labelled compounds and by high-performance liquid chromatography for the four non-radiolabelled commercial pesticides. Uptake for all compound and plant combinations had reached equilibrium by 24 h. Accumulation of compound in the plant could be described well for most non-ionised compounds by equilibration into the aqueous phase in the plant cells together with partitioning onto the plant solids, this latter process becoming dominant in Lagarosiphon for compounds with log K(ow) > 1 and in Lemna for compounds with log K(ow) > 1.8. Lipophilic compounds with log K(ow) > 4 were concentrated more than 100-fold on a fresh-weight basis. However, the uptake of isoproturon and chlorotoluron was up to threefold less than expected from their K(ow) values, and their behaviour was better explained using solvation descriptors. Uptake of the acid 3,5-D was dependent on solution pH, this compound being strongly taken up at lower pH by the process of ion trapping, as previously observed in barley roots. Aquatic vegetation can thus rapidly accumulate pesticides, and could be an important sink especially for lipophilic pesticides reaching well-vegetated waters. Copyright (c) 2007 Society of Chemical Industry

  7. Lipophilic fractions from the marine sponge Halichondria sitiens decrease secretion of pro-inflammatory cytokines by dendritic cells and decrease their ability to induce a Th1 type response by allogeneic CD4+ T cells.

    PubMed

    Di, Xiaxia; Oskarsson, Jon T; Omarsdottir, Sesselja; Freysdottir, Jona; Hardardottir, Ingibjorg

    2017-12-01

    Halichondria (Halichondriidae) marine sponges contain components possessing various biological activities, but immunomodulation is not among the ones reported. This study evaluated the immunomodulatory effects of fractions/compounds from Halichondria sitiens Schmidt. Crude dichloromethane/methanol extracts of H. sitiens were subjected to various chromatographic techniques to obtain fractions/compounds with immunomodulatory activity, using bioassay-guided isolation. The effects of the fractions/compounds were determined by measuring secretion of cytokines and expression of surface molecules by dendritic cells (DCs) and their ability to stimulate and modify cytokine secretion by allogeneic CD4 + T cells. The bioactive fractions were chemically analyzed to identify the immunomodulatory constituents by 1D, 2D NMR, and HRMS data. Several lipophilic fractions from H. sitiens at 10 μg/mL decreased secretion of the pro-inflammatory cytokines IL-12p40 and IL-6 by the DCs, with maximum inhibition being 64% and 25%, respectively. In addition, fractions B3b3F and B3b3J decreased the ability of DCs to induce T cell secretion of IFN-γ. Fraction B3b3 induced morphological changes in DCs, characterized by extreme elongation of dendrites and cell clustering. Chemical screening revealed the presence of glycerides and some minor unknown constituents in the biologically active fractions. One new glyceride, 2,3-dihydroxypropyl 2-methylhexadecanoate (1), was isolated from one fraction and two known compounds, 3-[(1-methoxyhexadecyl)oxy]propane-1,2-diol (2) and monoheptadecanoin (3), were identified in another, but none of them had immunomodulatory activity. These results demonstrate that several lipophilic fractions from H. sitiens have anti-inflammatory effects on DCs and decrease their ability to induce a Th1 type immune response.

  8. A Visible Light Initiating System for Free Radical Promoted Cationic Polymerization

    DTIC Science & Technology

    1994-02-02

    identify the end groups in the polymer of cyclohexene oxide. N,N-Dimethylnaphthyl amine (DNA), a compound with high fluorescence quantum yield, was used...candidates to be polymerized via a cationic mechanism include cyclic ethers, cyclic formals and acetals, vinyl ethers, and epoxy compounds . Of these...reported sensitizer, bears two dimethylamino groups, is direct evidence that an aromatic amine can be present in a cationically photopolymerizable system

  9. Thermochemical Stability Study of Alkyl-Tethered Quaternary Ammonium Cations for Anion Exchange Membrane Fuel Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohanty, Angela D.; Tignor, Steven E.; Sturgeon, Matthew R.

    2017-01-01

    The increased interest in the use of anion exchange membranes (AEMs) for applications in electrochemical devices has prompted significant efforts in designing materials with robust stability in alkaline media. Most reported AEMs suffer from polymer backbone degradation as well as cation functional group degradation. In this report, we provide comprehensive experimental investigations for the analysis of cation functional group stability under alkaline media. A silver oxide-mediated ion exchange method and an accelerated stability test in aqueous KOH solutions at elevated temperatures using a Parr reactor were used to evaluate a broad scope of quaternary ammonium (QA) cationic model compound structures,more » particularly focusing on alkyl-tethered cations. Additionally, byproduct analysis was employed to gain better understanding of degradation pathways and trends of alkaline stability. Experimental results under different conditions gave consistent trends in the order of cation stability of various QA small molecule model compounds. Overall, cations that are benzyl-substituted or that are near to electronegative atoms (such as oxygen) degrade faster in alkaline media in comparison to alkyl-tethered QAs. These comprehensive model compound stability studies provide valuable information regarding the relative stability of various cation structures and can help guide researchers towards designing new and promising candidates for AEM materials.« less

  10. Lipophilicity as a determinant of thiazolidinedione action in vitro: findings from BLX-1002, a novel compound without affinity to PPARs.

    PubMed

    Brunmair, Barbara; Staniek, Katrin; Lehner, Zsuzsanna; Dey, Debendranath; Bolten, Charles W; Stadlbauer, Karin; Luger, Anton; Fürnsinn, Clemens

    2011-06-01

    The pharmacology of thiazolidinediones (TZDs) seems to be driven not only by activation of peroxisome proliferator-activated receptor-γ (PPARγ), but also by PPARγ-independent effects on mitochondrial function and cellular fuel handling. This study portrayed such actions of the novel hydrophilic TZD compound BLX-1002 and compared them to those of conventional TZDs. Mitochondrial function and fuel handling were examined in disrupted rat muscle mitochondria, intact rat liver mitochondria, and specimens of rat skeletal muscle. BLX-1002 was superior to most other TZDs as an inhibitor of respiratory complex 1 in disrupted mitochondria, but had less effect than any other TZD on oxygen consumption by intact mitochondria and on fuel metabolism by intact tissue. The latter finding was obviously related to the hydrophilic properties of BLX-1002, because high potentials of individual TZDs to shift muscle fuel metabolism from the aerobic into the anaerobic pathway were associated with high ClogP values indicative of high lipophilicity and low hydrophilicity (e.g., % increase in lactate release induced by 10 μmol/l of respective compound: BLX-1002, ClogP 0.39, +10 ± 8%, not significant; pioglitazone, ClogP 3.53, +68 ± 12%, P < 0.001; troglitazone, ClogP 5.58, +157 ± 14%, P < 0.001). The observed specific properties of BLX-1002 could result from relatively strong direct affinity to an unknown mitochondrial target, but limited access to this target. Results suggest 1) that impairment of mitochondrial function and increased anaerobic fuel metabolism are unlikely to account for PPARγ-independent glucose lowering by BLX-1002, and 2) that higher lipophilicity of an individual TZD is associated with stronger acceleration of anaerobic glycolysis.

  11. Electromembrane extraction of zwitterionic compounds as acid or base: comparison of extraction behavior at acidic and basic pHs.

    PubMed

    Nojavan, Saeed; Pourahadi, Ahmad; Hosseiny Davarani, Saied Saeed; Morteza-Najarian, Amin; Beigzadeh Abbassi, Mojtaba

    2012-10-01

    This study has performed on electromembrane extraction (EME) of some zwitterionic compounds based on their acidic and basic properties. High performance liquid chromatography (HPLC) equipped with UV detection was used for determination of model compounds. Cetirizine (CTZ) and mesalazine (MS) were chosen as model compounds, and each of them was extracted from acidic (as a cation) and basic (as an anion) sample solutions, separately. 1-Octanol and 2-nitrophenyl octylether (NPOE) were used as the common supported liquid membrane (SLM) solvents. EME parameters, such as extraction time, extraction voltage and pH of donor and acceptor solutions were studied in details for cationic and anionic forms of each model compound and obtained results for two ionic forms (cationic and anionic) of each compound were compared together. Results showed that zwitterionic compounds could be extracted in both cationic and anionic forms. Moreover, it was found that the extraction of anionic form of each model compound could be done in low voltages when 1-octanol was used as the SLM solvent. Results showed that charge type was not highly effective on the extraction efficiency of model compounds whereas the position of charge within the molecule was the key parameter. In optimized conditions, enrichment factors (EF) of 27-60 that corresponded to recoveries ranging from 39 to 86% were achieved. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Fast dynamic electron transfer along infinite anion-cation chains in technetium and rhenium acido clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antipov, B.G.; Kryuchkov, S.V.; Grigor`ev, M.S.

    1995-09-01

    New technetium and rhenium compounds with ferricenium cations - [Fe(C{sub 5}H{sub 5}){sub 2}]{sub 3}[Tc{sub 6}I{sub 14}], [Fe(C{sub 5}H{sub 5}){sub 2}]{sub 3}[Tc{sub 6}Cl{sub 14}], [Fe(C{sub 5}H{sub 5}){sub 2}]{sub 2}[Tc{sub 8}Br{sub 14}], and [Fe(C{sub 5}H{sub 5}){sub 2}]{sub 2}[Re{sub 2}Br{sub 8}] - are synthesized and identified. The compounds are characterized by the methods of static magnetic susceptibility and differential scanning calorimetry; solid-state conductivity measurements; and IR, EPR, {sup 57}Fe Moessbauer, and X-ray photoelectron spectroscopic data. These data are compared with the physicochemical characteristics of ferricenium pertechnetate and hexachlorotechnetate, as well as of a number of reference technetium and rhenium compounds containing the samemore » anions but different cations. The structure of [Fe(C{sub 5}H{sub 5}){sub 2}]{sub 3}[Tc{sub 6}I{sub 14}] is determined by X-ray diffraction analysis of a single crystal [space group P6/m, a = 15.34(2), c = 12.70(1) {angstrom}]. The structures of the remaining compounds were confirmed by comparing their spectroscopic properties with corresponding properties of compounds with known composition and structure. None of the compounds with ferricenium cations exhibit covalent or other localized bonds between anions and cations. However, the physicochemical properties of these compounds indicate the occurrence of a fast dynamic electron transfer along infinite anion-cation chains. Compounds [Fe(C{sub 5}H{sub 5}){sub 2}]{sub 3}[Tc{sub 6}Cl{sub 14}] and [Fe(C{sub 5}H{sub 5}){sub 2}]{sub 2}[Tc{sub 8}Br{sub 14}] were found to exhibit a new phenomenon of X-ray-induced low-temper ature high-energy electron emission.« less

  13. Relationship between the lipophilicity of gallic acid n-alquil esters' derivatives and both myeloperoxidase activity and HOCl scavenging.

    PubMed

    Rosso, Rober; Vieira, Tiago O; Leal, Paulo C; Nunes, Ricardo J; Yunes, Rosendo A; Creczynski-Pasa, Tânia B

    2006-09-15

    The gallic acid and several n-alkyl gallates, with the same number of hydroxyl substituents, varying only in the side carbonic chain length, with respective lipophilicity defined through the C log P, were studied. It evidenced the structure-activity relationship of the myeloperoxidase activity inhibition and the hypochlorous acid scavenger property, as well as its low toxicity in rat hepatic tissue. The gallates with C log P below 3.0 (compounds 2-7) were more active against the enzyme activity, what means that the addition of 1-6 carbons (C log P between 0.92 and 2.92) at the side chain increased approximately 50% the gallic acid effect. However, a relationship between the HOCl scavenging capability and the lipophilicity was not observed. With these results it is possible to suggest that the gallates protect the HOCl targets through two mechanisms: inhibiting its production by the enzyme and scavenging the reactive specie.

  14. Plasticizer Effects in the PVC Membrane of the Dibasic Phosphate Selective Electrode

    PubMed Central

    Carey, Clifton

    2016-01-01

    The PVC membrane of an ion-selective electrode (ISE) sensitive to dibasic phosphate ions (HPO4-ISE) has not been optimized for maximum selectivity, sensitivity, and useable ISE lifetime and further work was necessary to improve its performance. Two areas of investigation are reported here: include the parameters for the lipophilicity of the plasticizer compound used and the amount of cyclic polyamine ionophore incorporated in the PVC membrane. Six candidate plasticizers with a range of lipophilicity were evaluated for their effect on the useable lifetime, sensitivity, and selectivity of the ISE against 13 different anions. Selectivity was determined by a modified fixed interferent method, sensitivity was determined without interferents, and the usable lifetime evaluated at the elapsed time where 50% of the HPO4-ISE failed (L50). The results show that choosing a plasticizer that has a lipophilicity similar to the ionophore's results in the best selectivity and sensitivity and the longest L50. PMID:27347487

  15. In Vitro Lipophilic Antioxidant Capacity, Antidiabetic and Antibacterial Activity of Citrus Fruits Extracts from Aceh, Indonesia

    PubMed Central

    Ernawita; Wahyuono, Ruri Agung; Hesse, Jana; Hipler, Uta-Christina; Elsner, Peter; Böhm, Volker

    2017-01-01

    This study reports in vitro lipophilic antioxidant, inhibition of α-amylase and antibacterial activities of extracts of peel and pulp of citrus samples from Aceh, Indonesia. HPLC (high-performance liquid chromatography), phytochemical, and FTIR (fourier transform infrared) analysis detected carotenoids, flavonoids, phenolic acids and terpenoids, contributing to the biological potencies. Most peel and pulp extracts contained lutein and lower concentrations of zeaxanthin, α-carotene, β-carotene and β-cryptoxanthin. The extracts also contained flavanone glycosides (hesperidin, naringin and neohesperidin), flavonol (quercetin) and polymethoxylated flavones (sinensetin, tangeretin). L-TEAC (lipophilic trolox equivalent antioxidant capacity) test determined for peel extracts higher antioxidant capacity compared to pulp extracts. All extracts presented α-amylase inhibitory activity, pulp extracts showing stronger inhibitory activity compared to peel extracts. All extracts inhibited the growth of both gram (+) and gram (−) bacteria, with peel and pulp extracts of makin showing the strongest inhibitory activity. Therefore, local citrus species from Aceh are potential sources of beneficial compounds with possible health preventive effects. PMID:28165379

  16. In Vitro Lipophilic Antioxidant Capacity, Antidiabetic and Antibacterial Activity of Citrus Fruits Extracts from Aceh, Indonesia.

    PubMed

    Ernawita; Wahyuono, Ruri Agung; Hesse, Jana; Hipler, Uta-Christina; Elsner, Peter; Böhm, Volker

    2017-02-03

    This study reports in vitro lipophilic antioxidant, inhibition of α-amylase and antibacterial activities of extracts of peel and pulp of citrus samples from Aceh, Indonesia. HPLC (high-performance liquid chromatography), phytochemical, and FTIR (fourier transform infrared) analysis detected carotenoids, flavonoids, phenolic acids and terpenoids, contributing to the biological potencies. Most peel and pulp extracts contained lutein and lower concentrations of zeaxanthin, α-carotene, β-carotene and β-cryptoxanthin. The extracts also contained flavanone glycosides (hesperidin, naringin and neohesperidin), flavonol (quercetin) and polymethoxylated flavones (sinensetin, tangeretin). L-TEAC (lipophilic trolox equivalent antioxidant capacity) test determined for peel extracts higher antioxidant capacity compared to pulp extracts. All extracts presented α-amylase inhibitory activity, pulp extracts showing stronger inhibitory activity compared to peel extracts. All extracts inhibited the growth of both gram (+) and gram (-) bacteria, with peel and pulp extracts of makin showing the strongest inhibitory activity. Therefore, local citrus species from Aceh are potential sources of beneficial compounds with possible health preventive effects.

  17. Identification of suitable internal controls to study expression of a Staphylococcus aureus multidrug resistance system by quantitative real-time PCR.

    PubMed

    Theis, Torsten; Skurray, Ronald A; Brown, Melissa H

    2007-08-01

    Quantitative real-time PCR (qRT-PCR) has become a routine technique for gene expression analysis. Housekeeping genes are customarily used as endogenous references for the relative quantification of genes of interest. The aim of this study was to develop a quantitative real-time PCR assay to analyze gene expression in multidrug resistant Staphylococcus aureus in the presence of cationic lipophilic substrates of multidrug transport proteins. Eleven different housekeeping genes were analyzed for their expression stability in the presence of a range of concentrations of four structurally different antimicrobial compounds. This analysis demonstrated that the genes rho, pyk and proC were least affected by rhodamine 6G and crystal violet, whereas fabD, tpiA and gyrA or fabD, proC and pyk were stably expressed in cultures grown in the presence of ethidium or berberine, respectively. Subsequently, these housekeeping genes were used as internal controls to analyze expression of the multidrug transport protein QacA and its transcriptional regulator QacR in the presence of the aforementioned compounds. Expression of qacA was induced by all four compounds, whereas qacR expression was found to be unaffected, reduced or enhanced. This study demonstrates that staphylococcal gene expression, including housekeeping genes previously used to normalize qRT-PCR data, is affected by growth in the presence of different antimicrobial compounds. Thus, identification of suitable genes usable as a control set requires rigorous testing. Identification of a such a set enabled them to be utilized as internal standards for accurate quantification of transcripts of the qac multidrug resistance system from S. aureus grown under different inducing conditions. Moreover, the qRT-PCR assay presented in this study may also be applied to gene expression studies of other multidrug transporters from S. aureus.

  18. Anion-cation charge-transfer properties and spectral studies of [M(phen)3][Cd4(SPh)10] (M = Ru, Fe, and Ni).

    PubMed

    Jiang, Jian-Bing; Bian, Guo-Qing; Zhang, Ya-Ping; Luo, Wen; Zhu, Qin-Yu; Dai, Jie

    2011-10-07

    Three anion-cation compounds 1-3 with formula [M(phen)(3)][Cd(4)(SPh)(10)]·Sol (M = Ru(2+), Fe(2+), and Ni(2+), Sol = MeCN and H(2)O) have been synthesized and characterized by single-crystal analysis. Both the cations and anion are well-known ions, but the properties of the co-assembled compounds are interesting. Molecular structures and charge-transfer between the cations and anions in crystal and even in solution are discussed. These compounds are isomorphous and short inter-ion interactions are found in these crystals, such as π···π stacking and C-H···π contacts. Both spectroscopic and theoretical calculated results indicate that there is anion-cation charge-transfer (ACCT) between the Ru-phen complex dye and the Cd-SPh cluster, which plays an important role in their photophysical properties. The intensity of the fluorescent emission of the [Ru(phen)(3)](2+) is enhanced when the cation interacts with the [Cd(4)(SPh)(10)](2-) anion. The mechanism for the enhancement of photoluminescence has been proposed.

  19. Lipophilic Polycation Vehicles Display High Plasmid DNA Delivery to Multiple Cell Types.

    PubMed

    Wu, Yaoying; Smith, Adam E; Reineke, Theresa M

    2017-08-16

    A class of cationic poly(alkylamidoamine)s (PAAAs) containing lipophilic methylene linkers were designed and examined as in vitro plasmid DNA (pDNA) delivery agents. The PAAAs were synthesized via step-growth polymerization between a diamine monomer and each of four different diacid chloride monomers with varying methylene linker lengths, including glutaryl chloride, adipoyl chloride, pimeloyl chloride, and suberoyl chloride, which served to systematically increase the lipophilicity of the polymers. The synthesized polymers successfully complexed with pDNA in reduced serum medium at N/P ratios of 5 and greater, resulting in polyplexes with hydrodynamic diameters of approximately 1 μm. These polyplexes were tested for in vitro transgene expression and cytotoxicity using HDFa (human dermal fibroblast), HeLa (human cervical carcinoma), HMEC (human mammary epithelial), and HUVEC (human umbilical vein endothelial) cells. Interestingly, select PAAA polyplex formulations were found to be more effective than Lipofectamine 2000 at promoting transgene expression (GFP) while maintaining comparable or higher cell viability. Transgene expression was highest in HeLa cells (∼90% for most formulations) and lowest in HDFa cells (up to ∼20%) as measured by GFP fluorescence. In addition, the cytotoxicity of PAAA polyplex formulations was significantly increased as the molecular weight, N/P ratio, and methylene linker length were increased. The PAAA vehicles developed herein provide a new delivery vehicle design strategy of displaying attributes of both polycations and lipids, which show promise as a tunable scaffold for refining the structure-activity-toxicity profiles for future genome editing studies.

  20. Analytical Determination of KDOC-Values of Polycyclic Musk Compounds with HS-SPME and GC/MS/MS

    NASA Astrophysics Data System (ADS)

    Böhm, L.; Düring, R.-A.

    2009-04-01

    Polycyclic musk compounds, used as fragrances in cosmetics and detergents, get into rivers via domestic wastewater and sewage treatment plants and with sewage sludge as fertilizer into soils. Because of their persistence and lipophilic character they accumulate in biota, so they are pollutants with environmental relevance. The coefficient KDOC is used to quantify the distribution of substances between aqueous phase and dissolved organic matter (DOM) which is quantified by the determination of dissolved organic carbon (DOC). DOM is of specific relevance for the transport and fate of persistent and lipophilic compounds in the environment. The affinity to DOM increases, the more lipophilic a substance is. So the environmental mobility is enhanced with increasing binding on DOM. For that reason, measured KDOC-values are important to predict the fate and behaviour of chemicals in the environment and should be used for environmental fate modelling purposes. LITZ ET AL. (2007) state that, to carry out a risk-assessment for polycyclic musk compounds, further research on their sorption-behaviour is necessary. For the determination of KDOC-values, different concentrations of humic acid were spiked with a multi-component stock solution. The samples were analysed with headspace solid-phase microextraction in combination with gas chromatography coupled with mass spectrometry (HS-SPME GC/MS/MS). The KDOC-values were calculated according to YABUTA ET AL. (2004). The method was validated with single substance stock solutions and with polycyclic aromatic hydrocarbons (PAHs). The results show that the method is applicable, repeatable and suitable to get KDOC-values for many substances very fast, cheap and solvent-free. With our results KDOC-values for polycyclic musk compounds were determined for the first time. Literature LITZ, N. TH., MüLLER, J. AND BöHMER, W. (2007): Occurrence of Polycyclic Musks in Sewage Sludge and their Behaviour in Soils and Plants. Part 2: Investigation of Polycyclic Musks in Soils and Plants. J Soils Sediments 7: 36-44 YABUTA, H., FUKUSHIMA, M., TANAKA, F., ICHIKAWA, H. AND TATSUMI, K. (2004): Solid-phase Microextraction for the Evaluation of Partition Coefficients of a Chlorinated Dioxin and Hexachlorobenzene into Humic Substances. Anal. Sci. 20: 787-791

  1. Rapid-gradient HPLC method for measuring drug interactions with immobilized artificial membrane: comparison with other lipophilicity measures.

    PubMed

    Valko, K; Du, C M; Bevan, C D; Reynolds, D P; Abraham, M H

    2000-08-01

    A fast-gradient high-performance liquid chromatographic (HPLC) method has been suggested to characterize the interactions of drugs with an immobilized artificial membrane (IAM). With a set of standards, the gradient retention times can be converted to Chromatographic Hydrophobicity Index values referring to IAM chromatography (CHI(IAM)) that approximates an acetonitrile concentration with which the equal distribution of compound can be achieved between the mobile phase and IAM. The CHI(IAM) values are more suitable for interlaboratory comparison and for high throughput screening of new molecular entities than the log k(IAM) values (isocratic retention factor on IAM). The fast-gradient method has been validated against the isocratic log k(IAM) values using the linear free energy relationship solvation equations based on the data from 48 compounds. The compound set was selected to provide a wide range and the least cross-correlation between the molecular descriptors in the solvation equation: (2) where SP is a solute property (e.g., logarithm of partition coefficients, reversed-phase (RP)-HPLC retention parameters, such as log k, log k(w), etc.) and the explanatory variables are solute descriptors as follows: R(2) is an excess molar refraction that can be obtained from the measured refractive index of a compound, pi(2)(H) is the solute dipolarity/polarizability, summation operatoralpha(2)(H) and summation operatorbeta(2)(0) are the solute overall or effective hydrogen-bond acidity and basicity, respectively, and V(x) is the McGowan characteristic volume (in cm(3)/100 mol) that can be calculated for any solute simply from molecular structure using a table of atomic constants. It was found that the relative constants of the solvation equation were very similar for the CHI(IAM) and for the log k(IAM). The IAM lipophilicity scale was quite similar to the octanol/water lipophilicity scale for neutral compounds. The effect of charge on the interaction with IAM was studied by varying the mobile phase pH. Copyright 2000 Wiley-Liss, Inc.

  2. Antidiabetic potential of purple and red rice (Oryza sativa L.) bran extracts

    USDA-ARS?s Scientific Manuscript database

    Rice bran contains several bioactive components that have been linked to the promotion of human health. Brown rice bran contains lipophilic components that include the tocotrienols and gamma-oryzanol. Pigmented or colored rice bran contains different phenolic compounds including anthocyanins (purp...

  3. Bioactive compounds in pigmented rice bran inhibit growth of human cancer cells

    USDA-ARS?s Scientific Manuscript database

    Rice bran contains both lipophilic and hydrophilic antioxidants. Our previous studies have shown that pigmented rice cultivars contained several-fold higher total phenolic concentrations and antioxidant capacities than non-pigmented cultivars. We investigated three rice brans (purple, red and light-...

  4. Lipophilic super-absorbent swelling gels as cleaners for use on weapons systems and platforms

    USDA-ARS?s Scientific Manuscript database

    Increasingly stringent environmental regulations on volatile organic compounds (VOCs) and hazardous air pollutants (HAPs) demand the development of disruptive technologies for cleaning weapons systems and platforms. Currently employed techniques such as vapor degreasing, solvent, aqueous, or blast c...

  5. Structural characteristics of chloroquine-bridged ferrocenophane analogues of ferroquine may obviate malaria drug-resistance mechanisms.

    PubMed

    Salas, Paloma F; Herrmann, Christoph; Cawthray, Jacqueline F; Nimphius, Corinna; Kenkel, Alexander; Chen, Jessie; de Kock, Carmen; Smith, Peter J; Patrick, Brian O; Adam, Michael J; Orvig, Chris

    2013-02-28

    Five compounds displaying an unprecedented binding mode of chloroquine to ferrocene through the bridging of the cyclopentadienyl rings were studied alongside their monosubstituted ferrocene analogues and organic fragments. The antiplasmodial activity was evaluated against strains of the malaria parasite (Plasmodium falciparum). While the chloroquine-bridged ferrocenyl derivatives were less active than their five monosubstituted ferrocenyl analogues, they retained activity in the drug-resistant strains. The biological and physical properties were correlated to antiplasmodial activity. Intramolecular hydrogen bonding was associated with increased antiplasmodial action, but it is not the determining factor. Instead, balance between lipophilicity and hydrophilicity had a greater influence. It was found that calculated partition coefficient (log P) values of 4.5-5.0 and topological polar surfaces area (tPSA) values of ∼26.0 Å(2) give the best balance. The particular conformation, compact size, and lipophilicity/hydrophilicity balance observed in the bridged compounds provide them with the structural characteristics needed to escape the mechanisms responsible for resistance.

  6. Antioxidant activity and bioactive compound contents before and after in vitro digestion of new tomato hybrids.

    PubMed

    Tommonaro, Giuseppina; Speranza, Giovanna; De Prisco, Rocco; Iodice, Carmine; Crudele, Egle; Abbamondi, Gennaro Roberto; Nicolaus, Barbara

    2017-12-01

    The antioxidant properties and bioactive compound contents of fresh new tomato hybrids before and after in vitro digestion were investigated. To this aim, the antioxidant activities of lipophilic, hydrophilic and polyphenolic extracts of tomato hybrids were determined by ABTS (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)), DMPD (N,N-dimethyl-p-phenylenediamine dihydrochloride) and DPPH (2,2-diphenyl-1-picrylhydrazyl) methods respectively, while the bioactive compound contents were estimated via Folin-Ciocalteu (polyphenols), pH differential (anthocyanins) and high-performance liquid chromatography (lycopene and β-carotene) methods. After the digestion process, a marked loss (ranging from 37 to 77%) of antioxidant capacity linked to the hydrophilic fraction was observed. In contrast, the lipophilic and methanolic fractions showed an increase in antioxidant activity (ranging from 9 to 40%) after gastric digestion, and a rapid decrease was observed after total digestion. Moreover, the presence of anthocyanins and carotenoids after simulated digestion was a notable result. The bioavailability of bioactive metabolites from nutraceutical food and their healthful properties in humans are strictly dependent on the digestion process. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  7. SEPARATION PROCESS USING COMPLEXING AND ADSORPTION

    DOEpatents

    Spedding, J.H.; Ayers, J.A.

    1958-06-01

    An adsorption process is described for separating plutonium from a solution of neutron-irradiated uranium containing ions of a compound of plutonium and other cations. The method consists of forming a chelate complex compound with plutoniunn ions in the solution by adding a derivative of 8- hydroxyquinoline, which derivative contains a sulfonic acid group, and adsorbing the remaining cations from the solution on a cation exchange resin, while the complexed plutonium remains in the solution.

  8. Lipophilic organic pollutants induce changes in phospholipid and membrane protein composition leading to Vero cell morphological change.

    PubMed

    Liao, Ting T; Wang, Lei; Jia, Ru W; Fu, Xiao H; Chua, Hong

    2014-01-01

    Membrane damage related to morphological change in Vero cells is a sensitive index of the composite biotoxicity of trace lipophilic chemicals. However, judging whether the morphological change in Vero cells happens and its ratio are difficult because it is not a quantitative characteristic. To find biomarkers of cell morphological change for quantitatively representing the ratio of morphological changed cell, the mechanism of cell membrane damage driven by typical lipophilic chemicals, such as trichlorophenol (TCP) and perfluorooctanesulphonate (PFOS), was explored. The ratio of morphologically changed cells generally increased with increased TCP or PFOS concentrations, and the level of four major components of phospholipids varied with concentrations of TCP or PFOS, but only the ratio of phosphatidylcholine (PC)/phosphatidylethanolamine (PE) decreased regularly as TCP or PFOS concentrations increased. Analysis of membrane proteins showed that the level of vimentin in normal cell membranes is high, while it decreases or vanishes after TCP exposure. These variations in phospholipid and membrane protein components may result in membrane leakage and variation in rigid structure, which leads to changes in cell morphology. Therefore, the ratio of PC/PE and amount of vimentin may be potential biomarkers for representing the ratio of morphological changed Vero cell introduced by trace lipophilic compounds, thus their composite bio-toxicity.

  9. A Helix-Stabilizing Linker Improves Subcutaneous Bioavailability of a Helical Peptide Independent of Linker Lipophilicity.

    PubMed

    Zhang, Liang; Navaratna, Tejas; Thurber, Greg M

    2016-07-20

    Stabilized peptides address several limitations to peptide-based imaging agents and therapeutics such as poor stability and low affinity due to conformational flexibility. There is also active research in developing these compounds for intracellular drug targeting, and significant efforts have been invested to determine the effects of helix stabilization on intracellular delivery. However, much less is known about the impact on other pharmacokinetic parameters such as plasma clearance and bioavailability. We investigated the effect of different fluorescent helix-stabilizing linkers with varying lipophilicity on subcutaneous (sc) bioavailability using the glucagon-like peptide-1 (GLP-1) receptor ligand exendin as a model system. The stabilized peptides showed significantly higher protease resistance and increased bioavailability independent of linker hydrophilicity, and all subcutaneously delivered conjugates were able to successfully target the islets of Langerhans with high specificity. The lipophilic peptide variants had slower absorption and plasma clearance than their respective hydrophilic conjugates, and the absolute bioavailability was also lower likely due to the longer residence times in the skin. Their ease and efficiency make double-click helix stabilization chemistries a useful tool for increasing the bioavailability of peptide therapeutics, many of which suffer from rapid in vivo protease degradation. Helix stabilization using linkers of varying lipophilicity can further control sc absorption and clearance rates to customize plasma pharmacokinetics.

  10. Nature and kinetic analysis of carbon-carbon bond fragmentation reactions of cation radicals derived from SET-oxidation of lignin model compounds.

    PubMed

    Cho, Dae Won; Parthasarathi, Ramakrishnan; Pimentel, Adam S; Maestas, Gabriel D; Park, Hea Jung; Yoon, Ung Chan; Dunaway-Mariano, Debra; Gnanakaran, S; Langan, Paul; Mariano, Patrick S

    2010-10-01

    Features of the oxidative cleavage reactions of diastereomers of dimeric lignin model compounds, which are models of the major types of structural units found in the lignin backbone, were examined. Cation radicals of these substances were generated by using SET-sensitized photochemical and Ce(IV) and lignin peroxidase promoted oxidative processes, and the nature and kinetics of their C-C bond cleavage reactions were determined. The results show that significant differences exist between the rates of cation radical C1-C2 bond cleavage reactions of 1,2-diaryl-(β-1) and 1-aryl-2-aryloxy-(β-O-4) propan-1,3-diol structural units found in lignins. Specifically, under all conditions C1-C2 bond cleavage reactions of cation radicals of the β-1 models take place more rapidly than those of the β-O-4 counterparts. The results of DFT calculations on cation radicals of the model compounds show that the C1-C2 bond dissociation energies of the β-1 lignin model compounds are significantly lower than those of the β-O-4 models, providing clear evidence for the source of the rate differences.

  11. HPLC based activity profiling for 5-lipoxygenase inhibitory activity in Isatis tinctoria leaf extracts.

    PubMed

    Oberthür, C; Jäggi, R; Hamburger, M

    2005-06-01

    In the pursuit of the anti-inflammatory constituents in lipophilic woad extracts, the 5-lipoxygenase (5-LOX) inhibitory activity was investigated by HPLC-based activity profiling. In a low-resolution profiling, two time windows with peaks of activity were found. The first coincided with tryptanthrin, a known dual inhibitor of cyclooxygenase-2 (COX-2) and 5-LOX, whereas the major inhibitory fraction was towards the end of the HPLC run. The active fractions were profiled in a peak-resolved manner, and the compounds analyzed by LC-MS, GC and TLC. The activity in the lipophilic fractions of the Isatis extract could be linked to an unsaturated fatty acid, alpha-linolenic acid.

  12. Physicochemical Profiling of α-Lipoic Acid and Related Compounds.

    PubMed

    Mirzahosseini, Arash; Szilvay, András; Noszál, Béla

    2016-07-01

    Lipoic acid, the biomolecule of vital importance following glycolysis, shows diversity in its thiol/disulfide equilibria and also in its eight different protonation forms of the reduced molecule. In this paper, lipoic acid, lipoamide, and their dihydro derivatives were studied to quantify their solubility, acid-base, and lipophilicity properties at a submolecular level. The acid-base properties are characterized in terms of six macroscopic, 12 microscopic protonation constants, and three interactivity parameters. The species-specific basicities, the pH-dependent distribution of the microspecies, and lipophilicity parameters are interpreted by various intramolecular effects, and contribute to understanding the antioxidant, chelate-forming, and enzyme cofactor behavior of the molecules observed. © 2016 Wiley-VHCA AG, Zürich.

  13. Manipulating interactions between functional colloidal particles and polyethylene surfaces using interfacial engineering.

    PubMed

    Ziani, Khalid; Barish, Jeffrey A; McClements, David Julian; Goddard, Julie M

    2011-08-01

    The purpose of this study was to examine the interaction between lipid droplets and polyethylene surfaces, representative of those commonly used in food packaging. Lipid droplets with various surface charges were prepared by homogenizing corn oil and water in the presence of surfactants with different electrical characteristics: non-ionic (Tween 80, T80), cationic (lauric arginate, LAE), and/or anionic (sodium dodecyl sulfate, SDS). The ionic properties of polyethylene surfaces were modified by UV-treatment. Stable emulsions containing small droplets (d<200 nm) with nearly neutral (T80), cationic (T80: LAE), and anionic (T80: SDS) charges were prepared by adding different levels of the ionic surfactants to Tween 80 stabilized emulsions. Scanning electronic microscopy (SEM), confocal fluorescence microscopy, and ATR-FTIR showed that the number of droplets attached to the polyethylene surfaces depended on the droplet charge and the polyethylene surface characteristics. The greatest degree of droplet adsorption was observed for the cationic droplets to the UV-ozone treated polyethylene surfaces, which was attributed to electrostatic attraction. These results are important for understanding the behavior of encapsulated lipophilic components in food containers. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. Targeting an antioxidant to mitochondria decreases cardiac ischemia-reperfusion injury.

    PubMed

    Adlam, Victoria J; Harrison, Joanne C; Porteous, Carolyn M; James, Andrew M; Smith, Robin A J; Murphy, Michael P; Sammut, Ivan A

    2005-07-01

    Mitochondrial oxidative damage contributes to a wide range of pathologies, including cardiovascular disorders and neurodegenerative diseases. Therefore, protecting mitochondria from oxidative damage should be an effective therapeutic strategy. However, conventional antioxidants have limited efficacy due to the difficulty of delivering them to mitochondria in situ. To overcome this problem, we developed mitochondria-targeted antioxidants, typified by MitoQ, which comprises a lipophilic triphenylphosphonium (TPP) cation covalently attached to a ubiquinol antioxidant. Driven by the large mitochondrial membrane potential, the TPP cation concentrates MitoQ several hundred-fold within mitochondria, selectively preventing mitochondrial oxidative damage. To test whether MitoQ was active in vivo, we chose a clinically relevant form of mitochondrial oxidative damage: cardiac ischemia-reperfusion injury. Feeding MitoQ to rats significantly decreased heart dysfunction, cell death, and mitochondrial damage after ischemia-reperfusion. This protection was due to the antioxidant activity of MitoQ within mitochondria, as an untargeted antioxidant was ineffective and accumulation of the TPP cation alone gave no protection. Therefore, targeting antioxidants to mitochondria in vivo is a promising new therapeutic strategy in the wide range of human diseases such as Parkinson's disease, diabetes, and Friedreich's ataxia where mitochondrial oxidative damage underlies the pathology.

  15. Predicting Organic Cation Sorption Coefficients: Accounting for Competition from Sorbed Inorganic Cations Using a Simple Probe Molecule.

    PubMed

    Jolin, William C; Goyetche, Reaha; Carter, Katherine; Medina, John; Vasudevan, Dharni; MacKay, Allison A

    2017-06-06

    With the increasing number of emerging contaminants that are cationic at environmentally relevant pH values, there is a need for robust predictive models of organic cation sorption coefficients (K d ). Current predictive models fail to account for the differences in the identity, abundance, and affinity of surface-associated inorganic exchange ions naturally present at negatively charged receptor sites on environmental solids. To better understand how organic cation sorption is influenced by surface-associated inorganic exchange ions, sorption coefficients of 10 organic cations (including eight pharmaceuticals and two simple probe organic amines) were determined for six homoionic forms of the aluminosilicate mineral, montmorillonite. Organic cation sorption coefficients exhibited consistent trends for all compounds across the various homoionic clays with sorption coefficients (K d ) decreasing as follows: K d Na + > K d NH 4 + ≥ K d K + > K d Ca 2+ ≥ K d Mg 2+ > K d Al 3+ . This trend for competition between organic cations and exchangeable inorganic cations is consistent with the inorganic cation selectivity sequence, determined for exchange between inorganic ions. Such consistent trends in competition between organic and inorganic cations suggested that a simple probe cation, such as phenyltrimethylammonium or benzylamine, could capture soil-to-soil variations in native inorganic cation identity and abundance for the prediction of organic cation sorption to soils and soil minerals. Indeed, sorption of two pharmaceutical compounds to 30 soils was better described by phenyltrimethylammonium sorption than by measures of benzylamine sorption, effective cation exchange capacity alone, or a model from the literature (Droge, S., and Goss, K. Environ. Sci. Technol. 2013, 47, 14224). A hybrid approach integrating structural scaling factors derived from this literature model of organic cation sorption, along with phenyltrimethylammonium K d values, allowed for estimation of K d values for more structurally complex organic cations to homoionic montmorillonites and to heteroionic soils (mean absolute error of 0.27 log unit). Accordingly, we concluded that the use of phenyltrimethylammonium as a probe compound was a promising means to account for the identity, affinity, and abundance of natural exchange ions in the prediction of organic cation sorption coefficients for environmental solids.

  16. Hydrodesulfurization catalysis by Chevrel phase compounds

    DOEpatents

    McCarty, Kevin F.; Schrader, Glenn L.

    1985-12-24

    A process is disclosed for the hydrodesulfurization of sulfur-containing hydrocarbon fuel with reduced ternary molybdenum sulfides, known as Chevrel phase compounds. Chevrel phase compounds of the general composition M.sub.x Mo.sub.6 S.sub.8, with M being Ho, Pb, Sn, Ag, In, Cu, Fe, Ni, or Co, were found to have hydrodesulfurization activities comparable to model unpromoted and cobalt-promoted MoS.sub.2 catalysts. The most active catalysts were the "large" cation compounds (Ho, Pb, Sn), and the least active catalysts were the "small" cation compounds (Cu, Fe, Ni, Co.).

  17. Hydrodesulfurization catalyst by Chevrel phase compounds

    DOEpatents

    McCarty, K.F.; Schrader, G.L.

    1985-05-20

    A process is disclosed for the hydrodesulfurization of sulfur-containing hydrocarbon fuel with reduced ternary molybdenum sulfides, known as Chevrel phase compounds. Chevrel phase compounds of the general composition M/sub x/Mo/sub 6/S/sub 8/, with M being Ho, Pb, Sn, Ag, In, Cu, Fe, Ni, or Co, were found to have hydrodesulfurization activities comparable to model unpromoted and cobalt-promoted MoS/sub 2/ catalysts. The most active catalysts were the ''large'' cation compounds (Ho, Pb, Sn), and the least active catalysts were the ''small'' cation compounds (Cu, Fe, Ni, Co.).

  18. CYP2E1 MEDIATED EXTRAHEPATIC METABOLISM IN PBPK MODELING OF LIPOPHILIC VOLATILE ORGANIC COMPOUNDS

    EPA Science Inventory

    Physiologically based pharmacokinetic (PBPK) models increasingly are available for environmental chemicals and applied in risk assessments. Often a simplified representation of a real biological system is used in order to reduce uncertainties in the PBPK predictions caused by unc...

  19. Method for loading lipsomes with ionizable phosphorylated hydrophobic compounds, pharmaceutical preparations and a method for administering the preparations

    DOEpatents

    Mehlhorn, Rolf Joachim

    1998-10-27

    A method of entrapping ionizable compounds, preferably phosphorylated hydrophobic compounds, into liposomes having transmembrane gradients is disclosed. The procedures involve forming liposomes in an acidic medium or a basic medium, adding to the acidic medium a cationic compound or to the basic medium an anionic compound and then adding a base to the cationic-containing medium or an acid to the anionic-containing medium, thereby inducing the ionizable compound into the liposomes' internal aqueous phase. The compound-entrapped liposomes prepared in accordance with the disclosed methods may be used as pharmaceutical preparations. Methods of administering such pharmaceutical preparations are also disclosed.

  20. Effect of Lipophilicity and Drug Ionization on Permeation Across Porcine Sublingual Mucosa.

    PubMed

    Goswami, Tarun; Li, Xiaoling; Jasti, Bhaskara R

    2017-01-01

    Sublingual route is one of the oldest alternative routes studied for the administration of drugs. However, the effect of physical-chemical properties on drug permeation via this route has not been systemically investigated. The objective of this study was to determine the effect of two key physicochemical properties, lipophilicity and ionization, on the transport of drugs across porcine sublingual mucosa. A series of β-blockers were used to study the effect of lipophilicity on drug permeation across the sublingual mucosa, while nimesulide (pKa 6.5) was used as a model drug to study the effect of degree of ionization on sublingual mucosa permeation of ionized and unionized species. Permeation of β-blockers increased linearly with an increase in the lipophilicity for the range of compounds studied. The permeability of nimesulide across sublingual mucosa decreased with an increase of pH. The flux of ionized and unionized forms of nimesulide was determined to delineate the contribution of ionized and unionized species to the total flux. At low pH, the apparent flux was primarily contributed by unionized species; however, when the pH is increased beyond its pKa, the primary contributor to the apparent flux, nimesulide, is ionized species. The contribution of each species to the apparent flux was shown to be determined by the thermodynamic activity of ionized or unionized species. This study identified the roles of lipophilicity and thermodynamic activity in drug permeation across the sublingual mucosa. The findings can help guide the design of sublingual drug delivery systems with optimal pH and solubility.

  1. Distribution of some organochlorine compounds (PCB, CBz, and DDE) in beeswax and honey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jan, J.; Cerne, K.

    Organochlorines are ranked among the class of prevalent and environmentally persistent synthetic chemicals. Honey bees, beeswax, and honey could be indicators for monitoring environmental pollution by organochlorines such as polychlorobiphenyls (PCBs) and organochloro pesticides. Scarcely any data were reported on the distribution of organochloro compounds between beeswax and honey. Physicochemical factors such as adsorption, volatilization, lipophilicity (octanol-water partition coefficient) and metabolic stability can influence the level of individual organochlorine compounds in beeswax and honey. During wax and honey formation metabolic attack by different enzymes can degrade pollutants. In the PCB and chlorobenzene (CBz) series, biodegradation decreases and bioconcentration increases withmore » increasing degree of chlorine substitution. Regarding the composition of honey (sugars, water, and some organic material and particles such as pollen, organic acid and essential oils in traces), and of beeswax (esters, hydrocarbons, acids and some natural wax from plants as minor components), it is expected that beeswax is more lipophilic and organochlorines could be more enriched in beeswax. However, the presence of particulate matters (e.g., pollen) in honey can increase the level of nonpolar compounds in honey due to sorption processes. This effect has been demonstrated in a similar system where suspended particles can influence the partition coefficient. In this contribution (i) the partition between beeswax and honey of some organochlorine compounds (PCB and CBz isomers, DDE) and (ii) bioconcentration in beeswax and honey from a feeding experiment by administration to honey bees of feed fortified with these compounds is presented and discussed. 17 refs., 3 figs., 1 tab.« less

  2. Quantification of superoxide radical production in thylakoid membrane using cyclic hydroxylamines.

    PubMed

    Kozuleva, Marina; Klenina, Irina; Mysin, Ivan; Kirilyuk, Igor; Opanasenko, Vera; Proskuryakov, Ivan; Ivanov, Boris

    2015-12-01

    Applicability of two lipophilic cyclic hydroxylamines (CHAs), CM-H and TMT-H, and two hydrophilic CHAs, CAT1-H and DCP-H, for detection of superoxide anion radical (O2(∙-)) produced by the thylakoid photosynthetic electron transfer chain (PETC) of higher plants under illumination has been studied. ESR spectrometry was applied for detection of the nitroxide radical originating due to CHAs oxidation by O2(∙-). CHAs and corresponding nitroxide radicals were shown to be involved in side reactions with PETC which could cause miscalculation of O2(∙-) production rate. Lipophilic CM-H was oxidized by PETC components, reducing the oxidized donor of Photosystem I, P700(+), while at the same concentration another lipophilic CHA, TMT-H, did not reduce P700(+). The nitroxide radical was able to accept electrons from components of the photosynthetic chain. Electrostatic interaction of stable cation CAT1-H with the membrane surface was suggested. Water-soluble superoxide dismutase (SOD) was added in order to suppress the reaction of CHA with O2(∙-) outside the membrane. SOD almost completely inhibited light-induced accumulation of DCP(∙), nitroxide radical derivative of hydrophilic DCP-H, in contrast to TMT(∙) accumulation. Based on the results showing that change in the thylakoid lumen pH and volume had minor effect on TMT(∙) accumulation, the reaction of TMT-H with O2(∙-) in the lumen was excluded. Addition of TMT-H to thylakoid suspension in the presence of SOD resulted in the increase in light-induced O2 uptake rate, that argued in favor of TMT-H ability to detect O2(∙-) produced within the membrane core. Thus, hydrophilic DCP-H and lipophilic TMT-H were shown to be usable for detection of O2(∙-) produced outside and within thylakoid membranes. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Compositions and methods related to serotonin 5-HT1A receptors

    DOEpatents

    Mukherjee, Jogeshwar; Saigal, Neil

    2010-06-08

    Contemplated substituted arylpiperazinyl compounds, and most preferably 18F-Mefway, exhibit desirable in vitro and in vivo binding characteristics to the 5-HT1A receptor. Among other advantageous parameters, contemplated compounds retain high binding affinity, display optimal lipophilicity, and are radiolabeled efficiently with 18F-fluorine in a single step. Still further, contemplated compounds exhibit high target to non-target ratios in receptor-rich regions both in vitro and in vivo, and selected compounds can be effectively and sensitively displaced by serotonin, thus providing a quantitative tool for measuring 5-HT1A receptors and serotonin concentration changes in the living brain.

  4. Compositions and methods related to serotonin 5-HT1A receptors

    DOEpatents

    Mukherjee, Jogeshwar [Irvine, CA; Saigal, Neil [Fresno, CA; Saigal, legal representative, Harsh

    2012-09-25

    Contemplated substituted arylpiperazinyl compounds, and most preferably .sup.18F-Mefway, exhibit desirable in vitro and in vivo binding characteristics to the 5-HT1A receptor. Among other advantageous parameters, contemplated compounds retain high binding affinity, display optimal lipophilicity, and are radiolabeled efficiently with .sup.18F-fluorine in a single step. Still further, contemplated compounds exhibit high target to non-target ratios in receptor-rich regions both in vitro and in vivo, and selected compounds can be effectively and sensitively displaced by serotonin, thus providing a quantitative tool for measuring 5-HT1A receptors and serotonin concentration changes in the living brain.

  5. Compositions and methods related to serotonin 5-HT1A receptors

    DOEpatents

    Mukherjee, Jogeshwar; Saigal, Neil; Saigal, legal representative, Harsh

    2012-09-25

    Contemplated substituted arylpiperazinyl compounds, and most preferably 18F-Mefway, exhibit desirable in vitro and in vivo binding characteristics to the 5-HT1A receptor. Among other advantageous parameters, contemplated compounds retain high binding affinity, display optimal lipophilicity, and are radiolabeled efficiently with 18F-fluorine in a single step. Still further, contemplated compounds exhibit high target to non-target ratios in receptor-rich regions both in vitro and in vivo, and selected compounds can be effectively and sensitively displaced by serotonin, thus providing a quantitative tool for measuring 5-HT1A receptors and serotonin concentration changes in the living brain.

  6. Cationic electrodepositable coating composition comprising lignin

    DOEpatents

    Fenn, David; Bowman, Mark P; Zawacky, Steven R; Van Buskirk, Ellor J; Kamarchik, Peter

    2013-07-30

    A cationic electrodepositable coating composition is disclosed. The present invention in directed to a cationic electrodepositable coating composition comprising a lignin-containing cationic salt resin, that comprises (A) the reaction product of: lignin, an amine, and a carbonyl compound; (B) the reaction product of lignin, epichlorohydrin, and an amine; or (C) combinations thereof.

  7. Transport and interaction of cosmetic product material within the ocular surface: beauty and the beastly symptoms of toxic tears.

    PubMed

    Malik, Adeela; Claoué, Charles

    2012-12-01

    Eye cosmetics such as mascara, eye shadow and eyeliner are used extensively to highlight the eyes, and are normally applied external to the ocular surface. Adverse reactions of cosmetics within the ocular surface include mild discomfort, eyelid dermatitis, pre-corneal tear film instability, and keratitis. These are attributed mainly to the preservative (benzalkonium chloride (BAC)) constituent of cosmetic product material (CPM). Transport of CPM from an external environment to any location on the ocular surface, essentially precedes the adverse interactions occurring at the location, and the control of these transport modes is therefore of clinical relevance. The inter-transport of CPM across the TF occurs due to both diffusion and drift processes. Diffusion of neutral species is driven by concentration gradients, and the drift of cationic BAC is influenced by the inherent electric field; determined by the distribution of the various ions secreted into the aqueous layer, and the negative glycocalyx charge at the mucin layer. In the presence of mucin deficiency, the corneal epithelium is exposed to invasion by both incident BAC and lipophilic species. The transport of cationic BAC across the TF may be controlled by regulating the secretion of various electrolytes at the lacrimal gland. This is of clinical significance in reducing corneal epithelial adverse effects. However, the risks of adverse effects at the corneal surface due to invasion by the lipophilic species remain. Patients with mucin deficiency, and especially those on eye ointment/drops medication, should be discouraged from using cosmetics in a way likely to contaminate the TF. Copyright © 2012 British Contact Lens Association. Published by Elsevier Ltd. All rights reserved.

  8. Molecular model of the outward facing state of the human P-glycoprotein (ABCB1), and comparison to a model of the human MRP5 (ABCC5)

    PubMed Central

    Ravna, Aina W; Sylte, Ingebrigt; Sager, Georg

    2007-01-01

    Background Multidrug resistance is a particular limitation to cancer chemotherapy, antibiotic treatment and HIV medication. The ABC (ATP binding cassette) transporters human P-glycoprotein (ABCB1) and the human MRP5 (ABCC5) are involved in multidrug resistance. Results In order to elucidate structural and molecular concepts of multidrug resistance, we have constructed a molecular model of the ATP-bound outward facing conformation of the human multidrug resistance protein ABCB1 using the Sav1866 crystal structure as a template, and compared the ABCB1 model with a previous ABCC5 model. The electrostatic potential surface (EPS) of the ABCB1 substrate translocation chamber, which transports cationic amphiphilic and lipophilic substrates, was neutral with negative and weakly positive areas. In contrast, EPS of the ABCC5 substrate translocation chamber, which transports organic anions, was generally positive. Positive-negative ratios of amino acids in the TMDs of ABCB1 and ABCC5 were also analyzed, and the positive-negative ratio of charged amino acids was higher in the ABCC5 TMDs than in the ABCB1 TMDs. In the ABCB1 model residues Leu65 (transmembrane helix 1 (TMH1)), Ile306 (TMH5), Ile340 (TMH6) and Phe343 (TMH6) may form a binding site, and this is in accordance with previous site directed mutagenesis studies. Conclusion The Sav1866 X-ray structure may serve as a suitable template for the ABCB1 model, as it did with ABCC5. The EPS in the substrate translocation chambers and the positive-negative ratio of charged amino acids were in accordance with the transport of cationic amphiphilic and lipophilic substrates by ABCB1, and the transport of organic anions by ABCC5. PMID:17803828

  9. Compilation and physicochemical classification analysis of a diverse hERG inhibition database

    NASA Astrophysics Data System (ADS)

    Didziapetris, Remigijus; Lanevskij, Kiril

    2016-12-01

    A large and chemically diverse hERG inhibition data set comprised of 6690 compounds was constructed on the basis of ChEMBL bioactivity database and original publications dealing with experimental determination of hERG activities using patch-clamp and competitive displacement assays. The collected data were converted to binary format at 10 µM activity threshold and subjected to gradient boosting machine classification analysis using a minimal set of physicochemical and topological descriptors. The tested parameters involved lipophilicity (log P), ionization (p K a ), polar surface area, aromaticity, molecular size and flexibility. The employed approach allowed classifying the compounds with an overall 75-80 % accuracy, even though it only accounted for non-specific interactions between hERG and ligand molecules. The observed descriptor-response profiles were consistent with common knowledge about hERG ligand binding site, but also revealed several important quantitative trends, as well as slight inter-assay variability in hERG inhibition data. The results suggest that even weakly basic groups (p K a < 6) might substantially contribute to hERG inhibition potential, whereas the role of lipophilicity depends on the compound's ionization state, and the influence of log P decreases in the order of bases > zwitterions > neutrals > acids. Given its robust performance and clear physicochemical interpretation, the proposed model may provide valuable information to direct drug discovery efforts towards compounds with reduced risk of hERG-related cardiotoxicity.

  10. Pyridine radical cation and its fluorine substituted derivatives

    USGS Publications Warehouse

    Bondybey, V.E.; English, J.H.; Shiley, R.H.

    1982-01-01

    The spectra and relaxation of the pyridine cation and of several of its fluorinated derivatives are studied in low temperature Ne matrices. The ions are generated by direct photoionization of the parent compounds. Of the compounds studied, laser induced → and → fluorescence is observed only for the 2, 6‐difluoropyridine cation. The analysis of the spectrum indicates that the ion is planar both in the and states. The large variety in the spectroscopic and relaxation behavior of fluoropyridine radical cations is explained in terms of their electronic structure and of the differential shifts of the individual electronic states caused by the fluorine substitution.

  11. Impact of the cation distribution homogeneity on the americium oxidation state in the U0.54Pu0.45Am0.01O2-x mixed oxide

    NASA Astrophysics Data System (ADS)

    Vauchy, Romain; Robisson, Anne-Charlotte; Martin, Philippe M.; Belin, Renaud C.; Aufore, Laurence; Scheinost, Andreas C.; Hodaj, Fiqiri

    2015-01-01

    The impact of the cation distribution homogeneity of the U0.54Pu0.45Am0.01O2-x mixed oxide on the americium oxidation state was studied by coupling X-ray diffraction (XRD), electron probe micro analysis (EPMA) and X-ray absorption spectroscopy (XAS). Oxygen-hypostoichiometric Am-bearing uranium-plutonium mixed oxide pellets were fabricated by two different co-milling based processes in order to obtain different cation distribution homogeneities. The americium was generated from β- decay of 241Pu. The XRD analysis of the obtained compounds did not reveal any structural difference between the samples. EPMA, however, revealed a high homogeneity in the cation distribution for one sample, and substantial heterogeneity of the U-Pu (so Am) distribution for the other. The difference in cation distribution was linked to a difference in Am chemistry as investigated by XAS, with Am being present at mixed +III/+IV oxidation state in the heterogeneous compound, whereas only Am(IV) was observed in the homogeneous compound. Previously reported discrepancies on Am oxidation states can hence be explained by cation distribution homogeneity effects.

  12. Multiheteromacrocycles that Complex Metal Ions. Fourth Progress Report, 1 May 1977 -- 30 April 1978

    DOE R&D Accomplishments Database

    Cram, D. J.

    1978-01-15

    Results are reported in a program to design, synthesize, and evaluate polycyclic host organic compounds for their abilities to complex and lipophilize guest metal ions. Work during the reporting period was devoted to synthesis and study of cyclohexametaphenylenes and cyclic phosphine oxides. (JRD)

  13. EFFECTS OF DIETARY EXPOSURE TO THE PYRETHROID PESTICIDE ESFENVALERATE ON MEDAKA (ORYZIAS LATIPES). (R826940)

    EPA Science Inventory

    Abstract

    The pyrethroid insecticide esfenvalerate is widely used on orchard crops throughout California. In the aquatic environment, this compound is likely to accumulate in sediments, food particles and benthic organisms due to its lipophilicity and environmental pers...

  14. Lipid droplet-associated proteins (LDAPs) are involved in the compartmentalization of lipophilic compounds in plant cells

    USDA-ARS?s Scientific Manuscript database

    While lipid droplets have traditionally been considered as inert sites for the storage of triacylglycerols and sterol esters, they are now recognized as dynamic and functionally diverse organelles involved in energy homeostasis, lipid signaling, and stress responses. Unlike most other organelles, li...

  15. Relationships of Chemical Concentrations in Maternal and Cord Blood: A Review of Available Data

    EPA Science Inventory

    The developing fetus is likely to be exposed to the same environmental chemicals as the mother during critical periods of growth and development. The degree of maternal–fetal transfer of chemical compounds will be affected by chemical and physical properties such as lipophilicity...

  16. Energy landscape in frustrated systems: Cation hopping in pyrochlores

    NASA Astrophysics Data System (ADS)

    Brooks Hinojosa, Beverly; Asthagiri, Aravind; Nino, Juan C.

    2013-07-01

    We investigate the dynamics of the local environment and electronic structure in inherently dipolar frustrated pyrochlore compounds to help identify the fundamental nature of dipolar disorder in pyrochlore systems and determine the necessary and sufficient conditions for dielectric relaxation. We map out the energy landscape associated with cation hopping events in three compounds and correlate the hopping pathway with experimental dielectric response. Comprehensive analysis of the calculations allows us to postulate rules to predict the occurrence of relaxation and cation hopping pathways.

  17. [Transformation of natural products into more potent compounds: chemical modification of monensin].

    PubMed

    Nagatsu, A; Sakakibara, J

    1997-09-01

    Monensin (1) is a representative compound of polyether ionophore antibiotics, which selectively transport Na+ ions. In order to obtain potent Na+ ionophores, the modification of the carboxyl group of monensin was carried out to yield monensylamino acids (2) and monensylamino acid-1,29-lactones (3). The Na+ permeability of ion through the erythrocyte membrane of 2 and 3 was evaluated by the 23Na-NMR method. Compound 2 showed less Na+ ion transport activity than monensin, probably due to the lower lipophilicity caused by the conformational change of the chain moiety of the molecules. Although 3 showed higher lipophilisity than 1, 3 had no Na+ ion permeability, probably due to loss of the carboxyl group. As more lipophilic compounds possessing a carboxyl group was supposed to have more ion transport activity, 7-O-acylmonensins (8) and 7-O-alkylmonensins (11) were synthesized. Among these compounds, the value of Na+ ion permeability of 7-O-benzylmonensin (11c) was 1.4 time that of 1. Further investigation was carried out by preparing various 7-O-(substituted benzyl)monensins (13), and 7-O-(p-ethylbenzyl)monensin (13b) exhibited the largest Na+ ion permeability, about twice the value of 1. In order to convert monensin (1) to Ca2+ ionophore, 7-carboxylmethylmonensin (18) via protected 7-oxomonensin (15), and 25-carboxylmonensin (26) were prepared. In the course of the synthesis, 15 was clarified as a useful intermediate to give 7-amino and 7-alkyl derivatives. Ca2+ ion transport activities of 18 and 26 were determined by a CHCl3 liquid membrane system. 25-carboxylmonensin (26) showed 70% of the activity of Ca2+ ionophore, lasalocid A, and compound 26 could be the lead compound for the preparation of a new Ca2+ ionophore.

  18. Metal Cationization Extractive Electrospray Ionization Mass Spectrometry of Compounds Containing Multiple Oxygens

    NASA Astrophysics Data System (ADS)

    Swanson, Kenneth D.; Spencer, Sandra E.; Glish, Gary L.

    2017-06-01

    Extractive electrospray ionization is an ambient ionization technique that allows real-time sampling of liquid samples, including organic aerosols. Similar to electrospray ionization, the composition of the electrospray solvent used in extractive electrospray ionization can easily be altered to form metal cationized molecules during ionization simply by adding a metal salt to the electrospray solvent. An increase in sensitivity is observed for some molecules that are lithium, sodium, or silver cationized compared with the protonated molecule formed in extractive electrospray ionization with an acid additive. Tandem mass spectrometry of metal cationized molecules can also significantly improve the ability to identify a compound. Tandem mass spectrometry of lithium and silver cationized molecules can result in an increase in the number and uniqueness of dissociation pathways relative to [M + H]+. These results highlight the potential for extractive electrospray ionization with metal cationization in analyzing complex aerosol mixtures. [Figure not available: see fulltext.

  19. Transition Metal Polypyridine Complexes: Studies of Mediation in Dye-Sensitized Solar Cells and Charge Separation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elliott, C. Michael; Prieto, Amy L.

    2017-02-08

    The Elliott group has long been supported by DOE for studies of cobalt(II/III) trisbypiridine (DTB) mediator complexes in dye sensitized solar cells. Previous work demonstrated that Co(II/III) chemistry is sensitive to the environment, showing unprecedented electrode-surface and electrolyte dependant voltammetry. In electrolytes that have large lipophilic cations, voltammetry of the [Co(DTB) 3] 2+/3+ couple is nearly Nernstian in appearance on nominally oxide-free metal surfaces. In contrast, on semiconductor electrodes in electrolytes with small, hard cations such as Li +, the electron transfer rates are so slow that it is difficult to measure any Faradaic current even at overpotentials of ±1more » V. These studies are of direct relevance to the operation of cobalt-based mediators in solar cells. The research has also shown that these mediators are compatible with copper phenantroline based dyes, in contrast to I - due to the insolubility of CuI.« less

  20. Method for loading lipsomes with ionizable phosphorylated hydrophobic compounds, pharmaceutical preparations and a method for administering the preparations

    DOEpatents

    Mehlhorn, R.J.

    1998-10-27

    A method of entrapping ionizable compounds, preferably phosphorylated hydrophobic compounds, into liposomes having transmembrane gradients is disclosed. The procedures involve forming liposomes in an acidic medium or a basic medium, adding to the acidic medium a cationic compound or to the basic medium an anionic compound and then adding a base to the cationic-containing medium or an acid to the anionic-containing medium, thereby inducing the ionizable compound into the liposomes` internal aqueous phase. The compound-entrapped liposomes prepared in accordance with the disclosed methods may be used as pharmaceutical preparations. Methods of administering such pharmaceutical preparations are also disclosed. 2 figs.

  1. Investigating the anti-proliferative activity of styrylazanaphthalenes and azanaphthalenediones.

    PubMed

    Mrozek-Wilczkiewicz, Anna; Kalinowski, Danuta S; Musiol, Robert; Finster, Jacek; Szurko, Agnieszka; Serafin, Katarzyna; Knas, Magdalena; Kamalapuram, Sishir K; Kovacevic, Zaklina; Jampilek, Josef; Ratuszna, Alicja; Rzeszowska-Wolny, Joanna; Richardson, Des R; Polanski, Jaroslaw

    2010-04-01

    A group of styrylazanaphthalenes and azanaphthalenediones were synthesized and tested for their anti-proliferative activity. Most of the compounds were obtained with the use of microwave-assisted synthesis. The lipophilicity of the compounds was measured by RP-HPLC and their anti-proliferative activity was assayed against the human SK-N-MC neuroepithelioma and HCT116 human colon carcinoma cell lines. Active compounds were also tested in clonogenity and comet assays. Several quinazolinone and styrylquinazoline analogues were found to have markedly greater anti-proliferative activity than desferoxamine and cis-platin. Copyright 2010 Elsevier Ltd. All rights reserved.

  2. Rapid Discovery of Tribological Materials with Improved Performance Using Materials Informatics

    DTIC Science & Technology

    2014-03-10

    of New Solid State Lubricants The recursive portioning model illustrated in Fig. 3 has been applied to about 500 compounds from the FileMakerPro...neighboring cation. Based on this assumption, the large cationic charge of mineral compounds indicates the number of anions tends to be larger than the...The formation of bond types is highly dependent on the difference of electronegativity (EN) between the two elements in the compound . For instance

  3. Understanding the Effect of Cation Disorder on the Voltage Profile of Lithium Transition-Metal Oxides

    DOE PAGES

    Abdellahi, Aziz; Urban, Alexander; Dacek, Stephen; ...

    2016-07-13

    Cation disorder is a phenomenon that is becoming increasingly important for the design of high-energy lithium transition metal oxide cathodes (LiMO 2) for Li-ion batteries. Disordered Li-excess rocksalts have recently been shown to achieve high reversible capacity, while in operando cation disorder has been observed in a large class of ordered compounds. The voltage slope (dV/dx u )is a critical quantity for the design of cation-disordered rocksalts, as it controls the Li capacity accessible at voltages below the stability limit of the electrolyte (~4.5-4.7 V). In this study, we develop a lattice model based on first principles to understand andmore » quantify the voltage slope of cation-disordered LiMO 2. We show that cation disorder increases the voltage slope of Li transition metal oxides by creating a statistical distribution of transition metal environments around Li sites, as well as by allowing Li occupation of highvoltage tetrahedral sites. We further demonstrate that the voltage slope increase upon disorder is generally smaller for highvoltage transition metals than for low-voltage transition metals due to a more effective screening of Li-M interactions by oxygen electrons. Short-range order in practical disordered compounds is found to further mitigate the voltage slope increase upon disorder. In conclusion, our analysis shows that the additional high-voltage tetrahedral capacity induced by disorder is smaller in Liexcess compounds than in stoichiometric LiMO 2 compounds.« less

  4. Cation–cation interactions and cation exchange in a series of isostructural framework uranyl tungstates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balboni, Enrica; Burns, Peter C., E-mail: pburns@nd.edu; Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556

    2014-05-01

    The isotypical compounds (UO{sub 2}){sub 3}(WO{sub 6})(H{sub 2}O){sub 5} (1), Ag(UO{sub 2}){sub 3}(WO{sub 6})(OH)(H{sub 2}O){sub 3} (2), K(UO{sub 2}){sub 3}(WO{sub 6})OH(H{sub 2}O){sub 4} (3), Rb(UO{sub 2}){sub 3}(WO{sub 6})(OH)(H{sub 2}O){sub 3.5} (4), and Cs(UO{sub 2}){sub 3}(WO{sub 6})OH(H{sub 2}O){sub 3} (5) were synthesized, characterized, and their structures determined. Each crystallizes in space group Cc. (1): a=12.979 (3), b=10.238 (2), c=11.302 (2), β=102.044 (2); (2): a=13.148 (2), b=9.520 (1), c=11.083 (2), β=101.568 (2); (3): a=13.111 (8), b=9.930 (6), c=11.242 (7), β=101.024 (7); (4): a=12.940 (2), b=10.231 (2), c=11.259(2), β=102.205 (2); (5): a=12.983 (3), b=10.191 (3), c=11.263 (4), β=101.661 (4). Compounds 1–5 are amore » framework of uranyl and tungsten polyhedra containing cation–cation interactions. The framework has three symmetrically distinct U(VI) cations, one tungsten, sixteen to eighteen oxygen atoms, and in 2–5, one monovalent cation. Each atom occupies a general position. Each U(VI) cation is present as a typical (UO{sub 2}){sup 2+} uranyl ion in an overall pentagonal bipyramidal coordination environment. Each pentagonal bipyramid shares two equatorial edges with two other pentagonal bipyramids, forming a trimer. Trimers are connected into chains by edge-sharing with WO{sub 6} octahedra. Chains are linked through cation–cation interactions between two symmetrically independent uranyl ions. This yields a remarkably complex system of intersecting channels that extend along [0 0 1] and [−1 1 0]. The cation exchange properties of 2 and 3 were characterized at room temperature and at 140 °C. - Graphical abstract: Chains of uranium and tungsten polyhedra are connected into a three dimensional framework by cation–cation interactions occurring between two symmetrically independent uranyl pentagonal bipyramids. Monovalent cations present in channels within the structure can be exchanged by room temperature or mild hydrothermal treatments. The framework of these compounds is robust to cation exchange and heat. (yellow polyhedra=uranium pentagonal bipyramids; blue polyhedra=tungsten octahedral, purple balls=K; yellow balls=Na; grey balls=Tl). - Highlights: • Five isostructural uranyl tungstates compounds were synthesized hydrothermally. • The structures consist of a chains of uranium and tungstate polyhedral. • Chains are connected into a framework by cation–cation interactions. • Cation exchange does not alter the structural integrity of the compounds. • Cation exchange was successful at room temperature and mild hydrothermal conditions.« less

  5. A Helix-Stabilizing Linker Improves Subcutaneous Bioavailability of a Helical Peptide Independent of Linker Lipophilicity

    PubMed Central

    Zhang, Liang; Navaratna, Tejas; Thurber, Greg M.

    2016-01-01

    Stabilized peptides address several limitations to peptide-based imaging agents and therapeutics such as poor stability and low affinity due to conformational flexibility. There is also active research in developing these compounds for intracellular drug targeting, and significant efforts have been invested to determine the effects of helix stabilization on intracellular delivery. However, much less is known about the impact on other pharmacokinetic parameters such as plasma clearance and bioavailability. We investigated the effect of different fluorescent helix-stabilizing linkers with varying lipophilicity on subcutaneous (SC) bioavailability using the glucagon-like peptide-1 (GLP-1) receptor ligand exendin as a model system. The stabilized peptides showed significantly higher protease resistance and increased bioavailability independent of linker hydrophilicity, and all subcutaneously delivered conjugates were able to successfully target the islets of Langerhans with high specificity. The lipophilic peptide variants had slower absorption and plasma clearance than their respective hydrophilic conjugates, and the absolute bioavailability was also lower likely due to the longer residence times in the skin. The ease and efficiency of double-click helix stabilization chemistries is a useful tool for increasing the bioavailability of peptide therapeutics, many of which suffer from rapid in vivo protease degradation. Helix stabilization using linkers of varying lipophilicity can further control SC absorption and clearance rates to customize plasma pharmacokinetics. PMID:27327034

  6. The computation of lipophilicities of ⁶⁴Cu PET systems based on a novel approach for fluctuating charges.

    PubMed

    Comba, Peter; Martin, Bodo; Sanyal, Avik; Stephan, Holger

    2013-08-21

    A QSPR scheme for the computation of lipophilicities of ⁶⁴Cu complexes was developed with a training set of 24 tetraazamacrocylic and bispidine-based Cu(II) compounds and their experimentally available 1-octanol-water distribution coefficients. A minimum number of physically meaningful parameters were used in the scheme, and these are primarily based on data available from molecular mechanics calculations, using an established force field for Cu(II) complexes and a recently developed scheme for the calculation of fluctuating atomic charges. The developed model was also applied to an independent validation set and was found to accurately predict distribution coefficients of potential ⁶⁴Cu PET (positron emission tomography) systems. A possible next step would be the development of a QSAR-based biodistribution model to track the uptake of imaging agents in different organs and tissues of the body. It is expected that such simple, empirical models of lipophilicity and biodistribution will be very useful in the design and virtual screening of positron emission tomography (PET) imaging agents.

  7. Microemulsions based on a sunflower lecithin-Tween 20 blend have high capacity for dissolving peppermint oil and stabilizing coenzyme Q10.

    PubMed

    Chen, Huaiqiong; Guan, Yongguang; Zhong, Qixin

    2015-01-28

    The objectives of the present study were to improve the capability of microemulsions to dissolve peppermint oil by blending sunflower lecithin with Tween 20 and to study the possibility of codelivering lipophilic bioactive compounds. The oil loading in microemulsions with 20% (w/w) Tween 20 increased from 3% (w/w) to 20% (w/w) upon gradual supplementation of 6% (w/w) lecithin. All microemulsions had particles of <12 nm that did not change over 70 d of storage at 21 °C. They had relatively low Newtonian viscosities and were physically and chemically stable after 50-200-fold dilution in water, resulting from similar hydrophile-lipophile-balance values of the surfactant mixture and peppermint oil. Furthermore, the microemulsions were capable of dissolving coenzyme Q10 and preventing its degradation at UV 302 nm, more significant for the microemulsion with lecithin. Therefore, natural surfactant lecithin can reduce the use of synthetic Tween 20 to dissolve peppermint oil and protect the degradation of dissolved lipophilic bioactive components in transparent products.

  8. Enhanced antiamyloidal activity of hydroxy cinnamic acids by enzymatic esterification with alkyl alcohols.

    PubMed

    Kondo, Hazuki; Sugiyama, Haruka; Katayama, Shigeru; Nakamura, Soichiro

    2014-01-01

    Lipophilic derivatives of hydroxyl cinnamic acids (HCAs) including caffeic acid (CA), ferulic acid, sinapic acid (SA), and chlorogenic acid were synthesized by esterification with butanol, octanol, or hexadecanol catalyzed by the lipase from Candida antarctica to investigate the effect of lipophilicity on their antiamyloidal activity assessed by the inhibitory activities toward fibrillization of amyloid β (Aβ) peptide. Among them, CA showed the highest activity at 50 μM, reducing the amyloid fibril formation of Aβ to 34.4 ± 6.8%. The antiamyloidal effects of HCAs were enhanced by esterification with alkyl alcohols, and the longer alkyl chain tended to be more effective except for SA. Aβ fibril formation was suppressed by the hexadecyl ester of CA, which was reduced to 8.8 ± 2.3%. In contrast, those of octyl and butyl esters were 19.3 ± 2.3% and 41.6 ± 6.1%, respectively. These results show that lipophilicity plays an important role in the antiamyloidal activities of esterified phenolic compounds. © 2013 International Union of Biochemistry and Molecular Biology, Inc.

  9. Lipophilicity-related inhibition of blood platelet aggregation by nipecotic acid anilides.

    PubMed

    De Marco, Agostino; De Candia, Modesto; Carotti, Andrea; Cellamare, Saverio; De Candia, Erica; Altomare, Cosimo

    2004-06-01

    Using N-[4-(hexyloxy)phenyl]piperidine-3-carboxamide (17c) as a structural lead, a number of isomers, derivatives, and ring-opened analogs were synthesized and tested for their ability to block the in vitro aggregation of human platelets induced by adenosine 5'-diphosphate (ADP). For the most active compounds, inhibition of the platelet aggregation triggered by arachidonic acid (AA) and ADP-induced intraplatelet calcium mobilization was also demonstrated. Based on quantitative structure-activity relationships (QSARs), we proved the impact of hydrophobicity on antiplatelet activity by a nonlinear (parabolic or bilinear) relationship between pIC(50) and lipophilicity, as assessed by RP-HPLC capacity factors and ClogP (i.e. calculated 1-octanol-water partition coefficients). This study highlighted the following additional SARs: quasi-isolipophilic isomers of 17c (isonipecotanilides and pipecolinanilides) and ring-opened analogs (e.g. anilide of beta-alanine) exhibited lower antiplatelet activity; methylation of the piperidine nitrogen of 17c has no effect, whereas alkylation with an n-propyl group decreases the activity by a factor of approximately 2, most likely due to a conformation-dependent decrease in lipophilicity.

  10. Lipophilization of ascorbic acid: a monolayer study and biological and antileishmanial activities.

    PubMed

    Kharrat, Nadia; Aissa, Imen; Sghaier, Manel; Bouaziz, Mohamed; Sellami, Mohamed; Laouini, Dhafer; Gargouri, Youssef

    2014-09-17

    Ascorbyl lipophilic derivatives (Asc-C2 to Asc-C(18:1)) were synthesized in a good yield using lipase from Staphylococcus xylosus produced in our laboratory and immobilized onto silica aerogel. Results showed that esterification had little effect on radical-scavenging capacity of purified ascorbyl esters using DPPH assay in ethanol. However, long chain fatty acid esters displayed higher protection of target lipids from oxidation. Moreover, compared to ascorbic acid, synthesized derivatives exhibited an antibacterial effect. Furthermore, ascorbyl derivatives were evaluated, for the first time, for their antileishmanial effects against visceral (Leishmania infantum) and cutaneous parasites (Leishmania major). Among all the tested compounds, only Asc-C10, Asc-C12, and Asc-C(18:1) exhibited antileishmanial activities. The interaction of ascorbyl esters with a phospholipid monolayer showed that only medium and unsaturated long chain (Asc-C10 to Asc-C(18:1)) derivative esters were found to interact efficiently with mimetic membrane of leishmania. These properties would make ascorbyl derivatives good candidates to be used in cosmetic and pharmaceutical lipophilic formulations.

  11. Effect of stilbene and chalcone scaffolds incorporation in clofibric acid on PPARα agonistic activity.

    PubMed

    Giampietro, Letizia; D'Angelo, Alessandra; Giancristofaro, Antonella; Ammazzalorso, Alessandra; De Filippis, Barbara; Di Matteo, Mauro; Fantacuzzi, Marialuigia; Linciano, Pasquale; Maccallini, Cristina; Amoroso, Rosa

    2014-01-01

    In an effort to develop safe and efficacious compounds for the treatment of metabolic disorders, new compounds based on a combination of clofibric acid, the active metabolite of clofibrate, and trans-stilbene, chalcone, and other lipophilic groups were synthesized. They were evaluated for PPARα transactivation activity; all branched derivatives showed an increase of the transcriptional activity of receptor compared to the linear ones. Noteworthy, stilbene and benzophenone branched derivatives activated the PPARα better than clofibric acid.

  12. New synthetic catecholate-type siderophores with triamine backbone.

    PubMed

    Heinisch, Lothar; Gebhardt, Peter; Heidersbach, Renate; Reissbrodt, Rolf; Möllmann, Ute

    2002-06-01

    New analogues of triscatecholate siderophores based on linear or tripodal triamines with or without spacer groups or lipophilic and hydrophilic substituents were synthesized. The catecholate moieties were prepared in OH-forms, as acetylated compounds or masked as 8-methoxycarbonyloxy-2,4-dioxo-1,3-benzoxazine derivatives. Some of the new compounds were active as siderophores tested by growth promotion assays using various gram-negative bacteria and mycobacteria under iron limitation and by CAS-assay. Structure-activity-correlations have been studied.

  13. PLGA/liposome hybrid nanoparticles for short-chain ceramide delivery.

    PubMed

    Zou, Peng; Stern, Stephan T; Sun, Duxin

    2014-03-01

    Rapid premature release of lipophilic drugs from liposomal lipid bilayer to plasma proteins and biological membranes is a challenge for targeted drug delivery. The purpose of this study is to reduce premature release of lipophilic short-chain ceramides by encapsulating ceramides into liposomal aqueous interior with the aid of poly (lactic-coglycolicacid) (PLGA). BODIPY FL labeled ceramide (FL-ceramide) and BODIPY-TR labeled ceramide (TR-ceramide) were encapsulated into carboxy-terminated PLGA nanoparticles. The negatively charged PLGA nanoparticles were then encapsulated into cationic liposomes to obtain PLGA/liposome hybrids. As a control, FL-ceramide and/or TR ceramide co-loaded liposomes without PLGA were prepared. The release of ceramides from PLGA/liposome hybrids and liposomes in rat plasma, cultured MDA-MB-231 cells, and rat blood circulation was compared using fluorescence resonance energy transfer (FRET) between FL-ceramide (donor) and TR-ceramide (acceptor). FRET analysis showed that FL-ceramide and TR-ceramide in liposomal lipid bilayer were rapidly released during incubation with rat plasma. In contrast, the FL-ceramide and TR-ceramide in PLGA/liposome hybrids showed extended release. FRET images of cells revealed that ceramides in liposomal bilayer were rapidly transferred to cell membranes. In contrast, ceramides in PLGA/liposome hybrids were internalized into cells with nanoparticles simultaneously. Upon intravenous administration to rats, ceramides encapsulated in liposomal bilayer were completely released in 2 min. In contrast, ceramides encapsulated in the PLGA core were retained in PLGA/liposome hybrids for 4 h. The PLGA/liposome hybrid nanoparticles reduced in vitro and in vivo premature release of ceramides and offer a viable platform for targeted delivery of lipophilic drugs.

  14. A Generator-Produced Gallium-68 Radiopharmaceutical for PET Imaging of Myocardial Perfusion

    PubMed Central

    Sharma, Vijay; Sivapackiam, Jothilingam; Harpstrite, Scott E.; Prior, Julie L.; Gu, Hannah; Rath, Nigam P.; Piwnica-Worms, David

    2014-01-01

    Lipophilic cationic technetium-99m-complexes are widely used for myocardial perfusion imaging (MPI). However, inherent uncertainties in the supply chain of molybdenum-99, the parent isotope required for manufacturing 99Mo/99mTc generators, intensifies the need for discovery of novel MPI agents incorporating alternative radionuclides. Recently, germanium/gallium (Ge/Ga) generators capable of producing high quality 68Ga, an isotope with excellent emission characteristics for clinical PET imaging, have emerged. Herein, we report a novel 68Ga-complex identified through mechanism-based cell screening that holds promise as a generator-produced radiopharmaceutical for PET MPI. PMID:25353349

  15. Characterization of Shikonin Derivative Secretion in Lithospermum erythrorhizon Hairy Roots as a Model of Lipid-Soluble Metabolite Secretion from Plants

    PubMed Central

    Tatsumi, Kanade; Yano, Mariko; Kaminade, Kenta; Sugiyama, Akifumi; Sato, Mayuko; Toyooka, Kiminori; Aoyama, Takashi; Sato, Fumihiko; Yazaki, Kazufumi

    2016-01-01

    Shikonin derivatives are specialized lipophilic metabolites, secreted in abundant amounts from the root epidermal cells of Lithospermum erythrorhizon. Because they have anti-microbial activities, these compounds, which are derivatives of red naphthoquinone, are thought to serve as a chemical barrier for plant roots. The mechanism by which they are secreted from cells is, however, largely unknown. The shikonin production system in L. erythrorhizon is an excellent model for studying the mechanism by which lipophilic compounds are secreted from plant cells, because of the abundant amounts of these compounds produced by L. erythrorhizon, the 0 to 100% inducibility of their production, the light-specific inhibition of production, and the visibility of these products as red pigments. To date, many factors regulating shikonin biosynthesis have been identified, but no mechanism that regulates shikonin secretion without inhibiting biosynthesis has been detected. This study showed that inhibitors of membrane traffic strongly inhibit shikonin secretion without inhibiting shikonin production, suggesting that the secretion of shikonin derivatives into the apoplast utilizes pathways common to the ADP-ribosylation factor/guanine nucleotide exchange factor (ARF/GEF) system and actin filament polymerization, at least in part. These findings provide clues about the machinery involved in secreting lipid-soluble metabolites from cells. PMID:27507975

  16. Characterization of Shikonin Derivative Secretion in Lithospermum erythrorhizon Hairy Roots as a Model of Lipid-Soluble Metabolite Secretion from Plants.

    PubMed

    Tatsumi, Kanade; Yano, Mariko; Kaminade, Kenta; Sugiyama, Akifumi; Sato, Mayuko; Toyooka, Kiminori; Aoyama, Takashi; Sato, Fumihiko; Yazaki, Kazufumi

    2016-01-01

    Shikonin derivatives are specialized lipophilic metabolites, secreted in abundant amounts from the root epidermal cells of Lithospermum erythrorhizon. Because they have anti-microbial activities, these compounds, which are derivatives of red naphthoquinone, are thought to serve as a chemical barrier for plant roots. The mechanism by which they are secreted from cells is, however, largely unknown. The shikonin production system in L. erythrorhizon is an excellent model for studying the mechanism by which lipophilic compounds are secreted from plant cells, because of the abundant amounts of these compounds produced by L. erythrorhizon, the 0 to 100% inducibility of their production, the light-specific inhibition of production, and the visibility of these products as red pigments. To date, many factors regulating shikonin biosynthesis have been identified, but no mechanism that regulates shikonin secretion without inhibiting biosynthesis has been detected. This study showed that inhibitors of membrane traffic strongly inhibit shikonin secretion without inhibiting shikonin production, suggesting that the secretion of shikonin derivatives into the apoplast utilizes pathways common to the ADP-ribosylation factor/guanine nucleotide exchange factor (ARF/GEF) system and actin filament polymerization, at least in part. These findings provide clues about the machinery involved in secreting lipid-soluble metabolites from cells.

  17. The impact of whole human blood on the kinetic inertness of platinum(iv) prodrugs - an HPLC-ICP-MS study.

    PubMed

    Theiner, Sarah; Grabarics, Márkó; Galvez, Luis; Varbanov, Hristo P; Sommerfeld, Nadine S; Galanski, Markus; Keppler, Bernhard K; Koellensperger, Gunda

    2018-04-17

    The potential advantage of platinum(iv) complexes as alternatives to classical platinum(ii)-based drugs relies on their kinetic stability in the body before reaching the tumor site and on their activation by reduction inside cancer cells. In this study, an analytical workflow has been developed to investigate the reductive biotransformation and kinetic inertness of platinum(iv) prodrugs comprising different ligand coordination spheres (respectively, lipophilicity and redox behavior) in whole human blood. The distribution of platinum(iv) complexes in blood pellets and plasma was determined by inductively coupled plasma-mass spectrometry (ICP-MS) after microwave digestion. An analytical approach based on reversed-phase (RP)-ICP-MS was used to monitor the parent compound and the formation of metabolites using two different extraction procedures. The ligand coordination sphere of the platinum(iv) complexes had a significant impact on their accumulation in red blood cells and on their degree of kinetic inertness in whole human blood. The most lipophilic platinum(iv) compound featuring equatorial chlorido ligands showed a pronounced penetration into blood cells and a rapid reductive biotransformation. In contrast, the more hydrophilic platinum(iv) complexes with a carboplatin- and oxaliplatin-core exerted kinetic inertness on a pharmacologically relevant time scale with notable amounts of the compound accumulated in the plasma fraction.

  18. Inosine and 2'-deoxyinosine and their synthetic analogues: lipophilicity in the relation to their retention in reversed-phase liquid chromatography and the stability characteristics.

    PubMed

    Novotny, L; Abdel-Hamid, M; Hamza, H

    2000-12-01

    The purines and among them inosine synthetic nucleoside derivatives and analogues belong to a group of compounds to which the attention is being paid because of their biological activities. Relationships of their various parameters are being investigated because of their effect on biological (antineoplastic, virostatic, immunosuppressive) properties. Hydrophobicity parameters expressed as the logarithm of the partition coefficient (log P) and the capacity factor k' for naturally occurring inosine, 2'-deoxyinosine, 2'-deoxyadenosine and 2'-deoxyguanosine and for inosine synthetic analogues 5'-deoxyinosine, 5'-chloro-5'-deoxyinosine and 2',3'-dideoxyinosine were measured. The effect of methanol percentage in the mobile phase and its pH on the retention of the studied compounds in a reversed-phase system was also examined. There was a good correlation between the lipophilicity expressed as log P and capacity factor k'. It was also determined that dissociation has a marginal effect on capacity factor k' in this group of nucleoside derivatives as the k' values were almost unchanged at various pH of the mobile phase used. The stability of the all investigated compounds was investigated in basic, neutral and acidic conditions. The values of the reaction constant k1 were calculated and effects of nucleoside structural characteristic on stability are discussed.

  19. Binding of Sudan II and IV to lecithin liposomes and E. coli membranes: insights into the toxicity of hydrophobic azo dyes

    PubMed Central

    Li, Lu; Gao, Hong-Wen; Ren, Jiao-Rong; Chen, Ling; Li, Yu-Cheng; Zhao, Jian-Fu; Zhao, He-Ping; Yuan, Yuan

    2007-01-01

    Background Sudan red compounds are hydrophobic azo dyes, still used as food additives in some countries. However, they have been shown to be unsafe, causing tumors in the liver and urinary bladder in rats. They have been classified as category 3 human carcinogens by the International Agency for Research on Cancer. A number of hypotheses that could explain the mechanism of carcinogenesis have been proposed for dyes similar to the Sudan red compounds. Traditionally, investigations of the membrane toxicity of organic substances have focused on hydrocarbons, e.g. polycyclic aromatic hydrocarbons (PAHs), and DDT. In contrast to hydrocarbons, Sudan red compounds contain azo and hydroxy groups, which can form hydrogen bonds with the polar head groups of membrane phospholipids. Thus, entry may be impeded. They could have different toxicities from other lipophilic hydrocarbons. The available data show that because these compounds are lipophilic, interactions with hydrophobic parts of the cell are important for their toxicity. Lipophilic compounds accumulate in the membrane, causing expansion of the membrane surface area, inhibition of primary ion pumps and increased proton permeability. Results This work investigated the interactions of the amphiphilic compounds Sudan II and IV with lecithin liposomes and live Escherichia coli (E. coli). Sudan II and IV binding to lecithin liposomes and live E. coli corresponds to the Langmuir adsorption isotherm. In the Sudan red compounds – lecithin liposome solutions, the binding ratio of Sudan II to lecithin is 1/31 and that of Sudan IV to 1/314. The binding constant of the Sudan II-lecithin complex is 1.75 × 104 and that of the Sudan IV-lecithin complex 2.92 × 105. Besides, the influences of pH, electrolyte and temperature were investigated and analyzed quantitatively. In the Sudan red compounds – E.coli mixture, the binding ratios of Sudan II and Sudan IV to E.coli membrane phospholipid are 1/29 and 1/114. The binding constants of the Sudan II – and Sudan IV- E.coli membrane phospholipid complexes are 1.86 × 104 and 6.02 × 104. Over 60% of Sudan II and 75% of Sudan IV penetrated into E.coli, in which 90% of them remained in the E.coli membrane. Conclusion Experiments of Sudan II and IV binding to lecithin liposomes and live E. coli indicates that amphiphilic compounds may besequestered in thelecithin liposomes and membrane phospholipid bilayer according to the Langmuir adsorption law. Penetration into the cytosol was impeded and inhibited for Sudan red compounds. It is possible for such compounds themselves (excluding their metabolites and by-products)not result directly in terminal toxicity. Therefore, membrane toxicity could be manifested as membrane blocking and membrane expansion. The method established here may be useful for evaluating the interaction of toxins with membranes. PMID:17389047

  20. Method for encapsulating and isolating hazardous cations, medium for encapsulating and isolating hazardous cations

    DOEpatents

    Wasserman, S.R.; Anderson, K.B.; Song, K.; Yuchs, S.E.; Marshall, C.L.

    1998-04-28

    A method for encapsulating hazardous cations is provided comprising supplying a pretreated substrate containing the cations; contacting the substrate with an organo-silane compound to form a coating on the substrate; and allowing the coating to cure. A medium for containing hazardous cations is also provided, comprising a substrate having ion-exchange capacity and a silane-containing coating on the substrate. 3 figs.

  1. Brominated flame retardant levels in human milk and serum from MAMA study participants: Correlations over time, matrix, and with questionnaire results

    EPA Science Inventory

    Brominated flame retardants (BFRs) are synthetic, lipophilic, and bioaccumulative compounds used to prevent the combustion of a variety of items including electronics and furniture. There are 75 classes of BFRs, two of which are the polybrominated biphenyls (PBB) and the polybrom...

  2. Lipophilic Prodrugs of FR900098 Are Antimicrobial against Francisella novicida In Vivo and In Vitro and Show GlpT Independent Efficacy

    PubMed Central

    McKenney, Elizabeth S.; Sargent, Michelle; Khan, Hameed; Uh, Eugene; Jackson, Emily R.; Jose, Géraldine San; Couch, Robin D.; Dowd, Cynthia S.; van Hoek, Monique L.

    2012-01-01

    Bacteria, plants, and algae produce isoprenoids through the methylerythritol phosphate (MEP) pathway, an attractive pathway for antimicrobial drug development as it is present in prokaryotes and some lower eukaryotes but absent from human cells. The first committed step of the MEP pathway is catalyzed by 1-deoxy-D-xylulose 5-phosphate reductoisomerase (DXR/MEP synthase). MEP pathway genes have been identified in many biothreat agents, including Francisella, Brucella, Bacillus, Burkholderia, and Yersinia. The importance of the MEP pathway to Francisella is demonstrated by the fact that MEP pathway mutations are lethal. We have previously established that fosmidomycin inhibits purified MEP synthase (DXR) from F. tularensis LVS. FR900098, the acetyl derivative of fosmidomycin, was found to inhibit the activity of purified DXR from F. tularensis LVS (IC50 = 230 nM). Fosmidomycin and FR900098 are effective against purified DXR from Mycobacterium tuberculosis as well, but have no effect on whole cells because the compounds are too polar to penetrate the thick cell wall. Fosmidomycin requires the GlpT transporter to enter cells, and this is absent in some pathogens, including M. tuberculosis. In this study, we have identified the GlpT homologs in F. novicida and tested transposon insertion mutants of glpT. We showed that FR900098 also requires GlpT for full activity against F. novicida. Thus, we synthesized several FR900098 prodrugs that have lipophilic groups to facilitate their passage through the bacterial cell wall and bypass the requirement for the GlpT transporter. One compound, that we termed “compound 1,” was found to have GlpT-independent antimicrobial activity. We tested the ability of this best performing prodrug to inhibit F. novicida intracellular infection of eukaryotic cell lines and the caterpillar Galleria mellonella as an in vivo infection model. As a lipophilic GlpT-independent DXR inhibitor, compound 1 has the potential to be a broad-spectrum antibiotic, and should be effective against most MEP-dependent organisms. PMID:23077474

  3. Structure and cytotoxic activity of sesquiterpene glycoside esters from Calendula officinalis L.: Studies on the conformation of viridiflorol.

    PubMed

    D'Ambrosio, Michele; Ciocarlan, Alexandru; Colombo, Elisa; Guerriero, Antonio; Pizza, Cosimo; Sangiovanni, Enrico; Dell'Agli, Mario

    2015-09-01

    Topic applications of Calendula officinalis L. lipophilic extracts are used in phytotherapy to relieve skin inflammatory conditions whereas infusions are used as a remedy for gastric complaints. Such a different usage might be explained by some cytotoxicity of lipophilic extracts at gastric level but little is known about this. Therefore, we screened the CH2Cl2 extract from the flowers of C. officinalis by MTT and LDH assays in human epithelial gastric cells AGS. This bioassay-oriented approach led to the isolation of several sesquiterpene glycosides which were structurally characterized by spectroscopic measurements, chemical reactions and MM calculations. The conformational preferences of viridiflorol fucoside were established and a previously assigned stereochemistry was revised. The compounds 1a, 2a and 3f showed comparably high cytotoxicity in the MTT assays, whereas the effect on LDH release was lower. Our study provides new insights on the composition of C. officinalis extracts of medium polarity and identifies the main compounds that could be responsible for cytotoxic effects at gastric level. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Novel sila-amide derivatives of N-acetylcysteine protects platelets from oxidative stress-induced apoptosis.

    PubMed

    Paul, Manoj; Thushara, Ram M; Jagadish, Swamy; Zakai, Uzma I; West, Robert; Kemparaju, Kempaiah; Girish, Kesturu S

    2017-02-01

    Oxidative stress-induced platelet apoptosis is one among the many causes for the development and progression of many disorders like cardiovascular diseases, arthritis, Alzheimer's disease and many chronic inflammatory responses. Many studies have demonstrated the less optimal effect of N-acetyl cysteine (NAC) in oxidative stress-induced cellular damage. This could be due to its less lipophilicity which makes it difficult to enter the cellular membrane. Therefore in the present study, lipophilic sila-amide derivatives (6a and 6b) synthesized through the reaction of NAC with 3-Aminopropyltrimethylsilane and aminomethyltrimethylsilane were used to determine their protective property against oxidative stress-induced platelet apoptosis. At a concentration of 10 µM, compound 6a and 6b were able to significantly inhibit Rotenone/H 2 O 2 induced platelet apoptotic markers like reactive oxygen species, intracellular calcium level, mitochondrial membrane potential, cytochrome c release from mitochondrial to the cytosol, caspase-9 and -3 activity and phosphatidylserine externalization. Therefore, the compounds can be extrapolated as therapeutic agents to protect platelets from oxidative stress-induced platelet apoptosis and its associated complications.

  5. Substituted 2-benzothiazolamines as sodium flux inhibitors: quantitative structure-activity relationships and anticonvulsant activity.

    PubMed

    Hays, S J; Rice, M J; Ortwine, D F; Johnson, G; Schwarz, R D; Boyd, D K; Copeland, L F; Vartanian, M G; Boxer, P A

    1994-10-01

    Thirty-two aryl-substituted 2-benzothiazolamines have been tested for their ability to modulate sodium flux in rat cortical slices. A QSAR analysis, applied to these derivatives, showed a trend toward increasing potency as sodium flux inhibitors with increasing lipophilicity, decreasing size, and increasing electron withdrawal of the benzo ring substituents. Additionally, 4- or 5-substitution of the benzo ring was found to decrease potency. The combination of increased lipophilicity, small size, and electron withdrawal severely limited which groups were tolerated on the benzo ring, thus suggesting that the optimal substitution patterns have been prepared within this series. Nine of these compounds were potent inhibitors of veratridine-induced sodium flux (NaFl). These nine compounds also proved to be anticonvulsant in the maximal electroshock (MES) assay. Fourteen additional 2-benzothiazolamines demonstrated activity in the MES screen, yet exhibited no activity in the NaFl assay. These derivatives may be interacting at the sodium channel in a manner not discernible by the flux paradigm, or they may be acting by an alternative mechanism in vivo.

  6. Effect of chirality and lipophilicity in the functional activity of evodiamine and its analogues at TRPV1 channels.

    PubMed

    De Petrocellis, Luciano; Schiano Moriello, Aniello; Fontana, Gabriele; Sacchetti, Alessandro; Passarella, Daniele; Appendino, Giovanni; Di Marzo, Vincenzo

    2014-05-01

    Evodiamine, a racemic quinazolinocarboline alkaloid isolated from the traditional Chinese medicine Evodiae fructus, has been reported to act as an agonist of the transient receptor potential vanilloid type-1 (TRPV1) cation channel both in vitro and in vivo. Evodiamine is structurally different from all known TRPV1 activators, and has significant clinical potential as a thermogenic agent. Nevertheless, the molecular bases for its actions are still poorly understood. To investigate the structure-activity relationships of evodiamine, the natural racemate was resolved, and a series of 23 synthetic analogues was prepared, using as the end point the intracellular Ca(2+) elevation in HEK-293 cells stably overexpressing either the human or the rat recombinant TRPV1. S-(+) evodiamine was more efficacious and potent than R-(-) evodiamine, and a new potent lead (Evo30) was identified, more potent than the reference TRPV1 agonist, capsaicin. In general, potency and efficacy correlated with the lipophilicity of the analogues. Like other TRPV1 agonists, several synthetic analogues could efficiently desensitize TRPV1 to activation by capsaicin. Evodiamine qualifies as structurally unique lead structure to develop new potent TRPV1 agonists/desensitizers. © 2013 The British Pharmacological Society.

  7. Site preferences of actinide cations in [NZP] compounds

    NASA Astrophysics Data System (ADS)

    Hawkins, H. T.; Spearing, D. R.; Smith, D. M.; Hampel, F. G.; Veirs, D. K.; Scheetz, B. E.

    2000-07-01

    Compounds adopting the sodium dizirconium tris(phosphate) (NaZr2(PO4)3) structure type belong to the [NZP] structural family of compounds. [NZP] compounds possess desirable properties that would permit their application as hosts for the actinides. These properties include compositional flexibility (i.e., three structural sites that can accommodate a variety of different cations), high thermal stability, negligible thermal expansion, and resistance to radiation damage. Experimental data indicate that [NZP] compounds resist dissolution and release of constituents over a wide range of experimental conditions. Moreover, [NZP] compounds may be synthesized by both conventional and novel methods and may be heat treated or sintered at modest temperatures (800 °C-1350 °C) in open or restricted systems.

  8. Synthesis of the iron phthalocyaninate radical cation μ-nitrido dimer and its interaction with hydrogen peroxide

    NASA Astrophysics Data System (ADS)

    Grishina, E. S.; Makarova, A. S.; Kudrik, E. V.; Makarov, S. V.; Koifman, O. I.

    2016-03-01

    The iron phthalocyaninate μ-nitrido dimer radical cation, as well as the μ-nitrido dimer complexes of iron phthalocyaninate, was found to have high catalytic activity in the oxidation of organic compounds. It was concluded that this compound is of interest as a model of active intermediates—catalase and oxidase enzymes.

  9. Synthesis of phthalide-fused indoline by microwave irradiation and preliminary binding study with metal cations

    NASA Astrophysics Data System (ADS)

    Ling, Sheryn Wong Shue; Latip, Jalifah; Hassan, Nurul Izzaty; Hasbullah, Siti Aishah

    2018-04-01

    An efficient and green method of synthesizing phthalide-fused indoline, 3-[(1,3,3-trimethylindolin-2-ylidene)methyl]isobenzofuran-1(3H)-one (3) has been developed by the coupling reaction of 1,3,3-trimethyl-2-methyleneindoline, 1 and phthalaldehydic acid, 2 under solvent-free domestic microwave irradiation. The compound was produced with an excellent yield (98 %) and at a shorter reaction time (5 min) as compared to the conventional method. Compound 3 was fully characterized by analytical and spectral methods. Preliminary binding study of 3 towards different types of metal cations was done by "naked eye" colorimetric detection and UV-vis spectrophotometer. Compound 3 exhibits good selectivity and sensitivity for Sn2+ compared to other metal cations.

  10. Thermoelectric materials ternary penta telluride and selenide compounds

    DOEpatents

    Sharp, Jeffrey W.

    2001-01-01

    Ternary tellurium compounds and ternary selenium compounds may be used in fabricating thermoelectric devices with a thermoelectric figure of merit (ZT) of 1.5 or greater. Examples of such compounds include Tl.sub.2 SnTe.sub.5, Tl.sub.2 GeTe.sub.5, K.sub.2 SnTe.sub.5 and Rb.sub.2 SnTe.sub.5. These compounds have similar types of crystal lattice structures which include a first substructure with a (Sn, Ge) Te.sub.5 composition and a second substructure with chains of selected cation atoms. The second substructure includes selected cation atoms which interact with selected anion atoms to maintain a desired separation between the chains of the first substructure. The cation atoms which maintain the desired separation between the chains occupy relatively large electropositive sites in the resulting crystal lattice structure which results in a relatively low value for the lattice component of thermal conductivity (.kappa..sub.g). The first substructure of anion chains indicates significant anisotropy in the thermoelectric characteristics of the resulting semiconductor materials.

  11. Thermoelectric materials: ternary penta telluride and selenide compounds

    DOEpatents

    Sharp, Jeffrey W.

    2002-06-04

    Ternary tellurium compounds and ternary selenium compounds may be used in fabricating thermoelectric devices with a thermoelectric figure of merit (ZT) of 1.5 or greater. Examples of such compounds include Tl.sub.2 SnTe.sub.5, Tl.sub.2 GeTe.sub.5, K.sub.2 SnTe.sub.5 and Rb.sub.2 SnTe.sub.5. These compounds have similar types of crystal lattice structures which include a first substructure with a (Sn, Ge) Te.sub.5 composition and a second substructure with chains of selected cation atoms. The second substructure includes selected cation atoms which interact with selected anion atoms to maintain a desired separation between the chains of the first substructure. The cation atoms which maintain the desired separation between the chains occupy relatively large electropositive sites in the resulting crystal lattice structure which results in a relatively low value for the lattice component of thermal conductivity (.kappa..sub.g). The first substructure of anion chains indicates significant anisotropy in the thermoelectric characteristics of the resulting semiconductor materials.

  12. Theoretical study of structure, pKa, lipophilicity, solubility, absorption, and polar surface area of some centrally acting antihypertensives.

    PubMed

    Remko, Milan; Swart, Marcel; Bickelhaupt, F Matthias

    2006-03-15

    The methods of theoretical chemistry have been used to elucidate the molecular properties of the substituted imidazoline and oxazoline structures, a class of potent agonists and antagonists of imidazoline receptors. The geometries of various tautomers and isomers of 2-[2,6-dichlorophenylimino]imidazolidine (clonidine), 1-(N-dicyclopropylmethyl)amino-2-oxazoline (rilmenidine), 4-chloro-N-(4,5-dihydro-1H-imidazol-2yl)-6-methoxy-2-methyl-5-pyrimidinamine (moxonidine), N-(dicyclopropylmethyl)-4,5-dihydro-1H-pyrrol-2-amine (aminopyrroline), N-dicyclopropylmethyl-4,5-dihydrothiazol-2-amine (aminothiazoline), 4,5-dihydro-2-(2-methoxyphenyl)-1H-imidazole (compound_6), 4,5-dihydro-2-(3-methylthiophen-2-yl)-1H-imidazole (compound_7), N-(2-chloro-4-iodophenyl)-4,5-dihydro-5-methyl-3H-pyrrol-2-amine (LNP_911), N-amidino-3,5-diamino-6-chloropyrazine-carboxamide (amiloride), 2-(1,4-benzodioxan-2-yl)-2-imidazoline (idazoxan), (+/-)-2-(2-ethyl-2,3-dihydro-2-benzofuranyl)-2-imidazoline (efaroxan), (4-aminobutyl)guaninine (agmatine), and 1-methyl-9H-pyrido[3,4-b]indole (harmane) have been studied using Becke3LYP/6-31+G(d,p) and BP86/TZ2P DFT methods. The optimized geometries indicate that these molecules show a distinctly nonplanar configuration of the imidazoline and oxazoline moieties. In the gas-phase, rilmenidine and aminothiazoline exist in two forms (amino and imino), the amino tautomers being more stable by about 6 kJ/mol. The calculations showed, in agreement with experiments, that clonidine, moxonidine, and LNP_911 exist in a more stable imino tautomer. The tautomer containing the amino group is by about 30 kJ/mol less stable. Computations that include the effect of solvation indicated that also in water the relative stability order of individual tautomers (amino and imino forms) is preserved. The computed pKa values varied between 6.7 and 9.0, and correlate well with the available experimental pKa's found in the literature. Among the clinically useful antihypertensives moxonidine exhibits the lowest basicity in water. At pH = 7.4 only about 50% of this drug exists in ionized form. The available experimental partition coefficients of compounds investigated are best reproduced by the CLOGP method. The computed partition coefficients varied between -1.80 (agmatine) and 5.35 (LNP_911) (CLOGP). Clonidine, moxonidine, and rilmenidine are moderately lipophilic compounds with lipophilicities between these two extreme values. The computed solubilities (about 0.1-4 g/L) show that the imidazoline and oxazoline derivatives studied have very low water solubility. The analysis of molecular descriptors defined by Lipinski has shown that most of the compounds studied obey 'rule of five'. Amiloride and agmatine 'outlets' exhibit also the lowest absorption. Therefore, in the early stages of the design of ligands acting on imidazoline binding sites, it is becoming more important to determine the pKa, lipophilicity, water solubility, polar surface area, absorption, and other physicochemical properties associated with a drug, before synthetic work is undertaken, with the aim of avoiding the synthesis of compounds that are predicted to have poor biopharmaceutical characteristics.

  13. Improved Poly (D,L-lactide) nanoparticles-based formulation for hair follicle targeting.

    PubMed

    Fernandes, B; Silva, R; Ribeiro, A; Matamá, T; Gomes, A C; Cavaco-Paulo, A M

    2015-06-01

    Hair follicles are widely recognized as the preferential target and site of accumulation for nanoparticles after topical application. This feature is of particular importance for hair cosmetics, having the potential to refine the treatment of several hair follicle-related disorders. The aim of this work was to improve the preparation of Poly (D,L-lactide) (PLA) nanoparticles for in vivo follicular target and drug delivery. Envisaging a future industrial scale-up of the process, nanoprecipitation method was used to prepare PLA nanoparticles: the effect of several processing parameters on their properties was examined and the yield of nanoparticles formation determined. Encapsulation efficiencies and in vitro release profiles of lipophilic and hydrophilic model compounds were also assessed. In vitro cytotoxicity and ex vivo penetration studies were performed on a reference skin cell line (NCTC2455, human skin keratinocytes) and porcine skin, respectively. Using acetone : ethanol (50 : 50, v/v) as the solvent phase, 0.6% (w/w) of Pluronic(®) F68 as a surfactant agent and agitation to mix the solvent and non-solvent phases, a monodispersed population of non-cytotoxic spherical nanoparticles of approximately 150 nm was obtained. The yield of nanoparticles for this formulation was roughly 90%. After encapsulation of model compounds, no significant changes were found in the properties of particles and the entrapment efficiencies were above 80%. The release kinetics of dyes from PLA nanoparticles indicate an anomalous transport mechanism (diffusion and polymer degradation) for Nile Red (lipophilic) and a Fickian diffusion of first order for fluorescein 5(6)-isothiocyanate (hydrophilic). Ex vivo skin penetration studies confirmed the presence of nanoparticles along the entire follicular ducts. The optimized method allows the preparation of ideal PLA nanoparticles-based formulations for hair follicle targeting. PLA nanoparticles can effectively transport and release lipophilic and hydrophilic compounds into the hair follicles, and the yields obtained are acceptable for industrial purposes. © 2014 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdellahi, Aziz; Urban, Alexander; Dacek, Stephen

    Cation disorder is a phenomenon that is becoming increasingly important for the design of high-energy lithium transition metal oxide cathodes (LiMO 2) for Li-ion batteries. Disordered Li-excess rocksalts have recently been shown to achieve high reversible capacity, while in operando cation disorder has been observed in a large class of ordered compounds. The voltage slope (dV/dx u )is a critical quantity for the design of cation-disordered rocksalts, as it controls the Li capacity accessible at voltages below the stability limit of the electrolyte (~4.5-4.7 V). In this study, we develop a lattice model based on first principles to understand andmore » quantify the voltage slope of cation-disordered LiMO 2. We show that cation disorder increases the voltage slope of Li transition metal oxides by creating a statistical distribution of transition metal environments around Li sites, as well as by allowing Li occupation of highvoltage tetrahedral sites. We further demonstrate that the voltage slope increase upon disorder is generally smaller for highvoltage transition metals than for low-voltage transition metals due to a more effective screening of Li-M interactions by oxygen electrons. Short-range order in practical disordered compounds is found to further mitigate the voltage slope increase upon disorder. In conclusion, our analysis shows that the additional high-voltage tetrahedral capacity induced by disorder is smaller in Liexcess compounds than in stoichiometric LiMO 2 compounds.« less

  15. The Pressure-Induced Structural Response of A2Hf2O7 (A=Y, Sm, Eu, Gd, Dy, Yb) Compounds from 0.1-50 GPa

    NASA Astrophysics Data System (ADS)

    Turner, K. M.; Rittman, D.; Heymach, R.; Turner, M.; Tracy, C.; Mao, W. L.; Ewing, R. C.

    2016-12-01

    A2B2O7 (A, B= cations) compounds have structures that make their properties conducive to many applications; for example they are a proposed waste-form for actinides generated in the nuclear fuel cycle. This interest in part is due to their structural responses to extreme environments of high P, T, or under intense irradiation. Depending on their cationic radius ratio, ra/rb, A2B2O7 compounds either crystallize as pyrochlore (ra/rb=1.46-1.7) or "defect fluorite" (ra/rb>1.46). The structure types are similar: they are derivatives of ideal fluorite with two cations and 1/8 missing anions. In pyrochlore, the cations and anion vacancy are ordered. In "defect fluorite"-structured oxides, the cations and anion vacancies are random. A2B2O7 compounds rarely amorphize in extreme environments. Rather, they disorder and undergo phase transitions; this resistance to amorphization contributes to the durability of this potential actinide waste-form. Under high-pressure, A2B2O7 compounds are known to disorder or form a cottunite-like phase. Their radius ratio affects their response to extreme environments; "defect fluorite" type compounds tend to disorder, and pyrochlore type compounds tend to form the cottunite-like phase. We have examined six A2Hf2O7 compounds (A=Y, Sm, Eu, Gd, Dy, Yb) in situ to 50 GPa. By keeping the B-site constant (Hf), we examined the effect of a changing radius ratio on the pressure-induced structural response of hafnates. We used symmetric DACs, ruby fluorescence, stainless steel gaskets, and methanol: ethanol (4:1 by volume) pressure medium. We characterized these materials with in situ Raman spectroscopy at Stanford University, and synchrotron X-Ray Diffraction (XRD) at APS 16 BM-D and ALS 12.2.2. The compounds were pyrochlore structured (Sm, Eu, Gd) and "defect-fluorite" structured (Y, Dy, Yb) hafnates . These compounds undergo a slow phase transition to a high-pressure cotunnite-like phase between 18-30 GPa. They undergo disordering of their cation and anionic sites as pressure is increased. The pressure of their phase transitions correlates directly with their radius ratio. Our results are comparable to many high-pressure studies of rare earth zirconates and titanates, but contrast from previous experiments performed on rare earth hafnates, specifically La2Hf2O7.

  16. Manganese superoxide dismutase, MnSOD and its mimics.

    PubMed

    Miriyala, Sumitra; Spasojevic, Ivan; Tovmasyan, Artak; Salvemini, Daniela; Vujaskovic, Zeljko; St Clair, Daret; Batinic-Haberle, Ines

    2012-05-01

    Increased understanding of the role of mitochondria under physiological and pathological conditions parallels increased exploration of synthetic and natural compounds able to mimic MnSOD - endogenous mitochondrial antioxidant defense essential for the existence of virtually all aerobic organisms from bacteria to humans. This review describes most successful mitochondrially-targeted redox-active compounds, Mn porphyrins and MitoQ(10) in detail, and briefly addresses several other compounds that are either catalysts of O(2)(-) dismutation, or its non-catalytic scavengers, and that reportedly attenuate mitochondrial dysfunction. While not a true catalyst (SOD mimic) of O(2)(-) dismutation, MitoQ(10) oxidizes O(2)(-) to O(2) with a high rate constant. In vivo it is readily reduced to quinol, MitoQH(2), which in turn reduces ONOO(-) to NO(2), producing semiquinone radical that subsequently dismutes to MitoQ(10) and MitoQH(2), completing the "catalytic" cycle. In MitoQ(10), the redox-active unit was coupled via 10-carbon atom alkyl chain to monocationic triphenylphosphonium ion in order to reach the mitochondria. Mn porphyrin-based SOD mimics, however, were designed so that their multiple cationic charge and alkyl chains determine both their remarkable SOD potency and carry them into the mitochondria. Several animal efficacy studies such as skin carcinogenesis and UVB-mediated mtDNA damage, and subcellular distribution studies of Saccharomyces cerevisiae and mouse heart provided unambiguous evidence that Mn porphyrins mimic the site and action of MnSOD, which in turn contributes to their efficacy in numerous in vitro and in vivo models of oxidative stress. Within a class of Mn porphyrins, lipophilic analogs are particularly effective for treating central nervous system injuries where mitochondria play key role. This article is part of a Special Issue entitled: Antioxidants and Antioxidant Treatment in Disease. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Effects of Zinc Gluconate and 2 Other Divalent Cationic Compounds on Olfactory Function in Mice

    PubMed Central

    Duncan-Lewis, Christopher A; Lukman, Roy L; Banks, Robert K

    2011-01-01

    Intranasal application of zinc gluconate has commonly been used to treat the common cold. The safety of this treatment, however, has come into question recently. In addition to a United States recall of a homeopathic product that contains zinc gluconate, abundant literature reports cytotoxic effects of zinc on the olfactory epithelium. Additional research suggests that divalent cations (such as zinc) can block ion channels that facilitate the transduction of odors into electrical signals on the olfactory epithelium. The purpose of the current study was 2-fold: to confirm whether zinc gluconate causes anosmia and to reveal whether any other divalent cationic compounds produce a similar effect. Groups of mice underwent a buried food-pellet test to gauge olfactory function and then were nasally irrigated with 1 of 3 divalent cationic compounds. When tested after treatment, mice irrigated with zinc gluconate and copper gluconate experienced a marked increase in food-finding time, indicating that they had lost their ability to smell a hidden food source. Control mice irrigated with saline had a significantly lower increase in times. These results confirm that zinc gluconate can cause anosmia and reveal that multiple divalent cations can negatively affect olfaction. PMID:22330252

  18. Effect of interlayer cations of montmorillonite on the biodegradation and adsorption of crude oil polycyclic aromatic compounds.

    PubMed

    Ugochukwu, Uzochukwu C; Manning, David A C; Fialips, Claire I

    2014-09-01

    Cation exchange capacity, surface acidity and specific surface area are surface properties of clay minerals that make them act as catalysts or supports in most biogeochemical processes hence making them play important roles in environmental control. However, the role of homoionic clay minerals during the biodegradation of polycyclic aromatic compounds is not well reported. In this study, the effect of interlayer cations of montmorillonites in the removal of some crude oil polycyclic aromatic compounds during biodegradation was investigated in aqueous clay/oil microcosm experiments with a hydrocarbon degrading microorganism community. The homoionic montmorillonites were prepared via cation exchange reactions by treating the unmodified montmorillonite with the relevant metallic chloride. The study indicated that potassium-montmorillonite and zinc-montmorillonite did not enhance the biodegradation of the polycyclic aromatic hydrocarbons whereas calcium-montmorillonite, and ferric-montmorillonite enhanced their biodegradation significantly. Adsorption of polycyclic aromatic hydrocarbons was significant during biodegradation with potassium- and zinc-montmorillonite where there was about 45% removal of the polycyclic aromatic compounds by adsorption in the experimental microcosm containing 5:1 ratio (w/w) of clay to oil. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Synthesis of fluorine-18 labeled rhodamine B: A potential PET myocardial perfusion imaging agent

    PubMed Central

    Heinrich, Tobias K.; Gottumukkala, Vijay; Snay, Erin; Dunning, Patricia; Fahey, Frederic H; Treves, S. Ted; Packard, Alan B.

    2009-01-01

    There is considerable interest in developing an 18F-labeled PET myocardial perfusion agent. Rhodamine dyes share several properties with 99mTc-MIBI, the most commonly used single-photon myocardial perfusion agent, suggesting that an 18F-labeled rhodamine dye might prove useful for this application. In addition to being lipophilic cations, like 99mTc-MIBI, rhodamine dyes are known to accumulate in the myocardium and are substrates for Pgp, the protein implicated in MDR1 multidrug resistance. As the first step in determining whether 18F-labeled rhodamines might be useful as myocardial perfusion agents for PET, our objective was to develop synthetic methods for preparing the 18F-labeled compounds so that they could be evaluated in vivo. Rhodamine B was chosen as the prototype compound for development of the synthesis because the ethyl substituents on the amine moieties of rhodamine B protect them from side reactions, thus eliminating the need to include (and subsequently remove) protecting groups. The 2′-[18F]fluoroethyl ester of rhodamine B was synthesized by heating rhodamine B lactone with [18F]fluoroethyltosylate in acetonitrile at 165°C for 30 min.using [18F]fluoroethyl tosylate, which was prepared by the reaction of ethyleneglycol ditosylate with Kryptofix 2.2.2, K2CO3, and [18F]NaF in acetonitrile for 10 min. at 90°C. The product was purified by semi-preparative HPLC to produce the 2′-[18F]-fluoroethylester in >97% radiochemical purity with a specific activity of 1.3 GBq/μmol, an isolated decay corrected yield of 35%, and a total synthesis time of 90 min. PMID:19783150

  20. Modified Folin-Ciocalteu antioxidant capacity assay for measuring lipophilic antioxidants.

    PubMed

    Berker, Kadriye Isil; Ozdemir Olgun, F Ayca; Ozyurt, Dilek; Demirata, Birsen; Apak, Resat

    2013-05-22

    The Folin-Ciocalteu (FC) method of performing a total phenolics assay, originally developed for protein determination, has recently evolved as a total antioxidant capacity assay but was found to be incapable of measuring lipophilic antioxidants due to the high affinity of the FC chromophore, that is, multivalent-charged phospho-tungsto-molybdate(V), toward water. Thus, the FC method was modified and standardized so as to enable simultaneous measurement of lipophilic and hydrophilic antioxidants in NaOH-added isobutanol-water medium. Optimal conditions were as follows: dilution ratio of aqueous FC reagent with iso-BuOH (1:2, v/v), final NaOH concentration of 3.5 × 10(-2) M, reaction time of 20 min, and maximum absorption wavelength of 665 nm. The modified procedure was successfully applied to the total antioxidant capacity assay of trolox, quercetin, ascorbic acid, gallic acid, catechin, caffeic acid, ferulic acid, rosmarinic acid, glutathione, and cysteine, as well as of lipophilic antioxidants such as α-tocopherol (vitamin E), butylated hydroxyanisole, butylated hydroxytoluene, tertiary butylhydroquinone, lauryl gallate, and β-carotene. The modified FC method reliably quantified ascorbic acid, whereas the conventional method could not. The modified method was reproducible and additive in terms of total antioxidant capacity values of constituents of complex mixtures such as olive oil extract and herbal tea infusion. The trolox equivalent antioxidant capacities of the tested antioxidant compounds correlated well with those found by the Cupric Reducing Antioxidant Capacity reference method.

  1. NSAID-derived gamma-secretase modulators. Part III: Membrane anchoring.

    PubMed

    Baumann, Stefanie; Höttecke, Nicole; Schubenel, Robert; Baumann, Karlheinz; Schmidt, Boris

    2009-12-15

    Selective lowering of Abeta(42) levels with small-molecule substrate targeting gamma-secretase modulators (sGSMs), such as some non-steroidal anti-inflammatory drugs, is a promising therapeutic approach for Alzheimer's disease. Here we present N-substituted carbazole- and O-substituted fenofibrate-derived sGSMs and their activity data. Seven out of 19 screened compounds exhibited promising activity against Abeta(42) secretion at a low micromolar level. We presume that the sGSMs interact with lys624 at the membrane interface and that the lipophilic substituents anchor the compound orientation in the membrane.

  2. Synthesis and antimycobacterial activity of isoniazid derivatives from renewable fatty acids.

    PubMed

    Rodrigues, Marieli O; Cantos, Jéssica B; D'Oca, Caroline R Montes; Soares, Karina L; Coelho, Tatiane S; Piovesan, Luciana A; Russowsky, Dennis; da Silva, Pedro A; D'Oca, Marcelo G Montes

    2013-11-15

    This work describes the synthesis of a series of fatty acid hydrazide derivatives of isoniazid (INH). The compounds were tested against Mycobacterium tuberculosis H37Rv (ATCC 27294) as well as INH-resistant (ATCC 35822 and 1896 HF) and rifampicin-resistant (ATCC 35338) M. tuberculosis strains. The fatty acid derivatives of INH showed high antimycobacterial potency against the studied strains, which is desirable for a pharmaceutical compound, suggesting that the increased lipophilicity of isoniazid plays an important role in its antimycobacterial activity. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Influence of the π-coordinated arene on the anticancer activity of ruthenium(II) carbohydrate organometallic complexes

    NASA Astrophysics Data System (ADS)

    Hanif, Muhammad; Meier, Samuel; Nazarov, Alexey; Risse, Julie; Legin, Anton; Casini, Angela; Jakupec, Michael; Keppler, Bernhard; Hartinger, Christian

    2013-10-01

    The synthesis and in vitro cytotoxicity of a series of RuII(arene) complexes with carbohydrate-derived phosphite ligands and various arene co-ligands is described. The arene ligand has a strong influence on the in vitro anticancer activity of this series of compounds, which correlates fairly well with cellular accumulation. The most lipophilic compound bearing a biphenyl moiety and a cyclohexylidene-protected carbohydrate is the most cytotoxic with unprecedented IC50 values for the compound class in three human cancer cell lines. This compound shows reactivity to the DNA model nucleobase 9-ethylguanine, but does not alter the secondary structure of plasmid DNA indicating that other biological targets are responsible for its cytotoxic effect.

  4. Extraction of cesium and strontium from nuclear waste

    DOEpatents

    Davis, Jr., Milton W.; Bowers, Jr., Charles B.

    1988-01-01

    Cesium is extracted from acidified nuclear waste by contacting the waste with a bis 4,4'(5) [1-hydroxy-2-ethylhexyl]benzo 18-crown-6 compound and a cation exchanger in a matrix solution. Strontium is extracted from acidified nuclear waste by contacting the waste with a bis 4,4'(5') [1-hydroxyheptyl]cyclohexo 18-crown-6 compound, and a cation exchanger in a matrix solution.

  5. PLGA/liposome hybrid nanoparticles for short-chain ceramide delivery

    PubMed Central

    Zou, Peng; Stern, Stephan T.; Sun, Duxin

    2014-01-01

    Purpose Rapid premature release of lipophilic drugs from liposomal lipid bilayer to plasma proteins and biological membranes is a challenge for targeted drug delivery. The purpose of this study is to reduce premature release of lipophilic short-chain ceramides by encapsulating ceramides into liposomal aqueous interior with the aid of poly( lactic-coglycolicacid) (PLGA). Methods BODIPY FL labeled ceramide (FL-ceramide) and BODIPY-TR labeled ceramide (TR-ceramide) were encapsulated into carboxy-terminated PLGA nanoparticles. The negatively charged PLGA nanoparticles were then encapsulated into cationic liposomes to obtain PLGA/liposome hybrids. As a control, FL-ceramide and/or TR ceramide co-loaded liposomes without PLGA were prepared. The release of ceramides from PLGA/liposome hybrids and liposomes in rat plasma, cultured MDA-MB-231 cells, and rat blood circulation was compared using fluorescence resonance energy transfer (FRET) between FL-ceramide (donor) and TR-ceramide (acceptor). Results FRET analysis showed that FL-ceramide and TR-ceramide in liposomal lipid bilayer were rapidly released during incubation with rat plasma. In contrast, the FL-ceramide and TR-ceramide in PLGA/liposome hybrids showed extended release. FRET images of cells revealed that ceramides in liposomal bilayer were rapidly transferred to cell membranes. In contrast, ceramides in PLGA/liposome hybrids were internalized into cells with nanoparticles simultaneously. Upon intravenous administration to rats, ceramides encapsulated in liposomal bilayer were completely released in 2 minutes. In contrast, ceramides encapsulated in the PLGA core were retained in PLGA/liposome hybrids for 4 hours. Conclusions The PLGA/liposome hybrid nanoparticles reduced in vitro and in vivo premature release of ceramides and offer a viable platform for targeted delivery of lipophilic drugs. PMID:24065591

  6. Organic cation rhodamines for screening organic cation transporters in early stages of drug development.

    PubMed

    Ugwu, Malachy C; Oli, Angus; Esimone, Charles O; Agu, Remigius U

    The aim of this study was to investigate the suitability of rhodamine-123, rhodamine-6G and rhodamine B as non-radioactive probes for characterizing organic cation transporters in respiratory cells. Fluorescent characteristics of the compounds were validated under standard in vitro drug transport conditions (buffers, pH, and light). Uptake/transport kinetics and intracellular accumulation of the compounds were investigated. Uptake/transport mechanisms were investigated by comparing the effect of pH, temperature, concentration, polarity, OCTs/OCTNs inhibitors/substrates, and metabolic inhibitors on the cationic dyes uptake in Calu-3 cells. Fluorescence stability and intensity of the compounds were altered by buffer composition, light, and pH. Uptake of the dyes was concentration-, temperature- and pH-dependent. OCTs/OCTNs inhibitors significantly reduced intracellular accumulation of the compounds. Whereas rhodamine-B uptake was sodium-dependent, pH had no effect on rhodamine-123 and rhodamine-6G uptake. Transport of the dyes across the cells was polarized: (AP→BL>BL→AP transport) and saturable: {V max =14.08±2.074, K m =1821±380.4 (rhodamine-B); V max =6.555±0.4106, K m =1353±130.4 (rhodamine-123) and V max =0.3056±0.01402, K m =702.9±60.97 (rhodamine-6G)}. The dyes were co-localized with MitoTracker®, the mitochondrial marker. Cationic rhodamines, especially rhodamine-B and rhodamine- 6G can be used as organic cation transporter substrates in respiratory cells. During such studies, buffer selection, pH and light exposure should be taken into consideration. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Determination of total antioxidant capacity by oxygen radical absorbance capacity (ORAC) using fluorescein as the fluorescence probe: First Action 2012.23.

    PubMed

    Ou, Boxin; Chang, Tony; Huang, Dejian; Prior, Ronald L

    2013-01-01

    An improved method for the measurement of oxygen radical absorbance capacity (ORAC) was developed and validated using fluorescein (3',6'-dihydroxyspiro[isobenzofuran-1[3H], 9'[9H]-xanthen]-3-one) as a new fluorescence probe (ORAC(FL)). Randomly methylated beta-cyclodextrin (RMCD) was introduced as the water-solubility enhancer for lipophilic antioxidants. 7% RMCD (w/v) in 50% acetone-H2O mixture sufficiently solubilized vitamin E compounds and other lipophilic phenolic antioxidants in 75 mM phosphate buffer (pH 7.4). Results indicated that fluorescein shows excellent photostability under the plate reader conditions. This ORAC(FL) was validated through linearity, precision, accuracy, and ruggedness. The validation results demonstrated that the ORACFL assay is reliable and robust. The mean of intraday and interday CVs were <15%; for hydrophilic ORAC, LOD and LOQ are 5 and 6.25 microM, respectively; for lipophilic ORAC, LOD and LOQ are 6.25 and 12.5 microM, respectively. It is concluded that unlike other popular methods, the ORAC(FL) assay provides a direct measure of total antioxidant capacity against the peroxyl radicals.

  8. Elucidating the Higher Stability of Vanadium (V) Cations in Mixed Acid Based Redox Flow Battery Electrolytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vijayakumar, M.; Wang, Wei; Nie, Zimin

    2013-11-01

    The Vanadium (V) cation structures in mixed acid based electrolyte solution were analysed by density functional theory (DFT) based computational modelling and 51V and 35Cl Nuclear Magnetic Resonance (NMR) spectroscopy. The Vanadium (V) cation exists as di-nuclear [V2O3Cl2.6H2O]2+ compound at higher vanadium concentrations (≥1.75M). In particular, at high temperatures (>295K) this di-nuclear compound undergoes ligand exchange process with nearby solvent chlorine molecule and forms chlorine bonded [V2O3Cl2.6H2O]2+ compound. This chlorine bonded [V2O3Cl2.6H2O]2+ compound might be resistant to the de-protonation reaction which is the initial step in the precipitation reaction in Vanadium based electrolyte solutions. The combined theoretical and experimental approachmore » reveals that formation of chlorine bonded [V2O3Cl2.6H2O]2+ compound might be central to the observed higher thermal stability of mixed acid based Vanadium (V) electrolyte solutions.« less

  9. Structural diversities induced by cation sizes in a series of fluorogermanophosphates: A2[GeF2(HPO4)2] (A = Na, K, Rb, NH4, and Cs).

    PubMed

    Chen, Zhang-Gai; Huang, Xia; Zhuang, Rong-Chuan; Zhang, Yu; Liu, Xin; Shi, Tao; Wang, Shuai-Hua; Wu, Shao-Fan; Mi, Jin-Xiao; Huang, Ya-Xi

    2017-09-12

    Germanophosphates, in comparison with other metal phosphates, have been less studied but potentially exhibit more diverse structural chemistry with wide applications. Herein we applied a hydro-/solvo-fluorothermal route to make use of both the "tailor effect" of fluoride for the formation of low dimensional anionic clusters and the presence of alkali cations of different sizes to align the anionic clusters to control the overall crystal symmetries of germanophosphates. The synergetic effects of fluoride and alkali cations led to structural changes from chain-like structures to layered structures in a series of five novel fluorogermanophosphates: A 2 [GeF 2 (HPO 4 ) 2 ] (A = Na, K, Rb, NH 4 , and Cs, denoted as Na, K, Rb, NH4, and Cs). Although these fluorogermanophosphates have stoichiometrically equivalent formulas, they feature different anionic clusters, diverse structural dimensionalities, and contrasting crystal symmetries. Chain-like structures were observed for the compounds with the smaller sized alkali ions (Na + , K + , and Rb + ), whereas layered structures were found for those containing the larger sized cations ((NH 4 ) + and Cs + ). Specifically, monoclinic space groups were observed for the Na, K, Rb, and NH4 compounds, whereas a tetragonal space group P4/mbm was found for the Cs compound. These compounds provide new insights into the effects of cation sizes on the anionic clusters built from GeO 4 F 2 octahedra and HPO 4 tetrahedra as well as their influences on the overall structural symmetries in germanophosphates. Further characterization including IR spectroscopy and thermal analyses for all five compounds is also presented.

  10. A novel route to recognizing quaternary ammonium cations using electrospray mass spectrometry.

    PubMed

    Shackman, Holly M; Ding, Wei; Bolgar, Mark S

    2015-01-01

    Characterizing and elucidating structures is a commonplace and necessary activity in the pharmaceutical industry with mass spectrometry and NMR being the primary tools for analysis. Although many functional groups are readily identifiable, quaternary ammonium cations have proven to be difficult to unequivocally identify using these techniques. Due to the lack of an N-H bond, quaternary ammonium groups can only be detected in the (1)H NMR spectra by weak signals generated from long-range (14)N-H coupling, which by themselves are inconclusive evidence of a quaternary ammonium functional group. Due to their low intensity, these signals are frequently not detected. Additionally, ions cannot be differentiated in a mass spectrum as an M(+) or [M + H](+) ion without prior knowledge of the compound's structure. In order to utilize mass spectrometry as a tool for determining this functionality, ion cluster formation of quaternary ammonium cations and non-quaternary amines was studied using electrospray ionization. Several mobile phase modifiers were compared; however, the addition of small amounts of trifluoroacetic acid proved superior in producing characteristic and intense [M +2TFA](-) clusters for compounds containing quaternary ammonium cations when using negative electrospray. By fragmenting this characteristic ion using CID, nearly all compounds studied could be unambiguously identified as containing a quaternary ammonium cation or a non-quaternary amine attributable to the presence (non-quaternary amine) or absence (quaternary ammonium cation) of the resulting [2TFA + H](-) ion in the product spectra. This method of analysis provides a rapid, novel, and reliable technique for indicating the presence of quaternary ammonium cations in order to aid in structural elucidation.

  11. Regioselectivity of enzymatic and photochemical single electron transfer promoted carbon-carbon bond fragmentation reactions of tetrameric lignin model compounds.

    PubMed

    Cho, Dae Won; Latham, John A; Park, Hea Jung; Yoon, Ung Chan; Langan, Paul; Dunaway-Mariano, Debra; Mariano, Patrick S

    2011-04-15

    New types of tetrameric lignin model compounds, which contain the common β-O-4 and β-1 structural subunits found in natural lignins, have been prepared and carbon-carbon bond fragmentation reactions of their cation radicals, formed by photochemical (9,10-dicyanoanthracene) and enzymatic (lignin peroxidase) SET-promoted methods, have been explored. The results show that cation radical intermediates generated from the tetrameric model compounds undergo highly regioselective C-C bond cleavage in their β-1 subunits. The outcomes of these processes suggest that, independent of positive charge and odd-electron distributions, cation radicals of lignins formed by SET to excited states of sensitizers or heme-iron centers in enzymes degrade selectively through bond cleavage reactions in β-1 vs β-O-4 moieties. In addition, the findings made in the enzymatic studies demonstrate that the sterically large tetrameric lignin model compounds undergo lignin peroxidase-catalyzed cleavage via a mechanism involving preliminary formation of an enzyme-substrate complex.

  12. MitoQ regulates autophagy by inducing a pseudo-mitochondrial membrane potential

    PubMed Central

    Sun, Chao; Liu, Xiongxiong; Di, Cuixia; Wang, Zhenhua; Mi, Xiangquan; Liu, Yang; Zhao, Qiuyue; Mao, Aihong; Chen, Weiqiang; Gan, Lu; Zhang, Hong

    2017-01-01

    ABSTRACT During the process of oxidative phosphorylation, protons are pumped into the mitochondrial intermembrane space to establish a mitochondrial membrane potential (MMP). The electrochemical gradient generated allows protons to return to the matrix through the ATP synthase complex and generates ATP in the process. MitoQ is a lipophilic cationic drug that is adsorbed to the inner mitochondrial membrane; however, the cationic moiety of MitoQ remains in the intermembrane space. We found that the positive charges in MitoQ inhibited the activity of respiratory chain complexes I, III, and IV, reduced proton production, and decreased oxygen consumption. Therefore, a pseudo-MMP (PMMP) was formed via maintenance of exogenous positive charges. Proton backflow was severely impaired, leading to a decrease in ATP production and an increase in AMP production. Excess AMP activates AMP kinase, which inhibits the MTOR (mechanistic target of rapamycin) pathway and induces macroautophagy/autophagy. Therefore, we conclude that MitoQ increases PMMP via proton displacement with exogenous positive charges. In addition, PMMP triggered autophagy in hepatocellular carcinoma HepG2 cells via modification of mitochondrial bioenergetics pathways. PMID:28121478

  13. MitoQ regulates autophagy by inducing a pseudo-mitochondrial membrane potential.

    PubMed

    Sun, Chao; Liu, Xiongxiong; Di, Cuixia; Wang, Zhenhua; Mi, Xiangquan; Liu, Yang; Zhao, Qiuyue; Mao, Aihong; Chen, Weiqiang; Gan, Lu; Zhang, Hong

    2017-04-03

    During the process of oxidative phosphorylation, protons are pumped into the mitochondrial intermembrane space to establish a mitochondrial membrane potential (MMP). The electrochemical gradient generated allows protons to return to the matrix through the ATP synthase complex and generates ATP in the process. MitoQ is a lipophilic cationic drug that is adsorbed to the inner mitochondrial membrane; however, the cationic moiety of MitoQ remains in the intermembrane space. We found that the positive charges in MitoQ inhibited the activity of respiratory chain complexes I, III, and IV, reduced proton production, and decreased oxygen consumption. Therefore, a pseudo-MMP (PMMP) was formed via maintenance of exogenous positive charges. Proton backflow was severely impaired, leading to a decrease in ATP production and an increase in AMP production. Excess AMP activates AMP kinase, which inhibits the MTOR (mechanistic target of rapamycin) pathway and induces macroautophagy/autophagy. Therefore, we conclude that MitoQ increases PMMP via proton displacement with exogenous positive charges. In addition, PMMP triggered autophagy in hepatocellular carcinoma HepG2 cells via modification of mitochondrial bioenergetics pathways.

  14. Surface Patterning Using Diazonium Ink Filled Nanopipette.

    PubMed

    Zhou, Min; Yu, Yun; Blanchard, Pierre-Yves; Mirkin, Michael V

    2015-11-03

    Molecular grafting of diazonium is a widely employed surface modification technique. Local electrografting of this species is a promising approach to surface doping and related properties tailoring. The instability of diazonium cation complicates this process, so that this species was generated in situ in many reported studies. In this Article, we report the egress transfer of aryl diazonium cation across the liquid/liquid interface supported at the nanopipette tip that can be used for controlled delivery this species to the external aqueous phase for local substrate patterning. An aryl diazonium salt was prepared with weakly coordinating and lipophilic tetrakis(pentafluorophenyl)borate anion stable as a solid and soluble in low polarity media. The chemically stable solution of this salt in 1,2-dichloroethane can be used as "diazonium ink". The ink-filled nanopipette was employed as a tip in the scanning electrochemical microscope (SECM) for surface patterning with the spatial resolution controlled by the pipette orifice radius and a few nanometers film thickness. The submicrometer-size grafted spots produced on the HOPG surface were located and imaged with the atomic force microscope (AFM).

  15. Functional involvement of the organic cation transporter 2 (rOct2) in the renal uptake of organic cations in rats.

    PubMed

    Umehara, K-I; Iwatsubo, T; Noguchi, K; Kamimura, H

    2008-01-01

    This study examined the contribution made by organic cation transporters (hOCT/rOct) to the saturable component of the renal uptake of 1-methyl-4-phenylpyridinium, tetraethylammonium (TEA), cimetidine and metformin into rOct2-expressing HEK293 cells and rat kidney slices. All the test compounds accumulated in the rat kidney slices in a carrier-mediated manner. The Michaelis- Menten constant (K(m)) values for saturable uptake of TEA, cimetidine and metformin into rat kidney slices were relatively comparable with those for the rOct2-expressing HEK293 cells. In addition, the relative uptake activity values of TEA, cimetidine and metformin in rat kidney slices were similar to those in rOct2-expressing HEK293 cells. This suggests that the saturable components involved in the renal uptake of TEA, cimetidine and metformin are mediated mainly by rOct2. The saturable uptake profile of cationic compounds into rat kidney can be evaluated in both cDNA-expressing cells and rat kidney slices, as well as the transporter expression pattern. This approach can also be used to estimate the saturable uptake mechanism of cationic compounds into the human kidney when human kidney slices and hOCT2-expressing cells are used.

  16. Extraction of cesium and strontium from nuclear waste

    DOEpatents

    Davis, M.W. Jr.; Bowers, C.B. Jr.

    1988-06-07

    Cesium is extracted from acidified nuclear waste by contacting the waste with a bis 4,4[prime](5) [1-hydroxy-2-ethylhexyl]benzo 18-crown-6 compound and a cation exchanger in a matrix solution. Strontium is extracted from acidified nuclear waste by contacting the waste with a bis 4,4[prime](5[prime]) [1-hydroxyheptyl]cyclohexo 18-crown-6 compound, and a cation exchanger in a matrix solution. 3 figs.

  17. Supramolecular hydrogen-bonding network in 1-(diaminomethylene)thiouron-1-ium 4-hydroxybenzenesulfonate crystal

    NASA Astrophysics Data System (ADS)

    Perpétuo, Genivaldo J.; Gonçalves, Rafael S.; Janczak, Jan

    2015-09-01

    The single crystals of 1-(diaminomethylene)thiouron-1-ium 4-hydroxybenzenesulfonate were grown using a solution growth technique. The compound crystallises in the centrosymmetric P21/c space group of the monoclinic system. The conformation of the 1-(diaminomethylene)thiouron-1-ium cation is not strictly planar, but twisted. Both arms of the cation are oppositely rotated by 8.5(1)° around the Csbnd N bonds involving the central N atom. The arrangement of oppositely charged components, i.e. 1-(diaminomethylene)thiouron-1-ium cations and 4-hydroxybenzenesulfonate anions in the crystal is mainly determined by ionic and hydrogen-bonding interactions forming supramolecular network. The possible hydrogen-bonding interactions between cation and anion units were analysed on the basis of molecular orbital calculations. The obtained deuterated analogue crystallises similar as H-compound in the monoclinic system (P21/c) with quite similar lattice parameters. The compound was also characterised by the FT-IR and Raman spectroscopies. The characteristic bands of the functional and skeletal groups of the protiated and deuterated analogue of 1-(diaminomethylene)thiouron-1-ium 4-hydroxybenzenesulfonate are discussed.

  18. Evaluation of two different metabolic hypotheses for dichloromethane toxicity using physiologically based pharmacokinetic (PBPK) modeling for in vivo inhalation gas uptake data exposure in female B6C3F1 mice *

    EPA Science Inventory

    Dichloromethane (DCM, methylene chloride) is a lipophilic volatile compound readily absorbed and then metabolized to several metabolites that may lead to chronic toxicity in different target organs. Physiologically based pharmacokinetic (PBPK) models are useful tools used for cal...

  19. Lipid droplet-associated proteins (LDAPs) are involved in the compartmentalization of lipophilic compounds in plant cells

    PubMed Central

    Gidda, Satinder K; Watt, Samantha C; Collins-Silva, Jillian; Kilaru, Aruna; Arondel, Vincent; Yurchenko, Olga; Horn, Patrick J; James, Christopher N; Shintani, David; Ohlrogge, John B; Chapman, Kent D; Mullen, Robert T; Dyer, John M

    2013-01-01

    While lipid droplets have traditionally been considered as inert sites for the storage of triacylglycerols and sterol esters, they are now recognized as dynamic and functionally diverse organelles involved in energy homeostasis, lipid signaling, and stress responses. Unlike most other organelles, lipid droplets are delineated by a half-unit membrane whose protein constituents are poorly understood, except in the specialized case of oleosins, which are associated with seed lipid droplets. Recently, we identified a new class of lipid-droplet associated proteins called LDAPs that localize specifically to the lipid droplet surface within plant cells and share extensive sequence similarity with the small rubber particle proteins (SRPPs) found in rubber-accumulating plants. Here, we provide additional evidence for a role of LDAPs in lipid accumulation in oil-rich fruit tissues, and further explore the functional relationships between LDAPs and SRPPs. In addition, we propose that the larger LDAP/SRPP protein family plays important roles in the compartmentalization of lipophilic compounds, including triacylglycerols and polyisoprenoids, into lipid droplets within plant cells. Potential roles in lipid droplet biogenesis and function of these proteins also are discussed. PMID:24305619

  20. Synthesis and Evaluation of Orexin-1 Receptor Antagonists with Improved Solubility and CNS Permeability.

    PubMed

    Perrey, David A; Decker, Ann M; Zhang, Yanan

    2018-03-21

    Orexins are hypothalamic neuropeptides playing important roles in many functions including the motivation of addictive behaviors. Blockade of the orexin-1 receptor has been suggested as a potential strategy for the treatment of drug addiction. We have previously reported OX 1 receptor antagonists based on the tetrahydroisoquinoline scaffold with excellent OX 1 potency and selectivity; however, these compounds had high lipophilicity (clogP > 5) and low to moderate solubility. In an effort to improve their properties, we have designed and synthesized a series of analogues where the 7-position substituents known to favor OX 1 potency and selectivity were retained, and groups of different nature were introduced at the 1-position where substitution was generally tolerated as demonstrated in previous studies. Compound 44 with lower lipophilicity (clogP = 3.07) displayed excellent OX 1 potency ( K e = 5.7 nM) and selectivity (>1,760-fold over OX 2 ) in calcium mobilization assays. In preliminary ADME studies, 44 showed excellent kinetic solubility (>200 μM), good CNS permeability ( P app = 14.7 × 10 -6 cm/sec in MDCK assay), and low drug efflux (efflux ratio = 3.3).

  1. Reversed-phase high-performance liquid chromatographic method for the determination of peptidoglycan monomers and structurally related peptides and adamantyltripeptides.

    PubMed

    Krstanović, Marina; Frkanec, Ruza; Vranesić, Branka; Ljevaković, Durdica; Sporec, Vesna; Tomasić, Jelka

    2002-06-25

    The reversed-phase HPLC method using UV detection was developed for the determination of (a) immunostimulating peptidoglycan monomers represented by the basic structure GlcNAc-MurNAc-L-Ala-D-isoGln-meso-DAP(omegaNH(2))-D-Ala-D-Ala (PGM) and two more lipophilic derivatives, Boc-Tyr-PGM and (Ada-1-yl)-CH(2)-CO-PGM, (b) two diastereomeric immunostimulating adamantyltripeptides L- and D-(adamant-2-yl)-Gly-L-Ala-D-isoGln and (c) peptides obtained by the enzyme hydrolyses of peptidoglycans and related peptides. The enzymes used, N-acetylmuramyl-L-alanine amidase and an L,D-aminopeptidase are present in mammalian sera and are involved in the metabolism of peptidoglycans and related peptides. Appropriate solvent systems were chosen with regard to structure and lipophilicity of each compound. As well, different gradient systems within the same solvent system had to be applied in order to achieve satisfactory separation and retention time. HPLC separation was developed with the aim to use this method for the study of the stability of the tested compounds, the purity during preparation and isolation and for following the enzyme hydrolyses.

  2. The antimalarial activity of Ru–chloroquine complexes against resistant Plasmodium falciparum is related to lipophilicity, basicity, and heme aggregation inhibition ability near water/n-octanol interfaces

    PubMed Central

    Martínez, Alberto; Rajapakse, Chandima S. K.; Jalloh, Dalanda; Dautriche, Cula

    2012-01-01

    We have measured water/n-octanol partition coefficients, pKa values, heme binding constants, and heme aggregation inhibition activity of a series of ruthenium–πarene–chloroquine (CQ) complexes recently reported to be active against CQ-resistant strains of Plasmodium falciparum. Measurements of heme aggregation inhibition activity of the metal complexes near water/n-octanol interfaces qualitatively predict their superior antiplasmodial action against resistant parasites, in relation to CQ; we conclude that this modified method may be a better predictor of antimalarial potency than standard tests in aqueous acidic buffer. Some interesting tendencies emerge from our data, indicating that the antiplasmodial activity is related to a balance of effects associated with the lipophilicity, basicity, and structural details of the compounds studied. PMID:19343380

  3. The antimalarial activity of Ru-chloroquine complexes against resistant Plasmodium falciparum is related to lipophilicity, basicity, and heme aggregation inhibition ability near water/n-octanol interfaces.

    PubMed

    Martínez, Alberto; Rajapakse, Chandima S K; Jalloh, Dalanda; Dautriche, Cula; Sánchez-Delgado, Roberto A

    2009-08-01

    We have measured water/n-octanol partition coefficients, pK(a) values, heme binding constants, and heme aggregation inhibition activity of a series of ruthenium-pi-arene-chloroquine (CQ) complexes recently reported to be active against CQ-resistant strains of Plasmodium falciparum. Measurements of heme aggregation inhibition activity of the metal complexes near water/n-octanol interfaces qualitatively predict their superior antiplasmodial action against resistant parasites, in relation to CQ; we conclude that this modified method may be a better predictor of antimalarial potency than standard tests in aqueous acidic buffer. Some interesting tendencies emerge from our data, indicating that the antiplasmodial activity is related to a balance of effects associated with the lipophilicity, basicity, and structural details of the compounds studied.

  4. Comparison of gaseous oxidized Hg measured by KCl-coated denuders, and nylon and cation exchange membranes.

    PubMed

    Huang, Jiaoyan; Miller, Matthieu B; Weiss-Penzias, Peter; Gustin, Mae Sexauer

    2013-07-02

    The chemical compounds that make up gaseous oxidized mercury (GOM) in the atmosphere, and the reactions responsible for their formation, are not well understood. The limitations and uncertainties associated with the current method applied to measure these compounds, the KCl-coated denuder, are not known due to lack of calibration and testing. This study systematically compared the uptake of specific GOM compounds by KCl-coated denuders with that collected using nylon and cation exchange membranes in the laboratory and field. In addition, a new method for identifying different GOM compounds using thermal desorption is presented. Different GOM compounds (HgCl2, HgBr2, and HgO) were found to have different affinities for the denuder surface and the denuder underestimated each of these compounds. Membranes measured 1.3 to 3.7 times higher GOM than denuders in laboratory and field experiments. Cation exchange membranes had the highest collection efficiency. Thermodesorption profiles for the release of GOM compounds from the nylon membrane were different for HgO versus HgBr2 and HgCl2. Application of the new field method for collection and identification of GOM compounds demonstrated these vary as a function of location and time of year. Understanding the chemistry of GOM across space and time has important implications for those developing policy regarding this environmental contaminant.

  5. Cation trapping by cellular acidic compartments: Beyond the concept of lysosomotropic drugs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marceau, François, E-mail: francois.marceau@crchul.ulaval.ca; Bawolak, Marie-Thérèse; Lodge, Robert

    “Lysosomotropic” cationic drugs are known to concentrate in acidic cell compartments due to low retro-diffusion of the protonated molecule (ion trapping); they draw water by an osmotic mechanism, leading to a vacuolar response. Several aspects of this phenomenon were recently reexamined. (1) The proton pump vacuolar (V)-ATPase is the driving force of cationic drug uptake and ensuing vacuolization. In quantitative transport experiments, V-ATPase inhibitors, such as bafilomycin A1, greatly reduced the uptake of cationic drugs and released them in preloaded cells. (2) Pigmented or fluorescent amines are effectively present in a concentrated form in the large vacuoles. (3) Consistent withmore » V-ATPase expression in trans-Golgi, lysosomes and endosomes, a fraction of the vacuoles is consistently labeled with trans-Golgi markers and protein secretion and endocytosis are often inhibited in vacuolar cells. (4) Macroautophagic signaling (accumulation of lipidated and membrane-bound LC3 II) and labeling of the large vacuoles by the autophagy effector LC3 were consistently observed in cells, precisely at incubation periods and amine concentrations that cause vacuolization. Vacuoles also exhibit late endosome/lysosome markers, because they may originate from such organelles or because macroautophagosomes fuse with lysosomes. Autophagosome persistence is likely due to the lack of resolution of autophagy, rather than to nutritional deprivation. (5) Increased lipophilicity decreases the threshold concentration for the vacuolar and autophagic cytopathology, because simple diffusion into cells is limiting. (6) A still unexplained mitotic arrest is consistently observed in cells loaded with amines. An extended recognition of relevant clinical situations is proposed for local or systemic drug administration.« less

  6. Revisiting benzene cluster cations for the chemical ionization of dimethyl sulfide and select volatile organic compounds

    DOE PAGES

    Kim, Michelle J.; Zoerb, Matthew C.; Campbell, Nicole R.; ...

    2016-04-05

    Here, benzene cluster cations were revisited as a sensitive and selective reagent ion for the chemical ionization of dimethyl sulfide (DMS) and a select group of volatile organic compounds (VOCs). Laboratory characterization was performed using both a new set of compounds (i.e., DMS, β-caryophyllene) as well as previously studied VOCs (i.e., isoprene, α-pinene). Using a field deployable chemical-ionization time-of-flight mass spectrometer (CI-ToFMS), benzene cluster cations demonstrated high sensitivity (> 1 ncps ppt −1) to DMS, isoprene, and α-pinene standards. Parallel measurements conducted using a chemical-ionization quadrupole mass spectrometer, with a much weaker electric field, demonstrated that ion–molecule reactions likely proceed through amore » combination of ligand-switching and direct charge transfer mechanisms. Laboratory tests suggest that benzene cluster cations may be suitable for the selective ionization of sesquiterpenes, where minimal fragmentation (< 25 %) was observed for the detection of β-caryophyllene, a bicyclic sesquiterpene. The in-field stability of benzene cluster cations using CI-ToFMS was examined in the marine boundary layer during the High Wind Gas Exchange Study (HiWinGS). The use of benzene cluster cation chemistry for the selective detection of DMS was validated against an atmospheric pressure ionization mass spectrometer, where measurements from the two instruments were highly correlated ( R 2 > 0.95, 10 s averages) over a wide range of sampling conditions.« less

  7. Two-photon or higher-order absorbing optical materials for generation of reactive species

    NASA Technical Reports Server (NTRS)

    Marder, Seth R. (Inventor); Cumpston, Brian (Inventor); Lipson, Matthew (Inventor); Perry, Joseph W. (Inventor)

    2003-01-01

    Disclosed are highly efficient multiphoton absorbing compounds and methods of their use. The compounds generally include a bridge of pi-conjugated bonds connecting electron donating groups or electron accepting groups. The bridge may be substituted with a variety of substituents as well. Solubility, lipophilicity, absorption maxima and other characteristics of the compounds may be tailored by changing the electron donating groups or electron accepting groups, the substituents attached to or the length of the pi-conjugated bridge. Numerous photophysical and photochemical methods are enabled by converting these compounds to electronically excited states upon simultaneous absorption of at least two photons of radiation. The compounds have large two-photon or higher-order absorptivities such that upon absorption, one or more Lewis acidic species, Lewis basic species, radical species or ionic species are formed.

  8. Two-photon or higher-order absorbing optical materials for generation of reactive species

    NASA Technical Reports Server (NTRS)

    Perry, Joseph W (Inventor); Cumpston, Brian (Inventor); Lipson, Matthew (Inventor); Marder, Seth R (Inventor)

    2007-01-01

    Disclosed are highly efficient multiphoton absorbing compounds and methods of their use. The compounds generally include a bridge of pi-conjugated bonds connecting electron donating groups or electron accepting groups. The bridge may be substituted with a variety of substituents as well. Solubility, lipophilicity, absorption maxima and other characteristics of the compounds may be tailored by changing the electron donating groups or electron accepting groups, the substituents attached to or the length of the pi-conjugated bridge. Numerous photophysical and photochemical methods are enabled by converting these compounds to electronically excited states upon simultaneous absorption of at least two photons of radiation. The compounds have large two-photon or higher-order absorptivities such that upon absorption, one or more Lewis acidic species, Lewis basic species, radical species or ionic species are formed.

  9. Two-Photon or Higher-Order Absorbing Optical Materials for Generation of Reactive Species

    NASA Technical Reports Server (NTRS)

    Perry, Joseph W. (Inventor); Cumpston, Brian (Inventor); Lipson, Matthew (Inventor); Marder, Seth R. (Inventor)

    2013-01-01

    Disclosed are highly efficient multiphoton absorbing compounds and methods of their use. The compounds generally include a bridge of pi-conjugated bonds connecting electron donating groups or electron accepting groups. The bridge may be substituted with a variety of substituents as well. Solubility, lipophilicity, absorption maxima and other characteristics of the compounds may be tailored by changing the electron donating groups or electron accepting groups, the substituents attached to or the length of the pi-conjugated bridge. Numerous photophysical and photochemical methods are enabled by converting these compounds to electronically excited states upon simultaneous absorption of at least two photons of radiation. The compounds have large two-photon or higher-order absorptivities such that upon absorption, one or more Lewis acidic species, Lewis basic species, radical species or ionic species are formed.

  10. K+-selective nanospheres: maximising response range and minimising response time.

    PubMed

    Ruedas-Rama, Maria Jose; Hall, Elizabeth A H

    2006-12-01

    Cross-linked K(+) ion-selective copolymer nanospheres have been prepared by free-radical photo-initiated polymerization of n-butyl acrylate (nBA) with hexanedioldiacrylate (HDDA). Nanospheres (<200 nm) containing H(+)-chromoionophore (ETH 5294) and lipophilic salt (KTClPB) for H(+)-sensors, or ETH 5294, a K(+)-selective ionophore (valinomycin) and anionic sites for K(+)-sensors were compared, and the effect of varying the normalised concentrations for beta (R(T)(-)/L(T)) and gamma (C(m)(T)/L(T)) was studied. Experimental data were fitted to theoretical curves for the dynamic response range, based on the effect of changes in the concentration of these lipophilic sensing components incorporated into the spheres, and conditions identified for maximising the response range. A complex valinomycin-K(+) formation constant, log K(IL) = 13.13 +/- 2.22, was obtained in the nBA matrix, and from the calibration curves the apparent acid-dissociation equilibrium constant (pK(a) = 12.92 +/- 0.03) was extracted for the H(+)-sensing system, and the equilibrium exchange constant (pK(exch) = 6.16 +/- 0.03, at pH 7) calculated for the K(+)-sensing nanospheres. A basis for establishing optimum performance was identified, whereby response range and response time were balanced with maximum fluorescence yield. Parameters for achieving nanospheres with a response time <5 minutes, covering 2-3 orders of magnitude change in activity were identified, demanding nanospheres with radius <300 nm and beta(crit) approximately 0.6. An RSD(%) approximately 3% was obtained in a study of the reproducibility of the response of the proposed nanospheres, and selectivity was also evaluated for a K(+)-selective nanosensor using several cations as interfering agents. In most cases, the fluorescent emission spectra showed no response to the cations tested, confirming the selectivity of nanospheres to potassium ion. The nanosensors were satisfactorily applied to the determination of K(+) in samples mimicking physiological conditions.

  11. Interface-Targeting Strategy Enables Two-Photon Fluorescent Lipid Droplet Probes for High-Fidelity Imaging of Turbid Tissues and Detecting Fatty Liver.

    PubMed

    Guo, Lifang; Tian, Minggang; Feng, Ruiqing; Zhang, Ge; Zhang, Ruoyao; Li, Xuechen; Liu, Zhiqiang; He, Xiuquan; Sun, Jing Zhi; Yu, Xiaoqiang

    2018-04-04

    Lipid droplets (LDs) with unique interfacial architecture not only play crucial roles in protecting a cell from lipotoxicity and lipoapoptosis but also closely relate with many diseases such as fatty liver and diabetes. Thus, as one of the important applied biomaterials, fluorescent probes with ultrahigh selectivity for in situ and high-fidelity imaging of LDs in living cells and tissues are critical to elucidate relevant physiological and pathological events as well as detect related diseases. However, available probes only utilizing LDs' waterless neutral cores but ignoring the unique phospholipid monolayer interfaces exhibit low selectivity. They cannot differentiate neutral cores of LDs from intracellular other lipophilic microenvironments, which results in extensively cloud-like background noise and severely limited their bioapplications. Herein, to design LD probes with ultrahigh selectivity, the exceptional interfacial architecture of LDs is considered adequately and thus an interface-targeting strategy is proposed for the first time. According to the novel strategy, we have developed two amphipathic fluorescent probes (N-Cy and N-Py) by introducing different cations into a lipophilic fluorophore (nitrobenzoxadiazole (NBD)). Consequently, their cationic moiety precisely locates the interfaces through electrostatic interaction and simultaneously NBD entirely embeds into the waterless core via hydrophobic interaction. Thus, high-fidelity and background-free fluorescence imaging of LDs are expectably realized in living cells in situ. Moreover, LDs in turbid tissues like skeletal muscle slices have been clearly imaged (up to 82 μm depth) by a two-photon microscope. Importantly, using N-Cy, we not only intuitively monitored the variations of LDs in number, size, and morphology but also clearly revealed their abnormity in hepatic tissues resulting from fatty liver. Therefore, these unique probes provide excellent imaging tools for elucidating LD-related physiological and pathological processes and the interface-targeting strategy possesses universal significance for designing probes with ultrahigh selectivity.

  12. Digging into Lipid Membrane Permeation for Cardiac Ion Channel Blocker d-Sotalol with All-Atom Simulations

    PubMed Central

    DeMarco, Kevin R.; Bekker, Slava; Clancy, Colleen E.; Noskov, Sergei Y.; Vorobyov, Igor

    2018-01-01

    Interactions of drug molecules with lipid membranes play crucial role in their accessibility of cellular targets and can be an important predictor of their therapeutic and safety profiles. Very little is known about spatial localization of various drugs in the lipid bilayers, their active form (ionization state) or translocation rates and therefore potency to bind to different sites in membrane proteins. All-atom molecular simulations may help to map drug partitioning kinetics and thermodynamics, thus providing in-depth assessment of drug lipophilicity. As a proof of principle, we evaluated extensively lipid membrane partitioning of d-sotalol, well-known blocker of a cardiac potassium channel Kv11.1 encoded by the hERG gene, with reported substantial proclivity for arrhythmogenesis. We developed the positively charged (cationic) and neutral d-sotalol models, compatible with the biomolecular CHARMM force field, and subjected them to all-atom molecular dynamics (MD) simulations of drug partitioning through hydrated lipid membranes, aiming to elucidate thermodynamics and kinetics of their translocation and thus putative propensities for hydrophobic and aqueous hERG access. We found that only a neutral form of d-sotalol accumulates in the membrane interior and can move across the bilayer within millisecond time scale, and can be relevant to a lipophilic channel access. The computed water-membrane partitioning coefficient for this form is in good agreement with experiment. There is a large energetic barrier for a cationic form of the drug, dominant in water, to cross the membrane, resulting in slow membrane translocation kinetics. However, this form of the drug can be important for an aqueous access pathway through the intracellular gate of hERG. This route will likely occur after a neutral form of a drug crosses the membrane and subsequently re-protonates. Our study serves to demonstrate a first step toward a framework for multi-scale in silico safety pharmacology, and identifies some of the challenges that lie therein. PMID:29449809

  13. Effect of phloretin on the permeability of thin lipid membranes

    PubMed Central

    1976-01-01

    Phloretin dramatically increases cation conductances and decreases anion conductances of membranes treated with ion carriers (nonactin, valinomycin, carbonyl-cyanide-m-chlorophenylhydrazone [CCCP], and Hg(C6F5)2) or lipophilic ions (tetraphenylarsonium [tphAs+] and tetraphenylborate [TPhB-]). For example, on phosphatidylethanolamine membranes, 10(-4) M phloretin increases K+ -nonactin and TPhAs+ conductances and decreases CCCP- and TPhB- conductances 10(3)-fold; on lecithin: cholesterol membranes, it increases K+-nonactin conductance 10(5)-fold and decreases CCCP- conductance 10(3)-fold. Similar effects are obtained with p- and m-nitrophenol at 10(-2) M. These effects are produced by the un-ionized form of phloretin and the nitrophenols. We believe that phloretin, which possesses a large dipole moment, adsorbs and orients at the membrane surface to introduce a dipole potential of opposite polarity to the preexisting positive one, thus increasing the partition coefficient of cations into the membrane interior and decreasing the partition coefficient of anions. (Phloretin may also increase the fluidity of cholesterol-containing membranes; this is manifested by its two- to three-fold increase in nonelectrolyte permeability and its asymmetrical effect on cation and anion conductances in cholesterol-containing membranes.) It is possible that pholoretin's inhibition of chloride, urea, and glucose transport in biological membranes results from the effects of these intense intrafacial dipole fields on the translocator(s) of these molecules. PMID:946975

  14. PYRIDOXAMINE ANALOGS SCAVENGE LIPID-DERIVED γ-KETOALDEHYDES AND PROTECT AGAINST H2O2-MEDIATED CYTOTOXICITY†

    PubMed Central

    Davies, Sean S.; Brantley, Eric J.; Voziyan, Paul A.; Amarnath, Venkataraman; Zagol-Ikapitte, Irene; Boutaud, Olivier; Hudson, Billy G.; Oates, John A.; Jackson Roberts, L.

    2008-01-01

    Isoketals and levuglandins are highly reactive γ-ketoaldehydes formed by oxygenation of arachidonic acid in settings of oxidative injury and cyclooxygenase activation, respectively. These compounds rapidly adduct to proteins via lysyl residues, which can alter protein structure/function. We examined whether pyridoxamine, which has been shown to scavenge α-ketoaldehydes formed by carbohydrate or lipid peroxidation, could also effectively protect proteins from the more reactive γ-ketoaldehydes. Pyridoxamine prevented adduction of ovalbumin and also prevented inhibition of RNase A and glutathione reductase activity by the synthetic γ-ketoaldehyde, 15-E2-isoketal. We identified the major products of the reaction of pyridoxamine with the 15-E2-isoketal, including a stable lactam adduct. Two lipophilic analogs of pyridoxamine, salicylamine and 5’O-pentylpyridoxamine, also formed lactam adducts when reacted with 15-E2-isoketal. When we oxidized arachidonic acid in the presence of pyridoxamine or its analogs, pyridoxamine-isoketal adducts were found in significantly greater abundance than the pyridoxamine-N-acyl adducts formed by α-ketoaldehyde scavenging. Therefore, pyridoxamine and its analogs appear to preferentially scavenge γ-ketoaldehydes. Both pyridoxamine and its lipophilic analogs inhibited the formation of lysyl-levuglandin adducts in platelets activated ex vivo with arachidonic acid. The two lipophilic pyridoxamine analogs provided significant protection against H2O2-mediated cytotoxicity in HepG2 cells. These results demonstrate the utility of pyridoxamine and lipophilic pyridoxamine analogs to assess the potential contributions of isoketals and levuglandins in oxidant injury and inflammation and suggest their potential utility as pharmaceutical agents in these conditions. PMID:17176098

  15. Engineering and validation of a novel lipid thin film for biomembrane modeling in lipophilicity determination of drugs and xenobiotics

    PubMed Central

    Idowu, Sunday Olakunle; Adeyemo, Morenikeji Ambali; Ogbonna, Udochi Ihechiluru

    2009-01-01

    Background Determination of lipophilicity as a tool for predicting pharmacokinetic molecular behavior is limited by the predictive power of available experimental models of the biomembrane. There is current interest, therefore, in models that accurately simulate the biomembrane structure and function. A novel bio-device; a lipid thin film, was engineered as an alternative approach to the previous use of hydrocarbon thin films in biomembrane modeling. Results Retention behavior of four structurally diverse model compounds; 4-amino-3,5-dinitrobenzoic acid (ADBA), naproxen (NPX), nabumetone (NBT) and halofantrine (HF), representing 4 broad classes of varying molecular polarities and aqueous solubility behavior, was investigated on the lipid film, liquid paraffin, and octadecylsilane layers. Computational, thermodynamic and image analysis confirms the peculiar amphiphilic configuration of the lipid film. Effect of solute-type, layer-type and variables interactions on retention behavior was delineated by 2-way analysis of variance (ANOVA) and quantitative structure property relationships (QSPR). Validation of the lipid film was implemented by statistical correlation of a unique chromatographic metric with Log P (octanol/water) and several calculated molecular descriptors of bulk and solubility properties. Conclusion The lipid film signifies a biomimetic artificial biological interface capable of both hydrophobic and specific electrostatic interactions. It captures the hydrophilic-lipophilic balance (HLB) in the determination of lipophilicity of molecules unlike the pure hydrocarbon film of the prior art. The potentials and performance of the bio-device gives the promise of its utility as a predictive analytic tool for early-stage drug discovery science. PMID:19735551

  16. Effect of O-acylmenthol on transdermal delivery of drugs with different lipophilicity.

    PubMed

    Zhao, Ligang; Fang, Liang; Xu, Yongnan; Zhao, Yanyan; He, Zhonggui

    2008-03-20

    To develop more effective compounds as enhancers, O-acylmenthol derivatives which were expected to be enzymatically hydrolyzed into nontoxic metabolites by esterases in the living epidermis were synthesized from l-menthol and pharmaceutical excipient acids (lactic acid, cinnamic acid, salicylic acid and oleic acid) in this study. Their promoting activity on the percutaneous absorption of five model drugs, 5-fluorouracil (5-FU), isosorbide dinitrate (ISDN), lidocaine (LD), ketoprofen (KP), and indomethacin (IM), which were selected based on their lipophilicity represented by log K(O/W), were tested in vitro across full thickness rat skin with each of the evaluated drugs in saturated donor solution. 2-Isopropyl-5-methylcyclohexyl 2-hydroxypanoate (M-LA) provided the highest increase of accumulation of 5-FU (3.74-fold) and LD (4.19-fold) in the receptor phase while 2-isopropyl-5-methylcyclohexyl cinnamate (M-CA) was ineffective for most of the drugs; Both 2-isopropyl-5-methylcyclohexyl 2-hydroxybenzoate (M-SA) and (E)-2-isopropyl-5-methylcyclohexyl octadec-9-enoate (M-OA) had better promoting effects on the drugs with low water-solubility. The four O-acylmenthol enhancers produced parabolic relationship between the lipophilicity (log K(O/W)) of the model drugs (5-FU, ISDN, KP, IM) and their enhancement ratio of the permeation coefficient (ER(P)), indicating that the lipophilicity of the penetrants has significant effect on the permeation results, r = 0.989 (P=0.144) for M-LA, r = 0.965 (P = 0.216) for M-CA, r = 0.786 (P = 0.630) for M-SA, and r = 0.996 (P = 0.088) for M-OA.

  17. Chemical constituents of the femoral gland secretions of male tegu lizards (Tupinambis merianae) (Family teiidae).

    PubMed

    Martín, José; Chamut, Silvia; Manes, Mario E; López, Pilar

    2011-01-01

    In spite of the importance of chemical signals (pheromones) in the reproductive behaviour of lizards, the chemical compounds secreted by their femoral glands, which may be used as sexual signals, are only known for a few lizard species. Based on mass spectra, obtained by GC-MS, we found 49 lipophilic compounds in femoral gland secretions of male tegu lizards (Tupinambis merianae) (fam. Teiidae), including a very high proportion of carboxylic acids and their esters ranging between n-C8 and n-C20 (mainly octadecanoic and 9,12-octadecadienoic acids), with much less proportions of steroids, tocopherol, aldehydes, and squalene. We discuss the potential function of these compounds in secretions, and compare the compounds found here with those documented for other lizard species.

  18. Crystal structure of the new A2SnTa6X18 (A = K, Rb, Cs; X = Cl, Br) cluster compounds

    NASA Astrophysics Data System (ADS)

    Lemoine, P.; Wilmet, M.; Malaman, B.; Paofai, S.; Dumait, N.; Cordier, S.

    2018-01-01

    The crystal structure of the new cluster compounds A2SnTa6X18 (with A = K, Rb, Cs, and X = Cl, Br) was determined by using single-crystal and powder X-ray diffraction, and 119Sn Mössbauer spectroscopy. Those compounds crystallize in the Cs2EuNb6Br18-type structure of space group R 3 ̅. This type of structure is built up on discrete edge-bridged [M6Xi12Xa6]4- cluster units arranged according to a pseudo face-centered cubic stacking, where the octahedral and tetrahedral vacancies are fully occupied by divalent tin cations and monovalent alkaline cations, respectively. The tin cations influence on the halogen matrix and the electronic effects on the cluster units in the Cs2EuNb6Br18-type structure are discussed by comparison with isotype compounds. From those analyses, the ionic radius of Sn2+ in coordination number VI is estimated to be 1.14(1) Å. Finally, K2SnTa6Br18 might be considered as a new example of compound containing a quite bare stannous ion (5 s2 configuration).

  19. Predicting the oral uptake efficiency of chemicals in mammals: Combining the hydrophilic and lipophilic range

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Connor, Isabel A., E-mail: i.oconnor@science.ru.nl; Huijbregts, Mark A.J., E-mail: m.huijbregts@science.ru.nl; Ragas, Ad M.J., E-mail: a.ragas@science.ru.nl

    Environmental risk assessment requires models for estimating the bioaccumulation of untested compounds. So far, bioaccumulation models have focused on lipophilic compounds, and only a few have included hydrophilic compounds. Our aim was to extend an existing bioaccumulation model to estimate the oral uptake efficiency of pollutants in mammals for compounds over a wide K{sub ow} range with an emphasis on hydrophilic compounds, i.e. compounds in the lower K{sub ow} range. Usually, most models use octanol as a single surrogate for the membrane and thus neglect the bilayer structure of the membrane. However, compounds with polar groups can have different affinitiesmore » for the different membrane regions. Therefore, an existing bioaccumulation model was extended by dividing the diffusion resistance through the membrane into an outer and inner membrane resistance, where the solvents octanol and heptane were used as surrogates for these membrane regions, respectively. The model was calibrated with uptake efficiencies of environmental pollutants measured in different mammals during feeding studies combined with human oral uptake efficiencies of pharmaceuticals. The new model estimated the uptake efficiency of neutral (RMSE = 14.6) and dissociating (RMSE = 19.5) compounds with logK{sub ow} ranging from − 10 to + 8. The inclusion of the K{sub hw} improved uptake estimation for 33% of the hydrophilic compounds (logK{sub ow} < 0) (r{sup 2} = 0.51, RMSE = 22.8) compared with the model based on K{sub ow} only (r{sup 2} = 0.05, RMSE = 34.9), while hydrophobic compounds (logK{sub ow} > 0) were estimated equally by both model versions with RMSE = 15.2 (K{sub ow} and K{sub hw}) and RMSE = 15.7 (K{sub ow} only). The model can be used to estimate the oral uptake efficiency for both hydrophilic and hydrophobic compounds. -- Highlights: ► A mechanistic model was developed to estimate oral uptake efficiency. ► Model covers wide logK{sub ow} range (- 10 to + 8) and several mammalian species. ► K{sub ow} and the heptane water partition coefficient K{sub hw} were combined. ► K{sub ow} and K{sub hw} reflect the inner and the outer membrane diffusion resistance. ► Combining K{sub ow} and K{sub hw} improved uptake estimation for hydrophilic compounds.« less

  20. Novel antiprotozoal products: imidazole and benzimidazole N-oxide derivatives and related compounds.

    PubMed

    Aguirre, Gabriela; Boiani, Mariana; Cerecetto, Hugo; Gerpe, Alejandra; González, Mercedes; Sainz, Yolanda Fernández; Denicola, Ana; De Ocáriz, Carmen Ochoa; Nogal, Juan José; Montero, David; Escario, José Antonio

    2004-05-01

    The syntheses and biological evaluation of the first anti-protozoa imidazole N-oxide and benzimidazole N-oxide and their derivatives are reported. They were tested in vitro against two different protozoa, Trypanosoma cruzi and Trichomonas vaginalis. Derivative 7c, ethyl-1-(i-butyloxycarbonyloxy)-6-nitrobenzimid-azole-2-carboxylate, displayed activity on both protozoa. Lipophilicity and redox potential were experimentally determined in order to study the relationship with activity of the compounds. These properties are well related with the observed bioactivity. Imidazole and benzimidazole N-oxide derivatives are becoming leaders for further chemical modifications and advanced biological studies.

  1. Chemical characterization and extractives composition of heartwood and sapwood from Quercus faginea.

    PubMed

    Miranda, Isabel; Sousa, Vicelina; Ferreira, Joana; Pereira, Helena

    2017-01-01

    Heartwood and sapwood of Quercus faginea were evaluated in relation to summative chemical composition and non-polar and polar extracts composition, including an assessment of antioxidant properties (DPPH and FRAP). Twenty trees from two sites in Portugal were analysed. Heartwood had approximately two times more solvent extractible compounds than sapwood (on average 19.0% and 9.5%). The lipophilic extractible compounds were below 1%, and most of them were polar e.g. ethanol-soluble compounds corresponded to 65% of total extractives in heartwood and 43% in sapwood. Lignin content was similar in sapwood and heartwood (28.1% and 28.6% of extractive-free wood respectively) as well as the sugar composition. Site did not influence the chemical composition. The lipophilic extractible compounds from both sapwood and heartwood included mainly saturated fatty acids (23.0% and 36.9% respectively) and aromatic compounds were also abundant in sapwood (22.9%). The ethanol-water extractibles had a high content of phenolic substances (558.0 and 319.4 mg GAE/g extract, respectively of heartwood and sapwood). The polyphenolic composition was similar in heartwood and sapwood with higher content of ellagitannins (168.9 and 153.5 mg tannic acid/g of extract in sapwood and heartwood respectively) and very low content of condensed tannins. The antioxidant activity was very high with IC50 of 2.6 μg/ml and 3.3 μg/ml for sapwood and heartwood respectively, as compared to standard antioxidants (IC50 of 3.8 μg/ml for Trolox). The ferric reducing ability was 2.8 and 2.0 mMol Trolox equivalents/g extract of heartwood and sapwood respectively. The variability between trees was low and no differences between the two sites were found. Q. faginea showed a very good potential for cooperage and other applications for which a source of compounds with antioxidant properties is desirable.

  2. Chemical characterization and extractives composition of heartwood and sapwood from Quercus faginea

    PubMed Central

    Miranda, Isabel; Sousa, Vicelina; Ferreira, Joana; Pereira, Helena

    2017-01-01

    Heartwood and sapwood of Quercus faginea were evaluated in relation to summative chemical composition and non-polar and polar extracts composition, including an assessment of antioxidant properties (DPPH and FRAP). Twenty trees from two sites in Portugal were analysed. Heartwood had approximately two times more solvent extractible compounds than sapwood (on average 19.0% and 9.5%). The lipophilic extractible compounds were below 1%, and most of them were polar e.g. ethanol-soluble compounds corresponded to 65% of total extractives in heartwood and 43% in sapwood. Lignin content was similar in sapwood and heartwood (28.1% and 28.6% of extractive-free wood respectively) as well as the sugar composition. Site did not influence the chemical composition. The lipophilic extractible compounds from both sapwood and heartwood included mainly saturated fatty acids (23.0% and 36.9% respectively) and aromatic compounds were also abundant in sapwood (22.9%). The ethanol-water extractibles had a high content of phenolic substances (558.0 and 319.4 mg GAE/g extract, respectively of heartwood and sapwood). The polyphenolic composition was similar in heartwood and sapwood with higher content of ellagitannins (168.9 and 153.5 mg tannic acid/g of extract in sapwood and heartwood respectively) and very low content of condensed tannins. The antioxidant activity was very high with IC50 of 2.6 μg/ml and 3.3 μg/ml for sapwood and heartwood respectively, as compared to standard antioxidants (IC50 of 3.8 μg/ml for Trolox). The ferric reducing ability was 2.8 and 2.0 mMol Trolox equivalents/g extract of heartwood and sapwood respectively. The variability between trees was low and no differences between the two sites were found. Q. faginea showed a very good potential for cooperage and other applications for which a source of compounds with antioxidant properties is desirable. PMID:28614371

  3. Free Radical Mechanisms of Xenobiotic Mammalian Cytotoxicities

    DTIC Science & Technology

    1988-10-31

    cytochrome P450 is small compared to that of the liver (about 0.1%), cardiovascular tissues may be more susceptible to oxidative injury because of the... injury participates in the pathogenic mechanisms of many lipophilic xenobiotic compounds). The most dramatic finding is our demonstration that five...UPID PEROXIDATION BETTER THAN THE INITIAL RADICAL OR HYDROPEROXIDE. INDIRECT IRP EFFECTS ON FREE RADICAL MEMBRANE INJURY : 4) POISONING OF THE ELECTRON

  4. Resin glycoside constituents of Ipomoea pes-caprae (beach morning glory).

    PubMed

    Tao, Hongwen; Hao, Xiaojiang; Liu, Jinggen; Ding, Jian; Fang, Yuchun; Gu, Qianqun; Zhu, Weiming

    2008-12-01

    Eight new resin glycosides, pescapreins X-XVII (1-8), were isolated from a lipophilic fraction of an ethanol extract of the entire plant of beach morning glory, Ipomoea pes-caprae. Their structures were elucidated by spectroscopic data analysis and by chemical transformation. These compounds were evaluated biologically in terms of cancer cell line cytotoxicity, antibacterial and antifungal activity, and effects on the mu-opioid receptor.

  5. Designed to dissolve: suppression of colloidal aggregation of Cu(I)-selective fluorescent probes in aqueous buffer and in-gel detection of a metallochaperone.

    PubMed

    Morgan, M Thomas; Bagchi, Pritha; Fahrni, Christoph J

    2011-10-12

    Due to the lipophilicity of the metal-ion receptor, previously reported Cu(I)-selective fluorescent probes form colloidal aggregates, as revealed by dynamic light scattering. To address this problem, we have developed a hydrophilic triarylpyrazoline-based fluorescent probe, CTAP-2, that dissolves directly in water and shows a rapid, reversible, and highly selective 65-fold fluorescence turn-on response to Cu(I) in aqueous solution. CTAP-2 proved to be sufficiently sensitive for direct in-gel detection of Cu(I) bound to the metallochaperone Atox1, demonstrating the potential for cation-selective fluorescent probes to serve as tools in metalloproteomics for identifying proteins with readily accessible metal-binding sites.

  6. Dodecyltriphenylphosphonium inhibits multiple drug resistance in the yeast Saccharomyces cerevisiae.

    PubMed

    Knorre, Dmitry A; Markova, Olga V; Smirnova, Ekaterina A; Karavaeva, Iuliia E; Sokolov, Svyatoslav S; Severin, Fedor F

    2014-08-08

    Multiple drug resistance pumps are potential drug targets. Here we asked whether the lipophilic cation dodecyltriphenylphosphonium (C12TPP) can interfere with their functioning. First, we found that suppression of ABC transporter gene PDR5 increases the toxicity of C12TPP in yeast. Second, C12TPP appeared to prevent the efflux of rhodamine 6G - a fluorescent substrate of Pdr5p. Moreover, C12TPP increased the cytostatic effects of some other known Pdr5p substrates. The chemical nature of C12TPP suggests that after Pdr5p-driven extrusion the molecules return to the plasma membrane and then into the cytosol, thus effectively competing with other substrates of the pump. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Gelucire44/14 as a novel absorption enhancer for drugs with different hydrophilicities: in vitro and in vivo improvement on transcorneal permeation.

    PubMed

    Liu, Rui; Liu, Zhidong; Zhang, Chengui; Zhang, Boli

    2011-08-01

    The objective of this study was to investigate the application of Gelucire44/14 as a novel absorption enhancer in ophthalmic drug delivery system. Six compounds, namely ribavirin, puerarin, mangiferin, berberin hydrochloride, baicalin, and curcumin in the order of increasing lipophilicity were selected as model drugs. The effect of Gelucire44/14 on transcorneal permeation was evaluated across excised rabbit cornea. Ocular irritation and precorneal retention time were assessed. Additionally, aqueous humor pharmacokinetic test was performed by microdialysis. The results indicated that Gelucire44/14, at a concentration of 0.05% or 0.1% (w/v), was found to maximally increase the apparent permeability coefficient by 6.47-, 4.14-, 3.50-, 3.97-, 2.92-, and 1.86-fold for ribavirin, puerarin, mangiferin, berberin hydrochloride, baicalin, and curcumin, respectively (p < 0.05). Moreover, Gelucire44/14 was nonirritant at broad concentrations of 0.025%-0.4% (w/v). Pharmacokinetic tests showed that Gelucire44/14 promoted ocular bioavailability of the compounds as indicated by 5.40-, 4.03-, 3.46-, 3.57-, 2.77-, and 1.77-fold maximal increase in the area under the curve for the drugs aforementioned, respectively (p < 0.01). Therefore, Gelucire44/14 exerted a significant improvement on the permeation of both hydrophilic and lipophilic compounds, especially hydrophilic ones. Hence, Gelucire44/14 can be considered as a safe and effective absorption enhancer for ophthalmic drug delivery system. Copyright © 2011 Wiley-Liss, Inc.

  8. Lipophilic bioactive compounds in the oils recovered from cereal by-products.

    PubMed

    Górnaś, Paweł; Rudzińska, Magdalena; Raczyk, Marianna; Soliven, Arianne

    2016-07-01

    The by-products of seven different cereal grains were investigated as a source of extractable oil, rich in lipophilic bioactive compounds. Oil yields (g kg(-1) DW) recovered from cereal by-products were as follows: 189 (rice bran) > 112 (wheat germ) > 74 (corn bran) > 58 (oat bran) > 41 (buckwheat bran) > 39 (spelt bran) > 33 (wheat bran) > 27 (rye bran). The main fatty acids identified in the studied oil samples were palmitic acid (11.39-17.23%), oleic acid (11.76-42.73%), linoleic acid (35.54-62.65%) and α-linolenic acid (1.05-9.46%). The range of total tocochromanols and phytosterols in the obtained oils was 0.369-3.763 and 1.19-35.24 g kg(-1) of oil, respectively. The oils recovered from buckwheat and corn bran, and wheat germ were dominated by tocopherols (99.9, 84.2 and 96.5%, respectively), whereas the oat, rice, rye, spelt, wheat bran oils were rich in tocotrienols (73.9, 79.6, 78.1, 90.6 and 73.8%, respectively). The campesterol and β-sitosterol constituted 10.1-32.5 and 30.4-63.7%, respectively, of total phytosterols contents identified in all of the studied samples. The present study demonstrated that oils recovered from the cereal by-products are richer sources of bioactive compounds, compared with traditional oils. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  9. The effect of lipophilicity of spin-labeled compounds on their distribution in solid lipid nanoparticle dispersions studied by electron paramagnetic resonance.

    PubMed

    Pegi, Ahlin; Julijana, Kristl; Slavko, Pecar; Janez, Strancar; Marjeta, Sentjurc

    2003-01-01

    Solid lipid nanoparticles (SLN) constitute an attractive drug carrier system. The aim of this study was to investigate the influence of lipophilicity and structure of different model molecules on their distribution in SLN dispersions. SLN composed of glyceryl tripalmitate as lipid and soybean lecithin and poloxamer 188 as stabilizers were prepared by a melt-emulsification process. PC(10,3), MeFASL(10,3), C(14)-Tempo, and Tempol were incorporated into SLN as spin-labeled compounds. The partition of SP between triglyceride and water was determined experimentally by electron paramagnetic resonance (EPR) and compared with calculated partition coefficients. The distribution of molecules in SLN dispersions was determined from the parameters of EPR spectra, from the reduction kinetics of the spin-labeled compounds with sodium ascorbate, and by computer simulation of EPR spectral line shapes. The experimentally obtained partition coefficients increase in the order Tempol < MeFASL(10,3) < C(14)-Tempo, showing the same trend as the partition coefficients calculated according to Rekker. In SLN dispersions, it was estimated that the ratio of SP between solid lipid core, phospholipid layers (deeper in SLN layer or in liposomes and closer to the surface of SLN), and water is for Tempol 0:0:100, for C(14)-Tempo 46:54(20:34):0, for MeFASL(10,3) 34:65(38:27):1, and for PC(10,3) 10:89(26:3:60):1. Copyright 2002 Wiley-Liss, Inc. and the American Pharmaceutical Association

  10. Small molecule absorption by PDMS in the context of drug response bioassays.

    PubMed

    van Meer, B J; de Vries, H; Firth, K S A; van Weerd, J; Tertoolen, L G J; Karperien, H B J; Jonkheijm, P; Denning, C; IJzerman, A P; Mummery, C L

    2017-01-08

    The polymer polydimethylsiloxane (PDMS) is widely used to build microfluidic devices compatible with cell culture. Whilst convenient in manufacture, PDMS has the disadvantage that it can absorb small molecules such as drugs. In microfluidic devices like "Organs-on-Chip", designed to examine cell behavior and test the effects of drugs, this might impact drug bioavailability. Here we developed an assay to compare the absorption of a test set of four cardiac drugs by PDMS based on measuring the residual non-absorbed compound by High Pressure Liquid Chromatography (HPLC). We showed that absorption was variable and time dependent and not determined exclusively by hydrophobicity as claimed previously. We demonstrated that two commercially available lipophilic coatings and the presence of cells affected absorption. The use of lipophilic coatings may be useful in preventing small molecule absorption by PDMS. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  11. Membrane interactions of ionic liquids and imidazolium salts.

    PubMed

    Wang, Da; Galla, Hans-Joachim; Drücker, Patrick

    2018-06-01

    Room-temperature ionic liquids (RTILs) have attracted considerable attention in recent years due to their versatile properties such as negligible volatility, inflammability, high extractive selectivity and thermal stability. In general, RTILs are organic salts with a melting point below ~100 °C determined by the asymmetry of at least one of their ions. Due to their amphiphilic character, strong interactions with biological materials can be expected. However, rising attention has appeared towards their similarity and interaction with biomolecules. By employing structural modifications, the biochemical properties of RTILs can be designed to mimic lipid structures and to tune their hydrophobicity towards a lipophilic behavior. This is evident for the interaction with lipid-membranes where some of these compounds present membrane-disturbing effects or cellular toxicity. Moreover, they can form micelles or lipid-like bilayer structures by themselves. Both aspects, cellular effects and membrane-forming capacities, of a novel class of lipophilic imidazolium salts will be discussed.

  12. Characterization of lipophilic pentasaccharides from beach morning glory (Ipomoea pes-caprae).

    PubMed

    Pereda-Miranda, Rogelio; Escalante-Sánchez, Edgar; Escobedo-Martínez, Carolina

    2005-02-01

    The hexane-soluble extract from the aerial parts of the herbal drug Ipomoea pes-caprae (beach morning-glory), through preparative-scale recycling HPLC, yielded six lipophilic glycosides, namely, five new pentasaccharides of jalapinolic acid, pescaproside A (1) and pescapreins I-IV (2-5), as well as the known stoloniferin III (6). Saponification of the crude resin glycoside mixture yielded simonic acid B (7) as the glycosidic acid component, whereas the esterifying residues of the natural oligosaccharides comprised five fatty acids: 2-methylpropanoic, (2S)-methylbutyric, n-hexanoic, n-decanoic, and n-dodecanoic acids. Pescaproside A (1), an acylated glycosidic acid methyl ester, is related structurally to the product obtained from the macrolactone hydrolysis of pescapreins I-IV (2-5). All the isolated compounds (1-6), characterized through high-field NMR spectroscopy, were found to be weakly cytotoxic to a small panel of cancer cell lines.

  13. Synthesis of Triamino Acid Building Blocks with Different Lipophilicities

    PubMed Central

    Maity, Jyotirmoy; Honcharenko, Dmytro; Strömberg, Roger

    2015-01-01

    To obtain different amino acids with varying lipophilicity and that can carry up to three positive charges we have developed a number of new triamino acid building blocks. One set of building blocks was achieved by aminoethyl extension, via reductive amination, of the side chain of ortnithine, diaminopropanoic and diaminobutanoic acid. A second set of triamino acids with the aminoethyl extension having hydrocarbon side chains was synthesized from diaminobutanoic acid. The aldehydes needed for the extension by reductive amination were synthesized from the corresponding Fmoc-L-2-amino fatty acids in two steps. Reductive amination of these compounds with Boc-L-Dab-OH gave the C4-C8 alkyl-branched triamino acids. All triamino acids were subsequently Boc-protected at the formed secondary amine to make the monomers appropriate for the N-terminus position when performing Fmoc-based solid-phase peptide synthesis. PMID:25876040

  14. The synthesis, lipophilicity and cytotoxic effects of new ruthenium(II) arene complexes with chromone derivatives.

    PubMed

    Pastuszko, Adam; Majchrzak, Kinga; Czyz, Malgorzata; Kupcewicz, Bogumiła; Budzisz, Elzbieta

    2016-06-01

    A series of arene ruthenium(II) complexes with the general formula [(η(6)-arene)Ru(L)X2] (where arene=p-cymene, benzene, hexamethylbenzene or mesitylene, L=aminoflavone or aminochromone derivatives and X=Cl, I) were synthesized and characterized by elemental analysis, MS, IR and (1)H NMR spectroscopy. The stability of the selected complexes was assessed by UV-Vis spectroscopy in 24-hour period. The lipophilicity of the synthesized complexes was determined by the shake-flask method, and their cytotoxicity evaluated in vitro on patient-derived melanoma populations. The most active complexes against melanoma cells contain 7-aminoflavone and 6-aminoflavone as a ligand. The relationship between the cytotoxicity of all the obtained compounds and their logP values was determined and briefly analyzed with two different patterns observed. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Synthesis and Antioxidant Activity of Hydroxytyrosol Alkyl-Carbonate Derivatives.

    PubMed

    Fernandez-Pastor, Ignacio; Fernandez-Hernandez, Antonia; Rivas, Francisco; Martinez, Antonio; Garcia-Granados, Andres; Parra, Andres

    2016-07-22

    Three procedures have been investigated for the isolation of tyrosol (1) and hydroxytyrosol (2) from a phenolic extract obtained from the solid residue of olive milling. These three methods, which facilitated the recovery of these phenols, were chemical or enzymatic acetylation, benzylation, and carbomethoxylation, and subsequent carbonylation or acetonation reactions. Several new lipophilic alkyl-carbonate derivatives of hydroxytyrosol have been synthesized, coupling the primary hydroxy group of this phenol, through a carbonate linker, using alcohols with different chain lengths. The antioxidant properties of these lipophilic derivatives have been evaluated by different methods and compared with free hydroxytyrosol (2) and also with the well-known antioxidants BHT and α-tocopherol. Three methods were used for the determination of this antioxidant activity: FRAP and ABTS assays, to test the antioxidant power in hydrophilic media, and the Rancimat test, to evaluate the antioxidant capacity in a lipophilic matrix. These new alkyl-carbonate derivatives of hydroxytyrosol enhanced the antioxidant activity of this natural phenol, with their antioxidant properties also being higher than those of the commercial antioxidants BHT and α-tocopherol. There was no clear influence of the side-chain length on the antioxidant properties of the alkyl-carbonate derivatives of 2, although the best results were achieved mainly by the compounds with a longer chain on the primary hydroxy group of this natural phenolic substance.

  16. Molecular adjuvants based on nonpyrogenic lipophilic derivatives of norAbuMDP/GMDP formulated in nanoliposomes: stimulation of innate and adaptive immunity.

    PubMed

    Knotigová, Pavlína Turánek; Zyka, Daniel; Mašek, Josef; Kovalová, Anna; Křupka, Michal; Bartheldyová, Eliška; Kulich, Pavel; Koudelka, Štěpán; Lukáč, Róbert; Kauerová, Zuzana; Vacek, Antonín; Horynová, Milada Stuchlová; Kozubík, Alois; Miller, Andrew D; Fekete, Ladislav; Kratochvílová, Irena; Ježek, Jan; Ledvina, Miroslav; Raška, Milan; Turánek, Jaroslav

    2015-04-01

    The aim of this work was to demonstrate an immunostimulatory and adjuvant effect of new apyrogenic lipophilic derivatives of norAbuMDP and norAbuGMDP formulated in nanoliposomes. Nanoliposomes and metallochelating nanoliposomes were prepared by lipid film hydration and extrusion methods. The structure of the liposomal formulation was studied by electron microscopy, AF microscopy, and dynamic light scattering. Sublethal and lethal γ-irradiation mice models were used to demonstrate stimulation of innate immune system. Recombinant Hsp90 antigen (Candida albicans) bound onto metallochelating nanoliposomes was used for immunisation of mice to demonstrate adjuvant activities of tested compounds. Safety and stimulation of innate and adaptive immunity were demonstrated on rabbits and mice. The liposomal formulation of norAbuMDP/GMDP was apyrogenic in rabbit test and lacking any side effect in vivo. Recovery of bone marrow after sublethal γ-irradiation as well as increased survival of mice after lethal irradiation was demonstrated. Enhancement of specific immune response was demonstrated for some derivatives incorporated in metallochelating nanoliposomes with recombinant Hsp90 protein antigen. Liposomal formulations of new lipophilic derivatives of norAbuMDP/GMDP proved themselves as promising adjuvants for recombinant vaccines as well as immunomodulators for stimulation of innate immunity and bone-marrow recovery after chemo/radio therapy of cancer.

  17. Alamethicin for using in bioavailability studies? - Re-evaluation of its effect.

    PubMed

    Vollmer, Maren; Klingebiel, Mirko; Rohn, Sascha; Maul, Ronald

    2017-03-01

    A major pathway for the elimination of drugs is the biliary and renal excretion following the formation of more hydrophilic secondary metabolites such as glucuronides. For in vitro investigations of the phase II metabolism, hepatic microsomes are commonly used in the combination with the pore-forming peptide alamethicin, also to give estimates for the in vivo situation. Thus, alamethicin may represent a neglected parameter in the characterization of microsomal in vitro assays. In the present study, the influence of varying alamethicin concentrations on glucuronide formation of selected phenolic compounds was investigated systematically. A correlation between the alamethicin impact and the lipophilicity of the investigated substrates was analyzed as well. Lipophilicity was determined by the logarithm of the octanol-water partition coefficient. For every substrate, a distinct alamethicin concentration could be detected leading to a maximal glucuronidation activity. Further increase of the alamethicin application led to negative effects. The differences between the maximum depletion rates with and without alamethicin addition varied between 2.7% and 18.2% depending on the substrate. A dependence on the lipophilicity could not be confirmed. Calculation of the apparent intrinsic clearance led to a more than 2-fold increase using the most effective alamethicin concentration compared to the alamethicin free control. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Mono- and Dinuclear Phosphorescent Rhenium(I) Complexes: Impact of Subcellular Localization on Anticancer Mechanisms.

    PubMed

    Ye, Rui-Rong; Tan, Cai-Ping; Chen, Mu-He; Hao, Liang; Ji, Liang-Nian; Mao, Zong-Wan

    2016-06-01

    Elucidation of relationship among chemical structure, cellular uptake, localization, and biological activity of anticancer metal complexes is important for the understanding of their mechanisms of action. Organometallic rhenium(I) tricarbonyl compounds have emerged as potential multifunctional anticancer drug candidates that can integrate therapeutic and imaging capabilities in a single molecule. Herein, two mononuclear phosphorescent rhenium(I) complexes (Re1 and Re2), along with their corresponding dinuclear complexes (Re3 and Re4), were designed and synthesized as potent anticancer agents. The subcellular accumulation of Re1-Re4 was conveniently analyzed by confocal microscopy in situ in live cells by utilizing their intrinsic phosphorescence. We found that increased lipophilicity of the bidentate ligands could enhance their cellular uptake, leading to improved anticancer efficacy. The dinuclear complexes were more potent than the mononuclear counterparts. The molecular anticancer mechanisms of action evoked by Re3 and Re4 were explored in detail. Re3 with a lower lipophilicity localizes to lysosomes and induces caspase-independent apoptosis, whereas Re4 with higher lipophilicity specially accumulates in mitochondria and induces caspase-independent paraptosis in cancer cells. Our study demonstrates that subcellular localization is crucial for the anticancer mechanisms of these phosphorescent rhenium(I) complexes. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Structure-activity relationships of rationally designed AMACR 1A inhibitors.

    PubMed

    Yevglevskis, Maksims; Lee, Guat L; Nathubhai, Amit; Petrova, Yoana D; James, Tony D; Threadgill, Michael D; Woodman, Timothy J; Lloyd, Matthew D

    2018-04-30

    α-Methylacyl-CoA racemase (AMACR; P504S) is a promising novel drug target for prostate and other cancers. Assaying enzyme activity is difficult due to the reversibility of the 'racemisation' reaction and the difficulties in the separation of epimeric products; consequently few inhibitors have been described and no structure-activity relationship study has been performed. This paper describes the first structure-activity relationship study, in which a series of 23 known and potential rational AMACR inhibitors were evaluated. AMACR was potently inhibited (IC 50  = 400-750 nM) by ibuprofenoyl-CoA and derivatives. Potency was positively correlated with inhibitor lipophilicity. AMACR was also inhibited by straight-chain and branched-chain acyl-CoA esters, with potency positively correlating with inhibitor lipophilicity. 2-Methyldecanoyl-CoAs were ca. 3-fold more potent inhibitors than decanoyl-CoA, demonstrating the importance of the 2-methyl group for effective inhibition. Elimination substrates and compounds with modified acyl-CoA cores were also investigated, and shown to be potent inhibitors. These results are the first to demonstrate structure-activity relationships of rational AMACR inhibitors and that potency can be predicted by acyl-CoA lipophilicity. The study also demonstrates the utility of the colorimetric assay for thorough inhibitor characterisation. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Nature of the chemical bond and prediction of radiation tolerance in pyrochlore and defect fluorite compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lumpkin, Gregory R.; Institute of Materials and Engineering Science, Australian Nuclear Science and Technology Organisation, Private Mail Bag 1, Menai, NSW 2234; Pruneda, Miguel

    2007-04-15

    The radiation tolerance of synthetic pyrochlore and defect fluorite compounds has been studied using ion irradiation. We show that the results can be quantified in terms of the critical temperature for amorphization, structural parameters, classical Pauling electronegativity difference, and disorder energies. Our results demonstrate that radiation tolerance is correlated with a change in the structure from pyrochlore to defect fluorite, a smaller unit cell dimension, and lower cation-anion disorder energy. Radiation tolerance is promoted by an increase in the Pauling cation-anion electronegativity difference or, in other words, an increase in the ionicity of the chemical bonds. A further analysis ofmore » the data indicates that, of the two possible cation sites in ideal pyrochlore, the smaller B-site cation appears to play the major role in bonding. This result is supported by ab initio calculations of the structure and bonding, showing a correlation between the Mulliken overlap populations of the B-site cation and the critical temperature. - Graphical abstract: Three-dimensional representation of the predicted critical amorphization temperature in pyrochlores.« less

  1. Structure, thermodynamic and electronic properties of carbon-nitrogen cubanes and protonated polynitrogen cations

    NASA Astrophysics Data System (ADS)

    Chaban, Vitaly V.; Andreeva, Nadezhda A.

    2017-12-01

    Energy generation and storage are at the center of modern civilization. Energetic materials constitute quite a large class of compounds with a high amount of stored chemical energy that can be released. We hereby use a combination of quantum chemistry methods to investigate feasibility and properties of carbon-nitrogen cubanes and multi-charged polynitrogen cations in the context of their synthesis and application as unprecedented energetic materials. We show that the stored energy increases gradually with the nitrogen content increase. Nitrogen-poor cubanes retain their stabilities in vacuum, even at elevated temperatures. Such molecules will be probably synthesized at some point. In turn, polynitrogen cations are highly unstable, except N8H+, despite they are isoelectronic to all-carbon cubane. Kinetic stability of the cation decays drastically as its total charge increases. High-level thermodynamic calculations revealed that large amounts of energy are liberated upon decompositions of polynitrogen cations, which produce molecular nitrogen, acetylene, and protons. The present results bring a substantial insights to the design of novel high-energy compounds.

  2. Advances in heterocycle synthesis via [3+m]-cycloaddition reactions involving an azaoxyallyl cation as the key intermediate.

    PubMed

    Xuan, Jun; Cao, Xia; Cheng, Xiao

    2018-05-17

    Heterocyclic compounds are widely found in many natural isolates and medicinally relevant compounds, as well as some fine chemicals. The development of general and efficient methods for the construction of heterocyclic compounds is one of the most important tasks in synthetic organic chemistry. Along these lines, [3+m]-cycloaddition reactions involving in situ generated azaoxyallyl cations as the 3-atom units have emerged as a powerful method for the synthesis of nitrogen-containing heterocycles. In this feature article, we highlight recent advances in this rapidly growing area, mainly focusing on the reaction design as well as the reaction mechanism.

  3. Effects of twenty-five compounds on four species of aquatic fungi (Saprolegniales) pathogenic to fish

    USGS Publications Warehouse

    Bailey, T.A.

    1984-01-01

    Four species of aquatic fungi (Achlya flagellata, A. racemosa, Saprolegnia hypogyna, and S. megasperma) were exposed to 25 chemicals representing seven classes of compounds for 15 and 60 min, in an effort to identify potential fungicidal agents for use in fish culture. The antifungal activity of each chemical was compared with that of malachite green, a reference compound with known fungicidal properties but not registered for fishery use. Six compounds which inhibited fungal growth on artificial media at concentrations of < 100 mg/l (listed in order of decreasing antifungal activity) were the cationics Du-terA? and copper oxychloride sulfate, the amine LesanA?, the amide BAS-389-O1F and the cationics CuprimyxinA? and RoccalA? II. Certain chemicals from these classes of compounds may have promise as aquatic fungicides.

  4. Non-traditional platinum compounds for improved accumulation, oral bioavailability, and tumor targeting.

    PubMed

    Lovejoy, Katherine S; Lippard, Stephen J

    2009-12-28

    The five platinum anticancer compounds currently in clinical use conform to structure-activity relationships formulated (M. J. Cleare and J. D. Hoeschele, Bioinorg. Chem., 1973, 2, 187-210) shortly after the discovery that cis-diamminedichloroplatinum(II), cisplatin, has antitumor activity in mice. These compounds are neutral platinum(II) species with two am(m)ine ligands or one bidentate chelating diamine and two additional ligands that can be replaced by water through aquation reactions. The resulting cations ultimately form bifunctional adducts on DNA. Information about the chemistry of these platinum compounds and correlations of their structures with anticancer activity have provided guidance for the design of novel anticancer drug candidates based on the proposed mechanisms of action. This article discusses advances in the synthesis and evaluation of such non-traditional platinum compounds, including cationic and tumor-targeting constructs.

  5. Tuning the optical bandgap in multi-cation compound transparent conducting-oxides: The examples of In2ZnO4 and In4Sn3O12

    NASA Astrophysics Data System (ADS)

    Sabino, Fernando P.; Oliveira, Luiz N.; Wei, Su-Huai; Da Silva, Juarez L. F.

    2018-02-01

    Transparent conducting oxides such as the bixbyite In2O3 and rutile SnO2 systems have large disparities between the optical and fundamental bandgaps, ΔEgO F , because selection rules forbid dipolar transitions from the top of the valence band to the conduction-band minimum; however, the optical gaps of multi-cation compounds with the same chemical species often coincide with their fundamental gaps. To explain this conundrum, we have employed density-functional theory to compute the optical properties of multi-cation compounds, In2ZnO4 and In4Sn3O12, in several crystal structures. We show that a recently proposed mechanism to explain the disparity between the optical and fundamental gaps of M2O3 (M = Al, Ga, and In) applies also to other binary systems and to multi-compounds. Namely, a gap disparity will arise if the following three conditions are satisfied: (i) the crystal structure has inversion symmetry; (ii) the conduction-band minimum is formed by the cation and O s-orbitals; and (iii) there is strong p-d coupling and weak p-p in the vicinity of the valence-band maximum. The third property depends critically on the cationic chemical species. In the structures with inversion symmetry, Zn (Sn) strengthens (weakens) the p-d coupling in In2ZnO4 (In4Sn3O12), enhancing (reducing) the gap disparity. Furthermore, we have also identified a In4Sn3O12 structure that is 31.80 meV per formula unit more stable than a recently proposed alternative model.

  6. Cationic uremic toxins affect human renal proximal tubule cell functioning through interaction with the organic cation transporter.

    PubMed

    Schophuizen, Carolien M S; Wilmer, Martijn J; Jansen, Jitske; Gustavsson, Lena; Hilgendorf, Constanze; Hoenderop, Joost G J; van den Heuvel, Lambert P; Masereeuw, Rosalinde

    2013-12-01

    Several organic cations, such as guanidino compounds and polyamines, have been found to accumulate in plasma of patients with kidney failure due to inadequate renal clearance. Here, we studied the interaction of cationic uremic toxins with renal organic cation transport in a conditionally immortalized human proximal tubule epithelial cell line (ciPTEC). Transporter activity was measured and validated in cell suspensions by studying uptake of the fluorescent substrate 4-(4-(dimethylamino)styryl)-N-methylpyridinium-iodide (ASP(+)). Subsequently, the inhibitory potencies of the cationic uremic toxins, cadaverine, putrescine, spermine and spermidine (polyamines), acrolein (polyamine breakdown product), guanidine, and methylguanidine (guanidino compounds) were determined. Concentration-dependent inhibition of ASP(+) uptake by TPA, cimetidine, quinidine, and metformin confirmed functional endogenous organic cation transporter 2 (OCT2) expression in ciPTEC. All uremic toxins tested inhibited ASP(+) uptake, of which acrolein required the lowest concentration to provoke a half-maximal inhibition (IC50 = 44 ± 2 μM). A Dixon plot was constructed for acrolein using three independent inhibition curves with 10, 20, or 30 μM ASP(+), which demonstrated competitive or mixed type of interaction (K i = 93 ± 16 μM). Exposing the cells to a mixture of cationic uremic toxins resulted in a more potent and biphasic inhibitory response curve, indicating complex interactions between the toxins and ASP(+) uptake. In conclusion, ciPTEC proves a suitable model to study cationic xenobiotic interactions. Inhibition of cellular uptake transport was demonstrated for several uremic toxins, which might indicate a possible role in kidney disease progression during uremia.

  7. Application of mixed-mode, solid-phase extraction in environmental and clinical chemistry. Combining hydrogen-bonding, cation-exchange and Van der Waals interactions

    USGS Publications Warehouse

    Mills, M.S.; Thurman, E.M.; Pedersen, M.J.

    1993-01-01

    Silica- and styrene-divinylbenzene-based mixed-mode resins that contain C8, C18 and sulphonated cation-exchange groups were compared for their efficiency in isolation of neutral triazine compounds from water and of the basic drug, benzoylecgonine, from urine. The triazine compounds were isolated by a combination of Van der Waals and hydrogen-bonding interactions, and benzoylecgonine was isolated by Van der Waals interactions and cation exchange. All analytes were eluted with a polar organic solvent contaning 2% ammonium hydroxide. Larger recoveries (95%) were achieved on copolymerized mixed-mode resins where C18 and sulfonic acid are in closer proximity than on 'blended' mixed-mode resins (60-70% recovery).

  8. Destabilization of mitochondrial functions as a target against breast cancer progression: Role of TPP{sup +}-linked-polyhydroxybenzoates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sandoval-Acuña, Cristian

    Mitochondrion is an accepted molecular target in cancer treatment since it exhibits a higher transmembrane potential in cancer cells, making it susceptible to be targeted by lipophilic-delocalized cations of triphenylphosphonium (TPP{sup +}). Thus, we evaluated five TPP{sup +}-linked decyl polyhydroxybenzoates as potential cytotoxic agents in several human breast cancer cell lines that differ in estrogen receptor and HER2/neu expression, and in metabolic profile. Results showed that all cell lines tested were sensitive to the cytotoxic action of these compounds. The mechanism underlying the cytotoxicity would be triggered by their weak uncoupling effect on the oxidative phosphorylation system, while having amore » wider and safer therapeutic range than other uncouplers and a significant lowering in transmembrane potential. Noteworthy, while the TPP{sup +}-derivatives alone led to almost negligible losses of ATP, when these were added in the presence of an AMP-activated protein kinase inhibitor, the levels of ATP fell greatly. Overall, data presented suggest that decyl polyhydroxybenzoates-TPP{sup +} and its derivatives warrant future investigation as potential anti-tumor agents. - Highlights: • TPP{sup +}-polyhydroxybenzoates are cytotoxic to various subtypes of breast cancer cells. • Cytotoxicity is not-dependent on the expression of estrogen/growth factor receptors. • Cytotoxicity appears to be triggered by a weak mitochondrial uncoupling effect. • Effects include loss of transmembrane potential and apoptosis was detected. • TPP{sup +}-polyhydroxybenzoates inhibit migration of highly metastatic cells.« less

  9. The carbocyanine dye DiD labels in vitro and in vivo neural stem cells of the subventricular zone as well as myelinated structures following in vivo injection in the lateral ventricle.

    PubMed

    Carradori, Dario; Barreau, Kristell; Eyer, Joël

    2016-02-01

    Carbocyanines are fluorescent lipophilic cationic dyes used since the early 1980s as neuronal tracers. Several applications of these compounds have been developed thanks to their low cell toxicity, lateral diffusion within the cellular membranes, and good photostability. 1,1'-Dioctadecyl-3,3,3',3'-tetramethylindodicarbocyanine 4-chlorobenzenesulfonate (DiD) is an interesting component of this family because, in addition to the classic carbocyanine properties, it has a longer wavelength compared with its analogues. That makes DiD an excellent carbocyanine for labeling cells and tissues with significant intrinsic fluorescence. Drug encapsulation, drug delivery, and cellular transplantation are also fields using DiD-based systems where having detailed knowledge about its behavior as a single entity is important. Recently, promising studies concerned neural stem cells from the subventricular zone of the lateral ventricle in the brain (their natural niche) and their potential therapeutic use. Here, we show that DiD is able to label these stem cells in vitro and present basilar information concerning its pharmacokinetics, concentrations, and microscope protocols. Moreover, when DiD is injected in vivo in the cerebrospinal fluid present in the lateral ventricle of rat, it also labels stem cells as well as myelinated structures of the caudoputamen. This analysis provides a database to consult when planning experiments concerning DiD and neural stem cells from the subventricular zone. © 2015 Wiley Periodicals, Inc.

  10. Effect of lipophilicity modulation on inhibition of human rhinovirus capsid binders.

    PubMed

    Morley, Andrew; Tomkinson, Nicholas; Cook, Andrew; MacDonald, Catherine; Weaver, Richard; King, Sarah; Jenkinson, Lesley; Unitt, John; McCrae, Christopher; Phillips, Tim

    2011-10-15

    To try and generate broad spectrum human rhinovirus VP1 inhibitors with more attractive physicochemical, DMPK and safety profiles, we explored the current SAR of known VP1 compounds. This lead to the identification of specific structural regions where reduction in polarity can be achieved, so guiding chemistry to analogues with significantly superior profiles to previously reported inhibitors. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Intracellular transport of fat-soluble vitamins A and E.

    PubMed

    Kono, Nozomu; Arai, Hiroyuki

    2015-01-01

    Vitamins are compounds that are essential for the normal growth, reproduction and functioning of the human body. Of the 13 known vitamins, vitamins A, D, E and K are lipophilic compounds and are therefore called fat-soluble vitamins. Because of their lipophilicity, fat-soluble vitamins are solubilized and transported by intracellular carrier proteins to exert their actions and to be metabolized properly. Vitamin A and its derivatives, collectively called retinoids, are solubilized by intracellular retinoid-binding proteins such as cellular retinol-binding protein (CRBP), cellular retinoic acid-binding protein (CRABP) and cellular retinal-binding protein (CRALBP). These proteins act as chaperones that regulate the metabolism, signaling and transport of retinoids. CRALBP-mediated intracellular retinoid transport is essential for vision in human. α-Tocopherol, the main form of vitamin E found in the body, is transported by α-tocopherol transfer protein (α-TTP) in hepatic cells. Defects of α-TTP cause vitamin E deficiency and neurological disorders in humans. Recently, it has been shown that the interaction of α-TTP with phosphoinositides plays a critical role in the intracellular transport of α-tocopherol and is associated with familial vitamin E deficiency. In this review, we summarize the mechanisms and biological significance of the intracellular transport of vitamins A and E. © 2014 The Authors. Traffic published by John Wiley & Sons Ltd.

  12. Fatty Acid Binding Proteins Expressed at the Human Blood-Brain Barrier Bind Drugs in an Isoform-Specific Manner.

    PubMed

    Lee, Gordon S; Kappler, Katharina; Porter, Christopher J H; Scanlon, Martin J; Nicolazzo, Joseph A

    2015-10-01

    To examine the expression of fatty acid binding proteins (FABPs) at the human blood-brain barrier (BBB) and to assess their ability to bind lipophilic drugs. mRNA and protein expression of FABP subtypes in immortalized human brain endothelial (hCMEC/D3) cells were examined by RT-qPCR and Western blot, respectively. FABPs that were found in hCMEC/D3 cells (hFABPs) were recombinantly expressed and purified from Escherichia coli C41(DE3) cells. Drug binding to these hFABPs was assessed using a fluorescence assay, which measured the ability of a panel of lipophilic drugs to displace the fluorescent probe compound 1-anilinonaphthalene-8-sulfonic acid (ANS). hFABP3, 4 and 5 were expressed in hCMEC/D3 cells at the mRNA and protein level. The competitive ANS displacement assay demonstrated that, in general, glitazones preferentially bound to hFABP5 (Ki: 1.0-28 μM) and fibrates and fenamates preferentially bound to hFABP4 (Ki: 0.100-17 μM). In general, lipophilic drugs appeared to show weaker affinities for hFABP3 relative to hFABP4 and hFABP5. No clear correlation was observed between the molecular structure or physicochemical properties of the drugs and their ability to displace ANS from hFABP3, 4 and 5. hFABP3, 4 and 5 are expressed at the human BBB and bind differentially to a diverse range of lipophilic drugs. The unique expression and binding patterns of hFABPs at the BBB may therefore influence drug disposition into the brain.

  13. Effect of lipophilicity on the bioavailability of drugs after percutaneous administration by dissolving microneedles.

    PubMed

    Ito, Yukako; Yoshimura, Masahiro; Tanaka, Tsutomu; Takada, Kanji

    2012-03-01

    To elucidate drug lipophilicity effects on the bioavailability (BA) of drugs from skin after administration by dissolving microneedles, nine compounds with different lipophilicity indexes (log p value) were formulated into two-layered dissolving microneedles and administered percutaneously to rat skin: desmopressin (DDAVP), sumatriptan (ST), fluorescein (FL), granisetron (GRN), pindolol (PDL), pravastatin (PRV), rhodamine 123 (Rho), rifampicin (RFP), and salmeterol (SLM). Plasma drug concentrations were measured using liquid chromatography-tandem mass spectrometry and spectrofluorometry. In vivo dissolution and diffusion in both horizontal and vertical directions of FL and RH in the skin were studied using fluorescence microscopy. Respective BAs were 95.1 ± 7.9% (DDAVP), 84.2 ± 2.7% (ST), 82.3 ± 7.2% (FL), 82.7 ± 6.7% (GRN), 71.6 ± 3.8% (PDL), 63.6 ± 7.5% (PRV), 53.7 ± 8.3% (Rho), 46.2 ± 6.1% (RFP), and 38.4 ± 2.7% (SM). BA decreased as the lipophilicity index, log p value, of the drug increased from-1.95 to 1.73. The respective remaining percentages in skin tissue were 1.4 ± 0.7% (DDAVP), 0.9 ± 0.1% (ST), 1.0 ± 0.2% (FL), 3.4 ± 1.2% (GRN), 14.5 ± 3.7% (PDL), 23.4 ± 5.2% (PRV), 32.2 ± 6.0% (Rho), 40.7 ± 4.9% (RFP), and 40.6 ± 5.1% (SLM), dependent on log p. Fluorescence microscopy showed no FL or Rho in skin tissue within 4 and 24 h after administration, respectively. The BA of drugs delivered by dissolving microneedles depends on the drug solubility in the skin epidermis and dermis. Copyright © 2011 Wiley Periodicals, Inc.

  14. Lung Surfactant Microbubbles Increase Lipophilic Drug Payload for Ultrasound-Targeted Delivery

    PubMed Central

    Sirsi, Shashank R.; Fung, Chinpong; Garg, Sumit; Tianning, Mary Y.; Mountford, Paul A.; Borden, Mark A.

    2013-01-01

    The cavitation response of circulating microbubbles to targeted ultrasound can be used for noninvasive, site-specific delivery of shell-loaded materials. One challenge for microbubble-mediated delivery of lipophilic compounds is the limitation of drug loading into the microbubble shell, which is commonly a single phospholipid monolayer. In this study, we investigated the use of natural lung surfactant extract (Survanta®, Abbott Nutrition) as a microbubble shell material in order to improve drug payload and delivery. Pulmonary surfactant extracts such as Survanta contain hydrophobic surfactant proteins (SP-B and SP-C) that facilitate lipid folding and retention on lipid monolayers. Here, we show that Survanta-based microbubbles exhibit wrinkles in bright-field microscopy and increased lipid retention on the microbubble surface in the form of surface-associated aggregates observed with fluorescence microscopy. The payload of a model lipophilic drug (DiO), measured by flow cytometry, increased by over 2-fold compared to lipid-coated microbubbles lacking SP-B and SP-C. Lung surfactant microbubbles were highly echogenic to contrast enhanced ultrasound imaging at low acoustic intensities. At higher ultrasound intensity, excess lipid was observed to be acoustically cleaved for localized release. To demonstrate targeting, a biotinylated lipopolymer was incorporated into the shell, and the microbubbles were subjected to a sequence of radiation force and fragmentation pulses as they passed through an avidinated hollow fiber. Lung surfactant microbubbles showed a 3-fold increase in targeted deposition of the model fluorescent drug compared to lipid-only microbubbles. Our results demonstrate that lung surfactant microbubbles maintain the acoustic responsiveness of lipid-coated microbubbles with the added benefit of increased lipophilic drug payload. PMID:23781287

  15. Lung surfactant microbubbles increase lipophilic drug payload for ultrasound-targeted delivery.

    PubMed

    Sirsi, Shashank R; Fung, Chinpong; Garg, Sumit; Tianning, Mary Y; Mountford, Paul A; Borden, Mark A

    2013-01-01

    The cavitation response of circulating microbubbles to targeted ultrasound can be used for noninvasive, site-specific delivery of shell-loaded materials. One challenge for microbubble-mediated delivery of lipophilic compounds is the limitation of drug loading into the microbubble shell, which is commonly a single phospholipid monolayer. In this study, we investigated the use of natural lung surfactant extract (Survanta(®), Abbott Nutrition) as a microbubble shell material in order to improve drug payload and delivery. Pulmonary surfactant extracts such as Survanta contain hydrophobic surfactant proteins (SP-B and SP-C) that facilitate lipid folding and retention on lipid monolayers. Here, we show that Survanta-based microbubbles exhibit wrinkles in bright-field microscopy and increased lipid retention on the microbubble surface in the form of surface-associated aggregates observed with fluorescence microscopy. The payload of a model lipophilic drug (DiO), measured by flow cytometry, increased by over 2-fold compared to lipid-coated microbubbles lacking SP-B and SP-C. Lung surfactant microbubbles were highly echogenic to contrast enhanced ultrasound imaging at low acoustic intensities. At higher ultrasound intensity, excess lipid was observed to be acoustically cleaved for localized release. To demonstrate targeting, a biotinylated lipopolymer was incorporated into the shell, and the microbubbles were subjected to a sequence of radiation force and fragmentation pulses as they passed through an avidinated hollow fiber. Lung surfactant microbubbles showed a 3-fold increase in targeted deposition of the model fluorescent drug compared to lipid-only microbubbles. Our results demonstrate that lung surfactant microbubbles maintain the acoustic responsiveness of lipid-coated microbubbles with the added benefit of increased lipophilic drug payload.

  16. An alkaline tin(II) halide compound Na{sub 3}Sn{sub 2}F{sub 6}Cl: Synthesis, structure, and characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gong, Pifu; University of the Chinese Academy of Sciences, Beijing 100049; Luo, Siyang

    A new alkali tin(II) halide compound, Na{sub 3}Sn{sub 2}F{sub 6}Cl, is synthesized by hydrothermal method. This compound crystallizes trigonally in space group of R-3c (167), and processes a zero-dimensional (0D) structure consisted of Na{sup +} cations, Cl{sup −} anions and the isolated [SnF{sub 3}]{sup -} trigonal pyramids in which the stereochemically active 5s{sup 2} lone pair electrons are attached to the Sn{sup 2+} cations. Interestingly, the [SnF{sub 3}]{sup −} trigonal pyramids are parallel arranged in the a-b plane, while oppositely arranged in line with rotation along the c- axis. Moreover, the energy bandgap, thermal stability and electronic structure of Na{submore » 3}Sn{sub 2}F{sub 6}Cl are characterized and the results reveal that this compound has and indirect bandgap of 3.88 eV and is stable under 270 °C. - Graphical abstract: A zero-dimensional alkaline tin halide compound, Na{sub 3}Sn{sub 2}F{sub 6}Cl, is synthesized by hydrothermal method. Interestingly, both the anions and cations coordinating polyhedra exhibit order arranged with the [SnF{sub 3}]{sup -} trigonal pyramids rotating along the c- axis.« less

  17. Phase Transitions in Tetramethylammonium Hexachlorometalate Compounds (TMA) 2MCl 6 (M = U, Np, Pt, Sn, Hf, Zr)

    DOE PAGES

    Autillo, Matthieu; Wilson, Richard E.

    2017-09-22

    A study of the phase transitions occurring in tetramethylammonium hexachlorometalate compounds with M = U IV, Np IV, Zr IV, Sn IV, Hf IV and Pt IV were performed using single-crystal X-ray diffraction across the temperature range 120 - 400K. When the crystals were cooled, movement of the octahedral [MCl 6] 2- anions induces a phase transition from Fm3m to Fd3c with a doubling of the unit cell. For the actinide compounds, no correlation between the f-electron configuration and the transition temperature was observed, instead, a correlation between the transition temperatures and both the [MCl 6] 2- anion and themore » TMA cation size is highlighted. Two phase transitions were observed and characterized. The first phase transition occurs with the ordering of the TMA cation and the second from a rotation of the [MCl 6] 2- octahedra. A third phase transition was observed at lower temperatures and was ascribed to a tetragonal distortion of the [MCl 6] 2- anions. Synthesis and study of their deuterated compounds did not show a significant isotope effect. As a result, Raman spectra performed on the protonated and deuterated compounds indicate only weak hydrogen bonding interactions between the TMA cations and the [MCl 6] 2- octahedra.« less

  18. The Discovery of Crown Ethers

    NASA Astrophysics Data System (ADS)

    Pedersen, Charles J.

    1988-07-01

    The discovery of the crown ethers stemmed from efforts to control the catalytic activity of vanadium and copper by complexation with multidentate ligands. The first crown ether, 2,3,11,12-dibenzo-1,4,7,10,13,16-hexaoxacyclo-octadeca-2,11-diene, was obtained in 0.4% yield during an attempt to prepare a phenolic ligand from catechol and bis(2-chloroethyl)ether. This compound, which complexed with the sodium cation, was the first compound known to display such activity and became known as dibenzo-18-crown-6, an 18-atom heterocycle containing 6 oxygen atoms. Some 60 related compounds were made involving heterocyclic rings containing 12 to 60 atoms including 4 and 10 oxygen atoms. There are optimum polyether ring sizes for the different alkali metal cations: 15 to 18 for sodium, 18 for potassium, and 18 to 21 for cesium. Complexes having polyether to cation ratios of 1:1, 3:2, and 2:1 were prepared. Solubilization of inorganic salts in aprotic solvents, especially by saturated crown ethers, was demonstrated.

  19. Synthesis and structure-activity relationship studies in a series of 2-substituted 1,3-dioxolanes modified at the cationic head.

    PubMed

    Angeli, P; Brasili, L; Cingolani, M L; Marucci, G; Piergentili, A; Pigini, M; Quaglia, W

    1997-04-01

    To develop ligands that may be useful in exploring muscarinic receptor heterogeneity, we synthesized a series of analogues of 2,2-diphenyl-[1,3]-dioxolan-4-ylmethyl-dimethylamine oxalate and methiodide bearing a modified cationic head. These compounds, when tested on tissues containing the three subtypes M1, M2, and M3, behaved as muscarinic antagonists whose results showed that different substituents on the quaternary and tertiary nitrogen affect affinity and selectivity in different ways. In particular comparison of the affinities of these ligands with those of the reference compounds points out that compounds bearing an ethyl substituent improve the affinity of the molecule at the three subtypes while compounds bearing a phenethyl substituent are more selective for the M3 sites.

  20. Determining the Effect of pH on the Partitioning of Neutral, Cationic and Anionic Chemicals to Artificial Sebum: New Physicochemical Insight and QSPR Model.

    PubMed

    Yang, Senpei; Li, Lingyi; Chen, Tao; Han, Lujia; Lian, Guoping

    2018-05-14

    Sebum is an important shunt pathway for transdermal permeation and targeted delivery, but there have been limited studies on its permeation properties. Here we report a measurement and modelling study of solute partition to artificial sebum. Equilibrium experiments were carried out for the sebum-water partition coefficients of 23 neutral, cationic and anionic compounds at different pH. Sebum-water partition coefficients not only depend on the hydrophobicity of the chemical but also on pH. As pH increases from 4.2 to 7.4, the partition of cationic chemicals to sebum increased rapidly. This appears to be due to increased electrostatic attraction between the cationic chemical and the fatty acids in sebum. Whereas for anionic chemicals, their sebum partition coefficients are negligibly small, which might result from their electrostatic repulsion to fatty acids. Increase in pH also resulted in a slight decrease of sebum partition of neutral chemicals. Based on the observed pH impact on the sebum-water partition of neutral, cationic and anionic compounds, a new quantitative structure-property relationship (QSPR) model has been proposed. This mathematical model considers the hydrophobic interaction and electrostatic interaction as the main mechanisms for the partition of neutral, cationic and anionic chemicals to sebum.

  1. Crystal chemistry of M{sup II}M′{sup IV}(PO{sub 4}){sub 2} double monophosphates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bregiroux, Damien, E-mail: damien.bregiroux@upmc.fr; Popa, Karin; Wallez, Gilles

    2015-10-15

    M{sup II}M′{sup IV}(PO{sub 4}){sub 2} compounds have been extensively studied for several decades for their potential applications in the field of several domains such as matrices for actinides conditioning, phosphors etc. In this paper, the relationships between composition and crystal structure of these compounds are established. A review of the various processes used for the synthesis of these compounds is also proposed, as well as their most reported properties. M{sup II}M′{sup IV}(PO{sub 4}){sub 2} structures stem from two different archetypes: the cheralite and the yavapaiite structures, with some exceptions that are also described in this article. The ratio of themore » cations radii appears to be the most relevant parameter. The high ratio between the ionic radii of the divalent and tetravalent cations in yavapaiite derivates results in the ordering of these cations into well-differentiated polyhedra whereas cheralite is the only non-ordered structure encountered for M{sup II}M′{sup IV}(PO{sub 4}){sub 2} compounds. - Graphical abstract: In this paper, the relationships between composition and crystal structure of M{sup II}M′{sup IV}(PO{sub 4}){sub 2} compounds are established. A review of the various processes used for the synthesis of these compounds is also proposed, as well as their most reported properties. - Highlights: • Crystal structure–composition relationships of MIIM′IV(PO4)2 compounds. • Review of the various processes used for the synthesis of these compounds. • Their most reported properties are described and discussed.« less

  2. Modeling interactions between a β-O-4 type lignin model compound and 1-allyl-3-methylimidazolium chloride ionic liquid.

    PubMed

    Zhu, Youtao; Yan, Jing; Liu, Chengbu; Zhang, Dongju

    2017-08-01

    Aiming at understanding the molecular mechanism of the lignin dissolution in imidazolium-based ionic liquids (ILs), this work presents a combined quantum chemistry (QC) calculation and molecular dynamics (MD) simulation study on the interaction of the lignin model compound, veratrylglycerol-β-guaiacyl ether (VG) with 1-allyl-3-methylimidazolium chloride ([Amim]Cl). The monomer of VG is shown to feature a strong intramolecular hydrogen bond, and its dimer is indicated to present important π-π stacking and intermolecular hydrogen bonding interactions. The interactions of both the cation and anion of [Amim]Cl with VG are shown to be stronger than that between the two monomers, indicating that [Amim]Cl is capable of dissolving lignin. While Cl - anion forms a hydrogen-bonded complex with VG, the imidazolium cation interacts with VG via both the π-π stacking and intermolecular hydrogen bonding. The calculated interaction energies between VG and the IL or its components (the cation, anion, and ion pair) indicate the anion plays a more important role than the cation for the dissolution of lignin in the IL. Theoretical results provide help for understanding the molecular mechanism of lignin dissolution in imidazolium-based IL. The theoretical calculations on the interaction between the lignin model compound and [Amim]Cl ionic liquid indicate that the anion of [Amim]Cl plays a more important role for lignin dissolution although the cation also makes a substantial contribution. © 2017 Wiley Periodicals, Inc.

  3. The antagonistic role of chaotropic hexafluorophosphate anions and imidazolium cations composing ionic liquids applied as phase additives in the separation of tri-cyclic antidepressants.

    PubMed

    Caban, Magda; Stepnowski, Piotr

    2017-05-15

    The main advantage of alkylimidazolium cation-based ionic liquids (ILs) as phase additives in RP-HPLC is believed to be the suppression of deleterious residual free silanols in chemically modified silica stationary phases. However, up to now, the influence of ILs was usually evaluated having in mind a particular IL salt as one compound, not as a specific mixture of cations and anions. This in fact led to some misinterpretation of observed results, very often related to the suppression effect, while in fact caused by the nature of IL anions, which contribute to the elevated chaotropicity of the separation phases. In the present study, we have attempted to consider the effect gained due to the presence of both ionic liquid entities in the mobile phase used for the separation of basic compounds. Tri-cyclic antidepressants (TCAs) were taken as representative analytes. The effect of ILs on the chromatographic separation of TCAs was investigated in comparison to common mobile phase additives and by the presentation of retention factors, tailing factors and theoretical plates. In addition, an overloading study was performed for the IL-based phases for the first time. In general, it was found that the effect of chaotropic hexafluorophosphate anions in ILs is much stronger and opposite to that caused by imidazolium cations. The overloading study gives interesting information on how imidazolium cations affect the separation of cationic analytes. Finally, the usefulness of imidazolium-based ILs as mobile phase modifiers in the RP-HPLC separation of basic compounds was discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Mitigating hERG Inhibition: Design of Orally Bioavailable CCR5 Antagonists as Potent Inhibitors of R5 HIV-1 Replication

    PubMed Central

    2012-01-01

    A series of CCR5 antagonists representing the thiophene-3-yl-methyl ureas were designed that met the pharmacological criteria for HIV-1 inhibition and mitigated a human ether-a-go-go related gene (hERG) inhibition liability. Reducing lipophilicity was the main design criteria used to identify compounds that did not inhibit the hERG channel, but subtle structural modifications were also important. Interestingly, within this series, compounds with low hERG inhibition prolonged the action potential duration (APD) in dog Purkinje fibers, suggesting a mixed effect on cardiac ion channels. PMID:24900457

  5. Developing ionic liquid forms of picloram with reduced negative effects on the aquatic environment.

    PubMed

    Tang, Gang; Wang, Baitao; Ding, Guanglong; Zhang, Wenbing; Liang, You; Fan, Chen; Dong, Hongqiang; Yang, Jiale; Kong, Dandan; Cao, Yongsong

    2018-03-01

    As a widely used herbicide, picloram has been frequently detected in the aquatic environment due to its high leaching potential and low adsorption by soil. To reduce aquatic environmental risk of this herbicide caused by leaching and runoff, five herbicidal ionic liquids (HILs) based on picloram were prepared by pairing isopropylamine, octylamine, octadecylamine, 1-methylimidazole, 4-methylmorpholine respectively. Their physicochemical properties including water solubility, octanol-water partition coefficient, surface activity, leaching, as well as soil adsorption were compared. The results showed that these properties could be adjusted by appropriate selection of counter cations. The HILs with long alkyl chains in cations had low water solubility and leaching characteristics, good surface tension and lipophilicity, as well as high soil adsorption. Compared with currently used picloram in the forms of potassium salts, HIL3 had more excellent herbicidal activity against broadleaf weeds and may offer a lower use dosage. The HILs based on picloram can reduce its negative effects on the aquatic environment and can be used as a desirable alternative to commercial herbicidal formulations of picloram in future. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Gold metal liquid-like droplets.

    PubMed

    Smirnov, Evgeny; Scanlon, Micheál D; Momotenko, Dmitry; Vrubel, Heron; Méndez, Manuel A; Brevet, Pierre-Francois; Girault, Hubert H

    2014-09-23

    Simple methods to self-assemble coatings and films encompassing nanoparticles are highly desirable in many practical scenarios, yet scarcely any examples of simple, robust approaches to coat macroscopic droplets with continuous, thick (multilayer), reflective and stable liquid nanoparticle films exist. Here, we introduce a facile and rapid one-step route to form films of reflective liquid-like gold that encase macroscopic droplets, and we denote these as gold metal liquid-like droplets (MeLLDs). The present approach takes advantage of the inherent self-assembly of gold nanoparticles at liquid-liquid interfaces and the increase in rates of nanoparticle aggregate trapping at the interface during emulsification. The ease of displacement of the stabilizing citrate ligands by appropriate redox active molecules that act as a lubricating molecular glue is key. Specifically, the heterogeneous interaction of citrate stabilized aqueous gold nanoparticles with the lipophilic electron donor tetrathiafulvalene under emulsified conditions produces gold MeLLDs. This methodology relies exclusively on electrochemical reactions, i.e., the oxidation of tetrathiafulvalene to its radical cation by the gold nanoparticle, and electrostatic interactions between the radical cation and nanoparticles. The gold MeLLDs are reversibly deformable upon compression and decompression and kinetically stable for extended periods of time in excess of a year.

  7. Simultaneous determination of cations, zwitterions and neutral compounds using mixed-mode reversed-phase and cation-exchange high-performance liquid chromatography.

    PubMed

    Li, Jingyi; Shao, Shan; Jaworsky, Markian S; Kurtulik, Paul T

    2008-03-28

    A novel mixed-mode reversed-phase and cation-exchange high-performance liquid chromatography (HPLC) method is described to simultaneously determine four related impurities of cations, zwitterions and neutral compounds in developmental Drug A. The commercial column is Primesep 200 containing hydrophobic alkyl chains with embedded acidic groups in H(+) form on a silica support. The mobile phase variables of acid additives, contents of acetonitrile and concentrations of potassium chloride have been thoroughly investigated to optimize the separation. The retention factors as a function of the concentrations of potassium chloride and the percentages of acetonitrile in the mobile phases are investigated to get an insight into the retention and separation mechanisms of each related impurity and Drug A. Furthermore, the elution orders of the related impurities and Drug A in an ion-pair chromatography (IPC) are compared to those in the mixed-mode HPLC to further understand the chromatographic retention behaviors of each related impurity and Drug A. The study found that the positively charged Degradant 1, Degradant 2 and Drug A were retained by both ion-exchange and reversed-phase partitioning mechanisms. RI2, a small ionic compound, was primarily retained by ion-exchange. RI4, a neutral compound, was retained through reversed-phase partitioning without ion-exchange. Moreover, the method performance characteristics of selectivity, sensitivity and accuracy have been demonstrated to be suitable to determine the related impurities in the capsules of Drug A.

  8. Dehydroleucodine, a Sesquiterpene Lactone from Gynoxys verrucosa, Demonstrates Cytotoxic Activity against Human Leukemia Cells.

    PubMed

    Ordóñez, Paola E; Sharma, Krishan K; Bystrom, Laura M; Alas, Maria A; Enriquez, Raul G; Malagón, Omar; Jones, Darin E; Guzman, Monica L; Compadre, Cesar M

    2016-04-22

    The sesquiterpene lactones dehydroleucodine (1) and leucodine (2) were isolated from Gynoxys verrucosa, a species used in traditional medicine in southern Ecuador. The activity of these compounds was determined against eight acute myeloid leukemia (AML) cell lines and compared with their activity against normal peripheral blood mononuclear cells. Compound 1 showed cytotoxic activity against the tested cell lines, with LD50 values between 5.0 and 18.9 μM. Compound 2 was inactive against all of the tested cell lines, demonstrating that the exocyclic methylene in the lactone ring is required for cytotoxic activity. Importantly, compound 1 induced less toxicity to normal blood cells than to AML cell lines and was active against human AML cell samples from five patients, with an average LD50 of 9.4 μM. Mechanistic assays suggest that compound 1 has a similar mechanism of action to parthenolide (3). Although these compounds have significant structural differences, their lipophilic surface signatures show striking similarities.

  9. Speciation of selenium in environmental samples by solid-phase spectrophotometry using 2,3-dichloro-6-(2,7-dihydroxy-naphthylazo)quinoxaline.

    PubMed

    Amin, Alaa S

    2014-01-01

    Solid-phase spectrophotometry was applied to determination of trace amounts of selenium (Se) in water, soil, plant materials, human hair, and a cosmetic preparation (lipstick). Se(IV) was sorbed in a dextran type lipophilic gel as a complex with 2,3-dichloro-6-(2,7-dihydroxy-naphthylazo)quinoxaline (DCDHNAQ), whereas Se(VI) was determined after boiling in HCI for 10 min to convert Se(VI) to Se(IV). Resin phase absorbances at 588 and 800 nm were measured directly, which allowed the determination of Se in the range of 0.2-3.3 microg/L with an RSD of 1.22%. The influences of analytical parameters including pH of the aqueous solution, amounts of DCDHNAQ, and sample volume were investigated. The molar absorptivities were found to be 1.09 x 10(6), 4.60 x 10(6), and 1.23 x 10(7) L/mol cm for 100, 500, and 1000 mL, respectively. The LOD and LOQ of the 500 mL sample method were 110 and 360 ng/L, respectively, when using 50 mg dextran type lipophilic gel. For a 1000 mL sample, the LOD and LOQ were 60 and 200 ng/L, respectively, using 50 mg of the exchanger. Increasing the sample volume enhanced the sensitivity. No considerable interferences were observed from other investigated anions and cations on the Se determination.

  10. pH-Directed assembly of four polyoxometalate-based supramolecular hybrids by using tritopic bridging ligand 1, 3, 5-tris-(1-imidazolyl)-benzene: Structures and electrocatalytic properties

    NASA Astrophysics Data System (ADS)

    Zhang, Zhuanfang; Pang, Haijun; Ma, Huiyuan; Li, Shaobin; Zhao, Chunyan

    2018-01-01

    Four new inorganic-organic supramolecular compounds, namely, (H2tib)2[GeW12O40] (1), [Mn(Htib)4][HGeW12O40]2·4H2O (2), [Mn(tib)]2(H2O)6[GeW12O40]·4H2O (3) and [Mn(tib)]2(H2O)6[GeW12O40]·2H2O (4) (tib = 1, 3, 5-tris-(1-imidazolyl)-benzene), have been synthesized through the hydrothermal reaction of [GeW12O40]4- anions, MnII cations and tib ligands under different pH conditions. Compounds 1 and 2 were prepared at lower pH (pH ≈ 2.0 for 1 and 3.2 for 2). Compound 1 exhibits a simple monomer structure. In 2, the Mn cation is coordinated with four tib ligands and two [GeW12 O40]4- anions to form a dimer, in which each of [GeW12 O40]4- anion connects with one Mn cation. Compounds 3 and 4 were pr

  11. Phase transitions and dielectric properties of a hexagonal ABX3 perovskite-type organic-inorganic hybrid compound: [C3H4NS][CdBr3].

    PubMed

    Liao, Wei-Qiang; Ye, Heng-Yun; Zhang, Yi; Xiong, Ren-Gen

    2015-06-21

    A new organic-inorganic hexagonal perovskite-type compound with the formula ABX3, thiazolium tribromocadmate(ii) (1), in which thiazolium cations are situated in the space between the one-dimensional chains of face-sharing CdBr(6) octahedra, has been successfully synthesized. Systematic characterizations including differential scanning calorimetry measurements, variable-temperature structural analyses, and dielectric measurements reveal that it undergoes two structural phase transitions, at 180 and 146 K. These phase transitions are accompanied by remarkable dielectric relaxation and anisotropy. The thiazolium cations remain orientationally disordered during the two phase transition processes. The origins of the phase transitions at 180 and 146 K are ascribed to the slowing down and reorientation of the molecular motions of the cations, respectively. Moreover, the dielectric relaxation process well described by the Cole-Cole equation and the prominent dielectric anisotropy are also connected with the dynamics of the dipolar thiazolium cations.

  12. Synthesis and structure-activity relationships of novel cationic lipids with anti-inflammatory and antimicrobial activities.

    PubMed

    Myint, Melissa; Bucki, Robert; Janmey, Paul A; Diamond, Scott L

    2015-07-15

    Certain membrane-active cationic steroids are known to also possess both anti-inflammatory and antimicrobial properties. This combined functionality is particularly relevant for potential therapies of infections associated with elevated tissue damage, for example, cystic fibrosis airway disease, a condition characterized by chronic bacterial infections and ongoing inflammation. In this study, six novel cationic glucocorticoids were synthesized using beclomethasone, budesonide, and flumethasone. Products were either monosubstituted or disubstituted, containing one or two steroidal groups, respectively. In vitro evaluation of biological activities demonstrated dual anti-inflammatory and antimicrobial properties with limited cytotoxicity for all synthesized compounds. Budesonide-derived compounds showed the highest degree of both glucocorticoid and antimicrobial properties within their respective mono- and disubstituted categories. Structure-activity analyses revealed that activity was generally related to the potency of the parent glucocorticoid. Taken together, these data indicate that these types of dual acting cationic lipids can be synthesized with the appropriate starting steroid to tailor activities as desired. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Conventional empirical law reverses in the phase transitions of 122-type iron-based superconductors

    DOE PAGES

    Yu, Zhenhai; Wang, Lin; Wang, Luhong; ...

    2014-11-24

    Phase transition of solid-state materials is a fundamental research topic in condensed matter physics, materials science and geophysics. It has been well accepted and widely proven that isostructural compounds containing different cations undergo same pressure-induced phase transitions but at progressively lower pressures as the cation radii increases. However, we discovered that this conventional law reverses in the structural transitions in 122-type iron-based superconductors. In this report, a combined low temperature and high pressure X-ray diffraction (XRD) measurement has identified the phase transition curves among the tetragonal (T), orthorhombic (O) and the collapsed-tetragonal (cT) phases in the structural phase diagram ofmore » the iron-based superconductor AFe 2As 2 (A = Ca, Sr, Eu, and Ba). As a result, the cation radii dependence of the phase transition pressure (T → cT) shows an opposite trend in which the compounds with larger ambient radii cations have a higher transition pressure.« less

  14. Effect of ionic radii on the Curie temperature in Ba1-x-ySrxCayTiO3 compounds.

    PubMed

    Berenov, A; Le Goupil, F; Alford, N

    2016-06-21

    A series of Ba1-x-ySrxCayTiO3 compounds were prepared with varying average ionic radii and cation disorder on A-site. All samples showed typical ferroelectric behavior. A simple empirical equation correlated Curie temperature, TC, with the values of ionic radii of A-site cations. This correlation was related to the distortion of TiO6 octahedra observed during neutron diffraction studies. The equation was used for the selection of compounds with predetermined values of TC. The effects of A-site ionic radii on the temperatures of phase transitions in Ba1-x-ySrxCayTiO3 were discussed.

  15. Sorption of structurally different ionized pharmaceutical and illicit drugs to a mixed-mode coated microsampler.

    PubMed

    Peltenburg, Hester; Timmer, Niels; Bosman, Ingrid J; Hermens, Joop L M; Droge, Steven T J

    2016-05-20

    The mixed-mode (C18/strong cation exchange-SCX) solid-phase microextraction (SPME) fiber has recently been shown to have increased sensitivity for ionic compounds compared to more conventional sampler coatings such as polyacrylate and polydimethylsiloxane (PDMS). However, data for structurally diverse compounds to this (prototype) sampler coating are too limited to define its structural limitations. We determined C18/SCX fiber partitioning coefficients of nineteen cationic structures without hydrogen bonding capacity besides the charged group, stretching over a wide hydrophobicity range (including amphetamine, amitriptyline, promazine, chlorpromazine, triflupromazine, difenzoquat), and eight basic pharmaceutical and illicit drugs (pKa>8.86) with additional hydrogen bonding moieties (MDMA, atenolol, alprenolol, metoprolol, morphine, nicotine, tramadol, verapamil). In addition, sorption data for three neutral benzodiazepines (diazepam, temazepam, and oxazepam) and the anionic NSAID diclofenac were collected to determine the efficiency to sample non-basic drugs. All tested compounds showed nonlinear isotherms above 1mmol/L coating, and linear isotherms below 1mmol/L. The affinity for C18/SCX-SPME for tested organic cations without Hbond capacities increased with longer alkyl chains, ranging from logarithmic fiber-water distribution coefficients (log Dfw) of 1.8 (benzylamine) to 5.8 (triflupromazine). Amines smaller than benzylamine may thus have limited detection levels, while cationic surfactants with alkyl chain lengths >12 carbon atoms may sorb too strong to the C18/SCX sampler which hampers calibration of the fiber-water relationship in the linear range. The log Dfw for these simple cation structures closely correlates with the octanol-water partition coefficient of the neutral form (Kow,N), and decreases with increased branching and presence of multiple aromatic rings. Oxygen moieties in organic cations decreased the affinity for C18/SCX-SPME. Log Dfw values of neutral benzodiazepines were an order of magnitude higher than their log Kow,N. Results for anionic diclofenac species (logKow,N 4.5, pKa 4.0, log Dfw 2.9) indicate that the C18-SCX fiber might also be useful for sampling of organic anions. This data supports our theory that C18-based coatings are able to sorb ionized compounds through adsorption and demonstrates the applicability of C18-based SPME in the measurement of freely dissolved concentrations of a wide range of ionizable compounds. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. New salts of amino acids with dimeric cations

    NASA Astrophysics Data System (ADS)

    Ghazaryan, V. V.; Fleck, M.; Petrosyan, A. M.

    2010-10-01

    Among salts of amino acids there are compounds with the composition 2A..HX, which consist of dimeric A...A+ cations with short symmetric or asymmetric hydrogen bonds between zwitter-ionic and protonated moieties. These species are materials liable to undergo phase transitions or possess interesting nonlinear optical properties. Here, we report the preparation of 20 new salts with dimeric cations from aqueous solutions, including compounds of glycine, betaine, β- alanine, L-alanine, L-phenylalanine, L-threonine, L-valine, L-leucine and L-proline, with BF4-, ClO4-, Cl-, Br-, HSeO3-, and HC2O4-; as anions. The prepared salts are characterized by IR and Raman spectroscopy. Some of them are grown in form of good quality single crystals, which allowed the determination of their crystal structure.

  17. Determination of arsenate and organic arsenic via potentiometric titration of its heteropoly anions.

    PubMed

    Metelka, R; Slavíková, S; Vytras, K

    2002-08-16

    Determination of arsenate based on its conversion to molybdoarsenate heteropoly anions followed by potentiometric titration is described. The titration is realized on the ion-pairing principle using cetylpyridinium chloride (or an analogous titrant containing a lipophilic cation), and is monitored by a carbon paste electrode, although other liquid-polymeric membrane-based electrodes can also be used. Calibration plots of the titrant end-point consumption versus concentration of arsenic were constructed and used to evaluate the content of arsenic in aqueous samples. The method could be applied in the analyses of samples with quite low arsenic content (amounts approximately 10 mug As in 50 cm(3) could be titrated). Organic arsenic was determined analogously after the Schöniger combustion of the sample and conversion of its arsenic to arsenate.

  18. Identification of Organics in Ice Grains from Enceladus

    NASA Astrophysics Data System (ADS)

    Khawaja, N.; Postberg, F.; Reviol, R.; Nölle, L.; Klenner, F.; Srama, R.

    2015-12-01

    The Cosmic Dust Analyzer (CDA) aboard the Cassini spacecraft performs in-situ measurements of the chemical composition of icy dust grains impinging onto the target surface. The instrument recorded cationic Time-of-Flight (ToF) mass spectra of organic-bearing ice grains emitted from Enceladus at different impact velocities causing different molecular fragmentation patterns [1,2]. Here we present a detailed analysis of these spectra (Type-2) to identify the composition of organic material embedded in Enceladus ice grains. The organic compounds display a great compositional diversity, which indicates varying contributions of several organic species. The spectra analysis is supported by a large-scale laboratory ground campaign yielding a library of analogue spectra for organic material embedded in a water ice matrix. To mimic the identified pattern of cationic fragments in organic enriched spectra we use a laboratory setup: Infrared Free Liquid MALDI ToF Mass Spectrometer (IR-FL-MALDI-ToF-MS). An infrared laser is used to disperse a liquid micro-beam of a water-solution to get cationic fragments. The laser energy is adjusted to simulate different impact velocities of ice particles on CDA [3]. So far we have identified characteristic fragment patterns of at least three classes of organic molecules: (i) aromatic species, (ii) amines, and (iii) carbonyl group species. (i) ice grains containing aromatic species are identified by a series of characteristic aromatic fragment cations (ii) ice grains containing amines are identified by a pronounced ammonium cation and (iii) ice grains containing carbonyl compounds are specified by a characteristic acylium cation in conjunction with certain others mass lines. Besides aromatic, amine and carbonyl species, Type-2 spectra also show contributions from other, yet un-specified, organic species. Typically, fragment cations of aromatic compounds are stable at impact velocities up-to 15km/s whereas cations of amines and carbonyl species are stable at velocities below 8km/s. Work is in progress to quantify concentrations of the identified species and to assign yet un-specified organic mass lines in Type 2 spectra. Ref: [1]Postberg et al., Icarus-193,2008. [2]Postberg et al., Nature-459,2009. [3]Beinsen, A., University of Göttingen, Dissertation (2011).

  19. Identification and characterization of 4-aryl-3,4-dihydropyrimidin-2(1H)-ones as inhibitors of the fatty acid transporter FATP4.

    PubMed

    Blackburn, Christopher; Guan, Bing; Brown, James; Cullis, Courtney; Condon, Stephen M; Jenkins, Tracy J; Peluso, Stephane; Ye, Yingchun; Gimeno, Ruth E; Punreddy, Sandhya; Sun, Ying; Wu, Hui; Hubbard, Brian; Kaushik, Virendar; Tummino, Peter; Sanchetti, Praveen; Yu Sun, Dong; Daniels, Tom; Tozzo, Effie; Balani, Suresh K; Raman, Prakash

    2006-07-01

    Several potent, cell permeable 4-aryl-dihydropyrimidinones have been identified as inhibitors of FATP4. Lipophilic ester substituents at the 5-position and substitution at the para-position (optimal groups being -NO(2) and CF(3)) of the 4-aryl group led to active compounds. In two cases racemates were resolved and the S enantiomers shown to have higher potencies.

  20. Prodrugs for Gene-Directed Enzyme-Prodrug Therapy (Suicide Gene Therapy)

    PubMed Central

    2003-01-01

    This review focuses on the prodrugs used in suicide gene therapy. These prodrugs need to satisfy a number of criteria. They must be efficient and selective substrates for the activating enzyme, and be metabolized to potent cytotoxins preferably able to kill cells at all stages of the cell cycle. Both prodrugs and their activated species should have good distributive properties, so that the resulting bystander effects can maximize the effectiveness of the therapy, since gene transduction efficiencies are generally low. A total of 42 prodrugs explored for use in suicide gene therapy with 12 different enzymes are discussed, particularly in terms of their physiocochemical properties. An important parameter in determining bystander effects generated by passive diffusion is the lipophilicity of the activated form, a property conveniently compared by diffusion coefficients (log P for nonionizable compounds and log D7 for compounds containing an ionizable centre). Many of the early antimetabolite-based prodrugs provide very polar activated forms that have limited abilities to diffuse across cell membranes, and rely on gap junctions between cells for their bystander effects. Several later studies have shown that more lipophilic, neutral compounds have superior diffusion-based bystander effects. Prodrugs of DNA alkylating agents, that are less cell cycle-specific than antimetabolites and more effective against noncycling tumor cells, appear in general to be more active prodrugs, requiring less prolonged dosing schedules to be effective. It is expected that continued studies to optimize the bystander effects and other properties of prodrugs and the activated species they generate will contribute to improvements in the effectiveness of suicide gene therapy. PMID:12686722

  1. Highly conformationally constrained halogenated 6-spiroepoxypenicillins as probes for the bioactive side-chain conformation of benzylpenicillin

    NASA Astrophysics Data System (ADS)

    Shute, Richard E.; Jackson, David E.; Bycroft, Barrie W.

    1989-06-01

    The halogenated 6-spiroepoxypenicillins are a series of novel semisynthetic β-lactam compounds with highly conformationally restricted side chains incorporating an epoxide. Their biological activity profiles depend crucially on the configuration at position C-3 of that epoxide. In derivatives with aromatic-containing side chains, e.g., anilide, the 3 R-compounds possess notable Gram-positive antibacterial activity and potent β-lactamase inhibitory properties. The comparable 3S-compounds are antibacterially inactive, but retain β-lactamase inhibitory activity. Using the molecular simulation programs COSMIC and ASTRAL, we attempted to map a putative, lipophilic accessory binding site on the PBPs that must interact with the side-chain aromatic residue. Comparative computer-assisted modelling of the 3 R, and 3 S-anilides, along with benzylpenicillin, indicated that the available conformational space at room temperature for the side chains of the 3 R and the 3 S-anilides was mutually exclusive. The conformational space for the more flexible benzylpenicillin could accommodate the side chains of both the constrained penicillin derivatives. By a combination of van der Waals surface calculations and a pharmacophoric distance approach, closely coincident conformers of the 3 R-anilide and benzylpenicillin were identified. These conformers must be related to the antibacterial, `bioactive' conformer for the classical β-lactam antibiotics. From these proposed bioactive conformations, a model for the binding of benzylpenicillin to the PBPs relating the three-dimensional arrangement of a putative lipophilic S2-subsite, specific for the side-chain aromatic moiety, and the 3 α-carboxylate functionality is presented.

  2. Development of a high-throughput brain slice method for studying drug distribution in the central nervous system.

    PubMed

    Fridén, Markus; Ducrozet, Frederic; Middleton, Brian; Antonsson, Madeleine; Bredberg, Ulf; Hammarlund-Udenaes, Margareta

    2009-06-01

    New, more efficient methods of estimating unbound drug concentrations in the central nervous system (CNS) combine the amount of drug in whole brain tissue samples measured by conventional methods with in vitro estimates of the unbound brain volume of distribution (V(u,brain)). Although the brain slice method is the most reliable in vitro method for measuring V(u,brain), it has not previously been adapted for the needs of drug discovery research. The aim of this study was to increase the throughput and optimize the experimental conditions of this method. Equilibrium of drug between the buffer and the brain slice within the 4 to 5 h of incubation is a fundamental requirement. However, it is difficult to meet this requirement for many of the extensively binding, lipophilic compounds in drug discovery programs. In this study, the dimensions of the incubation vessel and mode of stirring influenced the equilibration time, as did the amount of brain tissue per unit of buffer volume. The use of cassette experiments for investigating V(u,brain) in a linear drug concentration range increased the throughput of the method. The V(u,brain) for the model compounds ranged from 4 to 3000 ml . g brain(-1), and the sources of variability are discussed. The optimized setup of the brain slice method allows precise, robust estimation of V(u,brain) for drugs with diverse properties, including highly lipophilic compounds. This is a critical step forward for the implementation of relevant measurements of CNS exposure in the drug discovery setting.

  3. Enhanced photocatalytic activity of TiO2 by surface fluorination in degradation of organic cationic compound.

    PubMed

    Yang, Shi-ying; Chen, You-yuan; Zheng, Jian-guo; Cui, Ying-jie

    2007-01-01

    Experiments were carried out to investigate the influence of TiO2 surface fluorination on the photodegradation of a representative organic cationic compound, Methylene Blue (MB). The electropositive MB shows poor adsorption on TiO2 surface; its degradation performs a HO-radical-mediated mechanism. In the F-modified system, the kinetic reaction rate enlarged more than 2.5 fold that was attributed mainly to the accumulating adsorption of MB and the increased photogenerated hole available on the F-modified TiO2 surface.

  4. Process for preparing active oxide powders

    DOEpatents

    Berard, Michael F.; Hunter, Jr., Orville; Shiers, Loren E.; Dole, Stephen L.; Scheidecker, Ralph W.

    1979-02-20

    An improved process for preparing active oxide powders in which cation hydroxide gels, prepared in the conventional manner are chemically dried by alternately washing the gels with a liquid organic compound having polar characteristics and a liquid organic compound having nonpolar characteristics until the mechanical water is removed from the gel. The water-free cation hydroxide is then contacted with a final liquid organic wash to remove the previous organic wash and speed drying. The dried hydroxide treated in the conventional manner will form a highly sinterable active oxide powder.

  5. Effect of Hydrotropic Compounds on the Self-Organization and Solubilization Properties of Cationic Surfactants

    NASA Astrophysics Data System (ADS)

    Gaynanova, G. A.; Valeeva, F. G.; Kushnazarova, R. A.; Bekmukhametova, A. M.; Zakharov, S. V.; Mirgorodskaya, A. B.; Zakharova, L. Ya.

    2018-07-01

    The effect hydrotropic additives (salts of aromatic acids and choline chloride) have on the micelle-forming properties (the critical concentrations of micelle formation and the Krafft temperature) of cationic surfactants, and on the solubilization capability of mono- and dicationic surfactants toward such hydrophobic compounds as a Sudan I spectral probe and curcumin natural dye, is considered. The factors that govern solubilization capacity, e.g., the structure of the head group of surfactants, the nature of the solubilizate and hydrotropic additives, and the pH of the medium are determined.

  6. Quat co-formulations optimized for use with cotton nonwoven disposable wipes

    USDA-ARS?s Scientific Manuscript database

    Quaternary ammonium compounds, commonly referred to as quats, are cationic surfactants widely used as the active biocidal ingredient for disposable disinfecting wipes. The cationic nature of quats results in a strong ionic interaction and adsorption onto wipes materials that have an anionic surface...

  7. Potential of Fruit Wastes as Natural Resources of Bioactive Compounds

    PubMed Central

    Deng, Gui-Fang; Shen, Chen; Xu, Xiang-Rong; Kuang, Ru-Dan; Guo, Ya-Jun; Zeng, Li-Shan; Gao, Li-Li; Lin, Xi; Xie, Jie-Feng; Xia, En-Qin; Li, Sha; Wu, Shan; Chen, Feng; Ling, Wen-Hua; Li, Hua-Bin

    2012-01-01

    Fruit wastes are one of the main sources of municipal waste. In order to explore the potential of fruit wastes as natural resources of bioactive compounds, the antioxidant potency and total phenolic contents (TPC) of lipophilic and hydrophilic components in wastes (peel and seed) of 50 fruits were systematically evaluated. The results showed that different fruit residues had diverse antioxidant potency and the variation was very large. Furthermore, the main bioactive compounds were identified and quantified, and catechin, cyanidin 3-glucoside, epicatechin, galangin, gallic acid, homogentisic acid, kaempferol, and chlorogenic acid were widely found in these residues. Especially, the values of ferric-reducing antioxidant power (FRAP), trolox equivalent antioxidant capacity (TEAC) and TPC in the residues were higher than in pulps. The results showed that fruit residues could be inexpensive and readily available resources of bioactive compounds for use in the food and pharmaceutical industries. PMID:22942704

  8. Morphological changes in vesicles and release of an encapsulated compound triggered by a photoresponsive Malachite Green leuconitrile derivative.

    PubMed

    Uda, Ryoko M; Hiraishi, Eri; Ohnishi, Ryo; Nakahara, Yoshio; Kimura, Keiichi

    2010-04-20

    Photoinduced morphological changes in phosphatidylcholine vesicles are triggered by a Malachite Green leuconitrile derivative dissolved in the lipidic membrane, and are observed at Malachite Green derivative/lipid ratios <5 mol %. This Malachite Green derivative is a photoresponsive compound that undergoes ionization to afford a positive charge on the molecule by UV irradiation. The Malachite Green derivative exhibits amphiphilicity when ionized photochemically, whereas it behaves as a lipophilic compound under dark conditions. Cryo-transmission electron microscopy was used to determine vesicle morphology. The effects of the Malachite Green derivative on vesicles were studied by dynamic light scattering and fluorescence resonance energy transfer. Irradiation of vesicles containing the Malachite Green derivative induces nonspherical vesicle morphology, fusion of vesicles, and membrane solubilization, depending on conditions. Furthermore, irradiation of the Malachite Green derivative induces the release of a vesicle-encapsulated compound.

  9. Potential of fruit wastes as natural resources of bioactive compounds.

    PubMed

    Deng, Gui-Fang; Shen, Chen; Xu, Xiang-Rong; Kuang, Ru-Dan; Guo, Ya-Jun; Zeng, Li-Shan; Gao, Li-Li; Lin, Xi; Xie, Jie-Feng; Xia, En-Qin; Li, Sha; Wu, Shan; Chen, Feng; Ling, Wen-Hua; Li, Hua-Bin

    2012-01-01

    Fruit wastes are one of the main sources of municipal waste. In order to explore the potential of fruit wastes as natural resources of bioactive compounds, the antioxidant potency and total phenolic contents (TPC) of lipophilic and hydrophilic components in wastes (peel and seed) of 50 fruits were systematically evaluated. The results showed that different fruit residues had diverse antioxidant potency and the variation was very large. Furthermore, the main bioactive compounds were identified and quantified, and catechin, cyanidin 3-glucoside, epicatechin, galangin, gallic acid, homogentisic acid, kaempferol, and chlorogenic acid were widely found in these residues. Especially, the values of ferric-reducing antioxidant power (FRAP), trolox equivalent antioxidant capacity (TEAC) and TPC in the residues were higher than in pulps. The results showed that fruit residues could be inexpensive and readily available resources of bioactive compounds for use in the food and pharmaceutical industries.

  10. Simultaneously hermaphroditic shrimp use lipophilic cuticular hydrocarbons as contact sex pheromones.

    PubMed

    Zhang, Dong; Terschak, John A; Harley, Maggy A; Lin, Junda; Hardege, Jörg D

    2011-04-20

    Successful mating is essentially a consequence of making the right choices at the correct time. Animals use specific strategies to gain information about a potential mate, which is then applied to decision-making processes. Amongst the many informative signals, odor cues such as sex pheromones play important ecological roles in coordinating mating behavior, enabling mate and kin recognition, qualifying mate choice, and preventing gene exchange among individuals from different populations and species. Despite overwhelming behavioral evidence, the chemical identity of most cues used in aquatic organisms remains unknown and their impact and omnipresence have not been fully recognized. In many crustaceans, including lobsters and shrimps, reproduction happens through a cascade of events ranging from initial attraction to formation of a mating pair eventually leading to mating. We examined the hypothesis that contact pheromones on the female body surface of the hermaphroditic shrimp Lysmata boggessi are of lipophilic nature, and resemble insect cuticular hydrocarbon contact cues. Via chemical analyses and behavioural assays, we show that newly molted euhermaphrodite-phase shrimp contain a bouquet of odor compounds. Of these, (Z)-9-octadecenamide is the key odor with hexadecanamide and methyl linoleate enhancing the bioactivity of the pheromone blend. Our results show that in aquatic systems lipophilic, cuticular hydrocarbon contact sex pheromones exist; this raises questions on how hydrocarbon contact signals evolved and how widespread these are in the marine environment.

  11. Comparative release studies on suppositories using the basket, paddle, dialysis tubing and flow-through cell methods I. Acetaminophen in a lipophilic base suppository.

    PubMed

    Hori, Seiichi; Kawada, Tsubasa; Kogure, Sanae; Yabu, Shinako; Mori, Kenji; Akimoto, Masayuki

    2017-02-01

    The release characteristics of lipophilic suppositories containing acetaminophen (AAP) were examined using four types of dissolution methods: the basket, paddle, dialysis tubing (DT) and flow-through cell (FTC) methods. The suitability of each apparatus for quality control in AAP compounded suppositories was evaluated using statistical procedures. More than 80% of the drug was released over 60 min in all the release methods studied, with the exception of the basket method. Reproducible and faster release was achieved using the paddle method at 100 and 200 rpm, whereas poor release occurred with the basket method. The mean dissolution time (MDT), maximum dissolved quantity of AAP at the end of the sampling time (Q) and dissolution efficiency (DE) were calculated by model-independent methods. The FTC method with a single chamber used in this study was also appreciable for AAP suppositories (Q of 100%, MDT of 71-91 min and DE of 75-80%). The DT apparatus is considered similar to the FTC apparatus from a quality control perspective for judging the release properties of lipophilic base suppositories containing AAP. However, even the single chamber FTC used in this study has potential as an in vitro drug release test for suppositories. The comparative dissolution method is expected to become one of the valuable tools for selecting an adequate dissolution test.

  12. Hydrotropic Solubilization of Lipophilic Drugs for Oral Delivery: The Effects of Urea and Nicotinamide on Carbamazepine Solubility–Permeability Interplay

    PubMed Central

    Beig, Avital; Lindley, David; Miller, Jonathan M.; Agbaria, Riad; Dahan, Arik

    2016-01-01

    Hydrotropy refers to increasing the water solubility of otherwise poorly soluble compound by the presence of small organic molecules. While it can certainly increase the apparent solubility of a lipophilic drug, the effect of hydrotropy on the drugs’ permeation through the intestinal membrane has not been studied. The purpose of this work was to investigate the solubility–permeability interplay when using hydrotropic drug solubilization. The concentration-dependent effects of the commonly used hydrotropes urea and nicotinamide, on the solubility and the permeability of the lipophilic antiepileptic drug carbamazepine were studied. Then, the solubility–permeability interplay was mathematically modeled, and was compared to the experimental data. Both hydrotropes allowed significant concentration-dependent carbamazepine solubility increase (up to ∼30-fold). A concomitant permeability decrease was evident both in vitro and in vivo (∼17-fold for nicotinamide and ∼9-fold for urea), revealing a solubility–permeability tradeoff when using hydrotropic drug solubilization. A relatively simplified simulation approach based on proportional opposite correlation between the solubility increase and the permeability decrease at a given hydrotrope concentration allowed excellent prediction of the overall solubility–permeability tradeoff. In conclusion, when using hydrotropic drug solubilization it is prudent to not focus solely on solubility, but to account for the permeability as well; achieving optimal solubility–permeability balance may promote the overall goal of the formulation to maximize oral drug exposure. PMID:27826241

  13. Determination of lipophilic marine toxins in mussels. Quantification and confirmation criteria using high resolution mass spectrometry.

    PubMed

    Domènech, Albert; Cortés-Francisco, Nuria; Palacios, Oscar; Franco, José M; Riobó, Pilar; Llerena, José J; Vichi, Stefania; Caixach, Josep

    2014-02-07

    A multitoxin method has been developed for quantification and confirmation of lipophilic marine biotoxins in mussels by liquid chromatography coupled to high resolution mass spectrometry (HRMS), using an Orbitrap-Exactive HCD mass spectrometer. Okadaic acid (OA), yessotoxin, azaspiracid-1, gymnodimine, 13-desmethyl spirolide C, pectenotoxin-2 and Brevetoxin B were analyzed as representative compounds of each lipophilic toxin group. HRMS identification and confirmation criteria were established. Fragment and isotope ions and ion ratios were studied and evaluated for confirmation purpose. In depth characterization of full scan and fragmentation spectrum of the main toxins were carried out. Accuracy (trueness and precision), linearity, calibration curve check, limit of quantification (LOQ) and specificity were the parameters established for the method validation. The validation was performed at 0.5 times the current European Union permitted levels. The method performed very well for the parameters investigated. The trueness, expressed as recovery, ranged from 80% to 94%, the precision, expressed as intralaboratory reproducibility, ranged from 5% to 22% and the LOQs range from 0.9 to 4.8pg on column. Uncertainty of the method was also estimated for OA, using a certified reference material. A top-down approach considering two main contributions: those arising from the trueness studies and those coming from the precision's determination, was used. An overall expanded uncertainty of 38% was obtained. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. The Effect of Capsaicin Derivatives on Tight-Junction Integrity and Permeability of Madin-Darby Canine Kidney Cells.

    PubMed

    Kaiser, Mathias; Chalapala, Sudharani; Gorzelanny, Christian; Perali, Ramu Sridhar; Goycoolea, Francisco Martin

    2016-02-01

    Capsaicin is known to interfere with tight junctions (TJs) of epithelial cells and therefore to enhance paracellular permeability of poorly absorbable drugs. However, due to its low water solubility, pungency, and cytotoxicity, its pharmacologic use is limited. In this study, we investigated the effect of capsaicin derivatives of synthetic (e.g., 10-hydroxy-N-(4-hydroxy-3-methoxybenzyl)decanamide, etc.) and natural (olvanil and dihydrocapsaicin) origin on Madin-Darby Canine Kidney-C7 cells. Impedance spectroscopy was used to determine the transepithelial electrical resistance and the capacitance. Permeability assays with fluorescein isothiocyanate-dextran were carried out to evaluate the impact on cell permeability. The results show that lipophilicity could play an important role for the interference with TJ and that the mechanism is independent from the ion channel TRPV-1 and hence on the flux of calcium into the cells. In summary, we synthesized 4 derivatives of capsaicin of lower lipophilicity and compared their properties with other well-known vanilloids. We show that these compounds are able to enhance the permeability of a hydrophilic macromolecule, by opening the TJ for a shorter time than capsaicin. This behavior is dependent on the lipophilicity of the molecule. Understanding of these phenomena may lead to better control of administration of therapeutic molecules. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  15. Transdermal absorption of memantin--effect of chemical enhancers, iontophoresis, and role of enhancer lipophilicity.

    PubMed

    del Rio-Sancho, S; Serna-Jiménez, C E; Calatayud-Pascual, M A; Balaguer-Fernández, C; Femenía-Font, A; Merino, V; López-Castellano, A

    2012-09-01

    The transdermal administration of memantine may have advantages with respect to oral therapy when treating advanced stages of Alzheimer's disease. With the ultimate objective of administrating memantine through a transdermal patch, the absorption of the drug across skin was evaluated by means of in vitro permeation studies. The effect of several chemical enhancers was studied in order to enhance percutaneous absorption of the memantine. The iontophoretic transdermal transport of memantine hydrochloride using a current density of 0.5 mA/cm(2) was also investigated. Results demonstrated that pre-treatment of the skin with R-(+)-limonene, laurocapram, decenoic acid, or oleic acid produced a statistically significant increment in the transdermal flux of memantine hydrochloride with respect to the control. Iontophoresis exhibited the greatest ability to enhance the flux of drug with respect to the control; nevertheless, the results obtained with R-(+)-limonene indicate that this compound could be of great use as a percutaneous enhancer in a memantine transdermal delivery system. In this study, the relationship between enhancement activity and lipophilicity was also studied. Satisfactory correlations have been obtained between the optimum lipophilicity of the enhancer and n-octanol/water partition coefficients of drugs. This relationship is a very useful tool that could allow to reduce time and to optimize the selection of appropriate enhancers for transdermal formulations. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Organic non-aqueous cation-based redox flow batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Lu; Huang, Jinhua; Burrell, Anthony

    The present invention provides a non-aqueous redox flow battery comprising a negative electrode immersed in a non-aqueous liquid negative electrolyte, a positive electrode immersed in a non-aqueous liquid positive electrolyte, and a cation-permeable separator (e.g., a porous membrane, film, sheet, or panel) between the negative electrolyte from the positive electrolyte. During charging and discharging, the electrolytes are circulated over their respective electrodes. The electrolytes each comprise an electrolyte salt (e.g., a lithium or sodium salt), a transition-metal free redox reactant, and optionally an electrochemically stable organic solvent. Each redox reactant is selected from an organic compound comprising a conjugated unsaturatedmore » moiety, a boron cluster compound, and a combination thereof. The organic redox reactant of the positive electrolyte comprises a tetrafluorohydroquinone ether compound or a tetrafluorocatechol ether compound.« less

  17. Gemini ester quat surfactants and their biological activity.

    PubMed

    Łuczyński, Jacek; Frąckowiak, Renata; Włoch, Aleksandra; Kleszczyńska, Halina; Witek, Stanisław

    2013-03-01

    Cationic gemini surfactants are an important class of surface-active compounds that exhibit much higher surface activity than their monomeric counterparts. This type of compound architecture lends itself to the compound being easily adsorbed at interfaces and interacting with the cellular membranes of microorganisms. Conventional cationic surfactants have high chemical stability but poor chemical and biological degradability. One of the main approaches to the design of readily biodegradable and environmentally friendly surfactants involves inserting a bond with limited stability into the surfactant molecule to give a cleavable surfactant. The best-known example of such a compound is the family of ester quats, which are cationic surfactants with a labile ester bond inserted into the molecule. As part of this study, a series of gemini ester quat surfactants were synthesized and assayed for their biological activity. Their hemolytic activity and changes in the fluidity and packing order of the lipid polar heads were used as the measures of their biological activity. A clear correlation between the hemolytic activity of the tested compounds and their alkyl chain length was established. It was found that the compounds with a long hydrocarbon chain showed higher activity. Moreover, the compounds with greater spacing between their alkyl chains were more active. This proves that they incorporate more easily into the lipid bilayer of the erythrocyte membrane and affect its properties to a greater extent. A better understanding of the process of cell lysis by surfactants and of their biological activity may assist in developing surfactants with enhanced selectivity and in widening their range of application.

  18. Simultaneous liquid chromatographic determination of metals and organic compounds in pharmaceutical and food-supplement formulations using evaporative light scattering detection.

    PubMed

    Spacil, Zdenek; Folbrova, Jana; Megoulas, Nikolaos; Solich, Petr; Koupparis, Michael

    2007-02-05

    A novel method for the non-derivatization liquid chromatographic determination of metals (potassium, aluminium, calcium and magnesium) and organic compounds (ascorbate and aspartate) was developed and validated based on evaporative light scattering detection (ELSD). Separation of calcium, magnesium and aluminium was achieved by the cation exchange column Dionex CS-14 and an aqueous TFA mobile phase according to the following time program: 0-6 min TFA 0.96 mL L(-1), 6-7 min linear gradient from TFA 0.96-6.4 mL L(-1). Separation of potassium, magnesium and aspartate was achieved by the lipophilic C18 Waters Spherisorb column and isocratic aqueous 0.2 mL L(-1) TFA mobile phase. Separation of sodium, magnesium, ascorbate and citrate was also achieved by the C18 analytical column, according to the following elution program: 0-2.5 min aqueous nonafluoropentanoic acid (NFPA) 0.5 mL L(-1); 2.5-3.5 min linear gradient from 0.5 mL L(-1) NFPA to 1.0 mL L(-1) TFA. In all cases, evaporation temperature was 70 degrees C, pressure of the nebulizing gas (nitrogen) 3.5 bar, gain 11 and the flow rate 1.0 mL min(-1). Resolution among calcium and magnesium was 1.8, while for all other separations was > or = 3.2. Double logarithmic calibration curves were obtained within various ranges from 3-24 to 34-132 microg mL(-1), and with good correlation (r>0.996). Asymmetry factor ranged from 0.9 to 1.9 and limit of detection from 1.3 (magnesium) to 17 microg mL(-1) (ascorbate). The developed method was applied for the assay of potassium, magnesium, calcium, aluminium, aspartate and ascorbate in pharmaceuticals and food-supplements. The accuracy of the method was evaluated using spiked samples (%recovery 95-105%, %R.S.D. < 2) and the absence of constant or proportional errors was confirmed by dilution experiments.

  19. Tris[4-(dimethyl­amino)­pyridinium] hexa­kis­(thio­cyanato-κN)ferrate(III) monohydrate

    PubMed Central

    Wöhlert, Susanne; Jess, Inke; Näther, Christian

    2013-01-01

    In the title compound, (C7H11N2)3[Fe(NCS)6]·H2O, the FeIII cation is coordinated by six terminal N-bonded thio­cyanate anions into a discrete threefold negatively charged complex. Charge balance is achieved by three protonated 4-(dimethyl­amino)­pyridine cations. The asymmetric unit consists of one FeIII cation, six thio­cyanate anions, three 4-(dimethyl­amino)­pyridinium cations and one water mol­ecule, all of them located in general positions. PMID:23476331

  20. Effects of pH and cationic and nonionic surfactants on the adsorption of pharmaceuticals to a natural aquifer material.

    PubMed

    Hari, Ajai C; Paruchuri, Rajiv A; Sabatini, David A; Kibbey, Tohren C G

    2005-04-15

    A wide range of pharmaceutical compounds have been identified in the environment, and their presence is a topic of growing concern, both for human and ecological health. Adsorption to aquifer materials and sediments is an important factor influencing the fate and transport of pharmaceutical compounds in the environment. Surfactants and other amphiphiles are known to influence the adsorption of many compounds and may be present in the environment from wastewaters or other sources. The work described here examines the adsorption of four pharmaceutical compounds, acetaminophen, carbamazepine, nalidixic acid, and norfloxacin, in the presence of a natural aquifer material. Adsorption was studied as a function of pH and in the presence and absence of two surfactants, cetylpyridinium chloride (CPC), a cationic surfactant, and Tergitol NP9, an ethoxylated nonionic surfactant. In the absence of surfactants, results indicate a 1-2 orders of magnitude variation in adsorption affinity with changing pH for each of the two quinolone pharmaceuticals (nalidixic acid and norfloxacin) but no measurable adsorption for carbamazepine or acetaminophen. In the presence of surfactants, adsorption of acetaminophen and carbamazepine was enhanced to extents consistent with compound hydrophobicity, while adsorption of nalidixic acid and norfloxacin was not. At high pH values, the anionic species of nalidixic acid exhibited enhanced adsorption in the presence of the cationic surfactant, CPC.

  1. A modified model for calculating lattice thermal expansion of I{sub 2}-IV-VI{sub 3} and I{sub 3}-V-VI{sub 4} tetrahedral compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Omar, M.S.

    2007-05-03

    A general empirical formula was found for calculating lattice thermal expansion for compounds having their properties extended for compound groups having different mean ionicity as well as more than one type of cation atoms with that of different numbers of them such as I{sub 2}-IV-VI{sub 3} and I{sub 3}-V-VI{sub 4}. The difference in the valence electrons for cations and anions in the compound was used to correlate the deviations caused by the compound ionicity. The ionicity effects, which are due to their different numbers for their types, were also added to the correlation equation. In general, the lattice thermal expansionmore » for a compound semiconductor can be calculated from a relation containing melting point, mean atomic distance and number of valence electrons for the atoms forming the compound. The mean ionicity for the group compounds forming I{sub 2}-IV-VI{sub 3} was found to be 0.323 and 0.785 for the ternary group compounds of I{sub 3}-V-VI{sub 4}.« less

  2. Drug-like annotation and duplicate analysis of a 23-supplier chemical database totalling 2.7 million compounds.

    PubMed

    Baurin, N; Baker, R; Richardson, C; Chen, I; Foloppe, N; Potter, A; Jordan, A; Roughley, S; Parratt, M; Greaney, P; Morley, D; Hubbard, R E

    2004-01-01

    We have implemented five drug-like filters, based on 1D and 2D molecular descriptors, and applied them to characterize the drug-like properties of commercially available chemical compounds. In addition to previously published filters (Lipinski and Veber), we implemented a filter for medicinal chemistry tractability based on lists of chemical features drawn up by a panel of medicinal chemists. A filter based on the modeling of aqueous solubility (>1 microM) was derived in-house, as well as another based on the modeling of Caco-2 passive membrane permeability (>10 nm/s). A library of 2.7 million compounds was collated from the 23 compound suppliers and analyzed with these filters, highlighting a tendency toward highly lipophilic compounds. The library contains 1.6 M unique structures, of which 37% (607,223) passed all five drug-like filters. None of the 23 suppliers provides all the members of the drug-like subset, emphasizing the benefit of considering compounds from various compound suppliers as a source of diversity for drug discovery.

  3. Fluconazole affects the alkali-metal-cation homeostasis and susceptibility to cationic toxic compounds of Candida glabrata.

    PubMed

    Elicharova, Hana; Sychrova, Hana

    2014-08-01

    Candida glabrata is a salt-tolerant and fluconazole (FLC)-resistant yeast species. Here, we analyse the contribution of plasma-membrane alkali-metal-cation exporters, a cation/proton antiporter and a cation ATPase to cation homeostasis and the maintenance of membrane potential (ΔΨ). Using a series of single and double mutants lacking CNH1 and/or ENA1 genes we show that the inability to export potassium and toxic alkali-metal cations leads to a slight hyperpolarization of the plasma membrane of C. glabrata cells; this hyperpolarization drives more cations into the cells and affects cation homeostasis. Surprisingly, a much higher hyperpolarization of C. glabrata plasma membrane was produced by incubating cells with subinhibitory concentrations of FLC. FLC treatment resulted in a substantially increased sensitivity of cells to various cationic drugs and toxic cations that are driven into the cell by negative-inside plasma-membrane potential. The effect of the combination of FLC plus cationic drug treatment was enhanced by the malfunction of alkali-metal-cation transporters that contribute to the regulation of membrane potential and cation homeostasis. In summary, we show that the combination of subinhibitory concentrations of FLC and cationic drugs strongly affects the growth of C. glabrata cells. © 2014 The Authors.

  4. Sorption of organic cations onto silica surfaces over a wide concentration range of competing electrolytes.

    PubMed

    Kutzner, Susann; Schaffer, Mario; Licha, Tobias; Worch, Eckhard; Börnick, Hilmar

    2016-12-15

    The fundamental understanding of organic cation-solid phase interactions is essential for improved predictions of the transport and ultimate environmental fates of widely used substances (e.g., pharmaceutical compounds) in the aquatic environment. We report sorption experiments of two cationic model compounds using two silica gels and a natural aquifer sediment. The sorbents were extensively characterized and the results of surface titrations under various background electrolyte concentrations were discussed. The salt dependency of sorption was systematically studied in batch experiments over a wide concentration range (five orders of magnitude) of inorganic ions in order to examine the influence of increasing competition on the sorption of organic cations. The organic cation uptake followed the Freundlich isotherm model and the sorption capacity decreases with an increase in the electrolyte concentration due to the underlying cation exchange processes. However, the sorption recovers considerably at high ionic strength (I>1M). To our knowledge, this effect has not been observed before and appears to be independent from the sorbent characteristics and sorbate structure. Furthermore, the recovery of sorption was attributed to specific, non-ionic interactions and a connection between the sorption coefficient and activity coefficient of the medium is presumed. Eventually, the reasons for the differing sorption affinities of both sorbates are discussed. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Plant-derived phenolic compounds prevent the DNA single-strand breakage and cytotoxicity induced by tert-butylhydroperoxide via an iron-chelating mechanism.

    PubMed Central

    Sestili, Piero; Diamantini, Giuseppe; Bedini, Annalida; Cerioni, Liana; Tommasini, Ilaria; Tarzia, Giorgio; Cantoni, Orazio

    2002-01-01

    The protective effects of selected members from a series of caffeic acid esters and flavonoids were tested in various toxicity paradigms using U937 cells, previously shown to be sensitive to either iron chelators or bona fide radical scavengers or to both classes of compounds. It was found that all the protective polyphenols were active at very low concentrations and that their effects were observed only under those conditions in which iron chelators also afforded protection. Consistently, active polyphenolic compounds, unlike the inactive ones, effectively chelated iron in an in vitro system. It follows that, at least under the experimental conditions utilized in the present study, the most prominent activity of these polyphenolic compounds resides in their ability to chelate iron. Further studies revealed that the protective effects afforded by the caffeic acid esters and flavonoids were largely mediated by the catechol moiety and that the relative biological potency of these compounds was a direct function of their lipophilicity. PMID:11988084

  6. First-principles prediction of a promising p-type transparent conductive material CsGeCl3

    NASA Astrophysics Data System (ADS)

    Huang, Dan; Zhao, Yu-Jun; Ju, Zhi-Ping; Gan, Li-Yong; Chen, Xin-Man; Li, Chang-Sheng; Yao, Chun-mei; Guo, Jin

    2014-04-01

    Most reported p-type transparent conductive materials are Cu-based compounds such as CuAlO2 and CuCrO2. Here, we report that compounds based on ns2 cations with low binding energy can also possess high valence band maximum, which is crucial for the p-type doping according to the doping limit rules. In particular, CsGeCl3, a compound with valence band maximum from ns2 cations, is predicted as a promising p-type transparent conductive material by first-principles calculations. Our results show that the p-type defect Ge vacancy dominates its intrinsic defects with a shallow transition level, and the calculated hole effective masses are low in CsGeCl3.

  7. Methods of producing sulfate salts of cations from heteroatomic compounds and dialkyl sulfates and uses thereof

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Friesen, Cody A.; Wolfe, Derek; Johnson, Paul Bryan

    2015-09-29

    Methods of preparing sulfate salts of heteroatomic compounds using dialkyl sulfates as a primary reactant are disclosed. Also disclosed are methods of making ionic liquids from the sulfate salts of the heteroatomic compound, and electrochemical cells comprising the ionic liquids.

  8. Synthesis and Pharmacokinetic Evaluation of Siderophore Biosynthesis Inhibitors for Mycobacterium tuberculosis

    PubMed Central

    Nelson, Kathryn M.; Viswanathan, Kishore; Dawadi, Surendra; Duckworth, Benjamin P.; Boshoff, Helena I.; Barry, Clifton E.; Aldrich, Courtney C.

    2015-01-01

    MbtA catalyzes the first committed biosynthetic step of the mycobactins, which are important virulence factors associated with iron acquisition in Mycobacterium tuberculosis. MbtA is a validated therapeutic target for antitubercular drug development. 5′-O-[N-(salicyl)sulfamoyl]adenosine (1) is a bisubstrate inhibitor of MbtA and exhibits exceptionally potent biochemical and antitubercular activity. However, 1 suffers from sub-optimal drug disposition properties resulting in a short half-life (t1/2), low exposure (AUC), and low bioavailability (F). Four strategies were pursued to address these liabilities including the synthesis of prodrugs, increasing the pKa of the acyl-sulfonyl moiety, modulation of the lipophilicity, and strategic introduction of fluorine into 1. Complete pharmacokinetic (PK) analysis of all compounds was performed. The most successful modifications involved fluorination of the nucleoside that provided substantial improvements in t1/2 and AUC. Increasing the pKa of the acyl-sulfonyl linker yielded incremental enhancements while modulation of the lipophilicity and prodrug approaches led to substantially poorer PK parameters. PMID:26110337

  9. Synthesis and antioxidant evaluation of isochroman-derivatives of hydroxytyrosol: structure-activity relationship.

    PubMed

    Mateos, Raquel; Madrona, Andrés; Pereira-Caro, Gema; Domínguez, Vanessa; Cert, Rosa M A; Parrado, Juan; Sarriá, Beatriz; Bravo, Laura; Espartero, José Luis

    2015-04-15

    Isochroman-derivatives of the natural olive oil phenol hydroxytyrosol (HT) have been synthesised via Oxa-Pictet-Spengler reaction in high yields. Lipophilicity and antioxidant activity were determined to establish the structure-activity relationship of isochromans compared to HT, BHT and α-tocopherol. Antioxidant capacity was tested in two different media: bulk oils, using the Rancimat test, and brain homogenates, by measuring malondialdehyde (MDA) levels as a lipoperoxidation biomarker. In addition, other antioxidant assays (FRAP, ABTS and ORAC) were carried out. Rancimat and MDA results show that antioxidant activity was related with lipophilicity, directly in brain homogenates and inversely in the oils, in agreement with the polar paradox. Free o-diphenolic groups positively determined the activity in the oils, whereas reducing and radical-scavenging activities were related to the number of free hydroxyl moieties. BHT and α-tocopherol showed lower antioxidant activity than isochromans and HT. We conclude that HT-isochromans present significant potential as bioactive compounds. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Interactions of anesthetics with the membrane-water interface

    NASA Technical Reports Server (NTRS)

    Pohorille, A.; Cieplak, P.; Wilson, M. A.

    1996-01-01

    Although the potency of conventional anesthetics correlates with lipophilicity, an affinity to water also is essential. It was recently found that compounds with very low affinities to water do not produce anesthesia regardless of their lipophilicity. This finding implies that clinical anesthesia might arise because of interactions at molecular sites near the interface of neuronal membranes with the aqueous environment and, therefore, might require increased concentrations of anesthetic molecules at membrane interfaces. As an initial test of this hypothesis, we calculated in molecular dynamics simulations the free energy profiles for the transfer of anesthetic 1,1,2-trifluoroethane and nonanesthetic perfluoroethane across water-membrane and water-hexane interfaces. Consistent with the hypothesis, it was found that trifluoroethane, but not perfluoroethane, exhibits a free energy minimum and, therefore, increased concentrations at both interfaces. The transfer of trifluoroethane from water to the nonpolar hexane or interior of the membrane is accompanied by a considerable, solvent-induced shift in the conformational equilibrium around the C-C bond.

  11. Antioxidative effect of lipophilized caffeic acid in fish oil enriched mayonnaise and milk.

    PubMed

    Alemán, Mercedes; Bou, Ricard; Guardiola, Francesc; Durand, Erwann; Villeneuve, Pierre; Jacobsen, Charlotte; Sørensen, Ann-Dorit Moltke

    2015-01-15

    The antioxidative effect of lipophilized caffeic acid was assessed in two different fish oil enriched food products: mayonnaise and milk. In both emulsion systems, caffeic acid esterified with fatty alcohols of different chain lengths (C1-C20) were better antioxidants than the original phenolic compound. The optimal chain length with respect to protection against oxidation was, however, different for the two food systems. Fish oil enriched mayonnaise with caffeates of medium alkyl chain length (butyl, octyl and dodecyl) added resulted in a better oxidative stability than caffeates with shorter (methyl) or longer (octadecyl) alkyl chains. Whereas in fish oil enriched milk emulsions the most effective caffeates were those with shorter alkyl chains (methyl and butyl) rather than the ones with medium and long chains (octyl, dodecyl, hexadecyl and eicosyl). These results demonstrate that there might be an optimum alkyl chain length for each phenolipid in each type of emulsion systems. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Enzymatic Acylation of Anthocyanins Isolated from Alpine Bearberry ( Arctostaphylos alpina) and Lipophilic Properties, Thermostability, and Antioxidant Capacity of the Derivatives.

    PubMed

    Yang, Wei; Kortesniemi, Maaria; Yang, Baoru; Zheng, Jie

    2018-03-21

    Cyanidin-3- O-galactoside (cy-gal) isolated from alpine bearberry ( Arctostaphylos alpine L.) was enzymatically acylated with saturated fatty acids of different chain lengths with Candida antarctica lipase immobilized on acrylic resin (Novozyme 435). The acylation reaction was optimized by considering the reaction medium, acyl donor, substrate molar ratio, reaction temperature, and reaction time. The highest conversion yield of 73% was obtained by reacting cy-gal with lauric acid (molar ratio of 1:10) in tert-butanol at 60 °C for 72 h. A novel compound was synthesized, which was identified as cyanidin-3- O-(6″-dodecanoyl)galactoside by mass spectrometry and nuclear magnetic resonance. Introducing lauric acid into cy-gal significantly improved both the lipophilicity and thermostability and substantially preserved the ultraviolet-visible absorbance and antioxidant properties. The research provides important insight in expanding the application of natural anthocyanins in the cosmetic and food industries.

  13. A Fast Chromatographic Method for Estimating Lipophilicity and Ionization in Nonpolar Membrane-Like Environment.

    PubMed

    Caron, Giulia; Vallaro, Maura; Ermondi, Giuseppe; Goetz, Gilles H; Abramov, Yuriy A; Philippe, Laurence; Shalaeva, Marina

    2016-03-07

    This study describes the design and implementation of a new chromatographic descriptor called log k'80 PLRP-S that provides information about the lipophilicity of drug molecules in the nonpolar environment, both in their neutral and ionized form. The log k'80 PLRP-S obtained on a polymeric column with acetonitrile/water mobile phase is shown to closely relate to log Ptoluene (toluene dielectric constant ε ∼ 2). The main intermolecular interactions governing log k'80 PLRP-S were deconvoluted using the Block Relevance (BR) analysis. The information provided by this descriptor was compared to ElogD and calclog Ptol, and the differences are highlighted. The "charge-flush" concept is introduced to describe the sensitivity of log k'80 PLRP-S to the ionization state of compounds in the pH range 2 to 12. The ability of log k'80 PLRP-S to indicate the propensity of neutral molecules and monoanions to form Intramolecular Hydrogen Bonds (IMHBs) is proven through a number of examples.

  14. Antioxidant activity of protocatechuates evaluated by DPPH, ORAC, and CAT methods.

    PubMed

    Grajeda-Iglesias, Claudia; Salas, Erika; Barouh, Nathalie; Baréa, Bruno; Panya, Atikorn; Figueroa-Espinoza, Maria Cruz

    2016-03-01

    Hibiscus sabdariffa L. is a worldwide consumed plant, principally after infusion of its dried sepals and calyces, which are usually discarded. Nevertheless, they represent a potential source of natural bioactive compounds, e.g. polyphenols, which could add value to this under-exploited plant. Protocatechuic acid (PA) was chosen as a model of the phenolic acids that can be extracted from H. sabdariffa. In order to modify PA hydrophilic character, which limits its use in lipid-rich food products, PA was esterified to C1-C18 alcohols, and the impact of lipophilization on its antioxidant activity was evaluated in both, an homogeneous (DPPH and ORAC methods) and an heterogeneous (CAT method) system. Results herein obtained showed that, depending on the grafted alkyl chain length, lipophilization could positively affect the antioxidant activity of PA in heterogeneous media; therefore, support its use as an innovative way to synthesize molecules with an improved antioxidant capacity and potential to be used as multifunctional preservatives in food. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Quantitative Assessment of the Impact of Fluorine Substitution on P-Glycoprotein (P-gp) Mediated Efflux, Permeability, Lipophilicity, and Metabolic Stability.

    PubMed

    Pettersson, Martin; Hou, Xinjun; Kuhn, Max; Wager, Travis T; Kauffman, Gregory W; Verhoest, Patrick R

    2016-06-09

    Strategic replacement of one or more hydrogen atoms with fluorine atom(s) is a common tactic to improve potency at a given target and/or to modulate parameters such as metabolic stability and pKa. Molecular weight (MW) is a key parameter in design, and incorporation of fluorine is associated with a disproportionate increase in MW considering the van der Waals radius of fluorine versus hydrogen. Herein we examine a large compound data set to understand the effect of introducing fluorine on the risk of encountering P-glycoprotein mediated efflux (as measured by MDR efflux ratio), passive permeability, lipophilicity, and metabolic stability. Statistical modeling of the MDR ER data demonstrated that an increase in MW as a result of introducing fluorine atoms does not lead to higher risk of P-gp mediated efflux. Fluorine-corrected molecular weight (MWFC), where the molecular weight of fluorine has been subtracted, was found to be a more relevant descriptor.

  16. Secretory Structure, Histochemistry and Phytochemistry Analyses of Stimulant Plant

    NASA Astrophysics Data System (ADS)

    Umah, C.; Dorly; Sulistyaningsih, Y. C.

    2017-03-01

    Plants that are used as stimulant supposed to contains various metabolit compounds that are produced or secreted by secretory structures. This study aimed to identify the secretory structure of plant used as stimulant and chemical compounds accumulated in it. The secretory structure and its histochemistry were observed on plant material that are used as herbal ingredient. Phytochemical content was analyzed by using a qualitative test. The result showed that the idioblast cells and secretory cavities were found in the leaves of Decaspermum fruticosum, and Polyalthia rumphii. Most idioblast cells contained lipophilic substances and terpenoids or alkaloids, while secretory cavity contained alkaloid. Phytochemical analysis for D. fruticosum, and P. rumphii contain terpenoids, phenols, steroids, and flavonoids

  17. [Lead compound optimization strategy(5) – reducing the hERG cardiac toxicity in drug development].

    PubMed

    Zhou, Sheng-bin; Wang, Jiang; Liu, Hong

    2016-10-01

    The potassium channel encoded by the human ether-a-go-go related gene(hERG) plays a very important role in the physiological and pathological processes in human. hERG potassium channel determines the outward currents which facilitate the repolarization of the myocardial cells. Some drugs were withdrawn from the market for the serious side effect of long QT interval and arrhythmia due to blockade of hERG channel. The strategies for lead compound optimization are to reduce inhibitory activity of hERG potassium channel and decrease cardiac toxicity. These methods include reduction of lipophilicity and basicity of amines, introduction of hydroxyl and acidic groups, and restricting conformation.

  18. Synthesis and in vitro anticancer and antitubercular activity of diarylpyrazole ligated dihydropyrimidines possessing lipophilic carbamoyl group.

    PubMed

    Yadlapalli, Rama Krishna; Chourasia, O P; Vemuri, Kiranmayi; Sritharan, Manjula; Perali, Ramu Sridhar

    2012-04-15

    A series of dihydropyrimidine derivatives were synthesized by utilizing Biginelli reaction and evaluated for their in vitro anticancer activity against MCF-7 human breast cancer (HBC) cell line using sulforhodamine B (SRB) assay and antitubercular activity against Mycobacterium tuberculosis (MTB) H(37)Rv using Microplate Alamar Blue Assay (MABA). Compounds 13p, 13t were exhibited 70.6% and 63.7% of HBC cell growth inhibition at 10 μM concentration. Interestingly compound 13p was also found to be the most potent in the series against MTB H(37)Rv with MIC value of 0.125 μg/mL. Copyright © 2012. Published by Elsevier Ltd.

  19. Pyridinedicarboxylates, the first mechanism-derived inhibitors for prolyl 4-hydroxylase, selectively suppress cellular hydroxyprolyl biosynthesis. Decrease in interstitial collagen and Clq secretion in cell culture.

    PubMed Central

    Tschank, G; Raghunath, M; Günzler, V; Hanauske-Abel, H M

    1987-01-01

    Two pyridinedicarboxylates, predicted [Hanauske-Abel (1983) M.D.-Ph.D. Thesis, Philipps Universität Marburg] and later found to be potent reversible inhibitors of purified prolyl 4-hydroxylase [Majaama, Hanauske-Abel, Günzler & Kivirikko (1984) Eur. J. Biochem. 138, 239-245] were investigated with respect to their effect on hydroxyprolyl biosynthesis in the fibroblast/collagen and the macrophage/Clq systems, and the effect was compared with that of the iron chelator 2,2'-dipyridyl, the compound usually employed to inhibit cellular hydroxyprolyl formation. Only the enzyme-mechanism-derived pyridinedicarboxylates were highly selective inhibitors, and only they lacked overt cytotoxicity. Morphologically, their effect was restricted to the site of cellular hydroxyprolyl biosynthesis, i.e. the cisternae of the rough-surfaced endoplasmic reticulum. They were equally effective in the different cell types studied, and human and guinea-pig fibroblasts showed the same sensitivity. The minimal lipophilicity of the pyridinedicarboxylates necessitated high concentrations to achieve suppression of cellular hydroxyprolyl formation, but lipophilic bio-activatable pro-inhibitors may overcome this disadvantage. For the first time, experimental evidence is presented suggesting that, in cell culture, the biosynthesis of interstitial collagens and Clq can be suppressed selectively, identifying the pyridinedicarboxylates as promising pilot compounds for experiments in vivo. Images Fig. 3. Fig. 4. PMID:2829835

  20. Development and characterization of polymer-oil nanostructured carrier (PONC) for controlled delivery of all-trans retinoic acid (ATRA)

    NASA Astrophysics Data System (ADS)

    Narvekar, Mayuri M.

    The commonly used PLGA-based delivery systems are often limited by their inadequate drug loading and release properties. This study reports the integration of oil into PLGA to form the prototype of a hybrid drug carrier PONC. Our primary goal is to confer the key strength of lipid-based drug carriers, i.e. efficient encapsulation of lipophilic compounds, to a PLGA system without taking away its various useful qualities. The PONC were formulated by emulsification solvent evaporation technique, which were then characterized for particle size, encapsulation efficiency, drug release and anticancer efficacy. The ATRA loaded PONC showed excellent encapsulation efficiency and release kinetics. Even after surface functionalization with PEG , controlled drug release kinetics was maintained, with 88.5% of the encapsulated ATRA released from the PEG-PONC in a uniform manner over 120 hours. It also showed favorable physicochemical properties and serum stability. PEG-PONC has demonstrated substantially superior activity over the free ATRA in ovarian cancer cells that are non-responsive to the standard chemotherapy. The newly developed PEG-PONC significantly reduced the IC50 values (p<0.05) in the chemoresistant cells in both MTT and colony formation assays. Hence, this new ATRA-nanoformulation may offer promising means for the delivery of lipophilic compounds like all-trans retinoic acid to treat highly resistant ovarian cancer.

  1. Metabolic concentration of lipid soluble organochlorine burdens in the blubber of southern hemisphere humpback whales through migration and fasting.

    PubMed

    Bengtson Nash, Susan M; Waugh, Courtney A; Schlabach, Martin

    2013-08-20

    Southern hemisphere humpback whales undertake the longest migrations and associated periods of fasting of any mammal. Fluctuations in lipid energy stores are known to profoundly affect the toxicokinetics of lipophilic organochlorine compound (OC) burdens. Results from blubber biopsy sampling of adult, male humpback whales at two time points of the annual migration journey revealed dramatic concentration effects for the majority of OC compounds. The observed concentration effect was, however, not linear with measured average blubber lipid loss indicating significant redistribution of OCs and hence the importance of alternate lipid depots for meeting the energetic demands of the migration journey. Applying lipophilic OC burdens as novel tracers of whole-body lipid dynamics, the observed average concentration index suggests an average individual weight loss of 13% over 4 months of the migration journey. This value is based upon lipid derived energy and is in good agreement with previous weight prediction formulas. Notably, however, these estimates may greatly underestimate individual weight loss if significant protein catabolism occurs. Biomagnification factors between migrating southern hemisphere humpback whales and their principal prey item, Antarctic krill, closely resembled those of baleen whales feeding on herbivorous zooplankton in the Arctic. This study emphasizes the importance of considering prolonged periods of food deprivation when assessing chemical risks posed to wildlife. This is of particular importance for Polar biota adapted to extremes in ecosystem productivity.

  2. Oxygen radical absorbance capacity (ORAC) of cyclodextrin-solubilized flavonoids, resveratrol and astaxanthin as measured with the ORAC-EPR method

    PubMed Central

    Sueishi, Yoshimi; Ishikawa, Misa; Yoshioka, Daisuke; Endoh, Nobuyuki; Oowada, Shigeru; Shimmei, Masashi; Fujii, Hirotada; Kotake, Yashige

    2012-01-01

    Recently, we proposed an oxygen radical absorbance capacity method that directly quantifies the antioxidant’s scavenging capacity against free radicals and evaluated the radical scavenging abilities for water soluble antioxidant compounds. In this study, we determined the radical scavenging abilities of lipophilic antioxidants which were solubilized by cyclodextrin in water. Commonly employed fluorescence-based method measures the antioxidant’s protection capability for the fluorescent probe, while we directly quantify free-radical level using electron paramagnetic resonance spin trapping technique. In addition, the spin trapping-based method adopted controlled UV-photolysis of azo-initiator for free radical generation, but in fluorescence-based method, thermal decomposition of azo-initiator was utilized. We determined the radical scavenging abilities of seven well-known lipophilic antioxidants (five flavonoids, resveratrol and astaxanthin), using methylated β-cyclodextrin as a solubilizer. The results indicated that the agreement between spin trapping-based and fluorescence-based values was only fair partly because of a large variation in the previous fluorescence-based data. Typical radical scavenging abilities in trolox equivalent unit are: catechin 0.96; epicatechin 0.94; epigallocatechin gallate 1.3; kaempferol 0.37; myricetin 3.2; resveratrol 0.64; and astaxanthin 0.28, indicating that myricetin possesses the highest antioxidant capacity among the compounds tested. We sorted out the possible causes of the deviation between the two methods. PMID:22448093

  3. Oxygen radical absorbance capacity (ORAC) of cyclodextrin-solubilized flavonoids, resveratrol and astaxanthin as measured with the ORAC-EPR method.

    PubMed

    Sueishi, Yoshimi; Ishikawa, Misa; Yoshioka, Daisuke; Endoh, Nobuyuki; Oowada, Shigeru; Shimmei, Masashi; Fujii, Hirotada; Kotake, Yashige

    2012-03-01

    Recently, we proposed an oxygen radical absorbance capacity method that directly quantifies the antioxidant's scavenging capacity against free radicals and evaluated the radical scavenging abilities for water soluble antioxidant compounds. In this study, we determined the radical scavenging abilities of lipophilic antioxidants which were solubilized by cyclodextrin in water. Commonly employed fluorescence-based method measures the antioxidant's protection capability for the fluorescent probe, while we directly quantify free-radical level using electron paramagnetic resonance spin trapping technique. In addition, the spin trapping-based method adopted controlled UV-photolysis of azo-initiator for free radical generation, but in fluorescence-based method, thermal decomposition of azo-initiator was utilized. We determined the radical scavenging abilities of seven well-known lipophilic antioxidants (five flavonoids, resveratrol and astaxanthin), using methylated β-cyclodextrin as a solubilizer. The results indicated that the agreement between spin trapping-based and fluorescence-based values was only fair partly because of a large variation in the previous fluorescence-based data. Typical radical scavenging abilities in trolox equivalent unit are: catechin 0.96; epicatechin 0.94; epigallocatechin gallate 1.3; kaempferol 0.37; myricetin 3.2; resveratrol 0.64; and astaxanthin 0.28, indicating that myricetin possesses the highest antioxidant capacity among the compounds tested. We sorted out the possible causes of the deviation between the two methods.

  4. Synthesis, antimicrobial evaluation and molecular modeling of 5-hydroxyisoquinolinium salt series; the effect of the hydroxyl moiety.

    PubMed

    Soukup, Ondrej; Dolezal, Rafael; Malinak, David; Marek, Jan; Salajkova, Sarka; Pasdiorova, Marketa; Honegr, Jan; Korabecny, Jan; Nachtigal, Petr; Nachon, Florian; Jun, Daniel; Kuca, Kamil

    2016-02-15

    In the present paper, we describe the synthesis of a new group of 5-hydroxyisoquinolinium salts with different lengths of alkyl side-chain (C10-C18), and their chromatographic analysis and biological assay for in vitro activity against bacterial and fungal strains. We compare the lipophilicity and efficacy of hydroxylated isoquinolinium salts with the previously published (non-hydroxylated) isoquinolinium salts from the point of view of antibacterial and antifungal versatility and cytotoxic safety. Compound 11 (C18) had to be excluded from the testing due to its low solubility. Compounds 9 and 10 (C14, C16) showed only moderate efficacy against G+ bacteria, notably with excellent potency against Staphyloccocus aureus, but no effect against G- bacteria. In contrast, non-hydroxylated isoquinolinium salts showed excellent antimicrobial efficacy within the whole series, particularly 14 (C14) against G+ strains and 15 (C16) against fungi. The electronic properties and desolvation energies of 5-hydroxyisoquinolinium and isoquinolinium salts were studied by quantum-chemistry calculations employing B3LYP/6-311++G(d,p) method and an implicit water-solvent simulation model (SCRF). Despite the positive mesomeric effect of the hydroxyl moiety reducing the electron density of the quaternary nitrogen, it is probably the higher lipophilicity and lower desolvation energy of isoquinolinium salts, which is responsible for enhanced antimicrobial versatility and efficacy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. [Antibiotic diffusion to central nervous system].

    PubMed

    Cabrera-Maqueda, J M; Fuentes Rumí, L; Valero López, G; Baidez Guerrero, A E; García Molina, E; Díaz Pérez, J; García-Vázquez, E

    2018-02-01

    Central nervous system (CNS) infections caused by pathogens with a reduced sensitivity to drugs are a therapeutic challenge. Transport of fluid and solutes is tightly controlled within CNS, where vasculature exhibits a blood-brain barrier (BBB).The entry of drugs, including antibiotics, into the cerebro-spinal fluid (CSF) is governed by molecular size, lipophilicity, plasma protein binding and their affinity to transport systems at the BBB. The ratio of the AUCCSF (Area under the curve in CSF)/AUCS (Area under the curve in serum) is the most accurate parameter to characterize drug penetration into the CSF. Linezolid, some fluoroquinolones and metronidazole get high CSF concentrations and are useful for treating susceptible pathogens. Some highly active antibiotic compounds with low BBB permeability can be directly administered into the ventricles together with concomitant intravenous therapy. The ideal antibiotic to treat CNS infections should be that with a small moderately lipophilic molecule, low plasma protein binding and low affinity to efflux pumps at BBB. Knowledge of the pharmacokinetics and pharmacodynamics of antibiotics at the BBB will assist to optimize antibiotic treatment in CNS infections. This article reviews the physicochemical properties of the main groups of antibiotics to assess which compounds are most promising for the treatment of CNS infections and how to use them in the daily clinical practice. © The Author 2018. Published by Sociedad Española de Quimioterapia.

  6. Molecular cloning of a putative divalent-cation transporter gene as a new genetic marker for the identification of Lactobacillus brevis strains capable of growing in beer.

    PubMed

    Hayashi, N; Ito, M; Horiike, S; Taguchi, H

    2001-05-01

    Random amplified polymorphic DNA (RAPD) PCR analysis of Lactobacillus brevis isolates from breweries revealed that one of the random primers could distinguish beer-spoilage strains of L. brevis from nonspoilage strains. The 1.1-kb DNA fragment amplified from all beer-spoilers included one open reading frame, termed hitA (hop-inducible cation transporter), which encodes an integral membrane protein with 11 putative trans-membrane domains and a binding protein-dependent transport signature of a non-ATP binding membrane transporter common to several prokaryotic and eukaryotic transporters. The hitA polypeptide is homologous to the natural resistance-associated macrophage protein (Nramp) family characterized as divalent-cation transport proteins in many prokaryotic and eukaryotic organisms. Northern blot analysis indicated that the hitA transcripts are expressed in cells cultivated in MRS broth supplemented with hop bitter compounds, which act as mobile-carrier ionophores, dissipating the trans-membrane pH gradient in bacteria sensitive to the hop bitter compounds by exchanging H+ for cellular divalent cations such as Mn2+. This suggests that the hitA gene products may play an important role in making the bacteria resistant to hop bitter compounds in beer by transporting metal ions such as Mn2+ into cells that no longer maintain the proton gradient.

  7. Method for inhibiting silica precipitation and scaling in geothermal flow systems

    DOEpatents

    Harrar, Jackson E.; Lorensen, Lyman E.; Locke, Frank E.

    1982-01-01

    A method for inhibiting silica scaling and precipitation in geothermal flow systems by on-line injection of low concentrations of cationic nitrogen-containing compounds, particularly polymeric imines, polymeric amines, and quaternary ammonium compounds.

  8. Boron compounds as anion binding agents for nonaqueous battery electrolytes

    DOEpatents

    Lee, Hung Sui; Yang, Xia-Oing; McBreen, James; Xiang, Caili

    2000-02-08

    Novel fluorinated boron-based compounds which act as anion receptors in non-aqueous battery electrolytes are provided. When added to non-aqueous battery electrolytes, the fluorinated boron-based compounds of the invention enhance ionic conductivity and cation transference number of non-aqueous electrolytes. The fluorinated boron-based anion receptors include borane and borate compounds bearing different fluorinated alkyl and aryl groups.

  9. Bulk deposition of base cationic nutrients in China's forests: Annual rates and spatial characteristics

    Treesearch

    Enzai Du; Wim de Vries; Steven McNulty; Mark E. Fenn

    2018-01-01

    Base cations, such as potassium (K+), calcium (Ca2+) and magnesium (Mg2+), are essential nutrients for plant growth and their atmospheric inputs can buffer the effect of acid deposition by nitrogen (N) and sulphur (S) compounds. However, the spatial variation in atmospheric deposition of these base...

  10. In search of novel highly active mitochondria-targeted antioxidants: thymoquinone and its cationic derivatives.

    PubMed

    Severina, Inna I; Severin, Fedor F; Korshunova, Galina A; Sumbatyan, Natalya V; Ilyasova, Tatyana M; Simonyan, Ruben A; Rogov, Anton G; Trendeleva, Tatyana A; Zvyagilskaya, Renata A; Dugina, Vera B; Domnina, Lidia V; Fetisova, Elena K; Lyamzaev, Konstantin G; Vyssokikh, Mikhail Yu; Chernyak, Boris V; Skulachev, Maxim V; Skulachev, Vladimir P; Sadovnichii, Viktor A

    2013-06-27

    Since the times of the Bible, an extract of black cumin seeds was used as a medicine to treat many human pathologies. Thymoquinone (2-demethylplastoquinone derivative) was identified as an active antioxidant component of this extract. Recently, it was shown that conjugates of plastoquinone and penetrating cations are potent mitochondria-targeted antioxidants effective in treating a large number of age-related pathologies. This review summarizes new data on the antioxidant and some other properties of membrane-penetrating cationic compounds where 2-demethylplastoquinone substitutes for plastoquinone. It was found that such a substitution significantly increases a window between anti- and prooxidant concentrations of the conjugates. Like the original plastoquinone derivatives, the novel compounds are easily reduced by the respiratory chain, penetrate through model and natural membranes, specifically accumulate in mitochondria in an electrophoretic fashion, and strongly inhibit H2O2-induced apoptosis at pico- and nanomolar concentrations in cell cultures. At present, cationic demethylplastoquinone derivatives appear to be the most promising mitochondria-targeted drugs of the quinone series. Copyright © 2013 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  11. Squeezing clathrate cages to host trivalent rare-earth guests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jian; He, Yuping; Mordvinova, Natalia E.

    Strike difference of the trivalent rare-earth cations from their alkali and alkaline-earth peers is in the presence of localized 4f-electrons and strong spin-orbit coupling. Placing trivalent rare-earth cations inside the fullerene molecules or in between the blocks of itinerant magnetic intermetallics gave rise to plethora of fascinating properties and materials. A long-time missing but hardly desired piece is the semiconducting or metallic compound where rare-earth cations are situated inside the oversized polyhedral cages of three-dimensional framework. In this work we present a synthesis of such compounds, rare-earth containing clathrates Ba 8-xR xCu 16P 30. The unambiguous proofs of their compositionmore » and crystal structure were achieved by a combination of synchrotron powder diffraction, time-of-flight neutron powder diffraction, scanning-transmission electron microscopy, and electron energy-loss spectroscopy. Our quantum-mechanical calculations and experimental characterizations show that the incorporation of the rare-earth cations significantly enhances the hole mobility and concentration which results in the drastic increase in the thermoelectric performance.« less

  12. Bis(2-{2-[2-(benzyl­carbamo­yl)phen­oxy]acetamido}­eth­yl)ammonium nitrate ethanol disolvate

    PubMed Central

    Liu, Jiaji; Tang, Xiaoliang; Lu, Zhengdan; Zhang, Guolin; Liu, Weisheng

    2011-01-01

    In the title compound, C36H40N5O6 +·NO3 −·2C2H5OH, the nitrate anion is disordered over the two orientations of equal occupancy while the solvent mol­ecule reveals large displacement parameters. The cation is formed by protonation of the N atom of a secondary amine in the middle of the flexible chain and the whole compound has crystallographically imposed C-2 symmetry with the crystallographic b axis. An O atom of the nitrate anion links the acidic H atoms of the cation via N—H⋯O hydrogen bonding. In addition, neighbouring cations are connected by inter­molecular N—H⋯O hydrogen bonds and π–π inter­actions between the benzamide groups of the cations [centroid–centroid distance = 4.000 (3) Å], forming a chain along [001]. The ethanol solvent mol­ecules are arranged on the side of the chain through O—H⋯O hydrogen bonds. PMID:21522705

  13. Dialkylimidazole inhibitors of Trypanosoma cruzi sterol 14α-demethylase as anti-Chagas disease agents

    PubMed Central

    Suryadevara, Praveen Kumar; Racherla, Kishore Kumar; Olepu, Srinivas; Norcross, Neil R.; Tatipaka, Hari Babu; Arif, Jennifer A.; Planer, Joseph D.; Lepesheva, Galina; Verlinde, Christophe L. M. J.; Buckner, Frederick S.; Gelb, Michael H.

    2014-01-01

    New dialkylimidazole based sterol 14α-demethylase inhibitors were prepared and tested as potential anti-Trypanosoma cruzi agents. Previous studies had identified compound 2 as the most potent and selective inhibitor against parasite cultures. In addition, animal studies had demonstrated that compound 2 is highly efficacious in the acute model of the disease. However, compound 2 has a high molecular weight and high hydrophobicity, issues addressed here. Systematic modifications were carried out at four positions on the scaffold and several inhibitors were identified which are highly potent (EC50<1 nM) against T. cruzi in culture. The halogenated derivatives 36j, 36k, and 36p, display excellent activity against T.cruzi amastigotes, with reduced molecular weight and lipophilicity, and exhibit suitable physicochemical properties for an oral drug candidate. PMID:24120539

  14. Multiheteromacrocycles that Complex Metal Ions. Ninth Progress Report (includes results of last three years), 1 May 1980 -- 30 April 1983

    DOE R&D Accomplishments Database

    Cram, D. J.

    1982-09-15

    The overall objective of this research is to design, synthesize, and evaluate cyclic and polycyclic host organic compounds for the abilities to complex and lipophilize guest metal ions, their complexes, and their clusters. Host organic compounds consist of strategically placed solvating, coordinating, and ion-pairing sites tied together by covalent bonds through hydrocarbon units around cavities shaped to be occupied by guest metal ions, or by metal ions plus their ligands. Specificity in complexation is sought by matching the following properties of host and guest: cavity and metal ion sizes; geometric arrangements of binding sites; numbers of binding sites; characters of binding sites; and valences. The hope is to synthesize new classes of compounds useful in the separation of metal ions, their complexes, and their clusters.

  15. Sulfadiazine-selective determination in aquaculture environment: selective potentiometric transduction by neutral or charged ionophores.

    PubMed

    Almeida, S A A; Heitor, A M; Montenegro, M C B S M; Sales, M G F

    2011-09-15

    Solid-contact sensors for the selective screening of sulfadiazine (SDZ) in aquaculture waters are reported. Sensor surfaces were made from PVC membranes doped with tetraphenylporphyrin-manganese(III) chloride, α-cyclodextrin, β-cyclodextrin, or γ-cyclodextrin ionophores that were dispersed in plasticizer. Some membranes also presented a positive or a negatively charged additive. Phorphyrin-based sensors relied on a charged carrier mechanism. They exhibited a near-Nernstian response with slopes of 52 mV decade(-1) and detection limits of 3.91×10(-5) mol L(-1). The addition of cationic lipophilic compounds to the membrane originated Nernstian behaviours, with slopes ranging 59.7-62.0 mV decade(-1) and wider linear ranges. Cyclodextrin-based sensors acted as neutral carriers. In general, sensors with positively charged additives showed an improved potentiometric performance when compared to those without additive. Some SDZ selective membranes displayed higher slopes and extended linear concentration ranges with an increasing amount of additive (always <100% ionophore). The sensors were independent from the pH of test solutions within 2-7. The sensors displayed fast response, always <15s. In general, a good discriminating ability was found in real sample environment. The sensors were successfully applied to the fast screening of SDZ in real waters samples from aquaculture fish farms. The method offered the advantages of simplicity, accuracy, and automation feasibility. The sensing membrane may contribute to the development of small devices allowing in locus measurements of sulfadiazine or parent-drugs. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Method for inhibiting silica precipitation and scaling in geothermal flow systems

    DOEpatents

    Harrar, J.E.; Lorensen, L.E.; Locke, F.E.

    1980-06-13

    A method for inhibiting silica scaling and precipitation in geothermal flow systems by on-line injection of low concentrations of cationic nitrogen-containing compounds, particularly polymeric imines, polymeric amines, and quaternary ammonium compounds is described.

  17. Neutral and ionic platinum compounds containing a cyclometallated chiral primary amine: synthesis, antitumor activity, DNA interaction and topoisomerase I-cathepsin B inhibition.

    PubMed

    Albert, Joan; Bosque, Ramon; Crespo, Margarita; Granell, Jaume; López, Concepción; Martín, Raquel; González, Asensio; Jayaraman, Anusha; Quirante, Josefina; Calvis, Carme; Badía, Josefa; Baldomà, Laura; Font-Bardia, Mercè; Cascante, Marta; Messeguer, Ramon

    2015-08-14

    The synthesis and preliminary biological evaluation of neutral and cationic platinum derivatives of chiral 1-(1-naphthyl)ethylamine are reported, namely cycloplatinated neutral complexes [PtCl{(R or S)-NH(2)CH(CH(3))C(10)H(6)}(L)] [L = SOMe(2) ( 1-R or 1-S ), L = PPh(3) (2-R or 2-S), L = P(4-FC(6)H(4))(3) (3-R), L = P(CH(2))(3)N(3)(CH(2))(3) (4-R)], cycloplatinated cationic complexes [Pt{(R)-NH(2)CH(CH(3))C(10)H(6)}{L}]Cl [L = Ph(2)PCH(2)CH(2)PPh(2) (5-R), L = (C(6)F(5))(2)PCH(2)CH(2)P(C(6)F(5))(2) (6-R)] and the Pt(ii) coordination compound trans-[PtCl(2){(R)-NH(2)CH(CH(3))C(10)H(6)}(2)] (7-R). The X-ray molecular structure of 7-R is reported. The cytotoxic activity against a panel of human adenocarcinoma cell lines (A-549 lung, MDA-MB-231 and MCF-7 breast, and HCT-116 colon), cell cycle arrest and apoptosis, DNA interaction, topoisomerase I and cathepsin B inhibition, and Pt cell uptake of the studied compounds are presented. Remarkable cytotoxicity was observed for most of the synthesized Pt(ii) compounds regardless of (i) the absolute configuration R or S, and (ii) the coordinated/cyclometallated (neutral or cationic) nature of the complexes. The most potent compound 2-R (IC(50) = 270 nM) showed a 148-fold increase in potency with regard to cisplatin in HCT-116 colon cancer cells. Preliminary biological results point out to different biomolecular targets for the investigated compounds. Neutral cyclometallated complexes 1-R and 2-R, modify the DNA migration as cisplatin, cationic platinacycle 5-R was able to inhibit topoisomerase I-promoted DNA supercoiling, and Pt(ii) coordination compound 7-R turned out to be the most potent inhibitor of cathepsin B. Induction of G-1 phase ( 2-R and 5-R ), and S and G-2 phases (6-R) arrests are related to the antiproliferative activity of some representative compounds upon A-549 cells. Induction of apoptosis is also observed for 2-R and 6-R.

  18. Tunable cytotoxicity of rhodamine 6G via anion variations.

    PubMed

    Magut, Paul K S; Das, Susmita; Fernand, Vivian E; Losso, Jack; McDonough, Karen; Naylor, Brittni M; Aggarwal, Sita; Warner, Isiah M

    2013-10-23

    Chemotherapeutic agents with low toxicity to normal tissues are a major goal in cancer research. In this regard, the therapeutic activities of cationic dyes, such as rhodamine 6G, toward cancer cells have been studied for decades with observed toxicities toward normal and cancer cells. Herein, we report rhodamine 6G-based organic salts with varying counteranions that are stable under physiological conditions, display excellent fluorescence photostability, and more importantly have tunable chemotherapeutic properties. Our in vitro studies indicate that the hydrophobic compounds of this series allow production of nanoparticles which are nontoxic to normal cells and toxic to cancer cells. Furthermore, the anions, in combination with cations such as sodium, were observed to be nontoxic to both normal and cancer cells. To the best of our knowledge, this is the first demonstration that both the cation and anion play an extremely important and cooperative role in the antitumor properties of these compounds.

  19. Experimental and theoretical study of 2,6-difluorophenylnitrene, its radical cation, and their rearrangement products in argon matrices.

    PubMed

    Carra, Claudio; Nussbaum, Rafael; Bally, Thomas

    2006-06-12

    2,6-Difluorophenylnitrene was reinvestigated both experimentally, in Ar matrices at 10 K, and computationally, by DFT and CASSCF/CASPT2 calculations. Almost-pure samples of both neutral rearrangement products (the bicyclic azirine and the cyclic ketenimine) of a phenylnitrene were prepared and characterized for the first time. These samples were then subjected to X-irradiation in the presence of CH2Cl2 as an electron scavenger, which led to ionization of the neutral intermediates. Thereby, it was shown that only the phenylnitrene and the cyclic ketenimine yield stable radical cations, whereas the bicyclic azirine decays to both of these compounds on ionization. The cyclic ketenimine yields a novel aromatic azatropylium-type radical cation. The electronic structure of the title compound is discussed in detail, and its relation to those of the iso-pi-electronic benzyl radical and phenylcarbene is traced.

  20. Metallomics for Alzheimer's disease treatment: Use of new generation of chelators combining metal-cation binding and transport properties.

    PubMed

    D'Acunto, Cosimo Walter; Kaplánek, Robert; Gbelcová, Helena; Kejík, Zdeněk; Bříza, Tomáš; Vasina, Liudmila; Havlík, Martin; Ruml, Tomáš; Král, Vladimír

    2018-04-25

    Alzheimer's disease (AD) is a progressive neurodegenerative disorder affecting tens of million people. Currently marketed drugs have limited therapeutic efficacy and only slowing down the neurodegenerative process. Interestingly, it has been suggested that biometal cations in the amyloid beta (Aβ) aggregate deposits contribute to neurotoxicity and degenerative changes in AD. Thus, chelation therapy could represent novel mode of therapeutic intervention. Here we describe the features of chelators with therapeutically relevant mechanism of action. We have found that the tested compounds effectively reduce the toxicity of exogenous Aβ and suppress its endogenous production as well as decrease oxidative stress. Cholyl hydrazones were found to be the most active compounds. In summary, our data show that cation complexation, together with improving transport efficacy may represent basis for eventual treatment strategy in AD. Copyright © 2018. Published by Elsevier Masson SAS.

  1. Secretory cavities and volatiles of Myrrhinium atropurpureum Schott var. atropurpureum (Myrtaceae): an endemic species collected in the restingas of Rio de Janeiro, Brazil.

    PubMed

    Victório, Cristiane Pimentel; Moreira, Claudio B; Souza, Marcelo da Costa; Sato, Alice; Arruda, Rosani do Carmo de Oliveira

    2011-07-01

    In this study, we investigated the leaf anatomy and the composition of volatiles in Myrrhinium atropurpureum var. atropurpureum endemic to Rio de Janeiro restingas. Particularly, leaf secretory structures were described using light microscopy, and histochemical tests were performed from fresh leaves to localize the secondary metabolites. To observe secretory cavities, fixed leaf samples were free-hand sectioned. To evaluate lipophilic compounds and terpenoids the following reagents were employed: Sudans III and IV, Red oil O and Nile blue. Leaf volatiles were characterized by gas chromatography after hydrodistillation (HD) or simultaneous distillation-extraction (SDE). Leaf analysis showed several cavities in mesophyll that are the main sites of lipophilic and terpenoid production. Monoterpenes, which represented more than 80% of the major volatiles, were characterized mainly by alpha- and beta-pinene and 1,8-cineole. In order to provide tools for M. atropurpureum identification, the following distinguishing characteristics were revealed by the following data: 1) adaxial face clear and densely punctuated by the presence of round or ellipsoidal secretory cavities randomly distributed in the mesophyll; 2) the presence of cells overlying the upper neck cells of secretory cavities; 3) the presence of numerous paracytic stomata distributed on the abaxial leaf surface, but absent in vein regions and leaf margin; and 4) non-glandular trichomes on both leaf surfaces. Our study of the compounds produced by the secretory cavities of M. atropurpureum led us to conclude that volatile terpenoid class are the main secretory compounds and that they consist of a high concentration of monoterpenes, which may indicate the phytotherapeutic importance of this plant.

  2. Synthesis, Antibacterial Evaluation and QSAR of α-Substituted-N4-Acetamides of Ciprofloxacin and Norfloxacin

    PubMed Central

    Qandil, Amjad M.; Al-Zoubi, Lorca O.; Al-Bakri, Amal G.; Amawi, Haneen A.; Al-Balas, Qosay A.; Alkatheri, Abdulmalik M.; Albekairy, Abdulkareem M.

    2014-01-01

    Twenty six α-substituted N4-acetamide derivatives of ciprofloxacin (CIPRO) and norfloxacin (NOR) were synthesized and assayed for antibacterial activity against Pseudomonas aeruginosa, Escherichia coli, Staphylococcus aureus and Bacillus subtilis. The derivatives were primarily more active against Gram-positive bacteria. The CIPRO derivatives, CD-7 (Ar = 3-chlorophenyl), CD-9 (Ar = 2-pyrimidyl) and CD-10 (α-phenyl, Ar = 2-pyrimidyl), exhibited lower MIC values, 0.4–0.9 μM, against Staphylococcus aureus than CIPRO, while only compound CD-10 exhibited better activity, 0.1 μM, against Bacillus subtilis than CIPRO. In addition, compounds CD-5 (Ar = 2-methoxyphenyl), CD-6 (α-phenyl, Ar = 2-methoxyphenyl), CD-7 (Ar = 3-Chlorophenyl), CD-8 (α-phenyl, Ar = 3-chlorophenyl) and CD-9 (Ar = 2-pyrimidyl) showed MIC values below 1.0 μM against this strain. The NOR derivatives showed lower activity than NOR itself against Staphylococcus aureus, although ND-6 (α-phenyl, Ar = 2-methoxyphenyl) and ND-7 (Ar = 3-chlorophenyl) showed MIC values less than 2 μM. Two NOR derivatives, ND-7 and ND-6, exhibited MIC values of 0.7 and 0.6, respectively, which were comparable to that of NOR against Bacillus subtilis, while compounds ND-8 (α-phenyl, Ar = 3-chlorophenyl) and ND-10 (α-phenyl, Ar = 2-pyrimidyl) exhibited MIC values less than 1.0 μM against the same strain. QSAR revealed that while polarity is the major contributing factor in the potency against Staphylococcus aureus, it is balanced by lipophilicity and electron density around the acetamide group. On the other hand, electron density around the introduced acetamide group is the major determining factor in the activity against Bacillus subtilis, with a lesser and variable effect for lipophilicity. PMID:27025747

  3. Problems and solutions of polyethylene glycol co-injection method in multiresidue pesticide analysis by gas chromatography-mass spectrometry: evaluation of instability phenomenon in type II pyrethroids and its suppression by novel analyte protectants.

    PubMed

    Akutsu, Kazuhiko; Kitagawa, Yoko; Yoshimitsu, Masato; Takatori, Satoshi; Fukui, Naoki; Osakada, Masakazu; Uchida, Kotaro; Azuma, Emiko; Kajimura, Keiji

    2018-05-01

    Polyethylene glycol 300 is commonly used as a base material for "analyte protection" in multiresidue pesticide analysis via gas chromatography-mass spectrometry. However, the disadvantage of the co-injection method using polyethylene glycol 300 is that it causes peak instability in α-cyano pyrethroids (type II pyrethroids) such as fluvalinate. In this study, we confirmed the instability phenomenon in type II pyrethroids and developed novel analyte protectants for acetone/n-hexane mixture solution to suppress the phenomenon. Our findings revealed that among the examined additive compounds, three lipophilic ascorbic acid derivatives, 3-O-ethyl-L-ascorbic acid, 6-O-palmitoyl-L-ascorbic acid, and 6-O-stearoyl-L-ascorbic acid, could effectively stabilize the type II pyrethroids in the presence of polyethylene glycol 300. A mixture of the three ascorbic acid derivatives and polyethylene glycol 300 proved to be an effective analyte protectant for multiresidue pesticide analysis. Further, we designed and evaluated a new combination of analyte protectant compounds without using polyethylene glycol or the troublesome hydrophilic compounds. Consequently, we obtained a set of 10 medium- and long-chain saturated fatty acids as an effective analyte protectant suitable for acetone/n-hexane solution that did not cause peak instability in type II pyrethroids. These analyte protectants will be useful in multiresidue pesticide analysis by gas chromatography-mass spectrometry in terms of ruggedness and reliable quantitativeness. Graphical abstract Comparison of effectiveness of the addition of lipophilic derivatives of ascorbic acid in controlling the instability phenomenon of fluvalinate with polyethylene glycol 300.

  4. Transport of hop aroma compounds across Caco-2 monolayers.

    PubMed

    Heinlein, A; Metzger, M; Walles, H; Buettner, A

    2014-11-01

    Although being reported and used as a sedative remedy for several years, the bioactive principle of hop preparations is still not decisively clarified. Understanding absorption and transformation processes of potential physiologically active constituents is essential to evaluate the likeliness of biological effects on humans. Therefore, single hop aroma compounds as well as digestive transformation products thereof have been investigated in view of their human intestinal absorption, applying Caco-2 transport experiments as well as investigations on potential biotransformation processes. Selective and sensitive identification and quantification were thereby achieved by application of two-dimensional high resolution gas chromatography-mass spectrometry in conjunction with stable isotope dilution analysis, leading to the determination of apparent permeability values by different mathematical approaches considering sink and non-sink conditions. Overall, calculated permeability values ranged from 2.6 × 10(-6) to 1.8 × 10(-4) cm s(-1) with all mathematical approaches, indicating high absorption potential and almost complete bioavailability for all tested compounds with hydroxyl-functionalities. Considering this high permeability together with the high lipophilicity of these substances, a passive transcellular uptake route can be speculated. Investigated sesquiterpenes and β-myrcene showed flat absorption profiles while the investigated esters showed decreasing profiles. In view of the lipophilic and volatile nature of the investigated substances, special attention was paid to recovery and mass balance determination. Furthermore, in the course of the transport experiments of 1-octen-3-ol and 3-methyl-2-buten-1-ol, additional biotransformation products were observed, namely 3-octanone and 3-methyl-2-butenal, respectively. The absence of these additional substances in control experiments strongly indicates an intestinal first-pass metabolism of the α,β-unsaturated alcohols 1-octen-3-ol and 3-methyl-2-buten-1-ol in Caco-2 cells.

  5. pH-Dependent dissolving nano- and microparticles for improved peroral delivery of a highly lipophilic compound in dogs.

    PubMed

    De Jaeghere, F; Allémann, E; Cerny, R; Galli, B; Steulet, A F; Müller, I; Schütz, H; Doelker, E; Gurny, R

    2001-01-01

    RR01, a new highly lipophilic drug showing extremely low water solubility and poor oral bioavailability, has been incorporated into pH-dependent dissolving particles made of a poly(methacrylic acid-co-ethylacrylate) copolymer. The physicochemical properties of the particles were determined using laser-light-scattering techniques, scanning electron microscopy, high-performance liquid chromatography, and x-ray powder diffraction. Suspension of the free drug in a solution of hydroxypropylcellulose (reference formulation) and aqueous dispersions of pH-sensitive RR01-loaded nanoparticles or microparticles were administered orally to Beagle dogs according to a 2-block Latin square design (n = 6). Plasma samples were obtained over the course of 48 hours and analyzed by gas chromatography/mass spectrometry. The administration of the reference formulation resulted in a particularly high interindividual variability of pharmacokinetic parameters, with low exposure to compound RR01 (AUC0-48h of 6.5 microg x h/mL and coefficient of variation (CV) of 116%) and much higher Tmax, as compared to both pH-sensitive formulations. With respect to exposure and interindividual variability, nanoparticles were superior to microparticles (AUC0-48h of 27.1 microg x h/mL versus 17.7 microg x h/mL with CV of 19% and 40%, respectively), indicating that the particle size may play an important role in the absorption of compound RR01. The performance of pH-sensitive particles is attributed to their ability to release the drug selectively in the upper part of the intestine in a molecular or amorphous form. In conclusion, pH-dependent dissolving particles have a great potential as oral delivery systems for drugs with low water solubility and acceptable permeation properties.

  6. Structural, thermal, dielectric and phonon properties of perovskite-like imidazolium magnesium formate.

    PubMed

    Mączka, Mirosław; Marinho Costa, Nathalia Leal; Gągor, Anna; Paraguassu, Waldeci; Sieradzki, Adam; Hanuza, Jerzy

    2016-05-18

    We report the synthesis and characterisation of a magnesium formate framework templated by protonated imidazole. Single-crystal X-ray diffraction data showed that this compound crystallizes in the monoclinic structure in the P21/n space group with lattice parameters a = 12.1246(4) Å, b = 12.2087(5) Å, c = 12.4991(4) Å and β = 91.39(1)°. The antiparallel arrangement of the dipole moments associated with imidazolium cations suggests the antiferroelectric character of the room-temperature phase. The studied compound undergoes a structural phase transition at 451 K associated with a halving of the c lattice parameter and the disappearance of the antiferroelectric order. The monoclinic symmetry is preserved and the new metrics are a = 12.261(7) Å, b = 12.290(4) Å, c = 6.280(4) Å, and β = 90.62(5)°. Raman and IR data are consistent with the X-ray diffraction data. They also indicate that the disorder of imidazolium cations plays a significant role in the mechanism of the phase transition. Dielectric data show that the phase transition is associated with a relaxor nature of electric ordering. We also report high-pressure Raman scattering studies of this compound that revealed the presence of two pressure-induced phase transitions near 3 and 7 GPa. The first transition is most likely associated with a rearrangement of the imidazolium cations without any significant distortion of these cations and the magnesium formate framework, whereas the second transition leads to strong distortion of both the framework and imidazolium cations. High-pressure data also show that imidazolium magnesium formate does not show any signs of amorphization up to 11.4 GPa.

  7. Multiple Cationic Amphiphiles Induce a Niemann-Pick C Phenotype and Inhibit Ebola Virus Entry and Infection

    PubMed Central

    Shoemaker, Charles J.; Schornberg, Kathryn L.; Delos, Sue E.; Scully, Corinne; Pajouhesh, Hassan; Olinger, Gene G.; Johansen, Lisa M.; White, Judith M.

    2013-01-01

    Ebola virus (EBOV) is an enveloped RNA virus that causes hemorrhagic fever in humans and non-human primates. Infection requires internalization from the cell surface and trafficking to a late endocytic compartment, where viral fusion occurs, providing a conduit for the viral genome to enter the cytoplasm and initiate replication. In a concurrent study, we identified clomiphene as a potent inhibitor of EBOV entry. Here, we screened eleven inhibitors that target the same biosynthetic pathway as clomiphene. From this screen we identified six compounds, including U18666A, that block EBOV infection (IC50 1.6 to 8.0 µM) at a late stage of entry. Intriguingly, all six are cationic amphiphiles that share additional chemical features. U18666A induces phenotypes, including cholesterol accumulation in endosomes, associated with defects in Niemann–Pick C1 protein (NPC1), a late endosomal and lysosomal protein required for EBOV entry. We tested and found that all six EBOV entry inhibitors from our screen induced cholesterol accumulation. We further showed that higher concentrations of cationic amphiphiles are required to inhibit EBOV entry into cells that overexpress NPC1 than parental cells, supporting the contention that they inhibit EBOV entry in an NPC1-dependent manner. A previously reported inhibitor, compound 3.47, inhibits EBOV entry by blocking binding of the EBOV glycoprotein to NPC1. None of the cationic amphiphiles tested had this effect. Hence, multiple cationic amphiphiles (including several FDA approved agents) inhibit EBOV entry in an NPC1-dependent fashion, but by a mechanism distinct from that of compound 3.47. Our findings suggest that there are minimally two ways of perturbing NPC1-dependent pathways that can block EBOV entry, increasing the attractiveness of NPC1 as an anti-filoviral therapeutic target. PMID:23441171

  8. Antioxidant properties of dimethyl sulfoxide and its viability as a solvent in the evaluation of neuroprotective antioxidants.

    PubMed

    Sanmartín-Suárez, Carolina; Soto-Otero, Ramón; Sánchez-Sellero, Inés; Méndez-Álvarez, Estefanía

    2011-01-01

    Dimethyl sulfoxide is an amphiphilic compound whose miscibility with water and its ability to dissolve lipophilic compounds make it an appreciated solvent in biomedical research. However, its reported antioxidant properties raise doubts about its use as a solvent in evaluating new antioxidants. The goal of this investigation was to evaluate its antioxidant properties and carry out a comparative study on the antioxidant properties of some known neuroprotective antioxidants in the presence and absence of dimethyl sulfoxide. The antioxidant properties of dimethyl sulfoxide were studied in rat brain homogenates by determining its ability to reduce both lipid peroxidation (TBARS formation) and protein oxidation (increase in protein carbonyl content and decrease in free thiol content) induced by ferrous chloride/hydrogen peroxide. Its ability to reduce the production of hydroxyl radicals by 6-hydroxydopamine autoxidation was also estimated. The same study was also performed with three known antioxidants (α-phenyl-N-tert-butylnitrone; 2-methyl-2-nitrosopropane; 5,5-dimethyl-1-pyrroline N-oxide) in the presence and absence of dimethyl sulfoxide. Our results showed that dimethyl sulfoxide is able to reduce both lipid peroxidation and protein carbonyl formation induced by ferrous chloride/hydrogen peroxide in rat brain homogenates. It can also reduce the production of hydroxyl radicals during 6-hydroxydopamine autoxidation. However, it increases the oxidation of protein thiol groups caused by ferrous chloride/hydrogen peroxide in rat brain homogenate. Despite the here reported antioxidant and pro-oxidant properties of dimethyl sulfoxide, the results obtained with α-phenyl-N-tert-butylnitrone, 2-methyl-2-nitrosopropane, and 5,5-dimethyl-1-pyrroline N-oxide corroborate the antioxidant properties attributed to these compounds and support the potential use of dimethyl sulfoxide as a solvent in the study of the antioxidant properties of lipophilic compounds. Dimethyl sulfoxide is a very useful solvent that may be used at relatively low concentrations in the development of new antioxidants with neuroprotective properties. Copyright © 2010 Elsevier Inc. All rights reserved.

  9. Evidence for Cation-Controlled Excited-State Localization in a Ruthenium Polypyridyl Compound.

    PubMed

    Beauvilliers, Evan E; Meyer, Gerald J

    2016-08-01

    The visible absorption and photoluminescence (PL) properties of the four neutral ruthenium diimine compounds [Ru(bpy)2(dcb)] (B2B), [Ru(dtb)2(dcb)] (D2B), [Ru(bpy)2(dcbq)] (B2Q), and [Ru(dtb)2(dcbq)] (D2Q), where bpy is 2,2'-bipyridine, dcb is 4,4'-(CO2(-))2-bpy, dtb is 4,4'-(tert-butyl)2-bpy, and dcbq is 4,4'-(CO2(-))2-2,2'-biquinoline, are reported in the presence of Lewis acidic cations present in fluid solutions at room temperature. In methanol solutions, the measured spectra were insensitive to the presence of these cations, while in acetonitrile a significant red shift in the PL spectra (≤1400 cm(-1)) was observed consistent with stabilization of the metal-to-ligand charge transfer (MLCT) excited state through Lewis acid-base adduct formation. No significant spectral changes were observed in control experiments with the tetrabutylammonium cation. Titration data with Li(+), Na(+), Mg(2+), Ca(2+), Zn(2+), Al(3+), Y(3+), and La(3+) showed that the extent of stabilization saturated at high cation concentration with magnitudes that scaled roughly with the cation charge-to-size ratio. The visible absorption spectra of D2Q was particularly informative due to the presence of two well-resolved MLCT absorption bands: (1) Ru → bpy, λmax ≈ 450 nm; and (2) Ru → dcbq, λmax ≈ 540 nm. The higher-energy band blue-shifted and the lower-energy band red-shifted upon cation addition. The PL intensity and lifetime of the excited state of B2B first increased with cation addition without significant shifts in the measured spectra, behavior attributed to a cation-induced change in the localization of the emissive excited state from bpy to dcb. The importance of excited-state localization and stabilization for solar energy conversion is discussed.

  10. Synthesis and characterization of two novel chiral-type formate frameworks templated by protonated diethylamine and ammonium cations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mączka, Mirosław, E-mail: m.maczka@int.pan.wroc.pl; Gągor, Anna; Hanuza, Jerzy

    2017-01-15

    Two novel formate frameworks templated by ammonium and diethylammonium (DEtA{sup +}) cations have been synthesized. Chemical analysis as well as optical, Raman and IR studies showed partial substitution of nickel ions by Cr(III) or Fe(III). X-ray diffraction revealed that these compounds crystallize in the chiral-type structure of P6{sub 3}22 symmetry. The oxygen atoms from formate ligands form octahedral coordination around the metal centers and the octahedra are bridged by the formate groups in the anti-anti mode configuration forming the hexagonal structure with large channels expanding along the c direction. The channels are filled with disordered DEtA{sup +} and NH{sub 4}{supmore » +} ions and they show unusual compression with the c/a ratio of only 0.862 and 0.852 for the iron- and chromium-containing compound, respectively. Magnetic studies revealed that the both compounds order magnetically at low temperatures but the ordering temperature is significantly higher for the iron compound (37 K) compared to the chromium analogue (26 K). - Graphical abstract: Temperature dependence of magnetization M of DEtAFeNi showing magnetic order at 37 K. - Highlights: • Two novel chiral formates of P6{sub 3}22 symmetry were synthesized. • The structures contain strongly compressed hexagonal channels filled with disordered cations. • The obtained compounds exhibit magnetic order at low temperatures. • Raman, IR and absorption spectra prove incorporation of Cr(III) and Fe(III) in the frameworks.« less

  11. Formation, thermodynamic properties, microstructures and antimicrobial activity of mixed cationic/non-ionic surfactant microemulsions with isopropyl myristate as oil.

    PubMed

    Bardhan, Soumik; Kundu, Kaushik; Das, Sajal; Poddar, Madhumita; Saha, Swapan K; Paul, Bidyut K

    2014-09-15

    Modification of the interface by blending of surfactants produces considerable changes in the elastic rigidity of the interface, which in turn affects the physicochemical properties of w/o microemulsions. Hence, it could be possible to tune the thermodynamic properties, microstructures and antimicrobial activity of microemulsions by using ionic/non-ionic mixed surfactants and polar lipophilic oil, which are widely used in biologically relevant systems. The present report was aimed at precise characterization of mixed cetyltrimethylammonium bromide and polyoxyethylene (23) lauryl ether microemulsions stabilized in 1-pentanol (Pn) and isopropyl myristate at different physicochemical conditions by employing phase studies, the dilution method, conductivity, DLS, FTIR (with HOD probing) and (1)H NMR measurements. Further, microbiological activities at different compositions were examined against two bacterial strains Bacillus subtilis and Escherichia coli at 303 K. The formation of mixed surfactant microemulsions was found to be spontaneous at all compositions, whereas it was endothermic at equimolar composition. FTIR and (1)H NMR measurements showed the existence of bulk-like, bound and trapped water molecules in confined environments. Interestingly, composition dependence of both highest and lowest inhibitory effects was observed against the bacterial strains, whereas similar features in spontaneity of microemulsion formation were also evidenced. These results suggested a close relationship between thermodynamic stability and antimicrobial activities. Such studies on polar lipophilic oil derived mixed surfactant microemulsions have not been reported earlier. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Identification of an algal carbon fixation-enhancing factor extracted from Paramecium bursaria.

    PubMed

    Kato, Yutaka; Imamura, Nobutaka

    2011-01-01

    The green ciliate Paramecium bursaria contains several hundred symbiotic Chlorella species. We previously reported that symbiotic algal carbon fixation is enhanced by P. bursaria extracts and that the enhancing factor is a heat-stable, low-molecular-weight, water-soluble compound. To identify the factor, further experiments were carried out. The enhancing activity remained even when organic compounds in the extract were completely combusted at 700 degrees C, suggesting that the factor is an inorganic substance. Measurement of the major cations, K+, Ca2+, and Mg2+, by an electrode and titration of the extract resulted in concentrations of 0.90 mM, 0.55 mM, and 0.21 mM, respectively. To evaluate the effect of these cations, a mixture of the cations at the measured concentrations was prepared, and symbiotic algal carbon fixation was measured in the solution. The results demonstrated that the fixation was enhanced to the same extent as with the P. bursaria extract, and thus this mixture of K+, Ca2+, and Mg2+ was concluded to be the carbon fixation-enhancing factor. There was no effect of the cation mixture on free-living C. vulgaris. Comparison of the cation concentrations of nonsymbiotic and symbiotic Paramecium extracts revealed that the concentrations of K+ and Mg2+ in nonsymbiotic Paramecium extracts were too low to enhance symbiotic algal carbon fixation, suggesting that symbiotic P. bursaria provide suitable cation conditions for photosynthesis to its symbiotic Chlorella.

  13. Dynamic Mechanism of a Fluorinated Oxime Reactivator Unbinding from AChE Gorge in Polarizable Water.

    PubMed

    Pathak, Arup K; Bandyopadhyay, Tusar

    2018-04-12

    A well-tempered metadynamics simulation is performed to study the unbinding process of a fluorinated oxime (FHI-6) drug from the active-site gorge of acetylcholinesterase enzyme in a polarizable water medium. Cation-π interactions and water bridge and hydrogen bridge formations between the protein and the drug molecule are found to strongly influence the unbinding process, forming basins and barriers along the gorge pathway. Distinct unbinding pathways are found when FHI-6 was compared with its recently reported nonfluorinated analogue, HI-6. For example, because of permanent positive charges on both the pyridinium rings of HI-6, it exhibits the minimum in the potential of mean force of the unbinding process in the gorge mouth (where the peripheral anion site, PAS, of the enzyme is located), which is largely caused by cation-π interactions. However, the same interaction, both in the catalytic active-site (CAS) and PAS regions, is found to be greatly enhanced in its lipophilic fluorinated analogue, FHI-6, causing a deep potential energy minimum in the bound state. This may render FHI-6 to be held more firmly in the CAS region of the gorge, as is also evidenced from the microkinetics of unbinding transitions, measured through a combination of metadynamics and hyperdynamics simulations.

  14. Coupling of OECD standardized test and immunomarkers to select the most environmentally benign ionic liquids option--towards an innovative "safety by design" approach.

    PubMed

    Bado-Nilles, Anne; Diallo, Alpha-Oumar; Marlair, Guy; Pandard, Pascal; Chabot, Laure; Geffard, Alain; Len, Christophe; Porcher, Jean-Marc; Sanchez, Wilfried

    2015-01-01

    This paper proposed a potential industrial accompaniment to reduce ionic liquid harmfulness by a novel combination of OECD Daphnia magna standardized test and fish immunomarkers. The combination of these two tests allowed multicriteria examination of ILs impacts in different organisms and trophic levels. The work provided new data for legislation and opened a door towards an integrative environmental evaluation due to direct implications of immune system in fish and ecosystem health. Whatever the species, each IL tested induced deleterious effects suggesting that toxic impact was especially due to IL lipophilicity properties. Nevertheless, cation moieties of ILs seemed to draw overall toxicity of ILs to significant extent as supported by lower cell mortality shown with imidazolium-based ILs compared to phosphonium-based ILs. However, the anions moieties have some additional effect, as revealed by quite dissimilar toxicity within same IL family. Concerning the more integrative biomarkers, the cationic-based ILs tested possessed also dissimilar effect on immune system of fish, especially on leucocyte distribution, lysosomal membrane integrity and phagocytosis activity. These results confirm that ILs toxicity could be influenced by design and that chemical engineering processes can integrate ecological footprint reduction strategies for successful IL utilization in the future. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Antiglycation activity of lipophilized epigallocatechin gallate (EGCG) derivatives.

    PubMed

    Wang, Mingfu; Zhang, Xinchen; Zhong, Ying Joy; Perera, Nishani; Shahidi, Fereidoon

    2016-01-01

    Lipophilized EGCG derivatives were synthesized by esterification of EGCG with aliphatic fatty acids and demonstrated to possess many advantages, such as higher lipophilicity and apparent health benefits over the parent EGCG. This study used a total of seven lipophilized EGCG derivatives with fatty acids of different chain lengths attached and examined the impact of lipophilization on EGCG's antiglycation activity in vitro. The length of fatty acid chain was found to be an important factor, which positively correlated with ABTS radical scavenging capacity but long chain bulky substitutes prevented methylglyoxal (MGO) trapping. Except docosahexaenoic acid (DHA), lipophilization generally showed no interference with EGCG's in vitro inhibitory activity of advanced glycation endproducts (AGEs) formation. Therefore, the lipophilized EGCG derivatives are promising candidates worthy of further exploration for preventing AGEs accumulation in vivo and hence treating AGEs-associated diseases. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Influence of Permeant Lipophilicity on Permeation Across Human Sclera

    PubMed Central

    Wen, He; Li, S. Kevin

    2010-01-01

    Purpose The objectives of this study were to determine the effects of permeant lipophilicity on permeant uptake into and transport across human sclera for transscleral delivery. Methods Model permeants with a wide range of lipophilicities were selected and studied with human sclera. Uptake experiments were carried out to measure permeant partitioning into the sclera. Transport experiments were performed in side-by-side diffusion cells, and the permeability coefficients and transport lag times of the permeants across the sclera were evaluated. Results Permeants with higher lipophilicity showed higher partition coefficients to human sclera, and the apparent transport lag time also increased significantly as the permeant lipophilicity increased. No correlation between the permeability coefficients and lipophilicity of the model permeants was observed in this study with human sclera. A hypothesis on the different findings between the present and previous studies was proposed. Conclusions Permeants with higher lipophilicity exhibited stronger binding to human sclera and would therefore lead to larger permeant partitioning to the sclera and longer transport lag time. The steady-state permeability coefficients of the permeants were not significantly affected by permeant lipophilicity. PMID:20734114

  17. Testing for the induction of anti-herbivory defences in four Portuguese macroalgae by direct and water-borne cues of grazing amphipods

    NASA Astrophysics Data System (ADS)

    Yun, Hee Young; Cruz, Joana; Treitschke, Michaela; Wahl, Martin; Molis, Markus

    2007-09-01

    Herbivory is a key factor in regulating plant biomass, thereby driving ecosystem performance. Algae have developed multiple adaptations to cope with grazers, including morphological and chemical defences. In a series of experiments we investigated whether several species of macroalgae possess anti-herbivore defences and whether these could be regulated to demand, i.e. grazing events. The potential of direct grazing on defence induction was assessed for two brown ( Dictyopteris membranacea, Fucus vesiculosus) and two red seaweeds ( Gelidium sesquipedale, Sphaerococcus coronopifolius) from São Rafael and Ria Formosa, Portugal. Bioassays conducted with live algal pieces and agar-based food containing lipophilic algal extracts were used to detect changes in palatability after exposure to amphipod attacks (=treatment phase). Fucus vesiculosus was the only species significantly reducing palatability in response to direct amphipod-attacks. This pattern was observed in live F. vesiculosus pieces and agar-based food containing a lipophilic extract, suggesting that lipophilic compounds produced during the treatment phase were responsible for the repulsion of grazers. Water-borne cues of grazed F. vesiculosus as well as non-grazing amphipods also reduced palatability of neighbouring conspecifics. However, this effect was only observed in live tissues of F. vesiculosus. This study is the first to show that amphipods, like isopods, are capable to induce anti-herbivory defences in F. vesiculosus and that a seasonally variable effectiveness of chemical defences might serve as a dynamic control in alga-herbivore interactions.

  18. Lipophilic Lysine-Spermine Conjugates are Potent Polyamine Transport Inhibitors for use in Combination with a Polyamine Biosynthesis Inhibitor

    PubMed Central

    Burns, Mark R.; Graminski, Gerard F.; Weeks, Reitha S.; Chen, Yan; O’Brien, Thomas G.

    2009-01-01

    Cancer cells can overcome the ability of polyamine biosynthesis inhibitors from completely depleting their internal polyamines by the importation polyamines from external sources. We have developed a group of lipophilic polyamine analogs that potently inhibit the cellular polyamine uptake system and greatly increase the effectiveness of polyamine depletion when used in combination with DFMO, a well-studied polyamine biosynthesis inhibitor. By the attachment of an length-optimized C16 lipophilic substituent to the epsilon-nitrogen atom of our earlier lead compound, d-Lys-Spm (5), we have produced an analog, d-Lys(C16acyl)-Spm (11) with several orders of magnitude more potent cell growth inhibition on a variety of cultured cancer cell types including breast (MDA-MB-231), prostate (PC-3), melanoma (A375) and ovarian (SK-OV-3), among others. We discuss these results in the context of a possible membrane-catalyzed interaction with the extracellular polyamine transport apparatus. The resulting novel two-drug combination therapy targeting cellular polyamine metabolism has shown exceptional efficacy against cutaneous squamous cell carcinomas (SCC) in a transgenic ornithine decarboxylase (ODC) mouse model of skin cancer. A majority (88%) of large, aggressive SCCs exhibited complete or near-complete remission to this combination therapy, while responses to each agent alone were poor. The availability of a potent polyamine transport inhibitor allows, for the first time, for a real test of the hypothesis that starving cells of polyamines will lead to objective clinical response. PMID:19281226

  19. Extension of Storage Stability in Energy-Dense Encapsulated Systems by Minimization of Lipid Oxidation

    DTIC Science & Technology

    1988-01-01

    of compounds like gallic 8 and chlorogenic acids . There are, of course, modifying circumstances. BHA and BHT are quite volatile and may be partially...GROUP FLUORE-SCEI-NCEI AIITox I l)ATI ON ASCORBIC ACID MA LLARI) REIA’IION ANT lOX I DANTs SOLID SAMPLE FLUORESCENCE ICALI.ATEI) IIYDROP1I 11 1. A...By contrast, ascorbic acid produced little to no effect in the compressed system. ....DG, a lipophile, was mcre than twic.Pas effective as propyl

  20. Synthesis, biological evaluation, and molecular docking of Ugi products containing a zinc-chelating moiety as novel inhibitors of histone deacetylases.

    PubMed

    Grolla, Ambra A; Podestà, Valeria; Chini, Maria Giovanna; Di Micco, Simone; Vallario, Antonella; Genazzani, Armando A; Canonico, Pier Luigi; Bifulco, Giuseppe; Tron, Gian Cesare; Sorba, Giovanni; Pirali, Tracey

    2009-05-14

    HDAC inhibitors show great promise for the treatment of cancer. As part of a broader effort to explore the SAR of HDAC inhibitors, synthesis, biological evaluation, and molecular docking of novel Ugi products containing a zinc-chelating moiety are presented. One compound shows improved inhibitory potencies compared to SAHA, demonstrating that hindered lipophilic residues grafted on the peptide scaffold of the alpha-aminoacylamides can be favorable in the interaction with the enzyme.

  1. Complexation of Statins with β-Cyclodextrin in Solutions of Small Molecular Additives and Macromolecular Colloids

    NASA Astrophysics Data System (ADS)

    Süle, András; Csempesz, Ferenc

    The solubility of lovastatin and simvastatin (inevitable drugs in the management of cardiovascular diseases) was studied by phase-solubility measurements in multicomponent colloidal and non-colloidal media. Complexation in aqueous solutions of the highly lipophilic statins with β-cyclodextrin (β-CD) in the absence and the presence of dissolved polyvinyl pyrrolidone, its monomeric compound, tartaric acid and urea, respectively, were investigated. For the characterization of the CD-statin inclusion complexes, stability constants for the associates have been calculated.

  2. The adsorption of alkyl-dimethyl-benzyl-ammonium chloride onto cotton nonwoven hydroentangled substrates at the solid-liquid interface is minimized by additive chemistries

    USDA-ARS?s Scientific Manuscript database

    Quaternary ammonium compounds, commonly referred to as quats, are cationic surfactants widely used as the active biocide ingredient for disposable disinfecting wipes. The cationic nature of quats results in a strong ionic interaction and adsorption onto wipes materials that have an anionic surface ...

  3. The biogeochemical fingerprint of urbanization: increasing carbon quality in Maine headwater streams

    NASA Astrophysics Data System (ADS)

    Parr, T.; Cronan, C.; Ohno, T.; Simon, K. S.

    2012-12-01

    Conversion of land cover to urban use is an accelerating global phenomenon. Physical landscape change manifests as the replacement of forests, grasslands, and wetlands with buildings, novel vegetation, and infrastructure. This physical change also brings with it a change in the human management of the landscape for aesthetic and practical purposes (i.e. road salt applications). Although urbanization's effects on inorganic nutrients have been well studied, far less is known about the interactive influences of urbanization and urban landscape management practices on dissolved organic matter (DOM), a key energy source essential to ecosystem function. We examined the seasonal abundance and composition of DOM, nutrients, and common cations in 116 small streams along a gradient of urbanization (0-60% total watershed imperviousness, TWI), in Maine, USA. Dissolved organic carbon concentration ranged from 0.5 to 20 ppm with no clear relationship to watershed urbanization. In contrast, DOM composition, quantified with specific ultra violet absorbance at 254 nm (SUVA_{254}), fluorescence indices, and parallel factor analysis (PARAFAC), changed considerably with increasing urbanization. SUVA_{254} indicated a shift from higher molecular weight humic compounds (SUVA_{254}>4) toward lower molecular weight compounds (SUVA_{254}<2.5) with increasing urbanization. Fluorescence indices (Fluorescence Index, Humification Index, and α:β) indicated DOM source shifted from allochthonous sources (e.g. plant and soil carbon) toward autochthonously derived compounds (e.g. derivatives of in-stream algal and microbial production). Humic acid-like compounds decreased from 40% to 10% of the fluorescent DOM pool, while fluorescence of more labile compounds increased from 10 to 25% with increasing urbanization. Laboratory bioassays of DOM degradation rates showed that increasing urbanization doubled the bioavailability of DOM. Ratios of DOC:DON declined from 20-50 at TWI<8% to <20 above 8% TWI. Changes in the DOM pool were unrelated to inorganic nutrient concentrations, but were related to base cation concentrations. Concentrations of base cations (Ca^{2+}, Mg^{2+}, K^+, Na^+) increased 3-100 fold with increasing impervious cover. The stoichiometric relationships among Na^+, Cl^- and other base cations suggest road salt application may mobilize base cations into streams draining urbanized watersheds. There was a strong negative relationship between humic-like DOM components and Ca^{2+} (R^2=0.3-0.5, p<0.01) across streams. Bottle incubations of ^1+ and ^{2+} base cation salts over a natural range (0 - 6 mM) showed that ^{2+} cations (esp. Ca^{2+}) preferentially flocculated the humic fraction of DOM (R^2=0.6-0.9, p<0.01). These results indicate that the carbon composition change observed with urbanization in Maine may be controlled by multiple concurrent processes linked to the creation and maintenance of urban landscapes. Our data suggest that a key biogeochemical consequence of urbanization may be an increase in abundance of labile carbon which may have important consequences for ecosystem function in urban systems. This process may be driven by a combination of altered landscape C sources reducing terrestrial C inputs, enhancement of in-stream C production, and base cation enrichment that removing terrestrial C from the aquatic DOM pool in urban landscapes.

  4. Atomistic understanding of cation exchange in PbS nanocrystals using simulations with pseudoligands

    PubMed Central

    Fan, Zhaochuan; Lin, Li-Chiang; Buijs, Wim; Vlugt, Thijs J. H.; van Huis, Marijn A.

    2016-01-01

    Cation exchange is a powerful tool for the synthesis of nanostructures such as core–shell nanocrystals, however, the underlying mechanism is poorly understood. Interactions of cations with ligands and solvent molecules are systematically ignored in simulations. Here, we introduce the concept of pseudoligands to incorporate cation-ligand-solvent interactions in molecular dynamics. This leads to excellent agreement with experimental data on cation exchange of PbS nanocrystals, whereby Pb ions are partially replaced by Cd ions from solution. The temperature and the ligand-type control the exchange rate and equilibrium composition of cations in the nanocrystal. Our simulations reveal that Pb ions are kicked out by exchanged Cd interstitials and migrate through interstitial sites, aided by local relaxations at core–shell interfaces and point defects. We also predict that high-pressure conditions facilitate strongly enhanced cation exchange reactions at elevated temperatures. Our approach is easily extendable to other semiconductor compounds and to other families of nanocrystals. PMID:27160371

  5. Analogues of desferrioxamine B designed to attenuate iron-mediated neurodegeneration: synthesis, characterisation and activity in the MPTP-mouse model of Parkinson's disease.

    PubMed

    Gotsbacher, Michael P; Telfer, Thomas J; Witting, Paul K; Double, Kay L; Finkelstein, David I; Codd, Rachel

    2017-07-19

    Parkinson's disease (PD) is a neurodegenerative disorder characterised by the death of dopaminergic neurons in the substantia nigra pars compacta (SNpc) region of the brain and formation of α-synuclein-containing intracellular inclusions. Excess intraneuronal iron in the SNpc increases reactive oxygen species (ROS), which identifies removing iron as a possible therapeutic strategy. Desferrioxamine B (DFOB, 1) is an iron chelator produced by bacteria. Its high Fe(iii) affinity, water solubility and low chronic toxicity is useful in removing iron accumulated in plasma from patients with transfusion-dependent blood disorders. Here, lipophilic analogues of DFOB with increased potential to cross the blood-brain barrier (BBB) have been prepared by conjugating ancillary compounds onto the amine terminus. The ancillary compounds included the antioxidants rac-6-hydroxy-2,5,7,8-tetramethylchromane-2-carboxylic acid (rac-trolox, rac-TLX (a truncated vitamin E variant)), R-TLX, S-TLX, methylated derivatives of 3-(6-hydroxy-2-methylchroman-2-yl)propionic acid (α-CEHC, γ-CEHC, δ-CEHC), or 4-(5-hydroxy-3-methyl-1H-pyrazol-1-yl)benzoic acid (carboxylic acid derivative of edaravone, EDA). Compounds 2-8 could have dual function in attenuating ROS by chelating Fe(iii) and via the antioxidant ancillary group. A conjugate between DFOB and an ancillary unit without antioxidant properties (3,5-dimethyladamantane-1-carboxylic acid (AdA dMe )) was included (9). Compounds 2-9 were more lipophilic (log P -0.05 to 3.39) than DFOB (log P -2.62) and showed an average plasma protein binding 6 times greater than DFOB. The ABTS˙ + radical assay indicated 2-8 had antioxidant activity ascribable to the ancillary fragment. Administration of 2 and 9 in the mouse model of PD using the neurotoxin prodrug 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), which recapitulates elevated iron of human PD, resulted in significant neuronal protection (p < 0.05; up to 89% of that in non-lesioned control animals), demonstrating the neuroprotective potential of these compounds for PD.

  6. The influence of hepatic transport on the distribution volumes and mean residence time of drug in the body and the accuracy of estimating these parameters by the traditional pharmacokinetic calculations.

    PubMed

    Berezhkovskiy, Leonid M

    2011-11-01

    The influence of hepatic uptake and efflux, which includes passive diffusion and transporter-mediated component, on drug distribution volumes [steady-state volume of distribution (V(ss)) and terminal volume of distribution (V(β))], mean residence time (MRT), clearance, and terminal half-life is considered using a simplified physiologically based pharmacokinetic model. To account for hepatic uptake, liver is treated as two-compartmental unit with drug transfer from extracellular water into hepatocytes. The exactly calculated distribution volumes and MRT are compared with that obtained by the traditional equations based on the assumption of central elimination. It was found that V(ss) may increase more than 10-fold and V(β) more than 100-fold due to the contribution of transporter-mediated uptake. The terminal half-life may be substantially shortened (more than 100-fold) due to transporters. It may also decrease significantly due to the increase of intrinsic hepatic clearance (CL(int)), whereas hepatic clearance has already reached saturation (and stays close to the possible maximum value). It is shown that in case of transporter-mediated uptake of compound into hepatocytes, in the absence of efflux and passive diffusion (unidirectional uptake), hepatic clearance is independent of CL(int) and is determined by hepatic blood flow and uptake rate constant. The effects of transporter-mediated uptake are mostly pronounced for hydrophilic acidic compounds and moderately lipophilic neutral compounds. For basic compounds and lipophilic neutral compounds the change of distribution volumes due to transporters is rather unlikely. It was found that the traditional equations provide very accurate values of V(ss), V(β), and MRT in the absence of transporter action even for very low rates of passive diffusion. On the other hand, the traditional equations fail to provide the correct values of these parameters when the increase of distribution volumes due to transporters takes place, and actually yield the values substantially smaller than the true ones (up to an order of magnitude for V(ss) and MRT, and three orders of magnitude for V(β)). Copyright © 2011 Wiley-Liss, Inc.

  7. The chemistry of cationic polyphosphorus cages – syntheses, structure and reactivity

    PubMed Central

    Holthausen, Michael H.

    2014-01-01

    The aim of this review is to provide a comprehensive view of the chemistry of cationic polyphosphorus cages. The synthetic protocols established for their preparation, which are all based on the functionalization of P4, and their intriguing follow-up chemistry are highlighted. In addition, this review intends to foster the interest of the inorganic, organic, catalytic and material oriented chemical communities in the versatile field of polyphosphorus cage compounds. In the long term, this is envisioned to contribute to the development of new synthetic procedures for the functionalization of P4 and its transformation into (organo-)phosphorus compounds and materials of added value. PMID:24740160

  8. Changes in fluorescent emission of cationic fluorophores in the presence of n-alkanes and alcohols in different polarity solvents

    NASA Astrophysics Data System (ADS)

    Delgado-Camón, Arantzazu; Garriga, Rosa; Mateos, Elena; Cebolla, Vicente L.; Galbán, Javier; Membrado, Luis; Marcos, Susana de; Gálvez, Eva M.

    2011-01-01

    Berberine and coralyne experience either fluorescence enhancement or quenching when long hydrocarbon chain compounds (e.g., n-alkanes or alcohols) are added to their solutions, depending on solvent polarity. In polar solvents, as methanol or acetonitrile, the added compounds provide an apolar microenvironment that hinders alternative relaxation mechanisms, favouring fluorescence emission. However, alkane additions produce quenching in dichloromethane, which has been explained taking into account ion pairing between cationic fluorophore and counterion. The strong quenching measured after alcohol additions in dichloromethane suggests reversed micelle formation. Procedures and results described here may find practical applications in the development of analytical methods.

  9. Synthesis and Utilization of Trialkylammonium-Substituted Cyclodextrins as Water-Soluble Chiral NMR Solvating Agents for Anionic Compounds.

    PubMed

    Dowey, Alison E; Puentes, Cira Mollings; Carey-Hatch, Mira; Sandridge, Keyana L; Krishna, Nikhil B; Wenzel, Thomas J

    2016-04-01

    Cationic trialkylammonium-substituted α-, β-, and γ-cyclodextrins containing trimethyl-, triethyl-, and tri-n-propylammonium substituent groups were synthesized and analyzed for utility as water-soluble chiral nuclear magnetic resonance (NMR) solvating agents. Racemic and enantiomerically pure (3-chloro-2-hydroxypropyl)trimethyl-, triethyl-, and tri-n-propyl ammonium chloride were synthesized from the corresponding trialkyl amine hydrochloride and either racemic or enantiomerically pure epichlorohydrin. The ammonium salts were then reacted with α-, β-, and γ-cyclodextrins at basic pH to provide the corresponding randomly substituted cationic cyclodextrins. The (1) H NMR spectra of a range of anionic, aromatic compounds was recorded with the cationic cyclodextrins. Cyclodextrins with a single stereochemistry at the hydroxy group on the (2-hydroxypropyl)trialkylammonium chloride substituent were often but not always more effective than the corresponding cyclodextrin in which the C-2 position was racemic. In several cases, the larger triethyl or tri-n-propyl derivatives were more effective than the corresponding trimethyl derivative at causing enantiomeric differentiation. None of the cyclodextrin derivatives were consistently the most effective for all of the anionic compounds studied. © 2016 Wiley Periodicals, Inc.

  10. Biotransformation of petroleum hydrocarbons and microbial communities in seawater with oil dispersions and copepod feces.

    PubMed

    Størdal, Ingvild Fladvad; Olsen, Anders Johny; Jenssen, Bjørn Munro; Netzer, Roman; Altin, Dag; Brakstad, Odd Gunnar

    2015-12-30

    To determine biotransformation of components in crude oil dispersions in the presence of feces from marine copepods, dispersed oil was incubated alone, with the addition of clean or oil-containing feces. We hypothesized that the feces would contribute with nutrients to bacteria, and higher concentrations of oil-degrading bacteria, respectively. Presence of clean feces resulted in higher degradation of aromatic oil compounds, but lower degradation of n-alkanes. Presence of oil-containing feces resulted in higher degradation of n-alkanes. The effect of clean feces on aromatic compounds are suggested to be due to higher concentrations of nutrients in the seawater where aromatic degradation takes place, while the lower degradation of n-alkanes are suggested to be due to a preference by bacteria for feces over these compounds. Large aggregates were observed in oil dispersions with clean feces, which may cause sedimentation of un-weathered lipophilic oil compounds towards the seafloor if formed during oil spills. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Synthesis and in vitro evaluation of new derivatives of 2-substituted-6-fluorobenzo[d]thiazoles as cholinesterase inhibitors.

    PubMed

    Imramovský, Aleš; Pejchal, Vladimír; Štěpánková, Šárka; Vorčáková, Katarína; Jampílek, Josef; Vančo, Ján; Šimůnek, Petr; Královec, Karel; Brůčková, Lenka; Mandíková, Jana; Trejtnar, František

    2013-04-01

    A series of novel cholinesterase inhibitors based on 2-substituted 6-fluorobenzo[d]thiazole were synthesised and characterised by IR, (1)H, (13)C and (19)F NMR spectroscopy and HRMS. Purity was checked by elemental analyses. The novel carbamates were tested for their ability to inhibit acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). The toxicity of the most active compounds was investigated using a standard in vitro test with HepG2 cells, and the ratio between biological activity and toxicity was determined. In addition, the toxicity of the most active compounds was evaluated against MCF7 cells using the xCELLigence system. Structure-activity relationships reflecting the dependence of cholinesterase inhibitors on the lipophilicity of the compounds as well as on the Taft polar and steric substituent constants are discussed. The specific orientation of the inhibitors in the binding site of acetylcholinesterase was determined using molecular docking of the most active compound. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Bis(tetra­phenyl­phospho­nium) tetra­chlorido­cobaltate(II)

    PubMed Central

    Ouahida, Zeghouan; Hadjadj, Nasreddine; Guenifa, Fatiha; Bendjeddou, Lamia; Merazig, Hocine

    2014-01-01

    The title compound, (C24H20P)2[CoCl4], was prepared under hydro­thermal conditions. In the crystal, the tetra­phenyl­phospho­nium cations are linked by pairs of weak C—H⋯π inter­actions into supra­molecular dimers; the CoII cations lie on twofold rotation axes and the tetra­hedral [CoCl4]2− anions are linked with the tetra­phenyl­phospho­nium cations via weak C—H⋯Cl hydrogen bonds. PMID:24940211

  13. 3'-O-Substituted 5-(perylen-3-ylethynyl)-2'-deoxyuridines as tick-borne encephalitis virus reproduction inhibitors.

    PubMed

    Proskurin, Gleb V; Orlov, Alexey A; Brylev, Vladimir A; Kozlovskaya, Liubov I; Chistov, Alexey A; Karganova, Galina G; Palyulin, Vladimir A; Osolodkin, Dmitry I; Korshun, Vladimir A; Aralov, Andrey V

    2018-05-26

    A series of analogues of potent antiviral perylene nucleoside dUY11 with methylthiomethyl (MTM), azidomethyl (AZM) and HO-C 1-4 -alkyl-1,2,3-triazol-1,4-diyl groups at 3'-O-position as well as the two products of copper-free alkyne-azide cycloaddition of the AZM derivative were prepared and evaluated against tick-borne encephalitis virus (TBEV). Four compounds (4, 6, 8a, 8b) showed EC 50  ≤ 10 nM, thus appearing the most potent TBEV inhibitors to date. Moreover, these nucleosides have higher lipophilicity (clogP) and increased solubility in aq. DMSO vs. parent compound dUY11. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  14. A Cell-Targeted Non-Cytotoxic Fluorescent Nanogel Thermometer Created with an Imidazolium-Containing Cationic Radical Initiator.

    PubMed

    Uchiyama, Seiichi; Tsuji, Toshikazu; Kawamoto, Kyoko; Okano, Kentaro; Fukatsu, Eiko; Noro, Takahiro; Ikado, Kumiko; Yamada, Sayuri; Shibata, Yuka; Hayashi, Teruyuki; Inada, Noriko; Kato, Masaru; Koizumi, Hideki; Tokuyama, Hidetoshi

    2018-05-04

    A cationic fluorescent nanogel thermometer based on thermo-responsive N-isopropylacrylamide and environment-sensitive benzothiadiazole was developed with a new azo compound bearing imidazolium rings as the first cationic radical initiator. This cationic fluorescent nanogel thermometer showed an excellent ability to enter live mammalian cells in a short incubation period (10 min), a high sensitivity to temperature variations in live cells (temperature resolution of 0.02-0.84 °C in the range 20-40 °C), and remarkable non-cytotoxicity, which permitted ordinary cell proliferation and even differentiation of primary cultured cells. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Rapid, Bioassay-Guided Process for the Detection and Identification of Antibacterial Neem Oil Compounds.

    PubMed

    Krüzselyi, Dániel; Nagy, Róbert; Ott, Péter G; Móricz, Ágnes M

    2016-08-01

    Bioassay guidance was used along the whole process including method development, isolation and identification of antibacterial neem (Azadirachta indica) oil compounds. The biomonitoring was performed by direct bioautography (DB), a combination of thin-layer chromatography (TLC) and antimicrobial detection. DB of neem oil showed one antibacterial zone that was not UV-active; therefore, the TLC separation was improved under DB control. The chromatographic zone that exhibited activity against Bacillus subtilis, Xanthomonas euvesicatoria, Aliivibrio fischeri, Staphylococcus aureus and methicillin-resistant Staphylococcus aureus was characterized by TLC reagents, indicating a lipophilic, fatty acid-like chemical feature. Two compounds were found and identified in the active zone by high-performance liquid chromatography-electrospray ionization mass spectrometry as linoleic and oleic acids. Both fatty acids inhibited B. subtilis, but A. fischeri was sensitive only against linoleic acid. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Thiazolino 2-Pyridone Amide Inhibitors of Chlamydia trachomatis Infectivity.

    PubMed

    Good, James A D; Silver, Jim; Núñez-Otero, Carlos; Bahnan, Wael; Krishnan, K Syam; Salin, Olli; Engström, Patrik; Svensson, Richard; Artursson, Per; Gylfe, Åsa; Bergström, Sven; Almqvist, Fredrik

    2016-03-10

    The bacterial pathogen Chlamydia trachomatis is a global health burden currently treated with broad-spectrum antibiotics which disrupt commensal bacteria. We recently identified a compound through phenotypic screening that blocked infectivity of this intracellular pathogen without host cell toxicity (compound 1, KSK 120). Herein, we present the optimization of 1 to a class of thiazolino 2-pyridone amides that are highly efficacious (EC50 ≤ 100 nM) in attenuating infectivity across multiple serovars of C. trachomatis without host cell toxicity. The lead compound 21a exhibits reduced lipophilicity versus 1 and did not affect the growth or viability of representative commensal flora at 50 μM. In microscopy studies, a highly active fluorescent analogue 37 localized inside the parasitiphorous inclusion, indicative of a specific targeting of bacterial components. In summary, we present a class of small molecules to enable the development of specific treatments for C. trachomatis.

  17. Synthesis, characterization, and molecular docking analysis of novel benzimidazole derivatives as cholinesterase inhibitors.

    PubMed

    Yoon, Yeong Keng; Ali, Mohamed Ashraf; Wei, Ang Chee; Choon, Tan Soo; Khaw, Kooi-Yeong; Murugaiyah, Vikneswaran; Osman, Hasnah; Masand, Vijay H

    2013-08-01

    Two series of novel acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitors containing benzimidazole core structure were synthesized by a four-step reaction pathway starting from 4-fluoro-3-nitrobenzoic acid as the basic compound. The structure of the novel benzimidazoles was characterized and confirmed by the elemental and mass spectral analyses as well as (1)H NMR spectroscopic data. Of the 34 novel synthesized compounds, three benzimidazoles revealed AChE inhibition with IC50<10 μM. The highest inhibitory activity (IC50=5.12 μM for AChE and IC50=8.63 μM for BChE) corresponds to the compound 5IIc (ethyl 1-(3-(1H-imidazol-1-yl)propyl)-2-(4-nitrophenyl)-1H-benzo[d]imidazole-5-carboxylate). The relationship between lipophilicity and the chemical structures as well as their limited structure-activity relationship was discussed. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Dialkylimidazole inhibitors of Trypanosoma cruzi sterol 14α-demethylase as anti-Chagas disease agents.

    PubMed

    Suryadevara, Praveen Kumar; Racherla, Kishore Kumar; Olepu, Srinivas; Norcross, Neil R; Tatipaka, Hari Babu; Arif, Jennifer A; Planer, Joseph D; Lepesheva, Galina I; Verlinde, Christophe L M J; Buckner, Frederick S; Gelb, Michael H

    2013-12-01

    New dialkylimidazole based sterol 14α-demethylase inhibitors were prepared and tested as potential anti-Trypanosoma cruzi agents. Previous studies had identified compound 2 as the most potent and selective inhibitor against parasite cultures. In addition, animal studies had demonstrated that compound 2 is highly efficacious in the acute model of the disease. However, compound 2 has a high molecular weight and high hydrophobicity, issues addressed here. Systematic modifications were carried out at four positions on the scaffold and several inhibitors were identified which are highly potent (EC50 <1 nM) against T. cruzi in culture. The halogenated derivatives 36j, 36k, and 36p, display excellent activity against T. cruzi amastigotes, with reduced molecular weight and lipophilicity, and exhibit suitable physicochemical properties for an oral drug candidate. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Nano-encapsulations liberated from barley protein microparticles for oral delivery of bioactive compounds.

    PubMed

    Wang, Ruoxi; Tian, Zhigang; Chen, Lingyun

    2011-03-15

    Novel microparticles (3-5 μm) were created by pre-emulsifying barley proteins with a homogenizer followed a microfluidizer system. These microparticles exhibited a high oil carrying capacity (encapsulation efficiency, 93-97%; loading efficiency, 46-49%). Microparticle degradation and bioactive compound release behaviours were studied in the simulated gastro-intestinal (GI) tract. The data revealed that nano-encapsulations (20-30 nm) were formed as a result of enzymatic degradation of barley protein microparticle bulk matrix in the simulated gastric tract. These nano-encapsulations delivered β-carotene to a simulated human intestinal tract intact, where they were degraded by pancreatic enzymes and steadily released the β-carotene. These uniquely structured microparticles may provide a new strategy for the nutraceutical and pharmaceutical industries to develop targeted delivery systems for lipophilic bioactive compounds. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Synthesis and evaluation of 3-[(2,4-dioxo-1,3,8-triazaspiro[4.6]undec-3-yl)methyl]benzonitrile derivatives as potential anticonvulsants.

    PubMed

    Madaiah, Malavalli; Prashanth, Maralekere K; Revanasiddappa, Hosakere D; Veeresh, Bantal

    2013-03-01

    New 3-[(2,4-dioxo-1,3,8-triazaspiro[4.6]undec-3-yl)methyl]benzonitrile derivatives 8-37 were synthesized and their pharmacological activities were determined with the objective to better understand their structure-activity relationship (SAR) for anticonvulsant activity. All the compounds were evaluated for their possible anticonvulsant activity by maximal electroshock seizure (MES) and pentylenetetrazole (PTZ) test. Compounds 11, 18, 31, and 32 showed significant and protective effect on seizure, when compared with the standard drug valproate. The same compounds were found to exhibit advanced anticonvulsant activity as well as lower neurotoxicity than the reference drug. From this study, it is quite apparent that there are at least three parameters for the activity of anticonvulsant drugs, that is, a lipophilic domain, a hydrophobic center, and a two-electron donor. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Top