Science.gov

Sample records for lipoprotein explain increased

  1. Pistachio intake increases high density lipoprotein levels and inhibits low-density lipoprotein oxidation in rats.

    PubMed

    Aksoy, Nur; Aksoy, Mehmet; Bagci, Cahit; Gergerlioglu, H Serdar; Celik, Hakim; Herken, Emine; Yaman, Abdullah; Tarakcioglu, Mehmet; Soydinc, Serdar; Sari, Ibrahim; Davutoglu, Vedat

    2007-05-01

    There is increasing evidence that nuts have protective effects against coronary artery disease by improving lipid profile and inhibiting lipid oxidation. However, data about pistachio nuts are limited, and to our knowledge, there is no study investigating the effects of pistachio intake on lipid oxidation and serum antioxidant levels. This study, therefore, sought to determine the effects of pistachio intake on serum lipids and determine whether consumption of pistachio would alter serum antioxidant levels. Rats were randomly divided into three groups (n=12 for each): control group fed basic diet for 10 weeks and treated groups fed basic diet plus pistachio which constituted 20% and 40% of daily caloric intake, respectively. Consumption of pistachio as 20% of daily caloric intake increased high-density lipoprotein (HDL) levels and decreased total cholesterol (TC)/HDL ratio, compared with those not taking pistachio. However, TC, low-density lipoprotein (LDL) cholesterol and triglyceride levels were unaffected by pistachio consumption. Consumption of pistachio as 20% of daily caloric intake increased serum paraoxonase activity by 35% and arylesterase activity by 60%, which are known to inhibit LDL cholesterol oxidation, compared with the control group. However, increased antioxidant activity was blunted when pistachio intake was increased to 40% of daily caloric intake. In conclusion, the present results show that consumption of pistachio as 20% of daily caloric intake leads to significant improvement in HDL and TC/HDL ratio and inhibits LDL cholesterol oxidation. These results suggest that pistachio may be beneficial for both prevention and treatment of coronary artery disease.

  2. Dietary Squalene Increases High Density Lipoprotein-Cholesterol and Paraoxonase 1 and Decreases Oxidative Stress in Mice

    PubMed Central

    Gabás-Rivera, Clara; Barranquero, Cristina; Martínez-Beamonte, Roberto; Navarro, María A.; Surra, Joaquín C.; Osada, Jesús

    2014-01-01

    Background and Purpose Squalene, the main hydrocarbon in the unsaponifiable fraction of virgin olive oil, is involved in cholesterol synthesis and it has been reported to own antiatherosclerotic and antiesteatosic effects. However, the squalene's role on lipid plasma parameters and the influence of genotype on this effect need to be addressed. Experimental Approaches Three male mouse models (wild-type, Apoa1- and Apoe- deficient) were fed chow semisynthetic diets enriched in squalene to provide a dose of 1 g/kg during 11 weeks. After this period, their plasma parameters and lipoprotein profiles were analyzed. Key Results Squalene administration at a dose of 1 g/kg showed decreased reactive oxygen species in lipoprotein fractions independently of the animal background and caused an specific increase in high density lipoprotein (HDL)-cholesterol levels, accompanied by an increase in phosphatidylcholine and paraoxonase 1 and no changes in apolipoproteins A1 and A4 in wild-type mice. In these mice, the cholesterol increase was due to its esterified form and associated with an increased hepatic expression of Lcat. These effects were not observed in absence of apolipoprotein A1. The increases in HDL- paraoxonase 1 were translated into decreased plasma malondialdehyde levels depending on the presence of Apolipoprotein A1. Conclusions and Implications Dietary squalene promotes changes in HDL- cholesterol and paraoxonase 1 and decreases reactive oxygen species in lipoproteins and plasma malondialdehyde levels, providing new benefits of its intake that might contribute to explain the properties of virgin olive oil, although the phenotype related to apolipoproteins A1 and E may be particularly relevant. PMID:25117703

  3. A rapid increase in lipoprotein (a) levels after ethanol withdrawal in alcoholic men

    SciTech Connect

    Kervinen, K.; Savolainen, J.J.; Kesaeniemi, Y.A. )

    1991-01-01

    Plasma concentrations of lipoprotein (a) (Lp(a)) were studied in 11 male alcoholics at the end of a drinking period and monitored during subsequent abstinence. Lp(a) levels showed a daily increase for four consecutive days after the beginning of abstinence, the values for the third and the fourth day being significantly higher than those of the first day. The changes in Lp(a) showed no association with the changes in low density lipoprotein (LDL) and high density lipoprotein (HDL) cholesterol levels. In one alcoholic subject with a heterozygous form of familial hypercholesterolemia who was monitored for 11 days, the Lp(a) levels rose up to the fourth day and remained at a high level thereafter. These results suggest that ethanol ingestion may be associated with a lower of Lp(a) levels, which may contribute to the delayed progression of atherosclerosis observed in alcohol drinkers.

  4. Detergent-Mediated Phospholipidation of Plasma Lipoproteins Increases HDL Cholesterophilicity and Cholesterol Efflux Via SR-BI†

    PubMed Central

    Pownall, Henry J.

    2008-01-01

    Cellular cholesterol efflux is an early, obligatory step in reverse cholesterol transport, the putative antiatherogenic mechanism by which human plasma high density lipoproteins (HDL) transport cholesterol from peripheral tissue to the liver for recycling or disposal. HDL-phospholipid content is the essential cholesterol-binding component of lipoproteins and therefore a major determinant of cholesterol efflux. Thus, increased phospholipidation of lipoproteins, particularly HDL, is one strategy for increasing cholesterol efflux. This study validates a simple, new detergent perturbation method for the phospholipidation of plasma lipoproteins; we have quantified the cholesterophilicity of human plasma lipoproteins and the effects of lipoprotein phospholipidation on cholesterophilicity and cellular cholesterol efflux mediated by the class B type I scavenger receptor (SR-BI). We determined that low density lipoproteins (LDL) are more cholesterophilic than HDL and that LDL has a higher affinity for phospholipids than HDL whereas HDL has a higher phospholipid capacity than LDL. Phospholipidation of total human plasma lipoproteins enhances cholesterol efflux, an effect that occurs largely through the preferential phospholipidation of HDL. We conclude that increasing HDL phospholipid increases its cholesterophilicity thereby making it a better acceptor of cellular cholesterol efflux. Phospholipidation of lipoproteins by detergent perturbation is a simple way to increase HDL cholesterophilicity and cholesterol efflux in a way that may be clinically useful. PMID:16981711

  5. Increases in plasma pool size of lipoprotein components in copper-deficient hamsters

    SciTech Connect

    Al-Othman, A.A.; Rosenstein, F.; Lei, K.Y. )

    1991-03-15

    Twenty-four male Golden Syrian hamsters, were randomly assigned to 2 dietary copper (Cu) treatments; deficient and adequate. Reductions in weight gain, hematocrit and liver Cu as well as increases in heart weight and plasma volume were observed in CD hamsters after 7 weeks of treatment. Plasma very low (VLDL), low (LDL) and high (HDL) density lipoproteins were isolated by ultracentrifugation and Sepharose column chromatography. The percentage of total plasma cholesterol carried by LDL was increased from 20 to 24% but was reduced from 71 to 68% for HDL as a result of Cu deficiency. In LDL the % composition of triglycerides (TG) and phospholipids (PL) was increased by 25% but that of cholesterol was reduced by 13%. The % composition of protein was reduced 24% but that of TG was increased 18% in VLDL by Cu deficiency. Since plasma volume was increased 50% in CD hamsters, the data were expressed as the amount present in the plasma pool corrected for body weight. With the exceptions of smaller increased in VLDL protein and PL as well as the more than threefold increases in LDL TG and PL plasma pool size, the pool size for the rest of the lipoprotein components were increased about twofold in CD hamsters. The lipoprotein data further indicate that Cu deficiency increased the particle number of VLDL, LDL and HDL but enlarged the size of only VLDL and LDL.

  6. Lipoprotein lipase (LpL) on the surface of cardiomyocytes increases lipid uptake and produces a cardiomyopathy

    PubMed Central

    Yagyu, Hiroaki; Chen, Guangping; Yokoyama, Masayoshi; Hirata, Kumiko; Augustus, Ayanna; Kako, Yuko; Seo, Toru; Hu, Yunying; Lutz, E. Peer; Merkel, Martin; Bensadoun, André; Homma, Shunichi; Goldberg, Ira J.

    2003-01-01

    Lipoprotein lipase is the principal enzyme that hydrolyzes circulating triglycerides and liberates free fatty acids that can be used as energy by cardiac muscle. Although lipoprotein lipase is expressed by and is found on the surface of cardiomyocytes, its transfer to the luminal surface of endothelial cells is thought to be required for lipoprotein lipase actions. To study whether nontransferable lipoprotein lipase has physiological actions, we placed an α-myosin heavy-chain promoter upstream of a human lipoprotein lipase minigene construct with a glycosylphosphatidylinositol anchoring sequence on the carboxyl terminal region. Hearts of transgenic mice expressed the altered lipoprotein lipase, and the protein localized to the surface of cardiomyocytes. Hearts, but not postheparin plasma, of these mice contained human lipoprotein lipase activity. More lipid accumulated in hearts expressing the transgene; the myocytes were enlarged and exhibited abnormal architecture. Hearts of transgenic mice were dilated, and left ventricular systolic function was impaired. Thus, lipoprotein lipase expressed on the surface of cardiomyocytes can increase lipid uptake and produce cardiomyopathy. PMID:12569168

  7. Interleukin-10 Deficiency Increases Atherosclerosis, Thrombosis, and Low-density Lipoproteins in Apolipoprotein E Knockout Mice

    PubMed Central

    Caligiuri, Giuseppina; Rudling, Mats; Ollivier, Véronique; Jacob, Marie-Paule; Michel, Jean-Baptiste; Hansson, Göran K; Nicoletti, Antonino

    2003-01-01

    Interleukin (IL)-10 is an anti-inflammatory cytokine that may play a protective role in atherosclerosis. The aim of this study was to assess the effect of IL-10 deficiency in the apolipoprotein E knockout mouse. Apolipoprotein E deficient (E−/−) and IL-10 deficient (−/−) mice were crossed to generate E−/− × IL-10−/− double knockout mice. By 16 wk, cholesterol and triglycerides were similar in double and single knockouts but the lack of IL-10 led to increased low-density lipoprotein cholesterol whereas very-low-density lipoprotein was reduced. In parallel, T-helper 1 responses and lesion size were dramatically increased in double knockout compared with E−/− controls. At 48 wk, matrix metalloproteinases and tissue factor activities were increased in lesions of double-knockout mice. Furthermore, markers of systemic coagulation were increased, and vascular thrombosis in response to i.v. thrombin occurred more frequently in E−/− × IL-10−/− than in E−/− mice. Our findings suggest that IL-10 deficiency plays a deleterious role in atherosclerosis. The early phase of lesion development was increased, and the proteolytic and procoagulant activity was elevated in advanced lesions. These data show that IL-10 may reduce atherogenesis and improve the stability of plaques. PMID:12765335

  8. Increased expression of apolipoprotein E in transgenic rabbits results in reduced levels of very low density lipoproteins and an accumulation of low density lipoproteins in plasma.

    PubMed Central

    Fan, J; Ji, Z S; Huang, Y; de Silva, H; Sanan, D; Mahley, R W; Innerarity, T L; Taylor, J M

    1998-01-01

    Transgenic rabbits expressing human apo E3 were generated to investigate mechanisms by which apo E modulates plasma lipoprotein metabolism. Compared with nontransgenic littermates expressing approximately 3 mg/dl of endogenous rabbit apo E, male transgenic rabbits expressing approximately 13 mg/dl of human apo E had a 35% decrease in total plasma triglycerides that was due to a reduction in VLDL levels and an absence of large VLDL. With its greater content of apo E, transgenic VLDL had an increased binding affinity for the LDL receptor in vitro, and injected chylomicrons were cleared more rapidly by the liver in transgenic rabbits. In contrast to triglyceride changes, transgenic rabbits had a 70% increase in plasma cholesterol levels due to an accumulation of LDL and apo E-rich HDL. Transgenic and control LDL had the same binding affinity for the LDL receptor. Both transgenic and control rabbits had similar LDL receptor levels, but intravenously injected human LDL were cleared more slowly in transgenic rabbits than in controls. Changes in lipoprotein lipolysis did not contribute to the accumulation of LDL or the reduction in VLDL levels. These observations suggest that the increased content of apo E3 on triglyceride-rich remnant lipoproteins in transgenic rabbits confers a greater affinity for cell surface receptors, thereby increasing remnant clearance from plasma. The apo E-rich large remnants appear to compete more effectively than LDL for receptor-mediated binding and clearance, resulting in delayed clearance and the accumulation of LDL in plasma. PMID:9593771

  9. Down-regulation of lipoprotein lipase increases glucose uptake in L6 muscle cells

    SciTech Connect

    Lopez, Veronica; Saraff, Kumuda; Medh, Jheem D.

    2009-11-06

    Thiazolidinediones (TZDs) are synthetic hypoglycemic agents used to treat type 2 diabetes. TZDs target the peroxisome proliferator activated receptor-gamma (PPAR-{gamma}) and improve systemic insulin sensitivity. The contributions of specific tissues to TZD action, or the downstream effects of PPAR-{gamma} activation, are not very clear. We have used a rat skeletal muscle cell line (L6 cells) to demonstrate that TZDs directly target PPAR-{gamma} in muscle cells. TZD treatment resulted in a significant repression of lipoprotein lipase (LPL) expression in L6 cells. This repression correlated with an increase in glucose uptake. Down-regulation of LPL message and protein levels using siRNA resulted in a similar increase in insulin-dependent glucose uptake. Thus, LPL down-regulation improved insulin sensitivity independent of TZDs. This finding provides a novel method for the management of insulin resistance.

  10. Inactive lipoprotein lipase (LPL) alone increases selective cholesterol ester uptake in vivo, whereas in the presence of active LPL it also increases triglyceride hydrolysis and whole particle lipoprotein uptake.

    PubMed

    Merkel, Martin; Heeren, Jörg; Dudeck, Wiebke; Rinninger, Franz; Radner, Herbert; Breslow, Jan L; Goldberg, Ira J; Zechner, Rudolf; Greten, Heiner

    2002-03-01

    We have previously shown that transgenic expression of catalytically inactive lipoprotein lipase (LPL) in muscle (Mck-N-LPL) enhances triglyceride hydrolysis as well as whole particle lipoprotein and selective cholesterol ester uptake. In the current study, we have examined whether these functions can be performed by inactive LPL alone or require the presence of active LPL expressed in the same tissue. To study inactive LPL in the presence of active LPL in the same tissue, the Mck-N-LPL transgene was bred onto the heterozygous LPL-deficient (LPL1) background. At 18 h of age, Mck-N-LPL reduced triglycerides by 35% and markedly increased muscle lipid droplets. In adult mice, it reduced triglycerides by 40% and increased lipoprotein particle uptake into muscle by 60% and cholesterol ester uptake by 110%. To study inactive LPL alone, the Mck-N-LPL transgene was bred onto the LPL-deficient (LPL0) background. These mice die at approximately 24 h of age. At 18 h of age, in the absence of active LPL, inactive LPL expression did not diminish triglycerides nor did it result in the accumulation of muscle lipid droplets. To study inactive LPL in the absence of active LPL in the same tissue in adult animals, the Mck-N-LPL transgene was bred onto mice that only expressed active LPL in the heart (LPL0/He-LPL). In this case, Mck-N-LPL did not reduce triglycerides or increase the uptake of lipoprotein particles but did increase muscle uptake of chylomicron and very low density lipoprotein cholesterol ester by 40%. Thus, in the presence of active LPL in the same tissue, inactive LPL augments triglyceride hydrolysis and increases whole particle triglyceride-rich lipoprotein and selective cholesterol ester uptake. In the absence of active LPL in the same tissue, inactive LPL only mediates selective cholesterol ester uptake.

  11. Angiotensin II Reduces Lipoprotein Lipase Expression in Visceral Adipose Tissue via Phospholipase C β4 Depending on Feeding but Increases Lipoprotein Lipase Expression in Subcutaneous Adipose Tissue via c-Src.

    PubMed

    Uchiyama, Tsuyoshi; Tomono, Shoichi; Sato, Koichi; Nakamura, Tetsuya; Kurabayashi, Masahiko; Okajima, Fumikazu

    2015-01-01

    Metabolic syndrome is characterized by visceral adiposity, insulin resistance, high triglyceride (TG)- and low high-density lipoprotein cholesterol-levels, hypertension, and diabetes-all of which often cause cardiovascular and cerebrovascular diseases. It remains unclear, however, why visceral adiposity but not subcutaneous adiposity causes insulin resistance and other pathological situations. Lipoprotein lipase (LPL) catalyzes hydrolysis of TG in plasma lipoproteins. In the present study, we investigated whether the effects of angiotensin II (AngII) on TG metabolism are mediated through an effect on LPL expression. Adipose tissues were divided into visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT) for comparison. AngII accelerated LPL expression in SAT but, on the contrary, suppressed its expression in VAT. In both SAT and VAT, AngII signaled through the same type 1 receptor. In SAT, AngII increased LPL expression via c-Src and p38 MAPK signaling. In VAT, however, AngII reduced LPL expression via the Gq class of G proteins and the subsequent phospholipase C β4 (PLCβ4), protein kinase C β1, nuclear factor κB, and inducible nitric oxide synthase signaling pathways. PLCβ4 small interfering RNA experiments showed that PLCβ4 expression is important for the AngII-induced LPL reduction in VAT, in which PLCβ4 expression increases in the evening and falls at night. Interestingly, PLCβ4 expression in VAT decreased with fasting, while AngII did not decrease LPL expression in VAT in a fasting state. In conclusion, AngII reduces LPL expression through PLCβ4, the expression of which is regulated by feeding in VAT, whereas AngII increases LPL expression in SAT. The different effects of AngII on LPL expression and, hence, TG metabolism in VAT and SAT may partly explain their different contributions to the development of metabolic syndrome. PMID:26447765

  12. Angiotensin II Reduces Lipoprotein Lipase Expression in Visceral Adipose Tissue via Phospholipase C β4 Depending on Feeding but Increases Lipoprotein Lipase Expression in Subcutaneous Adipose Tissue via c-Src

    PubMed Central

    Uchiyama, Tsuyoshi; Tomono, Shoichi; Sato, Koichi; Nakamura, Tetsuya; Kurabayashi, Masahiko; Okajima, Fumikazu

    2015-01-01

    Metabolic syndrome is characterized by visceral adiposity, insulin resistance, high triglyceride (TG)- and low high-density lipoprotein cholesterol-levels, hypertension, and diabetes—all of which often cause cardiovascular and cerebrovascular diseases. It remains unclear, however, why visceral adiposity but not subcutaneous adiposity causes insulin resistance and other pathological situations. Lipoprotein lipase (LPL) catalyzes hydrolysis of TG in plasma lipoproteins. In the present study, we investigated whether the effects of angiotensin II (AngII) on TG metabolism are mediated through an effect on LPL expression. Adipose tissues were divided into visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT) for comparison. AngII accelerated LPL expression in SAT but, on the contrary, suppressed its expression in VAT. In both SAT and VAT, AngII signaled through the same type 1 receptor. In SAT, AngII increased LPL expression via c-Src and p38 MAPK signaling. In VAT, however, AngII reduced LPL expression via the Gq class of G proteins and the subsequent phospholipase C β4 (PLCβ4), protein kinase C β1, nuclear factor κB, and inducible nitric oxide synthase signaling pathways. PLCβ4 small interfering RNA experiments showed that PLCβ4 expression is important for the AngII-induced LPL reduction in VAT, in which PLCβ4 expression increases in the evening and falls at night. Interestingly, PLCβ4 expression in VAT decreased with fasting, while AngII did not decrease LPL expression in VAT in a fasting state. In conclusion, AngII reduces LPL expression through PLCβ4, the expression of which is regulated by feeding in VAT, whereas AngII increases LPL expression in SAT. The different effects of AngII on LPL expression and, hence, TG metabolism in VAT and SAT may partly explain their different contributions to the development of metabolic syndrome. PMID:26447765

  13. Increased Small Dense LDL and Intermediate-Density Lipoprotein With Albuminuria in Type 1 Diabetes

    PubMed Central

    Sibley, Shalamar D.; Hokanson, John E.; Steffes, Michael W.; Purnell, Jonathan Q; Marcovina, Santica M.; Cleary, Patricia A.; Brunzell, John D.

    2009-01-01

    OBJECTIVE This population study examines the relationship between LDL density and persistent albuminuria in subjects with type 1 diabetes at the end of the Diabetes Control and Complications Trial (DCCT). RESEARCH DESIGN AND METHODS Subjects were classified as persistently normoalbuminuric (albumin excretion rate [AER] <30 mg/d, n = 1,056), microalbuminuric (AER ≥30–299 mg/day, n = 80), and macroalbuminuric (AER = 300 mg/day, n = 24) based on the last two AER measures. RESULTS Triglyceride (P <0.01) and LDL cholesterol (P <0.01) levels were higher in macroalbuminuric subjects compared with normoalbuminuric subjects. Cholesterol distribution by density-gradient ultracentrifugation showed an increase in intermediate-density lipoprotein (IDL) and a shift in peak LDL from buoyant toward more dense particles with progressive albuminuria. In the entire group, there was a significant negative correlation between the peak buoyancy of LDL particles and albuminuria (r = −0.238, P <0.001, n = 1,160). This correlation persisted in the normoalbuminuric DCCT group (r = −0.138, P<0.001, n = 1,056). CONCLUSIONS As albuminuria increases in subjects with type 1 diabetes, dyslipidemia occurs with an increase in IDL and dense LDL that may lead to increased cardiovascular disease. PMID:10388983

  14. Oxidized low density lipoprotein increases acetylcholinesterase activity correlating with reactive oxygen species production.

    PubMed

    Yamchuen, Panit; Aimjongjun, Sathid; Limpeanchob, Nanteetip

    2014-12-01

    Hyperlipidemia, low density lipoproteins (LDL) and their oxidized forms, and oxidative stress are suspected to be a key combination in the onset of AD and acetylcholinesterase (AChE) plays a part in this pathology. The present study aimed to link these parameters using differentiated SH-SY5Y human neuroblastoma cells in culture. Both mildly and fully oxidized human LDL (mox- and fox-LDL), but not native (non-oxidized) LDL were cytotoxic in dose- and time-dependent patterns and this was accompanied by an increased production of intracellular reactive oxygen species (ROS). Oxidized LDL (10-200 μg/mL) augmented AChE activity after 4 and 24h treatments, respectively while the native LDL was without effect. The increased AChE with oxidized LDLs was accompanied by a proportionate increase in intracellular ROS formation (R=0.904). These findings support the notion that oxidized LDLs are cytotoxic and that their action on AChE may reduce central cholinergic transmission in AD and affirm AChE as a continued rational for anticholinesterase therapy but in conjunction with antioxidant/antihyperlipidemic cotreatments.

  15. Increasing adipocyte lipoprotein lipase improves glucose metabolism in high fat diet-induced obesity.

    PubMed

    Walton, R Grace; Zhu, Beibei; Unal, Resat; Spencer, Michael; Sunkara, Manjula; Morris, Andrew J; Charnigo, Richard; Katz, Wendy S; Daugherty, Alan; Howatt, Deborah A; Kern, Philip A; Finlin, Brian S

    2015-05-01

    Lipid accumulation in liver and skeletal muscle contributes to co-morbidities associated with diabetes and obesity. We made a transgenic mouse in which the adiponectin (Adipoq) promoter drives expression of lipoprotein lipase (LPL) in adipocytes to potentially increase adipose tissue lipid storage. These mice (Adipoq-LPL) have improved glucose and insulin tolerance as well as increased energy expenditure when challenged with a high fat diet (HFD). To identify the mechanism(s) involved, we determined whether the Adipoq-LPL mice diverted dietary lipid to adipose tissue to reduce peripheral lipotoxicity, but we found no evidence for this. Instead, characterization of the adipose tissue of the male mice after HFD challenge revealed that the mRNA levels of peroxisome proliferator-activated receptor-γ (PPARγ) and a number of PPARγ-regulated genes were higher in the epididymal fat pads of Adipoq-LPL mice than control mice. This included adiponectin, whose mRNA levels were increased, leading to increased adiponectin serum levels in the Adipoq-LPL mice. In many respects, the adipose phenotype of these animals resembles thiazolidinedione treatment except for one important difference, the Adipoq-LPL mice did not gain more fat mass on HFD than control mice and did not have increased expression of genes in adipose such as glycerol kinase, which are induced by high affinity PPAR agonists. Rather, there was selective induction of PPARγ-regulated genes such as adiponectin in the adipose of the Adipoq-LPL mice, suggesting that increasing adipose tissue LPL improves glucose metabolism in diet-induced obesity by improving the adipose tissue phenotype. Adipoq-LPL mice also have increased energy expenditure.

  16. Goat milk fat naturally enriched with conjugated linoleic acid increased lipoproteins and reduced triacylglycerol in rats.

    PubMed

    Rodrigues, Raphaela; Soares, Juliana; Garcia, Hugo; Nascimento, Claudenice; Medeiros, Maria; Bomfim, Marco; Medeiros, Maria Carmo; Queiroga, Rita

    2014-01-01

    Goat milk is source of different lipids, including conjugated linoleic acid (CLA). CLA reduces body fat and protect against cardiovascular diseases. In the present study fat from goat milk naturally enriched with CLA was used. Male Wistar rats were divided into three groups that received during a 10 week diet with different lipid sources: soybean oil (CON), coconut oil (CO) and goat milk fat naturally enriched with CLA (GM-CLA). We evaluated the effects of a GM-CLA on biochemistry parameters--high density lipoprotein (HDL), triacylglycerol (TAG), TAG/HDL ratio, total cholesterol and glucose, body weight and histopathological aspects of the intestine and liver. GM-CLA increased body weight from the second to the fifth week of the experiment compared to CON. Feed intake differed between the CON group and GM-CLA early in the first to third week of the experiments and later between the ninth and tenth week. The CLA-diet group showed increased levels of HDL, reduced levels of TAG and TAG/HDL ratio and no effect on LDL, but enhanced total cholesterol. Serum glucose of the GM-CLA group showed no difference from the control group. Thus, a GM-CLA diet promoted growth in young rats and acted as protector of cardiovascular function, but further studies are still needed to clarify these effects. PMID:24662092

  17. Increased low density lipoprotein degradation in aorta of irradiated mice is inhibited by preenrichment of low density lipoprotein with alpha-tocopherol.

    PubMed

    Tribble, D L; Krauss, R M; Chu, B M; Gong, E L; Kullgren, B R; Nagy, J O; La Belle, M

    2000-10-01

    We previously reported that upper thoracic exposure to ionizing radiation (IR) accelerates fatty streak formation in C57BL/6 mice and that such effects are inhibited by overexpression of the antioxidant enzyme CuZn-superoxide dismutase (SOD). Notably, IR-accelerated lesion formation is strictly dependent on a high fat diet (i.e., atherogenic lipoproteins) but does not involve alterations in circulating lipid or lipoprotein levels. We thus proposed that IR promotes changes in the artery wall that enhance the deposition of lipoprotein lipids. To address this hypothesis, we examined the effects of IR on aortic accumulation and degradation of low density lipoproteins (LDL). Ten-week-old C57BL/6 mice were exposed to a single (8-Gy) dose of (60)Co radiation to the upper thoracic area or were sham irradiated (controls) and were then placed on the high fat diet. Five days postexposure, the mice received either (125)I-labeled LDL ((125)I-LDL) (which was used to measure intact LDL) or (125)I-labeled tyramine cellobiose ((125)I-TC)-LDL (which was used to measure both intact and cell-degraded LDL) via tail vein injection. On the basis of trichloroacetic acid (TCA)-precipitable counts in retroorbital blood samples, > or =95% of donor LDL was cleared within 24 h and there were no differences in time-averaged plasma concentrations of the two forms of LDL among irradiated and control mice. Aortic values increased markedly within the first hour and thereafter exhibited a slow increase up to 24 h. There were no differences between irradiated and control mice at 1 h, when values primarily reflected LDL entry, but a divergence was observed thereafter. At 24 h, (125)I-TC-associated counts were 1.8-fold higher in irradiated mice (P = 0.10). In contrast, (125)I-LDL-associated counts were 30% lower in irradiated mice (P< 0.05), suggesting that most of the retained (125)I-TC was associated with LDL degradation products. Consistent with the proposed involvement of oxidative or redox

  18. Electronegative Low-density Lipoprotein Increases Coronary Artery Disease Risk in Uremia Patients on Maintenance Hemodialysis

    PubMed Central

    Chang, Chiz-Tzung; Wang, Guei-Jane; Kuo, Chin-Chi; Hsieh, Ju-Yi; Lee, An-Sean; Chang, Chia-Ming; Wang, Chun-Cheng; Shen, Ming-Yi; Huang, Chiu-Ching; Sawamura, Tatsuya; Yang, Chao-Yuh; Stancel, Nicole; Chen, Chu-Huang

    2016-01-01

    Abstract Electronegative low-density lipoprotein (LDL) is a recognized factor in the pathogenesis of coronary artery disease (CAD) in the general population, but its role in the development of CAD in uremia patients is unknown. L5 is the most electronegative subfraction of LDL isolated from human plasma. In this study, we examined the distribution of L5 (L5%) and its association with CAD risk in uremia patients. The LDL of 39 uremia patients on maintenance hemodialysis and 21 healthy controls was separated into 5 subfractions, L1–L5, with increasing electronegativity. We compared the distribution and composition of plasma L5 between uremia patients and controls, examined the association between plasma L5% and CAD risk in uremia patients, and studied the effects of L5 from uremia patients on endothelial function. Compared to controls, uremia patients had significantly increased L5% (P < 0.001) and L5 that was rich in apolipoprotein C3 and triglycerides. L5% was significantly higher in uremia patients with CAD (n = 10) than in those without CAD (n = 29) (P < 0.05). Independent of other major CAD risk factors, the adjusted odds ratio for CAD was 1.88 per percent increase in plasma L5% (95% CI, 1.01–3.53), with a near-linear dose–response relationship. Compared with controls, uremia patients had decreased flow-mediated vascular dilatation. In ex vivo studies with preconstricted rat thoracic aortic rings, L5 from uremia patients inhibited acetylcholine-induced relaxation. In cultured human endothelial cells, L5 inhibited endothelial nitric oxide synthase activation and induced endothelial dysfunction. Our findings suggest that elevated plasma L5% may induce endothelial dysfunction and play an important role in the increased risk of CAD in uremia patients. PMID:26765403

  19. Increased concentrations of serum Lp(a) lipoprotein in patients with primary gout.

    PubMed Central

    Takahashi, S; Yamamoto, T; Moriwaki, Y; Tsutsumi, Z; Higashino, K

    1995-01-01

    OBJECTIVES--To investigate if serum Lp(a) lipoprotein (Lp(a)), a risk factor for atherosclerotic diseases, increases in patients with gout, who frequently also have atherosclerotic disease. METHODS--Fasting blood samples were taken for measurement of Lp(a) and other variables in 175 male patients with primary gout. Serum concentrations of Lp(a) were measured by enzyme linked immunosorbent assay. The median value and frequency distribution of Lp(a) in gout patients were compared with those in 172 control male subjects. In addition, we examined the effect of niceritorol on serum Lp(a) values in gout patients in whom the Lp(a) concentration was greater than 20 mg/dl. RESULTS--Serum Lp(a) was significantly higher in patients with gout than control subjects (median 15.5 mg/dl upsilon 8.6 mg/dl; p < 0.01). The frequency distribution of Lp(a) in gout was significantly shifted towards greater concentrations compared with control, although skewed distribution was noted in both groups. Serum Lp(a) concentration was not related to age, body mass index, alcohol intake, creatinine, fasting blood sugar or uric acid in patients with gout. Niceritorol decreased the serum concentrations of Lp(a) in gout. CONCLUSIONS--These observations suggest that serum Lp(a) concentrations are increased in patients with gout and may play a role as one of the risk factors for atherosclerotic diseases in gout. Niceritorol seems effective in decreasing high levels of Lp(a) in patients with gout without detrimental influence on serum uric acid concentration. PMID:7702412

  20. Increased uptake of alpha-hydroxy aldehyde-modified low density lipoprotein by macrophage scavenger receptors.

    PubMed

    Kawamura, M; Heinecke, J W; Chait, A

    2000-07-01

    Reactive aldehydes can be formed during the oxidation of lipids, glucose, and amino acids and during the nonenzymatic glycation of proteins. Low density lipoprotein (LDL) modified with malondialdehyde are taken up by scavenger receptors on macrophages. In the current studies we determined whether alpha-hydroxy aldehydes also modify LDL to a form recognized by macrophage scavenger receptors. LDL modified by incubation with glycolaldehyde, glyceraldehyde, erythrose, arabinose, or glucose (alpha-hydroxy aldehydes that possess two, three, four, five, and six carbon atoms, respectively) exhibited decreased free amino groups and increased mobility on agarose gel electrophoresis. The lower the molecular weight of the aldehyde used for LDL modification, the more rapid and extensive was the derivatization of free amino groups. Approximately 50-75% of free lysine groups in LDL were modified after incubation with glyceraldehyde, glycolaldehyde, or erythrose for 24-48 h. Less extensive reductions in free amino groups were observed when LDL was incubated with arabinose or glucose, even at high concentration for up to 5 days. LDL modified with glycolaldehyde and glyceraldehyde labeled with (125)I was degraded more extensively by human monocyte-derived macrophages than was (125)I-labeled native LDL. Conversely, LDL modified with (125)I-labeled erythrose, arabinose, or glucose was degraded less rapidly than (125)I-labeled native LDL. Competition for the degradation of LDL modified with (125)I-labeled glyceraldehyde was nearly complete with acetyl-, glycolaldehyde-, and glyceraldehyde-modified LDL, fucoidin, and advanced glycation end product-modified bovine serum albumin, and absent with unlabeled native LDL. These results suggest that short-chain alpha-hydroxy aldehydes react with amino groups on LDL to yield moieties that are important determinants of recognition by macrophage scavenger receptors.

  1. Increase of lipoprotein-lipase activity in skeletal muscle during heavy exercise. Relation to epinephrine excretion.

    PubMed

    Lithell, H; Cedermark, M; Fröberg, J; Tesch, P; Karlsson, J

    1981-11-01

    As part of the training programme for Swedish elite soldiers, a 10 day march is carried out with a heavy pack under active-service conditions. Six soldiers volunteered to take part in an investigation on the energy consumption with special regard to the lipid metabolism at different levels of physical effort. The degree of physical work was evaluated by continuous heart-rate recording and analysis of the excretion of epinephrine and norepinephrine in the urine. Fasting values of triglycerides and free fatty acids in blood plasma were determined and muscle biopsies (taken in the morning and in the afternoon) were analysed for lipoprotein-lipase (LPL) activity. After an overnight fast the free fatty acids were increased only in the mornings following days of heavy physical work. The plasma triglyceride concentrations were lowest in a morning proceeded by 3 days of heavy work. The muscle LPL activity in the morning was highest after a day of heavy work and lowest after days of rest. During days of heavy work this activity increased and was higher in the afternoon than in the morning. Muscle LPL activity in the afternoon was closely related to urinary excretion of epinephrine. The data indicate that LPL activity is elevated in the working skeletal muscle increasing the access of fatty acids. The degree of elevation is related to the degree of effort as described by the urinary excretion of morning. Muscle LPL activity in the afternoon was closely related to urinary excretion of epinephrine. The data indicate that LPL activity is elevated in the working skeletal muscle increasing the access of fatty acids. The degree of elevation is related to the degree of effort as described by the urinary excretion of morning. Muscle LPL activity in the afternoon was closely related to urinary excretion of epinephrine. The data indicate that LPL activity is elevated in the working skeletal muscle increasing the access of fatty acids. The degree of elevation is related to the degree

  2. Low HDL cholesterol is associated with increased atherogenic lipoproteins and insulin resistance in women classified with metabolic syndrome

    PubMed Central

    Jones, Jennifer J; Ackerman, Daniela; Barona, Jacqueline; Calle, Mariana; Comperatore, Michael V; Kim, Jung-Eun; Andersen, Catherine; Leite, Jose O; Volek, Jeff S; McIntosh, Mark; Kalynych, Colleen; Najm, Wadie; Lerman, Robert H

    2010-01-01

    Both metabolic syndrome (MetS) and elevated LDL cholesterol (LDL-C) increase the risk for cardiovascular disease (CVD). We hypothesized that low HDL cholesterol (HDL-C) would further increase CVD risk in women having both conditions. To assess this, we recruited 89 women with MetS (25-72 y) and LDL-C ≥ 2.6 mmol/L. To determine whether plasma HDL-C concentrations were associated with dietary components, circulating atherogenic particles, and other risk factors for CVD, we divided the subjects into two groups: high HDL-C (H-HDL) (≥ 1.3 mmol/L, n = 32) and low HDL-C (L-HDL) (< 1.3 mmol/L, n = 57). Plasma lipids, insulin, adiponectin, apolipoproteins, oxidized LDL, Lipoprotein(a), and lipoprotein size and subfractions were measured, and 3-d dietary records were used to assess macronutrient intake. Women with L-HDL had higher sugar intake and glycemic load (P < 0.05), higher plasma insulin (P < 0.01), lower adiponectin (P < 0.05), and higher numbers of atherogenic lipoproteins such as large VLDL (P < 0.01) and small LDL (P < 0.001) than the H-HDL group. Women with L-HDL also had larger VLDL and both smaller LDL and HDL particle diameters (P < 0.001). HDL-C was positively correlated with LDL size (r = 0.691, P < 0.0001) and HDL size (r = 0.606, P < 0.001), and inversely correlated with VLDL size (r = -0.327, P < 0.01). We concluded that L-HDL could be used as a marker for increased numbers of circulating atherogenic lipoproteins as well as increased insulin resistance in women who are already at risk for CVD. PMID:21286407

  3. Low HDL cholesterol is associated with increased atherogenic lipoproteins and insulin resistance in women classified with metabolic syndrome.

    PubMed

    Fernandez, Maria Luz; Jones, Jennifer J; Ackerman, Daniela; Barona, Jacqueline; Calle, Mariana; Comperatore, Michael V; Kim, Jung-Eun; Andersen, Catherine; Leite, Jose O; Volek, Jeff S; McIntosh, Mark; Kalynych, Colleen; Najm, Wadie; Lerman, Robert H

    2010-12-01

    Both metabolic syndrome (MetS) and elevated LDL cholesterol (LDL-C) increase the risk for cardiovascular disease (CVD). We hypothesized that low HDL cholesterol (HDL-C) would further increase CVD risk in women having both conditions. To assess this, we recruited 89 women with MetS (25-72 y) and LDL-C ≥ 2.6 mmol/L. To determine whether plasma HDL-C concentrations were associated with dietary components, circulating atherogenic particles, and other risk factors for CVD, we divided the subjects into two groups: high HDL-C (H-HDL) (≥ 1.3 mmol/L, n = 32) and low HDL-C (L-HDL) (< 1.3 mmol/L, n = 57). Plasma lipids, insulin, adiponectin, apolipoproteins, oxidized LDL, Lipoprotein(a), and lipoprotein size and subfractions were measured, and 3-d dietary records were used to assess macronutrient intake. Women with L-HDL had higher sugar intake and glycemic load (P < 0.05), higher plasma insulin (P < 0.01), lower adiponectin (P < 0.05), and higher numbers of atherogenic lipoproteins such as large VLDL (P < 0.01) and small LDL (P < 0.001) than the H-HDL group. Women with L-HDL also had larger VLDL and both smaller LDL and HDL particle diameters (P < 0.001). HDL-C was positively correlated with LDL size (r = 0.691, P < 0.0001) and HDL size (r = 0.606, P < 0.001), and inversely correlated with VLDL size (r = -0.327, P < 0.01). We concluded that L-HDL could be used as a marker for increased numbers of circulating atherogenic lipoproteins as well as increased insulin resistance in women who are already at risk for CVD.

  4. Increased Free Cholesterol in Plasma Low and Very Low Density Lipoproteins in Non-Insulin-Dependent Diabetes Mellitus: Its Role in the Inhibition of Cholesteryl Ester Transfer

    NASA Astrophysics Data System (ADS)

    Fielding, Christopher J.; Reaven, Gerald M.; Liu, George; Fielding, Phoebe E.

    1984-04-01

    Recombination of low and very low density lipoproteins (VLDL and LDL) from normal subjects with plasma from patients with non-insulin-dependent diabetes mellitus significantly increased the reduced rate of transfer of cholesteryl ester to these lipoproteins, which is characteristic of diabetic plasma, whereas diabetic VLDL and LDL reduced cholesteryl ester transfer rates in normal plasma. VLDL and LDL from diabetic plasma had an increased ratio of free cholesterol to phospholipid compared to normal, and unlike normal VLDL and LDL spontaneously lost free cholesterol to high density lipoprotein. These data suggest that the block to cholesteryl ester transfer to these lipoproteins in non-insulin-dependent diabetes is mediated by their increased free cholesterol content and may be related to the increased risk of these patients for developing atherosclerosis.

  5. Antagonism of Secreted PCSK9 Increases Low Density Lipoprotein Receptor Expression in HepG2 Cells

    SciTech Connect

    McNutt, Markey C.; Kwon, Hyock Joo; Chen, Chiyuan; Chen, Justin R.; Horton, Jay D.; Lagace, Thomas A.

    2009-07-10

    PCSK9 is a secreted protein that degrades low density lipoprotein receptors (LDLRs) in liver by binding to the epidermal growth factor-like repeat A (EGF-A) domain of the LDLR. It is not known whether PCSK9 causes degradation of LDLRs within the secretory pathway or following secretion and reuptake via endocytosis. Here we show that a mutation in the LDLR EGF-A domain associated with familial hypercholesterolemia, H306Y, results in increased sensitivity to exogenous PCSK9-mediated cellular degradation because of enhanced PCSK9 binding affinity. The crystal structure of the PCSK9-EGF-A(H306Y) complex shows that Tyr-306 forms a hydrogen bond with Asp-374 in PCSK9 at neutral pH, which strengthens the interaction with PCSK9. To block secreted PCSK9 activity, LDLR (H306Y) subfragments were added to the medium of HepG2 cells stably overexpressing wild-type PCSK9 or gain-of-function PCSK9 mutants associated with hypercholesterolemia (D374Y or S127R). These subfragments blocked secreted PCSK9 binding to cell surface LDLRs and resulted in the recovery of LDLR levels to those of control cells. We conclude that PCSK9 acts primarily as a secreted factor to cause LDLR degradation. These studies support the concept that pharmacological inhibition of the PCSK9-LDLR interaction extracellularly will increase hepatic LDLR expression and lower plasma low density lipoprotein levels.

  6. Glissandi: transient fast electrocorticographic oscillations of steadily increasing frequency, explained by temporally increasing gap junction conductance

    PubMed Central

    Cunningham, Mark O.; Roopun, Anita; Schofield, Ian S.; Whittaker, Roger G.; Duncan, Roderick; Russell, Aline; Jenkins, Alistair; Nicholson, Claire; Whittington, Miles A.; Traub, Roger D.

    2012-01-01

    Purpose We describe a form of very fast oscillation (VFO) in patient electrocorticographic (ECoG) recordings, that can occur prior to ictal events, in which the frequency increases steadily from ~30–40 Hz to >120 Hz, over a period of seconds. We dub these events “glissandi” and describe a possible model for them. Methods Four patients with epilepsy had presurgical evaluations (with ECoG obtained in two of them), and excised tissue was studied in vitro, from 3 of the patients. Glissandi were seen spontaneously in vitro, associated with ictal events; using acute slices of rat neocortex; and they were simulated using a network model of 15,000 detailed layer V pyramidal neurons, coupled by gap junctions. Key findings Glissandi were observed to arise from human temporal neocortex. In vitro, they lasted 0.2 to 4.1 seconds, prior to ictal onset. Similar events were observed in the rat in vitro, in layer V of frontal neocortex, when alkaline solution was pressure-ejected; glissandi persisted when GABAA, GABAB, and NMDA and AMPA receptors were blocked. Non-alkaline conditions, prevented glissando generation. In network simulations, it was found that steadily increasing gap junction conductance would lead to the observed steady increase in VFO field frequency. This occurred because increasing gap junction conductance shortened the time required for an action potential to cross from cell to cell. Significance The in vitro and modeling data are consistent with the hypothesis that glissandi arise when pyramidal cell gap junction conductances rise over time, possibly as a result of an alkaline fluctuation in brain pH. PMID:22686654

  7. Lipoproteins and lipoprotein metabolism in periodontal disease

    PubMed Central

    Griffiths, Rachel; Barbour, Suzanne

    2010-01-01

    A growing body of evidence indicates that the incidence of atherosclerosis is increased in subjects with periodontitis – a chronic infection of the oral cavity. This article summarizes the evidence that suggests periodontitis shifts the lipoprotein profile to be more proatherogenic. LDL-C is elevated in periodontitis and most studies indicate that triglyceride levels are also increased. By contrast, antiatherogenic HDL tends to be low in periodontitis. Periodontal therapy tends to shift lipoprotein levels to a healthier profile and also reduces subclinical indices of atherosclerosis. In summary, periodontal disease alters lipoprotein metabolism in ways that could promote atherosclerosis and cardiovascular disease. PMID:20835400

  8. Lipoprotein metabolism indicators improve cardiovascular risk prediction

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Cardiovascular disease risk increases when lipoprotein metabolism is dysfunctional. We have developed a computational model able to derive indicators of lipoprotein production, lipolysis, and uptake processes from a single lipoprotein profile measurement. This is the first study to inves...

  9. Explaining the Increase in Publication Productivity among Academic Staff: A Generational Perspective

    ERIC Educational Resources Information Center

    Kyvik, Svein; Aksnes, Dag W.

    2015-01-01

    In Norwegian research universities, a large individual increase has taken place in scientific and scholarly publishing over the last 30 years. The purpose of this article is to explain the reasons for this growth in a generational perspective. We put forward six hypotheses that can be illuminated by cross-sectional data drawn from five surveys to…

  10. Income Inequality Explains Why Economic Growth Does Not Always Translate to an Increase in Happiness.

    PubMed

    Oishi, Shigehiro; Kesebir, Selin

    2015-10-01

    One of the most puzzling social science findings in the past half century is the Easterlin paradox: Economic growth within a country does not always translate into an increase in happiness. We provide evidence that this paradox can be partly explained by income inequality. In two different data sets covering 34 countries, economic growth was not associated with increases in happiness when it was accompanied by growing income inequality. Earlier instances of the Easterlin paradox (i.e., economic growth not being associated with increasing happiness) can thus be explained by the frequent concurrence of economic growth and growing income inequality. These findings suggest that a more even distribution of growth in national wealth may be a precondition for raising nationwide happiness. PMID:26338882

  11. Income Inequality Explains Why Economic Growth Does Not Always Translate to an Increase in Happiness.

    PubMed

    Oishi, Shigehiro; Kesebir, Selin

    2015-10-01

    One of the most puzzling social science findings in the past half century is the Easterlin paradox: Economic growth within a country does not always translate into an increase in happiness. We provide evidence that this paradox can be partly explained by income inequality. In two different data sets covering 34 countries, economic growth was not associated with increases in happiness when it was accompanied by growing income inequality. Earlier instances of the Easterlin paradox (i.e., economic growth not being associated with increasing happiness) can thus be explained by the frequent concurrence of economic growth and growing income inequality. These findings suggest that a more even distribution of growth in national wealth may be a precondition for raising nationwide happiness.

  12. Maternal High-Fat Feeding Increases Placental Lipoprotein Lipase Activity by Reducing SIRT1 Expression in Mice

    PubMed Central

    Qiao, Liping; Guo, Zhuyu; Bosco, Chris; Guidotti, Stefano; Wang, Yunfeng; Wang, Mingyong; Parast, Mana; Schaack, Jerome; Hay, William W.; Moore, Thomas R.

    2015-01-01

    This study investigated how maternal overnutrition and obesity regulate expression and activation of proteins that facilitate lipid transport in the placenta. To create a maternal overnutrition and obesity model, primiparous C57BL/6 mice were fed a high-fat (HF) diet throughout gestation. Fetuses from HF-fed dams had significantly increased serum levels of free fatty acid and body fat. Despite no significant difference in placental weight, lipoprotein lipase (LPL) protein levels and activity were remarkably elevated in placentas from HF-fed dams. Increased triglyceride content and mRNA levels of CD36, VLDLr, FABP3, FABPpm, and GPAT2 and -3 were also found in placentas from HF-fed dams. Although both peroxisome proliferator–activated receptor-γ (PPARγ) and CCAAT/enhancer binding protein-α protein levels were significantly increased in placentas of the HF group, only PPARγ exhibited a stimulative effect on LPL expression in cultured JEG-3 human trophoblasts. Maternal HF feeding remarkably decreased SIRT1 expression in placentas. Through use of an SIRT1 activator and inhibitor and cultured trophoblasts, an inhibitory effect of SIRT1 on LPL expression was demonstrated. We also found that SIRT1 suppresses PPARγ expression in trophoblasts. Most importantly, inhibition of PPARγ abolished the SIRT1-mediated regulatory effect on LPL expression. Together, these results indicate that maternal overnutrition induces LPL expression in trophoblasts by reducing the inhibitory effect of SIRT1 on PPARγ. PMID:25948680

  13. Oxidized low density lipoprotein increases RANKL level in human vascular cells. Involvement of oxidative stress

    SciTech Connect

    Mazière, Cécile; Salle, Valéry; Gomila, Cathy; Mazière, Jean-Claude

    2013-10-18

    Highlights: •Oxidized LDL enhances RANKL level in human smooth muscle cells. •The effect of OxLDL is mediated by the transcription factor NFAT. •UVA, H{sub 2}O{sub 2} and buthionine sulfoximine also increase RANKL level. •All these effects are observed in human fibroblasts and endothelial cells. -- Abstract: Receptor Activator of NFκB Ligand (RANKL) and its decoy receptor osteoprotegerin (OPG) have been shown to play a role not only in bone remodeling but also in inflammation, arterial calcification and atherosclerotic plaque rupture. In human smooth muscle cells, Cu{sup 2+}-oxidized LDL (CuLDL) 10–50 μg/ml increased reactive oxygen species (ROS) and RANKL level in a dose-dependent manner, whereas OPG level was not affected. The lipid extract of CuLDL reproduced the effects of the whole particle. Vivit, an inhibitor of the transcription factor NFAT, reduced the CuLDL-induced increase in RANKL, whereas PKA and NFκB inhibitors were ineffective. LDL oxidized by myeloperoxidase (MPO-LDL), or other pro-oxidant conditions such as ultraviolet A (UVA) irradiation, incubation with H{sub 2}O{sub 2} or with buthionine sulfoximine (BSO), an inhibitor of glutathione synthesis{sub ,} also induced an oxidative stress and enhanced RANKL level. The increase in RANKL in pro-oxidant conditions was also observed in fibroblasts and endothelial cells. Since RANKL is involved in myocardial inflammation, vascular calcification and plaque rupture, this study highlights a new mechanism whereby OxLDL might, by generation of an oxidative stress, exert a deleterious effect on different cell types of the arterial wall.

  14. Activation of intestinal peroxisome proliferator-activated receptor-α increases high-density lipoprotein production

    PubMed Central

    Colin, Sophie; Briand, Olivier; Touche, Véronique; Wouters, Kristiaan; Baron, Morgane; Pattou, François; Hanf, Rémy; Tailleux, Anne; Chinetti, Giulia; Staels, Bart; Lestavel, Sophie

    2013-01-01

    Aims Peroxisome Proliferator-Activated Receptor (PPAR) α is a transcription factor controlling lipid metabolism in liver, heart, muscle and macrophages. PPARα-activation increases plasma HDL-cholesterol and exerts hypotriglyceridemic actions via the liver. However, the intestine expresses PPARα, produces HDL and chylomicrons and is exposed to diet-derived PPARα ligands. Therefore, we examined the effects of PPARα-activation on intestinal lipid and lipoprotein metabolism. Methods and Results The impact of PPARα-activation was evaluated in term of HDL-related gene expression in mice, ex-vivo in human jejunal biopsies and in Caco-2/TC7 cells. ApoAI/HDL secretion, cholesterol esterification and trafficking were also studied in-vitro. In parallel to improving plasma lipid profiles and increasing liver and intestinal expression of fatty-acid-oxidation genes, treatment with the dual PPARα/δ-ligand GFT505 resulted in a more pronounced increase of plasma HDL compared to fenofibrate in mice. GFT505, but not fenofibrate, increased the expression of HDL-production genes such as apolipoprotein-AI and ATP-Binding-Cassette-A1 transporter in murine intestines. A similar increase was observed upon PPARα-activation of human biopsies and Caco-2/TC7 cells. Additionally, HDL secretion by Caco-2/TC7 cells increased. Moreover, PPARα-activation decreased the cholesterol-esterification capacity of Caco-2/TC7 cells, modified cholesterol trafficking and reduced apolipoprotein-B secretion. Conclusions PPARα-activation reduces cholesterol esterification, suppresses chylomicron- and increases HDL-secretion by enterocytes. These results identify the intestine as a target organ of PPARα-ligands with entero-hepatic tropism to reduce atherogenic dyslipidemia. PMID:22843443

  15. Telmisartan increases lipoprotein lipase expression via peroxisome proliferator-activated receptor-alpha in HepG2 cells.

    PubMed

    Yin, Shi Nan; Liu, Min; Jing, Dan Qing; Mu, Yi Ming; Lu, Ju Ming; Pan, Chang Yu

    2014-01-01

    In addition to their hypotensive properties, angiotensin receptor blockers (ARBs) have been shown to exert clinical antidyslipidemic effects. The mechanism underlying these ARB lipid metabolic effects remains unclear. Some ARBs, for example, telmisartan, activate peroxisome proliferator-activated activated receptor-gamma (PPAR-gamma). We hypothesized that PPAR-gamma-activating ARBs might exert antidyslipidemic effects via PPAR-alpha. In this study, we assessed the effect of telmisartan on the expression of PPAR-alpha and lipoprotein lipase (LPL). PPAR-alpha expression was detected by reverse-transcription polymerase chain reaction and Western blot in HepG2 hepatocytes as well as differentiated C2C12 myocytes treated with increasing concentrations of telmisartan (0.1-10 μmol/L) for 48 h. Results showed that 1 μmol/L and 10 μmol/L telmisartan significantly increased the expression of PPAR-alpha mRNA and protein in HepG2 cells (p < 0.01). No effect was shown in differentiated C2C12 cells. Similarly, 1 µmol/L and 10 μmol/L telmisartan significantly increased the expression of LPL mRNA and protein in HepG2 cells (p < 0.01), and this increase was significantly (p < 0.01) inhibited by the PPAR-alpha-specific antagonist MK886. These results indicate that certain of the antidyslipidemic effects of telmisartan might be mediated via increased PPAR-alpha-dependent induction of LPL expression. PMID:24067162

  16. Atherosclerosis, diabetes and lipoproteins.

    PubMed

    Tomkin, Gerald H

    2010-07-01

    The enormous burden of vascular disease is likely to expand rapidly as sedentary obesity and diabetes increase. Although cholesterol plays a major role in atherosclerosis and LDL is the major carrier of cholesterol in the blood, the importance of the postprandial triglyceride-rich lipoproteins in the development of atherosclerosis is gaining recognition. The role of HDL-cholesterol is also receiving more attention. These changes have been forced upon us by the realization that statins, which primarily lower LDL-cholesterol, only reduce the risk of atherosclerosis by 30%, suggesting that 70% of the risk still has to be explained and treated. In diabetes, abnormality in the metabolism of the triglyceride-rich lipoproteins and the inter-relationship with HDL-cholesterol appears to be of primary importance in atherosclerotic risk. Postprandial studies are difficult to carry out, which is one reason why large studies have not so far been performed. The important new findings in chylomicron metabolism suggest new treatments for the future.

  17. Plasma levels of lipoprotein-associated phospholipase A2 are increased in patients with β-thalassemia

    PubMed Central

    Tselepis, Alexandros D.; Hahalis, George; Tellis, Constantinos C.; Papavasiliou, Eleni C.; Mylona, Panagiota T.; Kourakli, Alexandra; Alexopoulos, Dimitrios C.

    2010-01-01

    Lipoprotein-associated phospholipase A2 (Lp-PLA2) is an independent cardiovascular risk factor. We investigated the plasma levels of Lp-PLA2 activity and mass as a function of plasma lipid levels, LDL subclass profile, and oxidative stress in patients with β-thalassemia. Thirty-five patients with β-thalassemia major (β-TM) and 25 patients with β-thalassemia intermedia (β-TI) participated in the study. Lp-PLA2 activity and mass were measured in total plasma, in apolipoprotein (apo)B-depleted plasma (HDL-Lp-PLA2), and in LDL subclasses. Lp-PLA2 activity produced and secreted from peripheral blood monocytes in culture was also determined. Patients with β-thalassemia are characterized by a predominance of small-dense LDL particles, increased oxidative stress, and very high plasma levels of Lp-PLA2 mass and activity, despite low LDL-cholesterol levels. A significant positive correlation between plasma Lp-PLA2 activity or mass and 8-isoprostane (8-epiPGF2a) and ferritin levels as well as intima-media thickness (IMT) values was observed. An increase in secreted and cell-associated Lp-PLA2 activity from monocytes in culture was observed in both patient groups. The HDL-Lp-PLA2 activity and mass as well as the ratio of HDL-Lp-PLA2/plasma Lp-PLA2 were significantly higher in both patient groups compared with the control group. In conclusion, patients with β-thalassemia exhibit high plasma Lp-PLA2 levels, attributed to increased enzyme secretion from monocytes/macrophages and to the predominance of sdLDL particles in plasma. Plasma Lp-PLA2 is correlated with carotid IMT, suggesting that this enzyme may be implicated in premature carotid atherosclerosis observed in β-thalassemia. PMID:20625038

  18. Rapid Increase in Serum Low-Density Lipoprotein Cholesterol Concentration during Hepatitis C Interferon-Free Treatment

    PubMed Central

    Abiru, Seigo; Komori, Atsumasa; Nagaoka, Shinya; Saeki, Akira; Uchida, Shinjiro; Bekki, Shigemune; Kugiyama, Yuki; Nagata, Kazuyoshi; Nakamura, Minoru; Migita, Kiyoshi; Nakao, Kazuhiko

    2016-01-01

    Background & Aim We performed lipid analyses at the early period of therapy in patients with chronic hepatitis C who underwent interferon (IFN)-free direct-acting antiviral (DAA) treatment, and we attempted to identify the factors that contributed to a rapid increase in the patients’ serum low-density lipoprotein cholesterol (LDL-C) concentration. Methods We retrospectively analyzed the cases of 100 consecutive patients with HCV infection treated at the National Hospital Organization Nagasaki Medical Center: 24 patients underwent daclatasvir (DCV) and asunaprevir (ASV) combination therapy (DCV/ASV) for 24 weeks, and the other 76 patients underwent ledipasvir and sofosbuvir combination therapy (LDV/SOF) for 12 weeks. ΔLDL-C was defined as the changed in LDL-C level at 28 days from the start of therapy. To determine whether ΔLDL-C was associated with several kinds of factors including viral kinetics, we performed a stepwise multiple linear regression analysis. Results The LDL-C levels in patients treated with LDV/SOF were markedly and significantly elevated (87.45 to 122.5 mg/dl; p<10−10) compared to those in the DCV/ASV-treated patients (80.15 to 87.8 mg/dl; p = 0.0056). The median levels of ΔLDL-C in the LDV/SOF and DCV/ASV groups were 33.2 and 13.1, respectively. LDV/SOF combination therapy as an IFN-free regimen (p<0.001) and ΔHCV core antigen (0–1 day drop) (p<0.044) were identified as independent factors that were closely related to the ΔLDL-C. Conclusions A rapid increase in the serum LDL-C concentration during the IFN-free treatment of hepatitis C was associated with the type of HCV therapy and a decline of HCV core protein. PMID:27680885

  19. Do escape mutants explain rapid increases in dengue case-fatality rates within epidemics?

    PubMed

    Guzmán, M G; Kourí, G; Halstead, S B

    2000-05-27

    During the Cuban dengue epidemics of 1981 and 1997, significant monthly increases were observed in the proportion of total cases that presented as dengue haemorrhagic fever or dengue shock syndrome (DHF/DSS), and in case-fatality rates for both dengue fever and DHF/DSS. We believe that theses increases can be explained by the hypothesis that some of the population of antibodies against dengue 1 virus raised after natural primary infections react with "neutralisation" determinants found on dengue 2 viruses. These heterotypic antibodies do not prevent secondary dengue 2 infections, but serve to down-regulate the disease to mild illness or symptomless infections. A population of dengue 2 viruses that replicates in dengue-1-immune hosts escape heterotypic neutralisation. When inoculated into a new dengue-1-immune host, these viruses are free to interact with the more abundant infection-enhancing antibodies to produce severe disease.

  20. Testosterone increases the muscle protein synthesis rate but does not affect very-low-density lipoprotein metabolism in obese premenopausal women

    PubMed Central

    Wang, Xuewen; Smith, Gordon I.; Patterson, Bruce W.; Reeds, Dominic N.; Kampelman, Janine; Magkos, Faidon

    2012-01-01

    Men and women with hyperandrogenemia have a more proatherogenic plasma lipid profile [e.g., greater triglyceride (TG) and total and low-density lipoprotein-cholesterol and lower high-density lipoprotein-cholesterol concentrations] than healthy premenopausal women. Furthermore, castration of male rats markedly reduces testosterone availability below normal and decreases plasma TG concentration, and testosterone replacement reverses this effect. Testosterone is, therefore, thought to be an important regulator of plasma lipid homeostasis. However, little is known about the effect of testosterone on plasma TG concentration and kinetics. Furthermore, testosterone is a potent skeletal muscle protein anabolic agent in men, but its effect on muscle protein turnover in women is unknown. We measured plasma lipid concentrations, hepatic very low density lipoprotein (VLDL)-TG and VLDL-apolipoprotein B-100 secretion rates, and the muscle protein fractional synthesis rate in 10 obese women before and after trandermal testosterone (1.25 g of 1% AndroGel daily) treatment for 3 wk. Serum total and free testosterone concentrations increased (P < 0.05) by approximately sevenfold in response to testosterone treatment, reaching concentrations that are comparable to those in women with hyperandrogenemia, but lower than the normal range for eugonadal men. Except for a small (∼10%) decrease in plasma high-density lipoprotein particle and cholesterol concentrations (P < 0.04), testosterone therapy had no effect on plasma lipid concentrations, lipoprotein particle sizes, and hepatic VLDL-TG and VLDL-apolipoprotein B-100 secretion rates (all P > 0.05); the muscle protein fractional synthesis rate, however, increased by ∼45% (P < 0.001). We conclude that testosterone is a potent skeletal muscle protein anabolic agent, but not an important regulator of plasma lipid homeostasis in obese women. PMID:22252942

  1. Trans-ethnic fine-mapping of lipid loci identifies population-specific signals and allelic heterogeneity that increases the trait variance explained.

    PubMed

    Wu, Ying; Waite, Lindsay L; Jackson, Anne U; Sheu, Wayne H-H; Buyske, Steven; Absher, Devin; Arnett, Donna K; Boerwinkle, Eric; Bonnycastle, Lori L; Carty, Cara L; Cheng, Iona; Cochran, Barbara; Croteau-Chonka, Damien C; Dumitrescu, Logan; Eaton, Charles B; Franceschini, Nora; Guo, Xiuqing; Henderson, Brian E; Hindorff, Lucia A; Kim, Eric; Kinnunen, Leena; Komulainen, Pirjo; Lee, Wen-Jane; Le Marchand, Loic; Lin, Yi; Lindström, Jaana; Lingaas-Holmen, Oddgeir; Mitchell, Sabrina L; Narisu, Narisu; Robinson, Jennifer G; Schumacher, Fred; Stančáková, Alena; Sundvall, Jouko; Sung, Yun-Ju; Swift, Amy J; Wang, Wen-Chang; Wilkens, Lynne; Wilsgaard, Tom; Young, Alicia M; Adair, Linda S; Ballantyne, Christie M; Bůžková, Petra; Chakravarti, Aravinda; Collins, Francis S; Duggan, David; Feranil, Alan B; Ho, Low-Tone; Hung, Yi-Jen; Hunt, Steven C; Hveem, Kristian; Juang, Jyh-Ming J; Kesäniemi, Antero Y; Kuusisto, Johanna; Laakso, Markku; Lakka, Timo A; Lee, I-Te; Leppert, Mark F; Matise, Tara C; Moilanen, Leena; Njølstad, Inger; Peters, Ulrike; Quertermous, Thomas; Rauramaa, Rainer; Rotter, Jerome I; Saramies, Jouko; Tuomilehto, Jaakko; Uusitupa, Matti; Wang, Tzung-Dau; Boehnke, Michael; Haiman, Christopher A; Chen, Yii-Der I; Kooperberg, Charles; Assimes, Themistocles L; Crawford, Dana C; Hsiung, Chao A; North, Kari E; Mohlke, Karen L

    2013-03-01

    Genome-wide association studies (GWAS) have identified ~100 loci associated with blood lipid levels, but much of the trait heritability remains unexplained, and at most loci the identities of the trait-influencing variants remain unknown. We conducted a trans-ethnic fine-mapping study at 18, 22, and 18 GWAS loci on the Metabochip for their association with triglycerides (TG), high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C), respectively, in individuals of African American (n = 6,832), East Asian (n = 9,449), and European (n = 10,829) ancestry. We aimed to identify the variants with strongest association at each locus, identify additional and population-specific signals, refine association signals, and assess the relative significance of previously described functional variants. Among the 58 loci, 33 exhibited evidence of association at P<1 × 10(-4) in at least one ancestry group. Sequential conditional analyses revealed that ten, nine, and four loci in African Americans, Europeans, and East Asians, respectively, exhibited two or more signals. At these loci, accounting for all signals led to a 1.3- to 1.8-fold increase in the explained phenotypic variance compared to the strongest signals. Distinct signals across ancestry groups were identified at PCSK9 and APOA5. Trans-ethnic analyses narrowed the signals to smaller sets of variants at GCKR, PPP1R3B, ABO, LCAT, and ABCA1. Of 27 variants reported previously to have functional effects, 74% exhibited the strongest association at the respective signal. In conclusion, trans-ethnic high-density genotyping and analysis confirm the presence of allelic heterogeneity, allow the identification of population-specific variants, and limit the number of candidate SNPs for functional studies. PMID:23555291

  2. Increases in oxidized low-density lipoprotein and other inflammatory and adhesion molecules with a concomitant decrease in high-density lipoprotein in the individuals exposed to arsenic in Bangladesh.

    PubMed

    Karim, Md Rezaul; Rahman, Mashiur; Islam, Khairul; Mamun, Abdullah Al; Hossain, Shakhawoat; Hossain, Ekhtear; Aziz, Abdul; Yeasmin, Fouzia; Agarwal, Smita; Hossain, Md Imam; Saud, Zahangir Alam; Nikkon, Farjana; Hossain, Mostaque; Mandal, Abul; Jenkins, Richard O; Haris, Parvez I; Miyataka, Hideki; Himeno, Seiichiro; Hossain, Khaled

    2013-09-01

    Elevated exposure to arsenic has been suggested to be associated with atherosclerosis leading to cardiovascular disease (CVD). However, biochemical events underlying the arsenic-induced atherosclerosis have not yet been fully documented. The aim of this study was to investigate the associations of circulating molecules involved in atherosclerosis with arsenic exposure in the individuals exposed to arsenic in Bangladesh. A total of 324 study subjects, 218 from arsenic-endemic areas and 106 from nonendemic areas in Bangladesh, were recruited. Drinking water, hair, nail, and blood samples were collected from the study subjects for analysis. Total cholesterol (TC), low-density lipoprotein (LDL), and high-density lipoprotein (HDL) levels were lower in arsenic-endemic subjects than those of nonendemic subjects. Oxidized LDL (Ox-LDL), C-reactive protein (CRP), intercellular adhesion molecule-1 (ICAM-1), and vascular cell adhesion molecule-1 (VCAM-1) levels were significantly higher in arsenic-endemic subjects than those in nonendemic subjects. All these circulating molecules showed significant correlations with arsenic exposure (water, hair, and nail arsenic concentrations), and all these relations were significant before and after adjusting for relevant covariates. Among the circulating molecules tested in this study, HDL, Ox-LDL, and CRP showed dose-response relationships with arsenic exposure. Ox-LDL/HDL ratios were increased with the increasing concentrations of arsenic in the water, hair, and nails. Furthermore, non-HDL cholesterol and TC/HDL ratios were significantly correlated with arsenic exposure before and after adjusting for relevant covariates. Thus, all the observed associations may be the major features of arsenic exposure-related atherosclerosis leading to CVD.

  3. Can Developmental Changes in Inhibition and Peer Relationships Explain Why Depressive Symptoms Increase in Early Adolescence?

    ERIC Educational Resources Information Center

    Buck, Katharine Ann; Dix, Theodore

    2012-01-01

    Why do depressive symptoms increase during adolescence? Because inhibition and poor peer relationships predict adolescents' depressive symptoms concurrently, we hypothesized that adolescents who cope with the stresses of this period by becoming increasingly inhibited may experience increasing depressive symptoms both directly and due to increased…

  4. Factors explaining the increase in cost for physician care in Quebec's elderly population.

    PubMed Central

    Demers, M

    1996-01-01

    OBJECTIVE: To examine what role demographic factors and increases in physician fees and utilization played in the rise in costs of physician services provided for elderly people in Quebec between 1982 and 1992, and to investigate changes in patterns of care (type and amount of services) related to utilization. DESIGN: Retrospective study of population-based data. SETTING: Province of Quebec. SUBJECTS: Elderly people (65 years of age and over) in Quebec in 1982 (n = 589,800) and in 1992 (n = 803,600). OUTCOME MEASURES: Proportion of the increase in physician care costs attributable to (a) aging (defined as a shift in the age distribution) of the elderly population, (b) the increase in the size of the elderly population, (c) the increase in physician fees and (d) the increase in utilization of physician services; proportion of care provided by general practitioners (GPs) and by specialists; proportion of minor and complete examinations provided by GPs; and rates of hospital admissions and surgery. RESULTS: Aging was responsible for 0.5% of the increase in physician care costs between 1982 and 1992, population growth for 27.0% and the increase in physician fees for 25.5%. The increased utilization accounted for 47.0% of the total cost increase. Analyses of the utilization data revealed a shift toward more costly services, more visits to specialists and higher rates of hospital admissions and surgery in 1992 than in 1982. CONCLUSIONS: Aging and population growth had minor effects on the increase in physician care costs between 1982 and 1992. Increased utilization was the most important factor. The appropriateness of this trend needs to be verified. PMID:8956832

  5. Higher Levels of Lipoprotein Associated Phospholipase A2 is associated with Increased Prevalence of Cognitive Impairment: the APAC Study.

    PubMed

    Jiang, Ruixuan; Chen, Shengyun; Shen, Yuan; Wu, Jianwei; Chen, Shuohua; Wang, Anxin; Wu, Shouling; Zhao, Xingquan

    2016-01-01

    Lipoprotein-associated phospholipase A2 (Lp-PLA2) is a unique circulating phospholipase with inflammatory and oxidative activities and the limited data regarding the relationship between Lp-PLA2 and cognitive impairment are conflicted. We conducted a cross-sectional study including 1,374 Chinese adults recruited from 2010 to 2011, aiming to evaluate the relationship between Lp-PLA2 levels and the prevalence of cognitive impairment in a Chinese community-based population. Participants underwent standardized evaluation. Serum Lp-PLA2 mass was measured by ELISA. Cognition status was evaluated via the Mini-Mental Status Exam (MMSE) and cognitive impairment was identified as MMSE <24. Multivariable logistic regression models were used to assess the associations of Lp-PLA2 mass with cognitive impairment. Lp-PLA2 mass was significantly associated with the prevalence of cognitive impairment after adjusting for other potential confounding factors (compared with the first quartile, adjusted ORs of the second, third, and fourth quartile were 2.058 (95% CI, 0.876-4.835), 2.834 (95% CI, 1.255-6.398), and 4.882 (95% CI, 2.212-10.777), p < 0.0001). In conclusion, elevated level of Lp-PLA2 mass was independently associated with the prevalence of cognitive impairment in Chinese adults. PMID:27609335

  6. Higher Levels of Lipoprotein Associated Phospholipase A2 is associated with Increased Prevalence of Cognitive Impairment: the APAC Study

    PubMed Central

    Jiang, Ruixuan; Chen, Shengyun; Shen, Yuan; Wu, Jianwei; Chen, Shuohua; Wang, Anxin; Wu, Shouling; Zhao, Xingquan

    2016-01-01

    Lipoprotein-associated phospholipase A2 (Lp-PLA2) is a unique circulating phospholipase with inflammatory and oxidative activities and the limited data regarding the relationship between Lp-PLA2 and cognitive impairment are conflicted. We conducted a cross-sectional study including 1,374 Chinese adults recruited from 2010 to 2011, aiming to evaluate the relationship between Lp-PLA2 levels and the prevalence of cognitive impairment in a Chinese community-based population. Participants underwent standardized evaluation. Serum Lp-PLA2 mass was measured by ELISA. Cognition status was evaluated via the Mini-Mental Status Exam (MMSE) and cognitive impairment was identified as MMSE <24. Multivariable logistic regression models were used to assess the associations of Lp-PLA2 mass with cognitive impairment. Lp-PLA2 mass was significantly associated with the prevalence of cognitive impairment after adjusting for other potential confounding factors (compared with the first quartile, adjusted ORs of the second, third, and fourth quartile were 2.058 (95% CI, 0.876–4.835), 2.834 (95% CI, 1.255–6.398), and 4.882 (95% CI, 2.212–10.777), p < 0.0001). In conclusion, elevated level of Lp-PLA2 mass was independently associated with the prevalence of cognitive impairment in Chinese adults. PMID:27609335

  7. Echium Oil Reduces Plasma Triglycerides by Increasing Intravascular Lipolysis in apoB100-Only Low Density Lipoprotein (LDL) Receptor Knockout Mice

    PubMed Central

    Forrest, Lolita M.; Lough, Christopher M.; Chung, Soonkyu; Boudyguina, Elena Y.; Gebre, Abraham K.; Smith, Thomas L.; Colvin, Perry L.; Parks, John S.

    2013-01-01

    Echium oil (EO), which is enriched in SDA (18:4 n-3), reduces plasma triglyceride (TG) concentrations in humans and mice. We compared mechanisms by which EO and fish oil (FO) reduce plasma TG concentrations in mildly hypertriglyceridemic male apoB100-only LDLrKO mice. Mice were fed one of three atherogenic diets containing 0.2% cholesterol and palm oil (PO; 20%), EO (10% EO + 10% PO), or FO (10% FO + 10% PO). Livers from PO- and EO-fed mice had similar TG and cholesteryl ester (CE) content, which was significantly higher than in FO-fed mice. Plasma TG secretion was reduced in FO vs. EO-fed mice. Plasma very low density lipoprotein (VLDL) particle size was ordered: PO (63 ± 4 nm) > EO (55 ± 3 nm) > FO (40 ± 2 nm). Post-heparin lipolytic activity was similar among groups, but TG hydrolysis by purified lipoprotein lipase was significantly greater for EO and FO VLDL compared to PO VLDL. Removal of VLDL tracer from plasma was marginally faster in EO vs. PO fed mice. Our results suggest that EO reduces plasma TG primarily through increased intravascular lipolysis of TG and VLDL clearance. Finally, EO may substitute for FO to reduce plasma TG concentrations, but not hepatic steatosis in this mouse model. PMID:23857172

  8. Echium oil reduces plasma triglycerides by increasing intravascular lipolysis in apoB100-only low density lipoprotein (LDL) receptor knockout mice.

    PubMed

    Forrest, Lolita M; Lough, Christopher M; Chung, Soonkyu; Boudyguina, Elena Y; Gebre, Abraham K; Smith, Thomas L; Colvin, Perry L; Parks, John S

    2013-07-12

    Echium oil (EO), which is enriched in SDA (18:4 n-3), reduces plasma triglyceride (TG) concentrations in humans and mice. We compared mechanisms by which EO and fish oil (FO) reduce plasma TG concentrations in mildly hypertriglyceridemic male apoB100-only LDLrKO mice. Mice were fed one of three atherogenic diets containing 0.2% cholesterol and palm oil (PO; 20%), EO (10% EO + 10% PO), or FO (10% FO + 10% PO). Livers from PO- and EO-fed mice had similar TG and cholesteryl ester (CE) content, which was significantly higher than in FO-fed mice. Plasma TG secretion was reduced in FO vs. EO-fed mice. Plasma very low density lipoprotein (VLDL) particle size was ordered: PO (63 ± 4 nm) > EO (55 ± 3 nm) > FO (40 ± 2 nm). Post-heparin lipolytic activity was similar among groups, but TG hydrolysis by purified lipoprotein lipase was significantly greater for EO and FO VLDL compared to PO VLDL. Removal of VLDL tracer from plasma was marginally faster in EO vs. PO fed mice. Our results suggest that EO reduces plasma TG primarily through increased intravascular lipolysis of TG and VLDL clearance. Finally, EO may substitute for FO to reduce plasma TG concentrations, but not hepatic steatosis in this mouse model.

  9. Echium oil reduces plasma triglycerides by increasing intravascular lipolysis in apoB100-only low density lipoprotein (LDL) receptor knockout mice.

    PubMed

    Forrest, Lolita M; Lough, Christopher M; Chung, Soonkyu; Boudyguina, Elena Y; Gebre, Abraham K; Smith, Thomas L; Colvin, Perry L; Parks, John S

    2013-07-01

    Echium oil (EO), which is enriched in SDA (18:4 n-3), reduces plasma triglyceride (TG) concentrations in humans and mice. We compared mechanisms by which EO and fish oil (FO) reduce plasma TG concentrations in mildly hypertriglyceridemic male apoB100-only LDLrKO mice. Mice were fed one of three atherogenic diets containing 0.2% cholesterol and palm oil (PO; 20%), EO (10% EO + 10% PO), or FO (10% FO + 10% PO). Livers from PO- and EO-fed mice had similar TG and cholesteryl ester (CE) content, which was significantly higher than in FO-fed mice. Plasma TG secretion was reduced in FO vs. EO-fed mice. Plasma very low density lipoprotein (VLDL) particle size was ordered: PO (63 ± 4 nm) > EO (55 ± 3 nm) > FO (40 ± 2 nm). Post-heparin lipolytic activity was similar among groups, but TG hydrolysis by purified lipoprotein lipase was significantly greater for EO and FO VLDL compared to PO VLDL. Removal of VLDL tracer from plasma was marginally faster in EO vs. PO fed mice. Our results suggest that EO reduces plasma TG primarily through increased intravascular lipolysis of TG and VLDL clearance. Finally, EO may substitute for FO to reduce plasma TG concentrations, but not hepatic steatosis in this mouse model. PMID:23857172

  10. What explains the increased utilization of Powder River Basin coal in electric power generation?

    SciTech Connect

    Gerking, S.; Hamilton, S.F.

    2008-11-15

    This article examines possible explanations for increased utilization of Powder River Basin (PRB) coal in electric power generation that occurred over the last two decades. Did more stringent environmental policy motivate electric power plants to switch to less polluting fuels? Or, did greater use of PRB coal occur because relative price changes altered input markets in favor of this fuel. A key finding is that factors other than environmental policy such as the decline in railroad freight rates together with elastic demand by power plants were major contributors to the increased utilization of this fuel.

  11. A framework for lipoprotein ontology.

    PubMed

    Chen, Meifania; Hadzic, Maja

    2011-01-01

    Clinical and epidemiological studies have established a significant correlation between abnormal plasma lipoprotein levels and cardiovascular disease, which remains the leading cause of mortality in the world today. In addition, lipoprotein dysregulation, known as dyslipidemia, is a central feature in disease states, such as diabetes and hypertension, which increases the risk of cardiovascular disease. While a corpus of literature exists on different areas of lipoprotein research, one of the major challenges that researchers face is the difficulties in accessing and integrating relevant information amidst massive quantities of heterogeneous data. Semantic web technologies, specifically ontologies, target these problems by providing an organizational framework of the concepts involved in a system of related instances to support systematic querying of information. In this paper, we identify issues within the lipoprotein research domain and present a preliminary framework for Lipoprotein Ontology, which consists of five specific areas of lipoprotein research: Classification, Metabolism, Pathophysiology, Etiology, and Treatment. By integrating specific aspects of lipoprotein research, Lipoprotein Ontology will provide the basis for the design of various applications to enable interoperability between research groups or software agents, as well as the development of tools for the diagnosis and treatment of dyslipidemia.

  12. Symptoms of notalgia paresthetica may be explained by increased dermal innervation.

    PubMed

    Springall, D R; Karanth, S S; Kirkham, N; Darley, C R; Polak, J M

    1991-09-01

    Notalgia paresthetica is a sensory neuropathy characterized by infrascapular pruritus, burning pain, hyperalgesia, or tenderness. To assess whether the symptoms may be caused by alterations in the cutaneous innervation, skin from the affected area of patients (n = 5) was compared with controls (n = 10) comprising the contralateral unaffected area from the same patients and site-matched biopsies of normals, using immunohistochemistry. Frozen sections were immunostained with antisera to the neuropeptides substance P, calcitonin gene-related peptide, vasoactive intestinal polypeptide, and neuropeptide with tyrosine, and to the general neural marker PGP 9.5 and the glial marker S-100 to show the overall innervation and glial cells, respectively. No discernible change in the distribution of neuropeptide-immunoreactive axons was found, but all of the specimens from the affected areas had a significant increase in the number of intradermal PGP 9.5-immunoreactive nerve fibers compared with unaffected areas from the same patients and normal controls. Epidermal dendritic cells immunoreactive for S-100, possibly Langerhans cells, were substantially increased. It is concluded that there is an increase in the sensory epidermal innervation in the affected skin areas in notalgia paresthetica, which could contribute to the symptoms, and that neural immunohistochemistry of skin biopsies could be helpful in the diagnosis of the disease. PMID:1831466

  13. A Minimalistic Resource Allocation Model to Explain Ubiquitous Increase in Protein Expression with Growth Rate

    PubMed Central

    Keren, Leeat; Segal, Eran; Milo, Ron

    2016-01-01

    Most proteins show changes in level across growth conditions. Many of these changes seem to be coordinated with the specific growth rate rather than the growth environment or the protein function. Although cellular growth rates, gene expression levels and gene regulation have been at the center of biological research for decades, there are only a few models giving a base line prediction of the dependence of the proteome fraction occupied by a gene with the specific growth rate. We present a simple model that predicts a widely coordinated increase in the fraction of many proteins out of the proteome, proportionally with the growth rate. The model reveals how passive redistribution of resources, due to active regulation of only a few proteins, can have proteome wide effects that are quantitatively predictable. Our model provides a potential explanation for why and how such a coordinated response of a large fraction of the proteome to the specific growth rate arises under different environmental conditions. The simplicity of our model can also be useful by serving as a baseline null hypothesis in the search for active regulation. We exemplify the usage of the model by analyzing the relationship between growth rate and proteome composition for the model microorganism E.coli as reflected in recent proteomics data sets spanning various growth conditions. We find that the fraction out of the proteome of a large number of proteins, and from different cellular processes, increases proportionally with the growth rate. Notably, ribosomal proteins, which have been previously reported to increase in fraction with growth rate, are only a small part of this group of proteins. We suggest that, although the fractions of many proteins change with the growth rate, such changes may be partially driven by a global effect, not necessarily requiring specific cellular control mechanisms. PMID:27073913

  14. Liquid films on shake flask walls explain increasing maximum oxygen transfer capacities with elevating viscosity.

    PubMed

    Giese, Heiner; Azizan, Amizon; Kümmel, Anne; Liao, Anping; Peter, Cyril P; Fonseca, João A; Hermann, Robert; Duarte, Tiago M; Büchs, Jochen

    2014-02-01

    In biotechnological screening and production, oxygen supply is a crucial parameter. Even though oxygen transfer is well documented for viscous cultivations in stirred tanks, little is known about the gas/liquid oxygen transfer in shake flask cultures that become increasingly viscous during cultivation. Especially the oxygen transfer into the liquid film, adhering on the shake flask wall, has not yet been described for such cultivations. In this study, the oxygen transfer of chemical and microbial model experiments was measured and the suitability of the widely applied film theory of Higbie was studied. With numerical simulations of Fick's law of diffusion, it was demonstrated that Higbie's film theory does not apply for cultivations which occur at viscosities up to 10 mPa s. For the first time, it was experimentally shown that the maximum oxygen transfer capacity OTRmax increases in shake flasks when viscosity is increased from 1 to 10 mPa s, leading to an improved oxygen supply for microorganisms. Additionally, the OTRmax does not significantly undermatch the OTRmax at waterlike viscosities, even at elevated viscosities of up to 80 mPa s. In this range, a shake flask is a somehow self-regulating system with respect to oxygen supply. This is in contrary to stirred tanks, where the oxygen supply is steadily reduced to only 5% at 80 mPa s. Since, the liquid film formation at shake flask walls inherently promotes the oxygen supply at moderate and at elevated viscosities, these results have significant implications for scale-up.

  15. Increased inflammation in sanctuary sites may explain viral blips in HIV infection

    DOE PAGES

    Piovoso, Michael J.; Cardozo, E. Fabian; Zurakowski, Ryan

    2016-08-01

    Here, combined antiretroviral therapy (cART) suppress HIV-1 viral replication, such that viral load in plasma remains below the limit of detection in standard assays. However, intermittent episodes of transient viremia (blips) occur in a set of HIV-patients. Given that follicular hyperplasia occurs during lymphoid inflammation as a normal response to infection, it is hypothesised that when the diameter of the lymph node follicle (LNF) increases and crosses a critical size, a viral blip occurs due to cryptic viremia. To study this hypothesis, a theoretical analysis of a mathematical model is performed to find the conditions for virus suppression in allmore » compartments and different scenarios of LNF size changes are simulated. According to the analysis, blips with duration of around 30 days arise when the diameter rise rate is between 0.02 and 0.03 days–1. Moreover, the final diameter of the site is directly related to the steady states of the virus load after the occurrence of a blip. When the value of R0 is around 2.1, to have a steady-state below the limit of detection after the viral blip, the maximum final diameters should be greater than 0.7 mm so that there is a relative loss of connection between compartments.« less

  16. Explaining the Rapid Increase in Nigeria's Sex Ratio at Birth: Factors and Implications.

    PubMed

    Kaba, Amadu J

    2015-06-01

    This paper examines the rapid increase in Nigeria's sex ratio at birth from 1.03 boys born for every 1 girl born in each year from 1996-2008 to 1.06 in each year from 2009-2014, second only to Tunisia in Africa at 1.07. The average sex ratio at birth in the world in 2014 was 1.07. In most Black African nations or Black majority nations, it is 1.03 or less. Among the factors presented for this development are: historical fluctuations of sex ratio at birth; geography and ethnicity; male preference/chasing a son; Age of parents; high death rates of male infants and males in general; and wealth/socioeconomic status. Among the potential implications are: young and poor men in Nigeria may not be able to find brides and form families due to a potential shortage of females; emigration of young and poor Nigerian men to West (Africa) and elsewhere to seek brides and form families; immigration of marriage age women from West (Africa) and around the world to Nigeria to seek husbands; and low contraceptive use and high fertility rates in Nigeria.

  17. Increases in intracellular water explain strength and power improvements over a season.

    PubMed

    Silva, A M; Matias, C N; Santos, D A; Rocha, P M; Minderico, C S; Sardinha, L B

    2014-12-01

    Changes in body components occur over a season, but their impact on performance is still unclear. We aimed to analyze the relationship between changes in leg strength and jump performance with body composition over a season in highly trained athletes. Measures from the beginning to the main competitive periods of a season were obtained in 40 male and 23 female basketball, handball and volleyball players (20±5 years) for fat (FM) and fat-free mass (FFM) estimated by DXA. Total body water (TBW) and extracellular water (ECW) were assessed by deuterium and bromide dilution, respectively, and intracellular water (ICW) was calculated as TBW minus ECW. Maximal strength was determined by the leg press, while jumping height was assessed with squat (SJ) and countermovement (CMJ) jumps. Significant improvements in strength (12.5±20.8%) and jumping height (SJ:8.3±13.9%; CMJ:6.3±8.5%) were found. FFM, TBW and ECW significantly increased (3.0±2.7%; 1.7±5.5%; 3.0±8.6%, respectively), while %FM decreased (-4.5±9.1%) and no changes were observed in ICW (1.2±9.7%). Among body composition changes only ICW was associated with performance even adjusted for gender, age, season length and sport (strength: β=71.209, p=0.012; SJ: β=0.311, p=0.049; CMJ: β=0.366, p=0.018). Body composition, strength and jumping height improved over a season and ICW was the main predictor of performance in national level players.

  18. Lipoprotein (a), lipids, and lipoproteins in patients with rheumatoid arthritis.

    PubMed Central

    Rantapää-Dahlqvist, S; Wållberg-Jonsson, S; Dahlén, G

    1991-01-01

    Lipoprotein (a), (Lp(a)), an independent atherogenic factor, was significantly increased in 93 patients with classical, seropositive rheumatoid arthritis of median disease activity. In the patients with Lp(a) concentrations above the upper reference value of 480 mg/l there was a significant correlation between Lp(a) and the concentration of orosomucoid, erythrocyte sedimentation rate, and the platelet count. The plasma concentrations of cholesterol and high density lipoprotein-cholesterol in both male and female patients were significantly lower than in controls. Apolipoprotein B and apolipoprotein AI in the patients correlated significantly with total cholesterol and high density lipoprotein-cholesterol respectively. PMID:1829348

  19. Effects of Increasing Dietary Polyunsaturated Fatty Acids Within the Guidelines of the AHA Step 1 Diet on Plasma Lipid and Lipoprotein Levels in Normal Males

    PubMed Central

    Ginsberg, Henry N.; Karmally, Wahida; Barr, Susan Learner; Johnson, Colleen; Holleran, Steve; Ramakrishnan, Rajasekhar

    2012-01-01

    We attempted to ascertain the effects of polyunsaturated fatty acids by conducting two studies in normal young men, in which monounsaturated fats were replaced by polyunsaturated fats within the guidelines of the American Heart Association step 1 diet. Study A employed a randomized parallel design in which subjects first consumed an average American diet (AAD) containing 37% of calories as fat (saturated fat, 16% calories; monounsaturated fat, 14% calories; and polyunsaturated fat, 7% calories). After 3 weeks, one third of the subjects continued with the AAD, one third switched to a step 1 diet in which total fat calories were reduced to 30% by replacing saturated fat with carbohydrate, and one third switched to a polyunsaturated fat-enriched (Poly) diet with the same 30% fat calories and a reduction of monounsaturated fat from 14% to 8% and an increase of polyunsaturated fat from 7% to 13% of calories. The randomized period lasted 6 weeks. Total and low-density lipoprotein (LDL) cholesterol levels on the step 1 and Poly diets were reduced compared with levels on the AAD (P < .001). Total and LDL cholesterol did not differ between the step 1 and Poly diets, although comparison between the two diets is limited by the small study groups. Serum apolipoprotein (apo) B levels fell on the Poly diet compared with the AAD. Total high-density lipoprotein (HDL), HDL2, and HDL3 cholesterol levels were not significantly affected by the diets. Postprandial lipid and lipoprotein concentrations did not significantly differ either. In study B, a randomized crossover design was used in which all subjects ate the step 1 and Poly diets for 5 weeks each with a 4-day break between diets. In the eight subjects studied, the values for fasting plasma total, LDL, and HDL cholesterol; triglycerides; apoB; and apoA-I were essentially identical at the end of each diet period. Postprandial triglyceride areas obtained after ingestion of a large, standard fat load were also the same. Finally

  20. Intrauterine growth restriction combined with a maternal high-fat diet increases hepatic cholesterol and low-density lipoprotein receptor activity in rats.

    PubMed

    Zinkhan, Erin K; Zalla, Jennifer M; Carpenter, Jeanette R; Yu, Baifeng; Yu, Xing; Chan, Gary; Joss-Moore, Lisa; Lane, Robert H

    2016-07-01

    Intrauterine growth restriction (IUGR) and maternal consumption of a high-saturated-fat diet (HFD) increase the risk of hypercholesterolemia, a leading cause of morbidity and mortality. Many pregnant women eat a HFD, thus exposing the fetus to a HFD in utero. The cumulative effect of in utero exposure to IUGR and a HFD on offspring cholesterol levels remains unknown. Furthermore, little is known about the mechanism through which IUGR and maternal HFD consumption increase cholesterol. We hypothesize that IUGR combined with a maternal HFD would increase offspring serum and hepatic cholesterol accumulation via alteration in levels of key proteins involved in cholesterol metabolism. To test our hypothesis we used a rat model of surgically induced IUGR and fed the dams a regular diet or a HFD HFD-fed dams consumed the same kilocalories as regular diet-fed dams, with no difference between surgical intervention groups. In the offspring, IUGR combined with a maternal HFD increased hepatic cholesterol levels, low-density lipoprotein (LDL) receptor protein levels, and Ldlr activity in female rat offspring at birth and both sexes at postnatal day 14 relative to non-IUGR offspring both from regular diet- and HFD-fed dams. These findings suggest that IUGR combined with a maternal HFD increases hepatic cholesterol accumulation via increased LDL cholesterol uptake into the liver with resulting persistent increases in hepatic cholesterol accumulation.

  1. Phytosterols, Phytostanols, and Lipoprotein Metabolism

    PubMed Central

    Gylling, Helena; Simonen, Piia

    2015-01-01

    The efficacy of phytosterols and phytostanols added to foods and food supplements to obtain significant non-pharmacologic serum and low density lipoprotein (LDL) cholesterol reduction is well documented. Irrespective of age, gender, ethnic background, body weight, background diet, or the cause of hypercholesterolemia and, even added to statin treatment, phytosterols and phytostanols at 2 g/day significantly lower LDL cholesterol concentration by 8%–10%. They do not affect the concentrations of high density lipoprotein cholesterol, lipoprotein (a) or serum proprotein convertase subtilisin/kexin type 9. In some studies, phytosterols and phytostanols have modestly reduced serum triglyceride levels especially in subjects with slightly increased baseline concentrations. Phytosterols and phytostanols lower LDL cholesterol by displacing cholesterol from mixed micelles in the small intestine so that cholesterol absorption is partially inhibited. Cholesterol absorption and synthesis have been carefully evaluated during phytosterol and phytostanol supplementation. However, only a few lipoprotein kinetic studies have been performed, and they revealed that LDL apoprotein B-100 transport rate was reduced. LDL particle size was unchanged, but small dense LDL cholesterol concentration was reduced. In subjects with metabolic syndrome and moderate hypertriglyceridemia, phytostanols reduced not only non- high density lipoprotein (HDL) cholesterol concentration but also serum triglycerides by 27%, and reduced the large and medium size very low density lipoprotein particle concentrations. In the few postprandial studies, the postprandial lipoproteins were reduced, but detailed studies with apoprotein B-48 are lacking. In conclusion, more kinetic studies are required to obtain a more complete understanding of the fasting and postprandial lipoprotein metabolism caused by phytosterols and phytostanols. It seems obvious, however, that the most atherogenic lipoprotein particles will be

  2. Effects of hormones on lipids and lipoproteins

    SciTech Connect

    Krauss, R.M.

    1991-12-01

    Levels of plasma lipids and lipoproteins are strong predictors for the development of atherosclerotic cardiovascular disease in postmenopausal women. In women, as in men, numerous factors contribute to variations in plasma lipoproteins that may affect cardiovascular disease risk. These include age, dietary components, adiposity, genetic traits, and hormonal changes. Each of these factors may operate to varying degrees in determining changes in plasma lipoprotein profiles accompanying menopause- Cross-sectional and longitudinal studies have suggested increases in levels of cholesterol, low density lipoproteins (LDL) and triglyceride-rich lipoproteins associated with menopause. High density lipoproteins (HDL), which are higher in women than men and are thought to contribute to relative protection of premenopausal women from cardiovascular disease, remain relatively constant in the years following menopause, although small, and perhaps transient reductions in the HDL{sub 2} subfraction have been reported in relation to reduced estradiol level following menopause. Despite these associations, it has been difficult to determine the role of endogenous hormones in influencing the plasma lipoproteins of postmenopausal women. In principle, the effects of hormone replacement should act to reverse any alterations in lipoprotein metabolism that are due to postmenopausal hormone changes. While there may be beneficial effects on lipoproteins, hormone treatment does not restore a premenopausal lipoprotein profile. Furthermore, it is not dear to what extent exogenous hormone-induced lipoprotein changes contribute to the reduced incidence of cardiovascular disease with hormone replacement therapy.

  3. Increased hepatic cholesterol esterification with essential fatty acid deficiency (EFAD): relationship to plasma lipoprotein (LP) cholesterol content

    SciTech Connect

    Ney, D.M.; Ziboh, V.A.; Schneeman, B.O.

    1986-03-01

    EFAD in the rat is associated with hepatic accumulation of esterified cholesterol and altered distribution of cholesterol between plasma and hepatic tissue. Little is known regarding the impact of EFAD on LP composition. To determine the relationship between hepatic cholesterol esterification and plasma lP composition in control (C) and EFAD male Wistar rats, the authors induced EFAD with continuous intragastric (IG) infusion of EFA-free solutions containing 3.5% of calories as triolein for 7 and 14 days. C animals received IG infusion of solutions containing 3.5% of calories as linoleic acid. Data in the EFAD groups reveal: (i) marked decreases in hepatic EFAs and increases in monoenoic acids; (ii) progressive increases in hepatic content of triglyceride and esterified cholesterol with 7 and 14 days of feeding; (iii) assay of acyl CoA:cholesterol acyltransferase activity in hepatic tissue using /sup 14/C-cholesterol demonstrates an increase in hepatic cholesterol esterification when compared to C animals. Increased hepatic cholesterol esterification correlates with elevated levels of esterified cholesterol in plasma VLDL and HDL particles. These data indicate that the elevated levels of cholesterol esters in LP particles is due, at least in part, to increased hepatic cholesterol esterification with EFAD.

  4. Metabolism of lipoproteins by human fetal hepatocytes

    SciTech Connect

    Carr, B.R.

    1987-12-01

    The rate of clearance of lipoproteins from plasma appears to play a role in the development of atherogenesis. The liver may account for as much as two thirds of the removal of low-density lipoprotein and one third of the clearance of high-density lipoprotein in certain animal species and humans, mainly by receptor-mediated pathways. The purpose of the present investigation was to determine if human fetal hepatocytes maintained in vitro take up and degrade lipoproteins. We first determined that the maximal binding capacity of iodine 125-iodo-LDL was approximately 300 ng of low-density lipoprotein protein/mg of membrane protein and an apparent dissociation constant of approximately 60 micrograms low-density lipoprotein protein/ml in membranes prepared from human fetal liver. We found that the maximal uptake of (/sup 125/I)iodo-LDL and (/sup 125/I)iodo-HDL by fetal hepatocytes occurred after 12 hours of incubation. Low-density lipoprotein uptake preceded the appearance of degradation products by 4 hours, and thereafter the degradation of low-density lipoprotein increased linearly for at least 24 hours. In contrast, high-density lipoprotein was not degraded to any extent by fetal hepatocytes. (/sup 125/I)Iodo-LDL uptake and degradation were inhibited more than 75% by preincubation with low-density lipoprotein but not significantly by high-density lipoprotein, whereas (/sup 125/I)iodo-HDL uptake was inhibited 70% by preincubation with high-density lipoprotein but not by low-density lipoprotein. In summary, human fetal hepatocytes take up and degrade low-density lipoprotein by a receptor-mediated process similar to that described for human extrahepatic tissues.

  5. The hypertriglyceridemia of acquired immunodeficiency syndrome is associated with an increased prevalence of low density lipoprotein subclass pattern B

    SciTech Connect

    Feingold, K.R.; Krauss, R.M.; Pang, M.; Doerrler, W.; Jensen, P.; Grunfeld, C. Lawrence Berkeley Lab., CA )

    1993-06-01

    To better define the role of environmental factors on LDL phenotypic expression, the authors determined LDL patterns in patients with acquired immunodeficiency syndrome (AIDS), and infection characterized by hypertriglyceridemia and weight loss. Similar to previous studies, plasma triglyceride levels were increased, whereas plasma cholesterol, LDL cholesterol, and HDL cholesterol levels were decreased in the AIDS subjects compared to those in age-matched controls. The percentage of AIDS subjects with the LDL B phenotype was increased 2.5-fold, demonstrating an increased prevalence of the LDL B phenotype in an acquired form of hypertriglyceridemia. For each LDL phenotype in AIDS, serum triglyceride levels were higher than the same phenotypic pattern in controls, with the most marked elevations in triglycerides found in AIDS subjects with the LDL B phenotype. In contrast to what was observed in controls, HDL cholesterol levels were decreased in all AIDS subjects and were unrelated to LDL pattern. Total and LDL cholesterol levels were higher in controls with the LDL B phenotype than in those with the LDL A phenotype, but there was no difference in total and LDL cholesterol in AIDS subjects with LDL B compared to A. On multiple regression analysis in subjects with AIDS, plasma triglyceride levels, age, and HDL cholesterol all contribute to the occurrence of the LDL B phenotype, but elevations in plasma triglyceride levels are the strongest independent predictor. Body mass index was not a predictor of LDL B phenotype in AIDS. These results suggest that disturbances in triglyceride metabolism that are caused by AIDS lead to the appearance of the LDL subclass B phenotype and provide further evidence that environmental or disease states that perturb lipid metabolism can produce an increased prevalence of the LDL B phenotype. 35 refs., 1 fig., 5 tabs.

  6. Human cytomegalovirus increases modified low density lipoprotein uptake and scavenger receptor mRNA expression in vascular smooth muscle cells.

    PubMed Central

    Zhou, Y F; Guetta, E; Yu, Z X; Finkel, T; Epstein, S E

    1996-01-01

    Evidence suggests a possible role for human cytomegalovirus (HCMV) in the development of arteriosclerosis. One of the earliest events in plaque formation is the accumulation of lipid-laden foam cells, derived from macrophages and smooth muscle cells (SMCs). The lipid accumulation that occurs depends upon the uptake of oxidized LDL (Ox-LDL), a process in which the scavenger receptor (SR) has been postulated to play an important role. We therefore examined the effects of HCMV on this process. We demonstrate that HCMV infection of human SMCs increases modified LDL uptake and stimulates class A SR gene (SR-A) mRNA expression. In addition, infection of rat SMCs with HCMV, which causes immediate early gene expression (IE72/IE84), but no early or late HCMV gene products and no cytopathic effects, also increases SMC uptake of Ox-LDL and acetylated LDL, with either effect blocked by an excess of either cold Ox-LDL or acetylated-LDL, and by fucoidin, an SR competitor. Cotransfection of an IE72, but not an IE84, expression plasmid and a plasmid containing a Class A SR promoter/reporter gene construct enhances SR promoter activity. Since increased Ox-LDL uptake is believed to play an important role in arteriosclerosis, these results provide a link between HCMV infection and arteriosclerotic plaque formation. PMID:8903333

  7. Obesity development in neuron-specific lipoprotein lipase deficient mice is not responsive to increased dietary fat content or change in fat composition.

    PubMed

    Wang, Hong; Taussig, Matthew D; DiPatrizio, Nicholas V; Bruce, Kimberley; Piomelli, Daniele; Eckel, Robert H

    2016-07-01

    We have previously reported that mice with neuron-specific LPL deficiency (NEXLPL-/-) become obese by 16weeks of age on chow. Moreover, these mice had reduced uptake of triglyceride (TG)-rich lipoprotein-derived fatty acids and lower levels of n-3 long chain polyunsaturated fatty acids (n-3 PUFAs) in the hypothalamus. Here, we asked whether increased dietary fat content or altered dietary composition could modulate obesity development in NEXLPL-/- mice. Male NEXLPL-/- mice and littermate controls (WT) were randomly assigned one of three synthetic diets; a high carbohydrate diet (HC, 10% fat), a high-fat diet (HF, 45% fat), or a HC diet supplemented with n-3 PUFAs (HCn-3, 10% fat, Lovaza, GSK®). After 42weeks of HC feeding, body weight and fat mass were increased in the NEXLPL-/- mice compared to WT. WT mice fed a HF diet displayed typical diet-induced obesity, but weight gain was only marginal in HF-fed NEXLPL-/- mice, with no significant difference in body composition. Dietary n-3 PUFA supplementation did not prevent obesity in NEXLPL-/- mice, but was associated with differential modifications in hypothalamic gene expression and PUFA concentration compared to WT mice. Our findings suggest that neuronal LPL is involved in the regulation of body weight and composition in response to either the change in quantity (HF feeding) or quality (n-3 PUFA-enriched) of dietary fat. The precise role of LPL in lipid sensing in the brain requires further investigation. PMID:27282869

  8. Obesity development in neuron-specific lipoprotein lipase deficient mice is not responsive to increased dietary fat content or change in fat composition.

    PubMed

    Wang, Hong; Taussig, Matthew D; DiPatrizio, Nicholas V; Bruce, Kimberley; Piomelli, Daniele; Eckel, Robert H

    2016-07-01

    We have previously reported that mice with neuron-specific LPL deficiency (NEXLPL-/-) become obese by 16weeks of age on chow. Moreover, these mice had reduced uptake of triglyceride (TG)-rich lipoprotein-derived fatty acids and lower levels of n-3 long chain polyunsaturated fatty acids (n-3 PUFAs) in the hypothalamus. Here, we asked whether increased dietary fat content or altered dietary composition could modulate obesity development in NEXLPL-/- mice. Male NEXLPL-/- mice and littermate controls (WT) were randomly assigned one of three synthetic diets; a high carbohydrate diet (HC, 10% fat), a high-fat diet (HF, 45% fat), or a HC diet supplemented with n-3 PUFAs (HCn-3, 10% fat, Lovaza, GSK®). After 42weeks of HC feeding, body weight and fat mass were increased in the NEXLPL-/- mice compared to WT. WT mice fed a HF diet displayed typical diet-induced obesity, but weight gain was only marginal in HF-fed NEXLPL-/- mice, with no significant difference in body composition. Dietary n-3 PUFA supplementation did not prevent obesity in NEXLPL-/- mice, but was associated with differential modifications in hypothalamic gene expression and PUFA concentration compared to WT mice. Our findings suggest that neuronal LPL is involved in the regulation of body weight and composition in response to either the change in quantity (HF feeding) or quality (n-3 PUFA-enriched) of dietary fat. The precise role of LPL in lipid sensing in the brain requires further investigation.

  9. Changes in regional body composition explain increases in energy expenditure in elite junior basketball players over the season.

    PubMed

    Silva, Analiza M; Santos, Diana A; Matias, Catarina N; Rocha, Paulo M; Petroski, Edio L; Minderico, Cláudia S; Sardinha, Luís B

    2012-07-01

    We aimed to analyze the association between changes in total and regional fat (FM) and fat-free mass (FFM) over a season with resting (REE) and total energy expenditure (TEE) in elite basketball players. At the beginning of the pre-season and at the final of the competitive period, measures of total and regional FM, FFM, lean soft tissue (LST), and bone mineral estimated by DXA and REE by indirect calorimetry were obtained in eight males and nine females of the Portuguese basketball team (16-17 years). TEE was assessed by doubly labeled water. Handgrip and a vertical-jumping were used to assess strength and power. Changes were expressed as a percentage from the baseline values. Resting energy expenditure and TEE increased by 13.2 ± 12.6 and 13.3 ± 12.7% (p < 0.01), respectively. Increases in FFM (3.6 ± 2.2%) and reductions in relative FM (-4.0 ± 6.6%) were observed (p < 0.01). The strength and power increased by 14.4 ± 9.9 and 9.8 ± 10.6%, respectively (p < 0.001). Alone, FFM and arms LST differences explained 25 and 23% of the total variance in REE alteration. These variables remained associated after adjusting for gender and baseline values (β = 0.536, p = 0.042; and β = 2.023, p = 0.016, respectively). Over the season, the REE increase was explained by changes in FFM. The increase in REE along with the strength and power improvement may suggest that a qualitative change in the metabolic active tissues occurred. Furthermore, these findings highlight the regional LST contribution, specifically located at the upper limbs, as a key component for the higher REE occurred over the season in junior basketball players.

  10. Does decreased orographic enhancement explain declining annual streamflows and recent increases in wildfire fire activity in the Pacific Northwestern US?

    NASA Astrophysics Data System (ADS)

    Holden, Z. A.; Luce, C.; Morgan, P.; Crimmins, M.; Abatzoglou, J. T.

    2013-12-01

    The influences of changing snowpack on the hydrology of the western US have been well noted, with trends in snowpack declines, early streamflow timing and associated fire activity attributed primarily to warming temperatures. We present several lines of evidence suggesting that historical declines in high elevation precipitation have contributed to early snowmelt timing, reduced annual streamflow, and increased annual area burned in the Pacific Northwest. Using satellite-derived estimates of area burned and area burned severely, we show that annual flow, an integrator of basin-wide precipitation, explains three times as much of the variability in interannual wildfire activity as does the center of timing of annual flow absent the influence of flow variability. Precipitation and snowpack are fundamentally connected to the timing of snowmelt. Thus, while annual wildfire area burned is correlated with snowmelt timing, precipitation quantity and distribution provide a more direct mechanistic explanation of recent wildfire activity in this region. The magnitude of streamflow declines cannot be explained by either increased evapotranspiration or decreases in precipitation at low elevation weather stations, implicating declining orographic enhancement as a possible mechanism for the substantial declines in streamflow observed in recent decades.

  11. Does plasticity in plant physiological traits explain the rapid increase in water use efficiency? An ecohydrological modeling approach

    NASA Astrophysics Data System (ADS)

    Mastrotheodoros, Theodoros; Fatichi, Simone; Pappas, Christoforos; Molnar, Peter; Burlando, Paolo

    2016-04-01

    The rise of atmospheric CO2 concentration is expected to stimulate plant productivity by enhancing photosynthesis and reducing stomatal conductance and thus increasing plant water use efficiency (WUE) worldwide. An analysis of eddy covariance flux tower data from 21 forested ecosystems across the north hemisphere detected an unexpectedly large increase in WUE (Keenan et al, 2013), which was six times larger than the increase found by most previous studies based on controlled experiments (e.g., FACE), leaf-scale analyses, and numerical modelling. This increase could be solely attributed to the increase in atmospheric CO2 since other confounding factors were ruled out. Here, we investigate the potential contribution of plant plasticity, reflected in the temporal adjustment of major plant physiological traits, on changes in WUE using the ecohydrological model Tethys and Chloris (T&C). We hypothesize that the increase in WUE can be attributed to small variations in plant physiological traits, undetectable through observations, eventually triggered by the atmospheric CO2 increase. Data from the 21 sites in the above mentioned study are used to force the model. Simulation results with and without plasticity in the physiological traits (i.e., model parameters in our numerical experiments) are compared with the observed trends in WUE. We test several plant adaptation strategies in being effective in explaining the observed increase in WUE using a multifactorial numerical experiment in which we perturb in a systematic way selected plant parameters. Keenan, T. F., Hollinger, D. Y., Bohrer, G., Dragoni, D., Munger, J. W., Schmid, H. P., and Richardson, A. D. (2013). Increase in forest water-use efficiency as atmospheric carbon dioxide concentrations rise. Nature, 499(7458), 324-7.

  12. Krill oil supplementation lowers serum triglycerides without increasing low-density lipoprotein cholesterol in adults with borderline high or high triglyceride levels.

    PubMed

    Berge, Kjetil; Musa-Veloso, Kathy; Harwood, Melody; Hoem, Nils; Burri, Lena

    2014-02-01

    The aim of the study was to explore the effects of 12 weeks daily krill oil supplementation on fasting serum triglyceride (TG) and lipoprotein particle levels in subjects whose habitual fish intake is low and who have borderline high or high fasting serum TG levels (150-499 mg/dL). We hypothesized that Krill oil lowers serum TG levels in subjects with borderline high or high fasting TG levels. To test our hypothesis 300 male and female subjects were included in a double-blind, randomized, multi-center, placebo-controlled study with five treatment groups: placebo (olive oil) or 0.5, 1, 2, or 4 g/day of krill oil. Serum lipids were measured after an overnight fast at baseline, 6 and 12 weeks. Due to a high intra-individual variability in TG levels, data from all subjects in the four krill oil groups were pooled to increase statistical power, and a general time- and dose-independent one-way analysis of variance was performed to assess efficacy. Relative to subjects in the placebo group, those administered krill oil had a statistically significant calculated reduction in serum TG levels of 10.2%. Moreover, LDL-C levels were not increased in the krill oil groups relative to the placebo group. The outcome of the pooled analysis suggests that krill oil is effective in reducing a cardiovascular risk factor. However, owing to the individual fluctuations of TG concentrations measured, a study with more individual measurements per treatment group is needed to increase the confidence of these findings. PMID:24461313

  13. Lipoprotein apheresis for the treatment of elevated circulating levels of lipoprotein(a): a critical literature review

    PubMed Central

    Franchini, Massimo; Capuzzo, Enrico; Liumbruno, Giancarlo M.

    2016-01-01

    Lipoprotein(a), which consists of a low-density lipoprotein (LDL) particle linked to an apolipoprotein(a) moiety, is currently considered an independent risk factor for cardiovascular disease due to its atherogenic (LDL-like) and prothrombotic (plasminogen-like) properties. The aim of this review is to provide an overview of the current and newer therapies for lowering increased lipoprotein(a) levels, focusing on lipoprotein apheresis. After a systematic literature search, we identified ten studies which, overall, documented that lipoprotein apheresis is effective in reducing increased lipoprotein(a) levels and cardiovascular events. PMID:26710351

  14. Species-specific adaptations explain resilience of herbaceous understorey to increased precipitation variability in a Mediterranean oak woodland.

    PubMed

    Jongen, Marjan; Hellmann, Christine; Unger, Stephan

    2015-10-01

    To date, the implications of the predicted greater intra-annual variability and extremes in precipitation on ecosystem functioning have received little attention. This study presents results on leaf-level physiological responses of five species covering the functional groups grasses, forbs, and legumes in the understorey of a Mediterranean oak woodland, with increasing precipitation variability, without altering total annual precipitation inputs. Although extending the dry period between precipitation events from 3 to 6 weeks led to increased soil moisture deficit, overall treatment effects on photosynthetic performance were not observed in the studied species. This resilience to prolonged water stress was explained by different physiological and morphological strategies to withstand periods below the wilting point, that is, isohydric behavior in Agrostis, Rumex, and Tuberaria, leaf succulence in Rumex, and taproots in Tolpis. In addition, quick recovery upon irrigation events and species-specific adaptations of water-use efficiency with longer dry periods and larger precipitation events contributed to the observed resilience in productivity of the annual plant community. Although none of the species exhibited a change in cover with increasing precipitation variability, leaf physiology of the legume Ornithopus exhibited signs of sensitivity to moisture deficit, which may have implications for the agricultural practice of seeding legume-rich mixtures in Mediterranean grassland-type systems. This highlights the need for long-term precipitation manipulation experiments to capture possible directional changes in species composition and seed bank development, which can subsequently affect ecosystem state and functioning. PMID:26664676

  15. Species-specific adaptations explain resilience of herbaceous understorey to increased precipitation variability in a Mediterranean oak woodland.

    PubMed

    Jongen, Marjan; Hellmann, Christine; Unger, Stephan

    2015-10-01

    To date, the implications of the predicted greater intra-annual variability and extremes in precipitation on ecosystem functioning have received little attention. This study presents results on leaf-level physiological responses of five species covering the functional groups grasses, forbs, and legumes in the understorey of a Mediterranean oak woodland, with increasing precipitation variability, without altering total annual precipitation inputs. Although extending the dry period between precipitation events from 3 to 6 weeks led to increased soil moisture deficit, overall treatment effects on photosynthetic performance were not observed in the studied species. This resilience to prolonged water stress was explained by different physiological and morphological strategies to withstand periods below the wilting point, that is, isohydric behavior in Agrostis, Rumex, and Tuberaria, leaf succulence in Rumex, and taproots in Tolpis. In addition, quick recovery upon irrigation events and species-specific adaptations of water-use efficiency with longer dry periods and larger precipitation events contributed to the observed resilience in productivity of the annual plant community. Although none of the species exhibited a change in cover with increasing precipitation variability, leaf physiology of the legume Ornithopus exhibited signs of sensitivity to moisture deficit, which may have implications for the agricultural practice of seeding legume-rich mixtures in Mediterranean grassland-type systems. This highlights the need for long-term precipitation manipulation experiments to capture possible directional changes in species composition and seed bank development, which can subsequently affect ecosystem state and functioning.

  16. Hepatic very-low-density lipoprotein and apolipoprotein B production are increased following in vivo induction of betaine–homocysteine S-methyltransferase

    PubMed Central

    Sparks, Janet D.; Collins, Heidi L.; Chirieac, Doru V.; Cianci, Joanne; Jokinen, Jenny; Sowden, Mark P.; Galloway, Chad A.; Sparks, Charles E.

    2006-01-01

    We have previously reported a positive correlation between the expression of BHMT (betaine–homocysteine S-methyltransferase) and ApoB (apolipoprotein B) in rat hepatoma McA (McArdle RH-7777) cells [Sowden, Collins, Smith, Garrow, Sparks and Sparks (1999) Biochem. J. 341, 639–645]. To examine whether a similar relationship occurs in vivo, hepatic BHMT expression was induced by feeding rats a Met (L-methionine)-restricted betaine-containing diet, and parameters of ApoB metabolism were evaluated. There were no generalized metabolic abnormalities associated with Met restriction for 7 days, as evidenced by control levels of serum glucose, ketones, alanine aminotransferase and L-homocysteine levels. Betaine plus the Met restriction resulted in lower serum insulin and non-esterified fatty acid levels. Betaine plus Met restriction induced hepatic BHMT 4-fold and ApoB mRNA 3-fold compared with Met restriction alone. No changes in percentage of edited ApoB mRNA were observed on the test diets. An increase in liver ApoB mRNA correlated with an 82% and 46% increase in ApoB and triacylglycerol production respectively using in vivo Triton WR 1339. Increased secretion of VLDL (very-low-density lipoprotein) with Met restriction plus betaine was associated with a 45% reduction in liver triacylglycerol compared with control. Nuclear run-off assays established that transcription of both bhmt and apob genes was also increased in Met-restricted plus betaine diets. No change in ApoB mRNA stability was detected in BHMT-transfected McA cells. Hepatic ApoB and BHMT mRNA levels were also increased by 1.8- and 3-fold respectively by betaine supplementation of Met-replete diets. Since dietary betaine increased ApoB mRNA, VLDL ApoB and triacylglycerol production and decreased hepatic triacylglycerol, results suggest that induction of apob transcription may provide a potential mechanism for mobilizing hepatic triacylglycerol by increasing ApoB available for VLDL assembly and secretion

  17. Apolipoprotein E isoform-specific effects on lipoprotein receptor processing

    PubMed Central

    Bachmeier, Corbin; Shackleton, Ben; Ojo, Joseph; Paris, Daniel; Mullan, Michael; Crawford, Fiona

    2014-01-01

    Recent findings indicate an isoform-specific role for apolipoprotein E (apoE) in the elimination of beta-amyloid (Aβ) from the brain. ApoE is closely associated with various lipoprotein receptors, which contribute to Aβ brain removal via metabolic clearance or transit across the blood-brain barrier (BBB). These receptors are subject to ectodomain shedding at the cell surface, which alters endocytic transport and mitigates Aβ elimination. To further understand the manner in which apoE influences Aβ brain clearance, these studies investigated the effect of apoE on lipoprotein receptor shedding. Consistent with prior reports, we observed an increased shedding of the low density lipoprotein receptor (LDLR) and the LDLR-related protein 1 (LRP1) following Aβ exposure in human brain endothelial cells. When Aβ was co-treated with each apoE isoform, there was a reduction in Aβ-induced shedding with apoE2 and apoE3, while lipoprotein receptor shedding in the presence of apoE4 remained elevated. Likewise, intracranial administration of Aβ to apoE targeted replacement mice (expressing the human apoE isoforms) resulted in an isoform-dependent effect on lipoprotein receptor shedding in the brain (apoE4>apoE3>apoE2). Moreover, these results show a strong inverse correlation with our prior work in apoE transgenic mice in which apoE4 animals showed reduced Aβ clearance across the BBB compared to apoE3 animals. Based on these results, apoE4 appears less efficient than other apoE isoforms in regulating lipoprotein receptor shedding, which may explain the differential effects of these isoforms in removing Aβ from the brain. PMID:25015123

  18. Phosphatidylcholine biosynthesis and lipoprotein metabolism.

    PubMed

    Cole, Laura K; Vance, Jean E; Vance, Dennis E

    2012-05-01

    Phosphatidylcholine (PC) is the major phospholipid component of all plasma lipoprotein classes. PC is the only phospholipid which is currently known to be required for lipoprotein assembly and secretion. Impaired hepatic PC biosynthesis significantly reduces the levels of circulating very low density lipoproteins (VLDLs) and high density lipoproteins (HDLs). The reduction in plasma VLDLs is due in part to impaired hepatic secretion of VLDLs. Less PC within the hepatic secretory pathway results in nascent VLDL particles with reduced levels of PC. These particles are recognized as being defective and are degraded within the secretory system by an incompletely defined process that occurs in a post-endoplasmic reticulum compartment, consistent with degradation directed by the low-density lipoprotein receptor and/or autophagy. Moreover, VLDL particles are taken up more readily from the circulation when the PC content of the VLDLs is reduced, likely due to a preference of cell surface receptors and/or enzymes for lipoproteins that contain less PC. Impaired PC biosynthesis also reduces plasma HDLs by inhibiting hepatic HDL formation and by increasing HDL uptake from the circulation. These effects are mediated by elevated expression of ATP-binding cassette transporter A1 and hepatic scavenger receptor class B type 1, respectively. Hepatic PC availability has recently been linked to the progression of liver and heart disease. These findings demonstrate that hepatic PC biosynthesis can regulate the amount of circulating lipoproteins and suggest that hepatic PC biosynthesis may represent an important pharmaceutical target. This article is part of a Special Issue entitled Triglyceride Metabolism and Disease.

  19. Different Mechanisms Must Be Considered to Explain the Increase in Hippocampal Neural Precursor Cell Proliferation by Physical Activity

    PubMed Central

    Overall, Rupert W.; Walker, Tara L.; Fischer, Tim J.; Brandt, Moritz D.; Kempermann, Gerd

    2016-01-01

    The number of proliferating neural precursor cells in the adult hippocampus is strongly increased by physical activity. The mechanisms through which this behavioral stimulus induces cell proliferation, however, are not yet understood. In fact, even the mode of proliferation of the stem and progenitor cells is not exactly known. Evidence exists for several mechanisms including cell cycle shortening, reduced cell death and stem cell recruitment, but as yet no model can account for all observations. An appreciation of how the cells proliferate, however, is crucial to our ability to model the neurogenic process and predict its behavior in response to pro-neurogenic stimuli. In a recent study, we addressed modulation of the cell cycle length as one possible mode of regulation of precursor cell proliferation in running mice. Our results indicated that the observed increase in number of proliferating cells could not be explained through a shortening of the cell cycle. We must therefore consider other mechanisms by which physical activity leads to enhanced precursor cell proliferation. Here we review the evidence for and against several different hypotheses and discuss the implications for future research in the field. PMID:27536215

  20. Increased {beta}-amyloid levels in the choroid plexus following lead exposure and the involvement of low-density lipoprotein receptor protein-1

    SciTech Connect

    Behl, Mamta; Zhang Yanshu; Monnot, Andrew D.; Jiang, Wendy; Zheng Wei

    2009-10-15

    The choroid plexus, a barrier between the blood and cerebrospinal fluid (CSF), is known to accumulate lead (Pb) and also possibly function to maintain brain's homeostasis of A{beta}, an important peptide in the etiology of Alzheimer's disease. This study was designed to investigate if Pb exposure altered A{beta} levels at the blood-CSF barrier in the choroid plexus. Rats received ip injection of 27 mg Pb/kg. Twenty-four hours later, a FAM-labeled A{beta} (200 pmol) was infused into the lateral ventricle and the plexus tissues were removed to quantify A{beta} accumulation. Results revealed a significant increase in intracellular A{beta} accumulation in the Pb-exposed animals compared to controls (p < 0.001). When choroidal epithelial Z310 cells were treated with 10 {mu}M Pb for 24 h and 48 h, A{beta} (2 {mu}M in culture medium) accumulation was significantly increased by 1.5 fold (p < 0.05) and 1.8 fold (p < 0.05), respectively. To explore the mechanism, we examined the effect of Pb on low-density lipoprotein receptor protein-1 (LRP1), an intracellular A{beta} transport protein. Following acute Pb exposure with the aforementioned dose regimen, levels of LRP1 mRNA and proteins in the choroid plexus were decreased by 35% (p < 0.05) and 31.8% (p < 0.05), respectively, in comparison to those of controls. In Z310 cells exposed to 10 {mu}M Pb for 24 h and 48 h, a 33.1% and 33.4% decrease in the protein expression of LRP1 was observed (p < 0.05), respectively. Knocking down LRP1 resulted in even more substantial increases of cellular accumulation of A{beta}, from 31% in cells without knockdown to 72% in cells with LRP1 knockdown (p < 0.05). Taken together, these results suggest that the acute exposure to Pb results in an increased accumulation of intracellular A{beta} in the choroid plexus; the effect appears to be mediated, at least in part, via suppression of LRP1 production following Pb exposure.

  1. Acute Central Neuropeptide Y Administration Increases Food Intake but Does Not Affect Hepatic Very Low-Density Lipoprotein (Vldl) Production in Mice

    PubMed Central

    Havekes, Louis M.; Romijn, Johannes A.; Rensen, Patrick C. N.

    2013-01-01

    Objective Central neuropeptide Y (NPY) administration stimulates food intake in rodents. In addition, acute modulation of central NPY signaling increases hepatic production of very low-density lipoprotein (VLDL)-triglyceride (TG) in rats. As hypertriglyceridemia is an important risk factor for atherosclerosis, for which well-established mouse models are available, we set out to validate the effect of NPY on hepatic VLDL-TG production in mice, to ultimately investigate whether NPY, by increasing VLDL production, contributes to the development of atherosclerosis. Research Design and Methods Male C57Bl/6J mice received an intracerebroventricular (i.c.v.) cannula into the lateral (LV) or third (3V) ventricle of the brain. One week later, after a 4 h fast, the animals received an intravenous (i.v.) injection of Tran35S (100 µCi) followed by tyloxapol (500 mg/kg body weight; BW), enabling the study of hepatic VLDL-apoB and VLDL-TG production, respectively. Immediately after the i.v. injection of tyloxapol, the animals received either an i.c.v. injection of NPY (0.2 mg/kg BW in artificial cerebrospinal fluid; aCSF), synthetic Y1 receptor antagonist GR231118 (0.5 mg/kg BW in aCSF) or vehicle (aCSF), or an i.v. injection of PYY3–36 (0.5 mg/kg BW in PBS) or vehicle (PBS). Results Administration of NPY into both the LV and 3V increased food intake within one hour after injection (+164%, p<0.001 and +367%, p<0.001, respectively). NPY administration neither in the LV nor in the 3V affected hepatic VLDL-TG or VLDL-apoB production. Likewise, antagonizing central NPY signaling by either PYY3–36 or GR231118 administration did not affect hepatic VLDL production. Conclusion In mice, as opposed to rats, acute central administration of NPY increases food intake without affecting hepatic VLDL production. These results are of great significance when extrapolating findings on the central regulation of hepatic VLDL production between species. PMID:23460782

  2. Lipoprotein sorting in bacteria.

    PubMed

    Okuda, Suguru; Tokuda, Hajime

    2011-01-01

    Bacterial lipoproteins are synthesized as precursors in the cytoplasm and processed into mature forms on the cytoplasmic membrane. A lipid moiety attached to the N terminus anchors these proteins to the membrane surface. Many bacteria are predicted to express more than 100 lipoproteins, which play diverse functions on the cell surface. The Lol system, composed of five proteins, catalyzes the localization of Escherichia coli lipoproteins to the outer membrane. Some lipoproteins play vital roles in the sorting of other lipoproteins, lipopolysaccharides, and β-barrel proteins to the outer membrane. On the basis of results from biochemical, genetic, and structural studies, we discuss the biogenesis of lipoproteins in bacteria, their importance in cellular functions, and the molecular mechanisms underlying efficient sorting of hydrophobic lipoproteins to the outer membrane through the hydrophilic periplasm. PMID:21663440

  3. A germ-line-selective advantage rather than an increased mutation rate can explain some unexpectedly common human disease mutations.

    PubMed

    Choi, Soo-Kyung; Yoon, Song-Ro; Calabrese, Peter; Arnheim, Norman

    2008-07-22

    Two nucleotide substitutions in the human FGFR2 gene (C755G or C758G) are responsible for virtually all sporadic cases of Apert syndrome. This condition is 100-1,000 times more common than genomic mutation frequency data predict. Here, we report on the C758G de novo Apert syndrome mutation. Using data on older donors, we show that spontaneous mutations are not uniformly distributed throughout normal testes. Instead, we find foci where C758G mutation frequencies are 3-4 orders of magnitude greater than the remaining tissue. We conclude this nucleotide site is not a mutation hot spot even after accounting for possible Luria-Delbruck "mutation jackpots." An alternative explanation for such foci involving positive selection acting on adult self-renewing Ap spermatogonia experiencing the rare mutation could not be rejected. Further, the two youngest individuals studied (19 and 23 years old) had lower mutation frequencies and smaller foci at both mutation sites compared with the older individuals. This implies that the mutation frequency of foci increases as adults age, and thus selection could explain the paternal age effect for Apert syndrome and other genetic conditions. Our results, now including the analysis of two mutations in the same set of testes, suggest that positive selection can increase the relative frequency of premeiotic germ cells carrying such mutations, although individuals who inherit them have reduced fitness. In addition, we compared the anatomical distribution of C758G mutation foci with both new and old data on the C755G mutation in the same testis and found their positions were not correlated with one another. PMID:18632557

  4. Lipoprotein-inspired nanoparticles for cancer theranostics.

    PubMed

    Ng, Kenneth K; Lovell, Jonathan F; Zheng, Gang

    2011-10-18

    Over hundreds of millions of years, animals have evolved endogenous lipoprotein nanoparticles for shuttling hydrophobic molecules to different parts of the body. In the last 70 years, scientists have developed an understanding of lipoprotein function, often in relationship to lipid transport and heart disease. Such biocompatible, lipid-protein complexes are also ideal for loading and delivering cancer therapeutic and diagnostic agents, which means that lipoprotein and lipoprotein-inspired nanoparticles also offer opportunities for cancer theranostics. By mimicking the endogenous shape and structure of lipoproteins, the nanocarrier can remain in circulation for an extended period of time, while largely evading the reticuloendothelial cells in the body's defenses. The small size (less than 30 nm) of the low-density (LDL) and high-density (HDL) classes of lipoproteins allows them to maneuver deeply into tumors. Furthermore, lipoproteins can be targeted to their endogenous receptors, when those are implicated in cancer, or to other cancer receptors. In this Account, we review the field of lipoprotein-inspired nanoparticles related to the delivery of cancer imaging and therapy agents. LDL has innate cancer targeting potential and has been used to incorporate diverse hydrophobic molecules and deliver them to tumors. Nature's method of rerouting LDL in atherosclerosis provides a strategy to extend the cancer targeting potential of lipoproteins beyond its narrow purview. Although LDL has shown promise as a drug nanocarrier for cancer imaging and therapy, increasing evidence indicates that HDL, the smallest lipoprotein, may also be of use for drug targeting and uptake into cancer cells. We also discuss how synthetic HDL-like nanoparticles, which do not include human or recombinant proteins, can deliver molecules directly to the cytoplasm of certain cancer cells, effectively bypassing the endosomal compartment. This strategy could allow HDL-like nanoparticles to be used to

  5. Central Nervous System Lipoproteins

    PubMed Central

    Mahley, Robert W.

    2016-01-01

    ApoE on high-density lipoproteins is primarily responsible for lipid transport and cholesterol homeostasis in the central nervous system (CNS). Normally produced mostly by astrocytes, apoE is also produced under neuropathologic conditions by neurons. ApoE on high-density lipoproteins is critical in redistributing cholesterol and phospholipids for membrane repair and remodeling. The 3 main structural isoforms differ in their effectiveness. Unlike apoE2 and apoE3, apoE4 has markedly altered CNS metabolism, is associated with Alzheimer disease and other neurodegenerative disorders, and is expressed at lower levels in brain and cerebrospinal fluid. ApoE4-expressing cultured astrocytes and neurons have reduced cholesterol and phospholipid secretion, decreased lipid-binding capacity, and increased intracellular degradation. Two structural features are responsible for apoE4 dysfunction: domain interaction, in which arginine-61 interacts ionically with glutamic acid-255, and a less stable conformation than apoE3 and apoE2. Blocking domain interaction by gene targeting (replacing arginine-61 with threonine) or by small-molecule structure correctors increases CNS apoE4 levels and lipid-binding capacity and decreases intracellular degradation. Small molecules (drugs) that disrupt domain interaction, so-called structure correctors, could prevent the apoE4-associated neuropathology by blocking the formation of neurotoxic fragments. Understanding how to modulate CNS cholesterol transport and metabolism is providing important insights into CNS health and disease. PMID:27174096

  6. Onion peel extract increases hepatic low-density lipoprotein receptor and ATP-binding cassette transporter A1 messenger RNA expressions in Sprague-Dawley rats fed a high-fat diet.

    PubMed

    Lee, Seung-Min; Moon, Jiyoung; Do, Hyun Ju; Chung, Ji Hyung; Lee, Kyung-Hea; Cha, Yong-Jun; Shin, Min-Jeong

    2012-03-01

    In the present study, we hypothesized that onion peel extract (OPE) alters hepatic gene expression to improve blood cholesterol profiles. To investigate the effect of OPE to test our hypothesis, Sprague-Dawley rats were fed ad libitum for 8 weeks with the control, high-fat diet (HFD) or the high-fat diet with 0.2% OPE supplementations (HFD + OPE). Messenger RNA (mRNA) levels of genes in cholesterol metabolism and fatty acid metabolism were examined by semiquantitative reverse transcriptase polymerase chain reaction. The OPE in HFD reverted high fat-induced reduction in mRNA levels of sterol regulatory element-binding protein-2, low-density lipoprotein receptor, and hydroxyl-3-methylglutaryl coenzyme reductase genes in the liver comparable with the levels of the control group. Onion peel extract slightly increased stearoyl-coA desaturase 1 (SCD-1) expression compared with high-fat feeding. However, sterol regulatory element-binding protein-1c and fatty acid synthase were not affected by high-fat or OPE feeding. Onion peel extract also enhanced expression of ATP-binding cassette transporter A1, peroxisome proliferator-activated receptor γ2 and scavenger receptor class B type I genes when compared with high-fat feeding. However, OPE did not influence high fat-triggered changes in apolipoprotein A1 mRNA levels and liver X receptor α were not affected by either high-fat or OPE feeding. Our results suggest that OPE changes the expression of genes associated with cholesterol metabolism in favor of lowering blood low-density lipoprotein cholesterol and enhancing high-density lipoprotein cholesterol through increasing mRNA abundance of low-density lipoprotein receptor and ATP-binding cassette transporter A1 genes. PMID:22464808

  7. Lipoprotein Metabolism Indicators Improve Cardiovascular Risk Prediction

    PubMed Central

    van Schalkwijk, Daniël B.; de Graaf, Albert A.; Tsivtsivadze, Evgeni; Parnell, Laurence D.; van der Werff-van der Vat, Bianca J. C.; van Ommen, Ben; van der Greef, Jan; Ordovás, José M.

    2014-01-01

    Background Cardiovascular disease risk increases when lipoprotein metabolism is dysfunctional. We have developed a computational model able to derive indicators of lipoprotein production, lipolysis, and uptake processes from a single lipoprotein profile measurement. This is the first study to investigate whether lipoprotein metabolism indicators can improve cardiovascular risk prediction and therapy management. Methods and Results We calculated lipoprotein metabolism indicators for 1981 subjects (145 cases, 1836 controls) from the Framingham Heart Study offspring cohort in which NMR lipoprotein profiles were measured. We applied a statistical learning algorithm using a support vector machine to select conventional risk factors and lipoprotein metabolism indicators that contributed to predicting risk for general cardiovascular disease. Risk prediction was quantified by the change in the Area-Under-the-ROC-Curve (ΔAUC) and by risk reclassification (Net Reclassification Improvement (NRI) and Integrated Discrimination Improvement (IDI)). Two VLDL lipoprotein metabolism indicators (VLDLE and VLDLH) improved cardiovascular risk prediction. We added these indicators to a multivariate model with the best performing conventional risk markers. Our method significantly improved both CVD prediction and risk reclassification. Conclusions Two calculated VLDL metabolism indicators significantly improved cardiovascular risk prediction. These indicators may help to reduce prescription of unnecessary cholesterol-lowering medication, reducing costs and possible side-effects. For clinical application, further validation is required. PMID:24667559

  8. Black-white differences in serum lipoproteins during sexual maturation: the Bogalusa Heart Study.

    PubMed

    Freedman, D S; Srinivasan, S R; Webber, L S; Burke, G L; Berenson, G S

    1987-01-01

    Serum lipid, lipoprotein cholesterol, and apolipoprotein (A-I and B) levels were compared between 940 black and 1710 white children who were between the ages of 5 and 17 years. Stratification, matching, and analysis of covariance were used to determine whether black-white differences in levels of serum triglycerides (TG), very low- (VLDL-C), and high- (HDL-C) density lipoprotein cholesterol, and apolipoprotein A-I (apoA-I) could be explained by differences in sexual maturation, obesity, cigarette smoking, alcohol intake, oral contraceptive use, insulin, and glucose. Independently of these covariates, blacks had elevated levels of HDL-C and apoA-I (males only), and whites had increased levels of TG and VLDL-C. All differences were statistically significant at the 0.001 level. In addition, racial contrasts tended to be greater in sexually mature, as compared with prepubertal, males; a similar divergence of levels with sexual maturation was not observed in females. HDL-C levels in white males were partially explained (R2 = 0.12) by sexual maturation, insulin, and obesity; apoA-I levels were associated with only sexual maturation and insulin. Racial differences in levels of serum lipids, lipoprotein cholesterol, and apoA-I in early life, therefore, exist independently of differences in several lipoprotein determinants. Since the initial stages of atherosclerosis begin in the young, these black-white lipoprotein contrasts may influence differences in adult coronary heart disease rates between the races.

  9. Can increased nitrogen uptake at elevated CO2 be explained by an hypothesis of optimal root function?

    NASA Astrophysics Data System (ADS)

    McMurtrie, R. E.; Norby, R. J.; Näsholm, T.; Iversen, C.; Dewar, R. C.; Medlyn, B. E.

    2011-12-01

    Forest free-air CO2 enrichment (FACE) experiments have shown that annual nitrogen (N) uptake increases when trees are grown at elevated CO2 (eCO2) and that increased N uptake is critical for a sustained growth response to eCO2. Processes contributing to increased N uptake at eCO2 may include: accelerated decomposition of soil organic matter due to enhanced root carbon (C) exudation (so-called rhizosphere priming); increased C allocation to fine roots and increased root production at depth, both of which enhance N acquisition; differences in soil N availability with depth; changes in the abundance of N in chemical forms with differing mobility in soil; and reduced N concentrations, reduced maintenance respiration rates, and increased longevities of deeper roots. These processes have been synthesised in a model of annual N uptake in relation to the spatial distribution of roots. We hypothesise that fine roots are distributed spatially in order to maximise annual N uptake. The optimisation hypothesis leads to equations for the optimal vertical distribution of root biomass in relation to the distribution of available soil N and for maximum annual N uptake. We show how maximum N uptake and rooting depth are related to total root mass, and compare the optimal solution with an empirical function that has been fitted to root-distribution data from all terrestrial biomes. Finally, the model is used to explore the consequences of rhizosphere priming at eCO2 as observed at the Duke forest FACE experiment (Drake et al. 2011, Ecology Letters 14: 349-357) and of increasing N limitation over time as observed at the Oak Ridge FACE experiment (Norby et al. 2010, Proc. Nat. Acad. Sci. USA 107: 19368-19373).

  10. Atherogenicity of triglyceride-rich lipoproteins.

    PubMed

    Krauss, R M

    1998-02-26

    There is increasing evidence that alterations in metabolism of triglyceride-rich lipoproteins are of importance in the pathogenesis of atherosclerosis and its clinical consequences. Particles with the characteristics of triglyceride-rich lipoprotein remnants have been related to the extent and severity of atherosclerosis in humans and in animal models. These particles can be identified using ultracentrifugal procedures as small, very low-density lipoprotein (VLDL) and intermediate-density lipoprotein (IDL) with Svedberg flotation rates (Sf) of 12-60. Postprandial triglyceride levels also have been related to risk of coronary artery disease, consistent with a pathologic role for remnant lipoproteins. In studies in which measurements of lipoprotein subfractions have been carried out, levels of IDL have been more predictive than low-density lipoprotein (LDL) of atherosclerosis progression as assessed by coronary artery angiography or carotid artery ultrasonography. These findings suggest that a considerable portion of the coronary disease risk attributed to LDL may be accounted for by the IDL particles included in standard LDL measurements. Other metabolic changes associated with increased levels of plasma triglyceride may also adversely affect cardiovascular disease risk. These include reductions in HDL-cholesterol and apoprotein A1, increased levels of small dense LDL particles, redistribution of apoC-III from HDL to apoB-containing lipoproteins, diminished insulin sensitivity, and procoagulant changes, including increased levels of the fibrinolysis inhibitor, plasminogen-activator inhibitor-1 (PAI-1). A predominance of small dense LDL (subclass pattern B) is a discrete marker for this cluster of interrelated abnormalities and is found in 40-50% of patients with coronary artery disease. Therapeutic interventions with favorable effects on components of this dysmetabolic profile appear to be of value in decreasing atherosclerosis risk in a substantial proportion of

  11. Explaining the increasing heritability of cognitive ability across development: a meta-analysis of longitudinal twin and adoption studies.

    PubMed

    Briley, Daniel A; Tucker-Drob, Elliot M

    2013-09-01

    Genes account for increasing proportions of variation in cognitive ability across development, but the mechanisms underlying these increases remain unclear. We conducted a meta-analysis of longitudinal behavioral genetic studies spanning infancy to adolescence. We identified relevant data from 16 articles with 11 unique samples containing a total of 11,500 twin and sibling pairs who were all reared together and measured at least twice between the ages of 6 months and 18 years. Longitudinal behavioral genetic models were used to estimate the extent to which early genetic influences on cognition were amplified over time and the extent to which innovative genetic influences arose with time. Results indicated that in early childhood, innovative genetic influences predominate but that innovation quickly diminishes, and amplified influences account for increasing heritability following age 8 years.

  12. Mass incarceration can explain population increases in TB and multidrug-resistant TB in European and central Asian countries.

    PubMed

    Stuckler, David; Basu, Sanjay; McKee, Martin; King, Lawrence

    2008-09-01

    Several microlevel studies have pinpointed prisons as an important site for tuberculosis (TB) and multidrug-resistant TB in European and central Asian countries. To date, no comparative analyses have examined whether rises in incarceration rates can account for puzzling differences in TB trends among overall populations. Using longitudinal TB and cross-sectional multidrug-resistant TB data for 26 eastern European and central Asian countries, we examined whether and to what degree increases in incarceration account for differences in population TB and multidrug-resistant TB burdens. We find that each percentage point increase in incarceration rates relates to an increased TB incidence of 0.34% (population attributable risk, 95% C.I.: 0.10-0.58%, P < 0.01), after controlling for TB infrastructure; HIV prevalence; and several surveillance, economic, demographic, and political indicators. Net increases in incarceration account for a 20.5% increase in TB incidence or nearly three-fifths of the average total increase in TB incidence in the countries studied from 1991 to 2002. Although the number of prisoners is a significant determinant of differences in TB incidence and multidrug-resistant TB prevalence among countries, the rate of prison growth is a larger determinant of these outcomes, and its effect is exacerbated but not confounded by HIV. Differences in incarceration rates are a major determinant of differences in population TB outcomes among eastern European and central Asian countries, and treatment expansion alone does not appear to resolve the effect of mass incarceration on TB incidence.

  13. Familial lipoprotein lipase deficiency

    MedlinePlus

    ... and white-colored blood vessels in the retinas Pancreatitis that keeps returning Yellowing of the eyes and ... discuss your diet needs with a registered dietitian. Pancreatitis that is related to lipoprotein lipase deficiency responds ...

  14. Increased transmissibility explains the third wave of infection by the 2009 H1N1 pandemic virus in England

    PubMed Central

    Dorigatti, Ilaria; Cauchemez, Simon; Ferguson, Neil M.

    2013-01-01

    In the 2009 H1N1 pandemic, the United Kingdom experienced two waves of infection, the first in the late spring and the second in the autumn. Given the low level of susceptibility to the pandemic virus expected to be remaining in the population after the second wave, it was a surprise that a substantial third epidemic occurred in the UK population between November 2010 and February 2011, despite no evidence for any significant antigenic evolution of the pandemic virus. Here, we use a mathematical model of influenza transmission embedded within a Bayesian synthesis inferential framework to jointly analyze syndromic, virological, and serological surveillance data collected in England in 2009–2011 and thereby assess epidemiological mechanisms which might have generated the third wave. We find that substantially increased transmissibility of the H1N1pdm09 virus is required to reproduce the third wave, suggesting that the virus evolved and increased fitness in the human host by the end of 2010, or that the very cold weather experienced in the United Kingdom at that time enhanced transmission rates. We also find some evidence that the preexisting heterologous immunity which reduced attack rates in adults during 2009 had substantially decayed by the winter of 2010, thus increasing the susceptibility of the adult population to infection. Finally, our analysis suggests that a pandemic vaccination campaign targeting adults and school-age children could have mitigated or prevented the third wave even at moderate levels of coverage. PMID:23882078

  15. Thermal stability of human plasma electronegative low-density lipoprotein: A paradoxical behavior of low-density lipoprotein aggregation.

    PubMed

    Rull, Anna; Jayaraman, Shobini; Gantz, Donald L; Rivas-Urbina, Andrea; Pérez-Cuellar, Montserrat; Ordóñez-Llanos, Jordi; Sánchez-Quesada, Jose Luis; Gursky, Olga

    2016-09-01

    Low-density lipoprotein (LDL) aggregation is central in triggering atherogenesis. A minor fraction of electronegative plasma LDL, termed LDL(-), plays a special role in atherogenesis. To better understand this role, we analyzed the kinetics of aggregation, fusion and disintegration of human LDL and its fractions, LDL(+) and LDL(-). Thermal denaturation of LDL was monitored by spectroscopy and electron microscopy. Initially, LDL(-) aggregated and fused faster than LDL(+), but later the order reversed. Most LDL(+) disintegrated and precipitated upon prolonged heating. In contrast, LDL(-) partially retained lipoprotein morphology and formed soluble aggregates. Biochemical analysis of all fractions showed no significant degradation of major lipids, mild phospholipid oxidation, and an increase in non-esterified fatty acid (NEFA) upon thermal denaturation. The main baseline difference between LDL subfractions was higher content of NEFA in LDL(-). Since NEFA promote lipoprotein fusion, increased NEFA content can explain rapid initial aggregation and fusion of LDL(-) but not its resistance to extensive disintegration. Partial hydrolysis of apoB upon heating was similar in LDL subfractions, suggesting that minor proteins importantly modulate LDL disintegration. Unlike LDL(+), LDL(-) contains small amounts of apoA-I and apoJ. Addition of exogenous apoA-I to LDL(+) hampered lipoprotein aggregation, fusion and precipitation, while depletion of endogenous apoJ had an opposite effect. Therefore, the initial rapid aggregation of LDL(-) is apparently counterbalanced by the stabilizing effects of minor proteins such as apoA-I and apoJ. These results help identify key determinants for LDL aggregation, fusion and coalescence into lipid droplets in vivo. PMID:27233433

  16. Enhanced arsenate reduction by a CDC25-like tyrosine phosphatase explains increased phytochelatin accumulation in arsenate-tolerant Holcus lanatus.

    PubMed

    Bleeker, Petra M; Hakvoort, Henk W J; Bliek, Mattijs; Souer, Erik; Schat, Henk

    2006-03-01

    Decreased arsenate [As(V)] uptake is the major mechanism of naturally selected As(V) hypertolerance in plants. However, As(V)-hypertolerant ecotypes also show enhanced rates of phytochelatin (PC) accumulation, suggesting that improved sequestration might additionally contribute to the hypertolerance phenotype. Here, we show that enhanced PC-based sequestration in As(V)-hypertolerant Holcus lanatus is not due to an enhanced capacity for PC synthesis as such, but to increased As(V) reductase activity. Vacuolar transport of arsenite-thiol complexes was equal in both ecotypes. Based on homology with the yeast As(V) reductase, Acr2p, we identified a Cdc25-like plant candidate, HlAsr, and confirmed the As(V) reductase activity of both HlAsr and the homologous protein from Arabidopsis thaliana. The gene appeared to be As(V)-inducible and its expression was enhanced in the As(V)-hypertolerant H. lanatus ecotype, compared with the non-tolerant ecotype. Homologous ectopic overexpression of the AtASR cDNA in A. thaliana produced a dual phenotype. It improved tolerance to mildly toxic levels of As(V) exposure, but caused hypersensitivity to more toxic levels. Arabidopsis asr T-DNA mutants showed increased As(V) sensitivity at low exposure levels and enhanced arsenic retention in the root. It is argued that, next to decreased uptake, enhanced expression of HlASR might act as an additional determinant of As(V) hypertolerance and As transport in H. lanatus.

  17. Insulin response dysregulation explains abnormal fat storage and increased risk of diabetes mellitus type 2 in Cohen Syndrome.

    PubMed

    Limoge, Floriane; Faivre, Laurence; Gautier, Thomas; Petit, Jean-Michel; Gautier, Elodie; Masson, David; Jego, Gaëtan; El Chehadeh-Djebbar, Salima; Marle, Nathalie; Carmignac, Virginie; Deckert, Valérie; Brindisi, Marie-Claude; Edery, Patrick; Ghoumid, Jamal; Blair, Edward; Lagrost, Laurent; Thauvin-Robinet, Christel; Duplomb, Laurence

    2015-12-01

    Cohen Syndrome (CS) is a rare autosomal recessive disorder, with defective glycosylation secondary to mutations in the VPS13B gene, which encodes a protein of the Golgi apparatus. Besides congenital neutropenia, retinopathy and intellectual deficiency, CS patients are faced with truncal obesity. Metabolism investigations showed abnormal glucose tolerance tests and low HDL values in some patients, and these could be risk factors for the development of diabetes mellitus and/or cardiovascular complications. To understand the mechanisms involved in CS fat storage, we used two models of adipogenesis differentiation: (i) SGBS pre-adipocytes with VPS13B invalidation thanks to siRNA delivery and (ii) CS primary fibroblasts. In both models, VPS13B invalidation led to accelerated differentiation into fat cells, which was confirmed by the earlier and increased expression of specific adipogenic genes, consequent to the increased response of cells to insulin stimulation. At the end of the differentiation protocol, these fat cells exhibited decreased AKT2 phosphorylation after insulin stimulation, which suggests insulin resistance. This study, in association with the in-depth analysis of the metabolic status of the patients, thus allowed us to recommend appropriate nutritional education to prevent the occurrence of diabetes mellitus and to put forward recommendations for the follow-up of CS patients, in particular with regard to the development of metabolic syndrome. We also suggest replacing the term obesity by abnormal fat distribution in CS, which should reduce the number of inappropriate diagnoses in patients who are referred only on the basis of intellectual deficiency associated with obesity. PMID:26358774

  18. Insulin response dysregulation explains abnormal fat storage and increased risk of diabetes mellitus type 2 in Cohen Syndrome.

    PubMed

    Limoge, Floriane; Faivre, Laurence; Gautier, Thomas; Petit, Jean-Michel; Gautier, Elodie; Masson, David; Jego, Gaëtan; El Chehadeh-Djebbar, Salima; Marle, Nathalie; Carmignac, Virginie; Deckert, Valérie; Brindisi, Marie-Claude; Edery, Patrick; Ghoumid, Jamal; Blair, Edward; Lagrost, Laurent; Thauvin-Robinet, Christel; Duplomb, Laurence

    2015-12-01

    Cohen Syndrome (CS) is a rare autosomal recessive disorder, with defective glycosylation secondary to mutations in the VPS13B gene, which encodes a protein of the Golgi apparatus. Besides congenital neutropenia, retinopathy and intellectual deficiency, CS patients are faced with truncal obesity. Metabolism investigations showed abnormal glucose tolerance tests and low HDL values in some patients, and these could be risk factors for the development of diabetes mellitus and/or cardiovascular complications. To understand the mechanisms involved in CS fat storage, we used two models of adipogenesis differentiation: (i) SGBS pre-adipocytes with VPS13B invalidation thanks to siRNA delivery and (ii) CS primary fibroblasts. In both models, VPS13B invalidation led to accelerated differentiation into fat cells, which was confirmed by the earlier and increased expression of specific adipogenic genes, consequent to the increased response of cells to insulin stimulation. At the end of the differentiation protocol, these fat cells exhibited decreased AKT2 phosphorylation after insulin stimulation, which suggests insulin resistance. This study, in association with the in-depth analysis of the metabolic status of the patients, thus allowed us to recommend appropriate nutritional education to prevent the occurrence of diabetes mellitus and to put forward recommendations for the follow-up of CS patients, in particular with regard to the development of metabolic syndrome. We also suggest replacing the term obesity by abnormal fat distribution in CS, which should reduce the number of inappropriate diagnoses in patients who are referred only on the basis of intellectual deficiency associated with obesity.

  19. Metabolic abnormalities: triglyceride and low-density lipoprotein.

    PubMed

    Krauss, Ronald M; Siri, Patty W

    2004-06-01

    Increased plasma triglyceride and reduced high-density lipoprotein cholesterol are key features of the metabolic syndrome. Although elevated low-density lipoprotein cholesterol is not an integral characteristic of this syndrome, there is commonly an increase in the proportion of small, dense low-density lipoprotein particles. Together, these abnormalities constitute the atherogenic dyslipidemia of the metabolic syndrome. This article reviews the pathophysiology of altered triglyceride and low-density lipoprotein metabolism in the metabolic syndrome, outlines the relationship of these lipoprotein abnormalities to increased risk of coronary heart disease,and highlights the application of this information to clinical practice. The role of reduced high-density lipoprotein in the metabolic syndrome is discussed elsewhere in this issue.

  20. Increased conspicuousness can explain the match between visual sensitivities and blue plumage colours in fairy-wrens.

    PubMed

    Delhey, Kaspar; Hall, Michelle; Kingma, Sjouke A; Peters, Anne

    2013-01-01

    Colour signals are expected to match visual sensitivities of intended receivers. In birds, evolutionary shifts from violet-sensitive (V-type) to ultraviolet-sensitive (U-type) vision have been linked to increased prevalence of colours rich in shortwave reflectance (ultraviolet/blue), presumably due to better perception of such colours by U-type vision. Here we provide the first test of this widespread idea using fairy-wrens and allies (Family Maluridae) as a model, a family where shifts in visual sensitivities from V- to U-type eyes are associated with male nuptial plumage rich in ultraviolet/blue colours. Using psychophysical visual models, we compared the performance of both types of visual systems at two tasks: (i) detecting contrast between male plumage colours and natural backgrounds, and (ii) perceiving intraspecific chromatic variation in male plumage. While U-type outperforms V-type vision at both tasks, the crucial test here is whether U-type vision performs better at detecting and discriminating ultraviolet/blue colours when compared with other colours. This was true for detecting contrast between plumage colours and natural backgrounds (i), but not for discriminating intraspecific variability (ii). Our data indicate that selection to maximize conspicuousness to conspecifics may have led to the correlation between ultraviolet/blue colours and U-type vision in this clade of birds.

  1. Membrane physical properties do not explain increased cyclic AMP production in hepatocytes from rats fed menhaden oil.

    PubMed

    Bizeau, M E; Hazel, J R

    2000-06-01

    To study the effect of altering plasma membrane fatty acid composition on the glucagon signal transduction pathway, cAMP accumulation was measured in hepatocytes from rats fed diets containing either menhaden oil (MO) or coconut oil (CO). Hepatocytes from MO-fed animals produced significantly more cAMP in response to glucagon and forskolin compared to CO-fed animals. Glucagon receptor number and affinity were similar in MO- and CO-fed rats. Liver plasma membranes from MO-fed animals were enriched in long-chain n-3 fatty acids and contained significantly lower amounts of saturated C10-C16 and 18:1n-9 than CO-fed animals. Membrane physical properties were examined using both Fourier transform infrared spectroscopy (FTIR) and the fluorescent probe 1,6-diphenyl-1,3,5-hexatriene (DPH). FTIR analysis revealed that below 34 degrees C, CO membranes were more ordered than MO membranes. However, as assay temperature approached 37 degrees C, MO and CO membranes became similarly ordered. DPH polarization values indicated no differences in membrane order at 37 degrees C, whereas membrane order was decreased in CO-fed animals at 25 degrees C. These data indicate the importance of assay temperature in assessing the influence of membrane physical properties on the activity of signal transduction pathways. Whereas increased signal transduction activity has been correlated to reduced membrane order in MO-fed animals, these data indicate that at physiological temperatures membrane order did not vary between groups. Enhanced cAMP accumulation in response to forskolin indicates that adenylate cyclase activity or content may be elevated in MO- vs. CO-fed rats. Enhanced adenylate cyclase activity may result, in part, from changes in specific fatty acids in hepatocyte plasma membranes without demonstrable changes in membrane physical properties.

  2. High-Density Lipoprotein, Lecithin: Cholesterol Acyltransferase, and Atherosclerosis.

    PubMed

    Ossoli, Alice; Pavanello, Chiara; Calabresi, Laura

    2016-06-01

    Epidemiological data clearly show the existence of a strong inverse correlation between plasma high-density lipoprotein cholesterol (HDL-C) concentrations and the incidence of coronary heart disease. This relation is explained by a number of atheroprotective properties of HDL, first of all the ability to promote macrophage cholesterol transport. HDL are highly heterogeneous and are continuously remodeled in plasma thanks to the action of a number of proteins and enzymes. Among them, lecithin:cholesterol acyltransferase (LCAT) plays a crucial role, being the only enzyme able to esterify cholesterol within lipoproteins. LCAT is synthetized by the liver and it has been thought to play a major role in reverse cholesterol transport and in atheroprotection. However, data from animal studies, as well as human studies, have shown contradictory results. Increased LCAT concentrations are associated with increased HDL-C levels but not necessarily with atheroprotection. On the other side, decreased LCAT concentration and activity are associated with decreased HDL-C levels but not with increased atherosclerosis. These contradictory results confirm that HDL-C levels per se do not represent the functionality of the HDL system. PMID:27302716

  3. High-Density Lipoprotein, Lecithin: Cholesterol Acyltransferase, and Atherosclerosis

    PubMed Central

    Ossoli, Alice; Pavanello, Chiara

    2016-01-01

    Epidemiological data clearly show the existence of a strong inverse correlation between plasma high-density lipoprotein cholesterol (HDL-C) concentrations and the incidence of coronary heart disease. This relation is explained by a number of atheroprotective properties of HDL, first of all the ability to promote macrophage cholesterol transport. HDL are highly heterogeneous and are continuously remodeled in plasma thanks to the action of a number of proteins and enzymes. Among them, lecithin:cholesterol acyltransferase (LCAT) plays a crucial role, being the only enzyme able to esterify cholesterol within lipoproteins. LCAT is synthetized by the liver and it has been thought to play a major role in reverse cholesterol transport and in atheroprotection. However, data from animal studies, as well as human studies, have shown contradictory results. Increased LCAT concentrations are associated with increased HDL-C levels but not necessarily with atheroprotection. On the other side, decreased LCAT concentration and activity are associated with decreased HDL-C levels but not with increased atherosclerosis. These contradictory results confirm that HDL-C levels per se do not represent the functionality of the HDL system. PMID:27302716

  4. Low levels of high density lipoproteins in Turks, a population with elevated hepatic lipase. High density lipoprotein characterization and gender-specific effects of apolipoprotein e genotype.

    PubMed

    Mahley, R W; Pépin, J; Palaoğlu, K E; Malloy, M J; Kane, J P; Bersot, T P

    2000-08-01

    Turks have strikingly low levels of high density lipoprotein cholesterol (HDL-C) (10-15 mg/dL lower than those of Americans or Western Europeans) associated with elevated hepatic lipase mass and activity. Here we report that Turks have low levels of high density lipoprotein subclass 2 (HDL(2)), apoA-I-containing lipoproteins (LpA-I), and pre-beta-1 HDL and increased levels of HDL(3) and LpA-I/A-II particles (potentially an atherogenic lipid profile). The frequency distributions of HDL-C and LpA-I levels were skewed toward bimodality in Turkish women but were unimodal in Turkish men. The apoE genotype affected HDL-C and LpA-I levels in women only. In women, but not men, the varepsilon2 allele was strikingly more prevalent in those with the highest levels of HDL-C and LpA-I than in those with the lowest levels. The higher prevalence of the epsilon2 allele in these subgroups of women was not explained by plasma triglyceride levels, total cholesterol levels, age, or body mass index. The modulating effects of apoE isoforms on lipolytic hydrolysis of HDL by hepatic lipase (apoE2 preventing efficient hydrolysis) or on lipoprotein receptor binding (apoE2 interacting poorly with the low density lipoprotein receptors) may account for differences in HDL-C levels in Turkish women (the epsilon2 allele being associated with higher HDL levels). In Turkish men, who have substantially higher levels of hepatic lipase activity than women, the modulating effect of apoE may be overwhelmed. The gender-specific impact of the apoE genotype on HDL-C and LpA-I levels in association with elevated levels of hepatic lipase provides new insights into the metabolism of HDL.

  5. Lipoprotein electrostatic properties regulate hepatic lipase association and activity.

    PubMed

    Boucher, Jonathan G; Nguyen, Trang; Sparks, Daniel L

    2007-12-01

    The effect of lipoprotein electrostatic properties on the catalytic regulation of hepatic lipase (HL) was investigated. Enrichment of serum or very low density lipoprotein (VLDL) with oleic acid increased lipoprotein negative charge and stimulated lipid hydrolysis by HL. Similarly, enrichment of serum or isolated lipoproteins with the anionic phospholipids phosphatidylinositol (PI), phosphatidic acid, or phosphatidylserine also increased lipoprotein negative charge and stimulated hydrolysis by HL. Anionic lipids had a small effect on phospholipid hydrolysis, but significantly stimulated triacylglyceride (TG) hydrolysis. High density lipoprotein (HDL) charge appears to have a specific effect on lipolysis. Enrichment of HDL with PI significantly stimulated VLDL-TG hydrolysis by HL. To determine whether HDL charge affects the association of HL with HDL and VLDL, HL-lipoprotein interactions were probed immunochemically. Under normal circumstances, HL associates with HDL particles, and only small amounts bind to VLDL. PI enrichment of HDL blocked the binding of HL with HDL. These data indicate that increasing the negative charge of HDL stimulates VLDL-TG hydrolysis by reducing the association of HL with HDL. Therefore, HDL controls the hydrolysis of VLDL by affecting the interlipoprotein association of HL. Lipoprotein electrostatic properties regulate lipase association and are an important regulator of the binding and activity of lipolytic enzymes.

  6. Lipoprotein marker for hypertriglyceridemia

    DOEpatents

    Cubicciotti, Roger S.; Karu, Alexander E.; Krauss, Ronald M.

    1986-01-01

    Methods and compositions are provided for the detection of a particular low density lipoprotein which has been found to be a marker for patients suffering from type IV hypertriglyceridemia. A monoclonal antibody capable of specifically binding to a characteristic epitopic site on this LDL subspecies can be utilized in a wide variety of immunoassays. Hybridoma cell line SPL.IVA5A1 was deposited at the American Type Culture Collection on Mar. 29, 1984, and granted accession no. HB 8535.

  7. Lipoproteins modulate expression of the macrophage scavenger receptor.

    PubMed Central

    Han, J.; Nicholson, A. C.

    1998-01-01

    Macrophage scavenger receptors (MSR) bind and internalize oxidized low density lipoprotein (OxLDL), a modified lipoprotein that is thought to be the proximal source of lipids that accumulate within cells of atherosclerotic lesions. The role of lipoproteins in modulating MSR expression are undetermined. We studied the effect of lipoproteins, native and modified LDL (acetylated LDL (AcLDL) and OxLDL) on the expression of the MSR in RAW cells, a murine macrophage cell line. Exposure to lipoproteins resulted in a marked induction of MSR mRNA expression (12- to 17-fold) with OxLDL and AcLDL having the greatest effects. Maximum induction occurred 1 hour after treatment with OxLDL and LDL. AcLDL induced a fourfold increase at 1 hour followed by a return to baseline and peak expression (sixfold) at 14 hours. Scavenger receptor function, as measured by 125I-AcLDL binding, was only modestly increased in response to lipoproteins. Incubation of macrophages with a cholesterol acceptor particle resulted in a dose-dependent decrease in MSR mRNA expression, which paralleled cholesterol loss from the cells. OxLDL did not affect MSR mRNA stability, implying that MSR mRNA was transcriptionally regulated by lipoproteins. Finally, peritoneal macrophages were isolated from mice following intraperitoneal injection of lipoproteins. Macrophage expression of MSR mRNA was significantly (16-fold) increased by LDL, AcLDL, or OxLDL relative to mice infused with phosphate-buffered saline. This demonstration that exposure to lipoproteins increases expression of the macrophage scavenger receptor implies that lipoproteins can further contribute to foam cell development in atherosclerosis. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 PMID:9626069

  8. Beneficial effects of weight loss associated with moderate calorie/carbohydrate restriction, and increased proportional intake of protein and unsaturated fat on serum urate and lipoprotein levels in gout: a pilot study

    PubMed Central

    Dessein, P; Shipton, E; Stanwix, A; Joffe, B; Ramokgadi, J

    2000-01-01

    OBJECTIVES—Insulin resistance (IR) has been increasingly implicated in the pathogenesis of gout. The lipoprotein abnormalities described in hyperuricaemic subjects are similar to those associated with IR, and insulin influences renal urate excretion. In this study it was investigated whether dietary measures, reported to be beneficial in IR, have serum uric acid (SU) and lipid lowering effects in gout.
METHODS—Thirteen non-diabetic men (median age 50, range 38-62) were enrolled. Each patient had had at least two gouty attacks during the four months before enrolment. Dietary recommendations consisted of calorie restriction to 6690 kJ (1600 kcal) a day with 40% derived from carbohydrate, 30% from protein, and 30% from fat; replacement of refined carbohydrates with complex ones and saturated fats with mono- and polyunsaturated ones. At onset and after 16 weeks, fasting blood samples were taken for determination of SU, serum cholesterol (C), low density lipoprotein cholesterol (LDL-C), high density lipoprotein cholesterol (HDL-C), and triglycerides (TGs). Results were expressed as median (SD).
RESULTS—At onset, the body mass index (BMI) was 30.5 (8.1) kg/m2. Dietary measures resulted in weight loss of 7.7 (5.4) kg (p=0.002) and a decrease in the frequency of monthly attacks from 2.1 (0.8) to 0.6 (0.7) (p=0.002). The SU decreased from 0.57 (0.10) to 0.47 (0.09) mmol/l (p=0.001) and normalised in 7 (58%) of the 12 patients with an initially raised level. Serum cholesterol decreased from 6.0 (1.7) to 4.7 (0.9) mmol/l (p=0.002), LDL-C from 3.5 (1.2) to 2.7 (0.8) mmol/l (p=0.004), TGs from 4.7 (4.2) to 1.9 (1.0) mmol/l (p=0.001), and C:HDL-C ratios from 6.7 (1.7) to 5.2 (1.0) (p=0.002). HDL-C levels increased insignificantly. High baseline SU, frequency of attacks, total cholesterol, LDL-C and TG levels, and total C:HDL-C ratios correlated with higher decreases in the respective variables upon dietary intervention (p<0.05).

  9. A Cross-Sectional Study Demonstrating Increased Serum Amyloid A Related Inflammation in High-Density Lipoproteins from Subjects with Type 1 Diabetes Mellitus and How This Association Was Augmented by Poor Glycaemic Control

    PubMed Central

    McEneny, Jane; Daniels, Jane-Ann; McGowan, Anne; Gunness, Anjuli; Moore, Kevin; Stevenson, Michael; Young, Ian S.; Gibney, James

    2015-01-01

    Inflammatory atherosclerosis is increased in subjects with type 1 diabetes mellitus (T1DM). Normally high-density lipoproteins (HDL) protect against atherosclerosis; however, in the presence of serum amyloid-A- (SAA-) related inflammation this property may be reduced. Fasting blood was obtained from fifty subjects with T1DM, together with fifty age, gender and BMI matched control subjects. HDL was subfractionated into HDL2 and HDL3 by rapid ultracentrifugation. Serum-hsCRP and serum-, HDL2-, and HDL3-SAA were measured by ELISAs. Compared to control subjects, SAA was increased in T1DM subjects, nonsignificantly in serum (P = 0.088), and significantly in HDL2(P = 0.003) and HDL3(P = 0.005). When the T1DM group were separated according to mean HbA1c (8.34%), serum-SAA and HDL3-SAA levels were higher in the T1DM subjects with HbA1c ≥ 8.34%, compared to when HbA1c was <8.34% (P < 0.05). Furthermore, regression analysis illustrated, that for every 1%-unit increase in HbA1c, SAA increased by 20% and 23% in HDL2 and HDL3, respectively, independent of BMI. HsCRP did not differ between groups (P > 0.05). This cross-sectional study demonstrated increased SAA-related inflammation in subjects with T1DM that was augmented by poor glycaemic control. We suggest that SAA is a useful inflammatory biomarker in T1DM, which may contribute to their increased atherosclerosis risk. PMID:26557720

  10. Microchip-based human serum atherogenic lipoprotein profile analysis.

    PubMed

    Wang, Hua; Zhang, Wei; Wan, Jun; Liu, Weiwei; Yu, Bo; Jin, Qinghui; Guan, Ming

    2014-12-15

    Owing to the mounting evidence of serum lipid changes in atherosclerosis, there has been increasing interest in developing new methods for analyzing atherogenic lipoprotein profiles. The separation of lipoprotein and lipoprotein subclasses has been demonstrated using a microchip capillary electrophoresis (CE) system [Chromatographia 74 (2011) 799-805]. In contrast to this previous study, the current report demonstrates that sdLDL peak efficiencies can be improved dramatically by adding gold nanoparticles (AuNPs) to the sample. Moreover, NBD C6-ceramide was identified as a satisfactory dye for specific labeling and quantitation of individual serum lipoproteins. The accuracy of the method was evaluated by comparison with ultracentrifuge separated small, dense, low-density lipoprotein (sdLDL). A high correlation was observed between these two methods for sdLDL cholesterol. Lipid levels were investigated between atherosclerotic patients and healthy controls. The variation of serum atherogenic lipoprotein profiles for atherosclerotic patients pre- and post-treatment was assessed by microchip CE. This method has potential for the rapid and sensitive detection of different lipoprotein classes as well as their subclasses and, therefore, is suitable for routine clinical applications. Microchip-based atherogenic lipoprotein profile assays will greatly improve the analysis of risk factors in atherosclerosis and will provide useful information for monitoring the effect of therapies on atherosclerotic disease.

  11. ATP-binding cassette transporter A1 gene transcription is downregulated by activator protein 2alpha. Doxazosin inhibits activator protein 2alpha and increases high-density lipoprotein biogenesis independent of alpha1-adrenoceptor blockade.

    PubMed

    Iwamoto, Noriyuki; Abe-Dohmae, Sumiko; Ayaori, Makoto; Tanaka, Nobukiyo; Kusuhara, Masatoshi; Ohsuzu, Fumitaka; Yokoyama, Shinji

    2007-07-20

    ATP-binding cassette transporter A1 (ABCA1) is a rate-limiting factor for high-density lipoprotein (HDL) biogenesis. The ABCA1 gene expression is known to be upregulated by various transcriptional factors. However, negative regulation factors would be better targets for pharmacological modulation of HDL biogenesis. Doxazosin, an alpha(1)-adrenoceptor blocker, increased ABCA1 mRNA, its protein, and apolipoprotein A-I-mediated HDL biogenesis in THP-1 macrophages and CHO-K1 cells, independent of alpha(1)-adrenoceptor blockade. Analysis of the human ABCA1 promoter indicated that the region between the positions -368 and -147 that contains an activator protein (AP)2-binding site responsible for the effects of doxazosin. Overexpression of AP2alpha inhibited ABCA1 transcription in a dose-dependent fashion. Mutation in the AP2-binding site caused increase of the basal promoter activity and cancelling both the transactivation by doxazosin and the trans-repression by AP2alpha. Doxazosin had no effect on ABCA1 mRNA level in HepG2 cells, which lack endogenous AP2alpha, and it reversed the inhibitory effect of AP2alpha expression in this type of cells. Chromatin immunoprecipitation and gel shift assays revealed that doxazosin reduced specific binding of AP2alpha to the ABCA1 promoter, as it suppressed phosphorylation of AP2alpha. Finally, doxazosin increased ABCA1 expression and plasma HDL in mice. We thus concluded that AP2alpha negatively regulates the ABCA1 gene transcription. Doxazosin inhibits AP2alpha activity independent of alpha(1)-adrenoceptor blockade and increases the ABCA1 expression and HDL biogenesis. AP2alpha is a potent pharmacological target for the increase of HDL.

  12. Unique geometry of sister kinetochores in human oocytes during meiosis I may explain maternal age-associated increases in chromosomal abnormalities

    PubMed Central

    Patel, Jessica; Tan, Seang Lin; Hartshorne, Geraldine M.; McAinsh, Andrew D.

    2016-01-01

    ABSTRACT The first meiotic division in human oocytes is highly error-prone and contributes to the uniquely high incidence of aneuploidy observed in human pregnancies. A successful meiosis I (MI) division entails separation of homologous chromosome pairs and co-segregation of sister chromatids. For this to happen, sister kinetochores must form attachments to spindle kinetochore-fibres emanating from the same pole. In mouse and budding yeast, sister kinetochores remain closely associated with each other during MI, enabling them to act as a single unified structure. However, whether this arrangement also applies in human meiosis I oocytes was unclear. In this study, we perform high-resolution imaging of over 1900 kinetochores in human oocytes, to examine the geometry and architecture of the human meiotic kinetochore. We reveal that sister kinetochores in MI are not physically fused, and instead individual kinetochores within a pair are capable of forming independent attachments to spindle k-fibres. Notably, with increasing female age, the separation between kinetochores increases, suggesting a degradation of centromeric cohesion and/or changes in kinetochore architecture. Our data suggest that the differential arrangement of sister kinetochores and dual k-fibre attachments may explain the high proportion of unstable attachments that form in MI and thus indicate why human oocytes are prone to aneuploidy, particularly with increasing maternal age. PMID:26718930

  13. Unique geometry of sister kinetochores in human oocytes during meiosis I may explain maternal age-associated increases in chromosomal abnormalities.

    PubMed

    Patel, Jessica; Tan, Seang Lin; Hartshorne, Geraldine M; McAinsh, Andrew D

    2015-12-30

    The first meiotic division in human oocytes is highly error-prone and contributes to the uniquely high incidence of aneuploidy observed in human pregnancies. A successful meiosis I (MI) division entails separation of homologous chromosome pairs and co-segregation of sister chromatids. For this to happen, sister kinetochores must form attachments to spindle kinetochore-fibres emanating from the same pole. In mouse and budding yeast, sister kinetochores remain closely associated with each other during MI, enabling them to act as a single unified structure. However, whether this arrangement also applies in human meiosis I oocytes was unclear. In this study, we perform high-resolution imaging of over 1900 kinetochores in human oocytes, to examine the geometry and architecture of the human meiotic kinetochore. We reveal that sister kinetochores in MI are not physically fused, and instead individual kinetochores within a pair are capable of forming independent attachments to spindle k-fibres. Notably, with increasing female age, the separation between kinetochores increases, suggesting a degradation of centromeric cohesion and/or changes in kinetochore architecture. Our data suggest that the differential arrangement of sister kinetochores and dual k-fibre attachments may explain the high proportion of unstable attachments that form in MI and thus indicate why human oocytes are prone to aneuploidy, particularly with increasing maternal age.

  14. The fibrate drug gemfibrozil disrupts lipoprotein metabolism in rainbow trout.

    PubMed

    Prindiville, John S; Mennigen, Jan A; Zamora, Jake M; Moon, Thomas W; Weber, Jean-Michel

    2011-03-15

    Gemfibrozil (GEM) is a fibrate drug consistently found in effluents from sewage treatment plants. This study characterizes the pharmacological effects of GEM on the plasma lipoproteins of rainbow trout (Oncorhynchus mykiss). Our goals were to quantify the impact of the drug on: 1) lipid constituents of lipoproteins (phospholipids (PL), triacylglycerol (TAG), and cholesterol), 2) lipoprotein classes (high, low and very low density lipoproteins), and 3) fatty acid composition of lipoproteins. Potential mechanisms of GEM action were investigated by measuring lipoprotein lipase activity (LPL) and the hepatic gene expression of LPL and of the peroxisome proliferator-activated receptor (PPAR) α, β, and γ isoforms. GEM treatment resulted in decreased plasma lipoprotein levels (-29%) and a reduced size of all lipoprotein classes (lower PL:TAG ratios). However, the increase in HDL-cholesterol elicited by GEM in humans failed to be observed in trout. Therefore, HDL-cholesterol cannot be used to assess the impact of the drug on fish. GEM also modified lipoprotein composition by reducing the abundance of long-chain n-3 fatty acids, thereby potentially reducing the nutritional quality of exposed fish. The relative gene expression of LPL was increased, but the activity of the enzyme was not, and we found no evidence for the activation of PPAR pathways. The depressing effects of GEM on fish lipoproteins demonstrated here may be a concern in view of the widespread presence of fibrates in aquatic environments. Work is needed to test whether exposure to environmental concentrations of these drugs jeopardizes the capacity of fish for reproduction, temperature acclimation or migratory behaviors. PMID:21195106

  15. The fibrate drug gemfibrozil disrupts lipoprotein metabolism in rainbow trout

    SciTech Connect

    Prindiville, John S. Mennigen, Jan A.; Zamora, Jake M.; Moon, Thomas W.; Weber, Jean-Michel

    2011-03-15

    Gemfibrozil (GEM) is a fibrate drug consistently found in effluents from sewage treatment plants. This study characterizes the pharmacological effects of GEM on the plasma lipoproteins of rainbow trout (Oncorhynchus mykiss). Our goals were to quantify the impact of the drug on: 1) lipid constituents of lipoproteins (phospholipids (PL), triacylglycerol (TAG), and cholesterol), 2) lipoprotein classes (high, low and very low density lipoproteins), and 3) fatty acid composition of lipoproteins. Potential mechanisms of GEM action were investigated by measuring lipoprotein lipase activity (LPL) and the hepatic gene expression of LPL and of the peroxisome proliferator-activated receptor (PPAR) {alpha}, {beta}, and {gamma} isoforms. GEM treatment resulted in decreased plasma lipoprotein levels (- 29%) and a reduced size of all lipoprotein classes (lower PL:TAG ratios). However, the increase in HDL-cholesterol elicited by GEM in humans failed to be observed in trout. Therefore, HDL-cholesterol cannot be used to assess the impact of the drug on fish. GEM also modified lipoprotein composition by reducing the abundance of long-chain n-3 fatty acids, thereby potentially reducing the nutritional quality of exposed fish. The relative gene expression of LPL was increased, but the activity of the enzyme was not, and we found no evidence for the activation of PPAR pathways. The depressing effects of GEM on fish lipoproteins demonstrated here may be a concern in view of the widespread presence of fibrates in aquatic environments. Work is needed to test whether exposure to environmental concentrations of these drugs jeopardizes the capacity of fish for reproduction, temperature acclimation or migratory behaviors.

  16. Esterification of Low Density Lipoprotein Cholesterol in Human Fibroblasts and Its Absence in Homozygous Familial Hypercholesterolemia

    PubMed Central

    Goldstein, Joseph L.; Dana, Suzanna E.; Brown, Michael S.

    1974-01-01

    A new mechanism is described for the cellular esterification of cholesterol derived from extra-cellular lipoproteins. Incubation of monolayers of cultured fibroblasts from normal human subjects with low density lipoproteins led to a 30- to 40-fold increase in the rate of incorporation of either [14C]acetate or [14C]oleate into the fatty acid fraction of cholesteryl [14C]esters. This stimulation of cholesteryl ester formation by low density lipoproteins occurred despite the fact that endogenous synthesis of free cholesterol was completely suppressed by the lipoprotein. Thus, exogenous cholesterol contained in low density lipoproteins, rather than endogenously synthesized sterol, appeared to provide the cholesterol substrate for this cellular esterfication process. High density lipoproteins and the lipoprotein-deficient fraction of serum neither stimulated cholesteryl ester formation nor inhibited cholesterol synthesis. Both the low density lipoprotein-dependent increase in cholesterol esterification and decrease in free cholesterol synthesis required the interaction of the lipoprotein with its recently described cell surface receptor. Cells from homozygotes with familial hypercholesterolemia, which lack specific low density lipoprotein receptors, showed neither lipoprotein-dependent cholesterol esterification nor suppression of cholesterol synthesis. The reciprocal changes in free cholesterol synthesis and cholesteryl ester formation produced by low density lipoprotein-receptor interactions may play an important role in the regulation of the cholesterol content of mammalian cells. PMID:4373706

  17. Esterification of low density lipoprotein cholesterol in human fibroblasts and its absence in homozygous familial hypercholesterolemia.

    PubMed

    Goldstein, J L; Dana, S E; Brown, M S

    1974-11-01

    A new mechanism is described for the cellular esterification of cholesterol derived from extra-cellular lipoproteins. Incubation of monolayers of cultured fibroblasts from normal human subjects with low density lipoproteins led to a 30- to 40-fold increase in the rate of incorporation of either [(14)C]acetate or [(14)C]oleate into the fatty acid fraction of cholesteryl [(14)C]esters. This stimulation of cholesteryl ester formation by low density lipoproteins occurred despite the fact that endogenous synthesis of free cholesterol was completely suppressed by the lipoprotein. Thus, exogenous cholesterol contained in low density lipoproteins, rather than endogenously synthesized sterol, appeared to provide the cholesterol substrate for this cellular esterfication process. High density lipoproteins and the lipoprotein-deficient fraction of serum neither stimulated cholesteryl ester formation nor inhibited cholesterol synthesis. Both the low density lipoprotein-dependent increase in cholesterol esterification and decrease in free cholesterol synthesis required the interaction of the lipoprotein with its recently described cell surface receptor. Cells from homozygotes with familial hypercholesterolemia, which lack specific low density lipoprotein receptors, showed neither lipoprotein-dependent cholesterol esterification nor suppression of cholesterol synthesis. The reciprocal changes in free cholesterol synthesis and cholesteryl ester formation produced by low density lipoprotein-receptor interactions may play an important role in the regulation of the cholesterol content of mammalian cells.

  18. Release of endothelial cell lipoprotein lipase by plasma lipoproteins and free fatty acids

    SciTech Connect

    Saxena, U.; Witte, L.D.; Goldberg, I.J.

    1989-03-15

    Lipoprotein lipase (LPL) bound to the lumenal surface of vascular endothelial cells is responsible for the hydrolysis of triglycerides in plasma lipoproteins. Studies were performed to investigate whether human plasma lipoproteins and/or free fatty acids would release LPL which was bound to endothelial cells. Purified bovine milk LPL was incubated with cultured porcine aortic endothelial cells resulting in the association of enzyme activity with the cells. When the cells were then incubated with media containing chylomicrons or very low density lipoproteins (VLDL), a concentration-dependent decrease in the cell-associated LPL enzymatic activity was observed. In contrast, incubation with media containing low density lipoproteins or high density lipoproteins produced a much smaller decrease in the cell-associated enzymatic activity. The addition of increasing molar ratios of oleic acid:bovine serum albumin to the media also reduced enzyme activity associated with the endothelial cells. To determine whether the decrease in LPL activity was due to release of the enzyme from the cells or inactivation of the enzyme, studies were performed utilizing radioiodinated bovine LPL. Radiolabeled LPL protein was released from endothelial cells by chylomicrons, VLDL, and by free fatty acids (i.e. oleic acid bound to bovine serum albumin). The release of radiolabeled LPL by VLDL correlated with the generation of free fatty acids from the hydrolysis of VLDL triglyceride by LPL bound to the cells. Inhibition of LPL enzymatic activity by use of a specific monoclonal antibody, reduced the extent of release of /sup 125/I-LPL from the endothelial cells by the added VLDL. These results demonstrated that LPL enzymatic activity and protein were removed from endothelial cells by triglyceride-rich lipoproteins (chylomicrons and VLDL) and oleic acid.

  19. Radiation Dose Associated with Renal Failure Mortality: A Potential Pathway to Partially Explain Increased Cardiovascular Disease Mortality Observed after Whole-Body Irradiation

    PubMed Central

    Adams, Michael Jacob; Grant, Eric J.; Kodama, Kazunori; Shimizu, Yukiko; Kasagi, Fumiyoshi; Suyama, Akihiko; Sakata, Ritsu; Akahoshi, Masazumi

    2012-01-01

    Whole-body and thoracic ionizing radiation exposure are associated with increased cardiovascular disease (CVD) risk. In atomic bomb survivors, radiation dose is also associated with increased hypertension incidence, suggesting that radiation dose may be associated with chronic renal failure (CRF), thus explaining part of the mechanism for increased CVD. Multivariate Poisson regression was used to evaluate the association of radiation dose with various definitions of chronic kidney disease (CKD) mortality in the Life Span Study (LSS) of atomic bomb survivors. A secondary analysis was performed using a subsample for whom self-reported information on hypertension and diabetes, the two biggest risk factors for CRF, had been collected. We found a significant association between radiation dose and only our broadest definition of CRF among the full cohort. A quadratic dose excess relative risk model [ERR/Gy2 = 0.091 (95% CI: 0.05, 0.198)] fit minimally better than a linear model. Within the subsample, association was also observed only with the broadest CRF definition [ERR/Gy2 = 0.15 (95% CI: 0.02, 0.32)]. Adjustment for hypertension and diabetes improved model fit but did not substantially change the ERR/Gy2 estimate, which was 0.17 (95% CI: 0.04, 0.35). We found a significant quadratic dose relationship between radiation dose and possible chronic renal disease mortality that is similar in shape to that observed between radiation and incidence of hypertension in this population. Our results suggest that renal dysfunction could be part of the mechanism causing increased CVD risk after whole-body irradiation, a hypothesis that deserves further study. PMID:22149958

  20. Lipoprotein (a) and stroke

    PubMed Central

    Milionis, H.; Winder, A.; Mikhailidis, D.

    2000-01-01

    Strokes are one of the most common causes of mortality and long term severe disability. There is evidence that lipoprotein (a) (Lp(a)) is a predictor of many forms of vascular disease, including premature coronary artery disease. Several studies have also evaluated the association between Lp(a) and ischaemic (thrombotic) stroke. Several cross sectional (and a few prospective) studies provide contradictory findings regarding Lp(a) as a predictor of ischaemic stroke. Several factors might contribute to the existing confusion—for example, small sample sizes, different ethnic groups, the influence of oestrogens in women participating in the studies, plasma storage before Lp(a) determination, statistical errors, and selection bias. This review focuses on the Lp(a) related mechanisms that might contribute to the pathogenesis of ischaemic stroke. The association between Lp(a) and other cardiovascular risk factors is discussed. Therapeutic interventions that can lower the circulating concentrations of Lp(a) and thus possibly reduce the risk of stroke are also considered. Key Words: atherothrombosis • fibrinogen • homocysteine • lipids • lipoprotein a • stroke PMID:10961170

  1. Colistin-resistant, lipopolysaccharide-deficient Acinetobacter baumannii responds to lipopolysaccharide loss through increased expression of genes involved in the synthesis and transport of lipoproteins, phospholipids, and poly-β-1,6-N-acetylglucosamine.

    PubMed

    Henry, Rebekah; Vithanage, Nuwan; Harrison, Paul; Seemann, Torsten; Coutts, Scott; Moffatt, Jennifer H; Nation, Roger L; Li, Jian; Harper, Marina; Adler, Ben; Boyce, John D

    2012-01-01

    We recently demonstrated that colistin resistance in Acinetobacter baumannii can result from mutational inactivation of genes essential for lipid A biosynthesis (Moffatt JH, et al., Antimicrob. Agents Chemother. 54:4971-4977). Consequently, strains harboring these mutations are unable to produce the major Gram-negative bacterial surface component, lipopolysaccharide (LPS). To understand how A. baumannii compensates for the lack of LPS, we compared the transcriptional profile of the A. baumannii type strain ATCC 19606 to that of an isogenic, LPS-deficient, lpxA mutant strain. The analysis of the expression profiles indicated that the LPS-deficient strain showed increased expression of many genes involved in cell envelope and membrane biogenesis. In particular, upregulated genes included those involved in the Lol lipoprotein transport system and the Mla-retrograde phospholipid transport system. In addition, genes involved in the synthesis and transport of poly-β-1,6-N-acetylglucosamine (PNAG) also were upregulated, and a corresponding increase in PNAG production was observed. The LPS-deficient strain also exhibited the reduced expression of genes predicted to encode the fimbrial subunit FimA and a type VI secretion system (T6SS). The reduced expression of genes involved in T6SS correlated with the detection of the T6SS-effector protein AssC in culture supernatants of the A. baumannii wild-type strain but not in the LPS-deficient strain. Taken together, these data show that, in response to total LPS loss, A. baumannii alters the expression of critical transport and biosynthesis systems associated with modulating the composition and structure of the bacterial surface. PMID:22024825

  2. Triglycerides, total cholesterol, high density lipoprotein cholesterol and low density lipoprotein cholesterol in rats exposed to premium motor spirit fumes

    PubMed Central

    Aberare, Ogbevire L.; Okuonghae, Patrick; Mukoro, Nathaniel; Dirisu, John O.; Osazuwa, Favour; Odigie, Elvis; Omoregie, Richard

    2011-01-01

    Background: Deliberate and regular exposure to premium motor spirit fumes is common and could be a risk factor for liver disease in those who are occupationally exposed. A possible association between premium motor spirit fumes and plasma levels of triglyceride, total cholesterol, high density lipoprotein cholesterol and low density lipoprotein cholesterol using a rodent model could provide new insights in the pathology of diseases where cellular dysfunction is an established risk factor. Aim: The aim of this study was to evaluate the possible effect of premium motor spirit fumes on lipids and lipoproteins in workers occupationally exposed to premium motor spirit fumes using rodent model. Materials and Methods: Twenty-five Wister albino rats (of both sexes) were used for this study between the 4th of August and 7th of September, 2010. The rats were divided into five groups of five rats each. Group 1 rats were not exposed to premium motor spirit fumes (control group), group 2 rats were exposed for 1 hour daily, group 3 for 3 hours daily, group 4 for 5 hours daily and group 5 for 7 hours daily. The experiment lasted for a period of 4 weeks. Blood samples obtained from all the groups after 4 weeks of exposure were used for the estimation of plasma levels of triglyceride, total cholesterol, high density lipoprotein- cholesterol and low density lipoprotein- cholesterol. Result: Results showed significant increase in means of plasma total cholesterol and low density lipoprotein levels (P<0.05). The mean triglyceride and total body weight were significantly lower (P<0.05) in the exposed group when compared with the unexposed. The plasma level of high density lipoprotein, the ratio of low density lipoprotein to high density lipoprotein and the ratio of total cholesterol to high density lipoprotein did not differ significantly in exposed subjects when compared with the control group. Conclusion: These results showed that frequent exposure to petrol fumes may be highly

  3. The effects of oral contraceptives on plasma lipids and lipoproteins.

    PubMed

    Krauss, R M

    1988-01-01

    It has been well documented that low-density lipoproteins and intermediate-density lipoproteins play a role in the development of atherosclerosis. Data also indicate that high-density lipoproteins (HDLs), have potentially antiatherogenic effects. The individual estrogen and progestogen components of oral contraceptives (OCs) have been shown to affect plasma lipoproteins in both cross-sectional and longitudinal studies. This effect depends on both the type of steroid used and the dose of each of the OC components. Estrogen and progestogen have opposing effects on lipoprotein physiology. Estrogens raise the level of HDL cholesterol, while progestogens tend to lower HDL levels. Thus, in OC formulations, as the ratio of estrogen to progestogen increases in favor of estrogen, there is a greater increase in HDL cholesterol--a potentially beneficial effect. Although there is no direct evidence that favorable lipoprotein changes produced by OCs are cardioprotective, the physician prescribing an OC should minimize adverse lipoprotein effects by prescribing a balanced low-dose, low-impact formulation.

  4. Arterial Stiffness, Lipoprotein Particle Size, and Lipoprotein Particle Concentration in Children with Type 1 Diabetes

    PubMed Central

    Gallo, Lisa M; Silverstein, Janet H.; Shuster, Jonathan J; Haller, Michael J.

    2013-01-01

    OBJECTIVE To determine if lipoprotein particle abnormalities correlate with arterial stiffness in children with type 1 diabetes (T1D). STUDY DESIGN In this case-control study, we evaluated 70 children, 35 with T1D and 35 controls, ages 10–18 years, matched for age, sex, race, and BMI. Arterial stiffness was assessed by radial tonometry (AI75) and blood was collected for lipoprotein subclass analysis. RESULTS T1D subjects had increased AI75, decreased small LDL particle concentration (P=0.0067), increased large LDL particle concentration (P=0.007), increased large HDL particle concentration (P=0.0012), increased mean LDL particle size (P=0.0028), and increased mean HDL particle size (P<0.0001) compared to controls. No significant correlations were found between lipoprotein subclasses and arterial stiffness in T1D subjects. CONCLUSIONS T1D subjects have increased arterial stiffness when compared to controls, despite a less pro-atherogenic lipoprotein profile, indicating the need to identify other risk factors that correlate with arterial stiffness in T1D youth. PMID:20857838

  5. Associations of hepatic and lipoprotein lipase activities with changes in dietary composition and low density lipoprotein subclasses.

    PubMed

    Campos, H; Dreon, D M; Krauss, R M

    1995-03-01

    To test whether lipoprotein lipase or hepatic lipase activities are associated with lipoprotein subclasses, and to assess the effects of dietary manipulations on these associations, enzyme activities were measured in postheparin plasma (75 U heparin/kg) from 43 healthy men who were randomly allocated to a low-fat (24% fat, 60% carbohydrate) and a high-fat (46% fat, 38% carbohydrate) diet for 6 weeks each in a cross-over design. The high-fat diet significantly increased both lipoprotein lipase (+20%, P = 0.02) and hepatic lipase (+8%, P = 0.007) activities. On both diets, hepatic lipase activity was significantly positively correlated (P < 0.01) with plasma apolipoprotein (apo)B concentrations, and with levels of small dense low density lipoprotein (LDL) III, measured by analytic ultracentrifugation as mass of lipoproteins of flotation rate (Sof) 3-5, while lipoprotein lipase activity was inversely associated with levels of LDL III (P < 0.05). Despite the cross-sectional correlations, increased hepatic lipase activity was not significantly correlated with the reduction in LDL III mass observed on the high-fat diet. Rather, changes in hepatic lipase were correlated inversely with changes in small very low density lipoproteins (VLDL) of Sof 20-40, and small intermediate density lipoproteins (VLDL) of Sof 10-16. Moreover, changes in lipoprotein lipase activity were not significantly correlated with changes in small LDL, but were positively associated with changes in small IDL of Sof 10-14, and large LDL I of Sof 7-10. Thus, while increased levels of small dense LDL are associated with a metabolic state characterized by relatively increased hepatic lipase and decreased lipoprotein lipase activity, changes in these enzymes do not appear to be primary determinants of diet-induced changes in levels of this LDL subfraction. On the other hand, increased lipoprotein lipase activity induced by high-fat feeding may contribute to the accumulation in plasma of both large LDL I

  6. Cholesterol efflux from THP-1 macrophages is impaired by the fatty acid component from lipoprotein hydrolysis by lipoprotein lipase.

    PubMed

    Yang, Yanbo; Thyagarajan, Narmadaa; Coady, Breanne M; Brown, Robert J

    2014-09-01

    Lipoprotein lipase (LPL) is an extracellular lipase that primarily hydrolyzes triglycerides within circulating lipoproteins. Macrophage LPL contributes to atherogenesis, but the mechanisms behind it are poorly understood. We hypothesized that the products of lipoprotein hydrolysis generated by LPL promote atherogenesis by inhibiting the cholesterol efflux ability by macrophages. To test this hypothesis, we treated human THP-1 macrophages with total lipoproteins that were hydrolyzed by LPL and we found significantly reduced transcript levels for the cholesterol transporters ATP binding cassette transporter A1 (ABCA1), ABCG1, and scavenger receptor BI. These decreases were likely due to significant reductions for the nuclear receptors liver-X-receptor-α, peroxisome proliferator activated receptor (PPAR)-α, and PPAR-γ. We prepared a mixture of free fatty acids (FFA) that represented the ratios of FFA species within lipoprotein hydrolysis products, and we found that the FFA mixture also significantly reduced cholesterol transporters and nuclear receptors. Finally, we tested the efflux of cholesterol from THP-1 macrophages to apolipoprotein A-I, and we found that the treatment of THP-1 macrophages with the FFA mixture significantly attenuated cholesterol efflux. Overall, these data show that the FFA component of lipoprotein hydrolysis products generated by LPL may promote atherogenesis by inhibiting cholesterol efflux, which partially explains the pro-atherogenic role of macrophage LPL.

  7. Cholesterol efflux from THP-1 macrophages is impaired by the fatty acid component from lipoprotein hydrolysis by lipoprotein lipase.

    PubMed

    Yang, Yanbo; Thyagarajan, Narmadaa; Coady, Breanne M; Brown, Robert J

    2014-09-01

    Lipoprotein lipase (LPL) is an extracellular lipase that primarily hydrolyzes triglycerides within circulating lipoproteins. Macrophage LPL contributes to atherogenesis, but the mechanisms behind it are poorly understood. We hypothesized that the products of lipoprotein hydrolysis generated by LPL promote atherogenesis by inhibiting the cholesterol efflux ability by macrophages. To test this hypothesis, we treated human THP-1 macrophages with total lipoproteins that were hydrolyzed by LPL and we found significantly reduced transcript levels for the cholesterol transporters ATP binding cassette transporter A1 (ABCA1), ABCG1, and scavenger receptor BI. These decreases were likely due to significant reductions for the nuclear receptors liver-X-receptor-α, peroxisome proliferator activated receptor (PPAR)-α, and PPAR-γ. We prepared a mixture of free fatty acids (FFA) that represented the ratios of FFA species within lipoprotein hydrolysis products, and we found that the FFA mixture also significantly reduced cholesterol transporters and nuclear receptors. Finally, we tested the efflux of cholesterol from THP-1 macrophages to apolipoprotein A-I, and we found that the treatment of THP-1 macrophages with the FFA mixture significantly attenuated cholesterol efflux. Overall, these data show that the FFA component of lipoprotein hydrolysis products generated by LPL may promote atherogenesis by inhibiting cholesterol efflux, which partially explains the pro-atherogenic role of macrophage LPL. PMID:25130461

  8. Triglycerides and atherogenic lipoproteins: rationale for lipid management.

    PubMed

    Krauss, R M

    1998-07-01

    Epidemiologic and clinical studies have demonstrated a relation between plasma triglyceride levels and risk of coronary artery disease and an amplification of risk with combined elevations of triglyceride and low-density lipoprotein (LDL) cholesterol. In patients with coronary disease, angiographic progression and clinical events have been correlated with concentrations of smaller very-low-density lipoproteins (VLDL) and intermediate-density lipoproteins (IDL), consistent with evidence for enhanced atherogenicity of lipolytic products of triglyceride-rich lipoprotein metabolism, including postprandial lipoproteins. IDL levels also have been shown to be strongly and independently predictive of progression of carotid artery intimal-medial thickness, a measure of early atherogenesis that is related to coronary disease risk. Although there is evidence that these triglyceride-rich lipoprotein species may have direct atherogenic effects, other lipoprotein changes associated with altered triglyceride metabolism may be of particular importance in the development of coronary artery disease. These include reductions in high-density lipoprotein (HDL) and increases in small, dense LDL particles (LDL subclass pattern B). Because of the strong interrelations among elevated triglyceride, reduced HDL, and small dense LDL, it is difficult to use statistical techniques to determine the independent contributions of these traits to coronary disease risk. Based on their biologic properties, it is likely that each are involved in multiple steps of the disease process. Moreover, this cluster of lipoprotein changes is associated with other conditions that can promote vascular disease, including increases in coagulation factors and reduced insulin sensitivity. Analyses from intervention trials in patients with coronary disease have indicated that measurement of plasma triglyceride and LDL particle distributions can be of value in predicting the benefits of specific lipid-altering therapies

  9. Cholesterol efflux from THP-1 macrophages is impaired by the fatty acid component from lipoprotein hydrolysis by lipoprotein lipase

    SciTech Connect

    Yang, Yanbo; Thyagarajan, Narmadaa; Coady, Breanne M.; Brown, Robert J.

    2014-09-05

    Highlights: • Lipoprotein hydrolysis products were produced by lipoprotein lipase. • Hydrolysis products lowers expression of macrophage cholesterol transporters. • Hydrolysis products reduces expression of select nuclear receptors. • Fatty acid products lowers cholesterol transporters and select nuclear receptors. • Fatty acid products reduces cholesterol efflux from macrophages. - Abstract: Lipoprotein lipase (LPL) is an extracellular lipase that primarily hydrolyzes triglycerides within circulating lipoproteins. Macrophage LPL contributes to atherogenesis, but the mechanisms behind it are poorly understood. We hypothesized that the products of lipoprotein hydrolysis generated by LPL promote atherogenesis by inhibiting the cholesterol efflux ability by macrophages. To test this hypothesis, we treated human THP-1 macrophages with total lipoproteins that were hydrolyzed by LPL and we found significantly reduced transcript levels for the cholesterol transporters ATP binding cassette transporter A1 (ABCA1), ABCG1, and scavenger receptor BI. These decreases were likely due to significant reductions for the nuclear receptors liver-X-receptor-α, peroxisome proliferator activated receptor (PPAR)-α, and PPAR-γ. We prepared a mixture of free fatty acids (FFA) that represented the ratios of FFA species within lipoprotein hydrolysis products, and we found that the FFA mixture also significantly reduced cholesterol transporters and nuclear receptors. Finally, we tested the efflux of cholesterol from THP-1 macrophages to apolipoprotein A-I, and we found that the treatment of THP-1 macrophages with the FFA mixture significantly attenuated cholesterol efflux. Overall, these data show that the FFA component of lipoprotein hydrolysis products generated by LPL may promote atherogenesis by inhibiting cholesterol efflux, which partially explains the pro-atherogenic role of macrophage LPL.

  10. Explaining happiness.

    PubMed

    Easterlin, Richard A

    2003-09-16

    What do social survey data tell us about the determinants of happiness? First, that the psychologists' setpoint model is questionable. Life events in the nonpecuniary domain, such as marriage, divorce, and serious disability, have a lasting effect on happiness, and do not simply deflect the average person temporarily above or below a setpoint given by genetics and personality. Second, mainstream economists' inference that in the pecuniary domain "more is better," based on revealed preference theory, is problematic. An increase in income, and thus in the goods at one's disposal, does not bring with it a lasting increase in happiness because of the negative effect on utility of hedonic adaptation and social comparison. A better theory of happiness builds on the evidence that adaptation and social comparison affect utility less in the nonpecuniary than pecuniary domains. Because individuals fail to anticipate the extent to which adaptation and social comparison undermine expected utility in the pecuniary domain, they allocate an excessive amount of time to pecuniary goals, and shortchange nonpecuniary ends such as family life and health, reducing their happiness. There is need to devise policies that will yield better-informed individual preferences, and thereby increase individual and societal well-being.

  11. Explaining happiness.

    PubMed

    Easterlin, Richard A

    2003-09-16

    What do social survey data tell us about the determinants of happiness? First, that the psychologists' setpoint model is questionable. Life events in the nonpecuniary domain, such as marriage, divorce, and serious disability, have a lasting effect on happiness, and do not simply deflect the average person temporarily above or below a setpoint given by genetics and personality. Second, mainstream economists' inference that in the pecuniary domain "more is better," based on revealed preference theory, is problematic. An increase in income, and thus in the goods at one's disposal, does not bring with it a lasting increase in happiness because of the negative effect on utility of hedonic adaptation and social comparison. A better theory of happiness builds on the evidence that adaptation and social comparison affect utility less in the nonpecuniary than pecuniary domains. Because individuals fail to anticipate the extent to which adaptation and social comparison undermine expected utility in the pecuniary domain, they allocate an excessive amount of time to pecuniary goals, and shortchange nonpecuniary ends such as family life and health, reducing their happiness. There is need to devise policies that will yield better-informed individual preferences, and thereby increase individual and societal well-being. PMID:12958207

  12. Consuming a buttermilk drink containing lutein-enriched egg yolk daily for 1 year increased plasma lutein but did not affect serum lipid or lipoprotein concentrations in adults with early signs of age-related macular degeneration.

    PubMed

    van der Made, Sanne M; Kelly, Elton R; Berendschot, Tos T J M; Kijlstra, Aize; Lütjohann, Dieter; Plat, Jogchum

    2014-09-01

    Dietary lutein intake is postulated to interfere with the development of age-related macular degeneration (AMD). Because egg yolk-derived lutein has a high bioavailability, long-term consumption of lutein-enriched eggs might be effective in preventing AMD development, but alternatively might increase cardiovascular disease risk. Here, we report the effect of 1-y daily consumption of a buttermilk drink containing 1.5 lutein-rich egg yolks on serum lipid and lipoprotein and plasma lutein concentrations. Additionally, subgroups that could potentially benefit the most from the intervention were identified. Men and women who had early signs of AMD in at least 1 eye, but were otherwise healthy, participated in a 1-y randomized, placebo-controlled parallel intervention trial. At the start of the study, 101 participants were included: 52 in the experimental (Egg) group and 49 in the control (Con) group. Final analyses were performed with 45 participants in the Egg group and 43 participants in the Con group. As expected, the increase in plasma lutein concentrations in the Egg group was 83% higher than that in the Con group (P < 0.001). Changes in serum total, HDL, and LDL cholesterol, as well as the ratio of total cholesterol to HDL cholesterol, were not different between the 2 groups. Interestingly, participants classified as cholesterol absorbers had higher serum HDL cholesterol concentrations than participants classified as cholesterol synthesizers or participants with average campesterol-to-lathosterol ratios (P < 0.05) at baseline. In addition, cholesterol absorbers had a 229% higher increase in plasma lutein concentrations than participants who were classified as having an average campesterol-to-lathosterol ratio upon consumption of the lutein-enriched egg yolk drink (P < 0.05). Moreover, the change in serum HDL cholesterol upon consumption was significantly different between these 3 groups (P < 0.05). We suggest that cholesterol absorbers particularly might benefit

  13. Lipoprotein abnormalities in South Asians and its association with cardiovascular disease: Current state and future directions

    PubMed Central

    Bilen, Ozlem; Kamal, Ayeesha; Virani, Salim S

    2016-01-01

    South Asians have a high prevalence of coronary heart disease (CHD) and suffer from early-onset CHD compared to other ethnic groups. Conventional risk factors may not fully explain this increased CHD risk in this population. Indeed, South Asians have a unique lipid profile which may predispose them to premature CHD. Dyslipidemia in this patient population seems to be an important contributor to the high incidence of coronary atherosclerosis. The dyslipidemia in South Asians is characterized by elevated levels of triglycerides, low levels of high-density lipoprotein (HDL) cholesterol, elevated lipoprotein(a) levels, and a higher atherogenic particle burden despite comparable low-density lipoprotein cholesterol levels compared with other ethnic subgroups. HDL particles also appear to be smaller, dysfunctional, and proatherogenic in South Asians. Despite the rapid expansion of the current literature with better understanding of the specific lipid abnormalities in this patient population, studies with adequate sample sizes are needed to assess the significance and contribution of a given lipid parameter on overall cardiovascular risk in this population. Specific management goals and treatment thresholds do not exist for South Asians because of paucity of data. Current treatment recommendations are mostly extrapolated from Western guidelines. Lastly, large, prospective studies with outcomes data are needed to assess cardiovascular benefit associated with various lipid-lowering therapies (including combination therapy) in this patient population. PMID:27022456

  14. Abnormal high density lipoproteins in cerebrotendinous xanthomatosis

    SciTech Connect

    Shore, V.; Salen, G.; Cheng, F.W.; Forte, T.; Shefer, S.; Tint, G.S.

    1981-11-01

    The plasma lipoprotein profiles and high density lipoproteins (HDL) were characterized in patients with the genetic disease cerebrotendinous xanthomatosis (CTX). The mean HDL-cholesterol concentration in the CTX plasmas was 14.5 +/- 3.2 mg/dl, about one-third the normal value. The low HDL-cholesterol reflects a low concentration and an abnormal lipid composition of the plasma HDL. Relative to normal HDL, the cholesteryl esters are low, free cholesterol and phospholipids essentially normal, and triglycerides increased. The ratio of apoprotein (apo) to total cholesterol in the HDL of CTX was two to three times greater than normal. In the CTX HDL, the ratio of apoAI to apoAII was high, the proportion of apoC low, and a normally minor form of apoAI increased relative to other forms. The HDL in electron micrographs appeared normal morphologically and in particle size. The adnormalities in lipoprotein distribution profiles and composition of the plasma HDL result from metabolic defects that are not understood but may be linked to the genetic defect in bile acid synthesis in CTX. As a consequence, it is probable that the normal functions of the HDL, possibly including modulation of LDL-cholesterol uptake and the removal of excess cholesterol from peripheral tissues, are perturbed significantly in this disease.

  15. Low-density lipoprotein subclass patterns and risk of myocardial infarction.

    PubMed

    Austin, M A; Breslow, J L; Hennekens, C H; Buring, J E; Willett, W C; Krauss, R M

    1988-10-01

    The association of low-density lipoprotein (LDL) subclass patterns with coronary heart disease was investigated in a case-control study of nonfatal myocardial infarction. Subclasses of LDL were analyzed by gradient gel electrophoresis of plasma samples from 109 cases and 121 controls. The LDL subclass pattern characterized by a preponderance of small, dense LDL particles was significantly associated with a threefold increased risk of myocardial infarction, independent of age, sex, and relative weight. Plasma levels of high-density lipoprotein cholesterol were decreased, and levels of triglyceride, very low-density lipoproteins, and intermediate-density lipoproteins were increased in subjects with this LDL subclass pattern. Multivariate logistic regression analyses showed that both high-density lipoprotein cholesterol and triglyceride levels contributed to the risk associated with the small, dense LDL subclass pattern. Thus, the metabolic trait responsible for this LDL subclass pattern results in a set of interrelated lipoprotein changes that lead to increased risk of coronary heart disease.

  16. Regulation of hepatic lipase activity by sphingomyelin in plasma lipoproteins.

    PubMed

    Yang, Peng; Subbaiah, Papasani V

    2015-10-01

    Hepatic lipase (HL) is an important enzyme in the clearance of triacylglycerol (TAG) from the circulation, and has been proposed to have pro-atherogenic as well as anti-atherogenic properties. It hydrolyzes both phospholipids and TAG of lipoproteins, and its activity is negatively correlated with HDL levels. Although it is known that HL acts preferentially on HDL lipids, the basis for this specificity is not known, since it does not require any specific apoprotein for activity. In this study, we tested the hypothesis that sphingomyelin (SM), whose concentration is much higher in VLDL and LDL compared to HDL, is an inhibitor of HL, and that this could explain the lipoprotein specificity of the enzyme. The results presented show that the depletion of SM from normal lipoproteins activated the HL roughly in proportion to their SM content. SM depletion stimulated the hydrolysis of both phosphatidylcholine (PC) and TAG, although the PC hydrolysis was stimulated more. In the native lipoproteins, HL showed specificity for PC species containing polyunsaturated fatty acids at sn-2 position, and produced more unsaturated lyso PC species. The enzyme also showed preferential hydrolysis of certain TAG species over others. SM depletion affected the specificity of the enzyme towards PC and TAG species modestly. These results show that SM is a physiological inhibitor of HL activity in lipoproteins and that the specificity of the enzyme towards HDL is at least partly due to its low SM content. PMID:26193433

  17. Regulation of hepatic lipase activity by sphingomyelin in plasma lipoproteins.

    PubMed

    Yang, Peng; Subbaiah, Papasani V

    2015-10-01

    Hepatic lipase (HL) is an important enzyme in the clearance of triacylglycerol (TAG) from the circulation, and has been proposed to have pro-atherogenic as well as anti-atherogenic properties. It hydrolyzes both phospholipids and TAG of lipoproteins, and its activity is negatively correlated with HDL levels. Although it is known that HL acts preferentially on HDL lipids, the basis for this specificity is not known, since it does not require any specific apoprotein for activity. In this study, we tested the hypothesis that sphingomyelin (SM), whose concentration is much higher in VLDL and LDL compared to HDL, is an inhibitor of HL, and that this could explain the lipoprotein specificity of the enzyme. The results presented show that the depletion of SM from normal lipoproteins activated the HL roughly in proportion to their SM content. SM depletion stimulated the hydrolysis of both phosphatidylcholine (PC) and TAG, although the PC hydrolysis was stimulated more. In the native lipoproteins, HL showed specificity for PC species containing polyunsaturated fatty acids at sn-2 position, and produced more unsaturated lyso PC species. The enzyme also showed preferential hydrolysis of certain TAG species over others. SM depletion affected the specificity of the enzyme towards PC and TAG species modestly. These results show that SM is a physiological inhibitor of HL activity in lipoproteins and that the specificity of the enzyme towards HDL is at least partly due to its low SM content.

  18. Low-density lipoprotein subclass patterns and lipoprotein response to a reduced-fat diet in men.

    PubMed

    Dreon, D M; Fernstrom, H A; Miller, B; Krauss, R M

    1994-01-01

    Low-density lipoprotein (LDL) subclass pattern B is a common genetically influenced lipoprotein profile characterized by a predominance of small, dense LDL particles, and associated with increased levels of triglyceride-rich lipoproteins, reductions in high-density lipoprotein cholesterol (HDL-C), and increased risk of coronary artery disease compared to individuals with a predominance of larger LDL (pattern A). We sought to determine whether LDL subclass patterns are associated with response of plasma lipoprotein levels to changes in dietary fat and carbohydrate content. In a randomized cross-over study, 105 men consumed, for six weeks each, high-fat (46%) and low-fat (24%) solid food diets, with replacement of fat by carbohydrate. Diet-induced changes in subjects who exhibited pattern B (n = 18) following the high-fat diet differed significantly from those in subjects with pattern A (n = 87): in pattern B subjects LDL cholesterol (LDL-C) reductions were two-fold greater and plasma apolipoprotein (apo) B levels decreased significantly. These differences remained significant after adjustment for levels of plasma LDL-C, apo B, HDL-C, and body mass index. Thus, LDL subclass pattern is a factor that contributes significantly to interindividual variation of plasma lipoprotein response to a low-fat, high-carbohydrate diet.

  19. Multiple aberrations in shared inflammatory and oxidative & nitrosative stress (IO&NS) pathways explain the co-association of depression and cardiovascular disorder (CVD), and the increased risk for CVD and due mortality in depressed patients.

    PubMed

    Maes, Michael; Ruckoanich, Piyanuj; Chang, Young Seun; Mahanonda, Nithi; Berk, Michael

    2011-04-29

    There is evidence that there is a bidirectional relationship between major depression and cardiovascular disorder (CVD): depressed patients are a population at risk for increased cardiac morbidity and mortality, and depression is more frequent in patients who suffer from CVD. There is also evidence that inflammatory and oxidative and nitrosative stress (IO&NS) pathways underpin the common pathophysiology of both CVD and major depression. Activation of these pathways may increase risk for both disorders and contribute to shared risk. The shared IO&NS pathways that may contribute to CVD and depression comprise the following: increased levels of pro-inflammatory cytokines, like interleukin-1β (IL-1β), IL-2, IL-6, IL-8, IL-12, tumor necrosis factor-α, and interferon-γ; T cell activation; increased acute phase proteins, like C-reactive protein, haptoglobin, fibrinogen and α1-antitrypsin; complement factors; increased LPS load through bacterial translocation and subsequent gut-derived inflammation; induction of indoleamine 2,3-dioxygenase with increased levels of tryptophan catabolites; decreased levels of antioxidants, like coenzyme Q10, zinc, vitamin E, glutathione and glutathione peroxidase; increased O&NS characterized by oxidative damage to low density lipoprotein (LDL) and phospholipid inositol, increased malondialdehyde, and damage to DNA and mitochondria; increased nitrosative stress; and decreased ω3 polyunsaturated fatty acids (PUFAs). The complex interplay between the abovementioned IO&NS pathways in depression results in pro-atherogenic effects and should be regarded as a risk factor to future clinical CVD and due mortality. We suggest that major depression should be added as a risk factor to the Charlson "comorbidity" index. It is advised that patients with (sub)chronic or recurrent major depression should routinely be assessed by serology tests to predict if they have an increased risk to cardiovascular disorders.

  20. Lipoproteins: When size really matters

    PubMed Central

    German, J. Bruce; Smilowitz, Jennifer T.; Zivkovic, Angela M.

    2010-01-01

    The field of nanoscience is extending the applications of physics, chemistry and biology into previously unapproached infinitesimal length scales. Understanding the behavior and manipulating the positions and properties of single atoms and molecules hold great potential to improve areas of science as disparate as medicine and computation, and communication and orbiting satellites. Yet, in the race to develop novel, previously unavailable nanoparticles, there is an opportunity for scientists in this field to digress and to apply their growing understanding of nanoscience and the tools of nanotechnology to one of the most pressing problems in all of human biology—diseases related to lipoproteins. Although not appreciated outside the field of lipoprotein biology, variations in the compositions, structures and properties of these nanoscale-sized, blood-borne particles are responsible for most of the variations in health, morbidity and mortality in the Western world. If the lipoproteins could be understood at the nanometer length scale with precise details of their structures and functions, scientists could understand a wide range of perplexing physiological processes and also address the dysfunctions in normal lipoprotein biology that lead to such diseases as hypercholesterolemia, heart disease, stroke and neurodegenerative diseases. Furthermore, if the capabilities of nanoscience to assemble and manipulate nanometer-sized particles could be recruited to studies of lipoproteins, these biological particles would provide a new dimension to therapeutic agents, and these natural particles could be designed to carry out many specialized beneficial tasks. PMID:20592953

  1. Ion mobility analysis of lipoproteins

    DOEpatents

    Benner, W. Henry; Krauss, Ronald M.; Blanche, Patricia J.

    2007-08-21

    A medical diagnostic method and instrumentation system for analyzing noncovalently bonded agglomerated biological particles is described. The method and system comprises: a method of preparation for the biological particles; an electrospray generator; an alpha particle radiation source; a differential mobility analyzer; a particle counter; and data acquisition and analysis means. The medical device is useful for the assessment of human diseases, such as cardiac disease risk and hyperlipidemia, by rapid quantitative analysis of lipoprotein fraction densities. Initially, purification procedures are described to reduce an initial blood sample to an analytical input to the instrument. The measured sizes from the analytical sample are correlated with densities, resulting in a spectrum of lipoprotein densities. The lipoprotein density distribution can then be used to characterize cardiac and other lipid-related health risks.

  2. Aerosol preparation of intact lipoproteins

    DOEpatents

    Benner, W. Henry; Krauss, Ronald M; Blanche, Patricia J

    2012-01-17

    A medical diagnostic method and instrumentation system for analyzing noncovalently bonded agglomerated biological particles is described. The method and system comprises: a method of preparation for the biological particles; an electrospray generator; an alpha particle radiation source; a differential mobility analyzer; a particle counter; and data acquisition and analysis means. The medical device is useful for the assessment of human diseases, such as cardiac disease risk and hyperlipidemia, by rapid quantitative analysis of lipoprotein fraction densities. Initially, purification procedures are described to reduce an initial blood sample to an analytical input to the instrument. The measured sizes from the analytical sample are correlated with densities, resulting in a spectrum of lipoprotein densities. The lipoprotein density distribution can then be used to characterize cardiac and other lipid-related health risks.

  3. [Lipoprotein lipase and diabetic cardiomyopathy].

    PubMed

    Liu, Xiang-Yu; Yin, Wei-Dong; Tang, Chao-Ke

    2014-02-01

    Lipoprotein lipase (LPL) hydrolyzes plasma triglyceride-rich lipoproteins into free fatty acids (FFA) to provide energy for cardiac tissue. During diabetes, cardiac energy supply is insufficient due to defected utilization of glucose. As a compensation of cardiac energy supply, FFAs are released through the hydrolysis of very low density lipoprotein (VLDL) and chylomicrons (CM) due to activation of LPL activity. In diabetic patients, activated LPL activity and elevated FFAs result in the intracellular accumulation of reactive oxygen species and lipids in myocardium and potentially induce the diabetic cardiomyopathy (DCM). The present review summarizes the regulatory mechanisms of myocardial LPL and the pathogenesis of DCM induced by LPL and provides novel therapeutic targets and pathways for DCM. PMID:24873138

  4. Total cholesterol, low density lipoprotein cholesterol, and high density lipoprotein cholesterol and coronary heart disease in Scotland.

    PubMed Central

    Hargreaves, A D; Logan, R L; Thomson, M; Elton, R A; Oliver, M F; Riemersma, R A

    1991-01-01

    OBJECTIVE--To investigate long term changes in total cholesterol, high density lipoprotein cholesterol, and low density lipoprotein cholesterol concentrations and in measures of other risk factors for coronary heart disease and to assess their importance for the development of coronary heart disease in Scottish men. DESIGN--Longitudinal study entailing follow up in 1988-9 of men investigated during a study in 1976. SETTING--Edinburgh, Scotland. SUBJECTS--107 men from Edinburgh who had taken part in a comparative study of risk factors for heart disease with Swedish men in 1976 when aged 40. INTERVENTION--The men were invited to attend a follow up clinic in 1988-9 for measurement of cholesterol concentrations and other risk factor measurements. Eighty three attended and 24 refused to or could not attend. MAIN OUTCOME MEASURES--Changes in total cholesterol, high density lipoprotein cholesterol, and low density lipoprotein cholesterol concentrations, body weight, weight to height index, prevalence of smoking, and alcohol intake; number of coronary artery disease events. RESULTS--Mean serum total cholesterol concentration increased over the 12 years mainly due to an increase in the low density lipoprotein cholesterol fraction (from 3.53 (SD 0.09) to 4.56 (0.11) mmol/l) despite a reduction in high density lipoprotein cholesterol concentration. Body weight and weight to height index increased. Fewer men smoked more than 15 cigarettes/day in 1988-9 than in 1976. Blood pressure remained stable and fasting triglyceride concentrations did not change. The frequency of corneal arcus doubled. Alcohol consumption decreased significantly. Eleven men developed clinical coronary heart disease. High low density lipoprotein and low high density lipoprotein cholesterol concentrations in 1976, but not total cholesterol concentration, significantly predicted coronary heart disease (p = 0.05). Almost all of the men who developed coronary heart disease were smokers (91% v 53%, p less than

  5. Subendothelial retention of lipoprotein (a). Evidence that reduced heparan sulfate promotes lipoprotein binding to subendothelial matrix.

    PubMed Central

    Pillarisetti, S; Paka, L; Obunike, J C; Berglund, L; Goldberg, I J

    1997-01-01

    Vessel wall subendothelial extracellular matrix, a dense mesh formed of collagens, fibronectin, laminin, and proteoglycans, has important roles in lipid and lipoprotein retention and cell adhesion. In atherosclerosis, vessel wall heparan sulfate proteoglycans (HSPG) are decreased and we therefore tested whether selective loss of HSPG affects lipoprotein retention. A matrix synthesized by aortic endothelial cells and a commercially available matrix (Matrigel; , Rutherford, NJ) were used. Treatment of matrix with heparinase/heparitinase (1 U/ml each) increased LDL binding by approximately 1.5-fold. Binding of lipoprotein (a) [Lp(a)] to both subendothelial matrix and Matrigel(R) increased 2-10-fold when the HSPG were removed by heparinase treatment. Incubation of endothelial cells with oxidized LDL (OxLDL) or lysolecithin resulted in decreased matrix proteoglycans and increased Lp(a) retention by matrix. The effect of OxLDL or lysolecithin on endothelial PG was abolished in the presence of HDL. The decrease in matrix HSPG was associated with production of a heparanase-like activity by OxLDL-stimulated endothelial cells. To test whether removal of HSPG exposes fibronectin, a candidate Lp(a) binding protein in the matrix, antifibronectin antibodies were used. The increased Lp(a) binding after HSPG removal was inhibited 60% by antifibronectin antibodies. Similarly, the increased Lp(a) binding to matrix from OxLDL-treated endothelial cells was inhibited by antifibronectin antibodies. We hypothesize that atherogenic lipoproteins stimulate endothelial cell production of heparanase. This enzyme reduces HSPG which in turn promotes Lp(a) retention. PMID:9259586

  6. Increased temperature tolerance of the air-breathing Asian swamp eel Monopterus albus after high-temperature acclimation is not explained by improved cardiorespiratory performance.

    PubMed

    Lefevre, S; Findorf, I; Bayley, M; Huong, D T T; Wang, T

    2016-01-01

    This study investigated the hypothesis that in the Asian swamp eel Monopterus albus, an air-breathing fish from south-east Asia that uses the buccopharyngeal cavity for oxygen uptake, the upper critical temperature (TU) is increased by acclimation to higher temperature, and that the increased TU is associated with improved cardiovascular and respiratory function. Monopterus albus were therefore acclimated to 27° C (current average) and 32° C (current maximum temperature as well as projected average within 100-200 years), and both the effect of acclimation and acute temperature increments on cardiovascular and respiratory functions were investigated. Two weeks of heat acclimation increased upper tolerated temperature (TU ) by 2° C from 36·9 ± 0·1° C to 38·9 ± 0·1° C (mean ± s.e.). Oxygen uptake (M˙O2) increased with acclimation temperature, accommodated by increases in both aerial and aquatic respiration. Overall, M˙O2 from air (M˙O2a ) was predominant, representing 85% in 27° C acclimated fish and 80% in 32° C acclimated fish. M˙O2 increased with acute increments in temperature and this increase was entirely accommodated by an increase in air-breathing frequency and M˙O2a . Monopterus albus failed to upregulate stroke volume; rather, cardiac output was maintained through increased heart rate with rising temperature. Overall, acclimation of M. albus to 32° C did not improve its cardiovascular and respiratory performance at higher temperatures, and cardiovascular adaptations, therefore, do not appear to contribute to the observed increase in TU. PMID:26563596

  7. Increased temperature tolerance of the air-breathing Asian swamp eel Monopterus albus after high-temperature acclimation is not explained by improved cardiorespiratory performance.

    PubMed

    Lefevre, S; Findorf, I; Bayley, M; Huong, D T T; Wang, T

    2016-01-01

    This study investigated the hypothesis that in the Asian swamp eel Monopterus albus, an air-breathing fish from south-east Asia that uses the buccopharyngeal cavity for oxygen uptake, the upper critical temperature (TU) is increased by acclimation to higher temperature, and that the increased TU is associated with improved cardiovascular and respiratory function. Monopterus albus were therefore acclimated to 27° C (current average) and 32° C (current maximum temperature as well as projected average within 100-200 years), and both the effect of acclimation and acute temperature increments on cardiovascular and respiratory functions were investigated. Two weeks of heat acclimation increased upper tolerated temperature (TU ) by 2° C from 36·9 ± 0·1° C to 38·9 ± 0·1° C (mean ± s.e.). Oxygen uptake (M˙O2) increased with acclimation temperature, accommodated by increases in both aerial and aquatic respiration. Overall, M˙O2 from air (M˙O2a ) was predominant, representing 85% in 27° C acclimated fish and 80% in 32° C acclimated fish. M˙O2 increased with acute increments in temperature and this increase was entirely accommodated by an increase in air-breathing frequency and M˙O2a . Monopterus albus failed to upregulate stroke volume; rather, cardiac output was maintained through increased heart rate with rising temperature. Overall, acclimation of M. albus to 32° C did not improve its cardiovascular and respiratory performance at higher temperatures, and cardiovascular adaptations, therefore, do not appear to contribute to the observed increase in TU.

  8. Bath and Shower Effects in the Rat Parotid Gland Explain Increased Relative Risk of Parotid Gland Dysfunction After Intensity-Modulated Radiotherapy

    SciTech Connect

    Luijk, Peter van Faber, Hette; Schippers, Jacobus M.; Brandenburg, Sytze; Langendijk, Johannes A.; Meertens, Harm; Coppes, Robert P.

    2009-07-15

    Purpose: To assess in a rat model whether adding a subtolerance dose in a region adjacent to a high-dose irradiated subvolume of the parotid gland influences its response (bath-and-shower effect). Methods and Materials: Irradiation of the whole, cranial 50%, and/or the caudal 50% of the parotid glands of Wistar rats was performed using 150-MeV protons. To determine suitable (i.e., subtolerance) dose levels for a bath-dose, both whole parotid glands were irradiated with 5 to 25 Gy. Subsequently groups of Wistar rats received 30 Gy to the caudal 50% (shower) and 0 to 10 Gy to the cranial 50% (bath) of both parotid glands. Stimulated saliva flow rate (function) was measured before and up to 240 days after irradiation. Results: Irradiation of both glands up to a dose of 10 Gy did not result in late loss of function and is thus regarded subtolerance. Addition of a dose bath of 1 to 10 Gy to a high-dose in the caudal 50% of the glands resulted in enhanced function loss. Conclusion: Similar to the spinal cord, the parotid gland demonstrates a bath and shower effect, which may explain the less-than-expected sparing of function after IMRT.

  9. Lipoprotein metabolism in nonalcoholic fatty liver disease

    PubMed Central

    Jiang, Zhenghui Gordon; Robson, Simon C.; Yao, Zemin

    2013-01-01

    Nonalcoholic fatty liver disease (NAFLD), an escalating health problem worldwide, covers a spectrum of pathologies characterized by fatty accumulation in hepatocytes in early stages, with potential progression to liver inflammation, fibrosis, and failure. A close, yet poorly understood link exists between NAFLD and dyslipidemia, a constellation of abnormalities in plasma lipoproteins including triglyceride-rich very low density lipoproteins. Apolipoproteins are a group of primarily liver-derived proteins found in serum lipoproteins; they not only play an extracellular role in lipid transport between vital organs through circulation, but also play an important intracellular role in hepatic lipoprotein assembly and secretion. The liver functions as the central hub for lipoprotein metabolism, as it dictates lipoprotein production and to a significant extent modulates lipoprotein clearance. Lipoprotein metabolism is an integral component of hepatocellular lipid homeostasis and is implicated in the pathogenesis, potential diagnosis, and treatment of NAFLD. PMID:23554788

  10. Genetics Home Reference: familial lipoprotein lipase deficiency

    MedlinePlus

    ... tissue. This enzyme helps break down fats called triglycerides, which are carried by molecules called lipoproteins . Mutations ... which prevents the enzyme from effectively breaking down triglycerides. As a result, triglycerides attached to lipoproteins build ...

  11. Fungal-mediated mortality explains the different effects of dung leachates on the germination response of grazing increaser and decreaser species

    NASA Astrophysics Data System (ADS)

    Carmona, Carlos P.; Navarro, Elena; Peco, Begoña

    2016-01-01

    Depending on their response to grazing, grassland species can be categorized as grazing increasers or decreasers. Grazing by livestock includes several different activities that can impact species differently. Recent evidence suggest that one of these actions, dung deposition, can reduce the germinative performance of decreaser species, thus favouring increasers. The present study tested the hypothesis that decreased germinative success of decreaser species is caused by a greater activity of fungal pathogens under the influence of dung leachates. We performed a phytotron experiment analysing the germination and fungal infections of fourteen species from Mediterranean grasslands. Species were grouped into phylogenetically-related pairs, composed of an increaser and a decreaser species. Seeds of each species were germinated under four different treatments (control, dung leachate addition, fungicide addition and dung leachate and fungicide addition), and the differences in germination percentage, germination speed and infection rate between each increaser species and its decreaser counterpart were analysed. Decreaser species were more affected by mortality than increaser ones, and these differences were higher under the presence of dung leachates. The differences in germinative performance after excluding the effect of seed mortality did not differ between treatments, showing that the main mechanism by which dung leachates favour increaser species is through increased mortality of the seeds of decreaser species. Drastic reductions in the number of dead seeds in the treatments including fungicide addition further revealed that fungal pathogens are responsible for these differences between species with different grazing response. The different vulnerabilities of increaser and decreaser species to the increased activity of fungal pathogens under the presence of dung leachates seems the main reason behind the differential effect of these leachates on species with

  12. Characterization of metabolic interrelationships and in silico phenotyping of lipoprotein particles using self-organizing maps[S

    PubMed Central

    Kumpula, Linda S.; Mäkelä, Sanna M.; Mäkinen, Ville-Petteri; Karjalainen, Anna; Liinamaa, Johanna M.; Kaski, Kimmo; Savolainen, Markku J.; Hannuksela, Minna L.; Ala-Korpela, Mika

    2010-01-01

    Plasma lipid concentrations cannot properly account for the complex interactions prevailing in lipoprotein (patho)physiology. Sequential ultracentrifugation (UCF) is the gold standard for physical lipoprotein isolations allowing for subsequent analyses of the molecular composition of the particles. Due to labor and cost issues, however, the UCF-based isolations are usually done only for VLDL, LDL, and HDL fractions; sometimes with the addition of intermediate density lipoprotein (IDL) particles and the fractionation of HDL into HDL2 and HDL3 (as done here; n = 302). We demonstrate via these data, with the lipoprotein lipid concentration and composition information combined, that the self-organizing map (SOM) analysis reveals a novel data-driven in silico phenotyping of lipoprotein metabolism beyond the experimentally available classifications. The SOM-based findings are biologically consistent with several well-known metabolic characteristics and also explain some apparent contradictions. The novelty is the inherent emergence of complex lipoprotein associations; e.g., the metabolic subgrouping of the associations between plasma LDL cholesterol concentrations and the structural subtypes of LDL particles. Importantly, lipoprotein concentrations cannot pinpoint lipoprotein phenotypes. It would generally be beneficial to computationally enhance the UCF-based lipoprotein data as illustrated here. Particularly, the compositional variations within the lipoprotein particles appear to be a fundamental issue with metabolic and clinical corollaries. PMID:19734566

  13. Revisiting the gram-negative lipoprotein paradigm

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The processing of lipoproteins (lpps) in Gram-negative bacteria is generally considered to be an essential pathway. Mature lipoproteins in these bacteria are triacylated, with the final fatty acid addition performed by Lnt, an apolipoprotein n-acyltransferase. The mature lipoproteins are then sorted...

  14. Role of low-density lipoprotein apheresis.

    PubMed

    Ziajka, Paul

    2005-08-22

    Low-density lipoprotein (LDL) apheresis has been shown to reduce plasma levels of total cholesterol, LDL cholesterol, and lipoprotein(a). In addition to these lipoprotein changes, LDL apheresis induces atherosclerosis regression, improves myocardial perfusion and endothelial function, and may reduce cardiovascular event rates. PMID:16098847

  15. Does Increasing Reliance on Student Debt Explain Declines in Entrepreneurial Activity? Posing the Question, Gathering Evidence, Considering Policy Options. Research Report

    ERIC Educational Resources Information Center

    Baum, Sandy

    2015-01-01

    In recent years, concerns have emerged both about declines in entrepreneurial activity, and about increases in the amount students borrow to finance postsecondary education--in the aggregate as well as on average. Because the financial obligations associated with student debt could limit access to credit for individuals seeking to start…

  16. A mechanistic study explaining the synergistic viscosity increase obtained from polyethylene oxide (PEO) and {beta}-naphthalene sulfonate (BNS) in shotcrete

    SciTech Connect

    Pickelmann, J.; Plank, J.

    2012-11-15

    In shotcrete, a combination of polyethylene oxide (PEO) and {beta}-naphthalene sulfonate (BNS) is commonly applied to reduce rebound. Here, the mechanism for the synergistic viscosity increase resulting from this admixture combination was investigated via x-ray diffraction (XRD), infrared and nuclear magnetic resonance (NMR) spectroscopy. It was found that the electron-rich aromatic rings present in BNS donate electrons to the alkyl protons of PEO and thus increase the electron density there. This rare interaction is known as CH-{pi} interaction and leads to the formation of a supramolecular structure whereby PEO chains bind weakly to BNS molecules. Through this mechanism a polymer network exhibiting exceptionally high molecular weight and thus viscosity is formed. Among polycondensates, sulfanilic acid-phenol-formaldehyde (SPF) provides even higher synergy with PEO than BNS while melamine (PMS), acetone (AFS) or polycarboxylate (PCE) based superplasticizers do not work at all. Effectiveness of lignosulfonates is dependent on their degree of sulfonation.

  17. Increase in dance imprecision with decreasing foraging distance in the honey bee Apis mellifera L. is partly explained by physical constraints.

    PubMed

    Beekman, Madeleine; Doyen, Laurent; Oldroyd, Benjamin P

    2005-12-01

    Honey bee foragers communicate the direction and distance of both food sources and new nest sites to nest mates by means of a symbolic dance language. Interestingly, the precision by which dancers transfer directional information is negatively correlated with the distance to the advertised food source. The 'tuned-error' hypothesis suggests that colonies benefit from this imprecision as it spreads recruits out over a patch of constant size irrespective of the distance to the advertised site. An alternative to the tuned-error hypothesis is that dancers are physically incapable of dancing with great precision for nearby sources. Here we revisit the tuned-error hypothesis by studying the change in dance precision with increasing foraging distance over relatively short distances while controlling for environmental influences. We show that bees indeed increase their dance precision with the increase in foraging distance. However, we also show that dance performed by swarm-scouts for a nearby (30 m) nest site, where there could be no benefit to imprecision, are either without or with only limited directional information. This result suggests that imprecision in dance communication is caused primarily by physical constraints in the ability of dancers to turn around quickly enough when the advertised site is nearby. PMID:16049698

  18. Searching for events in Chinese ancient records to explain the increase in 14C from AD 774-775 and AD 993-994

    NASA Astrophysics Data System (ADS)

    Chai, Ya-Ting; Zou, Yuan-Chuan

    2015-09-01

    According to analysis of the 14C content in two Japanese trees, that grew over a period of approximately 3000 years, with high time resolution, Miyake et al. found a rapid increase at AD 774-775 and another one at AD 993-994. These increases correspond to high-energy events that happened within those years and radiated γ-ray energy of about 7×1024 erg toward the Earth. The origin of these events is a mystery. Such strong events should have an unusual optical counterpart, and have been recorded in historical literatures. We searched Chinese historical materials around AD 744-775 and AD 993-994, but no remarkable event was found except for a violent thunderstorm in AD 775. However, the possibility of a thunderstorm containing so much energy is unlikely. We conclude that the events, which caused the 14C increase, are still unclear. These events most probably had no optical counterpart, and a short gamma-ray burst, giant flare of a soft gamma-ray repeater or a terrestrial γ-ray flash could all be candidates.

  19. Increased dosage of RAB39B affects neuronal development and could explain the cognitive impairment in male patients with distal Xq28 copy number gains.

    PubMed

    Vanmarsenille, Lieselot; Giannandrea, Maila; Fieremans, Nathalie; Verbeeck, Jelle; Belet, Stefanie; Raynaud, Martine; Vogels, Annick; Männik, Katrin; Õunap, Katrin; Jacqueline, Vigneron; Briault, Sylvain; Van Esch, Hilde; D'Adamo, Patrizia; Froyen, Guy

    2014-03-01

    Copy number gains at Xq28 are a frequent cause of X-linked intellectual disability (XLID). Here, we report on a recurrent 0.5 Mb tandem copy number gain at distal Xq28 not including MECP2, in four male patients with nonsyndromic mild ID and behavioral problems. The genomic region is duplicated in two families and triplicated in a third reflected by more distinctive clinical features. The X-inactivation patterns in carrier females correspond well with their clinical symptoms. Our mapping data confirm that this recurrent gain is likely mediated by nonallelic homologous recombination between two directly oriented Int22h repeats. The affected region harbors eight genes of which RAB39B encoding a small GTPase, was the prime candidate since loss-of-function mutations had been linked to ID. RAB39B is expressed at stable levels in lymphocytes from control individuals, suggesting a tight regulation. mRNA levels in our patients were almost two-fold increased. Overexpression of Rab39b in mouse primary hippocampal neurons demonstrated a significant decrease in neuronal branching as well as in the number of synapses when compared with the control neurons. Taken together, we provide evidence that the increased dosage of RAB39B causes a disturbed neuronal development leading to cognitive impairment in patients with this recurrent copy number gain.

  20. [Lipoprotein receptors. Old acquaintances and newcomers].

    PubMed

    Ducobu, J

    1997-02-01

    Lipoprotein receptors are plasma membrane proteins of high affinity which interact with circulating lipoprotein particles. The well characterized LDL receptor continues to be analysed and some new findings on its intracellular mechanisms of action have emerged. New lipoprotein receptors have recently been described: the chylomicron remnant receptor or LDL-related protein (LRP), the lipolysis stimulated receptor (LSR), the very low density lipoprotein receptor (VLDLR), the HDL receptor (HDLR) and the scavenger receptor (SR). The molecular details of the receptors will facilitate the development of new therapeutic means to improve receptor-mediated clearance of lipoproteins.

  1. Effects of estrogen dose and smoking on lipid and lipoprotein levels in postmenopausal women.

    PubMed

    Krauss, R M; Perlman, J A; Ray, R; Petitti, D

    1988-06-01

    The joint effects of conjugated estrogen use, age, body mass index, and smoking on plasma lipid and lipoprotein levels were assessed in 585 women who used oral estrogen and 1093 women who did not who participated in the Walnut Creek Contraceptive Drug Study. Whether administered daily or cyclically, conjugated estrogen was associated with reductions in low-density lipoprotein cholesterol levels and increases in high-density lipoprotein cholesterol and triglyceride levels. The adjusted mean low-density lipoprotein cholesterol concentration was 132 mg/dl for women who used conjugated estrogen in a dose greater than or equal to 1.25 mg/day; the adjusted corresponding mean concentration was 147 mg/dl for postmenopausal women who did not use estrogen. A dose-response pattern was demonstrated between conjugated estrogen and low- and high-density lipoprotein cholesterol levels. A maximum low-density lipoprotein cholesterol level reduction was reached at a dose of 1.25 mg, suggesting a saturation phenomenon. Stepwise dose-response increases in high-density lipoprotein cholesterol levels were also found with estrogen therapy, with a maximum increase of 8 to 10 mg/dl observed with the 1.25 mg dose. Estrogen-related rises in low-density lipoprotein cholesterol levels and decreases in high-density lipoprotein cholesterol levels were offset by 2 to 3 mg/dl in women who smoked. It may be concluded, therefore, that among postmenopausal women, low-risk lipoprotein profiles as assessed by low- and high-density lipoprotein cholesterol levels are found in nonsmokers whose postmenopausal hormone therapy includes the equivalent of a conjugated estrogen dose of 1.25 mg.

  2. The Prevalence of Erosive Esophagitis Is Not Significantly Increased in a Healthy Korean Population - Could It Be Explained?: A Multi-center Prospective Study

    PubMed Central

    Seo, Geom Seog; Jeon, Byung Jun; Chung, Jin Soo; Joo, Young-Eun; Kim, Dae Yong; Shin, Jeong Eun; Kim, Heung Up; Park, Hyun Kyung; Kim, Nayoung

    2013-01-01

    Background/Aims Researches on the potential risk factors for the development of erosive esophagitis have been conducted extensively, however, the results are conflicting. The aim of this multicenter study was to identify the prevalence rate and risk factors of erosive esophagitis and their interactions with residency status. Methods A total of 4,023 eligible subjects at 8 tertiary health care centers were evaluated using questionnaires, laboratory tests and endoscopy. Univariate and multivariate analyses were conducted to identify independent risk factors for erosive esophagitis. Results The prevalence rate of reflux esophagitis was 8.8%. Los Angeles grade A was common type of erosive esophagitis. Residence in a large urban areas was negatively associated with the development of erosive esophagitis (OR, 0.60; 95% CI, 0.40-0.90). The high body mass index (≥ 25 kg/m2) was more frequent in residents of small and medium-sized cities than those in big cities (38.8% and 26.9%, respectively; P < 0.001). Seronegativity of Helicobacter pylori was associated with increased erosive esophagitis (OR, 1.91; 95% CI, 1.48-2.46). Triglyceride ≥ 150 mg/dL (OR, 1.65; 95% CI, 1.08-2.07), fasting glucose level ≥ 126 mg/dL (OR, 1.73; 95% CI, 1.06-2.81), and hiatal hernia (OR, 3.11; 95% CI, 1.87-5.16) were also associated with erosive esophagitis. Conclusions The prevalence rate of erosive esophagitis and its risk factors in this study were similar to the result of 8.0% of nationwide study in 2006. Residency and obesity are more important independent risk factors than H. pylori infection status for development of erosive esophagitis in Korea. These results suggest that the prevalence rate of erosive esophagitis in Korea might not increase as in the Western countries. PMID:23350050

  3. Increased Proportion of Variance Explained and Prediction Accuracy of Survival of Breast Cancer Patients with Use of Whole-Genome Multiomic Profiles

    PubMed Central

    Vazquez, Ana I.; Veturi, Yogasudha; Behring, Michael; Shrestha, Sadeep; Kirst, Matias; Resende, Marcio F. R.; de los Campos, Gustavo

    2016-01-01

    Whole-genome multiomic profiles hold valuable information for the analysis and prediction of disease risk and progression. However, integrating high-dimensional multilayer omic data into risk-assessment models is statistically and computationally challenging. We describe a statistical framework, the Bayesian generalized additive model ((BGAM), and present software for integrating multilayer high-dimensional inputs into risk-assessment models. We used BGAM and data from The Cancer Genome Atlas for the analysis and prediction of survival after diagnosis of breast cancer. We developed a sequence of studies to (1) compare predictions based on single omics with those based on clinical covariates commonly used for the assessment of breast cancer patients (COV), (2) evaluate the benefits of combining COV and omics, (3) compare models based on (a) COV and gene expression profiles from oncogenes with (b) COV and whole-genome gene expression (WGGE) profiles, and (4) evaluate the impacts of combining multiple omics and their interactions. We report that (1) WGGE profiles and whole-genome methylation (METH) profiles offer more predictive power than any of the COV commonly used in clinical practice (e.g., subtype and stage), (2) adding WGGE or METH profiles to COV increases prediction accuracy, (3) the predictive power of WGGE profiles is considerably higher than that based on expression from large-effect oncogenes, and (4) the gain in prediction accuracy when combining multiple omics is consistent. Our results show the feasibility of omic integration and highlight the importance of WGGE and METH profiles in breast cancer, achieving gains of up to 7 points area under the curve (AUC) over the COV in some cases. PMID:27129736

  4. Increased Proportion of Variance Explained and Prediction Accuracy of Survival of Breast Cancer Patients with Use of Whole-Genome Multiomic Profiles.

    PubMed

    Vazquez, Ana I; Veturi, Yogasudha; Behring, Michael; Shrestha, Sadeep; Kirst, Matias; Resende, Marcio F R; de Los Campos, Gustavo

    2016-07-01

    Whole-genome multiomic profiles hold valuable information for the analysis and prediction of disease risk and progression. However, integrating high-dimensional multilayer omic data into risk-assessment models is statistically and computationally challenging. We describe a statistical framework, the Bayesian generalized additive model ((BGAM), and present software for integrating multilayer high-dimensional inputs into risk-assessment models. We used BGAM and data from The Cancer Genome Atlas for the analysis and prediction of survival after diagnosis of breast cancer. We developed a sequence of studies to (1) compare predictions based on single omics with those based on clinical covariates commonly used for the assessment of breast cancer patients (COV), (2) evaluate the benefits of combining COV and omics, (3) compare models based on (a) COV and gene expression profiles from oncogenes with (b) COV and whole-genome gene expression (WGGE) profiles, and (4) evaluate the impacts of combining multiple omics and their interactions. We report that (1) WGGE profiles and whole-genome methylation (METH) profiles offer more predictive power than any of the COV commonly used in clinical practice (e.g., subtype and stage), (2) adding WGGE or METH profiles to COV increases prediction accuracy, (3) the predictive power of WGGE profiles is considerably higher than that based on expression from large-effect oncogenes, and (4) the gain in prediction accuracy when combining multiple omics is consistent. Our results show the feasibility of omic integration and highlight the importance of WGGE and METH profiles in breast cancer, achieving gains of up to 7 points area under the curve (AUC) over the COV in some cases. PMID:27129736

  5. Enhanced Botrytis cinerea resistance of Arabidopsis plants grown in compost may be explained by increased expression of defense-related genes, as revealed by microarray analysis.

    PubMed

    Segarra, Guillem; Santpere, Gabriel; Elena, Georgina; Trillas, Isabel

    2013-01-01

    Composts are the products obtained after the aerobic degradation of different types of organic matter waste and can be used as substrates or substrate/soil amendments for plant cultivation. There is a small but increasing number of reports that suggest that foliar diseases may be reduced when using compost, rather than standard substrates, as growing medium. The purpose of this study was to examine the gene expression alteration produced by the compost to gain knowledge of the mechanisms involved in compost-induced systemic resistance. A compost from olive marc and olive tree leaves was able to induce resistance against Botrytis cinerea in Arabidopsis, unlike the standard substrate, perlite. Microarray analyses revealed that 178 genes were differently expressed, with a fold change cut-off of 1, of which 155 were up-regulated and 23 were down-regulated in compost-grown, as against perlite-grown plants. A functional enrichment study of up-regulated genes revealed that 38 Gene Ontology terms were significantly enriched. Response to stress, biotic stimulus, other organism, bacterium, fungus, chemical and abiotic stimulus, SA and ABA stimulus, oxidative stress, water, temperature and cold were significantly enriched, as were immune and defense responses, systemic acquired resistance, secondary metabolic process and oxireductase activity. Interestingly, PR1 expression, which was equally enhanced by growing the plants in compost and by B. cinerea inoculation, was further boosted in compost-grown pathogen-inoculated plants. Compost triggered a plant response that shares similarities with both systemic acquired resistance and ABA-dependent/independent abiotic stress responses.

  6. Biogenesis and Membrane Targeting of Lipoproteins.

    PubMed

    Narita, Shin-Ichiro; Tokuda, Hajime

    2010-09-01

    Bacterial lipoproteins represent a unique class of membrane proteins, which are anchored to membranes through triacyl chains attached to the amino-terminal cysteine. They are involved in various functions localized in cell envelope. Escherichia coli possesses more than 90 species of lipoproteins, most of which are localized in the outer membrane, with others being in the inner membrane. All lipoproteins are synthesized in the cytoplasm with an N-terminal signal peptide, translocated across the inner membrane by the Sec translocon to the periplasmic surface of the inner membrane, and converted to mature lipoproteins through sequential reactions catalyzed by three lipoprotein-processing enzymes: Lgt, LspA, and Lnt. The sorting of lipoproteins to the outer membrane requires a system comprising five Lol proteins. An ATP-binding cassette transporter, LolCDE, initiates the sorting by mediating the detachment of lipoproteins from the inner membrane. Formation of the LolA-lipoprotein complex is coupled to this LolCDE-dependent release reaction. LolA accommodates the amino-terminal acyl chain of lipoproteins in its hydrophobic cavity, thereby generating a hydrophilic complex that can traverse the periplasmic space by diffusion. Lipoproteins are then transferred to LolB on the outer membrane and anchored to the inner leaflet of the outer membrane by the action of LolB. In contrast, since LolCDE does not recognize lipoproteins possessing Asp at position +2, these lipoproteins remain anchored to the inner membrane. Genes for Lol proteins are widely conserved among gram-negative bacteria, and Lol-mediated outer membrane targeting of lipoproteins is considered to be the general lipoprotein localization mechanism. PMID:26443779

  7. Biogenesis and Membrane Targeting of Lipoproteins.

    PubMed

    Narita, Shin-Ichiro; Tokuda, Hajime

    2010-09-01

    Bacterial lipoproteins represent a unique class of membrane proteins, which are anchored to membranes through triacyl chains attached to the amino-terminal cysteine. They are involved in various functions localized in cell envelope. Escherichia coli possesses more than 90 species of lipoproteins, most of which are localized in the outer membrane, with others being in the inner membrane. All lipoproteins are synthesized in the cytoplasm with an N-terminal signal peptide, translocated across the inner membrane by the Sec translocon to the periplasmic surface of the inner membrane, and converted to mature lipoproteins through sequential reactions catalyzed by three lipoprotein-processing enzymes: Lgt, LspA, and Lnt. The sorting of lipoproteins to the outer membrane requires a system comprising five Lol proteins. An ATP-binding cassette transporter, LolCDE, initiates the sorting by mediating the detachment of lipoproteins from the inner membrane. Formation of the LolA-lipoprotein complex is coupled to this LolCDE-dependent release reaction. LolA accommodates the amino-terminal acyl chain of lipoproteins in its hydrophobic cavity, thereby generating a hydrophilic complex that can traverse the periplasmic space by diffusion. Lipoproteins are then transferred to LolB on the outer membrane and anchored to the inner leaflet of the outer membrane by the action of LolB. In contrast, since LolCDE does not recognize lipoproteins possessing Asp at position +2, these lipoproteins remain anchored to the inner membrane. Genes for Lol proteins are widely conserved among gram-negative bacteria, and Lol-mediated outer membrane targeting of lipoproteins is considered to be the general lipoprotein localization mechanism.

  8. Prothrombotic lipoprotein patterns in stroke.

    PubMed

    Podrez, Eugene A; Byzova, Tatiana V

    2016-03-10

    The importance of research focused on the final events of atherothrombosis cannot be overestimated. Platelet hyperreactivity leading to thrombosis is the main reason for mortality and morbidity in patients with cardiovascular disease and stroke, which together remain a leading cause of death in developed countries. In this issue of Blood, Shen et al1 establish another functional link between proatherogenic lipoproteins and platelet-mediated thrombus formation with a specific focus on stroke. In their model, the initiating component is L5, the electronegative subfraction of low-density lipoproteins (LDLs), which was shown to be substantially elevated in patients with ischemic stroke. L5 was shown to activate platelets via its receptor, lectin-like oxidized LDL receptor-1 (LOX-1), and αβ amyloid peptide, which together contribute to platelet hyperreactivity and stroke complications. PMID:26965920

  9. Effect of a new herbo-mineral hypolipidemic agent on plasma lipoprotein pattern in rat atherosclerosis.

    PubMed

    Tarvady, S; Dhar, S C

    1990-07-01

    Hyperlipidemia was induced in rats by feeding an atherogenic diet for 5 months. The effect of administration of an indigenous hypolipidemic agent, Anna Kaara Raaja Sindhooram (AKRS) on the plasma lipoprotein profile was studied in the presence and absence of dietary lipid stimuli. Hyperlipidemia produced an enormous increase in the cholesterol and triglyceride contents of the low density (LDL) and very low density (VLDL) lipoprotein fractions and reduced the level of the putative non-atherogenic high density cholesterol (HDL-C). The agarose gel electrophoretic pattern showed a decrease in alpha-lipoproteins and an increase in beta-lipoproteins in the hyperlipidemic rats. AKRS treatment for 5 months altered the lipoprotein pattern favourably by raising HDL-C and lowering LDL-C in the treated rats. PMID:2272653

  10. Extended-release niacin for modifying the lipoprotein profile.

    PubMed

    Guyton, John R

    2004-06-01

    Niacin (nicotinic acid) favourably modifies all aspects of the lipoprotein profile; it raises high-density lipoprotein cholesterol (HDL-C) levels, lowers triglyceride, low-density lipoprotein cholesterol (LDL-C) and lipoprotein(a) levels and reduces atherogenic small, dense LDL particles. One large monotherapy trial and multiple trials of niacin in combination with other lipid-modifying drugs show remarkable consistency in the ability of niacin to improve angiographic and clinical outcomes. In practice, however, the use of regular, immediate-release niacin (niacin IR) has been limited by the side effect of flushing. Sustained-release (SR) formulations, developed in order to reduce flushing, were found to cause serious hepatotoxicity at varying frequencies. Extended-release niacin (niacin ER; Niaspan), Kos Pharmaceuticals, Inc.) is a prescription formulation of niacin, administered once-daily at bedtime. Niacin ER is as effective in modifying lipoprotein levels as an equal daily dose of niacin IR and it causes less flushing. In addition, niacin ER administered once-daily is not associated with the increased hepatotoxicity reported with SR formulations. Niacin ER has been studied extensively in combination therapy with statins, including lovastatin in a recently introduced combination tablet. Myopathy has not been a substantial problem in statin/niacin ER combination therapy. Finally, a study of niacin ER given to diabetic patients showed only mild trends towards increased glycosylated haemoglobin concentrations and a need for additional antidiabetic medication. Thus, niacin ER represents an effective and safe option in the management of low levels of HDL-C and other lipoprotein abnormalities in a variety of settings.

  11. Effect of dietary Fatty acids on human lipoprotein metabolism: a comprehensive update.

    PubMed

    Ooi, Esther M M; Watts, Gerald F; Ng, Theodore W K; Barrett, P Hugh R

    2015-06-01

    Dyslipidemia is a major risk factor for cardiovascular disease (CVD). Dietary fatty-acid composition regulates lipids and lipoprotein metabolism and may confer CVD benefit. This review updates understanding of the effect of dietary fatty-acids on human lipoprotein metabolism. In elderly participants with hyperlipidemia, high n-3 polyunsaturated fatty-acids (PUFA) consumption diminished hepatic triglyceride-rich lipoprotein (TRL) secretion and enhanced TRL to low-density lipoprotein (LDL) conversion. n-3 PUFA also decreased TRL-apoB-48 concentration by decreasing TRL-apoB-48 secretion. High n-6 PUFA intake decreased very low-density lipoprotein (VLDL) cholesterol and triglyceride concentrations by up-regulating VLDL lipolysis and uptake. In a study of healthy subjects, the intake of saturated fatty-acids with increased palmitic acid at the sn-2 position was associated with decreased postprandial lipemia. Low medium-chain triglyceride may not appreciably alter TRL metabolism. Replacing carbohydrate with monounsaturated fatty-acids increased TRL catabolism. Trans-fatty-acid decreased LDL and enhanced high-density lipoprotein catabolism. Interactions between APOE genotype and n-3 PUFA in regulating lipid responses were also described. The major advances in understanding the effect of dietary fatty-acids on lipoprotein metabolism has centered on n-3 PUFA. This knowledge emphasizes the importance of regulating lipoprotein metabolism as a mode to improve plasma lipids and potentially CVD risk. Additional studies are required to better characterize the cardiometabolic effects of other dietary fatty-acids. PMID:26043038

  12. ION MOBILITY ANALYSIS OF LIPOPROTEIN SUBFRACTIONS IDENTIFIES THREE INDEPENDENT AXES OF CARDIOVASCULAR RISK

    PubMed Central

    Musunuru, Kiran; Orho-Melander, Marju; Caulfield, Michael P.; Li, Shuguang; Salameh, Wael A.; Reitz, Richard E.; Berglund, Göran; Hedblad, Bo; Engström, Gunnar; Williams, Paul T.; Kathiresan, Sekar; Melander, Olle; Krauss, Ronald M.

    2009-01-01

    Objective Whereas epidemiologic studies show that levels of low-density-lipoprotein cholesterol (LDL-C) and high-density-lipoprotein cholesterol (HDL-C) predict incident cardiovascular disease (CVD), there is limited evidence relating lipoprotein subfractions and composite measures of subfractions to risk for CVD in prospective cohort studies. Methods and Results We tested whether combinations of lipoprotein subfractions independently predict CVD in a prospective cohort of 4,594 initially healthy men and women (the Malmö Diet and Cancer Study, mean follow-up 12.2 years, 377 incident cardiovascular events). Plasma lipoproteins and lipoprotein subfractions were measured at baseline with a novel, high-resolution ion mobility technique. Principal component analysis (PCA) of subfraction concentrations identified three major independent (i.e., zero correlation) components of CVD risk, one representing LDL-associated risk, a second representing HDL-associated protection, and the third representing a pattern of decreased large HDL, increased small/medium LDL, and increased triglycerides. The last corresponds to the previously described “atherogenic lipoprotein phenotype.” Several genes that may underlie this phenotype—CETP, LIPC, GALNT2, MLXIPL, APOA1/A5, LPL—are suggested by SNPs associated with the combination of small/medium LDL and large HDL. Conclusion PCA on lipoprotein subfractions yielded three independent components of CVD risk. Genetic analyses suggest these components represent independent mechanistic pathways for development of CVD. PMID:19729614

  13. Serum Lipoproteins Are Critical for Pulmonary Innate Defense against Staphylococcus aureus Quorum Sensing.

    PubMed

    Manifold-Wheeler, Brett C; Elmore, Bradley O; Triplett, Kathleen D; Castleman, Moriah J; Otto, Michael; Hall, Pamela R

    2016-01-01

    Hyperlipidemia has been extensively studied in the context of atherosclerosis, whereas the potential health consequences of the opposite extreme, hypolipidemia, remain largely uninvestigated. Circulating lipoproteins are essential carriers of insoluble lipid molecules and are increasingly recognized as innate immune effectors. Importantly, severe hypolipidemia, which may occur with trauma or critical illness, is clinically associated with bacterial pneumonia. To test the hypothesis that circulating lipoproteins are essential for optimal host innate defense in the lung, we used lipoprotein-deficient mice and a mouse model of Staphylococcus aureus pneumonia in which invasive infection requires virulence factor expression controlled by the accessory gene regulator (agr) operon. Activation of agr and subsequent virulence factor expression is inhibited by apolipoprotein B, the structural protein of low-density lipoprotein, which binds and sequesters the secreted agr-signaling peptide (AIP). In this article, we report that lipoprotein deficiency impairs early pulmonary innate defense against S. aureus quorum-sensing-dependent pathogenesis. Specifically, apolipoprotein B levels in the lung early postinfection are significantly reduced with lipoprotein deficiency, coinciding with impaired host control of S. aureus agr-signaling and increased agr-dependent morbidity (weight loss) and inflammation. Given that lipoproteins also inhibit LTA- and LPS-mediated inflammation, these results suggest that hypolipidemia may broadly impact posttrauma pneumonia susceptibility to both Gram-positive and -negative pathogens. Together with previous reports demonstrating that hyperlipidemia also impairs lung innate defense, these results suggest that maintenance of normal serum lipoprotein levels is necessary for optimal host innate defense in the lung.

  14. Explaining Increases in Higher Education Costs

    ERIC Educational Resources Information Center

    Archibald, Robert B.; Feldman, David H.

    2008-01-01

    The real cost of higher education per full-time equivalent student has grown substantially over the last 75 years, and the rapid rise since the early 1980s is a cause of considerable public concern. Opinion surveys consistently find that how much one has to pay for a college education is a serious national issue. In his July 1996 congressional…

  15. Size of lipoproteins in intestinal lympho of sheep and suckling lambs.

    PubMed

    Gooden, J M; Fraser, R; Bosanquet, A G; Bickerstaffe, R

    1979-12-01

    The relative importance of chylomicrons (Sf greater than 400) and very low density lipoproteins (Sf 20--400) in transporting lipids in lymph was investigated in surgically prepared adult sheep and pre-ruminant lambs fed low fat diets or infused intraduodenally with corn oil. The concentration of triacylglycerol in the intestinal lymph of sheep and lambs was increased from 520 and 925 mg/100 ml to 2326 and 2367 mg/100 ml respectively when corn oil was infused into the duodenum and the ratio of triacylglycerol to phospholipid changed from 3.7 and 5.5 to 9.5 and 9.7 respectively. The flow of lymph also increased. Electron microscopy and analytical and preparative ultracentrifugation showed that lymph lipoproteins from sheep and lambs fed low fat diets consisted mainly of lipoproteins 50 nm in diameter and that very low density lipoproteins (Sf 20--400) contirbuted up to 75% of the Sf greater than 20 lipoproteins. There were no lipoproteins with diameters above 150 nm. Infusion of corn oil into the duodenum of sheep and lambs increased the diameters of lymph lipoproteins. Most were 80--100 nm in diameter but substantial numbers above 150 and up to 400 mn were observed. The maximum contribution of very low density lipoproteins (Sf 20--400) to lipoproteins of Sf greater than 20 was 27--30%. The above findings demonstrate that the size of intestinal lymph lipoprotein particles increases with the amount of lipid absorbed from the small intestines and that the transport of lymph lipids, in ruminants, is similar to that previously found in rats, rabbits and man.

  16. Dense low density lipoproteins and coronary artery disease.

    PubMed

    Krauss, R M

    1995-02-23

    A common, genetically influenced lipoprotein subclass profile characterized by a predominance of small, dense low density lipoprotein (LDL) particles is associated with relative increases in plasma triglyceride and apolipoprotein (apo) B-100, and reduced levels of high density lipoprotein cholesterol and apoAI. Recently, this phenotype has also been associated with the insulin resistance syndrome and familial combined hyperlipidemia. Case-control studies of patients with myocardial infarction and angiographically documented coronary artery disease (CAD) have demonstrated that 40-50% of patients have the small, dense LDL phenotype and that this is associated with a 2- to 3-fold increase in disease risk. However, because of strong statistical correlations among the multiple features of the phenotype, it has been difficult to determine whether > or = 1 of its metabolic alterations are primarily responsible for increased CAD susceptibility. More direct evidence for enhanced atherogenicity of lipoproteins in this trait derives from a recent report that LDL-cholesterol lowering by diet and drug treatment resulted in reduced coronary angiographic progression in CAD subjects with predominantly dense LDL, but that an equivalent lowering of LDL cholesterol in subjects with more buoyant LDL was not associated with angiographic benefit. Further, in vitro findings have indicated increased susceptibility of small, dense LDL to oxidative modification and relatively greater binding of these particles to arterial wall proteoglycans. Thus, the small, dense LDL trait may underlie familial predisposition to CAD in a large proportion of the population, and its presence may indicate the potential for benefit from specific therapeutic interventions.

  17. [Atherogenic modification of low-density lipoproteins].

    PubMed

    Sukhorukov, V N; Karagodin, V P; Orekhov, A N

    2016-05-01

    One of the first manifestations of atherosclerosis is accumulation of extra- and intracellular cholesterol esters in the arterial intima. Formation of foam cells is considered as a trigger in the pathogenesis of atherosclerosis. Low density lipoprotein (LDL) circulating in human blood is the source of lipids accumulated in the arterial walls. This review considered features and role in atherogenesis different modified forms of LDL: oxidized, small dense, electronegative and especially desialylated LDL. Desialylated LDL of human blood plasma is capable to induce lipid accumulation in cultured cells and it is atherogenic. LDL possesses numerous alterations of protein, carbohydrate and lipid moieties and therefore can be termed multiple-modified LDL. Multiple modification of LDL occurs in human blood plasma and represents a cascade of successive changes in the lipoprotein particle: desialylation, loss of lipids, reduction in the particle size, increase of surface electronegative charge, etc. In addition to intracellular lipid accumulation, stimulatory effects of naturally occurring multiple-modified LDL on other processes involved in the development of atherosclerotic lesions, namely cell proliferation and fibrosis, were shown. PMID:27562992

  18. Clinical applications of advanced lipoprotein testing in diabetes mellitus

    PubMed Central

    Moin, Danyaal S; Rohatgi, Anand

    2011-01-01

    Traditional lipid profiles often fail to fully explain the elevated cardiovascular risk of individuals with diabetes mellitus. Advanced lipoprotein testing offers a novel means to evaluate dyslipidemia and refine risk estimation. Numerous observational studies have demonstrated a characteristic pattern of elevated levels of small, dense LDL particles, out of proportion to traditional lipid levels, in patients with both diabetes mellitus and the metabolic syndrome. Commonly used glucose and lipid-lowering agents have varied effects in patients with diabetes on both LDL and HDL subfractions. The exact role of advanced lipoprotein testing in patients with diabetes mellitus and the metabolic syndrome remains unclear but may offer improved assessment of cardiovascular risk compared with traditional lipid measurements. PMID:22162979

  19. Induction kinetics and cell surface distribution of Escherichia coli lipoprotein under lac promoter control.

    PubMed Central

    Hiemstra, H; de Hoop, M J; Inouye, M; Witholt, B

    1986-01-01

    The induction kinetics and surface accessibility of the outer membrane lipoprotein were studied in an Escherichia coli strain with the lpp gene under control of the lac promoter. Free lipoprotein appeared rapidly after induction with isopropyl-beta-D-thiogalactopyranoside and reached a steady-state level after 30 min. The newly induced lipoprotein was slowly bound to the peptidoglycan layer. Immunological methods were developed to detect lipoprotein accessible at the cell surface after various pretreatments as well as peptidoglycan-bound lipoprotein at the surface of isolated peptidoglycan sacculi with specific antibodies in combination with 125I-protein A. With these methods an increase in lipoprotein molecules at the cell surface and bound to the peptidoglycan sacculus could be detected following induction. The topology of newly synthesized lipoprotein was examined in thin sections as well as at the cell surface and the surface of the peptidoglycan sacculus with immunoelectron microscopy. Ultrathin cell sections, whole cells, and isolated peptidoglycan sacculi showed lipoprotein distributed homogeneously over the entire surface. Images PMID:3531164

  20. Human very low density lipoproteins and chylomicrons can protect against endotoxin-induced death in mice.

    PubMed Central

    Harris, H W; Grunfeld, C; Feingold, K R; Rapp, J H

    1990-01-01

    Endotoxemia stimulates many physiologic responses including disturbances in lipid metabolism. We hypothesized that this lipemia may be part of a defensive mechanism by which the body combats the toxic effects of circulating endotoxin. We tested the effects of mixtures of endotoxin, lipoproteins, and lipoprotein-free plasma and determined the ability of varying concentrations of human very low density lipoproteins (VLDL) and chylomicrons, as well as low density lipoproteins (LDL) and high density lipoproteins (HDL), and of the synthetic lipid emulsion SOYACAL to prevent endotoxin-induced death in mice. This study demonstrates that the triglyceride-rich VLDL and chylomicrons, as well as cholesterol-rich LDL and HDL, and cholesterol-free SOYACAL can protect against endotoxin-induced death. Protection required small amounts of lipoprotein-free plasma, and depended on the incubation time and the concentration of lipoprotein lipid. Despite stringent techniques to prevent exogenous endotoxin contamination eight of ten duplicate VLDL preparations contained endotoxin (5,755 +/- 3,514 ng endotoxin/mg triglyceride, mean +/- SEM) making the isolation of endotoxin-free VLDL difficult. In contrast, simultaneous preparations of LDL and HDL were relatively free of endotoxin contamination (3 +/- 3 and 320 +/- 319 ng/mg total cholesterol, respectively), suggesting that the contamination of VLDL occurs in vivo and not during the isolation procedure. These observations suggest a possible role for increased triglyceride-rich lipoproteins in the host's defense against endotoxemia and infection. Images PMID:2394827

  1. Drug delivery via lipoprotein-based carriers: answering the challenges in systemic therapeutics.

    PubMed

    Sabnis, Nirupama; Lacko, Andras G

    2012-05-01

    Plasma lipoproteins are transporters of lipids and other hydrophobic molecules in the mammalian circulation. Lipoproteins also have a strong potential to serve as drug-delivery vehicles due to their small size, long residence time in the circulation and high-drug payload. Consequently, lipoproteins and synthetic/reconstituted lipoprotein preparations have been evaluated with increasing interest towards clinical applications, particularly for cancer diagnostics/imaging and chemotherapy. In this review, past and current studies on lipoproteins and similar alternative drug carriers are discussed regarding their suitability as agents to deliver drugs, primarily to cancer cells and tumors. A lipoprotein-based delivery strategy may also provide a novel platform for improving the therapeutic efficacy of drugs that have previously been judged unsuitable or had only limited application due to poor solubility. An additional, and perhaps the most important aspect of the drug-delivery process via lipoprotein-type carriers, is the receptor-mediated uptake of the payload from the lipoprotein complex. Monitoring the expression of specific receptors prior to treatment could, thus, give rise to efficient selection of optimally responsive patients, resulting in a successful personalized therapy regimen.

  2. A more flexible lipoprotein sorting pathway.

    PubMed

    Chahales, Peter; Thanassi, David G

    2015-05-01

    Lipoprotein biogenesis in Gram-negative bacteria occurs by a conserved pathway, each step of which is considered essential. In contrast to this model, LoVullo and colleagues demonstrate that the N-acyl transferase Lnt is not required in Francisella tularensis or Neisseria gonorrhoeae. This suggests the existence of a more flexible lipoprotein pathway, likely due to a modified Lol transporter complex, and raises the possibility that pathogens may regulate lipoprotein processing to modulate interactions with the host. PMID:25755190

  3. Effects of human low and high density lipoproteins on the binding of rat intermediate density lipoproteins to rat liver membranes

    SciTech Connect

    Brissette, L.; Nol, S.P.

    1986-05-25

    Upon incubation with rat liver membranes, radioiodinated rat intermediate density lipoproteins (IDL) interacted with at least two binding sites having a low and a high affinity as demonstrated by the curvilinear Scatchard plots obtained from the specific binding data. The purpose of our work was to identify the nature of these binding sites. Human low density lipoproteins (LDL), contain apolipoprotein B only, and human high density lipoproteins (HDL3), containing neither apolipoprotein B nor E, were both capable of decreasing the specific binding of rat /sup 125/I-IDL. The Scatchard analysis clearly revealed that only the low affinity component was affected by the addition of these human lipoproteins. In fact, the low affinity binding component gradually decreased as the amount of human LDL or HDL3 increased in the binding assay. At a 200-fold excess of human LDL or HDL3, the low affinity binding was totally masked, and the Scatchard plot of the specific /sup 125/I-IDL binding became linear. Only the high affinity binding component was left, enabling a precise measurement of its binding parameters. In a series of competitive displacement experiments in which the binding assay contained a 200-fold excess of human LDL or HDL3, only unlabeled rat IDL effectively displaced the binding of rat /sup 125/I-IDL. We conclude that the low affinity binding of rat IDL to rat liver membranes is due to weak interactions with unspecified lipoprotein binding sites. The camouflage of these sites by human lipoproteins makes possible the study of IDL binding to the high affinity component which likely represents the combined effect of IDL binding to both the remnant and the LDL receptors.

  4. Turkish Heart Study: lipids, lipoproteins, and apolipoproteins.

    PubMed

    Mahley, R W; Palaoğlu, K E; Atak, Z; Dawson-Pepin, J; Langlois, A M; Cheung, V; Onat, H; Fulks, P; Mahley, L L; Vakar, F

    1995-04-01

    detrimental lipid profile. Lipoprotein[a] levels were identical among the regions surveyed (mean: 11-15 mg/dl) and displayed the typical distribution with an increased number of individuals with low levels. The 90th percentile value for lipoprotein[a] was about 30 mg/dl for both men and women. Smoking, a major risk factor for heart disease, was very prevalent in the Turkish population, especially in men (50-70% smokers) and women in urban areas (30-40% smokers). Hypertension, defined as a systolic pressure > 140 or a diastolic pressure of > 90 occurred in approximately 17% and 26% of the men and women surveyed, respectively.(ABSTRACT TRUNCATED AT 400 WORDS)

  5. Obesity and Insulin Resistance Are the Main Determinants of Postprandial Lipoprotein Dysmetabolism in Polycystic Ovary Syndrome

    PubMed Central

    Phelan, Niamh; Boran, Gerard; O'Connor, Anna-Louise; Gibney, James

    2016-01-01

    Postprandial dyslipidaemia may be a plausible mechanism by which polycystic ovary syndrome (PCOS) increases cardiovascular risk. We sought to investigate whether the postprandial glucose and insulin and lipid and lipoprotein responses, including that of apolipoprotein B-48 (apoB-48) containing chylomicrons, to a mixed meal are different in obese PCOS women when compared to obese control subjects and whether differences, if any, are related to obesity, insulin resistance (IR), hyperandrogenaemia, or PCOS status. 26 women with PCOS (age 30.4 ± 1.2 years (mean ± SEM), body mass index (BMI) 36.8 ± 1.5 kg/m2) and 26 non-PCOS subjects (age 34.1 ± 0.9 years, BMI 31.5 ± 1.0 kg/m2) were studied before and up to 8 hours following a standard mixed meal. AUC-triglyceride (AUC-TG) was higher and AUC-high-density lipoprotein (AUC-HDL) lower in PCOS women. These differences were not apparent when BMI was accounted for. Insulin sensitivity (SI), AUC-apoB-48, and AUC-apolipoprotein B (AUC-apoB) were found to be independent predictors of AUC-TG, accounting for 55% of the variance. Only AUC-insulin remained significantly elevated following adjustment for BMI. Obesity related IR explains postprandial hypertriglyceridaemia and hyperinsulinaemic responses. Management of obesity in premenopausal women with PCOS is likely to reduce their cardiovascular risk burden. PMID:26989412

  6. Lipoprotein lipase activity is required for cardiac lipid droplet production.

    PubMed

    Trent, Chad M; Yu, Shuiqing; Hu, Yunying; Skoller, Nathan; Huggins, Lesley A; Homma, Shunichi; Goldberg, Ira J

    2014-04-01

    The rodent heart accumulates TGs and lipid droplets during fasting. The sources of heart lipids could be either FFAs liberated from adipose tissue or FAs from lipoprotein-associated TGs via the action of lipoprotein lipase (LpL). Because circulating levels of FFAs increase during fasting, it has been assumed that albumin transported FFAs are the source of lipids within heart lipid droplets. We studied mice with three genetic mutations: peroxisomal proliferator-activated receptor α deficiency, cluster of differentiation 36 (CD36) deficiency, and heart-specific LpL deletion. All three genetically altered groups of mice had defective accumulation of lipid droplet TGs. Moreover, hearts from mice treated with poloxamer 407, an inhibitor of lipoprotein TG lipolysis, also failed to accumulate TGs, despite increased uptake of FFAs. TG storage did not impair maximal cardiac function as measured by stress echocardiography. Thus, LpL hydrolysis of circulating lipoproteins is required for the accumulation of lipids in the heart of fasting mice.

  7. Lipoprotein lipase activity is required for cardiac lipid droplet production.

    PubMed

    Trent, Chad M; Yu, Shuiqing; Hu, Yunying; Skoller, Nathan; Huggins, Lesley A; Homma, Shunichi; Goldberg, Ira J

    2014-04-01

    The rodent heart accumulates TGs and lipid droplets during fasting. The sources of heart lipids could be either FFAs liberated from adipose tissue or FAs from lipoprotein-associated TGs via the action of lipoprotein lipase (LpL). Because circulating levels of FFAs increase during fasting, it has been assumed that albumin transported FFAs are the source of lipids within heart lipid droplets. We studied mice with three genetic mutations: peroxisomal proliferator-activated receptor α deficiency, cluster of differentiation 36 (CD36) deficiency, and heart-specific LpL deletion. All three genetically altered groups of mice had defective accumulation of lipid droplet TGs. Moreover, hearts from mice treated with poloxamer 407, an inhibitor of lipoprotein TG lipolysis, also failed to accumulate TGs, despite increased uptake of FFAs. TG storage did not impair maximal cardiac function as measured by stress echocardiography. Thus, LpL hydrolysis of circulating lipoproteins is required for the accumulation of lipids in the heart of fasting mice. PMID:24493834

  8. Triolein and trilinolein ameliorate oxidized low-density lipoprotein-induced oxidative stress in endothelial cells.

    PubMed

    Luo, Ting; Deng, Ze-yuan; Li, Xiao-ping; Rao, Huan; Fan, Ya-wei

    2014-05-01

    Uptake of oxidized low-density lipoprotein by endothelial cells is a critical step for the initiation of atherosclerosis. Triacylglycerol uptake in these cells is understood to be a part of the process. The present investigation, comparison among the effects of simple acylglycerol, including tristearin, triolein, and trilinolein, upon oxidized low-density lipoprotein -induced oxidative stress was undertaken. Results indicated that trilinolein (78 % ± 0.02) and triolein (90 % ± 0.01) increased cell viability of endothelial cells exposed to oxidized low-density lipoprotein, whereas tristearin decreased the cell viability (55 % ± 0.03) (P < 0.05). Oxidized low-density lipoprotein treatment significantly increased apoptosis (23 %), compared to cells simultaneously exposed to trilinolein (19 %) or triolein (16 %), where apoptosis was reduced (P < 0.05). On the other hand, exposure to tristearin further increased oxidized low-density lipoprotein -induced cell apoptosis (34 %). Treatment with trilinolein or triolein on oxidized low-density lipoprotein -stimulated endothelial cells inhibited the expression of ICAM-1 and E-selectin mRNA. Moreover, both trilinolein and triolein demonstrated a strong antioxidant response to oxidative stress caused by oxidized low-density lipoprotein. Taken together, the results indicate trilinolein and triolein possess anti-inflammatory properties, which are mediated via the antioxidant defense system.

  9. New horizons in lipoprotein research.

    PubMed

    Scott, J

    1987-08-01

    The present decade was heralded by the identification of cDNA clones for apo-AI, HMG CoA reductase and the LDL receptor. Today we have descriptions of many other proteins involved in lipid metabolism and of the genes that code for them. Structure and function have been probed by techniques for protein blotting and by in vitro mutagenesis of proteins. The details of gene regulation are now beginning to be unravelled and we can expect exciting new developments in the understanding of how gene expression affects plasma lipoprotein levels. New and powerful techniques have been established for identifying known mutations and for detecting new mutations. Discovery of restriction fragment length polymorphisms have allowed the association between these DNA markers and particular genes involved in lipoprotein metabolism to be probed. The extent to which particular gene loci contribute to the variation in plasma cholesterol levels is being analysed using the methods of genetic epidemiology. With the advent of methods for establishing linkage and physical maps of the human genome, it is now possible to identify the genes responsible for any disorder in which clinical material can be assembled. From this rapidly advancing knowledge it must be anticipated that many new exciting diagnostic and therapeutic possibilities will emerge.

  10. Dietary fats, fatty acids, and their effects on lipoproteins.

    PubMed

    Denke, Margo A

    2006-11-01

    All saturated fatty acids, with the notable exception of stearic acid (C18:0), raise low-density lipoprotein (LDL) cholesterol levels. A few less ubiquitous fatty acids also have LDL cholesterol effects. Trans-monounsaturated fatty acids, at equivalent doses of saturated fatty acids, raise LDL cholesterol. Polyunsaturated fatty acids, at three times the dose of saturated fatty acids, lower LDL cholesterol. Higher intakes of most fatty acids raise high-density lipoprotein (HDL) cholesterol, with the notable exception of trans-monounsaturated fatty acids, which lower HDL cholesterol to the same extent as carbohydrate when either is substituted for other dietary fatty acids. Conjugated linoleic acids containing both cis and trans bonds and cis-monounsaturated fatty acids neither raise nor lower cholesterol concentrations of lipoproteins. The omega-3 fatty acids from fish lower triglyceride levels. Although dietary composition remains an important, modifiable predictor of dyslipidemia, overconsumption of any form of dietary energy may replace overconsumption of saturated fat as the primary factor that increases lipid and lipoprotein levels. PMID:17045072

  11. Altered Serum Lipoprotein Profiles in Male and Female Power Lifters Ingesting Anabolic Steroids.

    ERIC Educational Resources Information Center

    Cohen, Jonathan C.; And Others

    1986-01-01

    Serum lipoprotein profiles were measured in nine male and three female weightlifters who were taking anabolic steroids. The profiles suggest that steriod users may face an increased risk of coronary artery disease. (Author/MT)

  12. Computational studies of plasma lipoprotein lipids.

    PubMed

    Pan, Lurong; Segrest, Jere P

    2016-10-01

    Plasma lipoproteins are macromolecular assemblies of proteins and lipids found in the blood. The lipid components of lipoproteins are amphipathic lipids such as phospholipids (PLs), and unesterified cholesterols (UCs) and hydrophobic lipids such as cholesteryl esters (CEs) and triglycerides (TGs). Since lipoproteins are soft matter supramolecular assemblies easily deformable by thermal fluctuations and they also exist in varying densities and protein/lipid components, a detailed understanding of their structure/function is experimentally difficult. Molecular dynamics (MD) simulation has emerged as a particularly promising way to explore the structure and dynamics of lipoproteins. The purpose of this review is to survey the current status of computational studies of the lipid components of the lipoproteins. Computational studies aim to explore three levels of complexity for the 3-dimensional structural dynamics of lipoproteins at various metabolic stages: (i) lipoprotein particles consist of protein with minimal lipid; (ii) lipoprotein particles consist of PL-rich discoidal bilayer-like lipid particles; (iii) mature circulating lipoprotein particles consist of CE-rich or TG-rich spheroidal lipid-droplet-like particles. Due to energy barriers involved in conversion between these species, other biomolecules also participate in lipoprotein biological assembly. For example: (i) lipid-poor apolipoprotein A-I (apoA-I) interacts with ATP-binding cassette transporter A1 (ABCA1) to produce nascent discoidal high density lipoprotein (dHDL) particles; (ii) lecithin-cholesterol acyltransferase (LCAT) mediates the conversion of UC to CE in dHDL, driving spheroidal HDL (sHDL) formation; (iii) transfer proteins, cholesterol ester transfer protein (CETP) and phospholipid transfer protein (PLTP), transfer both CE and TG and PL, respectively, between lipoprotein particles. Computational studies have the potential to explore different lipoprotein particles at each metabolic stage in

  13. The pathophysiology of intestinal lipoprotein production

    PubMed Central

    Giammanco, Antonina; Cefalù, Angelo B.; Noto, Davide; Averna, Maurizio R.

    2015-01-01

    Intestinal lipoprotein production is a multistep process, essential for the absorption of dietary fats and fat-soluble vitamins. Chylomicron assembly begins in the endoplasmic reticulum with the formation of primordial, phospholipids-rich particles that are then transported to the Golgi for secretion. Several classes of transporters play a role in the selective uptake and/or export of lipids through the villus enterocytes. Once secreted in the lymph stream, triglyceride-rich lipoproteins (TRLs) are metabolized by Lipoprotein lipase (LPL), which catalyzes the hydrolysis of triacylglycerols of very low density lipoproteins (VLDLs) and chylomicrons, thereby delivering free fatty acids to various tissues. Genetic mutations in the genes codifying for these proteins are responsible of different inherited disorders affecting chylomicron metabolism. This review focuses on the molecular pathways that modulate the uptake and the transport of lipoproteins of intestinal origin and it will highlight recent findings on TRLs assembly. PMID:25852563

  14. Topics in lipoprotein glomerulopathy: an overview.

    PubMed

    Saito, Takao; Matsunaga, Akira; Ito, Kenji; Nakashima, Hitoshi

    2014-04-01

    Here, we introduce four topics in lipoprotein glomerulopathy (LPG). To date, approximately 150 cases of LPG have been reported worldwide. Recently two groups studied hot spots of APOE-Sendai and APOE-Kyoto, the representative variants of LPG, in narrow areas of Japan and China, respectively. They suggest that both variants have descended through a founder effect. APOE-Sendai and APOE-Kyoto cause different transformations of apolipoproteins aggregating lipoproteins and resulting in lipoprotein thrombi within the glomerulus. Moreover, the macrophage impairment in LPG may provide another mechanism for lipoprotein thrombi in which massive lipoproteins accumulate in the glomerulus without foam cells. On the other hand, the administration of fibrate with the intensive control of triglyceride and apolipoprotein E particularly from the early phase will ameliorate LPG and prevent renal dysfunction. PMID:24149835

  15. Topics in lipoprotein glomerulopathy: an overview.

    PubMed

    Saito, Takao; Matsunaga, Akira; Ito, Kenji; Nakashima, Hitoshi

    2014-04-01

    Here, we introduce four topics in lipoprotein glomerulopathy (LPG). To date, approximately 150 cases of LPG have been reported worldwide. Recently two groups studied hot spots of APOE-Sendai and APOE-Kyoto, the representative variants of LPG, in narrow areas of Japan and China, respectively. They suggest that both variants have descended through a founder effect. APOE-Sendai and APOE-Kyoto cause different transformations of apolipoproteins aggregating lipoproteins and resulting in lipoprotein thrombi within the glomerulus. Moreover, the macrophage impairment in LPG may provide another mechanism for lipoprotein thrombi in which massive lipoproteins accumulate in the glomerulus without foam cells. On the other hand, the administration of fibrate with the intensive control of triglyceride and apolipoprotein E particularly from the early phase will ameliorate LPG and prevent renal dysfunction.

  16. Lipids and lipoprotein ratios: The contribution to carotid intima media thickness in adolescents and young adults with type 2 diabetes mellitus

    PubMed Central

    Shah, Amy S; Urbina, Elaine M; Khoury, Philip R; Kimball, Thomas R; Dolan, Lawrence M

    2013-01-01

    Background Dyslipidemia is common among adolescents with type 2 diabetes (T2D). Objective To assess whether the lipoprotein ratios LDL/HDL or TG/HDL (low density lipoprotein cholesterol/ high density lipoprotein cholesterol or triglycerides/HDL) or non-HDL cholesterol are more useful than the traditional lipid panel to predict increased arterial thickness in adolescents and young adults T2D. . Methods We evaluated 244 T2D adolescents and young adults in a cross sectional study (mean age 18 years, 56% African American, 65% female). Demographics, anthropometrics, and laboratory data were collected. Arterial thickness was assessed using carotid intima media thickness (IMT). Bivariate correlations and general linear models were used to determine the independent contributions of the various lipid parameters to carotid IMT. Results Bivariate correlations revealed LDL/HDL ratio was the strongest predictor carotid IMT (p<0.02). After adjustment for potential covariates LDL/HDL was no longer significant. HDL cholesterol was the only lipid to independently (negatively) contribute to carotid IMT. Other risk factors that were independently associated with carotid IMT included age, race, sex and body mass index z score and hemoglobin A1C. Together these cardiovascular risk factors explained less than 20% of the variance in carotid IMT. Conclusions HDL cholesterol is the only lipid to independently associate with carotid IMT. Lipoprotein ratios and non-HDL did not provide additional information. The low variance in carotid IMT explained by traditional risk factors suggests nontraditional risk factors may be important to assess to better understand the contributors to early stage atherosclerosis in adolescents and young adults with T2D. PMID:24079285

  17. Focus on lipids: high-density lipoprotein cholesterol and its associated lipoproteins in cardiac and renal disease.

    PubMed

    Shin, Hyun Joon; McCullough, Peter A

    2014-01-01

    High-density lipoprotein cholesterol (HDL-C) contains dozens of apoproteins that participate in normal cholesterol metabolism with a reliance on renal catabolism for clearance from the body. The plasma pool of HDL-C has been an excellent inverse predictor of cardiovascular events. However, when HDL-C concentrations have been manipulated with the use of niacin, fibric acid derivatives, and cholesteryl ester transferase protein inhibitors, there has been no improvement in outcomes in patients where the low-density lipoprotein cholesterol has been well treated with statins. Apolipoprotein L1 (APOL1) is one of the minor apoproteins of HDL-C, newly discovered in 1997. Circulating APOL1 is a 43-kDa protein mainly found in the HDL3 subfraction. In patients with chronic kidney disease (CKD), mutant forms of APOL1 have been associated with rapidly progressive CKD and end-stage renal disease (ESRD). Because mutant forms of APOL1 are more prevalent in African Americans compared to Caucasians, it may explain some of the racial disparities seen in the pool of patients with ESRD in the United States. Thus, HDL-C is an important lipoprotein carrying apoproteins that play roles in vascular and kidney disease. PMID:25343842

  18. Mechanism of action of gemfibrozil on lipoprotein metabolism.

    PubMed Central

    Saku, K; Gartside, P S; Hynd, B A; Kashyap, M L

    1985-01-01

    Gemfibrozil is a potent lipid regulating drug whose major effects are to increase plasma high density lipoproteins (HDL) and to decrease plasma triglycerides (TG) in a wide variety of primary and secondary dyslipoproteinemias. Its mechanism of action is not clear. Six patients with primary familial endogenous hypertriglyceridemia with fasting chylomicronemia (type V lipoprotein phenotype) with concurrent subnormal HDL cholesterol levels (HDL deficiency) were treated initially by diet and once stabilized, were given gemfibrozil (1,200 mg/d). Each patient was admitted to the Clinical Research Center with metabolic kitchen facilities, for investigation of HDL and TG metabolism immediately before and after 8 wk of gemfibrozil treatment. Gemfibrozil significantly increased plasma HDL cholesterol, apolipoprotein (apo) AI, and apo AII by 36%, 29%, and 38% from base line, respectively. Plasma TG decreased by 54%. Kinetics of apo AI and apo AII metabolism were assessed by analysis of the specific radioactivity decay curves after injection of autologous HDL labeled with 125I. Gemfibrozil increased synthetic rates of apo AI and apo AII by 27% and 34%, respectively, without changing the fractional catabolic rates. Stimulation of apo AI and apo AII synthesis by gemfibrozil was associated with the appearance in plasma of smaller (and heavier) HDL particles as assessed by gradient gel electrophoresis and HDL composition. Postheparin extra-hepatic lipoprotein lipase activity increased significantly by 25% after gemfibrozil, and was associated with the appearance in plasma of smaller very low density lipoprotein particles whose apo CIII:CII ratio was decreased. These data suggest that gemfibrozil increases plasma HDL levels by stimulating their synthesis. Increased transport (turnover) of HDL induced by gemfibrozil may be significant in increasing tissue cholesterol removal in these patients. PMID:3923042

  19. Characterization of biophysical properties of baboon lipoproteins: modulation by dietary fat and cholesterol

    SciTech Connect

    Babiak, J.

    1984-04-01

    The serum lipoproteins of baboons fed diets containing differing types and amounts of fat and varying amounts of cholesterol were examined by analytic ultracentrifugation, gradient gel electrophoresis, density gradient ultracentrifugation, sodium dodecyl sulfate-polyacrylamide electrophoresis, electron microscopy, and standard protein and lipid composition assays. These studies characterized the lipoproteins of the baboon, observed how concentrations and physical-chemical properties of the lipoproteins are modulated by dietary fat and cholesterol and described the suitability of the baboon as an animal model of human lipoprotein metabolism. Results indicate that baboon high density lipoproteins (HDL), though higher in total serum concentration than human HDL, are remarkably similar to human HDL. The concentration of baboon HDL is increased by dietary saturated fat but decreased by the addition of cholesterol. While serum concentrations of low density lipoproteins (LDL) tend to be lower in baboons, the physical-chemical properties of the LDL of baboons and humans are comparable. The LDL of both species contains apolipoprotein B as their major apolipoprotein and exhibit considerable polydispersity in particle size. LDL of both species consists of seven discrete subpopulations. The analytical and statistical data presented in this dissertation indicate that the baboon is a good model for studying the role of lipoproteins in the development of atherosclerosis. 125 references, 31 figures, 28 tables.

  20. Patients with Rheumatoid Arthritis Show Altered Lipoprotein Profiles with Dysfunctional High-Density Lipoproteins that Can Exacerbate Inflammatory and Atherogenic Process

    PubMed Central

    Kim, Jae-Yong; Lee, Eun-Young; Park, Jin Kyun; Song, Yeong Wook; Kim, Jae-Ryong; Cho, Kyung-Hyun

    2016-01-01

    Objective In order to identify putative biomarkers in lipoprotein, we compared lipid and lipoprotein properties between rheumatoid arthritis (RA) patients and control with similar age. Methods We analyzed four classes of lipoproteins (VLDL, LDL, HDL2, HDL3) from both male (n = 8, 69±4 year-old) and female (n = 25, 53±7 year-old) rheumatoid arthritis (RA) patients as well as controls with similar age (n = 13). Results Although RA group showed normal levels of total cholesterol (TC), low-density lipoprotein (LDL)-cholesterol, and glucose, however, the RA group showed significantly reduced high-density lipoprotein (HDL)-C level and ratio of HDL-C/TC. The RA group showed significantly elevated levels of blood triglyceride (TG), uric acid, and cholesteryl ester transfer protein (CETP) activity. The RA group also showed elevated levels of advanced glycated end (AGE) products in all lipoproteins and severe aggregation of apoA-I in HDL. As CETP activity and TG contents were 2-fold increased in HDL from RA group, paraoxonase activity was reduced upto 20%. Electron microscopy revealed that RA group showed much less HDL2 particle number than control. LDL from the RA group was severely oxidized and glycated with greater fragmentation of apo-B, especially in female group, it was more atherogenic via phagocytosis. Conclusion Lipoproteins from the RA patients showed severely altered structure with impaired functionality, which is very similar to that observed in coronary heart patients. These dysfunctional properties in lipoproteins from the RA patients might be associated with high incidence of cardiovascular events in RA patients. PMID:27736980

  1. Hydrolysis of bovine and caprine milk fat globules by lipoprotein lipase. Effects of heparin and skim milk on lipase distribution and on lipolysis

    SciTech Connect

    Sundheim, G.; Bengtsson-Olivecrona, G.

    1987-12-01

    Heparin can dissociate lipoprotein lipase from casein micelles, and addition of heparin enhances lipolysis in bovine but not in caprine milk. Heparin shortened the lag-time for binding of lipoprotein lipase to milk fat globules and for lipolysis. Heparin counteracted the inhibitory effects of skim milk on binding of lipase and on lipolysis. Heparin stimulated lipolysis in all bovine milk samples when added before cooling and in spontaneously lipolytic milk samples also when added after cooling. Heparin enhanced lipolysis of isolated milk fat globules. Hence, its effect is not solely due to dissociation of lipoprotein lipase from the casein micelles. Cooling of goat milk caused more marked changes in the distribution of lipase than cooling of bovine milk; the fraction of added /sup 125/I-labeled lipase that bound to cream increased from about 8 to 60%. In addition, caprine skim milk caused less inhibition of lipolysis than bovine skim milk. These observations provide an explanation for the high degree of cold storage lipolysis in goat milk. Heparin had only small effects on the distribution of lipoprotein lipase in caprine milk, which explains why heparin has so little effect on lipolysis in caprine milk. The distribution of /sup 35/S-labeled heparin in bovine milk was studied. In warm milk less than 10% bound to the cream fraction, but when milk was cooled, binding of heparin to cream increased to 45%. These results suggest that there exists in the skim fraction a relatively small amount of a heparin-binding protein, which on cooling of milk adsorbs to the milk fat, or suggests that cooling induces a conformational change in a membrane protein such that its affinity for heparin increases.

  2. Cellular uptake of lipoproteins and persistent organic compounds-An update and new data

    SciTech Connect

    Hjelmborg, Philip Sebastian; Andreassen, Thomas Kjaergaard; Bonefeld-Jorgensen, Eva Cecilie

    2008-10-15

    There are a number of interactions related to the transport of lipophilic xenobiotic compounds in the blood stream of mammals. This paper will focus on the interactions between lipoproteins and persistent organic pollutants (POPs) and how these particles are taken up by cells. A number of POPs including the pesticide p,p'-dichlorodiphenyltrichloroethane (DDT), and especially its metabolite p,p'-dichlorodiphenyldichloroethene (DDE), interacts with nuclear hormone receptors causing these to malfunction, which in turn results in a range of deleterious health effects in humans. The aim of the present study was to determine the role of lipoprotein receptors in mouse embryonic fibroblast (MEF) cells in conjunction with uptake of DDT-lipoprotein complexes from supplemented media in vitro. Uptake of DDT by MEF cells was investigated using MEF1 cells carrying the receptors low-density lipoprotein receptor-related protein (LRP) and low-density lipoprotein receptor (LDLR) present and MEF4 cells with no LRP and LDLR expression. Cells were incubated together with the complex of low-density lipoproteins (LDL) and [{sup 14}C]DDT. The receptor function was further evaluated by adding the 40 kDa receptor-associated protein (RAP) which blocks receptor activity. The results showed that [{sup 14}C]DDT uptake was decreasing when the LDL concentration was increasing. There was no strong evidence for a receptor-mediated uptake of the [{sup 14}C]DDT-lipoprotein complex. To conclude, DDT travels in the blood stream and can cross cell membranes while being transported as a DDT-lipoprotein complex. The lipoproteins do not need receptors to cross cell membranes since passive diffusion constitutes a major passageway.

  3. Measurement of cholesterol and other lipoprotein constituents in the clinical laboratory.

    PubMed

    Warnick, G R

    2000-04-01

    Measurements of lipids and lipoproteins in the clinical laboratory have become increasingly important because of their predictive association with cardiovascular diseases, especially coronary artery disease. The US National Institutes of Health-sponsored National Cholesterol Education Program and counterparts in other countries have developed national consensus guidelines for diagnosis and treatment of coronary artery disease which provide risk cut-points and define use of the lipid/lipoprotein analytes in case finding and therapy. Total and low density lipoprotein cholesterol and triglycerides are measured as positive risk factors and high density lipoprotein cholesterol as an inverse risk factor for coronary artery disease. A National Cholesterol Education Program-sponsored expert laboratory panel has developed guidelines for measurements with requisite analytical performance targets for total error and corresponding precision and bias. The US Centers for Disease Control and Prevention have established reference methods for total and high density lipoprotein cholesterol and for triglycerides, with a method for low density lipoprotein cholesterol in development. Standardization programs for research laboratories and a Cholesterol Reference Method Laboratory Network for diagnostic manufacturers and clinical laboratories provide reliable access and documentation of traceability to accepted reference methods. Methods for the lipid/lipoprotein analytes have improved dramatically in recent years and, coupled with improved chemistry analyzer systems and more attention to standardization by manufacturers, offer considerable improvement in analytical performance. Fully automated homogeneous assays for high density lipoprotein cholesterol and newer similar assays for low-density lipoprotein cholesterol have potential for better precision as well as more convenient and cost-effective measurements. Attention to pre-analytical sources of variation is also important in making

  4. Understanding Lipoproteins as Transporters of Cholesterol and Other Lipids

    ERIC Educational Resources Information Center

    Biggerstaff, Kyle D.; Wooten, Joshua S.

    2004-01-01

    A clear picture of lipoprotein metabolism is essential for understanding the pathophysiology of atherosclerosis. Many students are taught that low-density lipoprotein-cholesterol is "bad" and high-density lipoprotein-cholesterol is "good." This misconception leads to students thinking that lipoproteins are types of cholesterol rather than…

  5. The Human Pathogen Streptococcus pyogenes Releases Lipoproteins as Lipoprotein-rich Membrane Vesicles*

    PubMed Central

    Biagini, Massimiliano; Garibaldi, Manuela; Aprea, Susanna; Pezzicoli, Alfredo; Doro, Francesco; Becherelli, Marco; Taddei, Anna Rita; Tani, Chiara; Tavarini, Simona; Mora, Marirosa; Teti, Giuseppe; D'Oro, Ugo; Nuti, Sandra; Soriani, Marco; Margarit, Immaculada; Rappuoli, Rino; Grandi, Guido; Norais, Nathalie

    2015-01-01

    Bacterial lipoproteins are attractive vaccine candidates because they represent a major class of cell surface-exposed proteins in many bacteria and are considered as potential pathogen-associated molecular patterns sensed by Toll-like receptors with built-in adjuvanticity. Although Gram-negative lipoproteins have been extensively characterized, little is known about Gram-positive lipoproteins. We isolated from Streptococcus pyogenes a large amount of lipoproteins organized in vesicles. These vesicles were obtained by weakening the bacterial cell wall with a sublethal concentration of penicillin. Lipid and proteomic analysis of the vesicles revealed that they were enriched in phosphatidylglycerol and almost exclusively composed of lipoproteins. In association with lipoproteins, a few hypothetical proteins, penicillin-binding proteins, and several members of the ExPortal, a membrane microdomain responsible for the maturation of secreted proteins, were identified. The typical lipidic moiety was apparently not necessary for lipoprotein insertion in the vesicle bilayer because they were also recovered from the isogenic diacylglyceryl transferase deletion mutant. The vesicles were not able to activate specific Toll-like receptor 2, indicating that lipoproteins organized in these vesicular structures do not act as pathogen-associated molecular patterns. In light of these findings, we propose to name these new structures Lipoprotein-rich Membrane Vesicles. PMID:26018414

  6. The antigenic similarity of human low density lipoproteins.

    PubMed

    LEVINE, L; KAUFFMAN, D L; BROWN, R K

    1955-08-01

    THE FOLLOWING HUMAN LOW DENSITY LIPOPROTEINS WERE PREPARED: beta-lipoproteins of densities greater than 1.040 (A, B,C) a beta-lipoprotein of -S(1.063) = 5 (D), a lipoprotein of -S(1.063) = 19 (E), and a lipoprotein of -S(1.063) = 70 (F). Data are presented which show the immunochemical homogeneity of the D lipoprotein rabbit-anti-D lipoprotein system. Cross-reactions between antibody to A and D lipoproteins and the above lipoproteins have been demonstrated by quantitative precipitation, quanitative complement fixation, and single and double diffusion in agar. The antigenic similarities appear to be associated with the protein portions of the molecule. The antisera produced did not differentiate the low density lipoprotein classes. PMID:13242737

  7. Cholesterol in serum lipoprotein fractions after spaceflight

    NASA Technical Reports Server (NTRS)

    Leach, Carolyn S.; Johnson, Philip C., Jr.; Krauhs, Jane M.; Cintron, Nitza M.

    1988-01-01

    Results are reported from blood-lipid measurements obtained from 125 Space Shuttle crew members before and after space flight. The data are presented in tables and discussed in detail. The main differences noted between preflight and postflight values are a 12.8-percent decrease in high-density lipoproteins on postflight day 1 and significant decreases in total cholesterol and both high- and low-density lipoproteins later in the 23-day postflight period.

  8. A brief history of lipid and lipoprotein measurements and their contribution to clinical chemistry.

    PubMed

    McNamara, Judith R; Warnick, G Russell; Cooper, Gerald R

    2006-07-23

    The study of modern lipid chemistry began in the 17th and 18th centuries with early observations by Robert Boyle, Poulletier de la Salle, Antoine François de Fourcroy and others. The 19th century chemist, Chevreul, identified several fatty acids, suggested the name 'cholesterine' for the fatty substance in gallstones, coined the word 'glycerine', and showed that fats were comprised of glycerol and fatty acids. The 20th century brought many advances in the understanding of lipoprotein structure and function, and explored relationships between lipoproteins and disease states. The development of the ultracentrifuge and other lipoprotein separation techniques, and reagents for accurate, standardized quantitative measurement have steadily increased our understanding of the important role of lipoprotein metabolism in both healthy and disease states. PMID:16740255

  9. Dot-blot assay for the low density lipoprotein receptor

    SciTech Connect

    Maggi, F.M.; Catapano, A.L.

    1987-01-01

    We describe a new method for detecting the interaction of low density lipoprotein with its receptor using unmodified nitrocellulose as support for membrane protein. The method is specific and sensitive down to 3 micrograms of membrane protein. Unlabeled LDL, but not HDL, competes with /sup 125/I-labeled LDL for binding, and binding is abolished by pretreatment of the membranes with pronase and is dependent upon the presence of Ca2+. Furthermore, modification of arginine or lysine residues on LDL abolishes the lipoprotein interaction with the receptor protein supported on the nitrocellulose. When the membranes are solubilized with octyl glucoside, purification steps of the receptor can be directly followed with no interference of the detergent, therefore eliminating the need for its removal. The increased expression of LDL receptors on liver membranes from estradiol-treated rats was also demonstrated. We suggest, therefore, that this method can be used to detect the presence of LDL receptors on minute amounts of membrane protein.

  10. Recombinant human LCAT normalizes plasma lipoprotein profile in LCAT deficiency.

    PubMed

    Simonelli, Sara; Tinti, Cristina; Salvini, Laura; Tinti, Laura; Ossoli, Alice; Vitali, Cecilia; Sousa, Vitor; Orsini, Gaetano; Nolli, Maria Luisa; Franceschini, Guido; Calabresi, Laura

    2013-11-01

    Lecithin:cholesterol acyltransferase (LCAT) is the enzyme responsible for cholesterol esterification in plasma. Mutations in the LCAT gene leads to two rare disorders, familial LCAT deficiency and fish-eye disease, both characterized by severe hypoalphalipoproteinemia associated with several lipoprotein abnormalities. No specific treatment is presently available for genetic LCAT deficiency. In the present study, recombinant human LCAT was expressed and tested for its ability to correct the lipoprotein profile in LCAT deficient plasma. The results show that rhLCAT efficiently reduces the amount of unesterified cholesterol (-30%) and promotes the production of plasma cholesteryl esters (+210%) in LCAT deficient plasma. rhLCAT induces a marked increase in HDL-C levels (+89%) and induces the maturation of small preβ-HDL into alpha-migrating particles. Moreover, the abnormal phospholipid-rich particles migrating in the LDL region were converted in normally sized LDL.

  11. Recombinant human LCAT normalizes plasma lipoprotein profile in LCAT deficiency.

    PubMed

    Simonelli, Sara; Tinti, Cristina; Salvini, Laura; Tinti, Laura; Ossoli, Alice; Vitali, Cecilia; Sousa, Vitor; Orsini, Gaetano; Nolli, Maria Luisa; Franceschini, Guido; Calabresi, Laura

    2013-11-01

    Lecithin:cholesterol acyltransferase (LCAT) is the enzyme responsible for cholesterol esterification in plasma. Mutations in the LCAT gene leads to two rare disorders, familial LCAT deficiency and fish-eye disease, both characterized by severe hypoalphalipoproteinemia associated with several lipoprotein abnormalities. No specific treatment is presently available for genetic LCAT deficiency. In the present study, recombinant human LCAT was expressed and tested for its ability to correct the lipoprotein profile in LCAT deficient plasma. The results show that rhLCAT efficiently reduces the amount of unesterified cholesterol (-30%) and promotes the production of plasma cholesteryl esters (+210%) in LCAT deficient plasma. rhLCAT induces a marked increase in HDL-C levels (+89%) and induces the maturation of small preβ-HDL into alpha-migrating particles. Moreover, the abnormal phospholipid-rich particles migrating in the LDL region were converted in normally sized LDL. PMID:24140107

  12. Association between lipids, lipoproteins composition of HDL particles and triglyceride-rich lipoproteins, and LCAT and CETP activity in post-renal transplant patients.

    PubMed

    Kimak, Elżbieta; Bylina, Jerzy; Solski, Janusz; Hałabiś, Magdalena; Baranowicz-Gąszczyk, Iwona; Książek, Andrzej

    2013-11-01

    High-density lipoprotein (HDL) remodeling within the plasma compartment and the association between lecithin-cholesterol acyltransferase (LCAT) and cholesterol ester transfer protein (CETP) activity, and lipid, lipoprotein concentrations and composition were investigated. The aim was to examine the high sensitivity of C-reactive protein (hsCRP), lipid, apolipoprotein B (apoB), apoAI, total apoAII, apoAIInonB, apoB-containing apoAII (apoB:AII), total apoCIII, apoCIIInonB, apoB-containing apoCIII (apoB:CIII) concentration and LCAT and CETP activity to gain an insight into the association between them and LCAT and CETP, 57 post-renal transplant (Tx) patients with and without statin therapy and in 15 healthy subjects. Tx patients had moderate hypertriglyceridemia, hypercholesterolemia, and dyslipoproteinemia, disturbed triglyceride-rich lipoproteins (TRLs) and HDL composition, decreased LCAT, and slightly increased hsCRP but no CETP activity. Spearman's correlation test showed the association between lipids and lipoproteins and LCAT or CETP, and multiple ridge stepwise forward regression showed that immunosuppressive therapy in Tx patients can disturb HDL and TRLs composition. The results suggest that inhibition or activation of LCAT is due, in part, to HDL-associated lipoprotein. Lipoprotein composition of apoAI, apoAIInonB, and apoCIIInonB in HDL particle and apoB:AII TRLs can contribute to decrease LCAT mass in Tx patients. Tx patients without statin and with lower triglycerides but higher HDL cholesterol concentration and disturbed lipoprotein composition of ApoAI and apoAII in HDL particle can decrease LCAT, increase LDL cholesterol, aggravate renal graft, and accelerate atherosclerosis and chronic heart diseases. PMID:23479335

  13. Acrolein Consumption Induces Systemic Dyslipidemia and Lipoprotein Modification

    PubMed Central

    Conklin, Daniel J.; Barski, Oleg A.; Lesgards, Jean-Francois; Juvan, Peter; Rezen, Tadeja; Rozman, Damjana; Prough, Russell A.; Vladykovskaya, Elena; Liu, SiQi; Srivastava, Sanjay; Bhatnagar, Aruni

    2010-01-01

    Aldehydes such as acrolein are ubiquitous pollutants present in automobile exhaust, cigarette, wood, and coal smoke. Such aldehydes are also constituents of several food substances and are present in drinking water, irrigation canals, and effluents from manufacturing plants. Oral intake represents the most significant source of exposure to acrolein and related aldehydes. To study the effects of short-term oral exposure to acrolein on lipoprotein levels and metabolism, adult mice were gavage fed 0.1 to 5 mg acrolein/kg bwt and changes in plasma lipoproteins were assessed. Changes in hepatic gene expression related to lipid metabolism and cytokines were examined by qRT-PCR analysis. Acrolein feeding did not affect body weight, BUN, plasma creatinine, electrolytes, cytokines or liver enzymes, but increased plasma cholesterol and triglycerides. Similar results were obtained with apoE-null mice. Plasma lipoproteins from acrolein-fed mice showed altered electrophoretic mobility on agarose gels. Chromatographic analysis revealed elevated VLDL cholesterol, phospholipids, and triglycerides levels with little change in LDL or HDL. NMR analysis indicated shifts from small to large VLDL and from large to medium-small LDL with no change in the size of HDL particles. Increased plasma VLDL was associated with a significant decrease in post-heparin plasma hepatic lipase activity and a decrease in hepatic expression of hepatic lipase. These observations suggest that oral exposure to acrolein could induce or exacerbate systemic dyslipidemia and thereby contribute to cardiovascular disease risk. PMID:20034506

  14. Acrolein consumption induces systemic dyslipidemia and lipoprotein modification

    SciTech Connect

    Conklin, Daniel J.; Barski, Oleg A.; Lesgards, Jean-Francois; Juvan, Peter; Rezen, Tadeja; Rozman, Damjana; Prough, Russell A.; Vladykovskaya, Elena; Liu, SiQi; Srivastava, Sanjay; Bhatnagar, Aruni

    2010-02-15

    Aldehydes such as acrolein are ubiquitous pollutants present in automobile exhaust, cigarette, wood, and coal smoke. Such aldehydes are also constituents of several food substances and are present in drinking water, irrigation canals, and effluents from manufacturing plants. Oral intake represents the most significant source of exposure to acrolein and related aldehydes. To study the effects of short-term oral exposure to acrolein on lipoprotein levels and metabolism, adult mice were gavage-fed 0.1 to 5 mg acrolein/kg bwt and changes in plasma lipoproteins were assessed. Changes in hepatic gene expression related to lipid metabolism and cytokines were examined by qRT-PCR analysis. Acrolein feeding did not affect body weight, blood urea nitrogen, plasma creatinine, electrolytes, cytokines or liver enzymes, but increased plasma cholesterol and triglycerides. Similar results were obtained with apoE-null mice. Plasma lipoproteins from acrolein-fed mice showed altered electrophoretic mobility on agarose gels. Chromatographic analysis revealed elevated VLDL cholesterol, phospholipids, and triglycerides levels with little change in LDL or HDL. NMR analysis indicated shifts from small to large VLDL and from large to medium-small LDL with no change in the size of HDL particles. Increased plasma VLDL was associated with a significant decrease in post-heparin plasma hepatic lipase activity and a decrease in hepatic expression of hepatic lipase. These observations suggest that oral exposure to acrolein could induce or exacerbate systemic dyslipidemia and thereby contribute to cardiovascular disease risk.

  15. Lipolytic degradation of human very low density lipoproteins by human milk lipoprotein lipase: the identification of lipoprotein B as the main lipoprotein degradation product.

    PubMed

    Alaupovic, P; Wang, C S; McConathy, W J; Weiser, D; Downs, D

    1986-01-01

    Although the direct conversion of very low density lipoproteins (VLDL) into low density (LDL) and high density (HDL) lipoproteins only requires lipoprotein lipase (LPL) as a catalyst and albumin as the fatty acid acceptor, the in vitro-formed LDL and HDL differ chemically from their native counterparts. To investigate the reason(s) for these differences, VLDL were treated with human milk LPL in the presence of albumin, and the LPL-generated LDL1-, LDL2-, and HDL-like particles were characterized by lipid and apolipoprotein composition. Results showed that the removal of apolipoproteins B, C, and E from VLDL was proportional to the degree of triglyceride hydrolysis with LDL2 particles as the major and LDL1 and HDL + VHDL particles as the minor products of a complete in vitro lipolysis of VLDL. In comparison with native counterparts, the in vitro-formed LDL2 and HDL + VHDL were characterized by lower levels of triglyceride and cholesterol ester and higher levels of free cholesterol and lipid phosphorus. The characterization of lipoprotein particles present in the in vitro-produced LDL2 showed that, as in plasma LDL2, lipoprotein B (LP-B) was the major apolipoprotein B-containing lipoprotein accounting for over 90% of the total apolipoprotein B. Other, minor species of apolipoprotein B-containing lipoproteins included LP-B:C-I:E and LP-B:C-I:C-II:C-III. The lipid composition of in vitro-formed LP-B closely resembled that of plasma LP-B. The major parts of apolipoproteins C and E present in VLDL were released to HDL + VHDL as simple, cholesterol/phospholipid-rich lipoproteins including LP-C-I, LP-C-II, LP-C-III, and LP-E. However, some of these same simple lipoprotein particles were present after ultracentrifugation in the LDL2 density segment because of their hydrated density and/or because they formed, in the absence of naturally occurring acceptors (LP-A-I:A-II), weak associations with LP-B. Thus, the presence of varying amounts of these cholesterol

  16. Effect of improving glycemic control in patients with type 2 diabetes mellitus on low-density lipoprotein size, electronegative low-density lipoprotein and lipoprotein-associated phospholipase A2 distribution.

    PubMed

    Sánchez-Quesada, José L; Vinagre, Irene; de Juan-Franco, Elena; Sánchez-Hernández, Juan; Blanco-Vaca, Francisco; Ordóñez-Llanos, Jordi; Pérez, Antonio

    2012-07-01

    The aim of this study was to determine the effect of intensified hypoglycemic therapy in patients with type 2 diabetes mellitus on the distribution of lipoprotein-associated phospholipase A2 (Lp-PLA2) activity between high-density lipoprotein and low-density lipoprotein (LDL) and its relation with the lipid profile and other qualitative properties of LDL. Forty-two patients with type 2 diabetes on the basis of poor glycemic control and normal or near normal LDL cholesterol were recruited. Lifestyle counseling and pharmacologic hypoglycemic therapy were intensified to improve glycemic control, but lipid-lowering therapy was unchanged. At 4 ± 2 months, glycosylated hemoglobin had decreased by a mean of 2.1%, but the only effect on the lipid profile were statistically significant decreases in nonesterified fatty acids and apolipoprotein B concentration. LDL size increased and the proportion of electronegative LDL decreased significantly. In parallel, total Lp-PLA2 activity decreased significantly, promoting a redistribution of Lp-PLA2 activity toward a higher proportion in high-density lipoprotein. Improvements in glycemic control led to more marked changes in Lp-PLA2 activity and distribution in patients with diabetes who had not received previous lipid-lowering therapy. In conclusion, optimizing glycemic control in patients with type 2 diabetes promotes atheroprotective changes, including larger LDL size, decreased electronegative LDL, and a higher proportion of Lp-PLA2 activity in high-density lipoprotein. PMID:22481012

  17. Apolipoprotein AV accelerates plasma hydrolysis of triglyceride-rich lipoproteins by interaction with proteoglycan-bound lipoprotein lipase.

    PubMed

    Merkel, Martin; Loeffler, Britta; Kluger, Malte; Fabig, Nathalie; Geppert, Gesa; Pennacchio, Len A; Laatsch, Alexander; Heeren, Joerg

    2005-06-01

    Apolipoprotein A5 (APOA5) is associated with differences in triglyceride levels and familial combined hyperlipidemia. In genetically engineered mice, apoAV plasma levels are inversely correlated with plasma triglycerides. To elucidate the mechanism by which apoAV influences plasma triglycerides, metabolic studies and in vitro assays resembling physiological conditions were performed. In human APOA5 transgenic mice (hAPOA5tr), catabolism of chylomicrons and very low density lipoprotein (VLDL) was accelerated due to a faster plasma hydrolysis of triglycerides by lipoprotein lipase (LPL). Hepatic VLDL and intestinal chylomicron production were not affected. The functional interplay between apoAV and LPL was further investigated by cross-breeding a human LPL transgene with the apoa5 knock-out and the hAPOA5tr to an lpl-deficient background. Increased LPL activity completely normalized hypertriglyceridemia of apoa5-deficient mice; however, overexpression of human apoAV modulated triglyceride levels only slightly when LPL was reduced. To reflect the physiological situation in which LPL is bound to cell surface proteoglycans, we examined hydrolysis in the presence or absence of proteoglycans. Without proteoglycans, apoAV derived either from triglyceride-rich lipoproteins, hAPOA5tr high density lipoprotein, or a recombinant source did not alter the LPL hydrolysis rate. In the presence of proteoglycans, however, apoAV led to a significant and dose-dependent increase in LPL-mediated hydrolysis of VLDL triglycerides. These results were confirmed in cell culture using a proteoglycan-deficient cell line. A direct interaction between LPL and apoAV was found by ligand blotting. It is proposed, that apoAV reduces triglyceride levels by guiding VLDL and chylomicrons to proteoglycan-bound LPL for lipolysis.

  18. Reporting explained variance

    NASA Astrophysics Data System (ADS)

    Good, Ron; Fletcher, Harold J.

    The importance of reporting explained variance (sometimes referred to as magnitude of effects) in ANOVA designs is discussed in this paper. Explained variance is an estimate of the strength of the relationship between treatment (or other factors such as sex, grade level, etc.) and dependent variables of interest to the researcher(s). Three methods that can be used to obtain estimates of explained variance in ANOVA designs are described and applied to 16 studies that were reported in recent volumes of this journal. The results show that, while in most studies the treatment accounts for a relatively small proportion of the variance in dependent variable scores., in., some studies the magnitude of the treatment effect is respectable. The authors recommend that researchers in science education report explained variance in addition to the commonly reported tests of significance, since the latter are inadequate as the sole basis for making decisions about the practical importance of factors of interest to science education researchers.

  19. Particulate Matter Promotes In Vitro Receptor-Recognizable Low-Density Lipoprotein Oxidation and Dysfunction of Lipid Receptors

    PubMed Central

    Manzano-León, Natalia; Mas-Oliva, Jaime; Sevilla-Tapia, Laura; Morales-Bárcenas, Rocío; Serrano, Jesús; O’Neill, Marie S.; García-Cuellar, Claudia M.; Quintana, Raúl; Vázquez-López, Inés

    2015-01-01

    Particulate matter may promote cardiovascular disease, possibly as a consequence of its oxidative potential. Studies using susceptible animals indicate that particulate matter aggravates atherosclerosis by increasing lipid/macrophage content in plaques. Macrophage lipid uptake requires oxidized low-density lipoprotein and scavenger receptors; same receptors are involved in particulate matter uptake. We studied in vitro particulate matter potential to oxidize low-density lipoproteins and subsequent cell uptake through scavenger receptors. Particulate matter-induced low-density lipoproteins oxidation was evaluated by the thiobarbituric acid assay. Binding/internalization was tested in wild type and scavenger receptor–transfected Chinese hamster ovary cells, and in RAW264.7 cells using fluorescently labeled low-density lipoproteins. Dose-dependent binding/internalization only occurred in scavenger receptor–transfected Chinese hamster ovary cells and RAW264.7 cells. Competition binding/internalization using particles showed that particulate matter induced decreased binding (~50%) and internalization (~70%) of particle-oxidized low-density lipoproteins and native low-density lipoproteins. Results indicate that particulate matter was capable of oxidizing low-density lipoproteins, favoring macrophage internalization, and also altered scavenger and low-density lipoproteins receptor function. PMID:23297186

  20. Assessment of permeation of lipoproteins in human carotid tissue

    NASA Astrophysics Data System (ADS)

    Ghosn, Mohamad G.; Syed, Saba H.; Leba, Michael; Morrisett, Joel D.; Tuchin, Valery V.; Larin, Kirill V.

    2010-02-01

    Cardiovascular disease is among the leading causes of death in the United States. Specifically, atherosclerosis is an increasingly devastating contributor to the tally and has been found to be a byproduct of arterial permeability irregularities in regards to lipoprotein penetration. To further explore arterial physiology and molecular transport, the imaging technique of Optical Coherence Tomography (OCT) was employed. With OCT, the permeation of glucose (MW = 180 Da), low density lipoprotein (LDL; MW = 2.1 × 106 Da), and high density lipoprotein (HDL; MW = 2.5 × 105 Da) in human carotid tissue was studied to determine the effect of different molecular characteristics on permeation in atherosclerotic tissues. The permeability rates calculated from the diffusion of the molecular agents into the abnormal carotid tissue samples is compared to those of normal, healthy tissue. The results show that in the abnormal tissue, the permeation of agents correlate to the size constraints. The larger molecules of LDL diffuse the slowest, while the smallest molecules of glucose diffuse the fastest. However, in normal tissue, LDL permeates at a faster rate than the other two agents, implying the existence of a transport mechanism that facilitates the passage of LDL molecules. These results highlight the capability of OCT as a sensitive and specific imaging technique as well as provide significant information to the understanding of atherosclerosis and its effect on tissue properties.

  1. Autophagy-mediated longevity is modulated by lipoprotein biogenesis

    PubMed Central

    Seah, Nicole E.; de Magalhaes Filho, C. Daniel; Petrashen, Anna P.; Henderson, Hope R.; Laguer, Jade; Gonzalez, Julissa; Dillin, Andrew; Hansen, Malene; Lapierre, Louis R.

    2016-01-01

    ABSTRACT Autophagy-dependent longevity models in C. elegans display altered lipid storage profiles, but the contribution of lipid distribution to life-span extension is not fully understood. Here we report that lipoprotein production, autophagy and lysosomal lipolysis are linked to modulate life span in a conserved fashion. We find that overexpression of the yolk lipoprotein VIT/vitellogenin reduces the life span of long-lived animals by impairing the induction of autophagy-related and lysosomal genes necessary for longevity. Accordingly, reducing vitellogenesis increases life span via induction of autophagy and lysosomal lipolysis. Life-span extension due to reduced vitellogenesis or enhanced lysosomal lipolysis requires nuclear hormone receptors (NHRs) NHR-49 and NHR-80, highlighting novel roles for these NHRs in lysosomal lipid signaling. In dietary-restricted worms and mice, expression of VIT and hepatic APOB (apolipoprotein B), respectively, are significantly reduced, suggesting a conserved longevity mechanism. Altogether, our study demonstrates that lipoprotein biogenesis is an important mechanism that modulates aging by impairing autophagy and lysosomal lipolysis. PMID:26671266

  2. Iron-ascorbate-phospholipid mediated modification of low density lipoprotein.

    PubMed

    Greenspan, P; Yu, H; Gutman, R L; Mao, F; Ryu, B H; Lou, P

    1996-06-11

    LDL can be oxidized by a variety of agents to form a modified lipoprotein which is capable of being avidly metabolized by macrophages. While previous in vitro studies have focused exclusively on the oxidation of LDL, other lipids found in the atheroma are also subject to oxidation and its lipoperoxide byproducts may contribute to the process of LDL modification. To examine the relationship between the oxidation of phospholipids and the subsequent modification of LDL, we incubated 250 microM phosphatidylcholine with 10 microM ferrous sulfate and 50 microM ascorbic acid in 10 mM Tris (pH 7.0). After 18 h at 37 degrees C, significant amounts of thiobarbituric acid reactive substances (TBARS) were formed. The inclusion of LDL (100 micrograms protein/ml) elevated the TBARS and increased the electrophoretic mobility of the lipoprotein. LDL treated with iron and ascorbate in the absence of phosphatidylcholine did not result in the modification of this lipoprotein. LDL that was incubated with phosphatidylcholine, iron and ascorbate was found to be metabolized by macrophages to a far greater extent than native LDL or LDL treated with phosphatidylcholine alone. Probucol (10 microM) inhibited the LDL modification process. These results demonstrate that while iron and ascorbate cannot oxidize LDL directly, the addition of phosphatidylcholine to these initiators of lipid peroxidation can mediate and lead to the modification of LDL. PMID:8664335

  3. Lipoprotein metabolism and fattening in poultry.

    PubMed

    Hermier, D

    1997-05-01

    Because de novo fatty acid synthesis in birds takes place mainly in the liver, adipose tissue growth and subsequent fattening depend on the availability of plasma triglycerides, which are transported as components of lipoproteins. In growing birds, VLDL is the major transporter of triglycerides, and attempts to reduce excessive fatness in poultry have involved the control of VLDL metabolism. Lean and fat lines of chickens have been selected on the basis of either their abdominal fat content or plasma VLDL concentration. In both cases, hepatic lipogenesis or LPL activity in adipose tissue did not differ between lean and fat lines, and therefore they did not appear to be limiting factors of susceptibility to fattening. In contrast, hepatic secretion and plasma concentration of VLDL were always higher in fat chickens than in lean chickens. Thus, current methods of selection of broilers against excessive fatness are based on this direct relationship between plasma VLDL and adiposity. When hepatic lipogenesis exceeds the capacity of VLDL secretion, triglycerides accumulate in the liver, causing steatosis. Although fatty liver is associated with reduced egg production and increased mortality in laying hens, hepatic steatosis in overfed ducks and geese is of positive economic value, serving as the basis for "foie-gras" production. The balance between synthesis and secretion of VLDL is therefore the key point that regulates hepatic and extrahepatic fattening in poultry.

  4. Lgt Processing Is an Essential Step in Streptococcus suis Lipoprotein Mediated Innate Immune Activation

    PubMed Central

    Wichgers Schreur, Paul J.; Rebel, Johanna M. J.; Smits, Mari A.; van Putten, Jos P. M.; Smith, Hilde E.

    2011-01-01

    Background Streptococcus suis causes invasive infections in pigs and occasionally in humans. The host innate immune system plays a major role in counteracting S. suis infections. The main components of S. suis able to activate the innate immune system likely include cell wall constituents that may be released during growth or after cell wall integrity loss, however characterization of these components is still limited. Methology/Principal Findings A concentrated very potent innate immunity activating supernatant of penicillin-treated S. suis was SDS-PAGE fractionated and tested for porcine peripheral blood mononucleated cell (PBMC) stimulating activity using cytokine gene transcript analysis. More than half of the 24 tested fractions increased IL-1β and IL-8 cytokine gene transcript levels in porcine PBMCs. Mass spectrometry of the active fractions indicated 24 proteins including 9 lipoproteins. Genetic inactivation of a putative prolipoprotein diacylglyceryl transferase (Lgt) gene resulted in deficient lipoprotein synthesis as evidenced by palmitate labeling. The Lgt mutant showed strongly reduced activation of porcine PBMCs, indicating that lipoproteins are dominant porcine PBMC activating molecules of S. suis. Conclusion/Significance This study for the first time identifies and characterizes lipoproteins of S. suis as major activators of the innate immune system of the pig. In addition, we provide evidence that Lgt processing of lipoproteins is required for lipoprotein mediated innate immune activation. PMID:21811583

  5. [Position of lipoprotein apheresis in present].

    PubMed

    Bláha, Vladimír; Bláha, Milan; Lánská, Miriam; Havel, Eduard; Vyroubal, Pavel; Zadák, Zdeněk; Vrablík, Michal; Piťha, Jan; Žák, Pavel; Sobotka, Luboš

    2015-11-01

    Lipoprotein apheresis (LA) is an effective treatment method the patients with severe hypercholesterolemia, resistant to the standard therapy. LA is an extracorporeal elimination technique, which specifically removes low density lipoprotein (LDL) cholesterol from the circulation. At present, lipoprotein apheresis, combined with high-dose statin and ezetimibe therapy, is the best available means of treating patients with homozygous and statin refractory heterozygous familial hypercholesterolaemia (FH). However, the extent of cholesterol-lowering achieved is often insufficient to meet the targets set by current guidelines. The recent advent of new classes of lipid-lowering agents provides new hope that the latter objective may now be achievable. These compounds act either by reducing low density lipoprotein (LDL) cholesterol production by inhibiting apolipoprotein B synthesis with an antisense oligonucleotide (mipomersen), or by inhibiting microsomal triglyceride transfer protein (lomitapid), or by enhancing LDL catabolism via monoclonal antibody-mediated inhibition of the activity of proprotein convertase subtilisin/kexin 9 (PCSK9-alirocumab, evolocumab etc). The promising is the combination of LDL-apheresis with new drugs, namely for its potential to further decrease of LDL-cholesterol between apheresis. Depending on the outcome of current trials, it seems likely that these compounds, used alone or combined with lipoprotein apheresis, will markedly improve the management of refractory FH. PMID:26652784

  6. Lipoprotein composition and serum cholesterol ester fatty acids in nonwesternized Melanesians.

    PubMed

    Lindeberg, S; Nilsson-Ehle, P; Vessby, B

    1996-02-01

    In this study, the relationships between dietary fat [as measured by serum cholesterol ester fatty acids (CE-FA)], age, smoking, body mass index, and serum lipids were analyzed in 151 subsistence horticulturalists, aged 20-86 yr, from Kitava, Trobriand Islands, Papua New Guinea. Their diet consists of tubers, fruit, coconut, fish, and vegetables with a negligible influence of western food and alcohol. Total fat intake is low [21% of energy (en%)], while saturated fat intake from coconuts is high (17 en%, mainly lauric and myristic acid). In multivariate analysis, 11-43% of the variation of the serum lipoprotein composition was explained by CE-FA, age, and smoking habits. The proportion of CE20:5n-3 explained much of the variation of triglycerides (TG, negative relation) and high density lipoprotein-cholesterol (HDL-C, positive) in both sexes and serum apolipoprotein A1 (ApoA1, positive) in the males. CE16:0 was positively related to TG and negatively related to HDL-C and ApoA1 in both sexes, and in males it related negatively to total cholesterol (TC) and low density lipoprotein-cholesterol (LDL-C). In males, negative relationships were present between CE18:2n-6 and TC and between CE14:0 and serum lipoprotein(a). Smoking was independently associated with lower ApoA1 in both sexes and with lower HDL-C and higher TG, TC, LDL-C, and apolipoprotein B in males. In conclusion, marine n-3 fatty acids and linoleic acid showed the same potentially beneficial relationships with lipoproteins and apolipoproteins as in western populations. The relations of palmitic acid to serum lipids may be explained in terms of endogenous fat synthesis at a low-fat intake, rather than reflecting its relative intake.

  7. Give me A5 for lipoprotein hydrolysis!

    PubMed

    Merkel, Martin; Heeren, Joerg

    2005-10-01

    APOA5 is a newly identified apolipoprotein that plays a crucial role in the regulation of plasma triglyceride levels. In several human studies, common APOA5 single nucleotide polymorphisms have been strongly associated with elevated plasma triglyceride levels. In this issue of the JCI, Marçais et al. report that the rare Q139X mutation in APOA5 leads to severe hypertriglyceridemia by exerting a dominant-negative effect on the plasma lipolytic system for triglyceride-rich lipoproteins. The presented data support the idea that the molecular mechanism of APOA5 function may include the enhancement of binding between lipoproteins and proteoglycans at the vascular wall and activation of proteoglycan-bound lipoprotein lipase.

  8. Lipoprotein(a): nonhuman primate models.

    PubMed

    Makino, K; Scanu, A M

    1991-09-01

    Lipoprotein(a) [Lp(a)] is a low density lipoprotein which has apo(a) disulfide-linked to apoB100. Apo(a) has recently been shown to have a striking homology with plasminogen, a knowledge that has stimulated a lot of interest in the mechanism of atherogenicity and thrombogenicity of this lipoprotein particle. Several studies have documented the presence of Lp(a) in nonhuman primates with particular reference to the rhesus monkeys and baboons. The Lp(a) of rhesus monkey is structurally very similar to that of humans, except for the absence of kringle V and the amino acid composition of the catalytic region. The Lp(a) of nonhuman primates, like their human counterparts, exhibit a wide range of interindividual plasma levels and also a wide size polymorphism of apo(a). Nonhuman primates appear to represent a good model for the study of the structure and biology of Lp(a).

  9. Explaining cloud chamber tracks

    SciTech Connect

    Broyles, A.A.

    1992-06-16

    The operation of many detection devices is usually explained in terms of the ionization tracks produced by particles despite the fact that the corresponding incident wave functions extended over the entire sensitive regions of the detectors. The mechanisms by which the wave function appears to collapse to a track is analyzed here.

  10. Explaining the Interpretive Mind.

    ERIC Educational Resources Information Center

    Brockmeier, Jens

    1996-01-01

    Examines two prominent positions in the epistemological foundations of psychology--Piaget's causal explanatory claims and Vygotsky's interpretive understanding; contends that they need to be placed in their wider philosophical contexts. Argues that the danger of causally explaining cultural practices through which human beings construct and…

  11. Explaining Immigrant Naturalization.

    ERIC Educational Resources Information Center

    Yang, Philip Q.

    1994-01-01

    Proposes a broad analytical framework in the study of immigrant naturalization that incorporates an immigrant's individual characteristics with the larger social contexts in the country of origin and the country of destination to explain the likelihood of citizenship acquisition. Results testing of this framework show that such considerations are…

  12. Analysis of individual lipoproteins and liposomes

    SciTech Connect

    Robbins, D.L.; Keller, R.A.; Nolan, J.P.

    1997-08-01

    We describe the application of single molecule detection (SMD) technologies for the analysis of natural (serum lipoproteins) and synthetic (liposomes) transport systems. The need for advanced analytical procedures of these complex and important systems is presented with the specific enhancements afforded by SMD with flowing sample streams. In contrast to bulk measurements which yield only average values, measurement of individual species allows creation of population histograms from heterogeneous samples. The data are acquired in minutes and the analysis requires relatively small sample quantities. Preliminary data are presented from the analysis of low density lipoprotein, and multilamellar and unilamellar vesicles.

  13. Baseline lipoprotein lipids and low-density lipoprotein cholesterol response to prescription omega-3 acid ethyl ester added to Simvastatin therapy.

    PubMed

    Maki, Kevin C; Dicklin, Mary R; Davidson, Michael H; Doyle, Ralph T; Ballantyne, Christie M

    2010-05-15

    The present post hoc analysis of data from the COMBination of prescription Omega-3 with Simvastatin (COMBOS) study investigated the predictors of the low-density lipoprotein (LDL) cholesterol response to prescription omega-3 acid ethyl ester (P-OM3) therapy in men and women with high (200 to 499 mg/dl) triglycerides during diet plus simvastatin therapy. Subjects (n = 256 randomized) received double-blind P-OM3 4 g/day or placebo for 8 weeks combined with diet and open-label simvastatin 40 mg/day. The percentage of changes from baseline (with diet plus simvastatin) in lipids was evaluated by tertiles of baseline LDL cholesterol and triglyceride concentrations. The baseline LDL cholesterol tertile was a significant predictor of the LDL cholesterol response (p = 0.022 for the treatment by baseline tertile interaction). The median LDL cholesterol response in the P-OM3 group was +9.5% (first tertile, <80.4 mg/dl), -0.9% (second tertile), and -6.4% (third tertile, > or =99.0 mg/dl). Non-high-density lipoprotein cholesterol, very-low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, and triglyceride responses did not vary significantly by baseline LDL cholesterol tertile. The reductions in very-low-density lipoprotein cholesterol concentrations were greater than the increases in LDL cholesterol, where present, resulting in a net decrease in the concentration of cholesterol carried by atherogenic particles (non-high-density lipoprotein cholesterol) in all baseline LDL cholesterol tertiles. In conclusion, these results suggest that the increase in LDL cholesterol that occurred with the addition of P-OM3 to simvastatin therapy in subjects with mixed dyslipidemia was confined predominantly to those with low LDL cholesterol levels while receiving simvastatin monotherapy. PMID:20451686

  14. Vegetable oils affect the composition of lipoproteins in sea bream (Sparus aurata).

    PubMed

    Caballero, Maria José; Torstensen, Bente E; Robaina, Lidia; Montero, Daniel; Izquierdo, Marisol

    2006-11-01

    The aim of the present study was to determine the influence of the dietary fatty acid profile on the lipoprotein composition in sea bream fed different vegetable oils. Six experimental diets were formulated combining fish oil with three vegetable oils (soybean, rapeseed, linseed) in order to obtain 60-80 % (w/w) fish-oil replacement. VLDL, LDL and HDL in plasma samples were obtained by sequential centrifugal flotation. The lipid class, protein content and fatty acid composition of each lipoprotein fraction were analysed. HDL was the predominant lipoprotein in sea bream plasma containing the highest proportion of protein (34 %) and phosphatidylcholine. LDL presented a high content of cholesterol, whereas triacylglycerol comprised a larger proportion of VLDL. The lipid class of the lipoprotein fractions was affected by the dietary vegetable oils. Thus, a high dietary inclusion of soyabean and linseed oil (80 %) increased the cholesterol in HDL and LDL in comparison to fish oil. Similarly, the triacylglycerol concentration of VLDL was increased in fish fed 80 % soyabean and linseed oils owing to the low n-3 highly unsaturated fatty acid content of these diets. Lipoprotein fatty acid composition easily responded to dietary fatty acid composition. VLDL was the fraction more affected by dietary fatty acid, followed by LDL and HDL. The n-3 highly unsaturated fatty acid content increased in the order VLDL less than LDL and less than HDL, regardless of dietary vegetable oils.

  15. Triacylglycerol kinetics in endotoxic rats with suppressed lipoprotein lipase activity

    SciTech Connect

    Bagby, G.J.; Corll, C.B.; Martinez, R.R.

    1987-07-01

    Hypertriglyceridemia observed in animals after bacterial endotoxin administration and some forms of sepsis can result from increased hepatic triacylglycerol (TG) output or decreased TG clearance by extrahepatic tissues. To differentiate between these two possibilities, TG and free fatty acid (FFA) kinetics were determined in control and endotoxin-injected rats 18 h after treatment. Plasma TG and FFA kinetics were assessed by a constant intravenous infusion with (9,10-/sup 3/H)palmitate-labeled very low-density lipoprotein and (1-/sup 14/C)palmitate bound to albumin, respectively. In addition, lipoprotein lipase (LPL) activity was determined in heart, skeletal muscle, and adipose tissue as well as in postheparin plasma of functionally hepatectomized, adrenalectomized, and gonadectomized rats. Plasma FFA acid concentrations were slightly increased in endotoxin-treated rats but their turnover did not differ from control. Endotoxin-treated rats had a threefold increase in plasma TG concentrations and decreased heart, skeletal muscle, and post-heparin plasma LPL activity. Plasma TG turnover was decreased, indicating that hypertriglyceridemia was not due to an increased TG output by the liver. Instead, the endotoxin-induced increase in plasma TG concentration was consequence of the 80% reduction in TG metabolic clearance rate. Thus, suppression of LPL activity in endotoxic animals impairs TG clearance resulting in hypertriglyceridemia. Furthermore, endotoxin administration reduced the delivery of TG-FFA to extrahepatic tissues because hepatic synthesis and secretion of TG from plasma FFA was decreased and LPL activity was suppressed.

  16. High density lipoprotein metabolism in a rabbit model of hyperalphalipoproteinemia.

    PubMed

    Quig, D W; Zilversmit, D B

    1989-03-01

    The potential utility of an animal model of hyperalphalipoproteinemia for examining the role of high density lipoprotein (HDL) in atherogenesis prompted the current studies. Preliminary data indicated that in rabbits high-coconut oil feeding for 30 days doubled plasma HDL-cholesterol levels, but did not affect lower density lipoproteins (LDL) (d less than 1.063 g/ml). Experiments were performed to examine the composition of these HDL and to determine the mechanism for the diet-induced increase in plasma HDL. Rabbits were fed commercial chow or chow plus 14% (w/w) coconut oil and blood samples were collected 18 h after feeding. Compared to chow-fed rabbits, peak levels of HDL-cholesterol were attained within 2 weeks, and coconut oil feeding doubled the plasma levels of HDL-cholesterol, phospholipids and protein for up to 4 months without affecting HDL lipid and apoprotein composition. After 3 months the diet also increased VLDL- (107%) and LDL-cholesterol (40%) levels, but the absolute increases in each of these lipoprotein fractions was less than half of that of HDL. Isotope kinetic studies of 125I-HDL protein indicated a doubled rate of production of HDL and no change in the efficiency of removal of HDL from plasma. These studies demonstrate that in the rabbit high-coconut oil feeding doubles the rate of production and turnover of apparently normal HDL particles. It is proposed that such an animal model could be utilized to examine directly the role of HDL in atherogenesis. PMID:2920068

  17. Limitations of automated remnant lipoprotein cholesterol assay for diagnostic use

    Technology Transfer Automated Retrieval System (TEKTRAN)

    I wish to comment on the limitations of automated remnant lipoprotein cholesterol (RemL-C) assay reported in Clinical Chemistry. Remnants are lipoprotein particles produced after newly formed triglyceride-rich lipoproteins (TRLs) of either hepatic or intestinal origin enter the plasma space and unde...

  18. Lipoprotein Profiles in Class III Obese Caucasian and African American Women with Nonalcoholic Fatty Liver Disease.

    PubMed

    Garcia, Anna E; Kasim, Nader; Tamboli, Robyn A; Gonzalez, Raul S; Antoun, Joseph; Eckert, Emily A; Marks-Shulman, Pamela A; Dunn, Julia; Wattacheril, Julia; Wallen, Taylor; Abumrad, Naji N; Flynn, Charles Robb

    2015-01-01

    Triglyceride content in the liver is regulated by the uptake, production and elimination of lipoproteins, and derangements in these processes contribute to nonalcoholic fatty liver disease (NAFLD). Previous studies show a direct relationship between intrahepatic fat and production of apolipoprotein B100 (apoB100) containing particles, VLDL and LDL, but little consensus exists regarding changes in lipoprotein production in the development of simple steatosis (SS) versus nonalcoholic steatohepatitis (NASH). Further, ethnic variations in lipoproteins among SS and NASH are unknown as is how such variations might contribute to the differential prevalence of disease among Caucasians versus African Americans. In this study, we assessed plasma lipoprotein profiles by nuclear magnetic resonance (NMR) spectroscopy in 70 non-diabetic class III obese females recruited from the surgical weight loss clinic. Of these, 51 females were stratified by biopsy-staged NAFLD severity (histologically normal, SS, or NASH). NASH females displayed increased circulating triglycerides and increased VLDL particle number and size relative to those with histologically normal livers, while total and large LDL concentration decreased in SS versus NASH and correlated with increased insulin resistance (via HOMA2-IR). When Caucasian women were examined alone (n = 41), VLDL and triglycerides increased between normal and SS, while total LDL and apoB100 decreased between SS and NASH along with increased insulin resistance. Compared to Caucasians with SS, African American women with SS displayed reduced triglycerides, VLDL, and small LDL and a more favorable small to large HDL ratio despite having increased BMI and HOMA2-IR. These findings suggest that ApoB100 and lipoprotein subclass particle number and size can delineate steatosis from NASH in obese Caucasian females, but should be interpreted with caution in other ethnicities as African Americans with SS display relatively improved lipoprotein profiles

  19. Lipoprotein Profiles in Class III Obese Caucasian and African American Women with Nonalcoholic Fatty Liver Disease

    PubMed Central

    Garcia, Anna E.; Kasim, Nader; Tamboli, Robyn A.; Gonzalez, Raul S.; Antoun, Joseph; Eckert, Emily A.; Marks-Shulman, Pamela A.; Dunn, Julia; Wattacheril, Julia; Wallen, Taylor; Abumrad, Naji N.; Flynn, Charles Robb

    2015-01-01

    Triglyceride content in the liver is regulated by the uptake, production and elimination of lipoproteins, and derangements in these processes contribute to nonalcoholic fatty liver disease (NAFLD). Previous studies show a direct relationship between intrahepatic fat and production of apolipoprotein B100 (apoB100) containing particles, VLDL and LDL, but little consensus exists regarding changes in lipoprotein production in the development of simple steatosis (SS) versus nonalcoholic steatohepatitis (NASH). Further, ethnic variations in lipoproteins among SS and NASH are unknown as is how such variations might contribute to the differential prevalence of disease among Caucasians versus African Americans. In this study, we assessed plasma lipoprotein profiles by nuclear magnetic resonance (NMR) spectroscopy in 70 non-diabetic class III obese females recruited from the surgical weight loss clinic. Of these, 51 females were stratified by biopsy-staged NAFLD severity (histologically normal, SS, or NASH). NASH females displayed increased circulating triglycerides and increased VLDL particle number and size relative to those with histologically normal livers, while total and large LDL concentration decreased in SS versus NASH and correlated with increased insulin resistance (via HOMA2-IR). When Caucasian women were examined alone (n = 41), VLDL and triglycerides increased between normal and SS, while total LDL and apoB100 decreased between SS and NASH along with increased insulin resistance. Compared to Caucasians with SS, African American women with SS displayed reduced triglycerides, VLDL, and small LDL and a more favorable small to large HDL ratio despite having increased BMI and HOMA2-IR. These findings suggest that ApoB100 and lipoprotein subclass particle number and size can delineate steatosis from NASH in obese Caucasian females, but should be interpreted with caution in other ethnicities as African Americans with SS display relatively improved lipoprotein profiles

  20. HIV Infection and High Density Lipoprotein Metabolism

    PubMed Central

    Rose, Honor; Hoy, Jennifer; Woolley, Ian; Tchoua, Urbain; Bukrinsky, Michael; Dart, Anthony; Sviridov, Dmitri

    2008-01-01

    HIV infection and its treatment are associated with dyslipidemia, including hypoalphalipoproteinemia, and increased risk of cardiovascular disease. Parameters of HDL metabolism in HIV-positive patients were investigated in a cross-sectional study. The following groups of subjects were selected: i) 25 treatment-naïve HIV-infected patients or HIV-infected patients on long therapy break, ii) 28 HIV-infected patients currently treated with protease inhibitors, and iii) 33 HIV-negative subjects. Compared to the HIV-negative group, all groups of HIV-infected patients were characterized by significantly elevated triglyceride and apolipoprotein B levels, mass and activity of lecithin cholesterol acyl transferase and cholesteryl ester transfer protein (p<0.01). Total and LDL cholesterol was lower in treatment-naïve HIV-infected group only. HDL cholesterol and preβ1-HDL were significantly lower in all HIV-infected groups (p<0.05), while mean levels of apolipoprotein A-I (apoA-I) and ability of plasma to promote cholesterol efflux were similar in all groups. We found a positive correlation between apoA-I and levels of CD4+ cells (r2 = 0.3, p<0.001). Plasma level of phospholipid transfer protein was reduced in the group on antiretroviral therapy. Taken together these results suggest that HIV infection is associated with modified HDL metabolism re-directing cholesterol to the apoB-containing lipoproteins and likely reducing the functionality of reverse cholesterol transport. PMID:18054941

  1. Charge properties of low density lipoprotein subclasses.

    PubMed

    La Belle, M; Blanche, P J; Krauss, R M

    1997-04-01

    Measurements of electrophoretic mobility and particle size of low density lipoproteins (LDL) allowed use of standard electrokinetic theory to quantitate LDL charge characteristics from subjects with predominance of large LDL (pattern A, n = 9) or small LDL (pattern B, n = 8). Pattern A LDL was found to have significantly lower (P < or = 0.001) mobility (-0.22 +/- 0.01 micron s-1 cm V-1), surface potential (-4.2 +/- 0.3 mV) and charge density (-500 +/- 34 esu/cm2) than pattern B LDL (-0.25 +/- 0.01 micron s-1 cm V-1, -4.9 +/- 0.3 mV, and -580 +/- 30 esu/cm2), but no significant difference in particle valence (-22.0 +/- 1.4 for pattern A vs. -21.8 +/- 1.9 for pattern B). Thus, the greater mobility of pattern B LDL is due to similar net charge residing on a smaller particle. Comparison of subfractions in pattern B relative to pattern A LDL revealed greater surface potential in all pattern B subfractions and greater charge density in fractions of d > or = 1.032 g/ml. In a subset of subjects incubation with neuraminidase produced significant reductions in all LDL charge parameters for all subfractions, but did not abolish the differences between pattern A and B. Thus increased surface potential and charge density of unfractionated pattern B LDL is due both to charge properties of particles across the size and density spectrum as well as enrichment of pattern B LDL with smaller, denser particles that have higher surface charge density.

  2. Transport of lipoprotein lipase across endothelial cells

    SciTech Connect

    Saxena, U.; Klein, M.G.; Goldberg, I.J. )

    1991-03-15

    Lipoprotein lipase (LPL), synthesized in muscle and fat, hydrolyzes plasma triglycerides primarily while bound to luminal endothelial cell surfaces. To obtain information about the movement of LPL from the basal to the luminal endothelial cell surface, the authors studied the transport of purified bovine milk LPL across bovine aortic endothelial cell monolayers. {sup 125}I-labeled LPL ({sup 125}I-LPL) added to the basal surface of the monolayers was detected on the apical side of the cells in two compartments: (1) in the medium of the upper chamber, and (2) bound to the apical cell surface. The amount of {sup 125}I-LPL on the cell surface, but not in the medium, reached saturation with time and LPL dose. Catalytically active LPL was transported to the apical surface but very little LPL activity appeared in the medium. Heparinase treatment of the basal cell surface and addition of dextran sulfate to the lower chamber decreased the amount of {sup 125}I-LPL appearing on the apical surface. Similarly, the presence of increasing molar ratios of oleic acid/bovine serum albumin at the basal surface decreased the transport of active LPL across the monolayer. Thus, a saturable transport system, which requires haparan sulfate proteoglycans and is inhibited by high concentrations of free fatty acids on the basal side of the cells, appears to exist for passage of enzymatically active LPL across endothelial cells. They postulate that regulation of LPL transport to the endothelial luminal surface modulates the physiologically active pool of LPL in vivo.

  3. Effect of very high-fat diets on body weight, lipoproteins, and glycemic status in the obese.

    PubMed

    Samaha, Frederick F

    2005-11-01

    Given the increased prevalence of obesity in the United States, despite reduced fat intake, there has been increasing interest in the effect of dietary fat on body weight, lipoproteins, and glycemic status. Despite predictions from epidemiologic and physiologic studies, recent prospective trials have demonstrated equivalent weight loss on high-fat versus low-fat diets. Nevertheless, the type of dietary fat consumed has substantially different effects on lipoproteins. Saturated fat raises high-density lipoprotein cholesterol but has unfavorable effects on total cholesterol, and has been associated with increased cardiovascular events. In contrast, unsaturated fats, and particularly omega-3 fatty acids, have the combined benefits of lowering serum cholesterol and raising high-density lipoprotein, as well as favorable effects on insulin resistance and inflammation; they also lower cardiovascular events in high-risk patients. Although current national guidelines modestly liberalize unsaturated fat consumption, important questions still remain about the optimal percentage of unsaturated fats in the diet. PMID:16255998

  4. Effect of very high-fat diets on body weight, lipoproteins, and glycemic status in the obese.

    PubMed

    Samaha, Frederick F

    2005-11-01

    Given the increased prevalence of obesity in the United States, despite reduced fat intake, there has been increasing interest in the effect of dietary fat on body weight, lipoproteins, and glycemic status. Despite predictions from epidemiologic and physiologic studies, recent prospective trials have demonstrated equivalent weight loss on high-fat versus low-fat diets. Nevertheless, the type of dietary fat consumed has substantially different effects on lipoproteins. Saturated fat raises high-density lipoprotein cholesterol but has unfavorable effects on total cholesterol, and has been associated with increased cardiovascular events. In contrast, unsaturated fats, and particularly omega-3 fatty acids, have the combined benefits of lowering serum cholesterol and raising high-density lipoprotein, as well as favorable effects on insulin resistance and inflammation; they also lower cardiovascular events in high-risk patients. Although current national guidelines modestly liberalize unsaturated fat consumption, important questions still remain about the optimal percentage of unsaturated fats in the diet.

  5. Lipoprotein subspecies and risk of coronary disease.

    PubMed

    Musliner, T A; Krauss, R M

    1988-01-01

    This review summarizes physical and chemical properties of major subspecies of very-low-, low-, intermediate, and high-density lipoproteins. Hypotheses regarding the metabolic origins of these subspecies and evidence for their associations with risk of coronary artery disease are presented.

  6. Cultured human astrocytes secrete large cholesteryl ester- andtriglyceride-rich lipoproteins along with endothelial lipase

    SciTech Connect

    Yang, Lin; Liu, Yanzhu; Forte, Trudy M.; Chisholm, Jeffrey W.; Parks, John S.; Shachter, Neil S.

    2003-12-01

    We cultured normal human astrocytes and characterized their secreted lipoproteins. Human astrocytes secreted lipoproteins in the size range of plasma VLDL (Peak 1), LDL (Peak 2), HDL (Peak 3) and a smaller peak (Peak 4), as determined by gel filtration chromatography, nondenaturing gradient gel electrophoresis and transmission electron microscopy. Cholesterol enrichment of astrocytes led to a particular increase in Peak 1. Almost all Peak 2, 3 and 4 cholesterol and most Peak 1 cholesterol was esterified (unlike mouse astrocyte lipoproteins, which exhibited similar peaks but where cholesterol was predominantly non-esterified). Triglycerides were present at about 2/3 the level of cholesterol. LCAT was detected along with two of its activators, apolipoprotein (apo) A-IV and apoC-I. ApoA-I and apoA-II mRNA and protein were absent. ApoJ was present equally in all peaks but apoE was present predominantly in peaks 3 and 4. ApoB was not detected. The electron microscopic appearance of Peak 1 lipoproteins suggested partial lipolysis leading to the detection of a heparin-releasable triglyceride lipase consistent with endothelial lipase. The increased neuronal delivery of lipids from large lipoprotein particles, for which apoE4 has greater affinity than does apoE3, may be a mechanism whereby the apoE {var_epsilon}4 allele contributes to neurodegenerative risk.

  7. Diabetic lipoproteins and adrenal aldosterone synthesis--a possible pathophysiological link?

    PubMed

    Saha, S; Willenberg, H S; Bornstein, S R; Graessler, J; Kopprasch, S

    2012-03-01

    An increased prevalence of diabetes mellitus (DM) has been reported in patients with primary aldosteronism (PA). DM is associated with abnormal structure and metabolism of circulating lipoproteins, which normally serve as a major source of cholesterol for adrenocortical steroidogenesis. The present study has been designed to investigate the effect of diabetically modified lipoproteins on adrenocortical aldosterone synthesis. Lipoproteins (VLDL, LDL, HDL) isolated from healthy volunteers, were subjected to oxidation or glycoxidation in the presence of sodium hypochlorite (3 mmol/l) or glucose (200 mmol/l), and aldosterone synthesis in human adrenocortical cells (H295R) was examined. Native and glycoxidized VLDL had greatest stimulatory effect on aldosterone production by 15-fold and 14-fold, respectively. At the molecular level, these VLDL produced maximum increases in Cyp11B2 mRNA level up to 17-fold. Experiments with the highly selective scavenger receptor class B type I (SR-BI) inhibitor BLT-1 revealed that cholesterol uptake from native and glycoxidized HDL and VLDL for hormone production is considerably mediated by SR-BI. Western blot analysis of extracellular signal-regulated kinase (ERK 1/2) phosphorylation and experiments with the MEK inhibitor U0126 indicated a specific mechanistic role of the ERK cascade in lipoprotein-mediated steroid hormone release. In summary, diabetic dyslipidemia and modification of circulating lipoproteins may promote adrenocortical aldosterone synthesis.

  8. Metabolism of a Lipid Nanoemulsion Resembling Low-Density Lipoprotein in Patients with Grade III Obesity

    PubMed Central

    Dantas, Simone Alves; Ficker, Elisabeth Salvatori; Vinagre, Carmen G. C.; Ianni, Barbara Maria; Maranhão, Raul Cavalcante; Mady, Charles

    2010-01-01

    INTRODUCTION: Obesity increases triglyceride levels and decreases high-density lipoprotein concentrations in plasma. Artificial emulsions resembling lipidic plasma lipoprotein structures have been used to evaluate low-density lipoprotein metabolism. In grade III obesity, low density lipoprotein metabolism is poorly understood. OBJECTIVE: To evaluate the kinetics with which a cholesterol-rich emulsion (called a low-density emulsion) binds to low-density lipoprotein receptors in a group of patients with grade III obesity by the fractional clearance rate. METHODS: A low-density emulsion was labeled with [14C]-cholesterol ester and [3H]-triglycerides and injected intravenously into ten normolipidemic non-diabetic patients with grade III obesity [body mass index higher than 40 kg/m2] and into ten non-obese healthy controls. Blood samples were collected over 24 hours to determine the plasma decay curve and to calculate the fractional clearance rate. RESULTS: There was no difference regarding plasma levels of total cholesterol or low-density lipoprotein cholesterol between the two groups. The fractional clearance rate of triglycerides was 0.086 ± 0.044 in the obese group and 0.122 ± 0.026 in the controls (p = 0.040), and the fractional clearance rate of cholesterol ester (h−1) was 0.052 ± 0.021 in the obese subjects and 0.058 ± 0.015 (p = 0.971) in the controls. CONCLUSION: Grade III obese subjects exhibited normal low-density lipoprotein removal from plasma as tested by the nanoemulsion method, but triglyceride removal was slower. PMID:20126342

  9. Immobilization stress alters intermediate metabolism and circulating lipoproteins in the rat.

    PubMed

    Ricart-Jané, David; Rodríguez-Sureda, Victor; Benavides, Alex; Peinado-Onsurbe, Julia; López-Tejero, M Dolores; Llobera, Miquel

    2002-07-01

    In humans, stress can increase the risk of cardiovascular disease by altering lipoprotein metabolism. Scarce experimental and clinical data are available on this effect. Therefore, we studied the metabolic response to acute and chronic stress following a model of immobilization (IMO) in rats and we evaluated the resulting circulating lipoprotein levels. Repeated IMO treatment (2 hours daily, always between 9:00 AM and 11:00 AM, for 2 periods of 5 and 4 consecutive days, separated by 2 days of rest) daily decreased body weight gain and food intake, increased adrenal weight, and slightly reduced liver glycogen and plasma insulin (without considerable variations of blood glucose), which is characteristic of chronic stress. A single IMO application (30 minutes of an unexpected IMO starting at 2:00 PM immediately before the animals were killed) significantly increased the circulating levels of corticosterone, glucose, insulin, glycerol, and ketone bodies, which is the typical response to acute stress. Both acute and chronic stress decreased the plasmatic triacylglycerol (TAG) concentration, as reflected by the reduction in the number of very-low-density lipoprotein (VLDL) particles. This may be due to an increase in the metabolization of TAG, as suggested by the slightly higher amounts of circulating LDLs. Chronic stress, but not acute stress, significantly increased both the number and the estimated size of circulating high-density lipoprotein (HDLs), as shown by the plasma cholesterol concentration. Acute stress did not have an additive effect over chronic stress on the lipoprotein parameters studied. The metabolic effects of these IMO-induced alterations on lipoprotein profiles are discussed, and future studies in lipidic metabolism are suggested. PMID:12077743

  10. Sweet potato (Ipomoea batatas L.) leaves suppressed oxidation of low density lipoprotein (LDL) in vitro and in human subjects.

    PubMed

    Nagai, Miu; Tani, Mariko; Kishimoto, Yoshimi; Iizuka, Maki; Saita, Emi; Toyozaki, Miku; Kamiya, Tomoyasu; Ikeguchi, Motoya; Kondo, Kazuo

    2011-05-01

    Sweet potato (Ipomoea batatas L.) leaves are consumed as vegetables around the world, especially in Southeast Asia. The aim of this study was to investigate the inhibitory effect of sweet potato leaves on low-density lipoprotein oxidation in vitro and in human subjects. We compared the antioxidant activity of 8 kinds of sweet potato leaves. Every sweet potato leaf had high radical scavenging activity and prolonged a lag time for starting low-density lipoprotein oxidation in vitro. We found that sweet potato leaves contained abundant polyphenol compounds and the radical scavenging activity and prolongation rate of lag time were highly correlated with total polyphenol content. We also confirmed that thiobarbituric acid reactive substances production was increased in endothelial cell-mediated low-density lipoprotein oxidation, which was decreased by treatment with sweet potato leaves. We further measured the low-density lipoprotein oxidizability in 13 healthy volunteers after their intake of 18 g of "Suioh", raw sweet potato leaves. "Suioh" prolonged a lag time for starting low-density lipoprotein oxidation and decreased low-density lipoprotein mobility. These results suggest that sweet potato leaves have antioxidant activity leading to the suppression of low-density lipoprotein oxidation.

  11. Subfraction analysis of circulating lipoproteins in a patient with Tangier disease due to a novel ABCA1 mutation.

    PubMed

    Murano, Takeyoshi; Yamaguchi, Takashi; Tatsuno, Ichiro; Suzuki, Masayo; Noike, Hirofumi; Takanami, Tarou; Yoshida, Tomoe; Suzuki, Mitsuya; Hashimoto, Ryuya; Maeno, Takatoshi; Terai, Kensuke; Tokuyama, Wataru; Hiruta, Nobuyuki; Schneider, Wolfgang J; Bujo, Hideaki

    2016-01-15

    Tangier disease, characterized by low or absent high-density lipoprotein (HDL), is a rare hereditary lipid storage disorder associated with frequent, but not obligatory, severe premature atherosclerosis due to disturbed reverse cholesterol transport from tissues. The reasons for the heterogeneity in atherogenicity in certain dyslipidemias have not been fully elucidated. Here, using high-performance liquid chromatography with a gel filtration column (HPLC-GFC), we have studied the lipoprotein profile of a 17-year old male patient with Tangier disease who to date has not developed manifest coronary atherosclerosis. The patient was shown to be homozygous for a novel mutation (Leu1097Pro) in the central cytoplasmic region of ATP-binding cassette transporter A1 (ABCA1). Serum total and HDL-cholesterol levels were 59mg/dl and 2mg/dl, respectively. Lipoprotein electrophoretic analyses on agarose and polyacrylamide gels showed the presence of massively abnormal lipoproteins. Further analysis by HPLC-GFC identified significant amounts of lipoproteins in low-density lipoprotein (LDL) subfractions. The lipoprotein particles found in the peak subfraction were smaller than normal LDL, were rich in triglycerides, but poor in cholesterol and phospholipids. These findings in an adolescent Tangier patient suggest that patients in whom these triglyceride-rich, cholesterol- and phospholipid-poor LDL-type particles accumulate over time, would experience an increased propensity for developing atherosclerosis. PMID:26616730

  12. Human plasma phospholipid transfer protein accelerates exchange/transfer of alpha-tocopherol between lipoproteins and cells.

    PubMed Central

    Kostner, G M; Oettl, K; Jauhiainen, M; Ehnholm, C; Esterbauer, H; Dieplinger, H

    1995-01-01

    alpha-Tocopherol (alpha-T), an important anti-oxidant of plasma lipoproteins and cell membranes, is secreted from liver together with very-low-density lipoproteins into the blood stream. Other serum lipoprotein classes gain alpha-T by exchange and transfer processes. We show here that the lipoprotein-free d > 1.22 g/ml fraction of human or pig serum increases the exchange rate of alpha-T by a factor of 2-4 as compared with spontaneous exchange/transfer. The alpha-T exchange/transfer (alpha-TET) activity was purified by multiple-step column chromatography. It gave a single band in PAGE with an apparent molecular mass of 75 kDa, and was found to be identical with the phospholipid transfer protein (PLTP). PLTP catalysed alpha-T exchange between different lipoprotein classes, as well as the transfer of alpha-T from artificial liposomes to high-density lipoproteins. The alpha-TET activity measured with a newly developed assay in ten healthy people was 2.45 +/- 0.88 nmol.ml-1.h-1.alpha-TET activity was negatively correlated with plasma low-density lipoprotein-cholesterol (r = -0.75; P < 0.01). It is concluded that human PLTP catalyses exchange/transfer processes of alpha-T between lipid compartments. This factor may be of relevance in atherogenesis and tumour initiation and growth. Images Figure 2 PMID:7832785

  13. Subfractions of high-density lipoprotein (HDL) and dysfunctional HDL in chronic kidney disease patients

    PubMed Central

    Banach, Maciej

    2016-01-01

    A number of studies have shown that chronic kidney disease (CKD) is associated with increased risk for cardiovascular disease (CVD). Chronic kidney disease is characterized by significant disturbances in lipoprotein metabolism, including differences in quantitative and qualitative content of high-density lipoprotein (HDL) particles. Recent studies have revealed that serum HDL cholesterol levels do not predict CVD in CKD patients; thus CKD-induced modifications in high-density lipoprotein (HDL) may be responsible for the increase in CV risk in CKD patients. Various methods are available to separate several subclasses of HDL and confirm their atheroprotective properties. However, under pathological conditions associated with inflammation and oxidation, HDL can progressively lose normal biological activities and be converted into dysfunctional HDL. In this review, we highlight the current state of knowledge on subfractions of HDL and HDL dysfunction in CKD. PMID:27478466

  14. Six new loci associated with blood low-density lipoprotein cholesterol, high-density lipoprotein cholesterol or triglycerides in humans

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Low-density lipoprotein (LDL) and high-density lipoprotein (HDL) cholesterol are risk factors for cardiovascular disease and blood triglycerides reflect key metabolic processes including sensitivity to insulin. Blood lipoprotein and lipid concentrations are heritable. To date, the identification o...

  15. The serum lipoprotein pattern of water buffalo (Bubalus bubalis).

    PubMed

    Mondola, P; Santangelo, F; Santillo, M; Belfiore, A; Avallone, L; Cifaldi, S; d'Angelo, A; Pizzuti, G P

    1987-01-01

    1. The serum lipoprotein pattern of water buffalo was studied by means of electrophoresis and the lipoproteins were isolated by ultracentrifugation on the basis of their hydrated density. 2. High density lipoproteins (HDL) showed a higher level of cholesterol than did the other lipoproteins. Moreover, the level of phospholipids was higher in HDL than in very low density lipoproteins (VLDL). 3. The buffalo B100 apoprotein was similar to that of man and rat. Three apoproteins similar to human apo E, apo AI and AII were found in buffalo HDL, buffalo VLDL contained essentially apo B protein.

  16. Explaining embodied cognition results.

    PubMed

    Lakoff, George

    2012-10-01

    From the late 1950s until 1975, cognition was understood mainly as disembodied symbol manipulation in cognitive psychology, linguistics, artificial intelligence, and the nascent field of Cognitive Science. The idea of embodied cognition entered the field of Cognitive Linguistics at its beginning in 1975. Since then, cognitive linguists, working with neuroscientists, computer scientists, and experimental psychologists, have been developing a neural theory of thought and language (NTTL). Central to NTTL are the following ideas: (a) we think with our brains, that is, thought is physical and is carried out by functional neural circuitry; (b) what makes thought meaningful are the ways those neural circuits are connected to the body and characterize embodied experience; (c) so-called abstract ideas are embodied in this way as well, as is language. Experimental results in embodied cognition are seen not only as confirming NTTL but also explained via NTTL, mostly via the neural theory of conceptual metaphor. Left behind more than three decades ago is the old idea that cognition uses the abstract manipulation of disembodied symbols that are meaningless in themselves but that somehow constitute internal "representations of external reality" without serious mediation by the body and brain. This article uniquely explains the connections between embodied cognition results since that time and results from cognitive linguistics, experimental psychology, computational modeling, and neuroscience.

  17. [Lipoprotein metabolic characteristics in the liver and intestinal wall of rabbits after a single exposure to sunflower oil and cholesterol].

    PubMed

    Leskova, G F

    1982-04-01

    Lipoprotein metabolism in the rabbit liver and intestinal wall was studied by an alimentary action on the cholesterol blood content. The data obtained indicated that the diet including cholesterol intensifies the release of chylomicrons into the lymph of the intestinal lymphatic trunk. Single addition of sunflower-seed oil to the diet leads to the increased deposition of high, low and very low density lipoproteins in the intestinal wall. Upon adding cholesterol to the rabbit diet the retention of low and very low density lipids in the intestine is followed by the increased release of high density lipoproteins into the blood of the portal vein. Single addition of sunflower-seed oil stimulates the synthesis of high density lipoproteins by the rabbit liver.

  18. Lipids and lipoproteins in patients with type 2 diabetes.

    PubMed

    Krauss, Ronald M

    2004-06-01

    Insulin resistance and type 2 diabetes are associated with a clustering of interrelated plasma lipid and lipoprotein abnormalities, which include reduced HDL cholesterol, a predominance of small dense LDL particles, and elevated triglyceride levels. Each of these dyslipidemic features is associated with an increased risk of cardiovascular disease. Increased hepatic secretion of large triglyceride-rich VLDL and impaired clearance of VLDL appears to be of central importance in the pathophysiology of this dyslipidemia. Small dense LDL particles arise from the intravascular processing of specific larger VLDL precursors. Typically, reduced plasma HDL levels in type 2 diabetes are manifest as reductions in the HDL(2b) subspecies and relative or absolute increases in smaller denser HDL(3b) and HDL(3c). Although behavioral interventions such as diet and exercise can improve diabetic dyslipidemia, for most patients, pharmacological therapy is needed to reach treatment goals. There are several classes of medications that can be used to treat lipid and lipoprotein abnormalities associated with insulin resistance and type 2 diabetes, including statins, fibrates, niacin, and thiazolidinediones. Clinical trials have shown significant improvement in coronary artery disease after diabetic dyslipidemia treatment.

  19. LCAT synthesized by primary astrocytes esterifies cholesterol on glia-derived lipoproteins

    PubMed Central

    Hirsch-Reinshagen, Veronica; Donkin, James; Stukas, Sophie; Chan, Jennifer; Wilkinson, Anna; Fan, Jianjia; Parks, John S.; Kuivenhoven, Jan Albert; Lütjohann, Dieter; Pritchard, Haydn; Wellington, Cheryl L.

    2009-01-01

    Lipid trafficking in the brain is essential for the maintenance and repair of neuronal membranes, especially after neurotoxic insults. However, brain lipid metabolism is not completely understood. In plasma, LCAT catalyses the esterification of free cholesterol on circulating lipoproteins, a key step in the maturation of HDL. Brain lipoproteins are apolipoprotein E (apoE)-containing, HDL-like particles secreted initially as lipid-poor discs by glial cells. LCAT is synthesized within the brain, suggesting that it may play a key role in the maturation of these lipoproteins. Here we demonstrate that astrocytes are the primary producers of brain LCAT. This LCAT esterifies free cholesterol on nascent apoE-containing lipopoproteins secreted from glia. ApoE is the major LCAT activator in glia-conditioned media (GCM), and both the cholesterol transporter ABCA1 and apoE are required to generate glial LCAT substrate particles. LCAT deficiency leads to the appearance of abnormal ∼8 nm particles in GCM, and exogenous LCAT restores the lipoprotein particle distribution to the wild-type (WT) pattern. In vivo, complete LCAT deficiency results in a dramatic increase in apoE-HDL and reduced apolipoprotein A-I (apoA-I)-HDL in murine cerebrospinal fluid (CSF). These data show that brain LCAT esterifies cholesterol on glial-derived apoE-lipoproteins, and influences CSF apoE and apoA-I levels. PMID:19065001

  20. The syndecan family of proteoglycans. Novel receptors mediating internalization of atherogenic lipoproteins in vitro.

    PubMed Central

    Fuki, I V; Kuhn, K M; Lomazov, I R; Rothman, V L; Tuszynski, G P; Iozzo, R V; Swenson, T L; Fisher, E A; Williams, K J

    1997-01-01

    Cell-surface heparan sulfate proteoglycans have been shown to participate in lipoprotein catabolism, but the roles of specific proteoglycan classes have not been examined previously. Here, we studied the involvement of the syndecan proteoglycan family. First, transfection of CHO cells with expression vectors for several syndecan core proteins produced parallel increases in the cell association and degradation of lipoproteins enriched in lipoprotein lipase, a heparan-binding protein. Second, a chimeric construct, FcR-Synd1, that consists of the ectodomain of the IgG Fc receptor Ia linked to the highly conserved transmembrane and cytoplasmic domains of syndecan-1 directly mediated efficient internalization, in a process triggered by ligand clustering. Third, internalization of lipase-enriched lipoproteins via syndecan-1 and of clustered IgGs via the chimera showed identical kinetics (t1/2 = 1 h) and identical dose-response sensitivities to cytochalasin B, which disrupts microfilaments, and to genistein, which inhibits tyrosine kinases. In contrast, internalization of the receptor-associated protein, which proceeds via coated pits, showed a t1/2 < 15 min, limited sensitivity to cytochalasin B, and complete insensitivity to genistein. Thus, syndecan proteoglycans can directly mediate ligand catabolism through a pathway with characteristics distinct from coated pits, and might act as receptors for atherogenic lipoproteins and other ligands in vivo. PMID:9294130

  1. Systemic Inflammatory Markers Are Closely Associated with Atherogenic Lipoprotein Subfractions in Patients Undergoing Coronary Angiography

    PubMed Central

    Zhang, Yan; Li, Sha; Xu, Rui-Xia; Zhu, Cheng-Gang; Guo, Yuan-Lin; Wu, Na-Qiong; Sun, Jing; Li, Jian-Jun

    2015-01-01

    Objective. To investigate the relationship between inflammatory markers and atherogenic lipoprotein subfractions. Methods. We studied 520 eligible subjects who were not receiving any lipid-lowering therapy. The inflammatory markers including white blood cell (WBC) count, high-sensitivity C-reactive protein (hs-CRP), fibrinogen, erythrocyte sedimentation rate (ESR), and D-dimer were measured. A multimarker inflammatory index was developed. Low-density lipoprotein (LDL) and high-density lipoprotein (HDL) separation processes were performed using Lipoprint System. Results. In age- and sex-adjusted analysis, several inflammatory markers (WBC count, hs-CRP, fibrinogen, and ESR) were positively related to circulating non-HDL cholesterol and remnant cholesterol (p < 0.05, all). Among lipoprotein subfractions, we observed a positive association of inflammatory markers with very low-density lipoprotein cholesterol, small LDL cholesterol, and LDL score (p < 0.05, all). Meanwhile, a negative association was detected between inflammatory markers and mean LDL particle size (p < 0.05) or large HDL cholesterol (p < 0.05). Moreover, we found that the relationships between multimarker index quartiles and small LDL cholesterol, LDL score, and mean LDL particle size were slightly stronger in patients with CAD. Conclusions. Systemic inflammatory markers are positively correlated with small LDL cholesterol and LDL score while being negatively linked with mean LDL particle size and large HDL cholesterol, highlighting the potential contribution to increased cardiovascular risk. PMID:26688615

  2. ENIGMATIC ROLE OF LIPOPROTEIN(a) IN CARDIOVASCULAR DISEASE

    PubMed Central

    Anuurad, Erdembileg; Enkhmaa, Byambaa; Berglund, Lars

    2010-01-01

    Lipoprotein (a), Lp(a), has many properties in common with low density lipoprotein, LDL, but contains a unique protein apolipoprotein(a), linked to apolipoprotein B-100 by a single disulfide bond. There is a substantial size heterogeneity of apo(a), and generally smaller apo(a) sizes tend to correspond to higher plasma Lp(a) levels, but this relation is far from linear, underscoring the importance to assess allele-specific apo(a) levels. The presence of apo(a), a highly charged, carbohydrate-rich, hydrophilic protein may obscure key features of the LDL moiety and offer opportunities for binding to vessel wall elements. Recently, interest in Lp(a) has increased because studies over the past decade have confirmed and more robustly demonstrated a risk factor role of Lp(a) for cardiovascular disease. In particular, levels of Lp(a) carried in particles with smaller size apo(a) isoforms are associated with CAD. Other studies suggest that pro-inflammatory conditions may modulate risk factor properties of Lp(a). Further, Lp(a) may act as a preferential acceptor for pro-inflammatory oxidized phospholipids transferred from tissues or from other lipoproteins. However, at present only a limited number of agents (e.g. nicotinic acid and estrogen) has proven efficacy in lowering Lp(a) levels. Although Lp(a) has not been definitely established as a cardiovascular risk factor and no guidelines presently recommend intervention, Lp(a)-lowering therapy might offer benefits in subgroups of patients with high Lp(a) levels. PMID:21167011

  3. Explaining wartime rape.

    PubMed

    Gottschall, Jonathan

    2004-05-01

    In the years since the first reports of mass rapes in the Yugoslavian wars of secession and the genocidal massacres in Rwanda, feminist activists and scholars, human rights organizations, journalists, and social scientists have dedicated unprecedented efforts to document, explain, and seek solutions for the phenomenon of wartime rape. While contributors to this literature agree on much, there is no consensus on causal factors. This paper provides a brief overview of the literature on wartime rape in historical and ethnographical societies and a critical analysis of the four leading explanations for its root causes: the feminist theory, the cultural pathology theory, the strategic rape theory, and the biosocial theory. The paper concludes that the biosocial theory is the only one capable of bringing all the phenomena associated with wartime rape into a single explanatory context.

  4. Explaining immigrant naturalization.

    PubMed

    Yang, P Q

    1994-01-01

    "Prior research on immigrant naturalization has focused mainly on the effects of immigrants' adaptation experiences and demographic characteristics on their propensity to naturalize. This article proposes a broader analytical framework which incorporates immigrants' individual characteristics and larger social contexts in the country of origin and the country of destination to explain the likelihood of citizenship acquisition. The framework is tested for a cohort of recent immigrants, using the PUMS data from the 1980 U.S. census. The results show that economic, political, social, cultural and geographical conditions in the country of origin, and immigrants ethnic communities and urban concentration in the country of destination, to a large extent influence immigrants' propensity for naturalization and that, net of the contextual factors, many of the immigrants' adaptation and demographic characteristics are also significant predictors of citizenship acquisition."

  5. Explaining moral religions.

    PubMed

    Baumard, Nicolas; Boyer, Pascal

    2013-06-01

    Moralizing religions, unlike religions with morally indifferent gods or spirits, appeared only recently in some (but not all) large-scale human societies. A crucial feature of these new religions is their emphasis on proportionality (between deeds and supernatural rewards, between sins and penance, and in the formulation of the Golden Rule, according to which one should treat others as one would like others to treat oneself). Cognitive science models that account for many properties of religion can be extended to these religions. Recent models of evolved dispositions for fairness in cooperation suggest that proportionality-based morality is highly intuitive to human beings. The cultural success of moralizing movements, secular or religious, could be explained based on proportionality.

  6. Explaining moral religions.

    PubMed

    Baumard, Nicolas; Boyer, Pascal

    2013-06-01

    Moralizing religions, unlike religions with morally indifferent gods or spirits, appeared only recently in some (but not all) large-scale human societies. A crucial feature of these new religions is their emphasis on proportionality (between deeds and supernatural rewards, between sins and penance, and in the formulation of the Golden Rule, according to which one should treat others as one would like others to treat oneself). Cognitive science models that account for many properties of religion can be extended to these religions. Recent models of evolved dispositions for fairness in cooperation suggest that proportionality-based morality is highly intuitive to human beings. The cultural success of moralizing movements, secular or religious, could be explained based on proportionality. PMID:23664451

  7. Analyzing the molecular mechanism of lipoprotein localization in Brucella.

    PubMed

    Goolab, Shivani; Roth, Robyn L; van Heerden, Henriette; Crampton, Michael C

    2015-01-01

    Bacterial lipoproteins possess diverse structure and functionality, ranging from bacterial physiology to pathogenic processes. As such many lipoproteins, originating from Brucella are exploited as potential vaccines to countermeasure brucellosis infection in the host. These membrane proteins are translocated from the cytoplasm to the cell membrane where they are anchored peripherally by a multifaceted targeting mechanism. Although much research has focused on the identification and classification of Brucella lipoproteins and their potential use as vaccine candidates for the treatment of Brucellosis, the underlying route for the translocation of these lipoproteins to the outer surface of the Brucella (and other pathogens) outer membrane (OM) remains mostly unknown. This is partly due to the complexity of the organism and evasive tactics used to escape the host immune system, the variation in biological structure and activity of lipoproteins, combined with the complex nature of the translocation machinery. The biosynthetic pathway of Brucella lipoproteins involves a distinct secretion system aiding translocation from the cytoplasm, where they are modified by lipidation, sorted by the lipoprotein localization machinery pathway and thereafter equipped for export to the OM. Surface localized lipoproteins in Brucella may employ a lipoprotein flippase or the β-barrel assembly complex for translocation. This review provides an overview of the characterized Brucella OM proteins that form part of the OM, including a handful of other characterized bacterial lipoproteins and their mechanisms of translocation. Lipoprotein localization pathways in gram negative bacteria will be used as a model to identify gaps in Brucella lipoprotein localization and infer a potential pathway. Of particular interest are the dual topology lipoproteins identified in Escherichia coli and Haemophilus influenza. The localization and topology of these lipoproteins from other gram negative bacteria

  8. Analyzing the molecular mechanism of lipoprotein localization in Brucella

    PubMed Central

    Goolab, Shivani; Roth, Robyn L.; van Heerden, Henriette; Crampton, Michael C.

    2015-01-01

    Bacterial lipoproteins possess diverse structure and functionality, ranging from bacterial physiology to pathogenic processes. As such many lipoproteins, originating from Brucella are exploited as potential vaccines to countermeasure brucellosis infection in the host. These membrane proteins are translocated from the cytoplasm to the cell membrane where they are anchored peripherally by a multifaceted targeting mechanism. Although much research has focused on the identification and classification of Brucella lipoproteins and their potential use as vaccine candidates for the treatment of Brucellosis, the underlying route for the translocation of these lipoproteins to the outer surface of the Brucella (and other pathogens) outer membrane (OM) remains mostly unknown. This is partly due to the complexity of the organism and evasive tactics used to escape the host immune system, the variation in biological structure and activity of lipoproteins, combined with the complex nature of the translocation machinery. The biosynthetic pathway of Brucella lipoproteins involves a distinct secretion system aiding translocation from the cytoplasm, where they are modified by lipidation, sorted by the lipoprotein localization machinery pathway and thereafter equipped for export to the OM. Surface localized lipoproteins in Brucella may employ a lipoprotein flippase or the β-barrel assembly complex for translocation. This review provides an overview of the characterized Brucella OM proteins that form part of the OM, including a handful of other characterized bacterial lipoproteins and their mechanisms of translocation. Lipoprotein localization pathways in gram negative bacteria will be used as a model to identify gaps in Brucella lipoprotein localization and infer a potential pathway. Of particular interest are the dual topology lipoproteins identified in Escherichia coli and Haemophilus influenza. The localization and topology of these lipoproteins from other gram negative bacteria

  9. Epipolymorphisms within lipoprotein genes contribute independently to plasma lipid levels in familial hypercholesterolemia

    PubMed Central

    Guay, Simon-Pierre; Brisson, Diane; Lamarche, Benoit; Gaudet, Daniel; Bouchard, Luigi

    2014-01-01

    Gene polymorphisms associated so far with plasma lipid concentrations explain only a fraction of their heritability, which can reach up to 60%. Recent studies suggest that epigenetic modifications (DNA methylation) could contribute to explain part of this missing heritability. We therefore assessed whether the DNA methylation of key lipoprotein metabolism genes is associated with high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C) and triglyceride levels in patients with familial hypercholesterolemia (FH). Untreated FH patients (61 men and 37 women) were recruited for the measurement of blood DNA methylation levels at the ABCG1, LIPC, PLTP and SCARB1 gene loci using bisulfite pyrosequencing. ABCG1, LIPC and PLTP DNA methylation was significantly associated with HDL-C, LDL-C and triglyceride levels in a sex-specific manner (all P < 0.05). FH subjects with previous history of coronary artery disease (CAD) had higher LIPC DNA methylation levels compared with FH subjects without CAD (P = 0.02). Sex-specific multivariable linear regression models showed that new and previously reported epipolymorphisms (ABCG1-CpGC3, LIPC-CpGA2, mean PLTP-CpGC, LPL-CpGA3, CETP-CpGA2, and CETP-CpGB2) significantly contribute to variations in plasma lipid levels (all P < 0.001 in men and P < 0.02 in women), independently of traditional predictors such as age, waist circumference, blood pressure, fasting plasma lipids and glucose levels. These results suggest that epigenetic perturbations of key lipoprotein metabolism genes are associated with plasma lipid levels, contribute to the interindividual variability and might partially explain the missing heritability of plasma lipid levels, at least in FH. PMID:24504152

  10. Lipid profiling of lipoprotein X: Implications for dyslipidemia in cholestasis.

    PubMed

    Heimerl, Susanne; Boettcher, Alfred; Kaul, Harald; Liebisch, Gerhard

    2016-08-01

    Lipoprotein X (Lp-X) is an abnormal lipoprotein that may typically be formed in intra- and extrahepatic cholestasis and potentially interfere with lipid analysis in the routine lab. To gain insight into lipid class and species composition, Lp-X, LDL and HDL from cholestatic and control serum samples were subjected to mass spectrometric analysis including phospholipids (PL), sphingolipids, free cholesterol (FC), cholesteryl esters (CE) and bile acids. Our analysis of Lp-X revealed a content of 46% FC, 49% PL with 34% phosphatidylcholine (PC) as main PL component. The lipid species pattern of Lp-X showed remarkable high fractions of mono-unsaturated species including PC 32:1 and PC 34:1 and phosphatidylethanolamine (PE) 32:1 and 34:1. LDL and HDL lipid composition in the same specimens strongly reflected the lipid composition of Lp-X with increased PC 32:1, PC 34:1, PE 32:1, PE 34:1 and FC accompanied by decreased CE compared to controls. Comparison of Lp-X and biliary lipid composition clearly indicates that Lp-X does not originate from a sole release of bile lipids. Moreover, these data present evidence for increased hepatic fatty acid and PL synthesis which may represent a reaction to high hepatic FC level observed during cholestasis.

  11. Protein carbamylation renders high-density lipoprotein dysfunctional

    PubMed Central

    2012-01-01

    Aim Carbamylation of proteins through reactive cyanate has been demonstrated to predict an increased cardiovascular risk. Cyanate is formed in vivo by break-down of urea and at sites of inflammation by the phagocyte protein myeloperoxidase. Since myeloperoxidase (MPO) associates with high-density lipoprotein (HDL) in human atherosclerotic intima, we examined in the present study whether cyanate specifically targets HDL. Results Mass spectrometry analysis revealed that protein carbamylation is a major post-translational modification of HDL. The carbamyllysine content of lesion derived HDL was more than 20-fold higher in comparison to 3-chlorotyrosine levels, a specific oxidation product of MPO. Notable, the carbamyllysine content of lesion-derived HDL was 5 to 8-fold higher when compared to lesion derived low-density lipoprotein (LDL) or total lesion protein and increased with lesion severity. Importantly, the carbamyllysine content of HDL, but not of LDL, correlated with levels of 3-chlorotyrosine, suggesting MPO mediated carbamylation in the vessel wall. Remarkably, one carbamyllysine residue per HDL associated apolipoprotein A-I was sufficient to induce cholesterol accumulation and lipid droplet formation in macrophages through a pathway requiring the HDL receptor scavenger receptor class B, type I. Conclusion The present results raise the possibility that HDL carbamylation contributes to foam cell formation in atherosclerotic lesions. PMID:21235354

  12. Hypertriglyceridemia and unusual lipoprotein subclass distributions associated with late pregnancy

    SciTech Connect

    Forte, T.M.; Kretchmer, N.; Silliman, K. )

    1991-03-15

    In the human adult population elevated plasma triglyceride (TG) levels are associated with decreased high density lipoprotein-cholesterol (HDL-C) levels and decreased HDL and LDL particle sizes. Late pregnancy is a hypertriglyceridemic state where little is known about LDL and HDL subpopulation distribution. Plasma lipids, apolipoproteins (apo) and lipoprotein subpopulations were examined in 36 pregnant women at 36 wk pregnancy and 6 wk postpartum and correlated with HDL and LDL size. There was a significant decrease in LDL diameter at 36 wk pre, 25 {plus minus} 0.7 nm compared, with 6 wk post, 26.4 {plus minus} 0.8 nm. A total of 97% of the 36 wk pre subjects had small dense LDL which paralleled increases in apoB concentration. Unlike LDL HDL at 36 wks pre showed a significant increase in larger sized particles where HDL{sub 2b} predominated. There was a positive correlation between HDL{sub 2b} mass and apoAl and HDL-C concentrations. Late pregnancy is a metabolic state where the predominance of large, HDL{sub 2b} particles is discordant with the predominance of small LDL and elevated TG. This annual metabolic pattern may in part be due to hormonal changes occurring in late pregnancy.

  13. [A history and review of cholesterol ester transfer protein inhibitors and their contribution to the understanding of the physiology and pathophysiology of high density lipoprotein].

    PubMed

    Corral, Pablo; Schreier, Laura

    2014-01-01

    There is irrefutable evidence that statins reduce the risk of cardiovascular events in a magnitude proportional to the intensity of the decrease in cholesterol transport by the low density lipoproteins. Despite this great advance there is still a residual risk of cardiovascular events. For this reason, an increase in the levels of high density lipoprotein is considered in order to boost the main action of this lipoprotein, which is reverse cholesterol transport. Distinct classes of evidence (epidemiological, genetic, and pathophysiological) show that the inhibition and/or modulation of cholesterol ester transfer protein increases plasma high density lipoprotein-cholesterol levels. The main reason for presenting this review is to look at the physiology of cholesterol ester transfer protein, its interrelationship with high density lipoproteins, and to give an update on the development of different cholesterol ester transfer protein inhibitor/modulator molecules. PMID:24094503

  14. [A history and review of cholesterol ester transfer protein inhibitors and their contribution to the understanding of the physiology and pathophysiology of high density lipoprotein].

    PubMed

    Corral, Pablo; Schreier, Laura

    2014-01-01

    There is irrefutable evidence that statins reduce the risk of cardiovascular events in a magnitude proportional to the intensity of the decrease in cholesterol transport by the low density lipoproteins. Despite this great advance there is still a residual risk of cardiovascular events. For this reason, an increase in the levels of high density lipoprotein is considered in order to boost the main action of this lipoprotein, which is reverse cholesterol transport. Distinct classes of evidence (epidemiological, genetic, and pathophysiological) show that the inhibition and/or modulation of cholesterol ester transfer protein increases plasma high density lipoprotein-cholesterol levels. The main reason for presenting this review is to look at the physiology of cholesterol ester transfer protein, its interrelationship with high density lipoproteins, and to give an update on the development of different cholesterol ester transfer protein inhibitor/modulator molecules.

  15. (/sup 3/H)cholesteryl ester labeling and transfer among human and honhuman primate plasma lipoproteins

    SciTech Connect

    Thomas, M.S.; Rudel, L.L.

    1983-04-01

    Aliquots of human and nonhuman primate plasma containing 5,5'-dithiobis (2-nitrobenzoic acid) were incubated at 37/sup 0/C in tubes previously coated with trace amounts of tritium-labeled cholesteryl oleate ((/sup 3/H)CO). Initially, cholesteryl esters were transferred at a rapid rate into plasma after which the rate slowed. During 24 h of incubation, an average of 55% of the (/sup 3/H)CO transferred from the side of the tube into African green monkey plasma, 44% into human plasma and 21% into rat plasma. Greater than 98% of the radioactive ester transferred into plasma was found to be associated with plasma lipoproteins that were then rapidly separated using vertical rotor density gradient ultracentrifugation. In very low density lipoprotein (VLDL)-poor plasma after 30 min incubations, high density lipoproteins (HDL) contained most of the (/sup 3/H)CO while 5- to 24-h incubations resulted in increased labeling of low density proteins (LDL). In VLDL-rich plasma, it was found that in addition to the labeling of HDL, VLDL contained about 25% of the labeled cholesteryl esters after 30-min incubations and, as above, the proportion in LDL subsequently increased. Compositional analyses showed that intermediate-sized LDL (ILDL) were accumulating cholesteryl ester mass while transfer occurred. LDL labeled using this method were injected intravenously into monkeys and their removal from plasma was found to be similar to that found for LDL labeled in vivo. It was concluded that this method of plasma lipoprotein cholesteryl ester labeling, presumably a result of cholesteryl ester transfer protein activity, was efficient, resulted in lipoproteins labeled only in the cholesteryl ester moiety, and induced minimal modification of lipoprotein particles that did not alter their biological activity.

  16. Serum and urinary lipoproteins in the human nephrotic syndrome: evidence for renal catabolism of lipoproteins

    SciTech Connect

    Shore, V.G.; Forte, T.; Licht, H.; Lewis, S.B.

    1982-03-01

    The urinary excretion of lipoproteins and the possibility of catabolic alterations on glomerular filtration were investigated in four nephrotic subjects difering in etiology, serum lipoprotein profile, and 24 hr urinary output of protein and lipids. The apolipoproteins and lipoproteins of urine were compared with those of serum with respect to distribution profile, physical properties, and composition. As expected from molecular sieving effects during glomerular filtration, the urinary HDL were more abundant than the lower density lipoproteins even when the plasma LDL was elevated markedly. Intact apolipoproteins were not found in the concentrated urinary fraction isolated by ultrafiltration between the limits of 10/sup 4/ and 5 x 10/sup 4/ daltons. On the basis of immunoreactivity, gel electrophoresis, and amino acid composition, apolipoproteins B and AI are the major and minor proteins, respectively, of urinary LDL, and apo B is the major protein of the urinary IDL and VLDL. Apolipoproteins AI, AII, CI, CIII, and possibly AIV were isolated from the urinary HDL. As much as 20% of the protein moiety of the urinary HDL appeared to be large apolipoprotien fragments with molecular weights and isoelectric points similar to those of apo CII and apo CIII. The lower density classes of urinary lipoproteins also appeared to have lost apo E and apo C's and to have undergone partial proteolysis.

  17. Double Superhelix Model of High Density Lipoprotein*

    PubMed Central

    Wu, Zhiping; Gogonea, Valentin; Lee, Xavier; Wagner, Matthew A.; Li, Xin-Min; Huang, Ying; Undurti, Arundhati; May, Roland P.; Haertlein, Michael; Moulin, Martine; Gutsche, Irina; Zaccai, Giuseppe; DiDonato, Joseph A.; Hazen, Stanley L.

    2009-01-01

    High density lipoprotein (HDL), the carrier of so-called “good” cholesterol, serves as the major athero-protective lipoprotein and has emerged as a key therapeutic target for cardiovascular disease. We applied small angle neutron scattering (SANS) with contrast variation and selective isotopic deuteration to the study of nascent HDL to obtain the low resolution structure in solution of the overall time-averaged conformation of apolipoprotein AI (apoA-I) versus the lipid (acyl chain) core of the particle. Remarkably, apoA-I is observed to possess an open helical shape that wraps around a central ellipsoidal lipid phase. Using the low resolution SANS shapes of the protein and lipid core as scaffolding, an all-atom computational model for the protein and lipid components of nascent HDL was developed by integrating complementary structural data from hydrogen/deuterium exchange mass spectrometry and previously published constraints from multiple biophysical techniques. Both SANS data and the new computational model, the double superhelix model, suggest an unexpected structural arrangement of protein and lipids of nascent HDL, an anti-parallel double superhelix wrapped around an ellipsoidal lipid phase. The protein and lipid organization in nascent HDL envisages a potential generalized mechanism for lipoprotein biogenesis and remodeling, biological processes critical to sterol and lipid transport, organismal energy metabolism, and innate immunity. PMID:19812036

  18. Intrinsic enzymes of high-density lipoprotein.

    PubMed

    Le, Ngoc-Anh; Walter, Mary F

    2007-03-01

    Several lines of evidence are available to support the protective effects of high-density lipoproteins (HDL) on atherosclerosis. The exact mechanisms by which HDL protects against atherosclerotic disease development are not understood. In addition to its role in the reverse transport of cholesterol from the peripheral sites to the liver for excretion, HDL also carries a number of enzymes that contribute to the remodeling of plasma lipoproteins and to the protection of other lipoproteins against oxidative modification. Many of these enzymes can play a role in determining the composition of circulating HDL, while others appear to affect specific biologic activities associated with HDL. It is not clear whether the concentrations of HDL particles or the activities associated with this class of particles are more important. One of the problems is that HDL constitutes a heterogeneous population of particles, and analytical tools to characterize the various subpopulations are not widely available. In this article, we will review the enzymes that are associated with plasma HDL and possible mechanisms as to how these may contribute to the protective properties of HDL in humans. PMID:21291665

  19. Ethnicity and coronary artery disease: the role of high-density lipoprotein - a change in paradigm.

    PubMed

    Bravo, Katia; Velarde, Gladys P

    2015-01-01

    Cardiovascular disease (CVD) is the number one killer of men and women across ethnic groups in the USA. Health disparities in CVD, especially coronary artery disease (CAD), are well documented in the diverse American population. Despite efforts taken toward reducing cardiovascular health disparities, there are still gaps in its diagnosis and management. Current risk assessment guidelines consider high high-density lipoprotein (HDL) levels a protective factor against CAD, although its significance across races remains poorly understood. Recent clinical trials focused on increasing HDL levels have been disappointing. In this article, the authors have explored the role of HDL in CAD, have analyzed its significance across gender and ethnic groups and have challenged the broad application of widely used HDL level cutoffs in CAD risk assessment tools across these vulnerable groups. The current evidence suggests a paradigm change from HDL quantity to quality and function in future CVD risk research. This may better explain why some ethnic minority groups with a seemingly more benign lipid profile experience a higher CAD burden.

  20. Lipoprotein(a) in women twins: Heritability and relationship to apolipoprotein(a) phenotypes

    SciTech Connect

    Austin, M.A. ); Sandholzer, C.; Utermann, G. ); Selby, J.V. ); Newman, B. ); Krauss, R.M. )

    1992-10-01

    Lp(a) is a unique lipoprotein consisting of an LDL-like particle and a characteristic protein, apo(a). Increased levels of Lp(a) constitute a risk factor for coronary heart disease. Variation in the size of the apo(a) protein is a phenotype controlled by the apo(a) gene on chromosome 6 and is related to Lp(a) plasma levels. Based on 169 MZ and 125 DZ adult female twin pairs, this study's purpose was to estimate the proportion of the variation in Lp(a) levels that is due to genetic influences and to determine the extent to which the apo(a) locus explains this heritability. Lp(a) levels were significantly more similar in MZ twins than in DZ twins: mean co-twin differences were 3.9 [+-] 5.7 mg/dl and 16.0 [+-] 19.9 mg/dl (P < .001), respectively. Intraclass correlations were .94 in MZ twins and .32 in DZ twins, resulting in a heritability estimate of .94 (P < .001). Heritability was then calculated using only co-twins with the same apo(a) phenotype: the heritability estimate decreased to .45 but was still highly significant (P < .001). Therefore, on the basis of heritability analysis of women twins, Lp(a) levels are almost entirely genetically controlled. Variation at the apo(a) locus contributes to this heritability, although other genetic factors could be involved. 66 refs., 2 figs., 4 tabs.

  1. Inheritance of low-density lipoprotein subclass patterns: results of complex segregation analysis.

    PubMed

    Austin, M A; King, M C; Vranizan, K M; Newman, B; Krauss, R M

    1988-12-01

    Heterogeneity in the size of low-density lipoprotein (LDL) particles was used to identify two distinct patterns based on gradient gel electrophoresis analysis. These two phenotypes, LDL subclass pattern A and pattern B, were characterized by a predominance of large, buoyant LDL particles and small, dense LDL particles, respectively. The inheritance of these LDL subclass patterns was investigated in a sample of 61 healthy families including 301 individuals. LDL subclass pattern B was present in 31% of the subjects, with the prevalence varying by gender, age, and (in women) menopausal status. Complex segregation analysis suggested a major locus controlling LDL subclass patterns. The model providing the best fit to the data included a dominant mode of inheritance with a frequency of .25 for the allele determining LDL subclass pattern B and reduced penetrance for men under age 20 and for premenopausal women. Thus, the allele for the LDL subclass pattern characterized by a predominance of small, dense LDL particles appears to be very common in the population, although not usually expressed until adulthood in men and until after menopause in women. The presence of a major gene controlling LDL subclass could explain much of the familial aggregation of lipid and apolipoprotein levels and may be involved in increased risk of coronary heart disease.

  2. Oxidized low-density lipoproteins induced inflammatory process during atherogenesis with aging

    NASA Astrophysics Data System (ADS)

    Larbi, Anis; Khalil, Abdelouahed; Douziech, Nadine; Guérard, Karl-Philippe; Fülöp, Tamàs

    2005-02-01

    Atherosclerosis is a chronic disease developing through decades with two life-threatening complications: myocardial infarction and stroke. Oxidized low-density lipoproteins (oxLDL) produced by oxidative modifications of LDL in the subendothelial space have been demonstrated to be critically involved in atherogenesis through their intensive pro-inflammatory activity. Recently, it was shown that oxLDL have an apoptosis-inducing effect in T cells depending on time and degree of oxidation. The goal of the current study is to elucidate the molecular mechanisms underlying the apoptotic-inducing effects of oxLDL on T lymphocytes. T cells of young and elderly subjects were incubated for various periods of time with LDL oxidized to various degrees. The proliferation, the apoptosis, the MAPK ERK1/2 activation and the expression of the Bcl-2 protein family members were measured upon different LDL treatments. Thus, more the LDL are oxidized more they induce apoptosis and this effect is highly accentuated with aging. The oxLDL decrease the activation of the surviving molecule ERK1/2 and modulate the ratio of Bax/Bcl-2 towards a pro-apoptotic profile, which is also accentuated with aging. These results partly explain why atherosclerosis is increasing with aging concomitantly to its complications.

  3. Lipoprotein-induced phenoloxidase-activity in tarantula hemocyanin.

    PubMed

    Schenk, Sven; Schmidt, Juliane; Hoeger, Ulrich; Decker, Heinz

    2015-08-01

    Phenoloxidases play vital roles in invertebrate innate immune reactions, wound closure and sclerotization processes in arthropods. In chelicerates, where phenoloxidases are lacking, phenoloxidase-activity can be induced in the oxygen carrier hemocyanin in vitro by proteolytic cleavage, incubation with the artificial inducer SDS, or lipids. The role of protein-protein interaction has up to now received little attention. This is remarkable, as lipoproteins - complexes of proteins and lipids - are present at high concentrations in arthropod hemolymph. We characterized the three lipoproteins present in tarantula hemolymph, two high-density lipoproteins and one very high-density lipoprotein, and show that the two high-density lipoproteins have distinct structures: the more abundant high-density lipoprotein is an ellipsoid particle with axes of ~22.5 nm and ~16.8 nm, respectively. The second high-density lipoprotein, present only in trace amount, is a large discoidal lipoprotein with a diameter of ~38.4 nm and an on-edge thickness of ~7.1 nm. We further demonstrate that the interaction between lipoproteins and hemocyanin induces phenoloxidase activity in hemocyanin, and propose that this activation is due to protein-protein interaction rather than protein-lipid interaction, as neither lipid micelles nor lipid monomers were found to be activating. Activation was strongest in the presence of high-density lipoproteins; very high-density lipoproteins were found to be non-activating. This is the first time that the ability of lipoproteins to induce phenoloxidase activity of hemocyanin has been demonstrated, thus adding novel aspects to the function of lipoproteins apart from their known role in nutrient supply. PMID:25817204

  4. Effect of plasma lipoproteins in gonadotropin stimulation of 17 beta-estradiol production in the ovarian follicle of rainbow trout (Salmo gairdneri).

    PubMed

    Babin, P J

    1986-12-01

    The effect of trout plasma lipoproteins on the production of 17 beta-estradiol by trout ovarian follicles is investigated in vitro. 17 beta-Estradiol secretion into the medium was assayed as a function of follicular diameter in the presence of lipoproteins with and without salmonid gonadotropin (SGA-GTH). The presence of very low-density lipoproteins (VLDL) + chylomicrons (Chy), low-density lipoproteins (LDL), and high-density lipoproteins (HDL) amplified the SGA-GTH effect at the lowest concentrations tested (less than 50 micrograms protein/ml). HDL is the most effective for increasing hormone accumulation on a microgram lipoprotein sterol basis. Autoradiography of 125I-labeled LDL showed that they were preferentially bound by thecal cells. Kinetics of 17 beta-estradiol release indicated that lipoprotein amplification occurred especially after 15 hr and subsequent metabolism of 17 beta-estradiol by follicular layers also led to an equilibrium. At the end of vitellogenesis apoprotein B lipoproteins (VLDL + Chy, LDL) apparently inhibited SGA-GTH stimulation. N',O'-Dibutyryl cAMP (10 mM) considerably stimulated 17 beta-estradiol production but lipoprotein amplification did not occur. Chloroquine (30 microM) inhibition of LDL and HDL amplification indicates that this process requires lysosomal degradation. Plasma lipoproteins in trout modulate SGA-GTH stimulation of 17 beta-estradiol production during exogenous vitellogenesis. Due to the ease and frequency with which the experiments can be carried out, the ovarian follicle of salmonids is an excellent model for the study of the role of lipoproteins in the regulation of ovarian steroids biosynthesis. PMID:3026884

  5. Relationships between the responses of triglyceride-rich lipoproteins in blood plasma containing apolipoproteins B-48 and B-100 to a fat-containing meal in normolipidemic humans.

    PubMed Central

    Schneeman, B O; Kotite, L; Todd, K M; Havel, R J

    1993-01-01

    The concentration of triglyceride-rich lipoproteins containing apolipoprotein (apo) B-48 (chylomicrons) and apo B-100 (very low density lipoproteins) was measured in blood plasma of healthy young men after an ordinary meal containing one-third of daily energy and fat. Plasma obtained in the postabsorptive state and at intervals up to 12 hr after the meal was subjected to immunoaffinity chromatography against a monoclonal antibody to apo B-100 that does not bind apo B-48 and a minor fraction of apo B-100 rich in apo E. Measurements of the concentrations of components of the total and unbound triglyceride-rich lipoproteins separated from plasma by ultracentrifugation showed that about 80% of the increase in lipoprotein particle number was in very low density lipoproteins containing apo B-100 and only 20% was in chylomicrons containing apo B-48 that carry dietary fat from the intestine. The maximal increments and the average concentrations of apo B-48 and B-100 during the 12 hr were highly correlated (r2 = 0.80), suggesting that preferential clearance of chylomicron triglycerides by lipoprotein lipase leads to accumulation of hepatogenous very low density lipoproteins during the alimentary period. The composition of the bulk of very low density lipoproteins that were bound to the monoclonal antibody changed little and these particles contained about 90% of the cholesterol and most of the apo E that accumulated in triglyceride-rich lipoproteins. The predominant accumulation of very low density lipoprotein rather than chylomicron particles after ingestion of ordinary meals is relevant to the potential atherogenicity of postprandial lipoproteins. PMID:8446630

  6. High-density lipoprotein functionality in coronary artery disease.

    PubMed

    Kosmas, Constantine E; Christodoulidis, Georgios; Cheng, Jeh-wei; Vittorio, Timothy J; Lerakis, Stamatios

    2014-06-01

    The role of high-density lipoprotein (HDL) in cardiovascular atheroprotection is well established. Epidemiological data have clearly demonstrated an inverse relationship between HDL levels and the risk for coronary artery disease, which is independent of the low-density lipoprotein levels. However, more recent data provide evidence that high HDL levels are not always protective and that under certain conditions may even confer an increased risk. Thus, a new concept has arisen, which stresses the importance of HDL functionality, rather than HDL concentration per se, in the assessment of cardiovascular risk. HDL functionality is genetically defined but can also be modified by several environmental and lifestyle factors, such as diet, smoking or certain pharmacologic interventions. Furthermore, HDL is consisted of a heterogeneous group of particles with major differences in their structural, biological and functional properties. Recently, the cholesterol efflux capacity from macrophages was proven to be an excellent metric of HDL functionality, because it was shown to have a strong inverse relationship with the risk of angiographically documented coronary artery disease, independent of the HDL and apolipoprotein A-1 levels, although it may not actually predict the prospective risk for cardiovascular events. Thus, improving the quality of HDL may represent a better therapeutic target than simply raising the HDL level, and assessment of HDL function may prove informative in refining our understanding of HDL-mediated atheroprotection.

  7. Lipoprotein (a) and cardiovascular risk factors in children and adolescents

    PubMed Central

    Palmeira, Ástrid Camêlo; Leal, Adriana Amorim de F.; Ramos, Nathaly de Medeiros N.; de Alencar F., José; Simões, Mônica Oliveira da S.; Medeiros, Carla Campos M.

    2013-01-01

    OBJECTIVE: To review the relationship between lipoprotein (a) [Lp(a)] and other risk factors for cardiovascular disease (CVD) in children and adolescents. DATA SOURCES: This systematic review included studies from 2001 to 2011, a ten-year time period. Epidemiological studies with children and/or adolescents published in English, Portuguese or Spanish and fully available online were included. The searches were performed in Science Direct, PubMed/Medline, BVS (Biblioteca Virtual em Saúde) and Cochrane Library databases, using the following combination of key-words: "lipoprotein a" and "cardiovascular diseases" and "obesity". DATA SYNTHESIS: Overall, 672 studies were obtained but only seven were included. Some studies assessed the family history for CVD. In all of them, Lp(a) levels were increased in patients with family history for CVD. There was also a positive correlation between Lp(a) and LDL-cholesterol, total cholesterol, and apolipoprotein B levels, suggesting an association between Lp(a) levels and the lipid profile. CONCLUSIONS: The evidence that CVD may originate in childhood and adolescence leads to the need for investigating the risk factors during this period in order to propose earlier and possibly more effective interventions to reduce morbidity and mortality rates. PMID:24473960

  8. The tissue distribution of lipoprotein lipase determines where chylomicrons bind.

    PubMed

    Savonen, Roger; Hiden, Michaela; Hultin, Magnus; Zechner, Rudolf; Levak-Frank, Sanja; Olivecrona, Gunilla; Olivecrona, Thomas

    2015-03-01

    To determine the role of LPL for binding of lipoproteins to the vascular endothelium, and for the distribution of lipids from lipoproteins, four lines of induced mutant mice were used. Rat chylomicrons labeled in vivo with [(14)C]oleic acid (primarily in TGs, providing a tracer for lipolysis) and [(3)H]retinol (primarily in ester form, providing a tracer for the core lipids) were injected. TG label was cleared more rapidly than core label. There were no differences between the mouse lines in the rate at which core label was cleared. Two minutes after injection, about 5% of the core label, and hence chylomicron particles, were in the heart of WT mice. In mice that expressed LPL only in skeletal muscle, and had much reduced levels of LPL in the heart, binding of chylomicrons was reduced to 1%, whereas in mice that expressed LPL only in the heart, the binding was increased to over 10%. The same patterns of distribution were evident at 20 min when most of the label had been cleared. Thus, the amount of LPL expressed in muscle and heart governed both the binding of chylomicron particles and the assimilation of chylomicron lipids in the tissue. PMID:25589507

  9. Intrinsic and extrinsic regulation of cardiac lipoprotein lipase following diabetes.

    PubMed

    Wang, Ying; Rodrigues, Brian

    2015-02-01

    Cardiac lipoprotein lipase (LPL) is a pivotal enzyme controlling heart metabolism by providing the majority of fatty acids required by this organ. From activation in cardiomyocytes to secretion to the vascular lumen, cardiac LPL is regulated by multiple pathways, which are altered during diabetes. Hence, dimerization/activation of LPL is modified following diabetes, a process controlled by lipase maturation factor 1. The role of AMP-activated protein kinase, protein kinase D, and heparan sulfate proteoglycans, intrinsic factors that regulate the intracellular transport of LPL is also shifted, and is discussed. More recent studies have identified several exogenous factors released from endothelial cells (EC) and adipose tissue that are required for proper functioning of LPL. In response to hyperglycemia, both active and latent heparanase are released from EC to facilitate LPL secretion. Diabetes also increased the expression of glycosylphosphatidylinositol-anchored high density lipoprotein-binding protein 1 (GPIHBP1) in EC, which mediates the transport of LPL across EC. Angiopoietin-like protein 4 secreted from the adipose tissue has the potential to reduce coronary LPL activity. Knowledge of these intrinsic and extrinsic factors could be used develop therapeutic targets to normalize LPL function, and maintain cardiac energy homeostasis after diabetes. PMID:25463481

  10. 'Trig-onometry': non-high-density lipoprotein cholesterol as a therapeutic target in dyslipidaemia.

    PubMed

    Jacobson, T A

    2011-01-01

    Targeting elevations in low-density lipoprotein cholesterol (LDL-C) remains the cornerstone of cardiovascular prevention. However, this fraction does not adequately capture elevated triglyceride-rich lipoproteins (TRLs; e.g. intermediate-density lipoprotein, very low density lipoprotein) in certain patients with metabolic syndrome or diabetic dyslipidaemia. Many such individuals have residual cardiovascular risk that might be lipid/lipoprotein related despite therapy with first-line agents (statins). Epidemiological evidence encompassing > 100,000 persons supports the contention that non-high-density lipoprotein cholesterol (non-HDL-C) is a superior risk factor vs. LDL-C for incident coronary heart disease (CHD) in certain patient populations. In studies with clinical end-points evaluated in the current article, a 1:1 to 1:3 relationship was observed between reductions in non-HDL-C and in the relative risk of CHD after long-term treatment with statins, niacin (nicotinic acid) and fibric-acid derivatives (fibrates); this relationship increased to 1:5 to 1:10 in smaller subgroups of patients with elevated triglycerides and low HDL-C levels. Treatment with statin-, niacin-, fibrate-, ezetimibe-, and omega 3 fatty acid-containing regimens reduced non-HDL-C by approximately 9-65%. In a range of clinical trials, long-term treatment with these agents also significantly decreased the incidence of clinical/angiographic/imaging efficacy outcome variables. For patients with dyslipidaemia, consensus guidelines have established non-HDL-C treatment targets 30 mg/dl higher than LDL-C goals. Ongoing prospective randomised controlled trials should help to resolve controversies concerning (i) the clinical utility of targeting non-HDL-C in patients with dyslipidaemia; (ii) the most efficacious and well-tolerated therapies to reduce non-HDL-C (e.g. combination regimens); and (iii) associations between such reductions and clinical, angiographic, and/or imaging end-points. PMID:21105969

  11. Modulation of infant formula fat profile alters the low-density lipoprotein/high-density lipoprotein ratio and plasma fatty acid distribution relative to those with breast-feeding.

    PubMed

    Hayes, K C; Pronczuk, A; Wood, R A; Guy, D G

    1992-04-01

    The effect of breast-feeding was compared with that of two fat-modified milk formulas in 45 infants (15 per group) studied by assessing body weight gain for 4 months and plasma lipids, lipoprotein profiles, fatty acid profiles of plasma and red blood cells, and plasma tocopherol status 3 months after birth. A saturated fat formula with coconut oil/soybean oil (COCO/SOY) had a fatty acid content and polyunsaturated/saturated ratio (P/S, 0.55) comparable with that of human milk fat (P/S, 0.39) and had the same fat energy content (50% kcal). The second formula, with corn oil/soybean oil (CORN/SOY), was highly unsaturated (P/S, 4.6), with only 35% kcal from fat. Energy intake and body weight gain were similar for all groups. Plasma total cholesterol, triglyceride, and phospholipid levels were significantly lower (greater than 20% on average) in infants fed the CORN/SOY formula than in infants fed either the COCO/SOY formula or human milk. Infants fed the CORN/SOY formula also had lower (25% to 35%) plasma low-density lipoprotein cholesterol and apolipoprotein B levels and low-density lipoprotein/high-density lipoprotein and apolipoprotein B/apolipoprotein A-I ratios. Plasma, red blood cell, and cholesteryl ester fatty acids from infants fed COCO/SOY contained less 18:1 and more 18:2; cholesterol esters in plasma from breast-fed infants had the highest 20:4n-6 levels. Plasma tocopherol levels were higher in infants consuming formulas. The presence of cholesterol in human milk appeared to expand the low-density lipoprotein pool and exert an "unfavorable" increase in the low-density lipoprotein/high-density lipoprotein ratio. Thus modulation of infant lipoproteins by changing dietary fat and cholesterol is feasible and in keeping with the known response in adults. PMID:1560323

  12. Jupiter's Gossamer Rings Explained.

    NASA Astrophysics Data System (ADS)

    Hamilton, D. P.

    2003-05-01

    Over the past several years, Galileo measurements and groundbased imaging have drastically improved our knowledge of Jupiter's faint ring system. We now recognize that the ring consists of four components: a main ring 7000km wide, whose inner edge blossoms into a vertically-extended halo, and a pair of more tenuous Gossamer rings, one associated with each of the small moons Thebe and Amalthea. When viewed edge on, the Gossamer rings appear as diaphanous disks whose thicknesses agree with the vertical excursions of the inclined satellites from the equatorial plane. In addition, the brightness of each Gossamer ring drops off sharply outside the satellite orbits. These correlations allowed Burns etal (1999, Science, 284, 1146) to argue convincingly that the satellites act as sources of the dusty ring material. In addition, since most material is seen inside the orbits of the source satellites, an inwardly-acting dissipative force such as Poynting-Robertson drag is implicated. The most serious problem with this simple and elegant picture is that it is unable to explain the existence of a faint swath of material that extends half a jovian radius outward from Thebe. A key constraint is that this material has the same thickness as the rest of the Thebe ring. In this work, we identify the mechanism responsible for the outward extension: it is a shadow resonance, first investigated by Horanyi and Burns (1991, JGR, 96, 19283). When a dust grain enters Jupiter's shadow, photoelectric processes shut down and the grain's electric charge becomes more negative. The electromagnetic forces associated with the varying charge cause periodic oscillations in the orbital eccentricity and semimajor axis as the orbital pericenter precesses. This results in a ring which spreads both inward and outward of its source satellite while preserving its vertical thickness - just as is observed for the Thebe ring. Predictions of the model are: i) gaps of micron-sized material interior to Thebe and

  13. Lipoprotein(a), essential fatty acid status and lipoprotein lipids in female Australian vegetarians.

    PubMed

    Li, D; Ball, M; Bartlett, M; Sinclair, A

    1999-08-01

    In the present study we investigated serum lipoprotein(a) [Lp(a)] levels, plasma lipids, the serum phospholipid polyunsaturated fatty acid profile and correlates of serum Lp(a) in healthy free-living female vegetarians (n=50) and omnivores (n=24) to assess differences which may have implications for cardiovascular risk. Dietary saturated fat and total plasma cholesterol were significantly lower in the vegetarians compared with omnivores. The mean serum Lp(a) concentration was lower in the vegetarians (171 mg/l) than in the omnivores (247 mg/l). The serum Lp(a) concentration was significantly negatively correlated with carbohydrate intake (as % of energy), and positively correlated with plasma total cholesterol. Compared with the omnivores, the vegetarians had significantly lower concentrations of 20:3,n-6, 20:4,n-6, 22:5,n-6, 20:5,n-3, 22:6,n-3 and total n-6 and n-3 polyunsaturated fatty acids, and a lower n-3/n-6 polyunsaturated fatty acid ratio, in serum phospholipids. Lower concentrations of plasma total cholesterol, serum phospholipid total fatty acids, total saturated fatty acids and arachidonic acid, and a tendency towards a lower serum Lp(a) concentration, in vegetarians may have beneficial effects on cardiovascular disease risk. However, the decreased concentration of serum phospholipid n-3 polyunsaturated fatty acids may potentially promote thrombotic risk. Based on the present data, it would seem appropriate for omnivores to reduce their dietary intake of total fat and saturated fat in order to decrease their plasma cholesterol, and vegetarians should perhaps increase their dietary intake of n-3 polyunsaturated fatty acids, and thus improve the balance of n-3/n-6, in order to reduce any thrombotic tendency that might increase their generally low risk of cardiovascular disease.

  14. 99mTc-low density lipoprotein: intracellularly trapped radiotracer for noninvasive imaging of low density lipoprotein metabolism in vivo.

    PubMed

    Vallabhajosula, S; Goldsmith, S J

    1990-01-01

    Low density lipoprotein (LDL) is the major transport protein for endogenous cholesterol in human plasma. LDL can be radiolabeled with 99mTc using sodium dithionite as a reducing agent. Biodistribution studies of 99mTc-LDL in normal rabbits confirm that 99mTc-LDL acts as an intracellularly "trapped ligand" similar to radioiodinated tyramine cellobiose-LDL (the previously validated trapped radioligand). In addition, studies performed in hypercholesterolemic rabbit models demonstrated the feasibility of imaging hepatic LDL-receptor concentration noninvasively. 99mTc-LDL imaging studies in a number of hypercholesterolemic and hypocholesterolemic patients have proven useful in understanding the abnormal uptake and metabolism of LDL. In patients with hypercholesterolemia (HC), 99mTc-LDL appears to be taken up well by the actively evolving atherosclerotic lesions and xanthomata that contained foam cells and macrophages. In patients with myeloproliferative disease and chronic hypocholesterolemia, 99mTc-LDL images showed intense accumulation of radioactivity in the spleen and bone marrow; this demonstrated extensive proliferation of the macrophage population suggesting that hypocholesterolemia in these patients may be due to increased uptake of LDL uptake by the macrophages. 99mTc-LDL is a powerful tool for the noninvasive exploration of a variety of disorders of lipoprotein metabolism in patients.

  15. Distribution and Kinetics of Lipoprotein-Bound Endotoxin

    PubMed Central

    Levels, J. H. M.; Abraham, P. R.; van den Ende, A.; van Deventer, S. J. H.

    2001-01-01

    Lipopolysaccharide (LPS), the major glycolipid component of gram-negative bacterial outer membranes, is a potent endotoxin responsible for pathophysiological symptoms characteristic of infection. The observation that the majority of LPS is found in association with plasma lipoproteins has prompted the suggestion that sequestering of LPS by lipid particles may form an integral part of a humoral detoxification mechanism. Previous studies on the biological properties of isolated lipoproteins used differential ultracentrifugation to separate the major subclasses. To preserve the integrity of the lipoproteins, we have analyzed the LPS distribution, specificity, binding capacity, and kinetics of binding to lipoproteins in human whole blood or plasma by using high-performance gel permeation chromatography and fluorescent LPS of three different chemotypes. The average distribution of O111:B4, J5, or Re595 LPS in whole blood from 10 human volunteers was 60% (±8%) high-density lipoprotein (HDL), 25% (±7%) low-density lipoprotein, and 12% (±5%) very low density lipoprotein. The saturation capacity of lipoproteins for all three LPS chemotypes was in excess of 200 μg/ml. Kinetic analysis however, revealed a strict chemotype dependence. The binding of Re595 or J5 LPS was essentially complete within 10 min, and subsequent redistribution among the lipoprotein subclasses occurred to attain similar distributions as O111:B4 LPS at 40 min. We conclude that under simulated physiological conditions, the binding of LPS to lipoproteins is highly specific, HDL has the highest binding capacity for LPS, the saturation capacity of lipoproteins for endotoxin far exceeds the LPS concentrations measured in clinical situations, and the kinetics of LPS association with lipoproteins display chemotype-dependent differences. PMID:11292694

  16. Fish plasma lipoproteins--comparative observations in serranides and sparides.

    PubMed

    Santulli, A; Cusenza, L; Modica, A; Curatolo, A; D'Amelio, V

    1991-01-01

    1. Diet, time from last feeding, temperature, season and sexual stage are some of the factors influencing the lipoprotein pattern. 2. Keeping these factors constant species-specific differences observed among lipoprotein patterns of Sparus aurata, Puntazzo puntazzo, Diplodus sargus, Diplodus vulgaris and Dicentrarchus labrax are discussed. 3. Feeding habits and therefore lipid absorption and the rate of lipoprotein maturation process are the factors determining the observed differences. PMID:1764905

  17. Impact of baseline lipoprotein and C-reactive protein levels on coronary atheroma regression following high-intensity statin therapy.

    PubMed

    Puri, Rishi; Nissen, Steven E; Shao, Mingyuan; Uno, Kiyoko; Kataoka, Yu; Kapadia, Samir R; Tuzcu, E Murat; Nicholls, Stephen J

    2014-11-15

    Guidelines now recommend high-intensity statin therapy in all patients with proven atherosclerotic disease. Yet the impact of baseline lipoprotein and C-reactive protein (CRP) levels on measures of disease regression to this therapy are unknown. The aim of this study was to test the hypothesis that high-intensity statin therapy causes equivalent degrees of coronary atheroma regression irrespective of baseline lipoprotein and CRP levels. In 8 prospective randomized trials using serial coronary intravascular ultrasound, 1,881 patients who maintained or switched to 18- to 24 months of high-intensity statin therapy (rosuvastatin 40 mg or atorvastatin 80 mg) were stratified according to baseline lipoprotein and CRP levels. Changes in coronary percentage atheroma volume (PAV) and total atheroma volume (TAV) were evaluated. High-intensity statin therapy produced significant reductions from baseline in low-density lipoprotein cholesterol by 38.4%, non-high-density lipoprotein (HDL) cholesterol by 33.6%, triglycerides by 13.1%, and CRP by 33.3%, while increasing HDL cholesterol by 11.7% (p <0.001 for all). This was associated with regression of PAV by 0.7% and of TAV by 8.2 mm(3) (p <0.001 for both). No significant differences of changes in PAV and TAV were observed across baseline quintiles of low-density lipoprotein cholesterol, HDL cholesterol, non-HDL cholesterol, triglycerides, or CRP. Moreover, across all measured lipoproteins and CRP, most patients demonstrated plaque regression (defined as any change from baseline in PAV or TAV <0). In conclusion, high-intensity statin therapy attenuated the natural progression of coronary atherosclerosis in all strata of patients with coronary artery disease irrespective of baseline lipoprotein or CRP levels. These findings provide support for the latest United States guideline recommendations for the broad use of high-intensity statin therapy in all patients with atherosclerosis, regardless of baseline lipid status.

  18. 21 CFR 866.5600 - Low-density lipoprotein immunological test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Low-density lipoprotein immunological test system....5600 Low-density lipoprotein immunological test system. (a) Identification. A low-density lipoprotein... the low-density lipoprotein in serum and other body fluids. Measurement of low-density lipoprotein...

  19. [Lack of association between the S447X variant of the lipoprotein lipase gene and plasma lipids. A preliminary study].

    PubMed

    Zambrano Morales, Mariana; Fernández Salgado, Erika; Balzán Urdaneta, Ligia; Labastidas, Neila; Aranguren-Méndez, José; Connell, Lissette; Molero Paredes, Tania; Rojas, Alicia; Panunzio, Amelia

    2014-06-01

    The increase in lipid plasma values is an important cardiovascular risk factor. Lipoprotein lipase (LPL) plays an important role in the lipoprotein metabolism and metabolic and genetic factors may influence its levels and functions. The S447X variant of the lipoprotein lipase gene is associated with changes in plasma lipids in different populations. The objective of this research was to analyze the S447X variant of the LPL gene and its relation with plasma lipids of individuals in Zulia state, Venezuela. With this purpose, we studied 75 individuals (34 men and 41 women) between 20 and 60 years of age. Each subject had a medical history which included family history, anthropometric characteristics, nutritional status evaluation and biochemical tests. Genomic DNA was extracted for the molecular study and the polymerase chain reaction was used, followed by enzyme digestion, for restriction fragments length polymorphisms using the Hinf I enzyme. The individuals studied had normal levels of blood glucose, triglycerides, total cholesterol and low density lipoproteins (LDL-C) and slightly decreased levels of high density lipoproteins (HDL-C). The genotypic distribution of the LPL gene S447X variant in the studied population was 90.6% for the homozygous genotype SS447 and 9.4% for the heterozygote SX447. The genotype 447XX was not identified. The population was found in Hardy Weinberg genetic equilibrium. No association between the S447X polymorphism of lipoprotein lipase gene and plasma lipids was observed.

  20. Improved cholesterol phenotype analysis by a model relating lipoprotein life cycle processes to particle size[S

    PubMed Central

    van Schalkwijk, Daniël B.; de Graaf, Albert A.; van Ommen, Ben; van Bochove, Kees; Rensen, Patrick C. N.; Havekes, Louis M.; van de Pas, Niek C. A.; Hoefsloot, Huub C. J.; van der Greef, Jan; Freidig, Andreas P.

    2009-01-01

    Increased plasma cholesterol is a known risk factor for cardiovascular disease. Lipoprotein particles transport both cholesterol and triglycerides through the blood. It is thought that the size distribution of these particles codetermines cardiovascular disease risk. New types of measurements can determine the concentration of many lipoprotein size-classes but exactly how each small class relates to disease risk is difficult to clear up. Because relating physiological process status to disease risk seems promising, we propose investigating how lipoprotein production, lipolysis, and uptake processes depend on particle size. To do this, we introduced a novel model framework (Particle Profiler) and evaluated its feasibility. The framework was tested using existing stable isotope flux data. The model framework implementation we present here reproduced the flux data and derived lipoprotein size pattern changes that corresponded to measured changes. It also sensitively indicated changes in lipoprotein metabolism between patient groups that are biologically plausible. Finally, the model was able to reproduce the cholesterol and triglyceride phenotype of known genetic diseases like familial hypercholesterolemia and familial hyperchylomicronemia. In the future, Particle Profiler can be applied for analyzing detailed lipoprotein size profile data and deriving rates of various lipolysis and uptake processes if an independent production estimate is given. PMID:19515990

  1. A Pressure-dependent Model for the Regulation of Lipoprotein Lipase by Apolipoprotein C-II*

    PubMed Central

    Meyers, Nathan L.; Larsson, Mikael; Olivecrona, Gunilla; Small, Donald M.

    2015-01-01

    Apolipoprotein C-II (apoC-II) is the co-factor for lipoprotein lipase (LPL) at the surface of triacylglycerol-rich lipoproteins. LPL hydrolyzes triacylglycerol, which increases local surface pressure as surface area decreases and amphipathic products transiently accumulate at the lipoprotein surface. To understand how apoC-II adapts to these pressure changes, we characterized the behavior of apoC-II at multiple lipid/water interfaces. ApoC-II adsorption to a triacylglycerol/water interface resulted in large increases in surface pressure. ApoC-II was exchangeable at this interface and desorbed on interfacial compressions. These compressions increase surface pressure and mimic the action of LPL. Analysis of gradual compressions showed that apoC-II undergoes a two-step desorption, which indicates that lipid-bound apoC-II can exhibit at least two conformations. We characterized apoC-II at phospholipid/triacylglycerol/water interfaces, which more closely mimic lipoprotein surfaces. ApoC-II had a large exclusion pressure, similar to that of apoC-I and apoC-III. However, apoC-II desorbed at retention pressures higher than those seen with the other apoCs. This suggests that it is unlikely that apoC-I and apoC-III inhibit LPL via displacement of apoC-II from the lipoprotein surface. Upon rapid compressions and re-expansions, re-adsorption of apoC-II increased pressure by lower amounts than its initial adsorption. This indicates that apoC-II removed phospholipid from the interface upon desorption. These results suggest that apoC-II regulates the activity of LPL in a pressure-dependent manner. ApoC-II is provided as a component of triacylglycerol-rich lipoproteins and is the co-factor for LPL as pressure increases. Above its retention pressure, apoC-II desorbs and removes phospholipid. This triggers release of LPL from lipoproteins. PMID:26026161

  2. Outer membrane lipoprotein biogenesis: Lol is not the end.

    PubMed

    Konovalova, Anna; Silhavy, Thomas J

    2015-10-01

    Bacterial lipoproteins are lipid-anchored proteins that contain acyl groups covalently attached to the N-terminal cysteine residue of the mature protein. Lipoproteins are synthesized in precursor form with an N-terminal signal sequence (SS) that targets translocation across the cytoplasmic or inner membrane (IM). Lipid modification and SS processing take place at the periplasmic face of the IM. Outer membrane (OM) lipoproteins take the localization of lipoproteins (Lol) export pathway, which ends with the insertion of the N-terminal lipid moiety into the inner leaflet of the OM. For many lipoproteins, the biogenesis pathway ends here. We provide examples of lipoproteins that adopt complex topologies in the OM that include transmembrane and surface-exposed domains. Biogenesis of such lipoproteins requires additional steps beyond the Lol pathway. In at least one case, lipoprotein sequences reach the cell surface by being threaded through the lumen of a beta-barrel protein in an assembly reaction that requires the heteropentomeric Bam complex. The inability to predict surface exposure reinforces the importance of experimental verification of lipoprotein topology and we will discuss some of the methods used to study OM protein topology. PMID:26370942

  3. Outer membrane lipoprotein biogenesis: Lol is not the end

    PubMed Central

    Konovalova, Anna; Silhavy, Thomas J.

    2015-01-01

    Bacterial lipoproteins are lipid-anchored proteins that contain acyl groups covalently attached to the N-terminal cysteine residue of the mature protein. Lipoproteins are synthesized in precursor form with an N-terminal signal sequence (SS) that targets translocation across the cytoplasmic or inner membrane (IM). Lipid modification and SS processing take place at the periplasmic face of the IM. Outer membrane (OM) lipoproteins take the localization of lipoproteins (Lol) export pathway, which ends with the insertion of the N-terminal lipid moiety into the inner leaflet of the OM. For many lipoproteins, the biogenesis pathway ends here. We provide examples of lipoproteins that adopt complex topologies in the OM that include transmembrane and surface-exposed domains. Biogenesis of such lipoproteins requires additional steps beyond the Lol pathway. In at least one case, lipoprotein sequences reach the cell surface by being threaded through the lumen of a beta-barrel protein in an assembly reaction that requires the heteropentomeric Bam complex. The inability to predict surface exposure reinforces the importance of experimental verification of lipoprotein topology and we will discuss some of the methods used to study OM protein topology. PMID:26370942

  4. Outer membrane lipoprotein biogenesis: Lol is not the end.

    PubMed

    Konovalova, Anna; Silhavy, Thomas J

    2015-10-01

    Bacterial lipoproteins are lipid-anchored proteins that contain acyl groups covalently attached to the N-terminal cysteine residue of the mature protein. Lipoproteins are synthesized in precursor form with an N-terminal signal sequence (SS) that targets translocation across the cytoplasmic or inner membrane (IM). Lipid modification and SS processing take place at the periplasmic face of the IM. Outer membrane (OM) lipoproteins take the localization of lipoproteins (Lol) export pathway, which ends with the insertion of the N-terminal lipid moiety into the inner leaflet of the OM. For many lipoproteins, the biogenesis pathway ends here. We provide examples of lipoproteins that adopt complex topologies in the OM that include transmembrane and surface-exposed domains. Biogenesis of such lipoproteins requires additional steps beyond the Lol pathway. In at least one case, lipoprotein sequences reach the cell surface by being threaded through the lumen of a beta-barrel protein in an assembly reaction that requires the heteropentomeric Bam complex. The inability to predict surface exposure reinforces the importance of experimental verification of lipoprotein topology and we will discuss some of the methods used to study OM protein topology.

  5. Ethnic differences in serum lipids and lipoproteins in overweight/obese African-American and white American women with pre-diabetes: significance of NMR-derived lipoprotein particle concentrations and sizes

    PubMed Central

    Gaillard, Trudy; Osei, Kwame

    2016-01-01

    Objective African-American women (AAW) suffer disproportionately from higher rates of cardiovascular disease (CVD) mortality compared with white American women (WAW), despite favorable lipid and lipoprotein profile. Therefore, we used nuclear magnetic resonance (NMR) to examine lipoprotein particle concentrations and sizes in overweight/obese AAW and WAW with pre-diabetes. Participants and methods We studied 69 AAW and 41 WAW, with mean age 46.5±11.3 years and body mass index (BMI) 37.8±6.4 kg/m2. All participants completed standard oral glucose tolerance test (OGTT) and frequently sampled intravenous glucose tolerance test (FSIVGTT). Insulin sensitivity (Si) was calculated using MINIMOD method. Body composition was assessed using dual-energy X-ray absorptiometry (DEXA). Fasting blood was obtained for traditional lipids/lipoproteins and NMR-derived lipoprotein particle sizes and concentrations. Results We found that AAW with pre-diabetes were more obese (BMI 38.8±6.7 vs 36.0±5.4 kg/m2, p=0.02) than WAW. Mean Si was not significantly different. However, the mean serum triglycerides were lower, whereas the high-density lipoprotein cholesterol (HDL-C) and apolipoprotein A1 (Apo A1) were significantly higher in AAW versus WAW. The large HDL particle concentration (6.1±3.1 vs 4.6±3.1 µmol/L, p=0.02) was significantly higher in AAW versus WAW. Mean total very low-density lipoprotein (VLDL) particle concentration was lower in AAW versus WAW (39.9±24.4 vs 59.2±25.6 nmol/L, p≤0.001). While mean total LDL particle concentrations were not different, mean small LDL particle concentrations were lower in AAW versus WAW (538.8±294.1 vs 638.4±266 nmol/L, p=0.07). Conclusions We found a more favorable NMR-derived lipoprotein profile in AAW that extends the traditional antiatherogenic lipid/lipoprotein profiles. Clinically, these favorable lipid/lipoprotein profiles cannot explain the paradoxically higher CVD mortality in AAW than WAW and warrant further

  6. LDL subclass patterns and lipoprotein response to a low-fat, high-carbohydrate diet in women.

    PubMed

    Dreon, D M; Fernstrom, H A; Williams, P T; Krauss, R M

    1997-04-01

    A predominance of small, dense LDL particles (subclass pattern B) characterizes a metabolic trait that is associated with higher levels of triglyceride-rich lipoproteins and lower levels of HDL compared with those of individuals with predominantly larger LDL (pattern A). This trait appears to be under the influence of one or more genes, with maximal expression in adult males and reduced expression in premenopausal females. In a previous study, men with LDL subclass pattern B had significantly greater reductions in LDL cholesterol (LDL-C) and apolipoprotein B than men with pattern A. We hypothesized that despite the low prevalence of pattern B in premenopausal women, genetic predisposition to this trait could affect dietary responsiveness. Specifically, we predicted that LDL-C reduction on a low-fat, high-carbohydrate diet would be greatest in daughters of two pattern B parents, intermediate in daughters with one pattern B parent, and least in daughters with no pattern B parents. When 72 premenopausal women were placed on a 20% fat diet for 8 weeks, the changes in LDL-C (mmol/L) compared with levels on basal diets were significantly related to the number of pattern B parents (two B parents: -0.92 +/- 0.61, one B parent: -0.23 +/- 0.10, no B parents: -0.05 +/- 0.06) and could not be explained by diet adherence or baseline characteristics including initial lipoprotein profile or body mass index. The number of pattern B parents was also related to reductions in plasma mass concentrations of IDL, total LDL, and large LDL and to increases in plasma triglycerides. There was a significant inverse correlation between changes in triglyceride and LDL-C induced by the low-fat, high-carbohydrate diet. Thus, genetic and metabolic factors underlying LDL subclass pattern B may result in enhanced LDL and triglyceride responsiveness to substitution of dietary carbohydrate for fat in premenopausal women.

  7. Decreased triglyceride-rich lipoproteins in transgenic skinny mice overexpressing leptin.

    PubMed

    Matsuoka, N; Ogawa, Y; Masuzaki, H; Ebihara, K; Aizawa-Abe, M; Satoh, N; Ishikawa, E; Fujisawa, Y; Kosaki, A; Yamada, K; Kuzuya, H; Nakao, K

    2001-02-01

    Leptin is an adipocyte-derived circulating satiety factor with a variety of biological effects. Evidence has accumulated suggesting that leptin may modulate glucose and lipid metabolism. In the present study, we examined lipid metabolism in transgenic skinny mice with elevated plasma leptin concentrations. The plasma concentrations of triglycerides and free fatty acids in transgenic skinny mice were 71.5 (P < 0.01) and 89.1% (P < 0.05) of those in their nontransgenic littermates, respectively. Separation of plasma into lipoprotein classes by ultracentrifugation revealed that very low density lipoprotein-triglyceride concentrations were markedly reduced in transgenic skinny mice relative to the controls. The clearance of triglycerides estimated by a fat-loading test was enhanced in transgenic skinny mice; the triglyceride concentration in transgenic skinny mice 3 h after fat loading was 39.7% (P < 0.05) of that of their nontransgenic littermates. Postheparin plasma lipoprotein lipase activity increased 1.4-fold (P < 0.05) in transgenic skinny mice. Our data demonstrated a significant reduction in plasma triglyceride concentrations, accompanied by increased lipoprotein lipase activity in transgenic skinny mice overexpressing leptin, suggesting that leptin plays a role in long-term triglyceride metabolism.

  8. Effects of Diet on Genetic Regulation of Lipoprotein Metabolism in Baboons

    PubMed Central

    Rainwater, David L.; VandeBerg, John L.; Mahaney, Michael C.

    2010-01-01

    Several measures of lipoprotein phenotype are significant predictors of cardiovascular risk. Although such lipoprotein phenotypes are under strong genetic control, it is not clear to what extent they are controlled by the same - and by different - genes and whether these relationships may be altered in different dietary environments. Therefore, we measured six lipoprotein traits (three LDL traits - LDLC and apoB concentrations and LDL size - and three HDL traits - HDLC and apoA1 concentrations and HDL size) on each of three diets differing in level of fat and cholesterol. In bivariate analyses, all but two metabolically related trait pairs were genetically correlated, though none were completely correlated, implying additive genetic effects by both pleiotropic and unique genes. In comparing genetic correlations for the same pair of traits across diet, we detected evidence of diet effects on genetic control of these metabolically related traits; specifically, increasing level of dietary cholesterol was associated with a significant decrease in the genetic correlation of apoA1 with HDL size, and a significant increase in the genetic correlations of LDL size with LDLC and apoB. The results suggest a complex network of genes affecting lipoprotein metabolism: the genes may exert both unique and pleiotropic effects; the genes may exert detectable effects in many or only in specific dietary environments. PMID:20880526

  9. Exome sequencing: new insights into lipoprotein disorders.

    PubMed

    Farhan, Sali M K; Hegele, Robert A

    2014-07-01

    Several next generation sequencing platforms allow for a DNA-to-diagnosis protocol to identify the molecular basis of monogenic dyslipidemias. However, recent reports of the application of whole genome or whole exome sequencing in families with severe dyslipidemias have largely identified genetic variants in known lipid genes. To date, high-throughput DNA sequencing in families with previously uncharacterized monogenic dyslipidemias, have failed to reveal new genes for regulation of plasma lipids. This suggests that rather than sequencing whole genomes or exomes, most patients with monogenic dyslipidemias could be diagnosed using a more dedicated approach that focuses primarily on genes already known to act within lipoprotein metabolic pathways.

  10. Why are low-density lipoproteins atherogenic?

    PubMed Central

    Young, S G; Parthasarathy, S

    1994-01-01

    Low-density lipoproteins (LDLs) carry most of the cholesterol in human plasma, and high levels of LDL cholesterol clearly cause heart disease. In recent years, many scientists have focused on elucidating the pathophysiologic steps that lie between elevated levels of LDL in the plasma and atherosclerotic plaques in the arterial wall. A large number of scientific studies indicate that oxidation of LDL within the arterial wall may be an important early step in atherogenesis. The uptake of oxidized LDL by macrophages is a likely explanation for the formation of macrophage foam cells in early atherosclerotic lesions. In addition, oxidized LDL has many other potentially proatherogenic properties. Images PMID:8160466

  11. Lipoprotein Receptors Redundantly Participate in Entry of Hepatitis C Virus

    PubMed Central

    Ono, Chikako; Uemura, Kentaro; Kawachi, Yukako; Shiokawa, Mai; Mori, Hiroyuki; Wada, Masami; Shima, Ryoichi; Okamoto, Toru; Hiraga, Nobuhiko; Suzuki, Ryosuke; Chayama, Kazuaki; Wakita, Takaji; Matsuura, Yoshiharu

    2016-01-01

    Scavenger receptor class B type 1 (SR-B1) and low-density lipoprotein receptor (LDLR) are known to be involved in entry of hepatitis C virus (HCV), but their precise roles and their interplay are not fully understood. In this study, deficiency of both SR-B1 and LDLR in Huh7 cells was shown to impair the entry of HCV more strongly than deficiency of either SR-B1 or LDLR alone. In addition, exogenous expression of not only SR-B1 and LDLR but also very low-density lipoprotein receptor (VLDLR) rescued HCV entry in the SR-B1 and LDLR double-knockout cells, suggesting that VLDLR has similar roles in HCV entry. VLDLR is a lipoprotein receptor, but the level of its hepatic expression was lower than those of SR-B1 and LDLR. Moreover, expression of mutant lipoprotein receptors incapable of binding to or uptake of lipid resulted in no or slight enhancement of HCV entry in the double-knockout cells, suggesting that binding and/or uptake activities of lipid by lipoprotein receptors are essential for HCV entry. In addition, rescue of infectivity in the double-knockout cells by the expression of the lipoprotein receptors was not observed following infection with pseudotype particles bearing HCV envelope proteins produced in non-hepatic cells, suggesting that lipoproteins associated with HCV particles participate in the entry through their interaction with lipoprotein receptors. Buoyant density gradient analysis revealed that HCV utilizes these lipoprotein receptors in a manner dependent on the lipoproteins associated with HCV particles. Collectively, these results suggest that lipoprotein receptors redundantly participate in the entry of HCV. PMID:27152966

  12. Relationship between lipoprotein (a) and micro/macro complications in type 2 diabetes mellitus: a forgotten target

    PubMed Central

    Toro, Rocio; Segura, Eduardo; Nuñez-Cortes, Jesús Millan; Pedro-Botet, Juan Carlos; Quezada-Feijoo, Maribel; Mangas, Alipio

    2015-01-01

    Objectives Increased lipoprotein (a) serum concentrations seems to be a cardiovascular risk factor; this has not been confirmed in extracoronary atherosclerosis complications. We therefore wished to gain a deeper insight into relationship between the plasma concentrations of lipoprotein (a) and the micro- and macro-vascular complications of type 2 diabetes mellitus and to identify possible differences in this association. Methods This is a descriptive observational cross-sectional study. Two-hundred and seventeen elderly patients with type 2 diabetes mellitus were included from the internal medicine outclinic. Anthropometric data, analytical data (insulin reserve, basal and postprandial peptide C, glycosylated hemoglobin, renal parameters, lipid profile and clinical data as hypertension, obesity, micro- and macrovascular complications were collected. Results Patients were grouped according to the type 2 diabetes mellitus time of evolution. The mean plasma concentration of lipoprotein (a) was 22.2 ± 17.3 mg/dL (22.1 ± 15.9 mg/dL for males, and 22.1 ± 18.4 mg/dL for females). Patients with hypertension, coronary heart disease, cerebrovascular accident, microalbuminuria and proteinuria presented a statistically significant increased level of lipoprotein (a). Similarly, the patients with hyperlipoprotein (a) (≥ 30 mg/dL) presented significantly increased levels of urea and total cholesterol. In the multivariate regression model, the level of lipoprotein (a) is positively correlated with coronary heart disease and diabetic nephropathy (P < 0.01 and P < 0.005, respectively). Conclusions The elevation of plasma levels of lipoprotein (a) are associated with the development of coronary heart disease and diabe tic nephropathy. Therefore, we consider that the determination of lipoprotein (a) may be a prognostic marker of vascular complications in patients with type 2 diabetes mellitus. PMID:25870610

  13. Two neglected biologic risk factors in bone grafting and implantology: high low-density lipoprotein cholesterol and low serum vitamin D.

    PubMed

    Choukroun, Joseph; Khoury, Georges; Khoury, Fouad; Russe, Philippe; Testori, Tiziano; Komiyama, Yataro; Sammartino, Gilberto; Palacci, Patrick; Tunali, Mustafa; Choukroun, Elisa

    2014-02-01

    Following a failure of a bone graft or an implant placement, the hypothesis of a biological abnormality is rarely considered as a possible cause. A systematic search of peer-reviewed literature for dyslipidemia or vitamin D deficiency may explain this lack of consideration. Excess low-density lipoprotein cholesterol (dyslipidemia) is responsible for a slower bone metabolism or lower dental implant osseointegration. In addition, vitamin D is a key factor for linking innate and adaptive immunity. Both of these factors are compromised under the conditions of vitamin D deficiency. Therefore, vitamin D deficiency slows implant osseointegration and increases the risk of graft infection. Vitamin D is also involved in immune function and therefore allergic reactions.

  14. Ambient Air Pollution and Lipoprotein-Associated Phospholipase A2 in Survivors of Myocardial Infarction

    PubMed Central

    Hampel, Regina; Baumgärtner, Zita; Rückerl, Regina; Greven, Sonja; Koenig, Wolfgang; Peters, Annette; Schneider, Alexandra

    2011-01-01

    Background: Increasing evidence suggests a proatherogenic role for lipoprotein-associated phospholipase A2 (Lp-PLA2). A meta-analysis of published cohorts has shown that Lp-PLA2 is an independent predictor of coronary heart disease events and stroke. Objective: In this study, we investigated whether the association between air pollution and cardiovascular disease might be partly explained by increased Lp-PLA2 mass in response to exposure. Methods: A prospective longitudinal study of 200 patients who had had a myocardial infarction was performed in Augsburg, Germany. Up to six repeated clinical examinations were scheduled every 4–6 weeks between May 2003 and March 2004. Supplementary to the multicenter AIRGENE protocol, we assessed repeated plasma Lp-PLA2 concentrations. Air pollution data from a fixed monitoring site representing urban background concentrations were collected. We measured hourly means of particle mass [particulate matter (PM) < 10 µm (PM10) and PM < 2.5 µm (PM2.5) in aerodynamic diameter] and particle number concentrations (PNCs), as well as the gaseous air pollutants carbon monoxide (CO), sulfur dioxide (SO2), ozone (O3), nitric oxide (NO), and nitrogen dioxide (NO2). Data were analyzed using mixed models with random patient effects. Results: Lp-PLA2 showed a positive association with PM10, PM2.5, and PNCs, as well as with CO, NO2, NO, and SO2 4–5 days before blood withdrawal (lag 4–5). A positive association with O3 was much more immediate (lag 0). However, inverse associations with some pollutants were evident at shorter time lags. Conclusion: These preliminary findings should be replicated in other study populations because they suggest that the accumulation of acute and subacute effects or the chronic exposure to ambient particulate and gaseous air pollution may result in the promotion of atherosclerosis, mediated, at least in part, by increased levels of Lp-PLA2. PMID:21356620

  15. 21 CFR 866.5580 - Alpha-1-lipoprotein immuno-logical test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... the alpha-1-lipoprotein (high-density lipoprotein) in serum and plasma. Measurement of alpha-1-lipoprotein may aid in the diagnosis of Tangier disease (a hereditary disorder of fat metabolism)....

  16. 21 CFR 866.5580 - Alpha-1-lipoprotein immuno-logical test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... the alpha-1-lipoprotein (high-density lipoprotein) in serum and plasma. Measurement of alpha-1-lipoprotein may aid in the diagnosis of Tangier disease (a hereditary disorder of fat metabolism)....

  17. Methylation at CPT1A locus is associated with lipoprotein subfraction profiles

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lipoprotein subfractions help discriminate cardiometabolic disease risk. Genetic loci validated as associating with lipoprotein measures do not account for a large proportion of the individual variation in lipoprotein measures. We hypothesized that DNA methylation levels across the genome contribute...

  18. Resistance Exercise and Lipoproteins in Postmenopausal Women

    PubMed Central

    Wooten, Joshua S.; Phillips, Melody D.; Mitchell, Joel B.; Patrizi, Robert; Pleasant, Ronique N.; Hein, Robert M.; Menzies, Robert D.; Barbee, James J.

    2012-01-01

    The specific aims of this study were to quantify the effects of 12 weeks of resistance training, as well as a single session of resistance exercise on lipids and lipoproteins in obese, postmenopausal women. Twenty-one obese, postmenopausal women, not on hormone replacement therapy (age = 65.9 ± 0.5 yr; BMI = 32.7 ± 0.8 kg/m2), were randomly assigned to control (n=12) and exercise (n=9) groups matched for age and BMI. For 12 weeks, 3 days/week, the exercise group performed 10 whole body resistance exercises (3 sets at 8-RM). Fasting (10 hr) blood samples were collected immediately prior to and 24 hr after the first and last exercise and control session. Serum was assayed for concentrations of total cholesterol, triglycerides, LDL-C, HDL-C, HDL2-C, HDL3-C, non-HDL-C and TC:HDL and LDL:HDL ratios. The exercise group exhibited a significant (P < 0.01) improvement in muscular strength, but no change in BMI, body mass or body composition post-training. Total cholesterol, LDL-C and non-HDL-C were significantly (P < 0.05) lower in the exercise compared to the control group following the 12 weeks of resistance training. Whole body resistance training provides obese, postmenopausal women a non-pharmacological approach for the reduction of lipid and lipoprotein-cholesterol concentrations. PMID:21086242

  19. Triglycerides and Triglyceride-Rich Lipoproteins in the Causal Pathway of Cardiovascular Disease.

    PubMed

    Budoff, Matthew

    2016-07-01

    Epidemiologic and clinical studies suggest that elevated triglyceride levels are a biomarker of cardiovascular (CV) risk. Consistent with these findings, recent genetic evidence from mutational analyses, genome-wide association studies, and Mendelian randomization studies provide robust evidence that triglycerides and triglyceride-rich lipoproteins are in the causal pathway for atherosclerotic CV disease, indicating that they may play a pathogenic role, much like low-density lipoprotein cholesterol (LDL-C). Although statins are the cornerstone of dyslipidemia management, high triglyceride levels may persist in some patients despite statin therapy. Several triglyceride-lowering agents are available, including fibrates, niacin, and omega-3 fatty acids, of which prescription omega-3 fatty acids have the best tolerability and safety profile. In clinical studies, omega-3 fatty acids have been shown to reduce triglyceride levels, but products containing both eicosapentaenoic acid and docosahexaenoic acid may increase LDL-C levels. Icosapent ethyl, a high-purity eicosapentaenoic acid-only product, does not raise LDL-C levels and also reduces triglyceride, non-high-density lipoprotein cholesterol, and triglyceride-rich lipoprotein levels. In conclusion, omega-3 fatty acids are currently being evaluated in large CV outcome studies in statin-treated patients; these studies should help to elucidate the causative role of triglycerides in atherosclerotic CV disease.

  20. Subcellular distribution of apolipoprotein E along the lipoprotein synthetic pathway of rat liver

    SciTech Connect

    Cole, T.G.; Stockhausen, D.C.

    1986-03-01

    Apolipoprotein E (apoE) is synthesized by the liver and is secreted as a component of VLDL. To define the intracellular locations of apoE, liver from 10 nonfasted male rats were removed and subcellular organelles prepared by differential pelleting through sucrose gradients. Mass of apoE was measured by radioimmunoassay. Approximately 10% of total hepatic apoE was recovered in rough endoplasmic reticulum (RER), smooth endoplasmic reticulum (SER) and Golgi fractions. Concentrations of apoE (ng/mg protein) were: homogenate, 302 +/- 59; RER, 653 +/- 251; SER, 1250 +/- 471; Golgi, 11,044 +/- 4291. Total apoE content of each reaction (..mu..g/organelle) was: homogenate (whole liver), 517 +/- 103; RER, 15 +/- 3; SER, 9 +/- 3; Golgi, 28 +/- 8. These data indicate that along the putative pathway of lipoprotein synthesis (RER->SER->Golgi), apoE concentration increases in each successive organelle and that flux of apoE is apparently most rapid through SER. Furthermore, the majority of apoE in the rat liver is apparently not directly associated with the lipoprotein synthetic pathway and may be associated with internalized lipoproteins or may be involved in non-lipoprotein related functions.

  1. Triglycerides and Triglyceride-Rich Lipoproteins in the Causal Pathway of Cardiovascular Disease.

    PubMed

    Budoff, Matthew

    2016-07-01

    Epidemiologic and clinical studies suggest that elevated triglyceride levels are a biomarker of cardiovascular (CV) risk. Consistent with these findings, recent genetic evidence from mutational analyses, genome-wide association studies, and Mendelian randomization studies provide robust evidence that triglycerides and triglyceride-rich lipoproteins are in the causal pathway for atherosclerotic CV disease, indicating that they may play a pathogenic role, much like low-density lipoprotein cholesterol (LDL-C). Although statins are the cornerstone of dyslipidemia management, high triglyceride levels may persist in some patients despite statin therapy. Several triglyceride-lowering agents are available, including fibrates, niacin, and omega-3 fatty acids, of which prescription omega-3 fatty acids have the best tolerability and safety profile. In clinical studies, omega-3 fatty acids have been shown to reduce triglyceride levels, but products containing both eicosapentaenoic acid and docosahexaenoic acid may increase LDL-C levels. Icosapent ethyl, a high-purity eicosapentaenoic acid-only product, does not raise LDL-C levels and also reduces triglyceride, non-high-density lipoprotein cholesterol, and triglyceride-rich lipoprotein levels. In conclusion, omega-3 fatty acids are currently being evaluated in large CV outcome studies in statin-treated patients; these studies should help to elucidate the causative role of triglycerides in atherosclerotic CV disease. PMID:27184174

  2. Guinea pigs: a suitable animal model to study lipoprotein metabolism, atherosclerosis and inflammation.

    PubMed

    Fernandez, Maria Luz; Volek, Jeff S

    2006-03-27

    Numerous animal models have been used to study diet effects on cholesterol and lipoprotein metabolism. However, most of those models differ from humans in the plasma distribution of cholesterol and in the processing of lipoproteins in the plasma compartment. Although transgenic or knock-out mice have been used to study a specific pathway involved in cholesterol metabolism, these data are of limited use because other metabolic pathways and responses to interventions may differ from the human condition. Carbohydrate restricted diets have been shown to reduce plasma triglycerides, increase HDL cholesterol and promote the formation of larger, less atherogenic LDL. However, the mechanisms behind these responses and the relation to atherosclerotic events in the aorta have not been explored in detail due to the lack of an appropriate animal model. Guinea pigs carry the majority of the cholesterol in LDL and possess cholesterol ester transfer protein and lipoprotein lipase activities, which results in reverse cholesterol transport and delipidation cascades equivalent to the human situation. Further, carbohydrate restriction has been shown to alter the distribution of LDL subfractions, to decrease cholesterol accumulation in aortas and to decrease aortic cytokine expression. It is the purpose of this review to discuss the use of guinea pigs as useful models to evaluate diet effects on lipoprotein metabolism, atherosclerosis and inflammation with an emphasis on carbohydrate restricted diets.

  3. Distribution of lipoprotein phenotypes, cholesterol, and lipids in inner-city blacks.

    PubMed

    Foster, P; Jackson, M

    1993-03-01

    Lipoprotein phenotypes total cholesterol, high-density lipoprotein (HDL), low-density lipoprotein (LDL), and triglyceride levels were obtained from blood samples of 189 patients attending the Drew Hamilton Clinic in Central Harlem, New York, between 1987 and 1988. The study population ranged in age from 7 to 88 years; 135 of the patients were females and 54 were males. A difference in distribution of lipoprotein phenotypes was observed compared with the general population of the United States. Sixty-seven percent of blacks in this study were Type IIA compared with an estimated 10% of the general US population. Differences also were observed for blacks versus the general US population for Type IV (24% versus 45%), Type IIB (9% versus 40%), and Type V (0% versus 5%). Types I and III were rare in both groups (0% versus < 1%). The increased frequency of Type IIA among this predominantly black inner-city population may have implications for treatment strategies and prognostic value for predicting the risk of coronary heart disease.

  4. Distribution of lipoprotein phenotypes, cholesterol, and lipids in inner-city blacks.

    PubMed Central

    Foster, P.; Jackson, M.

    1993-01-01

    Lipoprotein phenotypes total cholesterol, high-density lipoprotein (HDL), low-density lipoprotein (LDL), and triglyceride levels were obtained from blood samples of 189 patients attending the Drew Hamilton Clinic in Central Harlem, New York, between 1987 and 1988. The study population ranged in age from 7 to 88 years; 135 of the patients were females and 54 were males. A difference in distribution of lipoprotein phenotypes was observed compared with the general population of the United States. Sixty-seven percent of blacks in this study were Type IIA compared with an estimated 10% of the general US population. Differences also were observed for blacks versus the general US population for Type IV (24% versus 45%), Type IIB (9% versus 40%), and Type V (0% versus 5%). Types I and III were rare in both groups (0% versus < 1%). The increased frequency of Type IIA among this predominantly black inner-city population may have implications for treatment strategies and prognostic value for predicting the risk of coronary heart disease. PMID:8474135

  5. Guinea pigs: A suitable animal model to study lipoprotein metabolism, atherosclerosis and inflammation

    PubMed Central

    Fernandez, Maria Luz; Volek, Jeff S

    2006-01-01

    Numerous animal models have been used to study diet effects on cholesterol and lipoprotein metabolism. However, most of those models differ from humans in the plasma distribution of cholesterol and in the processing of lipoproteins in the plasma compartment. Although transgenic or knock-out mice have been used to study a specific pathway involved in cholesterol metabolism, these data are of limited use because other metabolic pathways and responses to interventions may differ from the human condition. Carbohydrate restricted diets have been shown to reduce plasma triglycerides, increase HDL cholesterol and promote the formation of larger, less atherogenic LDL. However, the mechanisms behind these responses and the relation to atherosclerotic events in the aorta have not been explored in detail due to the lack of an appropriate animal model. Guinea pigs carry the majority of the cholesterol in LDL and possess cholesterol ester transfer protein and lipoprotein lipase activities, which results in reverse cholesterol transport and delipidation cascades equivalent to the human situation. Further, carbohydrate restriction has been shown to alter the distribution of LDL subfractions, to decrease cholesterol accumulation in aortas and to decrease aortic cytokine expression. It is the purpose of this review to discuss the use of guinea pigs as useful models to evaluate diet effects on lipoprotein metabolism, atherosclerosis and inflammation with an emphasis on carbohydrate restricted diets. PMID:16566831

  6. Lipoprotein glomerulopathy: a case report of a rare disease in a Brazilian child.

    PubMed

    Pêgas, Karla Lais; Rohde, Roberta; Garcia, Clotilde Druck; Bittencourt, Viviane de Barros; Keitel, Elizete; Poloni, José Antonio Tesser; Cambruzzi, Eduardo

    2014-01-01

    Lipoprotein glomerulopathy (LPG) is a rare autosomal recessive glomerulopathy associated with the deposition of lipoprotein thrombi in the capillary lumina due to apoE gene mutations. Abnormal plasma lipoprotein profile and marked increase in serum apoliprotein E (apoE) are characteristic clinical data. The compromised patients can present nephrotic syndrome, hematuria, and progressive renal failure. Herein, the authors present the first described case of LPG in a Brazilian male patient, 11 years, who presented with a steroid-resistant nephrotic syndrome. Renal function was normal. Kidney biopsy showed markedly enlarged glomerulus, with dilated capillary loops and weak eosinophilic lipoprotein thrombi in the capillary lumina. Interstitium, tubules, arteries, and veins showed normal histologic aspect. Genotypic study for the apoE gene showed the presence of the alleles E3 and E4. The diagnosis of LPG was then performed. The patient received lipid-lowering treatment. After 2 years of follow-up, renal function is gradually decreasing, with persisting heavy proteinuria, despite a marked decrease in serum cholesterol and triglycerides levels. PMID:24676620

  7. A clustering analysis of lipoprotein diameters in the metabolic syndrome

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The presence of smaller low-density lipoproteins (LDL) has been associated with atherosclerosis risk, and the insulin resistance (IR) underlying the metabolic syndrome (MetS). In addition, some research has supported the association of very low-, low- and high-density lipoprotein (VLDL HDL) particle...

  8. The Impact of Cardiorespiratory Fitness on Age-Related Lipids and Lipoproteins

    PubMed Central

    Park, Yong-Moon Mark; Sui, Xuemei; Liu, Junxiu; Zhou, Haiming; Kokkinos, Peter F.; Lavie, Carl J.; Hardin, James W.; Blair, Steven N.

    2015-01-01

    Background Evidence on the effect of cardiorespiratory fitness (CRF) on age-related longitudinal changes of lipids and lipoproteins is scarce. Objectives This study sought to assess the longitudinal, aging trajectory of lipids and lipoproteins for the life course in adults, and to determine whether CRF modifies the age-associated trajectory of lipids and lipoproteins. Methods Data came from 11,418 men, 20 to 90 years of age, without known high cholesterol, high triglycerides, cardiovascular disease, and cancer at baseline and during follow-up from the Aerobics Center Longitudinal Study. There were 43,821 observations spanning 2 to 25 (mean 3.5) health examinations between 1970 and 2006. CRF was quantified by a maximal treadmill exercise test. Marginal models using generalized estimating equations were applied. Results Total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), triglycerides (TG), and non-high-density lipoprotein cholesterol (non-HDL-C) presented similar inverted U-shaped quadratic trajectories with aging: gradual increases were noted until the mid-40s to early 50s, with subsequent declines (all p < 0.0001). Compared to men with higher CRF, those with lower CRF developed abnormal values earlier in life: TC (≥200 mg/dl), LDL-C (≥130 mg/dl), non-HDL-C (≥160 mg/dl), and TG/HDL-C ratio (≥3.0). Notably, abnormal values for TC and LDL-C in men with low CRF were observed around 15 years earlier than in those with high CRF. After adjusting for time-varying covariates, a significant interaction was found between age and CRF in each trajectory, indicating that CRF was more strongly associated with the aging trajectories of lipids and lipoproteins in young to middle-aged men than in older men. Conclusions Our investigation reveals a differential trajectory of lipids and lipoproteins with aging according to CRF in healthy men, and suggests that promoting increased CRF levels may help delay the development of dyslipidemia. PMID:25975472

  9. Lipoprotein Subfraction Cholesterol Distribution Is Proatherogenic in Women With Type 1 Diabetes and Insulin Resistance

    PubMed Central

    Maahs, David M.; Hokanson, John E.; Wang, Hong; Kinney, Gregory L.; Snell-Bergeon, Janet K.; East, Ashley; Bergman, Bryan C.; Schauer, Irene E.; Rewers, Marian; Eckel, Robert H.

    2010-01-01

    OBJECTIVE Individuals with type 1 diabetes have a less atherogenic fasting lipid profile than those without diabetes but paradoxically have increased rates of cardiovascular disease (CVD). We investigated differences in lipoprotein subfraction cholesterol distribution and insulin resistance between subjects with and without type 1 diabetes to better understand the etiology of increased CVD risk. RESEARCH DESIGN AND METHODS Fast protein liquid chromatography was used to fractionate lipoprotein cholesterol distribution in a substudy of the Coronary Artery Calcification in Type 1 Diabetes (CACTI) study (n = 82, age 46 ± 8 years, 52% female, 49% with type 1 diabetes for 23 ± 8 years). Insulin resistance was assessed by a hyperinsulinemic-euglycemic clamp. RESULTS Among men, those with type 1 diabetes had less VLDL and more HDL cholesterol than control subjects (P < 0.05), but among women, those with diabetes had a shift in cholesterol to denser LDL, despite more statin use. Among control subjects, men had more cholesterol distributed as VLDL and LDL but less as HDL than women; however, among those with type 1 diabetes, there was no sex difference. Within sex and diabetes strata, a more atherogenic cholesterol distribution by insulin resistance was seen in men with and without diabetes, but only in women with type 1 diabetes. CONCLUSIONS The expected sex-based less atherogenic lipoprotein cholesterol distribution was not seen in women with type 1 diabetes. Moreover, insulin resistance was associated with a more atherogenic lipoprotein cholesterol distribution in all men and in women with type 1 diabetes. This lipoprotein cholesterol distribution may contribute to sex-based differences in CVD in type 1 diabetes. PMID:20393149

  10. Different levels of food restriction have opposite effects on adipocyte cellularity and lipoprotein-lipase activity in obese rats.

    PubMed

    Lemonnier, D; de Gasquet, P; Mackay, S; Planche, E; Alexiu, A; Rosselin, G; Loiseau, A

    1989-01-01

    The effects of several levels of chronic energy restriction on epididymal and perirenal adipose tissue cellularity and lipoprotein lipase activity, serum glucose and insulin and hepatic enzyme activities were studied in lean Fa/- and genetically obese fafa rats. The restricted rats were compared to rats fed ad libitum 24/24h or 8/24h. Restricting time of feeding was associated with increases in fat cell number in the lean, increases in perirenal adipose tissue fat cell size and serum insulin in the obese and increases in lipoprotein lipase activity in both phenotypes. Mild food restriction (-25%) had similar effects in the obese: perirenal adipose tissue fat cell size and serum insulin levels were even higher but fat cell hyperplasia was reduced. Restriction by 50% normalized lipoprotein lipase activity and markedly reduced fat cell size in the lean; in the obese, lipoprotein lipase activity and insulin levels were similar to or lower than those of the corresponding ad libitum 24/24h group but fat cell hypertrophy was not particularly affected. Restriction by 75% in the obese prevented adipocyte hyperplasia. Furthermore, lipoprotein lipase activity in adipose tissue was normalized, serum insulin and lipids being within normal limits. However, these animals had large adipocytes and were still fat.

  11. Hydrolysis products generated by lipoprotein lipase and endothelial lipase differentially impact THP-1 macrophage cell signalling pathways.

    PubMed

    Essaji, Yasmin; Yang, Yanbo; Albert, Carolyn J; Ford, David A; Brown, Robert J

    2013-08-01

    Macrophages express lipoprotein lipase (LPL) and endothelial lipase (EL) within atherosclerotic plaques; however, little is known about how lipoprotein hydrolysis products generated by these lipases might affect macrophage cell signalling pathways. We hypothesized that hydrolysis products affect macrophage cell signalling pathways associated with atherosclerosis. To test our hypothesis, we incubated differentiated THP-1 macrophages with products from total lipoprotein hydrolysis by recombinant LPL or EL. Using antibody arrays, we found that the phosphorylation of six receptor tyrosine kinases and three signalling nodes--most associated with atherosclerotic processes--was increased by LPL derived hydrolysis products. EL derived hydrolysis products only increased the phosphorylation of tropomyosin-related kinase A, which is also implicated in playing a role in atherosclerosis. Using electrospray ionization-mass spectrometry, we identified the species of triacylglycerols and phosphatidylcholines that were hydrolyzed by LPL and EL, and we identified the fatty acids liberated by gas chromatography-mass spectrometry. To determine if the total liberated fatty acids influenced signalling pathways, we incubated differentiated THP-1 macrophages with a mixture of the fatty acids that matched the concentrations of liberated fatty acids from total lipoproteins by LPL, and we subjected cell lysates to antibody array analyses. The analyses showed that only the phosphorylation of Akt was significantly increased in response to fatty acid treatment. Overall, our study shows that macrophages display potentially pro-atherogenic signalling responses following acute treatments with LPL and EL lipoprotein hydrolysis products. PMID:23794138

  12. Lipoprotein ratios: Physiological significance and clinical usefulness in cardiovascular prevention

    PubMed Central

    Millán, Jesús; Pintó, Xavier; Muñoz, Anna; Zúñiga, Manuel; Rubiés-Prat, Joan; Pallardo, Luis Felipe; Masana, Luis; Mangas, Alipio; Hernández-Mijares, Antonio; González-Santos, Pedro; Ascaso, Juan F; Pedro-Botet, Juan

    2009-01-01

    Low-density lipoprotein (LDL) cholesterol concentration has been the prime index of cardiovascular disease risk and the main target for therapy. However, several lipoprotein ratios or “atherogenic indices” have been defined in an attempt to optimize the predictive capacity of the lipid profile. In this review, we summarize their pathophysiological aspects, and highlight the rationale for using these lipoprotein ratios as cardiovascular risk factors in clinical practice, specifying their cut-off risk levels and a target for lipid-lowering therapy. Total/high-density lipoprotein (HDL) cholesterol and LDL/HDL cholesterol ratios are risk indicators with greater predictive value than isolated parameters used independently, particularly LDL. Future recommendations regarding the diagnosis and treatment of dyslipidemia, including instruments for calculating cardiovascular risk or action guidelines, should include the lipoprotein ratios with greater predictive power which, in view of the evidence-based results, are none other than those which include HDL cholesterol. PMID:19774217

  13. Apolipoprotein AV Accelerates Plasma Hydrolysis OfTriglyceride-Rich Lipoproteins By Interaction With Proteoglycan BoundLipoprotein Lipase

    SciTech Connect

    Merkel, Martin; Loeffler, Britta; Kluger, Malte; Fabig, Nathalie; Geppert, Gesa; Pennacchio, Len A.; Laatsch, Alexander; Heeren, Joerg

    2005-02-22

    Apolipoprotein A5 (APOA5) is associated with differences intriglyceride levels and familial combined hyperlipidemia. In genetically engineered mice, apoAV plasma levels are inversely correlated with plasmatriglycerides. To elucidate the mechanism by which apoAV influences plasma triglycerides, metabolic studies and in vitro assays resembling physiological conditions were performed. In hAPOA5 transgenic mice(hAPOA5tr), catabolism of chylomicrons and VLDL was accelerated due to a faster plasma hydrolysis of triglycerides by lipoprotein lipase (LPL).Hepatic VLDL and intestinal chylomicron production were not affected. The functional interplay between apoAV and LPL was further investigated by crossbreeding a human LPL transgene with the apoa5 knockout, and the hAPOA5tr to an LPL deficient background. Increased LPL activity completely normalized hypertriglyceridemia of apoa5 deficient mice,however, over expression of human apoAV modulated triglyceride levels only slightly when LPL was reduced. To reflect the physiological situation in which LPL is bound to cell surface proteoglycans, we examined hydrolysis in the presence or absence of proteoglycans. Without proteoglycans, apoAV derived either from triglyceride-rich lipoproteins, hAPOA5tr HDL, or a recombinant source did not alter the LPL hydrolysis rate. In the presence of proteoglycans, however, apoAV led to a significant and dose-dependent increase in LPL mediated hydrolysis of VLDL triglycerides. These results were confirmed in cell culture using a proteoglycan-deficient cell line.A direct interaction between LPL and apoAV was found by ligand blotting.It is proposed, that apoAV reduces triglyceride levels by guiding VLDL and chylomicrons to proteoglycans bound LPL for lipolysis.

  14. Analytical capillary isotachophoresis: a routine technique for the analysis of lipoproteins and lipoprotein subfractions in whole serum.

    PubMed

    Schmitz, G; Borgmann, U; Assmann, G

    1985-02-22

    A capillary isotachophoretic separation technique was developed for lipoproteins in native serum which, compared with previous electrophoretic techniques, has negligible molecular sieve effects, does not need gel casting, is suitable for whole serum and has a high discriminative power for lipoprotein subfractions. The technique is based on pre-staining whole serum lipoproteins for 30 min at 4 degrees C before separation of 0.5 microliter of the sample in a free-flow capillary system (0.5 mm I.D.) with discontinuous buffer system. In normolipidaemic sera, high-density (HDL) and low-density lipoproteins (VLDL) are separated into two major subpopulations according to their net electric mobility. The identification of these fractions was confirmed by substitution with ultracentrifugally isolated lipoproteins and by their complete absence from Tangier and abetalipoproteinaemic serum. Triglyceride-rich very low-density lipoproteins (VLDL) revealed a defined zone between the HDL and LDL subpopulations. Our preliminary results indicate that the separation of human whole serum lipoproteins by capillary isotachophoresis is a promising method for the determination of lipoprotein subfractions.

  15. The Mayer Hashi Large-Scale Program to Increase Use of Long-Acting Reversible Contraceptives and Permanent Methods in Bangladesh: Explaining the Disappointing Results. An Outcome and Process Evaluation

    PubMed Central

    Rahman, Mizanur; Haider, M Moinuddin; Curtis, Sian L; Lance, Peter M

    2016-01-01

    ABSTRACT Background: Bangladesh has achieved a low total fertility rate of 2.3. Two-thirds of currently married women of reproductive age (CMWRA) want to limit fertility, and many women achieve their desired fertility before age 30. The incidence of unintended pregnancy and pregnancy termination is high, however. Long-acting reversible contraceptives (LARCs), consisting of the intrauterine device and implant, and permanent methods (PM), including female sterilization and vasectomy, offer several advantages in this situation, but only 8% of CMWRA or 13% of method users use these methods. Program: The Mayer Hashi (MH) program (2009–2013) aimed to improve access to and the quality of LARC/PM services in 21 of the 64 districts in Bangladesh. It was grounded in the SEED (supply–enabling environment–demand) Programming Model. Supply improvements addressed provider knowledge and skills, system strengthening, and logistics. Creating an enabling environment involved holding workshops with local and community leaders, including religious leaders, to encourage them to help promote demand for LARCs and PMs and overcome cultural barriers. Demand promotion encompassed training of providers in counseling, distribution of behavior change communication materials in the community and in facilities, and community mobilization. Methods: We selected 6 MH program districts and 3 nonprogram districts to evaluate the program. We used a before–after and intervention–comparison design to measure the changes in key contraceptive behavior outcomes, and we used a difference-in-differences (DID) specification with comparison to the nonprogram districts to capture the impact of the program. In addition to the outcome evaluation, we considered intermediate indicators that measured the processes through which the interventions were expected to affect the use of LARCs and PMs. Results: The use of LARCs/PMs among CMWRA increased between 2010 and 2013 in both program (from 5.3% to 7.5%) and

  16. Proprotein convertases in high-density lipoprotein metabolism.

    PubMed

    Choi, Seungbum; Korstanje, Ron

    2013-01-01

    The proprotein convertase subtilisin/kexins (PCSKs) are a serine endopeptidase family. PCSK members cleave amino acid residues and modulate the activity of precursor proteins. Evidence from patients and animal models carrying genetic alterations in PCSK members show that PCSK members are involved in various metabolic processes. These studies further revealed the molecular mechanism by which genetic alteration of some PCSK members impairs normal molecular and physiological functions, which in turn lead to cardiovascular disease. High-density lipoprotein (HDL) is anti-atherogenic as it removes excessive amount of cholesterol from blood and peripheral tissues. Several PCSK members are involved in HDL metabolism. PCSK3, PCSK5, and PCSK6 process two triglyceride lipase family members, endothelial lipase and lipoprotein lipase, which are important for HDL remodeling. Recent studies in our lab found evidence that PCSK1 and PCSK9 are also involved in HDL metabolism. A mouse model carrying an amino acid substitution in PCSK1 showed an increase in serum apolipoprotein A1 (APOA1) level. Another mouse model lacking PCSK9 showed a decrease in APOE-containing HDL. In this review, we summarize the role of the five PCSK members in lipid, glucose, and bile acid (BA) metabolism, each of which can influence HDL metabolism. We propose an integrative model in which PCSK members regulate HDL metabolism through various molecular mechanisms and metabolic processes and genetic variation in some PCSK members may affect the efficiency of reverse cholesterol transport. PCSK members are considered as attractive therapeutic targets. A greater understanding of the molecular and physiological functions of PCSK members will improve therapeutic strategies and drug efficacy for cardiovascular disease where PCSK members play critical role, with fewer adverse effects. PMID:24252756

  17. [Circadian meal-related changes in serum lipoprotein levels in normal subjects (author's transl)].

    PubMed

    Dewailly, P; Moulin, S; Fievet, C; Dedonder, E; Sezille, G; Jaillard, J

    1981-05-23

    Circadian variations in serum lipoprotein levels in relation to meals were investigated in 10 healthy subjects on a normal diet. Lunch and dinner produced a concomitant increase in triglycerides and the apo-B of very low density lipoproteins (d less than 1.006). The increase observed after dinner was of the same degree as after lunch but was more prolonged; this longer duration was unrelated to the nocturnal increase in free fatty acids. Apo-A1 levels also rose slightly after lunch and dinner, and so did HDL-cholesterol which, however, decreased during the night. These results suggest that in normal subjects the intravascular lipolytic activity is reduced during the night.

  18. Low-density-lipoprotein subclasses and response to a low-fat diet in healthy men.

    PubMed

    Krauss, R M; Dreon, D M

    1995-08-01

    Lipid and lipoprotein responses to reduced dietary fat intake were investigated in relation to differences in distribution of low-density-lipoprotein (LDL) subclasses among 105 healthy men consuming high-fat (46% fat) and low-fat (24% fat) diets in random order for 6 wk each. With high-fat diets, 87 subjects had predominantly large, buoyant LDL (pattern A), whereas the remainder had primarily smaller, denser LDL (pattern B). With low-fat diets, 36 men changed from pattern A to B. Compared with the 51 men with pattern A with both diets (stable A group), men in the stable B group (n = 18) had significantly greater reductions in plasma LDL cholesterol, apolipoprotein B, and mass of mid-sized (LDL II) and small (LDL III) LDL subfractions. In both the stable A and change groups, there was a shift in LDL particle mass from larger, lipid-enriched (LDL I and II) to smaller, lipid-depleted (LDL III and IV) subfractions, suggestive of change in LDL composition with minimal change in particle number, and consistent with the observation of reduced plasma LDL cholesterol without reduced apolipoprotein B. Stable B subjects had significantly greater increases in the largest very-low-density-lipoprotein subfraction with the low-fat diet than the stable A group, and also had greater decreases in the high-density-lipoprotein (HDL) subclass HDL3 but smaller reductions in HDL2. Genetic and environmental factors influencing LDL subclass distributions thus may also contribute substantially to interindividual variation in plasma lipoprotein response to a low-fat diet.

  19. Characterization of Lipoprotein Composition and Function in Pediatric Psoriasis Reveals a More Atherogenic Profile.

    PubMed

    Tom, Wynnis L; Playford, Martin P; Admani, Shehla; Natarajan, Balaji; Joshi, Aditya A; Eichenfield, Lawrence F; Mehta, Nehal N

    2016-01-01

    Psoriasis is associated with increased cardiovascular disease in adults, but the risk profile of children with psoriasis remains to be fully characterized. We measured lipoprotein composition and function in 44 patients with pediatric psoriasis and 44 age- and sex-matched healthy controls, using nuclear magnetic resonance spectroscopy and a validated ex vivo assay of high-density lipoprotein cholesterol efflux capacity. The mean age of the patients was 13 years and the population was ethnically diverse. Children with psoriasis had higher waist-to-hip ratios (0.85 vs. 0.80; P < 0.002) and insulin resistance measures (log-transformed homeostasis model assessment of insulin resistance 0.65 vs. 0.41; P = 0.07). Despite comparable traditional lipid values, having psoriasis was associated with higher apolipoprotein B concentrations (72.4 vs. 64.6; P = 0.02), decreased large high-density lipoprotein particles (5.3 vs. 6.7; P < 0.01), and reduced cholesterol efflux capacity after adjusting for age, sex, fasting glucose, homeostasis model assessment of insulin resistance, systolic blood pressure, body mass index, apolipoprotein A-1, and high-density lipoprotein cholesterol concentration (β -0.22; P = 0.02). Patients with pediatric psoriasis have a more atherogenic cardiometabolic risk profile, with evidence of insulin resistance and lipoprotein dysfunction by particle size, number, and functional assessment. These findings may provide a basis for the observed link later in life between psoriasis and cardiovascular disease, and support the need to screen and educate young patients to minimize later complications.

  20. Lipoprotein subfraction profile and HDL-associated enzymes in sickle cell disease patients.

    PubMed

    Ozturk, Oktay H; Can, Yesim; Yonden, Zafer; Motor, Sedat; Oktay, Gonul; Kaya, Hasan; Aslan, Mutay

    2013-12-01

    Although hypocholesterolemia is a reported finding in sickle cell disease (SCD), low-density lipoprotein (LDL)/high-density lipoprotein (HDL) subfractions and HDL-associated enzymes have not been determined in SCD patients. Blood was collected from 38 hemoglobin (Hb)A volunteers and 45 homozygous HbSS patients who had not received blood transfusions in the last 3 months. Serum lipids were measured by automated analyzer while LDL and HDL subfraction analysis was done by continuous disc polyacrylamide gel electrophoresis. Serum levels of cholesteryl ester transfer protein (CETP), lecithin-cholesterol acyltransferase (LCAT), apolipoprotein B (apoB) and apolipoprotein A-1 (apoA-I) were determined by enzyme-linked immunosorbent assay (ELISA). Total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C) and high-density lipoprotein cholesterol (HDL-C) levels were significantly decreased, while TG levels were significantly increased in SCD patients compared to controls. A significant decrease in intermediate-density lipoprotein (IDL)-C, IDL-B, IDL-A and LDL-1 fractions were seen in SCD patients, while no significant difference was observed in small dense LDL particles. A significant decrease was seen in HDL-large, HDL-intermediate and HDL-small fractions in SCD patients versus controls. Levels of LCAT and ApoA-1 protein measured in SCD patients were significantly lower while no significant difference was observed in CETP and ApoB protein levels compared to controls. The reduction observed in LDL- and HDL-C in SCD patients was reflected as significantly decreased IDL, LDL-1 and HDL-subfractions. Decreased HDL subfractions may possibly lead to the reduced ApoA-1 and LCAT protein levels observed in SCD patients. PMID:24113910

  1. Lipoprotein clearance mechanisms in LDL receptor-deficient "Apo-B48-only" and "Apo-B100-only" mice.

    PubMed Central

    Véniant, M M; Zlot, C H; Walzem, R L; Pierotti, V; Driscoll, R; Dichek, D; Herz, J; Young, S G

    1998-01-01

    The role of the low density lipoprotein receptor (LDLR) in the clearance of apo-B48-containing lipoproteins and the role of the LDLR-related protein (LRP) in the removal of apo-B100-containing lipoproteins have not been clearly defined. To address these issues, we characterized LDLR-deficient mice homozygous for an "apo-B48-only" allele, an "apo-B100-only" allele, or a wild-type apo-B allele (Ldlr-/- Apob48/48, Ldlr-/-Apob100/100, and Ldlr-/-Apob+/+, respectively). The plasma apo-B48 and LDL cholesterol levels were higher in Ldlr-/-Apob48/48 mice than in Apob48/48 mice, indicating that the LDL receptor plays a significant role in the removal of apo-B48-containing lipoproteins. To examine the role of the LRP in the clearance of apo-B100-containing lipoproteins, we blocked hepatic LRP function in Ldlr-/-Apob100/100 mice by adenoviral-mediated expression of the receptor-associated protein (RAP). RAP expression did not change apo-B100 levels in Ldlr-/-Apob100/100 mice. In contrast, RAP expression caused a striking increase in plasma apo-B48 levels in Apob48/48 and Ldlr-/-Apob48/48 mice. These data imply that LRP is important for the clearance of apo-B48-containing lipoproteins but plays no significant role in the clearance of apo-B100-containing lipoproteins. PMID:9788969

  2. Apolipoprotein B-100 containing lipoprotein metabolism in subjects with lipoprotein lipase gene mutations (106/120)

    PubMed Central

    Ooi, Esther M M; Russell, Betsy S; Olson, Eric; Sun, Sam Z; Diffenderfer, Margaret R; Lichtenstein, Alice H; Keilson, Leonard; Barrett, P Hugh R; Schaefer, Ernst J; Sprecher, Dennis L

    2012-01-01

    Objective We investigated the impact of lipoprotein lipase (LPL) gene mutations on apolipoprotein (apo) B-100 metabolism. Methods and Results We studied 3 subjects with familial LPL deficiency (FLD), 14 subjects heterozygous for the LPL gene mutations, Gly188Glu, Trp64Stop and Ile194Thr, and 10 control subjects. Very-low density lipoprotein (VLDL), intermediate-density lipoprotein (IDL) and low-density lipoprotein (LDL)-apoB-100 kinetics were determined in the fed state using stable isotope methods and compartmental modeling. Compared with controls, FLD had markedly elevated plasma triglycerides and lower VLDL-apoB-100 fractional catabolic rate (FCR), IDL-apoB-100 FCR, VLDL-to-IDL conversion and VLDL-apoB-100 production rate (PR) (p<0.01). Compared with controls, Gly188Glu had higher plasma triglyceride, VLDL- and IDL-apoB-100 concentrations, and lower VLDL- and IDL-apoB-100 FCR (p<0.05). Plasma triglycerides were not different but IDL-apoB-100 concentration and PR, and VLDL-to-IDL conversion were lower in Trp64Stop compared with controls (p<0.05). No differences between controls and Ile194Thr were observed. Conclusions Our results confirm that hypertriglyceridemia is a key feature of familial LPL deficiency. This is due to impaired VLDL- and IDL-apoB-100 catabolism and VLDL-to-IDL conversion. Single allele mutations of the LPL gene result in modest to elevated plasma triglycerides. The changes in plasma triglycerides and apoB-100 kinetics are attributable to the effects of the LPL genotype. PMID:22095987

  3. Recombinant bacterial lipoproteins as vaccine candidates.

    PubMed

    Leng, Chih-Hsiang; Liu, Shih-Jen; Chen, Hsin-Wei; Chong, Pele

    2015-01-01

    Recombinant bacterial lipoproteins (RLP) with built-in immuno-stimulating properties for novel subunit vaccine development are reviewed. This platform technology offers the following advantages: easily converts antigens into highly immunogenic RLP using a fusion sequence containing lipobox; the lipid moiety of RLP is recognized as the danger signals in the immune system through the Toll-like receptor 2, so both innate and adaptive immune responses can be induced by RLP; serves as an efficient and cost-effective bioprocess for producing RLP in Escherichia coli and the feasibility and safety of this core platform technology has been successfully demonstrated in animal model studies including meningococcal group B subunit vaccine, dengue subunit vaccine, novel subunit vaccine against Clostridium difficile-associated diseases and HPV-based immunotherapeutic vaccines. PMID:26420467

  4. Effects of short-term niacin treatment on plasma lipoprotein concentrations in African green monkeys (Chlorocebus aethiops).

    PubMed

    Chauke, Chesa G; Arieff, Zainunisha; Kaur, Mandeep; Seier, Jurgen V

    2014-02-01

    Niacin is the most effective drug available for raising levels of high-density lipoprotein (HDL) cholesterol. To evaluate its effects on plasma lipid concentrations, the authors administered a low dose of niacin to healthy, adult, female African green monkeys for 3 months. In the treated monkeys, low-density lipoprotein cholesterol concentrations decreased by 43% from baseline, whereas concentrations of HDL cholesterol and apolipoprotein A-I increased by 49% and 34%, respectively. The results suggest that in this primate model, a low dose of niacin can effectively increase concentrations of HDL cholesterol.

  5. The influence of repeated administration of poloxamer 407 on serum lipoproteins and protease activity in mouse liver and heart.

    PubMed

    Korolenko, Tatyana A; Tuzikov, Fedor V; Johnston, Thomas P; Tuzikova, Natalia A; Kisarova, Yana A; Zhanaeva, Svetlana Ya; Alexeenko, Tatyana V; Zhukova, Natalia A; Brak, Ivan V; Spiridonov, Victor K; Filjushina, Elena E; Cherkanova, Marina S; Monoszon, Anna A

    2012-11-01

    The effects of repeated administration of poloxamer 407 (P-407) on lipoprotein-cholesterol (LP-C) and lipoprotein-triglyceride (LP-TG) fractions and subfractions, as well as the effect on liver and heart proteases, were studied. Repeated administration of P-407 to male CBA mice resulted in a model of atherosclerosis with increased diastolic blood pressure; there was a drastic increase in total serum cholesterol and especially TG. A novel small-angle X-ray scattering method for the determination of the fractional and subfractional composition of LP-C and LP-TG was used. In chronically P-407-treated mice, P-407 significantly increased atherogenic low-density lipoprotein C (LDL-C) fractions, as well as intermediate-density lipoprotein C (IDL-C), and LDL₁₋₃-C subfractions, and very-low-density lipoprotein-C (VLDL-C) fractions, as well as VLDL₁₋₂-C and VLDL₃₋₅-C subfractions), to a lesser extent, the total anti-atherogenic high-density lipoprotein C (HDL-C) fraction, as well as HDL₂-C and HDL₃-C subfractions. Additionally, we demonstrated an increase in the serum chitotriosidase activity, without significant changes in serum matrix metalloprotease (MMP) activity. Morphological changes observed in P-407-treated mice included atherosclerosis in the heart and storage syndrome in the liver macrophages. P-407 significantly increased the activity of cysteine, aspartate proteases, and MMPs in the heart, and only the activity of cathepsin B and MMPs in the liver of mice. Thus, repeated administration of P-407 to mice induced atherosclerosis secondary to sustained dyslipidemia and formation of foamy macrophages in liver, and also modulated the activity of heart and liver proteases.

  6. Dynamics of lipoprotein level in blood plasma of pregnant women as a function of gestational age according to FTIR spectroscopy

    NASA Astrophysics Data System (ADS)

    Korolik, E. V.; Korolenko, E. A.; Tretinnikov, O. N.; Kozlyakova, O. V.; Korolik, A. K.; Kirkovskiy, V. V.

    2013-01-01

    Results of an IR spectroscopic investigation of films of blood plasma taken from women of reproductive age, pregnant women with positive and negative Rh factors, and Rh-immunized women were presented as a function of gestational age. It was found that the lipoprotein content in blood plasma of all groups of pregnant women increased during the early stages of pregnancy (17-23 weeks) irrespective of the Rh factor and attained its peak value by weeks 30-35. It was shown that the lipoprotein level in blood plasma as a function of gestational age was quantitatively the same for pregnant women with positive and negative Rh factors. It was established for the first time that this dependence for Rh-immunized women featured a considerable increase of lipoprotein content at gestational age 30-32 weeks and declined acutely by week 36.

  7. Lipoprotein(a) Catabolism Is Regulated by Proprotein Convertase Subtilisin/Kexin Type 9 through the Low Density Lipoprotein Receptor*

    PubMed Central

    Romagnuolo, Rocco; Scipione, Corey A.; Boffa, Michael B.; Marcovina, Santica M.; Seidah, Nabil G.; Koschinsky, Marlys L.

    2015-01-01

    Elevated levels of lipoprotein(a) (Lp(a)) have been identified as an independent risk factor for coronary heart disease. Plasma Lp(a) levels are reduced by monoclonal antibodies targeting proprotein convertase subtilisin/kexin type 9 (PCSK9). However, the mechanism of Lp(a) catabolism in vivo and the role of PCSK9 in this process are unknown. We report that Lp(a) internalization by hepatic HepG2 cells and primary human fibroblasts was effectively reduced by PCSK9. Overexpression of the low density lipoprotein (LDL) receptor (LDLR) in HepG2 cells dramatically increased the internalization of Lp(a). Internalization of Lp(a) was markedly reduced following treatment of HepG2 cells with a function-blocking monoclonal antibody against the LDLR or the use of primary human fibroblasts from an individual with familial hypercholesterolemia; in both cases, Lp(a) internalization was not affected by PCSK9. Optimal Lp(a) internalization in both hepatic and primary human fibroblasts was dependent on the LDL rather than the apolipoprotein(a) component of Lp(a). Lp(a) internalization was also dependent on clathrin-coated pits, and Lp(a) was targeted for lysosomal and not proteasomal degradation. Our data provide strong evidence that the LDLR plays a role in Lp(a) catabolism and that this process can be modulated by PCSK9. These results provide a direct mechanism underlying the therapeutic potential of PCSK9 in effectively lowering Lp(a) levels. PMID:25778403

  8. ApoAV reduces plasma triglycerides by inhibiting very low density lipoprotein-triglyceride (VLDL-TG) production and stimulating lipoprotein lipase-mediated VLDL-TG hydrolysis.

    PubMed

    Schaap, Frank G; Rensen, Patrick C N; Voshol, Peter J; Vrins, Carlos; van der Vliet, Hendrik N; Chamuleau, Robert A F M; Havekes, Louis M; Groen, Albert K; van Dijk, Ko Willems

    2004-07-01

    ApoAV has been discovered recently as a novel modifier of triglyceride (TG) metabolism, but the pathways involved are currently unknown. To gain insight into the function of apoAV, adenovirus-mediated gene transfer of murine apoa5 to C57Bl/6 mice was employed. The injection of low doses of Ad-apoa5 (1-5 x 10(8) plaqueforming units/mouse) dose-dependently reduced plasma very low density lipoprotein (VLDL)-TG levels. First, we evaluated whether a reduced hepatic VLDL production contributed to the TG-lowering effect. Ad-apoa5 treatment dose-dependently diminished (29-37%) the VLDL-TG production rate without affecting VLDL particle production, suggesting that apoAV impairs the lipidation of apoB. Second, Ad-apoa5 treatment dose-dependently reduced (68-88%) the postprandial hypertriglyceridemia following an intragastric fat load, suggesting that apoAV also stimulates the lipoprotein lipase (LPL)-dependent clearance of TG-rich lipoproteins. Indeed, recombinant apoAV was found to dose-dependently stimulate LPL activity up to 2.3-fold in vitro. Accordingly, intravenously injected VLDL-like TG-rich emulsions were cleared at an accelerated rate concomitant with the increased uptake of emulsion TG-derived fatty acids by skeletal muscle and white adipose tissue in Ad-apoa5-treated mice. From these data, we conclude that apoAV is a potent stimulator of LPL activity. Thus, apoAV lowers plasma TG by both reducing the hepatic VLDL-TG production rate and by enhancing the lipolytic conversion of TG-rich lipoproteins.

  9. Pro-inflammatory high-density lipoproteins and atherosclerosis are induced in lupus-prone mice by a high-fat diet and leptin.

    PubMed

    Hahn, B H; Lourencço, E V; McMahon, M; Skaggs, B; Le, E; Anderson, M; Iikuni, N; Lai, C K; La Cava, A

    2010-07-01

    Atherosclerosis is accelerated in people with systemic lupus erythematosus, and the presence of dysfunctional, pro-inflammatory high-density lipoproteins is a marker of increased risk. We developed a mouse model of multigenic lupus exposed to environmental factors known to accelerate atherosclerosis in humans - high-fat diet with or without injections of the adipokine leptin. BWF1 mice were the lupus-prone model; BALB/c were non-autoimmune controls. High-fat diet increased total serum cholesterol in both strains. In BALB/c mice, non-high-density lipoprotein cholesterol levels increased; they did not develop atherosclerosis. In contrast, BWF1 mice on high-fat diets developed increased quantities of high-density lipoproteins as well as elevated high-density lipoprotein scores, indicating pro-inflammatory high-density lipoproteins; they also developed atherosclerosis. In the lupus-prone strain, addition of leptin increased pro-inflammatory high-density lipoprotein scores and atherosclerosis, and accelerated proteinuria. These data suggest that environmental factors associated with obesity and metabolic syndrome can accelerate atherosclerosis and disease in a lupus-prone background.

  10. Lipoprotein mediated lipid uptake in oocytes of polychaetes (Annelida).

    PubMed

    Schenk, Sven; Hoeger, Ulrich

    2009-08-01

    The uptake of the 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (DiI)-labeled sex-unspecific Nereis lipoprotein was investigated in oocytes of the nereidid polychaetes Nereis virens and Platynereis dumerilii. The fluorescence label was first observed in endocytic vesicles (<1 microm diameter), which later fused to larger vesicles (2-3 microm); these were finally incorporated into existing unlabeled yolk granules (5-6 microm). In Platynereis oocytes, the fusion of endocytic vesicles was delayed in oocytes at their final stage of development compared with those at an early stage of development. Lipoprotein double-labeled with fluorescein isothiocyanate (FITC) and DiI revealed that both the protein and the lipid moiety remained co-localized during incorporation into the yolk granules of the oocyte. No labeling of the cytoplasmic lipid droplets was observed. In N. virens, unlabeled Nereis lipoprotein was effective as a competitive inhibitor of DiI-labeled Nereis lipoprotein. Ligand blot experiments demonstrated the presence of a lipoprotein receptor with an apparent molecular mass of 120 kDa, which is different from that of the known yolk protein receptor. This indicates the presence, in the polychaete oocyte, of two distinct receptors mediating yolk protein and lipoprotein uptake, respectively. Thus, the sex-unspecific lipoprotein contributes to the lipid supply of the growing oocyte in addition to the known uptake of the yolk-protein-associated lipids. The absence of label in the cytoplasmic lipid droplets, even after prolonged incubation with labeled lipoprotein, suggests that these lipids arise either by the breakdown and resynthesis of lipoprotein-derived lipids and/or by de novo synthesis within the oocyte.

  11. Effects of Smoking and Smoking Cessation on Lipids and Lipoproteins: Outcomes from a Randomized Clinical Trial

    PubMed Central

    Gepner, Adam D.; Piper, Megan E.; Johnson, Heather M.; Fiore, Michael C.; Baker, Timothy B.; Stein, James H.

    2011-01-01

    Background The effects of smoking and smoking cessation on lipoproteins have not been studied in a large contemporary group of smokers. This study was designed to determine the effects of smoking cessation on lipoproteins. Methods One-year, prospective, double-blind, randomized, placebo-controlled clinical trial of the effects of 5 smoking cessation pharmacotherapies. Fasting nuclear magnetic resonance spectroscopy lipoprotein profiles were obtained before and 1-year after the target smoking cessation date. The effects of smoking cessation and predictors of changes in lipoproteins after one year were identified by multivariable regression. Results The 1,504 current smokers were mean (standard deviation) 45.4 (11.3) years old and smoked 21.4 (8.9) cigarettes/day at baseline. Of the 923 adult smokers who returned at 1 year, 334 (36.2%) had quit smoking. Despite gaining more weight (4.6 kg [5.7] vs. 0.7 kg [5.1], p<0.001], abstainers had increases in high-density lipoprotein cholesterol (HDL-C) (2.4 [8.3] vs. 0.1 [8.8] mg/dL, p<0.001], total HDL (1.0 [4.6] vs. −0.3 mcmol/L [5.0], p<0.001) and large HDL (0.6 [2.2] vs. 0.1 [2.1] mcmol/L, p=0.003) particles, compared with continuing smokers. Significant changes in low-density lipoprotein (LDL) cholesterol and particles were not observed. After adjustment, abstinence from smoking (p<0.001) was independently associated with increases in HDL-C and total HDL particles. These effects were stronger in women. Conclusions Despite weight gain, smoking cessation improved HDL-C, total HDL and large HDL particles, especially in women. Smoking cessation did not affect LDL or LDL size. Increases in HDL may mediate part of the reduced cardiovascular disease risk observed after smoking cessation. PMID:21167347

  12. Unique Features of High-Density Lipoproteins in the Japanese: In Population and in Genetic Factors

    PubMed Central

    Yokoyama, Shinji

    2015-01-01

    Despite its gradual increase in the past several decades, the prevalence of atherosclerotic vascular disease is low in Japan. This is largely attributed to difference in lifestyle, especially food and dietary habits, and it may be reflected in certain clinical parameters. Plasma high-density lipoprotein (HDL) levels, a strong counter risk for atherosclerosis, are indeed high among the Japanese. Accordingly, lower HDL seems to contribute more to the development of coronary heart disease (CHD) than an increase in non-HDL lipoproteins at a population level in Japan. Interestingly, average HDL levels in Japan have increased further in the past two decades, and are markedly higher than in Western populations. The reasons and consequences for public health of this increase are still unknown. Simulation for the efficacy of raising HDL cholesterol predicts a decrease in CHD of 70% in Japan, greater than the extent by reducing low-density lipoprotein cholesterol predicted by simulation or achieved in a statin trial. On the other hand, a substantial portion of hyperalphalipoproteinemic population in Japan is accounted for by genetic deficiency of cholesteryl ester transfer protein (CETP), which is also commonly unique in East Asian populations. It is still controversial whether CETP mutations are antiatherogenic. Hepatic Schistosomiasis is proposed as a potential screening factor for historic accumulation of CETP deficiency in East Asia. PMID:25849946

  13. Effects of diet on high-density lipoprotein cholesterol.

    PubMed

    Siri-Tarino, Patty W

    2011-12-01

    Multiple dietary factors have been shown to increase high-density lipoprotein cholesterol (HDL-C) concentrations, and HDL-C has been inversely associated with coronary heart disease (CHD) risk. Replacement of dietary carbohydrate with polyunsaturated, monounsaturated and saturated fat has been associated with progressively greater increases in HDL-C (7-12%) in addition to other lipid changes. Added sugars, but not high glycemic carbohydrates, have been associated with decreased HDL-C. Alcohol consumption has been associated with increased HDL-C (9.2%) independent of changes in other measured lipids. Modest effects on HDL-C (~4-5%) among other lipid and non-lipid CHD risk factors have also been observed with weight loss by dieting, omega-3 fatty acids, and a Mediterranean diet pattern. The CHD benefit of increasing HDL-C is unclear given the inconsistent evidence from HDL-raising pharmacologic trials. Furthermore, pleiotropic effects of diet preclude attribution of CHD benefit specifically to HDL-C. Investigation into functional or other properties of HDL may lend further insight. PMID:21901431

  14. A MARCH6 and IDOL E3 Ubiquitin Ligase Circuit Uncouples Cholesterol Synthesis from Lipoprotein Uptake in Hepatocytes

    PubMed Central

    Loregger, Anke; Cook, Emma Claire Laura; Nelson, Jessica Kristin; Moeton, Martina; Sharpe, Laura Jane; Engberg, Susanna; Karimova, Madina; Lambert, Gilles; Brown, Andrew John

    2015-01-01

    Cholesterol synthesis and lipoprotein uptake are tightly coordinated to ensure that the cellular level of cholesterol is adequately maintained. Hepatic dysregulation of these processes is associated with pathological conditions, most notably cardiovascular disease. Using a genetic approach, we have recently identified the E3 ubiquitin ligase MARCH6 as a regulator of cholesterol biosynthesis, owing to its ability to promote degradation of the rate-limiting enzymes 3-hydroxy-3-methyl-glutaryl coenzyme A reductase (HMGCR) and squalene epoxidase (SQLE). Here, we present evidence for MARCH6 playing a multifaceted role in the control of cholesterol homeostasis in hepatocytes. We identify MARCH6 as an endogenous inhibitor of the sterol regulatory element binding protein (SREBP) transcriptional program. Accordingly, loss of MARCH6 increases expression of SREBP-regulated genes involved in cholesterol biosynthesis and lipoprotein uptake. Unexpectedly, this is associated with a decrease in cellular lipoprotein uptake, induced by enhanced lysosomal degradation of the low-density lipoprotein receptor (LDLR). Finally, we provide evidence that induction of the E3 ubiquitin ligase IDOL represents the molecular mechanism underlying this MARCH6-induced phenotype. Our study thus highlights a MARCH6-dependent mechanism to direct cellular cholesterol accretion that relies on uncoupling of cholesterol synthesis from lipoprotein uptake. PMID:26527619

  15. [Lipoprotein (a)--a mysterious factor in atherogenesis].

    PubMed

    Jelaković, Bojan; Laganović, Mario; Kuzmanić, Dusko

    2002-01-01

    Etiopathogenesis of arterial hypertension and coronary disease involves interaction of numerous exogenous factors which determine the clinical course and therapeutic response in genetically predisposed individuals. The role of numerous cardiovascular risk factors has been reevaluated during the past few years, yet some unresolved issues and gaps still remain. One of the still insufficiently studied factors is lipoprotein (a) [Lp (a)] which belongs to a subclass of LDL lipoproteins. Its important component is apolipoprotein (a) which is structurally similar to plasminogen. This characteristic can be followed through evolution and is probably crucial for its physiologic but also pathophysiologic role. Actually, through its competition with plasminogen, Lp (a) interferes with the process of fibrinolysis and may contribute to tissue healing and restoration but also support and accelerate atherothrombotic process. Lp (a) concentration is stable and genetically determined in an individual and the indication that persons with elevated levels are permanently exposed to increased risk is supported by the data on twofold incidence of myocardial infarction in mothers of children with highest Lp (a) concentrations. Apart from competing with plasminogen via apolipoprotein (a), Lp (a) increases the activity of inhibitors of plasminogen-I activator and reduces the activity of transforming growth factor-beta. This results both in the absence of fibrinolysis and promotion of migration and proliferation of media smooth muscle cells, which are important in the onset of atherosclerotic process. Lp (a) binds to elastin via apolipoprotein B, resulting in oxidation and facilitated entry into macrophages and their transition into the so-called foam cells, also an important sign of early atherosclerosis. Although many pathophysiologic processes by which Lp (a) contributes to atherosclerosis have also been confirmed by animal experiments as well as by the presence of histologic evidence

  16. Effects of calcium, magnesium, lead, or cadmium on lipoprotein metabolism and atherosclerosis in the pigeon

    SciTech Connect

    Revis, N.W.; Major, T.C.; Horton, C.Y.

    1980-01-01

    Epidemiological and clincal studies suggest that the incidence of atherosclerosis is higher in soft-water areas than in hard-water areas. In an attempt to discern the factor(s) in drinking water that may be associated with these observations, the current studies were performed to determine the effects of several elements associated with hard (i.e., calcium and magnesium) or soft (i.e., calcium and magnesium) or soft (i.e., cadmium and lead) water in the induction and progression of atherosclerosis in the white carneau pigeon. The effect of these elements on lipoprotein metabolism was also assessed because it has been suggested that changes in the metabolism of lipoprotein may play a role in the etiology of atherosclerosis. Results show that the number and size of atherosclerotic plaques in the aorta were increased in pigeons given drinking water containing lead and/or cadmium. The effects of these elements were antagonized by the addition of calcium to drinking water containing lead and/or cadmium. Although lead and cadmium altered the profile of lipoproteins, this change did not appear to be related to an increase in the number and size of atherosclerotic plaques of the aorta. However, in pigeons treated with calcium alone the low-density lipoprotein (LDL) increased fourfold, and arteriosclerosis of the coronary arteries was observed. This result suggests that marked increases in the LDL protein may be related to arteriosclerosis of the coronary arteries. Based on these preliminary results, we suggest that lead, cadmium, and the LDL protein may be important factors in the induction and progression of atherosclerosis and arteriosclerosis in the pigeon.

  17. Systemic excretion of benzo(a)pyrene in the control and microsomally induced rat: the influence of plasma lipoproteins and albumin as carrier molecules

    SciTech Connect

    Shu, H.P.; Bymun, E.N.

    1983-02-01

    In vitro studies have previously indicated that benzo(a)pyrene distributes primarily into the plasma lipoprotein fraction when incubated with whole plasma. Hydroxylated metabolites of benzo(a)pyrene distribute increasingly into the albumin fraction as the degree of metabolite hydroxylation increases. This report assesses the influence of plasma lipoproteins and albumin as carriers for benzo(a)pyrene on carcinogen excretion in the control and microsomally induced rat. Male Sprague-Dawley rats cannulated in the bile duct received i.v. injections of radiolabeled benzo(a)pyrene noncovalently bound to the very-low-density, low-density, or high-density lipoproteins in equimolar amounts. Bile was collected and measured for radioactivity. Cumulative biliary excretions of benzo(a)pyrene complexed with rat lipoproteins were 39.6 +/- 9.7 (S.D.), 24.6 +/- 1.3, and 21.2 +/- 8.8% for very low-density, low-density, and high-density lipoprotein, respectively. Values for excretion of benzo(a)pyrene complexed with rat or human lipoproteins were comparable. These data suggest that the transport molecule can effect a 2-fold difference in benzo(a)pyrene excretion under conditions of the present study. Thus, excretion increased as the degree of benzo(a)pyrene hydroxylation increased. The effect of microsomal enzyme induction on excretion of lipoprotein-bound benzo(a)pyrene was also assessed. Contrary to expectation, excretion of benzo(a)pyrene bound to the very-low-density, low-density, or high-density lipoproteins in Aroclor-induced rats was not greater than that of control animals. Hence, under the conditions of the present study, 60 to 80% of the injected benzo(a)pyrene and 50 to 60% of the injected benzo(a)pyrene metabolites were not excreted immediately in control or microsomally induced animals. This benzo(a)pyrene may represent a carcinogen pool that is slowly excreted.

  18. Individual Variation in the Effects of Dietary Cholesterol on Plasma Lipoproteins and Cellular Cholesterol Homeostasis in Man

    PubMed Central

    Mistry, P.; Miller, N. E.; Laker, M.; Hazzard, W. R.; Lewis, B.

    1981-01-01

    The effects of dietary cholesterol on plasma lipoproteins and cholesterol homeostasis in blood mononuclear cells have been examined in healthy adults. Addition of 1,500 mg of cholesterol to the daily diet of 37 subjects for 14 d was associated with a wide range of response of plasma total cholesterol concentration (from −6 to +75 mg/dl; mean change, +29 mg/dl; P < 0.001). Increases in plasma cholesterol reflected increased cholesterol concentrations in intermediate density lipoprotein (IDL; 1.006-1.019 g/ml), low density lipoprotein (LDL; 1.019-1.063 g/ml), and the HDL2 subclass (1.063-1.125 g/ml) of high density lipoprotein, which on average accounted for 20, 58, and 22%, respectively, of the total increment. Similar responses occurred in 14 other subjects given 750 mg cholesterol per day for 28 d. Plasma apolipoprotein B concentrations in IDL and LDL also increased. These effects on plasma lipoproteins were accompanied by three changes in freshly isolated blood mononuclear cells: (a) an increase in cell cholesterol content (mean change, +17%; P < 0.01); (b) suppression of 3-hydroxy-3-methylglutaryl coenzyme A (HMG CoA) reductase activity (−32%; P < 0.001); and (c) reduction of LDL receptor activity (−74%; P < 0.01), quantified as the rate of degradation of 125I-LDL to noniodide trichloroacetic acid-soluble material. These results provide the first direct evidence for the modulation of LDL receptor activity and HMG CoA reductase activity in a peripheral cell type in response to a dietary perturbation of human lipoprotein metabolism. The percentage increase in LDL cholesterol was negatively correlated with the percentage decrease in HMG CoA reductase activity (r = −0.49, P < 0.01). An additional negative correlation existed between the increment in plasma cholesterol concentration and the capacity of cells to degrade 125I-LDL after derepression by preincubation for 72 h in lipoprotein-deficient medium (r = −0.74, P < 0.001). Thus, differences between

  19. Your Radiologist Explains CT Colonography

    MedlinePlus

    ... this Site RadiologyInfo.org is produced by: Image/Video Gallery Your Radiologist Explains CT Colonography (Virtual colonoscopy) ... time and for your attention! Spotlight Recently posted: Video: Ultrasound-guided Breast Biopsy Video: Breast MRI Video: ...

  20. Your Radiologist Explains Nuclear Medicine

    MedlinePlus

    ... produced by: Image/Video Gallery Your Radiologist Explains Nuclear Medicine Transcript Welcome to Radiology Info dot org ... I’d like to talk to you about nuclear medicine. Nuclear medicine offers the potential to identify ...

  1. PFOS induced lipid metabolism disturbances in BALB/c mice through inhibition of low density lipoproteins excretion.

    PubMed

    Wang, Ling; Wang, Yu; Liang, Yong; Li, Jia; Liu, Yuchen; Zhang, Jie; Zhang, Aiqian; Fu, Jianjie; Jiang, Guibin

    2014-04-03

    Male BALB/c mice fed with either a regular or high fat diet were exposed to 0, 5 or 20 mg/kg perfluorooctane sulfonate (PFOS) for 14 days. Increased body weight, serum glucose, cholesterol and lipoprotein levels were observed in mice given a high fat diet. However, all PFOS-treated mice got reduced levels of serum lipid and lipoprotein. Decreasing liver glycogen content was also observed, accompanied by reduced serum glucose levels. Histological and ultrastructural examination detected more lipid droplets accumulated in hepatocytes after PFOS exposure. Moreover, transcripitonal activity of lipid metabolism related genes suggests that PFOS toxicity is probably unrelevant to PPARα's transcription. The present study demonstrates a lipid disturbance caused by PFOS and thus point to its role in inhibiting the secretion and normal function of low density lipoproteins.

  2. PFOS induced lipid metabolism disturbances in BALB/c mice through inhibition of low density lipoproteins excretion

    PubMed Central

    Wang, Ling; Wang, Yu; Liang, Yong; Li, Jia; Liu, Yuchen; Zhang, Jie; Zhang, Aiqian; Fu, Jianjie; Jiang, Guibin

    2014-01-01

    Male BALB/c mice fed with either a regular or high fat diet were exposed to 0, 5 or 20 mg/kg perfluorooctane sulfonate (PFOS) for 14 days. Increased body weight, serum glucose, cholesterol and lipoprotein levels were observed in mice given a high fat diet. However, all PFOS-treated mice got reduced levels of serum lipid and lipoprotein. Decreasing liver glycogen content was also observed, accompanied by reduced serum glucose levels. Histological and ultrastructural examination detected more lipid droplets accumulated in hepatocytes after PFOS exposure. Moreover, transcripitonal activity of lipid metabolism related genes suggests that PFOS toxicity is probably unrelevant to PPARα's transcription. The present study demonstrates a lipid disturbance caused by PFOS and thus point to its role in inhibiting the secretion and normal function of low density lipoproteins. PMID:24694979

  3. PFOS induced lipid metabolism disturbances in BALB/c mice through inhibition of low density lipoproteins excretion

    NASA Astrophysics Data System (ADS)

    Wang, Ling; Wang, Yu; Liang, Yong; Li, Jia; Liu, Yuchen; Zhang, Jie; Zhang, Aiqian; Fu, Jianjie; Jiang, Guibin

    2014-04-01

    Male BALB/c mice fed with either a regular or high fat diet were exposed to 0, 5 or 20 mg/kg perfluorooctane sulfonate (PFOS) for 14 days. Increased body weight, serum glucose, cholesterol and lipoprotein levels were observed in mice given a high fat diet. However, all PFOS-treated mice got reduced levels of serum lipid and lipoprotein. Decreasing liver glycogen content was also observed, accompanied by reduced serum glucose levels. Histological and ultrastructural examination detected more lipid droplets accumulated in hepatocytes after PFOS exposure. Moreover, transcripitonal activity of lipid metabolism related genes suggests that PFOS toxicity is probably unrelevant to PPARα's transcription. The present study demonstrates a lipid disturbance caused by PFOS and thus point to its role in inhibiting the secretion and normal function of low density lipoproteins.

  4. Oxidized low-density lipoprotein alters endothelial progenitor cell populations.

    PubMed

    Cui, Yuqi; Narasimhulu, Chandrakala A; Liu, Lingjuan; Li, Xin; Xiao, Yuan; Zhang, Jia; Xie, Xiaoyun; Hao, Hong; Liu, Jason Z; He, Guanglong; Cowan, Peter J; Cui, Lianqun; Zhu, Hua; Parthasarathy, Sampath; Liu, Zhenguo

    2015-06-01

    Oxidized low-density lipoprotein (ox-LDL) is critical to atherosclerosis in hyperlipidemia. Bone marrow (BM)-derived endothelial progenitor cells (EPCs) are important to preventing atherosclerosis, and significantly decreased in hyperlipidemia. This study was to demonstrate ox-LDL and hyperlipidemia could exhibit similar effect on EPC population and the role of reactive oxygen species (ROS). ROS production in BM and blood was significantly increased in male C57BL/6 mice with intravenous ox-LDL treatment, and in hyperlipidemic LDL receptor knockout mice with 4-month high-fat diet. ROS formation was effectively blocked with overexpression of antioxidant enzymes or N-acetylcysteine treatment. In hyperlipidemic and ox-LDL-treated mice, c-Kit(+)/CD31(+) cell number in BM and blood, and Sca-1(+)/Flk-1(+) cell number in blood, not in BM, were significantly decreased, which were not affected by inhibiting ROS production, while blood CD34(+)/Flk-1(+) cell number was significantly increased that was prevented with reduced ROS formation. However, blood CD34(+)/CD133(+) cell number increased in ox-LDL-treated mice, while decreased in hyperlipidemic mice. These data suggested that ox-LDL produced significant changes in BM and blood EPC populations similar (but not identical) to chronic hyperlipidemia with predominantly ROS-independent mechanism(s).

  5. [Basic mechanisms: structure, function and metabolism of plasma lipoproteins].

    PubMed

    Errico, Teresa L; Chen, Xiangyu; Martin Campos, Jesús M; Julve, Josep; Escolà-Gil, Joan Carles; Blanco-Vaca, Francisco

    2013-01-01

    The aim of this work is to present basic information on the lipoprotein physiology. The protein fraction of lipoproteins consists of several apolipoproteins and enzymes whose functions are lipid transport and metabolism. Classification of lipoproteins is based on their density. Chylomicrons, VLDL, IDL, LDL and HDL can be isolated by ultracentrifugation. Both chylomicrons- and VLDL-triglycerides are transported from the intestine and liver, respectively, to the peripheral tissues. The metabolism of VLDL originates IDL and LDL. LDL is the main transporter of cholesterol to extrahepatic tissues. HDL mobilizes cholesterol from peripheral tissues to the liver where it is secreted to bile as free cholesterol or bile salts, a process termed reverse cholesterol transport. Lipoprotein metabolism can be regulated by nuclear receptors that regulate the expression of genes involved in triglyceride and apolipoprotein metabolism. PMID:23769508

  6. [Basic mechanisms: structure, function and metabolism of plasma lipoproteins].

    PubMed

    Errico, Teresa L; Chen, Xiangyu; Martin Campos, Jesús M; Julve, Josep; Escolà-Gil, Joan Carles; Blanco-Vaca, Francisco

    2013-01-01

    The aim of this work is to present basic information on the lipoprotein physiology. The protein fraction of lipoproteins consists of several apolipoproteins and enzymes whose functions are lipid transport and metabolism. Classification of lipoproteins is based on their density. Chylomicrons, VLDL, IDL, LDL and HDL can be isolated by ultracentrifugation. Both chylomicrons- and VLDL-triglycerides are transported from the intestine and liver, respectively, to the peripheral tissues. The metabolism of VLDL originates IDL and LDL. LDL is the main transporter of cholesterol to extrahepatic tissues. HDL mobilizes cholesterol from peripheral tissues to the liver where it is secreted to bile as free cholesterol or bile salts, a process termed reverse cholesterol transport. Lipoprotein metabolism can be regulated by nuclear receptors that regulate the expression of genes involved in triglyceride and apolipoprotein metabolism.

  7. Mycoplasmal lipoprotein p37 binds human protein HER2.

    PubMed

    Wu, Jun; Wu, Lijuan; Fang, Cheng; Nie, Rong; Wang, Jiamou; Wang, Xuan; Liu, Wenbin

    2016-11-01

    Mycoplasmas are a group of microbes that can cause human diseases. The mycoplasmal lipoprotein p37 promotes cancer metastasis, at least in part, by interacting with EGFR. In this study, we show that the p37 lipoprotein binds another member of the EGFR family, HER2, through the HER2 extracellular domain. The binding of p37-HER2 promotes phosphorylation of HER2 and activates the downstream signaling molecule Erk1/2. Because the HER2 signaling pathway contributes to breast tumor metastasis, our results imply that the mycoplasmal lipoprotein p37 may also be involved in breast cancer metastasis. This study contributes to our understanding of mycoplasmal lipoprotein p37 function and its potential involvement in tumorigenesis. PMID:27664744

  8. A quantitative method for blood lipoproteins using cellulose acetate electrophoresis

    PubMed Central

    Magnani, H. N.; Howard, A. N.

    1971-01-01

    A rapid, inexpensive, and quantitative method is described for obtaining the levels of plasma very low, low, and high density lipoproteins using cellulose acetate electrophoresis and lipid assays without prior separation by ultracentrifuge or other techniques. It involves separation of the lipoproteins by cellulose acetate electrophoresis, followed by their identification with the ozone-Schiff reaction. The total lipoprotein concentration is estimated from the total plasma phospholipid, and the percentage of each component obtained by densitometric analysis of the stained electrophoretograms, using reflected light. For samples with a raised level of very low density lipoprotein, plasma triglyceride analysis is also required. The results obtained by the cellulose acetate electrophoresis method are in good agreement with those by the analytical ultracentrifuge and the preparative ultracentrifuge with refractometry. The theoretical assumptions on which the method is based have been shown to be valid. Images PMID:4110791

  9. Resequencing of LPL in African Blacks and associations with lipoprotein-lipid levels.

    PubMed

    Pirim, Dilek; Wang, Xingbin; Radwan, Zaheda H; Niemsiri, Vipavee; Bunker, Clareann H; Barmada, M Michael; Kamboh, M Ilyas; Demirci, F Yesim

    2015-09-01

    Genome-wide association studies have identified several loci associated with plasma lipid levels but those common variants together account only for a small proportion of the genetic variance of lipid traits. It has been hypothesized that the remaining heritability may partly be explained by rare variants with strong effect sizes. Here, we have comprehensively investigated the associations of both common and uncommon/rare variants in the lipoprotein lipase (LPL) gene in relation to plasma lipoprotein-lipid levels in African Blacks (ABs). For variant discovery purposes, the entire LPL gene and flanking regions were resequenced in 95 ABs with extreme high-density lipoprotein cholesterol (HDL-C) levels. A total of 308 variants were identified, of which 64 were novel. Selected common tagSNPs and uncommon/rare variants were genotyped in the entire sample (n=788), and 126 QC-passed variants were evaluated for their associations with lipoprotein-lipid levels by using single-site, haplotype and rare variant (SKAT-O) association analyses. We found eight not highly correlated (r(2)<0.40) signals (rs1801177:G>A, rs8176337:G>C, rs74304285:G>A, rs252:delA, rs316:C>A, rs329:A>G, rs12679834:T>C, and rs4921684:C>T) nominally (P<0.05) associated with lipid traits (HDL-C, LDL-C, ApoA1 or ApoB levels) in our sample. The most significant SNP, rs252:delA, represented a novel association observed with LDL-C (P=0.002) and ApoB (P=0.012). For TG and LDL-C, the haplotype analysis was more informative than the single-site analysis. The SKAT-O analysis revealed that the bin (group) containing 22 rare variants with MAF≤0.01 exhibited nominal association with TG (P=0.039) and LDL-C (P=0.027). Our study indicates that both common and uncommon/rare LPL variants/haplotypes may affect plasma lipoprotein-lipid levels in general African population. PMID:25626708

  10. Brain lipoprotein metabolism and its relation to neurodegenerative disease.

    PubMed

    Danik, M; Champagne, D; Petit-Turcotte, C; Beffert, U; Poirier, J

    1999-01-01

    Lipoproteins are macromolecular complexes composed of lipids and proteins. The role of these complexes is to provide cells of the organism with lipids to be used as a source of energy, building blocks for biomembrane synthesis, and lipophilic molecules (e.g., steroid hormones and vitamin E) for other physiological purposes, such as cell signaling and antioxidative mechanisms. Lipoproteins also promote the cellular efflux of cholesterol for its disposal into bile. Thus, lipoproteins play an important role in the maintenance of lipid homeostasis throughout the organism. Accordingly, lipoprotein particles have been found circulating in blood, lymph, and interstitial fluid. Despite the existence of the blood-brain barrier, lipoprotein particles have been shown to be also present in the cerebrospinal fluid (CSF). Although a portion of their protein components may filter through the barrier from the vascular compartment, experimental evidence indicates that these particles originate from the nervous tissue. The other protein components include apolipoproteins E, J, and D, and these have been shown to be synthesized by cells within the central nervous system (CNS). Furthermore, it was shown that lipoprotein particles can be isolated from the conditioned medium of astrocytic cultures. The differences in size, structure, and composition of in vitro assembled particles compared with those isolated from the CSF suggest that the particles are modified following their secretion in vivo. This is supported by observations that lipoprotein-modifying enzymes and transfer proteins are also present within CNS tissue and CSF. The fate of CSF lipoproteins is unclear but is probably related to the turnover and clearance of lipids from the CNS or, alternatively, the particles may be recaptured and recycled back into the CNS tissue. The presence of several cell surface receptors for apoE-containing lipoproteins on ependymal cells, as well as on neurons and glial cells, supports this

  11. Effect of dietary vegetable oils on the fatty acid profile of plasma lipoproteins in dairy cows.

    PubMed

    Vargas-Bello-Pérez, Einar; Íñiguez-González, Gonzalo; Cancino-Padilla, Nathaly; Loor, Juan J; Garnsworthy, Philip C

    2016-08-01

    The aim of this study was to elucidate the effect of dietary supplementation of soybean oil (SO) and hydrogenated palm oil (HPO) on the transport of fatty acids (FA) within plasma lipoproteins in lactating and non-lactating cows. Three lactating and three non-lactating Holstein cows were used in two different 3 × 3 Latin square experiments that included three periods of 21 d. Dietary treatments for lactating cows consisted of a basal diet (control; no fat supplement) and fat-supplemented diets containing SO (500 g/d per cow) or HPO (500 g/d per cow). For non-lactating cows, dietary treatments consisted of a basal diet (control; no fat supplement) and fat-supplemented diets containing SO (170 g/d per cow) or HPO (170 g/d per cow). Compared with the control and SO diet, HPO addition increased (p < 0.05) the concentration of C16:0, C18:0, C18:2cis-9,12, C18:3cis-9,12,15 and total saturated and polyunsaturated FA in the plasma of lactating cows. In non-lactating cows, the SO addition increased the plasma concentration of C18:1trans-11. In lactating cows, concentrations of C16:0, C18:0 and total saturated FA were increased (p < 0.05) by HPO addition in the high-density lipoprotein (HDL). Total saturated FA were increased (p < 0.05) by HPO in very-low-density lipoprotein (VLDL). In non-lactating cows, the concentration of C18:0 was increased (p < 0.05) by HPO in HDL, whereas C18:1trans-11 was increased (p < 0.05) by SO in the low-density lipoprotein. Overall, it was found that distribution and transport of FA within the bovine plasma lipoproteins may be influenced by chain length and degree of unsaturation of dietary lipids. Also, the distribution of individual FA isomers such as C18:1trans-11 and C18:2cis-9,trans-11 may vary depending on the physiological state of the cow (lactating or non-lactating), and are increased in plasma (lactating cows) and the HDL (non-lactating cows) when cows are fed SO. PMID:27216557

  12. Lipoprotein subclasses in genetic studies: the Berkeley data set.

    PubMed

    Krauss, R M; Williams, P T; Blanche, P J; Cavanaugh, A; Holl, L G; Austin, M A

    1993-01-01

    In conjunction with a study examining the inheritance of LDL subclass patterns in a healthy population, measurements of lipids, lipoproteins, and lipoprotein subclasses were performed in 301 individuals in 27 kindreds. Questionnaires were used to obtain information on use of medications, hormones, cigarettes, and alcohol. Laboratory data from this study (the Berkeley data set) include measurements of LDL and HDL size subclasses by nondenaturing gradient gel electrophoresis, and measurement of apolipoprotein A-I by radial immunodiffusion.

  13. Lipoprotein (a) measurements for clinical application.

    PubMed

    Marcovina, Santica M; Albers, John J

    2016-04-01

    The high degree of size heterogeneity of apo(a), the distinct protein component of lipoprotein (a) [Lp(a)], renders the development and selection of specific antibodies directed to apo(a) more difficult and poses significant challenges to the development of immunoassays to measure its concentration in plasma or serum samples. Apo(a) is extremely variable in size not only between but also within individuals because of the presence of two different, genetically determined apo(a) isoform sizes. Therefore, the antigenic determinants per particle available to interact with the antibodies will vary in the samples and the calibrators, thus contributing to apo(a) size-dependent inaccuracy of different methods. The lack of rigorous validation of the immunoassays and common means of expressing Lp(a) concentrations hinder the harmonization of results obtained by different studies and contribute to the lack of common cut points for identification of individuals at risk for coronary artery disease or for interventions aimed at reducing Lp(a) levels. The aim of our review is to present and critically evaluate the issues surrounding the measurements of Lp(a), their impact on the clinical interpretation of the data, and the obstacles we need to overcome to achieve the standardization of Lp(a) measurements. PMID:26637278

  14. Nanobiotechnology applications of reconstituted high density lipoprotein

    PubMed Central

    2010-01-01

    High-density lipoprotein (HDL) plays a fundamental role in the Reverse Cholesterol Transport pathway. Prior to maturation, nascent HDL exist as disk-shaped phospholipid bilayers whose perimeter is stabilized by amphipathic apolipoproteins. Methods have been developed to generate reconstituted (rHDL) in vitro and these particles have been used in a variety of novel ways. To differentiate between physiological HDL particles and non-natural rHDL that have been engineered to possess additional components/functions, the term nanodisk (ND) is used. In this review, various applications of ND technology are described, such as their use as miniature membranes for solubilization and characterization of integral membrane proteins in a native like conformation. In other work, ND harboring hydrophobic biomolecules/drugs have been generated and used as transport/delivery vehicles. In vitro and in vivo studies show that drug loaded ND are stable and possess potent biological activity. A third application of ND is their use as a platform for incorporation of amphiphilic chelators of contrast agents, such as gadolinium, used in magnetic resonance imaging. Thus, it is demonstrated that the basic building block of plasma HDL can be repurposed for alternate functions. PMID:21122135

  15. High-Density Lipoproteins: Nature's Multifunctional Nanoparticles.

    PubMed

    Kuai, Rui; Li, Dan; Chen, Y Eugene; Moon, James J; Schwendeman, Anna

    2016-03-22

    High-density lipoproteins (HDL) are endogenous nanoparticles involved in the transport and metabolism of cholesterol, phospholipids, and triglycerides. HDL is well-known as the "good" cholesterol because it not only removes excess cholesterol from atherosclerotic plaques but also has anti-inflammatory and antioxidative properties, which protect the cardiovascular system. Circulating HDL also transports endogenous proteins, vitamins, hormones, and microRNA to various organs. Compared with other synthetic nanocarriers, such as liposomes, micelles, and inorganic and polymeric nanoparticles, HDL has unique features that allow them to deliver cargo to specific targets more efficiently. These attributes include their ultrasmall size (8-12 nm in diameter), high tolerability in humans (up to 8 g of protein per infusion), long circulating half-life (12-24 h), and intrinsic targeting properties to different recipient cells. Various recombinant ApoA proteins and ApoA mimetic peptides have been recently developed for the preparation of reconstituted HDL that exhibits properties similar to those of endogenous HDL and has a potential for industrial scale-up. In this review, we will summarize (a) clinical pharmacokinetics and safety of reconstituted HDL products, (b) comparison of HDL with inorganic and other organic nanoparticles, PMID:26889958

  16. Nanobiotechnology applications of reconstituted high density lipoprotein.

    PubMed

    Ryan, Robert O

    2010-01-01

    High-density lipoprotein (HDL) plays a fundamental role in the Reverse Cholesterol Transport pathway. Prior to maturation, nascent HDL exist as disk-shaped phospholipid bilayers whose perimeter is stabilized by amphipathic apolipoproteins. Methods have been developed to generate reconstituted (rHDL) in vitro and these particles have been used in a variety of novel ways. To differentiate between physiological HDL particles and non-natural rHDL that have been engineered to possess additional components/functions, the term nanodisk (ND) is used. In this review, various applications of ND technology are described, such as their use as miniature membranes for solubilization and characterization of integral membrane proteins in a native like conformation. In other work, ND harboring hydrophobic biomolecules/drugs have been generated and used as transport/delivery vehicles. In vitro and in vivo studies show that drug loaded ND are stable and possess potent biological activity. A third application of ND is their use as a platform for incorporation of amphiphilic chelators of contrast agents, such as gadolinium, used in magnetic resonance imaging. Thus, it is demonstrated that the basic building block of plasma HDL can be repurposed for alternate functions.

  17. The use of transgenic animals to study lipoprotein metabolism

    SciTech Connect

    Rubin, E.M.; Plump, A.S.

    1993-12-01

    The application of transgenic technology to lipoprotein metabolism and atherosclerosis was first reported in 1988. Today, a large percentage of the genes involved in lipoprotein metabolism have been overexpressed in mice, and a substantial number of these same genes have been disrupted by homologous recombination in embryonic stem (ES) cells. The utility of animal models of lipoprotein metabolism and atherosclerosis is far-reaching given the complex nature of these systems. There are at least 17 known genes directly involved in lipoprotein metabolism and likely dozens more may be involved. This massive network of interacting factors has necessitated the development of in vivo systems which can be subject to genetic manipulation. The power of overexpression is obvious: elucidating function in a relatively controlled genetic environment in which the whole system is present and operational. The not-so-obvious problem with transgenics is ``background,`` or for purposes of the current discussion, the mouse`s own lipoprotein system. With the advent of gene knockout, we have been given the ability to overcome ``background.`` By recreating the genetic complement of the mouse we can alter a system in essentially any manner desired. As unique tools, and in combination with one another, the overexpression of foreign genes and the targeted disruption or alteration of endogenous genes has already and will continue to offer a wealth of information on the biology of lipoprotein metabolism and its effect on atherosclerosis susceptibility.

  18. Hemodynamics alter arterial low-density lipoprotein metabolism

    SciTech Connect

    Warty, V.S.; Calvo, W.J.; Berceli, S.A.; Pham, S.M.; Durham, S.J.; Tanksale, S.K.; Klein, E.C.; Herman, I.M.; Borovetz, H.S. )

    1989-10-01

    We have investigated the role of hemodynamic factors on low-density lipoprotein transport and metabolism in the intact arterial wall. Freshly excised canine carotid blood vessels were exposed to well-defined pulsatile flow in vitro for continuous periods up to 20 hours. We chose to impose the following hemodynamic conditions on our test carotid arteries: normotension, hypertension (at physiologic flow conditions), and hypertension coupled with elevated flow of canine serum perfusate. In several experiments the effect of endothelial denudation was examined in carotid arteries exposed to normotensive pulsatile flow. A trapped ligand method was used for quantitating low-density lipoprotein uptake and metabolism in the arterial wall. The distribution of both intact and degraded low-density lipoprotein fractions was determined from measurements of radiolabelled low-density lipoprotein activity within thin radial sections of perfused arteries. Our results suggest that both hypertensive hemodynamic simulations exacerbate the uptake of low-density lipoprotein within the arterial wall (by a factor of three to nine). The percentage of low-density lipoprotein that undergoes irreversible degradation falls from 41% under normotensive conditions to below 30% when hypertensive conditions are imposed, indicating that degradative processes are not proportionally elevated with the accelerated influx. A similar pattern is observed for deendothelialized vessels.

  19. The farnesoid X receptor induces very low density lipoprotein receptor gene expression.

    PubMed

    Sirvent, Audrey; Claudel, Thierry; Martin, Geneviève; Brozek, John; Kosykh, Vladimir; Darteil, Raphaël; Hum, Dean W; Fruchart, Jean-Charles; Staels, Bart

    2004-05-21

    The farnesoid X receptor (FXR) is a nuclear receptor activated by bile acids (BAs). In response to ligand-binding, FXR regulates many genes involved in BA, lipid, and lipoprotein metabolism. To identify new FXR target genes, microarray technology was used to profile total RNA extracted from HepG2 cells treated with the natural FXR agonist chenodeoxycholic acid (CDCA). Interestingly, a significant increase of transcript level of the very low density lipoprotein receptor (VLDLR) was observed. Our data, resulting from selective FXR activation, FXR RNA silencing and FXR-deficient mice, clearly demonstrate that BAs up-regulate VLDLR transcript levels via a FXR-dependent mechanism in vitro in human and in vivo in mouse liver cells.

  20. Current guidelines for high-density lipoprotein cholesterol in therapy and future directions

    PubMed Central

    Subedi, Bishnu H; Joshi, Parag H; Jones, Steven R; Martin, Seth S; Blaha, Michael J; Michos, Erin D

    2014-01-01

    Many studies have suggested that a significant risk factor for atherosclerotic cardiovascular disease (ASCVD) is low high-density lipoprotein cholesterol (HDL-C). Therefore, increasing HDL-C with therapeutic agents has been considered an attractive strategy. In the prestatin era, fibrates and niacin monotherapy, which cause modest increases in HDL-C, reduced ASCVD events. Since their introduction, statins have become the cornerstone of lipoprotein therapy, the benefits of which are primarily attributed to decrease in low-density lipoprotein cholesterol. Findings from several randomized trials involving niacin or cholesteryl ester transfer protein inhibitors have challenged the concept that a quantitative elevation of plasma HDL-C will uniformly translate into ASCVD benefits. Consequently, the HDL, or more correctly, HDL-C hypothesis has become more controversial. There are no clear guidelines thus far for targeting HDL-C or HDL due to lack of solid outcomes data for HDL specific therapies. HDL-C levels are only one marker of HDL out of its several structural or functional properties. Novel approaches are ongoing in developing and assessing agents that closely mimic the structure of natural HDL or replicate its various functions, for example, reverse cholesterol transport, vasodilation, anti-inflammation, or inhibition of platelet aggregation. Potential new approaches like HDL infusions, delipidated HDL, liver X receptor agonists, Apo A-I upregulators, Apo A mimetics, and gene therapy are in early phase trials. This review will outline current therapies and describe future directions for HDL therapeutics. PMID:24748800

  1. Current guidelines for high-density lipoprotein cholesterol in therapy and future directions.

    PubMed

    Subedi, Bishnu H; Joshi, Parag H; Jones, Steven R; Martin, Seth S; Blaha, Michael J; Michos, Erin D

    2014-01-01

    Many studies have suggested that a significant risk factor for atherosclerotic cardiovascular disease (ASCVD) is low high-density lipoprotein cholesterol (HDL-C). Therefore, increasing HDL-C with therapeutic agents has been considered an attractive strategy. In the prestatin era, fibrates and niacin monotherapy, which cause modest increases in HDL-C, reduced ASCVD events. Since their introduction, statins have become the cornerstone of lipoprotein therapy, the benefits of which are primarily attributed to decrease in low-density lipoprotein cholesterol. Findings from several randomized trials involving niacin or cholesteryl ester transfer protein inhibitors have challenged the concept that a quantitative elevation of plasma HDL-C will uniformly translate into ASCVD benefits. Consequently, the HDL, or more correctly, HDL-C hypothesis has become more controversial. There are no clear guidelines thus far for targeting HDL-C or HDL due to lack of solid outcomes data for HDL specific therapies. HDL-C levels are only one marker of HDL out of its several structural or functional properties. Novel approaches are ongoing in developing and assessing agents that closely mimic the structure of natural HDL or replicate its various functions, for example, reverse cholesterol transport, vasodilation, anti-inflammation, or inhibition of platelet aggregation. Potential new approaches like HDL infusions, delipidated HDL, liver X receptor agonists, Apo A-I upregulators, Apo A mimetics, and gene therapy are in early phase trials. This review will outline current therapies and describe future directions for HDL therapeutics.

  2. Hemorheological abnormalities in lipoprotein lipase deficient mice with severe hypertriglyceridemia

    SciTech Connect

    Zhao Tieqiang; Guo Jun; Li Hui; Huang Wei; Xian Xunde; Ross, Colin J.D.; Hayden, Michael R.; Wen Zongyao . E-mail: rheol@bjmu.edu.cn; Liu George . E-mail: vangeorgeliu@gmail.com

    2006-03-24

    Severe hypertriglyceridemia (HTG) is a metabolic disturbance often seen in clinical practice. It is known to induce life-threatening acute pancreatitis, but its role in atherogenesis remains elusive. Hemorheological abnormality was thought to play an important role in pathogenesis of both pancreatitis and atherosclerosis. However, hemorheology in severe HTG was not well investigated. Recently, we established a severe HTG mouse model deficient in lipoprotein lipase (LPL) in which severe HTG was observed to cause a significant increase in plasma viscosity. Disturbances of erythrocytes were also documented, including decreased deformability, electrophoresis rate, and membrane fluidity, and increased osmotic fragility. Scanning electron microscopy demonstrated that most erythrocytes of LPL deficient mice deformed with protrusions, irregular appearances or indistinct concaves. Analysis of erythrocyte membrane lipids showed decreased cholesterol (Ch) and phospholipid (PL) contents but unaltered Ch/PL ratio. The changes of membrane lipids may be partially responsible for the hemorheological and morphologic abnormalities of erythrocytes. This study indicated that severe HTG could lead to significant impairment of hemorheology and this model may be useful in delineating the role of severe HTG in the pathogenesis of hyperlipidemic pancreatitis and atherosclerosis.

  3. Tiliroside and gnaphaliin inhibit human low density lipoprotein oxidation.

    PubMed

    Schinella, Guillermo R; Tournier, Horacio A; Máñez, Salvador; de Buschiazzo, Perla M; Del Carmen Recio, María; Ríos, José Luis

    2007-01-01

    Two flavonoids, gnaphaliin and tiliroside, isolated from Helichrysum italicum, were studied in vitro for their capacity to inhibit Cu(2+)-induced human low density lipoprotein (LDL) and diluted plasma oxidation. LDL oxidation was monitored by conjugated diene, thiobarbituric acid-reactive substances (TBARS) formation and electrophoretic mobility on agarose gel. Gnaphaliin and tiliroside increased the lag-phase for diene conjugate production in a dose-dependent manner. The reduction of TBARS production confirmed the antioxidant activity of gnaphaliin and tiliroside with 50% inhibitory concentration (IC(50)) values of 8.0+/-3.9 microM and 7.0+/-2.6 microM respectively. Furthermore, the flavonoids negated the Cu(2+)-induced increase in electrophoretic mobility of LDL. Antioxidant activity of gnaphaliin and tiliroside was significantly different when diluted plasma was oxidised by adding 1 mM CuSO(4). Although both flavonoids again reduced the TBARS production, tiliroside showed higher activity than gnaphaliin (IC(50)=10.6+/-2.5 microM vs. IC(50)>50 microM). In conclusion, tiliroside and gnaphaliin are antioxidants against in vitro Cu(2+)-induced LDL oxidation in the same order of magnitude compared to that of the reference drug, probucol.

  4. Absorption and transport of deuterium-substituted 2R,4'R,8'R-alpha-tocopherol in human lipoproteins

    SciTech Connect

    Traber, M.G.; Ingold, K.U.; Burton, G.W.; Kayden, H.J.

    1988-08-01

    Oral administration of a single dose of tri- or hexadeuterium substituted 2R,4'R,8'R-alpha-tocopheryl acetate (d3- or d6-alpha-T-Ac) to humans was used to follow the absorption and transport of vitamin E in plasma lipoproteins. Three hr after oral administration of d3-alpha-T-Ac (15 mg) to 2 subjects, plasma levels of d3-alpha-T were detectable; these increased up to 10 hr, reached a plateau at 24 hr, then decreased. Following administration of d6-alpha-T-Ac (15-16 mg) to 2 subjects, the percentage of deuterated tocopherol relative to the total tocopherol in chylomicrons increased more rapidly than the corresponding percentage in whole plasma. Chylomicrons and plasma lipoproteins were isolated from 2 additional subjects following administration of d3-alpha-T-Ac (140 or 60 mg). The percentage of deuterated tocopherol relative to the total tocopherol increased most rapidly in chylomicrons, then in very low density lipoproteins (VLDL), followed by essentially identical increases in low and high density lipoproteins (LDL and HDL, respectively) and lastly, in the red blood cells. This pattern of appearance of deuterated tocopherol is consistent with the concept that newly absorbed vitamin E is secreted by the intestine into chylomicrons; subsequently, chylomicron remnants are taken up by the liver from which the vitamin E is secreted in VLDL. The metabolism of VLDL in the circulation results in the simultaneous delivery of vitamin E into LDL and HDL.

  5. Effects of maximal doses of atorvastatin versus rosuvastatin on small dense low-density lipoprotein cholesterol levels

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Maximal doses of atorvastatin and rosuvastatin are highly effective in lowering low-density lipoprotein (LDL) cholesterol and triglyceride levels; however, rosuvastatin has been shown to be significantly more effective than atorvastatin in lowering LDL cholesterol and in increasing high-density lipo...

  6. Phagocytosis of aggregated lipoprotein by macrophages: Low density lipoprotein receptor-dependent foam-cell formation

    SciTech Connect

    Suits, A.G.; Chait, A.; Aviram, M.; Heinecke, J.W. )

    1989-04-01

    Low density lipoprotein (LDL) modified by incubation with phospholipase C (PLC-LDL) aggregates in solution and is rapidly taken up and degraded by human and mouse macrophages, producing foam cells in vitro. Human, mouse, and rabbit macrophages degraded {sup 125}I-labeled PLC-LDL ({sup 125}I-PLC-LDL) more rapidly than native {sup 125}I-labeled LDL ({sup 125}I-LDL), while nonphagocytic cells such as human fibroblasts and bovine aortic endothelial cells degraded {sup 125}I-PLC-LDL more slowly than {sup 125}I-LDL. This suggested the mechanism for internalization of PLC-LDL was phagocytosis. When examined by electron microscopy, mouse peritoneal macrophages appeared to be phagocytosing PLC-LDL. The uptake and degradation of {sup 125}I-PLC-LDL by human macrophages was inhibited >80% by the monoclonal antibody C7 (IgG2b) produced by hybridoma C7, which blocks the ligand binding domain of the LDL receptor. Similarly, methylation of {sup 125}I-LDL ({sup 125}I-MeLDL) prior to treatment with phospholipase C decreased its subsequent uptake and degradation by human macrophages by >90%. The uptake and degradation of phospholipase C-modified {sup 125}I-MeLDL by macrophages could be restored by incubation of the methylated lipoprotein with apoprotein E, a ligand recognized by the LDL receptor. These results indicate that macrophages internalize PLC-LDL by LDL receptor-dependent phagocytosis.

  7. Aminoacylation of the N-terminal cysteine is essential for Lol-dependent release of lipoproteins from membranes but does not depend on lipoprotein sorting signals.

    PubMed

    Fukuda, Ayumu; Matsuyama, Shin-Ichi; Hara, Takashi; Nakayama, Jiro; Nagasawa, Hiromichi; Tokuda, Hajime

    2002-11-01

    Lipoproteins are present in a wide variety of bacteria and are anchored to membranes through lipids attached to the N-terminal cysteine. The Lol system of Escherichia coli mediates the membrane-specific localization of lipoproteins. Aspartate at position 2 functions as a Lol avoidance signal and causes the retention of lipoproteins in the inner membrane, whereas lipoproteins having residues other than aspartate at position 2 are released from the inner membrane and localized to the outer membrane by the Lol system. Phospholipid:apolipoprotein transacylase, Lnt, catalyzes the last step of lipoprotein modification, converting apolipoprotein into mature lipoprotein. To reveal the importance of this aminoacylation for the Lol-dependent membrane localization, apolipoproteins were prepared by inhibiting lipoprotein maturation. Lnt was also purified and used to convert apolipoprotein into mature lipoprotein in vitro. The release of these lipoproteins was examined in proteoliposomes. We show here that the aminoacylation is essential for the Lol-dependent release of lipoproteins from membranes. Furthermore, lipoproteins with aspartate at position 2 were found to be aminoacylated both in vivo and in vitro, indicating that the lipoprotein-sorting signal does not affect lipid modification.

  8. [THE LIPOLYSIS IN PHYLOGENETICALLY EARLY LIPOPROTEINS OF LOW DENSITY AND MORE LATER LIPOPROTEINS OF VERY LOW DENSITY: FUNCTION AND DIAGNOSTIC VALUE OF APOE AND APOC-III].

    PubMed

    Rozhkova, T A; Titov, V N; Amelyushkina, V A; Kaba, S I; Kukhartchuk, V V

    2015-12-01

    According to phylogenetic theory of general pathology, the function of low density lipoproteins (LDL) and hydrolysis of triglycerides (TG) in them under the effect of hepatic glycerol hydrolase apoC-III (HGH) developed at much earlier stages of phylogenesis than functioning of insulin-dependent phylogenetically late very low density lipoproteins (VLDL). For millions ofyears, lipolysis and HGH+apoC-III have activated transfer of polyenic fatty acids (FA) in the form of cholesteryl polyesters (CLE) from high density lipoproteins (HDL) to linoleic and linolenic LDL under the effect of cholesteryl ester transfer protein. It is reasonable to suggest that hepatocytes physiologically secrete oleic and palmitic VLDL and linoleic and linolenic LDL. Cells uptake ligand oleic and palmitic VLVL by apoE/B-100 receptor-mediated endocytosis. Physiologically, VLDL are not converted to LDL. If hepatocytes secrete palmitic VLDL in greater amounts than oleic VLDL upon slow hydrolysis ofpalmitic TG and under the effect of postheparinic lipoprotein lipase+apoC-II, only some proportion of palmitic TG is uptaken by cells as VLDL, and the rest is converted in ligand-free palmitic LDL These LDL increase plasma contents of TG and LDL-cholesterol and form small dense palmitic LDL. Expression of HGH+apoC-III synthesis compensates TG hydrolysis in nonphysiological palmitic LDL. In vivo, apoC-III is neither physiological no pathological inhibitor of lipolysis. Increase in plasma apoC-III content is an indicator of accumulation of non-physiological palmitic LDL and atherosclerosis-atheromatosis risk factor ApoE content ofpalmitic LDL increases together with apoC-III, i.e., apoE in ligand VLDL is not internalized via apoE/B-100 endocytosis. An increase in apoC-III and apoE contents are reliable in vivo tests for the rise inpalmitic FA, palmitic TG and excessive secretion of palmitic VLDL by hepatocytes. ApoC-III and apoE contents in LDL are additional tests to evaluate the efficiency of

  9. [THE LIPOLYSIS IN PHYLOGENETICALLY EARLY LIPOPROTEINS OF LOW DENSITY AND MORE LATER LIPOPROTEINS OF VERY LOW DENSITY: FUNCTION AND DIAGNOSTIC VALUE OF APOE AND APOC-III].

    PubMed

    Rozhkova, T A; Titov, V N; Amelyushkina, V A; Kaba, S I; Kukhartchuk, V V

    2015-12-01

    According to phylogenetic theory of general pathology, the function of low density lipoproteins (LDL) and hydrolysis of triglycerides (TG) in them under the effect of hepatic glycerol hydrolase apoC-III (HGH) developed at much earlier stages of phylogenesis than functioning of insulin-dependent phylogenetically late very low density lipoproteins (VLDL). For millions ofyears, lipolysis and HGH+apoC-III have activated transfer of polyenic fatty acids (FA) in the form of cholesteryl polyesters (CLE) from high density lipoproteins (HDL) to linoleic and linolenic LDL under the effect of cholesteryl ester transfer protein. It is reasonable to suggest that hepatocytes physiologically secrete oleic and palmitic VLDL and linoleic and linolenic LDL. Cells uptake ligand oleic and palmitic VLVL by apoE/B-100 receptor-mediated endocytosis. Physiologically, VLDL are not converted to LDL. If hepatocytes secrete palmitic VLDL in greater amounts than oleic VLDL upon slow hydrolysis ofpalmitic TG and under the effect of postheparinic lipoprotein lipase+apoC-II, only some proportion of palmitic TG is uptaken by cells as VLDL, and the rest is converted in ligand-free palmitic LDL These LDL increase plasma contents of TG and LDL-cholesterol and form small dense palmitic LDL. Expression of HGH+apoC-III synthesis compensates TG hydrolysis in nonphysiological palmitic LDL. In vivo, apoC-III is neither physiological no pathological inhibitor of lipolysis. Increase in plasma apoC-III content is an indicator of accumulation of non-physiological palmitic LDL and atherosclerosis-atheromatosis risk factor ApoE content ofpalmitic LDL increases together with apoC-III, i.e., apoE in ligand VLDL is not internalized via apoE/B-100 endocytosis. An increase in apoC-III and apoE contents are reliable in vivo tests for the rise inpalmitic FA, palmitic TG and excessive secretion of palmitic VLDL by hepatocytes. ApoC-III and apoE contents in LDL are additional tests to evaluate the efficiency of

  10. Does market competition explain fairness?

    PubMed

    Descioli, Peter

    2013-02-01

    The target article by Baumard et al. uses their previous model of bargaining with outside options to explain fairness and other features of human sociality. This theory implies that fairness judgments are determined by supply and demand but humans often perceive prices (divisions of surplus) in competitive markets to be unfair.

  11. Explaining Errors in Children's Questions

    ERIC Educational Resources Information Center

    Rowland, Caroline F.

    2007-01-01

    The ability to explain the occurrence of errors in children's speech is an essential component of successful theories of language acquisition. The present study tested some generativist and constructivist predictions about error on the questions produced by ten English-learning children between 2 and 5 years of age. The analyses demonstrated that,…

  12. Development and application of proton NMR methodology to lipoprotein analysis

    NASA Astrophysics Data System (ADS)

    Korhonen, Ari Juhani

    1998-11-01

    The present thesis describes the development of 1H NMR spectroscopy and its applications to lipoprotein analysis in vitro, utilizing biochemical prior knowledge and advanced lineshape fitting analysis in the frequency domain. A method for absolute quantification of lipoprotein lipids and proteins directly from the terminal methyl-CH3 resonance region of 1H NMR spectra of human blood plasma is described. Then the use of NMR methodology in time course studies of the oxidation process of LDL particles is presented. The function of the cholesteryl ester transfer protein (CETP) in lipoprotein mixtures was also assessed by 1H NMR, which allows for dynamic follow-up of the lipid transfer reactions between VLDL, LDL, and HDL particles. The results corroborated the suggestion that neutral lipid mass transfer among lipoproteins is not an equimolar heteroexchange. A novel method for studying lipoprotein particle fusion is also demonstrated. It is shown that the progression of proteolytically (α- chymotrypsin) induced fusion of LDL particles can be followed by 1H NMR spectroscopy and, moreover, that fusion can be distinguished from aggregation. In addition, NMR methodology was used to study the changes in HDL3 particles induced by phospholipid transfer protein (PLTP) in HDL3 + PLTP mixtures. The 1H NMR study revealed a gradual production of enlarged HDL particles, which demonstrated that PLTP-mediated remodeling of HDL involves fusion of the HDL particles. These applications demonstrated that the 1H NMR approach offers several advantages both in quantification and in time course studies of lipoprotein-lipoprotein interactions and of enzyme/lipid transfer protein function.

  13. Characterization of lipoproteins in human and canine cerebrospinal fluid (CSF)

    SciTech Connect

    Pitas, R.E.; Weisgraber, K.H.; Boyles, J.K.; Lee, S.; Mahley, R.W.

    1986-03-01

    Previously the authors demonstrated that rat brain astrocytes in vitro synthesize and secrete apo-E and possess apo-B,E(LDL) receptors. The apo-E secreted by astrocytes and apo-E in rat brain extracts differed from serum apo-E in two respects. Brain apo-E had a higher apparent molecular weight and a higher percentage of more acidic isoforms. To characterize further the apo-E within the central nervous system, apo-E in human and canine CSF was investigated. Compared to plasma apo-E, CSF apo-E had a higher apparent M/sub r/ and a higher percentage of acidic isoforms which were sialylated, as shown by neuraminidase digestion. The apo-E in human CSF was approx.5-10% of the plasma level. In CSF 60-80% of the apo-E was in lipoproteins with d = 1.09-1.15. The remainder of the apo-E was in the d > 1.21 fraction. Human CSF lipoproteins were primarily spherical (110-190 A) while canine CSF lipoproteins were a mixture of discs (205 x 65 A) while canine CSF lipoproteins were a mixture of discs (205 x 65 A) and spheres (100-150 A). The CSF also contained apo-AI in the d = 1.09-1.15 g/ml fraction. Human CSF lipoproteins containing both apo-E and apo-AI were isolated on an anti-apo-E affinity column, suggesting that apo-E and AI occurred in the same particles. The CSF apo-E-containing lipoproteins competed for binding of /sup 125/I-LDL to the apo-B,E(LDL) receptor. There was no detectable apo-B in CSF. These data suggest that CSF lipoproteins might transport lipid and regulate lipid homeostasis within the brain.

  14. Switching to black rice diets modulates low-density lipoprotein oxidation and lipid measurements in rabbits.

    PubMed

    Abdel-Moemin, Aly R

    2011-04-01

    The effect of white and black rice consumption on lipid profile, hydroperoxides, thiobarbituric reactive substances and oxidized low-density lipoprotein (LDL) induced by hypercholesterolemia was investigated in 24 male rabbits; a purified normal diet (NC, n = 6), a high fat/cholesterol (1.0 g/100 g) diet (PC group, n = 6), a high fat/cholesterol diet with 25 g/100 g white ground rice (PCWR group, n = 6), 25 g/100 g black ground rice (PCBR group, n = 6) for 10 weeks. Blood samples were collected for lipid measurements. Results indicate that serum high-density lipoprotein-cholesterol was higher (P < 0.05) in the PCBR compared with the PC and PCWR groups. Hydroperoxides and thiobarbituric reactive substances were significantly lower (P < 0.05) in the PCBR compared with PCWR and PC groups. Cyanidin-3-glucoside (Cy-3-Glu) and peonidin-3-glucoside have been tested in vitro against copper-mediated low-density lipoprotein. Cy-3-Glu was excelled peonidin-3-glucoside by increasing the lag time of NC from 80 to 500 minutes in the presence of 2.0 μM of Cy-3-Glu. Hierarchically, black rice rabbits group was given the best results compared with other groups. The results may be indicating to a suggested mechanism (anthocyanins protection; Cy-3-Glu) of the cardioprotective effect of black rice. PMID:21289511

  15. Correlations of plasma lipoproteins with LDL subfractions by particle size in men and women.

    PubMed

    Williams, P T; Vranizan, K M; Krauss, R M

    1992-05-01

    Nondenaturing gradient gel electrophoresis of plasma low density lipoprotein (LDL) has been used to identify major LDL subclasses that are influenced by genetic and other factors. In the present paper, this technique has been extended by measuring absorbance of lipid- or protein-stained gels as an index of concentration at intervals of 0.05 nm across the entire LDL particle size range (21.8-30 nm) in moderately overweight men (n = 115) and women (n = 78). When LDL absorbance levels were correlated with other lipoprotein variables, we found that the strengths of the correlations with each of triglycerides, apolipoprotein (apo) B, high density lipoprotein (HDL)2, and apoA-I achieve relative maximum values for two regions within the small LDL range (21-26 nm), one within LDL-IVB (22-23.2 nm) and a second within LDL-III (24.2-25.5 nm). We also found that the increase in LDL accompanying higher triglyceride levels occurs below 25.5 nm in men and between 24.5 and 26.5 nm in women, suggesting either that triglycerides are related to different LDL subclasses in men and women, or that particle sizes of metabolically homologous LDL subclasses may differ in men and women. As compared to analytic ultracentrifuge measurements, gradient gel measurements of LDL absorbance by the procedure described here provide greater resolution of LDL subclasses but less precision in estimating LDL levels.

  16. Expression of microsomal triglyceride transfer protein in lipoprotein-synthesizing tissues of the developing chicken embryo☆

    PubMed Central

    Eresheim, Christine; Plieschnig, Julia; Ivessa, N. Erwin; Schneider, Wolfgang J.; Hermann, Marcela

    2014-01-01

    In contrast to mammals, in the chicken major sites of lipoprotein synthesis and secretion are not only the liver and intestine, but also the kidney and the embryonic yolk sac. Two key components in the assembly of triglyceride-rich lipoproteins are the microsomal triglyceride transfer protein (MTP) and apolipoprotein B (apoB). We have analyzed the expression of MTP in the embryonic liver, small intestine, and kidney, and have studied the expression of MTP in, and the secretion of apoB from, the developing yolk sac (YS). Transcript and protein levels of MTP increase during embryogenesis in YS, liver, kidney, and small intestine, and decrease in YS, embryonic liver, and kidney after hatching. In small intestine, the MTP mRNA level rises sharply during the last trimester of embryo development (after day 15), while MTP protein is detectable only after hatching (day 21). In the YS of 15- and 20-day old embryos, apoB secretion was detected by pulse-chase metabolic radiolabeling experiments and subsequent immunoprecipitation. Taken together, our data reveal the importance of coordinated production of MTP and apoB in chicken tissues capable of secreting triglyceride-rich lipoproteins even before hatching. PMID:24394625

  17. The effects of glibenclamide on glucose homeostasis and lipoprotein metabolism in poorly controlled type 2 diabetes.

    PubMed

    Baynes, C; Elkeles, R S; Henderson, A D; Richmond, W; Johnston, D G

    1993-02-01

    Six patients with type 2 diabetes underwent detailed metabolic studies before and after a minimum of 3 months' glibenclamide therapy. Treatment was associated with a small but significant increase in body weight. Despite improvements in almost all the measured parameters of glucose homeostasis (plasma glucose, glycosylated haemoglobin (HbA1), hepatic glucose production and insulin-mediated glucose disposal) neither fasting serum triglycerides nor HDL cholesterol changed and apoprotein A1 concentrations actually decreased significantly. NEFA and glycerol in fasting plasma and during the clamp studies did not change significantly with treatment. Post-heparin lipoprotein lipase and hepatic lipase activity did not change significantly. Thus, despite substantial improvements in glycaemic control and insulin sensitivity with sulphonylurea therapy, several aspects of lipid and lipoprotein metabolism remain largely unaffected. This small study suggests either that lipoprotein concentrations in type 2 diabetes are not influenced by insulin sensitivity or that the improvement is offset by another change that occurs during this form of therapy. It also suggests that other forms of therapy will be required to improve these cardiovascular risk factors in type 2 diabetes. PMID:8458616

  18. Low-Density Lipoprotein Modified by Myeloperoxidase in Inflammatory Pathways and Clinical Studies

    PubMed Central

    Vanhamme, Luc; Roumeguère, Thierry; Zouaoui Boudjeltia, Karim

    2013-01-01

    Oxidation of low-density lipoprotein (LDL) has a key role in atherogenesis. Among the different models of oxidation that have been studied, the one using myeloperoxidase (MPO) is thought to be more physiopathologically relevant. Apolipoprotein B-100 is the unique protein of LDL and is the major target of MPO. Furthermore, MPO rapidly adsorbs at the surface of LDL, promoting oxidation of amino acid residues and formation of oxidized lipoproteins that are commonly named Mox-LDL. The latter is not recognized by the LDL receptor and is accumulated by macrophages. In the context of atherogenesis, Mox-LDL accumulates in macrophages leading to foam cell formation. Furthermore, Mox-LDL seems to have specific effects and triggers inflammation. Indeed, those oxidized lipoproteins activate endothelial cells and monocytes/macrophages and induce proinflammatory molecules such as TNFα and IL-8. Mox-LDL may also inhibit fibrinolysis mediated via endothelial cells and consecutively increase the risk of thrombus formation. Finally, Mox-LDL has been involved in the physiopathology of several diseases linked to atherosclerosis such as kidney failure and consequent hemodialysis therapy, erectile dysfunction, and sleep restriction. All these issues show that the investigations of MPO-dependent LDL oxidation are of importance to better understand the inflammatory context of atherosclerosis. PMID:23983406

  19. Low-density lipoprotein mimics blood plasma-derived exosomes and microvesicles during isolation and detection.

    PubMed

    Sódar, Barbara W; Kittel, Ágnes; Pálóczi, Krisztina; Vukman, Krisztina V; Osteikoetxea, Xabier; Szabó-Taylor, Katalin; Németh, Andrea; Sperlágh, Beáta; Baranyai, Tamás; Giricz, Zoltán; Wiener, Zoltán; Turiák, Lilla; Drahos, László; Pállinger, Éva; Vékey, Károly; Ferdinandy, Péter; Falus, András; Buzás, Edit Irén

    2016-01-01

    Circulating extracellular vesicles have emerged as potential new biomarkers in a wide variety of diseases. Despite the increasing interest, their isolation and purification from body fluids remains challenging. Here we studied human pre-prandial and 4 hours postprandial platelet-free blood plasma samples as well as human platelet concentrates. Using flow cytometry, we found that the majority of circulating particles within the size range of extracellular vesicles lacked common vesicular markers. We identified most of these particles as lipoproteins (predominantly low-density lipoprotein, LDL) which mimicked the characteristics of extracellular vesicles and also co-purified with them. Based on biophysical properties of LDL this finding was highly unexpected. Current state-of-the-art extracellular vesicle isolation and purification methods did not result in lipoprotein-free vesicle preparations from blood plasma or from platelet concentrates. Furthermore, transmission electron microscopy showed an association of LDL with isolated vesicles upon in vitro mixing. This is the first study to show co-purification and in vitro association of LDL with extracellular vesicles and its interference with vesicle analysis. Our data point to the importance of careful study design and data interpretation in studies using blood-derived extracellular vesicles with special focus on potentially co-purified LDL. PMID:27087061

  20. Ginsenoside Rf, a component of ginseng, regulates lipoprotein metabolism through peroxisome proliferator-activated receptor {alpha}

    SciTech Connect

    Lee, Hyunghee; Gonzalez, Frank J.; Yoon, Michung . E-mail: yoon60@mokwon.ac.kr

    2006-01-06

    We investigated whether ginseng regulates lipoprotein metabolism by altering peroxisome proliferator-activated receptor {alpha} (PPAR{alpha})-mediated pathways, using a PPAR{alpha}-null mouse model. Administration of ginseng extract, ginsenosides, and ginsenoside Rf (Rf) to wild-type mice not only significantly increased basal levels of hepatic apolipoprotein (apo) A-I and C-III mRNA compared with wild-type controls, but also substantially reversed the reductions in mRNA levels of apo A-I and C-III expected following treatment with the potent PPAR{alpha} ligand Wy14,643. In contrast, no effect was detected in the PPAR{alpha}-null mice. Testing of eight main ginsenosides on PPAR{alpha} reporter gene expression indicated that Rf was responsible for the effects of ginseng on lipoprotein metabolism. Furthermore, the inhibition of PPAR{alpha}-dependent transactivation by Rf seems to occur at the level of DNA binding. These results demonstrate that ginseng component Rf regulates apo A-I and C-III mRNA and the actions of Rf on lipoprotein metabolism are mediated via interactions with PPAR{alpha}.

  1. Low-density lipoprotein mimics blood plasma-derived exosomes and microvesicles during isolation and detection

    PubMed Central

    Sódar, Barbara W; Kittel, Ágnes; Pálóczi, Krisztina; Vukman, Krisztina V; Osteikoetxea, Xabier; Szabó-Taylor, Katalin; Németh, Andrea; Sperlágh, Beáta; Baranyai, Tamás; Giricz, Zoltán; Wiener, Zoltán; Turiák, Lilla; Drahos, László; Pállinger, Éva; Vékey, Károly; Ferdinandy, Péter; Falus, András; Buzás, Edit Irén

    2016-01-01

    Circulating extracellular vesicles have emerged as potential new biomarkers in a wide variety of diseases. Despite the increasing interest, their isolation and purification from body fluids remains challenging. Here we studied human pre-prandial and 4 hours postprandial platelet-free blood plasma samples as well as human platelet concentrates. Using flow cytometry, we found that the majority of circulating particles within the size range of extracellular vesicles lacked common vesicular markers. We identified most of these particles as lipoproteins (predominantly low-density lipoprotein, LDL) which mimicked the characteristics of extracellular vesicles and also co-purified with them. Based on biophysical properties of LDL this finding was highly unexpected. Current state-of-the-art extracellular vesicle isolation and purification methods did not result in lipoprotein-free vesicle preparations from blood plasma or from platelet concentrates. Furthermore, transmission electron microscopy showed an association of LDL with isolated vesicles upon in vitro mixing. This is the first study to show co-purification and in vitro association of LDL with extracellular vesicles and its interference with vesicle analysis. Our data point to the importance of careful study design and data interpretation in studies using blood-derived extracellular vesicles with special focus on potentially co-purified LDL. PMID:27087061

  2. Low-density lipoprotein mimics blood plasma-derived exosomes and microvesicles during isolation and detection.

    PubMed

    Sódar, Barbara W; Kittel, Ágnes; Pálóczi, Krisztina; Vukman, Krisztina V; Osteikoetxea, Xabier; Szabó-Taylor, Katalin; Németh, Andrea; Sperlágh, Beáta; Baranyai, Tamás; Giricz, Zoltán; Wiener, Zoltán; Turiák, Lilla; Drahos, László; Pállinger, Éva; Vékey, Károly; Ferdinandy, Péter; Falus, András; Buzás, Edit Irén

    2016-04-18

    Circulating extracellular vesicles have emerged as potential new biomarkers in a wide variety of diseases. Despite the increasing interest, their isolation and purification from body fluids remains challenging. Here we studied human pre-prandial and 4 hours postprandial platelet-free blood plasma samples as well as human platelet concentrates. Using flow cytometry, we found that the majority of circulating particles within the size range of extracellular vesicles lacked common vesicular markers. We identified most of these particles as lipoproteins (predominantly low-density lipoprotein, LDL) which mimicked the characteristics of extracellular vesicles and also co-purified with them. Based on biophysical properties of LDL this finding was highly unexpected. Current state-of-the-art extracellular vesicle isolation and purification methods did not result in lipoprotein-free vesicle preparations from blood plasma or from platelet concentrates. Furthermore, transmission electron microscopy showed an association of LDL with isolated vesicles upon in vitro mixing. This is the first study to show co-purification and in vitro association of LDL with extracellular vesicles and its interference with vesicle analysis. Our data point to the importance of careful study design and data interpretation in studies using blood-derived extracellular vesicles with special focus on potentially co-purified LDL.

  3. Characterization of Lipoprotein Composition and Function in Pediatric Psoriasis Reveals a More Atherogenic Profile

    PubMed Central

    Tom, Wynnis L.; Playford, Martin P.; Admani, Shehla; Natarajan, Balaji; Joshi, Aditya A.; Eichenfield, Lawrence F.; Mehta, Nehal N.

    2015-01-01

    Psoriasis is associated with increased cardiovascular disease (CVD) in adults, but the risk profile of children with psoriasis remains to be fully characterized. We measured lipoprotein composition and function in 44 pediatric psoriasis patients and 44 age- and sex-matched healthy controls, using NMR spectroscopy and a validated ex vivo assay of high density lipoprotein (HDL) cholesterol efflux capacity (CEC). Mean age was 13.0 years and the population was ethnically diverse. Children with psoriasis had higher waist-hip ratios (0.85 vs. 0.80; p<0.002) and insulin resistance measures (log transformed HOMA-IR 0.65 vs. 0.41; p=0.07). Despite comparable traditional lipid values, having psoriasis was associated with higher apolipoprotein B concentrations (72.4 vs. 64.6; p=0.02), decreased large HDL particles (5.3 vs. 6.7; p<0.01), and reduced CEC after adjusting for age, sex, fasting glucose, HOMA-IR, systolic blood pressure, body mass index, apolipoprotein A-1, and HDL cholesterol concentration (beta -0.22, p=0.02). Pediatric psoriasis patients have a more atherogenic cardiometabolic risk profile, with evidence of insulin resistance and lipoprotein dysfunction by particle size, number, and functional assessment. These findings may provide a basis for the observed link later in life between psoriasis and CVD and support the need to screen and educate young patients to minimize later complications. PMID:26763425

  4. Lipoproteins of Gram-Positive Bacteria: Key Players in the Immune Response and Virulence.

    PubMed

    Nguyen, Minh Thu; Götz, Friedrich

    2016-09-01

    Since the discovery in 1973 of the first of the bacterial lipoproteins (Lpp) in Escherichia coli, Braun's lipoprotein, the ever-increasing number of publications indicates the importance of these proteins. Bacterial Lpp belong to the class of lipid-anchored proteins that in Gram-negative bacteria are anchored in both the cytoplasmic and outer membranes and in Gram-positive bacteria are anchored only in the cytoplasmic membrane. In contrast to the case for Gram-negative bacteria, in Gram-positive bacteria lipoprotein maturation and processing are not vital. Physiologically, Lpp play an important role in nutrient and ion acquisition, allowing particularly pathogenic species to better survive in the host. Bacterial Lpp are recognized by Toll-like receptor 2 (TLR2) of the innate immune system. The important role of Lpp in Gram-positive bacteria, particularly in the phylum Firmicutes, as key players in the immune response and pathogenicity has emerged only in recent years. In this review, we address the role of Lpp in signaling and modulating the immune response, in inflammation, and in pathogenicity. We also address the potential of Lpp as promising vaccine candidates.

  5. Lipoprotein processing is essential for resistance of Mycobacterium tuberculosis to malachite green.

    PubMed

    Banaei, Niaz; Kincaid, Eleanor Z; Lin, S-Y Grace; Desmond, Edward; Jacobs, William R; Ernst, Joel D

    2009-09-01

    Malachite green, a synthetic antimicrobial dye, has been used for over 50 years in mycobacterial culture medium to inhibit the growth of contaminants. The molecular basis of mycobacterial resistance to malachite green is unknown, although the presence of malachite green-reducing enzymes in the cell envelope has been suggested. The objective of this study was to investigate the role of lipoproteins in resistance of Mycobacterium tuberculosis to malachite green. The replication of an M. tuberculosis lipoprotein signal peptidase II (lspA) mutant (DeltalspA::lspAmut) on Middlebrook agar with and without 1 mg/liter malachite green was investigated. The lspA mutant was also compared with wild-type M. tuberculosis in the decolorization rate of malachite green and sensitivity to sodium dodecyl sulfate (SDS) detergent and first-line antituberculosis drugs. The lspA mutant has a 10(4)-fold reduction in CFU-forming efficiency on Middlebrook agar with malachite green. Malachite green is decolorized faster in the presence of the lspA mutant than wild-type bacteria. The lspA mutant is hypersensitive to SDS detergent and shows increased sensitivity to first-line antituberculosis drugs. In summary, lipoprotein processing by LspA is essential for resistance of M. tuberculosis to malachite green. A cell wall permeability defect is likely responsible for the hypersensitivity of lspA mutant to malachite green.

  6. The age dependency of gene expression for plasma lipids, lipoproteins, and apolipoproteins

    SciTech Connect

    Snieder, H.; Doornen, L.J.P. van; Boomsma, D.I.

    1997-03-01

    The aim of this study was to investigate and disentangle the genetic and nongenetic causes of stability and change in lipids and (apo)lipoproteins that occur during the lifespan. Total cholesterol, low-density lipoprotein (LDL), high-density lipoprotein (HDL), triglycerides, apolipoprotein A1 (ApoA1), apolipoprotein B (ApoB), and lipoprotein(a) (Lp[a]) were measured in a group of 160 middle-aged parents and their twin offspring (first project) and in a group of 203 middle-aged twin pairs (second project). Combining the data of both projects enabled the estimation of the extent to which measured lipid parameters are influenced by different genes in adolescence and adulthood. To that end, an extended quantitative genetic model was specified, which allowed the estimation of heritabilities for each sex and generation separately. Heritabilities were similar for both sexes and both generations. Larger variances in the parental generation could be ascribed to proportional increases in both unique environmental and additive genetic variance from childhood to adulthood, which led to similar heritability estimates in adolescent and middle-aged twins. Although the magnitudes of heritabilities were similar across generations, results showed that, for total cholesterol, triglycerides, HDL, and LDL, partly different genes are expressed in adolescence compared to adulthood. For triglycerides, only 46% of the genetic variance was common to both age groups; for total cholesterol this was 80%. Intermediate values were found for HDL (66%) and LDL (76%). For ApoA1, ApoB, and Lp(a), the same genes seem to act in both generations. 56 refs., 2 figs., 5 tabs.

  7. Evaluation of Paraoxonase, Malondialdehyde, and Lipoprotein Levels in Patients with Asymptomatic Cholelithiasis

    PubMed Central

    Atamer, Aytac; Kurdas-Ovunc, Ayse O.; Yesil, Atakan; Atamer, Yildiz

    2014-01-01

    Background/Aim: To compare lipoprotein and malondialdehyde levels and paraoxonase-1 activity between subjects with asymptomatic cholelithiasis and controls. Patients and Methods: Eighty subjects with asymptomatic cholelithiasis (55 women, 25 men, mean age: 51, SD 14 years) and 40 control subjects without cholelithiasis (25 women, 25 men, mean age: 51, SD 12 years) were enrolled to the study. Serum paraoxonase activity, lipoproteins, and malondialdehyde were measured. Results: In the cholelithiasis group, serum total cholesterol, low-density lipoprotein cholesterol, and malondialdehyde were significantly higher and high-density lipoprotein cholesterol (HDL-C) and paraoxonase-1 were significantly lower than the controls. In cholelithiasis patients with serum glucose level > 100 mg/dL, body mass index, serum total cholesterol, triglyceride (TG), and malondialdehyde levels were significantly higher than cholelithiasis patients with serum glucose level < 100 mg/dL. Paraoxonase-1 activity was significantly lower in patients with serum glucose level > 100 mg/dL. In cholelithiasis patients with TG > 150 mg/dL, mean age, body mass index, glucose, total cholesterol, and malondialdehyde were significantly higher than in cholelithiasis patients with TG < 150 mg/dL. In cholelithiasis subgroup with TG > 150 mg/dL, HDL-C level and paraoxonase-1 activity were lower than in the cholelithiasis subgroup with TG < 150 mg/dL. All of the above comparisons were statistically significant (P < 0.05). Conclusions: Patients with asymptomatic cholelithiasis have evidence of increased lipid peroxidation and decreased antioxidant capacity. Patients with asymptomatic cholelithiasis with components of the metabolic syndrome have more lipid peroxidation and less antioxidant capacity than patients with asymptomatic cholelithiasis but without the components of the metabolic syndrome. PMID:24496161

  8. Heterogeneity of serum low density lipoproteins in normal human subjects

    SciTech Connect

    Shen, M.M.S.; Krauss, R.M.; Lindgren, F.T.; Forte, T.M.

    1981-01-01

    Equilibrium density gradient ultracentrifugation of serum low density lipoprotein (LDL) from twelve healthy human subjects was used to separate six subfractions with mean dinsity ranging from 1.0268 to 1.0597 g/ml. Mean corrected peak flotation rate (S/sup o//sub f/) measured by analytic ultracentrifugation, and mean particle diameter determined by negative staining electron microscopy, both declined significantly with increasing density of the subfractions. Major differences in chemical composition of the subfractions were noted, including a singnificantly lower triglyceride content and higher ratio of cholesteryl ester to triglyceride in the middle fractions compared with those of highest and lowest density. Concentration of fraction 2 correlated positively with HDL (P < 0.01) and negatively with VLDL (P < 0.001); concentration of fraction 4 correlated negatively with HDL (P < 0.05) and positively with VLDL (P < 0.001) and IDL (P < 0.01). LDL may thus include subspecies of differing structure and composition which might also have different metabolic and atherogenic roles.

  9. Atherogenic lipoprotein phenotype and diet-gene interactions.

    PubMed

    Krauss, R M

    2001-02-01

    Studies employing analysis of LDL subclasses have demonstrated heterogeneity of the LDL response to low fat, high carbohydrate diets in healthy nonobese subjects. In individuals with a genetically influenced atherogenic lipoprotein phenotype, characterized by a predominance of small dense LDL (LDL subclass pattern B), lowering of plasma LDL cholesterol levels by diets with < or =24% fat has been found to represent a reduction in numbers of circulating mid-sized and small LDL particles, and hence an expected lowering of cardiovascular disease risk. In contrast, in the majority of healthy individuals with larger LDL (pattern A, found in approximately 70% of men and a larger percentage of women), a significant proportion of the low fat diet-induced reduction in plasma LDL cholesterol is made by depletion of the cholesterol content of LDL particles. This change in LDL composition is accompanied by a shift from larger to smaller LDL particle diameters. Moreover, with progressive reduction of dietary fat and isocaloric substitution of carbohydrate, an increasing number of subjects with pattern A convert to the pattern B phenotype. Studies in families have indicated that susceptibility to induction of pattern B by low fat diets is under genetic influence. Thus, diet-gene interactions affecting LDL subclass patterns may contribute to substantial interindividual variability in the effects of low fat diets on coronary heart disease risk.

  10. Dietary and genetic effects on low-density lipoprotein heterogeneity.

    PubMed

    Krauss, R M

    2001-01-01

    We have tested whether differences in distribution and dietary responsiveness of low-density lipoprotein (LDL) subclasses contribute to the variability in the magnitude of LDL-cholesterol reduction induced by diets low in total and saturated fat and high in carbohydrate. Our studies have focused on a common, genetically influenced metabolic profile, characterized by a predominance of small, dense LDL particles (subclass pattern B), that is associated with a two- to threefold increase in risk for coronary artery disease. We have found that healthy normolipidemic individuals with this trait show a greater reduction in LDL cholesterol and particle number in response to low-fat, high-carbohydrate diets than do unaffected individuals (subclass pattern A). Moreover, such diets result in reduced LDL particle size, with induction of pattern B in a substantial proportion of pattern A men. Recent studies have indicated that this response is under genetic influence. Future identification of the specific genes involved may lead to improved targeting of dietary therapies aimed at reducing cardiovascular disease risk.

  11. Inhibitory effect of morinda citrifolia L. On lipoprotein lipase activity.

    PubMed

    Pak-Dek, M S; Abdul-Hamid, A; Osman, A; Soh, C S

    2008-10-01

    Efficacy of Morinda citrifolia L. leaf (MLE) and fruit extracts (MFE) in inhibiting lipoprotein lipase (LPL) was determined in vitro. The result of the study showed that the highest inhibition on the LPL activity was exhibited by MLE (66%+/- 2.1%), which is significantly higher than that demonstrated by MFE (54.5%+/- 2.5%), green tea extract (GTE) (54.5%+/- 2.6%), and catechin (43.6%+/- 6.1%). Percent of LPL inhibition increase with concentration of the extracts. Quantitative analysis of the extracts revealed the presence of high levels of (+)-catechin at 63.5 +/- 17 and 53.7 +/- 5.7 mg/g in MLE and MFE, respectively, although not as high as that found in GTE (530.6 +/- 42 mg/g). Appreciable amount of epicatechin was found in all extracts tested, while rutin was only found in MLE and MFE. The study suggested that both leaf and fruit of M. citrifolia may be used as antiobesity agents in body weight management.

  12. Postprandial lipoproteins and the molecular regulation of vascular homeostasis.

    PubMed

    Botham, Kathleen M; Wheeler-Jones, Caroline P D

    2013-10-01

    Blood levels of triglyceride-rich lipoproteins (TRL) increase postprandially, and a delay in their clearance results in postprandial hyperlipidemia, an important risk factor in atherosclerosis development. Atherosclerosis is a multifactorial inflammatory disease, and its initiation involves endothelial dysfunction, invasion of the artery wall by leukocytes and subsequent formation of foam cells. TRL are implicated in several of these inflammatory processes, including the formation of damaging free radicals, leukocyte activation, endothelial dysfunction and foam cell formation. Recent studies have provided insights into the mechanisms of uptake and the signal transduction pathways mediating the interactions of TRL with leukocytes and vascular cells, and how they are modified by dietary lipids. Multiple receptor and non-receptor mediated pathways function in macrophage uptake of TRL. TRL also induce expression of adhesion molecules, cyclooxygenase-2 and heme-oxygenase-1 in endothelial cells, and activate intracellular signaling pathways involving mitogen-activated protein kinases, NF-κB and Nrf2. Many of these effects are strongly influenced by dietary components carried in TRL. There is extensive evidence indicating that raised postprandial TRL levels are a risk factor for atherosclerosis, but the molecular mechanisms involved are only now becoming appreciated. Here, we review current understanding of the mechanisms by which TRL influence vascular cell function.

  13. Prostaglandins inhibit lipoprotein lipase gene expression in macrophages.

    PubMed Central

    Desanctis, J B; Varesio, L; Radzioch, D

    1994-01-01

    In the present investigation of the effects of prostaglandin E2 (PGE2) on lipoprotein lipase (LPL) gene expression in macrophages, we observed that treatment of macrophages with PGE2 increased the levels of adenosine 3',5'-cyclic monophosphate (cAMP), while the addition of exogenous 5-bromo-cAMP to macrophage cultures resulted in down-regulation of LPL expression. Using indomethacin (INDO), an inhibitor of cyclo-oxygenase and prostaglandins production, we determined that PGE2 acts as a feedback inhibitor of LPL expression. We found that inhibited secretion of LPL protein in lipopolysaccharide (LPS)-treated macrophages could be restored to control levels by the addition of INDO to the medium. In contrast, INDO did not reverse the inhibition of LPL mRNA induced by LPS. Overall, our results have demonstrated that PGE2 is a potent inhibitor of LPL gene expression and indicated that its action may play an important physiological role in the regulation of LPL gene expression during bacterial infections. Images Figure 1 Figure 4 Figure 7 PMID:8039811

  14. Parathyroid hormone is not an inhibitor of lipoprotein lipase activity.

    PubMed

    Arnadottir, M; Nilsson-Ehle, P

    1994-01-01

    The reduced lipoprotein lipase (LPL) activities in uraemia are reflected by increased serum triglyceride concentrations and reduced HDL cholesterol concentrations. Both hyperparathyroidism and circulating inhibitor(s) of LPL have been associated with the disturbances of lipid metabolism in uraemia. The aim of the present study was to investigate if parathyroid hormone (PTH) had an inhibitory effect on LPL activity. Plasma post-heparin LPL activities, plasma LPL inhibitory activities, serum PTHintact and serum PTHC-terminal concentrations were analysed in 20 patients on haemodialysis and 20 healthy controls. The effects of purified, human PTHintact and a carboxyterminal fragment of PTH (PTH39-84) on LPL activities in post-heparin plasma from healthy individuals and on the enzyme activity of purified, bovine milk LPL, activated with apolipoprotein CII, were studied. Patients had significantly higher plasma LPL inhibitory activities than controls, but there was no correlation between plasma LPL inhibitory activities and serum PTH concentrations. Neither PTHintact nor PTH39-84 had a significant effect on LPL activities in vitro. Thus there was no evidence of a direct inhibition of LPL activity by PTH under the present in-vivo or in-vitro conditions.

  15. Parathyroid hormone is not an inhibitor of lipoprotein lipase activity.

    PubMed

    Arnadottir, M; Nilsson-Ehle, P

    1994-01-01

    The reduced lipoprotein lipase (LPL) activities in uraemia are reflected by increased serum triglyceride concentrations and reduced HDL cholesterol concentrations. Both hyperparathyroidism and circulating inhibitor(s) of LPL have been associated with the disturbances of lipid metabolism in uraemia. The aim of the present study was to investigate if parathyroid hormone (PTH) had an inhibitory effect on LPL activity. Plasma post-heparin LPL activities, plasma LPL inhibitory activities, serum PTHintact and serum PTHC-terminal concentrations were analysed in 20 patients on haemodialysis and 20 healthy controls. The effects of purified, human PTHintact and a carboxyterminal fragment of PTH (PTH39-84) on LPL activities in post-heparin plasma from healthy individuals and on the enzyme activity of purified, bovine milk LPL, activated with apolipoprotein CII, were studied. Patients had significantly higher plasma LPL inhibitory activities than controls, but there was no correlation between plasma LPL inhibitory activities and serum PTH concentrations. Neither PTHintact nor PTH39-84 had a significant effect on LPL activities in vitro. Thus there was no evidence of a direct inhibition of LPL activity by PTH under the present in-vivo or in-vitro conditions. PMID:7870347

  16. Alcohol alters low density lipoprotein composition and metabolism

    SciTech Connect

    Hoinacki, J.; Brown, J.; Dawson, M.; Deschenes, R.; Mulligan, J. )

    1991-03-11

    Two separate studies were conducted to examine the effect of ethanol (EtOH) dose on atherogenic low density lipoprotein (LDL) subfractions and LDL metabolism in vivo. In the first study, male, atherosclerosis-susceptible squirrel monkeys were divided in three treatments: controls fed liquid diet, and low and high alcohol groups given liquid diet with vodka substituted for carbohydrate at 12% and 24% of calories, respectively. After 6 months, LDL subclasses (LDL{sub 1a}, LDL{sub 1b} and LDL{sub 2}) were isolated by density gradient ultracentrifugation and polyacrylamide gradient gel electrophoresis, and their lipid and protein composition was determined. Low dose EtOH had no effect on LDL subfraction distribution while 24% EtOH resulted in an increase in the larger (LDL{sub 1a} and LDL{sub 1b}), buoyant subspecies without affecting the level of the more atherogenic, smaller, denser LDL{sub 2} particles. In the second study, {sup 125}I-LDL apolipoprotein B (apo B) was injected intravenously into Control and High EtOH monkeys and kinetic analyses were performed. Although the absolute catabolic rate (LDL production) was not altered, High EtOH primates showed a reduction in the fractional catabolic rate and a longer LDL apoB residence time.

  17. Lysosomal Cholesterol Accumulation Inhibits Subsequent Hydrolysis Of Lipoprotein Cholesteryl Ester

    PubMed Central

    Jerome, W. Gray; Cox, Brian E.; Griffin, Evelyn E.; Ullery, Jody C.

    2010-01-01

    Human macrophages incubated for prolonged periods with mildly oxidized LDL (oxLDL) or cholesteryl ester-rich lipid dispersions (DISP) accumulate free and esterified cholesterol within large, swollen lysosomes similar to those in foam cells of atherosclerosis. The cholesteryl ester (CE) accumulation is, in part, the result of inhibition of lysosomal hydrolysis due to increased lysosomal pH mediated by excessive lysosomal free cholesterol (FC). To determine if the inhibition of hydrolysis was long lived and further define the extent of the lysosomal defect, we incubated THP-1 macrophages with oxLDL or DISP to produce lysosome sterol engorgement and then chased with acetylated LDL (acLDL). Unlike oxLDL or DISP, CE from acLDL normally is hydrolyzed rapidly. Three days of incubation with oxLDL or DISP produced an excess of CE in lipid-engorged lysosomes, indicative of inhibition. After prolonged oxLDL or DISP pretreatment, subsequent hydrolysis of acLDL CE was inhibited. Coincident with the inhibition, the lipid-engorged lysosomes failed to maintain an acidic pH during both the initial pretreatment and subsequent acLDL incubation. This indicates that the alterations in lysosomes were general, long-lived and affected subsequent lipoprotein metabolism. This same phenomenon, occurring within atherosclerotic foam cells, could significantly affect lesion progression. PMID:18312718

  18. Targeting high-density lipoproteins: update on a promising therapy.

    PubMed

    Verdier, Céline; Martinez, Laurent O; Ferrières, Jean; Elbaz, Meyer; Genoux, Annelise; Perret, Bertrand

    2013-11-01

    Numerous epidemiological studies have demonstrated the atheroprotective roles of high density lipoproteins (HDL), so that HDL is established as an independent negative risk factor. The protective effect of HDL against atherosclerosis is mainly attributed to their capacity to bring peripheral excess cholesterol back to the liver for further elimination into the bile. In addition, HDL can exert other protective functions on the vascular wall, through their anti-inflammatory, antioxidant, antithrombotic and cytoprotective properties. HDL-targeted therapy is thus an innovative approach against cardiovascular risk and atherosclerosis. These pleiotropic atheroprotective properties of HDL have led experts to believe that "HDL-related therapies" represent the most promising next step in fighting against atherosclerosis. However, because of the heterogeneity of HDL functions, targeting HDL is not a simple task and HDL therapies that lower cardiovascular risk are NOT yet available. In this paper, an overview is presented about the therapeutic strategies currently under consideration to raise HDL levels and/or functions. Recently, clinical trials of drugs targeting HDL-C levels have disappointingly failed, suggesting that HDL functions through specific mechanisms should be targeted rather than increasing per se HDL levels. PMID:24074699

  19. Cardiomyocyte-endothelial cell control of lipoprotein lipase.

    PubMed

    Chiu, Amy Pei-Ling; Wan, Andrea; Rodrigues, Brian

    2016-10-01

    In people with diabetes, inadequate pharmaceutical management predisposes the patient to heart failure, which is the leading cause of diabetes related death. One instigator for this cardiac dysfunction is change in fuel utilization by the heart. Thus, following diabetes, when cardiac glucose utilization is impaired, the heart undergoes metabolic transformation wherein it switches to using fats as an exclusive source of energy. Although this switching is geared to help the heart initially, in the long term, this has detrimental effects on cardiac function. These include the generation of noxious byproducts, which damage the cardiomyocytes, and ultimately result in increased morbidity and mortality. A key perpetrator that may be responsible for organizing this metabolic disequilibrium is lipoprotein lipase (LPL), the enzyme responsible for providing fat to the hearts. Either exaggeration or reduction in its activity following diabetes could lead to heart dysfunction. Given the disturbing news that diabetes is rampant across the globe, gaining more insight into the mechanism(s) by which cardiac LPL is regulated may assist other researchers in devising new therapeutic strategies to restore metabolic equilibrium, to help prevent or delay heart disease seen during diabetes. This article is part of a Special Issue entitled: Heart Lipid Metabolism edited by G.D. Lopaschuk. PMID:26995461

  20. Binding to plasma lipoproteins of chlorophenoxyisobutyric, tibric and nicotinic acids and their esters: its significance for the mechanism of lipid lowering by clofibrate and related drugs.

    PubMed

    Beaumont, J L; Dachet, C

    1976-01-01

    The binding of chlorophenoxyisobutyric (CPIB), tibric (TA) and nicotinic (NA) acids and CPIB ethyl ester (Clofibrate), TA and NA isopropyl esters (TAPE and NAPE) to human lipoproteins of low density of different classes (LDL2, LDL1 and VLDL) and high density (HDL) were studied by equilibrium dialysis and Sephadex gel filtration. Clofibrate and TAPE bound strongly to lipoproteins, but their acids, CPIB and TA and also NA and NAPE, did not bind. In the same experimental conditions, Clofibrate and TAPE bound only weakly to human serum albumin (HSA) and CPIB bound to HSA with a Ka of 3.3 X 10(5) M(-1) for 1 site of high affinity. The Clofibrate and TAPE bound to lipoproteins did not dissociate either during dialysis or during filtration on Sephadex G 25. The binding percentage remained constant for all drug concentrations studied, and the molar ratio of bound drug rose linearly with increasing concentrations. This suggests that the interaction may be irreversible, and there is some evidence that binding may induce irreversible changes in the lipoprotein molecules. These results, and those already found in experiments made with three other drugs related to Clofibrate, lead to the proposal that in their interaction with lipoproteins, the phenyl groups are necessary and the esterification is contributory. The possible role of this interaction in the lipid-lowering effect of the drugs is discussed with special reference to their possible implication in lipoprotein synthesis within the intestinal and hepatic cells.

  1. Lipoprotein subfraction oxidation in acute exercise and ageing.

    PubMed

    Medlow, Paul; McEneny, Jane; Murphy, Marie H; Trinick, Tom; Duly, Ellie; Davison, Gareth W

    2016-01-01

    Exercise and ageing can independently increase free radical production that may enhance the susceptibility of LDL to oxidation and create a more atherogenic LDL particle. This investigation was designed to examine exercise and ageing on the susceptibility of LDL subfractions to oxidation. Eleven aged (55 ± 4 years) and twelve young (21 ± 2 years) participants completed a progressive exercise test to exhaustion and within one week performed a 1 h bout of moderate intensity (65% VO(2max)) exercise. Blood was assayed for metabolites associated with lipid composition (total cholesterol, free cholesterol, triglycerides) and lipoprotein susceptibility to oxidation. Exercise increased small density (sdLDL) oxidation, independently of age (p < 0.05). However, sdLDL oxidation further increased 24 h post exercise in the aged group (p < 0.05). With regards to the changes in lipid components within LDL, free and total cholesterol and triglycerides in large buoyant (lbLDL) were all elevated 24 h post exercise in aged compared with young (p < 0.05 for all comparisons). There was a decrease in triglycerides in medium density (mdLDL) 24 h post exercise in the aged group (p < 0.05). The lipid composition of sdLDL, VLDL, HDL(2), HDL(3) and serum lipid hydroperoxides remained unchanged as a function of exercise and ageing (p > 0.05). Although regular exercise training is known to be protective against cardiovascular disease (CVD) onset, our data demonstrates that acute exercise can increase sdLDL oxidative susceptibility, and this is independent of age and regardless of a change in LDL lipid composition. However, age seems to be a determining factor with regards the susceptibility of sdLDL to oxidation 24 h following exercise.

  2. Apolipoprotein B-containing lipoprotein particle assembly: Lipid capacity of the nascent lipoprotein particle

    SciTech Connect

    Manchekar, Medha; Forte, Trudy M.; Datta, Geeta; Richardson, Paul E.; Segrest, Jere P.; Dashti, Nassrin

    2003-12-01

    We previously proposed that the N-terminal 1000 residue {beta}{alpha}{sub 1} domain of apolipoprotein B (apoB) forms a bulk lipid pocket homologous to that of lamprey lipovitellin (LV). In support of this ''lipid pocket'' hypothesis, apoB:1000 (residues 1-1000) was shown to be secreted by a stable transformant of McA-RH7777 cells as a monodisperse particle with HDL{sub 3} density and Stokes diameter of 112 {angstrom}. In contrast, apoB:931 (residues 1-931), missing only 69 residues of the sequence homologous to LV, was secreted as a particle considerably more dense than HDL with Stokes diameter of 110 {angstrom}. The purpose of the present study was to determine the stoichiometry of the lipid component of the apoB:931 and apoB:1000 particles. This was accomplished by metabolic labeling of cells with either [{sup 14}C]oleic acid or [{sup 3}H]glycerol followed by immunoprecipitation (IP) or nondenaturing gradient gel electrophoresis (NDGGE) of secreted lipoproteins and by immunoaffinity chromatography of secreted unlabeled lipoproteins. The [{sup 3}H]-labeled apoB:1000-containing particles, isolated by NDGGE, contained 50 phospholipids (PL) and 11 triacylglycerols (TAG) molecules per particle. In contrast, apoB:931-containing particles contained only a few molecules of PL and were devoid of TAG. The unlabeled apoB:1000-containing particles isolated by immunoaffinity chromatography and analyzed for lipid mass, contained 56 PL, 8 TAG, and 7 cholesteryl ester molecules per particle. The surface:core lipid ratio of apoB:1000-containing particles was approximately 4:1 and was not affected by incubation of cells with oleate. Although small amounts of microsomal triglyceride transfer protein (MTP) were associated with apoB:1000-containing particles, it never approached a 1:1 molar ratio of MTP to apoB. These results support a model in which: (1) the first 1000 amino acid residues of apoB are competent to complete the ''lipid pocket'' without a structural requirement for MTP

  3. New and emerging regulators of intestinal lipoprotein secretion.

    PubMed

    Xiao, Changting; Dash, Satya; Morgantini, Cecilia; Lewis, Gary F

    2014-04-01

    Overproduction of hepatic apoB100-containing VLDL particles has been well documented in animal models and in humans with insulin resistance such as the metabolic syndrome and type 2 diabetes, and contributes to the typical dyslipidemia of these conditions. In addition, postprandial hyperlipidemia and elevated plasma concentrations of intestinal apoB48-containing chylomicron and chylomicron remnant particles have been demonstrated in insulin resistant states. Intestinal lipoprotein production is primarily determined by the amount of fat ingested and absorbed. Until approximately 10 years ago, however, relatively little attention was paid to the role of the intestine itself in regulating the production of triglyceride-rich lipoproteins (TRL) and its dysregulation in pathological states such as insulin resistance. We and others have shown that insulin resistant animal models and humans are characterized by overproduction of intestinal apoB48-containing lipoproteins. Whereas various factors are known to regulate hepatic lipoprotein particle production, less is known about factors that regulate the production of intestinal lipoprotein particles. Monosacharides, plasma free fatty acids (FFA), resveratrol, intestinal peptides (e.g. GLP-1 and GLP-2), and pancreatic hormones (e.g. insulin) have recently been shown to be important regulators of intestinal lipoprotein secretion. Available evidence in humans and animal models strongly supports the concept that the small intestine is not merely an absorptive organ but rather plays an active role in regulating the rate of production of chylomicrons in fed and fasting states. Metabolic signals in insulin resistance and type 2 diabetes and in some cases an aberrant intestinal response to these factors contribute to the enhanced formation and secretion of TRL. Understanding the regulation of intestinal lipoprotein production is imperative for the development of new therapeutic strategies for the prevention and treatment of

  4. Associations of lipoproteins and apolipoproteins with gradient gel electrophoresis estimates of high density lipoprotein subfractions in men and women.

    PubMed

    Williams, P T; Krauss, R M; Vranizan, K M; Stefanick, M L; Wood, P D; Lindgren, F T

    1992-03-01

    We examined the relations of gender and lipoproteins to subclasses of high density lipoproteins (HDLs) in a cross-sectional sample of moderately overweight men (n = 116) and women (n = 78). The absorbance of protein-stained polyacrylamide gradient gels was used as an index of mass concentrations of HDL at intervals of 0.01 nm across the entire HDL particle size range (7.2-12 nm). At least five HDL subclasses have been identified by their particle sizes: HDL3c (7.2-7.8 nm), HDL3b (7.8-8.2 nm), HDL3a (8.2-8.8 nm), HDL2a (8.8-9.7 nm), and HDL2b (9.7-12 nm). Men had significantly higher HDL3b and significantly lower HDL2a and HDL2b than did women. Correlations of HDL subclasses with concentrations of other lipoprotein variables were generally as strong for gradient gel electrophoresis as for analytical ultracentrifugation measurements of HDL particle distributions. In both sexes, high levels of HDL3b were associated with coronary heart disease risk factors, including high concentrations of triglycerides, apolipoprotein B, small low density lipoproteins, intermediate density lipoproteins, and very low density lipoproteins and low concentrations of HDL2 cholesterol and HDL2 mass. Plasma concentrations of HDL3 cholesterol were unrelated to protein-stained HDL3b levels. HDL3 cholesterol concentrations also did not exhibit the sex difference or the relations with lipoprotein concentrations that characterized HDL3b. Thus, low HDL3b levels may contribute in part to the low heart disease risk in men and women who have high HDL cholesterol. Measurements of HDL3 cholesterol may not identify clinically important relations involving HDL3b.

  5. Chlordecone, a mixed pregnane X receptor (PXR) and estrogen receptor alpha (ER{alpha}) agonist, alters cholesterol homeostasis and lipoprotein metabolism in C57BL/6 mice

    SciTech Connect

    Lee, Junga; Scheri, Richard C.; Zhang Yuan; Curtis, Lawrence R.

    2008-12-01

    Chlordecone (CD) is one of many banned organochlorine (OC) insecticides that are widespread persistent organic pollutants. OC insecticides alter lipid homeostasis in rodents at doses that are not neurotoxic or carcinogenic. Pretreatment of mice or rats with CD altered tissue distribution of a subsequent dose of [{sup 14}C]CD or [{sup 14}C]cholesterol (CH). Nuclear receptors regulate expression of genes important in the homeostasis of CH and other lipids. In this study, we report that CD suppresses in vitro reporter systems for human liver X receptors (LXRs) and activates those for human farnesoid X receptor (FXR), pregnane X receptor (PXR) and estrogen receptor {alpha} (ER{alpha}) in a concentration-dependent manner (0-50 {mu}M). Consistent with human PXR activation in vitro, three days after a single dose of CD (15 mg/kg) hepatic microsomal CYP3A11 protein increases in C57BL/6 mice. CD decreases hepatic CH ester content without altering total CH concentration. Apolipoprotein A-I (apoA-I) contents of hepatic lipoprotein-rich and microsomal fractions of CD-treated mice are higher than controls. There is a significant reduction in non-high density lipoprotein CH but not apolipoprotein B-48/100 (apoB-48/100) in plasma from CD-treated mice after a 4 h fast. At 14 days after 15 mg CD/kg apoA-I and apoB-100 proteins but not CYP3A11 protein in hepatic microsomes are similar to controls. This work indicates that altered CH homeostasis is a mode of OC insecticide action of relevance after a single dose. This at least partially explains altered CH tissue distribution in CD-pretreated mice.

  6. Role of Brown Fat in Lipoprotein Metabolism and Atherosclerosis.

    PubMed

    Hoeke, Geerte; Kooijman, Sander; Boon, Mariëtte R; Rensen, Patrick C N; Berbée, Jimmy F P

    2016-01-01

    Atherosclerosis, for which hyperlipidemia is a major risk factor, is the leading cause of morbidity and mortality in Western society, and new therapeutic strategies are highly warranted. Brown adipose tissue (BAT) is metabolically active in human adults. Although positron emission tomography-computed tomography using a glucose tracer is the golden standard to visualize and quantify the volume and activity of BAT, it has become clear that activated BAT combusts fatty acids rather than glucose. Here, we review the role of brown and beige adipocytes in lipoprotein metabolism and atherosclerosis, with evidence derived from both animal and human studies. On the basis of mainly data from animal models, we propose a model in which activated brown adipocytes use their intracellular triglyceride stores to generate fatty acids for combustion. BAT rapidly replenishes these stores by internalizing primarily lipoprotein triglyceride-derived fatty acids, generated by lipoprotein lipase-mediated hydrolysis of triglycerides, rather than by holoparticle uptake. As a consequence, BAT activation leads to the generation of lipoprotein remnants that are subsequently cleared via the liver provided that an intact apoE-low-density lipoprotein receptor pathway is present. Through these mechanisms, BAT activation reduces plasma triglyceride and cholesterol levels and attenuates diet-induced atherosclerosis development. Initial studies suggest that BAT activation in humans may also reduce triglyceride and cholesterol levels, but potential antiatherogenic effects should be assessed in future studies.

  7. Auxotrophy to lipoproteins of Entamoeba histolytica cultivated under axenic conditions.

    PubMed

    Mata-Cárdenas, B D; Vargas-Villarreal, J; Martínez-Rodríguez, H G; Castro-Garza, J; González-Garza, M T; Said-Fernández, S

    2000-12-01

    Entamoeba histolytica grows in media without serum but with a mixture of aminoacids, vitamins, lipoproteins, free cholesterol, phospholipids and fatty acids called PACSR. The ability of lipoproteins and free lipids to support growth of three E. histolytica strains (HK9, HMI:IMSS and HM3:IMSS) was analysed. Tubes containing 5 ml culture medium, amino acids, vitamins and either 120-1,200 microg lipoproteins/ml or 0.017-0.10 mg free lipids/ml (predissolved in absolute ethanol) were inoculated with 1x10(4) trophozoites/ml and incubated at 37 degrees C for 72 h. Amoebae died within 12 h in the presence of any free lipid combination, while those having 240-480 mg lipoproteins/ml reached densities similar to or higher than those of controls (depending on strain). The addition of ethanol (0.1%) to the media produced stable lipid solutions and did not show significant adverse effects. Accordingly, E. histolytica is auxotrophic to lipoproteins and unable to use free cholesterol, phospholipids or fatty acids. PMID:11133106

  8. Learning from Biology: Synthetic Lipoproteins for Drug Delivery

    PubMed Central

    Huang, Huang; Cruz, William; Chen, Juan; Zheng, Gang

    2014-01-01

    Synthetic lipoproteins represent a relevant tool for targeted delivery of biological/chemical agents (chemotherapeutics, siRNAs, photosensitizers and imaging contrast agents) into various cell types. These nanoparticles offer a number of advantages on drugs delivery over their native counterparts while retaining their natural characteristics and biological functions. Their ultra-small size (<30nm), high biocompatibility, favorable circulation half-life and natural ability to bind specific lipoprotein receptors i.e. low-density lipoprotein receptor (LDLR) and Scavenger receptor class B member 1 (SRB1) that are found in a number of pathological conditions (e.g. cancer, atherosclerosis), make them superior delivery strategies when compared to other nanoparticle systems. We review the various approaches that have been developed for the generation of synthetic lipoproteins and their respective applications in vitro and in vivo. More specifically, we summarize the way to address the limitation on use of reconstituted lipoproteins by means of natural or recombinant apolipoproteins, as well as apolipoprotein mimetic molecules. Finally, we provide an overview of the advantages and disadvantages of these approaches and discuss future perspectives for clinical translation of these nanoparticles. PMID:25346461

  9. The Vascular Implications of Post-prandial Lipoprotein Metabolism

    PubMed Central

    Sullivan, David R; Celermajer, David S; Le Couteur, David G; Lam, Christopher W K

    2004-01-01

    Impaired lipoprotein metabolism is one of the major aetiological factors for the pathogenesis of atherosclerosis and cardiovascular disease (CVD). Assessment is usually made in the fasting state, and particular attention is directed towards the measurement of the cholesterol content of both the low and high-density lipoprotein fractions. By comparison, a massive amount of lipid fluxes through the intra-vascular compartment during the post-prandial period. This has led to the hypothesis that atherosclerosis could be partially, or even predominantly, due to the pathological effects of this flux of post-prandial lipoproteins on the vessel wall. This justifies efforts to systematically study the relationship between the lipoprotein responses to food (particularly fat) ingestion and cardiovascular disease or its surrogate markers. This review will consider the mechanisms by which post-prandial metabolism might affect the risk of CVD. It will examine the evidence for and against such an association. It will also consider the practical and methodological issues that are likely to determine the future utility of post-prandial lipoprotein assessment. PMID:18516208

  10. Drug binding in sera deficient in lipoproteins, albumin or orosomucoid.

    PubMed Central

    Pike, E; Kierulf, P; Skuterud, B; Bredesen, J E; Lunde, P K

    1983-01-01

    The relative role of lipoproteins, albumin and orosomucoid in the serum binding variation of various drugs was examined by separate removal of these proteins. Lipoproteins were removed from serum by ultracentrifugation, albumin by affinity chromatography and orosomucoid by immunoprecipitation. Removal of the lipoproteins did not affect the serum binding of the acidic (phenytoin) and neutral (digitoxin) drugs tested, nor the basic drugs disopyramide, quinidine or propranolol. A reduction in binding of amitryptyline, nortriptyline, doxepin and desmethyldoxepin was observed. Removal of albumin did, with some exception for nortriptyline, not affect the serum binding of the basic drugs tested. A pronounced reduction in the binding of phenytoin and digitoxin was observed. Removal of orosomucoid did not affect the binding of the acidic and neutral drugs tested. A reduction in the binding of all the basic drugs tested was observed, especially for disopyramide whose binding almost disappeared. Quinidine, propranolol, phenytoin and digitoxin all bound to isolated lipoproteins, but the removal of lipoproteins had no effect on the total serum binding for these drugs. Hence, the use of deficient sera provides valuable information as to the quantitative role of the various proteins in drug binding, whereas studies using purified proteins are often necessary to examine the mechanisms of the drug protein interactions. Images Figure 1 Figure 2 PMID:6626414

  11. Role of Brown Fat in Lipoprotein Metabolism and Atherosclerosis.

    PubMed

    Hoeke, Geerte; Kooijman, Sander; Boon, Mariëtte R; Rensen, Patrick C N; Berbée, Jimmy F P

    2016-01-01

    Atherosclerosis, for which hyperlipidemia is a major risk factor, is the leading cause of morbidity and mortality in Western society, and new therapeutic strategies are highly warranted. Brown adipose tissue (BAT) is metabolically active in human adults. Although positron emission tomography-computed tomography using a glucose tracer is the golden standard to visualize and quantify the volume and activity of BAT, it has become clear that activated BAT combusts fatty acids rather than glucose. Here, we review the role of brown and beige adipocytes in lipoprotein metabolism and atherosclerosis, with evidence derived from both animal and human studies. On the basis of mainly data from animal models, we propose a model in which activated brown adipocytes use their intracellular triglyceride stores to generate fatty acids for combustion. BAT rapidly replenishes these stores by internalizing primarily lipoprotein triglyceride-derived fatty acids, generated by lipoprotein lipase-mediated hydrolysis of triglycerides, rather than by holoparticle uptake. As a consequence, BAT activation leads to the generation of lipoprotein remnants that are subsequently cleared via the liver provided that an intact apoE-low-density lipoprotein receptor pathway is present. Through these mechanisms, BAT activation reduces plasma triglyceride and cholesterol levels and attenuates diet-induced atherosclerosis development. Initial studies suggest that BAT activation in humans may also reduce triglyceride and cholesterol levels, but potential antiatherogenic effects should be assessed in future studies. PMID:26837747

  12. New micromethod for measuring cholesterol in plasma lipoprotein fractions.

    PubMed

    Bronzert, T J; Brewer, H B

    1977-11-01

    A method is described for the reliable, fast, and relatively inexpensive fractionation of plasma lipoproteins and quantitation of their cholesterol content. This procedure requires 350 microliter of plasma and can be completed within 3 h. Plasma lipoproteins (175 microliter of plasma) were prestained with Fat Red 7B and centrifuged (Beckman Airfuge) at plasma density (d = 1.006 kg/liter) and at a solvent density of 1.060 kg/liter, adjusted by adding solid KBr. Prestained centrifuged samples demonstrated the characteristic elevation of chylomicrons in phenotypes I and V, low-density lipoproteins of phenotype II, very-low-density lipoproteins in phenotype IV and V, and continuum of pink color throughout the centrifuge tube, diagnostic of the floating beta lipoprotein of type III. Centrifuged samples were separated into top and bottom fractions by aspiration. Cholesterol was quantitated with an enzymic oxygen-electrode analyzer (Beckman Cholesterol Analyzer). Correlation coefficients between cholesterol values for plasma from normal hyperlipidemic individuals obtained with the Beckman Analyzer vs. the Technicon AutoAnalyzer II and SMAC systems were 0.977 and 0.973, respectively.

  13. High-density lipoprotein cholesterol as an independent risk factor in cardiovascular disease: assessing the data from Framingham to the Veterans Affairs High--Density Lipoprotein Intervention Trial.

    PubMed

    Boden, W E

    2000-12-21

    The Framingham Heart Study found that high-density lipoprotein cholesterol (HDL-C) was the most potent lipid predictor of coronary artery disease risk in men and women >49 years of age. The Air Force/Texas Coronary Atherosclerosis Prevention Study (AFCAPS/TexCAPS), in which subjects were randomized to treatment with lovastatin or placebo, also reported a striking benefit of treatment, particularly in patients with HDL-C < or =35 mg/dL at baseline. Treatment with lovastatin was associated with a remarkable 45% reduction in events for this group. The Veterans Affairs HDL Intervention Trial (VA-HIT) randomized subjects to gemfibrozil or placebo. A high proportion of enrolled subjects with low HDL-C also had characteristics of the dysmetabolic syndrome. HDL-C likewise increased by 6% on treatment, total cholesterol was reduced by 4% and triglycerides by 31%. There was no change in low-density lipoprotein cholesterol (LDL-C) levels. These changes in lipid were associated with a cumulative 22% reduction in the trial primary endpoint of all-cause mortality and nonfatal myocardial infarction (MI). Additionally, significant reductions in secondary endpoints including death from coronary artery disease, nonfatal MI, stroke, transient ischemic attack, and carotid endarterectomy were associated with the increase in HDL-C. In VA-HIT, for every 1% increase in HDL-C, there was a 3% reduction in death or MI, a therapeutic benefit that eclipses the benefit associated with LDL-C reduction. PMID:11374850

  14. Expression of different lipoprotein receptors in natural killer cells and their effect on natural killer proliferative and cytotoxic activity.

    PubMed Central

    De Sanctis, J B; Blanca, I; Bianco, N E

    1995-01-01

    Natural killer (NK) cells take up chylomicrons (CM), very low density (VLDL), low density (LDL), high density (HDL) and acetyl-modified low density (AcLDL) lipoproteins through different receptors, VLDL being the lipoprotein with the highest uptake and HDL the lowest. The uptake of LDL can be selectively blocked by the anti-LDL receptor, which does not affect the uptake of CM, VLDL, HDL and AcLDL. Although the uptake of lipoproteins assessed by flow cytometry using DiI is not very high, the lipoproteins are able to induce an increase in proliferative responses, VLDL, AcLDL and HDL being the most important ones with 12- and 17-fold increments, respectively. CM, VLDL and LDL at low concentrations increase NK cytotoxic activity, while HDL and AcLDL inhibit, in a dose-dependent fashion, the killing of NK cells against K562. These results suggest the presence of four different receptors that are responsible for the cytotoxic and proliferative responses observed. PMID:8550077

  15. Explaining the gender wealth gap.

    PubMed

    Ruel, Erin; Hauser, Robert M

    2013-08-01

    To assess and explain the United States' gender wealth gap, we use the Wisconsin Longitudinal Study to examine wealth accumulated by a single cohort over 50 years by gender, by marital status, and limited to the respondents who are their family's best financial reporters. We find large gender wealth gaps between currently married men and women, and between never-married men and women. The never-married accumulate less wealth than the currently married, and there is a marital disruption cost to wealth accumulation. The status-attainment model shows the most power in explaining gender wealth gaps between these groups explaining about one-third to one-half of the gap, followed by the human-capital explanation. In other words, a lifetime of lower earnings for women translates into greatly reduced wealth accumulation. After controlling for the full model, we find that a gender wealth gap remains between married men and women that we speculate may be related to gender differences in investment strategies and selection effects.

  16. Explaining mirror-touch synesthesia.

    PubMed

    Ward, Jamie; Banissy, Michael J

    2015-01-01

    Mirror-touch synesthesia (MTS) is the conscious experience of tactile sensations induced by seeing someone else touched. This paper considers two different, although not mutually exclusive, theoretical explanations and, in the final section, considers the relation between MTS and other forms of synesthesia and also other kinds of vicarious perception (e.g., contagious yawning). The Threshold Theory explains MTS in terms of hyper-activity within a mirror system for touch and/or pain. This offers a good account for some of the evidence (e.g., from fMRI) but fails to explain the whole pattern (e.g., structural brain differences outside of this system; performance on some tests of social cognition). The Self-Other Theory explains MTS in terms of disturbances in the ability to distinguish the self from others. This can be construed in terms of over-extension of the bodily self in to others, or as difficulties in the control of body-based self-other representations. In this account, MTS is a symptom of a broader cognitive profile. We suggest this meets the criteria for synesthesia, despite the proximal causal mechanisms remaining largely unknown, and that the tendency to localize vicarious sensory experiences distinguishes it from other kinds of seemingly related phenomena (e.g., non-localized affective responses to observing pain).

  17. Explaining mirror-touch synesthesia.

    PubMed

    Ward, Jamie; Banissy, Michael J

    2015-01-01

    Mirror-touch synesthesia (MTS) is the conscious experience of tactile sensations induced by seeing someone else touched. This paper considers two different, although not mutually exclusive, theoretical explanations and, in the final section, considers the relation between MTS and other forms of synesthesia and also other kinds of vicarious perception (e.g., contagious yawning). The Threshold Theory explains MTS in terms of hyper-activity within a mirror system for touch and/or pain. This offers a good account for some of the evidence (e.g., from fMRI) but fails to explain the whole pattern (e.g., structural brain differences outside of this system; performance on some tests of social cognition). The Self-Other Theory explains MTS in terms of disturbances in the ability to distinguish the self from others. This can be construed in terms of over-extension of the bodily self in to others, or as difficulties in the control of body-based self-other representations. In this account, MTS is a symptom of a broader cognitive profile. We suggest this meets the criteria for synesthesia, despite the proximal causal mechanisms remaining largely unknown, and that the tendency to localize vicarious sensory experiences distinguishes it from other kinds of seemingly related phenomena (e.g., non-localized affective responses to observing pain). PMID:25893437

  18. Triglyceride-rich lipoproteins as a causal factor for cardiovascular disease

    PubMed Central

    Toth, Peter P

    2016-01-01

    Approximately 25% of US adults are estimated to have hypertriglyceridemia (triglyceride [TG] level ≥150 mg/dL [≥1.7 mmol/L]). Elevated TG levels are associated with increased cardiovascular disease (CVD) risk, and severe hypertriglyceridemia (TG levels ≥500 mg/dL [≥5.6 mmol/L]) is a well-established risk factor for acute pancreatitis. Plasma TG levels correspond to the sum of the TG content in TG-rich lipoproteins (TRLs; ie, very low-density lipoproteins plus chylomicrons) and their remnants. There remains some uncertainty regarding the direct causal role of TRLs in the progression of atherosclerosis and CVD, with cardiovascular outcome studies of TG-lowering agents, to date, having produced inconsistent results. Although low-density lipoprotein cholesterol (LDL-C) remains the primary treatment target to reduce CVD risk, a number of large-scale epidemiological studies have shown that elevated TG levels are independently associated with increased incidence of cardiovascular events, even in patients treated effectively with statins. Genetic studies have further clarified the causal association between TRLs and CVD. Variants in several key genes involved in TRL metabolism are strongly associated with CVD risk, with the strength of a variant’s effect on TG levels correlating with the magnitude of the variant’s effect on CVD. TRLs are thought to contribute to the progression of atherosclerosis and CVD via a number of direct and indirect mechanisms. They directly contribute to intimal cholesterol deposition and are also involved in the activation and enhancement of several proinflammatory, proapoptotic, and procoagulant pathways. Evidence suggests that non-high-density lipoprotein cholesterol, the sum of the total cholesterol carried by atherogenic lipoproteins (including LDL, TRL, and TRL remnants), provides a better indication of CVD risk than LDL-C, particularly in patients with hypertriglyceridemia. This article aims to provide an overview of the

  19. Heavy fermion behavior explained by bosons

    NASA Technical Reports Server (NTRS)

    Kallio, A.; Poykko, S.; Apaja, V.

    1995-01-01

    Conventional heavy fermion (HF) theories require existence of massive fermions. We show that heavy fermion phenomena can also be simply explained by existence of bosons with moderate mass but temperature dependent concentration below the formation temperature T(sub B), which in turn is close to room temperature. The bosons B(++) are proposed to be in chemical equilibrium with a system of holes h(+): B(++) = h(+) + h(+). This equilibrium is governed by a boson breaking function f(T), which determines the decreasing boson density and the increasing fermion density with increasing temperature. Since HF-compounds are hybridized from minimum two elements, we assume in addition existence of another fermion component h(sub s)(+) with temperature independent density. This spectator component is thought to be the main agent in binding the bosons in analogy with electronic or muonic molecules. Using a linear boson breaking function we can explain temperature dependence of the giant linear specific heat coefficient gamma(T) coming essentially from bosons. The maxima in resistivity, Hall coefficient, and susceptibility are explained by boson localization effects due to the Wigner crystallization. The antiferromagnetic transitions in turn are explained by similar localization of the pairing fermion system when their density n(sub h)(T(sub FL)) becomes lower than n(sub WC), the critical density of Wigner crystallization. The model applies irrespective whether a compound is superconducting or not. The same model explains the occurrence of low temperature antiferromagnetism also in high-T(sub c) superconductors. The double transition in UPt3 is proposed to be due to the transition of the pairing fermion liquid from spin polarized to unpolarized state.

  20. Triglyceride-rich lipoproteins and high-density lipoprotein cholesterol in patients at high risk of cardiovascular disease: evidence and guidance for management.

    PubMed

    Chapman, M John; Ginsberg, Henry N; Amarenco, Pierre; Andreotti, Felicita; Borén, Jan; Catapano, Alberico L; Descamps, Olivier S; Fisher, Edward; Kovanen, Petri T; Kuivenhoven, Jan Albert; Lesnik, Philippe; Masana, Luis; Nordestgaard, Børge G; Ray, Kausik K; Reiner, Zeljko; Taskinen, Marja-Riitta; Tokgözoglu, Lale; Tybjærg-Hansen, Anne; Watts, Gerald F

    2011-06-01

    Even at low-density lipoprotein cholesterol (LDL-C) goal, patients with cardiometabolic abnormalities remain at high risk of cardiovascular events. This paper aims (i) to critically appraise evidence for elevated levels of triglyceride-rich lipoproteins (TRLs) and low levels of high-density lipoprotein cholesterol (HDL-C) as cardiovascular risk factors, and (ii) to advise on therapeutic strategies for management. Current evidence supports a causal association between elevated TRL and their remnants, low HDL-C, and cardiovascular risk. This interpretation is based on mechanistic and genetic studies for TRL and remnants, together with the epidemiological data suggestive of the association for circulating triglycerides and cardiovascular disease. For HDL, epidemiological, mechanistic, and clinical intervention data are consistent with the view that low HDL-C contributes to elevated cardiovascular risk; genetic evidence is unclear however, potentially reflecting the complexity of HDL metabolism. The Panel believes that therapeutic targeting of elevated triglycerides (≥ 1.7 mmol/L or 150 mg/dL), a marker of TRL and their remnants, and/or low HDL-C (<1.0 mmol/L or 40 mg/dL) may provide further benefit. The first step should be lifestyle interventions together with consideration of compliance with pharmacotherapy and secondary causes of dyslipidaemia. If inadequately corrected, adding niacin or a fibrate, or intensifying LDL-C lowering therapy may be considered. Treatment decisions regarding statin combination therapy should take into account relevant safety concerns, i.e. the risk of elevation of blood glucose, uric acid or liver enzymes with niacin, and myopathy, increased serum creatinine and cholelithiasis with fibrates. These recommendations will facilitate reduction in the substantial cardiovascular risk that persists in patients with cardiometabolic abnormalities at LDL-C goal. PMID:21531743

  1. Serum lipid & lipoprotein profiles of obese Chinese children.

    PubMed

    Ho, T F; Paramsothy, S; Aw, T C; Yip, W C

    1996-03-01

    The serum lipid and lipoprotein levels of 59 obese Chinese children with a mean age of 13.0 years and mean relative weight of 164.2% were analysed. Between 40% to 54% of these children had elevated lipid and lipoprotein levels and about 78% had reduced high density lipoprotein (HDL) level when compared to healthy American and Japanese children. The obese children also had higher mean levels of total cholesterol (TC) and lower HDL compared to male adults in the local population. Those with elevated TC had higher mean relative weight (170% vs 159%, p < 0.05). In view of the close association between hyperlipidaemia and atherosclerosis, obese children should be carefully screened and managed to prevent long term morbidity and mortality of coronary artery disease. PMID:10967982

  2. Lipids, lipoproteins, and coronary heart disease: implications for antihypertensive therapy.

    PubMed

    Feher, M D; Betteridge, D J

    1989-06-01

    There is now considerable evidence that treatment of abnormalities of lipids and lipoproteins reduces the incidence of coronary heart disease (CHD). Treatment of hypertension, another major cardiovascular risk factor, has not been shown to have the same impact on CHD. Possible explanations for this are that cardiovascular risk factors may occur in combination in an individual or that therapy for hypertension has adversely affected one or several of the other risk factors for CHD, thereby offsetting the benefit gained by lowering blood pressure. This article reviews the relationship between lipids, lipoproteins, and coronary heart disease, and the impact of cholesterol lowering on CHD. The evidence that antihypertensive drugs are associated with lipid and lipoprotein abnormalities is introduced by a critical appraisal of the several studies for such evidence. Implications for the treatment of the hypertensive patient are discussed. PMID:2487804

  3. Brucella outer membrane lipoprotein shares antigenic determinants with Escherichia coli Braun lipoprotein and is exposed on the cell surface.

    PubMed Central

    Gómez-Miguel, M J; Moriyón, I; López, J

    1987-01-01

    In an enzyme-linked immunosorbent assay (ELISA), purified Brucella abortus and Escherichia coli peptidoglycan-linked lipoproteins gave a strong cross-reaction with sera from rabbits hyperimmunized with the heterologous lipoprotein. When smooth E. coli cells were used as ELISA antigens, the immunological cross-reaction was not observed unless the cells were treated to remove lipopolysaccharide and other outer membrane components. In contrast, intact cells from smooth strains of B. abortus and Brucella melitensis bound anti-lipoprotein immunoglobulin G, and the controls performed by ELISA showed that this reaction was not due to antibodies to the lipopolysaccharide, group 3 outer membrane proteins, or porins. Electron microscopy of cells labeled with antilipoprotein serum and protein A-colloidal gold showed specific labeling of smooth cells from both B. abortus and B. melitensis, even though unspecific labeling by nonimmune serum was observed with rough B. abortus. These results confirm the close similarity between E. coli and Brucella peptidoglycan-linked lipoproteins and show that, in contrast to E. coli, the lipoprotein of B. abortus and B. melitensis is partially exposed on the surface of smooth cells. Images PMID:2432014

  4. The association between circulating lipoprotein(a) and type 2 diabetes: is it causal?

    PubMed

    Ye, Zheng; Haycock, Philip C; Gurdasani, Deepti; Pomilla, Cristina; Boekholdt, S Matthijs; Tsimikas, Sotirios; Khaw, Kay-Tee; Wareham, Nicholas J; Sandhu, Manjinder S; Forouhi, Nita G

    2014-01-01

    Epidemiological evidence supports a direct and causal association between lipoprotein(a) [Lp(a)] levels and coronary risk, but the nature of the association between Lp(a) levels and risk of type 2 diabetes (T2D) is unclear. In this study, we assessed the association of Lp(a) levels with risk of incident T2D and tested whether Lp(a) levels are causally linked to T2D. We analyzed data on 18,490 participants from the European Prospective Investigation of Cancer (EPIC)-Norfolk cohort that included adults aged 40-79 years at baseline 1993-1997. During an average 10 years of follow-up, 593 participants developed incident T2D. Cox regression models were used to estimate the association between Lp(a) levels and T2D. In Mendelian randomization analyses, based on EPIC-Norfolk combined with DIAbetes Genetics Replication And Meta-analysis data involving a total of 10,088 diabetes case participants and 68,346 control participants, we used a genetic variant (rs10455872) as an instrument to test whether the association between Lp(a) levels and T2D is causal. In adjusted analyses, there was an inverse association between Lp(a) levels and T2D: hazard ratio was 0.63 (95% CI 0.49-0.81; P trend = 0.003) comparing the top versus bottom quintile of Lp(a). In EPIC-Norfolk, a 1-SD increase in logLp(a) was associated with a lower risk of T2D (odds ratio [OR] 0.88 [95% CI: 0.80-0.95]). However, in Mendelian randomization analyses, a 1-SD increase in logLp(a) due to rs10455872, which explained 26.8% of the variability in Lp(a) levels, was not associated with risk of T2D (OR 1.03 [0.96-1.10]; P = 0.41). These prospective findings demonstrate a strong inverse association of Lp(a) levels with risk of T2D. However, a genetic variant that elevated Lp(a) levels was not associated with risk of T2D, suggesting that elevated Lp(a) levels are not causally associated with a lower risk of T2D. PMID:24089516

  5. The effects of chemically modifying serum apolipoproteins on their ability to activate lipoprotein lipase.

    PubMed Central

    Dodds, P F; Lopez-Johnston, A; Welch, V A; Gurr, M I

    1987-01-01

    Lipoprotein lipase activity was measured in an acetone-dried-powder preparation from rat epididymal adipose tissue using pig serum or pig serum lipoprotein, which had been chemically modified, as activator. Modification of acidic amino acids of lipoproteins with NN-dimethyl-1,3-diamine resulted in a complete loss of ability to activate lipoprotein lipase. Modification of 34% of lipoprotein arginine groups with cyclohexanedione resulted in the loss of 75% of the activation of lipoprotein lipase; approx. 42% of the original activity was recovered after reversal of the modification. This effect was dependent on the cyclohexanedione concentration. Modification of 48% of lipoprotein lysine groups with malonaldehyde decreased the maximum activation by 20%, but three times as much lipoprotein was required to achieve this. Non-enzymic glycosylation of lipoprotein with glucose, under a variety of conditions resulting in up to 28 nmol of glucose/mg of protein, had no effect upon the ability to activate lipoprotein lipase. In contrast non-enzymic sialylation resulted in a time-dependent loss of up to 60% of ability to activate lipoprotein lipase. Reductive methylation and acetoacetylation of serum did not affect the ability to activate lipoprotein lipase. The results are compared to the effects of similar modifications to low density lipoproteins on receptor-mediated endocytosis. PMID:3593262

  6. Explaining errors in children's questions.

    PubMed

    Rowland, Caroline F

    2007-07-01

    The ability to explain the occurrence of errors in children's speech is an essential component of successful theories of language acquisition. The present study tested some generativist and constructivist predictions about error on the questions produced by ten English-learning children between 2 and 5 years of age. The analyses demonstrated that, as predicted by some generativist theories [e.g. Santelmann, L., Berk, S., Austin, J., Somashekar, S. & Lust. B. (2002). Continuity and development in the acquisition of inversion in yes/no questions: dissociating movement and inflection, Journal of Child Language, 29, 813-842], questions with auxiliary DO attracted higher error rates than those with modal auxiliaries. However, in wh-questions, questions with modals and DO attracted equally high error rates, and these findings could not be explained in terms of problems forming questions with why or negated auxiliaries. It was concluded that the data might be better explained in terms of a constructivist account that suggests that entrenched item-based constructions may be protected from error in children's speech, and that errors occur when children resort to other operations to produce questions [e.g. Dabrowska, E. (2000). From formula to schema: the acquisition of English questions. Cognitive Liguistics, 11, 83-102; Rowland, C. F. & Pine, J. M. (2000). Subject-auxiliary inversion errors and wh-question acquisition: What children do know? Journal of Child Language, 27, 157-181; Tomasello, M. (2003). Constructing a language: A usage-based theory of language acquisition. Cambridge, MA: Harvard University Press]. However, further work on constructivist theory development is required to allow researchers to make predictions about the nature of these operations.

  7. Structural changes of lipoprotein lipids by 1H NMR

    NASA Astrophysics Data System (ADS)

    Ala-Korpela, M.; Oja, J.; Lounila, J.; Jokisaari, J.; Savolainen, M. J.; Kesäniemi, Y. A.

    1995-08-01

    A new procedure for detecting structural changes of lipoprotein lipids is introduced and applied to study native low (LDL) and high density lipoprotein (HDL) particles. The method involves lineshape fitting analyses of specific resonances in proton nuclear magnetic resonance spectra together with numerical derivation of the obtained intensity curves with respect to temperature. In addition to the well-known phase transition of the LDL core cholesterol esters, a novel structural change was revealed in the phospholipid monolayer of both native LDL and HDL particles. The attributes of this phenomenon are discussed.

  8. JCL Roundtable: Hypertriglyceridemia due to defects in lipoprotein lipase function

    PubMed Central

    Brown, W. Virgil; Goldberg, Ira J.; Young, Stephen G.

    2015-01-01

    In this Roundtable, our intent is to discuss those rare genetic disorders that impair the function of lipoprotein lipase. These cause severe hypertriglyceridemia that appears in early childhood with Mendelian inheritance and usually with full penetrance in a recessive pattern. Dr Ira Goldberg from New York University School of Medicine and Dr Stephen Young from the University of California, Los Angeles have agreed to answer my questions about this topic. Both have done fundamental work in recent years that has markedly altered our views on lipoprotein lipase function. I am going to start by asking them to give us a brief history of this enzyme system as a clinical entity. PMID:26073384

  9. The role of ANGPTL3 in controlling lipoprotein metabolism.

    PubMed

    Tikka, Anna; Jauhiainen, Matti

    2016-05-01

    Angiopoietin-like protein 3 (ANGPTL3) is a secretory protein regulating plasma lipid levels via affecting lipoprotein lipase- and endothelial lipase-mediated hydrolysis of triglycerides and phospholipids. ANGPTL3-deficiency due to loss-of-function mutations in the ANGPTL3 gene causes familial combined hypobetalipoproteinemia (FHBL2, OMIM # 605019), a phenotype characterized by low concentration of all major lipoprotein classes in circulation. ANGPTL3 is therefore a potential therapeutic target to treat combined hyperlipidemia, a major risk factor for atherosclerotic coronary heart disease. This review focuses on the mechanisms behind ANGPTL3-deficiency induced FHBL2. PMID:26754661

  10. Improving Assessment of Lipoprotein Profile in Type 1 Diabetes by 1H NMR Spectroscopy

    PubMed Central

    Brugnara, Laura; Mallol, Roger; Ribalta, Josep; Vinaixa, Maria; Murillo, Serafín; Casserras, Teresa; Guardiola, Montse; Vallvé, Joan Carles; Kalko, Susana G.; Correig, Xavier; Novials, Anna

    2015-01-01

    Patients with type 1 diabetes (T1D) present increased risk of cardiovascular disease (CVD). The aim of this study is to improve the assessment of lipoprotein profile in patients with T1D by using a robust developed method 1H nuclear magnetic resonance spectroscopy (1H NMR), for further correlation with clinical factors associated to CVD. Thirty patients with T1D and 30 non-diabetes control (CT) subjects, matched for gender, age, body composition (DXA, BMI, waist/hip ratio), regular physical activity levels and cardiorespiratory capacity (VO2peak), were analyzed. Dietary records and routine lipids were assessed. Serum lipoprotein particle subfractions, particle sizes, and cholesterol and triglycerides subfractions were analyzed by 1H NMR. It was evidenced that subjects with T1D presented lower concentrations of small LDL cholesterol, medium VLDL particles, large VLDL triglycerides, and total triglycerides as compared to CT subjects. Women with T1D presented a positive association with HDL size (p<0.005; R = 0.601) and large HDL triglycerides (p<0.005; R = 0.534) and negative (p<0.005; R = -0.586) to small HDL triglycerides. Body fat composition represented an important factor independently of normal BMI, with large LDL particles presenting a positive correlation to total body fat (p<0.005; R = 0.505), and total LDL cholesterol and small LDL cholesterol a positive correlation (p<0.005; R = 0.502 and R = 0.552, respectively) to abdominal fat in T1D subjects; meanwhile, in CT subjects, body fat composition was mainly associated to HDL subclasses. VO2peak was negatively associated (p<0.005; R = -0.520) to large LDL-particles only in the group of patients with T1D. In conclusion, patients with T1D with adequate glycemic control and BMI and without chronic complications presented a more favourable lipoprotein profile as compared to control counterparts. In addition, slight alterations in BMI and/or body fat composition showed to be relevant to provoking alterations in

  11. Suppression by diets rich in fish oil of very low density lipoprotein production in man.

    PubMed Central

    Nestel, P J; Connor, W E; Reardon, M F; Connor, S; Wong, S; Boston, R

    1984-01-01

    The highly polyunsaturated fatty acids in fish oils lower the plasma triglyceride concentration. We have studied the effect of a diet rich in fish oil on the rate of production of the triglyceride-transporting very low density lipoprotein (VLDL). Seven subjects, five normal and two with hypertriglyceridemia received up to 30% of daily energy needs from a fish oil preparation that was rich in eicosapentaenoic acid and docosahexaenoic acid, omega-3 fatty acids with five and six double bonds, respectively. Compared with a diet similarly enriched with safflower oil (in which the predominant fatty acid is the omega-6 linoleic acid, with two double bonds), the fish oil diet lowered VLDL lipids and B apoprotein concentrations profoundly. High density lipoprotein lipids and A1 apoprotein were also lowered, but the effect on low density lipoprotein (LDL) concentration was inconsistent. The daily production or flux of VLDL apoprotein B, calculated from reinjected autologous 125I-labeled lipoprotein, was substantially less in six subjects studied after 3 wk of fish oil, compared with after safflower oil. This effect on flux was more consistent than that on the irreversible fractional removal rate, which was increased in the four normolipidemic but inconsistent in the hypertriglyceridemic subjects. This suggests that fish oil reduced primarily the production of VLDL. The daily production of VLDL triglyceride, calculated from the kinetics of the triglyceride specific radioactivity-time curves after [3H]glycerol was injected, also showed very substantial reductions in five subjects studied. The marked suppression in VLDL apoprotein B and VLDL triglyceride formation was found not to be due to diminished plasma total free fatty acid or plasma eicosapentaenoic flux, calculated during constant infusions of [14C]eicosapentaenoic acid and [3H]oleic acid in four subjects. In two subjects there was presumptive evidence for substantial independent influx of LDL during the fish oil diet

  12. Suppression by diets rich in fish oil of very low density lipoprotein production in man.

    PubMed

    Nestel, P J; Connor, W E; Reardon, M F; Connor, S; Wong, S; Boston, R

    1984-07-01

    The highly polyunsaturated fatty acids in fish oils lower the plasma triglyceride concentration. We have studied the effect of a diet rich in fish oil on the rate of production of the triglyceride-transporting very low density lipoprotein (VLDL). Seven subjects, five normal and two with hypertriglyceridemia received up to 30% of daily energy needs from a fish oil preparation that was rich in eicosapentaenoic acid and docosahexaenoic acid, omega-3 fatty acids with five and six double bonds, respectively. Compared with a diet similarly enriched with safflower oil (in which the predominant fatty acid is the omega-6 linoleic acid, with two double bonds), the fish oil diet lowered VLDL lipids and B apoprotein concentrations profoundly. High density lipoprotein lipids and A1 apoprotein were also lowered, but the effect on low density lipoprotein (LDL) concentration was inconsistent. The daily production or flux of VLDL apoprotein B, calculated from reinjected autologous 125I-labeled lipoprotein, was substantially less in six subjects studied after 3 wk of fish oil, compared with after safflower oil. This effect on flux was more consistent than that on the irreversible fractional removal rate, which was increased in the four normolipidemic but inconsistent in the hypertriglyceridemic subjects. This suggests that fish oil reduced primarily the production of VLDL. The daily production of VLDL triglyceride, calculated from the kinetics of the triglyceride specific radioactivity-time curves after [3H]glycerol was injected, also showed very substantial reductions in five subjects studied. The marked suppression in VLDL apoprotein B and VLDL triglyceride formation was found not to be due to diminished plasma total free fatty acid or plasma eicosapentaenoic flux, calculated during constant infusions of [14C]eicosapentaenoic acid and [3H]oleic acid in four subjects. In two subjects there was presumptive evidence for substantial independent influx of LDL during the fish oil diet

  13. [Blood serum concentration of lipids and lipoproteins and body composition].

    PubMed

    Kozlov, A I; Vershubskaia, G G; Sanina, E D; Ateeva, Iu A; Potolitsina, N N; Kaneva, A M; Rogachevskaia, O V; Boĭko, E P

    2012-01-01

    The purpose of this study is the analysis of the relationship of blood serum apolipoprotein E (apoE), total cholesterol (TC), triglycerides (TG) and high-density and low-density lipoproteins (HDL, LDL), with body mass index (BMI), relative body surface area (RBSA) and body muscle (BM) and body fat (BF). The subjects are males and females aged 14-16 (adolescent age group 1: n1M = 141, n1F = 151) and 18-25 (young adult group 2, n2M = 16, n2F = 46). Significant correlations of serum TG and HDL with somatometric indicators were not observed. In the female samples, TC content directly correlates (p < 0.05) with BF (r1 = 0.164; r2 = 0.418) and negatively correlates with BM (r1 = -0.165; r2 = -0.352). The blood serum concentration of apoE is significantly correlated with body composition in adolescent females (for BF r1 = -0.168; for BM r1 = 0.266; p < 0.05); in males 14-16 years old, the both correlations have a significance level p < 0.06. In young adult females TC and LDL content negatively correlates with RBSA (r2 = -0.386 and -0.377 respectively; p < 0.05) and positively correlates with BMI (r2 = 0.413 and 0.415 respectively; p < 0.05). Adolescent females and young adult females have opposite relationships between FC and apoE concentration. In females 14-15 years old apoE concentration decreases as FC increases. In females 16-17 the correlation disappears, and in older females apoE concentration and FC increase together. PMID:22830251

  14. Red grape seed extract improves lipid profiles and decreases oxidized low-density lipoprotein in patients with mild hyperlipidemia.

    PubMed

    Razavi, Seyed-Mostafa; Gholamin, Sharareh; Eskandari, Ali; Mohsenian, Nakta; Ghorbanihaghjo, Amir; Delazar, Abbas; Rashtchizadeh, Nadereh; Keshtkar-Jahromi, Maryam; Argani, Hassan

    2013-03-01

    Hyperlipidemia can lead to atherosclerosis by lipoprotein deposition inside the vessel wall and oxidative stress induction that leads to the formation of atherosclerotic plaque. Oxidized low-density lipoprotein particles (Ox-LDL) have a key role in the pathogenesis of atherosclerosis. The lipid-lowering properties and antioxidants of the grape seed can be beneficial in atherosclerosis prevention. We conducted a randomized double-blind placebo-controlled crossover clinical trial. Fifty-two mildly hyperlipidemic individuals were divided into two groups that received either 200 mg/day of the red grape seed extract (RGSE) or placebo for 8 weeks. After an 8-week washout period, the groups were crossed over for another 8 weeks. Lipid profiles and Ox-LDL were measured at the beginning and the end of each phase. RGSE consumption reduced total cholesterol (-10.68±26.76 mg/dL, P=.015), LDL cholesterol (-9.66±23.92 mg/dL, P=.014), and Ox-LDL (-5.47±12.12 mg/dL, P=.008). While triglyceride and very low-density lipoprotein cholesterol were decreased and high-density lipoprotein cholesterol was increased by RGSE, the changes were not statistically significant. RGSE consumption decreases Ox-LDL and has beneficial effects on lipid profile-consequently decreasing the risk of atherosclerosis and cardiovascular disorders-in mild hyperlipidemic individuals.

  15. Plasma lipoproteins and monocyte-macrophages in a peroxisome-deficient system: study of a patient with infantile refsum disease.

    PubMed

    Mandel, H; Berant, M; Meiron, D; Aizin, A; Oiknine, J; Brook, J G; Aviram, M

    1992-01-01

    Hypocholesterolaemia in infantile Refsum disease (IRD) may link peroxisomes and lipoprotein metabolism. In our patient, plasma cholesterol levels were reduced to 26% and 29% of control in LDL and HDL fractions, respectively. Plasma apolipoproteins B-100 and A-I levels were 52% and 66% of controls, respectively. In the kindred, plasma cholesterol concentration was 61-73% of controls. The HDL-cholesterol/apo A-I ratios were: patient 0.12; kindred 0.17; controls 0.28. Analysis of the IRD patient's lipoprotein revealed compositional abnormalities in all fractions. The patient's LDL demonstrated a substantial reduction in its lipid-to-protein ratio. Alterations in plasma lipoproteins affect their interaction with macrophages. Upon incubation of the patient's LDL with J-774 macrophages, its cellular uptake, measured as cholesterol esterification rate, was only 66% of a control rate. The abnormal LDL of the IRD patient showed also only 25% of control susceptibility to in vitro oxidation. Studies of cellular cholesterol metabolism in the patient's monocyte-derived macrophages (MDM) showed 57% increased cholesterol esterification rate in comparison to normal MDM. The possible link between lipoprotein abnormalities and monocyte-macrophage cholesterol metabolism is discussed.

  16. Diethyl phthalate exposure is associated with embryonic toxicity, fatty liver changes, and hypolipidemia via impairment of lipoprotein functions.

    PubMed

    Kim, Seong-Min; Yoo, Jeong-Ah; Baek, Ji-Mi; Cho, Kyung-Hyun

    2015-12-25

    Diethyl phthalates (DEPs) are notorious for their high potential toxicity in endocrinological and reproduction systems in humans and animals. In this study, we investigated the toxic effects of DEP on human lipoproteins, macrophages, and zebrafish embryos. Treatment of human high-density lipoprotein (HDL) with DEP caused oxidation, aggregation, and degradation of lipoproteins. DEP treatment promoted foam cell formation via accelerated phagocytosis of LDL by macrophages as well as exacerbated cellular senescence in human dermal fibroblasts. Injection of DEP (final 5 μM and 10 μM) into zebrafish embryos caused severe embryo death and slower developmental speed. Exposure of zebrafish embryos to water containing DEP (final 11 and 22 ppm) caused early embryonic death along with the increased oxidized products and impairment of skeletal development. Adult zebrafish exposed to water containing DEP (final 11 and 22 ppm) for 4 weeks showed severe loss of body weight under both normal diet (ND) and high cholesterol diet (HCD) conditions. ND and HCD groups showed 59% and 49% reduction of plasma total cholesterol (TC), respectively. Serum levels of hepatic inflammation enzymes along with fatty liver changes were significantly elevated by DEP exposure. In conclusion, DEP showed strong pro-atherogenic and pro-senescence effects via severe lipoprotein modification in human cells. DEP caused impairment of embryonic development and severe loss of body weight, hypolipidemia, and fatty liver changes in zebrafish.

  17. Effect of chronic exposure to cadmium on serum lipid, lipoprotein and oxidative stress indices in male rats

    PubMed Central

    Azimi-Nezhad, Mohsen; Shabestari, Mahmoud M.; Azad, Farahzad Jabbari; Farkhondeh, Tahereh; Bafandeh, Fereshteh

    2015-01-01

    Cadmium (Cd) is an environmental toxic metal implicated in lipid abnormalities. The present study was designed to elucidate the possible association between chronic exposure to Cd concentration and alterations in plasma lipid, lipoprotein, and oxidative stress indices in rats. Sixteen male rats were assigned to 2 groups of 8 rats each (test and control). The Cd-exposed group obtained drinking water containing cadmium chloride (CdCl2) in the concentration of 2.0 mg Cd/L in drinking water for 3 months. At the end of the experimental period, blood samples were obtained to determine the changes of serum triglycerides (TG), total cholesterol (TC), highdensity lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), reduced glutathione (GSH), malondialdehyde (MDA) and also serum Cd contents. The results of the present study indicated that Cd administration significantly increased the serum levels of TG, TC, LDL-C, MDA and Cd with reduction in the HDL-C and GSH levels. In conclusion, evidence is presented that chronic exposure to low Cd concentration can adversely affect the lipid and lipoprotein profile via lipid peroxidation. PMID:27486375

  18. Effect of chronic exposure to cadmium on serum lipid, lipoprotein and oxidative stress indices in male rats.

    PubMed

    Samarghandian, Saeed; Azimi-Nezhad, Mohsen; Shabestari, Mahmoud M; Azad, Farahzad Jabbari; Farkhondeh, Tahereh; Bafandeh, Fereshteh

    2015-09-01

    Cadmium (Cd) is an environmental toxic metal implicated in lipid abnormalities. The present study was designed to elucidate the possible association between chronic exposure to Cd concentration and alterations in plasma lipid, lipoprotein, and oxidative stress indices in rats. Sixteen male rats were assigned to 2 groups of 8 rats each (test and control). The Cd-exposed group obtained drinking water containing cadmium chloride (CdCl2) in the concentration of 2.0 mg Cd/L in drinking water for 3 months. At the end of the experimental period, blood samples were obtained to determine the changes of serum triglycerides (TG), total cholesterol (TC), highdensity lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), reduced glutathione (GSH), malondialdehyde (MDA) and also serum Cd contents. The results of the present study indicated that Cd administration significantly increased the serum levels of TG, TC, LDL-C, MDA and Cd with reduction in the HDL-C and GSH levels. In conclusion, evidence is presented that chronic exposure to low Cd concentration can adversely affect the lipid and lipoprotein profile via lipid peroxidation. PMID:27486375

  19. Merck Frosst award lecture 1995. La conference Merck Frosst 1995. Structural studies of lipoproteins and their apolipoprotein components.

    PubMed

    Ryan, R O

    1996-01-01

    Lipid transport processes via the circulatory system of animals are a vital function that utilizes highly specialized lipoprotein complexes. These complexes of protein and lipid impart solubility to otherwise insoluble lipids. The apoprotein components of lipoprotein complexes serve to stabilize the lipid components and modulate particle metabolism and function as ligands for receptor-mediated endocytosis of lipoproteins. We have used an insect (Manduca sexta) model system for studies of lipid transport. In this system, flight activity elicits a dramatic increase in the demand for glycerolipid fuel molecules by flight muscle tissue. These lipids are mobilized from a storage organ and transported through the hemolymph (blood) to the flight muscle by the lipoprotein, lipophorin. This system possesses the unique property that lipids are loaded onto pre-existing high density lipophorin through the action of a lipid transfer particle (LTP). LTP is a high molecular weight hemolymph component that facilitates net vectorial lipid transfer from fat body tissue to lipophorin. The increase in lipid content of the lipoprotein induces association of a low molecular weight amphipathic exchangeable apolipoprotein, apolipophorin III (apoLp-III). ApoLp-III is a 18 kDa protein that normally exists as a water-soluble monomeric hemolymph protein. The structural properties of apoLp-III have been investigated by X-ray crystallography. ApoLp-III from Locusta migratoria adopts a five helix bundle conformation wherein each of the amphipathic helices orients with its hydrophobic face directed toward the interior of the bundle. It has been hypothesized that lipid association requires a dramatic conformational change wherein the helix bundle opens about putative hinge domains located in the loops between helices. The data accumulated support the concept that apoLp-III is a member of the broad class of exchangeable apolipoproteins and structural information learned from this system is directly

  20. Randomised trial of lipid lowering dietary advice in general practice: the effects on serum lipids, lipoproteins, and antioxidants.

    PubMed Central

    Neil, H. A.; Roe, L.; Godlee, R. J.; Moore, J. W.; Clark, G. M.; Brown, J.; Thorogood, M.; Stratton, I. M.; Lancaster, T.; Mant, D.

    1995-01-01

    OBJECTIVE--To determine the relative efficacy in general practice of dietary advice given by a dietitian, a practice nurse, or a diet leaflet alone in reducing total and low density lipoprotein cholesterol concentration. DESIGN--Randomised six month parallel trial. SETTING--A general practice in Oxfordshire. SUBJECTS--2004 subjects aged 35-64 years were screened for hypercholesterolaemia; 163 men and 146 women with a repeat total cholesterol concentration of 6.0-8.5 mmol/l entered the trial. INTERVENTIONS--Individual advice provided by a dietitian using a diet history, a practice nurse using a structured food frequency questionnaire, or a detailed diet leaflet sent by post. All three groups were advised to limit the energy provided by fat to 30% or less and to increase carbohydrate and dietary fibre. MAIN OUTCOME MEASURES--Concentrations of total cholesterol and low density and high density lipoprotein cholesterol after six months; antioxidant concentration and body mass index. RESULTS--No significant differences were found at the end of the trial between groups in mean concentrations of lipids, lipoproteins, and antioxidants or body mass index. After data were pooled from the three groups, the mean total cholesterol concentration fell by 1.9% (0.13 mmol/l, 95% confidence interval 0.06 to 0.22, P < 0.001) to 7.00 mmol/l, and low density lipoprotein cholesterol also fell. The total carotenoid concentration increased by 53 nmol/l (95% confidence interval 3.0 to 103, P = 0.039). CONCLUSIONS--Dietary advice is equally effective when given by a dietitian, a practice nurse, or a diet leaflet alone but results in only a small reduction in total and low density lipoprotein cholesterol. To obtain a better response more intensive intervention than is normally available in primary care is probably necessary. PMID:7888933

  1. Interactions between Phospholipids and Organic Phases: Insights into Lipoproteins and Nanoemulsions.

    PubMed

    Hildebrandt, Ellen; Dessy, Alberto; Sommerling, Jan-Hendrik; Guthausen, Gisela; Nirschl, Hermann; Leneweit, Gero

    2016-06-14

    The adsorption of phosphatidylcholines (PCs), dissolved in squalene or squalane as an organic phase, was studied at the interface with water. Using profile analysis tensiometry, the equilibrium adsorption isotherms, minimum molecular interfacial areas, and solubility limits were derived. For squalene, differences in PC solubility and interfacial adsorption were found, depending on PC saturation. Compared to saturated PCs, unsaturated PCs showed a 3-fold-lower interfacial density but up to a 28-fold-higher critical aggregation concentration (CAC). In addition, the solubility limit of unsaturated PC in squalene and in its saturated form squalane diverged by a factor of 739. These findings provided evidence for steric repulsion or π-π interactions of π bonds in both solvent and solute or both effects acting complementarily. In squalane, low solubilities but high interfacial densities were found for all investigated PCs. Changes in fatty acid chain lengths showed that the influence of the increases in entropy and enthalpy on solubility is much smaller than solvent/solute interactions. Oxidation products of squalene lowered the interfacial tension, but increasing concentrations of PC expelled them from the interface. The CAC of saturated PC was increased by oxidation products of squalene whereas that of unsaturated PCs was not. Our findings indicate that the oxidation of triglycerides in lipoprotein cores can lead to increased solubility of saturated phospholipids covering the lipoproteins, contributing to destabilization, coalescence, and terminally the formation of atherosclerotic plaques. The consideration of solvent/solute interactions in molecular modeling may contribute to the interfacial tension and the corresponding kinetic or thermodynamic stability of lipoproteins. Measured areas per molecule prove that PCs form monolayers of different interfacial densities at the squalene/water interface but multilayers at the squalane/water interface. These findings

  2. Interactions between Phospholipids and Organic Phases: Insights into Lipoproteins and Nanoemulsions.

    PubMed

    Hildebrandt, Ellen; Dessy, Alberto; Sommerling, Jan-Hendrik; Guthausen, Gisela; Nirschl, Hermann; Leneweit, Gero

    2016-06-14

    The adsorption of phosphatidylcholines (PCs), dissolved in squalene or squalane as an organic phase, was studied at the interface with water. Using profile analysis tensiometry, the equilibrium adsorption isotherms, minimum molecular interfacial areas, and solubility limits were derived. For squalene, differences in PC solubility and interfacial adsorption were found, depending on PC saturation. Compared to saturated PCs, unsaturated PCs showed a 3-fold-lower interfacial density but up to a 28-fold-higher critical aggregation concentration (CAC). In addition, the solubility limit of unsaturated PC in squalene and in its saturated form squalane diverged by a factor of 739. These findings provided evidence for steric repulsion or π-π interactions of π bonds in both solvent and solute or both effects acting complementarily. In squalane, low solubilities but high interfacial densities were found for all investigated PCs. Changes in fatty acid chain lengths showed that the influence of the increases in entropy and enthalpy on solubility is much smaller than solvent/solute interactions. Oxidation products of squalene lowered the interfacial tension, but increasing concentrations of PC expelled them from the interface. The CAC of saturated PC was increased by oxidation products of squalene whereas that of unsaturated PCs was not. Our findings indicate that the oxidation of triglycerides in lipoprotein cores can lead to increased solubility of saturated phospholipids covering the lipoproteins, contributing to destabilization, coalescence, and terminally the formation of atherosclerotic plaques. The consideration of solvent/solute interactions in molecular modeling may contribute to the interfacial tension and the corresponding kinetic or thermodynamic stability of lipoproteins. Measured areas per molecule prove that PCs form monolayers of different interfacial densities at the squalene/water interface but multilayers at the squalane/water interface. These findings

  3. Lipoproteins binding malachite green to slow the decolorization of malachite green in Pseudomonas sp. JT-1.

    PubMed

    Wu, Jun; Li, Liguan; Du, Hongwei; Jiang, Lijuan; Zhang, Qiong; Wei, Zhongbo; Wang, Xiaolin; Xiao, Lin; Yang, Liuyan

    2011-01-01

    Lipoproteins of a malachite green (MG)-decolorizing bacterium Pseudomonas sp. JT-1 could bind MG to form green MG-Lipoproteins complexes, which prevented the decolorization of MG by triphenylmethane reductase.

  4. 21 CFR 866.5590 - Lipoprotein X immunolog-ical test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...-density lipoprotein) in serum and other body fluids. Measurement of lipoprotein X aids in the diagnosis of obstructive liver disease. (b) Classification. Class I (general controls). The device is exempt from...

  5. Lipoprotein lipase release from BFC-1 beta adipocytes. Effects of triglyceride-rich lipoproteins and lipolysis products.

    PubMed

    Sasaki, A; Goldberg, I J

    1992-07-25

    Lipoprotein lipase (LPL), synthesized by adipocytes and myocytes, must be transported to the luminal endothelial cell surface where it then interacts with circulating lipoproteins. The first step in this extracellular LPL transport pathway is LPL release from the surface of LPL-synthesizing cells. Because hydrolysis of triglyceride (TG)-rich lipoproteins releases LPL from the apical surface of endothelial cells, we hypothesized that the same substances dissociate LPL from adipocytes. 125I-LPL was bound to the surface of brown adipocytes (BFC-1 beta). LPL binding to the adipocyte surface was greater than to endothelial cell surfaces. Using low concentrations of heparin, more LPL was released from endothelial cells than BFC-1 beta, suggesting that the affinity of LPL binding to the adipocytes was greater than LPL affinity for endothelial cells. Greater than 3-fold more LPL was released from the cell surface when very low density lipoproteins (VLDL) were added to culture medium containing 3% bovine serum albumin. LPL remaining on the cell surface decreased with VLDL addition. Endogenously produced LPL activity was also released from the cells by VLDL. Low and high density lipoproteins did not release 125I-LPL or LPL activity from the adipocytes. To assess whether lipolysis was necessary for LPL release, BFC-1 beta were incubated with TG-rich lipoproteins from a patient with apoCII deficiency. The apoCII-deficient lipoproteins did not release LPL unless an exogenous source of apoCII was added. Apolipoproteins E and Cs and high molar ratios of oleic acid:bovine serum albumin did not release surface-associated LPL. Lysolecithin (25 and 100 microM), but not lecithin, monoglycerides, or diglycerides, released adipocyte surface LPL. Because lysolecithin also released LPL during a 4 degrees C incubation, cellular metabolic functions are not required for LPL dissociation from the cells. Lysolecithin also inhibited LPL binding